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RÉSUMÉ EN FRANÇAIS

Les maladies cardiovasculaires (CVD) sont la principale cause de décès dans le monde et une
cause majeure d’invalidité [1, 2]. Au cours des dernières décennies, son incidence a fortement
augmenté : le nombre total de cas prévalents de CVD a presque doublé, passant de 271 millions
en 1990 à 523 millions en 2019, et le nombre de décès par an est passé de 12.1 millions en
1990 à 18.6 millions en 2019 [3]. Dans une étude du European Heart Network, il a été estimé
que les CVD coûtaient €210 milliards par an à l’économie de l’Union européenne en 2015, dont
53% (€111 milliards) résultaient des coûts de soins de santé, 26% (€54 milliards) des pertes
de productivité et 21% (€45 milliards) des soins informels aux personnes atteintes de CVD [4].
Parmi les CVD, l’insuffisance cardiaque (HF) est une affection qui survient lorsqu’il y a une
altération de la structure ou du fonctionnement du cœur, en particulier du ventricule gauche
(LV). Selon les estimations, 64.3 millions de personnes souffraient d’insuffisance cardiaque dans
le monde en 2017, et le coût financier de l’insuffisance cardiaque était estimé à $30.7 milliards aux
États-Unis en 2012, avec une projection jusqu’en 2030 révélant une augmentation probable des
coûts de 127%, soit $69.8 milliards [5]. Ces données montrent que la charge des CVD représente
un problème à la fois sanitaire et économique pour les systèmes de santé du monde entier, et
qu’elle devrait augmenter considérablement dans les années à venir avec le vieillissement de la
population mondiale.

Les patients souffrant de pathologies chroniques impliquant le système cardiovasculaire,
comme l’insuffisance cardiaque, peuvent bénéficier d’une surveillance à distance à long terme des
principaux paramètres cardiovasculaires afin d’adapter leur traitement de manière personnalisée
et continue et de diagnostiquer précocement les événements de décompensation qui peuvent
gravement endommager le fonctionnement normal du cœur [6, 7]. Ce diagnostic précoce peut
réduire considérablement le risque que le patient doive être hospitalisé, ce qui s’est avéré être
la principale cause de l’augmentation des coûts des soins de santé [4]. L’analyse des signaux
de vibration cardiaque (CVS), sources intéressantes d’informations sur l’activité mécanique car-
diaque, a déjà donné des résultats remarquables dans ce contexte, principalement parce que
les principales caractéristiques de ces signaux ont été associées à certains marqueurs hémody-
namiques utiles [8, 9]. De plus, la technologie des systèmes micro-électro-mécaniques (MEMS),
couramment utilisés pour acquérir les CVS, s’est considérablement améliorée au cours des deux
dernières décennies en termes de taille, de coût et de résolution.

Les CVS peuvent être acquis de manière non invasive au niveau du thorax, de la même
manière que les médecins utilisent le stéthoscope pour écouter le phonocardiogramme (PCG) [10].

5



L’acquisition de signaux d’accélérométrie à partir du thorax du patient, en utilisant notamment
ces dispositifs MEMS, conduit à l’observation du sismocardiogramme (SCG). L’acquisition et le
traitement du SCG ont été largement développés au cours de la dernière décennie avec de nom-
breuses applications [11], y compris la possibilité de surveiller le SCG en ambulatoire [12, 13].
Cependant, les méthodes permettant d’obtenir des données de vibration cardiaque de haute
qualité, chroniques et longitudinales, qui ne nécessitent pas l’implication d’un médecin ou du
patient pour acquérir correctement et régulièrement ces signaux, restent à développer. Les sys-
tèmes implantables peuvent être une solution à ce défi d’observabilité.

Plusieurs études ont étudié comment acquérir des signaux accélérométriques pour mesurer
la vibration cardiaque à l’intérieur des cavités cardiaques de manière invasive [14, 15]. Il a été
démontré que les valeurs d’amplitude des principales composantes de vibration cardiaque de
ces signaux sont significativement corrélées à des marqueurs hémodynamiques significatifs [8,
9, 16]. Certains dispositifs cardiaques implantables (ICD), tels que les appareils de thérapie de
resynchronisation cardiaque (CRT), intègrent déjà des capteurs accélérométriques pour observer
et analyser les signaux d’accélérométrie cardiaque, dans le but de prédire les futurs événements
d’insuffisance cardiaque [17, 18] ou de définir des protocoles d’optimisation automatique des
paramètres des ICD [19, 14]. Néanmoins, certains des principaux problèmes liés à l’utilisation
des ICD sont les risques associés aux procédures hautement invasives qui doivent être réalisées
pour capturer les signaux d’accélérométrie en contact direct avec le cœur [20, 21].

Notre équipe a déjà proposé des méthodes d’acquisition et de traitement des signaux mé-
caniques cardiaques provenant d’accéléromètres intégrés dans la sonde de stimulation des ICD [14,
15, 22]. Plus précisément, certaines de ces méthodes visaient à extraire des caractéristiques des
signaux d’accélérométrie thoracique et à les comparer aux marqueurs hémodynamiques clas-
siques de l’échocardiographie afin d’optimiser les paramètres des dispositifs CRT implantés chez
les patients souffrant d’insuffisance cardiaque [23, 24]. Cependant, tous les patients ne peuvent
pas bénéficier d’un dispositif cardiaque implantable actif, exigeant ainsi le développement de
méthodes personnalisées qui peuvent être adaptées aux besoins de chaque patient [25, 26]. Par
conséquent, il est clair que le développement d’un système de surveillance des vibrations car-
diaques offrant une gestion intégrée des paramètres multimodaux avec un dispositif peu invasif
est actuellement nécessaire dans le domaine des maladies cardiovasculaires chroniques, afin de
déclencher une attention médicale précoce et adéquate contre les événements de décompensation.

Objectifs

L’objectif principal de cette thèse est de proposer des méthodes d’acquisition et de
traitement du signal afin d’utiliser au mieux les unités inertielles dans le suivi des
patients souffrant d’insuffisance cardiaque, en exploitant efficacement les informa-
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tions multimodales provenant du CVS. Les méthodes proposées viseront l’applicabilité
potentielle sur des systèmes embarqués, en tirant parti des avantages technologiques offerts par
les nouvelles technologies de développement des MEMS. L’un des principaux défis identifiés
dans la littérature réside dans la nature des variables physiques mesurées par les capteurs in-
ertiels, qui sont susceptibles d’être affectées par des perturbations mécaniques associées aux
conditions établies pour la mesure, ce qui gêne l’analyse correcte des principales composantes
des signaux cibles [11, 27, 28]. Par conséquent, les objectifs spécifiques suivants ont été établis
pour le développement de cette thèse :

1. Évaluer la faisabilité de la surveillance cardiovasculaire chronique des CVS à l’aide d’un
nouveau dispositif implantable peu invasif pour l’estimation des paramètres hémody-
namiques chez les patients souffrant d’insuffisance cardiaque.

2. Définir des stratégies et des méthodes qui exploitent les vastes informations multimodales
des CVS dans le but d’identifier les paramètres utilisés pour estimer des marqueurs hémo-
dynamiques.

3. Développer un système d’acquisition de signaux cardiaques qui incorpore l’utilisation de
capteurs MEMS de pointe pour l’évaluation préliminaire de la détection en temps réel des
événements cardiorespiratoires par l’utilisation de technologies telles que l’apprentissage
automatique appliqué aux CVS.

Contenu du manuscrit

Le Chapitre 1 présente une synthèse des principales parties anatomiques et fonctions phys-
iologiques du système cardiovasculaire dans le contexte de l’étude de l’insuffisance cardiaque.
De plus, une revue de l’état de l’art des méthodes les plus pertinentes pour l’acquisition, le
traitement et l’analyse des CVS est présentée.

Le Chapitre 2 décrit la caractérisation des signaux acquis lors d’une expérimentation pré-
clinique à l’aide d’un implant gastrique pour évaluer l’hypothèse selon laquelle des CVS peuvent
être captés à partir d’un petit implant de surveillance positionné au niveau du fond gastrique,
car ce site anatomique semble être un bon candidat pour une surveillance cardiovasculaire à long
terme, étant donné qu’il est physiquement proche du cœur. Cet implant est capable de mesurer
des données cardiaques électrophysiologiques et d’accélérométrie 3D et pourrait être administré
en toute sécurité à l’aide de techniques d’implantation peu invasives telles que la gastroscopie,
améliorant ainsi le confort du patient et son adhésion aux traitements impliquant des dispositifs
implantables. Trois versions différentes de l’implant ont été utilisées pour réaliser les expérimen-
tations proposées, qui étaient axées sur la comparaison des signaux acquis à partir du fond de
l’estomac avec les données de référence acquises par des capteurs standard du site thoracique,
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et sur l’évaluation de la possibilité d’estimer les marqueurs cardiovasculaires longitudinaux à
partir du site gastrique.

Les résultats obtenus ont montré que la variation temporelle des marqueurs tels que la
fréquence cardiaque et la durée et l’amplitude des sons cardiaques mesurés avec l’implant étaient
fortement corrélés avec les signaux de référence, ce qui est très important pour l’utilité prévue
de l’implant dans la surveillance à long terme de l’insuffisance cardiaque chronique. De plus,
lorsque les valeurs SNR des signaux d’accélérométrie sont supérieures à 6 dB ou que le contraste
des bruits cardiaques est supérieur à 2, les composantes S1 et S2 peuvent être correctement
segmentées et des marqueurs hémodynamiques peuvent être estimés à partir de ces données, ce
qui prouve de manière préclinique la faisabilité d’un suivi cardiovasculaire chronique chez les
patients atteints d’insuffisance cardiaque en utilisant cet implant. Cependant, le principal défi
pour l’utilisation de l’implant reste l’optimisation du rapport signal/bruit, en particulier pour
gérer certaines sources de bruit spécifiques au site d’acquisition gastrique qui peuvent induire
des perturbations principalement dans les CVS mesurés.

Le Chapitre 3 présente le développement d’un prototype de système d’acquisition permet-
tant de mesurer de manière synchronisée les signaux mécanocardiographiques (MCG), électro-
cardiographiques (ECG) et phonocardiographiques (PCG) de façon non invasive. Ce système
incorpore la mesure des CVS par l’utilisation d’un capteur MEM de pointe, qui a la par-
ticularité d’intégrer un noyau d’apprentissage automatique (MLC) permettant le déploiement
d’applications d’apprentissage automatique on-the-edge. Une telle propriété pose l’hypothèse
que ce type de technologie pourrait être exploité pour le développement futur de dispositifs
implantables ou portables pour la surveillance des patients cardiaques, avec l’avantage de per-
mettre l’utilisation de l’apprentissage automatique on-the-edge pour améliorer l’efficacité de ces
dispositifs en termes de traitement en temps réel, de vitesse, de mémoire, de taille, de consom-
mation d’énergie et même de précision. Afin d’effectuer une première évaluation du système à la
lumière de cette hypothèse, un premier groupe de tests a été réalisé pour valider la corrélation
entre les signaux MCG et PCG, en prenant ce dernier comme référence gold standard, et un
second groupe de tests a été développé dans le but de réaliser une évaluation préliminaire de
l’hypothèse selon laquelle le MLC intégré dans le capteur MEM peut être utilisé pour détecter
automatiquement des événements cardiorespiratoires liés à des variations hémodynamiques.

Les résultats obtenus ont montré des niveaux adéquats de corrélation entre les CVS mesurés
et la référence PCG sur les caractéristiques de temps et de magnitude, qui sont les plus com-
munément associées à différents types de paramètres hémodynamiques dans la littérature. De
plus, une erreur de synchronisation inférieure à 2 ms entre les différents capteurs, a montré
les bénéfices de l’effort particulier donné à la synchronisation temporelle correcte des signaux,
acquis par différents capteurs, avec des protocoles différents et des résolutions hétérogènes. En
outre, le cadre expérimental conçu pour effectuer des mesures lors de changements aigus des
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paramètres hémodynamiques a permis d’obtenir des résultats de performance appropriés, avec
une détection en temps réel de l’apnée avec une sensibilité, une spécificité et une précision de
0.75, 0.98 et 0.94, respectivement, et une détection en temps réel de la manœuvre de Valsalva
avec une sensibilité, une spécificité et une précision de 0.70, 0.93 et 0.68, respectivement. Ces
résultats démontrent la faisabilité préliminaire de la reconnaissance et de la classification de
schémas associés à de multiples événements cardiorespiratoires impliquant des variations des
paramètres hémodynamiques on-the-edge.

Contributions

Les principales contributions du travail développé dans cette thèse peuvent être résumées
comme suit :

— La présentation des premières preuves précliniques de la faisabilité de la surveillance car-
diovasculaire chronique à partir d’un dispositif cardiaque implantable peu invasif placé
dans le fond de l’estomac.

— Le développement d’un système prototype spécialisé pour l’acquisition de signaux car-
diaques multimodaux, qui intègre un MLC intégré dans un capteur MEM pour la recon-
naissance et la classification on-the-edge de multiples événements cardiorespiratoires liés
à des variations hémodynamiques.

— La proposition d’un algorithme efficace et facile à mettre en œuvre, basé sur des car-
actéristiques contextuelles, pour obtenir les instants de détection finale des principales
composantes du CVS communément liées aux principaux sons cardiaques.

Ce travail a conduit à la publication d’un article dans le cadre d’un numéro spécial “Cardiac
Vibration Signals : Old Techniques, New Tricks and Applications” dans le journal international
indexé “Frontiers in Physiology” [29].

Conclusion

Le travail multidisciplinaire réalisé au cours de cette thèse ouvre des nouvelles perspectives
dans l’exploitation des signaux mécaniques cardiaques pour le développement de nouveaux dis-
positifs permettant le suivi longitudinal de patients diagnostiqués avec une maladie cardiaque
chronique, telle que l’insuffisance cardiaque. En particulier, la faisabilité d’un monitoring car-
diovasculaire longitudinal à partir d’un implant gastrique innovant a été étudiée. En parallèle,
nous avons réalisé un système intégrant des nouveaux capteurs à ultra-basse consommation,
qui permettent un traitement et une détection on-the-edge. Ces capteurs sont particulièrement
prometteurs pour une nouvelle génération de dispositifs de monitoring cardiovasculaire. Plusieurs
pistes de développement futur sont évoquées.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death worldwide and a major cause of
disability [1, 2]. Over the last few decades, its incidence has sharply increased, where the total
prevalent cases of CVD nearly doubled from 271 million in 1990 to 523 million in 2019, and
the number of deaths per year increased from 12.1 million in 1990 to 18.6 million in 2019. Over
this period, years lived with disability doubled from 17.7 million to 34.4 million, and disability-
adjusted life years (DALYs) also increased significantly, mainly caused by ischemic heart disease
(IHD) and stroke, reaching 182 million DALYs due to IHD and 143 million DALYs due to stroke.
CVD also remains a leading cause of increased health care costs and premature mortality, causing
6.2 million deaths between the ages of 30 and 70 in 2019 only [3]. In a study by the European
Heart Network, it was estimated that CVD cost the European Union economy €210 billion per
year in 2015, of which 53% (€111 billion) resulted from healthcare costs, 26% (€54 billion) from
productivity losses and 21% (€45 billion) from informal care of people with CVD [4]. These
data show that the burden of CVD represents both a health and economic concern for health
systems worldwide, which is expected to grow dramatically in the years ahead with the global
aging of the population. Additionally, recent research associated with the COVID-19 pandemic
has revealed new concerns related to CVD, involving the increased risk of poor outcomes for
patients with cardiovascular risk factors and pre-existing CVD [30], the notification of patients
with COVID-19 who have reported to develop cardiovascular complications in the absence of
any previous history of CVD [31], and even the emergence of risks associated with vaccination
against COVID-19 to develop CVD [32].

Within CVD, Heart Failure (HF) is a condition that occurs when there is an alteration
in the structure or functioning of the heart, specially the left ventricle (LV). It was estimated
that 64.3 million people suffered from HF worldwide in 2017, and the financial cost of HF was
estimated at $30.7 billion in the U.S. in 2012, with a projection to the year 2030 revealing a
likely increase in costs of 127%, i. e., $69.8 billion [5]. IHD represents one of the highest risks for
developing HF, with a rate of 65% for men and 48% for women. IHD accounted for 26.5% of the
global age-standardized prevalence rate of HF in 2017, being more likely to impact higher-income
regions [33].

Patients suffering from chronic pathologies involving the cardiovascular system, such as HF,
may benefit from a long-term remote monitoring of the main cardiovascular parameters in order
to adapt their therapy in a personalized and continuous fashion and to early diagnose decom-
pensation events that can severely damage the normal functioning of the heart [6, 7]. This
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early diagnosis can significantly reduce the risk of the patient needing hospitalization, which
has proven to be the main cause of increased health care costs [4]. The analysis of cardiac vi-
bration signals (CVS), interesting sources of information about the cardiac mechanical activity,
has already shown remarkable results in this context, mainly because the main components of
these signals have been associated with some useful hemodynamic markers [8, 9]. Furthermore,
Micro-Electro-Mechanical Systems (MEMS) sensor technology, commonly used to acquire CVS,
has improved significantly during the last two decades in terms of size, cost, and resolution.

CVS may be acquired non-invasively from the chest, in a similar fashion as cardiologists
apply the stethoscope for listening to the phonocardiogram (PCG) [10]. The acquisition of
accelerometry signals from the chest of the patient, using in particular these MEMS devices,
leads to the observation of the seismocardiogram (SCG), that is characterized by the presence
of two main components, S1 and S2, which correspond to the first and second heart sounds in
the PCG, respectively [27]. SCG acquisition and processing have been widely developed during
the last decade, with applications ranging from IHD characterization, to cardiac stress and HF
monitoring [11]. Furthermore, recent developments of wearable or connected devices offer the
possibility to monitor the CVS in ambulatory monitoring [12, 13]. However, methods to obtain
high-quality, chronic and longitudinal cardiac vibration data, that do not require the involvement
of a medical practitioner or the patient to correctly and regularly acquire these signals, remain
to be developed. Implantable systems may be a solution to this observability challenge.

Several studies have examined how accelerometric signals can be acquired to measure car-
diac vibration from within the heart chambers in an invasive manner [14, 15]. These endocardial
acceleration (EA) signals have two main components known as EA1 and EA2, which are as-
sociated with the first and second heart sounds, respectively. The peak-to-peak values of the
main cardiac vibration components of these signals have been shown to be significantly corre-
lated with meaningful hemodynamic markers [8, 9, 16]. Implantable cardiac devices (ICD) such
as cardiac resynchronization therapy (CRT) devices, cardioverter-defibrillators and pacemakers
are normally used in the treatment and follow-up of chronic heart diseases as HF. Some of
these ICD already integrate accelerometer sensors to observe and analyze cardiac accelerom-
etry signals from subcutaneous or intra-cardiac sites, with the objective to predict future HF
events [17, 18] or to define automatic optimization protocols of the ICD parameters [19, 14].
Nevertheless, some of the main problems related to the use of ICD are the risks associated with
the invasive procedures that must be performed to capture acceleration signals in direct contact
with the heart and the risk of infection or complications of the leads [20, 21].

In past works, our team has proposed methods for the acquisition and processing of cardiac
mechanical signals from accelerometers embedded into the stimulation lead of ICD [14, 15, 22].
Specifically, some of these methods have focused in extracting features from chest accelerome-
try signals and compare them to classical hemodynamic echocardiography markers in order to

22



Introduction

optimize parameters of CRT devices implanted in HF patients [23, 24], considering that not all
patients may benefit from an active cardiac implantable device, thus requiring the development
of customized methods that can be adjusted to the needs of each patient [25, 26]. Therefore, it is
clear that the development of a remote cardiac vibrations monitoring system offering integrated
management of multimodal parameters with a minimally invasive device is currently needed in
the chronic cardiovascular diseases domain, to trigger very early and adequate medical attention
against the decompensation events.

This PhD thesis is in line with the work carried out at the Laboratoire Traitement du Signal et
de l’Image (LTSI) for several years, in the Stimulation thÉrapeutique et monitoring Personnalisés
pour l’Insuffisance cardiaque et les Apnées-bradycardies (SEPIA) team, on cardiac acceleromet-
ric signal processing. It is developed in a multidisciplinary environment, in collaboration with
professionals from the SEPIA team and the medical device industry. More specifically, this
thesis is conducted within the framework of the project entitled “Digital Implantable Gastric
Stethoscope (DIGS)” of the Agence Nationale de la Recherche (ANR) [34], which is developed in
direct collaboration between LTSI, the Recherche Translationnelle et Innovation en Médecine et
Complexité (TIMC) team, the company Sentinhealt and the Laboratoire Radiopharmaceutiques
Biocliniques INSERM U1039 (LRB). The main objective of this project is to validate a data
extraction process for early detection of HF decompensation in real-life conditions. This project
can have economic benefits through the potential transfer of the developed technologies to the
industrial partners that have been working for several years with the SEPIA team in this field.

The main objective of this thesis is to further investigate in this domain and, in particular,
to propose signal acquisition and processing methods to make the best use of inertial
units in the monitoring of patients with heart failure, by efficiently exploiting multi-
modal information from CVS. The proposed methods will target the potential applicability
on embedded systems, leveraging the technological advantages offered by new technologies in
MEMS development. One of the main challenges previously identified in the literature lies in the
nature of the physical variables measured by inertial sensors, which are susceptible to be affected
by mechanical disturbances associated with the conditions established for the measurement, thus
hindering the correct analysis of the main components of the target signals [11, 27, 28]. Therefore,
the following specific objectives have been established for the development of this thesis:

1. To evaluate the feasibility of chronic cardiovascular monitoring of CVS using a novel
minimally invasive implantable device for the estimation of hemodynamic parameters in
HF patients.

2. To define strategies and methods that leverage the vast multimodal information of CVS
in the task of identifying the parameters used to estimate hemodynamic markers.

3. To develop a cardiac signal acquisition system that incorporates the use of cutting-edge,
ultra-low-power MEMS sensors for the preliminary evaluation of real-time detection of
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cardiorespiratory events through the use of technologies such as machine learning applied
on CVS.

Figure 1 shows a general outline of the study framework of the thesis, which is intended
to fulfill the proposed objectives. This framework is divided into two main approaches, one of
them focused on the evaluation of the feasibility of acquiring longitudinal CVS using an intra-
gastric implant in a preclinical animal experimentation setup. The second approach focuses on
the development of a cardiac signal acquisition system to preliminarily assess the feasibility
of automatically detecting cardiorespiratory events on-the-edge using a MEMS sensor with an
embedded machine learning core. Note that although the content of the green box in Figure 1
is outside the scope of this thesis, it is a good representation of the research intended to be
developed as future work, based on the results obtained with the development of this thesis.
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Figure 1 – General outline of the thesis study framework. The black arrows represent the flow of data through
the intragastric approach, while the blue arrows represent the flow of data through the non-invasive, thoracic
approach. The gray, purple and blue boxes are distributed according to their relationship to the first, second
and third specific objectives of the thesis, respectively. The green box represents the intended purpose of the
research subsequent to the completion of this thesis. The acronyms ECG, PCG, ACC, SCG and GCG stand
for Electrocardiogram, Phonocardiogram, Accelerometry, Seismocardiogram and Gyrocardiogram, respectively;
referring to the signals acquired for each of the approaches.

This thesis is organized as follows:
Chapter 1 presents an overview of the main anatomical parts and physiological functions of

the cardiovascular system in the study context of HF. In addition, a state-of-the-art review of
the most relevant methods for the acquisition, processing and analysis of CVS is presented.

Chapter 2 discusses the hypothesis that CVS may be captured from a small monitoring
implant positioned at the gastric fundus, which could be delivered through gastroscopy, in a
minimally invasive manner. It describes the characterization of the acquired signals in pre-
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clinical experimentation and evaluates the feasibility to obtain useful hemodynamic markers
from these signals.

Chapter 3 describes the design, calibration, operation and initial evaluation of a prototype
acquisition system developed to measure the mechanical, electrical and phonographic signals of
the heart using specialized sensors with high performance characteristics. The main feature of
such a system is the integration of a machine learning core (MLC) that is intended to be used
to automatically detect different cardiorespiratory events capable of generating hemodynamic
variations, such as apnea and valsalva maneuver.

Chapter 4 presents the final conclusions and possible directions for future work, based on
the results obtained with the development of this thesis.
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Chapter 1

FUNDAMENTALS OF CARDIAC FUNCTION

AND CARDIAC VIBRATION SIGNALS

The function of blood circulation is to meet the needs of body tissues by transporting
oxygen, nutrients and hormones, removing waste products, and maintaining an ap-
propriate environment in all tissue fluids of the body for optimal cellular functioning.
The blood vessels and heart are controlled to provide the blood pressure and cardiac
output necessary to cause blood flow through the tissues, since the local blood flow ve-
locity is determined primarily by the nutritional needs of each type of tissue [35]. This
chapter presents an overview of the main anatomical parts and physiological functions
of the cardiovascular system in the study context of heart failure (HF). In addition,
a state-of-the-art review of the most relevant methods for the acquisition, processing
and analysis of cardiac vibration signals (CVS) is presented.

1.1 The cardiovascular system

Blood circulation occurs through an extensive system that can be roughly summarized as
a pump represented by the heart and a network of tubes corresponding to the arteries, veins
and capillaries. This complex anatomical structure is the cardiovascular system. The blood
circulation process is divided into two parts known as the pulmonary circulation and the systemic
circulation. The pulmonary circulation corresponds to the process in which oxygen-poor blood
flows through the lungs to be oxygenated, while the systemic circulation is the flow of blood
through the other tissues of the body to perform the exchange between oxygen and carbon
dioxide, which is the process known as perfusion [35].

Figure 1.1 shows a representation of the cardiovascular system and the circulatory flow
direction. The total amount of blood is distributed in different percentages among the different
parts of the cardiovascular system. The systemic circulation concentrates the largest amount of
blood (84%), where 13% is in the arteries that are responsible for carrying blood to the tissues
at high pressure, 7% is in the arterioles (small branches of the arterial system) and capillaries,
which perform the exchange of liquids, nutrients, electrolytes, hormones and other substances
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Arteries
13%

Arterioles
and
capillaries
7%

Heart
7%

Aorta

Pulmonary circulation
9%

Inferior
vena cava

Superior
vena cava

Veins, venules, and
venous sinuses

64%

circulation
84%

Systemic

Figure 1.1 – Representation of the cardiovascular system with percentage of total blood distribution. Adapted
from [35] with permission, copyright ©2015 Elsevier.

between the blood and the cells of the different tissues, and 64% is concentrated in the venous
system, which is in charge of collecting blood from the tissues to transport it back to the heart
at low pressure. The remaining percentage of blood is distributed between the heart (7%) and
the pulmonary circulation (9%) [35].

1.1.1 The Heart

The mediastinum is the area between the two pleural sacs (sacs containing the lungs), ex-
tending vertically from the diaphragm to the thoracic inlet and bounded posteriorly by the
thoracic vertebral column and anteriorly by the sternum. The heart is located in the middle
mediastinum in an oblique position with respect to the planes of the body. It is surrounded by a
double-walled sac called pericardium, which offers protection and stability. The heart has a base
and an apex, and its surfaces are referred to as diaphragmatic (inferior), sternocostal (anterior)
and right and left (pulmonary). The position of the heart in the thorax can be compared to a
deformed pyramid, with the apex facing anteriorly and to the left and the base facing posteriorly
and to the right [36].

