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Construction of the extension B

. . . . . . . . (out) . . . . . . . . We are interested in mathematics applications in medicine, i.e., modelling blood circulation systems. In the thesis, we study some simplified theoretical models to characterize flow in thin cylinders, which may be used to model the blood flow in small and very small vessels and may be extended to model the blood flow in more complex systems, like a human heart, etc.

Construction of the extension B

Let Ω be some domain in R n , n = 2, 3. Consider periodic in time the non-linear Navier-Stokes system in Ω × (0, 2π) (without loss of generality, we may assume that the time period is 2π), we get a system

                 v t -ν∆v + (v • ∇)v + ∇p = f , (x, t) ∈ Ω × (0, 2π), div v = 0, (x, t) ∈ Ω × (0, 2π), v = φ, (x, t) ∈ ∂Ω × (0, 2π), v(x, 0) = v(x, 2π), x ∈ Ω. (1) 
Here v = v(x, t) = (v 1 (x, t), . . . , v n (x, t)) and p = p(x, t) are the unknown velocity and pressure, respectively, f = f (x, t) = (f 1 (x, t), . . . , f n (x, t)) and φ = φ(x, t) = (φ 1 (x, t), . . . , φ n (x, t)) denote the given external force and the boundary value, ν > 0 is the viscosity coefficient, which is constant and depends on physical properties of the fluid, v(x, 0) = v(x, 2π) is the periodicity condition with the period 2π, x = (x 1 , . . . , x n ) ∈ Ω.

The linearized Navier-Stokes equations are called Stokes equations.

They have the following form:

                 v t -ν∆v + ∇p = f , (x, t) ∈ Ω × (0, 2π), div v = 0, (x, t) ∈ Ω × (0, 2π), v = φ, (x, t) ∈ ∂Ω × (0, 2π), v(x, 0) = v(x, 2π), x ∈ Ω.
(

) 2 
Besides the fact that these equations were formulated almost 200 years ago, they remain the source of many interesting mathematical problems.

Some of their remains unsolved, such as: Existence and smoothness of the Navier-Stokes equation stated by the Clay Mathematics Institute on May 24, 2000, as one of the seven Millenium Prize Problems. Some long-standing problems are recently solved, such as so-called Flux Leray's problem. This problem was open for more than 80 years and recently was solved, but only in two-dimensional and three-dimensional axiallysymmetric cases (see [START_REF] Korobkov | Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains[END_REF]), leaving the general three-dimensional case still open.

Since our interest is an application of the Navier-Stokes equations in medicine, i.e., possibility to create a computer model of a blood vessel network, it is very important to study the time-periodic Navier-Stokes equations in thin tube structures. Tube structure as the blood vessel network, together with the periodicity condition, as an illustration of the heart beating.

Examples of domains

The Stokes and Navier-Stokes problems are considered in different domains. We started our research with the linearized Navier-Stokes equations in the domain with an outlet to infinity. However, for hemodynamical modelling Stokes system is insufficient, and therefore we study the non-linear Navier-Stokes system in a domain which is called a tube structure. We will introduce these domains in the following subsections.

Domain with an outlet to infinity

Let Ω = Ω 0 ∪ D be a two-dimensional domain with an outlet to infinity (see Figure 1). 

|g(t 1 ) -g(t 2 )| ⩽ L|t 1 -t 2 |, t 1 , t 2 > R 0 , g(t) ⩾ const > 0
and ∂Ω ∈ C 2 . The boundary ∂Ω consists of the inner boundary Γ 1 and the outer boundary Γ 0 . Besides, the inner boundary Γ 1 is compact and the origin (0, 0) of the coordinate system is inside the "hole" Γ 1 , while the outer boundary Γ 0 is unbounded. Let us assume that boundary value φ ∈ W 3/2,2 (∂Ω) 1 has a compact support, and Λ = supp φ ∩ Γ 0 ⊂ Γ 0 ∩ B R 0 (0). In this domain, we will consider the time-periodic Stokes system (2) with a non-homogeneous boundary condition.

Tube structure

The domain called tube structure is a mathematical model aimed to describe structures that contain several tubes connected at their points called nodes. More precisely, it is a special structure of thin domains. From the physical point of view, these structures can be used as geometrical models of the blood vessel systems, hydraulic installations, and so on. The domain that contains three tubes is shown in Figure 2.

σ 1 Γ B ε σ 2 σ 3 Figure 2 -Domain B ε
Here Γ is a lateral boundary of the domain B ε and σ 1 , σ 2 , σ 3 are inflow-outflow boundaries.

In order to define a tube structure, let us start from the definition of the graph. Figure 3 -Graph of the tube structure set (see Figure 3). The union of all edges having the same end point O l is called the bundle B l . Figure 3 n has the direction of the ray [O i O j ); the second one has the origin in O j and the opposite direction, i.e. O j

x(e) n is directed over the ray [O j O i ). Below in various situations, we choose one or another coordinates system denoting the local variable in both cases by x (e) and pointing out which end is taken as the origin of the coordinate system.

With every edge e j we associate a bounded domain σ j ⊂ R n-1 containing the origin O i and having C 2 -smooth boundary ∂σ j , j = 1, . . . , M .

For every edge e j = e and the associated σ j = σ (e) we denote by Π (e) ε the cylinder Π (e) ε = x (e) ∈ R n : x (e) n ∈ (0, |e|),

x (e)′ ε ∈ σ (e) , where x (e)′ = (x (e) 1 , . . . , x (e) n-1 ), |e| is the length of the edge e and ε > 0 is a small parameter. Notice that the edges e j and the Cartesian coordinates of nodes and vertices O j , as well as the domains σ j , do not depend on ε.

Let O 1 , . . . , O N 1 be nodes and O N 1 +1 , . . . , O N be vertices. Let ω 1 , . . . , ω N 1 be bounded independent of ε domains in R n ; introduce the nodal domains

ω j ε = x ∈ R n : x -O j ε ∈ ω j .
Every vertex O j is the end of one and only one edge e k which will also be denoted as e O j ; we will re-denote as well the domain σ k associated to this edge as σ O j . Notice that the subscript k may be different from j.

Definition 2. By a tube structure, we call the following domain

B ε = M j=1 Π (e j ) ε N 1 j=1 ω j ε .
Suppose that it is a connected set and that the boundary ∂B ε of B ε is C 2 -smooth (see Figure 4).

∂B ε B ε Figure 4 -Domain B ε
For the case with given Bernoulli pressure we will define as well a semi-infinite dilated cylinder Π (e)

∞ = x (e) ∈ R n : x (e)
n ∈ [0, ∞), x (e)′ ∈ σ (e) , and slightly modified the definition of a tube structure. ε (see Figure 2).

Let r 1 be the maximal diameter of the domains ω i , i = 1, ..., N , denote r = r 1 + 1. Consider a node or a vertex O l and all edges e j having O l as one of their end points. We call the union of all these edges a bundle of edges and denote it B l , i.e., B l = as a bundle of dilated cylinders. Denote also Ω ε l = x ∈ R n :

x ε ∈ Ω l .
In this thesis, we consider two different cases in a thin tube structure:

the time-periodic Navier-Stokes equations with Dirichlet boundary conditions and the stationary Navier-Stokes equations with given Bernoulli pressure on the inflow-outflow boundary.

In the first case, we consider the time-periodic Navier-Stokes equation with a non-homogeneous boundary condition

                 v t -ν∆v + (v • ∇)v + ∇p = 0, (x, t) ∈ B ε × (0, 2π), div v = 0, (x, t) ∈ B ε × (0, 2π), v = g, (x, t) ∈ ∂B ε × (0, 2π), v(x, t) = v(x, t + 2π), x ∈ B ε .
(

Here the velocity field v = v(x, t) and a fluid pressure p = p(x, t) are unknown, while the boundary condition g = g(x, t) = (g 1 (x, t), g 2 (x, t), g 3 (x, t))

is zero everywhere except for some small parts of the boundary γ j ε = ∂B ε ∩ ∂ω j ε , j = N 1 + 1, . . . , N . In the second case, we study the stationary Navier-Stokes equations with the given Bernoulli pressure for inflow-outflow boundary

                         -ν∆v + (v • ∇)v + ∇p = 0, x ∈ B ε , div v = 0, x ∈ B ε , v = 0, x ∈ ∂B ε \ ∪ N j=N 1 +1 γ j ε , v τ = 0, x ∈ γ j ε , -ν∂ n (v • n) + p + 1 2 |v| 2 = c j /ε 2 , x ∈ γ j ε , j = N 1 + 1, ..., N, (4) 
where v τ = v -(v • n)n is the tangential component of the vector v,

∂ n h = ∇h • n is the normal derivative of h, c j are some constants.

Actuality and literature review

The Stokes and stationary Navier-Stokes equations with homogeneous boundary conditions were intensively studied in domains with outlets to infinity during the last 50 years (see [START_REF] Heywood | On uniqueness questions in the theory of viscous flow[END_REF][START_REF] Kapitanski | Spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries[END_REF][START_REF] Ladyzhenskaya | Some problems of vector analysis and generalized formulations of boundary-value problems 121 for the Navier-Stokes equations[END_REF][START_REF] Ladyzhenskaya | On the solvability of boundary value and initial-boundary value problems for the Navier-Stokes equations with noncompact boundaries[END_REF][START_REF] Solonnikov | Certain spaces of solenoidal vectors and the solvability of the boundary problem for the Navier-Stokes system of equations in domains with noncompact boundaries[END_REF][START_REF] Solonnikov | On the solvability of boundary and initial-boundary value problems for the Navier-Stokes system in domains with noncompact boundaries[END_REF] and the literature cited there). In the last 20 years, special attention was given to problems with non-homogeneous boundary conditions (see [START_REF] Chipot | On nonhomogeneous boundary value problems for the stationary Navier-Stokes equations in two-dimensional symmetric semi-infinite outlets[END_REF][START_REF] Kaulakytė | On the nonhomogeneous boundary value problem for the Navier-Stokes system in a class of unbounded domains[END_REF][START_REF] Kaulakytė | On nonhomogeneous boundary value problem for the steady Navier-Stokes system in domain with paraboloidal and layer type outlets to infinity[END_REF][START_REF] Kaulakytė | Nonhomogeneous boundary value problem for Navier-Stokes equations in 2D symmetric unbounded domains[END_REF][START_REF] Morimoto | Stationary Navier-Stokes flow in 2dimensional Y-shape channel under general outflow condition, The Navier-Stokes Equations: Theory and Numerical Methods[END_REF][START_REF] Morimoto | A remark on the existence of steady Navier-Stokes flows in 2D semi-infinite channel involving the general outflow condition[END_REF][START_REF] Morimoto | A remark on the existence of steady Navier-Stokes flows in a certain two-dimensional infinite channel[END_REF][START_REF] Morimoto | Stationary Navier-Stokes flow in 2-D channels involving the general outflow condition[END_REF][START_REF] Neustupa | On the steady Navier-Stokes boundary value problem in an unbounded 2D domain with arbitrary fluxes through the components of the boundary[END_REF][START_REF] Neustupa | A new approach to the existence of weak solutions of the steady Navier-Stokes system with inhomoheneous boundary data in domains with noncompact boundaries[END_REF]). Moreover, recently big progress was obtained in Leray's problem in the bounded and exterior domains [START_REF] Korobkov | The existence theorem for steady Navier-Stokes equations in the axially symmetric case[END_REF][START_REF] Korobkov | On the flux problem in the theory of steady Navier-Stokes equations with nonhomogeneous boundary conditions[END_REF][START_REF] Korobkov | The flux problem for the Navier-Stokes equations[END_REF][START_REF] Korobkov | The existence of a solution with finite Dirichlet integral for the steady Navier-Stokes equations in a plane exterior symmetric domain[END_REF][START_REF] Korobkov | Solution of Leray's problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains[END_REF][START_REF] Korobkov | Leray's problem on existence of steady state solutions for the Navier-Stokes flow[END_REF][START_REF] Korobkov | The existence theorem for the steady Navier-Stokes problem in exterior axially symmetric 3D domains[END_REF]. On the other hand, the time-periodic problem for the Navier-Stokes equations were mainly studied only in the case of homogeneous boundary conditions (see, for example, [START_REF] Kozono | Periodic solutions of the Navier-Stokes equations in unbounded domains[END_REF][START_REF] Maremonti | Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space[END_REF][START_REF] Maremonti | Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space[END_REF]). The time-periodic problems with non-homogeneous boundary conditions were essentially considered by H. Morimoto [START_REF] Morimoto | Time periodic Navier-Stokes flow with nonhomogeneous boundary condition[END_REF] and T. Kobayashi [START_REF] Kobayashi | Time periodic solutions of the Navier-Stokes equations under general outflow condition[END_REF]. However, they consider the case only of domains with compact boundaries.

A wide review and study of periodic problems could be found in the habilitation thesis of M. Kyed [START_REF] Kyed | Time-Periodic Solutions to the Navier-Stokes Equations[END_REF]. Also, you may find many interesting periodic problems in G. Galdi and his colleagues' works for example [START_REF] Bodnár | Fluid-Structure Interaction and Biomedical Applications[END_REF][START_REF] Chung | Wake-cylinder interactions of a hinged cylinder at low and intermadiate Reynolds numbers[END_REF][START_REF] Eiter | Spatial decay of the vorticity field of timeperiodic viscous flow pasr a body[END_REF][START_REF] Galdi | Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane[END_REF][START_REF] Galdi | On time-periodic flow of a viscous liquid past a moving cylinder Archive for Rational Mechanics and Analysis[END_REF][START_REF] Galdi | A time-periodic bifurcation theorem and its application to Navier-Stokes flow past an obstacle[END_REF][START_REF] Galdi | Strong time-periodic solutions to the 3D primitive equations subject to arbitrary large forces[END_REF][START_REF] Galdi | On bifurcating time-periodic flow of a Navier-Stokes liquid past a cylinder[END_REF][START_REF] Galdi | Viscous flow past a body translating by time-periodic mation with zero average[END_REF][START_REF] Galdi | On the self-propulsion of a rigid body in a viscous liquid by time-periodic boundary data[END_REF][START_REF] Galdi | Attainability if time-periodic flow of a viscous liquid past an ascillating body[END_REF][START_REF] Galdi | On time-periodic bifurcation of a sphere moving under gravity in a Navier-Stokes liquid[END_REF].

We start with the linearized Navier-Stokes equations in the domain with an outlet to infinity (see Figure 1), where the boundary condition depends only on the space variable. This problem was generalized by K.

Kaulakytė and K. Pileckas in [START_REF] Kaulakytė | Nonhomogeneous boundary value problem for the time periodic linearized Navier-Stokes system in a domain with outlet to infinity[END_REF]. The analysis of the Stokes system gives the possibility to study the time-periodic Navier-Stokes system.

However, the dissertation was motivated by the modelling of the blood circulation system. The studies were done in 2017 -2021 Junior research fellow of the research grant "Multiscale Modeling for Viscous Flows in Domains with Complex Geometry". 2 For this research the Stokes system is insufficient, that's why we consider the time-periodic Navier-Stokes problem. Besides we have to deal with the structure which may represent the blood circulation system. For this reason, we introduce a thin tube structure (see Figure 2,[START_REF] Beirão | Time-periodic solutions of the Navier-Stokes equations in unbounded cylindrical domains -Leray's problem for periodic flows[END_REF]. Each such tube structure may be schematically represented by its graph: letting the thickness of tubes tend to zero, we find out that tubes degenerate to segments, and we get a one-dimensional case. However, the existing one-dimensional models and codes cannot give the required accuracy in the neighbourhoods of the clot formation zones, stents, and bifurcation of vessels. On the other hand, the completely three-dimensional computations are currently very timeconsuming and can be applied only to small parts of the blood circulation system. That is why we suggest the hybrid dimension models, combining the one-dimensional reduction in the regular zones with three-dimensional zooms in the small zones of singular behaviour. This approach for the non-stationary initial boundary value problems for the Navier-Stokes equations in thin tube structures was proposed in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case[END_REF]. However, for the hemodynamical modelling, more natural are time-periodic settings.

In order to combine one-dimensional and three-dimensional models, we need to construct the asymptotic expansion of a solution. We consider the problem in two different scalings concerning the small parameter ε equal to the ratio of the diameter of vessels to their length: one of them is the same as in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF], while the other generates a big coefficient of order ε -2 of the time derivative of the velocity. And then the constructed asymptotic expansion is used for the construction of a special numerical method combining a one-dimensional description with three-dimensional zooms.

This method is called a method of asymptotic partial decomposition of the domain (MAPDD). It reduces the full geometry settings to the computations in neighbourhoods of bifurcation zone of a diameter of order ε| ln ε|. This method for initial data was studied in [START_REF] Bertoglio | Junction of models of different dimension for flows in tube structures by Womersley-type interface conditions[END_REF].

An alternative approach was developed by A. Quarteroni's team [START_REF] Formaggia | One-dimensional models for blood flow in arteries[END_REF]. However, this method of the junction of one-dimensional and threedimensional zones is different because it is based on multi-physics modelling: the one-dimensional hyperbolic equations and three-dimensional models are derived independently of conservation laws, and then coupling is based on the ideas of consistency of numerical schemes implementing these models. On the contrary, the MAPDD starts from the Navier-Stokes equation written everywhere in the blood flow area, it rigorously derives the one-dimensional Poiseuille type equations in the main part of the domain with three-dimensional zooms in small parts near the bifurcations of the vessels and clot formations zones. It prescribes mathematically justified size of the zoomed areas and asymptotically exact junction conditions. Numerous computational tests show that the multi-physics approach with hyperbolic one-dimensional models is more convenient for the description of thick vessels (for example arteries), while the MAPDD model works better for small vessels such as arterioles.

As was mentioned before, we use two different scalings for the Navier-Stokes equations that satisfy different types of vessels such as small and very small arterioles or capillaries. Let us describe these scalings. The experimental data depend on numerous factors: whether the human or animal blood system is considered, if it is healthy or ill, etc. So we take some averaged data for [START_REF] Marieb | Human Anatomy and Psysiology. The Cardiovascular System: Blood Vessels[END_REF][START_REF] Mayrovitz | Skin capillary metrics and hemodynamics in the hairless mouse[END_REF]. The characteristic time (period) is 1 second, while the characteristic velocity is about 0.5 × 10 -3 m/sec.

Consider two scalings for the characteristic length and diameter of vessels:

(1) the length is 10 -3 m and the characteristic diameter 10 -4 m, (2) the length is 10 -2 m and the characteristic diameter 10 -3 m (in both cases ε = 0.1). Let us make the change of the space variable X = 10 -3 x in the case (1), and X = 10 -2 x in the case (2). Consider case (1). Making the change of the velocity v = 10 -3 V and the change of the pressure p = 10 3 P and taking into account that the dynamic viscosity of the blood is about 4 × 10 -3 P a sec and its density is 10 3 kg/m 3 , we obtain in new variables the Navier-Stokes equation with all coefficients of order one:

∂V ∂t -4∆ X V + 0.5(V • ∇ X )V + ∇ X P = 0, ∇ • V = 0.
Consider now the case (2). Making the change of the velocity v = 10 -4 V and the change of the pressure p = 10 1 P , we obtain in new variables the Navier-Stokes equation with all coefficients, except for the time derivative term, of order one, while the coefficient of the time derivative is 10 2 , i.e., ε -2 :

10 2 ∂V ∂t -4∆ X V + 5(V • ∇ X )V + ∇ X P = 0, ∇ • V = 0. 20 
That is why in this thesis, we consider two different settings: with the factor ε -2 and without it.

The existence, uniqueness, and a priori estimates for the Navier-Stokes equation with the initial conditions were published in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case[END_REF] however, the proof of this for time-periodic settings differs significantly.

For this proof, we use Stokes operator extension [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF] and take the base consisting of its eigenfunctions. In this case, we obtain more precise estimates. Nevertheless, this technique requires the C 2 -smoothness of the boundary, that is why we adding smoothing domains near the vertices of the graph of the tube structure. This modification allows as well to improve the estimates for the J-th partial sums of an asymptotic expansion of the solution.

The main step that may lead us to the computer simulation is the construction of the asymptotic expansion of the solution. The asymptotic behaviour of solutions of partial differential equations in thin domains is extensively studied in the vast mathematical literature. In particular, the thin tube structures, introduced in [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF], are considered as a geometrical model of a blood vessel network (see other approaches to the modelling of blood vessel networks [START_REF] Bunoiu | Asymptotic analysis of a Bingham fluid in a thin T-like shaped structure[END_REF][START_REF] Formaggia | One-dimensional models for blood flow in arteries[END_REF][START_REF] Galdi | Hemodynamical Flows: Modeling, Analysis and Simulation[END_REF]). For the steady-state Navier-Stokes equations in a network of thin tubes, an asymptotic expansion of the solution was firstly constructed in [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF][START_REF] Panasenko | Partial asymptotic decomposition of domain: Navier-Stokes equation in tube structure[END_REF]. The small parameter was introduced as the ratio of the thickness to the length of tubes in the network. This asymptotic expansion was used to justify the method of asymptotic partial decomposition of the domain. This method allowed reducing the computational costs that the Navier-Stokes equations posed in thin tube structures. In particular, the full-dimensional computations are only needed in small neighbourhoods of the junction of tubes, while in the largest part of the domain, the computations are one-dimensional.

The non-stationary Navier-Stokes equations in such a domain were studied in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case[END_REF]. However, in these papers, the inflows and outflows were described by the given velocity at the corresponding parts of the boundary. For numerical implementation, the boundary conditions involving pressure for outflow are more natural. That is why such conditions were extensively studied in mathematical literature (see [START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF][START_REF] Marušić-Paloka | Rigorous justification of the Kirchhoff law for junction of thin pipes with viscous fluid[END_REF][START_REF] Marušić-Paloka | A Note on Kirchhoff's JUnction Rule for Power-Law Fluids[END_REF]). In particular, [START_REF] Marušić-Paloka | Rigorous justification of the Kirchhoff law for junction of thin pipes with viscous fluid[END_REF] studies the stationary Navier-Stokes equations in a tube structure (a bundle of three tubes) with the given pressure at the "free" ends of the tubes. It is well known that this problem has a solution for small data only. Therefore, [START_REF] Marušić-Paloka | Rigorous justification of the Kirchhoff law for junction of thin pipes with viscous fluid[END_REF] proves a theorem of existence and uniqueness and constructs a first-order asymptotic approximation.

For the hemodynamics models, more natural, is to consider the Navier-Stokes equations with the Neumann type boundary conditions to get the appropriate asymptotic expansion. These cases are not widely studied for time-periodic data that is why we consider steady-state Navier-Stokes equations with the inflow-outflow boundary conditions for the Bernoulli pressure. These non-linear boundary conditions were studied first in [START_REF] Conca | The Stokes and Navier-Stokes equations with boundary conditions involving the pressure[END_REF][START_REF] Heywood | Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations[END_REF][START_REF] Kazhikhov | Solvability of certain unilateral boundary value problems for the Navier-Stokes equations[END_REF] for an incompressible fluid with small data where the existence of the solution was proved. Since then, these conditions were considered in different contexts: in [START_REF] Korobkov | Solvability in a finite pipe of steady-state Navier-Stokes equations with boundary conditions involving Bernoulli pressure[END_REF] these conditions were studied for arbitrary data in a finite pipe; in [3] a special model of the decomposition of the boundary value problem for the non-Newtonian flow with the Bernoulli boundary conditions and some special newly introduced interface conditions inside the domain was studied, and the existence of a weak solution to this problem was proved.

In this dissertation, we will construct an asymptotic expansion of a weak solution of the stationary Navier-Stokes equations in the whole thin tube structure with the Bernoulli boundary conditions for the inflows and outflows. We also prove the existence and uniqueness of the solution taking into account the domain dependence on the small parameter.

For the incompressible Navier-Stokes equation in a network of thin tubes when the flow is time-periodic, at the leading order, we obtain a well-posed [START_REF] Panasenko | Divergence equation in thin-tube structure[END_REF][START_REF] Panasenko | Periodic in time flow in thin structure: Equation on the graphs[END_REF] asymptotic model for the macroscopic pressure on the graph of the network with the Poiseuille profiles in the tubes for the velocity, a Kirchhoff type at the junction of the tubes and the continuity condition for the pressure. This problem for stationary and time-dependent flow for the first time was proposed in [START_REF] Panasenko | Flows in tube structures: Equation on the graph[END_REF] which generalizes the so-called Reynolds' equation for the case of a network of tubes. The numerical solution for the non-stationary Navier-Stokes equation with initial data in a network of thin tubes was considered in [START_REF] Canon | Numerical solution of the viscous flows in a network of thin tubes: equations on the graph[END_REF].

Aims and problems

The main aim of this dissertation is to analyse the Navier-Stokes equations in a thin tube structure. We started our research with the linearized Navier-Stokes equations in the domain with an outlet to infinity.

After that, we present the results obtained by studying Navier-Stokes systems in a thin tube structure. These theoretical results may be used to create and develop a numerical simulation for the blood vessels. We 

Methods

In the thesis, we use standard methods of functional analysis, the properties of Sobolev spaces and Stokes operator, and both partial and ordinary differential equations theory. We apply asymptotic analysis ideas and techniques to construct special asymptotic expansions. We use the method of asymptotic partial decomposition of the domain, which let us combine one-dimensional and three-dimensional models and reduce the computational cost.

Novelty

All results of this thesis are new. To our best knowledge, the results for the time-periodic Stokes system in a domain with an outlet to infinity, the results for the time-periodic Navier-Stokes system in thin tube structures, and the results for the steady-state Navier-Stokes equations with the given Bernoulli pressure for inflow and outflow boundary are new. The asymptotic expansions of the solution to these problems in the thin tube structures were unknown.

Structure of the dissertation and main results

The dissertation consists of six chapters, conclusion, and bibliography.

The first chapter is an introduction to the research field and the special research domains. It contains the history and actuality of the problem, examples of the studying domains as well as required information concerning the dissemination of results presented in the thesis.

Chapter 2, for the readers' convenience, introduces the notations and auxiliary results which we use in the dissertation.

In Chapter 3 we present the time-periodic Stokes system with a nonhomogeneous boundary conditions in a domain with an outlet to infinity.

We construct a special extension of the non-homogeneous boundary value and prove the existence and uniqueness of a weak solution in such a domain.
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Chapter 2

Notations and preliminary results

Notations and inequalities

We use c, C, C j , c j , j = 1, 2, . . . notations for constants which are independent and not have significant meaning in our proof. Besides, the same symbol c may be used to define different constants.

Let V be a Banach space. The norm of the element u in the function space V is denoted by ∥u∥ V . Vector-valued functions are denoted by bold letters and the spaces of scalar, vector-valued and tensor-valued functions are not distinguished in notation. The vector valued function

u = (u 1 , . . . , u n ) belongs to a space V , if u i ∈ V, i = 1, . . . , n, and ∥u∥ V = n i=1 ∥u i ∥ V . The dual space of V is denoted as V * .
We use the standard notations for different spaces. Let Ω be an arbitrary domain in R n . As usual, denote by C ∞ (Ω) the set of all infinitely differentiable functions defined on Ω, and let C ∞ 0 (Ω) be the subset of all functions from C ∞ (Ω) with compact support in Ω. For the given non-negative integers k and q ⩾ 1, L q (Ω) and W k,q (Ω) indicate as usual Lebesgue and Sobolev spaces with the norms

∥u∥ L q (Ω) = Ω |u| q dx 1/q and ∥u∥ W k,q (Ω) = k |α|=0 Ω |D α u(x)| q dx 1/q , where D α u = ∂ |α| u ∂x α 1 1 . . . ∂x αn n , |α| = n j=1 α j . Space W k-1/q,q (∂Ω), q > 1, is
a trace space on ∂Ω of functions from W k,q (Ω) with the norm

∥u∥ W k-1/q,q (∂Ω) = inf{∥û∥ W k,q (Ω) : û = u on ∂Ω},
and W k,q (Ω) is the closure of C ∞ 0 (Ω) in the norm of W k,q (Ω). L ∞ (Ω) is the space of all essentially bounded function with the norm

∥u∥ L ∞ (Ω) = ess sup x∈Ω |u(x)|.
The space L q (0, T ; V ) is the space of functions u such that u(•, t) ∈ V for almost all t ∈ [0, T ] and the norm

∥u∥ L q (0,T ;V ) = T 0 ∥u(•, t)∥ q V dt 1/q ⩽ ∞, 1 ⩽ q < ∞.
We also use certain weighted function spaces. The corresponding definitions will be given in sections where such space appear for the first time.

Let T be a positive number. The notation V per means that elements of the space V are T -periodic functions, i.e., u( • , t) = u( • , t + T ). Without loss of generality we may assume that

T = 2π. Let C ∞ per (0, T ; V ) = {u ∈ C ∞ (R) : u(t) = u(t + 2π), ∀t ∈ [0, T ]}.
We will need two more spaces of periodic functions: L 2 per (0, 2π) and W 1,2 per (0, 2π), which are supplied by the inner product of L 2 (0, 2π) and W 1,2 (0, 2π), respectively. Besides, for a tube structure we introduce the function spaces

W 1,2 γ (B ε ) and J 1,2 γ (B ε ). Let Γ = ∂B ε \ ∪ N j=N 1 +1 γ j ε be the lateral sur- face of the domain B ε , then W 1,2 γ (B ε ) = {η ∈ W 1,2 (B ε ) : η| Γ = 0, η τ | γ j ε = 0, j = N 1 + 1, . . . , N }, J 1,2 γ (B ε ) = {η ∈ W 1,2 γ (B ε ) : div η = 0}.
We also introduce a subspace

J 1,2 γ (B ε ) of J 1,2 γ (B ε ) defined by J 1,2 γ (B ε ) = {η ∈ J 1,2 γ (B ε ) : γ j ε η • n dS = 0, j = N 1 + 1, . . . , N }.
For the tube structure B ε some multiplicative inequalities hold. We shall prove it. First we construct two coverings of the domain B ε . Take

domains A (e j ) ε,k = {x ∈ Π (e j ) ε : x (e j ) n ∈ ε(k -2, k + 2)}, j = 1, . . . , M, k = 2, . . . , L j ε , L j ε ∼ |e|ε -1 , and define A (j) ε,k = ω j ε ∪{x ∈ Π (e j ) ε : x (e j )
n ∈ (0, 2ε)}, j = N 1 + 1, . . . , N (i.e., when O j are vertices), and

A (j) ε,k = ω j ε ∪ k j {x ∈ Π (e k j ) ε :
x (e k j ) n ∈ (0, 2ε)}, j = 1, . . . , N 1 (i.e., when O j are nodes), where the union over k j is taken over all edges of the bundle B j associated with the node

O j .
In parallel with the covering

A ε =   M j=1 L j ε k=2 A (e j ) ε,k     N j=1 A (j) ε,k  
we take the covering

A ε =   M j=1 L j ε k=2 A (e j ) ε,k     N j=1 A (j) ε,k   of B ε containing larger domain: A (e j ) ε,k = {x ∈ Π (e j ) ε : x (e j ) n ∈ ε(k -3, k + 3)}, j = 1, . . . , M, k = 3, . . . , L j ε , L j ε ∼ |e|ε -1 . Then we define A (j) ε,k = ω j ε ∪ {x ∈ Π (e j ) ε : x (e j )
n ∈(0, 3ε)}, j =N 1 + 1, . . . , N , and

A (j) ε,k = ω j ε ∪ k j {x∈Π (e k j ) ε : x (e k j ) n ∈ (0, 3ε)}, j = 1, . . . , N 1 . Obviously, A (e j ) ε,k ⊂ A (e j ) ε,k , A (j) ε,k ⊂ A (j) ε,k .
The constructed covering has a finite multiplicity κ 0 which is independent of ε. 

