
HAL Id: tel-04189422
https://theses.hal.science/tel-04189422v1

Submitted on 28 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the scalability of automatic precision
tuning

Van-Phu Ha

To cite this version:
Van-Phu Ha. Contributions to the scalability of automatic precision tuning. Other [cs.OH]. Université
de Rennes, 2023. English. �NNT : 2023URENS007�. �tel-04189422�

https://theses.hal.science/tel-04189422v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
MAthématiques, Télécommunications, Informatique,
Signal, Systèmes, Èlectronique
Spécialité : Informatique

Par

Van-Phu HA

Contributions to the Scalability of Automatic Precision Tuning

Thèse présentée et soutenue à IRISA/Inria, le 10/03/2023
Unité de recherche : IRISA/Inria, Rennes
Thèse No :

Rapporteurs avant soutenance :

Florent de Dinechin Professeur, INSA Lyon
Gabriel Caffarena Professeur, Universidad CEU San Pablo, Madrid

Composition du Jury :

Président : Daniel Ménard Professeur, INSA Rennes, IETR
Examinateurs : Florent de Dinechin Professeur, INSA Lyon

Gabriel Caffarena Professeur, Universidad CEU San Pablo, Madrid
Fabienne Jézéquel Maître de Conférences HDR, Sorbonne Université, LIP6, Paris
Daniel Ménard Professeur, INSA Rennes, IETR

Dir. de thèse : Olivier Sentieys Professeur, Université de Rennes, Inria, IRISA

ACKNOWLEDGEMENT

In the following lines, I would like to take the opportunity to express my gratitude to every-
one who has given their support to me over this research period.

To begin, I would want to express my appreciation to both of my advisers, Prof. Olivier
Sentieys and Dr. Tomofumi Yuki, for all of the assistance and support they have consistently
provided. In addition to all of the technical advice they have given me, they have consistently
kept me inspired and pushed me to push myself and aim for the greatest possible objectives.

I would like to give warm thanks for Prof. Daniel Ménard and Dr. François Charot in the
CSI jury. They have been monitoring my research every year and giving me sincere advice that
has kept me on the right track in my research and opened up new research directions.

My thanks also go to all the members of the jury, namely Prof. Florent de Dinechin, Prof.
Gabriel Caffarena, Mrs. Fabienne Jézéquel, Prof. Daniel Ménard, for giving me the privilege of
being a part of the thesis defense and evaluating my work.

My sincere thanks also go to Dr. Hoang Thanh Tung, who provided me with frequent con-
versation on issues relevant to both study and technology. He has been of great support to me
by providing me with astute advice and the best possible direction with regard to new research
topics.

I would like to express my gratitude to Silviu-Ioan Filip, who took the time to talk to me
about regression technique and was a great assistance to me. Thanks to Nadia Derouault for
her administrative support and to Ali Hassan El Moussawi for his support with Gecos tools.

The big thanks go to my colleagues and friends in TARAN team (formerly CAIRN team) at
IRISA/Inria Laboratory. They all made the time spent at work enjoyable, with fun or serious
conversations, technical or not.

In addition, I feel obligated to acknowledge my close friends Nguyen Khanh Linh, Cong Minh
Thanh, and Nguyen Thi Thanh Tam for the valuable time they spent supporting me.

3

For my family, I would like to express my gratitude to my parents, Ha Hong Thanh and
Bui Thi Khe, and the rest of my family for their unwavering love and support throughout my
life and academic pursuits. Last but not least, I want to thank my wife, Vu Thi Van Anh, who
always encourages me and continuously fills my life with love and happiness.

4

TABLE OF CONTENTS

Résumé en français 8

List of acronyms 13

List of figures 16

List of tables 17

1 Introduction 19
1.1 Energy-Efficient Computing in Post Moore’s Law 19
1.2 Objective of Thesis - Application-Level Tuning of Accuracy 25
1.3 Thesis Organization . 25
Bibliography . 27

2 Theoretical Background and Related Work 31
2.1 Approximate Computing . 31

2.1.1 Approximate Computing for Error-Resilient Applications 32
2.1.2 Cross-Layer Approximate Computing Techniques 34

Approximate Computing at the Software Level 34
Approximate Computing at the Architecture Level 35
Approximate Computing at the Hardware Level 36

2.2 Binary Arithmetic Number Representations . 37
2.2.1 Floating-Point Arithmetic . 39

Floating-Point Exceptions . 40
Rounding modes . 41

2.2.2 Fixed-Point Arithmetic . 41
2.3 Fixed-Point Conversion Process . 42

2.3.1 Integer Word Length (IWL) Selection . 45
Interval-Based Approaches . 46
Statistical Approaches . 47
Stochastic Approaches . 47

2.3.2 Fractional Word Length (FWL) Selection 48
Cost Evaluation . 48

5

TABLE OF CONTENTS

Accuracy Evaluation . 48
Optimization Approaches . 50

Brute-force with upper and lower bounds. 51
Heuristics. 51
Min+1 bit. 51
Max-1 bit. 52
Hybrid algorithms. 52
Divide-and-conquer approaches. 53
Analytical approaches. 54

2.4 Conclusions . 55
Bibliography . 56

3 Towards Generic and Scalable Word-Length Optimization 67
3.1 Introduction . 67
3.2 Background and related work . 68

3.2.1 Word-Length Optimization . 68
3.2.2 Noise Budgeting . 69

3.3 Approach Overview . 70
3.4 Model Construction . 73

3.4.1 Data Points for Cost Function (Ĉ) . 73
3.4.2 Data Points for Quality Function (λ̂) . 75
3.4.3 Polynomial Fitting . 75

3.5 Evaluation . 76
3.5.1 Experimental Setup . 76
3.5.2 Image Signal Processor . 77
3.5.3 Stereo Matching . 78
3.5.4 Empirically Constructed Models . 79
3.5.5 Exploration Time and Quality of Solution 79
3.5.6 FIR and IIR Filters . 84

3.6 Conclusion . 85
Bibliography . 86

4 Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning 89
4.1 Introduction . 89
4.2 Background and Related Work . 91

4.2.1 Word-Length Optimization and Classical Approaches 91
4.2.2 Bayesian Optimization . 92

4.3 Motivations . 93

6

TABLE OF CONTENTS

4.3.1 Performance Analysis: TPE vs. Tabu . 93
4.3.2 Initial Combinations of TPE and Tabu . 95

4.4 Proposed Hybrid Approach . 97
4.4.1 Loss Function . 97
4.4.2 Transition Point for Hybrid Approach . 97

4.5 Evaluation . 100
4.5.1 Experiment setup . 100
4.5.2 Performance Evaluation . 101

4.6 Conclusion . 103
Bibliography . 104

5 Resource-Constrained Word Length Optimization - A New Problem 107
5.1 Introduction . 107
5.2 Related Work . 109
5.3 Resource-Constrained WLO . 110

5.3.1 Room for Accuracy Improvement Given a Cost Budget 111
5.3.2 Resource-Constrained WLO as a New Problem 112
5.3.3 Limitations of Classical WLO Methods 113

5.4 Solving Resource-Constrained WLO . 113
5.4.1 Loss Function . 115
5.4.2 TPE Algorithm . 115

5.5 Evaluation . 116
5.5.1 Experiment setup . 116
5.5.2 Performance Evaluation . 118

5.6 Conclusion . 122
Bibliography . 122

6 Conclusions and Perspectives 125

List of publications 128

Appendix A: TypeX - An Automatic Float to Fix Conversion toolbox 131

Appendix B: An Extension of TypEx in Python 148

7

RÉSUMÉ EN FRANÇAIS

La consommation d’énergie est l’un des problèmes majeurs de l’informatique aujourd’hui, du
calcul haute performance aux systèmes embarqués. Ces dernières années, l’approximation des
calculs a reçu un regain d’intérêt pour améliorer l’efficacité énergétique. De nombreuses appli-
cations n’exigent pas une précision élevée, et les techniques de calcul approximatif augmentent
l’espace de conception en fournissant de nombreux compromis entre la précision, les coûts et
les performances. Cette thèse se concentre sur le développement de méthodes pour l’exploration
systématique de cet espace de conception, y compris la modélisation de la performance et de la
précision et l’automatisation de la conception. Nous utilisons la virgule fixe pour la représen-
tation des données des données et nous optimisons la longueur du mot de chaque données et
calcul pour chercher un bon équilibre entre le coût et la précision. Ce problème est appelé Word
length Optimization (WLO) ou réglage automatique de la précision. Cette thèse contribue à
trois directions de recherche. Premièrement, une méthode est proposée pour améliorer le pas-
sage à l’échelle du WLO pour les grandes applications. Pour réduire la complexité exponentielle
de la nature de WLO, l’application d’entrée est décomposée en noyaux qui sont ensuite résolus
indépendamment. Pour allouer les budgets de réduction de précision à chaque noyau, l’idée prin-
cipale est de caractériser l’impact de l’approximation de chaque noyau sur la précision et le coût
par simulation et régression pour construire les modèles empiriques. La deuxième direction de
recherche est un algorithme hybride combinant l’optimisation Bayésienne (BO) et une recherche
locale rapide pour accélérer la procédure WLO. Un mécanisme efficace est proposé pour obtenir
de bons modèles en peu de temps. La dernière contribution ouvre une nouvelle voie de recherche
sur le WLO avec contraintes de ressources. Les approches actuelles résolvent principalement les
problèmes de WLO avec une contrainte de qualité (précision). Dans cette étude, un algorithme
basé sur l’optimisation bayésienne a été proposé pour maximiser la qualité des calculs sous con-
trainte d’un budget de coût du matériel.

Motivations

Alors que nous entrons dans l’ère du "dark silicon", où les avantages de la réduction de la
taille des transistors sont limités par la puissance consommée, les scientifiques et les fabricants
de puces se trouvent au défi de trouver des solutions alternatives efficaces. Pour l’instant, nous
devons concentrer nos efforts sur le développement de technologies à haut rendement énergétique

8

Résumé en français

qui augmentent considérablement les ratios énergie-performance des microprocesseurs tout en
réduisant leur surface et leur consommation d’énergie. La demande d’architectures informatiques
et d’approches alternatives qui consomment moins d’énergie et génèrent moins de chaleur pousse
à réexaminer les microprocesseurs traditionnels.

Ces dernières années, parallèlement aux progrès de l’architecture des calculateurs informa-
tiques, comme les processeurs multi-cœurs ou les systèmes hétérogènes, les informaticiens et
les architectes de machines se sont particulièrement intéressés à la modification des méthodes
de calcul pour améliorer encore l’efficacité énergétique. Le calcul approximatif (AxC) apparaît
comme une solution potentielle pour améliorer les performances et la consommation d’énergie
des systèmes embarqués. Le calcul approximatif vise à fournir de bonnes solutions à des prob-
lèmes difficiles tout en utilisant beaucoup moins de ressources de traitement que les solutions
plus précises. Par exemple, au lieu de chercher la valeur qui fournit le résultat le plus précis,
les algorithmes approximatifs prennent une solution acceptable et garantissent un certain seuil
d’erreur. Fondamentalement, AxC est conçu pour relaxer les calculs parfaitement précis à un
niveau d’inexactitude acceptable pour gagner en performance et/ou réduire la consommation
d’énergie. En effet, de nombreux systèmes embarqués ne nécessitent pas une précision (ou ex-
actitude des calculs) élevée, et les concepteurs de matériel recherchent souvent un bon équilibre
entre précision, vitesse, énergie et coût en surface. Diverses techniques de calcul approximatif
élargissent l’espace de conception en fournissant un autre ensemble de points dans cet espace,
permettant de trouver des compromis performance/précision. Aujourd’hui, la communauté des
chercheurs et l’industrie déploient des efforts intensifs pour mettre en œuvre les méthodes de
calcul approximatif proposées dans des systèmes commerciaux, tels que les plateformes FPGA,
ASIC et GPU, afin de réduire la consommation d’énergie et d’améliorer les performances.

L’une des techniques les plus efficaces de l’AxC consiste à réduire la précision de la représen-
tation arithmétique. Les représentations typiques à virgule flottante, telles que float (32 bits)
et double (64 bits), peuvent être remplacées par des formats de données moins précis, tels
que l’arithmétique à virgule fixe. De nombreuses techniques de traitement numérique du signal
(DSP) utilisant une arithmétique à précision réduite permettent d’augmenter considérablement
l’efficacité énergétique en diminuant les coûts de calcul et le stockage des données, tout en
maintenant la précision requise du modèle.

Les systèmes embarqués sont plus performants et moins coûteux lorsqu’ils utilisent une arith-
métique à précision réduite, mais il n’est pas facile de trouver un bon équilibre entre la perte
de précision et l’amélioration de l’efficacité énergétique. L’état actuel de ces techniques consiste
à concevoir des moyens d’automatiser l’optimisation de le nombre de bits (aussi longueur des
mots) d’une manière qui tire le meilleur parti des avantages de la réduction de la précision des

9

Résumé en français

opérateurs. Ce processus est appelé optimisation de la longueur des mots (WLO pour Word
Length Optimization) ou réglage automatique de la précision (Automatic Precision Tuning). Ce
processus explore les meilleures longueurs de mots pour les variables d’une application don-
née afin de réduire le coût d’implémentation (consommation d’énergie et/ou surface), tout en
maintenant la précision à un niveau acceptable malgré la quantification des données. Pour les
applications réelles, où de nombreuses variables sont impliquées, cette procédure est confrontée
à un problème de passage à l’échelle en raison de l’augmentation exponentielle de la complexité.
En réalité, on estime que 25% à 50% du travail de conception est encore consacré à l’obtention
d’un choix optimisé de configurations de longueur de mots en virgule fixe.

Objectifs et contributions

Dans cette thèse, nous nous concentrons sur la modélisation et l’utilisation des approches
AxC au niveau logiciel de conception. Cette thèse étudie de nouvelles méthodologies pour
l’exploration systématique de l’espace de conception, y compris la modélisation du coût d’implém-
entation, qualité de service (QoS) et l’automatisation de la conception. Cela nous permet
d’accélérer la sélection de la configuration optimale ou quasi-optimale qui (1) réduit le coût
(surface et/ou consommation d’énergie) tout en répondant à la précision nécessaire à la sortie
de l’application, ou (2) optimise la précision à la sortie de l’application dans un budget de coût.
Cette thèse examine la question du WLO sous plusieurs angles, tels que le passage à l’échelle
pour des applications larges et l’optimisation sous contrainte de ressources. Dans cette disserta-
tion, trois contributions principales ont été proposées.

Dans la première contribution, nous proposons une approche pour atteindre une procédure
d’optimisation de la longueur des mots (WLO) qui est plus évolutive pour les grands systèmes, et
qui utilise des critères de qualité sophistiqués comme la similarité structurelle (SSIM) en traite-
ment d’images. Pour éviter une croissance exponentielle et incontrôlée du temps d’exploration,
cette méthode divise l’application d’entrée en noyaux (kernels) plus petits. La question fon-
damentale qui est étudiée dans cette recherche est le problème de l’allocation des budgets de
bruit dus aux calculs aux noyaux individuels qui constituent l’application. Pour ce faire, il est
nécessaire de modéliser les interactions entre les différents noyaux. L’idée centrale est d’utiliser
la simulation et la régression pour évaluer l’effet de l’approximation de chaque noyau sur la
précision ou le coût au niveau global. Notre méthode permet aux techniques de WLO de passer
à l’échelle et de trouver de meilleures siolutions pour des applications complexes telles qu’un
pipeline de traitement de d’images et la vision stéréo.

La deuxième contribution vise à accélérer le processus WLO et nous proposons une approche

10

Résumé en français

hybride qui combine l’optimisation Bayésienne (BO) avec une recherche locale rapide. Les résul-
tats expérimentaux de ce chapitre fournissent la première preuve que cette combinaison réduit
le temps d’exploration. Nous proposons ensuite une nouvelle technique qui permet de trouver
automatiquement un point de transition approprié entre les deux algorithmes. Afin d’identifier le
moment où il faut passer de la BO à la recherche locale, nous effectuons une analyse statistique
de la convergence des modèles probabilistes créés pendant l’optimisation Bayésienne, puis nous
formulons une condition d’arrêt. Les résultats expérimentaux montrent que, pour les grands
benchmarks utilisés, notre technique peut faire gagner jusqu’à 80% de temps d’exploration.

La dernière contribution s’est concentrée sur un autre aspect de l’optimisation de la longueur
des mots qui est affecté par les limitations matérielles. Il est important de noter que la majorité
des méthodes de pointe résolvent le problème de WLO sous contrainte de précision. Aucune
étude n’a été menée sur la manière d’améliorer la qualité de service (i.e., ici la précision des
calculs) tout en maintenant les coûts à un niveau bas. Pour les équipements électroniques à
faible puissance ou à faible coût, il s’agit d’un obstacle majeur à l’amélioration des performances
des applications. Dans un premier temps, nous démontrons l’importance du problème WLO
sous contraintes de ressources, en nous concentrant sur les systèmes à consommation énergé-
tique contrainte. Nous soulignons ensuite la difficulté de choisir un état initial approprié pour
les problèmes WLO, inhérente aux méthodes traditionnelles comme la recherche Tabu. Nous
proposons d’utiliser une méthode BO/TPE qui incorpore une fonction de perte ajustable. Nos
résultats expérimentaux démontrent que notre technique est plus performante que les méthodes
de l’état de l’art, WLO uniforme (UWLO) et recherche Tabu. Nous constatons également que
la qualité de la solution trouvée par la recherche Tabu dépend fortement du contexte. Notre
méthode est la première à s’attaquer au problème du WLO sous contrainte de ressources, et
elle sert également de tremplin pour des travaux futurs qui pourraient améliorer le passage à
l’échelle et l’optimalité du problème.

Contenu du manuscrit

La thèse est organisée en six chapitres. L’histoire des ordinateurs est présentée dans le
chapitre 1, depuis les premiers jours de la technologie SIlicium jusqu’aux alternatives de la péri-
ode du Dark Silicon. Dans ce chapitre, nous abordons le calcul approximatif, une des technologies
émergente de l’ère post loi de Moore. La question de l’optimisation de la longueur des mots est
le principal objectif de recherche de cette thèse parmi les méthodologies de calcul approximatif.
Le chapitre 2 présente les fondements de l’arithmétique à virgule fixe et à virgule flottante, ainsi
que le contexte du problème de l’optimisation de la longueur des mots, suivi d’une étude des

11

Résumé en français

approches récentes utilisées pour résoudre ce problème de WLO. Le chapitre 3 présente notre
première contribution visant à améliorer le passage à l’échelle des méthodes d’optimisation WLO
pour les larges applications qui utilisent de plus des métriques de qualité complexes, telles que
la similarité structurelle (SSIM) en traitement d’images. Le chapitre 4 présente notre deuxième
contribution en proposant un algorithme hybride combinant l’optimisation Bayésienne (BO)
et une recherche locale rapide pour accélérer la procédure WLO. Le chapitre 5 présente notre
troisième contribution qui se concentre sur un autre aspect de l’optimisation de la longueur des
mots lorsque des contraintes de ressources matérielles sont considérées. Il s’agit d’un problème
critique pour améliorer les performances des applications sur les systèmes électroniques et in-
formatiques dont les budgets d’énergie ou de coût sont limités. Nous proposons un algorithme
basé sur BO pour résoudre ce problème. Le chapitre 6 résume les principaux résultats de cette
thèse et discute des pistes d’études potentielles pour des travaux ultérieurs.

12

LIST OF ACRONYMS

AA Affine arithmetic
AI Artificial intelligence
ASIC Application-specific integrated circuit
AxC Approximate Computing
BER Bit Error Rate
BO Bayesian optimization
CPU Central processing unit
DNN Deep neural network
DSP Digital signal processing
FPGA Field-programmable gate array
FWL Fractional Word Length
GP Gaussian Processes
GPU Graphics processing unit
GWLO Global Word Length Optimization
IC Integrated Circuit
IoT Internet of Things
ISP Image Signal Processor
IT Information Technology
IWL Integer Word Length
LSB Least significant bit
LTI Linear time-invariant system
MC Monte-Carlo
MOSFET Metal–oxide–semiconductor field-effect transistor
MSB Most significant bit
MSE Mean Square Error
MWLC Minimum word length configuration
MWLO Multiple Word-Length Optimization
NPU Neural processing unit
ODG Objective Degradation Grade
PDF Probability density functions
PSNR Peak signal-to-noise ratio

13

List of acronyms

QoS Quality of service
RAM Random-access memory
SM Stereo Matching
SoC System on Chip
SQNR Signal-to-Quantization-Noise Ratio
SRAM Static random-access memory
SSIM Structural Similarity
TPE Tree-structured Parzen Estimator
UWLO Uniform Word-Length Optimization
WL Word Length
WLO Word Length Optimization

14

LIST OF FIGURES

1.1 50 years of microprocessor trend data . 21
1.2 An example of Approximate Computing . 23
1.3 Cost comparison of various operations . 24

2.1 Design space with three variables (accuracy, energy consumption and performance) 33
2.2 A number represented in the floating-point format 39
2.3 A number represented in the fixed-point format 42
2.4 Floating-point to fixed-point conversion process 44
2.5 Techniques for assessing dynamic range are categorized into groups 45

3.1 All explored solutions of three WLO runs for Demosaic 74
3.2 Image Processing Pipeline used in Smart Phone Camera 77
3.3 Stereo Matching example . 78
3.4 Computing blocks (kernels) of Stereo Matching. 80
3.5 Two numerical solutions . 81
3.6 Two numerical solutions . 82
3.7 Two numerical solutions . 83
3.8 Comparison of exploration time for ISP and Stereo Matching (SM). 84
3.9 The quality of solutions by our approach compared to the best combination of

the configurations used for accuracy model construction. These results are for ISP
with 4 kernels. 85

3.10 Comparison of exploration time for filter applications. 86

4.1 Search process of Random search, Tabu and TPE. 94
4.2 Manually selected stopping points on the best solution obtained so far by TPE. . 95
4.3 A comparison in energy cost (top), total exploration time (middle) and separated

exploration time (bottom) of Tabu and different combinations between TPE and
Tabu given the selected transition points. 96

4.4 Stopping point for IIR, quality target PSNR = 40dB. 99
4.5 Energy cost of solutions (top) and exploration time (bottom) normalized to

Tabu[bias . 102

15

LIST OF FIGURES

5.1 105 random solutions as a representative subset of all possible solutions, for the
FIR filter benchmark. The red line represents an energy budget of 0.0075 nJ . . . 111

5.2 The classical WLO problem in the context of the cost-constrained WLO problem. 112
5.3 Exploration trajectories of Tabu search method with different starting points . . 114
5.4 Performance comparison between our approach and UWLO in terms of quality

of results for different benchmarks. 119
5.5 Comparison of the normalized quality of solutions obtained by Tabu Search and

our approach for different benchmarks. 120
5.6 The search direction of our approach compared with the Random Search 121

A.1 TypEx: a tool for type exploration and automatic floating-point to fixed-point
conversion . 131

A.2 TypEx Tool Screenshot . 133
A.3 Example of histograms resulting from profiling of data values during exploration 134
A.4 General principle of the exploration algorithm . 141
A.5 Example of pruning on a non-local mean (NLM) denoising kernel with two accu-

racy metrics (PSNR and SSIM) and nine variables 142
A.6 Example of solutions explored by the Tabu search algorithm 143
A.7 Energy model of multiplier for an FPGA target (Xilinx Virtex6, multipliers im-

plemented in DSP blocks) as a function of input wordlength 145
A.8 Area model of an adder for a 28nm ASIC technology as a function of input

wordlength . 145
B.1 TypEx on Python repository . 149
B.2 Exploration visualization . 153

16

LIST OF TABLES

2.1 IEEE 754 floating-point representation types . 40

3.1 Comparison of solutions for ISP and Stereo Matching (SM). 84
3.2 Comparison of solutions for FIR and IIR. 85

5.1 The benchmarks for the evaluation . 118
5.2 Quality improvement of our solutions in percentage compared to UWLO solutions.

Given value for each benchmark is the average of those obtained by different values
of α. 118

5.3 Average quality improvement of the solutions provided by our approach over those
obtained by Tabu Search (TS). The results are normalized with the range in
Figure 5.5. 120

A.1 A part of data for the cost model. The data contains the synthesized result of
different adders and multipliers (different input/output wordlengths). 144

17

Chapter 1

INTRODUCTION

1.1 Energy-Efficient Computing in Post Moore’s Law

Information technology is linked to the development of modern society. Electronic comput-
ers are now prevalent in many industries, including business, education, entertainment, health,
agriculture, and manufacturing industries, contributing to the overall growth in productivity
and income. Continued growth in computer performance is the main factor driving innovation
in IT. However, this growth is facing difficulties due to a lack of energy. Energy consumption
is one of the major issues in computing today, shared by all domains in computer science, from
high-performance computing to embedded systems. In particular, we are entering into the dark
silicon era, where the benefits of transistor scaling are diminished by the power limitation wall,
while the needs of improving the computational performance to address many problems in big
data, IoT, Artificial Intelligence, and High Power Computing are a must. This situation poses
challenges for scientists and leading chip manufacturing companies to find effective alternative
solutions to continue to increase the performance of electronic chips in the dark silicon era.

In 1965, an American engineer, Gordon Moore, made a prediction (the well known Moore’s
Law), which stated that the number of transistors on a single monolithic chip doubles every two
years, though the cost of computers is halved. This means that, every two years, we have a new
chip generation with higher speed and performance with lower cost compared to the previous
one. So far, Moore’s Law has been the fundamental driving force for chip development for
more than four decades. Although increasing the number of transistors guarantees performance
growth, one of the main challenges of this process comes from the limitation of the power supply
to the transistors.

More than three decades since 1971, Dennard’s scaling theory, also known as MOSFET scale,
is the main driving force behind Moore’s law to provide a roadmap for the development of the
manufacturing chip industry [1]. Acording to Dennard’s scaling, the power density of transistors
will keep to be constant as their dimensions get smaller, which allows chip manufacturers to
raise clock frequencies to push the performance of the chips as high as possible without signifi-
cantly increasing the overall circuit power consumption. In detail, we consider a 2-dimensional
transistor. Based on Dennard’s scaling rules, with each new generation created, the dimensions

19

Part, Chapter 1 – Introduction

of the transistor, i.e., width and length, are diminished by the factor α =
√

2, which allows
halving the area of the original transistor, and also means doubling the number of transistors in
the same area. Scaling the dimensions with the factor α results in a reduction in supply voltage
and capacitance by about 30% and an increase in input frequency by about 40% [1], which
in turn reduces the dynamic power consumption by half, as stated by the following equation
representing the dynamic power consumption of a CMOS gate

Pdyn = a · C · V 2
dd · f. (1.1)

where a is the activity of the gate, C its output capacitance representative of the gate area, Vdd its
power supply volage, and f its frequency. As a result, the power consumption of the transistors
will decline at the same factor as their area reduces. In other words, the power consumption
remains the same even if the transistor density doubles each time a new chip generation is
created.

The Raise of the Dark Silicon Era

However, around 2005, Dennard’s scaling law stopped. Although the transistor area continues
to shrink by the traditional ratio, i.e. 1/2, to double the number of transistors in the same area,
the power per transistor is no longer scaled to the same ratio. The main cause of this change
comes from the transistor operating voltages (Vdd and also the transistor threshold voltage Vt)
not being able to scale to the traditional 1/2 factor, due to the significant increase of leakage
current. Indeed, leakage current increases exponentially as the threshold voltage decreases.

Additionally, due to the consequence of downsizing the transistor, leakage is also more likely
in smaller devices with thinner dielectrics and shorter channels. In fact, The leakage current is
the most important contributor to leakage power. Thus, lowering down the threshold operating
voltage contributes to an increase in leakage power, causing an increase in the total power supply.
As a consequence of this change, if the proportion of active transistors does not decrease from
one technological generation to the next, the power supply needs to be increased to make up the
shortfall since it cannot scale with the original rate. The failure of Dennard scaling has ushered
in the era of “dark silicon” as known among chip designers. If the scaling rate of power supply
for the transistor is less than that of the area, it is possible that not at all of the transistors
available as a result of the scaling will be turned on and used. These non-functioning transistors
are dark silicon, which accounts for a portion of the chip area. The failure of Dennard Scal-
ing and the opening of the dark silicon era posed many challenges for the computing industry
to maintain the advancement of computing performance. The lack of power used to activate
all transistors disrupted the effectiveness of the techniques used to improve the performance
of single-core microprocessors such as cache management, branch prediction and pipeline tech-

20

1.1. Energy-Efficient Computing in Post Moore’s Law

nique. This challenge pushes the semiconductor industry to find alternatives to further increase
the performance of chips.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Year

50 Years of Microprocessor Trend Data

Figure 1.1: 50 years of microprocessor trend data. Original data up to the year 2010 collected
and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C.
Batten. New plot and data collected for 2010-2021 by K. Rupp

Indeed, in 2005, the era of multicore began, as shown in Figure 1.1. Some components, like
specialized logic and cache memory, contribute to overall integrated circuit (IC) performance
while drawing power only when necessary. As a result, the IC industry began focusing on multi-
core architectures. The idea behind multicore technology is that it allows for parallel computing,
which can significantly increase computing performance and efficiency by combining two or more
central processing unit (CPU) cores into a single chip. The multicore chips do not necessarily
run as fast as the highest performing single-core models, but they improve overall performance
by handling more work in parallel. As a result, the heat and power consumption of the system
are reduced thanks to managing the leakage power better. A multicore processor’s design allows
communication across all available cores, ensuring that processing jobs are split and assigned
correctly. The processed data from each core is transmitted back to the motherboard via a single
common gateway after the task is completed. When compared to a single-core CPU of compara-
ble speed, this strategy considerably improves performance. However, one of the major challenges
that are faced by multi-core processors is their memory systems. The execution of a program
is often constrained by the memory bottleneck. A multicore system usually uses a 3-level cache
structure, including L1, L2 and L3 caches. L1 and L2 are typically private, whereas L3 is the
shared memory that synchronizes and facilitates data transmission across cores. When the num-
ber of cores increases, the amount of data transferred in L3 caches, buses, and interconnections

21

Part, Chapter 1 – Introduction

also increases, resulting in data traffic congestion and performance degradation.

Heterogeneous Computing

Heterogeneous computing is considered the third age of computing after the single-core and
multi-core eras. In addition to breaking Moore’s law, it can successfully deal with challenges like
energy consumption and scalability to further improve the computing performance. Running
some special tasks using GPUs or FPGAs as processing units – or accelerators–, along with
standard multicores for general processing, can form heterogeneous systems aimed at speeding
up program execution [2]. Indeed, the multi-core architecture is a group of identical single-core
processors. This multi-core processor provides the ability to develop and exploit applications
for single-cores in a homogeneous manner, which means that the ability to run applications
on single cores is identical. However, over the last decade, application domains running on
a single processor have become increasingly divergent in terms of functionality and resource
requirements, mainly due to the much faster growth in application complexity, which limits
the performance of these applications when run on a set of identical cores. In contrast, there
is evidence that heterogeneous multi-core architectures are increasingly used to support the
efficient processing of computationally demanding applications thanks to significant performance
improvements in terms of power consumption and throughput [3, 4, 5]. Besides, heterogeneous
multi-cores are perfectly suited for the dark silicon era because only the cores required for a
given application must be turned on during program execution, while unused application cores
are turned off to save power [6]

Approximate Computing is one of the Solutions

In recent years, along with improvements in computer architecture, computer scientists
and leading chip manufacturers have been particularly interested in changing the computing
methodology to further improve energy efficiency. Approximate Computing (AxC) methodology
emerges as a potential solution to improve performance and energy consumption in embedded
systems [7, 8, 9]. Figure 1.2 shows an example of how AxC is used to find a trade-off between
the cost and the precision 1 of the representation of an image. The idea behind AxC is to relax
the perfectly precise computations to an acceptable level of inaccuracy to gain in performance
and/or to reduce energy consumption. This is entirely consistent with the fact that many ap-
plications in embedded systems do not require high precision/accuracy, and hardware designers
often seek a good balance between accuracy, speed, energy, and area cost. The majority of these
applications are not concerned with calculating an exact numerical response. Instead, "correct-
ness" is defined as the ability to provide outcomes that are good enough, or of sufficient quality,

1. Precision is defined in this thesis as the number of bits used to represent data.

22

1.1. Energy-Efficient Computing in Post Moore’s Law

to provide an acceptable level of user satisfaction [10]. This intuitive insight opens a huge room
for researchers and chip makers to rethink computing methodology for most of the comput-
ing components that span different layers: application, software, compiler, and hardware levels.
Various techniques for approximate computing augment the design space by providing another
set of design knobs for performance-accuracy trade-off. Recent methods concentrate on devel-
oping systematic procedures for automating the development and compilation of approximation
software and hardware. The techniques are designed (1) to provide developers with a better un-
derstanding of how approximation hardware and software impact application correctness, and
(2) to automate the control of application accuracy, energy consumption, and performance [11].

