Marie Brière

Yannig Goude

Xavier Warin

Emma Laura

Sarah Nathan

Maxime... Margaux B Enzo

Keywords: Modèle Génératif Profond, Réseaux Génératifs Antagonistes, Apprentissage par Renforcement, Couverture Profonde, Agrégation d'experts, Gestion Deep Generative Model, Generative Adversarial Networks, Reinforcement Learning, Deep Hedging, Aggregation of Experts, Energy Management, Energy Markets. v

Génération de séries temporelles et apprentissage par renforcement

Résumé. Deux principaux sujets sont explorés dans cette thèse. Relativement indépendants à première vue, ils convergent tous deux dans la quête d'une modélisation robuste basée sur les données pour les marchés de l'énergie et la consommation électrique.

Le premier objet de ce travail concerne la génération de séries temporelles réalistes avec des modèles d'apprentissage automatique. La simulation de scénarios crédibles est primordiale dans de nombreux domaines tels que la physique, la finance ou ici le secteur de l'énergie. Capturer la dépendance temporelle est un élément clé pour ces générateurs mais reste un problème ouvert. Les différentes solutions qui ont émergé depuis ces dernières années sont passées en revue. Nous décrivons également les défis que le cadre temporel soulève, comme la conception de métriques d'évaluation pertinentes. Nous introduisons par la suite un modèle combinant une formulation par équation différentielle stochastique et une fonction de perte conditionnelle sur les distributions de probabilité à chaque pas de temps. Le générateur bénéficie de garanties théoriques sur l'erreur d'approximation et apprend mieux la structure temporelle que les méthodes de l'étatde-l'art. Enfin, une application aux marchés de commodités est présentée, nous amenant vers une nouvelle métrique d'évaluation opérationnelle pour évaluer la fidélité et l'utilité des séries synthétiques. optimale. Cette approche permet de répondre à certains problèmes classiques en finance, mais aussi d'aborder la transition énergétiques avec de nouveaux outils, complémentaires des méthodes probabilistes.

Le second objectif de cette thèse cherche à apprendre les décisions optimales pour une tâche donnée de manière flexible et robuste. Le développement de modèles à la fois optimaux et suffisamment généraux sur des données inconnues est crucial dans de nombreuses applications, notamment celles du marché de l'énergie où les prix de l'électricité dépendent largement de phénomènes externes, comme la météo. Cependant, en pratique, ces modèles sont entravés par les changements de régime de l'environnement et les décisions doivent s'adapter en conséquence. Nous mettons en évidence les relations étroites entre l'apprentissage par renforcement et les problèmes classiques d'économie et de finance. Ensuite, nous proposons de répondre à la difficulté d'avoir à choisir entre plusieurs stratégies d'investissement, en utilisant l'agrégation d'experts en ligne. Finalement, une méthode résolvant une famille d'équations différentielles partielles avec un seul apprentissage est introduite, capable de se généraliser à des modèles inconnus. Le modèle apprend un opérateur de fonctions caractérisant le processus sous-jacent ou les options dans un problème de couverture de risque.

Nous concluons cette thèse par une approche entièrement non-supervisée pour la gestion des risques, de la génération de facteurs de risques à l'apprentissage d'une politique Publications et travaux en cours relatifs à cette thèse Chapitre 1

Introduction (en français)

Cette thèse vise à fournir des outils scientifiques pour la génération de séries temporelles et la conception de politiques optimales robustes, appuyées par des méthodes d'apprentissage automatique. Ces travaux sont motivés par des applications aux marchés de l'énergie et le besoin de gérer l'impact de l'intégration croissante des énergies renouvelables intermittentes sur les prix.

Contexte

Enjeux

Ce début du XXIème siècle est essentiellement marqué par la prise de conscience de l'impact des activités humaines sur l'environnement. Parmi elles, les émissions anthropiques de gaz à effet de serre à l'origine du dérèglement climatique actuel prennent notamment racine dans la combustion d'énergies fossiles. Face à l'enjeu, plusieurs politiques pour limiter ces émissions sont possibles, à commencer par la diminution de notre production et consommation de manière générale, mais aussi l'adoption de solutions moins polluantes.

Un important effort est consacré à la production d'énergie par des moyens qui ont moins recours aux énergies fossiles. En particulier, l'utilisation de l'électricité comme vecteur d'énergie s'inscrit comme un moyen de limiter notre impact en remplaçant de manière astucieuse les systèmes les plus émetteurs (à condition que la construction des alternatives ne soit pas plus polluante). Cependant, l'augmentation croissante des énergies renouvelables dans le mix énergétique ou encore l'auto-consommation, c'est-à-dire consommer l'énergie que l'on produit (avec des panneaux photovoltaïques par exemple), change les habitudes des producteurs et fournisseurs d'électricité. Que ce soit dans les transport ou le chauffage, l'électrification des usages peut contribuer à réduire nos émissions mais impose une demande en électricité plus importante et volatile. L'incitation à une meilleure consommation énergétique à travers une politique de prix dédiée peut également diminuer notre pollution [START_REF] Élie | Mean-field moral hazard for optimal energy demand response management[END_REF][START_REF] Brégère | Simulating tariff impact in electrical energy consumption profiles with conditional variational autoencoders[END_REF][START_REF] Brégère | Target tracking for contextual bandits: Application to demand side management[END_REF]. D'autres sources d'incertitudes accentuent la difficulté d'organiser la production ou de prévoir les prix de l'électricité. Le réchauffement climatique entraîne des répercussions concrètes sur le réseau électrique. Les sécheresses plus fréquentes et plus longues ou les vagues de grands froids influent sur la production et la distribution. L'utilisation grandissante d'outils numériques, accélérée par la crise sanitaire de 2020, modifie profondément nos habitudes de consommation, moins prévisibles et surtout toujours plus dépendantes de l'électricité.

La volonté de réduire nos émissions carbonées, mais aussi nos nouveaux comportements, rendent la demande en électricité plus élevée et plus aléatoire. Comment, alors, concilier électrification et incertitudes ? Cette problématique soulève des défis de modélisation.

Motivations

Par rapport aux marchés financiers classiques, ceux de l'électricité ont des spécificités qui nécessitent une modélisation singulière.

Tout d'abord, à l'exception des barrages hydrauliques, il existe encore aujourd'hui peu de solutions pour stocker l'électricité efficacement et durablement. Cela nécessite donc un équilibre offre-demande à chaque instant. Les marchés court-termes, par exemple spot et intraday, permettent d'ajuster l'équilibre entre les distributeurs et les fournisseurs, mais aussi de gérer les incertitudes liées aux productions intermittentes (solaire, éolien). Ces marchés n'existent pas pour d'autres commodités liées à l'énergie comme le gaz. Nous détaillons rapidement le marché spot qui sera utilisé par la suite. Le marché spot est un marché d'enchères, où le prix est défini le jour précédent la livraison en comparant les courbes d'offre et de demande par heure. Le prix de l'électricité sur ce marché a quelques particularités :

-une saisonnalité horaire, hebdomadaire et annuelle, fortement liée à la consommation électrique, -des sauts de prix, qui reviennent vite à leur valeur initiale et sont la plupart du temps dus à une demande anormalement haute (climatisation en cas de fortes chaleurs ou chauffage en vague de froid), -retour à la moyenne, les prix reviennent à un état d'équilibre, -prix négatifs, lors d'une forte production d'électricité, souvent induite par les énergies renouvelables, il est parfois plus rentable de payer pour que l'électricité soit consommée plutôt que de mettre à l'arrêt une centrale quelques heures. La Figure 1.1 illustre le prix spot électrique français de 2016 à 2020, mettant en évidence ces faits stylisés. D'autres marchés de l'énergie, comme les forwards ou futures, permettent quant à eux de couvrir les contrats à long terme et sont utilisés pour la planification de la production.

D'autre part, les prix de l'électricité dépendent des prix d'autres sources d'énergies. La production de l'électricité repose notamment sur le thermique à flamme comme le gaz ou le charbon, qui sont aussi des commodités échangées sur les marchés. Il existe donc une dépendance entre leurs prix et celui de l'électricité. Ces dépendances ont pu être étudiées dans la thèse [START_REF] Deschatre | Dependence modeling between continuous time stochastic processes: an application to electricity markets modeling and risk management[END_REF].

Enfin, la demande électrique dépend très largement de phénomènes physiques et des conditions météorologiques. Les températures basses en France font augmenter la consommation de chauffage et cela se répercute sur les prix de l'électricité. La production provenant des énergies renouvelables influe aussi sur les prix et génère un aléa physique supplémentaire par son intermittence. Quand le vent souffle fort en Allemagne, la production éolienne augmente et les prix de l'électricité baissent (jusqu'à devenir négatif quand le réseau surcharge). Afin de soutenir l'intégration croissante des énergies renouvelables, de récents travaux s'intéressent à modéliser leur impact sur les marchés du point de vue des producteurs [START_REF] Tinsi | Modeling and optimal strategies in short-term energy markets[END_REF].

Aux spécificités des marchés de l'électricité s'ajoutent les nouvelles habitudes de consommation qui augmentent la complexité à modéliser les marchés de l'énergie et la consommation électrique. Il est nécessaire de tenir en compte de nombreuses dépendances entre divers signaux aléatoires afin de prendre des décisions appropriées à chaque instant. L'apprentissage statistique permet de s'attaquer à ces problèmes en grande dimension et donc une modélisation conjointe des nombreux facteurs de risques.

Objet de la thèse

Les différentes perspectives qu'offrent l'apprentissage automatique ont largement motivé son appropriation dans le domaine de l'énergie. La plupart des pratiques usuelles de la gestion des risques se sont vues étendues grâce aux libertés qu'offrent ces outils, notamment leur flexibilité et leur capacité à monter en dimension. En particulier, deux thèmes de la gestion optimale d'un portefeuille d'actifs physiques ou financiers peuvent être entrepris sous ce prisme : la modélisation des facteurs de risques d'une part et le contrôle optimal d'autre part.

La modélisation des facteurs de risques intervient dans l'élaboration de stratégies de couverture, dans la gestion d'actifs ainsi que dans l'évaluation même des risques. Les modélisations adoptées aujourd'hui soulèvent cependant des interrogations. Premièrement, les hypothèses classiques (martingalité, normalité, markovianité) en contrôle stochastique qui permettent de calculer des couvertures optimales sont questionnées. Par exemple, la modélisation du bruit par des mouvements Browniens est critiquée [START_REF] Mandelbrot | The variation of certain speculative prices[END_REF], les évènements rares en finance de marché étant beaucoup plus fréquents que les queues de distribution de la loi normale ne prévoient. Jugées trop éloignées de la réalité observée des marchés, ces hypothèses soulèvent régulièrement des débats car nous amènent vraisemblablement à prendre des décisions sous-optimales. Deuxièmement, les marchés se transforment en permanence et les modèles peuvent vite être invalidés, par exemple dans le cas de couverture en contexte de prix bas. Le temps de développer un modèle il peut être obsolète. Enfin, le nombre croissant de facteurs de risques (phénomènes météorologiques et climatiques, productions photovoltaïque et éolienne, productions particulières) et la dépendance des prix à différents facteurs macro-économiques (taux de change, taux de chômage, inflation, croissance) nécessitent une modélisation conjointe. Contrairement aux approches actuelles, une modélisation optimale devrait faire intervenir des corrélations changeantes, des ruptures ou encore des sauts. Intégrer ces phénomènes dans un modèle probabiliste classique le rendrait difficile à calibrer, et de fait, instable.

L'élaboration de modèles génératifs entraînés directement sur les données historiques permettrait de gagner en souplesse, adaptabilité et de prendre en compte un plus grand nombre de variables exogènes ou de contraintes. De plus, cela permet de s'abstraire des contraintes liées aux questions de confidentialité des données, en partageant un générateur entraîné plutôt que des données sensibles, ou de gérer des valeurs manquantes (notamment des labels).

Nous cherchons à adapter les méthodes utilisées dans le traitement d'images ou du langage [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Kingma | Auto-encoding variational bayes[END_REF] à la génération de séries temporelles issues du secteur de l'énergie. La génération de texte repose essentiellement sur l'apprentissage de représentations mathématiques, c'est-à-dire attribuer un vecteur à chaque mot par rapport à d'autres sémantiquement proches. D'après le philosophe et mathématicien autrichien L.Wittgenstein "la signification d'un mot c'est son usage dans le langage". Pour que le vecteur représente de manière cohérente un mot, il est donc nécessaire qu'il tienne compte de sa place dans une phrase et du contexte général. Contrairement au langage, nos séries ont des spécificités (fortes variances, saisonnalités, dépendances extérieures...) qui nous éloignent de ces méthodes et soulèvent de nouveaux défis qui s'ajoutent à ceux déjà préexistants. D'autre part, les modèles considérés pour calculer les décisions optimales ne sont valables que dans un cadre stylisé, en dimension réduite avec modèles d'aléas simplifiés. Ces approximations permettent une approche théoriquement solide, mais peuvent avoir des conséquences dommageables en pratique. En effet, la plupart de ces modèles servent à l'élaboration de stratégies en gestion des risques et une approximation trop éloignée de la réalité peut entraîner des décisions erratiques.

Les méthodes issues de l'apprentissage par renforcement offrent de nouvelles perspec-Generator Real data Hedger Replication Error

Step 1: Generate synthetic data

Step 2: Learning optimal controls

Step 3: Backtesting on real data tives pour les problèmes de contrôle stochastique [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF]. D'abord, ces méthodes permettent de résoudre ces problèmes en plus grande dimension et d'ajouter des contraintes plus facilement (par une simple pénalisation de la fonction objectif par exemple). Ensuite, elles donnent la possibilité d'ajuster dynamiquement la stratégie en fonction des résultats observés. Enfin, il est possible d'étendre les approches classiques de contrôle stochastique en adoptant une approche robuste ou en incluant une incertitude de modèle. L'entraînement des algorithmes d'apprentissage par renforcement nécessite cependant un grand nombre d'observations variées. Il faut jouer de nombreuses parties suffisamment différentes les unes des autres afin d'apprendre une politique optimale. Dans le cas de jeux (comme le Go [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF][START_REF] Silver | Mastering the game of go without human knowledge[END_REF]), l'environnement est connu et contrôlé. Si en finance, comme en consommation électrique, des données structurées sont disponibles, il n'est pas évident que cela suffise à la convergence de tels modèles. S'intéresser aux méthodes génératives a donc un autre avantage : s'abstraire de la limite de taille des ensembles de données. Dans notre cas, l'augmentation de données semble nécessaire pour l'entraînement de modèle d'apprentissage par renforcement profonds.

Notre ambition est de combiner de tels générateurs à des méthodes d'apprentissage de stratégies optimales pour la gestion de risque. La génération ne s'inscrit alors plus seulement dans une ambition d'augmentation de données, mais comme un maillon d'une chaîne de modèles d'apprentissage automatique. Il s'agit là de proposer une nouvelle approche complète pour répondre aux défis de la couverture des risques, illustrée Figure 1.2. En étant nourri lors de l'entraînement par des données synthétiques variées et inédites, le modèle de couverture est alors plus conforme à une politique de minimisation des risques qu'entrainé sur un jeu de données limité. Le tout en profitant des atouts des outils de l'apprentissage statistique : approche basée sur les données, sans modèle, flexible et qui peut bénéficier d'une modélisation conjointe en haute dimension. Notre approche repose sur des réseaux de neurones profonds, que ce soit pour le générateur comme pour le modèle de couverture de risque. Ce dernier, entraîné à apprendre des contrôles optimaux en minimisant l'erreur de réplication, est appelé Deep Hedger.

Toutefois, au delà des traitements classiques de débiaisement sur les données, un jeu de données trop petit ou spécifique peut amener à des contrôles instables. À l'image du Flash Crash de 2010 provoqué notamment par l'emballement d'algorithmes de trading haute-fréquences, un Deep Hedger mal entraîné pourrait proposer des contrôles absurdes face à des conditions de marché exceptionnelles (par exemple les prix du gaz exceptionnellement hauts en Europe en décembre 2022). Ces risques sont tout de même à mettre en perspective avec ceux liés aux hypothèses des modèles probabilistes classiques. L'ajout de l'erreur de modèle du générateur à celle de réplication du Deep Hedger et de généralisation peut aussi s'avérer dangereuse si de tels modèles étaient mis en production. Enfin, les environnements non-stationnaires sont aussi un facteur limitant à l'adoption de tels modèles d'apprentissage, qui reposent sur l'hypothèse d'observations identiquement distribuées. C'est pourquoi nous nous intéressons aussi aux garanties théoriques que peuvent apporter ces modèles d'apprentissage statistique.

C'est dans ce contexte que la thèse qui suit aborde la génération de séries temporelles réalistes en grande dimension construites directement à partir de données historiques. Ces travaux traitent aussi de la conception de stratégies robustes pour l'investissement et la couverture des risques afin de répondre au caractère changeant des marchés de l'énergie. Nous proposons une méthode novatrice, une chaîne complète de méthodes reposant entièrement sur les données appliquée à la gestion des risques. Cela permet de répondre à certains problèmes classiques en finance, mais aussi d'aborder la transition énergétique avec de nouveaux outils peut-être plus adaptés, en tout cas complémentaires. La disponibilité des données réelles et les solutions envisageables par l'apprentissage statistique justifient l'approche développée dans la thèse.

Réseaux de neurones profonds

Les travaux présentés dans cette thèse reposent sur une bonne approximation d'une ou plusieurs fonction(s) d'intérêt(s). D'un point de vue numérique, la plupart de nos solutions utilisent des réseaux de neurones pour estimer ces fonctions. Nous introduisons ici quelques concepts clés liés à l'apprentissage profond, en commençant par rappeler le formalisme des réseaux de neurones composés de couches denses.

De tels réseaux de neurones sont caractérisés par leur profondeur, c'est-à-dire leur nombre de couches, que l'on note L (L P N ˚). Plus L est grand plus le réseau de neurones est considéré comme profond. Une couche est composée de m neurones pour P t0, . . . , L ´1u. Le nombre de neurones d'une couche est également sa dimension de sortie. En particulier, la largeur de la dernière couche, celle de sortie, correspond à la dimension de sortie du réseau. Chaque neurone applique une transformation affine et une fonction d'activation sur la sortie de la couche précédente. En conséquence, la sortie d'une couche est la suivante : @ ě 0, y " f py ´1q " σ pW ¨y ´1 `β q, avec W une matrice de taille m ˆm ´1 composées de poids, et β est un vecteur colonne de taille m appelé biais. Les matrices W et les vecteurs β sont les paramètres du réseau de neurones. Le choix le plus courant de fonction d'activation σ dans les couches intermédiaires est la fonction ReLu. En notant d 0 la dimension d'entrée et d 1 la dimension de sortie. L'ensemble du réseau de neurones est alors la composition de ses couches de R d 0 dans R d 1 telle que x Þ ÝÑ f L´1 ˝¨¨¨˝f 0 pxq.