∥u∥ L 2 (Bε) ⩽ cε∥∇u∥ L 2 (Bε) , ∀u ∈ W 1,2 (B ε ) (2.1)
holds with the constant c independent of ε.

Proof. In any bounded domain Ω for u ∈ W 1,2 (Ω) holds the Poincaré inequality (see [START_REF] Evans | Partial differential Equations: Second Edition[END_REF])

∥u∥ 2 L 2 (Ω) ⩽ c∥∇ y u∥ 2 L 2 (Ω) ,
where c is an absolute constant.

By scaling y = x ε , in any domain A ε from the covering A ε , we get the estimate

∥u∥ 2 L 2 (Aε) ⩽ cε 2 ∥∇ x u∥ 2 L 2 (Aε) .
Summing the above inequalities over all domains A ε from the covering A ε , we obtain

∥u∥ 2 L 2 (Bε) ⩽ Aε ∥u∥ 2 L 2 (Aε) ⩽ cε 2 Aε ∥∇ x u∥ 2 L 2 (Aε) ⩽ cε 2 ∥∇u∥ 2 L 2 (Bε) . Lemma 2.1.2. (Ladyzhenskaya inequalities) ∥u∥ L 4 (Bε) ⩽ 2 1/4 ∥u∥ 1/2 L 2 (Bε) ∥∇u∥ 1/2 L 2 (Bε) ∀u ∈ W 1,2 (B ε ), B ε ⊂ R 2 , (2.2) ∥u∥ L 4 (Bε) ⩽ (4/3) 3/8 ∥u∥ 1/4 L 2 (Bε) ∥∇u∥ 3/4 L 2 (Bε) ∀u ∈ W 1,2 (B ε ), B ε ⊂ R 3 , (2.3) ∥u∥ L 6 (Bε) ⩽ 48 1/6 ∥∇u∥ L 2 (Bε) ∀u ∈ W 1,2 (B ε ), B ε ⊂ R 3 . (2.4)
The constants in (2.2)-(2.4) are independent of ε. In particular,

∥u∥ L 4 (Bε) ⩽ cε 1/2 ∥∇u∥ L 2 (Bε) ∀u ∈ W 1,2 (B ε ), B ε ⊂ R 2 , (2.5) ∥u∥ L 4 (Bε) ⩽ cε 1/4 ∥∇u∥ L 2 (Bε) ∀u ∈ W 1,2 (B ε ), B ε ⊂ R 3 . (2.6)
The proofs of (2.2)-(2.4) can be found in [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF].

Lemma 2.1.3. Let B ε ⊂ R 2 , u ∈ W 1,2 (B ε ). Then ∥u∥ 4 L 4 (Bε) ⩽ cε -2 ∥u∥ 2 L 2 (Bε) ∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) (2.7)
with the constant c independent of ε.

Proof. In any bounded Lipschitz domain Ω holds the inequality (see [START_REF] Ladyzhenskaya | tseva, Linear and Quasilinear Elliptic Equations[END_REF])

∥u∥ 4 L 4 (Ω) ⩽ c(Ω)∥u∥ 2 L 2 (Ω) ∥u∥ 2 L 2 (Ω) + ∥∇u∥ 2 L 2 (Ω) ,
and, by Young inequality,

∥u∥ 4 L 4 (Ω) ⩽ δ -2 ∥u∥ 4 W 1,2 (Ω) + cδ 2 ∥u∥ 4 L 2 (Ω) , δ > 0.
By scaling, it is easy to see that in any domain A ε from the covering A ε , we get the estimate

∥u∥ 4 L 4 (Aε) ⩽ δ -2 ε -2 ∥u∥ 2 L 2 (Aε) + ε 2 ∥∇u∥ 2 L 2 (Aε) 2 +cδ 2 ε -2 ∥u∥ 4 L 2 (Aε) , δ > 0.
Summing the above inequalities terms over all domains A ε from the covering A ε , we get

Aε ∥u∥ 4 L 2 (Aε) ⩽ Aε ∥u∥ 2 L 2 (Aε) ∥u∥ 2 L 2 (Aε) ⩽ c Aε ∥u∥ 2 L 2 (Bε) ∥u∥ 2 L 2 (Aε) ⩽ c∥u∥ 2 L 2 (Bε) Aε ∥u∥ 2 L 2 (Aε) ⩽ c∥u∥ 4 L 2 (Bε) .
i.e.,

∥u∥ 4 L 4 (Bε) ⩽ δ -2 ε -2 ∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) 2 +cδ 2 ε -2 ∥u∥ 4 L 2 (Bε) , δ > 0.
Putting now

δ 2 = ∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ∥u∥ -2 L 2 (Bε) yields (2.7). Lemma 2.1.4. Let B ε ⊂ R n , n = 2, 3, u ∈ W 1,2 (B ε ) ∩ W 2,2 (B ε ). Then ∥∇u∥ 2 L 2 (Bε) ⩽ c∥u∥ L 2 (Bε) ∥∇ 2 u∥ L 2 (Bε) . (2.8)
In particular,

∥∇u∥ 2 L 2 (Bε) ⩽ cε 2 ∥∇ 2 u∥ 2 L 2 (Bε)
(2.9)

with the constant c independent of ε.

Proof. In any bounded Lipschitz domain Ω holds the interpolation inequality (see [START_REF] Ladyzhenskaya | tseva, Linear and Quasilinear Elliptic Equations[END_REF])

∥∇u∥ 2 L 2 (Ω) ⩽ c(δ∥∇ 2 u∥ 2 L 2 (Ω) + δ -1 ∥u∥ 2 L 2 (Ω) ), δ > 0.
Here

∥∇ 2 h∥ 2 L 2 (Ω) means |α|=2 ∥D α h∥ 2 L 2 (Ω) .
By scaling in ε domain A ε (i.e., scaling A ε in any direction of "size" ε) we derive

ε 2 ∥∇u∥ 2 L 2 (Aε) ⩽ c(δε 4 ∥∇ 2 u∥ 2 L 2 (Aε) + δ -1 ∥u∥ 2 L 2 (Aε) ), δ > 0.
Summing the above inequalities over all domains A ε from the covering A ε , we get

ε 2 ∥∇u∥ 2 L 2 (Bε) ⩽ c(δε 4 ∥∇ 2 u∥ 2 L 2 (Bε) + δ -1 ∥u∥ 2 L 2 (Bε) ), δ > 0. Putting δ = ε -2 ∥u∥ L 2 (Bε) ∥∇ 2 u∥ -1 L 2 (Bε) implies (2.8). Lemma 2.1.5. Let B ε ⊂ R 3 , u ∈ W 1,2 (B ε ). Then ∥u∥ 3 L 3 (Bε) ⩽ cε -3/2 ∥u∥ 3/2 L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ) 3/4 (2.10)
with the constant c independent of ε.

Proof. By the multiplicative inequality in a bounded Lipschitz domain Ω (see [START_REF] Ladyzhenskaya | tseva, Linear and Quasilinear Elliptic Equations[END_REF])

∥u∥ 3 L 3 (Ω) ⩽ c∥u∥ 3/2 L 2 (Ω) (∥u∥ 2 L 2 (Ω) + ∥∇u∥ 2 L 2 (Ω) ) 3/4
and, by the Young inequality,

∥u∥ 3 L 3 (Ω) ⩽ δ 2 ∥u∥ 2 W 1,2 (Ω) + cδ -6 ∥u∥ 6 L 2 (Ω) , ∀δ > 0.
Then, by scaling we get, for any domains A ε from the covering A ε , the estimate

∥u∥ 3 L 3 (Aε) ⩽ δ 2 (∥u∥ 2 L 2 (Aε) + ε 2 ∥∇u∥ 2 L 2 (Aε) ) + cδ -6 ε -6 ∥u∥ 6 L 2 (Aε) ,
and summing them over all A ε from A ε , we derive

∥u∥ 3 L 3 (Bε) ⩽ δ 2 (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ) + cδ -6 ε -6 ∥u∥ 6 L 2 (Bε) .
Taking in the last inequality

δ = ε -3/4 ∥u∥ 3/4 L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ) -1/8 ,
gives (2.10).

Lemma 2.1.6.

Let B ε ⊂ R n , n = 2, 3, u ∈ W 1,2 (B ε ). Then ∥u∥ 4 L 4 (Bε) ⩽ cε -2 ∥u∥ 2 L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ) ⩽ cε 2 ∥∇u∥ 4 L 2 (Bε) , n = 2 (2.11)
and

∥u∥ 4 L 4 (Bε) ⩽ cε -3 ∥u∥ L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ) 3/2 ⩽ cε∥∇u∥ 4 L 2 (Bε) , n = 3 (2.12)
with the constant c independent of ε.

This lemma is proved by the same way as the previous one.

Lemma 2.1.7. Let B ε ⊂ R n , n = 2, 3, u ∈ W 1,2 (B ε ). Then ∥u∥ 2 L 2 (γ j ε ) ⩽ cε -1 ∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) ) ⩽ cε∥∇u∥ 2 L 2 (Bε) (2.13)
with the constant c independent of ε.

Proof. The inequality (2.13) follows immediately from well known trace estimate

∥v∥ L 2 (∂Ω) ⩽ c∥v∥ W 1,2 (Ω)
and scaling argument.

Lemma 2.1.8. (Agmon's inequality, n=3) Let B ε ⊂ R 3 , u ∈ W 1,2 (B ε ) ∩ W 2,2 (B ε ). Then ∥u∥ 4 L ∞ (Bε) ⩽ cε -6 ∥u∥ L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) + ε 4 ∥∇ 2 u∥ 2 L 2 (Bε) ) 3/2 , (2.14)
with the constant c independent of ε. In particular,

∥u∥ L ∞ (Bε) ⩽ cε 1/4 ∥∇ 2 u∥ L 2 (Bε) .
(2.15)

Proof. In any bounded Lipschitz domains Ω holds the multiplicative inequality (see Lemma 13.2 in [1])

∥u∥ 4 L ∞ (Ω) ⩽ c∥u∥ L 2 (Ω) ∥u∥ 3 W 2,2 (Ω) .
By scaling it is easy to see that in A ε we have

∥u∥ 4 L ∞ (Aε) ⩽ c(ε -3/2 ∥u∥ L 2 (Aε) )(ε -3 ∥u∥ 2 L 2 (Aε) + ε -1 ∥∇u∥ 2 L 2 (Aε) + ε∥∇ 2 u∥ 2 L 2 (Aε) ) 3/2 ⩽ cε -6 ∥u∥ L 2 (Aε) (∥u∥ 2 L 2 (Aε) + ε 2 ∥∇u∥ 2 L 2 (Aε) + ε 4 ∥∇ 2 u∥ 2 L 2 (Aε) ) 3/2 ⩽ cε -6 ∥u∥ L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) + ε 4 ∥∇ 2 u∥ 2 L 2 (Bε) ) 3/2 .
Taking the supremum over all A ε ∈ A ε , we obtain (2.14 

B ε ⊂ R 2 , u ∈ W 1,2 (B ε ) ∩ W 2,2 (B ε ). Then ∥u∥ 4 L ∞ (Bε) ⩽ cε -4 ∥u∥ 2 L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) + ε 4 ∥∇ 2 u∥ 2 L 2 (Bε) ), (2.16) 
with the constant c independent of ε. In particular,

∥u∥ L ∞ (Bε) ⩽ cε 1/2 ∥∇ 2 u∥ L 2 (Bε) .
(2.17)

Proof. In any bounded Lipschitz two-dimensional domain Ω holds the interpolation inequality (see Lemma 13.2 in [1])

∥u∥ 4 L ∞ (Ω) ⩽ c∥u∥ 2 L 2 (Ω) ∥u∥ 2 W 2,2 (Ω) .
By scaling,

∥u∥ 4 L ∞ (Aε) ⩽ cε -4 ∥u∥ 2 L 2 (Aε) (∥u∥ 2 L 2 (Aε) + ε 2 ∥∇u∥ 2 L 2 (Aε) + ε 4 ∥∇ 2 u∥ 2 L 2 (Aε) ) ⩽ cε -4 ∥u∥ 2 L 2 (Bε) (∥u∥ 2 L 2 (Bε) + ε 2 ∥∇u∥ 2 L 2 (Bε) + ε 4 ∥∇ 2 u∥ 2 L 2 (Bε) ).
Taking the supremum over all A ε ∈ A ε we get (2.16).

Stokes operator

Consider in B ε the Dirichlet problem for the Stokes system

           -ν∆v + ∇p = f , x ∈ B ε , div v = 0, x ∈ B ε , v = 0, x ∈ ∂B ε .
(2.18)

The weak solution

v ∈ H(B ε ) = {v ∈ W 1,2 (B ε ) : div v = 0} to (2.18)
satisfies the integral identity

ν Bε ∇v : ∇η dx = Bε f • η dx ∀η ∈ H(B ε ),
and, hence, the estimate

∥∇v∥ L 2 (Bε) ⩽ cε∥f ∥ L 2 (Bε) (2.19) holds. Lemma 2.2.1. Let ∂B ε ∈ C 2 . Then ∥∇ 2 v∥ L 2 (Bε) ⩽ c∥f ∥ L 2 (Bε) (2.20)
with the constant c independent of ε.

Proof. Let A ε ⊂ A ε be domains from the covering A ε and A ε of B ε .
Consider (2.18) in A ε . Making the change of variables x = ε -1 y we transform A ε and A ε into the fixed (independent of ε) domains A and A.

The Stokes problem in coordinates y takes the form

           -ν∆ y v + ∇ y (εp) = ε 2 f , x ∈ A, div y v = 0, x ∈ A, v = 0, x ∈ ∂B ε ∩ ∂ A.
(2.21)

ADN local estimates for elliptic problems (see [2]) yield the inequality

∥v∥ 2 L 2 (A) + ∥∇ y v∥ 2 L 2 (A) + ∥∇ 2 y v∥ 2 L 2 (A) ⩽ c ε 4 ∥f ∥ 2 L 2 ( A) + ∥v∥ 2 L 2 ( A) + ∥q -q∥ 2 L 2 ( A) , ( 2.22) 
where q = εp, q = 1 | A| A q(y) dy. Since A (q(y) -q) dy = 0, there exists w ∈ W 1,2 ( A) such that div w = q(y) -q in A and

∥∇w∥ L 2 ( A) ⩽ c∥q -q∥ L 2 ( A)
(see [START_REF] Ladyzhenskaya | Some problems of vector analysis and generalized formulations of boundary-value problems 121 for the Navier-Stokes equations[END_REF]). Multiplying (2.21) by w and integrating by parts yields

∥q -q∥ 2 L 2 ( A) = A q(y)(q(y) -q) dy = A q(y) div w dy = ν A ∇v : ∇w dy -ε 2 A f • w dy ⩽ ν∥∇v∥ L 2 ( A) ∥∇w∥ L 2 ( A) + ε 2 ∥f ∥ L 2 ( A) ∥w∥ L 2 ( A) ⩽ c∥∇v∥ L 2 ( A) ∥q -q∥ L 2 ( A) + cε 2 ∥f ∥ L 2 ( A) ∥q -q∥ L 2 ( A) .
Therefore,

∥q -q∥ L 2 ( A) ⩽ c ∥∇v∥ L 2 ( A) + ε 2 ∥f ∥ L 2 ( A) . (2.23)
From (2.22), using (2.23) and Poincaré-Friedrich's inequality, we derive

∥v∥ 2 L 2 (A) + ∥∇ y v∥ 2 L 2 (A) + ∥∇ 2 y v∥ 2 L 2 (A) ⩽ c ε 4 ∥f ∥ 2 L 2 ( A) + ∥∇ y v∥ 2 L 2 ( A) .
Returning to coordinates x, we obtain

ε 4 ∥∇ 2 v∥ 2 L 2 (Aε) ⩽ c ε 4 ∥f ∥ 2 L 2 ( Aε) + ε 2 ∥∇v∥ 2 L 2 ( Aε) . (2.24)
Summing (2.24) by all domains A ε ⊂ A ε we get

∥∇ 2 v∥ 2 L 2 (Bε) ⩽ c ∥f ∥ 2 L 2 (Bε) + ε -2 ∥∇v∥ 2 L 2 (Bε) . (2.25)
Estimating the last term in the right hand side of (2.25) by (2.19) we derive (2.20).

Problem (2.18) can be rewritten in the operator form (without loss of generality we suppose that f ∈ J 0 (B ε ), where J 0 (B ε ) is the closure

of the set {v ∈ C ∞ 0 (B ε ) : div v = 0} in L 2 (B ε )-norm, by Helmholtz-Weyl theorem (see [49]) L 2 (Ω) = J 0 (Ω) G(Ω), where G(Ω) = {v ∈ L 2 (Ω) : v = ∇p for some p ∈ L 2 (Ω)}, we understand ∇p in the sense of distribution) ∆v = f , ( 2.26) 
where ∆ = P ∆ :

H(B ε ) ∩ W 2,2 (B ε ) → J 0 (B ε ) is an unbounded opera-
tor with the domain H(B ε ) ∩ W 2,2 (B ε ), and P is the Leray projection onto divergence free vector fields. By the same notation we denote the Friedrich's extension of this operator to the whole space H(B ε ). ∆ is called the Stokes operator. It is known that (see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF], [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF]):

(i) The Stokes operator has a discrete spectrum:

∆w = λw, w ∈ H(B ε ), w ̸ = 0; λ i > 0, lim i→∞ λ i → +∞. (ii) The eigenfunctions {w k } ∞ k=1 of ∆ constitute an orthogonal basis in J 0 (B ε ) and H(B ε ), ∥∇w k ∥ L 2 (Bε) = √ λ k , ∥w k ∥ L 2 (Bε) = 1. If ∂B ε ∈ C 2 , then w k ∈ H(B ε ) ∩ W 2,2 (B ε ). For given w ∈ H(B ε ) ∩ W 2,2 (B ε ) we have Bε ∆w • v dx = Bε (-ν∆w + ∇p) • v dx = -ν Bε ∆w • v dx = ν Bε ∇w • ∇v dx for any divergence free v ∈ C ∞ 0 (B ε ). Then, by density arguments, it follows that Bε | ∆w| 2 dx = -ν Bε ∆w • ∆w dx. Thus, ∥ ∆w∥ L 2 (Bε) ⩽ c∥∆w∥ L 2 (Bε) ⩽ c∥∇ 2 w∥ L 2 (Bε) .
(2.27)

Moreover, from the equality

Bε ∆w • v dx = ν Bε ∇w • ∇v dx, we obtain ∥ ∆w∥ H(Bε) * ⩽ ν∥∇w∥ L 2 (Bε) .
Here V * means the dual space to V .

From (2.20) we get the estimate

∥∇ 2 w∥ L 2 (Bε) ⩽ c∥ ∆w∥ L 2 (Bε) ,
which together with (2.27) gives

c 1 ∥∇ 2 w∥ L 2 (Bε) ⩽ ∥ ∆w∥ L 2 (Bε) ⩽ c 2 ∥∇ 2 w∥ L 2 (Bε) . (2.28) Lemma 2.2.2. Let B ε ⊂ R n , n = 2, 3, w ∈ H(B ε ) ∩ W 2,2 (B ε ). Then ∥w∥ L ∞ (Bε) ⩽ cε 1/4 ∥∇ 2 w∥ L 2 (Bε) ⩽ cε 1/4 ∥ ∆w∥ L 2 (Bε) , for n = 3, (2.29)
and

∥w∥ L ∞ (Bε) ⩽ cε 1/2 ∥∇ 2 w∥ L 2 (Bε) ⩽ cε 1/2 ∥ ∆w∥ L 2 (Bε) , for n = 2, (2.30)
with the constant c independent of ε.

Proof. The inequality (2.29) follows from (2.15) and (2.28), while the inequality (2.30) from (2.17) and (2.28).

Stokes equation in a half-cylinder with Neumann's condition on the base and no-slip condition on the lateral boundary

Let Ω be a half-cylinder ω × (0, +∞), where ω is a bounded domain in R n-1 with Lipschitz boundary. Γ denotes the lateral boundary ∂ω × (0, +∞), and γ the base ω × {0}. Consider the stationary Stokes problem

                       -ν∆v(x) + ∇p(x) = f (x) + n m=1 ∂f m (x) ∂x m , x ∈ Ω, div v(x) = 0, x ∈ Ω, v(x) = 0, x ∈ Γ, p(x) = ψ(x ′ ), x ∈ γ, v τ (x) = 0, x ∈ γ.
(2.31)

Define J Γ,0 = {η ∈ W 1,2 (Ω) : div η = 0, η| Γ = 0, η τ | γ = 0}. Assume that f , f m ∈ L 2 (Ω) and ψ ∈ L 2 (γ)
. By a weak solution of problem (2.31) we understand a vector field v ∈ J Γ,0 satisfying the integral identity

ν Ω ∇v:∇η dx = γ ψ(x ′ ) • η(x ′ ) • n dx ′ + Ω f • η dx - n m=1 Ω f m • ∂η ∂x m dx (2.32)
for every vector field η ∈ J Γ,0 .

Theorem 2.3.1. Assume that f , f m ∈ L 2 (Ω) and ψ ∈ L 2 (γ).
Then there exists a unique weak solution v of problem (2.31). It satisfies the estimate

∥v∥ W 1,2 (Ω) ⩽ C ∥f ∥ L 2 (Ω) + n m=1 ∥f m ∥ L 2 (Ω) + ∥ψ∥ L 2 (γ) (2.33)
with a constant C independent of f , f m and ψ.

Proof. Define in J Γ,0 the inner product [v, η] = ν Ω ∇v : ∇η dx. Using
Cauchy-Schwarz inequality and the trace theorem, we get

γ ψ(x ′ ) • η(x ′ ) • n dx ′ ⩽ ∥ψ∥ L 2 (γ) ∥η • n∥ L 2 (γ) ⩽ C∥ψ∥ L 2 (γ) ∥∇η∥ L 2 (Ω) .
This is linear continuous functional for all η ∈ J Γ,0 . Then by Riesz representation theorem, we obtain that there exist a unique element

Ψ ∈ J Γ,0 , such that γ ψ(x ′ ) • η(x ′ ) • n dx ′ = [Ψ, η].
Again using Cauchy-Schwarz and Poincaré-Friedrich's inequalities, we prove that the right-hand side of the equation (2.32) is a linear continuous functional, i.e.,

Ω f • η dx ⩽ ∥f ∥ L 2 (Ω) ∥η∥ L 2 (Ω) ⩽ C∥f ∥ L 2 (Ω) ∥∇η∥ L 2 (Ω) ; n m=1 Ω f m • ∂η ∂x m dx ⩽ n m=1 ∥f m ∥ L 2 (Ω) ∂η ∂x m L 2 (Ω) ⩽ n m=1 ∥f m ∥ L 2 (Ω) ∥∇η∥ L 2 (Ω) .
By Riesz theorem there exist a unique F, F m ∈ J Γ,0 . Hence

Ω f • η dx = [F, η]; n m=1 Ω f m • ∂η ∂x m dx = n m=1 [F m , η],
for every η ∈ J Γ,0 . So, we can rewrite (2.32) integral identity and we

obtain v = 1 ν Ψ + 1 ν F - n m=1 F m ,
i.e., the solution exist and it is unique.

To get estimate (2.33) in the (2.32) we take η = v, then using trace theorem and Poincaré-Friedrich's inequality, we get

∥∇v∥ 2 L 2 (Ω) ⩽ C∥ψ(x ′ )∥ L 2 (γ) ∥∇v∥ L 2 (Ω) + C∥f ∥ L 2 (Ω) ∥∇v∥ L 2 (Ω) + n m=1 ∥f m ∥ L 2 (Ω) ∥∇v∥ L 2 (Ω) , i.e., ∥v∥ W 1,2 (Ω) ⩽ C ∥ψ(x ′ )∥ L 2 (γ) + ∥f ∥ L 2 (Ω) + n m=1 ∥f m ∥ L 2 (Ω) .
Let us define in a half-cylinder Ω weighted function spaces. Denote

E β (x) = exp(2βx n ). (2.34) 
Denote by W l,2 β (Ω), l ⩾ 0, the space of functions obtained as the closure of C ∞ 0 (Ω) in the norm

∥v∥ W l,2 β (Ω) = l |α|=0 Ω E β (x)|D α v(x)| 2 dx 1/2
and set W 0,2 β (Ω) = L 2 β (Ω). Notice that for β > 0 elements of the space W l,2 β (Ω) exponentially vanish as x n → ∞.

Denote Ω δ = {x ∈ Ω : x n > δ}. There holds the following theorem.

Theorem 2.3.2. Assume that f , f m ∈ L 2 β (Ω), β > 0.
If β is sufficiently small, then the weak solution v of problem (2.31) belongs to the space

W 1,2 β (Ω).
Moreover, if ∂ω ∈ C 2 and f m = 0, then for any δ > 0, v ∈ W 

Ω δ exp{2β 1 x n }|p(x) -a| 2 dx < ∞ ∀β 1 ∈ (0, β). (2.35)
This assertion is a corollary of Theorem A.1, Theorem A.2 and Proposition A.1 of [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF], see also [START_REF] Pileckas | On the nonstationary linearized Navier-Stokes problem in domains with cylindrical outlets to infinity[END_REF], [START_REF] Pileckas | The Navier-Stokes system in domains with cylindrical outlets to infinity. Leray's problem[END_REF]. The regularity of the solution in Ω δ , needed for the proof, follows from ADN estimates (see [2]).

Chapter 3

Time-periodic Stokes equations

Formulation of the problem

Let us consider the time-periodic Stokes system with non-homogeneous boundary condition

                 v t (x, t) -ν∆v(x, t) + ∇p(x, t) = f (x, t), (x, t) ∈ Ω × (0, 2π), div v(x, t) = 0, (x, t) ∈ Ω × (0, 2π), v(x, t) = φ(x), (x, t) ∈ ∂Ω × (0, 2π), v(x, 0) = v(x, 2π), x ∈ Ω, (3.1) 
in two-dimensional multiply connected unbounded domain Ω with an outlet to infinity (see Figure 3.1).

We will prove the existence and uniqueness of a weak solution to problem (3.1) in such domain.

By a weak solution of problem (3.1) we understand a solenoidal vector field v with ∇v, v t ∈ L 2 (0, 2π; L 2 (Ω)) satisfying the boundary condition v| ∂Ω = φ, the time periodicity condition v(x, 0) = v(x, 2π) and the integral identity

2π 0 Ω v t • η dxdt + ν 2π 0 Ω ∇v : ∇η dxdt = 2π 0 Ω f • η dxdt for all time-periodic η ∈ L 2 (0, 2π; H(Ω)).
Since v is divergence free, integrating div v = 0 over the domain 

Ω ∩ {x ∈ D : x 2 = R} with sufficiently large R, we get 0 = Ω∩{x∈R:x 2 =R} div v dx = ∂(Ω∩{x∈R:x 2 =R}) v • n dx = Γ 1 v • n dS + Λ v • n dS + σ(R) v • n dS = Γ 1 φ • n dS + Λ φ • n dS + σ(R) v • n dS, where σ(R) = (-g(R), g(R)) is
σ(R) v • n dS = -F (inn) + F (out) .

Construction of the extension of the boundary value

In order to reduce a non-homogeneous boundary value condition to the homogeneous one, we shall construct an extension A of the boundary value φ. Since φ is independent of time, the extension of the boundary value could be constructed using similar ideas as in [START_REF] Kaulakytė | On the nonhomogeneous boundary value problem for the Navier-Stokes system in a class of unbounded domains[END_REF]. Additionally, we need to estimate the term ∥∇A∥. We construct the extension A in the following form:

A(x) = B (inn) (x) + B (out) (x),
where B (inn) extends the boundary value φ from the inner boundary Γ 1 , and B (out) extends φ from the outer boundary Γ 0 .

Construction of the extension B (inn)

First, we construct a vector field b (inn) such that

div b (inn) = 0, b (inn) | ∂D∩∂Ω = 0, σ(R) b (inn) • n dS = F (inn) .
Let ∆ γ + , ∆ ∂D∩∂Ω and ∆ ∂Ω\Λ be the regularized distances from the point

x ∈ D to the line γ + = {x : x 1 = 0, x 2 ⩽ 0} and to the boundary ∂D ∩ ∂Ω and to the set ∂Ω \ Λ, respectively. The regularized distance satisfies the following properties.

Lemma 3.2.1. (See [START_REF] Stein | Singular Integrals and Differentiability Properties of Functions[END_REF]) Let M be a closed set in R2 . Denote by ∆ M (x) the regularized distance from the point x to the set M. Function

∆ M (x) is infinitely differentiable in R 2 \ M
, and the following estimates

a 1 d M (x) ⩽ ∆ M (x) ⩽ a 2 d M (x), |D α ∆ M (x)| ⩽ a 3 d 1-|α| M (x), (3.2) 
hold, where d G (x) = dist(x, G) is the distance from x to M, positive constants a 1 , a 2 and a 3 are independent of M, and |α| is an order of differentiation.

Define in D a Hopf's-type cut-off function

ξ(x) = Ψ ln ϱ(∆ γ + (x)) ∆ ∂D∩∂Ω (x) ,
where Ψ and ϱ(τ ) are smooth monotone functions

Ψ(t) =      0, t ⩽ 0, 1, t ⩾ 1,
and

ϱ(τ ) =      a 1
where d 0 is a positive number such that dist(γ + , ∂D ∩ ∂Ω) ⩾ d 0 , and a 1 , a 2 are positive constants from the estimates of the regularized distance (see Lemma 3.2.1).

Lemma 3.2.2. The function ξ(x) = 0 at those points of D where

ϱ(∆ γ + (x)) ⩽ ∆ ∂D∩∂Ω (x), while the d 0 /2-neighbourhood of the line γ + is contained in this set; ξ(x) = 1 at those points of D where ∆ ∂D∩∂Ω ⩽ e -1 ϱ(∆ γ + (x)).
The following estimates hold:

∂ξ(x) ∂x k ⩽ c ∆ ∂D∩∂Ω (x) , ∂ 2 ξ(x) ∂x k ∂x l ⩽ c ∆ 2 ∂D∩∂Ω (x) , ∂ 3 ξ(x) ∂x 2 k ∂x l ⩽ c ∆ 3 ∂D∩∂Ω (x)
.

Proof. The proof of the lemma follows directly from the definition of the cut-off function ξ(x), properties of the regularized distance and the fact that supp ∇ξ(x) is contained in the set where

∆ ∂D∩∂Ω (x) ⩽ ϱ(∆ γ + (x)).
For more details see [START_REF] Solonnikov | Certain spaces of solenoidal vectors and the solvability of the boundary problem for the Navier-Stokes system of equations in domains with noncompact boundaries[END_REF].