Application quality degradation

C
o

s
t

(a
re

a
,

e
n

e
rg

y,
 …

)

X

X

X
X

X

A

B
C

Figure 1.2: Approximate Computing example: trade off precision for gains in cost (area and/or
energy) degradation. The representation A is of great quality but comes at a high cost; the
representation B may be of sufficient quality at a reduced cost; and the representation C is of
poor quality but has the lowest cost.

The Efficiency of Reduced Precision

Reducing precision in arithmetic representation is one of the most effective AxC methods.
The standard floating-point representation provides high-precision computations with traditional
single (32 bit) and double (64 bit) precision. These data types offer a high degree of accuracy in
calculations, but at the expense of long execution time and high energy consumption. In recent
applications, particularly in machine learning and deep learning applications, there has been a
growing interest in the use of reduced-precision arithmetic. Hardware platforms for training and
inference of deep neural networks (DNNs) are shifting towards 8-bit and 16-bit precision and

23

Part, Chapter 1 – Introduction

use fixed-point arithmetic (i.e., integer) with a significant increase in energy efficiency thanks
to reducing computational costs and data storage, while ensuring the required accuracy of the
model [12, 13, 14].

Besides, precision has a close relationship to area and energy consumption. Figure 1.3 [15]
compares the energy and area cost of synthesized operators (adders and multipliers) with varying
precision (8/16/32 bits) and number representations (float, integer) and memory read operations
in SRAM and DRAM. For adders, the cost reduction rate is similar to that of bit-width shrinking.
It is worth noting that when reducing the bit-width in multipliers, the cost drops dramatically.
Hence, truncating the precision of arithmetic operations creates a new room to further improve
energy efficiency.

3

Computer Arithmetic

• Energy, delay, and area vary a lot between
numeric formats and word-length

Figure 1.3: Energy numbers are from Mark Horowitz “Computing’s Energy problem (and what
we can do about it)”, ISSCC 2014 [15]. Area numbers are from synthesized result using Design
compiler under TSMC 45nm tech node. FP units used Design Ware Library

Although using reduced-precision arithmetic improves the performance and cost of embed-
ded systems, finding an efficient way to optimize between accuracy loss and energy efficiency
improvement is not an easy task. The state of the art focuses on design methodologies to ef-
ficiently automate bitwidth assignment to maximize the benefits from reducing the precision
of operators. This problem is called Word-Length Optimization (WLO) –or Automatic
Precision Tuning–. Word-length optimization is the process of determining suitable word-
lengths for variables of a given algorithm in order to reduce the implementation cost (energy
consumption and/or area) while maintaining acceptable accuracy due to data quantization.

24

1.2. Objective of Thesis - Application-Level Tuning of Accuracy

1.2 Objective of Thesis - Application-Level Tuning of Accuracy

The thesis was initiated as a research direction of the ANR research project named AppRoxi-
maTivE Flexible Circuits and Computing for IoT (ARTEFaCT) under the collaboration of CEA
Leti, INRIA, INSA, EPFL and CSEM. The ARTEFaCT project aimed to build on the prelim-
inary results on inexact and exact near-threshold and sub-threshold circuit design to achieve
major energy consumption reductions by enabling adaptive accuracy control of applications.
ARTEFaCT proposed to address, in a consistent fashion, the entire design stack, from physi-
cal hardware design, up to software application analysis, compiler optimizations, and dynamic
energy management. Combining sub-near-threshold with inexact circuits on the hardware side
and, in addition, extending this with intelligent and adaptive power management on the soft-
ware side was expected to produce significant results in terms of energy reduction, i.e., at least
one order of magnitude, in IoT applications. The project has contributed along three research
directions:

1. Approximate, ultra low-power circuit design.

2. Modeling and analysis of variable levels of computation precision in applications.

3. Accuracy-energy trade-offs in software.

The thesis contributes to the third research direction, accuracy-energy trade-offs in software.
In this research, we focus on applying AxC techniques at the application level of design. This
thesis is about developing methods for systematic exploration of the design space, including
implementation cost/quality of service (QoS) modeling and automation of designs. This allows
us to speed up the optimal or near-optimal design selection that (1) minimizes cost (area and/or
energy consumption) while still satisfying required accuracy at the application output or (2)
maximizes the accuracy at the application output under a cost budget. We target emerging
System on Chip platforms (Xilinx Zynq or Intel SoC) that feature FPGAs tightly coupled with
embedded processors.

This thesis is addressing WLO problem with several aspects including the scalability and
resource-constrained optimization. Fixed-point data types are considered for WLO throughout
studies in the thesis thanks to the wide use in the implementation of Digital Signal Processing
algorithms in ASIC and FPGA platforms.

1.3 Thesis Organization

The thesis is organized in six chapters.
This chapter has introduced the historical development of computers, from the beginnings of

MOSFET technology when Moore made his prediction about the increase in transistor perfor-
mance, to the alternatives in Dark Silicon era. In this chapter, we also discussed Approximate

25

Part, Chapter 1 – Introduction

Computing, one of the emerging solutions in the post-Moore’s law era. Among approaches in
Approximate Computing, the Word Length Optimization problem is the main research objective
in this dissertation.

Chapter 2 gives a fundamental background of arithmetic number representations, including
Fixed-Point and Floating-Point arithmetic, as well as the context for the Word Length Opti-
mization problem, followed by a survey of recent approaches being used to address WLO.

Chapter 3 presents our proposed method to improve the scalability of Word-Length Op-
timization (WLO) for large applications that use complex quality metrics such as Structural
Similarity (SSIM). In this approach, the input application is decomposed into smaller kernels to
avoid an uncontrolled explosion of the exploration time, which is known as noise budgeting. The
main challenge addressed in this research work is how to allocate noise budgets to each kernel.
This requires capturing the interactions across kernels. The main idea is to characterize the
impact of approximating each kernel on accuracy/cost through simulation and regression. Our
approach improves the scalability while finding better solutions for an Image Signal Processor
pipeline.

Chapter 4 presents our proposed hybrid algorithm combining Bayesian Optimization (BO)
and a fast local search to speed up the WLO procedure. In this chapter, through experiments,
we first show some evidence on how this combination can improve exploration time. Then, we
propose an algorithm to automatically determine a reasonable transition point between the two
algorithms. By statistically analyzing the convergence of the probabilistic models constructed
during BO, we derive a stopping condition that determines when to switch to the local search
phase. Experimental results indicate that our algorithm can reduce exploration time by up to
50%− 80% for large benchmarks.

Chapter 5 focuses on another aspect of Word Length Optimization with hardware resource
constraints. It is worth noting that state-of-the-art approaches mainly solve WLO given a quality
constraint. There is no research on enhancing quality of service under a cost budget. This is a
critical problem in improving the performance of applications in electronic devices with a limited
energy or cost budget. In this chapter, we first show challenging issues of classical methods in
the WLO problem with resource constrains. Then, we propose a Bayesian-Optimization-based
algorithm to maximize the accuracy of computations under some cost constraint. Experimental
results indicate that our approach outperforms the classical approach in terms of the obtained
solution quality.

26

1.3. Thesis Organization

Chapter 6 summarizes the main results of this thesis and discusses potential next study paths
for further work.

27

BIBLIOGRAPHY

[1] M. Bohr, “A 30 year retrospective on dennard’s mosfet scaling paper,” IEEE Solid-State
Circuits Society Newsletter, vol. 12, no. 1, pp. 11–13, 2007.

[2] T. Ju, Z. Zhu, Y. Wang, L. Li, and X. Dong, “Thread mapping and parallel optimization
for mic heterogeneous parallel systems,” in International Conference on Algorithms and
Architectures for Parallel Processing. Springer, 2014, pp. 300–311.

[3] T. Mitra, “Heterogeneous multi-core architectures,” Information and Media Technologies,
vol. 10, no. 3, pp. 383–394, 2015.

[4] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “Dnpu: An energy-efficient deep-learning
processor with heterogeneous multi-core architecture,” IEEE Micro, vol. 38, no. 5, pp. 85–
93, 2018.

[5] H.-E. Zahaf, G. Lipari, M. Bertogna, and P. Boulet, “The parallel multi-mode digraph task
model for energy-aware real-time heterogeneous multi-core systems,” IEEE Transactions
on Computers, vol. 68, no. 10, pp. 1511–1524, 2019.

[6] J. Carabaño, F. Dios, M. Daneshtalab, and M. Ebrahimi, “An exploration of heterogeneous
systems,” in 2013 8th international workshop on reconfigurable and communication-centric
Systems-on-Chip (ReCoSoC). IEEE, 2013, pp. 1–7.

[7] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and
S. Tomov, “Accelerating scientific computations with mixed precision algorithms,” Com-
puter Physics Communications, vol. 180, no. 12, pp. 2526–2533, 2009.

[8] B. Barrois, O. Sentieys, and D. Menard, “The hidden cost of functional approximation
against careful data sizing—a case study,” in Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2017. IEEE, 2017, pp. 181–186.

[9] R. Ragavan, B. Barrois, C. Killian, and O. Sentieys, “Pushing the limits of voltage over-
scaling for error-resilient applications,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. IEEE, 2017, pp. 476–481.

[10] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Approximate com-
puting and the quest for computing efficiency,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2015, pp. 1–6.

28

BIBLIOGRAPHY

[11] A. Filieri, M. Kwiatkowska, S. Misailovic, and T. Mytkowicz, “Approximate and probabilis-
tic computing: Design, coding, verification (dagstuhl seminar 15491),” in Dagstuhl Reports,
vol. 5, no. 11. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[12] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization: Towards
lossless cnns with low-precision weights,” arXiv preprint arXiv:1702.03044, 2017.

[13] D. A. Gudovskiy and L. Rigazio, “Shiftcnn: Generalized low-precision architecture for in-
ference of convolutional neural networks,” arXiv preprint arXiv:1706.02393, 2017.

[14] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training deep neural
networks with 8-bit floating point numbers,” Advances in neural information processing
systems, vol. 31, 2018.

[15] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).
IEEE, 2014, pp. 10–14.

29

Chapter 2

THEORETICAL BACKGROUND AND

RELATED WORK

In this chapter, we survey and classify recent approximate computing techniques by the level
of design. Then, we focus on presenting arithmetic number representations, including Floating-
Point (FlP) and Fixed-Point (FxP). After that, we provide the fundamental background and a
survey of recent optimization techniques for the Word-Length Optimization (WLO) problem, the
central theoretical background of this thesis. The primary optimization approaches are examined
and discussed, as well as the advantages and disadvantages of existing approaches. Methods being
used to model the cost/accuracy trade-offs during WLO are also discussed in this chapter.

2.1 Approximate Computing

Energy consumption is one of the important metrics in designing embedded systems. In
many complex systems, such as scientific computing, social networking, and financial analysis.
Improving the system performance by adding more features or replacing old functions with
more advanced ones, sometimes comes at the cost of increasing the energy supply for the sys-
tem. Besides, with an increasing amount of data being generated, queried, stored, accessed, and
computed by the applications running in these systems, their energy consumption has increased
significantly. Considering mobile devices with limited energy budget, such as coin cells or even
low-power battery sources, the energy consumption of computer systems becomes a crucial met-
ric.

Approximate Computing (AxC) is an emerging technique in designing embedded systems for
energy-efficiency improvement, i.e., enhancing the performance and reducing the area and power
consumption. AxC seeks to minimize computing accuracy, in order to achieve large computa-
tional performance increase and energy consumption reduction, while ensuring an acceptable
quality of service (QoS). Approximate computing provides an alternative paradigm for ana-
lyzing large datasets by simulating "what-if" scenarios for entering parameters that capture the
necessary trade-off between accuracy and performance. To find the appropriate design that seeks
for the golden balance between accuracy and performance, various AxC techniques have been

31

Part, Chapter 2 – Theoretical Background and Related Work

proposed at various design levels, i.e., system-, algorithmic-, and circuit-level.

Error-tolerant applications relating to human perception and cognition drive the majority
of approximate computing. As human beings, our perception and cognition are not perfect,
which implies that many computation tasks can be done with certain imperfections or approx-
imations. Multimedia processing, machine learning, signal processing, and scientific computing
are examples of such application areas where approximate computing has been used [1]. In re-
cent years, the research focus of the approximate computing community has expanded from
fast approximate search algorithms (e.g., low-complexity signal and image processing) to wide
applications in big data (e.g., complex analytics in web search, recommendation systems), and
real-time/embedded applications (e.g., sensor networks). Numerous of these applications rely on
statistical or probabilistic computations, such as the ability to make alternative approximations
to better fit the intended goals [1]. These applications aim to provide means for developing such
high-level abstractions by formulating approximation problems as parameterized data analysis
tasks and proposing concrete methods to solve them. Examples include models for language un-
derstanding (such as latent semantic analysis), machine translation, object recognition, medical
diagnosis, and DNA sequencing.

However, designing an efficient and accurate approximate computing techniques involves
understanding multiple factors, such as the environment conditions, computing load and resource
availability. The task of finding an optimal point on the accuracy-performance trade-off axis
remains quite challenging in realistic applications. Due to the large number of parameters, it
is non-trivial to select an appropriate subset of parameters, and this selection process will be
quite time consuming. Hence, it is important to develop effective techniques that speed up the
process of selecting the suitable design point.

2.1.1 Approximate Computing for Error-Resilient Applications

AxC techniques can be successfully applied to a variety of applications to reduce computa-
tional effort thanks to the intrinsic error tolerance properties of those applications. This allows
us to simplify the computational elements of the program so that the errors they cause are toler-
able. The error tolerance property is defined as the capacity of a program to generate acceptable
results despite the fact that some of its underlying computations are faulty or inaccurate [2]. For
example, AxC methods can be used in sound and image processing since little sound distortions
or slightly discolored pixels go undetected [3]. There are three factors that contribute to the
inherent resiliency of applications [2, 4]:

1. The inputs: These applications are designed to handle noisy and redundant input data.
For example, the input to the digital image processing algorithms already includes noise or

32

2.1. Approximate Computing

E
n
e
rg
y

Performance

A
cc
ur
ac
y

Figure 2.1: An example of design space that depends on three variables (accuracy, energy con-
sumption and performance) for applications designed with AxC techniques. The third dimension,
i.e., accuracy, opens a larger room for design optimization to further gains in energy efficiency
(i.e., performance per Watt or energy per operations). The red point represents for the design
flexibility in three dimensions.

quantization errors that come from digitizing analog data, data being also often sampled
with noise.

2. The computations: The applications commonly utilize computing techniques like aggrega-
tion or iterative refinement to mitigate or repair approximation effects.

3. The outputs: The application of the concept that there is no such thing as a "golden"
result, but rather a range of acceptable outputs or slight changes in the output that
are undetectable by users. For example, a web search system can return similar results.
Similarly, due to human limits in perception, occasional frame drops in video applications
might go unnoticed.

Thanks to the error-tolerance property of those applications, we can adjust the accuracy of
the application in a controlled manner to an acceptable level, which allows us to create a new
level of design flexibility, which trade-offs the accuracy with traditional design metrics such as
computational performance (number of computational units per second) and implementation
cost (area utilization and/or energy consumption) as shown in Figure 2.1.

The use of AxC techniques in embedded system design leads to an optimization problem
where the designers need to find a method to select an optimal or near-optimal solution from a
design space exploration constructed by a variety of solutions with different parameters (perfor-
mance, accuracy, and energy). With knowledge about components of the embedded system, the
designers can create models that evaluate the interactions among these three parameters and

33

Part, Chapter 2 – Theoretical Background and Related Work

then formulate the optimization problem constrained by user-defined requirements for perfor-
mance, energy and accuracy metrics. The optimization problem results in an estimated energy,
performance and accuracy that can be compared to the specified constraints, enabling the selec-
tion of an optimal (or at least good enough) system design configuration. The selection of the
solution using AxC techniques is based on a Pareto optimal design space, which includes a subset
of solutions that achieve the highest performance level within a range of accuracy and energy
cost. A properly designed AxC technique can improve the energy efficiency of the embedded
application. It also helps designers to quickly obtain good design choices and hence reduce the
development time, and eventually the time to market of electronic devices.

2.1.2 Cross-Layer Approximate Computing Techniques

Energy consumption is one of key design metrics in battery-operated embedded system. The
energy consumption directly relates to dynamic power dissipation Pdyn which is calculated by
Equation 1.1 through the product of switching activity factor (α), load capacitance (CL), supply
voltage (Vdd) and clock frequency (fclk). The reduction in energy consumption is essentially
the reduction of individual ingredients Equation 1.1. From that, many AxC techniques were
proposed to reduce energy consumption at different layers ranging from algorithm level down
to circuit level. In this thesis, we divide techniques into three categories: software, architecture,
and hardware. The mentioned methods are the most frequently used approximation approaches
in the state of the art. This survey does not include newer or less commonly used methods. It
is also worth noting that some methods are shared across layers.

Approximate Computing at the Software Level

Some frameworks allow programmers to identify the impact of approximation in specific
sections of code, giving them control over the system’s accuracy at the software level. Green [5] is
a framework that enables programmers to take advantage of AxC in a systematic way, while also
ensuring statistical QoS. It allows for complex functions and loops to be approximated. Green
develops a model that assesses the impact of approximation on QoS loss, allowing approximation
decisions to be made based on the programmer’s QoS constraints.

Sampson et al. proposed EnerJ [6] that uses type qualifiers to declare data signals to be
expressed in an approximate manner in a system. The storage, computation, and algorithm
components utilized for the variables designated with the approximation qualifier can be ap-
proximate. The system can ensure that the precise and approximate program components are
isolated statically.

Some works [7, 6] use Loop Perforation, which systematically skips iterations of the loops
without significant quality degradation to reduce the volume of processing in an application. This

34

2.1. Approximate Computing

can reduce directly the load capacitance that is equivalent to the logic circuit. The consideration
of the number representation is also one of efficient approaches to reduce the energy consumption.

Task skipping is an approximation approach that enables code blocks to be skipped based
on a specified run-time boolean condition [8]. If a statement block is executed when the runtime
boolean condition fails, then the remaining code blocks in that control structure will not be
executed. Typically, this method is used for the most computationally demanding portions of
the code. In many scenarios, instead of running the loop to its completion, the paradigm may
instruct a hardware system to process less data in order to save power and computing time.
Some related existing works can be found in [9, 10, 11, 12].

Data sampling [13, 9] is also considered an AxC technique at the software level. This is a
method in which the incoming data are not analyzed in their whole, but rather a selection is
made before processing. This method decreases the computation complexity, the execution time
and the computing power required, while providing acceptable accuracy of the result.

Approximate Computing at the Architecture Level

Some works exploit the room for approximation in instruction-set architecture (ISA) [14]
and memories [15, 16]. Hadi Esmaeilzadeh et al. [14] proposed ISA extensions that define a set
of special instructions that allow the compiler to convey what can be approximated. Truffle, a
micro-architecture concept, was suggested to implement the ISA expansions effectively. Dual-
voltage operation is the basis of the proposed design, with a high voltage for exact operations and
a low voltage for approximate operations. The micro-architecture’s reliance on the instruction
stream to know whether to employ the low voltage is a significant feature. The paper [17] further
proposed a low-power accelerator based on a neural processing unit (NPU) that can perform
approximately compute-intensive code segments. The NPU is tightly coupled to the processor
pipeline to speedup code regions. It is quicker and more energy efficient to offload approximable
code areas to NPUs than to execute the original code.

Sampson et al. [16] proposed techniques that allow applications to approximate data storage,
improving the performance, longevity, and density of solid-state memory. There are two mech-
anisms in operation. The first reduces the amount of programming pulses necessary to write
multi-level cells, allowing for mistakes. By transferring approximation data into blocks that
have exhausted hardware error correcting capabilities, the second approach reduces wear-out
failures and increases memory endurance.

Flikker, an application-level approach for reducing refresh power in DRAM memory, is in-
troduced in [15]. Flikker allows programmers to designate critical and non-critical data in their
code, and the runtime system allocates this data to different memory locations. Critical data
are updated at the standard refresh rate, whereas non-critical data are renewed at much lower
rates. This partitioning saves energy at the expense of a little increase in non-critical data cor-

35

Part, Chapter 2 – Theoretical Background and Related Work

ruption. As a result, Flikker reveals and exploits a fascinating trade-off between energy usage
and hardware accuracy.

Approximate Computing at the Hardware Level

Several AxC approaches minimize storage and computation costs by modifying the precision 1

of input or intermediate operands. Many works [18, 19, 20] use low-precision, efficient number
representation, such as fixed-point arithmetic, to reduce the energy consumption. These works
address the Word Length Optimization (WLO) problem to optimize fixed-point bit-widths
of variables in the application to reduce the energy consumption with an acceptable quality at
the application output. Indeed, using a shorter fixed-point word-length reduces the switching
activity factor and the load capacitance since the operators compute with less bits. The problem
of WLO to optimize fixed-point bit-widths of variables in the application is the main objective
of this thesis and will be further detailed later in the chapter.

The bfloat16 (Brain Floating-Point) was developed by Google Brain, the company’s artifi-
cial intelligence research group. Bfloat16 is a shortened version of the 32-bit IEEE 754 single-
precision floating-point standard (binary32) designed to speed up machine learning and deep
learning tasks. It uses the same 8 exponent bits as the 32-bit floating point standard, but it
only supports an 8-bit precision instead of the 24-bit significand of the binary32 format [21].
Experiments conducted by Google have shown that it is feasible to shrink the mantissa as long
as it can still represent tiny values closer to zero as part of the summation of minor differences
during the training phase. The benefit of this change is the reduction of power consumption
and implementation silicon area of the computation operator and memory storage [22]. Bfloat16
is used in Intel AI processors (Nervana NNP-L1000), Intel FPGAs, Google Cloud TPUs, and
TensorFlow [21].

Inexact approximate arithmetic operators, such as adders and multipliers, have recently re-
ceived a lot of attention as a way to enhance speed and energy efficiency with a minimal loss
in accuracy for compute-intensive image and video processing and machine learning applica-
tions [23, 24, 25, 26]. Exploiting the error-tolerant characteristics of those applications, several
approximation methodologies have been proposed for the implementation of inaccurate arith-
metic units. Adder and multiplier being the fundamental operations of an arithmetic processor,
they are crucial to obtain high performance.

Inexact adder has been explored extensively for approximation computation in order to re-
duce power consumption and latency [27, 28, 29, 30]. Liang et al. [31] have examined several
approximate adders, using different metrics such as error distance (ED), mean error distance

1. or bit-width, word-length is also used as a synonym of precision in this thesis

36

2.2. Binary Arithmetic Number Representations

(MED), and normalized error distance (NED), to evaluate approximate and probabilistic adders
in approximation computing applications. Existing designs for an approximation multiplier can
be divided into truncation and non-truncation methods. For the truncation-based design, the
bottom portion of the partial products is eliminated, or the least significant partial products
are approximated by a constant [32]. To improve the accuracy of truncated multipliers, many
error compensation schemes have been developed [33, 34, 35, 36, 37]. A non-truncation technique
assembles an approximate multiplier from approximate circuits [38, 39, 40, 41].

Dynamic-Voltage-Frequency-Scaling (DVFS) is a circuit-level approach that allows for a dy-
namic trade-off between energy consumption and computational precision. DVFS approaches
enable the system to adjust the frequency and supply voltage to specific computer components.
Many system components, including CPU cores, memory systems, last level caches, and inter-
connects, have exhibited considerable power and energy reductions when using DVFS [42]. In
heterogeneous embedded systems and multi-processor systems, several investigations combine
DVFS with machine learning methods such as regression and reinforcement learning to auto-
matically develop a DVFS scheme that optimizes dynamic energy savings within an allowed
level of performance deterioration [43, 44, 45, 46, 47]

2.2 Binary Arithmetic Number Representations

Digital signal processing (DSP) systems are critical for real-time processing of digitized data
in the real world, providing high-performance numeric computations for a wide range of appli-
cations, from simple consumer electronics to complex industrial systems. DSP systems consist
of software and hardware components. The software part provides the programming flexibility
and modifiability. In the hardware part, the arithmetic units and memory units required for the
computations are built for the DSP system. Many factors are taken into account while designing
hardware to fulfill system output requirements, including latency, cost (area and energy con-
sumption), and Quality of Service (QoS). Aside from choosing a hardware architecture, number
representation is critical in hardware design to meet system requirements.

In DSP systems, the data are stored and processed through a specific arithmetic number
representation system. Arithmetic is a discipline of mathematics that deals with number repre-
sentation and numerical calculation. Arithmetic provides number representation systems such
as floating point and fixed-point to represent integer or real values in digital signal processing
algorithms. Suppose x and y are two numbers represented using a given arithmetic number rep-
resentation system. It is usual in digital systems to perform the four basic arithmetic operations:
addition (s = x+y), subtraction (d = x−y), multiplication (p = y×x), and division (q = x/y).

37

Part, Chapter 2 – Theoretical Background and Related Work

Due to the limitations in computer memory and processing units, arithmetic operations on num-
bers using an arithmetic number representation system can cause round-off errors and overflows
in the system operation. Round-off error is the difference between the output generated by an
algorithm that uses precise arithmetic and the result produced by the same method that uses
finite precision. Overflow occurs when the result produced by an arithmetic operation exceeds
the range of results allowed by that number representation system. These errors or overflows
may affect the stability of the system as well as the precision of the results generated by the
system. Hence, the choice of number representation for a DSP system is closely related to the
performance, precision and implementation cost of the whole system.

On modern computers, the native hardware mainly supports binary number systems other
than octal, decimal, and hexadecimal number systems thanks to the optimization in storage and
computation costs of the binary number systems. Floating-point (FlP) and fixed-point (FxP)
are two basic types of binary arithmetic representation used in DSP systems or in many other
computing systems. Floating-point arithmetic allows representing real numbers in a large range
of values and is thus suitable for systems with very small and very large values. Popular program-
ming languages like C/C++, Python, Matlab, etc., use the floating-point format as the major
datatype to represent values of arithmetic operations. Double and Float are typical floating-point
datatype being used in these programming languages. Meanwhile, for DSP systems where speed
and implementation cost are more important than precision, the fixed-point datatype is often
more widely used to represent real numbers. Depending on QoS and latency requirements, bit
lengths commonly used in DSP applications are considered in 8/16/32 bits.

In floating-point and fixed-point representations, a basic digital unit, called a bit, can only
have either logic "0" or logic "1". A number of bits can be joined together to represent a real
number. The number of bits in a binary number is referred to as its width or precision. The
greater the width of a number, the more accurate its computation will be. However, the greater
the amount of bits in a number, the longer it will take to compute. Therefore, the width of a
number must be chosen carefully to strike a balance between speed and accuracy. The unsigned
and signed number representation are also supported in these two arithmetic number represen-
tations. Signed numbers can distinguish between negative and positive values by using a sign
flag. Unsigned numbers, on the other hand, only store positive numbers and not negative ones.
The two’s complement system is usually used to represent the signed numbers. In the two’s
complement system, when the most significant bit (MSB) is a one, the number is signed as
negative. Likewise, if the MSB is equal to zero, then the number is positive.

38

2.2. Binary Arithmetic Number Representations

2.2.1 Floating-Point Arithmetic

Floating-Point (FlP) is a popular number representation to encode real numbers as a string
of digits. FlP is widely used in DSP systems where data representation with high dynamic range
is required. In general, an FlP number is represented approximately with a fixed number of
mantissa digits (or significand) and scaled by a factor specified by a limited precision exponent
in a given base. The base can be base-2, base-10, and base-16. In general, an FlP number is
represented as

mantissa× baseexponent (2.1)

The term “floating-point” refers to the fact that the radix point can be placed anywhere between
the significant digits. For example, with the radix-10, 123.45 can be written as 1.2345× 102 or
0.12345 × 103. Likewise, with the radix-2, 11001.11 is equivalent with 1.100111 × 24. It is also
worth mentioning that the floating-point system differs from the fixed-point system (discussed
later) in being able to change the radix point to increase the dynamic range of the representation.

Computers have employed several floating-point representations throughout the years. Most
CPUs now employ the IEEE 754 Standard for Floating-Point Arithmetic in base-2, which was
standardized by the IEEE in 1985 and revised in 2008 [48]. This floating-point standard es-
tablishes protocols for representing floating-point numbers, managing subnormal numbers, and
handling various circumstances, ensuring high portability of computing software.

Figure 2.2 illustrates the layout of a floating point number. Let x be a real signed number
represented in floating-point with a base-2. The floating-point approximation flp(x) of a given

1 bit e bits m bits

Exponent part Mantissa partSign

Figure 2.2: A number represented in the floating-point format

real number x is represented as

flp(x) = (−1)s ×M × 2E . (2.2)

An FlP number is encoded with one sign bit s, m bits of mantissa magnitude M (non-negative)
and e bits of exponent E. With this format, every real number can be encoded using 1 +m+ e

bits. The types of the IEEE 754 binary formats currently in use in CPUs are detailed in table 2.1.

39

Part, Chapter 2 – Theoretical Background and Related Work

Table 2.1: IEEE 754 floating-point representation types

Type Sign (s) Mantissa part (m) Exponent part (e) Total bits
Half precision 1 5 10 16
Single precision 1 8 23 32
Double precision 1 11 52 64
Quadruple precision 1 15 112 128

The mantissa magnitude is normalized to the range [1, 2[. Using IEEE binary exchange
protocols, the leading one-bit mantissa magnitude is not saved in the computer data. It is
known as the "implicit" part. In fact, the m bits only store the fractional part of the mantissa
magnitude M . The mantissa is then represented as

mantissa = (−1)s ×M = (−1)s × 1.m (2.3)

The exponent E is a signed integer number and represented by e bits. The value of E is in
the range [−2e−1 + 1, 2e−1].

Floating-Point Exceptions

The IEEE floating-point standard provides a number of exceptions that might arise when the
outcome of a floating point operation is ambiguous or undesirable. In IEEE 754 arithmetic, an
exception might be reported alongside the result. This can be a status flag. When an exception’s
trapping is enabled, an error is alerted anytime the exception happens [49, 50]. The possible
floating-point exceptions include: invalid, divide-by-zero, overflow, underflow and inexact

invalid: This exception is raised if the given operands are invalid for the operation to be per-
formed. If trapping is enabled, the extensions:floating-point-invalid condition is signaled.
Otherwise, the result of the operation is NaN . For example, (+∞)− (+∞), 0/0, 0×∞,
∞/∞,

√
−1.

divide-by-zero: This exception is thrown when a finite nonzero number is divided by zero. If
trapping is enabled, the divide-by-zero condition is signaled. Otherwise, the appropriate
infinity is returned. For example, 1/0, log(+0)

overflow: This exception is raised when the rounded result with an unbounded exponent range
has an exponent greater than 2e−1. If trapping is enabled, the floating-point-overflow ex-
ception is signaled. Otherwise, the result relies on the sign of the intermediate result and
the rounding mode. When the overflow exception is thrown, the inexact exception is
thrown as well.

40

2.2. Binary Arithmetic Number Representations

underflow: This exception is thrown when an intermediate result is too little to be computed
precisely, or when the operation’s result is too small to be normalized properly. If trapping
is enabled, the floating-point-underflow condition is signaled. Otherwise, the operation
returns the result in a denormalized float or zero.

inexact: This exception is signaled when the result of a floating-point operation is not exact,
i.e., the result was rounded. If trapping is enabled, the extensions:floating-point-inexact
condition is signaled. Otherwise, the rounded result is returned.

Rounding modes

When an operation on floating-point numbers produces a result that cannot be represented
precisely in the chosen floating-point system, it needs to be rounded [49]. The rounding modes
for a number x are:

round toward −∞: denoted by RD(x), returns the largest machine number (possibly −∞)
that is less than or equal to x;

round toward +∞: denoted by RU(x), returns the smallest floating-point number (possibly
+∞) greater than or equal to x;

round toward zero: denoted by RZ(x), returns the closest floating-point number to x that is
equivalent to RD(x) if x ≥ 0 and to RU(x) if x ≤ 0;

round to nearest: denoted by RN(x), returns the closest floating-point number to x. A rule
must be determined when x is precisely halfway between two successive floating-point
values. Round to nearest even is a popular tie-breaking rule: x is rounded to the closest
even integer significand of these two successive floating-point integers.

2.2.2 Fixed-Point Arithmetic

Fixed-point (FxP) arithmetic is a number representation to encode real numbers in binary
number systems. A number represented in fixed-point arithmetic contains integer and fractional
word-lengths (WLs), represented on m and n bits, respectively, as shown in Figure 2.3. The
integer and fractional parts are separated by a binary point. The term “fixed-point” refers to a
number of digits before and after the binary point that is fixed in the representation and during
the computations, as opposed to the floating-point format.