Le théorème d'approximation universel [START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF] indique que l'ensemble de couches simples entièrement connectées est dense en L 2 pνq pour toute mesure finie ν sur R d , d ą 0 et pour une fonction d'activation σ continue et non constante. Les réseaux profonds denses sont une classe d'approximateurs universels. Cependant, ce théorème n'indique pas la profondeur et la largeur minimales pour approcher une fonction. Des tests empiriques doivent donc être effectués pour déterminer la meilleure architecture du réseau. Le théorème d'approximation universel ne mentionne pas non plus comment optimiser les paramètres du réseau neuronal. En pratique, la descente de gradient stochastique présente de bons résultats dans de nombreux cas. Une introduction complète à l'apprentissage profond et des descriptions de modèles plus généraux sont disponibles dans Bishop et [START_REF] Goodfellow | Deep Learning[END_REF].

Un résultat équivalent est possible avec les opérateurs, c'est-à-dire d'un espace de fonctions dans un autre espace de fonctions. Le théorème d'approximation universel pour opérateurs [START_REF] Chen | Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems[END_REF] indique que les réseaux de neurones peuvent apprendre des opérateurs continus non linéaires à partir de données. Deep Operator Networks (DeepOnets) [START_REF] Lu | Learning nonlinear operators via deeponet based on the universal approximation theorem of operators[END_REF] est une architecture de réseau spécifique dédiée à cette tâche. Soit G un opérateur prenant une fonction u en entrée et retournant une fonction Gpuq. Nous évaluons Gpuq sur un vecteur y P R d tel que la sortie Gpuqpyq soit un nombre réel, qui peut être vue comme une fonction de y conditionnée par u.

Theorem 1.2.1. (Théorème d'approximation universelle pour l'opérateur).

Supposons que σ est une fonction continue non polynomiale, X est un espace de Banach, K 1 Ă X, K 2 Ă R d sont deux ensembles compacts dans X et R d respectivement, V est un ensemble compact dans CpK 1 q, G est un opérateur continu non linéaire, qui transforme V en CpK 2 q. Alors pour tout ε ą 0, il existe des entiers positifs n, p, m, des constantes c k i , ξ k ij , θ k i , κ k P R, w k P R d , x j P K 1 , i P t1, . . . , nu, k P t1, . . . , pu, j P t1, . . . , mu, tels que

ˇˇˇˇG puqpyq ´p ÿ k"1 n ÿ i"1 c k i σ ˜m ÿ j"1
ξ k ij upx j q `θk i ¸σpw k .y `κk q ˇˇˇˇă ε est satisfait pour tout u P V et y P K 2 .

Les DeepOnets consistent en deux sous-réseaux prenant en entrée une fonction u et un vecteur y P R d de manière indépendante. Le premier s'appelle le branch net et vise à approcher la fonction u sur un nombre donné de capteurs, c'est-à-dire un ensemble valeurs x 1 , ..., x m P R d . Le branch net est alimenté lors de l'apprentissage avec les images les capteurs rupx 1 q, . . . , upx m qs T et génère un vecteur rb 1 , . . . , b K s T P R K . Le second, appelé trunk net, prend en entrée le vecteur y et sort rs 1 , ..., s K s T P R K . Les deux sorties sont ensuite concaténées comme suit : Une telle architecture de réseaux de neurones sera utilisée par la suite afin de mieux généraliser l'apprentissage de stratégies de couverture des risques.

Gpuqpyq « K ÿ k"1 b k s k `b0 ,

Contributions

Deux thèmes, la génération de séries temporelles et l'optimisation de stratégies d'investissement ou de couverture des risques, ont été explorés dans cette thèse. Ce travail a pour but de mettre en lumière les applications des méthodes de l'apprentissage statistique sur les marchés de l'énergie. Les contributions sont organisées comme suit :

-Partie I : Génération de séries temporelles Capturer la dépendance temporelle est primordial dans la génération de scénarios réalistes. De nombreuses solutions ont proposé de relever ce défi, en développant par exemple des représentations mathématiques des séries, des fonctions objectif spécifiques ou des réseaux de neurones adaptés aux structures temporelles. Dans le Chapitre 3, nous proposons de recenser ces différentes approches. Puis, nous identifions les différents enjeux que de tels générateurs soulèvent, à commencer par le choix des métriques d'évaluation. Dans le Chapitre 4, nous introduisons un nouveau modèle reposant sur une fonction objectif conditionnelle inspirée de la distance de Wasserstein-2 [START_REF] Villani | Optimal transport: old and new[END_REF] et sur des diffusions. La méthode bénéficie de garanties théoriques et rivalise sur le plan expérimental avec les meilleurs générateurs de l'état-de-l'art. Enfin, dans le Chapitre 5, une application aux marchés de l'énergie est proposée. Plusieurs méthodes génératives pour les séries temporelles opèrent une simulation conjointe de prix de matières premières conditionnées à des variables exogènes d'intérêt. Nous considérons une nouvelle métrique d'évaluation qui se veut opérationnelle pour quantifier la fidélité et l'utilité des séries synthétiques.

-Partie II : Apprentissage de stratégies optimales Dans le Chapitre 6, nous mettons en évidence les liens étroits entre des problèmes classiques d'économie et de finance et l'apprentissage par renforcement. Le développement de tels modèles, efficaces pour une tâche donnée mais suffisamment généraux pour s'adapter à des situations inconnues, reste un enjeu crucial dans les applications du quotidien. En pratique, ces modèles n'existent pas nécessairement ou ne sont définis que sur certains points de données. Pour palier à cela, nous explorons des approches robustes. Dans le Chapitre 7, nous proposons de répondre à la difficulté qu'aurait un agent à choisir entre plusieurs stratégies, en utilisant une approche théoriquement solide, facile à mettre en oeuvre et interprétable : l'agrégation d'experts. Dans le Chapitre 8, nous introduisons un nouveau modèle apprenant des opérateurs pour résoudre une famille d'équations aux dérivées partielles avec un unique entraînement, et qui se généralise à des modèles inconnus. Enfin, nous proposons une approche reposant entièrement sur l'apprentissage non-supervisé pour la gestion des risques. Une chaîne complète de modèles d'apprentissage statistique est proposée, de la génération conjointe de séries temporelles de prix réalistes à l'entraînement d'un modèle pour la couverture de risques.

Nous proposons à présent de détailler plus précisément le contenu des chapitres de cette thèse. Pour chacun d'entre eux, nous rappelons succinctement les travaux connexes puis nous présentons l'ensemble de nos contributions.

Méthodes génératives de séries temporelles

La génération de scénarios réalistes est essentielle pour l'évaluation des risques, l'élaboration de stratégies ou encore de décisions d'investissements. Les méthodes de Monte Carlo qui reposent sur des modèles probabilistes définis à l'avance ont permis de répondre aux besoins opérationnels, en particulier pour la couverture de risque, les tests de résistance (dits "stress tests") ou encore la structuration de portefeuilles d'actifs. Dans les années 2010, avec l'essor des modèles d'apprentissage profond 1 [START_REF] Lecun | Deep learning[END_REF][START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF], de nouvelles méthodes génératives sont apparues. Deux d'entre elles ont démontré des résultats remarquables en imagerie : les Variational Autoencoder (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF] et Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF]. Adapter ces modèles au cadre temporel est naturellement attrayant.

Introduction aux méthodes génératives

Le VAE tente d'apprendre les paramètres d'une loi donnée en compressant les informations d'une variable d'entrée, une image par exemple. Lors de la phase de codage, l'information est réduite à une distribution latente multivariée afin de reconstruire aussi précisément que possible le signal lors de la phase de décodage. L'objectif est donc d'apprendre la distribution des données avec un modèle paramétré par θ afin de générer de nouvelles données à partir d'échantillons de l'espace latent. Soient un vecteur x P R d de dimension d et une variable latente z dans R k suivant une distribution de probabilité connue à l'avance (souvent Gaussienne). En considérant les marginales selon z, nous avons p θ pxq " ż p θ px|zqp θ pzqdz, où pp.q indique une fonction de distribution de probabilité. Malheureusement, le calcul de p θ pxq est coûteux et dans la plupart des cas insolubles. C'est pourquoi en pratique, nous considérons la distribution a posteriori q ϕ pz|xq paramétrée par ϕ. Un schéma de l'architecture VAE est proposé Figure 1.4. L'encodeur essaie donc d'apprendre cette distribution a posteriori et, en général, l'objectif et de trouver une représentation des variables latentes de plus faible dimension que celle des données d'entrée. Le décodeur apprend la distribution de vraisemblance p θ px|zq et vise à reconstruire l'entrée d'origine à partir de l'espace latent. Dans le cas où nous connaissons les données x mais que z est inconnu, nous souhaitons donc que les Plus de détails sont disponibles dans l'article [START_REF] Kingma | Auto-encoding variational bayes[END_REF].

Les méthodes antagonistes quant à elles reposent sur un apprentissage implicite de la distribution des données, elles ne modélisent pas directement la loi de probabilité. La spécificité des GANs repose sur l'entraînement simultané entre un générateur et un discriminant. Dans la configuration d'origine, le générateur doit produire de faux échantillons et tente de tromper le discriminant, tandis que ce dernier tente de faire la distinction entre les vrais et les sorties du générateurs. Ce cadre permet de générer de nouvelles données de façon simple tout en étant robuste au sur-apprentissage, puisque le générateur ne voit jamais les données d'entraînement. Un schéma de l'architecture GAN est proposé Figure 1.5.

Prenons z un bruit aléatoire de distribution α, la plupart du temps Gaussien, et évalué dans un espace latent Z. Le générateur est une fonction g : Z Ñ X de Z à l'espace des données réelles X de distribution µ. Le générateur vise à produire des échantillons synthétiques aussi proches que possible de µ à partir de la distribution induite ν " g ˝α. Le discriminant est une fonction f : X Ñ r0, 1s indiquant si un échantillon donné provient de la distribution réelle µ ou a été généré à partir de ν. L'apprentissage contradictoire peut être formulé comme un jeu à somme nulle à deux agents entre g et d dans lequel chaque joueur doit maximiser son propre gain :

inf g sup d vpg, dq
La convergence est atteinte lorsque les échantillons du générateur sont indiscernables des données réelles, c'est à dire lorsque le discriminant ne peut pas distinguer les échantillons vrais des faux. La proposition originale pour vpg, dq est la divergence de Jensen-Shannon : vpg, dq " E x"µ rlogpdpxqqs `Ez"ν rlogp1 ´dpgpzqqqs Le générateur et le discriminant sont entraînés simultanément pour trouver un équilibre de Nash [START_REF] Nash | Equilibrium points in n-person games[END_REF] dans un jeu non coopératif à deux joueurs. Les GANs ont attiré beaucoup d'attention en raison de leur simplicité et de leur efficacité, et leurs extensions dans la littérature sont abondantes.

Que ce soient les VAEs ou les GANs, la générations d'images statiques très réalistes laissent espérer de nombreuses applications notamment la génération de scénarios crédibles. Mais l'enjeu temporel pose des problématiques d'apprentissage inédites.

Génération de séries temporelles dans la littérature

Nous proposons d'établir une revue des travaux qui s'intéressent à la génération de séries temporelles, en décrivant les méthodes, les données, les métriques d'évaluation considérées mais aussi les défis soulevés. Nous recensons les travaux abordant la génération de séries temporelles par apprentissage automatique, particulièrement active depuis 2018. Cela nécessite non seulement de modéliser fidèlement les distributions marginales à chaque pas de temps mais aussi de capturer la dépendance temporelle globale. Cette variable temps est essentielle pour assurer une cohérence globale mais est en pratique difficile à exhiber des autres variables d'états.

Travaux connexes Les modèles ARMA (modèles auto-régressifs et moyenne mobile) introduits par Peter Whittle en 1951 et popularisés dans les années 1970 par le livre de G.E.P.Box et G.Jenkins [START_REF] Box | Time series analysis: forecasting and control[END_REF] proposent de construire un processus caractérisé par un bruit blanc et une dépendance plus ou moins forte avec les états précédents. Un processus couramment utilisé est l'auto-régressif d'ordre 1 AR(1) et sert le plus souvent à modéliser le bruit de phénomènes aléatoires ou le spot dans les marchés d'électricité [START_REF] Deschatre | A survey of electricity spot and futures price models for risk management applications[END_REF]. Plus tard, le modèle Black-Scholes-Merton (1973) [START_REF] Black | The pricing of options and corporate liabilites[END_REF] fut introduit pour modéliser des prix d'actions sur les marchés financiers. Largement utilisé dans la gestion des risques, ce modèle a connu de nombreuses extensions [START_REF] Dupire | Pricing with a smile[END_REF][START_REF] Derman | Riding on a smile[END_REF][START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. Ces modèles bénéficient d'un cadre théorique solide mais ont plusieurs limites (hypothèses fortes, fléau de la dimension,...) qui éloignent leur modélisation des observations empiriques. Cela appelle naturellement au développement de générateurs reposant sur des données afin de modéliser plus de sources d'incertitude, de gagner en réalisme et en flexibilité. Le Bootstrap (1979) [START_REF] Efron | Bootstrap methods: another look at the jackknife[END_REF] fut l'une des premières méthodes à s'intéresser à l'augmentation de données dite "model-free". Il s'agit de rééchantillonner les observations afin d'augmenter artificiellement la taille d'un jeu de données tout en gardant les propriétés et la distribution de l'ensemble initial. Des extensions ont été développées pour s'adapter aux séries chronologiques [START_REF] Härdle | Bootstrap methods for time series[END_REF][START_REF] Bühlmann | Bootstraps for time series[END_REF][START_REF] Kreiss | Bootstrap methods for time series[END_REF]. Seulement, ces méthodes ne produisent pas de nouvelles données et nous laissent dépendant du jeu de données historiques.

Les machines de Boltzmann [START_REF] Ackley | A learning algorithm for boltzmann machines[END_REF] quant à elles apprennent la distribution de probabilité d'un échantillon de données réelles. Ces générateurs considèrent un problème de maximisation de la log-vraisemblance et s'intéressent à l'approximation de son gradient. Cet algorithme a été testé pour la génération de données de marchés [START_REF] Kondratyev | The market generator[END_REF]. Des extensions pour les séries temporelles existent, par exemple utilisées pour une tâche de prédiction [START_REF] Dasgupta | Nonlinear dynamic boltzmann machines for time-series prediction[END_REF]. Différentes versions ont été proposées dépendant de la loi du bruit considéré, mais toutes nécessitent un pré-traitement des données. Par exemple, chaque valeur d'entrée doit être convertie en un vecteur binaire pour une machine de Boltzmann de Bernoulli [START_REF] Cho | Improved learning of gaussian-bernoulli restricted boltzmann machines[END_REF].

Depuis 2013, une nouvelle dynamique sur la génération de données a vu le jour, en particulier dans la communauté de la génération d'images. Son prolongement s'est d'abord concentré à la génération de texte puis s'est élargi. Si certains modèles produisaient bien des séries temporelles synthétiques, la plupart reposaient sur des adaptations du Traitement du Langage Naturel ("Natural Language Processing", NLP) [START_REF] Chowdhury | Natural language processing[END_REF]. L'apprentissage de représentations mathématiques des données y porte une place prépondérante et consiste à transformer et ordonner les mots ou phrases sous forme de vecteurs. L'utilisation de réseaux récurrents, comme ceux à mémoire court et long termes (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] développés initialement pour le NLP, permettent de garder de l'information entre les différents pas de temps et donc d'apprendre la tendance ou la périodicité de la série. En revanche, peu de travaux s'appropriaient pleinement la tâche de la génération de séries temporelles, en particulier en temps continu.

Très récemment (2021), trois revues de littérature sur les GANs pour séries temporelles ou dans un cadre financier ont été proposées. Une première [START_REF] Brophy | Generative adversarial networks in time series: A survey and taxonomy[END_REF] comprend des descriptions détaillées de dix GANs. Un accent particulier est mis sur comment la génération de données synthétiques peut répondre au risque de confidentialité associé aux données sensibles, notamment en médecine. Une autre revue [START_REF] Gao | Generative adversarial networks for spatio-temporal data: A survey[END_REF] se concentre également exclusivement sur les GANs mais étend à des données spatio-temporelles plus générales, comme des graphes, des flux de circulation, des incendies de forêt. Enfin, une enquête [START_REF] Eckerli | Generative adversarial networks in finance: an overview[END_REF] décrit plusieurs applications de GANs dans le domaine financier. Sa portée est donc plus large que la génération de séries temporelles, et inclut la gestion de portefeuille ou encore la détection de fraude. De plus, les auteurs proposent une rapide application numérique de trois GANs pour la génération de données du S&P500.

Contributions Nous avons identifié dans la littérature quatre grandes approches de méthodes génératives pour les séries temporelles. L'objectif commun est d'assurer la cohérence de la série générée en capturant la structure temporelle, c'est-à-dire en extrayant des caractéristiques significatives entre deux états à deux pas de temps distincts. La première se concentre sur la conception de critères d'optimisation dédiés. En raffinant la fonction objectif, le modèle apprend à capturer les éléments clés qui constituent les phénomènes aléatoires temporels comme les distributions conditionnelles [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF]. D'autres travaux se sont plutôt intéressés à apprendre une représentation mathématique des séries temporelles. Projeter les réalisations des séries sur un espace latent permet de faciliter l'apprentissage et/ou réduire la dimension du problème [START_REF] Yoon | Time-series generative adversarial networks[END_REF][START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF]. Une troisième approche consiste à construire une architecture dédiée du modèle du générateur pouvant mieux capturer les dépendances temporelles. Dans le cas où la modélisation repose sur des réseaux de neurones, un moyen classique est de rajouter de la mémoire au réseau [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF]. D'autres propositions considèrent des réseaux convolutifs temporels pour capturer de plus longues dépendances temporelles [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. Une dernière approche réside dans l'élaboration d'un modèle global, une structure générale qui peut inclure l'ensemble des approches évoquées. Par exemple, en combinant un algorithme d'apprentissage par renforcement avec un GAN, il est possible de palier à la difficulté de concevoir un critère discriminant les séries réelles des synthétiques [START_REF] Yu | Seqgan: Sequence generative adversarial nets with policy gradient[END_REF].