The heart is an anatomical fusion of two muscular pumps that make blood flow in series.
These two pumps are known as the “right heart”, in charge of pulmonary circulation, and the “left
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1.1. The cardiovascular system

heart”, in charge of systemic circulation [36]. In turn, both the right and left heart are divided
into two chambers called atrium and ventricle. The atria are responsible for collecting blood from
the veins and pumping it to the ventricles in a weak preparatory action, while the ventricles,
larger and stronger than the atria, are responsible for supplying the main pumping force to the
pulmonary circulation (right ventricle) and the systemic circulation (left ventricle) through the
arteries. The correct direction of blood flow in the heart is ensured by the presence of four valves
corresponding to two atrioventricular valves and two semilunar valves. The atrioventricular
(A-V) valves, defined as the tricuspid valve (TV) in the right heart and the mitral valve (MV) in
the left heart, prevent blood flow from the ventricles to the atria. The semilunar valves prevent
the backflow of blood from the arteries into the ventricles and correspond to the pulmonary
artery valve (PV) in the right heart and the aortic valve (AV) in the left heart [35]. All the
anatomical parts of the heart described above can be seen in Figure 1.2.

Aorta

Pulmonary artery

Inferior
vena cava

Superior
vena cava

Right ventricle

Tricuspid

Pulmonary
valve

Right atrium Pulmonary
veins
Left atrium

Mitral valve

Aortic valve

Left
ventricle

Lungs

valve

HEAD AND UPPER EXTREMITY

TRUNK AND LOWER EXTREMITY

Figure 1.2 – Anatomy of the heart. The white arrows show the direction of blood flow within the heart while
the black arrows show the direction of blood through the major blood vessels. Adapted from [35] with permission,
copyright ©2015 Elsevier.

1.1.2 The major blood vessels

The thoracic aorta and its branches, the pulmonary artery, and the inferior and superior vena
cava are the main blood vessels. They are also shown in Figure 1.2. Blood reaches the right heart
through the superior and inferior vena cava, where the superior vena cava is approximately 7 cm
long and returns blood to the heart from the tissues above the diaphragm, while the inferior vena

29



Chapter 1 – Fundamentals of cardiac function and cardiac vibration signals

cava carries blood to the right atrium (RA) from the infradiaphragmatic tissues. The pulmonary
artery, measuring approximately 5 cm in length and 3 cm in diameter, transports deoxygenated
blood from the right ventricle (RV) to the lungs. The blood is oxygenated again in the lungs
and returns to the heart in the left atrium (LA) through the pulmonary veins. Blood previously
oxygenated is propelled out of the heart through the aorta, which is described in three stages:
(1) the ascending aorta, 5 cm long, originates at the base of the left ventricle (LV) and ascends
obliquely, curving anteriorly and to the right, (2) the aortic arch surrounds the pulmonary artery
from the front to the back, featuring some branches that carry oxygenated blood to the head
and upper extremities, and (3) the descending aorta is the segment located in the posterior
mediastinum, descending to carry oxygenated blood to the trunk and lower extremities [36].

1.1.3 Normal cardiac function

The heart has an advanced system for rhythmic self-excitation that generates periodic electri-
cal impulses which initiate contraction of the heart muscle and spread rapidly and synchronously
through all the conductive tissues of the heart. Under normal operating conditions, the atria
contract approximately 170 ms before the ventricles, allowing for better filling of the ventricles
before pumping blood through the pulmonary and peripheral circulation. The simultaneous con-
traction of all parts of the ventricles is of utmost importance to ensure the proper functioning
of this process, since the thrust force generated to push the blood through all the tissues of
the body depends on it [35]. The main conductive tissues of the heart and their anatomical
disposition are shown in Figure 1.3. These tissues are responsible for generating and controlling
the rhythmic functioning of the heart.

Rhythmic activation of the heart

The electrical impulse that initiates the rhythmic functioning of the heart starts in the
sinus node under normal conditions. This node controls the rate of beat of the entire heart
and is located in the upper wall of the RA, just below the opening of the superior vena cava,
and is approximately 15 mm long, 3 mm wide and 1 mm thick. The ends of the sinus node
fibers connect directly with the surrounding atrial muscle fibers, causing the action potential
to propagate throughout the atrial muscle mass to make it contract. The impulse generated by
the sinus node is conducted to the atrioventricular (A-V) node through the internodal pathways
located in the walls of the RA, where the electrical impulse is delayed to allow the atria to
contract properly before the impulse reaches the ventricles. The A-V node is located in the
posterior wall of the RA, just behind the tricuspid valve. Subsequently, the electrical impulse
reaches the A-V bundle (also known as the bundle of HIS), where it splits to flow through the
right and left bundle branches, connected to the right and left ventricle, respectively. The right
and left bundle branches spread through the ventricles via small specialized fibers known as
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Figure 1.3 – Anatomical distribution of the main conductive tissues of the heart. Reprinted from [35] with
permission, copyright ©2015 Elsevier.

Purkinje Fibers. These fibers exhibit rapid action potential conduction causing the muscle mass
of the ventricles to contract almost simultaneously to achieve the higher pressure that ejects the
blood from the heart [35].

Phases of the cardiac cycle

A cardiac cycle corresponds to the set of consecutive events that occur from the beginning of
one heartbeat to the beginning of the next one. The cardiac cycle is divided into two main phases
related to the filling and ejection processes of the ventricles of the heart, where the ventricular
filling process is called diastole and the ventricular contraction is referred to as systole [36].
The systole phase begins with contraction of the ventricles leading to A-V valves closure. The
short time period between the closing of the A-V valves and the opening of the semilunar valves
is called isovolumic contraction because the volume of blood in the ventricles does not change
even though ventricular contraction has already begun. Blood is ejected out of the ventricles
until the semilunar valves close, terminating the systole phase. The diastole phase begins with
the closure of the semilunar valves and, as in systole, there is a short period of time until the
A-V valves open, in this case it is called isovolumic relaxation. Once the A-V valves open due
to ventricular relaxation, blood begins to fill the ventricles suddenly, which is known as rapid
inflow. Before the end of the systole phase, the atria contract slightly (atrial systole) to help
ventricles fill completely and thus end the diastole phase with the closing of the A-V valves so
that the cycle repeats again [35].

31



Chapter 1 – Fundamentals of cardiac function and cardiac vibration signals

Cardiovascular hemodynamics

The characterization and analysis of flowing blood through the cardiovascular system is
known as hemodynamics [37]. The main variables that define cardiovascular hemodynamics
are pressure, flow and resistance, from which quantitative and measurable parameters such as
blood pressure, stroke volume, ejection fraction and cardiac output are derived. The blood flow
F through a blood vessel is determined by the pressure difference ∆P between the two ends
of the vessel and the resistance R or opposition to blood flow that occurs within the vessel
due to friction between the blood and the vessel walls. This relationship is represented by
Equation (1.1), well known as Ohm’s Law [35].

F = ∆P

R
(1.1)
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Figure 1.4 – Cardiac cycle events for left ventricular function, showing the evolution of the main hemodynamic
parameters, the electrocardiogram and the phonocardiogram. Adapted from [35] with permission, copyright ©2015
Elsevier.

Figure 1.4 shows the evolution of the typical hemodynamic parameters of the left heart
during a normal cardiac cycle, pointing out the main cardiac events previously described. Blood
pressure is the force that blood exerts over any unit area of the vascular walls and is typically
measured in millimeters of mercury (mm Hg). This unit of measurement has a historical origin
dating back to 1846, when Jean-Léonard-Marie Poiseuille invented the mercury manometer,
which was established as the standard reference for blood pressure measurement [35]. Stroke
volume is defined as the volume of blood that is ejected by the contraction of the LV in one
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cardiac cycle. It is calculated based on the velocity of blood flowing from the LV into the aorta
and has a typical value of 70 ml. Ejection fraction (EF) refers to the percentage of blood
that is ejected from the LV (stroke volume) in relation to the total blood volume that was in
this ventricle at the end of the diastole phase. In general, a normal EF is approximately 60%.
Cardiac output is basically defined as the amount of blood pumped by the heart in one minute.
This is calculated by multiplying the stroke volume and heart rate to obtain a result typically
reported in L/min, with typical values ranging from 5 to 6 L/min at rest [35].

1.1.4 Methods and tools for cardiac monitoring

Throughout history, different methods and tools have been developed for monitoring the
state and functioning of the heart. Figure 1.4 also shows the depiction throughout the cardiac
cycle of two of the most well-known and widely used techniques in the medical field for cardiac
analysis (the electrocardiogram and the phonocardiogram). Although there is a wide variety of
tools developed for this purpose, all of them can be classified according to the physical nature
of the variable they measure and the level of invasiveness required for their use. The following
is a description of some of the most common noninvasive techniques that represent a gold
standard reference for cardiac monitoring due to their extensive study in the literature and their
acceptance by the medical field in the context of this thesis.

Electrocardiogram (ECG)

An ECG records the electrical current that spreads to the surface of the body from the
electrical impulse that makes the heart work. This phenomenon occurs because the electrical
current that activates the heart muscle spreads through the surrounding tissues until reaching
the body surface, thus it can be measured by using two electrodes attached to the skin on
opposite sides of the heart [35]. Figure 1.5 shows a normal ECG highlighting the main waves
and segments that compose it with detailed views of their duration and typical amplitude.
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Figure 1.5 – Example of a normal ECG. Adapted from [35] with permission, copyright ©2015 Elsevier.
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The normal ECG is composed of 5 main waves classified as depolarization waves and re-
polarization waves. The P wave is the first one displayed on the ECG and is generated by the
depolarization of the atrial cells prior to atrial contraction. This wave has a typical duration of
approximately 110 ms and an amplitude between 0.1 and 0.3 mV. The Q, R and S waves are
generated by the electrical potentials associated with the depolarization of the ventricular cells
prior to ventricular contraction and are usually grouped into a single ECG component called
the QRS complex. The QRS complex presents the greatest amplitude in the ECG with about
1.0 to 1.5 mV and an approximate duration of 120 ms. Finally, the T wave is generated by the
repolarization of the ventricles, which is a slower process with a smaller amplitude and longer
duration in the ECG. The T wave has a duration of approximately 150 ms and an amplitude
between 0.2 and 0.3 mV [38]. Figure 1.6 shows the relationship between the electrical potential
in the conductive tissues of the heart and the different components of the ECG.

Figure 1.6 – Basic representation of the conduction system of the heart and its relationship with the ECG.
Adapted from [36] with permission, copyright ©2016 Elsevier.

The repolarization of the atria occurs at the same time as the QRS complex, but since the
QRS complex has a greater amplitude, it obscures the atrial repolarization wave, which is not
reflected in the ECG. It is worth mentioning that the amplitude values in the ECG strongly
depend on the location of the electrodes at the moment of measurement, and the values described
here correspond to the ECG recorded with electrodes on both arms or on one arm and one leg,
which is one of the most commonly used configurations [35].
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Phonocardiogram (PCG)

The rapid closing and opening actions of the different cardiac valves generate sound signals
that can be detected by the human ear, especially through the use of the traditional stetho-
scope [39], or recorded electronically by using a specialized microphone. The recording of these
audio signals is referred to as PCG and is displayed as waves with different frequency levels.
Figure 1.7 shows examples of PCG acquired under normal heart function conditions and under
the influence of some cardiac pathologies. One of the main advantages of the PCG is that it can
detect frequency bands that are not audible to the human ear, especially in the low frequency
spectrum. The frequency band of heart sounds that can be detected by the human ear is between
approximately 40 and 500 Hz, but a large part of the content of these signals is below that range,
where even the highest energy peak is around 20 Hz [35].
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Figure 1.7 – Examples of PCG recordings from normal and abnormal hearts. Reprinted from [35] with permis-
sion, copyright ©2015 Elsevier.

There are two main components that can be visualized in a normal PCG called the first
and second heart sounds, which are respectively associated with the typical “lub, dub” heard
through the stethoscope. The first sound is produced mainly by the closure of the A-V valves
at the beginning of the systole stage, and the second sound is generated by the closure of the
semilunar valves at the end of systole. The typical duration of the heart sounds is 140 ms for the
first sound and 110 ms for the second sound, and the second sound has slightly higher frequency
components than the first sound. These discrepancies in the duration and composition of the two
sounds are mainly due to the differences in tension and elasticity of the A-V valves compared to
the semilunar valves. The different components of the PCG can be accentuated depending on

35



Chapter 1 – Fundamentals of cardiac function and cardiac vibration signals

the location of the microphone on the chest. Figure 1.8 shows typical locations for emphasizing
different cardiac phenomena during auscultation.

Mitral areaTricuspid area

Aortic area Pulmonic area

Figure 1.8 – Typical locations for cardiac auscultation. Reprinted from [35] with permission, copyright ©2015
Elsevier.

In some cases it is also possible to identify a third and fourth sound in the PCG with a
weaker amplitude compared to the first two sounds (see Figure 1.7). The third sound occurs
in the middle third of diastole and may be associated with the oscillatory movement of blood
entering the ventricles, although some studies have also associated this sound with the occurrence
of cardiac pathologies [40, 41]. The fourth sound appears right at the end of diastole and is caused
by atrial contraction that generates a greater inflow of blood into the ventricles. When this sound
becomes louder it may be associated with impaired ventricular filling that requires greater atrial
contraction, which is why it tends to be more noticeable in older adults with left ventricular
hypertrophy [35].

Echocardiogram (Echo)

Echocardiography is a method of cardiac monitoring that uses ultrasound waves from a
transducer placed on the chest wall (transthoracic configuration) or passed into the esophagus
of the patient to perform a detailed analysis of the anatomy of the heart. An echocardiogram is
presented as a grayscale image created from a complex analysis and processing of the ultrasound
waves that are reflected and backscattered by the different cardiac tissues on which the signal is
focused [42]. The grayscale of the image indicates the intensity of the reflected ultrasound, where
highly reflective structures, such as calcifications in the heart valves or pericardium, appear
white, while fluid or blood appears black as it presents the least reflection of the ultrasound
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waves. Muscle tissue such as the myocardium, which forms the middle and thickest layer of the
heart wall, appears more gray and shows a unique speckle pattern [43]. The Echo allows detailed
evaluation of the cardiac anatomy from three standardized planes shown in Figure 1.9. The four-
chamber plane (Figure 1.9a) provides a clear view of the atria, ventricles, and the mitral and
tricuspid valves. The long-axis plane (Figure 1.9b) is generated by placing the transducer in
the left apicosternal position and allows detailed visualization of the mitral and aortic valves,
left atrium, left ventricle and aorta. The short-axis plane (Figure 1.9c) is obtained by rotating
the transducer 90◦ in a dextrorotatory direction and provides a detailed view of the chordae
tendineae, papillary muscles, aortic valve and left atrium [36].

RV

RA
LA

LV

(a) Four-chamber view

RV

LV

AV

LA

MV

(b) Parasternal long-axis view

AV

PV

RA

TV

LA

RV

(c) Short-axis view at AV level

Figure 1.9 – Cardiac anatomy shown by transthoracic echocardiography. Adapted from [36] with permission,
copyright ©2016 Elsevier.

Considering the great detail that Echo can provide for the analysis of cardiac anatomy, even
offering real-time visualization with recent technological advances, this technique has become
the gold standard reference for the measurement of some hemodynamic cardiac parameters such
as stroke volume, cardiac output and left ventricular EF. The Echo allows measurement of the
velocity of blood flowing from the left ventricle into the aorta and the cross-sectional area of the
aorta, from which the stroke volume can be calculated. In the same manner, the cardiac output
can also be obtained by multiplying the stroke volume by the heart rate and the EF by measuring
the left ventricular volume at the beginning and ending of the systole phase [35]. Although these
hemodynamic parameters have great diagnostic utility for the evaluation of cardiac function, left
ventricular function is a complex event that is partially described by clinical measures of diastolic
filling and qualitative changes in regional wall motion [42]. For this reason, innovative techniques
have been developed that make use of Echo technology to measure myocardial deformation, also
known as strain.

Strain measurement by speckle-tracking echocardiography (STE) is an established echocar-
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diographic modality for real-time quantitative assessment of myocardial function with clinical
applications in the diagnosis and prognosis of many cardiac diseases [44, 45]. STE is based on
tracking the movement of small bright spots (speckles) of the myocardium captured in the Echo
image during the cardiac cycle. The ultrasound system tracks speckles between consecutively ac-
quired Echo images and determines the distance between two defined myocardial region markers
to plot this distance along the cardiac cycle. Thus, STE provides a direct and accurate measure-
ment of myocardial strain from the three directions established for such analysis: the longitudinal
direction (from the base of the heart towards the apex), the radial direction (walls thicken), and
the circumferential direction (cavity size) [46]. Myocardial strain is a dimensionless measure that
describes the fractional change in the length of a myocardial segment, reported as a positive or
negative percentage with typical values defined by the European Association of Cardiovascular
Imaging in the range of −20% (peak global longitudinal strain) in a healthy person measured
by transthoracic echocardiography, with less negative values considered abnormal [47].

Echo has become one of the main techniques for the evaluation of cardiac function due to
its diagnostic capability and the wide variety of parameters it can measure. However, one of
its main limitations for use as a long-term monitoring method lies in the physical and technical
characteristics of the equipment used. Typical echocardiographic equipment is often large, bulky,
and expensive, which has long limited its exclusive use within medical facilities. Nevertheless,
technological advances over the past decade have enabled the development of smaller ultrasound
machines that can even be portable. These machines can provide diagnostic-quality images and
are relatively inexpensive, but currently lack full diagnostic capabilities, always requiring an
experienced operator, such as a cardiologist, to take advantage of their full potential [43].

1.2 Heart failure (HF)

Cardiovascular disease (CVD) is the leading cause of death worldwide and a major cause of
disability [3], and HF is a condition within CVD that occurs when there is an alteration in the
structure or functioning of the heart, reducing the ability of the heart to pump enough blood to
meet the requirements of the body [43]. Although historically there has been a debate to establish
a mechanistic definition for HF, in 2021, the leading medical and scientific bodies of the world
proposed a consensus on a universal definition and classification of HF [48]. It was established
that “HF is a clinical syndrome with symptoms and or signs caused by a structural and/or
functional cardiac abnormality and corroborated by elevated natriuretic peptide levels and/or
objective evidence of pulmonary or systemic congestion”, and classified HF in three different
categories based on the left ventricular EF: HF with reduced EF (≤ 40%), mildly reduced EF
(41 − 49%) and preserved EF (≥ 50%).
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1.2.1 Etiology

The etiology of HF refers to the different causes that can lead to the development of this
disease, and it is easy to deduce that there are many conditions that can drive a patient to
develop HF considering the large number of pathologies that can generate an impairment of LV
function or structure. Some of these causes are listed below, bearing in mind the left ventricular
EF [43].

Reduced EF (≤ 40%)

◦ Ischemic heart disease

— Myocardial infarction

— Myocardial ischemia

◦ Chronic pressure overload

— Hypertension

— Obstructive valvular disease

◦ Chronic volume overload

— Regurgitant valvular disease

— Intracardiac (left-to-right) shunting

— Extracardiac shunting

◦ Chronic lung disease

— Cor pulmonale

— Pulmonary vascular disorders

◦ Nonischemic dilated cardiomyopathy

— Familial/genetic disorders

— Infiltrative disorders

◦ Toxic/drug-induced damage

— Metabolic disorder

— Viral

◦ Chagas disease

◦ Disorders of rate and rhythm

— Chronic bradyarrhythmias

— Chronic tachyarrhythmias

Mildly reduced EF (41 − 49%)

◦ Pathologic hypertrophy

— Primary (hypertrophic cardiomy-
opathies)

— Secondary (hypertension)

◦ Aging

◦ Endomyocardial disorders

◦ Restrictive cardiomyopathy

— Infiltrative disorders (amyloidosis,
sarcoidosis)

— Storage diseases (hemochromatosis)

◦ Fibrosis

Preserved EF (≥ 50%)

◦ Metabolic disorders

— Thyrotoxicosis

◦ Nutritional disorders (beriberi)

◦ Excessive blood flow requirements

— Systemic arteriovenous shunting

— Chronic anemia
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1.2.2 Diagnosis

HF can be easily diagnosed when there are evident symptoms that have been documented
in relation to this cardiac condition, and even more when the patient presents risk factors that
can help to guide the diagnostic process. However, it has always been emphasized that the best
way to make an accurate diagnosis is to maintain a high suspicion index, because the symptoms
of HF are often non-specific and non-sensitive. There are several standardized procedures that
should be followed in order to determine an accurate diagnosis when HF is suspected. These
procedures range from a detailed physical examination to the use of laboratory tests for patients
with high risk factors [43].

Physical examination

When HF is suspected, the first step in making a diagnosis is to perform a physical exam-
ination to estimate the cause and severity of the disease. Respiratory distress at rest is one of
the main signs of severe HF, as the patient feels the need to sit upright and is unable to finish a
sentence without feeling suffocated. In the case of moderate HF, the patient does not suffer res-
piratory complaints at rest but may feel discomfort in breathing if he/she remains lying down
for several minutes. Similarly, systolic blood pressure is also determined as a sign of interest
since it is reduced in patients with advanced HF due to severe deterioration of left ventricular
function [43].

Other factors that may help to identify HF in patients are the elevation in jugular vein pres-
sure that provides information on right atrial pressure, the detection of pulmonary rales caused
by the accumulation of fluids in the lung tissues, the audible detection of a third heart sound
that may be related to volume overload in patients with tachycardia or tachypnea, an enlarge-
ment of the liver as a consequence of increased pressure in the hepatic veins, the appearance
of edema in the lower extremities due to right ventricular malfunction, and finally, considerable
weight changes of the patient as a consequence of severe HF [43].

Standard validation exams

Detection of HF-associated biomarkers is performed by conducting routine laboratory tests
such as complete blood count (CBC), urinalysis, serum creatinine, blood urea nitrogen, and
electrolyte panel, among other specific tests for selected patients. The main biomarkers that
these tests seek to analyze and that constitute useful tools for the diagnosis of HF are circulating
levels of natriuretic peptides such as B-type natriuretic peptide (BNP) and N-terminal pro-BNP
(NT-proBNP). These biomarkers are released by the failing heart. Other biomarkers that have
been recently being used in this context are galectin-3 and soluble ST-2 [43].

It is always recommended to record a 12-lead ECG to identify important factors such as
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left ventricular hypertrophy or alterations in the Q wave that may indicate a prior myocar-
dial infarction. In the case of a normal ECG, left ventricular malfunction can be discarded. In
addition, further details can be obtained to improve diagnostic certainty by performing other
exams such as a thoracic x-ray to obtain information about the shape and size of the heart
and to rule out other non-cardiac conditions that may be causing the symptoms in the patient.
Regarding noninvasive cardiac imaging methods for the evaluation and diagnosis of HF, 2D
Doppler echocardiography represents the most useful method to obtain accurate information on
the shape, size and function of the different cardiac chambers and valves, considering also that
it allows the measurement of the left ventricular EF, which is one of the most relevant hemo-
dynamic parameters in the analysis of HF. Magnetic resonance imaging (MRI) is also used to
analyze the cardiac anatomy and physiology, representing the gold standard for the evaluation of
ventricular mass and volume, despite its reduced implementation compared to other techniques,
especially due to its high economic cost and long acquisition time [43].

1.2.3 Left-sided and right-sided HF

HF can be classified according to the side of the heart that is affected by the disease, in which
case it is referred to as left-sided HF and right-sided HF. Although left-sided HF is statistically
more common than right-sided HF, it is important to consider the different pathophysiologies
associated with each classification. Left-sided HF appears through the backup of blood in the
pulmonary circulation caused by the inefficiency of the left ventricle to eject blood, resulting in
the accumulation of blood in the lungs and the increase in pulmonary artery pressure leading
to pulmonary vascular congestion and pulmonary edema. On the other hand, right-sided HF is
presented by the backup of blood in the systemic circulation because the right ventricle fails to
send to the lungs the same amount of blood that arrives from the venous system, thus generating
an increase in central venous pressure that leads to the accumulation of fluids in places such as
the feet, legs and organs such as the liver and kidneys [35].

1.2.4 New York Heart Association Classification

The functional status of patients is an extremely important marker for determining an ap-
propriate prognosis for the level of medical care and treatment required by each patient. The
New York Heart Association developed a classification system related to this aspect that allows
patients to be easily classified according to their functional capacity. Table 1.1 shows the charac-
teristics of this classification. Although it is still difficult to determine a precise prognosis of the
possible evolution of the patient’s condition, this classification has shown a high efficacy in this
task, since statistically it has been found that, for instance, patients with Class IV characteristics
have a higher annual mortality rate (between 30 and 70%) than Class II patients (between 5
and 10%). This type of classification seeks to address the results of mortality studies in the HF
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community, which indicate that 30 to 40% of patients die within the first year of diagnosis and 60
to 70% die within five years, mainly from worsening of the HF due to inadequate treatment [43].

Functional capacity Objective assessment
Class I Patients with cardiac disease but without resulting limitation of

physical activity. Ordinary physical activity does not cause undue
fatigue, palpitations, dyspnea, or anginal pain.

Class II Patients with cardiac disease resulting in slight limitation of physi-
cal activity. They are comfortable at rest. Ordinary physical activity
results in fatigue, palpitation, dyspnea, or anginal pain.

Class III Patients with cardiac disease resulting in marked limitation of phys-
ical activity. They are comfortable at rest. Less than ordinary ac-
tivity causes fatigue, palpitation, dyspnea, or anginal pain.

Class IV Patients with cardiac disease resulting in inability to carry on any
physical activity without discomfort. Symptoms of heart failure or
the anginal syndrome may be present even at rest. If any physical
activity is undertaken, discomfort is increased.

Table 1.1 – New York Heart Association classification for HF [43].

1.2.5 Compensated and decompensated HF

When a sudden event occurs that can severely damage the normal functioning of the heart,
such as a heart attack, it results in an immediate reduction in cardiac output and pooling
of blood in the venous system, leading to an increase in central venous pressure. The black
line in Figure 1.10 depicts the progression in cardiac output following an event such as an
acute myocardial infarction. Point A shows the normal state of blood circulation under resting
conditions, where cardiac output is 5 L/min and right atrial pressure is 0 mm Hg. Point B
illustrates cardiac performance just a few seconds after infarction occurs, with a sharp drop in
cardiac output that usually produces fainting. Point C represents the compensation of cardiac
output as a response of the sympathetic nervous system, which occurs mainly within the first 30
seconds to 1 minute after the heart attack. Finally, point D shows a recovery of cardiac output
to near-normal function at rest that occurs after several days or even weeks, where an increase
in right atrial pressure can be noted, mainly caused by fluid retention generated during the
abnormal cardiac event. This final stage of the process is known as compensated HF, where the
patient presents a positive recovery but the symptoms of acute HF may still reappear depending
on the lifestyle of the patient [35].

The state of compensated HF can be reached not only due to a sudden event that causes
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Figure 1.10 – Progressive changes in heart pumping effectiveness after an acute myocardial infarction. Reprinted
from [35] with permission, copyright ©2015 Elsevier.

damage to the heart, such as cardiac arrest, but can also be due to the sum of several progressive
events that can slowly deteriorate the functioning of the heart. Unhealthy lifestyle or simply
reaching an advanced age can generate small decreases in cardiac output, causing slight but
frequent physiological responses of the body related to the activation of the sympathetic nervous
system and fluid retention. As a result, a normal cardiac output at rest is achieved at the cost
of an increase in right atrial pressure (point D in Figure 1.10). For this reason, many people can
live with compensated HF without even realizing it, experiencing some of its symptoms when
they exercise or engage in demanding physical activity [35].