Let us define the vector field

b (inn) 1 (x) = -F (inn) ∂ ξ(x) ∂x 2 ; - ∂ ξ(x) ∂x 1 , x ∈ D + = {x ∈ D : x 1 > 0}, (3.4) where ξ(x) =      ξ(x), x ∈ D + , 0, x ∈ D \ D + . Lemma 3.2.3. The solenoidal vector field b (inn) 1 (x) is infinitely differ- entiable, vanishes near the boundary ∂D ∩ ∂Ω and the contour γ + , the support of b (inn) 1 (x) is contained in the set of points x ∈ D + satisfying the inequalities ϱ(∆ γ + (x))e -1 ⩽ ∆ ∂D∩∂Ω (x) ⩽ ϱ(∆ γ + (x)). (3.5) Moreover, σ(R) b (inn) 1 • n dS = F (inn) , (3.6)
and the following estimates

b (inn) 1 (x) ⩽ c|F (inn) | d(x) , x ∈ D + , d(x) = dist(x, ∂D ∩ ∂Ω), (3.7) b (inn) 1 (x) ⩽ c|F (inn) | g(x 2 ) , x ∈ D, (3.8) ∇b (inn) 1 (x) ⩽ c|F (inn) | g 2 (x 2 ) , ∆b (inn) 1 (x) ⩽ c|F (inn) | g 3 (x 2 ) , x ∈ D, ( 3.9) 
hold.

Proof. Relation (3.5) follows directly from Lemma 3.2.2.

By the construction of b

(inn) 1

we easily show (3.7):

σ(R) b (inn) 1 • n dS = g(R) -g(R) b (inn) 1 • n dS = -F (inn) g(R) -g(R) ∂ ξ(x) ∂x 2 ; - ∂ ξ(x) ∂x 1 •   0 1   dx 1 = -F (inn) g(R) -g(R) - ∂ ξ(x) ∂x 1 dx 1 = F (inn) g(R) -g(R) ∂ ξ(x) ∂x 1 dx 1 = F (inn) ξ g(R), R -ξ -g(R), R = F (inn) .
This proves that the flux is independent of R.

According to the definition of b (inn) 1

(x) and Lemma 3.2.2, we obtain the following estimates:

|b (inn) 1 (x)| ⩽ |F (inn) | ∂ ξ(x) ∂x 2 2 + ∂ ξ(x) ∂x 1 2 ⩽ c|F (inn) | ∆ ∂D∩∂Ω (x) ; (3.10) |∇b (inn) 1 (x)| ⩽ |F (inn) | ∂ 2 ξ(x) ∂x 1 ∂x 2 2 + ∂ 2 ξ(x) ∂x 2 ∂x 1 2 ⩽ c|F (inn) | ∆ 2 ∂D∩∂Ω (x) ; (3.11) |∆b (inn) 1 (x)| ⩽ |F (inn) | ∂ 3 ξ(x) ∂x 2 1 ∂x 2 2 + ∂ 3 ξ(x) ∂x 2 2 ∂x 1 2 ⩽ c|F (inn) | ∆ 3 ∂D∩∂Ω (x)
. the inequalities

c 1 g(x 2 ) ⩽ d(x) ⩽ c 2 g(x 2 )
hold, where c 1 , c 2 are positive constants (see [START_REF] Solonnikov | Certain spaces of solenoidal vectors and the solvability of the boundary problem for the Navier-Stokes system of equations in domains with noncompact boundaries[END_REF] for details). Then estimates (3.8), (3.9) follow from inequalities (3.10)-(3.12).

Let us define on ∂Ω 0 a vector field

h 1 (x) =            0, x ∈ Γ 1 , b (inn) 1 + b (inn) # , x ∈ ∂Ω 0 ∩ ∂D, b (inn) # , x ∈ ∂Ω 0 \ (Γ 1 ∪ (∂Ω 0 ∩ ∂D)), with b (inn) 1
given by (3.4) and b

(inn) # defined as following:

b (inn) # (x) = F (inn) ∇q(x),
where

q(x) = - 1 2π ln |x| is a fundamental solution of the Laplace operator in R 2 .
Notice that b

(inn) # (x) is a solenoidal vector field: div b (inn) # = div F (inn) ∇q(x) = F (inn) div ∇q(x) = F (inn) ∆q(x) = 0. Since Γ 1 ∇q(x) • n dS = 1, ∂Ω 0 \Γ 1 ∇q(x) • n dS = -1,
we have that

Γ 1 b (inn) # • n dS = Γ 1 F (inn) ∇q(x) • n dS = F (inn) Γ 1 ∇q(x) • n dS = F (inn) , ∂Ω 0 \Γ 1 b (inn) # •n dS = ∂Ω 0 \Γ 1 F (inn) ∇q(x)•n dS = F (inn) ∂Ω 0 \Γ 1 ∇q(x)•n dS = -F (inn) .
Then according to the properties of the vector fields b

(inn) 1 and b (inn) # , we get ∂Ω 0 h 1 • n dS = ∂Ω 0 ∩∂D b (inn) 1 • n dS + ∂Ω 0 \Γ 1 b (inn) # • n dS = F (inn) -F (inn) = 0.
In order to extend h 1 into Ω 0 , first, we define the solenoidal vector field b

(inn) 01 = ∂H(x) ∂x 2 ; - ∂H(x) ∂x 1 ,
where H ∈ W 2,2 (Ω 0 ) satisfies the following boundary conditions:

∂H(x) ∂x 2 ∂Ω 0 ∩∂D = (b (inn) 11 + b (inn) #1 ) ∂Ω 0 ∩∂D , - ∂H(x) ∂x 1 ∂Ω 0 ∩∂D = (b (inn) 12 + b (inn) #2 ) ∂Ω 0 ∩∂D , ∂ 2 H(x) ∂x 2 2 ∂Ω 0 ∩∂D = ∂b (inn) 11 ∂x 2 + ∂b (inn) #1 ∂x 2 ∂Ω 0 ∩∂D , ∂H(x) ∂x 2 ; - ∂H(x) ∂x 1 ∂Ω 0 \Γ 1 ∪(∂Ω 0 ∩∂D) = b (inn) # | ∂Ω 0 \Γ 1 ∪(∂Ω 0 ∩∂D) .
For the proof of the existence of H, see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]. Then we extend

h 1 into Ω 0 in the form b (inn) 01 (x) = ∂(κ(x)H(x)) ∂x 2 ; - ∂(κ(x)H(x)) ∂x 1 ,
where the support of Hopf's-type smooth cut-off function κ is contained

in the neighbourhood of Ω 0 \ Γ 1 . We get b (inn) 01 ∈ W 2,2 (Ω 0 ) and b (inn) 01
satisfies the following estimate:

∥b (inn) 01 ∥ W 2,2 (Ω 0 ) ⩽ c∥h 1 ∥ W 3/2,2 (∂Ω 0 ) ⩽ c(∥b (inn) # ∥ W 3/2,2 (∂Ω 0 \Γ 1 ) + ∥b (inn) 1 ∥ W 3/2,2 (∂Ω 0 ∩∂D) ) ⩽ c|F (inn) |,
where the constant c depends only on the domain Ω 0 (see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]).

Next, we define the vector field, which "removes" the non-zero flux from the inner boundary Γ 1 :

b (inn) =    b (inn) # -b (inn) 01 , x ∈ Ω 0 , b (inn) 1 , x ∈ D.
Notice that by the construction the function b (inn) and its derivatives ∂b (inn) ∂x 1 , ∂b (inn) ∂x 2 have no jump discontinuity passing from Ω 0 to D. Therefore, b (inn) ∈ W 2,2 (Ω). Then we define a vector field

h 0 =    φ -b
which satisfies the following condition:

Γ 1 h 0 • n dS = Γ 1 φ • n dS - Γ 1 b (inn) # • n dS = F (inn) -F (inn) = 0.
Therefore, the function h 0 can be extended inside Ω in the form b (inn) 0

(x) = ∂(χ(x)E(x)) ∂x 2 ; - ∂(χ(x)E(x)) ∂x 1 ,
where

E(x) ∈ W 2,2 (Ω 0 ), ∂E(x) ∂x 2 , - ∂E(x) ∂x 1 = h 0 , the support of Hopf's- type smooth cut-off function χ is contained in the neighbourhood of Γ 1
(see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]).

Finally, we put

B (inn) (x) = b (inn) (x) + b (inn) 0 (x).
The properties of the extension B (inn) are formulated in the following lemma.

Lemma 3.2.4. The vector field

B (inn) is solenoidal, B (inn) | Γ 1 = φ| Γ 1 , B (inn) | ∂Ω\Γ 1 = 0, B (inn) ∈ W 2,2
( Ω) and satisfies the following estimates:

B (inn) (x) ⩽ c|F (inn) | g(x 2 ) , x ∈ D, ∇B (inn) (x) ⩽ c|F (inn) | g 2 (x 2 ) , ∆B (inn) (x) ⩽ c|F (inn) | g 3 (x 2 ) , x ∈ D, B (inn) (x) + ∇B (inn) (x) + ∆B (inn) (x) ⩽ c|F (inn) |, x ∈ Ω \ D.

Construction of the extension B (out)

Take any point x (1) ∈ Λ ⊂ Γ 0 . Let γ be a smooth simple curve, which intersects ∂Ω at the point x (1) , and

γ = γ ∪ γ 0 ,
where γ is a semi-infinite line lying in D, γ 0 is a finite simple curve connecting γ and the point x (1) . Assume that inf

x∈γ,y∈∂Ω\Λ |x -y| ⩾ d 0 .
Define a Hopf's-type cut-off function

ζ(x) = Ψ ln ϱ(∆ γ (x)) ∆ ∂Ω\Λ (x) ,
where functions Ψ and ϱ are defined by (3.3).

Lemma 3.2.5. Function ζ(x) = 0 if ϱ(∆ γ (x)) ⩽ ∆ ∂Ω\Λ (x), while the d 0 /2-neighbourhood of the curve is contained in this set. Function ζ(x) = 1
at those points where ∆ ∂Ω\Λ (x) ⩽ e -1 ϱ(∆ γ (x)). Moreover, the following estimates hold:

∂ζ(x) ∂x k ⩽ c ∆ ∂Ω\Λ (x) , ∂ 2 ζ(x) ∂x k ∂x l ⩽ c ∆ 2 ∂Ω\Λ (x) , ∂ 3 ζ(x) ∂x 2 k ∂x l ⩽ c ∆ 3 ∂Ω\Λ (x)
.

Proof. The proof follows directly from the definition of ζ(x), properties of the regularized distance and the fact that supp ∇ζ(x) is contained in the set where

∆ ∂Ω\Λ (x) ⩽ ϱ(∆ γ (x)).
Let us introduce the vector field

b (out) (x) = F (out) ∂ ζ(x) ∂x 2 ; - ∂ ζ(x) ∂x 1 ,
where ζ(x) = ζ(x) above the curve γ, and ζ(x) = 0 under the curve γ.

Lemma 3.2.6. The vector field b (out) is infinitely differentiable and solenoidal, vanishes near the set ∂Ω \ Λ and in a small neighbourhood of the curve γ. The following estimates hold:

b (out) (x) ⩽ c d ∂Ω\Λ (x) , x ∈ D, (3.13) ∇b (out) (x) ⩽ c d 2 ∂Ω\Λ (x) , ∆b (out) (x) ⩽ c d 3 ∂Ω\Λ (x) , x ∈ D, (3.14) b (out) (x) ⩽ c|F (out) | g(x 2 ) , x ∈ D, (3.15) ∇b (out) (x) ⩽ c|F (out) | g 2 (x 2 ) , ∆b (out) (x) ⩽ c|F (out) | g 3 (x 2 ) , x ∈ D, (3.16) Λ b (out) • n dS = F (out) . (3.17)
Proof. Estimates (3.13)-(3.16) could be proven in the same way as in Lemma 3.2.3. Due to the construction of b (out) , we get (3.17):

Λ b (out) • n dS = - σ(R) b (out) • n dS = - g(R) -g(R) b (out) • n dS = -F (out) g(R) -g(R) ∂ ζ(x) ∂x 2 ; - ∂ ζ(x) ∂x 1 •   0 1   dx 1 = -F (out) g(R) -g(R) - ∂ ζ(x) ∂x 1 dx 1 = F (out) g(R) -g(R) ∂ ζ(x) ∂x 1 dx 1 = F (out) ζ g(R), R -ζ -g(R), R = F (out) .
Let us take

h(x) = φ(x)| Λ -b (out) (x)| Λ . Then Λ h(x) • n dS = Λ φ(x) • n dS - Λ b (out) (x) • n dS = F (out) -F (out) = 0,
and h can be extended (see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]) inside Ω in the form b (out) 0

(x) = ∂(χ(x)E(x)) ∂x 2 ; - ∂(χ(x)E(x)) ∂x 1 ,
where

E(x) ∈ W 2,2 (Ω 0 ), ∂E(x) ∂x 2 ; - ∂E(x) ∂x 1 Λ = h and χ is a Hopf's-type cut-off function such that χ = 1 on Λ, supp χ is contained in a small neighbourhood of Λ.
Finally, we put

B (out) (x) = b (out) (x) + b (out) 0 (x).
The properties of the extension B (out) are formulated in the following lemma.

Lemma 3.2.7. The vector field

B (out) is solenoidal, B (out) | Λ = φ| Λ , B (out) | ∂Ω\Λ = 0, B (out) ∈ W 2,2 ( 
Ω) and satisfies the following estimates:

B (out) (x) ⩽ c|F (out) | g(x 2 ) , x ∈ D, ∇B (out) (x) ⩽ c|F (out) | g 2 (x 2 ) , ∆B (out) (x) ⩽ c|F (out) | g 3 (x 2 ) , x ∈ D, B (out) (x) + ∇B (out) (x) + ∆B (out) (x) ⩽ c F (out) , x ∈ Ω \ D.
The sum we have constructed is sought extension A = B (inn) + B (out) of the boundary value φ. The properties of A are given in the following theorem.

Theorem 3.2.8. The constructed extension A ∈ W 2,2 (Ω) is solenoidal, satisfies the boundary condition A| ∂Ω = φ and the following estimates: 

A(x) ⩽ c(|F (inn) | + |F (out) |) g(x 2 ) , x ∈ D (3.18) ∇A(x) ⩽ c(|F (inn) | + |F (out) |) g 2 (x 2 ) , x ∈ D, (3.19) ∆A(x) ⩽ c(|F (inn) | + |F (out) |) g 3 (x 2 ) , x ∈ D, (3.20) 
A(x) + ∇A(x) + ∆A(x) ⩽ c F (inn) + F (out) , x ∈ Ω \ D. (3.21) Proof. Since A(x) = B (inn) (x) + B (out) (x),

Solvability of the problem

We look for the solution of problem (3.1) in the form

v(x, t) = A(x) + u(x, t),
where A is the suitable extension of the boundary value φ constructed in the previous section. Then problem (3.1) is reduced to the homogeneous boundary condition problem for

             u t -ν∆u + ∇p = ν∆A + f , (x, t) ∈ Ω × (0, 2π), div u = 0, (x, t) ∈ Ω × (0, 2π), u = 0, (x, t) ∈ ∂Ω × (0, 2π), u(x, 0) = u(x, 2π), x ∈ Ω, (3.22) 
and now we look for the new unknown velocity field u.

Let us denote the following space:

L 2 per (0, 2π; L 2 1 (Ω)) := C ∞ per (0, 2π; L 2 1 (Ω)) L 2 (0,2π) , L 2 1 (Ω) is weighted space with the norm ∥w∥ L 2 1 (Ω) = D |w| 2 g 2 dx + Ω 0 |w| 2 dx. Definition 3.1. Suppose f ∈ L 2 per (0, 2π; L 2 1 (Ω))
. By the weak solution of problem (3.22) we understand a solenoidal vector field u with ∇u, u t ∈ L 2 (0, 2π; L 2 (Ω)) satisfying the homogeneous boundary condition u| ∂Ω = 0, the time periodicity condition u(x, 0) = u(x, 2π) and the integral identity:

2π 0 Ω u t • η dx dt + ν 2π 0 Ω ∇u : ∇η dx dt = -ν 2π 0 Ω ∇A : ∇η dx dt + 2π 0 Ω f • η dx dt (3.23)
for all time-periodic η ∈ L 2 (0, 2π; H(Ω)).

Theorem 3.3.1. Assume that the domain

Ω ⊂ R 2 has one outlet to infinity, boundary value φ ∈ W 3/2,2 (∂Ω) has a compact support, f ∈ L 2 per (0, 2π; L 2 1 (Ω)). If +∞ R 0 dx 2 g 3 (x 2 )
< +∞, then problem (3.1) has a unique weak solution v = A + u satisfying the following estimate:

∥v t ∥ L 2 (0,2π;L 2 (Ω)) + ∥∇v∥ L 2 (0,2π;L 2 (Ω)) ⩽ c ∥φ∥ 2 W 3/2,2 (∂Ω) 1 + +∞ R 0 1 g 3 (x 2 ) dx 2 1/2 + ∥f ∥ L 2 per (0,2π;L 2 1 (Ω)) .
(3.24)

Proof. Let us choose Ω k , i.e., Ω k = Ω 0 ∪ D k ,
where

Ω 0 = Ω ∩ B R 0 and D k = {x ∈ D : x 2 < R k } with R 1 = R 0 + g(R 0 ) 2L , R k+1 = R k + g(R k ) 2L , k ⩾ 1.
The existence of a unique solution u satisfying the integral identity (3.23) could be proved by three following steps. First, we prove the existence of the approximate solution u (k,N ) to the problem in the bounded

domain Ω k                  u (k,N ) t -ν∆u (k,N ) +∇p (k,N ) = ν∆A + f (N ) , (x, t) ∈ Ω k × (0, 2π), div u (k,N ) = 0, (x, t) ∈ Ω k × (0, 2π), u (k,N ) = 0, (x, t) ∈ ∂Ω k × (0, 2π), u (k,N ) (x, 0) = u (k,N ) (x, 2π), x ∈ Ω k . (3.25)
Second, we show the convergence of the approximate solution u (k,N ) to the solution u (k) , which satisfies

                 u (k) t -ν∆u (k) + ∇p (k) = ν∆A + f , (x, t) ∈ Ω k × (0, 2π), div u (k) = 0, (x, t) ∈ Ω k × (0, 2π), u (k) = 0, (x, t) ∈ ∂Ω k × (0, 2π), u (k) (x, 0) = u (k) (x, 2π), x ∈ Ω k . (3.26)
Finally, passing to the limit as k → +∞, we prove that the limit function u is a weak solution to problem (3.22).

Consider problem (3.25). It is well known that every 2π-periodic function in L 2 (0, 2π) could be represented as Fourier series:

f (x, t) = f (c) 0 (x) 2 + ∞ n=1 (f (s) n (x) sin(nt) + f (c) n (x) cos(nt)). (3.27)
Let f (N ) be a partial sum of (3.27).

We look for the approximate solution (u (k,N ) , p (k,N ) ) in the form

u (k,N ) (x, t) = b (k,c) 0 (x) 2 + N n=1 (a (k,s) n (x) sin(nt) + b (k,c) n (x) cos(nt)), (3.28) p (k,N ) (x, t) = p (k,c) 0 (x) 2 + N n=1 (p (k,s) n (x) sin(nt) + p (k,c) n (x) cos(nt)). (3.29)
In order to prove the existence of the approximate solution, we need to prove the existence of Fourier coefficients a 

     -ν∆b (k,c) 0 (x) + ∇p (k,c) 0 (x) = 2ν∆A(x) + f (c) 0 (x), div b (k,c) 0 (x) = 0, b (k,c) 0 (x)| ∂Ω k = 0, (3.30)                    na (k,s) n (x) -ν∆b (k,c) n (x) + ∇p (k,c) 0 (x) = f (c) n (x), -nb (k,c) n (x) -ν∆a (k,s) n (x) + ∇p (k,s) 0 (x) = f (s) n (x), div a (k,s) n (x) = 0, div b (k,c) n (x) = 0, a (k,s) n (x)| ∂Ω k = 0, b (k,c) n (x)| ∂Ω k = 0, n = 1, 2, . . . , N. (3.31)
Notice that (3.30) is the Stokes system with homogeneous boundary condition and the existence of a weak solution of (3.30) is well known (see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]).

In order to prove the existence of a unique solution to problem (3.31), we multiply (3.31) 1 by η ∈ H(Ω k ) and (3.31) 2 by ξ ∈ H(Ω k ). Then integrating by parts over Ω k we obtain the following system:

             n Ω k a (k,s) n • η dx + ν Ω k ∇b (k,c) n : ∇η dx = Ω k f (c) n • η dx, -n Ω k b (k,s) n • ξ dx + ν Ω k ∇a (k,c) n : ∇ξ dx = Ω k f (s) n • ξ dx. (3.32)
To prove the existence of the unique solution of (3.32), we use Fredholm alternative by reducing (3.32) to the system of operator equations

   Ba (k,s) n + νb (k,c) n = F (c) , ∀η ∈ H(Ω k ), -Bb (k,c) n + νa (k,s) n = F (s) , ∀ξ ∈ H(Ω k ), where B = n Ω k s n • ψ dx is linear completely continuous operator, then s n is equal a (k,s) n or b (k,c) n
and ψ is equal η or ξ, respectively.

Then we consider homogeneous operator equations

   Ba (k,s) n + νb (k,c) n = 0 ∀η ∈ H(Ω k ), -Bb (k,c) n + νa (k,s) n = 0 ∀ξ ∈ H(Ω k ), i.e.,              n Ω k a (k,s) n • η dx + ν Ω k ∇b (k,c) n : ∇η dx = 0, -n Ω k b (k,c) n • ξ dx + ν Ω k ∇a (k,s) n : ∇ξ dx = 0. After substituting η(x) = b (k,c) n (x) and ξ(x) = a (k,s) n (x)
and summing up the equations, we obtain

ν Ω k |∇b (k,c) n (x)| 2 dx + ν Ω k |∇a (k,s) n (x)| 2 dx = 0. Then it follows that b (k,c) n (x) = 0, a (k,s) n (x) = 0.
According to Fredholm alternative, we obtained that (3.31) has a unique solution. Therefore, the existence and uniqueness of the approximate solution u (k,N ) to problem (3.25) is proved.

In order to prove the convergence of an approximate solution u (k,N ) (x, t) to u (k) (x, t) in bounded domains Ω k , we need to obtain the estimates for the norms of u (k,N ) (x, t). To do this, we multiply equation (3.31) 1 by u (k,N ) (x, t), and integrating by parts over Ω k , we get

Ω k u (k,N ) t • u (k,N ) dx + ν Ω k ∇u (k,N ) 2 dx = -ν Ω k ∇A : ∇u (k,N ) dx + Ω k f (N ) • u (k,N ) dx. (3.33) Since u (k,N ) t • u (k,N ) = 1 2 d dt u (k,N ) , from (3.33) it follows that 1 2 d dt Ω k u (k,N ) 2 dx + ν Ω k ∇u (k,N ) 2 dx = -ν Ω k ∇A : ∇u (k,N ) dx + Ω k f (N ) • u (k,N ) dx.
Integration with respect to time variable t from 0 till 2π yields 1 2

Ω k u (k,N ) (x, 2π) 2 dx - 1 2 Ω k u (k,N ) (x, 0) 2 dx + ν 2π 0 Ω k ∇u (k,N ) 2 dx dt = -ν 2π 0 Ω k ∇A : ∇u (k,N ) dx dt + 2π 0 Ω k f (N ) • u (k,N ) dx dt.
Using the periodicity condition u (k,N ) (x, 0) = u (k,N ) (x, 2π), we derive

ν 2π 0 Ω k ∇u (k,N ) 2 dx dt = -ν 2π 0 Ω k ∇A : ∇u (k,N ) dx dt + 2π 0 Ω k f (N ) • u (k,N ) dx dt. (3.34)
Notice that we need to get estimates with the constant independent of the domain Ω k . To do this, we rewrite equation (3.34) as follows:

ν 2π 0 Ω k ∇u (k,N ) 2 dx dt = -ν 2π 0 Ω k ∇A : ∇u (k,N ) dx dt + 2π 0 Ω k f (N ) • g • g -1 • u (k,N ) dx dt.
By Cauchy-Schwarz inequality,

ν 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt ⩽ ν 2π 0 Ω k ∇A(x) 2 dx dt 1/2 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt 1/2 +∥f (N) (x, t)∥ L 2 per (0,2π;L 2 1 (Ω k )) × 2π 0 Ω 0 u (k,N ) (x, t) 2 dx dt + 2π 0 D k u (k,N ) (x, t) 2 |g(x 2 ) 2 dx dt 1/2 . (3.35)
Since, due to Poincaré-Friedrich's inequality, we have that

2π 0 D k u (k,N ) (x, t) 2 |g(x 2 ) 2 dx dt = 2π 0 R k R 0 1 |g(x 2 )| 2 dx 2 g(x 2 ) -g(x 2 ) |u (k,N ) (x, t)| 2 dx 1 dt ⩽ c 2π 0 R k R 0 dx 2 g(x 2 ) -g(x 2 ) ∂ ∂x 1 u (k,N ) (x, t) 2 dx 1 dt ⩽ c 2π 0 D k ∇u (k,N ) (x, t) 2 dx dt, from (3.35) we obtain ν 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt ⩽ ν 2π 0 Ω k ∇A(x) 2 dx dt 1/2 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt 1/2 +c∥f (N ) (x, t)∥ L 2 per (0,2π;L 2 1 (Ω k )) 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt 1/2 ⩽ ν √ 2π Ω k ∇A(x) 2 dx 1/2 + c∥f (N ) (x, t)∥ L 2 per (0,2π;L 2 1 (Ω k )) × 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt 1/2 .
Dividing both sides by

ν 2π 0 Ω k ∇u (k,N ) (x, t) 2 dx dt 1/2
, we rewrite the last estimate as follows:

∥∇u (k,N ) ∥ L 2 (0,2π;L 2 (Ω k )) ⩽ C(∥∇A∥ L 2 (Ω k ) + ∥f (N ) ∥ L 2 (0,2π;L 2 1 (Ω k )) ), (3.36)
where the constant C is independent of the domain Ω k .

Due to Theorem 3.2.8 the norm ∥∇A∥2 L 2 (Ω k ) admits the estimate:

∥∇A∥ 2 L 2 (Ω k ) = Ω k |∇A| 2 dx ⩽ Ω 0 c(|F (inn) | + |F (out) |) 2 dx + D k c(|F (inn) | + |F (out) |) g 2 (x 2 ) ⩽ c(|F (inn) | 2 + |F (out) | 2 ) 1 + R k R 0 g(x 2 ) -g(x 2 ) 1 g 4 (x 2 ) dx 1 dx 2 ⩽ c(|F (inn) | 2 + |F (out) | 2 ) 1 + R k R 0 1 g 3 (x 2 ) dx 2 .
(3.37)

According to the fact that

|F (inn) | 2 + |F (out) | 2 ⩽ c∥φ∥ 2 W 3/2,2 (∂Ω) ,
from (3.36), using (3.37), we get

∥∇u (k,N ) ∥ L 2 (0,2π;L 2 (Ω k )) ⩽ C ∥φ∥ 2 W 3/2,2 (∂Ω) 1 + R k R 0 1 g 3 (x 2 ) dx 2 1/2 + ∥f (N ) ∥ L 2 (0,2π;L 2 1 (Ω k )) , (3.38)
where C is independent of Ω k .

Let us estimate the norm of the term u

(k,N ) t . Multiplying equation (3.25) 1 by u (k,N ) t
(x, t) and integrating by parts over Ω k , we arrive at

Ω k u (k,N ) t 2 dx + ν Ω k ∇u (k,N ) : ∇u (k,N ) t dx = ν Ω k ∆A • u (k,N ) t dx + Ω k f (N ) • u (k,N ) t dx. (3.39) Since ∇u (k,N ) : ∇u (k,N ) t = 1 2 d dt (|∇u (k,N ) | 2 ), from (3.39) it follows that Ω k |u (k,N ) t | 2 dx + ν 2 d dt Ω k |∇u (k,N ) | 2 dx = ν Ω k ∆A • u (k,N ) t dx + Ω k f (N ) • u (k,N ) t dx.
Then integrating with respect to time variable t from 0 till 2π, we obtain

2π 0 Ω k |u (k,N ) t | 2 dx dt + ν 2 Ω k |∇u (k,N ) (x, 2π)| 2 dx - ν 2 Ω k |∇u (k,N ) (x, 0)| 2 dx = ν 2π 0 Ω k ∆A • u (k,N ) t dx dt + 2π 0 Ω k f (N ) • u (k,N ) t dx dt.
Using the periodicity condition ∇u (k,N ) (x, 0) = ∇u (k,N ) (x, 2π), the last equality reduces to

2π 0 Ω k |u (k,N ) t | 2 dx dt = ν 2π 0 Ω k ∆A • u (k,N ) t dx dt + 2π 0 Ω k f (N ) • u (k,N ) t dx dt.
By Cauchy-Schwarz inequality,

2π 0 Ω k |u (k,N ) t | 2 dx dt ⩽ ν 2π 0 Ω k |∆A| 2 dx dt 1/2 2π 0 Ω k |u (k,N ) t | 2 dx dt 1/2 + 2π 0 Ω k |f (N ) | 2 dx dt 1/2 2π 0 Ω k |u (k,N ) t | 2 dx dt 1/2 ⩽ ν √ 2π Ω k |∇A| 2 dx 1/2 + 2π 0 Ω k |f (N ) | 2 dx dt 1/2 2π 0 Ω k |u (k,N ) t | 2 dx dt 1/2 .
Then dividing both sides by

2π 0 Ω k |u (k,N ) t (x, t)| 2 dx dt 1/2
, we obtain the last estimate as follows:

∥u (k,N ) t ∥ L 2 (0,2π;L 2 (Ω k )) ⩽ C 1 ∥∆A∥ L 2 (Ω k ) + ∥f (N ) ∥ L 2 (0,2π;L 2 (Ω k )) , (3.40)
where C 1 is independent of the domain Ω k .

Due to Theorem 3.2.8

∥∆A∥ 2 L 2 (Ω k ) = Ω k |∆A| 2 dx ⩽ Ω 0 c(|F (inn) | + |F (out) |) 2 dx + D k c(|F (inn) | + |F (out) |) g 3 (x 2 ) 2 dx ⩽ c(|F (inn) | 2 + |F (out) | 2 ) 1 + R k R 0 g(x 2 ) -g(x 2 ) 1 g 6 (x 2 ) dx 1 dx 2 ⩽ c(|F (inn) | 2 + |F (out) | 2 ) 1 + R k R 0 dx 2 g 5 (x 2 ) . (3.41)
According to the fact that

|F (inn) | 2 + |F (out) | 2 ⩽ c∥φ∥ 2 W 3/2,2 (∂Ω) ,
it follows form (3.40) using (3.41) the following estimate:

∥u (k,N ) t ∥ L 2 (0,2π;L 2 (Ω k )) ⩽ C 1 (∥∆A∥ L 2 (Ω k ) + ∥f (N ) ∥ L 2 (0,2π;L 2 (Ω k )) ) ⩽ C 1 ∥φ∥ 2 W 3/2,2 (∂Ω) 1 + R k R 0 dx 2 g 5 (x 2 ) 1/2 + ∥f (N ) ∥ L 2 (0,2π;L 2 (Ω k )) ⩽ C 1 ∥φ∥ 2 W 3/2,2 (∂Ω) 1 + R k R 0 dx 2 g 3 (x 2 ) 1/2 + ∥f (N ) ∥ L 2 (0,2π;L 2 1 (Ω k )) , (3.42)
where

C 1 is independent of Ω k .
For the fixed k, from estimates (3.38), (3.42) we conclude that {∇u (k,N ) } and {u

(k,N ) t } are bounded sequences in the space L 2 (0, 2π; L 2 (Ω k )).
Hence there exists a subsequence {u (k,Nm) } such that {∇u (k,Nm) } and

{u (k,Nm) t
} converge weakly to {∇u (k) } and {u

(k) t } in L 2 (0, 2π; L 2 (Ω k )). Moreover, {f (N ) } converges to {f } in the space L 2 (0, 2π; L 2 (Ω k )).
For the approximate solution, the following integral identity holds:

2π 0 Ω k u (k,Nm) t • η dx dt + ν 2π 0 Ω k ∇u (k,Nm) : ∇η dx dt = -ν 2π 0 Ω k ∇A : ∇η dx dt + 2π 0 Ω k f (Nm) • η dx dt for all time-periodic η ∈ L 2 (0, 2π; H(Ω k )). Passing to the limit as N m → +∞, we get 2π 0 Ω k u (k) t • η dx dt + ν 2π 0 Ω k ∇u (k) : ∇η dx dt = -ν 2π 0 Ω k ∇A : ∇η dx dt + 2π 0 Ω k f • η dx dt. (3.43)
Thus, u (k) are weak solutions of problem (3.26) in bounded domains Ω k .