Une difficulté récurrente dans la communauté des méthodes génératives est l'absence de métriques d'évaluation efficaces [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF][START_REF] Wang | Generative adversarial networks in computer vision: A survey and taxonomy[END_REF]. Comment quantifier la fidélité des générations ? S'il est souvent facile à l'oeil de distinguer le vrai du faux sur une image (pour l'instant), il est parfois beaucoup plus difficile de le quantifier. La tâche est d'autant plus ardue pour les séries temporelles qui peuvent être particulièrement bruitées. C'est pourquoi il est préférable d'en utiliser plusieurs, incluant des mesures à la fois sur les marginales et sur la structure dynamique. Des métriques spécifiques à une application donnée peuvent être aussi introduites, permettant de mettre en évidence une connaissance préalable ou un comportement attendu des séries générées. Nous évoquons aussi les diverses applications qui ont été introduites dans la littérature, comme l'augmentation de données, l'imputation de données manquantes ou la détection d'anomalies.

Fonction de perte conditionnelle et schéma d'Euler pour la génération de séries temporelles

Cette Section fait l'objet d'une publication Remlinger et al. (2022), AAAI La génération de séries temporelles sans modélisation préalable reste une tâche difficile qui pourtant a de multiple applications. Alors que les approches les plus récentes reposent sur plusieurs réseaux de neurones aux architectures plus ou moins complexes, nous prenons le contre-pied en proposant un unique réseau dense pour notre générateur. Ce dernier bénéficie d'une structure simple, un schéma d'Euler, et d'une fonction objectif considérant les distributions de probabilité de transition à chaque pas de temps. Le schéma d'Euler facilite la construction de la série quand la perte conditionnelle se concentre sur la fidélité des générations par rapport aux vraies données.

Travaux connexes Depuis 2018, beaucoup de méthodes ont été introduites. Quant-GAN [START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF] fournit un formalisme mathématique rigoureux des WaveNets [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. En appliquant cette architecture de réseaux de neurones conjointement avec une transformation spécifique des échantillons d'une distribution stationnaire, les auteurs ont mis en évidence de premiers résultats empiriques prometteurs, capturant de longues dépendances temporelles. Les applications numériques se concentrent sur la génération de séries financières uni-dimensionnelles et proposent des métriques d'évaluation qui tiennent compte de faits stylisés connus en finance [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF]. Time Series GAN [START_REF] Yoon | Time-series generative adversarial networks[END_REF] est le premier GAN, à notre connaissance, à s'attaquer aux séries multi-dimensionnelles. Pour cela, le modèle ne propose pas un, pas deux, mais bien cinq réseaux de neurones. Un premier réseau transforme les séries temporelles dans un espace latent dans lequel un GAN opère. Puis, un quatrième réseau de neurones reconstruit les séries générées dans l'ensemble initial. Le dernier réseau s'assure de manière supervisé que les fonctions de transformation et de récupération permettent des reconstructions précises. D'autres approches s'intéressent à une représentation mathématique des séries temporelles sans apprentissage. À l'aide des signatures [START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF][START_REF] Fermanian | Embedding and learning with signatures[END_REF], il est possible de définir un vecteur qui caractérise chaque trajectoire de manière unique. Le modèle Sig-Wasserstein GAN Conditionnel [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF] s'est approprié les signatures dans un GAN. Des travaux se sont concentrés sur la conception de fonctions de perte spécifiques au cadre temporel. La distance de Wasserstein adaptée au processus à temps continu [START_REF] Backhoff-Veraguas | Adapted wasserstein distances and stability in mathematical finance[END_REF] s'assure que lors du calcul du transport optimal les observations qui n'ont pas encore eu lieu ne soient pas prises en compte. Pour cela, une pénalisation s'ajoute au coût classique de la distance de Wasserstein. Le bénéfice est double, cette distance dédiée repose sur de solides résultats théoriques et est particulièrement simple à implémenter en pratique. COT-GAN [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF] a incorporé une version régularisée de cette distance de Wasserstein à l'aide du Sinkhorn [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] et des travaux de Genevay, Peyré, and Cuturi dans un GAN. Les résultats numériques sont très prometteurs sur la générations de vidéos, mais aussi sur certaines séries temporelles peu bruitées.

Contributions :

Au début de cette thèse, la plupart des adaptations des GAN ou VAE aux séries chronologiques reposaient essentiellement sur une architecture de réseau de neurones adaptée aux problématiques temporelles [START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF][START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. Les principales contributions de ce chapitre s'intéressent aux avantages de considérer les séries sous forme d'une équation différentielle stochastique (EDS) et de minimiser une fonction objectif sur les transitions entre états. Nous y introduisons notre modèle CEGEN. a) Une représentation sous forme d'EDS Les séries sont représentées en temps continu, comme des observations d'une diffusion X " pX t q tPr0,T s pour T P R. Cette dernière est paramétrée par deux fonctions déterministes, celle de drift b : R d`1 Ñ R et celle de volatilité σ : R d`1 Ñ M d (dans l'ensemble des matrices carrées). Le bruit est décrit par un mouvement Brownien W de dimension d sur un espace de probabilité pΩ, F, Pq équipé d'une filtration pF t q tPr0,T s représentant les informations disponibles à l'instant t. Le processus X suit la dynamique suivante : dX t " bpt, X t qdt `σpt, X t qdW t .

En pratique le processus X est discrétisé par un schéma d'Euler sur une grille de temps T " t0 " t 0 ă t 1 ă ... ă t N " T u, N P N ˚avec un maillage régulier ∆t " t i`1 ´ti . À t 0 " 0, pour une valeur initiale Y 0 " X 0 nous générons les séries temporelles comme réalisation d'un processus Y θ paramétré par θ de la manière suivante : Cette formulation sous forme d'EDS facilite la construction de la série temporelle. Comparée à des méthodes plus générales qui reposent sur un apprentissage de la représentation de la série chronologique [START_REF] Yoon | Time-series generative adversarial networks[END_REF], nous avons fait le choix d'une représentation fixée à l'avance. Nous voulions nous prémunir des conséquences de l'accumulation de réseaux de neurones, de modèles complexes ou d'un trop grand nombres d'hyper-paramètres qui peuvent avoir des conséquences sur la stabilité des générations. Nous nous restreignons donc à modéliser des diffusions et la liberté que propose notre générateur repose uniquement sur la modélisation des fonctions b et σ. Cette classe de processus reste cependant suffisamment large pour modéliser la plupart des séries d'intérêts. Notre méthode possède un autre avantage, elle facilite l'analyse et le contrôle des sorties du générateur notamment avec des fonctions d'activation bien choisies, afin d'éviter des valeurs extrêmes. Ces caractéristiques répondent à une demande récurrente dans les domaines industriels, en physique comme en finance. b) Distributions conditionnelles Une autre contribution repose sur la fonction de perte conditionnelle. La génération de séries chronologiques réalistes est un domaine très actif où il existe encore peu de résultats théoriques [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF][START_REF] Fermanian | Embedding and learning with signatures[END_REF]. Notre générateur s'accompagne de preuves théoriques garantissant qu'une erreur suffisamment faible donne une bonne estimation des paramètres du processus. La distance conditionnelle est calculée entre les éléments X t i dont les états précédents X t i´1 sont proches les uns des autres, c'est-à-dire appartenant au même ensemble I Ă R d . Le générateur conditionnel est ainsi capable d'apprendre la distribution autour de chaque point de données et assure le lien entre deux pas de temps. De plus, il permet de considérer la formulation Gaussienne de la distance de Wasserstein-2 (W 2). L'intérêt est double car sa valeur ainsi que ses gradients admettent des formes fermées, et peut gérer des mesures dégénérées [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF]. La distance de Wasserstein capture des caractéristiques géométriques entre les distributions, et le plan de transport W 2 est sensible aux valeurs aberrantes ce qui augmente la précision de l'estimation de la distribution. Par ailleurs, nous n'avons pas besoin de statistiques pré-spécifiées ni d'utilisation de fonctions de densité pour apprendre la distribution des échantillons des données réelles. C'est la première fois, à notre connaissance, qu'une fonction de perte ne considère que les éléments voisins entre eux. Pour deux variables aléatoires X et Y , nous considérons la métrique suivante :

Y θ t i `∆t " Y θ t i `bθ Y pt i , Y θ t i q∆t `σθ Y pt i , Y θ t i qZ t i , où les Z t i sont
W 2 2 pLpXq, LpY qq " }ErXs ´ErY s} 2 2
`B2 pV arpXq, V arpY qq où B est la métrique de Bures [START_REF] Bhatia | On the bures-wasserstein distance between positive definite matrices[END_REF][START_REF] Malago | Wasserstein riemannian geometry of positive definite matrices[END_REF] définie par B 2 pA, Bq " T rpAq `T rpBq 2T rpA 1 2 BA 1 2 q 1{2 pour deux matrices semi-définies positives A et B. W 2 est la définition de la distance de Wasserstein-2 dans le cas où LpXq et LpY q sont des lois gaussiennes [START_REF] Gelbrich | On a formula for the l2 wasserstein metric between measures on euclidean and hilbert spaces[END_REF]. La formulation avec Bures nous permet de fournir des garanties théoriques sur l'estimation des paramètres des processus. En effet, la minimisation de l'erreur de la distance W 2 entre les distributions de la forme Pour calculer la perte, est créée à chaque instant t i une partition pI k q kďK de l'union des supports de X t i et Y θ t i . Pour un ensemble d'échantillons donné, la loi LpX t i`1 | X t i P I k q est approchée en extrayant les éléments X t i`1 tels que X t i P I k . La loi LpY θ t i`1 | Y θ t i P I k q est approchée de la même manière. La distance W 2 2 entre les distributions conditionnelles est ensuite additionnée sur toutes les subdivisions et sur tous les pas de temps :

LpX t i`1 | X t i " zq et LpY θ t i`1 | Y θ t i "
pX, Y θ q " N ´1 ÿ i"0 K ÿ k"1 W 2 2 pLpX t i`1 |X t i P I k q, LpY θ t i`1 |Y θ t i P I k qq
Cependant, il ne s'agit plus de la distance de Wasserstein étant donné que les lois

LpX t i`1 | X t i P I k q et LpY θ t i`1 | Y θ t i P I k q ne sont
plus Gaussiennes. Le calcul de W 2 devient une approximation qui peut être vue comme un prolongement elliptique des états de l'espace [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF].

Proposition 1.4.1. Soient σ 2 X pt i , .q, σ 2 Y θ pt i , .q des fonctions strictement positives et qui, avec les fonctions b X pt i , .q et b Y θ pt i , .q, sont K-Lipschitz en leur seconde coordonnée. Pour tout t i P T , soit pI j q jďJ une partition régulière couvrant SupppX t i qY SupppY t i q avec une maille de taille ∆x. Soit ε ą 0. Si W 2 ´LpX t i`1 |X t i P I j q, LpY θ t i`1 |Y θ t i P I j q ¯ă ε pour tout j P t1, . . . , Ju, alors, pour z dans la partition

I j }b X pt i , zq ´bY θ pt i , zq} 2 ă ε `∆x ∆t `2K∆x. }σ X pt i , zq ´σY θ pt i , zq} 2 ă $ & % ε{ ? ∆t `2K∆x pour d " 1, b 2α ∆t ε `2K∆x pour d ą 1 où α " T rpσ 2 X pt i , zqq " T rpσ 2 Y θ pt i , zqq.
La condition d'égalité sur les traces des matrices de covariance dans le cas multidimensionnel vient de l'utilisation de matrices de densité [START_REF] Blum | Density matrix theory and applications[END_REF]. En pratique, il suffit de normaliser ces matrices par leurs traces. La proposition 1.4.1 nous garantit qu'en conditionnant sur des intervalles suffisamment petits, une faible perte de W 2 entre les distributions de transition assure une bonne estimation des paramètres de drift et de volatilité. La métrique de Bures est calculée à l'aide de l'algorithme de Newton-Schulz [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF], un moyen différentiable d'obtenir les racines carrées de la matrice de covariance. c) Euler GAN Nous introduisons aussi deux Euler GAN : Euler Wasserstein GAN (EWGAN) et Euler Double GAN (EDGAN). Ces modèles reposent sur une adaptation du Wasserstein GAN avec pénalité de gradient [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] où le générateur bénéficie du schéma d'Euler pour la construction de la série temporelle. Dans les deux cas, la fonction de perte est la distance de Wasserstein-1 (W 1) suivante :

W 1 pLpZ 1 q, LpZ 2 qq " sup ||f || L ď1
E Z 1 "LpZ 1 q rf pZ 1 qs ´EZ 2 "LpZ 2 q rf pZ 2 qs où Z 1 , Z 2 sont deux variables aléatoire et ||f || L dénote la plus petite constante de Lipschitz de la fonction réelle f . Le discriminant dans EWGAN, paramétré par ϕ, apprend la fonction Lipschitz optimale qui permet de calculer W 1 . Le générateur cherche à minimiser selon θ l'écart entre les séries réelles X " pX t q tPr0,T s et Y θ " pY θ t q tPr0,T s :

inf θ W 1 pLpXq, LpY θ qq " inf θ sup ϕ E X"LpXq rd ϕ pXqs ´EY θ "LpY θ q rd ϕ pY θ qs.
Dans EDGAN, deux discriminants cohabitent afin d'estimer à la fois la distribution des séries et la dynamique temporelle. Un discriminant spatial se concentre sur le calcul de la distance de Wasserstein entre les marginales W 1 pLpX t q, LpY θ t qq à chaque pas de temps, tandis que le temporel considère la série chronologique complète W 1 pLpXq, LpY θ qq. Les deux générateurs d'Euler sont en mesure de modéliser des processus en temps continu Dans les cas où les paramètres b et σ sont connus, la formulation par EDS permet d'évaluer finement la qualité des générateurs à l'aide de métriques théoriques. Nous considérons aussi les scores discriminant et de prévision [START_REF] Yoon | Time-series generative adversarial networks[END_REF] pour évaluer la qualité des générations. Le score discriminant est la précision d'un modèle de classification entraîné à distinguer les séries temporelles réelles des fausses. Le score de prévision quant à lui est mesuré en évaluant sur les données d'origine un modèle de régression entraîné sur des données synthétiques. Dans les deux cas, un générateur proposant des séries réalistes aurait des scores bas. En pratique, les deux modèles sont des LSTMs. e) Applications au secteur de l'énergie La dernière contribution concerne l'étude numérique qui ne se contente pas seulement d'appuyer l'efficacité des générateurs introduits, mais propose aussi un cas d'usage original. Nous cherchons à générer des séries synthétiques continues provenant de quatre jeux de données liés aux problématiques de l'énergie. Le premier Spot considère les prix spot d'électricité sur les marchées français et allemand de 2014 à 2020. Le second jeu de données Stock consiste en plusieurs caractéristiques financières quotidiennes d'un actif de 2004 à 2019, incluant son prix à la fermeture, ajusté à la fermeture, haut, bas et son volume. L'intérêt d'une modélisation conjointe prix-volume est pluriel. D'abord, la modélisation se veut plus fine car ces caractéristiques sont corrélées entre elles. Ensuite, ces séries sont apériodiques et non-stationnaires. Enfin, nous souhaitons tester la capacité d'un générateur à considérer des trajectoires dont la dynamique est très distincte (entre le prix et le volume). Le troisième jeu de données Load reporte des courbes de consommation électrique de 12 régions de France de janvier 2012 à septembre 2020. Ces courbes sont moins bruitées que celles des deux jeux précédents mais incluent une forte composante saisonnière. Enfin, Climate inclut des courbes de température, pression et autres mesures atmosphérique provenant du satellite JENA. Dans le cas de la production photovoltaïque ou éolienne, la météo est déterminante et fortement corrélée d'où l'intérêt de s'intéresser à ce genre de séries. Les 15 variables sont aussi très corrélées entre elles et une modélisation conjointe est pertinente.

La Figure 1.7 rapporte les scores discriminant et de prévision de quatre générateurs (CEGEN, EDGAN, TSGAN, COTGAN) sur les quatre jeux de données. Ces résultats mettent en évidence l'intérêt de notre approche par rapport aux méthodes GANs, mais rappelle les limites de ces métriques d'évaluation. Ces deux scores reposent sur la qualité de l'apprentissage des LSTMs, et sont donc intrinsèquement liés à leur capacité à capturer des caractéristiques significatives à partir des données. Un modèle incapable d'effectuer correctement la tâche de classification ou de régression retournerait donc un score faible, mais non représentatif de la qualité des générations. C'est justement le cas dans le jeu de données Load, où COTGAN surpasse tous les autres générateurs. Ces séries sont en revanche trop lisses par rapport aux données historiques, là où CEGEN propose des séries plus bruitées, plus proches de ce qui est observé, mais ne capture pas aussi bien la saisonnalité.

Enfin, nous proposons un cas d'étude sur les liens possibles entre simulations provenant de modèles probabilistes et les générations reposant sur les données. Contenu du nombre trop faible d'observations de certains jeux de données, la convergence des générateurs n'est pas toujours garantie. Pour y remédier, nous proposons de nous inspirer des méthodes issues de l'apprentissage par transfert [START_REF] Torrey | Handbook of research on machine learning applications and trends: algorithms, methods, and techniques[END_REF] en entraînant d'abord CEGEN sur des données simulées, puis de le raffiner sur les quelques observations historiques disponibles. En utilisant des simulations Monte Carlo provenant d'un modèle suffisamment raisonnable pour pré-entraîner CEGEN, ce dernier est capable de produire de meilleurs résultats qu'entraîné uniquement sur les données historiques. Cet apprentissage par transfert illustre comment les méthodes génératives peuvent s'appuyer sur un modèle de simulation éprouvé sans le remplacer complètement.

Méthodes génératives pour les marchés de matières premières

Dans la lignée directe des travaux précédents, nous proposons une application de plusieurs générateurs profondes sur les marchés de l'énergie. Les modèles Time Series GAN [START_REF] Yoon | Time-series generative adversarial networks[END_REF], Causal Optimal Transport GAN [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF], Signature GAN [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF], en plus de notre générateur CEGEN [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF], sont comparés dans deux expériences.

Contributions Une simulation conjointe de prix des matières premières est d'abord réalisée. Les prix de forwards sur l'électricité, le gaz, le charbon et le fuel nourrissent l'entraînement des générateurs qui doivent reproduire fidèlement une série temporelle de dimension 4. Les résultats mettent en évidence que l'approche GAN ne propose pas nécessairement des séries synthétiques plus fidèles. Cela malgré des architectures de réseaux de neurones adaptées au cadre temporel et la présence d'un discriminant dédié à la fidélité des générations. En particulier, CEGEN semble mieux capturer les distributions marginales et la structure temporelles globale. Les modèles COTGAN et SIGGAN proposent des résultats proches et consistants sur toutes les dimensions. TSGAN qui bénéficie d'un apprentissage des séries spécifique semble pénalisé par son grand nombre de paramètres à estimer.