When the damage to the heart is significant enough that compensatory processes are not
sufficient to restore a balanced cardiac output state, it is called decompensated HF. Decompen-
sated HF is characterized by an excessively weak functioning of the heart, which in most cases
causes the kidneys not to excrete enough fluid, generating an imbalance between the amount of
fluid entering and leaving the body. This imbalance generates excessive fluid retention which in
turn causes the compensatory mechanisms of the heart to remain activated without reaching a
point of stability. The result of this loop of events is an overstretched heart that cannot achieve
sufficient cardiac output for the kidneys to function properly, so the patient is very likely to die
if not intervened in time [35].

Figure 1.11 shows the evolution of cardiac efficiency over time when there has been severe
damage that has left the heart in a state of extreme weakness. Point A represents the state
of cardiac output just before the compensation processes begin, and point B shows the per-
formance of the heart when compensation by sympathetic stimulation is initiated after a few
minutes, achieving an increase in cardiac output before fluid retention begins. The horizontal
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straight line in Figure 1.11 represents the approximate critical level for the cardiac output to
be sufficient for the kidneys to maintain normal fluid balance in the body. Although it may ap-
pear that compensatory mechanisms will allow the patient to improve his condition, the cardiac
output is still not sufficient for the kidneys to reach their valance point, continuing with excess
fluid retention. Subsequently, right atrial pressure rises because the progressive increase in fluid
volume forces increased blood flow from the peripheral veins of the patient into the right atrium.
After about a day, the cardiac performance reaches point C, where it can be noted that the right
atrial pressure has increased due to fluid retention but has not yet reached a point of stability
in terms of cardiac output. A short time later (about one more day) point D is reached, where
the right atrial pressure continues to increase but it is clear that fluid retention no longer has a
positive effect on cardiac output. This point in the evolution of the patient’s condition is crucial
to determine the final effect of the decompensation, because it becomes mandatory to perform
an intervention by means of medication or adjustment of the treatment that allows reversing
this chain of events. Unless adequate treatment of the patient is carried out, after a few more
days cardiac performance will reach point E, where cardiac output has already begun to decrease
and the concentration of edema continues to increase in the tissues, until finally reaching point
F where cardiac output is simply unsustainable for the survival of the patient [35].
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Figure 1.11 – Significant decrease in cardiac output indicating decompensated HF. Reprinted from [35] with
permission, copyright ©2015 Elsevier.

One of the main challenges regarding the management of patients with HF is the early de-
tection of decompensation events, considering that decompensated HF often results in the need
for hospitalization with excessively high morbidity and mortality. Nearly half of patients must
be readmitted for treatment within 6 months of the acute decompensation event, while short-
term cardiovascular mortality is 5% (in-hospital) and long-term is 20% (1 year). Additionally,
long-term combined outcomes remain deficient, with a joint incidence of hospitalizations, cardio-
vascular deaths, myocardial infarction, stroke, and sudden death reaching 50% at 12 months after
the initial hospitalization [43]. Adequate and early treatment of a patient diagnosed with decom-
pensated HF is extremely important, as decompensation is usually related to non-compliance
with therapy or non-optimized therapy.
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1.2.6 Management and treatment

It is clear that HF is a rather extensive syndrome characterized by a wide presentation of
phenotypes ranging from chronic HF with preserved or reduced EF to acute decompensated
and advanced HF. Early management has been prioritized as a research topic throughout the
world, bringing an evolution in the management of HF ranging from symptom control to disease-
modifying therapy. Early asymptomatic left-sided HF is susceptible to preventive care and its
natural progression is modifiable by neurohormonal drug treatments. Therapeutic goals in HF
with preserved EF evolve around efforts to improve exercise tolerance by controlling congestion,
stabilizing heart rate and blood pressure, since experience has shown that blood pressure reduc-
tion relieves symptoms more effectively than targeted therapy with specific agents. In contrast,
advanced heart failure, which is typical of HF with reduced EF, causes the patient to remain
markedly symptomatic, requiring increasing doses of diuretics (drugs that help eliminate salt
and water from the body by making it easier for the kidneys to release more sodium through
the increased production of urine [49]) due to persistent renal failure with frequent episodes of
decompensated HF that imply the need for recurrent hospitalizations [43].

During a decompensation process such as the one described above in Figure 1.11, the main
objective of the treatment is to restore the balance between the amount of fluids entering and
leaving the body. Usually, decompensation can be stopped by using diuretics that increase renal
excretion and concurrently reducing water and salt intake to reach a fluid balance despite the
low cardiac output [35]. Another method used to stop and reverse the decompensation process
is by strengthening the heart, especially by administering cardiotonic agents such as Digitalis to
reinforce the contraction of the heart, which is known as a positive inotropic action, so that the
contractile force of the myocardium increases to pump more blood and consequently increase
cardiac output [50].

Although symptom management and strategies to improve the prognosis of HF have largely
relied on pharmacological treatments, some patients with HF may also show signs of electrical
dyssynchrony, which are associated with increased hemodynamic compromise. Cardiac resyn-
chronization therapy (CRT) is an accepted treatment for patients with wide QRS complex
generated by asynchronous contraction between left ventricular walls (intraventricular) or be-
tween ventricular chambers (interventricular). CRT basically consists of placing a pacing lead
via the coronary sinus to the lateral wall of the ventricle for the purpose of generating coor-
dinated electrical impulses to normalize synchronized cardiac contraction and achieve higher
cardiac output. This method has been revolutionary for patients with advanced HF whose only
previous option was cardiac transplantation [51, 43]. Additionally, in terms of HF management
using implantable cardiac devices (ICD), the use of implantable cardioverter-defibrillator has
been strongly recommended in HF patients with substantially reduced EF, considering that
they are at increased risk of sudden cardiac death. Furthermore, if those patients meet the QRS
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criteria for CRT, a combined treatment of CRT with implantable cardioverter-defibrillator can
also be used [52, 53].

The prognosis, symptoms and quality of life of patients with HF have improved markedly with
the latest advances in pharmacological treatments, as demonstrated by the combined treatment
with the “fantastic four” [54, 55], which includes an angiotensin receptor/neprilysin inhibitor
(ARNI), a beta-blocker, a mineralocorticoid receptor antagonist (MRA), and a sodium–glucose
co-transporter 2 (SGLT2) inhibitor, providing benefits of 2.7 additional years (for a 80-year-
old person) to 8.3 additional years (for a 55-year-old person) without cardiovascular death
or first hospital admission for HF [56]. However, these pharmacological treatments should be
accompanied by the advancement of device therapies and interventions for the personalized
treatment of patients to gain a better understanding of the causes of hospital admission and
readmission in patients living with HF [57, 54]. An example of this concern is the high rate of
nonresponders to treatments such as CRT, for which it has been shown that 33% of patients
receiving therapy do not have a favorable hemodynamic response [51]. Therefore, it has become
evident the need to develop new studies focused on the development of treatments based on
obtaining markers that allow to optimize the therapy in a regular and patient-specific manner,
thus increasing the efficacy of therapies and improving outcomes.

1.3 Cardiac vibration signals (CVS)

The signals generated from the mechanical motion caused by the functioning of the cardio-
vascular system, primarily associated with the contraction and relaxation action of the cardiac
chambers, the opening and closing of the heart valves, and the flow of blood within the heart
and through the multiple blood vessels, are known as CVS [27]. These signals can be mea-
sured from different parts of the body with different types of instruments and sensors, changing
their definition, shape, composition and general characterization according to the location and
configuration of the sensors used to record them.

1.3.1 Clinical relevance of CVS

As discussed in the previous section, patients suffering from chronic pathologies involving
the cardiovascular system, such as HF, may benefit from a long-term remote monitoring of the
main cardiovascular parameters in order to early diagnose decompensation events or to adapt
their therapy in a personalized and continuous fashion [6, 7]. In addition, long-term remote
monitoring of the patient could significantly reduce treatment costs by preventing the possible
worsening of health status that may lead to hospitalization, which has proven to be the main
cause of increased health care costs [4]. It is clear that there is currently a wide variety of
well-studied and extensively documented methods and tools that provide detailed information
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on the mechanical and electrical conditions of the heart within the clinical setting, such as
those introduced in Section 1.1.4. However, these cardiac assessment modalities present some
limitations against which CVS may present new opportunities and advantages.

Listening to heart sounds represents the oldest method of assessing the mechanical contrac-
tion of the heart, since auscultation was used even before these sounds could be electrically
recorded for the first time in 1894 in what could be recognized as the first recorded PCG sig-
nal [58]. Although the PCG provides useful information regarding the closure of the heart valves
and a skilled physician can use this information to determine the operating conditions of the
heart, it is almost impossible to use the PCG to extract accurate information about the open-
ing of the heart valves, thus precluding the use of a large number of hemodynamic parameters
that depend on the time intervals associated with the opening and closing of the heart valves.
Additionally, PCG is not usually recorded in the clinical setting, as physicians usually directly
interpret the content of this type of signal through auscultation [59]. The ECG is the best
known and most widely used method of cardiac evaluation and monitoring in the clinical set-
ting since the publication of the first results obtained from the use of an ECG recording device
in 1903 [60, 61]. However, this method only records the electrical variations associated with
the functioning of the heart, which do not adequately reflect the cardiac mechanical variations,
which are fundamental for the hemodynamic analysis of the patient [59]. Lastly, Echo is one
of the most advanced and relatively recent methods for cardiac assessment, with its invention
in 1954 [62]. It offers the possibility of measuring a wide range of hemodynamic parameters,
even as a gold standard reference in this aspect compared to other methods. Nevertheless, the
main problem with Echo lies in the difficulties related to the development of devices that can
be used by patients for continuous, out-of-hospital, long-term monitoring; besides the fact that
this method requires trained and skilled physicians to leverage the advantages it offers [63, 43].

On the other hand, the analysis of CVS, interesting sources of information about the cardiac
mechanical activity, has already shown remarkable results in the context of long-term remote
cardiac monitoring, mainly because the main components of these signals have been associated
with some useful hemodynamic markers [64, 65, 9]. In addition, although CVS can naturally
present significant inter-subject variability, depending also on the instrumentation used and the
location of the sensors, it has been shown that the variability of the intra-subject measurements is
actually low, unless there are changes in the cardiovascular health of the subject [66]. Therefore,
in recent decades, the idea of using CVS to monitor the health status of the same patient over
time has been reinforced [11]. Furthermore, Micro-Electro-Mechanical Systems (MEMS) sensor
technology, commonly used to measure cardiac vibration, has significantly improved during the
last two decades in terms of size, cost, and resolution, becoming one of the main reasons for the
growing interest on the study of CVS for the analysis and monitoring of different pathologies
associated with the cardiovascular system [67].
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Strong evidence of the growing clinical interest in the analysis and study of CVS is the
recent special research topic titled “Cardiac Vibration Signals: Old Techniques, New Tricks and
Applications”, which has been published in the journal Frontiers in Physiology and has generated
a great impact from the moment of its announcement. Figure 1.12 shows the growing interest in
this research topic during the last 12 months (based on the date of writing this thesis document).
This research topic was organized with the intention of compiling recent findings in the field
of cardiac vibrations and addressing current challenges in bringing these techniques into actual
clinical or nonclinical use [67], and our team has been pleased to be able to contribute to this
research topic with an article that will be further discussed in Chapter 2 of this document [29].
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Figure 1.12 – Impact of the research topic “Cardiac Vibration Signals: Old Techniques, New Tricks and Ap-
plications” during the last 12 months (October 2021 - September 2022). Reprinted from [68], copyright ©2022
Frontiers Media S.A.

This research topic consists of a collection of seven articles with the participation of more
than 40 authors who are specialists in the field. It is primarily focused on the following research
areas:

— Clinical applications of CVS in heart failure, coronary artery disease, myocardial ischemia,
cardiac valvular dysfunction, hemorrhage, etc [29, 69, 70].

— Non-clinical application of CVS in health and exercise assessment [71].

— Proposition of novel signal processing algorithms and advanced feature-dependent machine
learning models and deep learning methodologies to identify cardiac abnormalities from
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these signals [72].

— Development of mobile and portable technologies for recording these signals and also new
instrumentation for recording the signals [29, 71].

— Modeling of the signals and investigation of the genesis of the waves in these vibration
signals and their correspondence with hemodynamic parameters [73, 74].

1.3.2 Noninvasive measurement of CVS

Minimizing invasiveness is one of the main challenges related to the development of medical
systems and devices for monitoring physiological variables, and naturally it is a research topic
that has been extensively addressed by the CVS field. Mechanocardiogram (MCG) is the defini-
tion given to the whole set of CVS that can be measured and recorded in a noninvasive manner
regardless of the sensor type and location [28]. The three types of signals that constitute the
MCG are described below.

Ballistocardiogram (BCG)

BCG is the oldest of the three components of the MCG, as it was discovered in 1877 and
the term was officially established in 1938 [75, 76]. The BCG registers the repetitive movements
that the beating of the heart induces in the human body via the flow and acceleration of the
blood through all the blood vessels. The movement of the mass of circulating blood and beating
heart is measured by the BCG to obtain information associated with the overall functioning of
the cardiovascular system [77]. The nature of the BCG addresses the detection of vibrations in
a three-dimensional space, where lateral plane relates to right-to-left measurements, transverse
plane to dorsoventral measurements and the longitudinal plane to head-to-foot measurements,
with this third plane representing the largest projection of the ejection forces of the heart. The
main methods currently used to record BCG are the use of sensors placed in the seat of a
chair or in a scale, positioning the subject in such a way that the torso remains in an upright
position [11].

Figure 1.13 shows a typical BCG signal taken in the longitudinal plane during a cardiac cycle
in a healthy subject, with a normal ECG signal as reference. The main peaks and valleys of this
signal are denoted by the letters H through L in a standard way, with the highest amplitude
peak always denoted by the letter J. Although a verifiable relationship between each of these
waves and specific cardiac events has not been defined, it is believed that this waveform generally
represents the vasculature of the whole body in response to the ejection of blood by the heart in
order to maintain overall momentum [78]. In this regard, one of the main subjects of discussion
related to the study of BCG is the development of computational models to determine and
simulate the characteristics of the cardiovascular system that give rise to BCG signals. In the
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research topic “Cardiac Vibration Signals: Old Techniques, New Tricks and Applications” for
instance, two papers have addressed this problem using advanced modeling techniques: in [73] a
computational BCG model was presented that includes a closed-loop multiscale representation
with 0D elements including cardiac chambers, cardiac valves, arterioles, capillaries, venules and
veins, and 1D elements including 55 systemic and 57 pulmonary arteries to consider the con-
tributions of the cardiac chambers and pulmonary circulation. While in [74], a mathematical
model based on physiology and the use of evolutionary algorithms is presented to estimate car-
diovascular parameters in a personalized manner, combining ECG and BCG signals to capture
amplitudes and times of BCG peaks and valleys to estimate arterial pressure and parameters
related to ventricular function.
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Figure 1.13 – Typical BCG signal during a cardiac cycle in a healthy subject. Adapted from [11], copyright
©2015 IEEE.

Considering that the study of BCG has a long history, and this added to the recent increase in
the interest to leverage advances related to the use of MEM systems for the monitoring of CVS,
a large number of studies have been developed applying different types of sensors, systems and
processing methods related to the use of BCG. A detailed review of the sensors used to obtain
BCG signals is presented in [79], in addition to the most relevant signal processing methods
applied to analyze the BCG signal and extract physiological parameters such as heart rate,
respiratory rate, as well as determine sleep stages. Another aspect of great relevance is the study
of the correlation between the content of BCG signals with different hemodynamic parameters,
including results that correlate BCG with myocardial contractility [80], cardiac output [81], pre-
ejection period [82, 83, 84], diastolic filling time [66] and blood pressure variability via pulse
transit time [85] and R-J interval (with the combined use of ECG and BCG signals) [86, 87]. For
a more in-depth discussion of the clinical and non-clinical applications of BCG, a detailed review
of the main advances, advantages and challenges associated with BCG is presented in [11].

Seismocardiogram (SCG)

CVS can be acquired non-invasively from the chest, in a similar fashion as cardiologists
apply the stethoscope for listening to the PCG [10]. The acquisition of accelerometry signals
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from the chest of the patient using in particular MEMS devices, leads to the observation of the
SCG signal, that is characterized by the presence of two main components, S1 and S2, which
correspond to the first and second heart sounds in the PCG, respectively [27]. Although the
term SCG was officially established in 1961 [88], the phenomena that give rise to the SCG signal
were first studied in 1957, by considering recordings from healthy patients and patients with a
history of cardiac disease to make a comparison in the waveform of the two signal types [89].

SCG represents the local measurement of thoracic vibrations generated by the contractile
function of the heart to eject blood through the systemic and pulmonary circulation. These
vibrations are transmitted from the valves and chambers of the heart to the outside of the chest
with components in all three displacement axes that can be captured with a 3D accelerome-
ter [11]. Figure 1.14 shows a typical SCG signal captured with a multi-axial accelerometer in a
healthy subject, taking the normal ECG signal as a reference. The X, Y, and Z axes of the SCG
in this figure indicate the right-to-left lateral axis, the head-to-foot axis, and the dorso-ventral
axis, respectively. The greater amplitude in the SCG signal is normally reflected in the dorso-
ventral axis (Z axis), which has generated that most of the published works that study this type
of signals concentrate only on the variations represented in this axis [11].
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Figure 1.14 – Typical SCG signal captured with a 3D accelerometer during a cardiac cycle in a healthy subject.
Adapted from [11], copyright ©2015 IEEE.

One of the main discussions regarding the study of CVS has focused on the definition of
points of interest for the accurate detection of cardiac events, especially related to the opening
and closing of the heart valves. Figure 1.14 also shows the labels on the SCG Z-axis commonly
associated with mitral valve closure (MC), isovolumic contraction (IVC), aortic valve opening
(AO), rapid ejection (RE), aortic valve closure (AC), mitral valve opening (MO), and rapid
filling (RF). Nevertheless, these labels are based on the intuitive coincidence of these cardiac
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events with the peaks and valleys of the SCG signal and do not have a quantifiable statistical
validity that would allow their standardized acceptance. The only work that has addressed this
issue directly from a deep statistical analysis for the definition of fiducial points in the SCG was
recently presented in [90], and has been well received by the scientific community considering the
strictness of the experiments performed to support the obtained results. However, the extraction
of time intervals based on SCG fiducial points in patients diagnosed with cardiac disease can
be difficult, because cardiac patients may have a SCG waveform that is not suitable for fiducial
point estimation. Therefore, a preliminary verification by simultaneous measurement of SCG
and Echo has recently been suggested before starting SCG-based monitoring of cardiac patients
to verify the applicability of the methodology to a specific patient [70].

The main components of the SCG have also been related in multiple studies to different
hemodynamic parameters such as myocardial contractility [9, 91, 92], cardiac output [93, 94],
stroke volume [95, 92, 96], pre-ejection period and LV ejection time [95, 97, 98, 99, 100, 101].
Therefore, SCG signals acquisition and processing have been widely developed with applications
ranging from ischemic heart disease (IHD) characterization, to cardiac stress and HF monitoring
[59], even inspiring the development of new techniques such as Forcecardiography (FCG), which
is based on the use of force-sensitive resistors and piezoelectric sensors, with the novelty of being
able to acquire a new low frequency component (known as LF-FCG) that cannot be appreciated
in the common SCG and seems to carry information on the dynamics of ventricular filling and
emptying [102, 71]. Furthermore, recent developments of wearable or connected devices offer the
possibility to monitor the SCG-based CVS in ambulatory monitoring [12, 13], paving the way
toward the development of commercially available portable systems capable of longitudinally
monitoring CVS to detect early pathological signatures and assess the appropriate care required
by the patient. The most recent and relevant studies describing in detail the main advances,
advantages and challenges associated with the processing and use of SCG are [103, 11, 27].

Gyrocardiogram (GCG)

The latest and newest component of the MCG is the GCG, which has emerged as a result
of the growing interest in the use of MEMS in the analysis of CVS over the past few decades.
GCG was first studied in a 2015 patent and the term was established in 2016 [104, 105]. Similar
to SCG, GCG is measured by placing the sensor on the thorax of the patient, but in this case a
gyroscope is used to measure the angular velocity (rotation) of the cardiac vibrations transmitted
from the heart to the outside of the chest.

GCG is also typically measured by accounting for angular velocity variations in the three-
dimensional space, where the axes of rotation are coincident with the axes of the SCG, i.e.,
the X-axis represents rotation around the right-to-left lateral axis, Y-axis rotation on the head-
to-foot axis and Z-axis rotation around the dorso-ventral axis. In this case, it is the Z-axis
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that presents the lowest amplitude of detection of CVS compared to the other two axes. The
morphology of the GCG is closely related to that of the SCG because both signals are generated
from the same principles of cardiovascular functioning. However, GCG signals have been shown
to be more robust to inter and intra-subject variations [105], mainly because the rotational
signals keep about 60% of the total energy associated with the local cardiac vibrations of the
heart [106].

Figure 1.15 shows the two highest amplitude axes of a typical GCG signal taken in a healthy
subject, with a normal ECG as a reference of the cardiac cycle. The labels shown in this figure
have been designated based on BCG and SCG labels. The main valleys and peaks of the GCG are
named with the letters I to L by considering the shape of the signals in both axes simultaneously
and based on the BCG labels. Likewise, the cardiac events (MC, AO, AC and MO) are assigned
intuitively according to the sequence of events of the cardiac cycle and based on the events
defined in the SCG that have been most extensively studied. Although these labels carry a
logical justification for their assignment, they have not been quantitatively validated to the level
of being defined and accepted by the scientific community as fiducial points [107, 108].

Figure 1.15 – Typical GCG signal captured with a 3D gyroscope during a cardiac cycle in a healthy subject. Note
the next acronyms only defined for this figure: isovolumic contraction time (IVCT), isovolumic relaxation time
(IVRT), systolic time interval (STI), total electromechanical systole (QS2), left ventricular ejection time (LVET),
and pre-ejection period (PEP). Adapted from [107] under a Creative Commons Attribution 4.0 International
License CC⃝ .

Although GCG represents an emerging field of research in terms of global spread of knowl-
edge, a large number of works have already been developed to explore different applications of
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this type of technology in relation to its close connection with the characterization of hemody-
namic parameters, such as myocardial contractility estimation through STE curves [105, 107],
LV ejection time and pre-ejection period [109, 110, 12]. Some of the most outstanding appli-
cations involve the combined use of GCG and SCG, applying machine learning techniques to
detect conditions such as coronary artery disease [111, 72], atrial fibrillation [111, 112], acute
decompensated HF [112], myocardial infarction [113], aortic stenosis [114], among others. This
growing interest in the development of applications that exploit CVS through the use of compu-
tational tools has promoted the creation of public databases, such as the one recently published
by Yang et al. in the research topic “Cardiac Vibration Signals: Old Techniques, New Tricks and
Applications”, presenting an open-access database that includes ECG, SCG and GCG records
of 100 patients with different valvular heart diseases, such as aortic and mitral stenosis [69].
For a more in-depth discussion of GCG, a detailed review of the most outstanding advances,
advantages and challenges associated with the study and use of GCG can be found in [108, 28].

1.3.3 Invasive measurement of CVS

Although external methods of CVS measurement have proven to be quite useful, they strug-
gle to obtain high-quality, chronic, longitudinal cardiac vibration data because of the difficulties
they can present in ensuring both patient comfort and reliability of signals acquired on a long-
term continuous basis, as they involve devices that a clinician or the patient must frequently
remove and reinstall in the context of daily life. Implantable systems may be a solution to this
observability challenge. Bearing this in mind, several studies have examined how acceleromet-
ric signals can be acquired to measure cardiac vibration from within the heart chambers in
an invasive manner [64, 8, 115, 16, 14, 116, 15]. These endocardial acceleration (EA) signals
have two main components known as EA1 and EA2, which are associated with the first and
second heart sounds, respectively. These studies are mainly focused on the analysis of the peak
endocardial acceleration (PEA) measured on the two main components of the signal, designated
PEA1 and PEA2. The main objective of this CVS measurement technique is to develop strate-
gies for the monitoring of hemodynamic parameters that may be useful in the optimization of
implantable cardiac devices (ICD) with transvenous pacing leads installed inside the heart, such
as pacemakers and CRT devices.

Other studies have focused on the measurement of CVS by using accelerometers attached
to the epicardium (outer wall of the heart) [65, 117, 118, 22, 119, 120, 121], usually over the
ventricular zone. One of the main drawbacks related to this type of measurement technique is
the fact that the sensors must be installed during a highly invasive procedure, usually through
open chest surgery such as sternotomy. Therefore, this condition represents a major limitation
for the implementation of this technique, generating that the studies performed so far are only
intraoperative in humans, during the realization of surgeries requiring sternotomy, and postop-
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erative only in animal experimentation. Some studies have also been interested in the direct
comparison between EA and epicardial acceleration signals [122, 123], finding that these signals
are highly correlated despite differences in shape and spectral content.

Considering the risks associated with the highly invasive procedures that must be performed
to capture acceleration signals in direct contact with the heart, such as sternotomy for epicardial
acceleration and the risk of infection or complications in the installation and replacement of
transvenous catheters for EA signals [20, 21], new types of implants have begun to be explored
with the purpose of requiring the use of minimally invasive procedures. The subcutaneous space
has been considered as a suitable site for the measurement of CVS [40, 124, 125, 126], since it
can preserve the advantages offered by an implantable system in terms of long-term monitoring
of hemodynamic parameters, without the risk associated to the application of high-risk surgical
interventions.

Correlation with hemodynamic parameters

Acceleration measurements containing the different types of CVS can be mathematically
manipulated by integrating the values in the recordings to obtain indirect measurements of
cardiac muscle velocity and displacement [127]. These measurements should be able to reflect the
hemodynamic performance of the heart by intuiting that damage caused by heart disease should
affect and modify the mechanical behavior of the entire cardiovascular system. For this reason,
as was also evident in the study of noninvasively acquired CVS, one of the main objectives in the
study of cardiac vibrations has been to demonstrate and validate the fact that the components
of these signals have a high correlation with different types of hemodynamic parameters.

Table 1.2 shows a compilation of the main papers that have found in their results a high
correlation between EA signals and different hemodynamic parameters, while Table 1.3 shows
the main papers that have studied this same type of correlation using epicardial acceleration
signals instead. These tables include a brief summary of the experimental context of each work
and the type of instrumentation used to measure the analyzed signals, which reflects the scope
and validity of the results obtained in each of these works and allows to make a direct and
easy comparison between all of them. All the results obtained in the works shown in both tables
demonstrate a high correlation rate between CVS and different hemodynamic parameters, which
include amplitude, time and frequency analysis of the main components of the accelerometric
cardiac vibrations and their mathematical variations, in relation to hemodynamic parameters
associated with intracardiac and major vessel pressure, and other markers such as the A wave
measured from the echocardiogram and associated with atrial contraction [128], and the cardiac
index calculated from cardiac output and body surface area.
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Ref.
Compared cardiac variables

Correlation
Experimental

context
Instrumentation

Vibrational Hemodynamics
[64] PEA1 Positive peak of

RV dP/dt
r=0.97, P<0.001 3 patients with

normal ventricular
function during
dobutamine and
pacing interven-
tions.