Finally, we will get the solution in the whole domain Ω. Since the estimates for the approximate solution u (k,N ) remain valid for the limit solution u (k) , from (3.38) and (3.42), it follows that

∥u (k) t ∥ L 2 (0,2π;L 2 (Ω k )) + ∥∇u (k) ∥ L 2 (0,2π;L 2 (Ω k )) ⩽ c ∥φ∥ 2 W 3/2,2 (∂Ω) 1 + R k R 0 dx 2 g 3 (x 2 ) 1/2 + ∥f ∥ L 2 (0,2π;L 2 (Ω k )) , (3.44) where constant c is independent of domain Ω k . Since +∞ R 0 1 g 3 (x 2 )
dx 2 < +∞, the right-hand side of (3.44) is bounded by a constant independent of Ω k . So {∇u (k) } and {u

(k)
t } are bounded sequences in the space L 2 (0, 2π; L 2 (Ω k )). Therefore, there exists a subsequence {u (km) } such that {∇u (km) } and {u (km) t } converge weakly to {∇u} and {u t } as k m → +∞ in the space L 2 (0, 2π; L 2 (Ω)). Taking in integral identity (3.43) an arbitrary time-periodic test function η ∈ L 2 (0, 2π; H(Ω)) with a compact support, we can pass to a limit as k → +∞. As a result, we get for the limit function u integral identity

(3.23).
The uniqueness is obtained by standard way assuming that (3.22) has two weak solutions w 1 and w 2 , which satisfy the integral identity

2π 0 Ω ∂ ∂t w i • η dx dt + ν 2π 0 Ω ∇w i : ∇η dx dt = -ν 2π 0 Ω ∇A : ∇η dx dt + 2π 0 Ω f • η dx dt, i = 1, 2.
Subtracting the identities, we get

2π 0 Ω ∂ ∂t (w 1 -w 2 ) • η dx dt + ν 2π 0 Ω ∇(w 1 -w 2 ) : ∇η dx dt = 0.
Taking η = w 1 -w 2 , we have 

2π 0 Ω ∂ ∂t (w 1 -w 2 ) • (w 1 -w 2 ) dx dt +ν 2π 0 Ω ∇(w 1 -w 2 ) : ∇(w 1 -w 2 ) dx dt = 0. Since ∂(w 1 -w 2 ) • (w 1 -w 2 ) ∂t = 1 2 ∂|w 1 -w 2 | 2 ∂t ,
                   1 ε β v t -ν∆v + (v • ∇)v + ∇p = 0, β = 0, 2, (x, t) ∈ B ε × (0, 2π), div v = 0, (x, t) ∈ B ε × (0, 2π), v = g, (x, t) ∈ ∂B ε × (0, 2π), v(x, t) = v(x, t + 2π), x ∈ B ε . (4.1)
Assume that the fluid velocity g at the boundary ∂B ε has the following structure: g = 0 everywhere on ∂B ε except for the set γ

N 1 +1 ε , . . . , γ N ε , where γ j ε = ∂B ε ∩ ∂ω j ε , j = N 1 + 1, . . . , N , i.e., g(x, t)| γ j ε = g j x -O j ε , t γ j ε , j = N 1 + 1, . . . , N, g(x, t) ∂Bε\ N j=N 1 +1 γ j ε = 0, where g j ∈ C [ J+1 2 ]+1 (0, 2π; W 3/2,2 (γ j )), [α]-is the integer part of α, γ j = ε -1 (γ j ε -O j )
denote the corresponding dilated part of the boundary, and

g ∈ C [ J+1 2 ]+1 (0, 2π; W 3/2,2 (∂B ε ))
. Denote e = e O j (the edge with the end O j ) and x (e) the Cartesian coordinates corresponding to the origin O j and the edge e, i.e., x (e) = P (e) (x -O j ), P (e) is the orthogonal matrix relating the global coordinates x with the local ones x (e) , σ j ε = {x :

x (e) ′ ε ∈ σ, x (e) n = 0}. Denote g (e) = P (e) g j . Let F j (t) = γ j ε g(x, t) • n(x) dS = γ j ε g j x -O j ε , t • n(x) dS = ε n-1 γ j ĝj n (y (e) ′ , t) dy (e) ′ ≡ ε n-1 F j (t), j = N 1 + 1, . . . , N, (4.2)
where n is the unit outward (with respect to B ε ) normal vector to

γ j ε , y (e) ′ =
x (e) ′ ε , ĝj (y (e) ′ , t) = g j ((P (e) ) * y (e) ′ , t). Since g(x, t) is time periodic, F j (t) also must be time periodic. Moreover, since we will need the divergence free extension of g, we assume the compatibility condition for the flow rates F j (t):

N j=N 1 +1 F j (t) = 0 ∀t ∈ [0, 2π]. (4.3) 
Let g be the divergence free time periodic extension of the boundary function g (here we use the same symbol g, g ∈ C [ J+1 2 ]+1 (0, 2π; W 2,2 (B ε ))) satisfying for all t ∈ [0, 2π] the following asymptotic estimates

sup x∈Bε |g(x, t)| ⩽ c, ∥∇g∥ L 2 (Bε) ⩽ cε n-3 2 ∀t∈ [0, 2π], ∥g t ∥ L 2 (Bε) ⩽ cε n-1 2 , ∥∇ 2 g∥ L 2 (Bε) ⩽ cε n-5 2 ∀t∈ [0, 2π], (4.4) 
where the constant c is independent of ε.

Below, we construct the special extension g in the form of asymptotic representation of the solution g, such that the discrepancy, let us denote it by f , of this extension in the equations (4.1), is small. But first, we consider the following variational problem: find a vector-field v = u + g with

div u = 0, u ∈ L ∞ per (0, 2π; W 1,2 (B ε ) ∩ W 2,2 (B ε )), u t ∈ L 2 per (0, 2π; L 2 (B ε )), satisfying the integral identity Bε 1 ε β u t • η + ν∇u : ∇η -(u + g) • ∇ η • u -(u • ∇)η • g dx = Bε f • η dx, (4.5)
for every divergence free vector field η ∈ W 1,2 (B ε ). Here g is an arbitrary extension satisfying (4.4) and f is an arbitrary function such that f ∈

L 2 per (0, 2π; L 2 (B ε )). Denote A 1 (t) = ∥f ( • , t)∥ 2 L 2 (Bε) . (4.6)

Solvability of the problem

In this section we prove the existence and uniqueness of the problem (4.1) in two and three-dimensional cases.

Two-dimensional case

In this subsection we prove the existence of the solution to problem

(4.5) when n = 2. Theorem 4.2.1. Let B ε ⊂ R 2 , ∂B ε ∈ C 2 . Suppose that the extended function g ∈ C [ J+1 2 ]+1 (0, 2π; W 2,2 (B ε )) satisfies the conditions (4.2), (4.3) 
, (4.4), and f ∈ L 2 per (0, 2π; L 2 (B ε )). Then for sufficiently small ε, the variational problem (4.5) admits a solution u, satisfying the estimates

sup t∈[0,2π] ∥u( • , t)∥ 2 L 2 (Bε) + ε β 2π 0 Bε |∇u(x, t)| 2 dx dt ⩽ cε 2+β 2π 0 A 1 (t) dt, (4.7) sup t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |u t (x, t)| 2 dx dt +ε β 2π 0 Bε |∇ 2 u(x, t)| 2 dx dt ⩽ cε β 2π 0 A 1 (t) dt (4.8)
with constants c independent of ε.

Proof. We prove the solvability of problem (4.5) by Galerkin method (see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF], [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF]). The main purpose is to obtain suitable a priori estimates.

The remaining part is standard.

If u is a weak solution, then taking in (4.5) η = u, we obtain

1 2ε β d dt Bε |u| 2 dx + ν Bε |∇u| 2 dx = Bε (u • ∇)u • g dx + Bε f • u dx.
Using (4.4) and the Poincaré-Friedrich's inequality (2.1), we derive the estimate

Bε (u • ∇)u • g dx ⩽ ∥u∥ L 2 (Bε) ∥∇u∥ L 2 (Bε) ∥g∥ L ∞ (Bε) ⩽ c 1 ε∥∇u∥ 2 L 2 (Bε) . If c 1 ε ⩽ ν 4 , this gives 1 2ε β d dt Bε |u| 2 dx + ν Bε |∇u| 2 dx ⩽ c 1 ε∥∇u∥ 2 L 2 (Bε) + cε∥f ∥ L 2 (Bε) ∥∇u∥ L 2 (Bε) ⩽ ν 2 ∥∇u∥ 2 L 2 (Bε) + cε 2 ∥f ∥ 2 L 2 (Bε) .
Then

1 2ε β d dt ∥u( • , t)∥ 2 L 2 (Bε) + ν 2 ∥∇u( • , t)∥ 2 L 2 (Bε) ⩽ cε 2 ∥f ∥ 2 L 2 (Bε) ≡ cε 2 A 1 (t) (4.9)
and, hence, multiplying this relation by 2ε β and using the Poincaré-Friedrich's inequality, we get

d dt ∥u( • , t)∥ 2 L 2 (Bε) + c * ε β-2 ∥u( • , t)∥ 2 L 2 (Bε) ⩽ c 2 ε β+2 A 1 (t).
Multiplying this inequality with omitted second term in the left-hand side by e c * ε β-2 t and integrating over t we obtain

∥u( • , 2π)∥ 2 L 2 (Bε) ⩽ ∥u( • , 0)∥ 2 L 2 (Bε) • e -c * 2πε β-2 + c 2 ε β+2 2π 0 A 1 (t) • e c * ε β-2 (t-2π) dt ⩽ ∥u( • , 0)∥ 2 L 2 (Bε) • e -c * 2πε β-2 + c 2 ε β+2 2π 0 A 1 (t) dt. (4.10) 
Consider Galerkin approximations of the solution to problem (4.5) defined by the following system of ordinary differential equations

Bε 1 ε β u (N ) t • ψ l + ν∇u (N ) : ∇ψ l -(u (N ) +g)•∇ ψ l • u (N ) -(u (N ) •∇)ψ l • g dx = Bε f • ψ l dx, (4.11) 
where l = 1, . . . , N,

u (N ) (x, t) = N k=1 γ (N ) k (t)ψ k (x), and {ψ k } ∞ k=1 is a basis in the space H(B ε ).
From estimate (4.10), which remains valid for Galerkin approximations, it follows that for every N , the map M :

u (N ) (0) → u (N ) (2π) brings the ball in L 2 (B ε ) of radius r 0 = c 2 ε β+2 1 -e -c * 2πε β-2 2π 0 A 1 (t) dt into itself.
The operator M is continuous (see [START_REF] Prouse | Soluzioni periodiche dell'equazione di Navier-Stokes[END_REF]). By Brouwer's fixed-point theorem there exist a fixed point of the map M . This insure the existence of a 2π-periodic solution to the Galerkin approximations (4.11) for each fixed N . Now we derive a set of a priori estimates for Galerkin approximations u (N ) . Integrate (4.9) with respect to t. Using the periodicity condition

u (N ) (x, 0) = u (N ) (x, 2π), we obtain 2π 0 Bε |∇u (N ) (x, t)| 2 dx dt ⩽ cε 2 2π 0 A 1 (t) dt. ( 4.12) 
Because of the Poincaré-Friedrich's inequality and the mean value theorem for Lebesgue integrals there exist a point t * ∈ [0, 2π] such that 

1 ε 2 c ∥u (N ) ( • , t * )∥ 2 L 2 (Bε) ⩽ ∥∇u (N ) ( • , t * )∥ 2 L 2 (Bε) ⩽ 1 2π 2π 0 Bε |∇u (N ) (x, t)| 2 dx dt ⩽ cε 2 2π 0 A 1 (t) dt. ( 4 
∥u (N ) ( • , t)∥ 2 L 2 (Bε) ⩽ cε 2+β 2π 0 A 1 (t) dt. ( 4 
1 ε β N k=1 u (N ) t • ψ l λ k γ (N ) k -ν N k=1 ∆u (N ) • ψ l λ k γ (N ) k - N k=1 ((u (N ) + g) • ∇)λ k γ (N ) k ψ l • u (N ) - N k=1 (u (N ) • ∇)λ k γ (N ) k ψ l • g dx = Bε N k=1 f • ψ l λ k γ (N ) k dx, l = 1, . . . , N.
Using the properties of the Stokes operator (see Chapter 2), and omitting the subscript N (below u means u (N ) ), we rewrite the last equality as

Bε 1 ε β u t • ∆u -ν∆u • ∆u + (u + g) • ∇ u • ∆u + (u • ∇)g • ∆u dx = Bε f • ∆u dx.

This is equivalent to

ν 2ε β d dt Bε |∇u| 2 dx + Bε | ∆u| 2 dx = - Bε ((u + g) • ∇)u • ∆u dx - Bε (u • ∇)g • ∆u dx + Bε f • ∆u dx = 3 i=1 J i . (4.15)
Let us estimate the right hand side of (4.15). Using the inequality (2.5), we obtain

|J 3 | ⩽ δ Bε | ∆u| 2 dx + c δ A 1 (t), (4.16 
)

|J 2 | ⩽ ∥u∥ L 4 (Bε) ∥∇g∥ L 4 (Bε) ∥ ∆u∥ L 2 (Bε) ⩽ cε 1 2 ∥∇u∥ L 2 (Bε) ∥∇g∥ L 4 (Bε) ∥ ∆u∥ L 2 (Bε) ⩽ c δ ε∥∇u∥ 2 L 2 (Bε) ∥∇g∥ 2 L 4 (Bε) + δ∥ ∆u∥ 2 L 2 (Bε)
. By (2.7) and (4.4),

∥∇g∥ 2 L 4 (Bε) ⩽ cε -1 ∥∇g∥ L 2 (Bε) ∥∇g∥ 2 L 2 (Bε) + ε 2 ∥∇ 2 g∥ 2 L 2 (Bε) 1/2 ⩽ cε -2 .
Therefore,

|J 2 | ⩽ c δ ε -1 ∥∇u∥ 2 L 2 (Bε) + δ∥ ∆u∥ 2 L 2 (Bε) . (4.17)
Further, by (4.4),

Bε (g • ∇)u • ∆u dx ⩽ ∥g∥ L ∞ (Bε) ∥∇u∥ L 2 (Bε) ∥ ∆u∥ L 2 (Bε) ⩽ c δ ∥∇u∥ 2 L 2 (Bε) + δ∥ ∆u∥ 2 L 2 (Bε) . (4.18)
Finally, applying (2.2) and (2.7), we get 

Bε (u • ∇)u • ∆u dx ⩽ ∥u∥ L 4 (Bε) ∥∇u∥ L 4 (Bε) ∥ ∆u∥ L 2 (Bε) ⩽ c δ ε -1 ∥u∥ L 2 (Bε) ∥∇u∥ 2 L 2 (Bε) ∥∇u∥ 2 L 2 (Bε) + ε 2 ∥∇ 2 u∥ 2 L 2 (Bε) 1 2 + δ 2 ∥ ∆u∥ 2 L 2 (Bε) ⩽ c δ ε -1 ∥u∥ L 2 (Bε) ∥∇u∥ 3 L 2 (Bε) +c δ ∥u∥ L 2 (Bε) ∥∇u∥ 2 L 2 (Bε) ∥∇ 2 u∥ L 2 (Bε) + δ 2 ∥ ∆u∥ 2 L 2 (Bε) ⩽ c δ (1 + ∥u∥ 2 L 2 (Bε) )∥∇u∥ 4 L 2 (Bε) + δ∥ ∆u∥ 2 L 2 (Bε) (4.14) ⩽ c δ 1 + ε 2+β 2π 0 A 1 (t)
ν ε β d dt Bε |∇u| 2 dx + Bε | ∆u| 2 dx ⩽ C 1 1 + ε 2+β 2π 0 A 1 (t) dt ∥∇u∥ 4 L 2 (Bε) +C 3 1 + ε -1 ∥∇u∥ 2 L 2 (Bε) + C 2 A 1 (t). (4.20) Denote Y (t) = Bε |∇u(x, t)| 2 dx, d 1 = C 1 1 + ε 2+β
Y ′ (t) ⩽ ε β ν d 1 ∥∇u∥ 2 L 2 (Bε) Y (t) + C 3 ε β ν (1 + ε -1 )∥∇u∥ 2 L 2 (Bε) + ε β ν C 2 A 1 (t).
Hence,

Y (t)e -ε β ν t 0 d 1 ∥∇u(•,τ )∥ 2 L 2 (Bε) dτ ′ ⩽ C 4 ε β (1 + ε -1 )∥∇u∥ 2 L 2 (Bε) + A 1 (t) e -ε β ν t 0 d 1 ∥∇u(•,τ )∥ 2 L 2 (Bε) dτ ⩽ C 4 ε β (1 + ε -1 )∥∇u∥ 2 L 2 (Bε) + A 1 (t) .
Integrating the last inequality and using (4.12) and (4.13) with t * = 0, we obtain 

Y (t) ⩽ cY (0) + cε β 2π 0 A 1 (s) ds ⩽ c(ε 2 +ε β ) 2π 0 A 1 (t) dt ⩽ cε β 2π 0 A 1 (t) dt.
∥∇u (N ) ( • , t)∥ 2 L 2 (Bε) ⩽ cε β 2π 0 A 1 (t) dt. (4.22) 
Substituting (4.22) into (4.20) and integrating by t from 0 to 2π imply 

2π 0 Bε | ∆u (N ) | 2 dx dt ⩽ c 2π 0 A 1 (t) dt +cε β 1 + ε 2+β 2π 0 A 1 (t) dt 2π 0 A 1 (t) dt 2π 0 ∥∇u (N ) ∥ 2 L 2 (Bε) dt +c(1 + ε -1 ) 2π 0 ∥∇u (N ) ∥ 2 L 2 (Bε) dt ⩽ C 2π 0 A 1 (t) dt.
|u t | 2 dx + ν 2 d dt Bε |∇u| 2 dx = - Bε (u + g) • ∇ u • u t dx - Bε (u • ∇)g • u t dx + Bε f • u t dx ⩽ ∥u∥ L ∞ (Bε) + ∥g∥ L ∞ (Bε) ∥∇u∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) +∥u∥ L ∞ (Bε) ∥∇g∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) + ∥f ∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) ⩽ δ∥u t ∥ 2 + c δ ∥u∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) + c δ ∥g∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) +c δ ∥u∥ 2 L ∞ (Bε) ∥∇g∥ 2 L 2 (Bε) + c δ A 1 (t).
Taking sufficiently small δ and integrating over [0, 2π], we obtain the inequality for u 2 from the one for u 1 , we obtain for the difference w = u 1 -u 2 the following identity

1 ε β - 1 2 2π 0 Bε |u t | 2 dx dt ⩽ c 2π 0 A 1 (t) dt + c 2π 0 ∥u∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) dt +c 2π 0 ∥g∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) dt + c 2π 0 ∥∇g∥ 2 L 2 (Bε) ∥u∥ 2 L ∞ (Bε) dt (2.30) ⩽ c 2π 0 A 1 (t) dt + cε sup t∈[0,2π] ∥∇u∥ 2 L 2 (Bε) 2π 0 ∥∇ 2 u∥ 2 L 2 (Bε) dt +c sup t∈[0,2π] ∥g∥ 2 L ∞ (Bε) 2π 0 ∥∇u∥ 2 L 2 (Bε) dt +cε sup t∈[0,2π] ∥∇g∥ 2 L 2 (Bε) 2π 0 ∥∇ 2 u∥ 2 L 2 (Bε) dt (2.28) ⩽ c 2π 0 A 1 (t) dt + cε sup t∈[0,2π] ∥∇u∥ 2 L 2 (Bε) 2π 0 ∥ ∆u∥ 2 L 2 (Bε) dt +c sup t∈[0,2π] ∥g∥ 2 L ∞ (Bε) 2π 0 ∥∇u∥ 2 L 2 (Bε) dt +cε sup t∈[0,2π] ∥∇g∥ 2 L 2 (Bε) 2π 0 ∥ ∆u∥ 2 L 2 (Bε) dt
Bε 1 ε β w t • η + ν∇w : ∇η -(u 1 • ∇)η • w -(w • ∇)η • u 2 -(g • ∇)η • w -(w • ∇)η • g dx = 0, for every divergence free vector-field η ∈ W 1,2 (B ε ). Taking η = w we obtain 1 2ε β d dt Bε |w| 2 dx + ν Bε |∇w| 2 dx = Bε (w • ∇)w • u 2 dx + Bε (w • ∇)w • g dx ⩽ ∥w∥ L 4 (Bε) ∥∇w∥ L 2 (Bε) ∥u 2 ∥ L 4 (Bε) + ∥g∥ L 4 (Bε) (2.7),(2.1) ⩽ cε∥∇w∥ 2 L 2 (Bε) ∥∇u 2 ∥ L 2 (Bε) + ∥∇g∥ L 2 (Bε) .
Integrating the last inequality with respect to t we derive

ν 2π 0 Bε |∇w| 2 dx dt ⩽ cε sup t∈[0,2π] ∥∇u 2 ∥ L 2 (Bε) + sup t∈[0,2π] ∥∇g∥ L 2 (Bε) 2π 0 ∥∇w∥ 2 L 2 (Bε) dt (4.4),(4.8) ⩽ cε ε β 2π 0 A 1 (t) dt 1/2 + ε -1/2 2π 0 ∥∇w∥ 2 L 2 (Bε) dt.
For sufficiently small ε (i.e., if cε ε

β 2π 0 A 1 (t) dt 1/2 + ε -1/2 < ν) this implies 2π 0 Bε |∇w| 2 dx dt = 0,
and, hence, u 1 = u 2 .

Three-dimensional case

In this subsection we prove the existence of the unique weak solution of problem (4.5) when n = 3.

Theorem 4.2.3. Let B ε ⊂ R 3 , ∂B ε ∈ C 2 . Suppose that the extended function g belongs to C [ J+1 2 ]+1 (0, 2π; W 2,2 (B ε )
) and satisfies the conditions (4.2), (4.3), (4.4), f ∈ L 2 per (0, 2π; L 2 (B ε )) and ∥f ∥ L 2 (Bε) ⩽ c 0 , the constant c 0 is sufficiently small and independent of ε. Then for sufficiently small ε there exists a solution to the variational problem (4.5).

The following estimate

sup t∈[0,2π] ∥u( • , t)∥ 2 L 2 (Bε) + ε β 2π 0 ∥∇u( • , t)∥ 2 L 2 (Bε) dt ⩽ cε 2+β 2π 0 A 1 (t) dt, (4.25) 
holds. If the constant c 0 is sufficiently small (independently of ε) in the case β = 0 or if β = 2, then there also holds the estimate

sup t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |u t (x, t)| 2 dx dt +ε β 2π 0 ∥∇ 2 u( • , t)∥ 2 L 2 (Bε) dt ⩽ cε β 2π 0 A 1 (t) dt. (4.26)
Proof. As in Theorem 4.2.1, we use Galerkin approximations. First, applying the inequality (2.3) instead of (2.2), we prove, exactly in the same way as before, the existence of Galerkin approximations and the following estimate for them 

1 ε β sup t∈[0, 2π] ∥u (N ) ( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |∇u (N ) (x, t)| 2 dx dt ⩽ cε 2 2π 0 A 1 (t) dt.
ν 2ε β d dt Bε |∇u| 2 dx + Bε | ∆u| 2 dx = - Bε ((u + g) • ∇)u • ∆u dx - Bε (u • ∇)g • ∆u dx + Bε f • ∆u dx = 3 i=1 J i . (4.28)
Let us estimate the right hand side of (4.28). Using (2.1), (2.4)-(2.10), (2.29) and (4.4) for n = 3, we obtain

|J 3 | ⩽ δ Bε | ∆u| 2 dx + c δ A 1 (t), (4.29 
)

|J 2 | = Bε (u • ∇)g • ∆u dx ⩽ ∥u∥ L ∞ (Bε) ∥∇g∥ L 2 (Bε) ∥ ∆u∥ L 2 (Bε) (2.29) ⩽ c ε 1 4 ∥ ∆u∥ 2 L 2 (Bε) , (4.30) 
|J 11 | = Bε (g • ∇)u • ∆u dx ⩽ ∥g∥ L ∞ (Bε) ∥∇u∥ L 2 (Bε) ∥ ∆u∥ L 2 (Bε) (2.9) ⩽ cε∥g∥ L ∞ (Bε) ∥∇ 2 u∥ L 2 (Bε) ∥ ∆u∥ L 2 (Bε) (2.28) ⩽ cε∥ ∆u∥ 2 L 2 (Bε) , (4.31) 
|J 12 | = Bε (u • ∇)u • ∆u dx ⩽ c δ ∥u∥ 2 L 6 (Bε) ∥∇u∥ 2 L 3 (Bε) +δ Bε | ∆u| 2 dx (2.4),(2.10) ⩽ δ Bε | ∆u| 2 dx +c δ ∥∇u∥ 2 L 2 (Bε) ε -1 ∥∇u∥ L 2 (Bε) ∥∇u∥ 2 L 2 (Bε) + ε 2 ∥∇ 2 u∥ 2 L 2 (Bε) 1 2 
(2.9)

⩽ δ Bε | ∆u| 2 dx + c δ ε -1 ∥∇u∥ 3 L 2 (Bε) cε 2 ∥∇ 2 u∥ 2 L 2 (Bε) +ε 2 ∥∇ 2 u∥ 2 L 2 (Bε) 1 2 
(2.29) 

⩽ δ Bε | ∆u| 2 dx + c δ ∥∇u∥ 3 L 2 (Bε) ∥ ∆u∥ L 2 (Bε) ⩽ 2δ Bε | ∆u| 2 dx + c δ ∥∇u∥ 6 L 2 (Bε) . ( 4 
|∇u| 2 dx + 3 4 -C 1 ε 1/4 Bε | ∆u| 2 dx ⩽ C 2 ∥∇u∥ 6 L 2 (Bε) + C 3 A 1 (t). (4.33) If ε is sufficiently small ε 1 4 ⩽ 1 4C 1 , then 3 4 -C 1 ε 1 4 ⩾ 1 2 ,
and (4.33) yields

ν 2ε β d dt Bε |∇u| 2 dx + 1 2 Bε | ∆u| 2 dx ⩽ C 2 ∥∇u∥ 6 L 2 (Bε) + C 3 A 1 (t). (4.34) Denoting z(t) = Bε |∇u| 2 dx, we rewrite (4.34) as z ′ (t) ⩽ 2ε β ν C 2 z(t) 3 + 2ε β ν C 3 A 1 (t) ⩽ (1+z(t) 2 ) 2ε β ν C 2 z(t)+ 2ε β ν C 3 A 1 (t) ,
or, equivalently,

z ′ (t) 1 + z(t) 2 ⩽ 2ε β ν C 2 z(t) + 2ε β ν C 3 A 1 (t). (4.35) 
Integrating (4.35) by t and using (4.27), we obtain

arctan z(t) ⩽ arctan z(0) + 2ε β ν C 2 2π 0 z(t) dt + 2ε β ν C 3 2π 0 A 1 (t) dt ⩽ arctan C 4 ε 2 2π 0 A 1 (t) dt + C 5 ε β+2 + 2ε β ν C 3 2π 0 A 1 (t) dt. (4.36)
Here, as in previous subsection, we assume that t * = 0. For sufficiently small ε in the case β = 2 or ∥f ∥ L 2 (Bε) ⩽ c 0 where c 0 is a sufficiently small constant in the case β = 0, the following inequalities

C 5 ε 2+β + 2ε β ν C 3 2π 0 A 1 (t) dt < π 6 , C 4 ε 2 2π 0 A 1 (t) dt + tan C 5 ε 2+β + 2ε β ν C 3 2π 0 A 1 (t) dt < 1 2
hold. Then (4.36) gives Integrating (4.39) over [0, 2π], using the periodicity condition, (4.4) and the inequalities (2.29), (4.38), for sufficiently small δ we derive 

z(t) = Bε |∇u| 2 dx ⩽ C 6 ε 2 2π 0 A 1 (t) dt + tan C 5 ε 2+β + 2ε β ν C 3 2π 0 A 1 (t) dt ⩽ cε β 2π 0 A 1 (t) dt, i.e., sup t∈[0,2π] ∥∇u (N ) ( • , t)∥ 2 L 2 (Bε) ⩽ cε β 2π 0 A 1 (t) dt. ( 4 
∥∇ 2 u (N ) ( • , t)∥ 2 L 2 (Bε) dt (2.28) ⩽ c 2π 0 ∥ ∆u (N ) (•, t)∥ 2 L 2 (Bε) dt ⩽ c ε 3β   2π 0 A 1 (t) dt   3 + 2π 0 A 1 (t) dt ⩽ c
|u t | 2 dx + ν 2 d dt Bε |∇u| 2 dx = - Bε ((u + g) • ∇)u • u t dx - Bε (u • ∇)g • u t dx + Bε f • u t dx ⩽ ∥u∥ L ∞ (Bε) ∥∇u∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) +∥g∥ L ∞ (Bε) ∥∇u∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) +∥u∥ L ∞ (Bε) ∥∇g∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) + ∥f ∥ L 2 (Bε) ∥u t ∥ L 2 (Bε) ⩽ 4δ∥u t ∥ 2 L 2 (Bε) + c δ ∥u∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) +c δ ∥g∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) + c δ ∥u∥ 2 L ∞ (Bε) ∥∇g∥ 2 L 2 (Bε) + c δ A 1 (t).
1 ε β - 1 2 2π 0 Bε |u t | 2 dx dt ⩽ c 2π 0 ∥u∥ 2 L ∞ (Bε) ∥∇u∥ 2 L 2 (Bε) dt +c sup t∈[0,2π] ∥g( • , t)∥ 2 L ∞ (Bε) 2π 0 ∥∇u∥ 2 L 2 (Bε) dt +c sup t∈[0,2π] ∥∇g( • , t)∥ 2 L 2 (Bε) 2π 0 ∥u∥ 2 L ∞ (Bε) dt + c 2π 0 A 1 (t) dt (2.29),(4.4) ⩽ cε 1/2 2π 0 ∥∇ 2 u∥ 2 L 2 (Bε) ∥∇u∥ 2 L 2 (Bε) dt + c 2π 0 ∥∇u∥ 2 L 2 (Bε) dt +cε 1/2 2π 0 ∥∇ 2 u∥ 2 L 2 (Bε) dt + c 2π 0 A 1 (t) dt ⩽ ⩽ cε 1/2 sup t∈[0,2π] ∥∇u∥ 2 L 2 (Bε) 2π 0 ∥∇ 2 u∥ 2 L 2 (Bε) dt + c 2π 0 ∥∇u∥ 2 L 2 (Bε) dt +cε 1/2 2π 0 ∥∇ 2 u∥ 2 L 2 (Bε) dt + c 2π 0 A 1 (t) dt ⩽ c 2π 0 A 1 (t) dt. ( 4 

Asymptotic expansion

Let us describe the procedure of constructing an asymptotic expansion of the solution to problem (4.1) in the case β = 2. The case β = 0 is completely similar to the asymptotic expansion constructed in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case[END_REF] with only one difference that all functions depending on time are 2π-periodic (instead of being equal to zero in some neighbourhood of t = 0). First, we solve the time-periodic problem on the graph and find the macroscopic pressure as a periodic in time function linear on every edge with respect to the longitudinal variable x (e) n . At the nodes, it satisfies the Kirchhoff-type junction conditions. This problem on the graph is the time-periodic analogue of the problem considered in [START_REF] Panasenko | Flows in tube structures: Equation on the graph[END_REF]. In this context the asymptotic expansion of the velocity is constructed in the form

It defines in every cylinder Π

v (J) (x, t) = M i=1 ζ
x The asymptotic expansion of the pressure has the similar form:

(e i ) n 3rε ζ |e i | -x (e i ) n 3rε J j=0 ε j V (e i ) j (y (e i ) ′ , t) + N l=1 1 -ζ |x -O l | |e| min J j=-1 ε j V [BLO l ] j (y, t),
p (J) (x, t)= M i=1 ζ x (e i ) n 3rε ζ |e i | -x (e i ) n 3rε J j=0 ε j-2 -s (e i ) j (t)x (e i ) n + a (e i ) j (t) + N l=1 1 -ζ |x -O l | |e| min J j=-1 ε j-1 P [BLO l ] j (y, t). (4.42)
The asymptotic solution is constructed by induction with respect to j. At the base (initial) step j = 0, we consider the following problem on the graph: find a function p 0 ∈ L 2 per (0, 2π; W 1,2 (B)) such that equations 

                     - ∂ ∂x (e) n L (e
     ∂V ∂t (y (e) ′ , t) -ν∆ ′ y (e) ′ V(y (e) ′ , t) = S(t), y (e) ′ ∈ σ (e) , t > 0, V(y (e) ′ , t)| ∂σ (e) = 0, V(y (e) ′ , t) = V(y (e) ′ , t + 2π)
and denote

L (e) S(t) = σ (e)
V(y (e) ′ , t) dy (e) ′ = H(t).