Pour aller plus loin que les métriques d'évaluation proposées et raffiner l'étude sur la qualité des générations, nous proposons d'introduire une métrique opérationnelle. Nous considérons un modèle pour la couverture de risque reposant sur des réseaux de neurones, un Deep Hedger, qui apprend à trouver les contrôles optimaux en minimisant une erreur de réplication. Un Deep Hedger est associé à chaque générateur et est entraîné à partir des trajectoires synthétiques associées. Ils sont ensuite évalués sur des prix historiques non observés, ni pendant leur entraînement ni celui des générateurs. La performance des Deep Hedgers est étroitement liée à la qualité des générations. Les méthodes généra-tives les moins fidèles amènent à une politique de risque qui semble moins pertinente et une erreur de réplication plus élevée. Cependant, elles permettent d'améliorer l'erreur de réplication par rapport à un modèle Black-Scholes de référence, calibré sur les données d'entraînement. En particulier, le Deep Hedger nourri avec les données de CEGEN surpasse largement toutes les autres approches sur le cas électricité, gaz et fuel.

La Figure 1.8 illustre des échantillons de contrôles des modèles pour une seule trajectoire historique de prix. Les contrôles de CEGEN et SIGGAN sont très réactifs au prix et proposent une politique de risque similaire sur chaque forward. Malgré des séries générées plutôt fidèles sur l'ensemble des métriques d'évaluation, COTGAN fournit quant à lui des contrôles qui questionnent sa politique. Ces derniers possèdent une faible volatilité sur les données de l'électricité et du gaz, mais à l'inverse sur le cas du pétrole et du fuel la politique semble suivre le prix de la matière première. Les Deep Hedgers de TSGAN et Black-Scholes proposent des contrôles relativement constants, peu influencés par le prix, et achètent la même quantité d'actif au fil du temps pendant la période considérée.

Une telle différence de politique de risque selon les générations peut être un moyen d'évaluer qualitativement la fidélité et l'utilité des générations. Alors que les modèles semblent proches en terme de performances (pour CEGEN, SIGGAN et COTGAN) sur des métriques statistiques sur la distribution ou la dépendance temporelle, les stratégies de couverture de risque semblent très sensibles à ces différences. En effet, à l'erreur d'approximation des Deep Hedgers s'ajoute une erreur de modèle provenant de ces générateurs. Des résultats théoriques de convergence, assurant notamment des majorations de ces erreurs selon les paramètres des réseaux de neurones seraient donc bienvenus. Enfin, un Deep Hedger robuste à ces variations de modèles pourrait permettre une méthode de gestion des risques attrayante.

Electricity controls Gas controls

Oil controls Coal controls

Conclusion et perspectives

Dans cette partie, nous avons exploré les différents enjeux de la génération de séries temporelles. Le manque de métriques d'évaluation valables, les difficultés à détecter des caractéristiques pertinentes pour capturer les dépendances temporelles ou l'apprentissage à partir de données pour des longueurs variables nourrissent de nombreux travaux de recherche. En particulier, la conception d'une représentation mathématique appropriée des séries et celle de fonctions objectif spécifiques semblent être les approches les plus prometteuses. Associer des modèles probabilistes et d'apprentissage statistique permet de développer des méthodes théoriquement solides, des métriques d'évaluation pertinentes et, comme l'enquête du Chapitre 3 l'a montré, des résultats empiriques intéressants [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Kidger | Neural sdes as infinitedimensional gans[END_REF][START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF]. Le générateur conditionnel profond introduit dans le Chapitre 4 va dans ce sens. En exploitant la formulation EDS avec la distance de Bures-Wasserstein nous avons proposé un générateur empiriquement performant qui s'accompagne de garanties théoriques.

Plusieurs perspectives s'offrent alors. De prochains travaux pourraient inclure de nouveaux schémas pour aborder d'autres particularités des marchés de l'énergie, notamment des sauts ou des fonctions de volatilité plus complexes. La formulation EDS restreint la génération des séries mais permet un prolongement naturel avec les modèles probabilistes classiques, comme ceux de Lévy ou Heston.

Au-delà du développement de nouvelles structures, concevoir un modèle théoriquement robuste combinant un ensemble de générateurs permettrait de tirer parti des différentes méthodes, y compris celles purement probabilistes. En calculant le barycentre de Wasserstein et sa distance entre les différents modèles, il serait possible d'améliorer les générations issues d'un seul modèle, mieux, de les combiner. Pour un entier N ď 1, soient µ 1 , ...µ N des mesures de l'ensemble de probabilité P 2 pR d q et λ " pλ 1 , ..., λ N q un élément de R N `tels que ř N i"1 λ i " 1. Nous définissons un barycentre (dans l'espace) de Wasserstein des mesures µ i pour les poids λ i comme le minimiseur de :

J λ pνq " N ÿ i"1 λ i 2 W 2 2 pµ i , νq.
Cela nécessite de concevoir une fonction de coût pour le calcul de ce barycentre qui doit à la fois avoir des propriétés mathématiques assurant l'unicité du barycentre mais aussi tenir compte des biais des différents modèles. La méthode d'optimisation des poids λ i devrait alors prendre en compte les performances des modèles en fonction de la dynamique temporelle des séries générées. L'évolution des poids associés à chaque modèle permettrait aussi d'identifier les meilleurs générateurs en fonction des séries considérées. Enfin, une autre perspective consisterait à s'intéresser au cadre en ligne. L'entraînement des méthodes génératives est flexible, mais peut être chronophage s'il doit être raffiné régulièrement en rajoutant de nouvelles données. L'apprentissage en ligne, qui apprendrait à partir de données reçues au fur et à mesure du temps, peut pallier à cette difficulté. Des travaux se sont intéressés aux propriétés de convergence d'approches régularisées du calcul de la distance de Wasserstein en adaptant l'algorithme du Sinkhorn au cadre en ligne [START_REF] Mensch | Online sinkhorn: Optimal transport distances from sample streams[END_REF]. L'extension de ces résultats dans le cadre de générations temporelles semble une piste prometteuse sur le plan théorique comme applicatif.

Apprentissage de stratégies optimales

Nous nous intéressons à présent à l'apprentissage de choix optimaux pour l'élaboration d'une stratégie d'investissement ou de couverture de risque, tout en minimisant le risque de faire confiance à un unique modèle ou assurant une certaine robustesse à un changement de régime.

Apprentissage par renforcement

Ce chapitre s'appuie sur la publication Computational Economics, 2021.

L'apprentissage par renforcement s'intéresse à la façon dont un agent agit dans un environnement donné et utilise son expérience pour adapter son comportement afin de maximiser une récompense. Les travaux de recherche visent à étudier comment des agents peuvent apprendre à prendre des décisions optimales par le biais d'expériences répétées [START_REF] Sutton | Toward a modern theory of adaptive networks: Expectation and prediction[END_REF]. Contrairement aux approches supervisées et non-supervisées, l'apprentissage découle directement du retour d'information des actions et de l'expérience. En quelque sorte, l'agent crée ses propres données. Il doit donc lors de l'entraînement à la fois tirer parti de ce qu'il sait déjà mais aussi s'ouvrir à des situations encore inconnues afin de maximiser sa récompense à long terme. Une telle procédure renforce les chances de converger vers un optimum global, au lieu de converger vers un optimum plus local. Il a été prouvé qu'un tel équilibre entre exploration et exploitation existe [START_REF] Thorndike | Animal Intelligence[END_REF]. Les problèmes induits sont liés au fait qu'agir a des conséquences, éventuellement différées. Il s'agit d'apprendre à sacrifier de petites récompenses immédiates afin d'en obtenir de plus grandes à long terme.

Comme dans les modèles économiques classiques, les agents s'efforcent à maximiser une récompense donnée à long terme, souvent la somme cumulée des récompenses futures. Il s'agit de résoudre le problème d'attribution de gains en faisant correspondre les actions, les états du monde et les récompenses associées. Comme l'apprentissage par renforcement consiste à expérimenter activement, il met donc en évidence des liens étroits avec la modélisation de la causalité. Cette théorie nous permet de déduire les conséquences des interventions (ou actions) utilisées dans le passé. Elle apparaît donc dans l'expérimentation séquentielle, l'optimisation, la théorie de la décision, la théorie des jeux, le design des enchères et d'autres applications économiques.

Travaux connexes Il est possible de trouver dans la littérature économique ancienne un cadre très similaire à celui utilisé dans l'apprentissage par renforcement. La thèse [START_REF] Hellwig | Sequential models in economic dynamics[END_REF] explore les connexions entre l'incertitude inhérente dans les processus de trading et les opportunités immédiates d'un agent à acheter ou vendre des actifs. D'autres travaux [START_REF] Arthur | Designing economic agents that act like human agents: A behavioral approach to bounded rationality[END_REF][START_REF] Barto | On the computational economics of reinforcement learning[END_REF] recensent des techniques d'apprentissage par renforcement en économie computationnelle. Récemment, un travail [START_REF] Hughes | Applying reinforcement learning to economic problems[END_REF] sur les applications de l'apprentissage par renforcement aux problèmes économiques avec des algorithmes plus actuels a été proposé pour la gestion du stockage de l'eau. Le cas où plusieurs agents sont en interaction est particulièrement intéressant car modélise un comportement général, une revue décrit ces méthodes [START_REF] Zhang | Multi-agent reinforcement learning: A selective overview of theories and algorithms[END_REF]. Les jeux à champs moyen sous le prisme de l'apprentissage par renforcement ont connu un réel engouement récemment, une revue de l'état-de-l'art en économie est disponible [START_REF] Angiuli | Reinforcement learning for mean field games, with applications to economics[END_REF]. Une autre revue se concentre sur des applications financières et en particulier sur du contrôle à champ moyen [START_REF] Carmona | Deep learning for mean field games and mean field control with applications to finance[END_REF].

Contributions :

Les bons résultats de l'apprentissage par renforcement pour les jeux (Go [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF][START_REF] Silver | Mastering the game of go without human knowledge[END_REF], jeux vidéos) laissent espérer de multiples applications. En particulier, en économie et en finance son appropriation n'est pas la panacée, de tels algorithmes semblent sous-utilisés alors même que les problèmes relèvent d'une formulation proche. L'absence de revue de littérature sur le sujet appelait naturellement à une étude approfondie de leurs liens étroits. Nous mettons en évidence que les modèles de prise de décisions séquentielles ont une longue histoire en économie, même s'ils sont rarement mentionnés dans la littérature informatique. La plupart des articles publiés dans les revues économiques mentionnent la difficulté à résoudre ces problèmes numériquement. Néanmoins, nous tentons de montrer que les progrès récents sont extrêmement prometteurs et qu'il est désormais possible de modéliser des problèmes d'économie de plus en plus complexes. a) Présentation de l'apprentissage par renforcement Afin de faciliter l'introduction des notions clés de l'apprentissage par renforcement, nous proposons d'abord d'expliquer les principes de l'apprentissage automatique en définissant les outils standards. Ces derniers sont ensuite étendus aux notions de fonction de perte, risque d'un estimateur ou encore la minimisation du regret.

Les techniques d'apprentissage automatique supervisé apparaisent comme un problème statique. Il s'agit d'apprendre une correspondance f n entre des variables explicatives x P X et un label y P Y provenant d'un ensemble de données D n " tppy i , x i qq iPt1,...,nu u fixé à l'avance, pour n P N ˚. La fonction f n peut prendre des valeurs dans un espace binaire, ce qui peut être d'accepter ou de rejeter une hypothèque dans les modèles de risque de crédit, ou d'investir ou non dans un actif spécifique. On parle alors de classification binaire, mais d'autres proposent d'apprendre une correspondance incluant plus de classes. Les valeurs de f n peuvent également s'inscrire dans la ligne réelle, et représenter une prévision, un montant d'argent à épargner, une quantité à acheter ou un prix à demander.

Nous introduisons ensuite l'apprentissage en ligne [START_REF] Bottou | Online algorithms and stochastic approximations[END_REF], où l'information arrive de manière séquentielle et peut être exploitée de dynamiquement. Nous présentons notamment un problème classique, celui du bandit manchot à bras multiples [START_REF] Katehakis | The multi-armed bandit problem: Decomposition and computation[END_REF] : à chaque instant un agent fait des choix dont les conséquences influent sur l'information qu'il obtient. L'apprentissage en ligne repose sur l'hypothèse que les couples py n , x n q arrivent dans un ordre donné, et l'accent est mis sur l'évolution de f n au fur et à mesure que le nombre d'observations n augmente. Pour cela, l'ensemble de données d'apprentissage est mis à jour de

D n à D n`1 .
Enfin, nous commençons à formaliser les modèles d'apprentissage par renforcement dans un cadre général. Nous nous concentrons d'abord à expliquer les liens entre les différents termes et notions d'apprentissage utilisées dans la littérature. L'apprentissage par renforcement incorpore l'idée qu'au temps n, un choix a été fait et qui influencera py n`1 , x n`1 q. Il apparaît donc que l'hypothèse i.i.d. classique de l'ensemble de données n'est plus valable. Si l'apprentissage automatique standard consiste à apprendre à partir de données fixées à l'avance, l'apprentissage par renforcement est lié à la prise de décision séquentielle et au contrôle de son influence sur l'environnement.

Par la suite, nous formalisons plus précisément l'apprentissage par renforcement et quelques propriétés mathématiques générales. Nous rappelons l'hypothèse que la dynamique satisfait la propriété de Markov et que nous nous concentrons uniquement sur des processus de décision de Markov. Plus formellement, au temps t, l'agent à un état du monde s t P S effectue une action a t P A, obtient une récompense r t P R et l'état du monde devient s t`1 P S. Une politique est définie comme une fonction de S à A, et l'objectif est d'apprendre à partir des données passées (actions passées, récompenses passées) comment trouver une politique optimale. Un schéma décrivant la boucle d'interaction entre l'agent et l'environnement est présenté Figure 1.9. Finalement, nous précisons l'approche basée sur un modèle connu, celle sans modèle, ainsi que l'approche par différence temporelle et avec les méthodes de solution approximative. Ces approches trouvent un écho singulier en économie et en finance. Une présentation d'un problème classique est ensuite proposé, appelé apprentissage par renforcement inverse, où les décisions observées sont utilisées afin de déduire diverses quantités, telles que la récompense ou la fonction de politique.

b) Applications à l'économie et à la finance

Une application populaire des algorithmes d'apprentissage par renforcement est celle des jeux, comme le jeu d'échecs ou le jeu de Go comme l'explique Silver et al.. Un travail [START_REF] Igami | Artificial intelligence as structural estimation: Economic interpretations of deep blue, bonanza, and alphago[END_REF] fournit une interprétation économique de plusieurs algorithmes utilisés sur des jeux basés sur l'estimation structurelle et l'apprentissage automatique (par renforcement). Suivant cette idée, nous présentons les différentes applications de l'apprentissage par renforcement en économie et en finance. Nous évoquons un problème classique de contrôle optimal en économie, la dynamique classique de la consommation et du revenu mais aussi différentes applications

L'environnement représente le monde dans lequel l'agent évolue et avec lequel il interagit.

A chaque étape de l'interaction, l'agent perçoit une observation de l'état du monde s t , puis décide d'une action a t à entreprendre. L'environnement change lorsque l'agent agit dessus, mais peut aussi changer de lui-même. L'action de l'agent donne lieu (ou non) à récompense r t de l'environnement qui évalue sa pertinence. L'objectif de l'agent est de maximiser sa récompense cumulée, appelée rendement. en modélisation économique. Les liens étroits entre la rationalité limitée et l'apprentissage par renforcement sont aussi discutés. Nous mettons en évidence que la modélisation de la dynamique d'une entreprise peut être vue sous le prisme d'une approche par renforcement. Puis, nous élargissons le sujet en présentant les connexions possibles avec les plans d'expérience adaptatifs, inspirés notamment des bandits à bras multiples.

Nous nous intéressons ensuite aux liens entre théorie des jeux et apprentissage par renforcement, qui depuis a connu une dynamique prolifique [START_REF] Angiuli | Reinforcement learning for mean field games, with applications to economics[END_REF][START_REF] Carmona | Deep learning for mean field games and mean field control with applications to finance[END_REF]. En recherche opérationnelle, des applications classiques, comme le voyageur de commerce, peuvent tirer profit du dilemme standard exploration/exploitation pour converger plus rapidement vers des solutions (presque) optimales. Les jeux stochastiques et l'équilibre, les jeux à champ moyen, les enchères et les enchères en temps réel sont autant de sujets qui peuvent être abordés sous le formalisme de l'apprentissage par renforcement. Nous étendons ensuite l'exemple de l'entreprise évoquée précédemment au cas d'un oligopole et des jeux dynamiques.

Finalement, nous détaillons les applications en finance. La littérature s'est appropriée l'approche par renforcement dans les problèmes de gestion du risque, d'évaluation et de couverture des produits financiers dérivés. Les questions d'allocation de portefeuille sont aussi abordées. Enfin, nous présentons un cadre très naturel pour de tels algorithmes : l'impact sur le marché et le market making. Malgré l'environnement généralement non stationnaire connu en finance, l'apprentissage par renforcement est une piste d'amélioration prometteuse.

Introduction au mélange d'experts

Cette section repose sur la pré-publication [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF] L'objectif est de prévoir la suite d'une série arbitrairement aléatoire, comme l'évolution de la température au cours du temps, la consommation électrique ou les rendements d'actifs financiers. Pour cela, des modèles, dits experts, sont entraînés à partir de données historiques à une tâche de régression supervisée. Nous cherchons à prévoir les prochaines valeurs de notre série d'intérêt à partir de variables explicatives et selon un critère d'optimisation fixé à l'avance (typiquement une distance entre les prévisions et les vraies valeurs). La qualité des prévisions dépendent largement de ces variables, mais aussi de la construction du modèle et de ses hyper-paramètres. Ces derniers sont des paramètres de régularisation permettant notamment d'éviter le sur-apprentissage, c'est-à-dire quand le modèle ne généralise pas bien ses prévisions sur de nouvelles observations. Cependant, le choix du modèle ou des hyper-paramètres n'est pas toujours évident et nécessite un travail approfondi.