A fixed-point encoding can express both unsigned and signed numbers. The unsigned num-
bers can only represent the values that are greater than or equal to zero; the signed numbers
can represent both positive and negative values. For unsigned number, all the m bits are used
to represent the integer part of this number. Whereas, for the signed number using the two’s
complement representation, the most significant bit (MSB) in the integer part, bm−1, is reserved
for the sign, and the remaining bits are used for the integer number. The unsigned and signed

41

Part, Chapter 2 – Theoretical Background and Related Work

bm−1 bm−2 · · · b0 b−1 · · · b−n

binary point

Integer part Fractional part

Figure 2.3: A number represented in the fixed-point format

FxP numbers are converted to decimal values xunsigned and xsigned using Equations 2.4 and 2.5,
respectively.

xunsigned =
m−1∑
i=−n

bi2i (2.4)

xsigned = −2m−1 +
m−2∑
i=−n

bi2i (2.5)

The choice of m relates to the dynamic range, while n provides the accuracy of each rep-
resentation. Unsigned and signed numbers are represented in the ranges [0, 2m − 2−n] and
[−2m−1, 2m−1 − 2−n], respectively. The ranges must be determined before converting a real
number to the fixed-point number so that the fixed-point representation can be chosen with
enough number of bits to avoid overflow and underflow errors. m is also known as the integer
word-length (IWL).

The term q = 2−n serves as the smallest resolution (known as the quantization step q) of
a number determined by the fractional word-length (FWL) n of the representation. Numbers
with the increment smaller than the quantization step q cause quantization error (or round-off
error), which refers to the difference between the value of the real and fixed-point numbers. A
fixed-point number with a higher precision results in a lower quantization error.

2.3 Fixed-Point Conversion Process

When designing low-power embedded CPUs, floating-point is not always a good choice, and
the fixed-point representation is preferred instead. It is thus necessary to perform a floating-
point to fixed-point conversion when applications are developed in the form of a code relying
on floating-point data types. In this conversion, floating-point data and arithmetic operations
will be replaced by fixed-point formats with suitable word-lengths. Then, the goal of the fixed-
point word-length determination process (the WLO process) is to pick the most cost-effective
set of word-lengths while restricting the accuracy degradation to a level acceptable to the ap-

42

2.3. Fixed-Point Conversion Process

plication at hand. This process is known as the Fixed-Point Conversion Process [51].

As discussed in Section 2.2, a fixed-point number is composed of an integer and a fractional
part. Each floating-point data must be converted to a fixed-point format to determine the num-
ber of bits needed to represent its integer and fractional parts. Overflows and quantizations
may occur during the process of determining the integer and fractional s. Especially, a fatal
error may occur while determining the integer part, if this specified integer word-length does
not adequately cover the dynamic range of the data, resulting in an overflow error. Meanwhile,
when selecting the fractional part of the data, fraction truncation and rounding errors can occur,
causing considerable quantization errors. It is therefore important to control the choice of the s
in order to ensure that the computation accuracy stays within an acceptable level as required
by the application specifications.

Given an application with N variables in the floating-point format. The floating-point to
fixed-point conversion is the process of determining the fixed-point Wi for each variable in the
application, where i is integer numbers in the range [0, N −1], under some accuracy constraints.
Let W int

i and W frac
i be the integer word-length and fractional word-length of the ith variable,

respectively. The total word-length assigned to the ith variable is

Wi = W int
i +W frac

i , i = [0, N − 1]. (2.6)

The objective of this floating-point to fixed-point conversion (float-to-fixed) is to minimize the
cost (C) of the application. This cost can be, e.g., area or energy. The word-length of the variables
has a direct impact on the application’s implementation cost. Therefore, to minimize this cost,
the word-length of each variable should be optimized to its appropriate minimal value. This
process requires optimizing both integer and fractional s, i.e., W int

i and W frac
i , respectively.

When the number of bits is reduced, there are unavoidable errors between the values with
finite precision and the ones with infinite precision, which results in a drop in the quality of the
application output as a result. Hence, the implementation cost minimization through word-length
reduction should be done in such a manner that the output quality is guaranteed with a quality
constraint, λobj . In this context, an optimization criterion for the output quality is introduced
to determine the required bits Wi of variable i, taking into account both the implementation
cost and the quality constraint. The WLO problem is therefore defined as

min(C(W)) subject to λ ≤ λobj , (2.7)

whereW = [W0,W1, . . . ,Wi, . . . ,WN−1] is a word-length configuration vector that contains the
s of the N variables in the application, C and λ are functions that express cost (area or energy

43

Part, Chapter 2 – Theoretical Background and Related Work

consumption) and output quality, respectively, and the target quality is given as λobj .

Figure 2.4: Floating-point to fixed-point conversion process [52]

Figure 2.4 depicts the process of floating-point to fixed-point conversion, which is divided
into two main steps: the Integer Word Length (IWL) determination and the Fractional Word
Length (FWL) determination. The IWL determination examines the dynamic value range of
each variable and intermediate result and determines the minimal IWL necessary to represent
each range’s variable. Indeed, overflows arise whenW int

i is smaller than the word-length that can
cover the whole dynamic range of the value, resulting in non-linearity in the computation and a
large amplitude of the error as compared to infinite precision. The goal of the IWL determination
is to maintain the low non-linearity, which implies that the potential error is small even though
the computation takes place in finite precision arithmetic.

Generally, the IWL determination consists of two steps: dynamic range evaluation and scaling
factor selection. In the dynamic range evaluation step, analytical or simulation-based methods
can be used to estimate the upper and lower bounds of the dynamic range that each signal/vari-
able represents. In certain cases, a dynamic range distribution of each signal can be obtained
through this step and used to consider truncating values with a low occurrence probability of
happening and not have a serious impact on the accuracy of the application by reducing in-
teger word-lengths. Once the bounds are determined, An appropriate scaling factor is selected
to achieve a certain number of accurate digits in a computable range without important non-
linearity. Then, a scaling factor calculation is applied to align fixed-point formats using shift
operation.

The FWL determination involves adjusting the fractional bit-width so that the accuracy
loss of the application output is within an acceptable level. FWL optimization is an NP-Hard
problem, which can take up to 25−50% of the whole design time of a DSP system [53]. Optimizing
fractional bit-width causes quantization errors. Quantization errors are relatively small, but
they have the ability to propagate throughout the computer system, reducing progressively the
accuracy of the system output as a result. The FWL determination is an optimization process
for fractional word-lengths to find an appropriate balance between cost and accuracy of the

44

2.3. Fixed-Point Conversion Process

system output. An FWL determination solver may include three ingredients:
— The WL optimization engine is basically an optimization solver to optimize fractional

word-lengths given inputs from other components.
— The cost evaluation provides an estimated cost (e.g., implementation area or energy con-

sumption) given the current fractional word-length configuration of the WLO optimization
engine. Usually, cost models will be used for this component instead of the exact cost ob-
tained through synthesizing all systems.

— The accuracy evaluation engine measures the accuracy loss due to the quantization er-
ror caused by the current fractional configuration. Both analytical and simulation-based
approaches can be considered for accuracy evaluation.

2.3.1 Integer Word Length (IWL) Selection

The first step of the fixed-point conversion method is to determine the integer of each vari-
able in the target application. The objective of this step is to keep integer word-length as short
as possible to reduce the implementation cost, while safeguarding against overflows that severely
decrease application quality. The number of integer bits of each variable depends on its dynamic
range, hence the goal is to estimate the probability density function (PDF) of x that is associated
with the application functions and the input signal distribution. Recent techniques to determine
the dynamic range are classified in Figure 2.5.

Figure 2.5: Techniques for assessing dynamic range are categorized into groups [52]

Critical systems use techniques that guarantee the absence of overflow. Indeed, when a
system cannot accept any computational error, it is necessary to determine a minimum integer

45

Part, Chapter 2 – Theoretical Background and Related Work

word-length that will guarantee the absence of overflow on each variable, which means the
integer of each variable must span the whole range of its feasible values. To ensure that these
systems do not have overflow errors on any variables, approaches based on interval or affine
arithmetic are applied. However, the drawback of those methods is that the dynamic range can
be overestimated by a wide margin, leading to an increase in implementation cost. Statistical
methods for determining boundaries from a collection of simulation results may help avoid
overestimation, but they cannot guarantee that there will not be any overflows [54]. In many
cases, if the likelihood of an overflow occurring is low enough, the program can tolerate this
overflow. It is important to note that, in this scenario, the IWL selection is simply an optimization
trade-off between implementation cost and loss of system quality. The objective of this task is
to make integers as small as feasible, while maintaining an overflow probability of less than the
approved probability. The PDF function of application variables may be determined using a
variety of stochastic approaches [55]. The impact of overflow on application quality may also
be assessed using simulation-based methodologies. As a result of the need for a large number
of samples in order to achieve a high level of accuracy, simulation-based approaches take a long
time to run, even if they are relevant to all systems.

Interval-Based Approaches

Interval-based methods [56, 57] aim to determine the interval of the output by propagating
the input interval towards the output through every operation (addition, subtraction, multipli-
cation, and division) present in the system. The primary benefit of Interval Arithmetic is
that it can easily provide verified boundaries for all potential function outcomes. However, it
has three sorts of issues: the dependence problem, the cancellation problem, and the wrapping
effect. [52]. The dependence problem states that, when a variable appears several times in an
interval calculation, it is considered as a separate variable each time, resulting in the widening of
calculated intervals and making it more challenging to produce tight intervals [58]. The cancel-
lation issue arises when the interval width is not cancelled in the inverse functions. This happens
when an expression evaluates to zero. In this situation, the calculated interval enclosure must
include zero, making it impossible to derive the expression’s sign unless the interval is {0} [58].
The wrapping effect is a result of the fact that the image of an interval vector under a map is
not an interval vector, leading to an overestimation when enclosing the image with an interval
vector [59].

Affine Arithmetic (AA) [60, 61, 62, 63] is another method for improving interval arith-
metic. Unlike interval arithmetic, it keeps track of the relationships between the numbers that
are computed and the numbers that are put in. This makes it resistant to the catastrophic loss of
precision that is often seen in long interval computations [64]. The primary benefit of AA is that

46

2.3. Fixed-Point Conversion Process

it monitors noise symbols and eliminates all first-order uncertainty. AA achieves quadratic con-
vergence in nonlinear systems, but the increase in the amount of noise components in nonlinear
operations makes calculations less precise and more time-consuming [52].

Statistical Approaches

According to statistical techniques, the application is simulated multiple times using stimuli,
and the values of the outputs are recorded. The values are then used to determine the dynamic
range of the application using certain statistics. Several approaches have been studied. The
Monte-Carlo (MC) method generates random test vectors based on input probability density
functions (PDFs), propagates them through the system, and stores the statistics of all signals for
analysis. Statistical properties include mean, variance, higher order statistics, and PDF. From the
obtained statistics, suitable integer WLs are chosen. The MC approach is safe and theoretically
straightforward, making it a common method for evaluating dynamic range. This approach takes
a large number of simulations and is usually slow, particularly when high accuracy findings or
input signals are required [52].

The Latin Hypercube Sampling (LHS) is a variation of MC that divides input signal
PDFs into equiprobable portions and combines samples based on correlations [52]. In [65], LHS
is evaluated in comparison with MC method. For a given number of samples, the accuracy is
almost the same, but the processing speed is 12 times slower.

The Importance Sampling approach is based on the premise that certain simulation
input random values have a greater influence on the parameter under study than others. The
estimator variance may be minimized if these important values are sampled more often. The
accuracy of this technique depends on the system being analyzed, providing certain baseline
conditions are satisfied [52]

Stochastic Approaches

To analyze the data dynamic range, stochastic algorithms compute the PDF of the sys-
tem inputs. The PDF represents the range of all variables, which is derived by propagating
the variability characterisation across the system. The PDF is used to determine the range of
all variables with regard to a coverage probability [54]. In [55], the authors mentioned several
stochastic methods. The Karhunen–Loève expansion (KLE) is used in [66, 67] to stochasti-
cally discretize the input into random variables. It is feasible to derive the matching description
of the output and a good removal of the temporal and spatial correlation using the superposition
property of linear time-invariant systems (LTI), resulting in tighter constraints. Superposition is
no longer possible for non-linear systems and hence the polynomial chaos expansion (PCE)
is employed in [68]. Using PCE arithmetic, non-linear systems may statically propagate input
variability, and the PCE representation for all variables can be derived.

47

Part, Chapter 2 – Theoretical Background and Related Work

2.3.2 Fractional Word Length (FWL) Selection

After the IWL selection procedure, the integer word-length of each variable, i.e., W int
i , was

obtained to ensure that no overflow problem occurs. The remaining part that needs to be deter-
mined in the configuration is the fractional word-lengths, which are optimized through the FWL
selection procedure. The goal of the FWL selection procedure is to reduce implementation costs
by optimizing fractional bit-widths while satisfying the output quality requirements defined in
Equation 2.7. This procedure necessitates the solution of a constrained optimization problem,
also known as the Word Length Optimization (WLO) problem, where the objective function is
the cost function C() and the constraint function is the accuracy function λ(). The solution of
the problem is the fractional configuration that consumes the minimum implementation cost,
while still meeting the quality requirement at the output.

Recent techniques mostly solve WLO using an iterative process that explores different WL
configurations to obtain the appropriate solution. Each iteration, depending on the evaluation
criteria of each algorithm, a WL configuration will be selected and served as the basis for choosing
the next point. The evaluation criteria is usually constructed from a mathematical expression
of cost and/or accuracy given a specific WL configuration. In the optimization problem 2.7,
functions C and λ are responsible for returning the implementation cost and the output quality
for each WL configuration. The process stops when the optimization algorithm can not find any
other better point and will return the best-found solution.

Cost Evaluation

In fact, the cost and accuracy functions are built using estimation models or simulations that
are able to return the values quickly, allowing the WLO process to be executed faster. Indeed,
the implementation cost is precisely obtained just after the system is synthesized on FPGA or
ASIC flow with a specific technology, which requires a long time for optimizing NP-complete
problems such as scheduling and resource binding in the synthesis process. Therefore, a cost
model is reasonable to replace the actual cost to speed up the optimization process. A good cost
model is the one that can reflect relatively accurately the impact of changing the of each signal
on the total cost. Energy, area, latency, and total bit-width are the most frequently utilized cost
models.

Accuracy Evaluation

The reduction of word-lengths represented for signals and operations in an application causes
quantization error. The quantization error is evaluated through an accuracy evaluation. The
goal of accuracy evaluation is to quantify or measure the correctness of a fixed-point solution.

48

2.3. Fixed-Point Conversion Process

The evaluation of accuracy is a measure that determines how well the solution meets the re-
quirements. Many metrics can be used to evaluate the quantization error, such as Bit Error
Rate (BER), which is commonly used to characterize the performance of data channels when
transmitting data between data point stations in telecommunication applications, Signal-to-
Quantization-Noise Ratio (SQNR), which is commonly used to compare the level of a desired
signal to the level of background noise in image/signal processing applications, Peak signal-to-
noise ratio (PSNR), which is the ratio of the greatest feasible signal strength to the power of
corrupting noise that influences its representation, or structural similarity index measure (SSIM),
a method for predicting the perceived quality of digital images.

The accuracy can be estimated via bit-true simulations [69, 56, 70, 71, 72, 73]. The accu-
racy of the fixed-point configuration is statistically evaluated using the output obtained from
simulating the application in both fixed-point and floating-point versions. The fixed-point ver-
sion represents the application with fixed-point variables. The floating-point version represents
the application for a precise execution. The single- or double-precision floating-point versions
are usually used as the output references. Since the floating-point version can be considered as
accurate, any differences between a fixed-point simulation result and a floating-point simulation
result reflect the accuracy of the fixed-point solution. The simulation approaches have the ben-
efit of being simple to use and producing accurate results for any type of system and quality
metrics. However, these approaches do not scale well due to the long simulation time. In large
applications, the number of variables needed to be optimized is high, increasing the number of
iterations required for the solution exploration in the WLO process exponentially. This might
lead to a very long exploration time.

Besides, some techniques use analytical models to estimate the quantization error [74, 51,
75, 76, 77]. The objective of analytical models is to obtain the mathematical expression that
represents the function of quantization noise and fixed-point variables. Then, this function is
used to quickly estimate the quantization error given any fixed-point solutions, which allows
scaling the system better than simulation-based approaches. However, analytical approaches are
limited to linear time-invariant (LTI) systems [78, 76] and differential nonlinear systems [79, 77].

In [80], a hybrid method of analytical and simulation approaches is used simultaneously to
improve the accuracy evaluation. The technique divides the system into smooth and unsmooth
components. For unsmooth blocks, an unsmooth error occurs, which cannot be captured by
Taylor series expansion and has to be evaluated by simulations. For smooth blocks, an analytical
approach can be used to evaluate the quantization error.

49

Part, Chapter 2 – Theoretical Background and Related Work

Optimization Approaches

Recall the WLO problem stated by Equation 2.7, we need to find an optimal set of fractional
word-lengths that is the solution to this equation. The number of variables to be optimized is
N , which is also the number of signals to be represented in the fixed-point datatype in the given
application. Let M be the number of choices for the bit-width of each variable (e.g., from 8
to 32 bits). In real applications, M may be different for each variable depending on the user’s
settings. However, to describe the complexity of the problem simply and intuitively, we consider
M to be the same for all variables. The number of WL configurations to evaluate is NM . This
is known as the multiple word-length assignment (MWLO) paradigm. If you use brute-force
to solve this problem, it is equivalent to evaluating all combinations using simulations. This is
impossible in industrial-sized problems that may contain hundreds to thousands of variables to
be optimized. We take here an example to calculate the worst case scenario to find the optimal
solution for WLO problem with an application including 100 variables. Assume the number
of choices for bit length for a variable is 10 and the time to simulate one configuration is one
second. This simulation time depends on the application complexity and the amount of input
it takes; usually the simulation time for the fixed-point version of an application falls in the
range of seconds. Then, the worst case scenario for finding the optimal configuration is 10010×1
seconds, which is equivalent to 1.16×1015 days. This optimization time is therefore unreasonable.

In the past, some techniques were proposed to reduce the complexity of the WLO problem
by assigning the same word-length format to each variable. This technique is known as uniform
word-length optimization (UWLO). Only a short time is needed to obtain the best solution since
the worst-case scenario is M evaluations. However, the quality of the returned solution is far
from the solution obtained by the MWLO approaches [81]. Therefore, recent techniques mainly
focus on addressing scalability and optimality in MWLO problem.

Recent techniques solve WLO problems either by using analytical models or simulation-based
methods, or a combination of both. Analytical approaches [18, 82, 83, 84] construct the objective
and constraint functions of the WLO problem to be a convex optimization problem, and then
apply convex optimization techniques to directly get the solution. Most of these approaches try
to find a good approximation of the optimal solution (which is however generally unknown).

On the other hand, simulation-based approaches [19, 72, 85, 78, 20] use brute-force (with
some extensions) and iterative search as well as cost-accuracy simulations to obtain the solu-
tion. Recently, some divide-and-conquer-based approaches were proposed to solve the scalability
problem in industrial-size applications, which may contain hundreds to thousands of variables to
be optimized [86, 87]. These approaches cut large problems into smaller problems to reduce opti-
mization complexity. These smaller problems are then optimized using well-researched methods.

50

2.3. Fixed-Point Conversion Process

After obtaining solutions to the smaller problems, the authors use special techniques to combine
these solutions to find a global solution of the original problem. Inspired by a review of the meth-
ods for WLO [52], we divide the methods into three main groups: heuristics, divide-and-conquer
approach and analytical approach.

Brute-force with upper and lower bounds. As mentioned above, evaluating all config-
urations, i.e., the brute-force method, to find the optimal solution is impossible due to very
long execution time. Some methods have improved the application of the brute-force method
by searching for all possible word-length combinations in a narrower space, which reduces the
number of configurations that need to be simulated and thus greatly reduces the search time.
This method is referred to as complete search [88, 89, 72]. The idea of complete search is to ap-
ply lower and upper bounds for all word-lengths to restrict the design search space. The upper
bound is determined by the minimum uniform configuration where all variables are assigned the
same, and this is the minimum to meet the accuracy constraint. The lower bound is selected by
the configuration where each variable is assigned by its minimum WL, i.e., the WL satisfying
the quality target when other variables are set to the highest precision. Indeed, the process of
choosing the minimum WL for each variable is done sequentially and independently. To select
the minimum WL for a given variable, the variables are first assigned by the maximum number
of bits, e.g., 32 bits or 64 bits, thus representing the highest possible precision of each variable.
Then, a sequential reduction of the bit-width by 1 bit for the selected variable is performed
while the highest bit-width is still kept for the other variables. The configuration obtained by
each bit-width reduction is then evaluated to get the accuracy value. This process is carried out
until a minimum WL is obtained for which the configuration is generated, that still satisfies the
accuracy requirement. It is important to note that this method does not guarantee the global
optimal since this point may be missing in the narrowed search space, as proved in [78].

Heuristics. Due to the NP-hard nature of the word-length optimization problem, numerous
optimization strategies are based on greedy algorithms thanks to their simplicity of implementa-
tion and low iteration count. The greedy approach is an iterative search method, which at each
iteration, considers possible non-overlapping solutions and selects the best solution following a
loss function. The chosen solution at each iteration is the basis for selecting the solution at the
next iteration. The algorithm stops when the next solution is not better than the current one
and the current one is considered the best found solution. While the greedy algorithm is a very
efficient method for solving many optimization problems, it is prone to getting stuck in a local
minimum rather than reaching the global solution.

Min+1 bit. This algorithm [72, 85] consists of three steps. The first step is the process of find-
ing the minimum WL for each variable (this process was mentioned above). In the second step,

51

Part, Chapter 2 – Theoretical Background and Related Work

the minimum WL is set for each variable. The configuration that is created by the combination
of minimum WLs is called the starting point of the algorithm. We name this point as minimum
WL configuration (MWLC). The third step is an iterative process to reach the final solution.
At each iteration, there is a competition between different temporary configurations, which are
created by only increasing one variable by one bit. The number of variables corresponds to the
temporary configurations created. At each iteration, the best configuration whose accuracy is
maximum is selected. The algorithm stops when a selected configuration at an iteration satis-
fies the accuracy constraint. This configuration is selected as the best solution. An extension of
this procedure is Min+b bit [90]. In this method, the temporary configuration is created by
increasing one variable by b bit(s), and b is also increased gradually to b = 1, 2, 3, . . . bit(s). If
the accuracy constraint is met, b will be reset to 1 bit.

Max-1 bit. This algorithm [90] starts with the highest precision for all variables. Then, a
competition to reduce variables by one bit is performed; configurations created by reducing one
bit to one variable are evaluated to get the accuracy and cost. The configuration whose accuracy
is maximum is kept. The procedure continues until the accuracy constraint is not met. Some
techniques extend the use of Max-1 with a modified selection policy. The technique in [91] selects
the configuration that produces a maximum cost reduction. In [92], Han et al. use a function
considered as the trade-off between accuracy and cost to select the best configuration at each
iteration.

In [88], an algorithm proposes to start at MWLC and then iteratively increase all variables
by one bit until the accuracy constraint is met. The exploration time of this method is trivial,
but the solution obtained is not good due to the lack of fine search.

Hybrid algorithms. The authors of [90] combine the Min+b bit algorithm and the Max-1
bit algorithm to produce a bi-directional search. Another heuristic algorithm is proposed in [69],
which also uses bi-directional search to find the best solution. This algorithm starts at MWLC,
then all variables are uniformly increased by one bit until the accuracy constraint is satisfied.
Then, the Max-1 bit algorithm is applied to reduce the cost until the accuracy constraint is not
met. A comparison in [90] shows that by combining both increment and decrement procedures
like in [90, 69], the result obtained outperforms the one found by Min+b and Max-1 alone.

Tabu search [20, 93] also uses the bi-direction search strategy to improve the exploration
result. First, the algorithm is initialized at MWLC. Then, a min+1 bit algorithm is used to
improve the accuracy gradually with a trade-off to a minimal cost degradation. The procedure
optimizes the bitwidths until a solution that satisfies the accuracy constraint is found. Finally,
this solution is fine-tuned with Tabu search algorithm. Tabu search algorithm is a combination

52

2.3. Fixed-Point Conversion Process

of Min+1 and Max-1 algorithms that allows to search both directions, ascending and descend-
ing directions, to fine-tune the solution. This procedure uses a Tabu list to skip some explored
variables during the exploration. This algorithm iterates until all variables are registered in the
Tabu list. A variable is registered in the Tabu list when its word-length reaches its maximal
value in the ascending direction or its minimal value in the descending direction. In the as-
cending direction, whenever the accuracy constraint is satisfied, the direction is inverted and
the operator that leads to this accuracy satisfaction is also added into the Tabu list. In the
descending direction, the search direction is inverted when the accuracy is no longer satisfied.

The Greedy Randomised Adaptive Search Procedure (GRASP) [20] combines a bi-directional
search and stochastic optimisation. GRASP is an iterative two-phase procedure. In the construc-
tion phase, the search algorithm (similar to Min+1) randomly selects one of the best neighboring
candidates during gradient descent. Then, a Tabu search is applied to refine the solution found
by the first phase. Tabu allows movements in both directions (increase and decrease by one bit)
and uses a Tabu list to skip some variables from the exploration. These two phases are iterated
and the randomization of the construction phase avoids to stay in local minima. It is worth
noting that, in this method, both cost and accuracy values are used to define the rule to select
the best solution at each iteration during the Tabu search phase.

Divide-and-conquer approaches. Although simple to implement and directly applicable to
all kinds of systems to solve WLO problems, simulation-based heuristics suffer from scalability
issues. For industrial-size applications, which may include many variables, the complexity of
WLO increases exponentially, meaning that the number of required fixed-point simulations also
increases exponentially compared to simple applications. Besides, as mentioned above, the ac-
curacy evaluation based on bit-true fixed-point simulations takes a long time to execute. Hence,
simulation-based heuristics do not scale well in large applications. Recently, some approaches
have been proposed to deal with the scalability problem in WLO. The idea behind those ap-
proaches is to divide the original WLO problem into sub-problems. These sub-problems can be
solved independently using analytical or simulation-based approaches. Then, the solutions of the
sub-problems are combined to find the best solution for the original WLO problem.

Parashar et al. [86] propose a hierarchical approach to solve WLO. They divide the system
into different subsystems, each of which contains only smooth operators or unsmooth operators.
Smooth operators can be treated with an analytical approach, while unsmooth operators are
handled with a simulation-based approach. At the output of each hierarchical block, a optimiza-
tion is performed to minimize the block cost under a noise budget constraint, which is provided
by an optimization procedure at the system level. At the system level, an optimization proce-
dure based on the Min+1 bit algorithm optimizes for the noise budgets of blocks to minimize

53

Part, Chapter 2 – Theoretical Background and Related Work

the system cost under a global accuracy constraint. In each iteration, a competition to reduce
the noise power of one block by δP is performed. This strategy is regarded as acceptable in
terms of simulation time if the number of unsmooth operators is appropriate. However, in the
case of systems with many complex structures or operators (e.g., conditional structures) and/or
sophisticated quality metrics that are not easily constructed analytically, this approach cannot
be easily applied.

Novo et al. [87] propose a divide-and-conquer method to solve WLO for some complex wire-
less applications in practical time. The method separates the system into groups and uses a Data
Flow Graph to model the separated systems. For sub-systems, the authors propose replacing the
use of BER simulations to evaluate the quantization error with the expectation of noise power
because the convergence speed is higher while still ensuring the quality of the result. After that,
a combination step to obtain a global solution for the original system is taken using the Max-1
bit algorithm to choose from 10% of the best solutions from the groups. The approach is used
for the fixed-point refinement of an advanced wireless algorithm, delivering a speedup of almost
nine times over a reference statistical method without compromising the quality of the result.

In Chapter 3, we propose a divide and conquer approach that comes up with an empirical
model to give the noise budgets to sub-systems (kernels). We also indicate some drawbacks of the
recent techniques [86, 87] and compare our approach with them on some experimental results.

Analytical approaches. The optimization problem is an integer programming problem, i.e.,
all variables in the objective and constraint function are integers. Several approaches have been
developed to relax the discrete constraint of each variable, that is, to allow variables to take
non-integer values, and at the same time transform the original problem into an associated
convex relaxation, which can result in a lower bound on the optimal value. The transformed
program can be solved to obtain a fractional optimal solution, i.e., the lower bound, which is
then rounded to obtain an integral feasible solution. It is important to note that the optimal
relaxation solution may be arbitrarily far from the optimal integer program solution.

Chan et al. [18] propose analytical method to solve WLO for linear time-invariant systems
(LTI). The method attempts to relax the integer constraints of word-lengths. The cost and ac-
curacy functions are then analytically modeled as convex functions. The transformed problem is
solved by Lagrange Multipliers to obtain an optimal fractional solution, which is then rounded
to the next largest integers. An extension of the method using Geometric Programming to for-
malize the WLO is presented in [82]. The two methods are limited to LTI non-recursive systems
and noise power as the accuracy metric. For other systems and more complex accuracy metrics,
the method gets difficult to apply.

54

2.4. Conclusions

Parashar et al. propose a method [84] that relaxes the integrality constraint of word-lengths
to solve the problem in the continuous solution space. The authors use noise power to build
the accuracy constraint function and the energy consumption of operators to construct the cost
function. The two functions are proved to be convex. The problem can be solved by solvers to
get optimal noise power for each operator. Finally, a conversion step from the optimal noise
powers to fixed-point word-lengths is performed using a fine-tuning procedure.

2.4 Conclusions

In this chapter, we examine and categorize current approximation computing methods ac-
cording to their design complexity. We first present the Floating-Point (FlP) and Fixed-Point
(FxP) data formats. We then detail the most recent solutions to solve the Word-Length Opti-
mization (WLO) problem. The main optimization strategies are evaluated and analyzed, along
with the benefits and drawbacks of the current strategies. This chapter also discusses the ap-
proaches used to simulate the cost/accuracy trade-offs during WLO.

For large applications involving many variables or different system properties (e.g., linear/non-
linear, time-invariant/time-variant, deterministic/stochastic), there are some issues with current
WLO approaches. WLO can be quickly handled analytically, but these methods are only effec-
tive mostly for linear and time-invariant (LTI) systems (with some extensions). On the other
hand, approaches based on simulation are applicable to all systems and quality metrics. How-
ever, since the number of simulations grows significantly as the number of variables increases
and the simulation time also increases with the size of the application, these approaches do not
scale well in large applications with numerous variables.

In this thesis, we propose two contributions that improve the scalability of the WLO prob-
lem. The first contribution described in Chapter 3 proposes a noise budgeting methodology that
separates the original problem into independent smaller problems by giving them noise budgets.
The noise budgets represent the minimum accuracy constraints that sub-problems have to meet.
Through empirically generated models, we must capture the interplay between approximations
made to a kernel with its cost and approximations applied to other kernels. The generated mod-
els are then utilized to estimate the optimal noise budget allocation. To further enhance the
scalability of simulation-based techniques, the second contribution presents a hybrid algorithm
that combines Bayesian Optimization (BO) with local search, which is described in Chapter 4.
The BO method may rapidly reduce the design space and identify a solution from which the
local search algorithm can fine-tune the cost, resulting in a substantial decrease in exploration

55

Part, Chapter 2 – Theoretical Background and Related Work

time.

Another aspect that is lacking in the current state of the art is the investigation of the
resource-constrained WLO problem. In Chapter 5, we identify issues with the present WLO ap-
proaches for handling WLO problems with cost constraints. Then, we give an effective Bayesian
Optimization based technique for maximizing computation quality under an energy cost budget.

56

BIBLIOGRAPHY

[1] “Approximate computing,” https://en.wikipedia.org/wiki/Approximate_computing, ac-
cessed: 2022-05-30.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and characteri-
zation of inherent application resilience for approximate computing,” in Proceedings of the
50th Annual Design Automation Conference, 2013, pp. 1–9.

[3] “Oh, that’s near enough,” https://www.economist.com/technology-quarterly/2012/06/02/
oh-thats-near-enough, accessed: 2022-02-11.

[4] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, and J. Henkel, “Cross-layer approxi-
mate computing: From logic to architectures,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1–6.

[5] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-conscious pro-
gramming using controlled approximation,” in Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2010, pp. 198–209.

[6] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman, “Enerj:
Approximate data types for safe and general low-power computation,” ACM SIGPLAN
Notices, vol. 46, no. 6, pp. 164–174, 2011.

[7] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing performance
vs. accuracy trade-offs with loop perforation,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineering, 2011,
pp. 124–134.

[8] “Task skipping,” https://en.wikipedia.org/wiki/Task_skipping, accessed: 2022-06-04.

[9] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen, “Approxhadoop: Bringing ap-
proximations to mapreduce frameworks,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems,
2015, pp. 383–397.

[10] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu, “Approxma: Approximate memory
access for dynamic precision scaling,” in Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, 2015, pp. 337–342.