Accelerometer inside
the tip of a pacing lead
inserted in the RV.
Catheter tip micro-
manometer inserted
into the RV apex.

[8]
PEA1 Positive peak of

LV dP/dt
r=0.83, P<0.001 9 anesthetized sheep

at baseline and dur-
ing hemodynamic
interventions by ni-
trate, metaraminol
and dobutamine
infusions.

Accelerometer in the
tip of pacing lead fixed
to the apex of the RV.
Aortic and LV Millar
catheters.

PEA2
Aortic diastolic
pressure

r=0.91, P<0.001

Negative peak of
LV dP/dt

r=0.92, P<0.001

[115] PEA1
First heart
sound amplitude
(VDD mode)

r=0.81, P<0.001 10 patients under-
went dual chamber
pacemaker implan-
tation during A-V
delay scan in VDD
and DDD modes.

Ventricular lead con-
taining accelerometer
at its tip. PCG sys-
tem placed on the mi-
tral area.

First heart
sound amplitude
(DDD mode)

r=0.89, P<0.001

[16] PEA1 Positive peak of
LV dP/dt

r=0.91, P<0.001 9 healthy, anes-
thetized pigs.
Myocardial con-
tractility increased
by infusion of
dobutamine and de-
pressed by infusion
of esmolol.

PEA sensor-embedded
pacing lead in the RA
(SonRtipTM), and RV
pacing lead at the
apex. Millar catheter
tip micromanometer
into the LV cavity.

[116] EA4 timing A wave timing
(atrial contrac-
tion)

r=0.76, P=0.019 15 patients indi-
cated for CRT.
Tests performed
under different A-V
delay programming.

Accelerometer in the
tip of pacing lead in
the RA (SonRtipTM).
Echo Doppler acquisi-
tion.

[15] EA1 energy Positive peak of
LV dP/dt

r=0.78, P<0.05 6 anesthetized sheep
with myocardial
infarction under
artificial respiration
modified to pro-
voke Valsalva-like
maneuvers.

Accelerometer in the
tip of pacing lead in
the RV (SonRtipTM).
Millar multi-sensor
lead inserted into the
LV.

[123]*
PEA Echo

acceleration
r=0.89, P<0.01 1 anesthetized

sheep underwent
sternotomy con-
nected to a volume-
controlled respira-
tor.

Accelerometers in-
serted through the
RV wall and sutured
to the RV surface.
Echocardiographic
records processed
by speckle tracking
algorithms.

Peak epicar-
dial acceler-
ation

r=0.97, P<0.001

Table 1.2 – Correlation between EA signals and hemodynamic parameters. *Note that the last reference also
includes an epicardial acceleration signal approach.
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Ref.
Compared cardiac variables

Correlation
Experimental

context
Instrumentation

Vibrational Hemodynamics
[65] Circumferential

peak systolic
velocity

Circumferential
systolic strain
(Echo)

r=-0.76,
P<0.001

10 patients with
significant left an-
terior descending
coronary artery
stenosis under-
went off-pump
coronary artery
bypass grafting.

3D accelerometer
sutured onto the
left anterior de-
scending coronary
artery–perfused region
of LV. Echocar-
diography scanner
with transesophageal
transducer.

[117]
Circumferential
peak systolic
velocity

Cardiac output r=0.81, P<0.001 14 anesthetized
pigs underwent
sternotomy. LV
function modified
by infusing es-
molol, nitroprus-
side, epinephrine,
and colloid fluid.

3D accelerometers
sutured to the LV
outer wall. Ultrasonic
16 mm flow-probe
placed on the aorta.
Millar micromanome-
ter catheter in the LV
apical region.

Positive peak of
LV dP/dt

r=0.73, P<0.001

[118]

Epicardial 3D
peak systolic
velocity in the
apical region
of the LV

Positive peak of
LV dP/dt

r=0.77, P<0.001 13 anesthetized
closed-chest pigs.
Experiments were
performed 30
minutes after
surgery (ster-
notomy), by
exerting changes
in global LV func-
tion (unloading,
fluid loading,
esmolol, dobu-
tamine).

3D accelerometers
sutured to the epi-
cardium in the LV
apical and basal re-
gions and to the RV
basal region. A fourth
3D accelerometer
placed subepicardially
in the LV apical re-
gion. One PiCCO
catheter into the left
femoral artery and two
Millar micromanome-
ter into the LV and
RV.

Cardiac index r=0.74, P<0.001

Epicardial 3D
peak systolic
velocity in the
basal region of
the LV

Positive peak of
LV dP/dt

r=0.63, P<0.001

Cardiac index r=0.69, P<0.001

Epicardial 3D
peak systolic
velocity of the
RV

Positive peak of
RV dP/dt

r=0.72, P<0.001

Cardiac index r=0.73, P<0.001

Subepicardial
3D peak sys-
tolic velocity
of the LV

Positive peak of
LV dP/dt

r=0.86, P<0.001

Cardiac index r=0.82, P<0.001

[22] 3D peak en-
ergy of the LV
acceleration

Positive peak of
LV dP/dt

r2=0.94 2 healthy, anes-
thetized pigs with
inotropism varia-
tions induced by
the infusion of
dobutamine.

3D accelerometer lig-
ated on the epicardium
of the LV free wall.
Millar micromanome-
ter catheter in the LV.

[120] Frequency of
myocardial
acceleration

End-diastolic
volume

r2=0.81 9 anesthetized
pigs at baseline
and fluid loading,
and phlebotomy
in a closed chest
condition.

3D accelerometer
placed on the anterior
LV apical region. So-
nomicrometry crystals
subendocardially in
long axis pair and
short axis pair.

Table 1.3 – Correlation between epicardial acceleration signals and hemodynamic parameters.
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Applications in implantable cardiac devices (ICD)

ICD such as CRT defibrillators, cardioverter-defibrillators and pacemakers are normally used
in the treatment and follow-up of chronic heart diseases as HF. Some of these ICD already
integrate accelerometer sensors to observe and analyze cardiac accelerometry signals from sub-
cutaneous or intra-cardiac sites [129], with the objective to predict future HF events [17, 18],
for instance, the increasing study of CVS for the development of ICD in the field of HF has
led to the proposal of candidate markers of the progression of this disease, such as the pres-
ence of an S3 component [40, 41]. CRT is one of the treatments on which most of the applied
research of invasively acquired CVS has been carried out. CRT is a treatment widely studied
and accepted by the medical community for its implementation in patients with symptomatic
heart failure with reduced left ventricular EF and abnormal QRS complex morphology. In CRT,
intracardiac leads are typically implanted in both ventricles to electrically stimulate the RA, RV
and LV at controlled times, with the purpose of improving ventricular filling and contraction by
re-synchronizing the biventricular mechanical function [130].

Although CRT has been shown to be effective for the treatment of HF, not all patients
may benefit from an active cardiac implantable device [25, 26]. For this reason, several studies
have been developed with the purpose of defining automatic optimization protocols of the ICD
parameters that allow treatment to be tailored to the needs and conditions of each patient
[19, 131, 132]. One of the main results of the progress of this research is the invention of the
SonRtipTM lead, which is so far the only commercially available atrial pacing lead that includes
an integrated microaccelerometer [133]. Many of the works up to this point mentioned in this
document have implemented this lead and its previous versions for the analysis of correlation
between CVS and hemodynamic parameters and the development of optimization algorithms
for ICD configuration, which has allowed the continuous improvement of this device. Figure 1.16
shows a schematic representation of the SonRtipTM probe.

Figure 1.16 – SonRtipTM atrial pacing lead for CRT. Reprinted from [126].
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1.4 Conclusion

HF is a multifactorial syndrome that alters the structure and function of the heart, re-
ducing its capacity to pump the blood needed to meet the requirements of the organism and
consequently compromising the overall functioning of the cardiovascular system. Despite major
advances in the pharmacological treatment of this syndrome, it is necessary to complement such
advances with new studies focused on the development of device therapies based on obtaining
markers that allow to optimize treatments regularly and in a patient-specific manner, aiming to
increase the efficacy of therapies and reduce the hospital admissions and readmission of patients
living with HF.

The analysis of CVS, interesting sources of information about the cardiac mechanical activity,
has already shown remarkable results in the estimation of useful hemodynamic markers. These
signals can be acquired externally, giving rise to the MCG, or invasively using techniques that can
be exploited in the development of ICD for chronic CVS acquisition without requiring continuous
intervention of the patient. However, the use of highly invasive methods can lead to other types
of consequences and risks for the patient. In addition to the challenge posed by the high noise
content in CVS associated with the nature of the measured physical phenomena, which can be
generated by mechanical disturbances associated with the different activities that the patient
may perform when the signals are measured. Therefore, in the field of chronic cardiovascular
diseases, it is necessary to develop remote CVS monitoring systems based on minimally invasive
devices that offer integrated management of multimodal parameters with sufficient robustness
against the different measurement conditions.
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Chapter 2

ACQUISITION OF CARDIAC VIBRATION

SIGNALS USING A NOVEL GASTRIC

IMPLANT

The analysis of cardiac vibration signals (CVS) has proven to be an interesting tool
for monitoring chronic pathologies involving the cardiovascular system, such as heart
failure (HF). However, methods remain to be developed to obtain high quality lon-
gitudinal and real-world data, which do not require patient involvement to correctly
and regularly acquire these signals. Implantable systems may be a solution to this ob-
servability challenge. This chapter discusses the hypothesis that CVS can be captured
from a small monitoring implant positioned at the gastric fundus, which could be de-
livered via gastroscopy in a minimally invasive manner. This anatomical site seems a
good candidate site for long-term cardiovascular monitoring, as it is physically close to
the heart (see Figure 2.1). This chapter describes the characterization of the acquired
signals in pre-clinical experimentation and evaluates the feasibility to obtain useful
hemodynamic markers from these intra-gastric signals.

Heart

Gastric
fundus

Stomach
Kidneys

Pancreas

Liver

Figure 2.1 – Anatomical localization of the gastric fundus and the main surrounding organs. The gastric fundus
corresponds to the area of the stomach enclosed by the red dashed line. Adapted from [35] with permission,
copyright ©2015 Elsevier.

61



Chapter 2 – Acquisition of cardiac vibration signals using a novel gastric implant

The content of this chapter is strongly based on our article that was published within the
special research topic “Cardiac Vibration Signals: Old Techniques, New Tricks and Applications”
in the journal Frontiers in Physiology [29]. This work was developed within the framework of
the project entitled “Digital Implantable Gastric Stethoscope (DIGS)” of the Agence Nationale
de la Recherche (ANR) [34], whose main objective is to validate a data extraction process for
early detection of HF decompensation in real-life conditions. The DIGS project is developed in
direct collaboration between LTSI, the TIMC team, the company SentinHealth and the LRB.
This multidisciplinary consortium brings the necessary expertise from the clinical field to ensure
the relevance of selected pre-clinical models and selected pathophysiological parameters (LRB
partner), the scientific skills in the field of cardio-respiratory parameters monitoring techniques
and associated information processing methods (LTSI and TIMC partners), and the knowledge
in the industrial fields of electronics and mechatronics to ensure the valorization of the results
(SentinHealth partner).

2.1 Presentation of the gastric implant

Existing implantable cardiac monitoring devices allow the acquisition of relevant physio-
logical parameters that, if properly analyzed, can lead to early detection of decompensation
events in HF patients. However, these devices can be highly expensive or may require complex
implantation procedures with associated potential risks for the patient [21, 134, 135]. Among
this type of devices, the CardioMEMS Heart Sensor stands out, consisting of a compact im-
plantable device installed in a branch of the pulmonary artery, allowing direct measurement
of pulmonary arterial pressure for hemodynamic monitoring in chronic HF [136]. Even so, in
addition to being a highly invasive device, the CardioMEMS operates under a monoparametric
measurement concept, which is a major disadvantage considering that HF is a multiparametric
syndrome, and multiparametric approaches have already proven to offer better results in HF
monitoring [137, 17]. Other implantable devices consider the measurement of multiple cardio-
vascular parameters to improve the outcomes of their approaches [138, 139], but such devices
become relevant for a small portion of HF patients because they are equipped with cardiac
defibrillators such as those used in cardiac resynchronization therapy (CRT) [51].

The company SentinHealth has recently developed an innovative gastric implant prototype
to acquire electrophysiological and mechanical cardiac data from the gastric fundus [140], with
the aim of recording various cardiovascular parameters to address the multiparametric concerns
in the monitoring of HF. Most of the gastric implants commercially available are prescribed to
treat gastric dysmotility syndromes and obesity. Several papers have demonstrated the safety and
tolerability of these devices, as well as recent developments in minimally invasive techniques to
place these implants, improving patient comfort and adherence [141, 142]. The implant developed

62



2.1. Presentation of the gastric implant

by the company SentinHealth can be as well tolerated as other gastric implants and could be
administered using similar minimally invasive implantation techniques such as gastroscopy [143].
Three prototype versions of the device have been used in this work: one semi-implantable version
(V0) and two fully implantable versions (V1 and V2).

2.1.1 Prototype V0

This is the first prototype of the gastric implant and is the only semi-implantable version of
the device. Figure 2.2a shows the schematic design of this version of the implant. It is composed
of two modules: 1) a 30 mm long, 9 mm wide, 7 mm high gastric module, with each end
corresponding to a titanium electrode of 35 mm2 surface area and 20 mm electrode spacing,
where the electrodes are connected to an ECG chip embedded in the capsule. This module is
shown in Figure 2.2b. 2) The second module corresponds to a reference ECG unit composed
of two external electrodes attached to the thorax: one on the anterior thorax and one on the
posterior thorax. These electrodes are connected to an external electronic board encapsulated
in a pig jacket as shown in Figure 2.2c. Both ECG signals are acquired synchronously with a
sampling rate of 1 kHz. Both modules are linked through a wired connection that passes across
the skin barrier. The acquired data is stored in the external module and then transmitted to
a computer via Bluetooth for further processing. This prototype device was used to validate
the acquisition of electrophysiological signals from the heart by comparing the acquisitions from
both modules.

(a) Schematic representation

Gastric module

(b) Physical design of the gastric implant

External module

(c) Physical design of the external module

Figure 2.2 – Gastric implant prototype V0.
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2.1.2 Prototype V1

This prototype is shown in Figure 2.3 and consists of two implantable modules interconnected
by a wire: the first module (located in the gastric fundus) is 35 × 9 × 5.5 mm and incorporates a
3D accelerometer, as well as an ECG acquisition device with two titanium electrodes, with the
same geometry as the V0 prototype, located at each end of the capsule and electrically isolated
from each other by a body in polyetheretherketone (PEEK). The second module, implanted
subcutaneously in the abdomen, measures 70×30.5×16 mm and is connected to the first module
by a 30 cm wire. It incorporates two AA batteries, as well as the Bluetooth low energy chip (2.4
GHz) that allows data to be communicated to an external gateway for further processing. The
ECG sampling rate in this version is 1 kHz, while the sampling rate of accelerometry (ACC)
data is 4 kHz acquired in the 0 to 1 kHz bandwidth. The weight of the gastric module is 3.3 g.

X
Y

Z

(a) Schematic representation (b) Physical design

Figure 2.3 – Gastric implant prototype V1.

2.1.3 Prototype V2

Figure 2.4 shows the V2 prototype of the implant, which differs from the previous one in
two main aspects: first, the geometry, size and material of the gastric capsule were redesigned
to approximate the final design idea of the device built in one piece (for future development).
One of the electrodes is a part of the housing that is made of titanium. To ensure electrical
isolation from the rest of the housing, an epoxy resin coating was applied to the titanium
surface. The other electrode is an insulated piece of titanium (see Figure 2.4b). Secondly, the
communication components have been transferred inside the gastric module. For this purpose,
a specific antenna was designed to optimize the performance of Bluetooth transmission from
the stomach. The antenna is located at one end of the gastric capsule and is overmolded in
epoxy resin. The geometry and material of the subcutaneous module is unchanged from the V1
prototype. This module incorporates only the AA battery. In terms of technical aspects, the
gastric module in this version is 40 × 13.5 × 5.5 mm and its weight is 7 g. The ECG chip was
also changed to optimize current consumption with a sampling rate of 498 Hz.
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X
Y

Z

(a) Schematic representation

Head electrode

Casing electrode

(b) Physical design

Figure 2.4 – Gastric implant prototype V2.

All versions of the implant used a setting that allows the implant to remain in low battery
mode while no signal is being measured to extend battery life. This setting also allows the device
to automatically switch to active mode for a duration of 30 seconds to acquire simultaneous ECG
and ACC signals. The 30-second acquisition time duration has been selected to optimize the
relationship between power consumption and the minimum number of cardiac cycles required
to obtain a stable representation of the mean cardiac cycle observed from the intragastric ECG
and ACC signals. In addition, the final device is intended to incorporate a classic battery in a
first generation, but the final purpose of the last generation of the device aims to incorporate
a rechargeable battery to be powered wirelessly, in order to increase device lifetime and patient
follow-up time.

2.2 Acquisition of ECG and ACC cardiac signals

The experiments developed in this work consisted of the acquisition of ECG and ACC sig-
nals from 9 pigs using the three different versions of the gastric implant described above. The
experimental framework for data acquisition was adapted according to the purpose for which
the data were acquired. Data acquisition process is divided into two phases: phase 1 focuses on
the comparison of signals acquired from the gastric fundus with reference data acquired through
standard thoracic site sensors. A set of cardiovascular markers is extracted from the reference
and gastric signals to be quantitatively compared. Phase 2 was concerned with assessing the
feasibility of estimating longitudinal cardiovascular markers from the gastric site. All animal
experiments were previously submitted to an ethics committee in accordance with French reg-
ulations and were performed in specialized structures with the approval of the dedicated site,
by a team composed of qualified staff who completed regulatory training in animal testing and
experimental surgery.
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2.2.1 Data acquired for phase 1

ECG and ACC data were acquired simultaneously from standard thoracic locations to val-
idate measurements taken from the gastric site. Measurements taken superficially were used as
the gold standard using two experimental setups, one to validate ECG data and one for ACC
data:

1. The first setup was focused on the validation of ECG data. A total of 459 recordings each
of 30 seconds duration were acquired using the V0 prototype over a 14-day period from
one pig. Each recording consisted of synchronous data from a standard bipolar surface
ECG (gold standard reference) and the gastric ECG.

2. The second setup was dedicated to the validation of the ACC data. Two recordings were
acquired simultaneously from a second pig, with prototype V1 and an external digital
stethoscope (3MTM Littmann, USA), used as the gold standard PCG. A Valsalva-like
respiratory maneuver was applied during data acquisition to evoke hemodynamic modifi-
cations that can be observed from both acquisition sites. Data acquisition was performed
acutely, under anesthesia, with ventilator-assisted breathing and consisted of a continuous
30 cmH2O positive inspiratory pressure (CPP) stage of 15 seconds duration, followed by
10 seconds of apnea at atmospheric pressure [15]. The main objective of this setup was to
validate whether the evolution of markers obtained from gastric and reference sites during
the valsalva-like maneuver are correlated.

2.2.2 Data acquired for phase 2

In the second phase of data acquisition the prototype V1 and V2 implants were used to
acquire the electrophysiological and CVS from the gastric fundus of 4 healthy pigs and 3 pigs
with induced chronic ischemic heart failure resulting in acute decompensated heart failure. Each
device was implanted for a minimum period of one week, and a maximum of 2 weeks. During
this period of time, the animals were kept in individual cages with controlled temperature and
normal feeding conditions. Caretakers provided dedicated attention to the pigs on a daily basis
to ensure that they were healthy and the device did not cause any problems, such as pain or
loss of appetite.

The gateway used for data collection was located above the cages at an approximate dis-
tance of 1 meter from the pig. Data were recorded from the implant for 30 seconds every hour,
with random acquisition cessation periods related to some technical problems (sometimes the
scheduled acquisition was not performed or sometimes the device was unable to communicate
with the server). The entire acquired database results in a total of 999 recordings of 30 seconds
each, with the distribution shown in Table 2.1.
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Pig ID 1 2 3 4 5 6 7

Total recordings 95 163 232 316 70 73 50

Time frame in days 7 14 14 14 13 14 12

Class healthy healthy healthy healthy induc. HF induc. HF induc. HF

Implant version V1 V1 V1 V1 V2 V2 V2

Table 2.1 – Description of the data distribution.

2.3 Processing applied to acquired signals

It is to be expected that ECG and ACC data acquired from the gastric fundus may have
specific characteristics and noise conditions, particularly related to the location and orientation
of the device, as well as interference from electrical and mechanical activities of the gastric
system. For this reason, it is necessary to apply a processing chain to reduce the noise present
in the signals in order to exploit both electrophysiological and mechanical target content.

Figure 2.5 presents a schematic summarizing the signal processing chain applied to cardiac
data: 1) noise removal from ECG and ACC data, 2) noise robust real-time QRS detection from
ECG signals and cardiac cycle segmentation, 3) cardiac cycle correlation analysis and calculation
of coherent mean from aligned ECG and ACC segmented cycles, 4) segmentation of cardiac
vibration components (S1 and S2) from coherent mean ACC data, and 5) estimation of signal
context and signal-to-noise ratio (SNR) in both types of signals.

2.3.1 ECG and ACC Data denoising

Baseline removal

ECG and ACC signals are affected by low-frequency noise from two different main sources.
The first source of noise comes from the instrumentation. In fact, each transition from low-power
consumption mode to active mode generates a low-frequency transient state during the first 5
seconds of data acquisition. In order to exploit as much as possible the signal content, a baseline
elimination process is applied to the signals, managing to process 29 seconds of each signal, and
having to eliminate only the first second, where the transient state generates a saturation of the
amplifiers and completely impedes the acquisition of any useful data. The second source of noise
corresponds to the electrophysiological and mechanical components of the electrogastrographic
and respiratory activity, which are captured by the electrodes and the accelerometer.

Accordingly, a baseline elimination process is applied to ECG and ACC data and is based
on a locally weighted linear regression algorithm [144]. To reduce the computational cost of the
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ECG
Signals
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ACC_Y
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ECG
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Cardiac sounds
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Figure 2.5 – Global diagram of the processing chain applied to the acquired data. Dashed-line arrows represent
the ECG signal pipeline and solid-line arrows represent the ACC axes pipeline.

baseline removal process, the linear regression algorithm is applied in 4-second windows and each
signal is reduced to 400 Hz in each window. The output of the linear regression algorithm is the
representation of the signal baseline, which is directly subtracted from the original signal, thus
preserving its main features [144]. The norm of the 3D ACC vector is calculated before applying
the baseline removal process and is treated as a new ACC axis from this point, representing an
ACC component independent of the direction of acceleration.

Signal filtering

Frequency-based filtering methods are widely documented in the literature for ECG and
cardiac vibration signal analysis. The combination of independent high-pass and low-pass fifth-
order Butterworth filters is applied to the signals using direct and inverse zero-phase digital
IIR filtering, and defining different cutoff frequency values depending on the type of signal. The
band selected for ECG signals is from 20 to 50 Hz in order to reduce the T-wave amplitude and
emphasize the R peak to facilitate the subsequent QRS detection process. The band for ACC
signals is 20 - 40 Hz, considering the frequency bands that contain most of the signal energy in
local cardiac accelerometer signals [24, 126]. Figures 2.6a and 2.6b show representative examples
of filtered ECG and ACC signals, respectively.
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Figure 2.6 – Example of the denoising result of ECG and ACC cardiac signals.
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2.3.2 QRS detection from ECG signals

Aiming to facilitate the QRS detection process, a locally performed normalization based on
the local minima/maxima values was applied to the filtered ECG signal. This normalization
algorithm is presented and described in detail in [144]. The only modification applied in this
work to the original normalization algorithm is the use of the median value instead of the mean
to clip the lowest values of the normalization signal. This change corresponds to the robustness
presented by the median value to outliers, improving the stability of the algorithm even in
the presence of some particularly noisy signals. After normalizing the ECG signals, a robust
real-time QRS detector based on a probabilistic multiple function method was used to identify
the locations of the R-peaks of the ECG signal [145]. This detector was used because the target
signals were suspected to have many artifacts and needed to be handled with a detector designed
for such conditions. Figure 2.6a shows an example of the normalized ECG with its respective R
peaks highlighted.

After applying the QRS detection algorithm to the ECG signals, the heart rate (HR) is
calculated using the median duration of all cardiac cycles. The cardiac cycles are segmented by
taking 0.05 ∗ 60/HR seconds before the R peak as the starting point of each cardiac cycle. This
is a dynamic delay set to preserve the complete waveform of the QRS complex, regardless of
the heart rate variation between signals in the entire data set. The cardiac cycle segmentation
process is applied directly to the ECG signal and subsequently projected to all axes of the ACC
signal because both signal types were acquired simultaneously.

2.3.3 Correlation analysis of cardiac cycles

Once the cardiac cycle start points are defined, the median cycle length is used to resize all
cycles through a zero-padding technique. This is applied to ECG and ACC signals. Subsequently,
for ECG signals, the normalized cross-correlation between each pair of cycles is calculated, and
the dominant group of cycles with a correlation coefficient greater than 0.6 is used to calculate a
coherent mean cardiac cycle. It is possible to directly apply this process because all ECG cycles
are aligned by the time of occurrence of each R peak and the result of the maximum correlation
value. Figure 2.7 shows an example of the ECG cardiac cycles aligned and the corresponding
coherent mean cardiac cycle.

Correlation analysis for ACC signals is somehow more complex because the exact starting
point of S1 and S2 varies independently of the time of occurrence of the R-peak, mainly due to
beat-to-beat modifications of the inotropic state and preload and afterload conditions. There-
fore, it is necessary to apply independent phase correction steps for S1 and S2 to increase the
correlation between cycles when calculating the mean coherent cardiac cycle [23, 24]. After ap-
plying phase optimization to each ACC cycle, the dominant group of cycles with a correlation
coefficient greater than 0.6 is used to calculate the mean coherent cardiac cycle independently
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Figure 2.7 – Correlation analysis of cardiac cycles.

over each ACC axis. Considering that ACC signals cannot be normalized because it would af-
fect the relationship between cardiac vibration components and hemodynamic markers, outlier
cycles are removed according to their energy (an outlier is a value that is more than three scaled
median absolute deviations away from the median), in order to eliminate cycles containing dis-
tinctive noises, such as pig grunts, gastric sounds, or vibrations that could disturb the coherent
mean cycle calculation.

2.3.4 Cardiac sound segmentation (S1 and S2)

An effective algorithm for estimating the S1 and S2 times using the coherent mean of the
ACC signals is provided in [24]. First, the coherent mean cycle is normalized and the absolute
(Abs) and squared (Sqr) envelopes are calculated. Then, a dynamic threshold between 0.1 and
0.7 is used to identify S1 in the first half of the cycle. S1 is detected by looking for the points
where Abs or Sqr cross the threshold (setting the R-peak time as the earliest possible time to
define the starting point of S1). Similarly, S2 is identified in the cycle segment between the end
of S1 and the end of the cycle. The result of implementing this algorithm is the start and end
times of S1 and S2. These values can be defined as follows:
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— t0 = Reference instant for the start of cardiac cycle (obtained from ECG).