L'agrégation d'experts consiste à ne plus considérer un seul modèle, mais tout un ensemble. En combinant leurs estimations, nous espérons obtenir un nouvel estimateur, dit agrégé, qui assure d'être en moyenne un peu meilleur que le meilleur des experts [START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF]. Cela permet de prendre en compte les prévisions de tous les modèles, dont la précision peut varier significativement selon la période de temps considérée ou des situations peu représentées dans les données. L'agrégation d'experts propose un cadre théorique solide de mélange d'estimateurs aux hypothèses variées dans un seul et même modèle. De plus, le mélange d'experts ne fait aucune hypothèse sur les experts qui le composent et rend donc l'approche particulièrement attrayante. Cela explique en partie le succès qu'à connue la méthode au cours des dernières années [START_REF] Littlestone | The weighted majority algorithm[END_REF][START_REF] Vovk | Aggregating strategies[END_REF][START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF][START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF][START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF].

Travaux connexes L'agrégation d'experts a connu un engouement particulier il y a un peu plus d'une décennie, popularisé par le livre de Cesa-Bianchi et Lugosi [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF] qui propose une introduction approfondie de cette approche. La façon dont les poids sont calculés peut différer d'une application à l'autre. Par exemple, des travaux proposent d'utiliser la moyenne pondérée exponentielle (EWA) [START_REF] Littlestone | The weighted majority algorithm[END_REF][START_REF] Vovk | Aggregating strategies[END_REF], une règle d'agrégation en ligne convexe permettant des changements brutaux dans l'allocation des poids. Le taux d'apprentissage multiple (ML Poly) a sa propre règle de calibrage des paramètres d'apprentissage en ligne qui est plus rapide que le réglage empirique décrit par Devaine, Gaillard, Goude, and Stoltz. L'estimateur de part fixe (FS) [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF][START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF] rivalise quant à lui non seulement avec le meilleur expert mais aussi avec la meilleure séquence d'experts. L'approche Ridge permet des poids non-positifs et des combinaisons non convexes [START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF][START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF]. Le mélange d'expert a été utilisé pour prévision de la consommation électrique [START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF][START_REF] Goude | Mélange de prédicteurs et application à la prévision de consommation électrique[END_REF] et l'ensemble des lois énoncées plus haut sont testées et comparées dans un article [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF].

En revanche, ces méthodes n'ont pas été explorées en finance. L'agrégation d'experts peut pourtant s'avérer utile pour la gestion d'actifs face aux régimes non-stationnaires des marchés. Plusieurs travaux se sont concentrés à étudier des facteurs (macroéconomiques, de marché, de comptabilité...) pour la prévision de rendements de marché [START_REF] Welch | A comprehensive look at the empirical performance of equity premium prediction[END_REF] ou pour décrire des comportements boursiers [START_REF] Harvey | and the cross-section of expected returns[END_REF]. Dans leur énumération, Green, Hand, and Zhang désignent jusqu'à 330 facteurs proposés dans la littérature. La plupart d'entre eux sont très corrélés, comme les caractéristiques décalées au niveau des actifs (book-to-market, momentum...). Un si grand nombre de signaux, combiné aux larges bases de données structurées en finance de marché appelle naturellement à considérer les outils de l'apprentissage statistique.

Au cours des dernières années, de nouvelles techniques de science des données ont été testées pour améliorer les méthodes traditionnelles dans le domaine de la finance. En ce qui concerne la construction de portefeuilles, Moritz and Zimmermann utilisent des techniques reposant sur des arbres pour classifier les rendements boursiers et construire des portefeuilles en conséquence. Heaton, Polson, and Witte s'attaquent à la sélection de portefeuilles en utilisant des réseaux neuronaux profonds. D'autres articles se concentrent sur la prévision de séries temporelles d'intérêt. Par exemple, Rapach, Strauss, and Zhou utilisent les rendements décalés du marché boursier américain et tirent parti des modèles LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] pour prévoir les rendements boursiers mondiaux. Des extensions de ce modèle avec le groupe adaptatif LASSO ont aussi été utilisées pour sélectionner les caractéristiques et prévoir les rendements attendus [START_REF] Freyberger | Dissecting characteristics nonparametrically[END_REF]. Kozak, Nagel, and Santosh utilisent une méthode de rétrécissement pour construire un facteur d'actualisation stochastique robuste. Hutchinson, Lo, and Poggio, Yao, Li, and Tan considèrent une approche non-paramétrique avec des réseaux neuronaux pour prévoir les prix des produits dérivés. Enfin, Gu, Kelly, and Xiu comparent dans une étude détaillée les performances de treize modèles d'apprentissage automatique, notamment des réseaux neuronaux et des forêts aléatoires, pour prévoir les rendements d'actifs. Plus récemment, Rasekhschaffe and Jones explorent comment ce type de modèles peut améliorer les prévisions des rendements boursiers tout en évitant le sur-apprentissage.

Formalisme La prévision de séries temporelles consiste à estimer la suite d'une séquence d'observations y 1 , y 2 , ..., y T à valeurs dans Y. Un expert utilise un ensemble de caractéristiques pour estimer la prochaine valeur de la suite. Les observations D t " tpx 1 , y 1 q, . . . , px t , y t qu sont considérées comme des réalisations de variables aléatoires `pX s , Y s q ˘1ďsďt . Un expert doit prévoir Y t`1 P Y étant donné X t`1 P X en apprenant la relation (supposée) entre les caractéristiques de l'espace d'entrée X et les réalisations de l'ensemble de données D t .

Nous considérons un cadre d'apprentissage en ligne. Les données deviennent disponibles dans un ordre séquentiel et le but est de mettre à jour les modèles avec les nouvelles observations (voir Bottou). Suivant Wintenberger, un expert k à t est une fonction f k t : X Þ Ñ Y qui dépend des observations passées D t et telle que la prévision f k t pX t`1 q doit être aussi proche que possible de Y t`1 . Un expert en ligne f k est un algorithme séquentiel qui produit à chaque instant t ě 1 un expert f k " pf k 0 , f k 1 , f k 2 , . . .q. La qualité d'une estimation f k t pX t`1 q est mesurée pour chaque instant t par l'erreur de prévision :

E " pY t`1 , f k t pX t`1 qq|D t ‰ ,
où : Y 2 Ñ R `est la fonction de perte (ou coût) supposée convexe (généralement l'erreur quadratique). Un estimateur est d'autant plus performant qu'il minimise son erreur de prévision cumulée, ou risque cumulé, définie par :

R T pf q " T ÿ t"1 Er pY t`1 , f k t pX t`1 qq|D t s
Tout l'intérêt du mélange d'experts est de prendre en compte plusieurs estimations provenant d'un ensemble de méthodes, disons K méthodes. Le mélange opère comme une combinaison linéaire des prévisions des modèles, dont le poids associé à chaque expert correspond à la confiance qui lui est accordé. Chaque modèle k P t1, . . . , Ku fait ses propres prévisions f k,t indépendamment et l'agrégation construit alors sa prévision comme une moyenne pondérée :

f " ˜K ÿ k"1 w k,1 f k 1 , K ÿ k"1 w k,2 f k 2 , . . . , K ÿ k"1 w k,t f k t , . . . où pw k,t q tě1 indique
les poids attribués à l'expert k. Les poids appartiennent généralement au simplexe S " tw k P R K `, ř K k"1 w k " 1u sous-ensemble de R K (mais d'autres ensembles sont possibles [START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF]).

La notion de regret [START_REF] Freund | Using and combining predictors that specialize[END_REF] permet de distinguer deux sources d'amélioration des estimations : Cela rend l'estimation d'autant plus fine, l'agrégation peut évoluer selon la précision des prévisions et s'adapter à un changement de régime des données.

R T " R T ´inf k T ÿ t"1 Er pY t`1 , f k t`1 qs. (1

Contributions

Nous appliquons l'agrégation d'experts à un cas d'usage en finance. Nous souhaitons répondre aux difficultés qu'aurait un agent à choisir parmi un ensemble de stratégies et qui souhaiterait s'adapter au régime changeant des marchés [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF]. Pour cela, l'ensemble des prévisions des modèles est combiné de manière dynamique, c'est-àdire adaptative au cours du temps, afin de construire une estimation robuste. a) Bernstein Online Aggregation Nous considérons la règle Bernstein Online Aggregation (BOA) [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF] qui bénéficie d'un meilleur taux de convergence que d'autres lois grâce à son raffinement de second ordre. À chaque instant t P r0, T s pour un horizon T , la règle modifie le poids d'un expert en fonction de la qualité de sa prévision et par rapport à celles des autres experts. Pour ce faire, BOA considère la fonction de perte suivante :

Réseaux de neurones

Neural Network (NN1-NN5)

Table 1.1 -Experts utilisés pour la prévision de rendements.

La Figure 1.10 illustre les log-rendements cumulés des stratégies longues et courtes et les poids associés de l'agrégation de portefeuille PtfBOA. L'agrégation apparaît comme le deuxième modèle le plus rentable sur les deux portefeuilles. La régression des moindres carrés ordinaires avec perte de Huber (OLS+H) est l'expert le plus efficace pour le portefeuille court jusqu'en 2002, après quoi NN2 prend la tête. Le meilleur modèle long reste NN2 sur toute la période de test en termes de rendements cumulés. Les modèles les plus complexes ne sont donc pas nécessairement les plus rentables, un modèle linéaire pouvant s'avérer plus performant que des forêts aléatoires ou des réseaux de neurones. L'écart de performance entre PtfBOA et PtfUNI (mélange uniforme) est significatif ce qui encourage l'adoption d'une agrégation adaptative en ligne. Si l'on se concentre sur la moyenne des poids des treize stratégies d'experts (Figure 1.10), nous voyons dès les premiers mois comment l'agrégation opère : en commençant par des poids uniformes, le mélange converge rapidement et favorise les meilleurs experts. Les poids sont stables de 1992 à 2001, où une rupture de régime diminue l'importance de OLS+H au profit des réseaux de neurones.

La crise de 2009 illustre l'intérêt d'une mixture en ligne. La crise frappe les performances de tous les experts, mais elle n'a qu'une faible influence sur les poids des réseaux de neurones. Sur l'ensemble de la période de test, les poids des experts semblent suivre un régime stationnaire avant l'an 2000, puis un autre de 2001 à 2016. L'agrégation adapte ses poids en conséquence et s'assure ainsi d'être une stratégie robuste et rentable.

Dans cette étude, l'agrégation ne cherche pas nécessairement le meilleur mélange hétérogène, mais le meilleur expert. L'agrégation n'en reste pas moins une stratégie aussi rentable que les meilleurs portefeuilles. Nous obtenons un gain de performance global de l'ordre de 25% en termes de ratio de Sharpe par rapport au meilleur des experts. Des gains tout aussi significatifs sont obtenus pour d'autres statistiques financières, notamment la perte mensuelle maximale qui est plus de deux fois inférieure à celle du meilleur expert.

Au delà des bons résultats empiriques que propose l'agrégation, nous nous intéressons aussi à la création de nouveaux experts. Construire de nouveaux experts consiste à dériver les meilleurs modèles en une série de modèles voisins (par exemple en faisant varier des paramètres structurels du modèle) puis de les inclure dans l'ensemble initial d'experts. De cette manière, nous donnons plus d'importance aux experts les plus performants et élargissons leur spectre. L'approche proposée, appelée bagging [START_REF] Breiman | Bagging predictors[END_REF], consiste à ré-entraîner les meilleurs experts sur des sous-ensembles de l'ensemble d'entraînement.

Apprentissage d'opérateurs pour la résolution d'EDP

Cette section repose sur la pré-publication Remlinger et al. (2022) Un modèle résolvant une famille d'équations aux dérivés partielles (EDP) avec un seul apprentissage est proposé. Re-calibrer un modèle de facteurs de risque ou ré-entraîner un solveur chaque fois que les conditions du marché changent est coûteux et insatisfaisant. Nous souhaitons donc résoudre des EDP lorsque l'environnement n'est pas stationnaire ou pour plusieurs conditions initiales à la fois. Pour cela, nous considérons des réseaux d'opérateurs profonds afin d'approcher avec précision des opérateurs continus non linéaires. Notre modèle apprend la solution générale associée à chaque fonction paramètre simultanément. Mais, en fin de compte, nous voulons généraliser en résolvant l'EDP avec des modèles sous-jacents ou des conditions qui n'étaient pas présents lors de l'entraînement. Nous confirmons l'efficacité de la méthode avec plusieurs problèmes de gestion des risques en la comparant avec d'autres approches d'apprentissage automatique. Nous évaluons notre DeepOHedger sur des tâches d'évaluation d'options, y compris des modèles de volatilité locale et des "options spread" impliquées dans les marchés de l'énergie. Enfin, nous présentons une approche purement axée sur les données pour la couverture des risque. Notre modèle résout une famille d'EDP paramétriques à partir d'échantillons synthétiques produits par un générateur profond préalablement entraîné sur des prix spot provenant de différents pays.

Travaux connexes De nombreux travaux s'intéressent à la résolution d'EDP à l'aide d'outils de l'apprentissage automatique, y compris dans le cas non linéaire. Cependant la plupart d'entre eux se concentrent sur la fléau de la grande dimension. Une première méthode numérique de résolution des EDP entièrement non linéaire de grande dimension a été introduite dans Cheridito, Soner, Touzi, and Victoir [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF], puis étendue avec des schémas efficaces développés dans Fahim, Touzi, and Warin [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic pdes[END_REF], Tan [START_REF] Tan | A splitting method for fully nonlinear degenerate parabolic pdes[END_REF]. Malgré des résultats encourageants, ces approches n'ont pas pu résoudre les EDP de dimension supérieure à 5. En concevant un schéma spécifique basé sur l'imbrication de la méthode Monte Carlo, Warin [START_REF] Warin | Monte carlo for high-dimensional degenerated semi linear and full non linear pdes[END_REF] permet de considérer de très hautes dimensions. Des considérations dans un cadre pleinement non linéaire sont proposées dans Weinan, Han, and Jentzen [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF], Han, Jentzen, and Weinan [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF], et ont permis d'éclaircir à quel point les méthodes d'apprentissage automatique sont prometteuses pour la résolution d'EDP en grande dimension. D'autres travaux reposent sur un raffinement de second ordre de la représentation en équation différentielle stochastique inverse (BSDE) [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF]. En considérant une approche globale, des propositions cherchent à résoudre des EDP semi-linéaires [START_REF] Chan-Wai-Nam | Machine learning for semi linear pdes[END_REF] ou entièrement non linéaires [START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF]. Plus récemment, Huré, Pham, and Warin [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF] proposent d'estimer simultanément la solution et son gradient avec des réseaux de neurones profonds. L'approche Galerkin est particulièrement flexible à une large gamme d'EDP avec ou sans conditions aux limites rend cette méthode particulièrement attrayante. Les solutions sont évaluées par différenciation automatique de la fonction du réseau [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF][START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF][START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF]. Une revue complète des algorithmes basés sur les réseaux de neurones pour le contrôle stochastique et la résolution d'EDP en finance est disponible dans Germain, Pham, and Warin [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF] et présente plusieurs cas d'utilisation.

Des propositions récentes se concentrent sur des contrôles stochastiques robustes et visent à résoudre des problèmes d'EDP avec incertitudes de modèles. En physique, Khoo, Lu, and Ying [START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF] utilisent des réseaux de neurones pour la résolution d'EDP déterministes à partir de quantités physiques initialement choisies aléatoirement. Un article [START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF] présente une méthode paramétrique profonde générale capable de résoudre une famille d'EDP avec un seul réseau de neurones. Il est testé sur la tarification d'options multiactifs. La fonction de perte repose sur la formulation des moindres carrés d'une EDP comme dans Deep Galerkin [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF]. Pour approcher la solution, le réseau est conditionné avec des valeurs constantes décrivant le modèle de facteur de risque ou l'option.

Cadre général du contrôle stochastique Soit T un horizon fini. Soit X " pX t q tPr0,T s une dynamique de diffusion contrôlée en temps continu dont les réalisations appartiennent à R d dX t " µpt, X t , α t qdt `σpt, X t , α t qdW t , où W est un mouvement Brownien standard de dimension d sur un espace de probabilité pΩ, F, Pq équipé d'une filtration pF t q tPr0,T s représentant les informations disponibles à l'instant t, et X 0 une variable aléatoire F 0 -mesurable à une valeur dans R d . La fonction µ : r0, T s ˆR ˆRd Ñ R d décrit le drift et σ : r0, T s ˆR ˆRd Ñ M d la volatilité (dans l'ensemble des matrices carrées). Les deux fonctions satisfont les conditions habituelles de Lipschitz [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] assurant l'existence et l'unicité de la solution de l'Eq.(1.5.2). Le contrôle α " pα t q tPr0,T s est un processus F t -adapté sur l'ensemble des contrôles admissibles A. Nous cherchons une stratégie optimale, qui minimise le coût J du processus α :

Jpαq " E "ż T 0 f pt, X t , α t qdt `gpX T qq  .
Dans ce cas, l'équation de Bellman de programmation dynamique conduit à une EDP de la forme

B t v `µD x v `1 2 Trpσσ T D 2 x vq " f p., ., v, σ T D x vq sur r0, T q ˆRd (1.5.2) vpT, .q " g sur R d
où f est une fonction de coût non linéaire définie sur r0, T s ˆRd ˆR ˆRd , et g est une fonction terminale définie sur R d , appelée payoff.

Contributions

Le contrôle stochastique reposant sur des simulations Monte Carlo nécessite des hypothèses de modélisation. En pratique, il existe souvent une incertitude sur le modèle et l'environnement peut changer au cours du temps. Les changements rapides de régime imposés par les conditions météorologiques sur le secteur de l'énergie nécessitent l'adoption de modèles plus flexibles et plus robustes pour la gestion des risques. Les modèles classiques Black and Scholes [START_REF] Black | The pricing of options and corporate liabilites[END_REF], Heston [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], Dupire et al. [START_REF] Dupire | Pricing with a smile[END_REF] sont rigides et ne permettent pas par exemple des changements de corrélations. L'utilisation de modèles mal calibrés peut conduire à prendre des décisions sous-optimales. De plus, le calibrage devrait idéalement être effectué en continu, mais n'est pas fait en pratique à cause du coût de calcul et le besoin de stabilité.