57

https://en.wikipedia.org/wiki/Approximate_computing
https://www.economist.com/technology-quarterly/2012/06/02/oh-thats-near-enough
https://www.economist.com/technology-quarterly/2012/06/02/oh-thats-near-enough
https://en.wikipedia.org/wiki/Task_skipping

Part, BIBLIOGRAPHY

[11] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-thinking parallel soft-
ware and hardware,” in Design Automation Conference. IEEE, 2010, pp. 865–870.

[12] Z. Wang, C. Huang, H. Kim, W. Li, and Q. Zhu, “Cross-layer adaptation with safety-
assured proactive task job skipping,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 20, no. 5s, pp. 1–25, 2021.

[13] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe, “Lan-
guage and compiler support for auto-tuning variable-accuracy algorithms,” in International
Symposium on Code Generation and Optimization (CGO 2011). IEEE, 2011, pp. 85–96.

[14] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for disciplined
approximate programming,” in Proceedings of the seventeenth international conference on
Architectural Support for Programming Languages and Operating Systems, 2012, pp. 301–
312.

[15] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving dram refresh-
power through critical data partitioning,” in Proceedings of the sixteenth international con-
ference on Architectural support for programming languages and operating systems, 2011,
pp. 213–224.

[16] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-state mem-
ories,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 3, pp. 1–23, 2014.

[17] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceleration for general-
purpose approximate programs,” in 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE, 2012, pp. 449–460.

[18] S.-C. Chan and K. M. Tsui, “Wordlength determination algorithms for hardware imple-
mentation of linear time invariant systems with prescribed output accuracy,” in IEEE Int.
Symp. on Circ. and Syst. (ISCAS), 2005.

[19] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,
“Accuracy-guaranteed bit-width optimization,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 1990–2000, 2006.

[20] H.-N. Nguyen, D. Ménard, and O. Sentieys, “Novel algorithms for word-length optimiza-
tion,” in 19th European Signal Processing Conf. IEEE, 2011, pp. 1944–1948.

[21] “bfloat16 floating-point format,” https://en.wikipedia.org/wiki/Bfloat16_floating-point_
format, accessed: 2022-05-30.

58

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

BIBLIOGRAPHY

[22] “Brain floating-point format (bfloat16),” https://en.wikichip.org/wiki/brain_
floating-point_format, accessed: 2022-05-30.

[23] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A small-
footprint high-throughput accelerator for ubiquitous machine-learning,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 1, pp. 269–284, 2014.

[24] M. Brandalero, A. C. S. Beck, L. Carro, and M. Shafique, “Approximate on-the-fly
coarse-grained reconfigurable acceleration for general-purpose applications,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[25] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique, “Px-cgra: Polymor-
phic approximate coarse-grained reconfigurable architecture,” in 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 413–418.

[26] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An approximate computing
framework for artificial neural network,” in 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2015, pp. 701–706.

[27] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired imprecise com-
putational blocks for efficient vlsi implementation of soft-computing applications,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 4, pp. 850–862, 2009.

[28] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “Impact: Imprecise
adders for low-power approximate computing,” in IEEE/ACM International Symposium
on Low Power Electronics and Design. IEEE, 2011, pp. 409–414.

[29] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal process-
ing using approximate adders,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 1, pp. 124–137, 2012.

[30] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel, “Probabilistic error modeling
for approximate adders,” IEEE Transactions on Computers, vol. 66, no. 3, pp. 515–530,
2016.

[31] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of approximate and
probabilistic adders,” IEEE Transactions on computers, vol. 62, no. 9, pp. 1760–1771, 2012.

[32] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han, and F. Lombardi, “Design of approximate
radix-4 booth multipliers for error-tolerant computing,” IEEE Transactions on Computers,
vol. 66, no. 8, pp. 1435–1441, 2017.

59

https://en.wikichip.org/wiki/brain_floating-point_format
https://en.wikichip.org/wiki/brain_floating-point_format

Part, BIBLIOGRAPHY

[33] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K. K. Parhi, “Design of low-error fixed-width
modified booth multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 5, pp. 522–531, 2004.

[34] J.-P. Wang, S.-R. Kuang, and S.-C. Liang, “High-accuracy fixed-width modified booth
multipliers for lossy applications,” IEEE transactions on very large scale integration (VLSI)
systems, vol. 19, no. 1, pp. 52–60, 2009.

[35] Y.-H. Chen, C.-Y. Li, and T.-Y. Chang, “Area-effective and power-efficient fixed-width
booth multipliers using generalized probabilistic estimation bias,” IEEE Journal on Emerg-
ing and selected topics in Circuits and Systems, vol. 1, no. 3, pp. 277–288, 2011.

[36] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, and J.-N. Chen, “A probabilistic estimation bias circuit
for fixed-width booth multiplier and its dct applications,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 58, no. 4, pp. 215–219, 2011.

[37] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive conditional-probability estimator
for fixed-width booth multipliers,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 59, no. 3, pp. 594–603, 2011.

[38] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power with an under-
designed multiplier architecture,” in 2011 24th Internatioal Conference on VLSI Design.
IEEE, 2011, pp. 346–351.

[39] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and analysis of approximate
compressors for multiplication,” IEEE Transactions on Computers, vol. 64, no. 4, pp. 984–
994, 2014.

[40] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance approximate multiplier
with configurable partial error recovery,” in 2014 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2014, pp. 1–4.

[41] S. Hashemi, R. I. Bahar, and S. Reda, “Drum: A dynamic range unbiased multiplier for
approximate applications,” in 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2015, pp. 418–425.

[42] R. Nath and D. Tullsen, “The crisp performance model for dynamic voltage and frequency
scaling in a gpgpu,” in Proceedings of the 48th international symposium on microarchitec-
ture, 2015, pp. 281–293.

[43] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis, and B. M. Al-Hashimi,
“Adaptive energy minimization of embedded heterogeneous systems using regression-based

60

BIBLIOGRAPHY

learning,” in 2015 25th international workshop on power and timing modeling, optimization
and simulation (PATMOS). IEEE, 2015, pp. 103–110.

[44] R. Jain, P. R. Panda, and S. Subramoney, “Machine learned machines: Adaptive co-
optimization of caches, cores, and on-chip network,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2016, pp. 253–256.

[45] G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for multi-tasking systems
using online learning,” in Proceedings of the 2007 international symposium on Low power
electronics and design (ISLPED’07). IEEE, 2007, pp. 207–212.

[46] H. Shen, J. Lu, and Q. Qiu, “Learning based dvfs for simultaneous temperature, perfor-
mance and energy management,” in Thirteenth International Symposium on Quality Elec-
tronic Design (ISQED). IEEE, 2012, pp. 747–754.

[47] M. Clark, A. Kodi, R. Bunescu, and A. Louri, “Lead: Learning-enabled energy-aware dy-
namic voltage/frequency scaling in nocs,” in Proceedings of the 55th Annual Design Au-
tomation Conference, 2018, pp. 1–6.

[48] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–70, 2008.

[49] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond,
N. Revol, D. Stehlé, S. Torres et al., Handbook of floating-point arithmetic. Springer, 2018,
vol. 1.

[50] “Cmu common lisp user’s manual,” http://users.umiacs.umd.edu/~resnik/ling645_sp2002/
cmu_manual/node19.html, accessed: 2022-02-22.

[51] D. Menard, R. Rocher, and O. Sentieys, “Analytical fixed-point accuracy evaluation in linear
time-invariant systems,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 55, no. 10, pp. 3197–3208, 2008.

[52] D. Menard, G. Caffarena, J. A. Lopez, D. Novo, and O. Sentieys, “Fixed-point refinement
of digital signal processing systems,” 2019.

[53] M. Clark, M. Mulligan, D. Jackson, and D. Linebarger, “Accelerating fixed-point design for
MB-OFDM UWB systems,” https://www.design-reuse.com/articles/9559/, 2005.

[54] R. Nehmeh, “Quality evaluation in fixed-point systems with selective simulation,” Ph.D.
dissertation, Rennes, INSA, 2017.

[55] R. Nehmeh, D. Menard, E. Nogues, A. Banciu, T. Michel, and R. Rocher, “Fast integer
word-length optimization for fixed-point systems,” Journal of Signal Processing Systems,
vol. 85, no. 1, pp. 113–128, 2016.

61

http://users.umiacs.umd.edu/~resnik/ling645_sp2002/cmu_manual/node19.html
http://users.umiacs.umd.edu/~resnik/ling645_sp2002/cmu_manual/node19.html
https://www.design-reuse.com/articles/9559/

Part, BIBLIOGRAPHY

[56] H. Keding, M. Willems, M. Coors, and H. Meyr, “Fridge: a fixed-point design and simulation
environment,” in Proceedings Design, Automation and Test in Europe. IEEE, 1998, pp.
429–435.

[57] M. Willems, V. Bursgens, T. Grotker, and H. Meyr, “Fridge: An interactive code generation
environment for hw/sw codesign,” in 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1. IEEE, 1997, pp. 287–290.

[58] H. Brönnimann, C. Burnikel, and S. Pion, “Interval arithmetic yields efficient dynamic
filters for computational geometry,” Discrete Applied Mathematics, vol. 109, no. 1-2, pp.
25–47, 2001.

[59] R. B. Kearfott, “Interval computations: Introduction, uses, and resources,” Euromath Bul-
letin, vol. 2, no. 1, pp. 95–112, 1996.

[60] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, and Y. Zou, “Evaluation of static
analysis techniques for fixed-point precision optimization,” in 2009 17th IEEE Symposium
on Field Programmable Custom Computing Machines. IEEE, 2009, pp. 231–234.

[61] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen, “Toward efficient static analysis of
finite-precision effects in dsp applications via affine arithmetic modeling,” in Proceedings of
the 40th annual Design Automation Conference, 2003, pp. 496–501.

[62] L. H. De Figueiredo and J. Stolfi, “Affine arithmetic: concepts and applications,” Numerical
Algorithms, vol. 37, no. 1, pp. 147–158, 2004.

[63] S. M. Rump and M. Kashiwagi, “Implementation and improvements of affine arithmetic,”
Nonlinear Theory and Its Applications, IEICE, vol. 6, no. 3, pp. 341–359, 2015.

[64] J. Stolfi, M. Andrade, J. Comba, and R. Van Iwaarden, “Affine arithmetic: a correlation-
sensitive variant of interval arithmetic,” Web document, 1994.

[65] C. N. Zeeb, P. J. Burns, and F. Collins, “A comparison of failure probability estimates by
monte carlo sampling and latin hypercube sampling,” Sandia National Laboratories, 1998.

[66] B. Wu, J. Zhu, and F. N. Najm, “An analytical approach for dynamic range estimation,”
in Proceedings of the 41st annual Design Automation Conference, 2004, pp. 472–477.

[67] A. Banciu, E. Casseau, D. Menard, and T. Michel, “Stochastic modeling for floating-point
to fixed-point conversion,” in 2011 IEEE Workshop on Signal Processing Systems (SiPS).
IEEE, 2011, pp. 180–185.

62

BIBLIOGRAPHY

[68] B. Wu, J. Zhu, and F. N. Najm, “Dynamic range estimation for nonlinear systems,” in
IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004.
IEEE, 2004, pp. 660–667.

[69] W. Sung and K.-I. Kum, “Simulation-based word-length optimization method for fixed-
point digital signal processing systems,” IEEE transactions on Signal Processing, vol. 43,
no. 12, pp. 3087–3090, 1995.

[70] K.-I. Kum and W. Sung, “Word-length optimization for high-level synthesis of digital sig-
nal processing systems,” in 1998 IEEE Workshop on Signal Processing Systems. SIPS 98.
Design and Implementation (Cat. No. 98TH8374). IEEE, 1998, pp. 569–578.

[71] S. Kim and W. Sung, “Fixed-point simulation utility for c and c++ based digital signal
processing programs,” in Proceedings of 1994 28th Asilomar Conference on Signals, Systems
and Computers, vol. 1. IEEE, 1994, pp. 162–166.

[72] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An automatic word length deter-
mination method,” in ISCAS 2001. The 2001 IEEE International Symposium on Circuits
and Systems (Cat. No. 01CH37196), vol. 5. IEEE, 2001, pp. 53–56.

[73] J. Hormigo and G. Caffarena, “Fpga acceleration of bit-true simulations for word-length
optimization,” in 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). IEEE,
2021, pp. 119–122.

[74] D. Menard and O. Sentieys, “Automatic evaluation of the accuracy of fixed-point algo-
rithms,” in Proceedings 2002 Design, Automation and Test in Europe Conference and Ex-
hibition. IEEE, 2002, pp. 529–535.

[75] R. Rocher, D. Menard, P. Scalart, and O. Sentieys, “Analytical approach for numerical
accuracy estimation of fixed-point systems based on smooth operations,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2326–2339, 2012.

[76] J. A. López, G. Caffarena, C. Carreras, and O. Nieto-Taladriz, “Fast and accurate com-
putation of the round-off noise of linear time-invariant systems,” IET Circuits, Devices &
Systems, vol. 2, no. 4, pp. 393–408, 2008.

[77] G. Caffarena, C. Carreras, J. A. López, and Á. Fernández, “Sqnr estimation of fixed-point
dsp algorithms,” EURASIP Journal on Advances in Signal Processing, vol. 2010, pp. 1–12,
2010.

[78] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Wordlength optimization for linear digi-
tal signal processing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 22, no. 10, pp. 1432–1442, 2003.

63

Part, BIBLIOGRAPHY

[79] D. Menard, R. Rocher, P. Scalart, and O. Sentieys, “Automatic sqnr determination in
non-linear and non-recursive fixed-point systems,” in 2004 12th European Signal Processing
Conference. IEEE, 2004, pp. 1349–1352.

[80] K. N. Parashar, D. Menard, and O. Sentieys, “Accelerated performance evaluation of fixed-
point systems with un-smooth operations,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 33, no. 4, pp. 599–612, 2014.

[81] G. C. Fernández, “Combined word-length allocation and high-level synthesis of digital signal
processing circuits,” Ph.D. dissertation, Universidad Politécnica de Madrid, 2008.

[82] S.-C. Chan and K. M. Tsui, “Wordlength optimization of linear time-invariant systems with
multiple outputs using geometric programming,” IEEE Trans. on Circ. and Syst., vol. 54,
no. 4, pp. 845–854, 2007.

[83] P. D. Fiore, “Efficient approximate wordlength optimization,” IEEE Trans. on Computers,
vol. 57, no. 11, pp. 1561–1570, 2008.

[84] K. N. Parashar, D. Menard, and O. Sentieys, “A polynomial time algorithm for solving the
word-length optimization problem,” in IEEE/ACM Int. Conf. on Computer-Aided Design
(ICCAD), 2013, pp. 638–645.

[85] K. Han, I. Eo, K. Kim, and H. Cho, “Numerical word-length optimization for cdma demod-
ulator,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 4, 2001, pp. 290–293.

[86] K. Parashar, R. Rocher, D. Menard, and O. Sentieys, “A hierarchical methodology for
word-length optimization of signal processing systems,” in 23rd Int. Conf. on VLSI Design
(VLSID), 2010, pp. 318–323.

[87] D. Novo, I. Tzimi, U. Ahmad, P. Ienne, and F. Catthoor, “Cracking the complexity of fixed-
point refinement in complex wireless systems,” in IEEE Workshop on Signal Processing
Systems (SiPS), 2013, pp. 18–23.

[88] W. Sung and K.-I. Kum, “Word-length determination and scaling software for a signal flow
block diagram,” in Proceedings of ICASSP’94. IEEE International Conference on Acoustics,
Speech and Signal Processing, vol. 2. IEEE, 1994, pp. II–457.

[89] K. Han and B. L. Evans, “Optimum wordlength search using sensitivity information,”
EURASIP Journal on Advances in Signal Processing, vol. 2006, pp. 1–14, 2006.

[90] M.-A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word length opti-
mization procedures,” in 2002 IEEE International Symposium on Circuits and Systems.
Proceedings (Cat. No. 02CH37353), vol. 2. IEEE, 2002, pp. II–II.

64

BIBLIOGRAPHY

[91] H. Choi and W. Burleson, “Search-based wordlength optimization for vlsi/dsp synthesis,” in
Proceedings of 1994 IEEE Workshop on VLSI Signal Processing. IEEE, 1994, pp. 198–207.

[92] K. Han, B. L. Evans, and E. E. Swartzlander, “Data wordlength reduction for low-power
signal processing software,” in IEEE Workshop onSignal Processing Systems, 2004. SIPS
2004. IEEE, 2004, pp. 343–348.

[93] D. Menard, N. Herve, O. Sentieys, and H.-N. Nguyen, “High-level synthesis under fixed-
point accuracy constraint,” Journal of Electrical and Computer Engineering, vol. 2012,
2012.

65

Chapter 3

TOWARDS GENERIC AND SCALABLE

WORD-LENGTH OPTIMIZATION

In this chapter, we present a method to improve the scalability of Word-Length Optimization
(WLO) for large applications, which also uses complex quality metrics such as Structural Sim-
ilarity (SSIM). The input application is decomposed into smaller kernels to avoid uncontrolled
explosion of the exploration time. The main challenge addressed in this chapter is how to allo-
cate noise budgets to each kernel, which is known as noise budgeting. This requires capturing
the interactions across kernels. The main idea is to characterize the impact of approximating
each kernel on accuracy/cost through simulation and regression. We evaluate our approach on
two application structures. One is made up of smaller units known as kernels that are orga-
nized in a sequential order, whereas the second is made up of forked and serialized kernels. Our
approach improves the scalability while finding better solutions for applications such as Image
Signal Processor pipeline and Stereo Matching.

3.1 Introduction

Fixed-point arithmetic is widely used for implementing Digital Signal Processing (DSP) sys-
tems on electronic devices. Since initial specifications are often written using floating-point arith-
metic, conversion to fixed-point is a recurring step in hardware design. The primary objective
of this conversion is to minimize the cost (energy and/or area) while maintaining an acceptable
level of quality at the output. This process, called Word-Length Optimization (WLO), is a time
consuming process taking up to 25− 50% of design time [1].

In WLO, each variable/operator may be assigned a different fixed-point encoding, which
means that the design space grows exponentially as the number of variables increases. This is
especially true when targeting hardware accelerators implemented in FPGA or ASIC. Thus,
most approaches for WLO involve heuristic search algorithms [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. A key
component in such search algorithms is the evaluation of output quality. There are two broad
evaluation categories: simulations and analytical models. Simulation-based methods suffer from
scalability issues as the number of required simulations, as well as the simulation time, increase

67

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

drastically with the size of the application [2, 3, 5, 6, 8, 9, 10]. Methods based on analytical
models scale well, but are limited by the ability to construct adequate models. Existing tech-
niques are limited to modeling noise power metrics of Linear and Time-Invariant (LTI) systems
(with some extensions) [4, 7, 11].

One technique to address scalability issues, called noise budgeting, decomposes an application
into smaller chunks, or kernels, and assigns separate quality constraints, called noise budgets.
The smaller sub-problems can be explored much faster, at the cost of ignoring possible inter-
kernel interactions. The allocation of noise budgets plays a critical role in this technique, as it
is the only parameter that indirectly captures the inter-kernel interactions. However, there is
still little work on how to find good allocations of the noise budgets. An existing approach [11]
makes heavy use of analytical models, making it difficult to support quality metrics other than
noise power and its variants. More complex quality metrics, such as Structual Similarily (SSIM)
used for images or Objective Degradation Grade (ODG) used for audio, do not directly correlate
with noise power, and are much harder to model.

In this chapter, we propose a WLO method to address both scalability (in simulations) and
generality (in analytical models). The key in our work is capturing the interactions between
approximations applied to a kernel with its cost and approximations applied to other kernels
through empirically constructed models. Since the models are constructed through simulations,
our approach can be used for any quality metric. The constructed models are then used to pre-
dict the best allocation of noise budgets. We show that the predicted noise budgets give better
solutions than those found by WLO on the whole program (without decomposition) and that it
can be used for both Peak Signal to Noise Ratio (PSNR) and SSIM.

The rest of the chapter is organized as follows. We introduce necessary background and
discuss related work in Section 3.2. We formulate our problem, give an overview of our approach
in Section 3.3, and describe model construction in Section 3.4. We evaluate our approach in
Section 3.5, and conclude in Section 3.6.

3.2 Background and related work

3.2.1 Word-Length Optimization

Fixed-point representation contains two parts: integer word-lengths and fractional word-
lengths (WL). The integer WL is closely related to dynamic range; the fractional WL controls
the precision. In this work, we focus on the WLO for fractional WL, which is the time consuming
part of the exploration. The main objective of WLO is to determine a WL configuration that

68

3.2. Background and related work

minimizes cost while satisfying quality constraints.

Let W denote a WL configuration. Then, the WLO problem is formulated as

minC(W) Subject to λ(W) ≥ λobj (3.1)

where C and λ are functions that express cost and quality, respectively, and the target quality
is given as λobj . How the functions C and λ are realized varies across work, ranging from sim-
ulations to analytical models.

A direct approach to obtain the optimal solution is exhaustive search [12]. However, it is
only feasible for small kernels due to exponential growth in possible WL configurations as the
number of variables increases. Many approaches [2, 9, 3, 8, 5, 6, 10] were proposed based on iter-
ative search using heuristics to address WLO. Most approaches use variants of gradient decent
algorithms that evaluate neighboring solutions, typically constructed by changing one (or a few)
variables in the current solution, at each iteration. Since the number of neighboring solutions
increases as the number of variables increases, the number of solutions that must be evaluated
during the iterative search quickly increases. This is the main reason why simulation-based ap-
proaches suffer from scalability issues.

Some approaches construct analytical models of noise power [4, 7, 11] to avoid costly sim-
ulations during the exploration. These analytical approaches take advantage of a property of
errors under linear systems that their propagation do not interfere with each other. Hence, the
error introduced at a noise source may be propagated through the system independently and
aggregated afterwards. Thus, these approaches cannot be directly extended to handle general
programs. Moreover, complex quality metrics, such as SSIM, do not have a direct relationship
with noise power.

3.2.2 Noise Budgeting

Noise budgeting [13, 14, 11] is a technique to address the scalability of WLO. It decomposes
a problem into smaller sub-problems that takes less time to solve, and combines the solutions
to sub-problems to form the final solution.

Consider an application that is decomposed into N kernels. The WLO is now formulated as

min
N∑
i=1
C(Wi) Subject to λ(Wi) ≥ λi, (3.2)

69

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

where the WL configuration and the constraint (noise budget) for the i-th kernel are denoted
as Wi and λi, respectively. The above decomposition gives N smaller sub-problems (subsets of
the above for each i may be solved independently), limiting the explosion in number of config-
urations to explore.

How the quality of each kernel λ(Wi) is computed, may depend on the approach. In our
work, we define the quality of a kernel considered in isolation as the quality of the application
output when all other kernels are not approximated (i.e., computed with floating-point).

The main challenge in noise budgeting is in the allocation of the budgets. Decomposition into
sub-problems makes it impossible to capture the possible interactions spanning multiple kernels.
For example, errors introduced at a kernel may be masked (or amplified) at a later kernel, which
affects how much loss in quality in the former kernel is tolerated. Moreover, such interactions
make it difficult to tell if the solutions to the sub-problems using noise budgets would satisfy
the constraint on application output when the individual solutions are combined.

Parashar et al. [11] use analytical models to capture the inter-kernel interactions, and solve
problem (3.2) for the optimal allocations of noise budgets. However, this approach cannot be
easily extended to general programs and/or sophisticated quality metrics due to the difficulty
of constructing analytical models as discussed in Section 3.2.1.

Another body of work uses similar decomposition into sub-problems, but does not allocate
noise budgets [13, 14]. In these work, local WLO is first performed for each kernel to identify
designs that expose different quality-cost trade-off. Then, the combinations of the local solutions
are explored to find the global solution. The main limitation of this approach is that the final
solution space is restricted by the initial local WLO for the kernels. The number of design points
available at each kernel is proportional to the amount of time spent on local WLO, and it is
difficult to know a priori if the “right” design for the global combination has been found. Thus,
there is a risk of missing important designs (when local search is too coarse) or having scalability
issues beyond more than a few kernels (when local search is too fine). Our approach addresses
these limitations by allocating the noise budgets using models constructed after a handful of
local WLOs.

3.3 Approach Overview

Recall the decomposed WLO problem in (3.2). We are interested in modeling the following
functions:

— Ĉi(λi): Cost of kernel Ki as a function of the quality constraint at its output.

70

3.3. Approach Overview

— λ̂(λ1, · · · ,λN): Application output quality as a function of quality constraints at each
kernel.

These functions enable the optimal choice of noise budgets to be formulated as:

min
N∑
i=1
Ĉi(λi) Subject to λ̂(λ1, · · · ,λN) ≥ λobj (3.3)

The functions Ĉi model the impact of approximating each kernel Ki to cost. This allows us to
identify the kernel that gives best savings in cost for some loss in quality. However, how the
individual approximations in the kernels interact must be taken into account to determine the
impact on the application output. The function λ̂ models this behavior to optimize the budget
allocation.

Our approach empirically constructs the functions Ĉi and λ̂ to obtain optimal allocation of
noise budgets as described above. The overview of our approach is as follows:

1. For each kernel Ki, perform a few WLOs with different quality constraints. The Pareto-
optimal designs found by these explorations are used as data points to construct the models
(Ĉi).

2. Run simulations for combinations of the designs used above to evaluate the accuracy of
combined solutions. These simulations provide the data to construct the model of inter-
kernel interactions (λ̂).

3. Solve the equation 3.3 for noise budgets.
4. For each kernel Ki, perform a single WLO with the obtained noise budgets. The result of

these local WLOs are combined to obtain an initial solution.

One significant advantage of the proposed method is that it is parametric to the WLO al-
gorithm, and how the cost is evaluated. The choice of WLO algorithms strongly influences the
quality of designs found; the Pareto frontier is only among the designs explored and is poten-
tially far from the true optimal. Similarly, the cost models used influence the design space and
how efficiently an algorithm can explore this space. Thus, the constructed models are specialized
for designs that can be found by the given combination of cost model and WLO algorithm. If
another model/algorithm is to be used, a separate set of models must be constructed.

The approach is presented in more detail in Algorithm 1. The output of the algorithm is
the appropriate quality constraints, λ1,λ2, · · · ,λN . The algorithm contains two procedures,
GetModel and SolveOpt. The procedure GetModel is called to obtain the cost functions

71

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

of the quality constraints, Ĉi(λi), and the quality output function of the quality constraints,
λ̂(λ1, · · · ,λN). The procedure SolveOpt constructs and solves the constrained optimization
problem to obtain the appropriate quality constraints. The parameter N is the number of kernels
in the application. An array κ contains m quality targets, κ1, κ2, · · · , κm, which are used for
the heuristic search to explore the cost and quality data samples to each kernel.

Algorithm 1 Find Bλ = [λ1,λ2, · · · ,λN]
1: Input
2: N Number of kernels
3: m Number of quality targets
4: κ = [κ1, κ2, · · · , κm]
5: Output
6: Bλ Quality constraint array
7: procedure [Ĉi(Bλ), λ̂(Bλ)]=GetModel(N , m, κ)

. Data collection
8: for i← 1 to N do
9: Ti ← ∅

10: for j ← 1 to m do
11: Ti = Ti∪ getAllSols(κj ,Ki)
12: end for
13: end for

. cost function of the application
14: Ĉi(Bλ)← 0
15: for i← 1 to N do
16: Oi = getSolsOnPareto(Ti)
17: C(λi) = getParetoFront(Oi)
18: C(Bλ) = C(Bλ) +C(λi)
19: end for

. quality function of the application
20: λ̂(Bλ) = getCombination(O)
21: end procedure
22: procedure Bλ=SolveOpt(Ĉi(Bλ), λ̂(Bλ),λobj)
23: opt = buildConstrainedOptProb(Ĉi(Bλ), λ̂(Bλ),λobj)
24: Bλ = solve(opt)
25: end procedure

In the procedure GetModel, the data collection step is firstly performed to each kernel (lines
8-13). We define an array T = [T1, T2, · · · , TN] consisting of N elements corresponding to the N
kernels. Each element, Ti, contains all solutions for an individual kernel that is found through
the initial exploration targeting m quality targets. The function getAllSols is responsible for
performing the heuristic search algorithm and storing all considered solutions in the exploration

72

3.4. Model Construction

process (line 11).
The function getSolsOnPareto is called to obtain and store x% of the Pareto frontier in Oi

(line 16). The function getParetoFront is invoked with the Pareto-optimal points in Oi served
as the input; Pareto-front curve is built based on a regression approach and considered as
Ĉi(λi) of each kernel (line 17). Afterwards, because of the independent nature in cost functions,
the cost function of entire application, Ĉi(Bλ), is obtained by summing up all individual cost
functions Ĉi(λi). The quality function of the application λ̂(Bλ) is constructed through function
getCombination which combines pareto-optimal points of one kernel to those of others (line 20).
The combined quality points are then measured to obtain the relation among quality contribution
from individual kernels to the application output. A multiple-dimensional regression is then
applied to get the quality function of the application.

In the procedure SolveOpt, since two functions, Ĉi(Bλ) and λ̂(Bλ), were constructed,
the function buildConstrainedOptProb is invoked to establish an optimization problem with a
quality constraint λobj (line 23). The problem can be solved by existing solvers to obtain the
appropriate quality constraints Bλ = [λ1,λ2, · · · ,λN].

As an example, we can illustrate the previous paragraphs with the Image Signal Processor
(ISP) application detailed in Section 3.5. ISP containsN = 4 kernels: NLM, Demosaic, GC and
Unsharp. m defines the number of accuracy targets for simulations corresponding to each kernel.
An example with the kernel Demosaic is given in Figure 3.1 on page 74, where the solutions
are explored by TABU search for m = 3 SSIM quality targets: 0.91, 0.95 and 0.99. Then,
ĈDemosaic(λDemosaic) is constructed by determining a Pareto-front curve from the data points
stored in TDemosaic (lines 14-19).

3.4 Model Construction

In this section, we describe how we construct the models, which is the core of our approach.
We first present how the data points are collected, followed by a description of polynomial fitting
we use to construct models.

3.4.1 Data Points for Cost Function (Ĉ)

For each kernel Ki, a model of its cost as a function of target quality (Ĉi) is constructed.
The data points used to construct these models are collected by performing WLO of the kernel
using different target quality constraints. Among the designs explored by the WLO runs, we use
only those in the Pareto-frontier. This is because we are interested in the best designs (for each
accuracy) found by the WLO algorithm in use.

73

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

It is necessary to perform multiple instances of WLO, especially when the algorithm is not
a greedy search. This is because the designs near the target quality will be explored in detail,
finding much better designs only for the region of interest. Figure 3.1 shows the designs explored
during three WLO runs targeting different quality constraints with one of the kernels from our
benchmark detailed in Section 5.5. In these explorations, we used Tabu search [10], which first
performs greedy gradient descent to reach the target quality, followed by local search to minimize
cost. It is clearly visible in the figure that the local search significantly reduces the cost without
affecting quality. Thus, it is important that we run multiple instances of WLO to gather useful
data points to accurately model the relationship between quality constraint and cost.

0.8 0.85 0.9 0.95 1

SSIM

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 C

o
s
t

Demosaic 0.91
Demosaic 0.95
Demosaic 0.99
Demosaic 0.91 (Pareto-Optimal)
Demosaic 0.95 (Pareto-Optimal)
Demosaic 0.99 (Pareto-Optimal)

Figure 3.1: All explored solutions of three WLO runs for a kernel (Demosaic) in our benchmark.
The number in the legend indicates the quality constraint (SSIM) targeted for each run. The
Pareto-optimal points (within each WLO run) are emphasized in the plot. More details about
the benchmark and the cost are in Section 5.5.

The design space is explored using three target quality constraints to collect the data points.
Given a target quality constraint λobj (for the original problem), and the quality without ap-
proximation λmax , we target the following: λobj + δ, λmax − δ, and 0.5(λobj + λmax) where
δ = 0.1(λmax−λobj). In other words, we target the boundaries and the mid-point under consid-
eration. These targets are motivated by the fact that polynomial fitting over an interval works
better when the approximation nodes follow a Chebyshev-like distribution [15], with more nodes
towards the boundaries.

74

3.4. Model Construction

The offset δ slightly moves the target constraints inwards. This is because λmax is not a
realistic target with fixed-point approximation, and because λobj is usually not an appropriate
target for any kernel. If a kernel aggressively approximates to the extent that the quality is
reduced to λobj by its effect alone, then the combination of such a design with even slight
approximations in other kernels usually does not satisfy λobj . As an example, if all kernels in
an image processing pipeline satisfy an accuracy of SSIM=0.9, it is unlikely that the whole
application would have an SSIM=0.9 at its output.