L (e) is bounded linear operator acting from L 2 per (0, 2π) to W 1,2 per (0, 2π) (see [START_REF] Beirão | Time-periodic solutions of the Navier-Stokes equations in unbounded cylindrical domains -Leray's problem for periodic flows[END_REF], [START_REF] Galdi | Hemodynamical Flows: Modeling, Analysis and Simulation[END_REF]). Denote MS = V. The existence of a solution to problem For every edge e i define the Poiseuille type velocity V (e i ) 0 (y (e i ) ′ , t) as a vector such that in the local coordinates its last (i.e. normal) component is Ms (e) 0 , while the tangential components are equal to zero. Next, we find the boundary layer correctors (V

[BLO l ] 0 , P [BLO l ] 0
) as solutions of the periodic in time Stokes equations in the dilated domain: union of semi-infinite cylinders having the common node O l , and the corresponding ω l . Namely, let O l be a node which is the common end of edges e i 1 , . . . , e im of the bundle B l . Define the semi-infinite cylinders

Π + l,js = {y ∈ R n : P (e is ) y ∈ σ is × (0, +∞)}
and the domain Ω l with m outlets to infinity corresponding to the node

O l : Ω l = m s=1 Π + l,js ω l .
We introduce the boundary layer pressure of the rank -1 as

P [BLO l ] -1 (y, t) = - e:O l ∈e ζ y (e) n 3r -1 p 0 (O l , t).
Here p 0 is a continuous function on B without jumps at the nodes, so that p 0 (O l , t) is well defined. The boundary layer velocity of rank -1 is equal to zero:

V [BLO l ] -1
(y, t) = 0.

The boundary layer terms (V

[BLO l ] 0 , P [BLO l ] 0
) are defined as a solution of the periodic in time Stokes problem in the unbounded domain Ω l : 

                                       ∂ ∂t V [BLO l ] 0 -ν∆ y V [BLO l ] 0 + ∇ y P [BLO l ] 0 = e:O l ∈e ζ y (e) n 3r ∂ ∂t V (e) 0 (
| ∂Ω l = 0, V [BLO l ] 0 (y, t) = V [BLO l ] 0 (y, t + 2π),
where the local coordinates have the origin at O l and â(e) 1 (t) is an unknown function. This problem is decomposed to two independent ones: first we solve it without the term containing â(e) 1 (t) in the right-hand side for (V 

[BLO l ] 0 , P [BLO l ] 0 ):                                        ∂ ∂t V [BLO l ] 0 -ν∆ y V [BLO l ] 0 + ∇ y P [BLO l ] 0 = e:
| ∂Ω l = 0, V [BLO l ] 0 (y, t) = V [BLO l ] 0 (y, t + 2π),
and find a solution

V [BLO l ] 0
which tends to zero as |y| → ∞, while P [BLO l ] 0 at each outlet Π + l,j tends to a constant âl,j (t), except for an outlet corresponding to a selected edge e s where it tends to zero (this is possible because the pressure is defined up to an additive constant).

Then we solve the following problem on the graph: find a function

p (e) 1 ∈ L 2 per (0, 2π; W 1,2 (e)) such that equations                                - ∂ ∂x (e) n
L (e) ∂p Analogously, if O l is a vertex, the end of the edge e i , then we define the domain Ω l , corresponding to this vertex, as

Ω l = {y ∈ R n : P (e i ) y ∈ σ i × (0, +∞)} ∪ ω l ,
and the boundary layer problem has the form: 

                                             ∂ ∂t V [BLO l ] 0 -ν∆ y V [BLO l ] 0 + ∇ y P [BLO l ] 0 = ζ y (e
div y V [BLO l ] 0 = - ∂ ∂y (e) n ζ y (e) n 3r V (e) 0,n (y (e) ′ , t), y ∈ Ω l , V [BLO l ] 0 | ∂Ω l \γ l = 0, V [BLO l ] 0 | γ l = g l (y, t), V [BLO l ] 0 (y, t) = V [BLO l ] 0 (y, t + 2π).
Because of condition (4.43) 3 , we have

Ω l ∂ ∂y (e) n ζ y (e) n 3r V (e) 0,n (y (e) ′ , t) dy + γ l g l • n dS = 0.
This compatibility condition ensures the existence of a unique solution

V [BLO l ] 0 , P [BLO l ] 0
which exponentially tends to zero at infinity (see [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF][START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case[END_REF], [START_REF] Pileckas | On the nonstationary linearized Navier-Stokes problem in domains with cylindrical outlets to infinity[END_REF], [START_REF] Pileckas | The Navier-Stokes system in domains with cylindrical outlets to infinity. Leray's problem[END_REF]).

Suppose that all terms of asymptotic expansion corresponding to the rank less or equal j -1 are known and the pressure on the graph p j is known as well. Describe the passage from rank j -1 to the rank j.

Step 1. As pressure on the graph p j is known, define for every edge e functions s j (y (e) ′ , t) as a vector field such that in the local coordinates its last (i.e. normal) component is M(s (e) j ), while the tangential components are equal to zero.

Step 2. The boundary layer solution is a 2π-periodic in time pair (V 

[BLO l ] j , P [BLO l ] j ) satisfying the problem              ∂V [BLO l ] j ∂t -ν∆ y V [BLO l ] j + ∇ y P [BLO l ] j = f [REGO l ] j (y (e) ′ , t) + f [BLO l ] j (y, t), div y V [BLO l ] j = h [REGO l ] j (y (e) ′ , t), y ∈ Ω l V [BLO l ] j (y, t)| ∂Ω l = 0, V [BLO l ] j (y, t) = V [BLO l ] j (y,
f [BLO l ] j (y, t) = e:O l ∈e - j-1 k=0 (V [BLO l ] k (y, t) • ∇ y ) × ζ y (e) n 3r V (e) j-k-1 (y (e) ′ , t) - j-1 k=0 (V [BLO l ] k (y, t) • ∇ y ) × V [BLO l ] j-k-1 (y, t) -ζ y (e) n 3r j-1 k=0 (V (e) k (y (e) ′ , t) • ∇ y ) × V [BLO l ] j-k-1 (y, t) ,
where l = 1, . . . , N, j = -1, . . . , J.

This problem is solved in two steps: by the first step we find the couple (V

[BLO l ] j , P [BLO l ] j
) which is the solution of the same problem without the last term in the definition of f

[REGO l ] j
. It has a unique (up to an additive constant in the pressure) solution V

[BLO l ] j ( • , t) ∈ W 1,2 (Ω l ), P [BLO l ] j ( • , t) ∈ L 2 loc (Ω l ) (t

is a parameter) if and only if

Ω l h [REGO l ] j (y, t) dy = 0, l = 1, ..., N 1 .
This condition can be written as stabilizes in outlets at infinity to some constants â(e) l,j (t); these constants may be different for different outlets. Since the pressure function is defined up to an additive constant, we can fix the limit constant equal to zero for the outlet corresponding the selected edge e s . Define φ (e) l,j+1 (t) = â(e) l,j (t). Similarly, in every vertex O l , l = N 1 + 1, . . . , N , we get for the pair (V

[BLO l ] j , P [BLO l ] j
) the Stokes problem in Ω l which is the same as in the case of nodes O l with only one difference: there is no summing over e : O i ∈ e in the right-hand sides of the equations.

Step 3. Solve the problem on the graph for the function p (e) j+1 , (j < J):

                                 - ∂ ∂x (e) n
L (e) ∂p The local coordinates x (e) are defined so that all of them have the same origin O l .

Step 4. Finally we find the pressure P For j = J the last sum is absent. The last step finalizes the passage from j to j + 1.

Residual

Consider the asymptotic expansion (v (J) , p (J) ) of order J in the case β = 2 (see (4.41), (4.42)). By construction,

v (J) ∈ L 2 per (0, 2π; W 2,2 (B ε )) ∩ L ∞ per (0, 2π; W 1,2 (B ε )), ∂v (J) ∂t ∈ L 2 per (0, 2π; W 1,2 (B ε )) ∩ L ∞ per (0, 2π; L 2 (B ε )), ∇p (J) ∈ L 2 per (0, 2π; L 2 (B ε )). (4.45) Put L(v, p) = 1 ε 2 v t -ν∆v+(v•∇)v+∇p. Let us calculate L(v (J) , p (J)
). We obtain

L(v (J) , p (J) ) = f (J) (x, t) = = N l=1 2J j=J+1 ε j-2 k,p:k+p=j-1 0⩽k,p⩽J e:O l ∈e V (e) k ζ y (e) n 3r • ∇ y V (e) p ζ y (e) n 3r +ζ y (e) n 3r V (e) k (y (e) ′ , t) • ∇ y V [BLO l ] p (y, t) + V [BLO l ] k (y, t) • ∇ y ζ y (e) n 3r
V (e) p (y (e) ′ , t)

+ V [BLO l ] k (y, t) • ∇ y V [BLO l ] p (y, t) + ε J-2 e:O l ∈e a (e) J+1 ∇ y ζ y (e) n 3r - N l=1 L ζ |x -O l | |e| min V [BLO l ] J (y, t), ζ |x -O l | |e| min P [BLO l ] J (y, t) χ(x) .
Here

y = x -O l ε , y (e) = x (n) ε , χ = χ supp(1-ζ( |x-O l | |e| min )) is the characteristic function of the set supp 1 -ζ |x -O l | |e| min .
From the obtained formulas it follows that

∥f (J) ∥ L 2 per (0,2π;L 2 (Bε)) = ∥L(v (J) , p (J) )∥ L 2 per (0,2π;L 2 (Bε)) = O(ε J-2 ), ∥f (J) t ∥ L 2 per (0,2π;L 2 (Bε)) = O(ε J-2 ). (4.46)
Let us calculate the divergence of v (J) . We have

div v (J) = - N l=1 ∇ζ |x -O l | |e| min • V [BLO l ] J (y, t) = h (J) (y, t), ( 4.47) 
where h (J) ∈ L 2 per (0, 2π; W 

(J) ∥ L 2 per (0,2π;W 1,2 (Bε)) = O(e -c 1 /ε ), ∥h (J) t ∥ L 2 per (0,2π;L 2 (Bε)) = O(e -c 1 /ε ). (4.48)
The boundary conditions and the periodicity conditions are satisfied exactly. It is easy to see that Bε h (J) (y, t) dy = 0.

Therefore, by Lemma 3.7 [see [START_REF] Panasenko | Divergence equation in thin-tube structure[END_REF]], there exists a vector field w (J) ∈

L 2 per (0, 2π; W 2,2 (B ε ) ∩ W 1,2 (B ε )) with w (J) t ∈ L 2 per (0, 2π; W 1,2 (B ε )) ∩ L ∞ per (0, 2π; L 2 (B ε )) such that div w (J) = -h (J)
. Moreover, there hold the estimates

∥w (J) ∥ L 2 (0,2π;W 2,2 (Bε)) ⩽ ε -3 c∥h (J) ∥ L 2 (0,2π;W 1,2 (Bε)) , (4.49) ∥w (J) t ∥ L 2 (0,2π;W 1,2 (Bε)) ⩽ ε -1 c∥h (J) t ∥ L 2 (0,2π;L 2 (Bε)) . (4.50)
Set u (J) = v (J) +w (J) . Then div u (J) = 0, u (J) satisfies the periodicity conditions and because of (4.46), (4.48) we have

∥f (J) 1 ∥ L 2 (0,2π;L 2 (Bε)) = O(ε J-2 ), (4.51) 
where f

(J) 1 = L(u (J) , p (J)
). If β = 0 then the residual has the same form as in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF].

Justification of the asymptotic

Consider the Navier-Stokes problem (4.1). As an extension of the boundary value g we take the asymptotic approximation u (J) constructed in the previous sections and let p (J) be the corresponding asymptotic approximation for the pressure p. By construction u (J) satisfies the conditions (4.4). Represent v, p as the sums v = u + u (J) , p = q + p (J) .

Then u, u (J) ∈ L 2 per (0, 2π; (J) is divergence free, satisfies the periodicity condition, the boundary condition u(x, t)| ∂Bε = 0 and the integral identity 

W 2,2 (B ε )), u t , u (J) t ∈ L 2 per (0, 2π; L 2 (B ε )). The difference u = v-u
Bε 1 ε β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) dx = Bε f (J) 1 • η dx
sup t∈[0, 2π] ∥u( • , t)∥ 2 L 2 (Bε) + ε β 2π 0 Bε |∇u| 2 dx dt ⩽ cε 2J-2+β , (4.53) sup t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |u t | 2 dx dt + ε β 2π 0 Bε |∇ 2 u| 2 dx dt ⩽ cε 2J-4+β , (4.54)
hold. Moreover, there exists the pressure function q ∈ L 2 per (0, 2π; 

L 2 (B ε )) such that Bε q(x, t) dx = 0 and Bε 1 ε β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) dx = Bε q div η dx + Bε f (J) 1 • η dx ∀η η η ∈ W 1,2 (B ε ). (4.55) If J ⩾ 2,
M (η) = Bε 1 ε β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) dx - Bε f (J) 1 • η dx (4.57)
defined on functions η ∈ W 1,2 (B ε ). There holds the estimate

|M (η)| ⩽ c ε 1-β ∥u t (•, t)∥ L 2 (Bε) + ∥∇u(•, t)∥ L 2 (Bε) + ∥u(•, t)∥ 2 L 4 (Bε) +∥u(•, t)∥ L 4 (Bε) ∥u (J) (•, t)∥ L 4 (Bε) + ε∥f (J) 1 (•, t)∥ L 2 (Bε) ∥∇η∥ L 2 (Bε) (2.3) ⩽ c ε 1-β ∥u t (•, t)∥ L 2 (Bε) + ∥∇u(•, t)∥ L 2 (Bε) +cε 1 2 ∥∇u(•, t)∥ L 2 (Bε) ∥∇u (J) (•, t)∥ L 2 (Bε) +cε 1 2 ∥∇u(•, t)∥ 2 L 2 (Bε) + ε∥f (J) 1 (•, t)∥ L 2 (Bε) ∥∇η∥ L 2 (Bε) . (4.58)
Thus, M (η) is a bounded linear functional (for almost all t ∈ [0, 2π]) defined on η ∈ W 1,2 (B ε ). Moreover, due to (4.52), M (η) = 0 for η with div η = 0. Therefore, there exists a function q( • , t) ∈ L 2 (B ε ), with Bε q(x, t) dx = 0, such that

M (η) = Bε q(x, t)div η(x) dx ∀η ∈ W 1,2 (B ε )
(see [START_REF] Ladyzhenskaya | Some problems of vector analysis and generalized formulations of boundary-value problems 121 for the Navier-Stokes equations[END_REF]). Since Bε q(x, t) dx = 0, there exists a function w ∈ W 1,2 (B ε ) such that div w = q in B ε and there holds the estimate

∥∇w( • , t)∥ L 2 (Bε) ⩽ c ε ∥q( • , t)∥ L 2 (Bε)
with the constant c independent of ε (see [START_REF] Panasenko | Divergence equation in thin-tube structure[END_REF]). Taking in (4.58) η = w, we get

∥q( • , t)∥ 2 L 2 (Bε) = M (w) ⩽ c ε 1-β ∥u t (•, t)∥ L 2 (Bε) + ∥∇u(•, t)∥ L 2 (Bε) +cε 1 2 ∥∇u(•, t)∥ L 2 (Bε) ∥∇u (J) (•, t)∥ L 2 (Bε) +cε 1 2 ∥∇u(•, t)∥ 2 L 2 (Bε) + ε∥f (J) 1 (•, t)∥ L 2 (Bε) ∥∇w∥ L 2 (Bε) ⩽ c ε ε 1-β ∥u t (•, t)∥ L 2 (Bε) + ∥∇u(•, t)∥ L 2 (Bε) +cε 1 2 ∥∇u(•, t)∥ L 2 (Bε) ∥∇u (J) (•, t)∥ L 2 (Bε) +cε 1 2 ∥∇u(•, t)∥ 2 L 2 (Bε) + ε∥f (J) 1 (•, t)∥ L 2 (Bε) ∥q(•, t)∥ L 2 (Bε) .
Therefore, 

2π 0 ∥q(•, t)∥ 2 L 2 (Bε) dt ⩽ c ε 2 2π 0 ε 2-2β ∥u t (•, t)∥ 2 L 2 (Bε) + ∥∇u(•, t)∥ 2 L 2 (Bε) dt +ε sup t∈[0,2π] ∥∇u(•, t)∥ 2 L 2 (Bε) 2π 0 ∥∇u(•, t)∥ 2 L 2 (Bε) dt +ε sup t∈[0,2π] ∥∇u (J) (•, t)∥ 2 L 2 (Bε) 2π 0 ∥∇u(•, t)∥ 2 L 2 (Bε) dt +ε 2 2π 0 ∥f (J) 1 (•, t)∥ 2 L 2 (Bε) dt
∥u( • , t)∥ 2 L 2 (Bε) + ε β 2π 0 Bε |∇u| 2 dx dt ⩽ cε 2J-2+β , (4.59) sup t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |u t | 2 dx dt + ε β 2π 0 Bε |∇ 2 u| 2 dx dt ⩽ cε 2J-4+β (4.60)
hold. Moreover, there exists the pressure function q ∈ L 2 per (0, 2π; L 2 (B ε )) satisfying the identity (4.55).

If J ⩾ 2, then 2π 0 Bε |q| 2 dx dt ⩽ cε 2J-4-β .
(4.61)

Let n = 3 or n = 2. In the case when the boundary value g is more regular, the obtained estimates can be improved. Assume that

g ∈C [ J+3 2 ]+1 ([0, 2π]; W 3/2,2 (σ)
). Then we can construct the asymptotic approximation u (J+2) and the estimate (4.53) takes the following form

sup t∈[0,2π] ∥v(•, t) -u (J+2) (•, t)∥ L 2 (Bε) + ε β/2 ∥∇v -∇u (J+2) ∥ L 2 (0,2π;L 2 (Bε)) ⩽ cε J+β/2+1 ⩽ cε J+β/2 mes(B ε ).
Comparing u (J) and u (J+2) we notice that sup

t∈[0,2π] ∥u (J) (•, t) -u (J+2) (•, t)∥ L 2 (Bε) + ε β/2 ∥∇u (J) -∇u (J+2) ∥ L 2 (0,2π;L 2 (Bε)) ⩽ cε J+β/2 mes(B ε ).
By the triangle inequality, we get

sup t∈[0,2π] ∥v(•, t) -u (J) (•, t)∥ L 2 (Bε) + ε β/2 ∥∇v -∇u (J) ∥ L 2 (0,2π;L 2 (Bε)) ⩽ cε J+β/2 mes(B ε ).
Analogously can be obtained the improvement of estimates (4.56), (4.61). 

∥v(•, t) -u (J) (•, t)∥ L 2 (Bε) + ε β/2 ∥∇v -∇u (J) ∥ L 2 (0,2π;L 2 (Bε)) ⩽ cε J+β/2 mes(B ε ), sup t∈[0,2π] ∥∇v(•, t) -∇u (J) (•, t)∥ 2 L 2 (Bε) + 2π 0 Bε |v t -u (J) t | 2 dx dt +ε β 2π 0 Bε |∇ 2 v -∇ 2 u (J) | 2 dx dt ⩽ cε 2J-2+β mes(B ε )
and and the constant C J will be chosen below.

∥p∥ L 2 (0,2π;L 2 (Bε)) ⩽ cε J-2-β/2 mes(B ε ).
Denote J ′ = J + 2. Consider the boundary layer functions

V [BLO l ,J ′ ]
and P [BLO l ,J ′ ] . It follows that these functions F [BLO l ,J ′ ] (F stands for V or P ) and their derivatives decay exponentially as the space variable tends to infinity in the outlets. Thus, there exist positive constants c 1 , c 2 such that for all t ∈ [0, 2π] and for sufficiently large R holds the inequality

∥F [BLO l ,J ′ ] (•, t)∥ W 2,2 (Ω R l ) + ∂F [BLO l ,J ′ ] (•, t) ∂t W 2,2 (Ω R l ) ⩽ c 1 exp(-c 2 R),
where

Ω R l = Ω l ∪ {|y| > R}. Therefore, if B l ε = {x ∈ B ε : |x-O l | ⩾ C J ε| ln ε||e| min /3}
, then making change of the variable y =

x -O l ε in the above inequality and taking

R = C J | ln ε||e| min /3, we get ∥F [BLO l ,J ′ ] (•, •)∥ L 2 (0,2π;W 2,2 (B l ε )) + ∂F [BLO l ,J ′ ] (•, •) ∂t L 2 (0,2π;W 2,2 (B l ε )) ⩽ c 1 exp{-c 2 C J | ln ε||e| min /3) = c 1 ε c 2 C J |e| min /3 . Choose C J such that c 2 C J |e| min /3 ⩾ J ′ = J + 2.
Then for F [BLO l ,J ′ ] and its derivatives this upper bound is equal to c 1 ε J+2 . So, for the difference

ζ |x -O l | |e| min F [BLO l ,J ′ ] x -O l ε , t -ζ |x -O l | δ F [BLO l ,J ′ ] x -O l ε , t the following estimate ζ |x -O l | |e| min F [BLO l ,J ′ ] (•, •) -ζ |x -O l | δ F [BLO l ,J ′ ] (•, •) L 2 (0,2π;W 2,2 (D)) ⩽ c 1 ε J+2 holds, where D = supp ζ |x -O l | |e| min -ζ |x -O l | δ . Notice that in D we have |x -O l | δ ⩾ 1 3
for sufficiently small ε. Because of this estimate for the approximation u (J+2) the residual ∥f

(J+2) 1 ∥ L 2 (0,2π;L 2 (Bε)) has the order O(ε J ). So, the difference u (J+2) -v is of order O(ε J mes(B ε ))
in the norm of Theorem 4.5.3. In this case we have assumed that

g ∈ C [ J+3 2 ]+1 (0, 2π; W 3/2,2 (σ)).

Method of asymptotic partial decomposition of the domain

The obtained asymptotic expansion of the solution to the timeperiodic non-steady Navier-Stokes problem can be applied to justify the method of asymptotic partial decomposition of the domain (MAPDD)

proposed for the steady case in [START_REF] Panasenko | Asymptotic expansion of the solution of Navier-Stokes equation in a tube structure[END_REF][START_REF] Panasenko | Partial asymptotic decomposition of domain: Navier-Stokes equation in tube structure[END_REF].

Let us describe the algorithm of the MAPDD for the non-steady Navier-Stokes problem set in a tube structure B ε . Let δ be a small positive number much greater than ε. For any edge e = O i O j of the graph introduce two hyperplanes orthogonal to this edge and crossing it at the distance δ from its ends. ε by these two hyperplanes respectively, by S i,j (the cross-section at the distance δ from O i ), and S j,i (the cross-section at the distance δ from O j ), and denote the part of the cylinder Π Introduce the space H 1 div=0 (B ε ) of all divergence free vector valued functions from the space W 1,2 (B ε ) vanishing for x ∈ ∂B ε \ (

O i O j e B dec,ε i,j S j,i S i,j δ δ
N j=N 1 +1 γ j ε ).
Define the subspace

H 1 div=0 (B ε , δ) of H 1 div=0 (B ε
) such that every truncated cylinder B dec,ε i,j its elements (vector-valued functions) coincide with the Womersley type flow. Here Womersley type flow is a vectorvalued function u W such that in local coordinates x (e) associated to the edge e, its "last" (longitudinal

) component u n,W (x (e) /ε) is independent of x (e)
n , i.e., u n,W = u n,W (x (e) ′ /ε) while all transversal components of the velocity are equal to zero. We will consider as well the subspace

H 1 0,div=0 (B ε , δ) of the space H 1 div=0 (B ε , δ
) such that its elements vanish on the whole boundary ∂B ε and the subspace L 2 (B ε , δ) of the space L 2 (B ε ) such that its elements (vector-valued functions) coincide the Womersley type flows on every truncated cylinder B dec,ε i,j . The method of asymptotic partial decomposition (MAPDD) replaces the problem (4.1) by its projection on H 1 div=0 (B ε , δ): find ûε,δ from L 2 per (0, 2π;

H 1 div=0 (B ε , δ)), such that ûε,δ -ĝ ∈ L 2 per (0, 2π; H 1 0,div=0 (B ε , δ)), (û ε,δ - ĝ) t ∈ L 2
per (0, 2π; H 1 0,div=0 (B ε , δ)), and for any test function η ∈ H 1 0,div=0 (B ε , δ) holds the integral identity 

Bε 1 ε β (û ε,δ ) t • η + ν∇û ε,δ : ∇η -((û ε,δ + ĝ) • ∇)η • ûε,δ -(û ε,δ • ∇)η • ĝ dx = 0.
∥v(•, t) -ûε,δ (•, t)∥ L 2 (Bε) + ε β/2 ∥∇(v -ûε,δ )∥ L 2 per (0,2π;L 2 (Bε)) ⩽ cε J+β/2 mes(B ε ).
The proof of this theorem may be done by using estimates (4.12) and (4.14), which remains valid for this problem. The Galerkin approximations are constructed in the space H 1 0,div=0 (B ε , δ) instead of H 1 div=0 (B ε ). For more details see [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]. 

                         -ν∆v + (v • ∇)v + ∇p = f , x ∈ B ε , div v = 0, x ∈ B ε , v = 0, x ∈ ∂B ε \ ∪ N j=N 1 +1 γ j ε , v τ = 0, x ∈ γ j ε , -ν∂ n (v • n) + p + 1 2 |v| 2 = c j /ε 2 , x ∈ γ j ε , j = N 1 + 1, . . . , N, (5.1)
where ν is a positive constant, n is the unit normal vector to

γ j ε , v τ = v -(v • n)n is the tangential component of the vector v, ∂ n h = ∇h • n is the normal derivative of h, c j are some constants. From the boundary condition v τ | γ j ε = 0 and the divergence equation div v = 0, it follows that -ν∂ n (v • n)| γ j ε = 0. Thus, using the identity 1 2 (∇v 2 ) = v • (∇v) t = n i=k v k • ∇v k , (
here (∇v) t defines the transposed matrix) we can rewrite 96

(5.1) with the right-hand side in the following form

                       -ν∆v + (v • ∇)v -v • (∇v) t + ∇Φ = f , x ∈ B ε , div v = 0, x ∈ B ε , v = 0, x∈ ∂B ε \∪ N j=N 1 +1 γ j ε , v τ = 0, x ∈ γ j ε , Φ = p j , x∈γ j ε , j =N 1 +1, . . . , N, (5.2) 
where Φ = (p + 1 2 |v| 2 ) is the Bernoulli pressure, p j stand for the constants

c j /ε 2 .
Let us define a weak solution of problem (5.2) as a vector field

v ∈ J 1,2 γ (B ε ) = {η ∈ W 1,2 γ (B ε ) : div η = 0}, satisfying the integral identity ν Bε ∇v : ∇η dx + Bε (v • ∇)v • η dx - Bε (η • ∇)v • v dx = - N j=N 1 +1 p j γ j ε η • n dx ′ + Bε f • η dx (5.3)
for every η ∈ J 1,2 γ (B ε ). Introduce p * j = p j -p N , j = N 1 + 1, . . . , N . Consider an equivalent weak formulation: find a vector field v ∈ J 1,2 γ (B ε ) satisfying the integral identity

ν Bε ∇v : ∇η dx + Bε (v • ∇)v • η dx - Bε (η • ∇)v • v dx = - N -1 j=N 1 +1 p * j γ j ε η • n dx ′ + Bε f • η dx (5.4)
for every η ∈ J 1,2 γ (B ε ). The equivalence of these formulations follows from the equality

N -1 j=N 1 +1 p * j γ j ε η • n dx ′ = N j=N 1 +1 p j γ j ε η • n dx ′ , which follows form the relation N j=N 1 +1 γ j ε η • n dx ′ = 0
for the solenoidal vector-valued function η.

Let us explain this weak formulation heuristically; the rigorous analysis of the equivalence of the weak formulation and the classical one needs to study the regularity of the weak solution, see [START_REF] Egloffe | Study of Some Inverse Problems for the Stokes System[END_REF] for the methods.