Nous proposons donc de résoudre un problème de contrôle stochastique pour plusieurs modèles en un seul entraînement, et qui se généralise à des modèles inconnus. Nous apprenons des opérateurs pour un ensemble d'EDPs au lieu de les conditionner la résolution par des paramètres à valeurs réelles [START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF][START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF]. Les fonctions paramètres peuvent décrire le modèle de risque sous-jacent (en particulier sa fonction de volatilité), des caractéristiques d'une option ou des contraintes. Afin de capturer correctement les liens entre les fonctions et la solution à un instant donné, nous considérons les réseaux d'opérateurs profonds (DeepONets) [START_REF] Lu | Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[END_REF] dans une approche non supervisée. L'architecture du modèle consiste en deux sous-réseaux, un qui apprend une fonction d'entrée approchée sur un nombre fixé de points et un autre pour représenter l'état du processus sous-jacent à un instant donné. L'application numérique se concentre sur la couverture du risque. Le Deep Operator Hedger (DeepOHedger) introduit est un solveur universel pour un ensemble de modèles de facteurs de risque ou d'objectifs donnés. a) Apprentissage d'un opérateur La fonction paramètre est notée par u P U, et v P V désigne la solution inconnue correspondante de l'EDP. Le problème 1.5.2 est résolu pour un u donné par les méthodes traditionnelles [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF]. La question est de savoir si l'on peut trouver une solution pour tout u P U. Nous pouvons alors définir l'opérateur solution G : U Ñ V comme suit Gpuq " vpuq La méthode introduite nécessite de fournir une approximation de la fonction u. En donnant une fonction trompeuse, nous pourrions ajouter une erreur de modèle à l'erreur d'approximation. Comme notre premier objectif est de pouvoir résoudre de manière robuste, nous entraînons notre modèle non pas sur une fonction u mais sur une famille de fonctions. Le réseau d'opérateurs apprend différentes fonctions u, ainsi nous tirons réellement avantage de l'utilisation des réseaux de neurones, en nous attaquant à un problème de haute dimension et à des fonctions éventuellement difficiles à estimer. Lorsque l'on est incertain sur la structure du marché, nous pouvons fournir une approximation des fonctions de volatilité, notre modèle doit être capable de résoudre correctement l'EDP, que le réseau ait été entraîné avec la fonction ou non. b) Une approche globale Une stratégie de couverture peut être réduite à un problème de contrôle stochastique, consistant à acheter ou vendre une certaine quantité α d'un actif S " pS t i q iPt0,...,N u pour N P N à chaque date. En discrétisant sur une grille de temps régulière T " tt 0 " 0, . . . , t N " T u, on définit un portefeuille autofinancé de valeur terminale X T,θ;u comme :

X T,θ;u " p θ `N´1 ÿ i"0 α θ pt i , S t i ; uqpS t i`1 ´St i q,
où p θ est la prime et α θ p.q désigne les contrôles. On se donne la possibilité de rééquilibrer le portefeuille à chaque date, sauf sur la dernière. L'approche globale de la résolution de (1.5.2) conduit au problème d'optimisation suivant : min θ ErpX T,θ;u ´gpS T ; uqq 2 s.

La notation gpS T ; uq permet un apprentissage de la solution optimale pour plusieurs fonction de gain.

Cette approche global est très pratique en raison de sa formulation et de la simplicité de l'optimisation du paramètre θ par apprentissage automatique. D'autres méthodes sont détaillées dans la littérature [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF], notamment les approches locales [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF]. En revanche, aucune extension de ces méthodes par l'apprentissage d'opérateurs n'est disponible dans la littérature. Enfin, nous proposons une approche reposant complètement sur les données pour la couverture de risque. Nous générons conjointement des séries temporelles de prix d'électricité, de gaz et d'émission CO2 à partir de CEGEN et de variables exogènes corrélées comme la production de renouvelables (solaire et éolien), date (jour, mois) et la demande résiduelle. Ces données synthétiques sont alors utilisées pour l'entraînement du DeepO-Hedger. Les fonctions de drift et de volatilité de CEGEN sont utilisées comme fonction paramètre u. L'incertitude de modèle provient de la localisation des prix d'électricité, qui peuvent être français, allemands, belges, suisses, espagnols ou italiens. Le Tableau 1.2 indique l'erreur de réplication et le risque initial pour chaque emplacement. Ce dernier correspond au risque du gain sans aucune couverture, c'est-à-dire ErpgpS e T , S g T , S co2 T q 2 s. Les performances selon les pays sont proches, car tous appartiennent au même réseau électrique en Europe. Un écart est observé entre les erreurs de réplication de l'ensemble d'entraînement et de l'ensemble de test (incluant uniquement des trajectoires prix réels non-observées). Une explication réside dans le fait que les performances sur l'ensemble de test combinent une erreur de modèle de CEGEN ainsi qu'une erreur de généralisation de DeepOHedger. Cependant, ces résultats comparés à un portefeuille non couvert soulignent l'intérêt de notre modèle. Cette dernière expérience met en évidence l'intérêt de ces approches reposant sur l'apprentissage à partir de

c) Applications à la couverture des risques

Conclusion et perspectives

Dans cette Partie II, nous détaillons des solutions afin de répondre aux différents défis en gestion des risques qu'amènent les spécificités des marchés de l'énergie et nos nouvelles habitudes de consommation énergétiques. Le Chapitre 6, explore les liens entre l'apprentissage par renforcement avec les problèmes classiques d'économie et de finance, et mis en évidence que leur résolution est désormais numériquement abordable. Dans le Chapitre 7, nous proposons de considérer dans un seul et même modèle plusieurs stratégies d'investissement construites indépendamment en les pondérant de manière dynamique selon leur performance à chaque instant. Enfin, le dernier Chapitre 8 s'intéresse à développer un modèle capable de résoudre plusieurs problèmes de contrôle stochastique en un unique entraînement, et qui se généralise à des modèles inconnus, en apprenant des opérateurs.

Des garanties théoriques sur l'influence de la pondération sur des critères de risques classiques (ratio de Sharpe, turnover,...) pourraient se révéler particulièrement pertinentes pour l'agrégation d'expert.

Une perspective naturelle consisterait à étendre les approximateurs d'opérateur à un cadre plus général, celui de la résolution d'équations aux dérivés partielles complètement non linéaires. Pour cela, plusieurs pistes sont envisageables selon la manière de les résoudre. Les approches globales, faciles à implémenter et empiriquement efficaces, devraient certainement être entreprises. De plus, des garanties théoriques sur la convergence des réseaux de neurons denses sont possibles avec les schémas locaux [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF]. En particulier, les méthodes Deep Backward Dynamic Programming s'appuient sur la relation de programmation dynamique récursive issue de la discrétisation temporelle de l'équations différentielle stochastique rétrograde, et permet d'approcher la solution de l'EDP [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF]. Ces approches s'accompagnent de garanties de convergence de la solution et de résultats sur la vitesse de convergence dans le cadre de réseaux de neurones Lipschitz (dits GroupSort) [START_REF] Germain | Approximation error analysis of some deep backward schemes for nonlinear pdes[END_REF]. Bien qu'il n'existe pas de résultats théoriques sur la taille des réseaux pour l'approximation d'opérateurs similaires aux limites de largeur et de profon-deur pour l'approximation de fonctions, de futures recherches pourraient se concentrer sur l'adaptation de certains des résultats connus au cas où nous considérons une seule EDP. D'autres travaux sur les raisons pour lesquelles les réseaux d'opérateurs profonds peuvent induire de petites erreurs de généralisation pourraient également conduire à des résultats théoriques utiles. Les applications qui en découleraient sont nombreuses et identifiées.

Des extensions à des cas plus complexes, par exemple dans le cas McKean Vlasov, permettraient d'inclure la variance d'un portefeuille dans l'élaboration des stratégies [START_REF] Germain | A level-set approach to the control of stateconstrained mckean-vlasov equations: application to renewable energy storage and portfolio selection[END_REF]. Notre modèle aurait alors pour ambition d'apprendre les contrôles optimaux pour plusieurs lois données, comme des niveaux de quantiles. Typiquement, il s'agirait de s'intéresser à un problème de sélection de portefeuille moyenne-variance avec des contraintes probabilistes sur la richesse. Dans la même lignée, l'apprentissage d'opérateurs pourrait résoudre des problèmes de jeux à champs moyens pour plusieurs distributions initiales. Cela permettrait une plus large modélisation des interactions entre agents.

Introduction

This thesis aims at providing scientific tools for time series generation and the design of robust optimal policies, supported by machine learning methods. This work is motivated by applications to energy markets and the need to manage the impact of the increasing integration of intermittent renewable energy on prices.

Context

Challenges

The beginning of the 21st century is essentially marked by the awareness of the impact of human activities on the environment. Among them, anthropogenic greenhouse gas emissions, which are at the origin of the current climate change, are notably rooted in the combustion of fossil fuels. To tackle this challenge, several policies to limit these emissions are possible, starting with the reduction of our production and consumption in general, but also with the adoption of less polluting solutions.

A major effort is being made to produce energy by means that make less use of fossil fuels. In particular, the use of electricity as an energy vector is then a way to limit our impact by cleverly replacing the most emitting systems (provided that the construction of the alternatives is not more polluting...). The increasing use of renewable energies in the energy mix or self-consumption, i.e. consuming the energy we produce (with photovoltaic panels for example), is changing the habits of electricity producers and suppliers. Whether in transportation or heating, electrification of uses can contribute to reduce our emissions but imposes a higher and more volatile demand for electricity. Incentives for a better energy consumption through a dedicated pricing policy [START_REF] Brégère | Simulating tariff impact in electrical energy consumption profiles with conditional variational autoencoders[END_REF][START_REF] Brégère | Target tracking for contextual bandits: Application to demand side management[END_REF] or the application of principal-agent models to energy issues can also decrease our pollution [START_REF] Élie | Mean-field moral hazard for optimal energy demand response management[END_REF].

Other sources of uncertainty accentuate the difficulty of organizing production or predicting electricity prices. Global warming is having a real impact on the power grid. More frequent and longer droughts or cold spells affect generation and distribution. The growing use of digital tools, accelerated by the health crisis of 2020, is profoundly changing our consumption habits, less predictable and, above all, increasingly dependent on electricity.

The desire to reduce our carbon emissions, but also our new consumption behaviors, make the demand for electricity higher and more random. How, then, can we reconcile electrification and uncertainty? This problematic raises modeling challenges.

Motivations

Compared to traditional financial markets, electricity markets have specificities that require a singular modeling.

On the one hand, with the exception of hydraulic dams, there are still few solutions for storing electricity efficiently and sustainably. This requires a supply-demand balance at each moment and has led to the creation of many markets. Short-term markets, such as spot and intraday, make it possible to adjust the balance between distributors and suppliers, but also to manage the uncertainties linked to intermittent production (solar, wind). These markets do not exist for other energy-related commodities such as gas. We quickly detail the spot market that will be used in the following. The spot market is an auction market, where the price is defined the day before the delivery by comparing the supply and demand curves per hour. The price of electricity on this market has some specificities:

-an hourly, weekly and annual seasonality, strongly linked to electricity consumption, -price jumps, which quickly return to their initial value and are most of the time due to abnormally high demand (air-conditioning in case of strong heat or heating in cold wave), -return to the average, prices return to a state of equilibrium, -negative prices, during a high production of electricity, often induced by renewable energies, it is sometimes more profitable to pay for the electricity to be consumed rather than to shut down a power plant for a few hours. Figure 2.1 shows the French electricity spot price from 2016 to 2020, highlighting these stylized facts. Other energy markets, such as forwards or futures, allow long-term contracts to be covered and are used for production planning.

On the other hand, electricity prices depend on the prices of other energy sources. The production relies in particular on fossil fuels such as gas or coal, which are also commodities traded on the markets. There is therefore a dependence between their prices and the price of electricity. These dependencies were studied in the thesis Deschatre [START_REF] Deschatre | Dependence modeling between continuous time stochastic processes: an application to electricity markets modeling and risk management[END_REF].

Finally, the electricity demand depends very largely on physical phenomena and weather conditions. Low temperatures in France increase heating consumption and this has an impact on electricity prices. Production from renewable energies also influences prices and generates an additional physical hazard due to its intermittency. When the wind blows strongly in Germany, the wind production increases and the electricity prices decrease (until they become negative when the grid is overloaded). In order to support the increasing integration of renewable energies, recent work has focused on modeling their impact on markets from the producers' point of view [START_REF] Tinsi | Modeling and optimal strategies in short-term energy markets[END_REF].

In addition to these specificities of the electricity markets, the new consumption patterns mentioned earlier increase the complexity of modeling energy markets and elec-Figure 2.1 -French electricity spot prices over the period 2016-2020 tricity consumption. It is necessary to take into account many dependencies between various random signals in order to make appropriate decisions at any time and to design optimal strategies. Statistical learning allows to tackle these problems in high dimension and thus a joint modeling of the many risk factors.

Purpose of the thesis

The different perspectives offered by machine learning have largely motivated its appropriation in the energy field. Most of the usual risk management practices have been extended thanks to the freedom offered by these tools, driven by their flexibility and their ability to scale up. In particular, two topics of optimal management of a portfolio of physical or financial assets can be undertaken under this prism: the modeling of risk factors on the one hand and optimal control on the other.

On the one hand, the modeling of risk factors is used in the development of hedging strategies, in asset management and in the evaluation of risks. However, the models adopted today raise questions. First, the classical assumptions (martingality, normality, markovianity) in stochastic control, which make it possible to calculate optimal hedges are criticized [START_REF] Mandelbrot | The variation of certain speculative prices[END_REF]. For example, the modeling of noise by Brownian movements is questionned, as rare events in market finance are much more frequent than the distribution tails of the normal distribution predicts. These hypotheses are considered to be too far removed from the observed reality of the markets, and they regularly give rise to debate because they are likely to lead us to make sub-optimal decisions. Secondly, markets are constantly changing and models can quickly be invalidated, for instance in the case of hedging in a low price environment. By the time a model is developed, it may be outdated. Finally, the increasing number of risk factors (weather and climate phenomena, photovoltaic and wind production, specific production) and the dependence of prices on different macroeconomic factors (exchange rate, unemployment rate, inflation, growth) require joint modeling. Contrary to current approaches, an optimal modeling should involve changing correlations, breaks or jumps. Incorporating these phenomena into a classical probabilistic model would make it difficult to calibrate and, in fact, unstable.

The development of generative models that learn directly from historical data could make it possible to gain in flexibility, adaptability and to take into account a greater number of exogenous variables or constraints. Moreover, it would allow to abstract from constraints related to data privacy issues, by sharing a trained generator rather than sensitive data, or to deal with missing values (especially labels).

We seek to adapt methods used in image processing or language [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Kingma | Auto-encoding variational bayes[END_REF] to the generation of time series for the energy sector. Text generation is essentially based on learning mathematical representations, i.e. assigning a vector to each word in relation to others that are semantically close with embedding. According to the Austrian philosopher and mathematician L.Wittgenstein "the meaning of a word is its use in language". In order for the vector to represent a word in a coherent way, it is therefore necessary that the embedding takes into account its place in a sentence and the general context. The absence of such a structure in most time series in the energy world leads us away from these methods. Contrary to language, these series have specificities (high variances, seasonality, external dependencies...) that raise new challenges in addition to those already existing.

On the other hand, the models considered to calculate optimal decisions are only valid in a stylized framework, in reduced dimension with simplified hazard models. These approximations allow for theoretically sound approach, but can have harmful consequences in practice. Indeed, most of these models are used to develop risk management strategies and an approximation that is too far from reality can lead to erratic decisions. Reinforcement learning methods offer new perspectives for stochastic control. First, these methods allow to solve these problems in higher dimension and to add constraints more easily (by a simple penalization of the objective function for instance). Second, they give the possibility to dynamically adjust the underlying hazard model according to the observed results. Finally, it is also possible to extend the classical stochastic control approaches by adopting a robust approach or by including a model uncertainty.

Training reinforcement learning algorithms, however, requires a large number of varied observations. Many games that are sufficiently different from each other must be played in order to learn an optimal policy. In the case of games (like Go [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF][START_REF] Silver | Mastering the game of go without human knowledge[END_REF]), the environment is known and controlled. If in finance, as in electricity consumption, structured data are available, it is not obvious that this is sufficient for the convergence of such models. The interest in generative methods therefore has another advantage: to abstract from the limit of the size of the datasets. In our case, data augmentation seems necessary for training deep reinforcement learning models.

Generator Real data

Hedger Replication Error

Step 1: Generate synthetic data

Step 2: Learning optimal controls

Step 3: Backtesting on real data Our ambition is to combine such generators with methods for learning optimal strategies for risk management. The generation is then no longer only part of a data augmentation ambition, but seen as a link in a chain of machine learning models, illustrated Figure 2.2. The aim is to propose a new and complete approach, distinguishing oneself from classical probabilistic methods, to meet the challenges of risk management. By being fed during training with diverse and new synthetic data, the hedging model is more in line with a risk minimization policy than when trained on a limited dataset. All this while taking advantage of the strengths of statistical learning tools: a data-driven, model-free, flexible approach that can benefit from high-dimensional joint modeling. Our method is based on deep neural networks, both for the generator and for the risk coverage model. The latter, trained to learn optimal controls by minimizing the replication error, is called Deep Hedger.

Nevertheless, beyond the classical debiasing treatments on the data, a too small or specific dataset can lead to unstable controls. As in the case of the 2010 Flash Crash, which was caused by the overloading of high-frequency trading algorithms, a poorly designed Deep Hedger could propose absurd controls in the face of exceptional market conditions (for example, exceptionally high gas prices in Europe in December 2022). These risks must be put in perspective with those linked to the assumptions of classical probabilistic models. The addition of the generator's model error to that of the Deep Hedger's replication and generalization can also be dangerous if such models were put into production. Finally, non-stationary environments are also a limiting factor to the adoption of such learning models. Therefore, we are also interested in the theoretical guarantees that these statistical learning models can provide.

It is in this context that the following thesis tackles the generation of realistic highdimensional time series constructed directly from historical data. This work also addresses the design of optimal and robust investment and hedging strategies to respond to the changing nature of energy markets. We propose an innovative method, a complete chain of fully data-driven methods applied to risk management. This makes it possible to respond to some classic problems in finance, but also to approach the energy transition with new tools that are perhaps more adapted, or at least complementary. The availability of real data and the potential solutions through statistical learning justify the approach developed in the thesis.

Deep learning

The work presented in this thesis relies on a good approximation of one or more functions of interest. From a numerical point of view, most of our solutions use neural networks to estimate these functions. We introduce here some key concepts related to deep learning, starting by recalling the formalism of neural networks composed of dense layers.