3.4.2 Data Points for Quality Function (λ̂)

The quality function λ̂ models the output quality of the combined solutions as a function
of output qualities under isolated approximations. Thus, simulations of combined solutions are
necessary to collect sufficient data points.

In our current implementation, we take a subset of the data points collected for modeling
cost functions, and simulate all combinations to collect the data points. We consider X uniform
segments of the quality in the range under consideration, and take the best design within each
segment. Then the XN combinations are simulated to collect data points. (We use X = 5 in our
evaluation.)

This step may be optimized by having a more sophisticated method to select the subset.
An initial model may be constructed by using a few samples from each kernel and simulating
their combinations. Then, further simulations that would provide important data points may be
predicted using the initial model. This process may be repeatedly applied until the improvement
in accuracy of the model starts to diminish. The current implementation does not use this
optimization.

3.4.3 Polynomial Fitting

The functions Ĉi and λ̂ are constructed with the data points collected using polynomial
fitting. These models are expected to be non-linear, especially for complex quality metrics and/or
non-linear systems, motivating the use of non-linear regression. We use polynomial fitting since
it does not require a model (template) to be designed. We use Gaussian Process (GP) [16]
regression to learn the cost models (Ĉi) and least squares for the accuracy model (λ̂). We use a
squared exponential covariance function as the kernel for GP. The least squares polynomial fit
degree is manually selected by trying a range of values.

Most of the tuning effort for these models comes from preprocessing of the data. The size of
the training data is relatively small, and there is no precise control over its distribution. These
limitations make the regression analysis susceptible to common pitfalls (over-fitting, oscillation).
We apply the following to fine-tune the models:

75

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

— obvious outliers are removed using our insights about the WLO algorithm, and
— designs within x% of the Pareto frontier are included in training data, where x is selected

for each kernel.
Such tuning effort is necessary to improve the model quality. How to fully automate this

process is a separate subject on its own, which we do not discuss here. In our evaluation,
manual tuning time was within several minutes. The models constructed for our benchmarks
are discussed in Section 3.5.4.

3.5 Evaluation

In this section, we evaluate our approach against global WLO, where all variables are con-
currently considered for WLO, by comparing exploration time and quality of solutions.

3.5.1 Experimental Setup

All experiments are performed on Linux machine with 2x4 cores Intel Xeon E5640 at 2.67GHz
and 4GB memory. Recall that there are two parameters to our approach: WLO algorithm, and
cost model. In our evaluation, we have used Tabu search [10], which is a heuristic search algo-
rithm based on gradient descent, to perform WLO. We use an energy model as our cost model.
The energy model counts the number of operations performed by each operator, and calculates
the total cost based on the energy consumption of an operation. The energy per operation is
empirically gathered from several ASIC synthesis, simulation and power estimation for different
WLs. An operator is characterized by the WLs of the operands, the WL of the result, and the
arithmetic operation performed. Characterization is performed using Synopsys Design Compiler
and Prime Time using a 28nm technology.

Our approach is implemented using GeCoS 1 [17], an open-source compiler framework. The
WLO is performed at the source-level, where the variables define the granularity of the ex-
ploration. We use a set of variables per loop nest so that each loop can run with its own WL
configurations. In addition, some of the variables in the code are forced to have the same format,
since they are aliases of each other. We use the number of effective variables, i.e., the number of
individual fixed-point formats being explored, as a measure of the complexity.

We use the constraint solver from Matlab optimization toolbox to solve for the noise budgets.
In our experiments, the optimizer returned a solution almost instantaneously.

Each kernel is explored once with the same WLO algorithm using the derived noise budgets.
The solutions are then combined to form the final solution. The combined solutions may some-
times overshoot or undershoot the target quality slightly due to inaccuracies in our models. If

1. https://gitlab.inria.fr/gecos/gecos-float2fix

76

https://gitlab.inria.fr/gecos/gecos-float2fix

3.5. Evaluation

the quality constraint was not met, we perform a greedy search to find the nearest design that
satisfies the constraints. This calibration step takes less than 2% of the total time.

3.5.2 Image Signal Processor

Noise
Reduction

Lineariza-
tion

White
Balancing

Demosai-
king

Color Space
Conversion

Gamma
Correction

Vignetting
Correction

Sharpening

Camera
Application

Metadata
Information

Image
Streams

Configure Expose Readout

Image Signal Processor

Camera Sensor

Lens Flash ...

Devices

Raw image Metadata

Action

Figure 3.2: Image Processing Pipeline used in Smart Phone Camera

We use Image Signal Processor (ISP), a post-processing pipeline for digital cameras illus-
trated in Figure 3.2, to evaluate our approach. This application takes raw data from camera
sensors, and applies a sequence of processing kernels to produce a color image. It is an inter-
esting benchmark because it has various filters that naturally serve as kernels, and its primary
quality metric is SSIM. We target up to four stages of the ISP pipeline; additional kernels make
exploration time for global WLO too long. The four kernels are:

— NLM : Non-Local Means denoising filter [18]. This denoising stage takes means of 5 win-
dows, weighted by the distance from the target pixel, to filter noise.

— Demosaic: Demosaicing reconstructs a full color image from sensor data that captures
color information as a mosaic of primary colors. This stage is also expensive consisting of
7 filters of size 3× 3 or 5× 5.

— GC : Gamma Correction adjusts the brightness of the image to suit human eyes. The image
is converted into gray scale to derive the amount of brightness correction, which is then
applied to the image.

— Unsharp: Unsharp masking sharpens the image by masking it with its blur. It computes
a blurred image with a two-pass (vertical + horizontal) filter to use as the mask. It also
includes the conversion to/from YCbCr color space, since the filter is performed in YCbCr.

77

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

The number of effective variables to be optimized are 19 for NLM and Demosaic and 17
for GC and Unsharp. To evaluate our approach in solving the scalability problem, we create
three experiments on ISP with increasing complexity for WLO. Depending on each case, some
kernels are selected for WLO while others are kept at highest possible precision. In the first
experiment, NLM and Unsharp are chosen for WLO. In the second experiment, the Demosaic
kernel is added. The last experiment considers all four kernels.

We use two SSIM targets in our experiments: 0.9 and 0.99. Preserving SSIM = 0.99 is
considered to have small impact on human perception, which is suitable for photos. To evaluate
our approach, we also target SSIM = 0.9, which has a much larger solution space compared to
the 0.99 case and which is representative of, e.g., video capturing.

3.5.3 Stereo Matching

The Stereo Matching (SM) algorithm is widely used in computer vision to extract the depth
information from a scene. In most cases, SM uses two images taken from two cameras placed
side by side and horizontally as the inputs, as shown in the left part of Figure 3.3. The output

Left image

Right image

Disparity map

Figure 3.3: An example of Stereo Matching operation [19]

of a stereo matching algorithm is a disparity map whose size is the same as that of the original
image but contains the depth information of each pixel. This disparity map (see right part of Fig-

78

3.5. Evaluation

ure 3.3) is obtained from the horizontal distance between corresponding pixels in the two images.

Figure 3.4 describes the computing flow graph of the Stereo Matching application in more
details. The stereo matching method works by first choosing a pixel on the left image and then
looking for an identical pixel on the right image. The left image pixel that was searched for
represents the same actual location in the scenario. The disparity of a pixel is then determined
by computing the horizontal distance between those two pixels. The pixel depths in the input
images are determined by minimizing a cost function, which is related to its disparity. The cost
function to minimize works out how much it would cost to match a pixel in the left image to a
pixel in the right image. In Figure 3.4, after converting to gray images via rgb2Gray, the left and
right gray images are passed through the costConstruction function. This function computes the
cost of matching a pixel from the left image to a pixel from the right image with a specified
disparity, which reflects the distance between the two pixels. This step is performed for every
pixel and disparity level. To generate precise disparity maps, aggregateCost employs an adaptive
weight approach to sum the matching costs of adjacent pixels and iterates in both the horizontal
and vertical directions. The kernel computeWeights attempts to change the weight of each pixel
based on the intensity of its neighbors and the geometric connection between the considered
pixel and its neighbors. To put it simply, a pixel’s proximity to the target pixel in terms of both
intensity and distance should be given more consideration.

3.5.4 Empirically Constructed Models

It is difficult to evaluate these models since simple metrics, such as (Root) Mean Square
Error, are not sufficient to assess their quality with respect to unseen data. In this work, these
models are ultimately evaluated by the quality of the noise budgets derived. Figures 3.5 and 3.6
present the models constructed for ISP (excluding those that are hard to visualize) as a partial
evaluation of their quality. Figure 3.7 illustrates the cost models constructed for Stereo Matching.

3.5.5 Exploration Time and Quality of Solution

Figure 3.8 and Table 3.1 summarize the exploration of GWLO and our approach for ISP and
Stereo Matching (SM). The model construction time is significant due to the time consuming
WLO algorithm, and hence our approach takes longer for smaller problems. However, the dif-
ference in scalability becomes clear with more kernels. For SM, our approach saves up to 23% of
energy consumption while our execution time is saved up to 75% compared to GWLO approach.

The quality of the solutions improves for large problem instances. The explanation is that
our approach performs local search around the derived noise budgets, finding better solutions
(as explained with Figure 3.1). There are many local minima in the design space, and GWLO

79

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

r
g
b

le
ft

g
r
a
y

le
ft

r
g
b

r
ig

h
t

R
G

B
2
G

R
A
Y

R

R
G

B
2
G

R
A
Y

g

R
G

B
2
G

R
A
Y

B

g
r
a
y

r
ig

h
t

N
B

H
E
IG

H
T
×

N
B

W
ID

T
H

r
g
b

le
ft

r
0

r
1

g
0

g
1

b
0

b
1

x
2

x
2

x
2

√
x

R
g
a
m

a
C

d
is
t
a
n
c
e
C
o
e
ff

e
x

r
0

r
2

g
0

g
2

b
0

b
2

x
2

x
2

x
2

R
g
a
m

a
C

d
is
t
a
n
c
e
C
o
e
ff

e
x

1

√
x

1x

w
e
ig

h
t
s

v
e
r
t
ic

a
l

r
0

r
1

g
0

g
1

b
0

b
1

x
2

x
2

x
2

√
x

R
g
a
m

a
C

d
is
t
a
n
c
e
C
o
e
ff

e
x

r
0

r
2

g
0

g
2

b
0

b
2

x
2

x
2

x
2

R
g
a
m

a
C

d
is
t
a
n
c
e
C
o
e
ff

e
x

1

√
x

1x

w
e
ig

h
t
s

h
o
r
iz

o
n
t
a
l

N
B

O
F
F
S
E
T
S

M
A
X
×

N
B

H
E
IG

H
T
×

N
B

W
ID

T
H

(
N
B

O
F
F
S
E
T
S

M
A
X
+

1
)
×

N
B

H
E
IG

H
T
×

N
B

W
ID

T
H

c
e
n
s
u
s

le
ft

c
e
n
s
u
s

r
ig

h
t

r
ig

h
t

id
x

le
ft

id
x

H
a
m

m
in

g

15

T
R
U
N
C

V
A
L
U
E

m
i
n
(
x
)

|x
|

d
is
p
a
r
it
y

e
r
r
o
r

N
B

D
IS

P
A
R
IT

Y
M

A
X
×

N
B

H
E
IG

H
T
×

N
B

W
ID

T
H

?
:

c
o
s
t
O

c
o
s
t
M

c
o
s
t
P

w
e
ig

h
t
O

w
e
ig

h
t
M

w
e
ig

h
t
P

?
:

d
e
s
t

N
B

H
E
IG

H
T
×

N
B

W
ID

T
H

(
N
B

D
IS

P
A
R
IT

Y
M

A
X

-
N
B

D
IS

P
A
R
IT

Y
M

IN
)
×

2
×

N
B

O
F
F
S
E
T
S

M
A
X

d
is
p
a
r
it
ie

s

c
o
m

p
u
te

W
e
ig
h
ts

c
o
m

p
u
te

W
e
ig
h
ts

r
g
b
2
G
r
a
y

c
o
stC

o
n
str

u
c
tio

n

a
g
g
r
e
g
a
te

C
o
st

?
:

c
e
n
su

s

c
e
n
su

s

R
G

B
2
G

R
A
Y

R

R
G

B
2
G

R
A
Y

g

R
G

B
2
G

R
A
Y

B

N
B

H
E
IG

H
T
×

N
B

W
ID

T
H

r
g
b
2
G
r
a
y

a
g
g
r
e
g
a
t
e
d

D
is
p
a
r
it
y

88

4

15

4

Figure
3.4:

C
om

puting
blocks

(kernels)
ofStereo

M
atching.T

he
kernels

colored
in

cyan
are

the
one

optim
ized

w
ith

fixed-point
bit-w

idths.
T
he

kernel
nam

ed
com

puteW
eights

in
w
hite

color
uses

the
sam

e
word-length

configurations
as

the
one

colored
in

cyan.T
he

num
bers

colored
in

red
are

the
num

ber
ofvariables

ofeach
kernelconsidered

for
the

W
LO

problem
.T

he
com

putation
operationsdescribed

inside
each

box
are

the
num

berofcom
putationsperpixel.T

hese
com

putationsm
ustbe

applied
forthe

w
hole

im
age

w
ith

a
certain

size
m
entioned

in
the

top
ofeach

kernel.

80

3.5. Evaluation

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

SSIM

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 C

o
st

 (
p
e
r

ke
rn

e
l)

Cost Models for Target Quality 0.9 SSIM

NLM Model
NLM (Pareto-optimal)
Demosaic Model
Demosaic (Pareto-optimal)
GC Model
GC (Pareto-optimal)
Unsharp Model
Unsharp (Pareto-optimal)

NLM: [158 - 253]

Demosaic: [190 - 223]

GC: [12 - 17]

Unsharp: [36 - 45]

(a) Cost model for target 0.9 SSIM

0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999

SSIM

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 C

o
st

 (
p
e
r

ke
rn

e
l)

Cost Models for Target Quality 0.99 SSIM

NLM Model
NLM (Pareto-optimal)
Demosaic Model
Demosaic (Pareto-optimal)
GC Model
GC (Pareto-optimal)
Unsharp Model
Unsharp (Pareto-optimal)

NLM: [248 - 318]

Demosaic: [214 - 255]

GC: [17 - 24]

Unsharp: [43 - 59]

(b) Cost model for target 0.99 SSIM

Figure 3.5: Cost models for ISP constructed for each kernel using Gaussian Process. The costs
are individually normalized for each kernel to present the models within a figure. The ranges of
unnormalized energy cost (nJ) are shown at the bottom right.

81

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

(a) Accuracy model for target 0.9 SSIM

(b) Accuracy model for target 0.99 SSIM

Figure 3.6: Models for inter-kernel interaction of quality constraints in ISP. These models were
constructed with least square fit with degree four and three polynomials for 0.9 SSIM and 0.99
SSIM cases, respectively.

82

3.5. Evaluation

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

SSIM

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
liz

e
d
 C

o
s
t
(p

e
r

ke
rn

e
l)

Cost Models for Target Quality 0.9 SSIM

rgb2GrayLeft Model
rgb2GrayLeft (Pareto-optimal)
rgb2GrayRight Model
rgb2GrayRight (Pareto-optimal)
computeWeightsHorizontal Model
computeWeightsHorizontal (Pareto-optimal)
computeWeightsVertical Model
computeWeightsVertical (Pareto-optimal)
costConstruction Model
costConstruction (Pareto-optimal)
aggregateCost Model
aggregateCost (Pareto-optimal)

(a) Cost model for target 0.9 SSIM (Stereo Matching)

0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999

SSIM

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o
rm

a
liz

e
d
 C

o
st

 (
p
e
r

ke
rn

e
l)

Cost Models for Target Quality 0.99 SSIM

rgb2GrayLeft Model
rgb2GrayLeft (Pareto-optimal)
rgb2GrayRight Model
rgb2GrayRight (Pareto-optimal)
computeWeightsHorizontal Model
computeWeightsHorizontal (Pareto-optimal)
computeWeightsVertical Model
computeWeightsVertical (Pareto-optimal)
costConstruction Model
costConstruction (Pareto-optimal)
aggregateCost Model
aggregateCost (Pareto-optimal)

(b) Cost model for target 0.99 SSIM (Stereo Matching)

Figure 3.7: Cost model construction for the Stereo Matching application with two different
quality targets.

83

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

becomes more likely to be stuck with sub-optimal solutions for larger problems.

2 kernels

(ISP)

3 kernels

(ISP)

4 kernels

(ISP)

6 kernels

(SM)

2 kernels

(ISP)

3 kernels

(ISP)

4 kernels

(ISP)

6 kernels

(SM)

Figure 3.8: Comparison of exploration time for ISP and Stereo Matching (SM).

Table 3.1: Comparison of solutions for ISP and Stereo Matching (SM).

Target 0.9 SSIM Target 0.99 SSIM
SSIM Cost (nJ) SSIM Cost (nJ)

2 Kernels (ISP) GWLO 0.901 212 0.990 326
Ours 0.915 207 0.991 309

3 Kernels (ISP) GWLO 0.900 438 0.990 604
Ours 0.906 427 0.990 587

4 Kernels (ISP) GWLO 0.901 474 0.991 695
Ours 0.907 444 0.990 612

6 Kernels (SM) GWLO 0.904 6970 0.990 9183
Ours 0.901 5311 0.994 8185

We have also compared our solutions to those that could be found without empirical models.
A number of combined solutions are simulated during the accuracy model construction, which
may already include a good design. In such cases, there is no need to perform further exploration,
i.e., finding these solutions take the same time as model construction in our approach. We
observed that for some accuracy targets, this is indeed the case. For some other accuracy targets,
shown in Figure 3.9, more than 15% improvement in cost may be realized by using the derived
noise budgets. These are instances that support our claim in Section 3.2.2.

3.5.6 FIR and IIR Filters

We have also applied our approach with cascaded FIR and IIR filters to test how it works
for another quality metric and linear systems. FIR is decomposed into 2 kernels with 9 and
6 effective variables. IIR is partitioned into 3 kernels with 12, 12, and 7 variables. We used

84

3.6. Conclusion

Figure 3.9: The quality of solutions by our approach compared to the best combination of the
configurations used for accuracy model construction. These results are for ISP with 4 kernels.

PSNR equal to 50 dB and 60 dB as quality targets. The cost of solutions found by GWLO
and our approach are shown in Table 3.2. The cost of our solutions were slightly worse than
that of GWLO’s solutions, with about 4% for FIR and 2% for IIR. The solution space of FIR
and IIR is considered as relatively small and with few sub-optimal solutions compared to ISP.
Thus, with considering all kernels during the optimization time, GWLO can find a good solution
and avoid local minima. Figure 3.10 summarizes the exploration time between GWLO and our
approach for FIR and IIR with constraints of 50 dB and 60 dB. The important result is that the
exploration time of our approach scales much better than GWLO, and that the overall behavior
is consistent with ISP.

Table 3.2: Comparison of solutions for FIR and IIR.

Target 50 dB Target 60 dB
PSNR (dB) Cost (nJ) PSNR (dB) Cost (nJ)

FIR GWLO 50.0 64.15E-04 60.1 72.95E-04
Ours 50.2 66.94E-04 60.6 73.76E-04

IIR GWLO 50.2 9.22E-04 60.1 10.66E-04
Ours 50.6 9.60E-04 60.7 10.91E-04

3.6 Conclusion

In this chapter, we presented our proposed approach that uses empirically constructed mod-
els to solve the generality and scalability problems of WLO in large applications. The key idea
in our approach is to characterize the impact of approximating each kernel to accuracy/cost
through an empirical model. We show that for sufficiently large applications that justify the
time spent on modeling, our approach can significantly reduce exploration time and improve the

85

Part, Chapter 3 – Towards Generic and Scalable Word-Length Optimization

FIR, PSNR50dB FIR, PSNR60dB IIR, PSNR50dB IIR, PSNR60dB

Figure 3.10: Comparison of exploration time for filter applications.

quality of the solutions.

In the future work, this approach can be extended to predict the noise budget for multiple
accuracy targets with the model built once. The quality of the solution given the noise budget
depends on the available data used for the model construction.

Acknowledgment

This work was supported in part by the French National Research Agency; ARTEFaCT
project (ANR-RF-2015-01). We thank Silviu-Ioan Filip for his help with regression techniques.

86

BIBLIOGRAPHY

[1] M. Clark, M. Mulligan, D. Jackson, and D. Linebarger, “Accelerating fixed-point design for
MB-OFDM UWB systems,” https://www.design-reuse.com/articles/9559/, 2005.

[2] T. Arslan and D. H. Horrocks, “A genetic algorithm for the design of finite word length
arbitrary response cascaded iir digital filters,” in Proceedings of the Int. Conf. on Genetic
Algorithms in Engineering Systems: Innovations and Applications, 1995, pp. 276–281.

[3] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An automatic word length determi-
nation method,” in Proceedings of the IEEE Int. Symp. on Circuits and Systems (ISCAS),
2001, pp. 53–56.

[4] S.-C. Chan and K. M. Tsui, “Wordlength optimization of linear time-invariant systems
with multiple outputs using geometric programming,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 54, no. 4, pp. 845–854, 2007.

[5] H. Choi andW. Burleson, “Search-based wordlength optimization for VLSI/DSP synthesis,”
in Proceedings of 1994 IEEE Workshop on VLSI Signal Processing, 1994, pp. 198–207.

[6] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Wordlength optimization for lin-
ear digital signal processing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 10, pp. 1432–1442, 2003.

[7] P. D. Fiore, “Efficient approximate wordlength optimization,” IEEE Transactions on Com-
puters, vol. 57, no. 11, pp. 1561–1570, 2008.

[8] K. Han, I. Eo, K. Kim, and H. Cho, “Numerical word-length optimization for CDMA
demodulator,” in Proceedings of the IEEE Int. Symp. on Circuits and Systems (ISCAS),
2001, pp. 290–293.

[9] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,
“Accuracy-guaranteed bit-width optimization,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 25, no. 10, pp. 1990–2000, 2006.

[10] H.-N. Nguyen, D. Menard, and O. Sentieys, “Novel algorithms for word-length optimiza-
tion,” in Proceedings of the 19th European Signal Processing Conference, 2011, pp. 1944–
1948.

87

https://www.design-reuse.com/articles/9559/

Part, BIBLIOGRAPHY

[11] K. N. Parashar, D. Menard, and O. Sentieys, “A polynomial time algorithm for solving the
word-length optimization problem,” in Proceedings of the 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2013, pp. 638–645.

[12] W. Sung and K.-I. Kum, “Simulation-based word-length optimization method for fixed-
point digital signal processing systems,” IEEE Transactions on Signal Processing, vol. 43,
no. 12, pp. 3087–3090, 1995.

[13] J. Chung and L.-W. Kim, “Bit-width optimization by divide-and-conquer for fixed-point
digital signal processing systems,” IEEE Transactions on Computers, vol. 64, no. 11, pp.
3091–3101, 2015.

[14] D. Novo, I. Tzimi, U. Ahmad, P. Ienne, and F. Catthoor, “Cracking the complexity of fixed-
point refinement in complex wireless systems,” in Proceedings of the IEEE International
Workshop on Signal Processing Systems (SiPS), 2013, pp. 18–23.

[15] L. N. Trefethen, Approximation theory and approximation practice. SIAM, 2013.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT
press Cambridge, MA, 2005.

[17] A. Floc’h et al., “Gecos: A framework for prototyping custom hardware design flows,” in
IEEE 13th International Working Conference on Source Code Analysis and Manipulation
(SCAM), 2013, pp. 100–105.

[18] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, ser. CVPR’05, vol. 2, June 2005, pp. 60–65.

[19] “Patch match stereo,” https://github.com/ethan-li-coding/PatchMatchStereo.

88

https://github.com/ethan-li-coding/PatchMatchStereo

Chapter 4

LEVERAGING BAYESIAN OPTIMIZATION

TO SPEED UP AUTOMATIC PRECISION

TUNING

Using just the right amount of numerical precision is an important aspect for guaranteeing
performance and energy efficiency requirements. Word-Length Optimization (WLO) is the au-
tomatic process for tuning the precision, i.e., bit-width, of variables and operations represented
using fixed-point arithmetic. However, state-of-the-art precision tuning approaches do not scale
well in large applications where many variables are involved. In this chapter, we propose a hybrid
algorithm combining Bayesian optimization (BO) and a fast local search to speed up the WLO
procedure. Through experiments, we first show some evidence on how this combination can im-
prove exploration time. Then, we propose an algorithm to automatically determine a reasonable
transition point between the two algorithms. By statistically analyzing the convergence of the
probabilistic models constructed during BO, we derive a stopping condition that determines
when to switch to the local search phase. Experimental results indicate that our algorithm can
reduce exploration time by up to 50%-80% for large benchmarks.

4.1 Introduction

The rapid development in scientific and technological innovations during the last decade
opens a new era for intelligent and sophisticated systems. The demand for integrating many
large applications in a limited silicon area poses new challenges for energy-efficient computing.
Recently, Approximate Computing (AC) is considered as a good solution to address energy effi-
ciency issues. The primary objective of approximation techniques is to trade quality of service for
cost saving. One of the popular AC techniques is to use Fixed-Point arithmetic for low-precision
computation in Digital Signal Processing or Machine Learning systems. This technique always
requires a floating-point to fixed-point conversion that optimizes the fixed-point word-lengths for
a good compromise between cost and quality requirement. This procedure, called Word-Length
Optimization (WLO), accounts for 25-50% of design time [1] and is still considered as a problem

89

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

of interest to reduce time-to-market.

Approaches to address WLO can be classified in two groups: analytical and simulation-based
approaches. Analytical approaches relax the WLO problem for convexity and then apply some
convex optimization algorithms to directly obtain the optimal solution [2, 3]. Despite handling
WLO quickly, these approaches require the accuracy to be modeled as convex functions, which
cannot be analytically constructed in general. Simulation-based approaches solve WLO by iter-
ative search using simulations [4, 5, 6, 7, 8]. They are thus generic with all systems and quality
metrics. However, these approaches do not scale well in large applications where many variables
are involved since the number of simulations increases dramatically with the number of variables.
In addition, most of these iterative searches are based on local search that moves with a short
distance in the discrete domain. Hence, convergence speed is slow if the initial point is far from
a local minima.

Bayesian Optimization (BO) is a popular approach for tuning hyper-parameters in machine
learning algorithms [9]. This approach aims to optimize problems where the mathematical ex-
pression of the target function is unknown and without derivatives. BO constructs a probabilistic
model based on past samples to suggest new points [10]. Thanks to this model, at a certain state,
BO can ignore neighboring points if they produce a low probability of being good solutions to
search more quickly. This feature might overcome weakness of the simulation-based approaches.
However, there is no study yet indicating the performance of Bayesian optimization for WLO.

In this chapter, we propose a hybrid algorithm combining Bayesian optimization and a lo-
cal search to improve the scalability of simulation-based approaches. We first show how this
combination can lead to large improvements in exploration time. Then, we design a reasonable
transition point between the two approaches to leverage the efficiency of the combination, which
is also the core of our approach. Using design points sampled by BO, we derive a statistical
metric to evaluate the convergence of the models during BO. Experimental results show that
our hybrid algorithm outperforms latest simulation-based approaches, reducing exploration time
by up to 50%-80%, while leading to similar cost solutions.

The rest of the chapter is organized as follows. We introduce necessary background and
discuss related work in Section 4.2. A motivation for our work is presented in Section 4.3.
Then, we describe our proposed hybrid approach in Section 4.4. We show the performance of
our approach in a comparison with different benchmarks and latest approaches in Section 4.5
followed by a conclusion in Section 4.6.

90

4.2. Background and Related Work

4.2 Background and Related Work

In this section, we introduce the WLO problem and discuss earlier work before presenting
Bayesian optimization.

4.2.1 Word-Length Optimization and Classical Approaches

A number represented in fixed-point arithmetic contains integer and fractional word-lengths
(WLs), represented on I and F bits, respectively. The integer WL covers the dynamic range
whereas the fractional WL controls the precision. In this work, we focus on the WLO for
fractional WL, which is the time consuming part of the exploration. Let the vector W =
[W0,W1, . . . ,WN−1] denote a word-length configuration with N effective variables to be ex-
plored for fixed-point conversion. The main objective of WLO is to determine a good-enough
word-length configuration that minimizes a cost function under a quality constraint:

minC(W) Subject to λ(W) ≥ λobj (4.1)

where C and λ are functions that express cost and quality, respectively, and the quality target
is given as λobj . How the functions C and λ are realized varies across work, ranging from ana-
lytical models to simulation-based approaches.

Some approaches [2, 3, 11] construct analytical models for noise power through mathe-
matical expression to avoid costly simulations during the exploration process. These analytical
approaches take advantage of a property of errors, under the hypothesis of linear and time-
invariant (LTI) systems, that their propagation do not interfere with each other. Hence, the
error introduced at a noise source may be propagated through the system independently and
aggregated afterwards. Thus, these approaches cannot be directly extended to handle general
non-LTI programs. Moreover, complex quality metrics, such as Structural Similarity (SSIM),
which are not directly related to noise power, are hard to model analytically.

Many simulation-based approaches [7, 4, 6, 5, 8] were proposed based on iterative search using
heuristics to address WLO. These approaches use variants of gradient descent algorithms that
evaluate neighboring solutions which differ by one or few bits from the current solution at each
iteration. Since the number of neighboring solutions increases with the number of variables,
the number of solutions that must be evaluated at each iteration quickly increases with the
complexity of the application. Additionally, due to short movements at each iteration (one or
few bits), these approaches require many iterations to converge if the starting point is far from a
local minima. These are the main drawbacks causing a huge number of simulations especially in
large applications and hence leading to an extremely long exploration time. Min+1, Min+b [4, 6]

91

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

and Max−1 [4] are typical approaches of this group. The Min+1 (resp. +b) algorithm begins
with a design where each variable is assigned by its minimumWL (MWL), i.e., the WL satisfying
the quality target when other variables are set to the highest precision. At each iteration, the
algorithm moves towards neighboring candidates by increasing by 1 (resp. b) bit(s) the best
variable among the candidates until obtaining a solution satisfying the quality constraint. By
contrast, Max−1 initializes variables with the highest possible WL and decreases variables by 1
bit until to reach the final solution.

Afterwards, many variants of these two procedures were proposed. Heuristic approaches [12]
or Hybrid combinations of Min+b and Max−1 outperform the original algorithms [13]. Like-
wise, the Greedy Randomised Adaptive Search Procedure (GRASP) [8] combines local search
and stochastic optimisation. GRASP is an iterative two-phase procedure. In the construction
phase, the search algorithm (similar to Min+1) randomly selects one of the best neighboring
candidates during gradient descent. Then, a Tabu search is applied to refine the solution found
by the first phase. Tabu allows movements in both directions (+1/−1) and uses a Tabu list
to skip some explored variables. These two phases are iterated and the randomization of the
construction phase avoids to stay in local minima.

Some noise budgeting techniques [14, 15] decompose large applications into smaller kernels to
break down the exponential complexity of WLO. However, these methods still face the limitation
of the classical above-mentioned approaches, which are used for each kernel to solve local WLO
problems.

4.2.2 Bayesian Optimization

Bayesian Optimization (BO) is a machine-learning-based optimization method [9] aiming
to optimize functions which usually have no mathematical expression and/or derivatives. Sev-
eral BO frameworks are popularized as open sources such as Spearmint 1 [16], SMAC 2 [17] and
Hyper-opt 3 [18]. and BOHB 4 [19] Despite being widely applied in many real world problems,
there is no study of BO for WLO. Generally, BO has two key elements: i) a probabilistic surro-
gate model for modeling the unknown objective function based on already observed samples and
ii) an acquisition function that optimizes over the surrogate model to suggest next samples. One
main difference in BO methods is the process of selecting the surrogate models. While Gaussian
Processes (GP) are often used for continuous-domain moderate-size problems, tree-based mod-
els like Random Forest and Tree-structured Parzen Estimator (TPE) facilitate discrete-domain
large-size problems [20].

1. https://github.com/JasperSnoek/spearmint
2. https://www.cs.ubc.ca/labs/beta/Projects/SMAC
3. https://github.com/hyperopt/hyperopt
4. https://github.com/automl/HpBandSter

92

https://github.com/JasperSnoek/spearmint
https://www.cs.ubc.ca/labs/beta/Projects/SMAC
https://github.com/hyperopt/hyperopt
https://github.com/automl/HpBandSter

4.3. Motivations

TPE works by identifying points that could have been drawn, and that appear promising on
the basis of the evaluation of a loss function at other points. In detail, TPE models two density
functions p(X|y < α) and p(X|y ≥ α) where X is a set of hyper-parameters, y is the value of
loss function f(X) and α is a threshold that separates bad and good samples. It chooses value
of X that maximizes the ratio p(X|y<α)

p(X|y≥α) . Hyperopt [18] is a common framework for TPE. The
loss function is very important to guide the optimizer, as detailed in Section 4.4.1. In many
cases, it is more efficient to optimize on the loss function instead of the original one because BO
can evaluate how far away from the current solutions to the optimal solution by following the
gradient from the loss function.