— t1 = Start of S1

— t2 = End of S1

— t3 = Start of S2

— t4 = End of S2

— t5 = End of cardiac cycle

Hence, S1 corresponds to the signal segment between t1 and t2, S2 corresponds to the signal
segment between t3 and t4, and finally, the union of the signal segments t2-t3 and t4-t5 are
considered as the signal background. This process is applied on each ACC axis as well as the
norm. An example of the result of this process is shown in Figure 2.8.
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Figure 2.8 – Coherent mean cardiac cycle on each ACC axis with their respective envelopes, including candidate
detections for S1 and S2. The vertical dotted lines represent t1, t2, t3, and t4 in red color for Abs and black for
Sqr.
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2.3.5 Signal context estimation and SNR

In order to quantitatively evaluate the quality of the signals, different features are considered
to estimate the SNR. Based on the context variables presented by [24] to configure the control
algorithm that automatically recognizes the context of the ACC signals to segment S1 and S2,
the following quality measures are proposed in this work:

— The percentage of coherent ECG cycles.

— The percentage of coherent ACC cycles over each axis.

— The S1 contrast, defined as the ratio between the standard deviation of S1 and the standard
deviation of the signal background.

— The S2 contrast, defined as the ratio between the standard deviation of S2 and the standard
deviation of the signal background.

To estimate the overall quality of the data for each recording, three successive stages of
classification were applied, using the quality measures defined above.

1. The first stage is related to the analysis of coherent cardiac cycles in ECG and ACC
signals. In fact, in stable cardiovascular conditions and sinus rhythm, the relative number
of coherent cardiac cycles can be considered as a marker of signal quality. At this stage,
only recordings with three or more coherent cycles in the ECG and at least one from the
ACC axis were retained. This relatively low threshold for the number of coherent cardiac
cycles was considered appropriate since two other quality assessment phases follow this
classification phase.

2. The second stage is based on the detection of S1 and S2 in the ACC signals. In this stage
only signals with S1 and S2 contrast greater than 2 were retained. This value was selected
because it means that the S1 and S2 content can stand out against the signal background
by having twice the standard deviation.

3. The third stage concerns the estimation of the duration and peak-to-peak values of S1
and S2. Since the different envelopes will provide multiple S1 and S2 detection instants
for each ACC axis (as shown in Figure 2.8), an algorithm must be applied to merge the
local detections from each axis and envelope to obtain the final detection instants for S1
and S2. Algorithm 1 was used to define the final S1 and S2 detection instants by using the
contrast measurements described above. Figure 2.9 shows a representative example of the
estimated final detection instants for the recording shown in Figure 2.8. After estimating
the final values of t1, t2, t3, and t4 for each recording, records where the duration or
peak-to-peak value of S1 or S2 represent an outlier were removed.
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Algorithm 1: Algorithm to define the global detection times of S1 and S2. ACCmean

contains the coherent mean with length L for each of the four ACC axes (including
the norm). DS1 and DS2 represent the number of candidate detections for S1 and S2,
respectively. Each candidate detection consists of two values corresponding to the start
and end of the cardiac event. The round() function rounds each element of a vector to
the nearest integer, the min() function returns the minimum value of a vector, and the
sum() function computes the sum of the elements in a vector. ⊙ represents the element-
wise product (Hadamard product) between two vectors. The notation M[i] represents
the i − th column of the matrix M .

Data: ACC coherent mean ACCmean : R4 × RL, S1 candidate detections S1cd : RDS1 × R2,
S2 candidate detections S2cd : RDS2 × R2

Result: S1 global detection S1gd : R2, S2 global detection S2gd : R2

→ Identify the best detection candidates
for each candidate detection in S1cd :

for each candidate detection in S2cd :
for each ACC axis in ACCmean :

compute S1 and S2 contrast values;
if S1 contrast ≥ 2 and S2 contrast ≥ 2 :

stack S1 candidate in S1′;
stack S1 contrast in WS1;
stack S2 candidate in S2′;
stack S2 contrast in WS2;

→ Transform contrast values into weights
WS1 = round(WS1/min(WS1));
WS2 = round(WS2/min(WS2));
→ Calculate the final detection times
t1 = sum(S1′

[1] ⊙ WS1) / sum(WS1);
t2 = sum(S1′

[2] ⊙ WS1) / sum(WS1);
t3 = sum(S2′

[1] ⊙ WS2) / sum(WS2);
t4 = sum(S2′

[2] ⊙ WS2) / sum(WS2);
→ Save the global detection for S1 and S2
S1gd = {t1, t2};
S2gd = {t3, t4};

Additional SNR estimators were used to validate the quality analysis and to obtain quanti-
tative results that can be compared with the literature. The SNR for a given heartbeat in ECG
signals is calculated by considering the power of the R peak amplitude as the signal portion
and the power of the segments between the QRS complex, the T wave and the P wave as the
noise-only portion in the signal, as shown in Figure 2.10a. This analysis is performed similarly
on ACC signals, considering two different signal portions (the absolute amplitude of S1 and the
absolute amplitude of S2), and the noise-only portion is the segment between S1 and S2, as
shown in Figure 2.10b. The SNR for a given beat was calculated using Equation (2.1). Then,
the analysis is performed on all available heartbeats considering an average SNR.
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Figure 2.9 – Example of the final detection instants estimated for S1 and S2 on a representative recording.
Vertical dotted lines represent the start and the end of S1 in red and S2 in black.

SNR = 10 × log10

(
S2

1
N

∑N
n=1 |xn|2

)
(2.1)

where S is the signal portion value and xn is a particular sample of the total N samples making
up the noise-only portion of the signal.

Note that ECG signals were initially filtered to reduce the amplitude of P and T waves in
the previously described processing framework. To facilitate comparison with other works in
the literature, an alternative bandpass filter between 5 and 50 Hz was applied to the raw ECG
signals, allowing visualization of the T and P waves. ECG signals filtered between 20 and 50 Hz
are referred to as ‘QRS-ECG’, while ECG signals filtered between 5 and 50 Hz are referred to
as ‘TP-ECG’.
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Figure 2.10 – Representation of the signal of interest and noise segments of the cardiac cycle to compute the
SNR.

2.4 Validation with gold standard references

2.4.1 Validation of the ECG signals from the implant

In addition to the data processing chain explained above, other evaluation measures were
applied to the surface and gastric data, with the aim of validating the gastric signals and obtain-
ing results comparable with the literature in the field. Regarding ECG signals, comparisons were
mainly focused on QRS detection and heart rate estimation. In a first step, QRS detection was
applied to the reference surface signals and subsequently the obtained detections were manually
reviewed to correct possible detection errors, in order to constitute the set of reference QRS
instants. The quantitative QRS detection performance from the gastric site was estimated by
calculating the sensitivity and positive predictive value (+P), compared to the reference QRS
instants. A QRS detection from the implant signal is considered a true positive (TP) if it is
within a 50 ms centered window from the corresponding reference QRS instant. All remaining
implant QRS detections are considered false positives (FP). False negatives (FN) occur when no
detection of the gastric site is found within the coincident reference window [145]. In addition,
the time difference between a TP detection and its corresponding reference QRS instant (Jitter)
is reported. All recordings acquired with the V0 prototype of the implant were used for this
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comparison. A Wilcoxon rank-sum test was applied to statistically compare markers obtained
from reference and gastric sites. In these analyses the significance level was set at 0.05.

2.4.2 Validation of the ACC signals from the implant

Regarding the ACC signals, all measurements were calculated with respect to S1 and S2
separately. The main objective is to compare the evolution of the derived markers acquired from
the baseline PCG signal with those obtained from the intragastric ACC signals during the ap-
plication of the Valsalva-like maneuver. Therefore, the quantitative marker used for comparison
is the correlation of the time profiles of the main sound variables (duration and peak-to-peak
values) with respect to those obtained from the reference PCG. The time profiles are created by
measuring the heart sound variables throughout the entire recording. Time profiles associated
with heart sound duration were calculated using a sliding window of four cardiac cycles. Con-
cerning the implant ACC data, an average cycle per axis within the window was calculated and
the global duration of the heart sounds was calculated by applying Algorithm 1 to estimate the
final instants of detection for S1 and S2, yielding a global duration time-profile of the implant
to be compared with the duration time-profile of the reference PCG. Moreover, time profiles of
peak-to-peak values were calculated independently on each ACC axis of the implant by calcu-
lating the mean of the peak-to-peak values for each heart sound in a sliding window with the
size of two cardiac cycles. Each peak-to-peak time profile of the implant was compared with the
peak-to-peak time profile obtained from the PCG reference.

2.5 Results

2.5.1 Comparison of gastric and thoracic data

Validation of ECG signals

Figure 2.11 shows an example of ECG signals acquired from the thoracic (reference) and
gastric sites. The ECG signals in this figure were bandpass filtered between 5 and 50 Hz and the
mean coherent cycle of a representative recording is shown. The differences in signal morphology
and amplitude between the surface and gastric devices are mainly explained by the significantly
different dipoles observed. However, even in the shorter gastric dipole, the main ECG waves
are easily identifiable and correct QRS detection can be expected for instantaneous heart rate
estimation.

Table 2.2 shows the results of a quantitative comparison between ECG signals captured
with the implant and external ECG signals taken as a gold standard reference. The estimated
SNRs are significantly lower in the implant data with respect to the reference. This is to be
expected, due to the different noise sources associated with the gastric site. In addition, sig-
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Figure 2.11 – Example of implant and gold standard ECG signals comparison. Dash-dotted lines correspond to
the implant signals and solid lines correspond to the gold standard reference signals. Note that the differences in
signal morphology and amplitude between the surface and gastric devices are mainly explained by the significantly
different dipoles that are observed.

nificant differences are also observed between the values of the percentage of coherent cycles
and the inter-cycle correlation, although both signals provide similar high and acceptable values
for these markers. Finally, the sensitivity and positive predictive value for QRS detection are
satisfactory, with a jitter lower than 10 ms. These results suggest that an adequate estimation
of HR can be made from the gastric implant.

Surface ECG Implant ECG

TP-ECG SNR [dB] 28.4±3.4 21.6±7.5 *

QRS-ECG SNR [dB] 38.4±6.1 30.3±5.8 *

Coherent cycles percentage [%] 100.0±0.1 99.2±2.9 *

Inter-cycle correlation 0.98±0.01 0.94±0.05 *

QRS detection

Sensitivity [%] 97.6±4.7

+P [%] 98.2±3.5

Jitter [ms] 6.0±3.4

Table 2.2 – Validation of ECG recordings with a gold standard reference. *p<0.05 vs. reference.
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Validation of ACC signals

Figure 2.12 shows an example of the ACC cardiac signals taken from the gastric fundus
and the respective reference PCG. The signals in this figure were bandpass filtered between
20 and 40 Hz. The reference PCG sensor observes cardiac vibrations at a different site, at a
different angle and with a different transducer than the gastric site. This explains the differences
in morphology between the PCG and ACC signals. However, from this first qualitative analysis
we can hypothesize that the instant of occurrence of the heart sounds, as well as the relative
variation of their amplitudes or energies between the CPP and apnea phases, could be correctly
estimated from the gastric site.
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Figure 2.12 – Example of implant ACC and gold standard PCG signals comparison. Dash-dotted lines corre-
spond to the implant signals and solid lines correspond to the gold standard reference signals. Coherent mean
cycles of ACC and PCG signals during both respiratory phases taken from the recording 2.

The evolution of S1 and S2 duration from the CPP phase to the apnea phase is presented
in Figure 2.13, while the evolution of peak-to-peak amplitude is shown in Figure 2.14. Similar
dynamics can be observed between the ACC data acquired from the gastric site and the reference
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PCG. However, it is possible to see how the similarity between the temporal profiles is perturbed
mainly during the transition moment between the CPP and apnea phases, more precisely, around
second 16. This perturbation is caused by a sudden increase in the noise picked up by the sensors
during the transition moment between phases, and is more evident over S2 both in duration and
peak-to-peak values, but mainly reflected over the Z-axis.
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Figure 2.13 – Evolution over time of heart sounds duration measured on the recording 1. Dash-dotted lines
correspond to the implant signals and solid lines correspond to the gold standard reference signals. The white
background corresponds to the CPP stage and the gray background corresponds to the apnea stage.
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Figure 2.14 – Evolution over time of heart sounds peak-to-peak value measured on the recording 1. Dash-dotted
lines correspond to the implant signals and solid lines correspond to the gold standard reference signals. The white
background corresponds to the CPP stage and the gray background corresponds to the apnea stage.

Table 2.3 shows quantitative results of the comparison between the implant ACC signals and
the PCG reference. The correlation values between the temporal profiles of the duration of S1
and S2 are high and acceptable for both recordings, always presenting a higher correlation for
S1 compared to S2. The algorithm proposed to estimate the final detection instants of S1 and
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S2 by merging the local detections of all ACC axes of the implant (Algorithm 1) is of utmost
importance in these results because it allows estimating the global times of S1 and S2, even if
it is not possible to detect one of the heart sounds in any axis. Similarly, the time profiles of
the peak-to-peak values show highly correlated values for all the implant axes, and mainly for
the Y and Z axes, showing how the measurements made by the implant are highly correlated
with the PCG reference during the entire recording time. These results suggest that an adequate
measurement of the variation of CVS can be performed using the ACC data from the implant.

Time-profile
Heart

sound

Correlation between the implant and the PCG reference

Recording 1 Recording 2

X Y Z N X Y Z N

Duration
S1 0.991 0.961

S2 0.874 0.950

Peak-to-peak

value

S1 0.988 0.996 0.989 0.994 0.959 0.975 0.987 0.975

S2 0.918 0.956 0.971 0.958 0.877 0.888 0.962 0.887

Table 2.3 – Validation of ACC recordings with a gold standard reference.

2.5.2 Estimation of longitudinal markers from gastric ECG and ACC data

Evaluation of signal quality

Table 2.4 shows the results of the recordings removed at each stage of the quality analysis,
and the recordings saved for further analysis. These results show that it was possible to identify
coherent cycles in most of the signals, with only 1.8% of the recordings having to be removed
because they did not have enough coherent cycles in the ECG or ACC signals. This low rejection
rate reflects a good QRS detection process and correlation analysis, which opens the possibility
of performing basic heart rate variability analysis using this technology. Most of the deleted
recordings corresponded to stages 2 and 3, with rejection rates of 12.0% and 18.1%, respectively.
These percentages mainly reflect the complexity to identify and suppress all the different types of
noise sources present in the ACC data (such as pig growls and digestive sounds and movements),
basically because stages 2 and 3 removed recordings where the noise level is so high that it
prevents detecting S1 and S2 correctly. After this quality assessment process, 68.1% of the total
data were preserved. For these preserved recordings, the quality of the data allowed successful
detection of S1 and S2 in all four axes, favoring the possibility of identifying useful and reliable
hemodynamic markers from these signals by having more reliable information sources.
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Pig

ID

Total

number of

recordings

Removed

at stage

1

Removed

at stage

2

Removed

at stage

3

Recordings

finally

preserved

# % # % # % # %

1 95 0 0.0% 18 18.9% 18 18.9% 59 62.1%

2 163 7 4.3% 22 13.5% 23 14.1% 111 68.1%

3 232 2 0.9% 16 6.9% 39 16.8% 175 75.4%

4 316 7 2.2% 40 12.7% 61 19.3% 208 65.8%

5 70 1 1.4% 10 14.3% 12 17.1% 47 67.1%

6 73 0 0.0% 4 5.5% 18 24.7% 51 69.9%

7 50 1 2.0% 10 20.0% 10 20.0% 29 58.0%

Total 999 18 1.8% 120 12.0% 181 18.1% 680 68.1%

Table 2.4 – Summary of the signal quality results.

Although these results reveal challenges in exploiting a larger percentage of the acquired
data, it is worth noting that continuous data acquisition throughout the day in the context of
monitoring chronic diseases such as HF is unnecessary. Figure 2.15 shows the distribution of
rejected and retained recordings over time, revealing that the rejected signals are spread across
all acquisition days for all pigs, allowing several useful recordings to be retained during each
day. Furthermore, it can be seen how the percentage of retained recordings exceeds 60% for 6 of
the 7 pigs regardless of whether they are healthy or pathological. Where the lowest percentage
was obtained by the last pig (58%), but it is still comparable with the other pigs in terms of
the distribution of preserved recordings over time, considering also that pig 7 had the lowest
amount of available recordings.

Analysis of heart rate variability (HRV)

Estimation of the final instants of detection of S1 and S2 allows analysis of the duration of
the different phases of the cardiac cycle, such as systole, diastole and S1 and S2 duration, where
systole begins at t1 and ends at t3, and diastole corresponds to the total duration of the cycle
minus systole [23]. Table 2.5 presents the mean and standard deviation of these variables for
each pig. These results justify the procedure to detect S1 in the first half of the cardiac cycle
because the mean S1 duration is statistically lower than half of the total mean cycle duration
for all pigs, ensuring that the S1 duration is not restricted by the searching space.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Days

Pig 7

Pig 6

Pig 5

Pig 4

Pig 3

Pig 2

Pig 1
59 Green / 36 Black (62% preserved)

111 Green / 52 Black (68% preserved)

175 Green / 57 Black (75% preserved)

208 Green / 108 Black (66% preserved)

47 Green / 23 Black (67% preserved)

51 Green / 22 Black (70% preserved)

29 Green / 21 Black (58% preserved)

Figure 2.15 – Signal acceptance distribution over time. Green dots represent the recordings finally preserved,
black dots represent all discarded recordings.

Pig ID
Heart
rate

Total Cycle
duration

Systole
duration

Diastole
duration

S1
duration

S2
duration

[BPM] [ms] [ms] [ms] [ms] [ms]

1 92±19 675±124 291±51 384±102 168±31 184±38

2 89±22 711±155 297±67 414±124 152±31 170±41

3 92±16 668±99 297±64 371±93 142±33 167±42

4 98±17 629±95 276±45 352±76 153±28 172±36

5 77±20 819±174 366±113 453±149 189±36 192±49

6 63±9 966±132 358±71 608±137 199±34 173±34

7 74±17 849±169 383±100 466±175 199±27 191±43

Total 89±20 704±155 303±73 401±127 159±36 174±40

Table 2.5 – Statistics of cardiac cycle duration.

Additionally, it is possible to discern a HR-related pattern between healthy and pathological
pigs, where the 4 healthy pigs exhibit a higher HR than the 3 pathological pigs. This pattern
is best observed in Figure 2.16 through the scatter plot of the recordings relating HR, systole
and diastole duration. A graphical representation of the mean and standard deviation of each of
these variables is also included. Although this pattern is evident in the data, it is not statistically
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supported to classify the pigs as healthy or pathological, considering all the variables that can
influence HRV such as age, gender, weight, etc., and the limited number of pigs involved in the
experiment.
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Figure 2.16 – Scatter plot of the cardiac cycle duration between healthy and pathological pigs. The crosses
represent the mean and standard deviation of each population along the two axes.
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Analysis of S1 and S2 morphology

The most relevant aspect to analyze regarding the estimation of hemodynamic markers is
the morphology of S1 and S2, i. e., the duration and amplitude of these cardiac components.
Figures 2.17 and 2.18 show through box plots and scatter plots the statistical distribution of
the data according to the peak-to-peak values and the duration of S1 and S2, respectively. In
order to condense the information of the peak-to-peak values of the 4 ACC axes, it was decided
to calculate a magnitude measure using the Euclidean norm of the peak-to-peak values of the 4
ACC axes. Furthermore, this process ensures that even recordings missing one or more of their
ACC axes can be included in the analysis.
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Figure 2.17 – Statistical distribution and scatter plot of the norm of peak-to-peak values between all ACC
axes of S1 and S2 between healthy and pathological pigs. The crosses in the scatter plot represent the mean and
standard deviation of each population.
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Figure 2.18 – Statistical distribution and scatter plot of the duration of S1 and S2 between healthy and
pathological pigs. The crosses in the scatter plot represent the mean and standard deviation of each population.

The results in Figure 2.17 show that the median peak-to-peak values of S1 are slightly
higher than those of S2 for all pigs, which is consistent with the literature in both PCG and
SCG [40, 146, 90]. The scatter plot of peak-to-peak values suggests a reduction in the magnitude
of pathological recordings, and is shown in S1 and S2. The difference between healthy and patho-
logical pigs is most notable concerning the duration of S1 and S2 shown in Figure 2.18, especially
for S1, where the notches in the box plot do not overlap, concluding with 95% confidence, that the
true medians of S1 duration between healthy and pathological pigs do differ. These differences
in peak-to-peak values and heart sound duration are expected between healthy and pathological
pigs. Indeed, it has been previously reported that modifications of the inotropic state, which
is particularly affected in HF, have a direct consequence on the amplitude and duration of S1
[8, 17].
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Analysis of SNR results

Table 2.6 shows the mean value and standard deviation of the SNR measurements of all
cardiac cycles in the ECG and ACC signals. The SNR measurements obtained for the ECG
signals show the highest values in the QRS-ECG configuration, which was also presented with
the SNR values of the gold standard signals in Table 2.2. Such phenomena are evident because the
cutoff frequency values used for the QRS-ECG configuration were more restricted than the values
used for the TP-ECG, thus suppressing more of the noise in the signals and highlighting the R
peak, which was the purpose of using both configurations at different stages of the processing
pipeline. These values are also comparable with those found in the literature [147, 148].

Pig ID 1 2 3 4 5 6 7 All

ECG

[dB]

TP 14.7±5.3 17.3±6.1 15.8±6.1 16.2±5.7 15.8±6.6 22.2±6.2 21.6±5.9 17.6±6.0

Rpeak 21.0±4.0 22.9±5.1 22.3±4.3 21.2±3.8 23.5±5.7 31.0±6.3 25.4±5.3 23.9±4.9

S1

[dB]

X 13.2±5.3 15.3±5.7 14.9±5.8 14.5±5.9 15.4±6.4 17.7±5.3 16.7±6.6 15.4±5.9

Y 14.3±5.5 16.0±6.1 14.4±5.5 15.8±5.8 15.9±6.4 18.2±5.5 18.2±6.7 16.1±5.9

Z 14.3±5.7 15.7±5.8 15.9±5.5 15.5±6.1 16.7±6.9 17.9±5.3 17.9±6.2 16.3±5.9

N 15.1±5.4 15.8±6.0 15.1±5.5 15.4±5.8 15.8±5.8 17.2±4.7 19.4±6.3 16.3±5.6

S2

[dB]

X 9.7±5.3 11.0±6.0 10.6±5.6 9.8±5.7 10.8±6.3 13.7±5.7 13.1±6.5 11.3±5.9

Y 10.3±5.4 12.5±6.1 10.7±5.8 11.9±6.4 11.9±6.8 13.0±6.2 14.7±7.3 12.1±6.3

Z 10.1±5.3 11.6±5.8 11.4±5.5 11.9±6.2 12.2±6.6 11.8±5.6 13.7±5.9 11.8±5.8

N 11.2±5.4 12.0±6.0 11.5±5.9 11.4±6.0 11.7±5.8 12.5±5.1 14.7±6.2 12.1±5.8

Table 2.6 – SNR of ECG and ACC signals.

The SNR results of the ACC signals represent a satisfactory signal quality compared to the
literature [149, 150, 126]. Although there are some differences in the equations used to calculate
SNR in ACC signals in the literature, the results may be comparable in terms of the ratio given
in dB. The mean SNR of S1 is higher than the SNR of S2 because the absolute amplitude of S1
is usually larger than the absolute amplitude of S2 and both values are measured against the
same signal background noise.

2.6 Discussion

This chapter presented, to our knowledge, the first characterization of electrophysiological
and 3D accelerometer cardiac data acquired from the gastric fundus in preclinical experimenta-
tion. The results obtained in Phase 1 showed satisfactory levels of correlation between markers
obtained from the gastric implant and those obtained from standard surface sites. In particular,
the time variation of markers such as heart rate and heart sound duration and amplitude were
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highly correlated with the reference, which is the main focus of the proposed device for long-
term monitoring of chronic diseases such as HF [6, 151, 26]. Although these results were obtained
from a limited number of observations and may warrant further comparisons, we consider them
sufficient to move forward with the feasibility study in Phase 2.

Results related to the estimation of longitudinal digital markers from the implant showed
that the electrophysiological sensors contain a mixture of different bioelectrical sources, mainly
ECG, electromyographic, electrogastrographic and impedance modifications at the electrode-
tissue interface due to respiratory, gastric and general animal movement. In general, the SNR
is high enough to perform robust QRS complex detection and basic HRV analysis from these
electrophysiological signals. Concerning the acquired CVS, the main sources of noise are pig
growls, as well as digestive sounds and movements. These sources cause an abrupt reduction in
the SNR and signal contrast of the ACC data that can drop below 5 dB and 2, respectively.
This fact is directly reflected in the high percentage of rejected recordings in the second stage
of the quality assessment process, which depend on a contrast level higher than 2. Respiratory
movement and general motor activity of the pig are also observable, but can be more easily
attenuated or cancelled. Therefore, a data quality assessment phase has been proposed to select
a subset of the acquired data that contains exploitable information.

When SNR values higher than 6 dB or heart sound contrast higher than 2 are observed, the S1
and S2 components can be correctly segmented from the accelerometer signal and hemodynamic
markers can be estimated from these data. The values obtained associated with the morphology
of S1 and S2 are in agreement with the literature in the field, in terms of the duration [152, 24] and
amplitude [40, 140] of both cardiac components. Furthermore, considering that previous studies
have correlated S1 amplitude with left ventricular dP/dt [8, 9, 16, 17], it is worth noting that S1
showed a lower mean peak-to-peak value and longer duration in HF pigs relative to healthy pigs,
indicating a possible negative inotropic function of HF pigs. Modifications in S2 between HF and
normal pigs are also observed. However, these results have no statistical significance at this stage
and further preclinical evaluations should be performed, using exactly the same instrumentation
in both groups. Nevertheless, the qualitative correspondence between the results obtained and
those in the literature, highlights the feasibility of deriving reliable and traceable markers related
to hemodynamic alterations associated with heart failure from the gastric fundus.

Regarding the information obtained from the implant, the change in orientation over time
represents an interesting aspect, which was considered as a prospective source of information
(results not included in this work). Since the device is correctly fixed to the gastric fundus,
these orientation changes are not related to the movements of the device inside the stomach
(which would be an important source of error), but to the movements of the coupling between
the heart, the diaphragm, and adjacent gastric structures. In addition to compensating for these
movements, the accuracy of an implantable 3D accelerometer can be used to extract potentially
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valuable information. Further work is being done in this direction. It is worth mentioning that
some technical issues related to the construction of the implant prototypes need to be addressed
in future versions. Some of the main issues identified are listed below:

— Occasionally, the implant was restarted for reasons unrelated to the acquisition protocol
and the schedule was no longer available.

— The application on the gateway was not robust enough. It was necessary to restart the
gateway to restart the application. If this action was performed too late, some data was
lost.

— The cloud infrastructure was only in the first release for proof of concept and was not
continuously stable.

2.7 Conclusion

This chapter shows initial preclinical evidence on the feasibility of chronic cardiovascular
monitoring from a minimally invasive implantable cardiac device placed in the gastric fundus.
The main challenge remains in optimizing the signal-to-noise ratio, in particular for handling
some noise sources that are specific to the gastric acquisition site. Ongoing work is aimed at
proposing adaptive methods that will trigger data acquisition at the implant when specific noise
level criteria are met and in further preclinical evaluation.