Such neural networks are characterized by their depth, i.e. their number of layers, which we note L (L P N ˚). The larger L is, the deeper the neural network is considered to be. A layer is composed of m neurons for P t0, . . . , L ´1u. The number of neurons of a layer is also its output dimension. In particular, the width of the last layer, the output layer, corresponds to the output dimension of the network. Each neuron applies an affine transformation and an activation function on the output of the previous layer. Consequently, the output of a layer is the following one: @ ě 0, y " f py ´1q " σ pW ¨y ´1 `β q, with W a matrix of size m ˆm ´1 composed of weights, and β is a column vector of size m called bias. The matrices W and the vectors β are the parameters of the neural network. The most common choice of activation function σ in the intermediate layers is the ReLu function. Let d 0 be the input dimension and d 1 the output dimension. The whole neural network is then the composition of its layers of

R d 0 in R d 1 such that x Þ ÝÑ f L´1 ˝¨¨¨˝f 0 pxq.
The universal approximation theorem [START_REF] Hornik | Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks[END_REF] states that the set of fully connected simple layers is dense in L 2 pνq for any finite measure ν on R d , d ą 0 and for a continuous and nonconstant activation function sigma. Deep feed-forward networks are a class of universal approximators. However, this theorem does not indicate the minimum depth and width to approximate a function. Empirical tests must be performed to determine the best neural network architecture. The universal approximation theorem also does not mention how to optimize the neural network parameters. In practice, stochastic gradient descent shows good results in many cases. A complete introduction to deep learning and descriptions of more general models are available in Bishop [START_REF] Bishop | Pattern recognition[END_REF] and Goodfellow, Bengio, and Courville [START_REF] Goodfellow | Deep Learning[END_REF].

An equivalent result is possible with operators, i.e. from one space of functions onto another space of functions. The universal approximation theorem for operators [START_REF] Chen | Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems[END_REF] Figure 2.3 -Scheme of (unstacked) DeepOnet. The function u is approximated by m sensors and given as input to the branch net which returns a real vector of dimension K. The trunk net takes as input y P R d and produces a real vector of dimension K. The two outputs are then concatenated to return the operator G : u Ñ Gpuq. This architecture is known as the unstacked DeepONet.

states that neural networks can learn nonlinear continuous operators from data. Deep Operator Networks (DeepOnets) [START_REF] Lu | Learning nonlinear operators via deeponet based on the universal approximation theorem of operators[END_REF] is a specific network architecture dedicated to this task. Let G be an operator taking a function u as input and returning a function Gpuq. We evaluate Gpuq on a vector y P R d such that the output Gpuqpyq is a real number, that could be seen as a function of y conditional on u.

Theorem 2.2.1. (Universal Approximation Theorem for Operator

). Suppose that σ is a continuous non-polynomial function, X is a Banach Space, K 1 Ă X, K 2 Ă R d are two compact sets in X and R d , respectively, V is a compact set in CpK 1 q, G
is a nonlinear continuous operator, which maps V into CpK 2 q. CpKq indicates Banach space of all continuous functions defined on compact set K with norm ||f || CpKq " max xPK |f pxq|. Then for any ε ą 0, there are positive integers n, K, m, constants c k i , ξ k ij , θ k i , κ k P R, w k P R d , x j P K 1 , i " 1, ..., n, k " 1, ..., p, j " 1, ..., m, such that

ˇˇˇˇG puqpyq ´K ÿ k"1 n ÿ i"1 c k i σ ˜m ÿ j"1 ξ k ij upx j q `θk i ¸σpw k .y `κk q ˇˇˇˇă ε (2.2.1)
holds for all u P V and y P K 2 .

DeepOnets consist of two subnetworks taking as input a function u and a vector y P R d independently. The first one is called the branch net and aims at approximating the function u on a given number of sensors, i.e. a set of values x 1 , ..., x m P R d . The net branch is fed during training with the images of the sensors rupx 1 q, . . . , upx m qs T and generates a vector rb 1 , . . . , b K s T P R K . The second, called trunk net, takes as input the vector y and outputs rs 1 , ..., s K s T P R K . The two outputs are then concatenated as follows:

Gpuqpyq « K ÿ k"1 b k s k `b0 ,
where b 0 P R is a variable to be learned representing a bias aiming at reducing the generalization error. A scheme of the DeepOnet is proposed Figure 2

.3.
Such a neural network architecture will be used later to better generalize the learning of optimal policy for risk hedging.

Contributions

Two main topics, deep time series generation and optimization of investment or risk hedging strategies, have been explored in this thesis. The aim of this work is to highlight the applications of statistical learning methods on energy markets. The contributions are organized as follows:

-Part I: Time series generation Capturing time dependency is essential in the generation of realistic scenarios. Many solutions have been proposed to meet this challenge, by developing mathematical representations of the series, specific objective functions or neural networks adapted to temporal structures. In the Chapter 3, we propose to list these different approaches. Then, we identify the different issues that such deep generators raise, starting with the choice of evaluation metrics. In the Chapter 4, we propose a new model based on a conditional objective function inspired by the Wasserstein-2 distance [START_REF] Villani | Optimal transport: old and new[END_REF] and diffusions. The method benefits from theoretical guarantees and competes experimentally with the best state-of-the-art generators. Finally, in the Chapter 5, an application to energy markets is proposed. Several generative methods for time series operate a joint simulation of commodity prices conditioned on exogenous variables of interest. We consider a new evaluation metric that is intended to be operational to quantify the fidelity and usefulness of synthetic series.

-Part II: Learning optimal policy In the Chapter 6, we highlight the close links between classical economics and finance problems and reinforcement learning. The development of such models, efficient for a given task but general enough to adapt to unknown situations, remains a crucial issue in everyday applications. In practice, such models do not necessarily exist or are only well-defined on certain data points. For this reason, we explore robust approaches. In the Chapter 7, we propose to address the difficulty that an agent would have to choose between several strategies, using a theoretically sound approach, easy to implement and interpret: the expert aggregation. In the Chapter 8, we introduce a new model learning operators to solve a family of partial differential equations with a single learning, and which generalizes to unknown models. Finally, we propose an approach based entirely on unsupervised learning for risk management. A complete chain of statistical learning models is proposed, from joint generation of realistic price time series to training a model for risk hedging.

We now propose to detail more precisely the contents of the chapters of this thesis. For each of them, we briefly recall the related work and then present all our contributions.

Generative methods for time series

The generation of realistic scenarios is essential for risk assessment, strategy calculation and investment decisions. Monte Carlo methods based on pre-defined probabilistic models have been used to meet operational needs, in particular for risk hedging, stress testing and asset portfolio structuring.

In the 2010s, with the rise of deep learning models 1 [START_REF] Lecun | Deep learning[END_REF][START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF], new generative methods have appeared. Two of them have shown remarkable results in imaging: Variational AutoEncoder (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF] and Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF]. Adapting these models to the temporal framework is naturally appealing.

Introduction to Generative Methods

VAE attempts to learn the parameters of a given probability law by compressing information from an input variable, an image or a time series for example. During the encoding phase, the information is reduced to a multivariate latent distribution in order to reconstruct the signal as accurately as possible during the decoding phase. The objective is therefore to learn the distribution of the data with a model parameterized by θ in order to generate new data from samples of the latent space. Let be a vector x P R d of dimension d and a latent variable z in R k following a probability distribution known in advance (often Gaussian). Considering the marginals according to z, we have

p θ pxq " ż p θ px|zqp θ pzqdz,
where pp.q denotes a probability distribution function. Unfortunately, the computation of p θ pxq is expensive and in most cases unsolvable. Therefore, in practice, we consider the a posteriori distribution q ϕ pz|xq parameterized by ϕ. An illustration of the VAE architecture is proposed in Figure 2.4. The encoder therefore tries to learn this distribution a posteriori and, in general, the goal is to find a representation of the latent variables of lower dimension than that of the input data. The decoder learns the likelihood distribution p θ px|zq and aims to reconstruct the original input from the latent space. In the case where we know the data x but z is unknown, we therefore want the distributions q θ pz|xq and p ϕ px|zq to be as

L V AE pθ, ϕ; xq " ´dKL pq ϕ pz|xq||p θ pzqq `Eqϕpz|xq rlog p θ pz|xqs .
More details are available in the article [START_REF] Kingma | Auto-encoding variational bayes[END_REF].

The adversarial methods are based on an implicit learning of the distribution of the data, they do not directly model the probability law. The specificity of GANs relies on the simultaneous adversarial training between a generator and a discriminant. In the original setup, the generator has to produce fake samples and tries to fool the discriminant, while the latter tries to distinguish between the true and the outputs of the generator. This framework allows for simple generation of new data while being robust to overfitting, since the generator never sees the training data. An illustration of the GAN architecture is proposed in Figure 2.5.

Consider z a random noise of distribution α, mostly Gaussian, and evaluated in a latent space Z. The generator is a function g : Z Ñ X from Z to the space of real data X of distribution µ. The generator aims at producing synthetic samples as close as possible to µ from the induced distribution ν " g ˝α. The discriminant is a function f : X Ñ r0, 1s indicating whether a given sample comes from the real distribution µ or was generated from ν. Adversarial learning can be formulated as a two-agent zero-sum game between g and d in which each player must maximise his own payoff: Convergence is achieved when the generator samples are indistinguishable from the real data, i.e. when the discriminant cannot distinguish true from false samples. The original proposal for vpg, dq was the Jensen-Shannon divergence:

vpg, dq " E x"µ rlogpdpxqqs `Ez"ν rlogp1 ´dpgpzqqqs

The generator and discriminant are thus trained simultaneously to find a Nash equilibrium [START_REF] Nash | Equilibrium points in n-person games[END_REF] in a two-player noncooperative game. GANs have attracted much attention due to their simplicity and efficiency, and their extensions in the literature are abundant.

Whether they are VAEs or GANs, their generation of very realistic static synthetic images gives hope for many applications, especially the generation of credible scenarios. But the temporal issue poses new learning challenges.

Generation of time series in the literature

We propose a review of generative methods for time series, describing the models, data, evaluation metrics but also the challenges raised. We survey work addressing sequence generation using machine learning, which has been particularly active since 2018. This requires not only to faithfully model the marginal distributions at each time step but also to capture the global time dependence. This time feature is essential to ensure global consistency but is in practice difficult to exhibit from other state variables.

Related works

The ARMA models (auto-regressive and moving average models) introduced by Peter Whittle in 1951 and popularized in the 1970's by the book of G.E.P.Box and G.Jenkins [START_REF] Box | Time series analysis: forecasting and control[END_REF] propose to build a process characterized by a white noise and a more or less strong dependence with the previous states. A commonly used process is the auto-regressive of order 1 AR(1) and is most often used to model the noise of random phenomena or the spot in electricity markets [START_REF] Deschatre | A survey of electricity spot and futures price models for risk management applications[END_REF]. Later, the Black-Scholes-Merton model (1973) [START_REF] Black | The pricing of options and corporate liabilites[END_REF] was introduced to model stock prices in financial markets. Widely used in risk management,this model has undergone numerous extensions [START_REF] Dupire | Pricing with a smile[END_REF][START_REF] Derman | Riding on a smile[END_REF][START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. These models benefit from a robust theoretical framework but have several limitations (strong hypotheses, high dimension flaw, etc...) which distance their modeling from empirical observations. This naturally calls for the development of model-free generators based on data in order to model more sources of uncertainty and to gain in realism and flexibility. The Bootstrap (1979) [START_REF] Efron | Bootstrap methods: another look at the jackknife[END_REF] was one of the first methods to focus on model-free data augmentation. It consists in resampling the observations in order to artificially increase the size of a dataset while keeping the properties and distribution of the initial set. Extensions have been developed to adapt to time series [START_REF] Härdle | Bootstrap methods for time series[END_REF][START_REF] Bühlmann | Bootstraps for time series[END_REF][START_REF] Kreiss | Bootstrap methods for time series[END_REF]. Only, these methods do not produce new data, and leave us dependent on the historical dataset. Boltzmann machines [START_REF] Ackley | A learning algorithm for boltzmann machines[END_REF] learn the probability distribution of a sample of real data. These generators consider a problem of maximization of the log-likelihood and are interested in the approximation of its gradient. This algorithm has been tested for the generation of market data [START_REF] Kondratyev | The market generator[END_REF]. Extensions for time series exist, for example used for a prediction task [START_REF] Dasgupta | Nonlinear dynamic boltzmann machines for time-series prediction[END_REF]. Different versions have been proposed depending on the law of the noise given as input during training, but all of them require a pre-processing of the data. For instance, each input value must be converted into a binary vector for a Bernoulli Boltzmann machine [START_REF] Cho | Improved learning of gaussian-bernoulli restricted boltzmann machines[END_REF].

Since 2013, a new momentum on data generation has emerged, especially in the image generation community. The extension of these methods to time series came naturally, first for text generation and then expanded. If some models proposed to produce synthetic time series, most were based on adaptations of Natural Language Processing (NLP). The learning data embedding has a predominant place and consists in transforming and ordering the words or sentences in the form of vectors. The use of recurrent networks, such as those with long and short term memory (LSTM), initially developed for NLP, allows to keep information between the different time steps and thus to learn the tendency or the periodicity of the series. On the other hand, few works have fully taken on the task of generating time series, especially in continuous time.

Very recently (2021), three literature reviews on GANs for time series or in a financial framework have been proposed. A first one [START_REF] Brophy | Generative adversarial networks in time series: A survey and taxonomy[END_REF] includes detailed descriptions of ten GANs. Particular emphasis is placed on how synthetic data generation can address the privacy risk associated with sensitive data, especially in medicine. Another review [START_REF] Gao | Generative adversarial networks for spatio-temporal data: A survey[END_REF] also focuses exclusively on GANs but extends to more general spatio-temporal data, such as traffic flows, forest fires and graph modeling. Finally, a survey [START_REF] Eckerli | Generative adversarial networks in finance: an overview[END_REF] describes several applications of GAN in the financial field. Its scope is thus broader than time series generation, and includes portfolio management or fraud detection. Moreover, the authors propose a quick numerical application of three GANs for the generation of S&P500 data.

Contributions

We have identified in the literature four main approaches to generative methods for time series. The common goal is to ensure the consistency of the generated series by capturing the temporal structure, i.e., extracting meaningful features between two states at two distinct time steps. The first one focuses on the design of dedicated optimization criteria. By refining the objective function, the model learns to capture the key elements that constitute temporal random phenomena such as conditional distributions [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF]. Other works are more interested in learning a mathematical representation of time series. Projecting the realizations of the series onto a latent space facilitates learning and/or reduces the dimension of the problem [START_REF] Yoon | Time-series generative adversarial networks[END_REF][START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF]. A third approach consists in building a dedicated architecture of the generator model that can better capture temporal dependencies. In the case where the modeling is based on neural networks, a classical way is to add memory to the network [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF]. Other proposals consider temporal convolutional networks to capture longer temporal dependencies [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. A final method lies in the development of a global model, a general structure that can include all of the approaches discussed. For example, by combining a reinforcement learning algorithm with a GAN, it is possible to overcome the difficulty of designing a criterion that discriminates real series from synthetics [START_REF] Yu | Seqgan: Sequence generative adversarial nets with policy gradient[END_REF].

A recurrent difficulty in the generative methods community is the lack of efficient evaluation metrics [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF][START_REF] Wang | Generative adversarial networks in computer vision: A survey and taxonomy[END_REF]. How do we quantify generative fidelity? If it is often easy to the eye to distinguish true from fake image (for now), it is sometimes much more difficult to quantify it. The task is even more difficult for time series which can be particularly noisy. This is why it is preferable to use several metrics, including measures of both marginals and dynamic structure. Application-based metrics can also be introduced, allowing to highlight a prior knowledge or expected behavior of the generated series. We also discuss the various applications that have been introduced in the literature, such as data augmentation, missing data imputation or anomaly detection.

Conditional loss and Euler generator for time series

This work is based on the publication Remlinger et al. (2022), AAAI

The generation of time series without prior modeling remains a difficult task which nevertheless has multiple applications. While the most recent approaches are based on several neural networks with more or less complex architectures, we take the opposite approach in this chapter by proposing a single dense network for our generator. The latter benefits from a simple structure, the Euler scheme, and an objective function considering the transition probability distributions at each time step. The Euler scheme facilitates the construction of the series when the conditional loss focuses on the fidelity of the generations with respect to the real data.

Related work

Since 2018, many methods have been introduced. QuantGAN [START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF] provides a rigorous mathematical formalism of WaveNets [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. By applying this neural network architecture in addition to a specific transformation of samples from a stationary distribution, the authors have shown promising initial empirical results capturing long temporal dependencies. The numerical applications focus on the generation of one-dimensional financial series, and propose evaluation metrics that take into account the stylized facts known in finance. Time Series GAN [START_REF] Yoon | Time-series generative adversarial networks[END_REF] is the first GAN, to the best of our knowledge, to tackle multi-dimensional series. For this, the model proposes not one, not two but five neural networks. A first network transforms the time series into a latent space in which a GAN operates. Then, a fourth neural network reconstructs the generated series in the initial set. The last network ensures in a supervised way that the transformation and recovery functions allow accurate reconstructions. Other approaches are interested in a mathematical representation of the time series without learning. By using signature [START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF][START_REF] Fermanian | Embedding and learning with signatures[END_REF], it is possible to define a vector that uniquely characterizes each trajectory. The Sig-Wasserstein GAN Conditional model considers the signatures in a GAN [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF]. Work has focused on designing loss functions specific to the temporal setting. The Wasserstein distance adapted to the continuous time process [START_REF] Backhoff-Veraguas | Adapted wasserstein distances and stability in mathematical finance[END_REF] ensures that when computing the transport of the plan observations that have not yet occurred are not taken into account. For this, a penalty is added to the classical cost of the Wasserstein distance. The benefit is twofold, this dedicated distance is based on solid theoretical results and is particularly easy to implement in practice. COT-GAN [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF] has incorporated a regularized version of this Wasserstein distance, using the Sinkhorn [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] and the work of Genevay, Peyré, and Cuturi [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF] into a GAN. The numerical results are very promising on video generation, but also on some low noise time series.