Unlike gradient-based algorithms, BO inspects past iterations to construct the interplay
among variables to evaluate a loss function via a probabilistic model. Based on the knowledge
from this model, BO is able to evaluate and ignore neighboring designs which have low probability
of being good solutions to search more globally. As a result, it can speedup the search and better
avoid local minima if current state is on a plateau or a bad local minima. Thus, BO is a promising
candidate to overcome limitation of classical simulation-based WLO approaches. However, the
computational complexity of BO is quadratic O(i2), whereas most heuristic approaches have a
linear complexity O(i), i being the number of iterations. Thus, BO still faces scalability issues,
especially for large applications in which BO requires more evaluations to obtain a good solution.
Based on their features and properties, we propose a new method that combines Bayesian
optimization and local search with a reasonable transition condition to improve the exploration
efficiency. TPE is selected for BO because it is suited to discrete problems as WLO, and Tabu,
a state-of-the-art WLO method, is used for local search.

4.3 Motivations

In this section, we compare the performance of TPE with Tabu combined with Min+1
gradient descent for WLO. Then, we indicate benefits of combining TPE and Tabu via empirical
evidence, which motivates the proposed hybrid approach presented in Section 4.4. We used an
Infinite Impulse Response (IIR) filter with Peak Signal to Noise Ratio (PSNR) equal to 40 dB as a
quality constraint. Note that the trends in this section are consistent with the other benchmarks
used in Section 4.5.2.

4.3.1 Performance Analysis: TPE vs. Tabu

Figure 4.1 shows the search process of Tabu and TPE during WLO of the IIR. Tabu searches
in a narrow range constituted by near neighboring solutions which are some bits different to each

93

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

0 20 40 60 80 100 120
Minutes

30

35

40

45

50

55

60

65

70
PS

NR
 (d

B)
Random search
TPE
Tabu (Initialization Min+1)
Tabu (Local search)
quality target PSNR = 40dB

Figure 4.1: Search process of Tabu and TPE. Random search is used as a reference. Points
correspond to quality of different designs evaluated in the search process (for Tabu, all neigh-
boring solutions in a iteration are plotted at a corresponding time). Tabu has two procedures: i)
Initialization uses Min+1 to search in infeasible region until a solution satisfying the quality
target is found and ii) Local search, a combination of Min+1 and Max-1, optimizes locally
around the quality target.

other. Thus, it moves slowly towards optimal region. At some points in the initialization pro-
cedure, the search takes a significant period to surpass the plateau region which has no quality
improvement. As a result, local search must wait for a long time and is only started when a
feasible solution is found in the initialization procedure. Meanwhile, TPE first searches ran-
domly in the solution space (very first solutions scattered in around 35-55 dB). Afterwards, it
explores solutions using probabilistic models in a wide range and quickly finds feasible solutions
around the quality target. Note that by using models, TPE can stick around the quality target
to enhance the search efficiency instead of whole solution space as random search.

For cost comparison (see Section 4.5.1 for more details on cost), Figure 4.2 shows the best
solution obtained so far by TPE as a function of exploration time and the final solution obtained
by Tabu. TPE converges quickly in the beginning. However, the cost is improving slowly for
latest iterations, taking up a large portion of the total execution time. With this behavior, we
emphasize the interest of stopping TPE pruning phase to switch to a more efficient local search,
such as Tabu.

94

4.3. Motivations

0 25 50 75 100 125 150 175 200
Minutes

0.0009

0.0010

0.0011

0.0012

0.0013

0.0014
En

er
gy

 C
os

t (
nJ

) 8

36
92
113

283

575
13681629

1980 2341 2538

TPE (the best solution
 found so far)
Tabu solution
Stopping point

Figure 4.2: Manually selected stopping points on the best solution obtained so far by TPE. The
curve was constructed by best designs, satisfying the quality target with minimum cost, at a
certain time. The numbers indicate index of the selected points.

4.3.2 Initial Combinations of TPE and Tabu

From the performance analysis of TPE and Tabu, we empirically perform initial combinations
of the two algorithms. TPE is stopped at a certain moment returning a temporary configura-
tion, defined as a transition point, which is then served as starting point for Tabu. Among the
designs explored by TPE, we use only the best solution obtained so far. These transition points
(orange crosses in Figure 4.2) are selected if they have a significant improvement in terms of cost
compared to the previous adjacent selected one. This ensures a high chance of having different
WL configurations.

In Figure 4.3, we compare the performance of Tabu with TPE+Tabu for different transition
points. The cost of the final solutions depends on the moment when TPE is stopped. Stopping
TPE too early (H-8 to H-283) does not lead to good solutions compared to Tabu alone, even
though their convergence speed is much faster. Stopping TPE after a certain amount of time
(H-578, H-1368) can lead to an equivalent or even better solution cost, still in a shorter time.
The benefit of the superior convergence speed is gradually decreased if TPE is stopped too late
(H-1629 to H-2538). It is important to notice that, except for the early ones, the choice of the
exact transition point does not impact much the cost of the final solution.

95

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

TPETabu

Figure 4.3: A comparison in energy cost (top), total exploration time (middle) and separated
exploration time (bottom) of Tabu and different combinations between TPE and Tabu given
the selected transition points. The x-axis separates the data for different cases; H-X represents
for the different combinations where X is the index of the stopping point of TPE.

96

4.4. Proposed Hybrid Approach

From this analysis, we highlight that TPE can quickly prune the design space and find a
solution from which Tabu will be able to fine-tune the cost, resulting in a significant reduction
in exploration time. This reduction depends on choosing the right transition point, which is not
an obvious task especially in an automated way, and is the aim of the next section.

4.4 Proposed Hybrid Approach

In this section, we construct the loss function used in our Bayesian optimization and define
a method to automatically find the transition point between TPE and Tabu.

4.4.1 Loss Function

Derived from the original WLO problem of Eq. 4.1, we construct the loss function using the
Lagrangian form as

f(W) = C(W)− α(λ(W)− λobj), (4.2)

with a positive and big enough α. TPE will then follow f(W) to find solutions that minimize
the original problem.

Based on many WLO experiments, we experienced that the cost and quality functions tend
to be proportional to W . A high quality solution mostly corresponds to a high cost. Thus, the
best solutions to satisfy the constraint with a small cost are likely to be around the quality
target λobj . Therefore, for faster convergence, we force the loss function to cover only a narrow
range [ql, qh] around λobj . The loss function is then defined as

f(W) =

C(W)− α(λ(W)− λobj) if λ(W) ∈ [ql, qh]

+∞ otherwise
(4.3)

Moreover, to penalize solutions below λobj with regards to solutions above the target, we choose
α = 0.5 for solutions below λobj , and α = 0 for other solutions in the range [ql, qh].

4.4.2 Transition Point for Hybrid Approach

In Bayesian optimization relying on TPE [10], hyper-parameters –WL configurations W i in
our case– are chosen uniformly over the search space and evaluated by the loss function f(W).
Then, obtained samples {W i, f(W i)} stored in an observation history H are divided into two
groups. The first group contains good samples where the loss fi is less than a threshold γ∗,
whereas the second group consists of the remaining, considered as bad samples. TPE uses these
two sample groups to model two likelihood probability density functions l(W) = p(W |f(W) <

97

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

γ∗) and g(W) = p(W |f(W) ≥ γ∗), respectively. Then, it decides which hyper-parameter to try
in the next iteration by maximizing the ratio

l(W)
g(W) = p(W |f(W) < γ∗)

p(W |f(W) ≥ γ∗) .

Algorithm 2 describes TPE algorithm with a stopping condition checked at each iteration.
The algorithm stops if the stopping condition is satisfied and then returns a WL configuration
W stop which serves as the starting point of Tabu. How the condition is constructed is described
as follows.

At the tth iteration, we consider the vector StL comprising the L top-performing solutions
from the observation history H. Our main objective is to evaluate if the next iteration of TPE
can lead to a new top-performing solution, that is significantly different in terms of WL config-
uration compared with the solutions in StL. Then, we decide to stop TPE if the solutions in StL
share similar WL configurations. Otherwise, we still wait for further exploration iterations. The
similarity of WL configurations in StL reflects that TPE is likely to converge to a local region
formed by a number of similar WL solutions, which only differ by few bits. Thus, continuing
to spend time with TPE is likely to be inefficient. Instead, a local search like Tabu is more
reasonable to converge quickly in that local region. This is the key idea in our method for the
combination. We use TPE for narrowing the solution space down to a good region, from which
Tabu will continue the search for fine-tuning to provide the final solution following its greedy
gradient.

Each solution in StL is represented by a WL configuration with N effective variables. Let the
L × N matrix Wt contain WL configurations of the L top performing solutions at iteration t.
Elements wti,j of Wt represent the number of bits of variable j ∈ [1, N] from solution i ∈ [1, L].
We use the standard deviation to evaluate the distribution of WL values for each variable (i.e.,

Algorithm 2 TPE with stopping condition
1: H← {}
2: for i ∈ [1, . . . , T] do
3: W ∗ = argmax l(W)

g(W)
4: Evaluate f(W ∗)
5: H←H ∪ (W ∗, f(W ∗))
6: if stopping condition is satisfied then
7: Return W stop

8: end if
9: Update l(W) and g(W) given H

10: end for

98

4.4. Proposed Hybrid Approach

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0
Minutes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

bi
t(s

)

itr = 511

Σt

µ(Σ,M = 100)

σ(Σ,M = 100)

stopping point
0.1

Figure 4.4: Stopping point for IIR, quality target PSNR = 40dB.

each column of Wt) as
Σt = [σt0, σt1, . . . , σtN−1], (4.4)

where σtj is the individual standard deviation of WL values of the jth variable and is calculated
as

σt
j =

√√√√ 1
L− 1

L−1∑
i=0

(wt
i,j −W t

j),

W t
j = 1

L

L−1∑
i=0

wt
i,j .

(4.5)

The smaller the standard deviation, the more similar the solutions. To evaluate the similarity
on all WL configurations at a certain iteration, we aggregate standard deviations by the average
of all σtj with j ∈ [0, N − 1] as

Σt = 1
N

N−1∑
i=0

σt
i . (4.6)

Σt represents the average difference on the number of bits for the WL configurations of the L
top-performing solutions. By evaluating the convergence of TPE through Σt at each iteration,
we obtain the same behavior on all our benchmarks. In Figure 4.4, we show an illustration of this
behavior for the IIR example. In the beginning, the curve of Σt varies dynamically with a high
variance, around 4.5 bits. It constantly finds new good solutions which are relatively different
to each other, resulting in dissimilar WL configurations in StL and then producing a high value
of Σt. Afterwards, it enters a more stable area with a value of Σt less than 1 bit. This indicates

99

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

that TPE is likely to converge to a local region. So, we should stop TPE and switch to a greedy
algorithm like Tabu to search locally around this region. Based on that behavior, we derive two
indicators to detect the stable region to decide to stop TPE. At the tth iteration, we evaluate
the stability of Σt in the M latest samples via mean and standard deviation as

µ(Σ,M) = 1
M

t∑
i=t−M−1

Σi (4.7)

σ(Σ,M) =

√√√√ 1
M − 1

t∑
i=t−M−1

(Σi − µ(Σ,M)) (4.8)

µ(Σ,M) indicates the average magnitude of Σ. σ(Σ,M) is chosen with a small value to ensure
the stability of Σ. Then, two corresponding thresholds are chosen to decide the adequate stopping
moment for TPE. In our evaluation, we monitor L = 25 top-performing solutions at each
iteration and choose two conditions, µ(Σ,M) ≤ 1 and σ(Σ,M) ≤ 0.1, with M = 100 to
stop TPE. Figure 4.4 indicates with a dashed line the iteration where TPE is stopped.

4.5 Evaluation

4.5.1 Experiment setup

Experiments are performed on an Intel Xeon E5640 2.67GHz with 4GB memory running
Linux. We used Adaptive TPE (ATPE), an extension on top of TPE implemented on Hyper-
opt [18], which provides a machine learning model to automatically tune the hyper-parameters of
TPE. Tabu search is described in [8]. We use energy as our cost model. The energy model counts
the number of operations performed by each operator, and calculates the total cost based on the
energy consumption of an operation empirically gathered from several ASIC synthesis/simula-
tion for different WLs. An operator is characterized by the WLs of the operands, the WL of the
result, and the arithmetic operation performed. Characterization is performed using Synopsys
Design Compiler and Prime Time using a 28nm FDSOI technology.

We compare our hybrid approach with reference algorithms (Max−1, Min+1, Tabu search
and GRASP, as in Section 4.2.1) in terms of solution cost and exploration time. GRASP is
configured with TRCL = 3 running in 10 iterations as in [8]. During the execution of Min+1 and
Tabu, we experienced that the search process usually gets stuck in situations that keep increasing
the number of bits and thus cost, without a significant quality improvement. Actually, in such
situations there are more distant neighbors that gain a significant amount of quality. As a result,
more quality can be achieved without increasing the number of bits too much, which reduces
redundant cost. The bias versions of Min+1 and Tabu search add a bias to the selection criterion

100

4.5. Evaluation

to reduce the priority of the candidates for which a significant number of bits has already been
added, which leads to optimized versions of the original algorithms.

We evaluate cost and exploration time on five applications. The description of benchmarks
is detailed as follows:

— Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) are implemented with
cascaded 5-stage structure using 33th and 2nd order filters, respectively. The number of
effective variables of FIR and IIR is 17 and 33.

— Block-Matching and 3D Filtering (BM3D) [21] is a widely used for noise reduction algo-
rithm in digital image processing. This algorithm use a Collaborative Filtering to filter
3D groups created by similar 2D same-size image fragments (i.e. blocks). The filtered 3D
groups are then transformed back into 2D fragments to reproduce the output image. The
implementation of BM3D uses 45 effective variables.

— Image Signal Processor (ISP) is an image signal processing chain which takes raw data
from camera sensors as the input, and applies a sequence of processing kernels to produce
a color image. 4 kernels are considered for WLO. Non-Local Means (NLM) denoising
filter [22] computes means of 5 windows, weighted by the distance from the target pixel,
to filter noise. Demosaic reconstructs a full color image from sensor data that captures
color information as a mosaic of primary colors. Gamma Correction adjusts the brightness
of the image to suit human eyes. Unsharp sharpens the image by a mask computed by a
two-pass (vertical + horizontal) filter. ISP has 74 effective variables.

— Stereo Matching (SM) algorithm is widely used in computer vision to extract a depth
information of a scene. In most cases, SM uses two images taken from two cameras placed
side by side and horizontally as the inputs. 3D information is represented by a disparity
map obtained by the horizontal distance between corresponding pixels in the two images.
For evaluation, we explore 85 effective variables in SM.

We use PSNR as the quality metric for filters and Structural Similarity (SSIM) for image
processing applications. Two quality constraints λobj are evaluated for PSNR (40 dB and 50 dB)
and SSIM (0.9 and 0.99). We use the narrow range [ql, qh] as ±2 dB around λobj for PSNR,
±0.09 for SSIM=0.9, and ±0.009 for SSIM=0.99.

4.5.2 Performance Evaluation

Figure 4.5 presents the comparison between our hybrid approach and the references in terms
of solution cost (top) and exploration time (bottom) for our five benchmarks and two accu-
racy constraints. Max−1 converges fast but always leads to the worst solution cost. Conversely,

101

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

Figure
4.5:.

]Energy
cost

ofsolutions
(top)

and
exploration

tim
e
(bottom

)
norm

alized
to

Tabu[bias].N
um

bers
in

parentheses
are

the
execution

tim
e
in

m
inutes

ofTabu[bias]used
for

the
norm

alization.R
esults

for
M
ax−

1
are

rem
oved

for
better

readability
w
hen

leading
to

bad
solutions.

102

4.6. Conclusion

GRASP obtains relatively competitive solutions but with a long exploration time. Time of
GRASP is proportional to the number of iterations used to obtained different randomized start-
ing points to avoid local minima. Most solutions found by GRASP are slightly better than those
obtained by Min+1, Min+1[bias] and Tabu. However, GRASP does not outperform Tabu[bias]
and is therefore not that efficient in spending longer time through randomization (see e.g., ISP-
0.9 example where GRASP still gets stuck in bad local minima).

Thanks to the local bi-directional search, Tabu always find better solutions compared to
Min+1, and sometimes the bias version is better, sometimes not. However, for a fair compari-
son, we always use the best reference as a competitor to our Hybrid approach. We also provide
the solutions obtained by TPE only iterating for the same time as Tabu[bias]. Solutions obtained
by TPE are relatively competitive to Tabu[bias]. For BM3D-0.99, SM-0.9, and SM-0.99, TPE
found better solutions than Tabu, which indicates that TPE is able to avoid bad local minima
better than Tabu.

The results show that our Hybrid approach always find competitive solutions in shorter time
than other methods. For small problems solved in minutes such as FIR-40 and FIR-50, it is
sufficient to use classical approaches because they are able to converge in short time. For larger
problems solved in a few hours to a few days, our approach can reduce by 50% to 80% (66%
on average) exploration time compared to the best reference with similar cost. Our approach
even defeats TPE in most benchmarks with slightly better solutions found in a much shorter
time (2x-5x faster than TPE, 3.7x on average). Apart from IIR-50 and SM-0.99 where solutions
obtained by our approach is 0.4% and 14.5% worse than TPE, respectively, the other cases
record a 0.4%-6.3% solution improvement (3.3% on average) compared to TPE. It is clear that
the speedup of our approach comes from the benefits of i) TPE to speedup the first phase and ii)
our transition condition to stop TPE early. The solution cost improvement takes advantage of
the good convergence of Tabu in local regions. In absolute execution time, our approach reduces
exploration from 7.2 days to 1.5 days compared to TPE for SM-0.9, from 4 days to 18.8 hours
compared to Tabu[bias] for BM3D-0.9, and from 2.5 days to 13.3 hours compared to Tabu[bias]
for ISP-0.99.

4.6 Conclusion

In this chapter, we propose a hybrid method leveraging Bayesian Optimization and local
search, to improve the scalability issue that WLO faces for large applications. First, we show
that TPE is good at narrowing down the search on good regions due to its randomness and
Tabu is well suited for fine-tuning because of its bi-directional local search. Then, the core of our

103

Part, Chapter 4 – Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning

approach is to derive a statistical metric to evaluate model convergence of TPE, to automatically
find the right transition moment between TPE and Tabu and to maintain the search efficiency.
We show that for large applications, our approach significantly outperforms state-of-the-art
approaches with a 50%-80% reduction in exploration time, while still providing similar or better
cost solutions. The exploration of the parameters used in our methods is important but left as
future work.

104

BIBLIOGRAPHY

[1] M. Clark et al., “Accelerating fixed-point design for mb-ofdm uwb systems,” CommsDesign,
January, vol. 4, 2005.

[2] S.-C. Chan and K. M. Tsui, “Wordlength optimization of linear time-invariant systems with
multiple outputs using geometric programming,” IEEE Trans. on Circ. and Syst., vol. 54,
no. 4, pp. 845–854, 2007.

[3] P. D. Fiore, “Efficient approximate wordlength optimization,” IEEE Trans. on Computers,
vol. 57, no. 11, pp. 1561–1570, 2008.

[4] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An automatic word length deter-
mination method,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 5, 2001, pp.
53–56.

[5] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Wordlength optimization for linear
digital signal processing,” IEEE Trans. on CAD of Int. Circ. and Syst., vol. 22, no. 10, pp.
1432–1442, 2003.

[6] K. Han, I. Eo, K. Kim, and H. Cho, “Numerical word-length optimization for cdma demod-
ulator,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 4, 2001, pp. 290–293.

[7] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,
“Accuracy-guaranteed bit-width optimization,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 1990–2000, 2006.

[8] H.-N. Nguyen, D. Ménard, and O. Sentieys, “Novel algorithms for word-length optimiza-
tion,” in 19th European Signal Processing Conf. IEEE, 2011, pp. 1944–1948.

[9] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out
of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1,
pp. 148–175, 2015.

[10] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in Advances in neural information processing systems, 2011, pp. 2546–2554.

[11] K. N. Parashar, D. Menard, and O. Sentieys, “A polynomial time algorithm for solving the
word-length optimization problem,” in IEEE/ACM Int. Conf. on Computer-Aided Design
(ICCAD), 2013, pp. 638–645.

105

Part, BIBLIOGRAPHY

[12] W. Sung and K.-I. Kum, “Simulation-based word-length optimization method for fixed-
point digital signal processing systems,” IEEE Transactions on Signal Processing, vol. 43,
no. 12, pp. 3087–3090, 1995.

[13] M.-A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word length opti-
mization procedures,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 2, 2002,
pp. II–II.

[14] V.-P. Ha, T. Yuki, and O. Sentieys, “Towards generic and scalable word-length optimiza-
tion,” in DATE 2020-23rd IEEE/ACM Design, Automation and Test in Europe. IEEE,
2020, pp. 1–6.

[15] D. Novo, I. Tzimi, U. Ahmad, P. Ienne, and F. Catthoor, “Cracking the complexity of fixed-
point refinement in complex wireless systems,” in IEEE Workshop on Signal Processing
Systems (SiPS), 2013, pp. 18–23.

[16] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine
learning algorithms,” in Advances in neural information processing systems, 2012, pp. 2951–
2959.

[17] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for
general algorithm configuration,” in Int. Conf. on learning and intelligent optimization.
Springer, 2011, pp. 507–523.

[18] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hyperopt: a python
library for model selection and hyperparameter optimization,” Computational Science &
Discovery, vol. 8, no. 1, 2015.

[19] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient hyperparameter optimiza-
tion at scale,” arXiv preprint arXiv:1807.01774, 2018.

[20] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-
Brown, “Towards an empirical foundation for assessing bayesian optimization of hyperpa-
rameters,” in NIPS workshop on Bayesian Optimization in Theory and Practice, vol. 10,
2013, p. 3.

[21] M. Lebrun, “An analysis and implementation of the bm3d image denoising method,” Image
Processing On Line, vol. 2, pp. 175–213, 2012.

[22] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in IEEE
Confe. on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, 2005, pp. 60–65.

106

Chapter 5

MAXIMIZING COMPUTING ACCURACY ON

RESOURCE-CONSTRAINED

ARCHITECTURES

With the growing complexity of applications, designers need to fit more and more computing
kernels into a limited energy or area budget. Therefore, improving the quality of results of
applications in electronic devices with a constraint on its cost is becoming a critical problem.
Word Length Optimization (WLO) is the process of determining bit-width for variables or
operations represented using fixed-point arithmetic to trade-off between quality and cost. State-
of-the-art approaches mainly solve WLO given a quality (accuracy) constraint. In this chapter,
we first show that existing WLO procedures are not adapted to solve the problem of optimizing
accuracy given a cost constraint. It is then interesting and challenging to propose new methods to
solve this problem. Then, we propose a Bayesian optimization based algorithm to maximize the
quality of computations under a cost constraint (i.e., energy consumption is taken into account).
Experimental results indicate that our approach outperforms conventional WLO approaches by
improving the quality of the solutions by more than 170%.

5.1 Introduction

The rapid development in scientific and technological innovations during the last decade has
driven the demand for more powerful chips with higher performance to handle complex tasks in
various fields, such as artificial intelligence (AI), big data, and the Internet of Things (IoT). The
requirement for integrating more applications and services, while ensuring at the same time high
performance and quality of service (QoS) in a limited cost budget (energy and/or area), poses
new challenges for energy-efficient computing. As an example, Deep Neural Networks (DNN)
are used in multiple applications such as object detection, speech recognition, navigation, etc.
Many of these applications operate on battery-powered intelligent embedded systems such as
autonomous drones, self-driving cars, smart phones, and wearable devices. Thus, increasing the
performance and/or QoS under a limited energy budget is a key competitive advantage among

107

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

electronic device manufacturers.

Likewise, implementing applications on ASIC or FPGA devices also faces challenges of op-
timizing the performance and/or QoS within a constrained cost budget. In theses cases, besides
energy, relevant cost constraints include either limited area inside a System on Chip (SoC) or
limited resources like the number of LUTs, DSP blocks, memory size in the context of FPGA ar-
chitectures. As an example, in the development life cycle of some SoC products, upgrading only
some modules while keeping the remaining ones untouched helps shortening the time to market.
Replaced modules usually have new features that enhance the performance of the system. This
requires optimization in terms of maintaining high implementation performance and/or QoS
within the available silicon area. This process takes more effort to optimize because the new
modules are usually more sophisticated and complex than older ones, requiring more time and
effort to create, test, and debug them to fit into the limited, unchanged area (or a given energy
budget). Therefore, a design technique that optimizes for the performance and/or QoS within
a constrained cost budget of the system would be of great concern, but is not really covered in
the state of the art.

Approximate Computing (AC) emerged as an effective solution to adjust the trade-off be-
tween QoS and cost constraints, while satisfying design requirements. The use of fixed-point
arithmetic in embedded systems, combined with a reduction of the precision, is one of the AC
techniques for reducing cost and energy. This technique requires to determine the optimal fixed-
point word-lengths (i.e., bit-widths) for representing all variables of the application that still
fulfil some quality (i.e., accuracy of computations) requirement. This procedure is called Word-
Length Optimization (WLO). Many methods are proposed to solve the WLO problem with QoS
constraints quickly and efficiently [1, 2, 3]. However, these methods traditionally explore the
design space to minimize a cost function (e.g., area or energy) under a given constraint on the
accuracy at the output of the system.

However, as mentioned previously, it might be of great interest to limit the area or energy cost
budget of a computing kernel below a specified bound. In this case, the stringent constraint be-
comes the cost, and it is important to maximize accuracy (or the minimize accuracy degradation)
as a quality metric under this cost constraint. In this chapter, we propose new methods to solve
this problem of maximizing QoS within a given cost budget. We first highlight the limitations of
traditional methods to solve WLO under cost constraints. Then, we propose a method relying on
Bayesian optimization to address the resource-constrained WLO problem. Experimental results
show that our proposed algorithm outperforms the latest conventional approaches, improving
solution quality by up to 300% compared to Uniform Word-Length Optimization (UWLO) and

108

5.2. Related Work

by up to 170% compared to a state-of-the-art classical WLO approach.

The remaining sections are organized as follows. In Section 5.2, we provide background
information and discuss related work, followed by an explanation of our motivations and problem
statement in Section 5.3. In Section 5.4, we describe our proposed Bayesian optimization-based
method. In Section 5.5, we compare the performance of our approach with traditional approaches
on various benchmarks, before to conclude in the last section.

5.2 Related Work

In this section, the well-studied accuracy-constrained Word-Length Optimization (WLO)
problem is recalled, followed by the related state of the art. Then, we motivate the need for a
new method to solve a cost-constrained WLO problem.

A number expressed using fixed-point arithmetic has both integer and fractional word-lengths
(WLs), which are correspondingly represented by I and F bits, respectively. The dynamic range
of the number represented with this format is covered by the integer WL, while its accuracy is
controlled by the fractional WL. In this chapter, we concentrate on the WLO for the fractional
WL since it is the most time-consuming exploration in the design process. The dynamic range is
usually evaluated through static analysis or simulation to determine the integer WL to guarantee
no or low-probability overflow during computations.

Let the vectorW = [W0,W1, . . . ,WN−1] denote a word-length configuration with N effective
variables from the considered application to be explored for fixed-point conversion. The main
objective of WLO is to determine a good-enough word-length configuration that minimizes a
cost function under a quality (accuracy) constraint:

minC(W) Subject to λ(W) ≥ λobj , (5.1)

where C and λ are the cost and accuracy functions depending on W , respectively. λobj is the
maximal degradation of the accuracy at a given output of the application that is acceptable for
the required quality of service. Analytical models and simulation-based methodologies are both
used to construct C and λ.

There are two approaches to solve this well-studied accuracy-constrained WLO problem:
simulation-based and analytical approaches. The aim of analytical approaches is to approximate
quality and cost functions of the WLO problem to be convex functions which can be solved
quickly by some convex optimization algorithms, e.g., CVX [4]. Existing techniques are limited
to modeling noise power metrics of Linear and Time-Invariant (LTI) systems (with some exten-

109

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

sions) [5, 6, 1]. Simulation-based approaches [7, 8, 9, 10, 11] use simulations and iterative search
to address WLO. Uniform WordLength Optimization (UWLO) can quickly evaluates several
solutions which are constructed by the same wordlength for each variable to obtain the best
one. However, the quality of the solution obtained is much worse than the ones obtained by the
non-uniform wordlength optimization methods [12]. Some more advanced methods leverage noise
budgeting techniques [2, 13] to reduce the exploration time in solving WLO for large applications.

Bayesian Optimization (BO) is a machine-learning-based optimization technique [14] de-
signed to optimize functions that often lack mathematical expressions and/or derivatives. BO
typically consists of two essential components: i) a probabilistic surrogate model for modeling
the unknown objective function based on previously observed samples and ii) an acquisition
function that optimizes over the surrogate model to recommend further samples. The procedure
of choosing surrogate models is a key distinction between BO approaches and those of others.
While Gaussian Processes (GP) are often employed for moderate-size continuous-domain issues,
tree-based models such as Random Forest and Tree-structured Parzen Estimator (TPE) are ad-
vantageous for large-size discrete-domain problems [15]. TPE identifies points that might have
been drawn based on the assessment of a loss function at other points. BO was first used to
speed up WLO in a hybrid method [3].

5.3 Resource-Constrained WLO

All the previously mentioned techniques solve the Word-Length Optimization problem with-
out any constraint on the cost of the solution. The objective of the optimizer is to find a solution
with minimum cost that guarantees the accuracy being higher than a given constraint. However,
as motivated in the introduction, with the growing complexity of applications, it might be of
great interest to limit the area or energy cost budget of a computing kernel under a restricted
bound. In this case, the stringent constraint becomes the cost and it is important to find the
maximal accuracy (or the minimum accuracy degradation) under this cost constraint.

The resource-constrained WLO problem can be stated as

maxλ(W) Subject to C(W) ≤ Cbudget, (5.2)

where C and λ represent for the cost and accuracy functions of a WL configuration vector W .
The objective of this problem is to find a WL configuration W o that maximizes the accuracy
at the application output given Cbudget as a cost constraint. The WL components Wi ofW can
be bounded as

mi ≤Wi ≤ ni mi, ni and Wi ∈ Z+, (5.3)

110

5.3. Resource-Constrained WLO

to limit the exploration space.

5.3.1 Room for Accuracy Improvement Given a Cost Budget

We use a subset of the solution space of a 5-stage 33-tap Finite Impulse Response (FIR)
filter as an example to motivate our work. The filter has 17 different variables represented in
fixed-point arithmetic.

30 20 10 0 10 20 30 40 50 60
PSNR (dB)

0.005

0.006

0.007

0.008

0.009

0.010

En
er

gy
 c

os
t (

nJ
)

unsatisfied solutions
satisfied solutions
cost budget

Figure 5.1: 105 random solutions as a representative subset of all possible solutions, for the FIR
filter benchmark. The red line represents an energy budget of 0.0075 nJ

Fig 5.1 shows 105 solutions obtained from a random search. Each solution evaluates the
FIR filter output accuracy (PSNR) and the associated cost (energy in nJ) for a random WL
configuration. The integer WL is set to 12 bits for all variables to avoid overflow and the fractional
WL of each variable is varied in the range of 3 to 20 bits, which can be considered large enough
to reduce the chance of missing good solutions. The energy is evaluated based on a library of
arithmetic operators characterized for various WL in a 28nm FDSOI technology (see Section
5.5.1 for more details). Given an energy level, there is a large set of solutions consuming the
same amount of energy but resulting in a significantly different quality at the application output.
For instance, with 0.0075 nJ considered as a maximum energy budget, the quality of satisfied
solutions can vary from -20dB to 60dB. Hence, to maximize the performance or quality of the
system given a cost budget, it is worth to design an optimization method that can obtain the
highest quality solution satisfying the cost constraint from possible solutions.

111

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

30 20 10 0 10 20 30 40 50 60
PSNR (dB)

0.005

0.006

0.007

0.008

0.009

0.010

En
er

gy
 c

os
t (

nJ
)

unsatisfied solutions (RS)
satisfied solutions (RS)
unsatisfied solutions (TPE)

satisfied solutions (TPE)
cost budget
accuracy constraint for classical WLO

Figure 5.2: The classical WLO problem in the context of the cost-constrained WLO problem.
The data points includes the 10000 randomized solutions and 1000 solutions found by TPE for
the classical WLO problem with an accuracy constraint as 25 dB of PSNR.