Identity (5.3) follows from equations (5.2) after multiplying them by η ∈ J 1,2 γ (B ε ) and integrating by parts in B ε . On the other hand, for a sufficiently regular solution v satisfying (5.3) there exists a pressure field p such that the pair (v, p) satisfies equations (5.2) 1,2 a.e. in B ε .

Boundary conditions (5.2) 3,4,5 are satisfied in the sense of traces (see the definition of the space J 1,2 γ (B ε )). More exactly, function Φ is defined up to an additive constant but this constant can be chosen so that Φ satisfies (5.2) 5 . Indeed, take in (5.3) a smooth solenoidal function η satisfying the boundary conditions

η| Γ = 0, η τ | γ j ε = 0, j = N 1 + 1, . . . , N.
Integrating by parts (5.3) for smooth solutions yields

Bε (-ν∆v + (v • ∇)v -v • (∇v) t -f ) • η dx = -ν N j=N 1 +1 γ j ε ∂ n (v • η) dS - N j=N 1 +1 p j γ j ε η • n dx ′ = - N j=N 1 +1 p j γ j ε η • n dx ′ .
(5.5)

If η ∈ J ∞ 0 (B ε ) = {η ∈ C ∞ 0 (B ε ) : div η = 0}, then it follows from (5.5) that Bε (L(v) -f ) • η dx = 0 ∀η ∈ J ∞ 0 (B ε ),
where

L(v) = -ν∆v + (v • ∇)v -v • (∇v) t .
Hence, there exists a pressure function Φ such that (e.g. [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF])

L(v) + ∇Φ = f a.e. in B ε . Then Bε (L(v) -f ) • η dx = - Bε ∇Φ • η dx = - N j=N 1 +1 γ j ε Φ • η • n dx ′ for every solenoidal η ∈ J 1,2 γ (B ε ). Therefore, N j=N 1 +1 γ j ε Φ • η • n dx ′ = N j=N 1 +1 p j γ j ε η • n dx ′ .
Thus,

N j=N 1 +1 γ j ε (Φ -p j )η • n dx ′ = 0 ∀η ∈ J 1,2 γ (B ε ). (5.6) Let us fix arbitrary j ∈ {N 1 + 1, . . . , N }. Taking η ∈ J 1,2 γ (B ε ) = {η ∈ J 1,2
γ (B ε ) :

γ j ε η • n dS = 0, j = N 1 + 1, . . . , N } such that η| γ k ε = 0 for k ̸ = j, we get (Φ -p j )| γ j ε = c j ,
where c j is a constant (see [START_REF] Heywood | Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations[END_REF], [START_REF] Korobkov | Solvability in a finite pipe of steady-state Navier-Stokes equations with boundary conditions involving Bernoulli pressure[END_REF]). Using these relations and taking now in (5.6) a test function η

∈ J 1,2 γ (B ε ) such that γ k ε η • n dx ′ = 0 for k ̸ = j and k ̸ = N , γ j ε η • n dx ′ = 1 and γ N ε η • n dx ′ = -1, we get N j=N 1 +1 c j γ j ε η • n dx ′ = c j -c N ⇒ c j = c N .
Thus,

c j = c N ∀j = N 1 + 1, . . . , N. (5.7)
Since the Bernoulli pressure Φ in the weak formulation is defined up to an additive constant, we may set c j = c N = 0, j = N 1 + 1, . . . , N . Then from (5.7) we have

Φ| γ j ε = p j , j = N 1 + 1, . . . , N.

Existence, uniqueness and stability of a solution

In this section we prove the existence and uniqueness of the solution to problem (5.1) with the right-hand side f ∈ L 2 (B ε ).

Theorem 5.2.1. For arbitrary f ∈ L 2 (B ε ) and p * j ∈ R, j = N 1 +1, . . . , N -1 problem (5.2) admits at least one weak solution v ∈ J 1,2 γ (B ε ). There holds the estimate

∥∇v∥ L 2 (Bε) ⩽ c ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f ∥ L 2 (Bε) (5.8)
with the constant c independent of ε.

Proof. Define in J 

(η • ∇)v • v dx + Bε (v • ∇)v • η dx ⩽ Bε |v| 4 dx 1/4 Bε |∇u| 2 dx 1/2 Bε |η| 4 dx 1/4 ⩽ cε α ∥∇v∥ 2 L 2 (Bε) ∥∇η∥ L 2 (Bε) ,
where α = 1 for n = 2 and α = 1/2 for n = 3. From Lemma 2.1.7 it follows that N -1

j=N 1 +1 p * j γ j ε η • n dx ′ ⩽ N -1 j=N 1 +1 |p * j | γ j ε |η| 2 dx 1/2 |γ j ε | 1/2 ⩽ cε n/2 N -1 j=N 1 +1 |p * j |∥∇η∥ L 2 (Bε) .
(5.9)

Finally,

Bε f • η dx ⩽ Bε |f | 2 dx 1/2 Bε |η| 2 dx 1/2 ⩽ cε∥f ∥ L 2 (Bε) ∥∇η∥ L 2 (Bε) .
(5.10)

From above estimates and the Riesz theorem it follows that the integral identity (5.4) is equivalent to the operator equation in the space J 1,2 γ (B ε ):

v = Av, (5.11) 
where the operator A is defined by

[Av, η] = Bε ν -1 -(v • ∇)v • η + (η • ∇)v • v + f • η dx -ν -1 N -1 j=N 1 +1 p * j γ j ε η • n dx ′ ∀η ∈ J 1,2 γ (B ε ).
Using compactness of the embedding [START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF]). Thus, the existence of at least one solution of (5.11) will follow from the Leray-Schauder fixed point theorem if we show that all possible solutions v (λ) of the equation

W 1,2 (B ε ) → L 4 (B ε ) it is standard to show that the operator A : J 1,2 γ (B ε ) → J 1,2 γ (B ε ) is compact (see
v (λ) = λAv (λ) , λ ∈ [0, 1]
(5.12)

are uniformly (with respect to λ) bounded.

A solution v (λ) of (5.12) satisfies the integral identity

ν Bε ∇v (λ) : ∇η dx + λ Bε (v (λ) • ∇)v (λ) • η dx -λ Bε (η • ∇)v (λ) • v (λ) dx = -λ N -1 j=N 1 +1 p * j γ j ε η • n dx ′ + λ Bε f • η dx ∀η ∈ J 1,2 γ (B ε ).
(5.13)

Taking in (5.13) η = v (λ) we get

ν Bε |∇v (λ) | 2 dx = -λ N -1 j=N 1 +1 p * j γ j ε v (λ) • n dx ′ + λ Bε f • v (λ) dx.
Using (5.9), (5.10), we obtain

∥∇v (λ) ∥ 2 L 2 (Bε) ⩽ c ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f ∥ L 2 (Bε) ∥∇v (λ) ∥ L 2 (Bε) .
Hence

∥∇v (λ) ∥ L 2 (Bε) ⩽ c ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f ∥ L 2 (Bε) .
The constant c in the last inequality is independent of λ and ε. This finishes the proof of the theorem.

Theorem 5.2.2. 1. There exists a positive constant c 0 independent of ε, such that if

c 0 ε α ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f ∥ L 2 (Bε) < ν, ( 5.14) 
where α = 1 for n = 2 and α = 1/2 for n = 3, then the weak solution

v ∈ J 1,2 γ (B ε ) of (5.2) is unique. 2. Let {p * 1j } and {p * 2j }, j = N 1 + 1, .
. . , N be two sets of real constants, and f 1 , f 2 be functions, (5.14), and let

f i ∈ L 2 (B ε ), i = 1, 2, satisfying
v i ∈ J 1,2 γ (B ε ) be weak solutions of problem (5.2) corresponding to {p * ij } and f i , i = 1, 2. Then there exists a constant C independent of ε such that ∥∇v 1 -∇v 2 ∥ L 2 (Bε) ⩽ εC∥f 1 -f 2 ∥ L 2 (Bε) + cε n/2 N -1 j=N 1 +1 |p * 1j -p * 2j |. (5.15)
Proof. 1. Suppose that there exist two weak solutions v 1 and v 2 satisfying (5.4). Subtracting identity (5.4) for v 2 from the one for v 1 , we obtain

ν Bε ∇w : ∇η dx + Bε (w • ∇)v 1 • η + (v 2 • ∇)w • η dx - Bε (η • ∇)v 1 • w + (η • ∇)w • v 2 dx = 0, (5.16) 
where w = v 1 -v 2 . Taking in (5.16) η = w, we get in virtue of Lemma 2.1.6 and estimate (5.8) for v 2 ,

ν Bε |∇w| 2 dx = Bε (w • ∇)w • v 2 dx - Bε (v 2 • ∇)w • w dx ⩽ 2∥∇v 2 ∥ L 4 (Bε) ∥∇w∥ L 2 (Bε) ∥w∥ L 4 (Bε) ⩽ c 0 ε α ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f ∥ L 2 (Bε) ∥∇w∥ 2 L 2 (Bε) ,
where the constant c 0 is independent of ε. If condition (5.14) is valid, the last inequality yields

Bε |∇w| 2 dx = 0, (5.17) 
and, thus, w = 0.

2. Subtracting identity (5.4) for v 2 from the one for v 1 , we obtain

ν Bε ∇w : ∇η dx + Bε (w • ∇)v 1 • η + (v 2 • ∇)w • η dx - Bε (η • ∇)v 1 • w + (η • ∇)w • v 2 dx = Bε (f 2 -f 1 ) • η dx - N -1 j=N 1 +1 p * 1j -p * 2j γ j ε η • n dx ′ , (5.18) 
where w = v 1 -v 2 . Taking in (5.18) η = w, we get in virtue of Lemma 2.1.6 and estimate (5.8) for v 2 ,

ν Bε |∇w| 2 dx = Bε (w • ∇)w • v 2 dx - Bε (v 2 • ∇)w • w dx + Bε (f 2 -f 1 ) • w dx - N -1 j=N 1 +1 p * 1j -p * 2j γ j ε w • n dx ′ ⩽ cε α/2 ∥∇w∥ 2 L 2 (Bε) ∥v 2 ∥ L 4 (Bε) + ∥f 2 -f 1 ∥ L 2 (Bε) ∥w∥ L 2 (Bε) +cε n/2 N -1 j=N 1 +1 |p * 1j -p * 2j |∥∇w∥ 2 L 2 (Bε) ⩽ c 0 ε α ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f 2 ∥ L 2 (Bε) ∥∇w∥ 2 L 2 (Bε) +εC∥∇w∥ L 2 (Bε) ∥f 2 -f 1 ∥ L 2 (Bε) +cε n/2 N -1 j=N 1 +1 |p * 1j -p * 2j |∥∇w∥ L 2 (Bε) ,
where εC is the Poincaré-Friedrich's constant for the domain B ε (constant belongs to the space W 2,2 (B ε ) whenever f ∈ L 2 (B ε ). The corresponding pressure belongs to W 1,2 (B ε ). This can be proved extending the solutions and the data by reflection over the sections γ j ε to a larger domain (see [START_REF] Egloffe | Study of Some Inverse Problems for the Stokes System[END_REF]).

C is independent of ε). If condition (5.

Asymptotic expansion of the solution

In this section we describe the construction of the asymptotic expan-

sion. Let ζ ∈ C 2 (R) be even function independent of ε such that, ζ(t) = 0 if |t| ⩽ 1/3, and ζ(t) = 1 if |t| ⩾ 2/3
. Denote e = e O j (the edge with the end O j ) and x (e) the Cartesian coordinates corresponding to the origin O j and the edge e, i.e., x (e) = P (e) (x -O j ), P (e) is the orthogonal matrix relating the global coordinates x with the local ones x (e) .

The asymptotic expansion of the velocity field is sought in the form:

v (J) (x) = O l , l=N 1 +1,...,N ; e=O l O i l ζ x (e) n 3rε
V [e,J] x (e) ′ ε

+ e=OαO β ; α,β⩽N 1 ζ x (e) n 3rε ζ |e| -x (e) n 3rε V [e,J] x (e) ′ ε + N l=1 1 -ζ |x -O l | |e| min V [BLO l ,J] x -O l ε , (5.19) 
where the first sum is taken over all edges having a vertex as an end point (and with the origin of the local coordinate system at the vertex), the second sum is taken over all remaining edges, and all terms in these sums are extended by zero out of cylinders Π (e) ε ; the terms of the third sum are extended by zero out of the corresponding bundles;

                     V [e,J] = P (e) t (0, . . . , 0, V [e,J] ) t , V [e,J] (y (e)′ ) = J j=0 ε j V (e) j (y (e)′ ), V [BLO l ,J] (y) = J j=0 ε j V [BLO l ] j (y).
(5.20)

The asymptotic expansion of the pressure for every half-cylinder Π

(e) ε , x n < |e|/2, corresponding to the edge e = O l O i l , l = N 1 + 1, . . . , N , (O l is
the origin of the local coordinate system) is sought in the form:

p (J) (x) = -s (e) x (e) n + a (e) + 1 ε 1 -ζ |x -O l | |e| min P [BLO l ,J] x -O l ε , (5.21) 
and on every half-bundle HB O l , l = 1, . . . , N 1 , ( O l is the origin of the local coordinate system) we define:

p (J) (x) = e⊂B l ζ x (e) n 3rε -s (e)
x (e) n + a (e) -a (es) + a (es)

+ 1 ε 1 -ζ |x -O l | |e| min P [BLO l ,J] x -O l ε , (5.22) 
where the terms of the sum are extended by zero out of cylinders Π (e) ε ,

s (e) = 1 ε 2 J j=0 ε j s (e) j , a (e) = 1 ε 2 J j=0 ε j a (e) j
(5.23)

and

P [BLO l ,J] (y) = J j=0 ε j P [BLO l ,J] j (y). (5.24) 
Here e s is the selected edge of the bundle (arbitrary chosen among edges of the bundle) and the local coordinates x (e) are redefined so that all of them have the same origin O l .

The algorithm of successive determination of the terms in asymptotic expansions (5.19), (5.21) is as follows.

The base case. Introduce the normalized Poiseuille type velocity

V (e)
0 (y (e ′ ) ), the solution of the Dirichlet problem

   -ν∆ (y (e)′ ) V (e)
0 (y (e)′ ) = 1, y (e)′ ∈ σ (e) , V (e) 0 (y (e) ′ ) = 0, y (e) ′ ∈ ∂σ (e) , and denote

κ e = σ (e) V (e) 0 (y (e) ′ )dy (e) ′ .
Solve the conductivity problem on the graph for the function p 0 : (5.25)

                           -κ e ∂ 2 p (e) 0 ∂x (e) n 2 (x (e) n ) = 0, x (e) n ∈ (0, |e|),

Residual

Consider the asymptotic expansion v (J) , p (J) of order J (see (5.19),

(5.21)). By construction,

v (J) ∈ W 2,2 (B ε ), ∇p (J) ∈ L 2 (B ε ). (5.43) 
Moreover, ∥v (J) ∥ 4 L 4 (Bε) ⩽ cε (n-1)/4 . Indeed, the Poiseuille part of v (J) satisfies this estimate. The ∥ • ∥ L 4 (B (i) ε ) -norm of the boundary layer functions in each bundle B (i) ε can be estimated by the L 4 -norm in the unbounded dilated domain Ω i multiplied by ε n/4 . Taking into consideration an exponential decay of the boundary layers, we get the desired estimate.

Put L(v, p) = -ν∆v + (v • ∇)v + ∇p. Let us calculate L(v (J) , p (J) ) in a half-bundle HB O l , l = 1, . . . , N 1 . We obtain f (J) (x) = L(v (J) , p (J) ) = J+1⩽j⩽2J ε j-2 e:O l ∈e α+β=j-1 V (e) (α) (y (e) ′ )ζ y (e) n 3r • ∇ y V (e) (β) (y (e) ′ )ζ y (e) n 3r + 
e:O l ∈e p+r=j-1 ζ y (e) n 3r V (e) (p) (y (e)′ ) • ∇ y V [BLO l ] r (y) + p+r=j-1 V [BLO l ] p (y) • ∇ y ζ y (e) n 3r V (e) (r) (y (e)′ ) + p+r=j-1 V [BLO l ] p (y) • ∇ y V [BLO l ] r (y) +ε J-2 e:O l ∈e a [BLO l ,e] J ∇ y ζ y (e) n 3r -L ζ |x -O l | |e| min V [BLO l ,J] (y), ζ |x -O l | |e| min P [BLO l ,J] (y) χ(x) .
Here (where χ ̸ = 0) the order of this term in L 2 -norm is O(e -c 1 /ε ) with some positive constant c 1 (see the Appendix in [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF]).

y = x -O l ε ; y (e) = x (e) ε ; χ = χ supp 1-ζ |x-O l | |e| min
From the obtained formulas it follows that

∥f (J) ∥ L 2 (Bε) = ∥L(v (J) , p (J) )∥ L 2 (Bε) = O(ε J-2 ).
(5.44)

In the cylinders associated to the vertex O l , l = N 1 + 1, . . . , N , the residual is simpler: it is without the factor ζ y (e) n 3r .

Let us calculate the divergence of v (J) . In any half-bundle we have

div v (J) = -∇ζ |x -O l | |e| min • V [BLO l ,J] (y) = h (J) (y).
Obviously, h (J) ∈ W 1,2 (B ε ). Since the support of the function ∇ζ |x-O l | |e| min belongs to the middle third of every cylinder, there the relation

∥h (J) ∥ W 1,2 (Bε) = O(e -c 2 /ε ) (5.45)
holds for some c 2 > 0.

Finally, the boundary conditions are satisfied with residual ε J-1 a [BLO l ,e] J on γ l ε . This residual appears as a result of subtraction of the constant a [BLO l ,e] j from the boundary layer pressure P

[BLO l ] j
(y) at the step 4 of the algorithm. For all j < J it is compensated by the gaps of the pressure in the problem on the graph, but for j = J it remains as a residual.

It is easy to see that

Bε h (J) (y) dy = 0. Therefore, by Lemma 3.7 in [START_REF] Panasenko | Divergence equation in thin-tube structure[END_REF], there exists a vector field w (J) ∈ W 1,2 (B ε ) such that div w (J) = -h (J) . Moreover, the estimate

∥w (J) ∥ W 1,2 (Bε) ⩽ ε -1 c∥h (J) ∥ L 2 (Bε) (5.46) holds. 
Set v (J) = v (J) + w (J) . Then div v (J) = 0, v (J) satisfies the boundary conditions with the residual -ε J-1 a [BLO l ,e] J on γ l ε , and because of (5.45) we have

∥f (J) 1 ∥ L 2 (Bε) = O(ε J-2 ), (5.47) 
where f ) , p (J) ).

(J) 1 = L( v (J

Error estimate

Theorem 5.5.1. The following error estimate

∥v -v (J) ∥ W 1,2 (Bε) = O(ε J+(n-1)/2 ) (5.48)
holds.

Proof. Let u = vv (J) . Then the integral identity

ν Bε ∇u : ∇η dx + Bε (u • ∇)u • η dx + Bε (u • ∇) v (J) • η dx + Bε ( v (J) • ∇)u • η dx - Bε (η • ∇)u • u dx - Bε (η • ∇)u • v (J) dx - Bε (η • ∇) v (J) • u dx = ε J-1 N l=N 1 +1 a [BLO l ,e] J γ l ε η • n dx ′ - Bε f (J) 1 • η dx holds for every η ∈ J 1,2 γ (B ε ).
Taking η = u and integrating by parts, we obtain

ν Bε |∇u| 2 dx = ε J-1 N l=N 1 +1 a [BLO l ,e] J γ l ε u • n dx ′ + Bε (u • ∇)u • v (J) dx - Bε ( v (J) • ∇)u • u dx - Bε f (J) 1 • u dx.
(5.49) From Lemma 2.1.7, it follows that

ε J-1 N l=N 1 +1 a [BLO l ,e] J γ l ε u•n dx ′ ⩽ cε J-1+n/2 N l=N 1 +1 a [BLO l ,e] J
Using Hölder inequality, (2.11), (2.12) and estimate ∥ v (J) ∥ L 4 (Bε) ⩽ cε (n-1)/4 , we get

Bε (u • ∇)u • v (J) dx , Bε ( v (J) • ∇)u • u dx ⩽ ∥u∥ L 4 (Bε) ∥∇u∥ L 2 (Bε) ∥ v (J) ∥ L 4 (Bε) ⩽ cε α+ n-1 4 ∥∇u∥ 2 L 2 (Bε) ⩽ cε 3 4 ∥∇u∥ 2 L 2 (Bε) ,
where α is the same as in Theorem 5.2.

Besides

Bε

f (J) 1 • u dx ⩽ εC∥f (J) 1 ∥ L 2 (Bε) ∥∇u∥ L 2 (Bε) ,
where εC is Poincaré-Friedrich's constant for the domain B ε .

From these estimates and identity (5.49), we obtain

ν Bε |∇u| 2 dx ⩽ cε 2(J-1)+n 2 N l=N 1 +1 a [BLO l ,e] J ∥∇u∥ L 2 (Bε) +cε 3 4 ∥∇u∥ 2 L 2 (Bε) + εC∥f (J) 1 ∥ L 2 (Bε) ∥∇v∥ L 2 (Bε) .
Hence

∥∇u∥ L 2 (Bε) ⩽ C ν -cε 3/4 ε 2(J-1)+n 2 N l=N 1 +1 a [BLO l ,e] J + ε∥f (J) 1 ∥ L 2 (Bε) ⩽ C ν -cε 3/4 ε 2(J-1)+n 2 N l=N 1 +1 a [BLO l ,e] J + ε J-1 . If ν -cε 3/4 > ν 2 , then ∥u∥ W 1,2 (Bε) = ∥v -ṽ(J) ∥ W 1,2 (Bε) = O(ε J-1 ). (5.50) 
Evaluating now the norm of the difference v (J) and v (J+2) we obtain:

∥ṽ (J) -ṽ(J+2) ∥ W 1,2 (Bε) = O(ε J+(n-1)/2 ).
Replacing J by J + 2 in (5.50) we obtain:

∥v -ṽ(J+2) ∥ W 1,2 (Bε) = O(ε J+1 ).
So, the triangle inequality gives estimate (5.48).

Chapter 6 Conclusions

The aim of this dissertation is to analyse Navier-Stokes equations in different domains. Our purpose was to get the theoretical results, which may be used to create a simplified blood circulation model. This was done by the following steps:

-In Chapter 3, the existence and uniqueness of a weak solution for the time-periodic Stokes system in the domain with an outlet to infinity were proved by constructing an appropriate boundary value extension. This step gives the possibility to study the time-periodic Navier-Stokes equations.

-In Chapter 4, besides the proof of the existence and uniqueness of the solution, the main goal was to construct and justify the appropriate asymptotic expansion of the weak solution. This asymptotic expansion let us to develop the hybrid-dimension model, which is suitable for small vessels like arterioles and capillaries.

-The results in Chapter 4 obtained in the case of Dirichlet type boundary condition, however more natural boundary condition is Neumann type. Therefore in Chapter 5, we constructed the asymptotic expansion with the given Bernoulli pressure. We also prove the existence and uniqueness of the solution.

The obtained results may be used to create a simplified blood flow model for small vessels. The case with given Bernoulli pressure, may be developed with the time periodicity condition. That will allow to create a more realistic and complicated blood flow model.

išorinės jėgos vektorius, φ = φ(x) = (φ 1 (x), . . . , φ n (x)) ir g = g(x, t) = (g 1 (x, t), . . . , g n (x, t)) yra duoti skysčio greičiai ant srities krašto, n -išorinės viene-

tinės normalės vektorius, v τ = v -(v • n)n -greičio vektoriaus tangentinė komponentė, ∂ n h = ∇h • n -funkcijos h normalinė išvestinė, o p + 1 2 |v| 2
duotas Bernulio slėgis, ν > 0 -skysčio klampumo koeficientas, ε -koeficientas, kuris lygus cilindro diametro ir ilgio santykiui, v(x, 0) = v(x, 2π) greičio periodiškumo laiko atžvilgiu sąlyga (su periodu 2π). 

Mokslin ės problemos istorija ir aktualumas

Laiko atžvilgiu periodin ė Stokso sistema srityje su iš ėjimu i ˛begalybę

Laiko atžvilgiu periodinė Stokso sistema (S.1) nagrinėjama dvimatėje srityje Ω = Ω 0 ∪ D, kuri sudaryta iš aprėžtosios dalies

Ω 0 = Ω ∩ B R 0 (0) = Ω ∩ {x ∈ R 2 : |x| ⩽ R 0 } ir turinti išėjimą i ˛begalybę D = {x ∈ R 2 : |x 1 | < g(x 2 ), x 2 > R 0 } (žr. 2 pav.). Funkcija g tenkina Lipšico sąlygą |g(t 1 ) -g(t 2 )| ⩽ L|t 1 -t 2 |, t 1 , t 2 > R 0 , g(t) ⩾ const > 0.
Srities kraštas ∂Ω ∈ C 2 yra sudarytas iš vidinio krašto Γ 1 , ir išorinio krašto Γ 0 . Kraštinė sąlyga φ ∈ W 3/2,2 (∂Ω) turi kompaktinę atramą ir 

Λ = supp φ ∩ Γ 0 ⊂ Γ 0 ∩ B R 0 (0).
             u t -ν∆u + ∇p = ν∆A + f , (x, t) ∈ Ω × (0, 2π), div u = 0, (x, t) ∈ Ω × (0, 2π), u = 0, (x, t) ∈ ∂Ω × (0, 2π), u(x, 0) = u(x,
∥v t ∥ L 2 (0,2π;L 2 (Ω)) + ∥∇v∥ L 2 (0,2π;L 2 (Ω)) ⩽ c ∥φ∥ 2 W 3/2,2 (∂Ω) 1 + +∞ R 0 1 g 3 (x 2 ) dx 2 1/2 + ∥f ∥ L 2 per (0,2π;L 2 1 (Ω)) .

Navj ė ir Stokso lygtys cilindrin ėje struktūroje

Laiko atžvilgiu periodinė Navjė ir Stokso sistema (S.2) ir stacionarioji Navjė ir Stokso sistema (S.3) nagrinėjamos cilindrinėje struktūroje B ε .

Joje yra i ˛rodomas apibendrintojo sprendinio egzistavimas ir vienatis bei sukonstruojamas sprendinio asimptotinis skleidinys, kuris leidžia kurti hibridinės dimensijos modelius.

Nagrinėdami laiko atžvilgiu periodinę Navjė ir Stokso sistemą (S.2) srityje B ε (žr. 3 pav.), tariame, jog kraštinė funkcija g yra periodinė laiko atžvilgiu, lygi nuliui ant krašto visur, išskyrus cilindru ˛galus γ j ε = ∂B ε ∩ ∂ω j ε , j = N 1 + 1, . . . , N (čia j yra grafo viršūniu ˛taškai (žr. 1 pav.)) bei tenkina šias sąlygas Taip konstruojami asimptotiniai skleidiniai greičio vektoriui ir slėgiui turi tokias išraiškas: 

F j (t) = γ j ε g • n dS ≡ ε n-1 F j (t), j = N 1 + 1, . . . , N (S.5) ir N j=N 1 +1 F j (t) = 0 ∀t ∈ [0,
v = u + g, kai div u = 0, u ∈ L ∞ per (0, 2π; W 1,2 (B ε ) ∩ W 2,2 (B ε )), u t ∈ L 2 per (0, 2π; L 2 (B ε )) bei tenkinama integralinė tapatybė Bε 1 ε β u t • η + ν∇u : ∇η -(u + g) • ∇ η • u -(u • ∇)η • g dx = Bε f • η dx, (S.
v (J) (x, t) = M i=1 ζ x (e i ) n 3rε ζ |e i | -x (e i ) n 3rε J j=0 ε j V (e i ) j (y (e i ) ′ , t) + N l=1 1 -ζ |x -O l | |e| min J j=-1 ε j V [BLO l ] j (y, t), p (J) (x, t) = M i=1 ζ x (e i ) n 3rε ζ |e i | -x (e i ) n 3rε J j=0 ε j-2 -s (e i ) j (t)x (e i ) n + a (e i ) j (t) + N l=1 1 -ζ |x -O l | |e| min J j=-1 ε j-1 P [BLO l ] j (y, t), čia y = x (e) ε , 0 ⩽ ζ(τ ) ⩽ 1 yra glodi nupjautinė funkcija, be to, ζ(τ ) = 0, kai τ ⩽ 1/3 ir ζ(τ ) = 1, kai τ ⩾ 1/3. Pora (V [BLO l ] j (y,
p 0 ∈ L 2 per (0, 2π; W 1,2 (B)), kuri tenkina sistemą                      - ∂ ∂x (e) n L (e
˛: duotam S ∈ L 2 per (0, 2π) ieškome V ∈ L 2 per (0, 2π; W 1,2 (σ (e) )), kai ∂V ∂t ∈ L 2 per (0, 2π; L 2 (σ (e) )) ir      ∂V ∂t (y (e) ′ , t) -ν∆ ′ y (e) ′ V(y (e) ′ , t) = S(t), y (e) ′ ∈ σ (e) , t > 0, V(y (e) ′ , t)| ∂σ (e) = 0, V(y (e) ′ , t) = V(y (e) ′ , t + 2π).
Tuomet, tiesinio aprėžtojo operatoriaus išraiška yra tokia

L (e) S(t) = σ (e)
V(y (e) ′ , t) dy (e) ′ = H(t).

Plačiau apie asimptotinio skleidinio konstravimo žingsnius galima paskaityti disertacijos 4 skyriuje. Sukonstravę asimptotinius skleidinius, konstruojame laiko atžvilgiu periodinės Navjė ir Stokso sistemos (S.2) apibendrintąji ˛sprendini (v,

p) tokiu pavidalu: v = u + u (J) = u + v (J) + w (J) , p = q + p (J) , čia v (J) sprendinio asimptotinis skleidinys, w (J) ∈ L 2 per (0, 2π; W 2,2 (B ε ) ∩ W 1,2 (B ε )) vektorinis laukas, toks kad div w (J) = -h (j) = -div v (J) , o p (J) slėgio funkcijos p skleidinys. Tuomet u (J) ∈ L 2 per (0, 2π; W 2,2 (B ε )), u (J) t ∈ L 2 per (0, 2π; L 2 (B ε )).
Apibr ėžimas. Solenoidinis laiko atžvilgiu periodinis vektorinis laukas

u = v -u (J) vadinamas apibendrintuoju sprendiniu, kai u ∈ L 2 per (0, 2π; W 2,2 (B ε )), u t ∈ L 2 per (0, 2π; L 2 (B ε )), tenkina kraštinę sąlygą u(x, t)| ∂Bε = 138 0 ir integralinę tapatybę Bε 1 ε β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) dx = Bε f (J) 1 • η dx, ∀η ∈ H(B ε ).
Apibendrintojo sprendinio u egzistavimas ir vienatis išplaukia iš 2 teoremos. Kai n = 2 apibendrintasis sprendinys u tenkina i ˛verčius, kuriuos suformuluosime teoremos pavidalu.