Furthermore, an efficient and easy-to-implement algorithm based on context features was de-
signed to obtain the final detection instants for S1 and S2 from the fusion of multiple candidate
detections of the main ACC events from a 3D accelerometer (Algorithm 1), with the additional
advantage of allowing the easy incorporation of other CVS sources such as PCG and gyrocar-
diogram (GCG). This algorithm uses the contrast measurements of the cardiac events to define
the final detection instants for S1 and S2 as follows: 1) each detection instant is replicated in the
four ACC axes to analyze its overall performance by calculating the corresponding contrast of
that detection in each axis. 2) Detections with a contrast value lower than 2 are discarded on the
corresponding axis. 3) Two relevance vectors are created using the contrast measures, one for S1
and one for S2, where the higher the contrast measure, the higher the relevance value assigned to
the corresponding detection. 4) A weighted average is calculated between the detection instants
using the relevance vectors as weights. The result of this weighted average operation is used as
the final detection of S1 and S2.
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Chapter 3

CARDIORESPIRATORY EVENT DETECTION

USING A MEM SYSTEM WITH AN

EMBEDDED MACHINE LEARNING CORE

As previously stated, a great interest has aroused in the last decade for the analysis of
cardiac vibration signals (CVS) [79, 27, 108]. Specific signal processing and machine
learning methods have been proposed to exploit this type of signals, that carry a
large amount of information about the cardiorespiratory function. Signal processing
and machine learning pipelines start to emerge in the literature to address some of
the most sensitive cardiovascular pathologies, such as HF [153, 113, 112]. However, the
implementation of these pipelines in real-time and “on-the-edge” (the closest possible to
the patient, into the sensors), still remains a major challenge. This chapter describes the
design, development, calibration, operation and preliminary evaluation of a prototype
acquisition system developed to synchronously measure the mechanical, electrical and
phonographic signals of the heart, using specialized sensors with high performance
characteristics. The main feature of such a system is the possibility to integrate a
machine learning core (MLC) into the MEM sensor, that is intended to be used to
automatically detect different cardiorespiratory events “on-the-edge”. Initial feasibility
tests for the evaluation of such on-the-edge implementation are also reported in this
chapter.

3.1 Design and development of the cardiac signal acquisition
system prototype

There is no doubt that the modern world is awash in an ocean of data, and new data
continues to be constantly acquired in huge quantities through the use of all kinds of sensors
and IoT (Internet of Things) devices. This trend has been reflected in all fields of industry,
science and research, including the medical field, leading to the development of new technologies
that seek to better manage data in terms of storage, speed, security and overall efficiency. The
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term “on-the-edge” has been established as part of these new developments, referring to a new
distributed data architecture called “edge computing”, where information is processed as close
as possible to the source of the data [154]. Additionally, the use of artificial intelligence, or
more specifically the use of machine learning algorithms, has also exploded as part of this trend
towards the era of data, producing a large number of new approaches every day that demonstrate
the enormous potential that this type of technology offers when dealing with the need to process
large amounts of information with high performance results [155].

Many works involve the use of machine learning algorithms in the context of remote monitor-
ing of cardiac patients, most notably those that leverage the use of sensors commonly embedded
in smartphones (such as accelerometers and gyroscopes) to develop what so far look more like
on-the-edge approaches [27, 108]. However, these approaches still lack features that should be
considered for chronic and longitudinal monitoring of patients with diseases such as HF, es-
pecially those who require the use of implantable devices or who simply cannot adjust to the
manipulation of a device such as a smartphone [156]. In this work, we propose the development
of a cardiac signal acquisition system that will incorporate the measurement of CVS through
the use of a cutting-edge MEM sensor, which has the special feature of integrating an MLC that
allows deploying machine learning applications on-the-edge. Such a feature raises the hypoth-
esis that this type of technology could be exploited for the future development of implantable
or wearable devices for monitoring cardiac patients, with the advantage of enabling the use of
machine learning on-the-edge to improve the efficiency of such devices in terms of real-time
processing, speed, memory, size, power consumption, and even accuracy.

The developed cardiac signal acquisition system is capable to measure mechanocardiographic
(MCG), electrocardiographic (ECG) and phonocardiographic (PCG) signals synchronously in
a noninvasive manner. The system consists of a main board and three independent modules
associated with each of the three types of measured signals. The main board is in charge of
data storage and synchronization control of the different signals. The MCG module consists of
the cutting-edge MEM sensor used to measure the CVS, which is composed of a 3D seismocar-
diogram (SCG) and a 3D gyrocardiogram (GCG). The ECG is primarily taken to accurately
determine the trigger of major cardiac events by detecting R-peaks, while the PCG is measured
to be used as a gold standard reference to validate the effective correlation between the cardiac
vibrations captured by the MCG and the main heart sounds, which are widely studied in the
literature.

Figure 3.1 shows a general diagram of the system design. An important detail in this figure is
the clear representation of the on-the-edge definition to different extents. For instance, the PCG
sensor (corresponding to the electronic stethoscope) only sends the measured signal to the main
board without receiving any programming information that can configure the parameters of this
signal. The ECG chip, on the other hand, receives programming data that allows configuring
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the parameters of the signal while returning both the measured ECG and the R-peak detection,
through on-the-edge ECG processing. Finally, the MCG sensor also receives the programming
data from the main board, while playing the role of transducer and returning the measured
signals as well as the MLC output, which is produced by processing the SCG and GCG signals
on-the-edge.

X

Y

Z

X

Y

Z

Figure 3.1 – Global diagram of the system design. The small arrows represent the flow of programming data to
the system peripherals, while the large arrows represent the flow of data from the signals acquired by the sensors.
The gray, blue and green colors represent the components of the ECG, MCG and PCG modules, respectively.
The dotted rectangular shapes provide a visualization of the signals transmitted by each module, while the solid
rectangular and oval shapes represent the adapters and transducers, respectively.

The system prototype is designed to be as compact as possible, so that it can be easily
transported and installed within the different data acquisition environments for which it may
be required. The main challenges in the design of the system are associated with this aspect,
since the choice of a compact and practical design poses limitations in terms of computational
and hardware capacity of the main board, considering that it must be able to receive all the
data coming from the different modules in real time, in a synchronized manner, without loss of
information, and in a reliable manner. The communication protocols used to connect the main
board with the different modules were selected according to the following considerations:

— The hardware availability of the main board and of each of the sensors.

— The sampling frequency required by each module, which varies between each type of sensor
due to the nature of the measured signals.

— The requirements for the synchronization of all signals acquired by the system. In fact,
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a particular effort has been given to the correct temporal synchronization of the signals,
acquired through different sensors, with different protocols and heterogeneous resolutions.

3.1.1 System main board

The acquisition system has a centralized configuration with a main board and 3 different
modules assigned to specific functionalities. All modules are connected to the central board
where the data is stored. The board used is a Raspberry Pi version 3 model B+ (see Figure 3.2),
which belongs to a series of low-cost single board computers developed by the Raspberry Pi
Foundation. The Raspberry Pi 3 B+ features a 1.4Ghz 64-bit quad-core ARMv8 processor,
Wi-Fi and Bluetooth wireless connectivity without the use of additional adapters. The Wi-Fi
connection features dual-band 2.4GHz and 5GHz, plus a 300 Mbit/s Ethernet port.

Figure 3.2 – Raspberry Pi version 3 model B+. Reprinted from [157], copyright ©2022 Raspberry Pi.

The main reasons for using this board in this project are its versatility and ease of use
with the ability to integrate sensors using low-level communication protocols such as I2C, SPI,
UART and GPIO pin control. Additionally, this board allows the use of high-level programming
languages such as Python, which is an open source language that offers high interpretability of
the code structure, with a large number of libraries supported and updated by the developer
community and applied to numerical operation, peripheral control and machine learning, which
is in line with the main objective of this project.

3.1.2 PCG acquisition module

This module corresponds to the audio acquisition interface that captures the phonographic
signals from the heart (outlined in green in Figure 3.1). Considering that the default 3.5 mm
connector of the Raspberry Pi board only provides output functionality, it was necessary to use
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an additional adapter that integrates an audio input functionality to capture the signals coming
from the sensor. The best option to consider was the specialized HifiBerry DAC+ ADC Pro
board (see Figure 3.3). The HifiBerry DAC+ ADC Pro is a high-resolution digital-to-analog
and analog-to-digital converter for Raspberry Pi models with 40-pin GPIO connector such as
Raspberry Pi 3 B+. This sound card is specifically optimized for applications that need not only
playback but also recording functionalities [158], meeting the requirements of this project.

Figure 3.3 – HifiBerry DAC+ ADC Pro. Reprinted from [158], copyright ©2022 HiFiBerry.

The HifiBerry DAC+ ADC Pro comes as a pre-built kit and can be connected directly to
the Raspberry Pi because it complies with the Raspberry Pi hardware-attached-on-top (HAT)
specification. This board requires exclusive use of the I2C bus and one of the two SPI buses of
the Raspberry Pi main board, leaving only one SPI bus free to connect to the other sensors.
Despite this limitation, the HifiBerry DAC+ ADC Pro was chosen as the audio input adapter
for the project because it was still possible to connect the other sensors using the remaining
communication ports. Following the premise of developing a handy and compact system, it was
decided to implement an electronic stethoscope featuring a 3.5 mm connector that would be
practical to transport and use in any signal acquisition environment (see Figure 3.4).

3.1.3 ECG acquisition module

The second module is designed to measure the ECG signals (outlined in gray in Figure 3.1).
The sensor was carefully selected to meet the requirements needed to be used in a clinical
setting, this sensor is the MAX30003. This sensor is a complete biopotential analog front-end
solution for portable applications, offering high performance for clinical and fitness applications.
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Figure 3.4 – Electronic stethoscope.

The MAX30003 provides ECG waveforms and automatic, embedded, R-peak detection based
on the Pan Tompkins algorithm for heart rate analysis [159]. The MAX30003WING expansion
board was used to create the interface connection between the MAX30003 and the Raspberry
Pi (see Figure 3.5a). This board provided a 3.5 mm connector for prototyping with ECG leads
compatible with this interface. Additionally, an FT232H adapter was used to create a new SPI
port through one of the USB ports of the Raspberry Pi with the purpose of preserving SPI
bandwidth and minimize conflicts with other SPI communications. The FT232H is a high-speed
(480 Mb/s) single-channel USB 2.0 to UART/FIFO IC adapter (see Figure 3.5b), it has the
ability to be configured on a variety of industry standard serial or parallel interfaces such as
SPI, I2C, UART and GPIO pin control.

MAX30003

(a) MAX30003WING expansion board (b) FT232H USB to UART/FIFO IC adapter

Figure 3.5 – Main components of the ECG acquisition module.
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3.1.4 MCG acquisition module

The third module corresponds to the sensor for measuring CVS (outlined in blue in Fig-
ure 3.1), and following the proposal to use sensors that stand out for their high performance and
measurement accuracy, the LSM6DSOX was chosen. The LSM6DSOX is a MEM sensor featur-
ing a 3D digital accelerometer and a 3D digital gyroscope with a current consumption of 0.55
mA in high performance mode. It also offers the possibility to connect and process data from
external sensors (such as a magnetometer) using the “Sensor Hub function”. The LSM6DSOX
is developed by STMicroelectronics [160], offering real, virtual and batch sensors with 9 kbytes
for dynamic data batching. This sensor can be configured from the Auxiliary SPI and primary
interface (SPI / I2C & MIPI I3CSM).

The main reason for choosing the LSM6DSOX in this project is because it has an embed-
ded machine learning core (MLC), opening the possibility to develop some machine learning
applications that could be executed by the sensor instead of the microprocessor. This function-
ality offers benefits in terms of processing time, power consumption, size, cost and complexity
in the development of a final implantable or external cardiac device. The MLC integrated into
the LSM6DSOX allows identification of whether a data pattern (e.g., motion, pressure, tem-
perature, magnetic data, etc.) matches a user-defined set of classes. The MLC works with data
patterns from accelerometer, gyroscope and external sensors. Input data can be filtered using a
dedicated configurable computation block containing filters and functions calculated in a fixed
user-defined time window without overlapping. Machine learning processing is based on logic
processing composed of a series of configurable nodes characterized by “if-then-else” conditions
where feature values are evaluated against defined thresholds (decision tree logic).

One of the main issues raised at the beginning of the project was the need to design a
custom lead to connect the LSM6DSOX sensor in a manner that would be comfortable for
the patient, easy to install and would not limit its measurement sensitivity. The evaluation or
acquisition boards available on the market with the sensor already installed were too large to fit
the requirements of the project, because a too large board would imply the addition of an extra
mass that would limit the sensitivity of the sensor. For this reason, it was decided to design and
build a custom board with a minimum size to take full advantage of the LSM6DSOX sensor
features. The custom board was designed following the recommendations of the manufacturer,
taking special care to install the decoupling capacitors as close as possible to the power pin
of the sensor. The board design includes eight through-hole connection terminals to connect
the board via low-stiffness wires that allow the sensor to retain its high sensitivity in vibration
measurement. Figure 3.6a shows the printed circuit board (PCB) layout, which has dimensions
of 10.38 × 12.27 mm. The PCB was printed by contracting the services of a company specialized
in printing this kind of circuits (see Figure 3.6b), and the components were soldered in the lab
facility. The resulting final board is shown in Figure 3.6c.
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(a) PCB design (b) Printed custom board (c) Mounted custom board

Figure 3.6 – LSM6DSOX custom board design.

After mounting the components on the customized board, a female snap for the connection
of an electrode was glued to the back of the board. This was for the purpose of being able
to easily attach the sensor to the chest of the patient by using a traditional electrode like the
ones used for ECG leads, but in this case without electrical conduction, only to easily fasten
the sensor. Subsequently, the board with the electrode snap was coated with a two-part liquid
silicone composition especially designed for electrical protection in medical applications. The
liquid silicone is formed by thoroughly combining the two components, which do not present
any risk of generating an exothermic reaction. The encapsulated custom board is 18 mm in
diameter, 8 mm thick and weighs approximately 4 grams. It is shown in Figure 3.7.

Figure 3.7 – Encapsulated LSM6DSOX custom board.

The cable that attaches directly to the board was carefully selected to provide the best sensor
mobility because it is ultra-thin but still strong enough. The part of the lead comprising this
type of cable is 50 cm long. At the end of the ultra-thin cable, another 1 m long cable with
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3.1. Design and development of the cardiac signal acquisition system prototype

double shielding for electrical noise isolation and increased strength was attached to provide
more robustness to the lead. Finally, a female RS-232 connector was soldered to the end of
the lead for easy connection without the risk of direct contact with the connection terminals.
Figure 3.8 shows the final design of the MCG sensor lead. It is worth mentioning that the
terminals corresponding to the interrupt pins were not connected because they were not needed
in this application, so the lead has a total of 6 internal wires.

Figure 3.8 – Custom lead for MCG signals acquisition.

3.1.5 System housing

The main considerations when designing the system housing were the use of materials ap-
proved for use in a clinical environment, a compact design that is easy to transport and install,
and a clear aesthetic appearance that reflects the professional design of the system. In addition,
the possibility of implementing the system without the need to acquire the ECG and PCG signals
in the future was considered, so two separate housings were designed: one for the Raspberry Pi
with the HifiBerry board and a male RS-232 port for connecting the MEM sensor cable, and the
other for the ECG sensor with the FT232H adapter. These housings were designed in Tinkercad®

software from Autodesk® and subsequently printed on a Lulzbot® TAZ Pro 3D printer at the
laboratory facilities using acrylonitrile butadiene styrene (ABS) material. Figure 3.9 shows the
final system with all components connected.
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MCG custom lead

Raspberry Pi case

stethoscope

ECG module case

ECG leads

Electronic

Figure 3.9 – Cardiac signal acquisition system.

3.2 Time calibration of the system

Synchronization of the sensors is a critical aspect to consider in the design of the acquisition
system described above, mainly because some of the most relevant characteristics of the cardiac
signals depend on their correct measurement in time, and the time error between the three
sensors (MCG, ECG and PCG) must be reduced to the lowest possible value. Consequently, the
procedures implemented to reduce this error in the system are described below.

3.2.1 Sampling frequency of the LSM6DSOX sensor

Although the LSM6DSOX sensor data sheet shows the different sampling frequencies that
can be configured to measure SCG and GCG signals, these frequency values are not accurate if
the internal clock of the Raspberry Pi board is used as a reference, which must register the data
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acquisition rate of all sensors with high accuracy. For this reason, the actual sensor sampling
rate must be determined by a calibration process.

The calibration procedure consists of acquiring multiple measurements from this sensor while
monitoring the elapsed time with a counter controlled by the Raspberry Pi board. Considering
that the data reading process uses the FIFO memory of the LSM6DSOX sensor, the number of
samples read is organized in batches, so the calibration process will generate a file containing the
time stamp ti and the number of samples si read from each time the FIFO memory is accessed.
The actual sampling rate fMCG can be computed using Equation (3.1).

fMCG = 1
B − 1

B∑
i=2

si

ti − ti−1
(3.1)

where B is the total number of acquired data batches.
This calibration procedure must be performed every time the sampling frequency of the

LSM6DSOX sensor is changed or if the chip is replaced by a different one, even if it corresponds
to the same model and reference because this error is relative to each chip. It is worth mentioning
that it was not necessary to apply this calibration process to the ECG and PCG sensors because
the ECG sensor has a much lower sampling frequency that did not present measurable error
compared to the Raspberry Pi clock, and the PCG acquisition is directly controlled by the
Raspberry Pi so it does not require a correction of the sampling frequency. For the experiments
developed in this work, the ECG signals were acquired with a sampling frequency of 250 Hz,
the PCG signals at 16 kHz and the MCG signals at 1685 Hz (frequency calculated by using
Equation (3.1)).

3.2.2 Sensors synchronization

The best way to determine the difference between the acquisition times of the sensors is
by generating a known and time-defined signal that all sensors can measure simultaneously.
Considering the different measurement natures of the implemented sensors, it is necessary to
design a system with multiple actuators that can generate a suitable signal for each sensor. The
process implemented to solve this problem is described below.

Calibration circuit

The circuit designed to generate the calibration signal is quite simple and is shown in Fig-
ure 3.10. It consists of three physical phenomena generated from a single 3.3 V electrical signal
controlled through one of the GPIO pins of the Raspberry Pi. Each phenomenon is associated
with the nature of each of the used sensors. The first phenomenon consists of an electrical vari-
ation generated by a voltage divider between two resistors, one of 330 kΩ and the other of 33 Ω.
The ECG sensor is connected to measure the voltage on the 33 Ω resistor (approximately 0.3 mV)
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without risk of damaging the sensor. The second phenomenon is an audio signal generated with
a small buzzer to be directly measured by the electronic stethoscope. The third phenomenon
consists of the generation of vibrations that can be measured by the LSM6DSOX sensor, in this
case another buzzer of higher power than the previous one mentioned was used since it generates
small vibrations that can be measured due to the high sensitivity of the LSM6DSOX sensor.

(a) Schematic design

MCG
buzzer

PCG
buzzer

ECG
voltage
divider

(b) Real circuit

Figure 3.10 – Calibration circuit.

Calibration signal generation

The calibration signal was configured to generate a periodically repeating pulse. The pulse
duration was set to 2 ms because it was intended to be as short as possible to increase measure-
ment accuracy and a duration of 2 ms was the minimum value detectable by the ECG sensor
due to its low sampling rate. The pulse frequency was set at 2 s so that several measurements
could be obtained in a single test to determine the precision of the measurement.

Calibration signal measurement

A code script was designed to display the calibration signal measurements and automatically
calculate the difference in pulse detection times between the three sensors. Simple preprocess-
ing was applied to the measured signals in order to perform automatic pulse detection. The
preprocessing consisted of eliminating the offset of all the signals, then their absolute value
was calculated and finally they were normalized. In the case of the LSM6DSOX sensor, the
accelerometer three-axis norm was used because it was the best way to visualize the calibration
pulse measured by this sensor. The pulses measured by the sensors were detected using a thresh-
old high enough to differentiate the pulse from the sensor background noise. The final objective
of this process is to obtain the synchronization error between the sensors, both in time and in
number of samples according to the sampling frequency of each sensor. Figures 3.11a and 3.11b
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3.2. Time calibration of the system

show examples of the calibration signal measured before and after synchronizing the sensors,
respectively. Figure 3.11c shows a signal in which pulses with decreasing duration are generated
to verify that the pulses detected by the three sensors are coincident with each other.
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(a) Calibration signal before synchronization
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(b) Calibration signal after synchronization
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(c) Signal generated to verify correct synchronization of sensors

Figure 3.11 – Representative examples of the calibration process.

The sensor calibration process was performed with the acquisition of five recordings with a
duration of 20 seconds each for a total of 50 pulses, considering that a pulse is generated every
2 seconds. The time difference between the signals was calculated taking the MCG sensor as a
reference, since this is the sensor that presented the lowest latency in the measurement (which can
be visualized in Figure 3.11a). Table 3.1 shows the results of the calibration process. It should
be noted that only the values associated with the ECG and PCG signals are shown because
the MCG sensor signal was taken as the reference. The error corresponding to the number of
samples is relative to the sampling frequency of each sensor. One of the most relevant values in
Table 3.1 is the standard deviation of the error measurements, because it shows the accuracy of
the calibration process, finding that the standard deviation is even lower than the calibration
pulse duration (2 ms) in all measurements, which validates the calculated calibration values as
suitable for applying the time correction to ensure proper synchronization of the sensors for the
process of measuring the cardiac signals.
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Sensor
Sampling frequency

[Hz]

Mean error Standard deviation

[ms][ms] [samples]

ECG 250 112.09 28 ± 1.71

PCG 16000 839.79 13437 ± 0.93

Table 3.1 – Sensor calibration results.

3.3 Experimental framework

The tests performed to evaluate the correct functioning of the cardiac signal acquisition
system were divided into two groups: a first group of tests to validate the correlation between
the MCG signals and the PCG, taking the latter as the gold standard reference. The second
group of tests were developed for the purpose of conducting a preliminary evaluation of the
hypothesis that the MLC embedded in the MEM sensor can be used to detect variations in the
hemodynamic parameters of a patient in an automatic fashion. The details of these two test
configurations are described below.

3.3.1 Preliminary validation with gold standard reference

This first set of tests was developed following a scheme similar to the one used to evaluate
the gastric implant described in Chapter 2. The main objective of this stage of the experimental
framework was to validate the acquisition of the MCG signals by comparing them with a gold
standard reference, in this case provided by the PCG signal. It should be noted that the ECG
signal does not require validation because it already corresponds by itself to a standard ECG
configuration, which in the case of these experiments will be only used to identify the start and
end of each cardiac cycle by detecting the R peaks.

Acquired data

Signals acquired for this first set of tests were measured in two healthy male volunteers from
the LTSI team with an average age of 27 ± 2.8 years and an average weight of 60.5 ± 6.4 kg.
One of the volunteers reported doing sport activities frequently and the other infrequently, but
both reported feeling in good physical condition at the time of testing. Both volunteers were
previously informed about the configuration of the tests and agreed to undergo them since they
did not represent any risk to their health and did not involve invasive interventions.

The tests consisted of acquiring recordings in three different configurations: 1) baseline con-
figuration to evaluate the correct visualization of the main cardiac components in the measured
signals, 2) apnea configuration to evaluate the evolution of the cardiac signals in a minor car-
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diorespiratory event, and 3) Valsalva maneuver configuration to evaluate the evolution of the
cardiac signals in a more demanding cardiorespiratory event. The main objective of these con-
figurations is to generate variations in the hemodynamic parameters of the volunteers that can
be reflected in the measured signals. Three recordings were acquired with each of the configura-
tions on two different days to increase the variability of the tests and obtain more representative
results. Consequently, a total of 36 recordings were acquired in this first set of tests.

Volunteers were asked to sit on a reclining chair with an approximate tilt angle of 45◦ to
make the volunteers comfortable during the acquisition process. The sensors were positioned as
shown in Figure 3.12. On the first day of acquisition the ECG leads were fixed using standard
electrodes in direct contact with the skin, the MCG sensor was fixed in the mid-sternal area
between the third and fourth rib using an electrode and additionally secured using adhesive tape
to simulate the effect of a subcutaneous implantation of the sensor, the PCG sensor was secured
with adhesive tape in the mitral area to ensure that the pressure of the stethoscope over the
chest of the volunteer did not vary during the whole acquisition process. On the second day,
the same sensor configuration was used, with the only difference that the MCG sensor was fixed
only with the electrode snap in order to analyze the effects on the measured signals by allowing
more freedom of movement to the sensor.

ECG leads
locations

MCG sensor
location

PCG sensor
location

X

Y

Z

Figure 3.12 – Sensor locations used for data acquisition. Adapted from [35] with permission, copyright ©2015
Elsevier.

Each recording had a duration of 1 minute and was taken with a time gap of no less than
3 minutes between recordings. In the baseline recordings, the volunteers remained seated in a
resting state with constant normal breathing. The apnea recordings started with 10 seconds of
rest, followed by 20 seconds of apnea and ending with 30 seconds of recovery (on the second

105



Chapter 3 – Cardiorespiratory event detection using a MEM system with an embedded MLC

day the duration of apnea was extended to 30 seconds considering that the volunteers showed a
good ability to hold their breath). The Valsalva recordings consisted of an initial 10 seconds of
rest, followed by a 10-second Valsalva maneuver and ending with 40 seconds of recovery.

Cardiac signal processing

The ECG signals were acquired with a sampling frequency of 250 Hz, the PCG signals at 16
kHz and the MCG signals at 1685 Hz (frequency calculated by applying the procedure described
in Section 3.2.1). The filters used with these signals were much less restrictive than those used
with the gastric signals described in the previous chapter, mainly because these signals have a
much lower noise influence and therefore the content of a wider frequency range can be exploited.
The combination of independent high-pass and low-pass third order Butterworth filters was
applied to the signals by direct and reverse zero-phase digital IIR filtering. The frequency band
used for ECG signals was from 1 to 100 Hz, the band for MCG signals was from 10 to 90 Hz,
and finally the band for PCG signals was between 5 Hz and 1 kHz. The norm of the 3D SCG
and 3D GCG were calculated before applying the filtering process and were treated as new axes
representing SCG and GCG components independent of both linear and angular direction of
motion.

Baseline recordings were used to analyze measurements of the main components of the CVS
(S1 and S2 related to the first and second heart sounds, respectively) in both duration and
amplitude. This process was performed after calculating the coherent mean of each of the signals
in each of the recordings in order to apply the heart sound detection process proposed in [24]
(also decribed in Section 2.3.4) and subsequently using Algorithm 1 to synchronize the heart
sound detections among all the MCG signals. The apnea and Valsalva recordings were used to
evaluate the correlation between the MCG and PCG signals, implementing a process similar to
that described in Section 2.4.2, where the time profiles of duration and peak-to-peak value of
the MCG and PCG signals were calculated using a window of 2 cardiac cycles to obtain a better
resolution of the variations and thanks to the fact that these signals had a better signal-to-noise
ratio than those taken with the gastric implant.

3.3.2 Preliminary machine learning core evaluation

The second set of tests was developed with the purpose of evaluating the hypothesis that
the MLC embedded in the sensor used to acquire the MCG signals can be used to automatically
detect variations in the hemodynamic parameters of the volunteers. These tests were developed
as a first approach that seeks to test the hypothesis without the explicit need to achieve the
highest performance in detection since it is proposed to use a basic configuration of the MLC
without performing a post-training optimization process.
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Acquired data

In this second set of tests only the signals of one of the volunteers involved in the previous
tests were recorded. The tests consisted of two types of configurations that would allow assess-
ment of the proposed hypothesis from two different perspectives: 1) apnea configuration that
proposes the detection of an event that generates variations mostly of a respiratory nature, and
2) Valsalva maneuver configuration that requires the detection of both respiratory and hemo-
dynamic variations. The arrangement of the sensors was the same as proposed in Figure 3.12,
attaching the ECG leads to the electrodes, securing the electronic stethoscope with adhesive
tape and fastening the MCG sensor only with the electrode snap.