5.3.2 Resource-Constrained WLO as a New Problem

The classical accuracy-constrained WLO focuses on minimizing cost as much as possible
while satisfying QoS at the system output. Meanwhile, the objective of the resource-constrained
WLO is to exploit the available resource (energy and/or area) of the system to enhance its
overall performance. The objective of these two problems are totally different, leading to the
different exploration targets. For the design purpose that enhances quality on a system with
specific resources as much as possible, the search objective of the original problem is no longer
relevant. Hence, it is important to design new methods to solve the resource-constrained WLO
problem. We illustrate the objective target of the classical WLO for FIR filter in the context of
a system with an energy budget. We use TPE as a search method for the classical problem with
a PSNR quality target of 25 dB. The use of TPE follows the setup in [3].

In Fig. 5.2, the explored solutions discovered by TPE for the classical problem are compared
to those discovered by Random Search (RS) in the context of a system with an energy budget as
0.0075 nJ. Clearly, TPE focuses on exploring low-cost solutions around the accuracy constraint,
i.e. around the vertical line 20 dB, missing possible solutions with higher accuracy and still
satisfying the energy budget, i.e., solutions found by RS range in 30 to 40 dB of PSNR. Similar
to TPE, recent simulation-based techniques mentioned in [11, 3] such as Min+1 and Tabu Search

112

5.4. Solving Resource-Constrained WLO

also rely on a search model to restrict the exploration space, followed by a fine tuning around
the quality constraint to find a better solution.

5.3.3 Limitations of Classical WLO Methods

Numerous methods to address the WLO problem have been proposed in the literature.
In [16, 3], the performance and execution time of several state-of-the-art techniques, includ-
ing Min+1, Max-1, Heuristic approach, Tabu Search, and GRASP, have been compared. The
comparison shows that variants of bi-directional searches that combine steepest-descent and
mildest-ascent procedures, such as heuristic approach [17] and Tabu search [11], outperform
the mono-directional searches. However, due to the greedy nature of those algorithms, the final
solution is not guaranteed to be a global minima and is dependent on the starting point. Ad-
ditionally, most of these searches are based on local iterative searches that travel across small
distances in the discrete domain. As a result, if the starting point is distant from a local mini-
mum, convergence will be slow [3].

Fig. 5.3 illustrates the limitations of the classical methods. We choose Tabu search as a
typical method to address the resource-constrained WLO. The FIR filter with a maximum
energy supply as 0.0075 nJ is still used for the illustration. The search procedure is initialized
at different points. Each initial point is constituted from fixed-point variables with UWL. The
integer word-length of variables is fixed as 12 bits. The fractional word-length is incremented
every two bits from 2 bits to 20 bits, thus the UWL varies from 14 bits to 32 bits for each
starting point. The quality of obtained solutions with Tabu search and different starting points
significantly differs and strongly depends on the initialization. At starting points with UWL equal
to 30 or 32, the obtained solutions have a bad PSNR of around -30 dB. At the remaining initial
points, Tabu search produced better solutions than RS from 10 to 50 dB of PSNR. However,
the solution quality is varying dramatically. Besides, procedures that start farther away from
the cost constraint tend to converge more slowly than those that start closer to it. The trends
are consistent with other benchmarks evaluated in Section 5.5.

5.4 Solving Resource-Constrained WLO

In this section, we introduce a BO-based method to address the resource-constraint WLO
problem. The loss function is constructed first, followed by the description of our BO-based
approach.

113

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

60 40 20 0 20 40 60 80
PSNR (dB)

0.004

0.006

0.008

0.010

0.012

En
er

gy
 c

os
t (

nJ
)

uwl = 14
uwl = 16
uwl = 18

uwl = 20
uwl = 22
uwl = 24

uwl = 26
uwl = 28
uwl = 30

uwl = 32
Cbudget = 0.0075

Figure 5.3: Different exploration trajectories of Tabu search method corresponding to different
starting points for the resource-constrained WLO problem on the FIR application. The energy
budget is 0.0075 nJ. Each color corresponds to a search procedure with a given starting point.
Fixed-point variables of each procedure are chosen with uniform word-lengths (UWLs) at the
starting point. The number in the legend indicates the word-length given for the UWL. For each
procedure, the starting point is further from the cost budget line than the ending point. Some
procedures overlapped during the exploration process.

114

5.4. Solving Resource-Constrained WLO

5.4.1 Loss Function

The resource-constrained WLO problem statement of Eq. 5.2 is changed as follows using the
Lagrange multipliers approach to turn a constrained problem into an unconstrained one:

f(W) = −λ(W) + α(C(W)−Cbudget), (5.4)

with a positive and big enough α. By minimizing the loss function, TPE tends to sample more
frequently solutions that are of high quality and satisfy the cost constraint. The factor α is
important for exploration. If α is very small, TPE will ignore the restricted cost condition and
concentrate on exploring solutions with quality as high as possible. If α is very large, the solution
of TPE would be highly dependent on the restricted cost condition. That is, TPE focuses on
finding solutions that cost less than Cbudget while neglecting solutions of high quality.

Based on many WLO experiments, we found that the cost and quality functions tend to be
proportional toW . A high quality solution usually comes at a high cost. Thus, the best solutions
to satisfy the cost constraint with high quality are likely to be those around the cost budget
Cbudget. Therefore, for faster convergence, we force the loss function to cover only a narrow range
[cl, ch] around Cbudget. Solutions with costs outside this range of interest are penalized with the
positive infinite loss value. The loss function is then defined as

f(W) =

−λ(W) + α(C(W)−Cbudget) if C(W) ∈ [cl, ch],
+∞ otherwise.

(5.5)

5.4.2 TPE Algorithm

For the resource-constrained WLO problem of Eq. 5.2, a WL configuration formed by the
choice of each variable, i.e., Wi ∈ [mi, ni] represents a solution. All possible combination of dif-
ferent values of Wi creates a solution space of this WLO problem. With the leverage of Bayesian
Optimization relying on TPE [18] to solve the WLO problem, each Wi is considered as a hyper-
parameter to be tuned. Each Wi is initially mapped to a prior of quantized uniform distribution
in which the value is sampled uniformly in [mi, ni] and then rounded to the nearest integer value.

Algorithm 3 describes the TPE algorithm for the resource-constrained WLO problem. The
algorithm is first initialized by uniform word-length (UWL) configurations and corresponding
loss values evaluated by the loss function. These configurations are then served as first samples
in an observation history H. TPE works as an iterative approach. At each iteration, a WL
configurationW i is evaluated by the loss function f(W i). Then, obtained samples {W i, f(W i)}
stored in the observation history H are divided into two groups. The first group contains good
samples where the loss fi is less than a threshold γ∗, whereas the second group consists of the

115

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

remaining, considered as bad samples. TPE uses these two sample groups to model two likelihood
probability density functions l(W) = p(W |f(W) < γ∗) and g(W) = p(W |f(W) ≥ γ∗),
respectively. Then, the TPE algorithm decides which hyper-parameter to try in the next iteration
by maximizing the ratio

l(W)
g(W) = p(W |f(W) < γ∗)

p(W |f(W) ≥ γ∗) .

Algorithm 3 TPE algorithm
1: H← Uniform Word-Length Initialization
2: for i ∈ [1, . . . , T] do
3: W ∗ = argmax l(W)

g(W)
4: Evaluate f(W ∗)
5: H←H ∪ (W ∗, f(W ∗))
6: Update l(W) and g(W) given H
7: end for

Our initialization procedure constructed from UWL configurations samples the solution space
at some design points ranging from low-accuracy-and-low-cost solutions to high-accuracy-and-
high-cost solutions. These design points are then used to construct density functions at the
very first iteration of the algorithm. Under the evaluation of the loss function, TPE can start
exploring from the points that yield low loss values. This initialization procedure provides better
results and faster convergence than an initialization constructed from random configurations.

5.5 Evaluation

5.5.1 Experiment setup

We choose Uniform Word-Length Optimization (UWLO) as our baseline. Our goal is to
evaluate how much our approach can perform better than UWLO, a fast and simple method
considering all variables having the same WL. In our approach, we employed Adaptive TPE
(ATPE), an improved extension of TPE that was implemented on Hyperopt [18] to update the
hyper-parameters of TPE in real time. The cost and quality functions, λ(W) and C(W), in the
loss function are normalized within a range. First, UWLO is performed to obtain the quality
and the cost of uniform-wordlength solutions. λ(W) is normalized between upper and lower
bounds. The lower bound is the solution which satisfies the cost constraint and has the highest
quality. The upper bound is the highest quality value obtained from those solutions without
the cost constraint. The normalization range of C(W) is [cl, ch], where cl and ch are separated
from the central value, Cbudget, by a distance of 10% of the difference between the minimum
and the maximum cost values obtained from the UWL solutions. We conduct experiments on

116

5.5. Evaluation

our benchmarks with five values of α, i.e., α = {0.1, 0.2, 0.3, 0.4, 0.5}, to evaluate its impact to
the approach. The number of iterations for each experiment is chosen as 5000 which can cover
mostly the possibility of improving the solution quality as much as possible. Note that more
complex applications would need more iterations to increase the possibility of obtaining better
solutions. To further demonstrate the limitations of classical methods, we conduct several exper-
iments with Tabu search [11] on our benchmarks. In each benchmark, Tabu Search is initialized
at different uniform wordlengths.

All experiments were conducted on a Linux-powered Intel Xeon E5640 processor at 2.67GHz
with 4GB of RAM. Energy is the basis for our cost model. The energy model counts the opera-
tions carried out by each operator and determines the overall energy cost using the empirically
determined energy consumption of an operation from several synthesis for various WLs. An
operator is characterized by the WLs of the operands, the WL of the result, and the arithmetic
operation performed. A 28nm FDSOI technology is used for characterization along with Synop-
sys Design Compiler and Prime Time.

We use three applications as the benchmarks to evaluate our approach: FIR, IIR and NLM.
The FIR filter, also used in previous sections, is implemented with a 5-stage cascaded structure
of 33 taps each. The IIR filter has a 5-stage cascaded structure of 2nd order filters. The number
of effective variables to optimize is 17 for FIR and 33 for IIR. Non-local means (NLM) is a
denoising approach in image processing. To denoise the target pixel, the algorithm calculates
the mean of all pixels in the picture, weighted by their similarity to the target pixel. The im-
plementation of NLM uses 19 effective variables. We explore only the fractional word-lengths in
the resource-constrained WLO problem. The integer word-length of each signal in the applica-
tions is determined beforehand so that the dynamic range of each signal is covered. The integer
word-length of FIR, IIR and NLM are set to 12, 12 and 6, respectively. The word-lengths of the
variables used in FIR and IIR range from 13 to 32 bits, whereas NLM is explored with bit-width
ranging from 8 to 32 bits.

We use Peak Signal to Noise Ration (PSNR) for filters and Structural Similarity Index
Measure (SSIM) for NLM as quality metrics. We choose three cost budget objectives for every
application as shown in Table 5.1, thus resulting in nine different benchmarks. The targets are
selected proportionally to the operation counts of each application, i.e., the number of additions
and multiplications. The cost budgets of NLM are higher than the remaining applications due
to its higher computation complexity.

117

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

Table 5.1: The benchmarks for the evaluation

Application Target 1 (nJ) Target 2 (nJ) Target 3 (nJ)
FIR 0.0065 0.0070 0.0075
IIR 0.0010 0.0012 0.0014
NLM 250 300 400

5.5.2 Performance Evaluation

Figure 5.4 presents a comparison between our approach and UWLO serving as a baseline. In
overall, our approach outperforms UWLO by obtaining solutions with better quality for a given
cost budget. The results show that solutions obtained by our approach with different values of α
are always better than those obtained by UWLO. Table 5.2 summarizes the quality improvement
of our solutions compared to those obtained by UWLO. In several cases, including FIR (Target
1, 2 and 3), IIR (Target 1 and 2), and NLM (Target 1), our approach significantly improves the
quality of the solutions. This indicates that a solution can be obtained quickly by UWLO, but
which is far from the optimal; this also confirms the conclusion in [12].

Table 5.2: Quality improvement of our solutions in percentage compared to UWLO solutions.
Given value for each benchmark is the average of those obtained by different values of α.

Application Target 1 Target 2 Target 3
FIR 321.19% 200.48% 90.68%
IIR 52.39% 50.67% 16.91%
NLM 160.50% 25.63% 3.32%

For some benchmarks, the quality of solutions obtained by explorations with small α, such
as α = {0.1, 0.2}, is worse than for higher α values. As explained in Section 5.4.1, the cost
constraint will be not respected with small α. This means that the exploration strategy will
focus more on improving the solution quality without being strictly constrained by the cost
budget, which causes an excessive search in the infeasible region. As a result, this will reduce
the possibility of improving the quality of solutions in the feasible region.

Figure 5.5 illustrates a comparison of the quality of solutions found by our proposed method
and Tabu Search using various benchmarks. The quality of results found using Tabu Search
varies a lot among benchmarks, the solution strongly depending on its starting point. In the
meanwhile, the quality of solutions obtained via our method is much more stable. Figure 5.5
also shows that the average quality obtained by our method is always superior than that of
Tabu search. Table 5.3 reports the average improvements of the quality of solutions provided by
our method over Tabu search. The table shows that the solutions can be improved from 20% to
173% using our optimized BO-based algorithm to solve the resource-constrained WLO problem.

118

5.5. Evaluation

Figure 5.4: Performance comparison between our approach and UWLO in terms of quality
of results for different benchmarks. The results are normalized with the highest quality value
indicated in parentheses for each benchmark.

Especially, for IIR with target 1 and target 2, our method outperforms Tabu by up to 158% and
173%, respectively.

Figure 5.6 shows how our approach explores the design space of the problem, and how the
search is evolving along with the iterations of the BO algorithm. We still use the FIR application
with a cost budget of 0.0075 nJ, as in Section 5.3, to demonstrate how well our strategy performs
in improving the quality of the solution. Indeed, few very early solutions (in the yellow color)
randomly sample the solution space. Then, the later solutions of our technique concentrate
quickly on the area of interest, which is located around the cost budget line. Solutions obtained
during later iterations of the algorithm are represented by deeper colors. Our approach tries to
sample at points of higher quality and still satisfy the cost constraint, which is clearly seen by
the left-to-right search direction to improve the solution quality.

119

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

Figure 5.5: Comparison of the normalized quality of solutions obtained by Tabu Search and our
approach for different benchmarks. The solutions obtained by Tabu search are the best found
solutions under the target cost constraint, but for different starting points. Our solutions are
obtained with different α. The normalization range are mentioned in parentheses, where the
numbers above and below represent for upper and lower bounds, respectively. Letter "T" is the
abbreviation of "Target".

Table 5.3: Average quality improvement of the solutions provided by our approach over those
obtained by Tabu Search (TS). The results are normalized with the range in Figure 5.5.

Benchmark - Target TS Our approach Avg. Impr.
FIR - Target 1 0.5258 0.9776 85.93%
FIR - Target 2 0.5017 0.9704 93.40%
FIR - Target 3 0.6116 0.9749 59.40%
IIR - Target 1 0.3599 0.9318 158.93%
IIR - Target 2 0.3499 0.9569 173.46%
IIR - Target 3 0.6717 0.9130 35.94%
NLM - Target 1 0.8058 0.9814 21.79%
NLM - Target 2 0.8288 0.9996 20.61%
NLM - Target 3 0.6388 0.9935 55.52%

120

5.5. Evaluation

20 0 20 40 60
PSNR (dB)

0.005

0.006

0.007

0.008

0.009

0.010

En
er

gy
 c

os
t (

nJ
)

Random Search
cost budget

250

500

750

1000

1250

1500

1750

2000

Figure 5.6: The search direction of our approach compared with the Random Search. The solu-
tions found by RS (105 solutions) are colored in translucent blue. The solutions found by our
approach (2000 solutions) are colored from a yellow to dark purple range of colors, corresponding
to the solutions found at each iteration, from the first to the last iterations, respectively.

121

Part, Chapter 5 – Resource-Constrained Word Length Optimization - A New Problem

5.6 Conclusion

In this chapter, we present our Bayesian-Optimization-based approach to maximize the qual-
ity of digital applications implemented under a resource-constrained budget. We first show the
importance of the resource-constrained word-length optimization (WLO) problem in systems
which have limited silicon area and energy supply. Then, we highlight the limitations of classical
approaches for WLO, such as Tabu search, which are not well adapted to solve the resource-
constrained WLO problem. We thus propose a method based on BO and the TPE algorithm
with an adaptive loss function. The results from our experiments show that our approach sig-
nificantly outperforms UWLO and Tabu search, a state-of-the-art method. Our method is the
first efficient approach addressing the resource-constrained WLO problem and also the starting
point for further research that will address other aspects on the scalability and optimality of
this problem, as well as other cost constraints, such as limited area or maximum number of
resources.

122

BIBLIOGRAPHY

[1] K. N. Parashar, D. Menard, and O. Sentieys, “A polynomial time algorithm for solving the
word-length optimization problem,” in IEEE/ACM Int. Conf. on Computer-Aided Design
(ICCAD), 2013, pp. 638–645.

[2] D. Novo, I. Tzimi, U. Ahmad, P. Ienne, and F. Catthoor, “Cracking the complexity of fixed-
point refinement in complex wireless systems,” in IEEE Workshop on Signal Processing
Systems (SiPS), 2013, pp. 18–23.

[3] V.-P. Ha and O. Sentieys, “Leveraging bayesian optimization to speed up automatic preci-
sion tuning,” in 24th IEEE/ACM Design, Automation and Test in Europe (DATE), 2021.

[4] M. Grant, S. Boyd, and Y. Ye, “cvx users’ guide,” online: http://www. stanford. edu/˜
boyd/software. html, 2009.

[5] S.-C. Chan and K. M. Tsui, “Wordlength optimization of linear time-invariant systems with
multiple outputs using geometric programming,” IEEE Trans. on Circ. and Syst., vol. 54,
no. 4, pp. 845–854, 2007.

[6] P. D. Fiore, “Efficient approximate wordlength optimization,” IEEE Trans. on Computers,
vol. 57, no. 11, pp. 1561–1570, 2008.

[7] D.-U. Lee, A. A. Gaffar, R. C. Cheung, O. Mencer, W. Luk, and G. A. Constantinides,
“Accuracy-guaranteed bit-width optimization,” IEEE Trans. on CAD of Integrated Circuits
and Systems, vol. 25, no. 10, pp. 1990–2000, 2006.

[8] M.-A. Cantin, Y. Savaria, D. Prodanos, and P. Lavoie, “An automatic word length deter-
mination method,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 5, 2001, pp.
53–56.

[9] K. Han, I. Eo, K. Kim, and H. Cho, “Numerical word-length optimization for cdma demod-
ulator,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 4, 2001, pp. 290–293.

[10] G. A. Constantinides, P. Y. Cheung, and W. Luk, “Wordlength optimization for linear
digital signal processing,” IEEE Trans. on CAD of Int. Circ. and Syst., vol. 22, no. 10, pp.
1432–1442, 2003.

123

[11] H.-N. Nguyen, D. Ménard, and O. Sentieys, “Novel algorithms for word-length optimiza-
tion,” in 19th European Signal Processing Conf. IEEE, 2011, pp. 1944–1948.

[12] H. Choi and W. Burleson, “Search-based wordlength optimization for vlsi/dsp synthesis,”
in IEEE Work. on VLSI Signal Processing VII, 1994, pp. 198–207.

[13] V.-P. Ha, T. Yuki, and O. Sentieys, “Towards generic and scalable word-length optimiza-
tion,” in DATE 2020-23rd IEEE/ACM Design, Automation and Test in Europe. IEEE,
2020, pp. 1–6.

[14] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out
of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1,
pp. 148–175, 2015.

[15] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-
Brown, “Towards an empirical foundation for assessing bayesian optimization of hyperpa-
rameters,” in NIPS workshop on Bayesian Optimization in Theory and Practice, vol. 10,
2013, p. 3.

[16] M.-A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word length opti-
mization procedures,” in IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 2, 2002,
pp. II–II.

[17] W. Sung and K.-I. Kum, “Simulation-based word-length optimization method for fixed-
point digital signal processing systems,” IEEE Transactions on Signal Processing, vol. 43,
no. 12, pp. 3087–3090, 1995.

[18] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in Advances in neural information processing systems, 2011, pp. 2546–2554.

124

Chapter 6

CONCLUSIONS AND PERSPECTIVES

Energy consumption is one of the most important challenges in computing today, a concern
shared by all computer science subfields. We are entering into the dark silicon era, when the
power constraint wall diminishes the benefits of transistor growth. This circumstance makes it
difficult for scientists and chip-manufacturing corporations to develop viable alternative alter-
natives. In recent years, along with advancements in computer design, computer scientists and
major chip makers have taken a keen interest in modifying the computing approach to increase
energy efficiency. Approximate Computing (AxC) appears as a possible alternative for improving
embedded system performance and energy consumption. The concept behind AxC is to decrease
the accuracy of calculation to a tolerable level, in order to improve performance and/or save
energy. Reducing the precision of the arithmetic representation is one of the most efficient AxC
techniques for minimizing energy consumption and silicon area use. The current state of the art
focuses on design techniques that effectively automate the precision tuning process in order to
optimize the advantages of decreasing the accuracy of operators. This optimization process is
referred to as Word-Length Optimization (WLO). Word-length optimization is the technique of
establishing appropriate word-lengths for variables of a given algorithm in order to lower the
implementation cost (energy consumption and/or area) while maintaining an acceptable level
of accuracy owing to data quantization.

This dissertation focuses on the development of methodologies for systematic exploration of
the design space, including implementation cost/quality of service (QoS) modeling and design
automation. This enables us to accelerate the optimum or near-optimal design selection that
(1) reduces cost (area and/or energy consumption) while still meeting the minimum required
accuracy at the application output, or (2) optimizes accuracy at the application output within
a constrained cost budget. In this dissertation, three main contribution have been proposed as
follows:

1. Towards generic and scalable WLO based on the noise budgeting technique, as presented
in Chapter 3.

2. Leveraging Bayesian Optimization to speed up automatic precision tuning, as presented
in Chapter 4.

125

3. Maximizing Computing Accuracy on resource-constrained architectures, as presented in
Chapter 5.

In Chapter 3, we detailed our proposed approach to reach a Word-Length Optimization
(WLO) procedure that is more scalable for big systems, and that makes use of sophisticated
quality criteria like Structural Similarity (SSIM). To prevent an uncontrolled growth in explo-
ration time, this method splits the input application into smaller kernels. The fundamental issue
that is being studied in this research is the problem of allocating noise budgets to individual
kernels. To do so, it is necessary to record the connections between different kernels. The core
idea is to use simulation and regression to assess the effect of approximating each kernel on
accuracy/cost. Scalability is increased by our method, and better answers are discovered for
complex applications such as an Image Signal Processor pipeline and the Stereo Matching.

To accelerate the WLO process, we proposed a hybrid approach in Chapter 4 that combines
Bayesian optimization (BO) with a quick local search. Experimental results from this chapter
provide the first proof that this combination reduces the amount of time spent exploring. We
then propose a new technique that can automatically find an appropriate transition point be-
tween the two. In order to identify when to switch from BO into local search, we perform a
statistical analysis of the convergence of the probabilistic models created during BO and then
formulate a stopping condition. The experimental findings show that, for large benchmarks, our
technique can save exploration time by as much as 80%.

In Chapter 5, we have examined another aspect of Word Length Optimization that is affected
by hardware limitations. It is important to note that the majority of state-of-the-art methods
solve WLO with a quality restriction in place. There has been no study on how to improve the
quality of service, while keeping costs down. For low-power or low-cost electronic equipment,
this is a major obstacle to enhancing the performance of applications. First, we demonstrate
the significance of the WLO problem under resource constraints, focusing on systems with con-
strained energy consumption. We then point out the difficulty in choosing an appropriate initial
state for WLO problems inherent in traditional methods like Tabu search. We proposed using a
TPE method that incorporates an adjustable loss function. Our experimental findings demon-
strate that our technique outperforms the state-of-the-art methods, UWLO and Tabu Search.
We also note that the quality of the solution found via Tabu search is very context-dependent.
Our method is the first to tackle the resource-constrained WLO issue, and it also serves as a
springboard for future work that may enhance the scalability and optimality of the problem.

126

This thesis opens up several directions of research.

In Chapter 3, the quality function λ̂ models the output quality of the combined solutions
from different kernels. We use the Least Squares technique to approximate this function on the
dataset obtained by simulating combined solutions of the kernels. In our current implementa-
tion, we take a subset of the data points collected for modeling the cost functions and simulate
all combinations to collect the data points. We consider X uniform segments of the quality in
the range under consideration, and take the best design within each segment. Then, the XN

combinations are simulated to collect data points. This simulation encounters a scalability issue
when the number of kernels N and/or segments X increases. This phase may be optimized using
a more advanced subset selection mechanism. An initial model may be developed by simulating
the combination of a few data points from each kernel. Using the initial model, further simu-
lations that would provide significant data points may be anticipated. This procedure may be
repeated until the improvement in the model’s precision begins to decline.

In this thesis, the two independent contributions to accelerate the accuracy-constrained WLO
problem solving are presented in Chapter 3 and Chapter 4. On the one hand, we proposed a
methodology to reduce the complexity of the original problem by breaking it down into local
problems (the kernels) and solving them independently. On the other hand, we proposed a hy-
brid algorithm with the combination of the Bayesian-Optimization and Tabu search algorithms
to speed up the precision tuning in the WLO problem. To further improve the scalability of
solving the accuracy-constrained WLO problem, a combination of the two approaches can be
applied for larger applications. Indeed, the input application can be divided into smaller kernels.
After that, the empirical models proposed in Chapter 3 can be applied to give the noise budget
for each kernel. The optimization for kernels can be done using the Hybrid approach proposed
in Chapter 4, which allows to quickly obtain the solutions for these kernels.

The proposed approaches in the thesis are generic for different applications. As a result, many
assessments for applications in various areas may be used to further demonstrate the efficiency
of the methodologies. For example, neural networks are the principal building blocks being used
in a variety of applications such as computer vision, natural language processing, and robotics.
The implementation of neural networks on embedded devices requires energy efficiency within a
resource budget, which is important to maintain the performance of the devices for a long time
of use. Neural network architectures are composed of several layers and many variables that
express the values of the weight factors and the results of intermediate computations. They are

127

good resources for precision tuning to seek energy efficiency. However, it is difficult to analyze
these designs and provide the precise accuracy for each kernel and/or variable. The noise budget
technique proposed in Chapter 3 can be applied to separate the cost and accuracy impacts of
kernels for independent optimizations, and then the heuristic search presented in Chapter 4
can explore the near optimal word-length configurations of each kernel. Finally, by combining
the local settings, the word-length configuration of the full neural network architecture can be
effectively obtained.

Apart from the fixed-point datatype, custom floating-point is also a promising number rep-
resentation for approximate computing, especially in the context of low precision. As mentioned
in Chapter 2, the floating-point format is comprised of mantissa and exponent parts. The expo-
nent part controls both the accuracy and the dynamic range of the representation, whereas the
mantissa only adjusts its precision. In the context of WLO, both exponent size and mantissa
size therefore need to be adjusted. Various custom floating point datatypes need to be optimized
to seek efficiency in specific applications and their implementation and there is still plenty of
room to investigate in this direction. Current techniques need to be improved to properly cap-
ture the cost/accuracy trade-offs when both mantissa and exponent are customized. This opens
a promising research direction to explore the use of highly customized floating-point types for
various applications.

128

LIST OF PUBLICATIONS

[1] V.-P. Ha, T. Yuki, and O. Sentieys, “Towards generic and scalable word-length optimization,”
in IEEE/ACM Design, Automation & Test in Europe Conference & Exhibition (DATE),
2020, pp. 1668–1673.

[2] V.-P. Ha and O. Sentieys, “Leveraging bayesian optimization to speed up automatic precision
tuning,” in IEEE/ACM Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2021, pp. 1542–1547.

[3] ——, “Maximizing computing accuracy on resource-constrained architectures,” in
IEEE/ACM Design, Automation & Test in Europe Conference & Exhibition (DATE),
Antwerp, Belgium, Apr. 2023.

[4] V.-P. Ha, T. Yuki, and O. Sentieys, “Noise Budgeting in Multiple-Kernel Word-Length Op-
timization,” in 4th Workshop on Approximate Computing (AxC), Florence, Italy, Mar. 2019,
pp. 1–3.

129

APPENDIX A: TYPEX - AN AUTOMATIC

FLOATING-POINT TO FIXED-POINT

CONVERSION TOOLBOX

The experiments in Chapter 3 are performed using the TypEx 1 tool, which is a part of the
Gecos 2 project. In this appendix, we provide the user manual of TypEx. Tomofumi Yuki, Ali
El-Moussawi, Olivier Sentieys and Van-Phu Ha also contributed to the development of TypEx
as well as to the writing of this user manual. TypEx is designed to automatically determine

Application

Description

C Code (float)+pragmas

 Cost

model Type

Exploration

Fixed-Point

Floating-Point
 Accuracy

constraint

C++ Code

Customized Arithmetic

MSE

PSNR

SSIM

Figure A.1: TypEx: a tool for type exploration and automatic floating-point to fixed-point
conversion

custom number representations and word-lengths (i.e., bit-width) for FPGA and ASIC designs
at the C source level. The main goal of TypEx is to explore the design space spanned by possible
number formats in the context of High-Level Synthesis. TypEx takes a C code written using

1. https://gitlab.inria.fr/gecos/gecos-float2fix
2. https://gitlab.inria.fr/gecos

131

https://gitlab.inria.fr/gecos/gecos-float2fix
https://gitlab.inria.fr/gecos

floating-point datatypes specifying the application to be explored. The tool also takes as inputs
a cost model as well as some user constraints and generates a C code where the floating-point
datatypes are replaced by the word-lengths found after exploration. The best set of word-lengths
is the one found by the tool that respects the given accuracy constraint and that minimizes a
parameterized cost function. Figure A.1 presents an overview of the TypEx design flow.

The exploration flow follows the classical simulation-based exploration. The design space is
explored by running simulations to evaluate the accuracy, guided by an algorithm of choice. The
main flow consists of the following steps.

1. Write a C program using floating-point datatypes that implement the desired computation.
The segments of the code that should run on hardware should be separated as one or more
functions. The C code must follow some conventions to be properly processed by the flow
(see Section Writing C Specification for more details).

2. Specify the design space by providing the range of wordlengths to explore. This may be
provided for individual variables through pragmas, or as global default for all variables
(see Section Selecting the Exploration Space for more details).

3. Select the parameters of exploration. The main parameters include cost metric to opti-
mize, the accuracy metric, accuracy constraints, and exploration algorithm (see Sections
Selecting the Exploration Space and Selecting Parameters of the Exploration for more
details).

4. Run the exploration algorithm. It will report all the designs tested during exploration
and return the design with lowest cost that satisfies the accuracy constraint (see Section
Selecting Parameters of the Exploration for more details on exploration algorithms).

Figure A.2 illustrates a screenshot of TypEx toolbox. The tool is written in Java and runs
under Eclipse. On the left of the figure is shown the manager of the different files imported in
the project. This includes

— C files to be explored (.c and .h),

— Gecos scripts to run the tool (.cs), and

— configuration files defining user constraints (.properties).

The datatypes of variables in a C/C++ source code can be explored by using a #pragma
primitive #pragma EXPLORE_FIX W={a..b}, I={c}, where a and b define the frac-
tional bitwidth range for exploration, c is the integer bitwidth. Based on the selection criteria of
each optimization technique, the word-length of the variables under consideration will be changed
throughout the exploration process. The process repeats itself until a stopping condition is met.

Limitations:

132

GeCoS Script

Eclipse
Projects

C/C++ codes

Eclipse console

Figure A.2: TypEx Tool Screenshot

1. The flow does not perform dynamic range analysis. It is assumed to be performed inde-
pendently and the approximate wordlength for the integer part (or exponent) should be
specified. However, the tool provides some means to evaluate the dynamic range during
simulation. Figure A.3 presents an example of histograms containing profiling results of
data values during exploration that can be generated by the tool.

2. The flow mainly supports fixed-point representation. Support for custom floating points
is planned, but not fully available yet.

Writing C Specification

The input specification is written as C programs. The flow does not support C++ code.
The flow targets a function annotated by #pragma MAIN_FUNC as the top-level function. This is
analogous to the top-level function specified in HLS tools, and defines the region under explo-
ration. Within this top-level function, typical HLS restrictions (such as no malloc, no recursive
calls) apply.

Granularity of Exploration

How the C program is written affects the design space being explored. The variables in the
source code defines the granularity of the exploration. For example, consider the following:

133

Figure A.3: Example of histograms resulting from profiling of data values during exploration

f l o a t a , b ;
a = . . .
b = a + 1 ;

a = . . . ;
b = a + 100 ;

The above describes two independent computations that reuses the variables a and b. In other
words, you may rename the latter occurrences of a and b with x and y without changing the
semantics. Thus, it may seem appropriate to assign different number representations for the
different uses of a and b. However, the type exploration flow will only assign a number format
for each variable that is common to all uses of the variable.