4 teorema. Tegul n = 2, β = 0, 2. Tuomet galioja šie i ˛verčiai

sup t∈[0, 2π] ∥u( • , t)∥ 2 L 2 (Bε) + ε β 2π 0 Bε |∇u| 2 dx dt ⩽ cε 2J-2+β , sup t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |u t | 2 dx dt + ε β 2π 0 Bε |∇ 2 u| 2 dx dt ⩽ cε 2J-4+β .
Be to, egzistuoja tokia slėgio funkcija q ∈ L 2 per (0, 2π;

L 2 (B ε )), kad Bε q(x, t)dx = 0 ir Bε 1 ε β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) dx = Bε q div η dx + Bε f (J) 1 • η dx, ∀η η η ∈ W 1,2 (B ε ). Tuomet, jei J ⩾ 2, tai galioja i ˛vertis 2π 0 Bε |q| 2 dx dt ⩽ cε 2J-4-β .
Stacionarioji Navjė ir Stokso sistema (S.3) cilindrinėje struktūroje B ε (žr. 4 pav.) nagrinėjama ją perrašant tokiu pavidalu: 

                       -ν∆v + (v • ∇)v -v • (∇v) t + ∇Φ = f , x ∈ B ε , div v = 0, x ∈ B ε , v = 0, x∈ ∂B ε \∪ N j=N 1 +1 γ j ε , v τ = 0, x ∈ γ j ε , Φ = p j , x∈γ j ε , j =N 1 +1, . . . ,
(v • ∇)v • η dx - Bε (η • ∇)v • v dx = - N -1 j=N 1 +1 p * j γ j ε η • n dx ′ + Bε f • η dx, ∀η ∈ J 1,2 γ (B ε ).
Teorema apie apibendrintojo sprendinio egzistavimą pateikiama žemiau.

5 teorema. Tarkime f ∈ L 2 (B ε ) ir p * j ∈ R, j = N 1 + 1, . . . , N -1. Tuomet (S.10) sistema turi bent vieną apibendrintąji ˛sprendini ˛v ∈ J 1,2 γ (B ε ). Be to, galioja i ˛vertis ∥∇v∥ L 2 (Bε) ⩽ c ε n/2 N -1 j=N 1 +1 |p * j | + ε∥f ∥ L 2 (Bε) , (S.11)
čia konstanta c nepriklauso nuo ε.

Asimptotinis skleidinys stacionariu atveju konstruojamas panašiai, kaip ir prieš tai. Greičio vektoriaus asimptotinis skleidinys konstruojamas tokiu pavidalu:

v (J) (x) = O l , l=N 1 +1,...,N ; e=O l O i l ζ x (e) n 3rε V [e,J] x (e) ′ ε + e=OαO β ; α,β⩽N 1 ζ x (e) n 3rε ζ |e| -x (e) n 3rε
V [e,J] x (e) ′ ε

+ N l=1 1 -ζ |x -O l | |e| min V [BLO l ,J] x -O l ε .
Čia pirma suma apima viršūnes, antroji suma mazgus, o trečioji suma kompensuoja paklaidas pasienio sluoksniuose.

Slėgio funkcijos asimptotinis skleidinys viršūnėse ir mazguose i ˛gyja atitinkamas išraiškas:

p (J) (x) = -s (e) x (e) n + a (e) + 1 ε 1 -ζ |x -O l | |e| min P [BLO l ,J] x -O l ε , ir p (J) (x) = e⊂B l ζ x (e) n 3rε -s (e)
x (e) n + a (e) -a (es) + a (es)

+ 1 ε 1 -ζ |x -O l | |e| min P [BLO l ,J] x -O l ε .
Panašiai kaip laiko atžvilgiu periodinės Navjė ir Stokso sistemos atveju pasienio sluoksniu ˛asimptotikos (V [BLO l ,J] , P [BLO l ,J] ) randamos sprendžiant stacionariąją Stokso sistemą. Pradiniu atveju (kai j = 0) sistema atrodo taip:

           -ν∆ y V [BLO l ] 0 + ∇ y P [BLO l ] 0 = f [REGO l ] 0 + f [BLO l ] 0 , y ∈ Ω l , div y V [BLO l ] 0 = h [REGO l ] 0 , y ∈ Ω l , V [BLO l ] 0 = 0, y ∈ ∂Ω l .
Nariai V [e,J] ir p j = (-s (e) x (e) n + a (e) -a (es) + a (es) randami sprendžiant uždavini ˛ant grafo. Ju ˛radimo algoritmą galima rasti disertacijos 141 5.3 poskyryje. Pradiniame žingsnyje funkcija p 0 randama iš uždavinio: Disertacijoje (žr. 5 skyriu ˛) pateikiamas sprendimo algoritmas bei i ˛rodomas paklaidos i ˛vertis. Tegul v = u + v (J) + w (J) , čia v (J) yra greičio vektoriaus asimptotinis skleidinys, o w (J) ∈ W 1,2 (B ε ) vektorinis laukas, toks kad div w (J) = -h (j) = -div v (J) .

                           -κ e ∂ 2 p (e) 0 ∂x (e) n 2 (x (e) n ) = 0, x (e) n ∈ ( 

teorema. Sukonstruotas pratęsimas tenkina paklaidos i ˛verti ∥v

-(v (J) + w (J) )∥ W 1,2 (Bε) = O(ε J+(n-1)/2 ).

Išvados

Disertacijoje buvo išnagrinėti šie uždaviniai: laiko atžvilgiu periodinė Stokso sistema su nehomogenine kraštine sąlyga (priklausančia tik nuo erdvės kintamojo) En examinant le système non-stationnaire de Navier-Stokes (R.13) dans la structure tubulaire (voir figure 7), nous supposons que la fonction à la frontière g est périodique en temps et que g = 0 sur le bord partout sauf aux extrémités du cylindre γ j ε = ∂B ε ∩ ∂ω j ε , j = N 1 + 1, . . . , N (où j sont les sommets du graphe (voir Figure 5)) et que pour les débits De plus, il existe une fonction de pression q ∈ L 2 per (0, 2π; L 2 (B ε )) telle que Bε q(x, t)dx = 0 et 

F j (t) =
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 3 Solvability of the problem . . . . . . . . . . . . . . . . . . viii Introduction The Stokes and Navier-Stokes equations are partial differential equations used in fluid mechanics to describe the motion of an incompressible viscous fluid (for example, water, oil, blood, etc.). Besides the theoretical interest, these equations also have a huge practical impact. Modelling of some engineering or biological systems containing fluid, could not be possible without these equations. Multidisciplinary research may let us develop the Stokes and Navier-Stokes equations theory in both directions: theoretical and practical.

Figure 1 -

 1 Figure 1 -Domain Ω

Definition 3 .

 3 By a tube structure, we call the domain B ε (see Definition 2) with the boundary ∂B ε of B ε which is C 2 -smooth except for the parts of the boundary which are the bases γ j ε = {x (e)′ ∈ σ O j , x

  j:O l ∈e j e j . By a bundle of cylindersB O l we call the union ω l ε ∪ j:O l ∈e j Π (e j ) ε. We will consider as well the half-bundleHB O l = ω l ε ∪ j:O l ∈e j {x ∈ Π (e j ) ε , x (e j ) n ∈ [0, |e j |/2]} . We will use also Ω l = ω l ∪ j:O l ∈e j Π (e j ) ∞

-

  prove the existence and uniqueness of the time-periodic Stokes equation by constructing some special boundary value extension in the domain with an outlet to infinity, -prove the existence and uniqueness of the time-periodic and steady-state Navier-Stokes equations in thin tube structures, -construct the asymptotic expansion of the solution and justified it for the time-periodic Navier-Stokes system and a stationary Navier-Stokes system with the given Bernoulli pressure, -develop the method of asymptotic partial decomposition of the domain (MAPDD) for the time-periodic Navier-Stokes equations.

  Let D(Ω) be the Hilbert space of vector functions formed as the closure of C ∞ 0 (Ω) in the Dirichlet norm ∥u∥ D(Ω) = ∥∇u∥ L 2 (Ω) generated by the scalar product [u, v] = Ω ∇u : ∇v dx, where ∇u : ∇v = u = 0) vector fields u from C ∞ 0 (Ω) by J ∞ 0 (Ω) = {w ∈ C ∞ 0 (Ω) : div w = 0}. By H(Ω) we indicate the subset of D(Ω) consisting of solenoidal vector fields and by H(Ω) -the space formed as the closure of J ∞ 0 (Ω) in the Dirichlet norm. Obviously, H(Ω) ⊂ H(Ω). In general, the spaces H(Ω) and H(Ω) do not coincide. However, if Ω is a bounded domain with Lipschitz boundary, then H(Ω) = H(Ω).

Lemma 2 . 1 . 1 .

 211 (Poincaré-Friedrich's inequality) The following inequality

  a cross-section of an outlet to infinity D by the line x 2 = R. Γ 1 is the inner boundary and Λ = supp φ ∩ Γ 0 ⊂ Γ 0 ∩ B R 0 (0) (see Figure 3.1).

Figure 3 . 1 - 1 φ

 311 Figure 3.1 -Domain Ω

(3. 12 )

 12 Due to estimates for the regularized distance (3.2), inequality (3.7) follows from(3.10). Notice that for points x ∈ supp b (inn) 1

  estimates (3.18)-(3.21) follows form Lemma 3.2.4 and 3.2.7.

  (k,s) n and b (k,c) n , n = 0, 1, . . . , N . To do this, we substitute (3.27)-(3.29) into the problem (3.25), and by collecting the coefficients of sin and cos functions we obtain the following stationary problems:

1

 1 integrating by interval [0, 2π], it follows that ν 2π 0 Ω |∇(w 1 -w 2 )| 2 dx dt = 0. and hence w 1 = w 2 . Thus, we have proved that v = A + u is a unique weak solution of problem (3.1). Estimate (3.24) for u follows from (3.44). Since, for A, the analogues to (3.24) estimate is also valid, we obtain (3.24) for the sum v = A + u. Formulation of the problem Consider in the tube structure B ε (see Definition 2) the time-periodic boundary value problem for the Navier-Stokes equations

2π 0 A 1

 01 (t) dt . Then, we can rewrite (4.20) as

  obtained equalities over k from k = 1 to k = N . Again omitting the subscript N , we obtain 1 ε β Bε

t | 2 A 1 Theorem 4 . 2 . 2 .

 21422 dx dt ⩽ cε β 2π 0 (t) dt. (4.24)Estimates (4.13), (4.23) and (4.24) ensure (in standard way, see[START_REF] Ladyzhenskaya | The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach[END_REF],[START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF]) the convergence of a subsequence of the Galerkin approximation and guaranty the existence of the solution u. For sufficiently small ε the solution of problem (4.5), n = 2, is unique.Proof. Suppose that there are two solutions u 1 and u 2 of problem (4.5)satisfying the conditions of Theorem 4.2.1. Subtracting the identity (4.5)

(4. 27 )

 27 In order to estimate the higher derivatives of u, we use as a basis the eigenfunctions of the Stokes operator. Taking in (4.11) Galerkin approximations with the basis {w k } ∞ k=1 , multiplying it by λ k γ (N ) k (t), summing up the obtained equalities from k = 1 to k = N , and using properties of the Stokes operator (see Chapter 2), we obtain (here we again omit the subscript N )

  k from 1 to N ) we obtain (omitting the subscript N )

ε

  the Poiseuille type velocity depending only on the transversal space variable x (e) ′ of the tube. We multiply the Poiseuille type velocity and pressure in every cylinder by cut-off functions ζ equal to one in the main middle part of the cylinder and vanishing in some O(ε)-neighbourhood of the nodes. This multiplication generates a residual in the right-hand side of the Navier-Stokes equations, having a support belonging to a O(ε)-neighbourhood of the nodes. Then we construct the boundary layer correctors, compensating this residual. These correctors are solutions to the Stokes equations in the dilated bundles of cylinders extended by outlets to infinity.

(4. 41 )

 41 where y =x (e) ε , ζ(τ ) is a smooth cut-off function independent of ε with ζ(τ ) = 0 for τ ⩽ 1/3 and ζ(τ ) = 1 for τ ⩾ 2/3, 0 ⩽ ζ(τ ) ⩽ 1. Here |e| min is the minimal length of the edges, r = 3 max{diam σ 1 , . . . , diam σ M } + 1, V (e i ) j (y (e i ) ′ , t) are the Poiseuille type velocities and the boundary layer terms V [BLO l ] j (y, t) exponentially decay as |y| tends to infinity.

( 4 .

 4 [START_REF] Korobkov | Leray's problem on existence of steady state solutions for the Navier-Stokes flow[END_REF]) is proved in[START_REF] Panasenko | Periodic in time flow in thin structure: Equation on the graphs[END_REF]. Let us represent p (e) 0 in the form p (e) 0 (x (e) n , t) = -s (e) 0 (t)x (e) n + a

  n , t) = 0, x (e) n ∈ (0, |e|), ∀ e = e j , j = 1, . . . , M, ∀e ⊂ B l , e ̸ = e s hold, where e s is a selected edge of the bundle. This problem has a unique (up to an additive function of t) solution p 1 and p

jj

  (y (e) ′ , t) • n dy (e) ′ = 0 i.e., e:O l ∈e L (e) s is a solution of the problem on the graph with junction condition (4.44) (by the inductive hypothesis). The velocity V [BLO l ] exponentially tends to zero as |y| → ∞ while the corresponding pressure function P [BLO l ] j

  n , t) = 0, x (e) n ∈ (0, |e|), ∀ e = e j , j = 1, . . . , M, (t), ∀e ⊂ B l , e ̸ = e s .

  j+1 (0, t).

(4. 52 ) 4 . 4 . 5 . 1 .

 524451 for every η ∈ H(B ε ).The existence of the unique solution u of (4.52) follows from Theorems 4.2.1-4.2.Theorem Let n = 3. The following estimates

( 4 . 4 . 5 . 2 .

 4452 53),(4.54),(4.4) ⩽ cε 2J-4-β . The results and the proof for the two-dimensional case are absolutely the same. There holds Theorem Let n = 2. The following estimates sup t∈[0, 2π]

Theorem 4 . 5 . 3 .

 453 If g ∈ C [ J+3 2 ]+1 ([0, 2π]; W 3/2,2 (σ)), then sup t∈[0,2π]

Remark 4 . 5 . 4 .

 454 The asymptotic expansion (4.41)-(4.42) can be slightly modified without loss of the accuracy. Namely, the argument |x -O l | |e| min in the cut-off function ζ may be replaced by |x -O l | δ , where δ = C J ε| ln ε||e| min

Figure 4 . 1 - 2 Si,j 3

 4123 Figure 4.1 -Truncation of the cylinder Π (e) ε .

Figure 4 . 2 -

 42 Figure 4.2 -Connected component B ε,δ i .

εFigure 4 . 1 )

 41 Figure 4.1). Let B ε,δ i be the connected, truncated by the cross-sections S i,j part of B ε , which contains the vertex or the node O i (see Figure 4.2).

(4. 62 )

 62 Here ĝ is an extension of the boundary function g constructed above as u (J+2) with the modification described in Remark 4.5.4, i.e., δ = C J ε| ln ε||e| min . Theorem 4.6.1. Let g ∈ C [ J+3 2 ]+1 (0, 2π; W 3/2,2 (σ)). Then there exists 94 a unique solution ûε,δ of the partially decomposed problem (4.62) and sup t∈[0,2π]

1

 1 Formulation of the problemLet us consider the following boundary value problem for the steadystate Navier-Stokes equations in a tube structure B ε (see Definition 3)

Remark 5 . 2 . 3 .

 523 [START_REF] Evans | Partial differential Equations: Second Edition[END_REF]) is valid, the last inequality yields(5.15). Notice also that the weak solution v of problem(5.2) 

-

  = c l , l = N 1 + 1, . . . , N, p (e) 0 (0) = p (es) 0 (0), ∀e ⊂ B l .

  is the characteristic function of the set supp 1 -ζ |x-O l | |e| min . As before the terms of the sums e:O l ∈e are extended by zero out of cylinders Π (e) ε . Here the first four lines come from the inertial term and they contain all combinations of V (e) β , and V [BLO l ] β having the order higher than J -2, the next line comes from the pressure gradient term; this term is the only one that was not compensated by the boundary layer-in-space problems. The last line is the residual generated by the multiplication of the boundary layer correctors by the cut-off function ζ |x-O l | |e| min . Notice that terms appearing in this last line exponentially vanish because in the set supp 1 -ζ |x-O l | |e| min

1 φ

 1 Apibr ėžimas. Apibendrintuoju (S.1) uždavinio sprendiniu vadinsime solenoidini ˛, laiko atžvilgiu periodini ˛vektorini ˛lauką v, kai ∇v, v t ∈ L 2 (0, 2π; L 2 (Ω)), tenkinanti ˛kraštinę sąlygą v| ∂Ω = φ, periodiškumo sąlygą v(x, 0) = v(x, 2π) ir integralinę tapatybę kiekvienai laiko atžvilgiu periodinei funkcijai η ∈ L 2 (0, 2π; H(Ω)).Kadangi vektorinis laukas v yra solenoidinis (div v = 0), tai reiškia, jog skystis yra nespūdus (i ˛tekančio skysčio kiekis lygus ištekančio skysčio kiekiui), todėlσ(R) v • n dS = -F (inn) + F (out) , čia σ(R) = (-g(R), g(R)) yra išėjimo D skerspjūvis (kertama tiese x 2 = R), F (inn) = Γ • n dS ir F (out) = Λ φ • ndS srautai per srities vidini ˛ir išorini ˛kraštus. Laiko atžvilgiu periodinės Stokso sistemos (S.1) apibendrintojo sprendinio ieškome tokiu pavidalu: v(x, t) = A(x) + u(x, t), čia A disertacijoje (žr. 3.2 poskyri ˛) sukonstruotas specialus kraštinės sąlygos pratęsimas. Šis pratęsimas leidžia suvesti nagrinėjamą nehomogenini ųždavini ˛i ˛uždavini ˛su homogenine kraštine sąlyga, kurioje naujas nežinomasis yra laiko atžvilgiu periodinis vektorinis laukas u:

  , ∀e ⊂ B l , čia κ e randama sprendžiant Dirichlė uždavini ˛(žiūrėti disertacijos 5.3 poskyri ˛), o c l žinomos konstantos.

7 Figure 5 -

 75 Figure 5 -Le graphe d'une structure tubulaire

Figure 6 -Figure 7 - 1 Γ B ε σ 2 σ 3

 67123 Figure 6 -Un domaine Ω

Figure 8 -

 8 Figure 8 -Un domaine B ε

gN j=N 1 +1F 1 2,

 11 • n dS ≡ ε n-1 F j (t), j = N 1 + 1, . . . , N (R.[START_REF] Galdi | The relation between flow rate and axial pressure gradient for time-periodic Poiseuille Flow in a Pipe[END_REF]) on a j (t) = 0 ∀t ∈ [0, 2π].(R.17)Notons l'extension de la fonction à la frontière g par la même notation g et supposons qu'elle est solénoïdale, périodique en temps, et satisfait les estimations asymptotiques :sup x∈Bε |g(x, t)| ⩽ c, ∥∇g∥ L 2 (Bε) ⩽ cε n-3 2 ∀t∈ [0, 2π], ∥g t ∥ L 2 (Bε) ⩽ cε n-∥∇ 2 g∥ L 2 (Bε) ⩽ cε n-5 2 ∀t∈ [0, 2π]. (R.18)La thèse prouve l'existence d'une solution faible du système de Navier-Stokes périodique en temps (R.13) dans des cas bidimensionnels et tridimensionnels, en utilisant les propriétés de l'opérateur de Stokes (voir la section 2.2). L'existence et l'unicité de la solution faible de (R.13) sont prouvées en résolvant le problème variationnel suivant : on chercheun champ vectoriel v = u +g, lorsque div u = 0, u ∈ L ∞ per (0, 2π; W 1,2 (B ε )∩ W 2,2 (B ε )), u t ∈ L 2 per (0, 2π; L 2 (B ε )) et une identité intégrale est satisfaiteBε1 ε β u t • η + ν∇u : ∇η -(u + g) • ∇ η • u -(u • ∇)η • g dx = Bε f • η dx, (R.

2π 0 A 1 1 •Théorème 3 . 0

 01130 (t) dt, ici la constante c ne dépend pas de ε, β = 0 ou 2. Un développement asymptotique est construit pour la solution faible résultante, ce qui permet le développement de modèles de dimension hybride. Ce développement est construit par récurrence. Nous résolvons d'abord le problème périodique en temps sur le graphe et trouvons la pression macroscopique, qui est une fonction périodique en temps, et une fonction affine de la variable longitudinale x (e) n dans chaque cylindre Π (e) ε d'axe e (défini dans l'introduction, et muni d'un système de coordonnées locales x (e) ′ pour les directions transverses et x (e) n pour la direction 154 longitudinale), indépendante de la variable transversale x (e) ′ . Aux noeuds (aux points d'intersection de plusieurs arêtes d'un graphe (voir Figure 5)), ce problème satisfait les conditions de jonction de type Kirchhoff. Pendant ce temps, dans chaque cylindre Π (e) ε (la définition du cylindre Π (e) ε se trouve également dans l'introduction de la thèse) nous avons une vitesse de type Poiseuille qui ne dépend que la variable transversale x (e) ′ et t, c'est-à-dire ne dépend pas de la dernière composante de l'espace. On multiplie alors la vitesse et la pression de type Poiseuille par une fonction troncature, nulle sur un voisinage diamètre O(ε) des jonctions et égale à 1 en dehors d'un ce voisinage O(ε). Cependant, cette multiplication provoque un grand résidu dans le second membre du système de Navier-Stokes. Le support du résidu appartient au même voisinage de diamètre O(ε). Pour compenser ces erreurs, un correcteur de couche limite est introduit. Les correcteurs sont des solutions du système de Stokes qui sont résolues dans un domaine composée des cylindres à sorties infinies.Les développements asymptotiques du vecteur vitesse et de la pression ainsi construites ont les expressions suivantes :v (J) (x, t) = t), où y = x (e)ε , r est le maximum des diamètres des sections transverses des cylindres, 0⩽ ζ(τ ) ⩽ 1 est une fonction-troncature régulière, et ζ(τ ) = 0 pour τ ⩽ 1/3, et ζ(τ ) = 1 pour τ ⩾ 1/3. Le couple (V [BLO l ] j (y, t), P [BLO l ] j (y, t))décrit le vecteur de vitesse et la pression dans les couches limites. Ils sont trouvés en résolvant le système de Stokes périodique en temps dans des cylindres semi-infinis. Le terme V (e i ) j (y (e) ′ , t) décrit la vitesse du type de Définition. Le champ vectoriel solénoïdal périodique en temps u = vu(J) est appelé la solution faible lorsque u ∈ L 2 per (0, 2π; W 2,2 (B ε )), u t ∈ L 2 per (0, 2π; L 2 (B ε )), satisfait la condition aux limites u(x, t)| ∂Bε = 0 et l'identité intégrale Bε 1 ε β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) η dx, ∀η ∈ H(B ε ), avec f (J) 1est le reste qu'on obtient en substituant u (J) dans Navier-Stokes. L'existence et l'unicité de la solution faible u découle du théorème 2. Lorsque n = 2, la solution u satisfait les estimations, que nous formulerons sous la forme d'un théorème. Soit n = 2, β = 0, 2. Alors les estimations suivantes ont lieu : sup t∈[0, 2π] ∥u( • , t)∥ 2 L 2 (Bε) + ε β 2π Bε |∇u| 2 dx dt ⩽ cε 2J-2+β , sup t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π 0 Bε |u t | 2 dx dt + ε β 2π 0 Bε |∇ 2 u| 2 dx dt ⩽ cε 2J-4+β .

Bε 1 ε 1 •

 11 β u t • η + ν∇u : ∇η -((u + u (J) ) • ∇)η • u -(u • ∇)η • u (J) η dx, ∀η η η ∈ W 1,2 (B ε ).Alors, si J ⩾ 2, alors l'estimation est valide 2π 0 Bε |q| 2 dx dt ⩽ cε 2J-4-β .
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Lemma 2.1.9. (Agmon's inequality, n=2) Let

  

	). The inequality
	(2.15) follows from (2.14), (2.1) and (2.9).

  ∈ C 2 , and as a basis we shall use the eigenfunctions of the Stokes operator.

	Multiplying (4.11) by λ k γ	(N )
	Bε	

.14) 

Estimates (4.13) and

(4.14) 

are valid for Galerkin approximations constructed using an arbitrary basis and for arbitrary bounded Lipschitz domains. In order to estimate the higher derivatives of u, we have to assume that ∂B ε k (t) and summing from k = 1 to k = N , we obtain

  ) ∂p 0 ∂x

			(e)	(x (e)
			n
				2 per (0, 2π) find V ∈ L 2 per (0, 2π; W 1,2 (σ (e) ))
	with	∂V ∂t	∈ L 2 per (0, 2π; L

n , t) =0, x (e) n ∈(0, |e|), ∀e=e j , j =1, . . . , M,

e:O l ∈e L (e) ∂p 0 ∂x (e) n (0, t) = 0, l =1, . . . , N 1 , -L (e) ∂p 0 ∂x (e) n (0, t) = Ψ l (t), l =N 1 +1, . . . , N,

(4.43) hold. Here Ψ l (t) = γ l g l • n dS. Operator L (e) relates the pressure slope S and the flux H in an infinite cylindrical pipe with section σ (e) . Namely, consider the following periodic in time boundary value problem for the heat equation: for given S ∈ L 2 (σ (e) )) such that

  1,2 (B ε )). Since the support of the function

	∇ζ	|x -O l | |e| min	belongs to the middle third part (between the planes
	x	(e) n =	1 3	|e| min and x (e) n = |e| -	1 3	|e| min ) of every cylinder, there hold the
	relations	
						∥h

  then the following estimate Let us prove the existence of the pressure q and the estimate (4.56) for it. Consider the linear functional

	Proof. The estimates (4.53) and (4.54) follow from (4.25), (4.26) and
	(4.51).	
	2π	
	|q| 2 dx dt ⩽ cε 2J-4-β	(4.56)
	0 Bε	
	holds.	

  1,2 γ (B ε ) the inner product [v, η] =

	∇v : ∇η dx corre-
	Bε
	sponding to the Dirichlet norm. Using Hölder inequality and Lemmas
	2.1.1, 2.1.6 we derive the estimates
	Bε

  Grafo, kuris turi tris mazgus O 1 , O 2 , O 3 , penkias viršūnes O 4 , O 5 , O 6 , O 7 , O 3 ir septynias kraštines e 1 , . . . , e 7 pavyzdys pateiktas (1) Nagrinėjamos Stokso bei Navjė ir Stokso sistemos skirtingose srityse.