The acquisition process consisted of taking three training recordings and three test recordings
for each of the configurations, taking a total of 12 recordings. Each recording had a duration
of one minute with a time gap between recordings of at least 3 minutes. Each of the recordings
was divided into samples of 1 second duration, with the purpose of capturing at least one
complete cardiac cycle in each sample. The apnea recordings were divided into 3 stages (classes):
Baseline with 30 seconds duration, Apnea with 20 seconds duration and Post-apnea (which
corresponds to the time immediately after the apnea stage) with 10 seconds duration, and
similarly the Valsalva recordings were divided into 3 stages (classes): Baseline with 40 seconds
duration, Valsalva with 10 seconds duration and Post-Valsalva (which corresponds to the
time immediately after the Valsalva stage) with 10 seconds duration. This process resulted in a
distribution of the samples as shown in Table 3.2.

Configuration Class
Number of samples

Train Test Total

Apnea
Baseline 90 90 180
Apnea 60 60 120
Post-apnea 30 30 60

Valsalva
Baseline 120 120 240
Valsalva 30 30 60
Post-valsalva 30 30 60

Total 360 360 720

Table 3.2 – Distributions of samples recorded for MLC evaluation.

The classes selected for each of the configurations were based on the fact that the seconds
immediately after the cardiorespiratory event (apnea or Valsalva) present some significant vari-
ations in the S1 and S2 waveforms, so it was proposed to differentiate these variations from the
baseline stage in order to perform a more complete evaluation of the different hemodynamic
variations that can generate these cardiorespiratory events.
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MLC configuration

The MLC in the LSM6DSOX sensor is specially designed to be used in mobile devices
such as smartphones or smartwatches, so it has features suitable for this type of devices and
applications related to them, such as recognition of activities like walking, running, riding a
bike, sitting or driving a vehicle. This may represent a disadvantage for the present project
because such features are not ideally suited to those required for the analysis and processing
of CVS. However, adjustments can be made to the configuration that allow for a basic and
functional analysis of these types of signals that is supposed to be sufficient for the proposed
task. Figure 3.13 shows a representative diagram of the different tools that can be configured in
the MLC of the LSM6DSOX sensor for processing the acquired signals up to defining a specific
machine learning application.

Accelerometer
and gyroscope

data
measurement

+
optional external

sensor

Magnitude
computation

Signal
filtering

Computation
of

features 

Pattern
classification

with
decision trees

Figure 3.13 – diagram of the data acquisition and processing pipeline in the MLC.

The MLC has a maximum sampling rate of 104 Hz, so the MCG sensor sampling rate was set
to 105.31 Hz (frequency calculated using the process described in Section 3.2.1) while the ECG
and PCG sensor sampling rates were kept the same at 250 Hz and 16 kHz, respectively. One of
the most useful features of the MLC is the possibility of configuring filters that are applied to
the measured signals prior to the feature generation process. The filters can be configured based
on a second order IIR filter with the transfer function shown in Equation (3.2) to generate the
output shown in Equation (3.3). The parameters b1, b2, b3, a2, a3 and Gain are configurable to
obtain the desired low pass, high pass, and band pass filters.

H (z) = b1 + b2z−1 + b3z−2

1 + a2z−1 + a3z−2 (3.2)

y (z) = (H (z) · x (z)) · Gain (3.3)

where x (z) represents the input signal and y (z) the output signal.

108



3.3. Experimental framework

Three different filters were configured to represent distinct components of the cardiorespira-
tory signals. A first low-pass filter with a cutoff frequency of 1 Hz to extract only the component
corresponding to respiration, a second high-pass filter with a cutoff frequency of 5 Hz to retain
only the components associated with cardiac vibrations, and a third band-pass filter between 20
and 40 Hz to emphasize the components of the CVS that carry the highest energy of this type of
signal [24, 126]. Figure 3.14 shows the frequency response of these filters and their corresponding
parameters are presented in Table 3.3.
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(c) Magnitude and phase responses of Filter 3

Figure 3.14 – Frequency response of the filters configured in the MLC.

The MLC offers the possibility to compute multiple types of features on the raw SCG and
GCG signals, as well as to compute the same features on the norm and squared norm of both
types of signals and also on the output of any of the filters applied to all the aforementioned
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ID Filter type
Coefficients

b1 b2 b3 a2 a3 Gain
Filter 1 Low-pass 0.0009 0.0017 0.0009 -1.9146 0.9181 1.0000
Filter 2 High-pass 0.8075 -1.6150 0.8075 -1.5776 0.6524 1.0000
Filter 3 Band-pass 1.0000 0.0000 1.0000 0.3441 0.1833 0.4084

Table 3.3 – MLC filter parameters.

signals. The features are mainly based on statistical measures applied on each of the training
samples. These features are mean, variance, energy, peak-to-peak, minimum and maximum val-
ues, and counters with adjustable threshold of zero crossing, positive zero crossing, negative zero
crossing, peak detector, positive peak detector and negative peak detector.

Considering that the LSM6DSOX sensor allows to compute a maximum of 31 features, only
the mean, variance, energy and peak-to-peak value measurements were computed over the SCG
and GCG norm and the outputs of the three filters described in Table 3.3 applied to the SCG
and GCG norm, thus obtaining 8 features for each measurement. The energy of the output of
the third filter applied to the GCG norm was omitted in order to meet the limit of 31 features.
It was chosen to calculate the features using only the SCG and GCG norm seeking that the
detections were not affected by changes in volunteer position during the recording process or
changes in the position of the sensor, which was fastened using only the electrode snap.

Decision tree creation and detection assessment

The data acquisition process was developed as follows:

1. Install the sensors on the chest of the volunteer while he was sitting comfortably in a
reclining chair with an approximate tilt angle of 45◦.

2. Take the three training recordings for the apnea configuration.

3. Use the training data to train a decision tree using the software tools provided by the
LSM6DSOX sensor manufacturer [160].

4. Load the decision tree configuration into the sensor to take the three test recordings,
reading and saving the MLC detections in real time during the recording process.

5. Repeat steps 2 through 4 for the valsalva configuration.

6. Evaluate the obtained detection results by applying different evaluation measures.

Considering that the collected data present a large imbalance between classes, especially for
the Valsalva configuration, different evaluation measures were used that could reflect the real
performance of the detection avoiding the bias generated by the imbalance of the classes. The
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evaluation measures used are sensitivity (SEN), specificity (SPC), precision (PRE), geomet-
ric mean (G-mean), F1 score and accuracy (ACC), which were calculated using Equations (3.4)
to (3.9), respectively. All measures are calculated based on the assignment of true-positive (TP),
true-negative (TN), false-positive (FP) and false-negative (FN) samples that make up the con-
fusion matrix.

SEN = TP

TP + FN
(3.4)

SPC = TN

TN + FP
(3.5)

PRE = TP

TP + FP
(3.6)

G-mean =
√

SEN · SPC (3.7)

F1 score = 2 · PRE · SEN

PRE + SEN
(3.8)

ACC = TP + TN

TP + TN + FP + FN
(3.9)

3.4 Results

3.4.1 Preliminary validation of MCG against a gold standard reference

Analysis of baseline recordings

Figures 3.15 and 3.16 show representative examples of the coherent mean of each of the
signals measured during the first day of acquisition on the first and second volunteer, respec-
tively. Similar figures associated with respresentative examples taken during the second day of
acquisition can also be found in Appendix A. Also included in these figures are the final results
of the detection process of S1 and S2, differentiating the detection applied on the MCG and
PCG signals separately to have a better visualization of the comparison of the results of this
detection process on both types of signals. It should be noted that the detection of the first and
second heart sounds obtained on the PCG was projected onto the ECG to analyze the relation-
ship between the heart sounds and the main electrophysiological events of the heart. The PCG
detection was chosen to be projected because this signal is taken as the gold standard reference.

Several interesting details can be observed in these figures obtained from the baseline signals.
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Figure 3.15 – Representative example of signals taken in volunteer 1 on the first day. The vertical lines rep-
resent the detection times of the first and second heart sounds in red and black, respectively. The dotted lines
represent detection using the MCG, while the dashed lines represent detection using the PCG. Note also that
the detection of heart sounds using the PCG is projected onto the ECG for better analysis of the relationship
between electrophysiological events and heart sounds.
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Figure 3.16 – Representative example of signals taken in volunteer 2 on the first day. The vertical lines rep-
resent the detection times of the first and second heart sounds in red and black, respectively. The dotted lines
represent detection using the MCG, while the dashed lines represent detection using the PCG. Note also that
the detection of heart sounds using the PCG is projected onto the ECG for better analysis of the relationship
between electrophysiological events and heart sounds.
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A first detail is the significant difference observed in the waveforms of the signals corresponding
to the first volunteer compared to those of the second volunteer, which evidences the high
inter-subject variability associated with CVS that has been widely mentioned in the literature
[11, 27, 108], pointing out such variability as one of the main reasons to develop devices and
algorithms that can be configured in a personalized way for each patient. Another interesting
detail is that the duration of S1 and S2 tends to be longer in the MCG signals than in the PCG,
which can be mainly explained by the difference in sensitivity between these sensors (evidenced
by the signal to noise ratio observable in both types of signals), in addition to the fact that the
measured signals come from different natures in which the CVS manage to capture a greater
amplitude in low frequency components that can be overshadowed by the higher frequency
components in the PCG. A final detail is the great similarity between the waveforms of the
SCG and GCG signals, which has also been highlighted before in the literature and is mainly
explained by the fact that both types of signals are generated from the same physical nature
measured from different kinetic variations [108].

Table 3.4 shows the signal-to-noise ratio and contrast measurements of the first and second
heart sounds in the baseline signals for both volunteers during the two days of data acquisition.
These measurements were calculated in the same way as was done with the signals captured
with the gastric implant described in the previous chapter, as specified in Section 2.3.5. This
table shows how the ECG measurements remain constant for both days of acquisition while the
PCG shows some significant intra-subject variations that can be explained by small changes in
the position and pressure of the stethoscope on the chest of the volunteer between both days
of acquisition, because these small changes (very difficult to control) can significantly affect the
amplitude of the sounds measured in the PCG. Nevertheless, the measurements of both sensors
in all cases present sufficiently high values that reflect a good quality of the measurements.

One of the most important results presented in Table 3.4 is the fact that both the signal-
to-noise ratio and the contrast of S1 and S2 are significantly enhanced between the first and
second day of acquisition for all MCG signals in volunteer 1 and most MCG signals in volunteer
2. This observation implies that the use of the adhesive tape to simulate a subcutaneous implant
generates a significant reduction in the sensitivity of the MCG sensor to measure CVS, so it is
recommended to use this sensor secured only with the electrode snap in order to avoid limiting
its mobility and thus improving its sensitivity, evidently only for external measurement use cases
and in resting conditions such as those used in the experiments proposed in this work. All the
MCG signals present a better signal-to-noise ratio and contrast than those measured with the
gastric implant (whose results are shown in Table 2.6) and consequently in accordance with the
literature [149, 150, 126], which is to be expected considering that the acquisition conditions in
this case are much more controlled and the sensor location is less exposed to sources of noise
and artifacts.
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Volunteer 1 Volunteer 2
Recordings

of day 1
Recordings

of day 2
Recordings

of day 1
Recordings

of day 2

Si
gn

al
-t

o-
N

oi
se

R
at

io
[d

B
]

ECG 29.97±0.54 30.51±0.55 28.50±1.91 29.42±1.03

First
heart sound

SCG 24.11±2.15 29.01±2.91 21.77±2.33 21.69±1.77
GCG 18.26±2.99 23.43±3.03 15.83±2.75 19.96±3.36
PCG 33.83±3.98 35.20±3.09 32.11±3.28 36.41±5.11

Second
heart sound

SCG 24.33±1.81 27.04±2.88 14.25±2.65 20.84±1.77
GCG 14.46±2.42 18.42±2.92 18.90±2.91 20.50±3.46
PCG 38.88±2.59 34.87±3.27 30.24±2.89 28.14±5.13

H
ea

rt
so

un
ds

co
nt

ra
st

First
heart sound

SCG 7.18±1.16 10.36±2.30 5.04±0.96 4.71±0.64
GCG 3.68±0.79 6.34±1.83 3.49±0.70 4.48±1.00
PCG 29.49±11.36 35.02±12.41 15.38±6.90 24.25±12.94

Second
heart sound

SCG 5.58±0.76 7.17±1.71 2.27±0.51 3.70±0.60
GCG 2.50±0.45 3.20±0.98 3.56±0.85 3.96±0.96
PCG 40.39±11.22 29.04±9.92 11.07±4.79 11.11±5.89

Table 3.4 – Quality measurements of signals acquired as baseline. Note that for SCG and GCG signals only the
measurements taken on the norm (N-axis) between the 3 axes (X, Y and Z) are shown.

Table 3.5 shows the results of the time analysis of the detection of S1 and S2. The duration
of systole and diastole were calculated using both MCG and PCG signals for comparison, in
addition to calculating the difference between each of the start and end times of S1 and S2 (first
and second heart sounds in the PCG, respectively) measured in the MCG and PCG. The results
show that the detection of S1 and S2 start times (t1 and t3, respectively) are closely similar
between the MCG and PCG, which is also evidenced by the small margin of error between
systole and diastole duration calculations. The major difference is seen in the end times of both
S1 and S2, which as mentioned earlier, is an understandable error based on the sensitivity and
source nature of the physical phenomena measured by both sensors.

Analysis of apnea and Valsalva recordings

Figures 3.17 and 3.18 show representative examples of the duration time-profiles of S1 and
S2 for recordings taken on volunteer 1 with the apnea and Valsalva configurations, respectively.
Similar figures of representative examples of the recordings taken on volunteer 2 can be found in
Appendix B. These figures allow to observe how both apnea and Valsalva maneuver manage to
generate significant variations in the duration of S1 and S2 for both volunteers, which validates
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R
ec

or
di

ng Heart
rate

[BPM]

Systole
[ms]

Diastole
[ms]

Heart sounds timing
difference between

MCG and PCG [ms]
MCG PCG MCG PCG t1 t2 t3 t4

V
ol

un
te

er
1

D
ay

1 1 55 299.11 291.00 800.89 809.00 -1.14 66.70 6.97 32.51
2 55 300.30 292.67 791.69 799.33 -0.40 78.34 7.23 16.34
3 55 298.52 296.33 793.47 795.67 -0.07 53.72 2.12 8.04

D
ay

2 1 49 324.63 321.33 907.42 910.67 0.05 41.87 3.35 -6.09
2 52 312.76 309.00 833.23 837.00 0.23 39.82 3.99 14.05
3 50 313.95 307.67 881.90 888.33 0.27 53.32 6.55 7.61

V
ol

un
te

er
2

D
ay

1 1 57 305.64 321.33 738.28 722.67 14.11 58.52 -1.58 79.11
2 60 310.98 316.00 680.71 676.00 13.22 52.73 8.20 56.08
3 64 309.20 304.33 624.93 629.67 -2.73 47.08 2.14 36.30

D
ay

2 1 51 337.09 343.67 830.86 824.33 -16.43 50.67 -23.00 53.46
2 53 343.03 352.33 785.16 775.67 -5.09 50.47 -14.40 85.26
3 50 345.40 366.33 852.52 831.67 -3.56 56.74 -24.50 55.23

Table 3.5 – Timing measurements of signals acquired as baseline.

the proposal to use these strategies to indirectly analyze the measurement of the hemodynamic
parameters, which, as clearly established in Section 1.3, are correlated with the main components
of the CVS and heart sounds. Such variations are more evident in the signals measured on
volunteer 2, which largely depends on the effectiveness with which the volunteers were able to
perform the proposed tests and the inter-subject variability of the cardiovascular response to
this type of stimuli.

Although there is a considerable difference between the end times of the MCG components
(S1 and S2) and the main heart sounds, as evidenced in Table 3.5, it is possible to observe
that the total duration of these components manage to keep a close relationship with the total
duration of the heart sounds, showing patterns of increase and decrease in the duration of the
heart sounds that are simultaneously reflected between the MCG and the PCG. However, it
is also evident that in some time instants the MCG and PCG duration time profiles do not
seem to have a good correlation, which indicates that there is a high complexity regarding the
accurate detection of the start and end times of S1 and S2, becoming a problem that needs
to be further worked on and for this purpose strategies that take advantage of the use of the
data multimodality can be further developed to improve the results, as proposed with the use
of Algorithm 1.
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122

201

M
C

G
[m

s]

0 10 20 30 40 50 60

Time [s]

110

178

P
C

G
[m

s]

(b) Time-profile of S2 duration

Figure 3.17 – Representative example of evolution over time of heart sounds duration on volunteer 1 during
apnea. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the reference PCG signals.
The gray, green and white backgrounds correspond to the baseline, apnea and recovery stages, respectively.
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(b) Time-profile of S2 duration

Figure 3.18 – Representative example of evolution over time of heart sounds duration on volunteer 1 during
Valsalva. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the reference PCG signals.
The gray, green and white backgrounds correspond to the baseline, Valsalva and recovery stages, respectively.

Figures 3.19 and 3.20 show representative examples of the peak-to-peak time-profiles of S1
and S2 for recordings taken on volunteer 1 with the apnea and Valsalva configurations, respec-
tively. Similar figures of representative examples of recordings taken on volunteer 2 can also be
found in Appendix B. These figures show more clearly the evident similarity between the am-
plitude of the two main heart sounds and the S1 and S2 components of all MCG signals. These
patterns of similarity between both types of signals suggest the presence of a high correlation
between the signals of the MCG and the PCG, which is the main claim that seeks to be tested
by performing these tests. Additionally, both the peak-to-peak value time profiles of the signals
measured during apnea and Valsalva maneuver are shown to have a frequency component ap-
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parently associated with respiration, which is highlighted in both the MCG and PCG. This may
be caused by the fact that the sensitivity of the sensors may be slightly affected depending on
the amount of air contained in the lungs, which generates a variation of the distance between
the sensors and the heart through the expansion and contraction of the rib cage.
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(b) Time-profile of S2 peak-to-peak value

Figure 3.19 – Representative example of evolution over time of heart sounds peak-to-peak value measured on
volunteer 1 during apnea. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the
reference PCG signals. The gray, green and white backgrounds correspond to the baseline, apnea and recovery
stages, respectively.
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(b) Time-profile of S2 peak-to-peak value

Figure 3.20 – Representative example of evolution over time of heart sounds peak-to-peak value measured on
volunteer 1 during Valsalva. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the
reference PCG signals. The gray, green and white backgrounds correspond to the baseline, Valsalva and recovery
stages, respectively.

It is worth mentioning that the figures associated with the time-profiles of both duration
and peak-to-peak value were developed with the purpose of proposing a tool that allows a
qualitative analysis of the evolution of S1 and S2 over time during each of the tests, allowing a
quick and effective analysis in a simpler way than plotting the measured signals with all their
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content, which finally could be interpreted as a high noise content that obscures the true relevant
characteristics of the target signals.

Tables 3.6 and 3.7 show quantitative results of the comparison between MCG and PCG
time-profiles for the first and second heart sounds, respectively. These tables show that both
the duration and peak-to-peak time-profiles of the MCG have a high correlation with those of
the PCG, which is consistent with the results also obtained from measurements made with the
gastric implant described in the previous chapter, whose results are shown in Table 2.3.

Day Time-profile

Correlation between MCG and PCG

for the first heart sound [%]

Volunteer 1 Volunteer 2

Apnea Valsalva Apnea Valsalva

1

Duration 99.25±0.04 99.08±0.24 99.17±0.38 97.79±0.69

P
ea

k-
to

-p
ea

k
va

lu
e

SCG

X 96.23±0.17 92.61±1.97 94.16±0.39 94.94±1.76
Y 91.63±0.97 90.71±1.63 89.07±3.95 89.21±5.18
Z 96.35±0.69 94.19±1.95 91.58±3.08 94.65±1.13
N 96.25±0.80 94.21±1.84 92.97±2.52 94.89±1.08

GCG

X 93.78±0.73 91.96±1.05 88.36±2.96 84.70±5.66
Y 94.94±0.13 93.16±2.27 91.68±1.31 95.32±1.13
Z 93.34±1.23 92.66±2.57 89.96±4.42 84.55±8.16
N 94.20±1.15 92.78±2.36 91.66±1.49 93.53±3.07

2

Duration 99.28±0.12 98.37±0.28 98.63±0.34 98.39±0.30

P
ea

k-
to

-p
ea

k
va

lu
e

SCG

X 87.87±18.54 95.12±0.90 95.18±2.20 92.85±2.10
Y 89.77±13.31 90.60±4.22 88.95±11.40 92.56±1.17
Z 98.55±0.73 96.45±0.73 91.36±9.29 91.45±1.14
N 98.74±0.52 96.12±0.84 90.55±10.81 92.90±0.90

GCG

X 85.03±22.70 84.97±5.79 81.31±11.40 91.70±1.21
Y 89.30±15.68 96.78±0.84 92.70±4.49 90.53±2.71
Z 92.74±5.49 88.31±4.90 87.25±14.62 85.81±8.20
N 86.12±19.40 86.87±9.66 92.29±5.57 91.84±2.82

Table 3.6 – Correlation between MCG and PCG time-profiles for the first heart sound.

An important detail that should be highlighted in these results is the fact that the correlation
measurements of both the first and second heart sounds show higher values in most cases for
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Day Time-profile

Correlation between MCG and PCG

for the second heart sound [%]

Volunteer 1 Volunteer 2

Apnea Valsalva Apnea Valsalva

1

Duration 99.40±0.22 99.33±0.12 98.99±0.40 96.04±0.36

P
ea

k-
to

-p
ea

k
va

lu
e

SCG

X 93.87±3.15 95.91±0.57 94.57±1.90 92.89±2.54
Y 91.96±3.85 93.34±2.99 96.51±1.71 89.74±2.75
Z 95.64±2.32 96.57±1.11 96.05±1.22 90.47±1.79
N 96.16±1.91 96.92±0.94 97.23±2.16 91.29±1.17

GCG

X 95.01±2.13 91.35±9.22 94.08±3.49 79.85±9.14
Y 96.56±1.71 95.07±3.09 94.89±2.08 89.36±3.78
Z 98.43±1.04 82.91±17.46 93.63±0.55 74.10±15.51
N 95.74±2.29 90.13±6.86 93.27±2.66 90.10±1.79

2

Duration 98.66±1.32 98.93±0.37 98.40±0.31 95.78±1.57

P
ea

k-
to

-p
ea

k
va

lu
e

SCG

X 83.82±9.61 89.20±5.21 90.56±3.71 92.63±2.41
Y 88.16±7.65 87.36±9.79 92.70±4.19 93.28±2.31
Z 93.52±2.10 93.70±1.49 91.77±2.92 92.90±0.99
N 93.76±1.88 94.44±1.59 92.90±3.45 92.38±1.11

GCG

X 77.09±17.02 77.28±7.71 88.64±10.38 88.65±7.37
Y 87.52±12.35 88.27±5.70 89.03±4.09 92.30±1.90
Z 68.82±13.48 77.79±4.48 91.09±7.83 78.71±9.27
N 88.79±8.12 84.54±8.13 89.17±4.74 89.88±0.96

Table 3.7 – Correlation between MCG and PCG time-profiles for the second heart sound.

measurements made on the first day of acquisition than those made on the second day. This is
true for both volunteers and may be due to the fact that there is an increase in the background
noise of the signals during the performance of the apnea and Valsalva maneuver due to move-
ments such as trembling, changes in the inclination of the body of the volunteer and increase in
the amplitude and frequency of respiration at the end of the maneuvers to catch the breath. The
reason why this increase in noise has a greater influence on the measurements of the second day
is because the MCG sensor has greater freedom for movement due to the removal of the adhesive
tape used during the first day, which increases the sensitivity of the sensor for measuring cardiac
vibrations, but unfortunately also for measuring noise.
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Some strategies that will allow to eliminate the problem of increased background noise in fu-
ture experiments will be to perform measurements in patients undergoing changes or adjustment
of implantable devices such as pacemakers, so that no subject movement or effort is required to
generate variations in hemodynamic parameters, or there is also the possibility of performing
measurements during animal experimentation, generating hemodynamic changes through the
use of drugs such as dobutamine and esmolol.

3.4.2 Automatic detection of apnea and Valsalva using the MLC

Construction of decision trees

After verifying the correct synchronization of the sensors, the training data was acquired to
build the decision trees using the software tools provided by the manufacturer of the LSM6DSOX
sensor. The decision trees have the special characteristic of functioning as feature selectors while
being trained to perform the classification task. Table 3.8 shows the list of all the features that
were calculated from the training samples and the number of times the trained decision trees for
the apnea and Valsalva configurations selected each feature. Additionally, Figures 3.21 and 3.22
show in detail the structure and threshold values of the decision trees constructed for apnea and
Valsalva detection, respectively.

Figure 3.21 – Decision tree generated for the evaluation of MLC during apnea. Branches and leaves growing to
the right correspond to values above the threshold established for each feature, while branches and leaves growing
to the left represent values below or equal to the threshold.

122



3.4. Results

Feature
ID

Measure
Source
(norm)

Filter
Number of times

selected by decision tree
Apnea Valsalva

F1 Mean SCG Unfiltered 1 0
F2 Mean GCG Unfiltered 0 1
F3 Mean SCG Filter 1 2 3
F4 Mean GCG Filter 1 0 1
F5 Mean SCG Filter 2 0 1
F6 Mean GCG Filter 2 0 0
F7 Mean SCG Filter 3 0 1
F8 Mean GCG Filter 3 0 0
F9 Variance SCG Unfiltered 0 0
F10 Variance GCG Unfiltered 1 0
F11 Variance SCG Filter 1 0 0
F12 Variance GCG Filter 1 0 1
F13 Variance SCG Filter 2 0 1
F14 Variance GCG Filter 2 0 0
F15 Variance SCG Filter 3 0 0
F16 Variance GCG Filter 3 0 1
F17 Energy SCG Unfiltered 0 1
F18 Energy GCG Unfiltered 0 0
F19 Energy SCG Filter 1 0 0
F20 Energy GCG Filter 1 0 0
F21 Energy SCG Filter 2 0 0
F22 Energy GCG Filter 2 0 0
F23 Energy SCG Filter 3 0 0
F24 Peak to peak SCG Unfiltered 0 0
F25 Peak to peak GCG Unfiltered 1 1
F26 Peak to peak SCG Filter 1 0 1
F27 Peak to peak GCG Filter 1 0 0
F28 Peak to peak SCG Filter 2 0 1
F29 Peak to peak GCG Filter 2 0 2
F30 Peak to peak SCG Filter 3 0 0
F31 Peak to peak GCG Filter 3 0 0

Table 3.8 – Features computed for the classification of cardiorespiratory events. All features were computed
on the SCG and GCG norm. Note that the number of times a feature was selected by a decision tree can be
considered as an indicator of relevance of that feature.
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Figure 3.22 – Decision tree generated for the evaluation of MLC during Valsalva. Branches and leaves growing
to the right correspond to values above the threshold established for each feature, while branches and leaves
growing to the left represent values below or equal to the threshold.
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The number of times each decision tree selected a feature can be considered as an indicator
of relevance associated with that feature, since the training algorithm has established such a
feature to be useful in determining the class to which a sample belongs by setting a threshold
based on the values calculated for the feature concerned. In that order of ideas, it can be seen in
Table 3.8 that both the decision tree trained for apnea detection and the one trained for Valsalva
detection assigned the highest relevance to feature F3, corresponding to the mean of the SCG
norm filtered using Filter 1, which is the low-pass filter designed to extract from signals the
frequency component associated with respiration. This fact, besides being extremely interesting,
is of great importance for the obtained results, since it demonstrates how the decision trees
have managed to associate the changes in respiration with the cardiorespiratory events to be
detected, given that, in a logical way, a good method of detecting these events is to identify
when respiration has stopped.