If you want the two uses of a and b to have different number representations, then they must
be explicitly given different names:

f l o a t a , b ;
a = . . .
b = a + 1 ;

f l o a t x , y ;

134

x = . . . ;
y = x + 100 ;

What is explored by the flow are possible design points that can be expressed by modifying
the variable declaration. It is possible to automatically apply additional transformations to refine
the granularity, but this is not supported. How the variables are declared is viewed as a way to
specify the granularity of the exploration.

Function Interface

The top-level functions may call other functions. For every function call, the exploration flow
automatically constrains the function parameters to have the same number representation as
the input arguments at the call cite.

For instance, if you have:

foo (f l o a t x) { . . . } ;

f l o a t a , b ;
a = . . .
b = . . .
f oo (a) ;
foo (b) ;

Then all variables a, b, and x must have the same number representation.
If a function is called multiple times with different types, then there must be multiple in-

stances of the function. In the above, example, if the a and b have different data types, then the
function foo requires two different implementations, one for each data type.

If two separate instances of a function is desired, the function should be duplicated or inlined.

Directives for Profiling

The type exploration flow generates many versions of the top-level function for simulation.
The top-level function is wrapped by code that populates the input variables, and code that
writes output variables for analysis purposes.

The input generation and profiled variables are controlled by directives - a special function
processed by GeCoS when generating code.

$save Directive

All variables to be profiled must be specified at the observation point (usually at the end of
the top-level function) using the $save directive.

135

The syntax of the $save directive is:
$save(<symbol> [, <size_outermost>, ..., <size_innermost>]);
If the symbol is not a scalar, its dimension sizes must be specified in the $save directive.

$inject Directive

If main function is available in the input code, then the exploration flow assumes that the
main does the necessary initializations and calls the top-level function.

When there is no main, then one will be generated by the flow. In this case, the variable
initializations must also be generated. The $inject directive is used to control this initialization.

The $inject directive has the following syntax:
$inject(<symbol>, SOURCE, [, <size_outermost>, ..., <size_innermost>]);
If the symbol is not a scalar, its dimension sizes must be specified as additional arguments.
SOURCE can be either:

— Random with uniform distribution: $random_uniform(min, max [, seed])

— Random with normal distribution: $random_normal(mean, stddev [, seed])

— C expression (as String): $from_var(<any expression that evaluates as double>)

— Read from file: $from_file(<file_path>)

Currently, supports .txt files with the following format:

ND_DIMS
SIZE DIM 0
. . .
SIZE DIM ND_DIMS−1
f i r s t va lue
second value
. . .

.png image files in grayscale, and .raw image files. png files are normalized by 256. raw
files are normalized by 1024 assuming 10-bit images of size W = 3968 and H = 2976 (this
can be changed in the code if necessary).

Note that $inject directive can be used anywhere even if main is defined, it will simply
override the symbol values at its location.

$size Directive

The $size directive may be used prior to $save or $inject:
$size(<symbol>, <size_outermost>, ..., <size_innermost>);

136

This is an alternate way to specify the size information that is needed for $save and $inject
directive. Using $size avoids the need to specify the size in both $save and $inject.

Other Coding Guidelines

— Your code should not define any function named as any of the directives ($save, $inject,
or $size)!

— Do not use operations between a floating-point symbol and a immediate constant. This
may cause compilation errors when we later change the type of the symbol. More generally,
keep in mind the fact that the floating-point symbols will be compiled with different
types during the exploration. Operations that might cause conflicts or ambiguity in the
eventual backend library (e.g., ac_fixed) should be avoided. Currently the tool can only
use AC_DataTypes, but this could be easily extended to other libraries.
For example, consider the following:

double x ;
. . = x ∗ 0 . 5 ;

During the exploration the type of x might be changed to ac_fixed<..>, this will result in
a compilation error (ambiguous overload for ‘operator*’) since the ac_fixed library does
not define such behavior.
This particular problem can be avoided by extracting the constant into a separate variable.

— Do not use type operations using explicit types, for example:

#de f i n e TYPE double
. . .
TYPE ∗p = (TYPE ∗) mal loc (s i z e o f (TYPE) ∗ 4) ;

In this case, the cast and the sizeof operations are not allowed, since they are not modified
when the flow generates different designs by changing the data type of variable p. This
problem can be avoided by using typedef. However, one typedef can currently be used
by one symbol only. The flow does not handle the same type by a typedef for 2 different
symbols. For example:

typede f double TYPE;
. . .
TYPE ∗p = (TYPE ∗) mal loc (s i z e o f (TYPE) ∗ 4) ; // OK
TYPE x ; // NOT SUPPORTED !

uses the same type for two variables, which is not supported.

137

Selecting the Exploration Space

The space of exploration may be defined for each variable using pragmas or as a global
configuration. In this section, fine tuning of the exploration space through pragmas is explained.

These pragmas are called EXPLORE annotations and are attached to variable declarations in
the input code. There can be multiple annotations to a variable, as long as they do not conflict
each other.

A default configuration is used for symbols with no EXPLORE annotations. This default con-
figuration can be set in the configuration file explained in Section Selecting Parameters of the
Exploration.

pragma EXPLORE_FIX

Annotate a variable with pragma EXPLORE_FIX to define the set of fixed-point configurations
to be explored:

#pragma EXPLORE_FIX W={SET_VALUES} I={SET_VALUES}}
f l o a t symbol ;

where

— SET_VALUES := (<min>..<max> | <value>)[, (<min>..<max> | <value>)]+

— W: values to be explored for the total wordlength

— I: values to be explored for the integer part

The specification follows the conventions by AC_DataTypes; note that the fractional part is
implicitly defines as W - I.

pragma EXPLORE_FLOAT

Annotate a variable with pragma EXPLORE_FLOAT to define the set of custom floating-point
configurations to be explored:

#pragma EXPLORE_FLOAT W={SET_VALUES} E={SET_VALUES}
f l o a t symbol ;

where

— SET_VALUES := (<min>..<max> | <value>)[, (<min>..<max> | <value>)]+

— W: values to be explored for the total wordlength

— E: values to be explored for the exponent

138

pragma EXPLORE_CONSTRAINT

Annotate a variable with pragma EXPLORE_CONSTRAINT to define constraints on the choice
of wordlengths.

There is only one constraint in the current version:

#pragma EXPLORE_CONSTRAINT SAME = <va r i ab l e name>

where the number representation of the annotated variable with be forced to be the same as the
variable specified by the pragma.

Note that you cannot have cycles with SAME constraints. The tool will detect cycles and
complain when found. It is possible that a cycle is unintentionally created due to automatically
addd SAME constraints for function calls (see Section Function Interface).

Selecting Parameters of the Exploration

The exploration flow exposes many parameters though a configuration file (.properties). A
file with default properties may be automatically generated, which can be modified to customize
the flow.

The exposed parameters are:

— nbThreads: Number of threads to be used.

— nbSimulations: Number of simulations to be performed when evaluating a design. The
input can be made different for each of these simulations.

— enableCharts: When set to true, the progress is visualized during the exploration.

— mainLogLevel: Selects the logging level of the entire flow.

— explorationLogLevel: Selects the logging level of the exploration.

— explorationMode: Selects the target number representation (FIXED or FLOAT).

— timeTagOutput: When set to true, outputs are stored in different directories for each run
(tagged by time).

— nbOutputsToKeep: Number of time-tagged outputs to keep.

— pruneFirst: If pruning is applied before starting the main exploration. See Section Pruning
for details.

— explorationAlgo: Exploration algorithm to use. See Section Exploration Algorithms for
details.

— accuracyMetric: The accuracy metric(s) to use. See Section Accuracy Metrics for details.

— accuracyThreshold: The threshold(s) on the selected accuracy metric(s).

— costMetric: The cost metric to use. See Section Cost Metrics for details.

139

— SSIMenabled: When set to true, SSIM is calculated. All other metrics such as PSNR is
always computed. SSIM requires a specific flag since it is expensive to compute.

— SSIMtarget: Variable name used to compute the SSIM.

— defaultFixedW: Default range of total wordlength explored for fixed-point exploration.
Accepts Comma-separated, positive integer value or value range (min..max)

— defaultFixedI: Default range of integer part length explored for fixed-point exploration.
Accepts Comma-separated, positive integer value or value range (min..max)

— defaultFloatW: Default range of total wordlength explored for custom floating-point ex-
ploration. Accepts Comma-separated, positive integer value or value range (min..max)

— defaultFloatE: Default range of exponent length explored for custom floating-point ex-
ploration. Accepts Comma-separated, positive integer value or value range (min..max)

All the parameters are also explained in comments of the automatically generated property
file.

Exploration Algorithms

Figure A.4 presents the general principle of the exploration algorithm. As already mentioned,
the exploration takes as inputs some C code and user configurations, and generates a C code
enriched with fixed-point (or custom floating-point) datatypes found by the tool. The exploration
algorithm follows the general principle:

— A candidate solution is generated where the wordlength (and datatype) of each variable
in the program has been decided by the exploration algorithm.

— This candidate solution is simulated using the set of inputs provided by the user. The
wordlength chosen implies reduced precision and therefore a corresponding set of outputs
is generated after this simulation.

— The simulated set of outputs is compared to the golden reference (obtained from a single
simulation in floating-point (single- or double-precision) performed before exploration) and
an accuracy metric is calculated (see Section Accuracy Metrics for details on the available
accuracy metrics).

— The cost of the candidate solution is estimated (see Section Cost Metrics for details on the
available cost metrics).

— Another candidate solution is generated by the exploration algorithm according to accuracy
and cost values previously obtained. Then these different steps are repeated until the
exploration algorithm finishes its iteration space and finds a solution. The best solution
is one of the set of wordlengths explored by the algorithm that respects the accuracy
constraint given and that provides the minimum cost.

140

Figure A.4: General principle of the exploration algorithm

There are currently three exploration algorithms: brute force, min+1, and Tabu search. In
addition, pruning can be optionally performed to reduce the design space.

Brute force exhaustively evaluates all possible solutions. This is infeasible except for cases
with extremely small number of variables.

All algorithms (except brute force) are a form of gradient descent. At each iteration, neigh-
boring designs are explored and the best one is selected. The main difference in the available
algorithms are starting point and terminating condition.

The “best” design is selected from the neighbor as a function of how much accuracy and cost
changed compared to the previously selected design. Currently, all methods use the following:

δAccuracy
δCost

where

— δAccuracy is the increase in the accuracy compared to the previously selected design. The
value is normalized to take values in [−1, 1]; 0 when the accuracy is unchanged.

— δCost is the increase in the cost compared to the previously selected design. The value is
normalized to take values in [−1, 1]; 0 when the cost is unchanged.

The above favors designs that has highest ratio of accuracy improvement to cost degradation.

Pruning

Pruning keeps all but one variable in floating point, and determines the minimum wordlength
that a variable can take without violating the accuracy constraint. This gives the lower bound
on the valid wordlength for a variable, assuming that the error introduced by this variable will
not be cancelled by others. The exploration flow performs a binary search for each variable, and
prunes wordlength smaller than the minimum valid wordlength found. Figure A.5 illustrates the

141

pruning on a non-local mean (NLM) denoising kernel with two accuracy metrics (PSNR and
SSIM) and nine variables. As an example (low part of Figure A.5), wordlengths under 11 bits for
any variable can be ignored if the accuracy constraint is to keep SSIM near to 1.0 (e.g., 0.99).
This enables to prune the design space by removing candidate solutions where it is likely that
the accuracy constraint will not be met.

Figure A.5: Example of pruning on a non-local mean (NLM) denoising kernel with two accuracy
metrics (PSNR and SSIM) and nine variables

min+1

The min+1 algorithm is a greedy gradient decent [3, 2]. It starts at the lowest wordlength
choices in the valid range, and greedily follows the gradient. The gradient is followed until a
design that satisfies the accuracy constraint is found.

Tabu search

Tabu search performs a more detailed search after reaching a design that satisfies the con-
straints in contrast to min+1 [4, 2]. The algorithm repeatedly switches the direction: increases
wordlength when the accuracy constraint is not met, and decreases when it is. As the direction
is switched, the most influential variable that is left (i.e., the one that changed in the selected
design after evaluating the neighboring designs) is put in to the “tabu list”, freezing its current
choice of wordlength. Figure A.6 illustrates how the Tabu search algorithm tries to escape from

142

local minima by repeatedly switching the direction of the search space, as opposed to min+1
which would greedily follow the gradient descent and return the first solution found that meets
the accuracy constraint.

Figure A.6: Example of solutions explored by the Tabu search algorithm

Cost Metrics

There are currently three cost metrics: sum of wordlengths, area model, and energy model.

Sum of wordlengths

The sum of wordlengths is a naïve cost model mostly for debugging purposes. It defines the
cost as the sum of wordlengths of all variables.

Area and energy models

The area and energy models are simple models that are aimed to capture the sharing of
hardware resources (concrete operators) as a function of desired throughput. The model as-
sumes that all operations can be executed in parallel and computes the number of concrete
operators that needs to be instantiated to meet the throughput requirement. The area cost or
the energy consumption is then calculated based on empirically measured cost/consumption of
concrete operators for the target process technology. The cost models are estimated based on
properties (area, power, delay and error) of synthesized operators (adder and multiplier) on

143

28nm technology (Table A.1). We synthesized the operators with different bitwidths of input
operands and the result.

Table A.1: A part of data for the cost model. The data contains the synthesized result of different
adders and multipliers (different input/output wordlengths).

OPE IN1 IN2 OUT AREA (µm2) POWER (W) DELAY (ns) MSE
ADD 4 4 4 28.0704 3.35E-06 0.15 0.007809
ADD 6 4 4 28.0704 3.35E-06 0.15 0.017118
ADD 6 4 6 33.9456 4.42E-06 0.17 0.000488
ADD 6 6 4 30.8448 3.40E-06 0.21 0.017101
ADD 6 6 6 39.4944 4.49E-06 0.22 0.000488
...

MUL 4 4 4 47.4912 3.66E-06 0.23 0.015915
MUL 4 4 6 59.2416 4.78E-06 0.27 0.000549
MUL 4 4 8 67.8912 5.78E-06 0.28 0
MUL 6 4 6 73.4400 4.77E-06 0.33 0.000995
MUL 6 4 8 83.2320 6.00E-06 0.35 3.43E-05
...

Figure A.7 shows the example of an energy model for a multiplier as a function of input
wordlength. The energy is measured on an FPGA Xilinx Virtex6 with multipliers implemented
in DSP blocks and for various wordlengths (from 4 to 48). Figure A.8 shows the example of an
area model for an adder as a function of input wordlength. The adder is synthesized on a 28nm
ASIC technology for various wordlengths (from 8 to 32) and various frequency constraints, and
the area in square microns is reported.

These cost models of elementary operations (addition, subtraction, multiplication, division)
are used during the exploration to estimate the cost (i.e., energy or area) of individual operation
as a function of inputs and output wordlength and to construct the cost function of a candidate
solution.

Specifying operation count for each variable

The model requires the number of (dynamic) operations for each pair of variables to be
known. This could be automatically computed from the source code if the runtime parameters
are fixed (which is always the case for simulations). However, it is not automated in the current
version. The operation count and the target throughput is specified by a simple DSL, which
looks like the following:

144

Figure A.7: Energy model of multiplier for an FPGA target (Xilinx Virtex6, multipliers imple-
mented in DSP blocks) as a function of input wordlength

Figure A.8: Area model of an adder for a 28nm ASIC technology as a function of input wordlength

145

The number of operations of each operator are specified for each pair of variables in the
program. The blocks are grouping that is user defined.
For the complete grammar of the DSL, see the Xtext grammar:
https://gitlab.inria.fr/gecos/gecos-float2fix/blob/master/bundles/fr.irisa.cairn.
gecos.typeexploration.computation.xtext/src/fr/irisa/cairn/gecos/typeexploration/
Computation.xtext

Accuracy Metrics

There are a number of supported accuracy metrics:

— Maximum Absolute Error

— PSNR (Peak Signal to Noise Ratio)

— Noise Power

— SSIM (Structural Similarity)

Any number of these accuracy metrics can be used to define the accuracy constraint.

Source Code Repository

The type exploration flow is available open source at:
https://gitlab.inria.fr/gecos/gecos-float2fix
See README.md for detailed instructions on how to install the flow.

146

https://gitlab.inria.fr/gecos/gecos-float2fix/blob/master/bundles/fr.irisa.cairn.gecos.typeexploration.computation.xtext/src/fr/irisa/cairn/gecos/typeexploration/Computation.xtext
https://gitlab.inria.fr/gecos/gecos-float2fix/blob/master/bundles/fr.irisa.cairn.gecos.typeexploration.computation.xtext/src/fr/irisa/cairn/gecos/typeexploration/Computation.xtext
https://gitlab.inria.fr/gecos/gecos-float2fix/blob/master/bundles/fr.irisa.cairn.gecos.typeexploration.computation.xtext/src/fr/irisa/cairn/gecos/typeexploration/Computation.xtext
https://gitlab.inria.fr/gecos/gecos-float2fix

BIBLIOGRAPHY

[1] Menard D, Caffarena G, Lopez JA, Novo D, Sentieys O. Analysis of Finite Word-Length
Effects in Fixed-Point Systems. In: Handbook of Signal Processing Systems. pp. 1063-1101,
2019.

[2] Menard D, Caffarena G, Lopez JA, Novo D, Sentieys O. Fixed-point refinement of digital
signal processing systems. In: Digitally Enhanced Mixed Signal Systems. 2018.

[3] Kim S, Kum K, Sung W. Fixed-Point Optimization Utility for C and C++ Based Digital
Signal Processing Programs. In: Workshop on VLSI and Signal Processing. 1995.

[4] Nguyen HN, Menard D, Sentieys O. Novel Algorithms for Word-length Optimization.
In: 19th European Signal Processing Conference (EUSIPCO). Barcelona, Spain. 2011.
Available from: https://hal.inria.fr/inria-00617718.

147

https://hal.inria.fr/inria-00617718

APPENDIX B: AN EXTENSION OF TYPEX

IN PYTHON

A Python framework that provides the solution space modeling and different solvers for
word-length optimization has also been developed during this thesis. Van-Phu Ha is the main
developer for this framework that extends the original TypEx tool with the addition of Bayesian
Optimization algorithm. The development and expansion of TypEx on Python makes it easy
to deploy available optimization algorithms to address WLO problem. Besides, several analysis
and visualization toolboxes can be applied to enhance the efficiency of exploration strategies.
We plan to add more optimization strategies to further improve the scalability and optimality
of WLO problem. Note that the results of experiments in Chapter 4 and Chapter 5 are based
on the features of the python TypEx toolbox.

Requirements

— Hyper-Opt package (https://github.com/hyperopt/hyperopt)

— Scikit-Learn library (https://github.com/scikit-learn/scikit-learn)

Structure of the framework

This section provides information about the organization of the different folders in the Python
TypEx toolbox, following the structure reported in Figure B.1.

application

The folder application contains the applications written in C/C++ source code. A cost
model written in Python costModel.py accompanies each application to describe the arith-
metic operations (addition, subtraction, multiplication, and division) in the application. The
cost model is then used to estimate the total cost of the application. The operators differ in
word-length of input, output and the operation types (addition, subtraction and multiplica-
tion).

In the C code, the datatype used for variables is defined as TYPE_XYZ which is then assigned
to a certain datatype during the compilation process. For example, a datatype customizing
variable can be declared from a double format as follows:

148

https://github.com/hyperopt/hyperopt
https://github.com/scikit-learn/scikit-learn

Figure B.1: TypEx on Python repository

— A number x is defined in double:

double x;

— A number x is defined in a format meant to be customized:

TYPE_X x;

A cost model is a combination of operation declarations in an application. The syntax of an
operation declaration is as follows:

block.addOperation(OperatorConfiguration("OPT_TYPE",
solInfo['TYPE_IN1'] ,solInfo['TYPE_IN2'] ,solInfo['TYPE_OUT']), NUM)

— OPT_TYPE is ADD or MUL
— TYPE_IN1 is the first input name. solInfo[’TYPE_IN1’] will return the bit-width of the

first input. Similarly, solInfo[’TYPE_IN2’] will return the bit-width of the second input
— TYPE_OUT is the output name and solInfo[’TYPE_OUT’] represents the bit-width of the

output
— NUM is the number of operations

ac_type

The folder ac_type includes libraries for customized datatype. The datatype is provided by
Mentor Graphic.

resource

The folder resource includes data in area, power, delay and quantization error for synthe-
sized operators (adder and multiplier) with different input/output wordlength. The technology

149

28nm is currently used to synthesize the operators.

scr-py

The folder scr-py includes implementation of optimization algorithms and infrastructure of
the platform.

script

The folder script contains scripts to explore WLO with different search algorithms and user
constraints.

Project creation

The first configuration is to setup the C/C++ compiler.

gcc="g++"

Each exploration will create a folder that contains all exploration results and outputs. We
can configure the number of latest results to be kept.

nbOutputsToKeep = 10

For each exploration, we need to define the cost/accuracy metrics and the accuracy con-
straint. We provide three cost models: energy, area and total bit count. The accuracy metric can
be chosen between PSNR 3 and SSIM 4. The example below sets PSNR = 40dB as the accuracy
constraint.

costType = "ENERGY_MODEL" # [ENERGY_MODEL, AREA_MODEL, SUM_W]

accType = "PSNR" # [PSNR, SSIM]

accTarget = userAccuracyConstraint(isHigherBetter=True,
accType=accType, value=40)

Define the problem

The example below shows the exploration setup for an fir (Finite Impulse Response) fil-
ter that contains three variables data, coeffs and acc. We can define the integer word-length
for variables, the minimum and maximum fractional word-length to be explored. The function

3. <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio>
4. <https://en.wikipedia.org/wiki/Structural_similarity>

150

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
https://en.wikipedia.org/wiki/Structural_similarity

HWSpec defines the frequency freq to be synthesized, the throughput outputsPerCycle and
the problem size problemSize corresponding to the total elements in an input matrix/array/-
dataframe to be processed.

app = "fir" # application name

hwspec = HWSpec(freq = 500, outputsPerCycle = 1, problemSize = 5)
integerWL = 4
firstW = 6
lastW = 20
symbolNames = ["TYPE_data","TYPE_coeffs","TYPE_acc"]
projPath = os.path.abspath("application/fir-example")
srcPath = os.path.join(projPath, "src-c")
srcFile = "fir_explore.c"

We apply the following template to create the design space exploration procedure:

ss = SolutionSpace(symbols)
proj = ProjectCreatation(ss, projPath, srcPath, srcFile, nbOutputsToKeep)
Metric(proj, gcc, accType, costType, hwspec)
sys.path.append(projPath)

Optimization procedures

We offers several exploration strategies: Tabu search, Bayesian Optimization, Min+1, Max-1
and GRASP. It is worth noting that we can use a pruning option to eliminate some infeasible
solutions from the design space. This option can be used before the five strategies to speed up
the exploration.

pruneSolutionSpace(ss, accTarget)

We provide API wrappers to call the optimization procedures:
— Min+1

MinPlusOneExploration(ss_algo, accTarget, costTarget)

— Max-1

MaxMinusOneExploration(ss_algo, accTarget, costTarget)

— Grasp

GRASPExploration(proj, ss_algo, accTarget, costTarget)

— Tabu Search

151

TabuExploration(ss_algo, accTarget, costTarget)

— Bayesian Optimization

costRange = [min_cost, max_cost]

accuracyRange = [min_accuracy, max_accuracy]

costRange and accuracyRange are used for the normalization

hyper_opt_wrapper(ss_algo, kernel, accTarget, costRange,
accuracyRange, costRange, accuracyRange)

Figure B.2 shows a visualization of the exploration progress with 300 iterations. The figure
gives us a good view of the search progress and provides different trade-offs between cost,
accuracy and loss value by the iteration.

152

0
50

10
0

15
0

20
0

25
0

30
0

Ite
ra

tio
n

0.
00

70

0.
00

75

0.
00

80

0.
00

85

0.
00

90

0.
00

95

Cost

Co
st

/It
er

at
io

n
ev

al
ua

te
d

sa
m

pl
e(

s)
op

t.
so

lu
tio

n
(b

y
be

st
_lo

st
)

0
50

10
0

15
0

20
0

25
0

30
0

Ite
ra

tio
n

354045505560 Accuracy

Ac
cu

ra
cy

/It
er

at
io

n
ev

al
ua

te
d

sa
m

pl
e(

s)
op

t.
so

lu
tio

n
(b

y
be

st
_lo

st
)

35
40

45
50

55
60

Ac
cu

ra
cy

0.
00

60

0.
00

65

0.
00

70

0.
00

75

0.
00

80

0.
00

85

0.
00

90

0.
00

95

0.
01

00

Cost

Co
st

/A
cc

ur
ac

y(
Co

lo
re

d
by

 it
er

at
io

n)
op

t.
so

lu
tio

n
(b

y
be

st
_lo

st
)

38
39

40
41

42
Ac

cu
ra

cy

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

Loss

Lo
ss

/A
cc

ur
ac

y(
Co

lo
re

d
by

 it
er

at
io

n)
op

t.
so

lu
tio

n
(b

y
be

st
_lo

st
)

0
50

10
0

15
0

20
0

25
0

30
0

Ite
ra

tio
n

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

loss

Lo
ss

/It
er

at
io

n

0
50

10
0

15
0

20
0

25
0

30
0

Ite
ra

tio
n

0.
00

70
0

0.
00

72
5

0.
00

75
0

0.
00

77
5

0.
00

80
0

0.
00

82
5

0.
00

85
0

0.
00

87
5

Cost

0.
00

69
5

Be
st

 c
os

t/I
te

ra
tio

n
Hy

pe
r-o

pt05010
0

15
0

20
0

25
0

5010
0

15
0

20
0

25
0

Hy
pe

r-o
pt

: s
ea

rc
h

pr
og

re
ss

Fi
gu

re
B.
2:

Ex
pl
or
at
io
n
vi
su
al
iz
at
io
n

153

Titre : Contributions au passage à l’échelle de l’optimisation de la précision des calculs

Mot clés : optimisation des largeurs, arithmétique virgule fixe, calcul approximatif

Résumé : La consommation d’énergie est l’un des pro-
blèmes majeurs de l’informatique aujourd’hui, du calcul
haute performance aux systèmes embarqués. Ces der-
nières années, l’approximation des calculs a reçu un
regain d’intérêt pour améliorer l’efficacité énergétique.
De nombreuses applications n’exigent pas une précision
élevée, et les techniques de calcul approximatif aug-
mentent l’espace de conception en fournissant de nom-
breux compromis entre la précision, les coûts et les per-
formances. Cette thèse se concentre sur le développe-
ment de méthodes pour l’exploration systématique de
cet espace de conception, y compris la modélisation de
la performance et de la précision et l’automatisation de
la conception. Nous utilisons la virgule fixe pour la re-
présentation des données des données et nous optimi-
sons la longueur du mot de chaque données et calcul
pour chercher un bon équilibre entre le coût et la préci-
sion. Ce problème est appelé Word length Optimization
(WLO) ou réglage automatique de la précision. Cette
thèse contribue à trois directions de recherche. Premiè-
rement, une méthode est proposée pour améliorer le

passage à l’échelle du WLO pour les grandes applica-
tions. Pour réduire la complexité exponentielle de la na-
ture de WLO, l’application d’entrée est décomposée en
noyaux qui sont ensuite résolus indépendamment. Pour
allouer les budgets de réduction de précision à chaque
noyau, l’idée principale est de caractériser l’impact de
l’approximation de chaque noyau sur la précision et le
coût par simulation et régression pour construire les mo-
dèles empiriques. La deuxième direction de recherche
est un algorithme hybride combinant l’optimisation bayé-
sienne (BO) et une recherche locale rapide pour accélé-
rer la procédure WLO. Un mécanisme efficace est pro-
posé pour obtenir de bons modèles en peu de temps.
La dernière contribution ouvre une nouvelle voie de re-
cherche sur le WLO avec contraintes de ressources. Les
approches actuelles résolvent principalement les pro-
blèmes de WLO avec une contrainte de qualité (préci-
sion). Dans cette étude, un algorithme basé sur l’opti-
misation bayésienne a été proposé pour maximiser la
qualité des calculs sous contrainte d’un budget de coût
du matériel.

Title: Contributions to the Scalability of Automatic Precision Tuning

Keywords: Word-Length Optimization, Fixed-Point Refinement, Approximate Computing

Abstract: Energy consumption is one of the major is-
sues in computing today, shared by all domains of com-
puter science, from high-performance computing to em-
bedded systems. In recent years, approximation dur-
ing computation has received renewed interest to im-
prove energy efficiency. Many applications do not require
high precision, thus hardware designers often trade-off
the accuracy for cost reduction and speed-up. Various
techniques for approximate computing augment the de-
sign space by providing another set of design knobs for
performance-accuracy trade-off. This thesis focuses on
developing methods for systematic exploration of this de-
sign space, including performance and accuracy model-
ing and design automation. We use fixed-point for data
representation of signals and the results of their compu-
tations. We optimize the word length of each signal to get
the good balance between the cost and the accuracy of
the final design. This problem is called Word length Opti-
mization (WLO) or automatic precision tuning. The thesis
contributes to three research directions. First, a method
is proposed to improve the scalability of WLO for large

applications. To reduce exponential complexity in the na-
ture of WLO, the input application is decomposed into
smaller kernels, which are then solved independently us-
ing noise budgets to reduce the exploration time. To al-
locate noise budgets to each kernel, the main idea is to
characterize the impact of approximating each kernel on
accuracy and cost through simulation and regression to
construct the empirical models. These models are then
used to obtain the noise budgets. The second research
direction is a hybrid algorithm combining Bayesian opti-
mization (BO) and a fast local search to speed up the
WLO procedure. An efficient mechanism is proposed to
switch between the BO and the local search to obtain
good designs in a short time. The last contribution opens
a new research direction on resource-constrained WLO.
State-of-the-art approaches mainly solve WLO given a
quality (accuracy) constraint. In this study, a Bayesian
optimization based algorithm was proposed to maximize
the quality of computations constrained by a cost bud-
get.

	Résumé en français
	List of acronyms
	List of figures
	List of tables
	Introduction
	Energy-Efficient Computing in Post Moore’s Law
	Objective of Thesis - Application-Level Tuning of Accuracy
	Thesis Organization
	Bibliography

	Theoretical Background and Related Work
	Approximate Computing
	Approximate Computing for Error-Resilient Applications
	Cross-Layer Approximate Computing Techniques
	Approximate Computing at the Software Level
	Approximate Computing at the Architecture Level
	Approximate Computing at the Hardware Level

	Binary Arithmetic Number Representations
	Floating-Point Arithmetic
	Floating-Point Exceptions
	Rounding modes

	Fixed-Point Arithmetic

	Fixed-Point Conversion Process
	Integer Word Length (IWL) Selection
	Interval-Based Approaches
	Statistical Approaches
	Stochastic Approaches

	Fractional Word Length (FWL) Selection
	Cost Evaluation
	Accuracy Evaluation
	Optimization Approaches
	Brute-force with upper and lower bounds.
	Heuristics.
	Min+1 bit.
	Max-1 bit.
	Hybrid algorithms.
	Divide-and-conquer approaches.
	Analytical approaches.

	Conclusions
	Bibliography

	Towards Generic and Scalable Word-Length Optimization
	Introduction
	Background and related work
	Word-Length Optimization
	Noise Budgeting

	Approach Overview
	Model Construction
	Data Points for Cost Function (C)
	Data Points for Quality Function (lamda
	Polynomial Fitting

	Evaluation
	Experimental Setup
	Image Signal Processor
	Stereo Matching
	Empirically Constructed Models
	Exploration Time and Quality of Solution
	FIR and IIR Filters

	Conclusion
	Bibliography

	Leveraging Bayesian Optimization to Speed Up Automatic Precision Tuning
	Introduction
	Background and Related Work
	Word-Length Optimization and Classical Approaches
	Bayesian Optimization

	Motivations
	Performance Analysis: TPE vs. Tabu
	Initial Combinations of TPE and Tabu

	Proposed Hybrid Approach
	Loss Function
	Transition Point for Hybrid Approach

	Evaluation
	Experiment setup
	Performance Evaluation

	Conclusion
	Bibliography

	Resource-Constrained Word Length Optimization - A New Problem
	Introduction
	Related Work
	Resource-Constrained WLO
	Room for Accuracy Improvement Given a Cost Budget
	Resource-Constrained WLO as a New Problem
	Limitations of Classical WLO Methods

	Solving Resource-Constrained WLO
	Loss Function
	TPE Algorithm

	Evaluation
	Experiment setup
	Performance Evaluation

	Conclusion
	Bibliography

	Conclusions and Perspectives
	List of publications
	Appendix A: TypeX - An Automatic Float to Fix Conversion toolbox
	Appendix B: An Extension of TypEx in Python