	kraujo tekėjimą širdyje ar kituose vidaus organuose. O5 e 3 laiko atžvilgiu. Šie atvejai aprašo smulkias ir labai smulkias kraujagysles, Disertacijos tikslai analizuojant laiko atžvilgiu periodinę Stokso sistemą su nehomogenine
	Stokso bei Navjė ir Stokso lygtys griežtai matematiškai nagrinėjamos nuo XX a. pradžios. Per pastaruosius metus pasiektas reikšmingas postūmis sprendžiant Lerė problemą [45], tačiau nepaisant didelio susi-domėjimo ir pastangu ˛, daugybė klausimu ˛susijusiu ˛su šiomis lygtimis, O4 O1 O2 O6 O7 e 1 e 2 tokias kaip arteriolės ir kapiliarai. kraštine sąlyga srityje su išėjimu i ˛begalybę. Tuo tarpu, ketvirtame ir e 4 Mūsu ˛tikslas yra gauti rezultatus, kurie gali būti taikomi modeliuo-jant kraujotakos sistemas. Norint sumažinti skaičiavimo kaštus ir gauti Disertacijoje nagrinėjamos laiko atžvilgiu periodinės Stokso bei Navjė penktame skyriuose išnagrinėtos laiko atžvilgiu periodinė Navjė ir Stokso ∂B ε ir Stokso sistemos, taip pat, stacionarioji Navjė ir Stokso sistema skir-sistema su nehomogenine kraštine sąlyga bei stacionarioji Navjė ir Stokso e 5 e 6 reikiamą tikslumą, kompiuterinėje simuliacijoje reikia naudoti hibridinės tingose srityse. Pradedama nuo periodinės pagal laiką Stokso sistemos sistema su duotu Bernulio slėgiu cilindrinėje struktūroje. Disertacijos B ε
	vis dar lieka atviri. Disertacijoje netiesinės Navjė ir Stokso sistemos nagrinėjimas yra pradedamas nuo tiesinės jos versijos, t.y. Stokso sistemos nagrinėjimo. Pirmiausia nagrinėjama laiko atžvilgiu periodinė Stokso sistema, srity-O3 dimensijos modelius. Kertinis žingsnis, leidžiantis kurti tokius mode-nagrinėjimo srityje su išėjimu i ˛begalybę (žr. 2 pav.). Vėliau analizuoja-pabaigoje pateikiamos išvados ir naudotos literatūros sąrašas. e 7 ma laiko atžvilgiu periodinė bei stacionarioji Navjė ir Stokso sistemos lius, yra sprendinio asimptotinio skleidinio konstravimas. Pagrindinis O8 1 pav. -Cilindrinės struktūros grafas asimptotinio skleidinio narys priklauso nuo uždavinio ant grafo sprendi-nio. Toks uždavinys, kuriuo remiasi asimptotinio skleidinio formavimas cilindrinėje struktūroje (žr. 4. 3 pav.). Mūsu ˛siekis -išnagrinėjus šiuos uždavinius, gauti rezultatus, kurie būtu ˛taikomi kuriant supaprastintus Disertacijoje gautu ˛rezultatu ˛apžvalga
	je su išėjimu i ˛begalybę [29]. Tačiau siekiant gauti rezultatus, kurie aprašytu ˛kraujotakos sistemas Stokso sistema nėra pakankama, be to, vietose, kuriose vienmatis modelis yra netikslus (pavyzdžiui, kraujagysliu įšsišakojime). kraujotakos sistemos modelius aprašančius kraujo tekėjimą smulkiose cilindrinėse struktūrose, pirmą kartą buvo pasiūlytas G. Panasenko ir K. Pilecko [68, 72] straipsniuose. Šioje disertacijoje asimptotinis sklei-Tiesinė Stokso sistema (S.1) nagrinėjama dvimatėje srityje Ω, kuri turi kraujagyslėse. Šios sistemos buvo nagrinėjamos tokiais etapais: 3 pav. -Sritis B ε
	Stokso bei Navjė ir Stokso lygtys, aprašančios klampaus nespūdaus sritis su išėjimu i ˛begalybę neaprašo kraujagysliu ˛tinklo struktūros. Dėl Šis metodas pirmą kartą buvo pasiūlytas G. Panasenko dinys konstruojamas remiantis G. Panasenko ir K. Pilecko [68, 72] bei -i ˛rodomas laiko atžvilgiu periodinio Stokso uždavinio apibendrin-išėjimą i ˛begalybę. Srities kraštas yra sudarytas iš skirtingu ˛komponenčiu ˛,
	skysčio tekėjimą, yra nagrinėjamos sprendžiant i ˛vairius hidrodinamikos šiu ˛priežasčiu ˛, toliau disertacijoje nagrinėjama Navjė ir Stokso sistema 1998 metais sprendžiant stacionarią Navjė ir Stokso lygti ˛[65, 66]. Vėliau E. Marušič-Paloka [55] straipsniuose gautais rezultatais, pritaikant juos tojo sprendinio egzistavimas ir vienatis sukonstruojant specialu kraštinės kurios sudaro vidini ˛ir išorini ˛kraštus (žr. 2 pav.). σ 2
	uždavinius. Šios lygtys yra i ˛domios tiek teoriniu, tiek praktiniu požiūriu, dėl to, jos yra nagrinėjamos daugybėje mokslo bei technikos sričiu ˛. Šie cilindrinėje struktūroje, kurią sudaro plonu ˛vamzdeliu ˛sąjunga. Vienas iš disertacijos siekiniu ˛yra gauti rezultatus, kurie galėtu ˛būti 2015 metais, šis metodas G. Panasenko ir K. Pilecko darbuose buvo išplėtotas sprendžiant nestacionariąją Navjė ir Stokso sistemą cilindrinėje laiko atžvilgiu periodiniam uždaviniui. Laiko atžvilgiu periodinė Navjė ir Stokso sistema buvo išnagrinėta sąlygos pratęsimą, kai sritis turi išėjimą i ˛begalybę, -i ˛rodomas laiko atžvilgiu periodinės ir stacionariosios Navjė ir Γ
	tyrimai tampa ypač aktualūs šiuolaikiniame pasaulyje. Praktikoje i ˛vairiu sričiu pritaikomi modeliuojant kraujotakos sistemas. Šioms sistemoms i ˛takos struktūroje [70, 71]. Šioje disertacijoje, šis metodas yra pritaikomas su Dirichlė tipo kraštine sąlyga, tačiau sprendžiant hemodinamikos užda-Stokso sistemos sprendinio egzistavimas cilindrinėje struktūroje, σ 1 B ε
	˛specialistai dažnai susiduria su skysčio tekėjimo uždaviniais, ku-turi širdies plakimas, kuris matematiškai gali būti aprašomas, kaip laiko sprendžiant laiko atžvilgiu periodini ˛uždavini ˛. Tam, jog galėtume sujung-vinius, geriau yra naudoti Noimano tipo sąlygas. Jos yra artimesnės kai cilindro skersmuo yra mažas,
	riuos aprašo Navjė ir Stokso lygčiu ˛sistema. Plačios šiu ˛lygčiu ˛taikymo atžvilgiu periodinė funkcija, todėl yra nagrinėjami periodiniai uždavi-ti vienmati ˛ir trimati ˛modelius, mes konstruojame uždavinio sprendinio realioms sąlygoms, tačiau tokie uždaviniai nėra plačiai išnagrinėti. Dėl -sukonstruojamas asimptotinis apibendrintojo sprendinio sklei-
	galimybės leidžia plėtoti tarpdisciplininius tyrimus ir vystyti Navjė ir niai. Norėdami aprašyti kraujo tekėjimą skirtingose kraujagyslėse, mes asimptotini ˛skleidini ˛. Metodas, leidžiantis kurti hibridinės dimensijos šios priežasties, disertacijoje yra nagrinėjama stacionarioji Navjė ir Stok-dinys, kuris leidžia kurti hibridinės dimensijos modelius. Jis σ 3
	Stokso lygčiu ˛teoriją tiek teoriškai, tiek praktiškai. i ˛vedame parametrą ε ir nagrinėjame laiko atžvilgiu periodinę Navjė ir modeli ˛, yra vadinamas asimptotiniu dalinio srities išskaidymo metodu so sistema su Noimano tipo sąlygomis, t.y. su duotu Bernulio slėgiu pagrindžiamas tiek Navjė ir Stokso sistemai, kuri yra periodinė
	Viena iš sričiu ˛, kurioje reikalingas klampaus nespūdaus skysčio tekėjimo modeliavimas, yra medicina. Vienas iš šios disertacijos siekiniu yra gauti medicinoje pritaikomus rezultatus. Tyrimas buvo atliekamas 2017 -2021 dirbant jaunesniąja mokslo darbuotoja projekte "Klam-paus tekėjimo sudėtingos geometrijos srityse daugiaskaliai modeliai ". 1 Stokso sistemą cilindrinėje struktūroje. Kiekvieną cilindrinę struktūrą atitinka jos vienmatis grafas, kuris gaunamas cilindru ˛diametrą arti-nant i tu modeliu, kuris taip pat apjungia vienmačius ir trimačius modelius [15], sistemą srityje su išėjimu i ˛begalybę, tiek nagrinėjant laiko atžvilgiu pe-DD)) laiko atžvilgiu periodiniam Navjė ir Stokso uždaviniui. B ε sudarytoje iš keleto atskiru ˛vamzdeliu ˛(cilindru ˛). Tokia sritis va-˛nuli ˛. pav. Vienmatė struktūra yra paprasta, tačiau ji turi trūkumu ˛: šiuo metu (method of asymptotic partial decomposition of the domain (MAPDD)). Apibendrintas MAPDD metodas pradiniam ir kraštiniam uždaviniui, pasitelkiant kompiuterinę simuliaciją, buvo nagrinėjamas [5] straipsnyje. Skaitiniai tyrimai parodė, jog lyginant su A. Quarteroni komandos sukur-kraštuose, per kuriuos skystis gali i ˛tekėti arba ištekėti. Šiuo atveju, su-laiko atžvilgiu, tiek stacionariajai Navjė ir Stokso sistemai su 4 pav. -Sritis B ε duotu Bernulio slėgiu, konstruotas apibendrintojo sprendinio asimptotinis skleidinys, kai turime 2 pav. -Sritis Ω -išplėtojamas asimptotinis dalinis srities išskaidymo metodas (met-netiesinę kraštinę sąlygą. Visais atvejais, t.y., tiek nagrinėjant laiko atžvilgiu periodinę Stokso Netiesinės Navjė ir Stokso sistemos (S.2),(S.3) nagrinėjamos srityje hod of asymptotic partial decomposition of the domain (MAP-rodyta kitaip) galima rasti disertacijos 2 skyriuje.
	Disertacijoje nagrinėjamos lygtys, kurios leidžia kurti supaprastintus egzistuojantys vienmačiai modeliai ir kodai negali užtikrinti reikiamo tiks-MAPDD yra labiau tinkamas modeliuojant smulkias kraujagysles, tokias riodinę bei stacionariąją Navjė ir Stokso sistemas cilindrinėje struktūroje, dinama cilindrine struktūra. Struktūros sudarytos iš triju ˛vamzdeliu pavyzdžiai
	kraujotakos sistemos modelius neprarandant tikslumo. Gauti rezultatai lumo srityse, kuriose formuojasi trombai, yra stentai arba kraujagyslės kaip arteriolės. Tuo tarpu, A. Quarteroni komandos modelis tiksliau yra i ˛rodomas apibendrintu ˛ju ˛sprendiniu ˛egzistavimas ir vienatis. Be to, Disertacijos struktūra ir apimtis pateikiami 4, 3 paveikslėliuose.
	gali būti taikomi modeliuojant kraujo tekėjimą smulkiose kraujagyslėse, tokiose kaip arteriolės ir kapiliarai. Taip pat, šie rezultatai gali būti plėtojami kuriant sudėtingesnius modelius, kurie, pavyzdžiui, aprašytu 1. Šis projektas bendrai finansuotas iš Europos socialinio fondo (projekto Nr. 09.3.3-LMT-K-712-01-0012) pagal dotacijos sutarti ˛su Lietuvos mokslo taryba (LMTLT). išsišakoja. Tikslumo problemą galima išspręsti taikant trimati ˛modeli visai kraujotakos sistemai, tačiau gausime uždavini ˛, kurio sprendimas reikalaus labai daug kompiuteriu ˛resursu ˛. Todėl trimatis modelis gali būti taikomas tik tam tikrose kraujotakos sistemos dalyse. Dėl šiu ˛priežasčiu ˛, disertacijoje yra siūlomas hibridinis modelis, kuris sujungia vienmati ˛ir trimati ˛modelius, kai trimatis modelis taikomas tik tam tikrose struktūros aprašo stambias kraujagysles, tokias kaip arterijos. Norėdami aprašyti skirtingu ˛tipu ˛smulkias kraujagysles, disertacijoje naudojame dvi skirtingas skales. Tam, prie greičio vektoriaus išvestinės laiko atžvilgiu, i Navjė ir Stokso lygčiu ˛atveju, sukonstruojamas apibendrintojo sprendinio Disertacijoje i ˛rodomas šiu ˛sistemu ˛apibendrintu ˛ju ˛sprendiniu ˛egzista-Disertacijos tekstą sudaro penki skyriai, išvados ir literatūros sąrašas. asimptotinis skleidinys, kuris leidžia kurti hibridinės dimensijos modelius, Pirmasis skyrius yra i vimas ir vienatis. Navjė ir Stokso sistemos atveju, taip pat, sukonstruo-˛vadinis. Jame apžvelgiama nagrinėjamos problemos mažinančiais modelio skaičiavimo kaštus. jami asimptotiniai skleidiniai, kurie leidžia kurti hibridinės dimensijos istorija ir aktualumas bei sritys, kuriose nagrinėjamos sistemos. Antrame ˛vedame mažą parametrą ε, kuris yra lygus kraujagyslės modelius. skyriuje pateikiami pagrindiniai žymėjimai ir pagalbiniai rezultatai, kurie diametro ir ilgio santykiui. Nagrinėjame du skirtingus atvejus: ε 0 ir Žemiau bus pateikiami pagrindiniai rezultatai gauti nagrinėjant šiuos naudojami disertacijoje. Trečiame skyriuje pateikiami rezultatai gauti ε -2 . Parametras ε -2 generuoja dideli ˛koeficientą prie greičio išvestinės uždavinius. Visu ˛ten naudojamu ˛funkciju ˛erdviu ˛apibrėžimus (jei nenu-

  L 2 (B ε )) ir ∥f ∥ L 2 (Bε) ⩽ c 0 ,čia konstanta c 0 yra pakankamai maža ir nepriklauso nuo ε.

	sup Π ε apibrėžimą taip pat galima rasti disertacijos i ∥∇u( • , t)∥ 2 L 2 (Bε) + 2π |u t (x, t)| 2 dx dt + ε β ˛vade) turime Puazeilio 2π |∇ 2 u(x, t)| 2 dx dt tipo greiti ˛, kuris priklauso tik nuo x (e) ′ , t.y. nepriklauso nuo paskutinės t∈[0,2π] 0 Bε 0 Bε 2π erdvės komponentės. Tuomet dauginame Puazeilio tipo greiti ˛ir slėgi ˛iš
	⩽ cε β nupjautinės funkcijos ζ, kuri lygi vienam viduriniame cilindru ˛trečdalyje A 1 (t) dt,
	0 ir nykstamai mažėja mazgu ˛O(ε) aplinkoje. Tačiau ši sandauga Navjė ir
	čia konstanta c nepriklauso nuo ε, β = 0, 2. Stokso lygties dešinėje pusėje generuoja paklaidas, kuriu ˛atrama priklauso
	3 teorema. (Theorem 4.2.3) Tegul B ε ⊂ R 3 , ∂B ε ∈ C 2 . Tarkime, jog tai pačiai O(ε) aplinkai. Šiu ˛paklaidu ˛kompensavimui i ˛vedamas pasie-
	pratęsimo funkcija g ∈ C [ J+1 2 ]+1 (0, 2π; W 2,2 (B ε )) bei tenkina (S.5), (S.6) nio sluoksniu ˛korektorius. Korektoriai yra Stokso sistemos sprendiniai,
	ir (S.7) sąlygas. Be to, f ∈ L 2 kuri sprendžiama struktūroje sudarytoje iš cilindru ˛, turinčiu ˛begalinius per (0, 2π; Tuomet pakankamai išėjimus.
	mažam ε (S.8) variacinis uždavinys turi vieninteli ˛sprendini ˛u, kuris
	tenkina i ˛verti sup					
				2π			2π
	t∈[0,2π]	∥u( • , t)∥ 2 L 2 (Bε) + ε β	0	∥∇u( • , t)∥ 2 L 2 (Bε) dt ⩽ cε 2+β	0	A 1 (t) dt,	8)
	kiekvienam solenoidiniam vektoriniam laukui η ∈ H(B ε ). Čia g yra
	pratęsimas tenkinantis (S.7) sąlygas, o f laiko atžvilgiu periodinė funkcija, 2π
	tokia, kad f ∈ L 2 per (0, 2π; L 2 (B ε )). Pažymėkime, kad sup 0 Bε t∈[0,2π] ∥∇u( • , t)∥ 2 L 2 (Bε) + |u t (x, t)| 2 dx dt
		+ε β	A 1 (t) = ∥f ( • , t)∥ 2 L 2 (Bε) . ∥∇ 2 u( • , t)∥ 2 2π L 2 (Bε) dt ⩽ cε β	2π A 1 (t) dt.	(S.9)
	Laiko atžvilgiu periodinės Navjė ir Stokso sistemos (S.2) apibend-0 0
	rintojo sprendinio egzistavimas ir vienatis dvimačiu ir triamčiu atvejais
	suformuluoti žemiau esančiose teoremose. Gautam apibendrintajam sprendiniui konstruojamas asimptotinis
	skleidinys, kuris leidžia kurti hibridinės dimensijos modelius. Šis skleidi-
	2 teorema. (Theorem 4.2.1) Tegul B ε ⊂ R 2 , ∂B ε ∈ C 2 . Tarkime, jog nys konstruojamas remiantis matematine indukcija. Pirmiausia sprendžia-
	pratęsimo funkcija g ∈ C [ J+1 2 ]+1 (0, 2π; W 2,2 (B ε )) bei tenkina (S.5), (S.6) me laiko atžvilgiu periodini ˛uždavini ˛ant grafo ir randame makroskopini slėgi
	ir (S.7) sąlygas. Be to, f ∈ L 2 per (0, 2π; L 2 (B ε )) ir tenkina (S.9) sąlygą. ˛, kuris yra tiesinė, laiko atžvilgiu periodinė funkcija ant kiekvienos
	Tuomet pakankamai mažam ε (S.8) variacinis uždavinys turi vieninteli sprendini grafo kraštinės bei priklauso tik nuo paskutinės lokalios koordinačiu sistemos
	˛u, kuris tenkina i ˛verčius komponentės x (e) n (plačiau apie skirtingas koordinačiu ˛sistemas
	2π galima paskaityti disertacijos i ˛vade). Mazguose (taškuose, kuriuose susi-2π
	sup t∈[0,2π]	∥u( • , t)∥ 2 L 2 (Bε) + ε β	0 Bε	|∇u(x, t)| 2 dx dt ⩽ cε 2+β	0	A 1 (t) dt, (e) ε (cilindro
						135	

Jeigu c 0 yra pakankamai maža konstanta (neprilkauso nuo ε) tuo atveju, kai β = 0 arba β = 2, taip pat galioja i ˛vertis kerta kelios grafo kraštinės (žr. 1 pav.)), šis uždavinys tenkina Kirhofo tipo susikirtimo sąlygas. Tuo tarpu kiekviename cilindre Π

  ) ∂p 0 ∂x

				(e)	(x (e) n , t) = 0, x (e) n ∈ (0, |e|), ∀e = e j , j = 1, . . . , M,
				n	
	-	e:O l ∈e	L (e) ∂p 0 n ∂x (e)	(0, t) = 0,	l =1, . . . , N 1 ,
		-L (e) ∂p 0 n ∂x (e)	(0, t) = Ψ l (t), l =N 1 +1, . . . , N,
	čia Ψ l (t) =	g l • n dS. Operatorius L (e) susieja slėgio krypties koeficientą
			γ l		
	S ir srautą H begaliniame cilindre, kurio skerspjūvis yra σ (e) . Operato-
	riaus L (e) ieškome spendžiant laiko atžvilgiu periodinę šilumos laidumo
	lygti			

  ) yra Bernulio slėgis, o p j atitinka konstantą c j /ε 2 .

	(S.10)
	N,
	čia Φ = (p + |v| 2 Apibr ėžimas. Stacionariosios Navjė ir Stokso sistemos (S.10) apibend-1 2
	rintuoju sprendiniu vadiname vektorini ˛lauką v ∈ J 1,2 γ (B ε ) kuris tenkina
	integralinę tapatybę
	ν
	Bε

Bε

∇v : ∇η dx +

  2 , laiko atžvilgiu periodinė Navjė ir Stokso sistema bei stacionarioji Navjė ir Stokso sistema su duotu Bernulio slėgiu. Rezultatai = (φ 1 (x, t), . . . , φ n (x, t)) est la vitesse donnée sur la frontière du domaine, ν > 0 représente la viscosité de la fluide. La condition Cette structure est une réunion des tubes cylindriques fins avec le rapport entre le diamètre de la section et la hauteur du cylindre égal à ε. Ce paramètre représente le rapport entre le diamètre d'un vaisseau et sa longueur. À chaque structure tubulaire correspond un graphe unidimensionnel, qui est obtenu en approchant le diamètre des tubes à zéro. Un exemple de graphe avec trois noeuds O 1 , O 2 , O 3 , cinq sommets O 4 , O 5 , O 6 , O 7 , O 3 et sept arêtes e 1 , . . . , e 7 est représenté à la figure (5). La structure unidimen-

	développant des modèles plus sophistiqués qui décrivent, par exemple, le
	flux sanguin dans le coeur ou d'autres organes internes.
	v(x, 0) = v(x, 2π) donne la périodicité temporelle (avec une période 2π) Les équations de Stokes et de Navier-Stokes est un sujet difficile et
	et les ouverts sur lesquels sont posés ces trois problèmes sont représentés important de mathématique. Des progrès significatifs ont été réalisés
	aux figures 6, 7 et 8. ces dernières années dans la résolution du problème de Leray [45], mais
	malgré un intérêt et des efforts considérables, de nombreuses questions
	Histoire et pertinence du problème scientifique liées à ces équations restent ouvertes.
	Dans la thèse, l'analyse du système non-linéaire de Navier-Stokes
	Les équations de Stokes et de Navier-Stokes décrivant l'écoulement commence par sa version linéaire, i.e. par l'examen du système de Stokes.
	d'un fluide visqueux incompressible sont prises en compte dans la résolu-Considérons d'abord le système de Stokes périodique en temps, dans le
	tion de divers problèmes hydrodynamiques. Ces équations sont intéres-domaine avec la sortie vers l'infini [29]. Cependant, le système de Stokes
	santes à la fois du point de vu théorique et pratique, c'est pourquoi elles
	sont considérées dans de nombreux domaines de la science et de la techno-
	logie. Ces études deviennent particulièrement pertinentes dans le monde
	moderne. En pratique, les praticiens de divers domaines sont souvent
	confrontés aux problèmes d'écoulement de fluide décrits par le système
	des équations de Navier-Stokes. Le large éventail des applications de ces
	équations permet de développer des recherches interdisciplinaires et de
	développer la théorie des équations de Navier-Stokes tant sur le plan
	théorique que pratique.
	Une application importante de la modélisation de l'écoulement du
	fluide visqueux incompressible est la médecine. L'un des objectifs de
	cette thèse est d'obtenir des résultats médicalement applicables. L'étude
	a été réalisée en 2017-2021 en tant que chercheur junior dans le projet
	"Multiscale Modeling for Viscous Flows in Domains with Complex Geo-
	gauti nagrinėjant Navjė ir Stokso sistemą cilindrinėje struktūroje, gali metry". 3 La thèse traite les équations qui permettent le développement
	būti panaudojami kuriant supaprastintą hibridinės dimensijos modeli ˛, des modèles simplifiés du système circulatoire sans perte de précision.
	aprašanti ˛kraujo tekėjimą smulkiose ir labai smulkiose kraujagyslėse. Les résultats obtenus peuvent être appliqués à la modélisation du flux
	Stacionarioji Navjė ir Stokso sistema su duotu Bernulio slėgiu, gali sanguin dans les petits vaisseaux sanguins tels que les artérioles et les
	būti toliau nagrinėjama sprendžiant laiko atžvilgiu periodini ˛uždavini ˛ir capillaires. De plus, ces résultats peuvent être développés davantage en
	kuriant realistiškesni ˛kraujotakos modeli ˛.

φ = φ(x, t) n'est pas suffisant pour obtenir des résultats décrivant les systèmes circulatoires, et le domaine à la sortie infinie ne décrit pas la structure du réseau vasculaire. Pour ces raisons, le système de Navier-Stokes dans une structure tubulaire constituée d'une union de tubes minces est examiné plus en détail dans la thèse. L'un des objectifs de la thèse est d'obtenir des résultats pouvant être appliqués à la modélisation des systèmes circulatoires. Ces systèmes sont affectés par le rythme cardiaque, qui peut-être décrit mathématiquement comme une fonction périodique en temps, et donc des problèmes périodiques sont pris en compte. Pour décrire le flux sanguin dans différents vaisseaux sanguins, nous introduisons le paramètre ε et considérons le système de Navier-Stokes périodique en temps dans une structure tubulaire. sionnelle est simple, mais elle présente des inconvénients : les modèles et codes unidimensionnels existants actuellement ne peuvent pas fournir la précision requise dans les zones où des thrombus se forment, des stents

  [START_REF] Galdi | On time-periodic flow of a viscous liquid past a moving cylinder Archive for Rational Mechanics and Analysis[END_REF] pour chaque champ vectoriel solénoïdal η ∈ W 1,2 (B ε ). Ici g est une extension satisfaisant les conditions de (R.18), et f est une fonction 2π-périodique en temps telle que f ∈ L 2 per (0, 2π; L 2 (B ε )). DéfinissonsA 1 (t) = ∥f ( • , t)∥ 2 L 2 (Bε) . (R.20) L'existence et l'unicité de la solution faible du système de Navier-Stokes périodique en temps (R.13) dans le cas bidimensionnel sont formulées dans le théorème ci-dessous (un théorème tridimensionnel similaire peut-être trouvé au chapitre 4, théorème 4.2.3 ). Théorème 2. (Theorem 4.2.1) Soit B ε ⊂ R 2 , ∂B ε ∈ C 2 . Supposons que l'extension g ∈ C [ J+1 2 ]+1 (0, 2π; W 2,2 (B ε )) satisfait (R.16), (R.17) et (R.18). De plus, supposons que f ∈ L 2 per (0, 2π; L 2 (B ε )) et satisfait la condition (R.20). Alors pour tout ε suffisamment petit le problème (R.19) a la seule solution u qui satisfait les estimations

						2π	2π
	sup t∈[0,2π]	∥u( • , t)∥ 2 L 2 (Bε) + ε β	0 Bε	|∇u(x, t)| 2 dx dt ⩽ cε 2+β	0	A 1 (t) dt,
				2π		
	sup t∈[0,2π]	∥∇u( • , t)∥ 2 L 2 (Bε) +	0 Bε	|u

t (x, t)| 2 dx dt + ε β 2π 0 Bε |∇ 2 u(x, t)| 2 dx dt ⩽ cε β
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d 0 , τ ⩽ a 2 2 d 0 , t, τ ⩾ a 2 d 0 , (3.3)

(inn) # , x ∈ Γ 1 , 0, x ∈ ∂Ω 0 \ Γ 1 ,

dx

Laiko atžvilgiu periodinė Stokso sistema srityje su išėjimu i ˛begalybę, kai kraštinė sąlyga priklauso ne tik nuo erdvės kintamu ˛ju ˛, bet ir nuo laiko, buvo apibendrinta K. Kaulakytės ir K. Pilecko straipsnyje[START_REF] Kaulakytė | Nonhomogeneous boundary value problem for the time periodic linearized Navier-Stokes system in a domain with outlet to infinity[END_REF].
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Here c l are given constants, the local coordinates x (e) are redefined so that all of them have the same origin O l . So, p 0 is a continuous function on the graph. Indeed, the last condition of this problem means that the values of the function p 0 are the same for the all edges e of the bundle B l when the local variables x (e) n = 0. Note that applying the same Lax-Milgram lemma arguments as in the first part of [START_REF] Panasenko | Flows in tube structures: Equation on the graph[END_REF] one can prove the existence and uniqueness of the solution to this problem.

Solving the above conductivity problem, we define for every edge e the constants s (e) 0 (y (e)′ ), V (e) 0 (y (e)′ ) = P (e) t (0, . . . , 0, V (e) 0 ) t (y (e)′ ). (5.27) For l = 1, . . . , N 1 the boundary layer problem for (V ) 2 dy = 0.

(5.32)

Consider now the conductivity problem of rank 1 on the graph for the function p 1 : .

Suppose that all terms of expansion (5.19)-(5.24) corresponding to the rank less or equal to j -1 are known, and that the macroscopic pressure on the graph p j is known as well. Let us describe the passage from the rank j -1 to the rank j.

Step 1. As the macroscopic pressure on the graph p j is known, define for every edge e constants s (5.34)

Step 2. The boundary layer solution is a pair

solving the following Stokes system in Ω l , l = 1, . . . , N 1 :

| ∂Ω l = 0, j = 0, . . . , J, 

)

j (y (e)′ , t) .

(5.38)

Here the sum e:O l ∈e is taken over all edges e having ends in the node O l , the terms of the sum are extended by zero out of cylinders Π (e) ε and by convention, the terms with the negative subscripts j are equal to zero.

First, we find the couple V

which is the solution to the same problem (5.35) without the last term in the definition of (5.36)). It can be proved by induction, using the results of Theorems 3.1 and Corollary 3.1 [START_REF] Panasenko | Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without 123 boundary-layer-in-time[END_REF], that V [BLO l ] j exponentially tends to zero as |y| → +∞, while the corresponding pressure function P

stabilizes in outlets to infinity to some constants a

in the sense of (5.32); these constants may be different for different outlets. Since the pressure function is defined up to an additive constant, we can fix the limit constant equal to zero for the outlet corresponding to the selected edge e s .

Then we solve the problems in half-cylinders Ω l , l = N 1 + 1, . . . , N :

where ∂V

• n ∂n is fictive and j = 0, . . . , J.

(y (e) ) = 0, (5.40)

(5.41)

The pressure here P

.

If j = J then the right-hand side of the boundary condition is replaced by

Step 3. Solve the conductivity problem on the graph for the function

j+1 (j < J): 

This step finalizes the passage from j to j + 1.

Santrauka Tyrimo objektas

Disertacijoje nagrinėjami šie uždaviniai: laiko atžvilgiu periodinė Stokso sistema su nehomogenine kraštine sąlyga

laiko atžvilgiu periodinė Navjė ir Stokso sistema su nehomogenine kraštine sąlyga

bei stacionarioji Navjė ir Stokso sistema su duotu Bernulio slėgiu

Résumé Objet de la recherche

Dans la thèse nous examinons les problèmes suivants : l'équation de Stokes 2π périodique en temps

l'équation de Navier-Stokes 2π-périodique en temps 

< +∞, alors le système (R.12)

admet une unique solution faible v = A + u, qui satisfait l'estimation :

Poiseuille, et le terme p

x

j (t) -pression macroscopique. Ces termes sont trouvés en résolvant un système sur le graphe périodique en temps. Étant donné que le développement asymptotique est construit par récurrence sur j, dans l'étape initiale, lorsque j = 0, nous recherchons la fonction p 0 ∈ L 2 per (0, 2π; W 1,2 (B)), qui satisfait le système

L (e) ∂p 0 ∂x (e) n (x (e) n , t) = 0, x (e) n ∈ (0, |e|), ∀e = e j , j = 1, . . . , M,

g l • n dS. L'opérateur L (e) relie le coefficient de direction de la pression S et le débit H dans un cylindre infini de section transversale σ (e) . On cherche l'opérateur L (e) en résolvant l'équation de la chaleur 2π-periodique en temps : pour un donné S ∈ L 2 per (0, 2π) nous recherchons V ∈ L 2 per (0, 2π; W

)) tel que

∂V ∂t (y (e) ′ , t) -ν∆ ′ y (e) ′ V(y (e) ′ , t) = S(t), y (e) ′ ∈ σ (e) , t > 0, V(y (e) ′ , t)| ∂σ (e) = 0, V(y (e) ′ , t) = V(y (e) ′ , t + 2π).

Ensuite, l'expression de l'opérateur linéaire L (e) est la suivante

V(y (e) ′ , t) dy (e) ′ = H(t).

Plus d'informations sur les étapes de construction du développement asymptotique peuvent être trouvées dans le chapitre 4 de la thèse.

Pour justifier les développements asymptotiques, nous considérons la solution faible (v, p) du système de Navier-Stokes périodique en temps (R.13) sous la forme suivante : v = u + u (J) = u + v (J) + w (J) , p = q + p (J) , où v (J) est l'approximation asymptotique de la solution d'ordre J, w (J) ∈ L 2 per (0, 2π; W 2,2 (B ε )∩ W 1,2 (B ε )) champ vectoriel tel que div w (J) = -h (j) = -div v (J) , et p (J) est l'approximation de la fonction de pression p. Alors

Considérons maintenant le système de Navier-Stokes stationnaire (R.14) dans la structure tubulaire B ε (voir figure 8) est réécrivons-le comme suit : 

Le théorème sur l'existence d'une solution faible est donné ci-dessous. 

ici la constante c ne dépend pas de ε.

Le développement asymptotique dans le cas stationnaire est construit de la même manière que précédemment. Le développement de la vitesse a la forme :

V [e,J] x (e) ′ ε

V [e,J] x (e) ′ ε

Ici, le premier terme inclut les sommets, le deuxième terme inclut les noeuds et le troisième terme compense les erreurs dans les couches limites.

L'approximation asymptotique de la fonction de pression aux sommets et aux noeuds acquiert les expressions appropriées :

x (e) n + a (e) -a (es) + a (es)

Semblable au système non-stationnaire de Navier-Stokes, les asymptotiques de la couche limite (V [BLO l ,J] , P [BLO l ,J] ) se trouvent par la résolution du système stationnaire de Stokes. Pour le terme initial initial (quand j = 0) le système ressemble à ceci :

Les termes V [e,J] et p j = -s (e) x (e) n + a (e) sont trouvés en résolvant le problème sur le graphe. L'algorithme pour leur détection peut-être trouvé dans la section 5.3 de la thèse. Dans l'étape initiale, la fonction p 0 est trouvée à partir du problème : La thèse (voir le chapitre 5) présente l'algorithme et prouve l'estimation de l'erreur. Soit v = u + v (J) + w (J) , avec v (J) l'approximation asymptotique d'ordre J de la vitesse, et w (J) ∈ W 1,2 (B ε ) un champ vectoriel tel que div w (J) = -h (j) = -div v (J) .

Théorème 5. La relation suivante a lieu :

∥v -(v (J) + w (J) )∥ W 1,2 (Bε) = O(ε J+(n-1)/2 ).

Conclusion

Les problèmes suivants ont été examinés dans la thèse : un système de Stokes périodique en temps avec une condition aux limites inhomogène (dépendant uniquement de la variable d'espace). 4 Les résultats obtenus en examinant le système Navier-Stokes dans une structure tubulaire peuvent être utilisés pour développer un modèle de dimension hybride simplifié décrivant le flux sanguin dans les petits et très petits vaisseaux.

L'étude du système stationnaire de Navier-Stokes avec une pression de Bernoulli donnée à l'entrée et à la sortie de la structure tubulaire permet simplifier l'implémentation numérique de la méthode de décomposition asymptotique partielle de domaine.

4. Les résultats ont été généralisés dans l'article de K. Kaulakytė et K. Pileckas [START_REF] Kaulakytė | Nonhomogeneous boundary value problem for the time periodic linearized Navier-Stokes system in a domain with outlet to infinity[END_REF].
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