Another interesting detail regarding the selected features is that the decision tree trained
to detect apnea-related events only used features coming from unfiltered signals or filtered with
Filter 1, which may suggest that this decision tree is basing its results considering only variations
in respiration but not in CVS, which may also be logical since apnea is a mostly respiratory
event, at least under the conditions of the performed tests. On the other hand, the decision
tree trained to detect events related to the Valsalva maneuver does make use of several features
derived from signals filtered with Filters 2 and 3, which suggests a greater influence of the
variations measured in the cardiac vibration components in determining the final result of the
detection of this decision tree, as it is evident that the Valsalva maneuver has a more significant
effect on the hemodynamic behavior of the cardiovascular system by increasing the pressure
inside the chest of the volunteer, as could also be observed in the results obtained with the first
group of tests.

One relevant detail regarding the structure and threshold values of the decision trees shown
in Figures 3.21 and 3.22 is the similarity at the base of both trees (considering the upper part
of the figures as the base of the decision tree), which shows the use of the feature F3 with
quite similar threshold values, suggesting that the decision tree trained for Valsalva detection
performs an evaluation of the state of respiration before evaluating the state of the cardiac
vibration measurements. This can also be interpreted to mean that the low-pass filter generates
features with global character appropriate for a first level of detection, while the high-pass
and band-pass filters generate features that highlight finer details of the signal that are more
appropriate for providing greater accuracy to the final detection. This behavior can be compared
to the operation of filters in a deep neural networks, which relate to global features being in the
shallower layers and focus on fine details being in the deeper layers.
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Real-time detection of the cardiorespiratory events using the MLC

Figures 3.23 and 3.24 show representative examples of the cardiac signals measured with the
acquisition system and the MLC output for the apnea and Valsalva configurations, respectively.
It is worth mentioning that for test signals it was considered to establish a 1-second delay for
the transition of states from one class to another, this consideration is due to the time it takes
the MLC to generate a new output, which is relative to the size (duration) of the samples
used for training (each sample corresponds to 1 second of signal measurement in the case of
the configuration implemented for this work). Additionally, the values assigned by the MLC
to each class in the apnea configuration are 0, 1 and 2 for Baseline, Apnea and Post-apnea,
respectively, and likewise such values in the Valsalva configuration are 0, 1 and 2 for Baseline,
Valsalva and Post-Valsalva, respectively. No processing was applied to the signals shown in these
figures to obtain a better representation of the data read by the MLC. It can be clearly seen
how the detection of the different classes is effective for both configurations, being evident a
greater confusion between the Baseline and Post-apnea/Valsalva classes, which was expected
since the decision trees are putting a great weight on the breathing state in order to classify a
sample between one class and another, so it is theoretically easier to differentiate the Apnea and
Valsalva classes from the other classes because during these stages the volunteer is holding the
breath.

Table 3.9 shows the results of the evaluation measures applied to the training and testing
stages of the MLC. A first evident detail in this table is that both decision trees show an overfit to
the training data, especially the decision tree trained for the Valsalva configuration that basically
obtains a perfect score. This overfitting to the training data can be explained by the design of
the developed tests, which was intended to preliminary evaluate the hypothesis that the MLC
embedded in the LSM6DSOX sensor can be used to detect different cardiorespiratory events, so
the implemented methods sought to be as simple as possible to achieve a validation of the stated
hypothesis without incurring in strategies that appeared to force a favorable result. In this way,
the use of methods usually used to improve the performance of machine learning algorithms,
such as data augmentation, previous feature selection, the use of optimization algorithms, among
others, was omitted. Nevertheless, this type of methods can be used in future works with the
purpose of developing a sufficiently robust configuration that allows to exploit the maximum
potential of the MLC.

Although the decision trees are over-fitted to the training data, the evaluation measures
obtained on the test data are sufficiently high to demonstrate the capability of the MLC to
perform tasks associated with the detection of cardiorespiratory events. The implementation
of multiple evaluation measures allows to see that the biggest challenge encountered for both
the apnea and Valsalva settings was the detection of the Post-apnea and Post-Valsalva classes,
which is mainly attributable to the high importance that the decision tree structure is giving
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Figure 3.23 – Representative example of test signals taken during apnea to evaluate the MLC output. The red
dots over the ECG plot correspond to detected R peaks. The yellow, blue and red backgrounds correspond to the
Baseline, Apnea and Post-apnea stages, respectively. The green and gray backgrounds in the MLC output plot
correspond to the correct and erroneous detected classes, respectively.

to the breathing state, making it difficult to differentiate these classes from the Baseline class
because the breathing state is quite similar between all of them. One reason why decision trees
show this tendency to rely on breathing-related features may also be due to the simplicity of
the statistical measures used to calculate the features, which can overshadow important details
contained in the CVS, leading to problems like, for example, the inability to differentiate the
specific information of S1 and S2 into the features content.
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Figure 3.24 – Representative example of test signals taken during Valsalva to evaluate the MLC output. The
red dots over the ECG plot correspond to detected R peaks. The yellow, blue and red backgrounds correspond to
the Baseline, Valsalva and Post-Valsalva stages, respectively. The green and gray backgrounds in the MLC output
plot correspond to the correct and erroneous detected classes, respectively.

3.5 Discussion

This chapter presented, to our knowledge, the first prototype system for cardiac signal acqui-
sition implementing a MEM sensor with an embedded MLC for the monitoring of hemodynamic
variations on-the-edge, by detecting acute cardiorespiratory events such as apnea and Valsalva
maneuver. The initial experiments were divided into two sets of tests. Results obtained from the
first set compared the measured CVS to a gold standard PCG signal, showing a high correlation
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Class
Evaluation measure

SEN SPC PRE G-mean
F1

score
ACC

A
pn

ea
ev

al
ua

ti
on

T
ra

in

Baseline 1.0000 0.8778 0.8911 0.9369 0.9424
0.9389Apnea 0.9333 1.0000 1.0000 0.9661 0.9655

Post-apnea 0.7667 1.0000 1.0000 0.8756 0.8679

T
es

t

Baseline 0.9111 0.6667 0.7321 0.7794 0.8119
0.7667Apnea 0.7500 0.9750 0.9375 0.8551 0.8333

Post-apnea 0.3667 0.9400 0.5500 0.5871 0.4400

V
al

sa
lv

a
ev

al
ua

ti
on

T
ra

in

Baseline 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000Valsalva 1.0000 1.0000 1.0000 1.0000 1.0000

Post-valsalva 1.0000 1.0000 1.0000 1.0000 1.0000

T
es

t

Baseline 0.8917 0.6833 0.8492 0.7806 0.8699
0.7556Valsalva 0.7000 0.9333 0.6774 0.8083 0.6885

Post-valsalva 0.2667 0.9000 0.3478 0.4899 0.3019

Table 3.9 – Performance of the MLC for classifying cardiorespiratory events.

between both types of signals in terms of both their timing and magnitude characteristics. The
second set of tests allowed us to evaluate the feasibility to use the MLC embedded into the MEM
sensor to detect the targeted cardiorespiratory events, even by using a basic configuration that
leaves open the possibility for a wide margin of improvement of the results in future approaches.

The prototype acquisition system was developed to measure reliable signals that accurately
represent the mechanical behavior of the heart. For this purpose, the analyses associated with
the morphology of the acquired CVS were focused on time and magnitude characteristics, since
these are the most commonly associated with different types of hemodynamic parameters in the
literature. It was possible to measure the signal-to-noise ratio of the main components of the
CVS. The obtained values were consistent with those obtained with the gastric implant studied
in the previous chapter and with those found in the literature [149, 150, 126]. In addition, the
implemented calibration process allowed for the measurement of the different signals with a
synchronization error lower than 2 ms, which is appropriate considering that in some clinical
applications variations lower than 3 ms in the systolic and diastolic periods can be neglected [24].
Furthermore, the values obtained for parameters t1 and t3 compared to the gold standard, which
allow calculation of systole and diastole duration, were mostly in agreement with typical error
values for the estimation of cardiac event intervals in the state of the art, which can vary between
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5 and 10 ms, even when using techniques such as deep learning [161, 121].

The preliminary experimental framework was designed with the purpose of performing mea-
surements during acute changes in the hemodynamic parameters of the volunteers, in such a
way that these changes would be measurable through the sensors of the system without needing
to involve invasive or risky interventions for the volunteers. Multiple works in the literature have
implemented experimental routines that include an apnea stage during the measurement of dif-
ferent types of CVS to evaluate the cardiorespiratory response of the patients [162, 71, 163], as
well as other works have studied such response by measuring CVS during the Valsalva maneu-
ver [15, 164]. These cardiorespiratory events are very useful in the experimental setting, since
they allow generating significant variations in the hemodynamic response in a safe way for the
patient. However, there are some disadvantages associated with this type of strategies, which
mainly correspond to the inclusion of noise in the target signals due to patient movements during
the execution of the routines, in addition to the fact that the changes to be studied occur in very
short periods of time, which sometimes makes the signals almost impossible to analyze even by
an expert human operator [165].

The main feature of the cardiac signal acquisition system described in this chapter is the use
of the MLC embedded in the LSM6DSOX sensor for automatic detection of cardiorespiratory
events, such as apnea and Valsalva maneuver, through the analysis of multimodal MCG signals.
The LSM6DSOX sensor has been previously used in the literature to leverage the functionali-
ties offered by its embedded MLC in human activity recognition (HAR) tasks, such as sitting,
standing or walking [166], which are in line with the activities proposed by the manufacturer as
it is a sensor intended for use in mobile devices such as smartphones and smartwatches [160].
Other studies have explored more complex applications such as the detection of falls occurred in
occupational risk environments, obtaining quite promising results in terms of sensitivity (0.97),
specificity (0.91) and accuracy (0.95) [167, 168]. Considering that this type of technology is fairly
new and has just begun to be extrapolated to other areas of research, this work represents, to
our knowledge, the first approach developed to evaluate the feasibility of using this technology
for the automatic detection of cardiorespiratory events by MCG measurement on-the-edge.

The main performance results obtained in this preliminary work with the MLC are real-time
detection of apnea with sensitivity, specificity and precision of 0.75, 0.98 and 0.94, respectively,
and real-time detection of Valsalva with sensitivity, specificity and precision of 0.70, 0.93 and
0.68, respectively. Other studies in the literature have achieved sensitivity of 0.58 and specificity
of 0.98 in the automatic detection of respiratory events (apnea and hypopnea) using a positive
airway pressure device [169], sensitivity of 0.86 and precision of 0.61 (0.89 and 0.59 in real time,
respectively) using a cardiorespiratory Holter device [170, 171], and sensitivity of 0.92 with pre-
cision of 0.91 using nasal pressure signals [172]. Additionally, other studies have employed more
advanced techniques involving the use of multimodal data from SCG, ECG and photoplethys-
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mography, achieving high sensitivity (100%) and specificity (95%) values [173], in addition to the
use of deep learning techniques, among other machine learning algorithms [174, 175]. However,
all these works propose approaches where signal processing and detection of cardiorespiratory
events is performed outside the sensor, requiring the use of an additional device with a micro-
processor or a micro-controller.

Obviously, we are not claiming a direct comparison of our results with these works of the
literature, since the preliminary work made in this chapter was mainly focused on a technological
feasibility evaluation. Many limitations remain in this work, that will be overcome in future
works of the team. Concerning the methodological and technical aspects, i) sensors may be still
optimized in terms of data acquisition and conditioning; ii) signal processing methods may be
embedded into the processing chain and iii) further developments on the machine learning phase,
such as data augmentation, feature selection or training regularization should be performed. Also
a number of unexploited features of the MLC in the LSM6DSOX sensor may be explored, for
instance, the possibility of configuring up to 8 different decision trees that can interact with each
other by means of a finite state machine [160]. Finally, a major limitation of this study is related
to the very limited set of data used for learning and testing. A new specific clinical protocol, in
line with our previous works in this field [23], will be performed in the future.

Despite the many advantages and opportunities offered by the cardiac signal acquisition
system presented in this work, it is also affected by some problems that can complicate its use in
certain types of applications. Beyond the problems associated with all systems of this type, such
as the presence of noise and disturbances in the measured signals, the main difficulty facing the
use of this system is that it only offers basic methods to address machine learning tasks. Although
decision trees have been shown to be quite effective for the solution of multiple classification
and detection problems, a large part of their potential lies on the features generated from the
analyzed data, which in this case, consist only of simple statistical features that may not be
sufficient to represent the relevant information in the signals regarding the task to be developed.
Even so, this system can be effectively used in tasks that do not require a high complexity in
the analysis of raw MCG signals, and it is expected that future advances in the development
of this type of sensors will allow the incorporation of more advanced models that can make use
of more complex and specific features. This is not so far from being achieved considering the
latest technological advances in microchip fabrication, such as the possibility of implementing
ultra-compact binary neural networks that require very low hardware capacity to operate [176],
the development of analog computational processing that allows optimizing the operations that
a microprocessor can perform [177], and the development of techniques that allow taking full
advantage of the benefits of deep neural networks at physical scale to improve their energy
efficiency and speed in real time applications [178].
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3.6 Conclusion

This chapter presented the design, construction, calibration and initial evaluation of a spe-
cialized prototype system for the acquisition of multimodal cardiac signals. This system has been
initially validated, with the capability to measure MCG, ECG and PCG signals synchronously
with a high signal-to-noise ratio. The main feature of the system is the integration of a MLC
embedded in the MCG sensor, which has demonstrated preliminary feasibility for recognizing
and classifying patterns associated with multiple cardiorespiratory events involving variations
in hemodynamic parameters, such as apnea and Valsalva maneuver. Although still preliminary,
the obtained results represent, to our knowledge, the first attempt to detect cardiorespiratory
events from CVS through an on-the-edge, machine learning inference model, embedded into
the sensor. The main challenge in the use of this system lies in the simplicity of the methods
offered by the MLC to perform automatic detection tasks, which offer ease of implementation
but sacrifice the possibility of addressing highly complex tasks with good accuracy. Future work
with the use of this system will be oriented to the acquisition of signals on a larger number of
subjects, especially including patients diagnosed with heart failure, to determine the usefulness
of the system in the development of future cardiac monitoring devices with the ability to early
and automatically detect cardiac decompensation events.
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Chapter 4

CONCLUSIONS AND PERSPECTIVES

The prognosis, symptoms and quality of life of patients with HF have notably improved
with the latest advances in pharmacological and medical device treatments, which should be ac-
companied by advances in hemodynamic monitoring with implantable and wearable devices for
regular optimization of treatments in a patient-specific manner, with the purpose of preventing
decompensation events that can lead to hospitalization. In this thesis, signal acquisition and
processing methods are proposed to make the best use of inertial units in the monitoring of pa-
tients with heart failure, by efficiently exploiting multimodal information from cardiac vibration
signals (CVS), which provide relevant information on cardiac mechanical activity in relation to
the study of hemodynamic parameters. The main contributions of the work developed in this
thesis can be summarized as follows:

— The presentation of initial preclinical evidence on the feasibility of chronic cardiovascular
monitoring from a minimally invasive implantable cardiac device placed in the gastric
fundus.

— The development of a specialized prototype system for the acquisition of multimodal car-
diac signals, which integrates a machine learning core (MLC) embedded in a MEM sensor
for on-the-edge recognition and classification of multiple cardiorespiratory events related
to hemodynamic variations.

— The proposition of an efficient and easy-to-implement algorithm based on context features
to obtain the final detection instants of the main components of CVS commonly related
to the main heart sounds.

4.1 Chronic cardiovascular monitoring through a minimally in-
vasive gastric implant

In Chapter 2, we performed the characterization of signals acquired in pre-clinical experi-
mentation using a gastric implant for evaluating the hypothesis that CVS can be captured from
a small monitoring implant positioned at the gastric fundus, since this anatomical site seems
a good candidate for long-term cardiovascular monitoring because it is physically close to the
heart. Such implant is capable of measuring electrophysiological and 3D accelerometer cardiac
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data and could be safely administered using minimally invasive implantation techniques such as
gastroscopy, improving patient comfort and adherence to the treatments involving implantable
devices. Three different versions of the implant were used to perform the proposed experiments,
which were focused on the comparison of the signals acquired from the gastric fundus with ref-
erence data acquired through standard thoracic site sensors, and the assessing of the feasibility
to estimate longitudinal cardiovascular markers from the gastric site.

The obtained results showed that time variation of markers such as heart rate and heart sound
duration and amplitude measured with the implant were highly correlated with the reference
signals, which is of great relevance for the intended utility of the implant in long-term monitoring
of chronic HF. Additionally, when SNR values in the accelerometry signals are higher than 6 dB
or heart sound contrast is higher than 2, the S1 and S2 components can be correctly segmented
and hemodynamic markers can be estimated from these data, showing preclinical evidence on the
feasibility of chronic cardiovascular monitoring in HF patients by using this implant. However,
the main challenge for the use of the implant remains in optimizing the signal-to-noise ratio, in
particular for handling some noise sources that are specific to the gastric acquisition site and
can induce disturbances mainly in the measured CVS.

These results directly address the achievement of the first specific objective of this thesis.
Considering that the satisfactory estimation of hemodynamic parameters could only become
effective during specific periods of time that depend on the acquisition conditions, ongoing work
should aim to the proposition of adaptive methods that will trigger data acquisition at the
implant when specific noise level criteria are met and in further preclinical evaluation.

4.2 Cardiorespiratory events detection on-the-edge using a mul-
timodal cardiac system

In Chapter 3, a prototype acquisition system to synchronously measure mechanocardio-
graphic (MCG), electrocardiographic (ECG) and phonocardiographic (PCG) signals in a nonin-
vasive manner was developed. Such system incorporates the measurement of CVS through the
use of a cutting-edge, ultra-low-power MEM sensor, which has the special feature of integrating
an MLC that allows the deployment of machine learning applications on-the-edge. Such a feature
raises the hypothesis that this type of technology could be exploited for the future development
of implantable or wearable devices for monitoring cardiac patients, with the advantage of en-
abling the use of machine learning on-the-edge to improve the efficiency of such devices in terms
of real-time processing, speed, memory, size, power consumption, and even accuracy. In order
to perform an initial evaluation of the system in light of such hypothesis, a first group of tests
was performed to validate the correlation between the MCG and PCG signals, taking the latter
as the gold standard reference, and a second group of tests were developed for the purpose of
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conducting a preliminary evaluation of the hypothesis that the MLC embedded in the MEM
sensor can be used to automatically detect cardiorespiratory events related to hemodynamic
variations.

The obtained results showed satisfactory levels of correlation between the measured CVS
and the PCG reference on time and magnitude characteristics, which are the most commonly
associated with different types of hemodynamic parameters in the literature. In addition, a syn-
chronization error lower than 2 ms between the different sensors, reflected the benefits of the
particular effort given to the correct temporal synchronization of the signals, acquired through
different sensors, with different protocols and heterogeneous resolutions. Furthermore, the exper-
imental framework designed to performing measurements during acute changes in hemodynamic
parameters allowed to obtain appropriate performance results, with real-time detection of ap-
nea with sensitivity, specificity and precision of 0.75, 0.98 and 0.94, respectively, and real-time
detection of Valsalva maneuver with sensitivity, specificity and precision of 0.70, 0.93 and 0.68,
respectively. These results demonstrate preliminary feasibility for recognizing and classifying
patterns associated with multiple cardiorespiratory events involving variations in hemodynamic
parameters on-the-edge.

These results directly address the achievement of the third specific objective of this thesis,
and pose a new perspective where the benefits offered by the use of the MLC for processing and
analysis of CVS on-the-edge, could be leveraged to address the proposed future work with the
use of the gastric implant described above, where the processing of the signals acquired by the
implant could be performed during specific noise conditions, which would be easily detectable
by the MLC. The main challenge in the use of this system lies in the simplicity of the methods
offered by the MLC to perform automatic detection tasks, which offer ease of implementation
but sacrifice the possibility of addressing highly complex tasks with good accuracy. Future work
with the use of this system will be oriented to the acquisition of signals on a larger number of
subjects, especially including patients diagnosed with heart failure, to determine the usefulness
of the system in the development of future cardiac monitoring devices with the ability to early
and automatically detect cardiac decompensation events.

4.3 Context-based algorithm for efficiently detecting the main
components of CVS

An efficient and easy-to-implement algorithm based on context features was proposed in
Chapter 2 to obtain the final detection instants for S1 and S2 from the fusion of multiple candi-
date detections of the main CVS components measured with a 3D accelerometer (Algorithm 1).
This algorithm has the additional advantage of allowing the easy incorporation of other CVS
sources such as PCG and GCG, This was evidenced by the fact that it was also used to process
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the signals acquired with the system developed in Chapter 3. The development of this algorithm
directly address the achievement of the second specific objective of this thesis, reasserting the
cross-cutting scope of the entire content of this thesis in the perspective of leveraging CVS for the
development of methods and tools that can be used in the long-term cardiovascular monitoring
of patients diagnosed with chronic heart disease such as HF.
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Appendix A

SECOND-DAY BASELINE SIGNALS
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Figure A.1 – Representative example of signals taken in volunteer 1 on the second day. The vertical lines
represent the detection times of the first and second heart sounds in red and black, respectively. The dotted lines
represent detection using the MCG, while the dashed lines represent detection using the PCG.
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Figure A.2 – Representative example of signals taken in volunteer 2 on the second day. The vertical lines
represent the detection times of the first and second heart sounds in red and black, respectively. The dotted lines
represent detection using the MCG, while the dashed lines represent detection using the PCG.
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Appendix B

TIME-PROFILES FOR VOLUNTEER 2
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Figure B.1 – Representative example of evolution over time of heart sounds duration measured on volunteer
2 during apnea. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the reference
PCG signals. The gray, green and white backgrounds correspond to the baseline, apnea and recovery stages,
respectively.
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Figure B.2 – Representative example of evolution over time of heart sounds duration measured on volunteer
2 during Valsalva. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the reference
PCG signals. The gray, green and white backgrounds correspond to the baseline, valsalva and recovery stages,
respectively.
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(a) Time-profile of S1 peak-to-peak value
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(b) Time-profile of S2 peak-to-peak value

Figure B.3 – Representative example of evolution over time of heart sounds peak-to-peak value measured on
volunteer 2 during apnea. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the
reference PCG signals. The gray, green and white backgrounds correspond to the baseline, apnea and recovery
stages, respectively.
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Figure B.4 – Representative example of evolution over time of heart sounds peak-to-peak value measured on
volunteer 2 during Valsalva. Dash-dotted lines correspond to the MCG signals and solid lines correspond to the
reference PCG signals. The gray, green and white backgrounds correspond to the baseline, valsalva and recovery
stages, respectively.
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Titre : Analyse des signaux de vibrations cardiaques thoraciques et intra-gastriques pour le suivi de
l’insuffisance cardiaque

Mot clés : Signaux de vibrations cardiaques, Mécanocardiogramme (MCG), Dispositifs implantables,

Insuffisance cardiaque, Apprentissage automatique, Traitement des signaux biomédicaux

Résumé : Le développement d’un système de
surveillance des vibrations cardiaques offrant une
gestion intégrée des paramètres multimodaux
avec un dispositif peu invasif est actuellement né-
cessaire dans le domaine des maladies cardiovas-
culaires chroniques, afin de déclencher une atten-
tion médicale précoce et adéquate contre les évé-
nements de décompensation et de réduire les hos-
pitalisations. L’objectif principal de cette thèse est
de proposer des méthodes d’acquisition et de trai-
tement du signal afin d’utiliser au mieux les unités
inertielles dans le suivi des patients atteints d’in-
suffisance cardiaque (HF), en exploitant efficace-
ment les informations multimodales des signaux
de vibration cardiaque (CVS). Deux nouvelles ap-
proches sont proposées dans ce contexte : 1)
l’évaluation de la faisabilité de l’acquisition des
CVS longitudinaux en utilisant un implant intra-
gastrique dans une configuration d’expérimenta-
tion animale préclinique, et 2) le développement
d’un système d’acquisition de signaux cardiaques

afin d’évaluer de manière préliminaire la faisa-
bilité de la détection automatique d’événements
cardiorespiratoires on-the-edge à l’aide d’un cap-
teur MEMS avec un noyau d’apprentissage au-
tomatique intégré (MLC). Les résultats obtenus
montrent les premières preuves précliniques de la
faisabilité d’une surveillance cardiovasculaire chro-
nique à partir d’un dispositif cardiaque implantable
peu invasif placé dans le fond de l’estomac, ainsi
que la faisabilité préliminaire de l’utilisation d’un
MLC intégré dans un capteur MEMS pour la dé-
tection on-the-edge de plusieurs événements car-
diorespiratoires liés à des variations hémodyna-
miques, comme l’apnée et la manœuvre de Val-
salva. La nature transversale de l’ensemble du
contenu de cette thèse ouvre de nouvelles pers-
pectives dans l’utilisation des CVS pour le dévelop-
pement de méthodes et d’outils pouvant être uti-
lisés dans la surveillance cardiovasculaire à long
terme de patients diagnostiqués avec une maladie
cardiaque chronique telle que l’HF.
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Abstract: The development of a remote cardiac
vibrations monitoring system offering integrated
management of multimodal parameters with a min-
imally invasive device is currently needed in the
chronic cardiovascular diseases domain, aiming
to trigger early and adequate medical attention
against the decompensation events and to reduce
hospitalization. The main objective of this thesis is
to propose signal acquisition and processing meth-
ods to make the best use of inertial units in the
monitoring of patients with heart failure (HF), by
efficiently exploiting multimodal information from
cardiac vibration signals (CVS). Two novel ap-
proaches are proposed in this context: 1) the eval-
uation of the feasibility of acquiring longitudinal
CVS using an intra-gastric implant in a preclini-
cal animal experimentation setup, and 2) the de-
velopment of a cardiac signal acquisition system to

preliminarily assess the feasibility of automatically
detecting cardiorespiratory events on-the-edge us-
ing a MEMS sensor with an embedded machine
learning core (MLC). The obtained results show ini-
tial preclinical evidence on the feasibility of chronic
cardiovascular monitoring from a minimally inva-
sive implantable cardiac device placed in the gas-
tric fundus, and preliminary feasibility for using a
MLC embedded in a MEM sensor for on-the-edge
detection of multiple cardiorespiratory events re-
lated to hemodynamic variations, such as apnea
and Valsalva maneuver. The cross-cutting nature
of the entire content of this thesis opens up new
perspectives in the use of CVS for the develop-
ment of methods and tools that can be used in the
long-term cardiovascular monitoring of patients di-
agnosed with chronic heart disease such as HF.
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