Contributions:

At the beginning of this thesis, most of the adaptations of GAN or VAE to time series were mainly based on a neural network architecture adapted to temporal problems [START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF][START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF]. The main contributions of this chapter focus on the advantages of considering the series as a stochastic differential equation (SDE) and minimizing an objective function on the transitions between states. We introduce here our CEGEN model.

a) A SDE representation

The series is represented in continuous time, as observations of a diffusion X " pX t q tPr0,T s for T P R. The latter is parameterized by two deterministic functions, the one of drift b : R d`1 Ñ R describing the trend and the one of volatility σ : R d`1 Ñ M d (the set of d ˆd matrices). The noise is described by a Brownian motion W of dimension d on a probability space pΩ, F, Pq equipped with a filtration pF t q tPr0,T s representing the information available at time t. The process X follows the following dynamics:

dX t " bpt, X t qdt `σpt, X t qdW t .
In practice we discretize the process X by an Euler scheme on a time grid T " t0 " t 0 ă t 1 ă ... ă t N " T u, N P N ˚with a regular mesh ∆t " t i`1 ´ti . At t 0 " 0, for an initial value Y 0 " X 0 we generate the time series as a realization of a process Y θ parameterized by θ in the following way:

Y θ t i `∆t " Y θ t i `bθ Y pt i , Y θ t i q∆t `σθ Y pt i , Y θ t i qZ t i ,
where Z t i are i.i.d. random variables following the law N p0, ∆tI d q. The functions b θ Y and σ θ Y are estimated by a dense neural network parameterized by θ. Note that in simple cases, such as Black-Scholes or Ornstein-Uhlenbeck, linear models are sufficient for the estimation of these functions. Our goal is therefore to learn b θ Y and σ θ Y so that the distributions of Y θ and X processes are close.

This SDE formulation facilitates the construction of the time series. Compared to more general methods that rely on learning the representation of the time series [START_REF] Yoon | Time-series generative adversarial networks[END_REF], we have chosen a representation that is fixed in advance. We wanted to avoid the consequences of the accumulation of neural networks, complex models or too many hyperparameters which can have consequences on the stability of generations. We therefore restrict ourselves to modeling Itô processes and the freedom offered by our generator is based solely on the modeling of b and sigma functions. However, this class of processes remains sufficiently large to model most of the interest series. Another advantage of our method is that it facilitates the analysis and the control of the generator outputs, especially with well chosen activation functions, in order to avoid too extreme values. These characteristics meet a recurrent demand in industrial fields, in physics and in finance.

b) Conditional distributions

Another contribution is based on the conditional loss function. The generation of realistic time series is a very active area where there are still few theoretical results available [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF][START_REF] Fermanian | Embedding and learning with signatures[END_REF]. Our generator is accompanied by theoretical garanties that a sufficiently small error gives a good estimate of the process parameters. The conditional distance is computed between elements X t i whose previous states X t i´1 are close to each other, i.e. belonging to the same set I Ă R d . The conditional generator is thus able to learn the distribution around each data point and ensures the link between two time steps. Moreover, it allows to consider the Gaussian formulation of the Wasserstein-2 distance (W 2). The interest is twofold because its value as well as its gradients admit closed forms, and can handle degenerate measures [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF]. The Wasserstein distance captures geometric features between distributions, and the W 2 transport plane is sensitive to outliers, which increases the accuracy of the distribution estimation. Furthermore, we do not require pre-specified statistics or the use of density functions to learn the distribution of real data samples. This is the first time, to the best of our knowledge, that a loss function considers only the neighboring elements between them. For two random variables X, Y , we consider the following metric:

W 2 2 pLpXq, LpY qq " }ErXs ´ErY s} 2 2 `B2 pV arpXq, V arpY qq
where B is the Bures metric [START_REF] Bhatia | On the bures-wasserstein distance between positive definite matrices[END_REF][START_REF] Malago | Wasserstein riemannian geometry of positive definite matrices[END_REF] defined by B 2 pA, Bq " T rpAq `T rpBq 2T rpA 1 2 BA 1 2 q 1{2 , for positive semidefinite matrices A and B. W 2 is the definition of the Wasserstein-2 distance in the case where LpXq and LpY q are Gaussian distributions [START_REF] Gelbrich | On a formula for the l2 wasserstein metric between measures on euclidean and hilbert spaces[END_REF]. The formulation with Bures allows us to provide theoretical guarantees on the estimation of the process parameters. Indeed, the minimization of the error of the distance W 2 between the distributions of the form

LpX t i`1 | X t i " zq and LpY θ t i`1 | Y θ t i " zq for z P R d implies
a precise estimation of the drift and volatility functions of the Itô processes. This is encouraging, but in general conditioning from the same point is complicated. The proposition 2.4.1 extends this property when the previous states belong to a ball I Ă R d of arbitrarily small radius around z.

To compute the loss, we create at each time t i a partition pI k q kďK of the union of the supports of X t i and Y θ t i . For a given set of samples, the law LpX t i`1 |X t i P I k q is approximated by extracting the elements

X t i`1 such that X t i P I k . The law LpY θ t i`1 | Y θ t i P I k q is approximated in the same way. The distance W 2 2
between the conditional distributions is then summed over all subdivisions and time steps:

pX, Y θ q " N ´1 ÿ i"0 K ÿ k"1 W 2 2 pLpX t i`1 |X t i P I k q, LpY θ t i`1 |Y θ t i P I k qq
However, it is no longer the Wasserstein distance, since the laws LpX t i`1 | X t i P I k q and LpY θ t i`1 | Y θ t i P I k q are no longer Gaussian. The computation of W 2 becomes an approximation and can be seen as an elliptic extension of the states of the space [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF].

Proposition 2.4.1. Let σ 2 X pt i , .q, σ 2 Y θ pt i , .
q be strictly positive functions and which, together with the functions b X pt i , .q and b Y θ pt i , .q, are K-Lipschitz in their second coordinate. For any t i P T , let pI j q jďJ be a regular partition covering SupppX t i qY SupppY t i q with a mesh size ∆x. Let ε ą 0. If W 2 ´LpX t i`1 |X t i P I j q, LpY θ t i`1 |Y θ t i P I j q ¯ă ε for all j P t1, . . . , Ju, then, for z in the partition

I j }b X pt i , zq ´bY θ pt i , zq} 2 ă ε `∆x ∆t `2K∆x. }σ X pt i , zq ´σY θ pt i , zq} 2 ă $ & % ε{ ? ∆t `2K∆x pour d " 1, b 2α ∆t ε `2K∆x pour d ą 1 where α " T rpσ 2 X pt i , zqq " T rpσ 2 Y θ pt i , zqq.
The equality condition on the traces of the covariance matrices in the multidimensional case comes from the use of density matrices [START_REF] Blum | Density matrix theory and applications[END_REF]. In practice, it is sufficient to normalize these matrices by their traces. The proposition 2.4.1 guarantees that by conditioning on sufficiently small intervals, a small loss of W 2 between the transition distributions ensures a good estimation of the drift and volatility parameters. The Bures metric is computed using the Newton-Schulz algorithm [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF], a differentiable way to obtain the square roots of the covariance matrix. c) Euler GAN We also introduce two Euler GANs: Euler Wasserstein GAN (EW-GAN) and Euler Double GAN (EDGAN). These two models are based on an adaptation of the Wasserstein GAN with gradient penalty [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] where the generator benefits from the Euler scheme for the construction of the time series. In both cases, the loss function is the following Wasserstein-1 distance (W 1):

W 1 pLpZ 1 q, LpZ 2 qq " sup |f | L ď1 E Z 1 "LpZ 1 q rf pZ 1 qs ´EZ 2 "LpZ 2 q rf pZ 2 qs
where Z 1 , Z 2 are two random variables and ||f || L denotes the smallest Lipschitz constant of the real function f . The discriminant in EWGAN, parameterized by ϕ, learns the optimal Lipschitz function that allows to compute W 1 . The generator tries to minimize according to θ the difference between the real series X " pX t q tPr0,T s and Y θ " pY θ t q tPr0,T s : inf

θ W 1 pLpXq, LpY θ qq " inf θ sup ϕ E X"LpXq rd ϕ pXqs ´EY θ "LpY θ q rd ϕ pY θ qs.
In EDGAN, two discriminants coexist in order to estimate both the distribution of the series and the temporal dynamics. A spatial discriminant focuses on computing the Wasserstein distance between the marginals W 1 pLpX t q, LpY θ t qq at each time step, while the temporal one considers the complete time series W 1 pLpXq, LpY θ qq. Both Euler generators are able to model continuous time processes in an unsupervised way and allow to frame the values of the drift and volatility functions. The Euler GANs partially compete with other state-of-the-art generators, but fail to capture the time dependence well. This highlights that the Euler scheme is not sufficient, even with dedicated discriminants, and offers an additional empirical justification for the conditional loss function.

d) Evaluation metrics

We propose to calculate the difference between the quadratic variation (QVar) of the reference series and that of the generator to evaluate the quality of the time dependence. For a diffusion X, the QVar is given by rXs t " ş t 0 σ2 ps, X s qds and thus guarantees that the volatility σ is also well estimated. Figure 2.6 illustrates the difficulty of capturing this temporal structure by three generators. On these samples from a Ornstein-Uhlenbeck process, all generators learn the marginals correctly at each time step. However, only CEGEN provides successful results 2 . We wish to quantify with QVar the fact that COTGAN proposes smoothed trajectories and TSGAN sawtooth. When parameters b and σ are known, the SDE formulation allows us to evaluate the quality of the generators using theoretical metrics. We also consider the discriminant and predictive scores to evaluate the quality of the generations [START_REF] Yoon | Time-series generative adversarial networks[END_REF]. The discriminant score is the accuracy of a classifier trained to distinguish real from fake time series. The predictive score is measured by evaluating on the original data a regression model trained on synthetic data in a sequence prediction task. In both cases, a generator proposing realistic series would have low scores. In practice, both models are LSTMs.

e) Applications to the energy sector

The last contribution concerns the numerical study which not only supports the efficiency of the introduced generators, but also proposes an original use case.

We seek to generate continuous synthetic series from four datasets related to energy issues. The first one Spot considers electricity spot prices on the French and German markets from 2014 to 2020, which are highly correlated. The second dataset Stocks consists of several daily financial characteristics of an asset from 2004 to 2019, including its closing price, adjusted closing price, high, low and volume. The interest of joint price-volume modeling is severalfold. First, the modeling is more refined because these characteristics are correlated with each other. Second, these series are aperiodic and nonstationary. Finally, we wish to test the capacity of a generator to consider trajectories with very distinct dynamics (between price and volume). The third dataset Load reports the electricity consumption of 12 French regions from January 2012 to September 2020. These curves are less noisy than those of the two previous sets but include a strong seasonal component. Finally, the last dataset Climate includes temperature, pressure and other atmospheric measures from the JENA satellite. In the case of photovoltaic or wind production, weather is a determining, hence the interest in this type of series. The 15 variables are also highly correlated with each other and a joint modeling is relevant.

The Figure 2.7 shows the performances in terms of discriminant and predictive scores of four generators (CEGEN, EDGAN, TSGAN, COTGAN) on the four datasets. These results highlight the interest of our approach compared to GANs methods, but remind us of the challenges of evaluation metrics. Both scores rely on the quality of the LSTMs' learning, and are thus intrinsically linked to their ability to capture meaningful features from the data. A model unable to perform the classification or regression task correctly would therefore return a low score, but not representative of the quality of the generations. This is precisely the case in the Load dataset, where COTGAN outperforms all other generators. Nevertheless, these series are too smooth compared to the historical data, where CEGEN proposes noisier series, closer to what is observed, but does not capture the seasonality as well.

Finally, we propose a case study on the possible links between simulations from probabilistic models and data-driven generations. Due to the small number of observations in some datasets, the convergence of generators is not always guaranteed. To remedy this, we propose to draw inspiration from transfer learning methods by first training CEGEN on simulated data, and then refining it on the few real observations available. By using Monte Carlo simulations from a reasonable enough model, the pre-trained CEGEN is able to produce better results than the one trained only on historical data.

This transfer learning illustrates how model-free methods can build on a proven simulation model without completely replacing it.

Generative methods for commodity markets

In direct continuation of previous work, we propose an application of several deep generative methods to energy markets. Time Series GAN [START_REF] Yoon | Time-series generative adversarial networks[END_REF], Causal Optimal Transport GAN [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF], Signature GAN [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF], in addition to our CEGEN generator [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF], are compared in two experiments.

Contributions A joint simulation of commodity prices is first performed. The prices of electricity, gas, coal and fuel oil feed the training of the generators which must faithfully reproduce a time series of dimension 4. The results show that the GAN approach does not necessarily provide more faithful synthetic series. This is in spite of neural network architectures adapted to the temporal framework and the presence of a discriminant dedicated to the fidelity of the generations. In particular, CEGEN seems to better capture the marginal distributions and the global temporal structure. The COTGAN and SIGGAN models propose close results, and consistent on all dimensions. TSGAN, which benefits from a specific learning of the series representations, seems to be penalized by its large number of parameters to be estimated. This is due to the large number of parameters to be estimated, or to the very noisy nature of the price sequences.

To go further than the proposed evaluation metrics and to refine the study on the quality of the generations, we propose to introduce an operational metric. We consider a model for risk hedging based on neural networks, a Deep Hedger, which learns to find optimal controls by minimizing a replication error. A Deep Hedger is associated with each generator, and is trained on the associated synthetic trajectories. They are then evaluated on historical prices not observed during their training or that of the generators. The performance of the Deep Hedgers in the numerical study is closely related to the quality of the generations. The less faithful generative methods lead to a risk policy that seems less relevant and a higher replication error.However, they do improve the replication error compared to a reference Black-Scholes model calibrated to the training data. In particular, the Deep Hedger fed with CEGEN synthetic data significantly outperforms all other approaches on the electricity, gas and oil case.

Figure 2.8 illustrates sample model controls for a single historical price trajectory. The controls of CEGEN and SIGGAN are very responsive to price, and propose a similar risk policy on each path. Despite the rather faithful series generated on all the valuation metrics, COTGAN provides controls that question its policy. The latter have low volatility on electricity and gas data, but conversely on oil and fuel oil the policy seems to follow the price of the commodity. The Deep Hedger based on TSGAN and Black-Scholes offer relatively constant controls, little influenced by price, and buy the same amount of asset over time during the period.

Such a difference in risk policy across generations may be a way to qualitatively assess generational loyalty and utility. While the models seem close in terms of performance (for CEGEN, SIGGAN and COTGAN) on statistical metrics on distribution or time dependence, the risk hedging strategies seem very sensitive to these differences. Indeed, in addition to the approximation error of the Deep Hedgers, there is a model error coming from these generators. Theoretical results of convergence, ensuring in particular majorations of these errors according to the parameters of the neural networks, would therefore be welcome. Finally, a Deep Hedger that is robust to these pattern variations could provide an attractive risk management method.

Electricity controls Gas controls

Oil controls Coal controls

Conclusion and perspectives

In this section, we have explored the various issues in time series generation. The lack of valid evaluation metrics, the difficulties in detecting relevant features to capture temporal dependencies or learning from data for variable lengths feed many research works. In particular, designing an appropriate mathematical representation of sequences and designing specific objective functions seem to be the most promising approaches. Combining probabilistic and statistical learning models allows for the development of theoretically sound methods, relevant evaluation metrics, and, as the survey in Chapter 3 has shown, interesting empirical results [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Kidger | Neural sdes as infinitedimensional gans[END_REF][START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF]. The deep conditional generator introduced in the Chapter 4 goes in this direction. By exploiting the EDS formulation of time series with the Bures-Wasserstein distance based on a closed formula, we have proposed an empirically efficient generator that comes with theoretical guarantees.

Several perspectives are then offered. Future work could include new schemes to address other peculiarities of energy markets, including non-stationary environments, jumps or more complex volatility functions. The EDS formulation restricts the generation of series but allows a natural extension with classical probability models, such as Lévy or Heston processes.

Beyond the development of new structures, designing a theoretically robust model combining a set of generators would allow to take advantage of different methods, including purely probabilistic ones. By calculating the Wasserstein barycenter and its distance between the different models, it would be possible to improve the generations from a single model, or even better to combine them. For an integer N , let µ 1 , ..., µ N be measures of the probability set P 2 pR d q and λ " pλ 1 , ..., λ N q an element of R N `such that ř N i"1 λ i " 1. We define a Wasserstein (in space) barycenter of the µ i measures for the λ i weights as the minimizer of :

J λ pνq " N ÿ i"1 λ i 2 W 2 2 pµ i , νq.
This requires to design a cost function for the computation of this barycenter which must have mathematical properties ensuring the uniqueness of the barycenter but also taking into account the biases of the different models. The weight optimization method should then take into account the performance of the models according to the temporal dynamics of the generated series. The evolution of the weights associated to each model would also allow to identify the best generators according to the considered series. Deterministic signals, such as sinusoids, could be close (in the sense of a large λ i factor) to some generators but would be far from other models. Finally, another perspective would be to address the problem of time series generation in an online setting. Training generative methods is flexible, but can be time consuming if it needs to be refined regularly by adding new data. Online learning, which would learn from data received over time, can overcome this difficulty. At each increment, an online generator receives new input data and improves according to its output and the feedback of its objective function. In order to consider distributions, we plan to use the Wasserstein distance. Some work has been done on the convergence properties of regularized approaches to the computation of the Wasserstein distance by adapting the Sinkhorn algorithm to the online framework. The extension of these results to the framework of temporal generations seems to be a promising avenue both theoretically and in application.

Learning optimal strategies

We are now interested in learning optimal choices for developing an investment or risk hedging strategy, while minimizing the risk of trusting a single model or ensuring robustness to a regime change.

Reinforcement learning

This chapter is based on Computational Economics, 2021.

Reinforcement learning is concerned with how an agent acts in a given environment and uses its experience to adapt its behavior to maximize a reward. Research works aims at studying how agents can learn to make optimal decisions through repeated experiments [START_REF] Sutton | Toward a modern theory of adaptive networks: Expectation and prediction[END_REF]. Unlike supervised or unsupervised approaches, learning is directly derived from feedback of actions and experience. In a way, the agent creates its own data. It must therefore, during training, both take advantage of what it already knows and be open to situations that are still unknown in order to maximize its long-term reward. Such a procedure increases the chances of converging towards a global optimum, instead of converging towards a more local optimum. It has been proven that such a balance between exploration and exploitation exists [START_REF] Thorndike | Animal Intelligence[END_REF].

The problems induced are linked to the fact that acting has consequences, possibly deferred. It is a matter of learning to sacrifice small immediate rewards in order to obtain larger ones in the long term.

As in classical economic models, agents strive to maximize a given long-term reward, often the cumulative sum of future rewards. This involves solving the payoff allocation problem by matching actions, states of the world, and associated rewards. Since reinforcement learning is about actively experimenting, it thus highlights close links with causal modeling. This theory allows us to infer the consequences of interventions (or actions) used in the past. It therefore appears in sequential experimentation, optimization, decision theory, game theory, auction design and other economic applications.

Related work

A framework very similar to that used in reinforcement learning can be found in the early economic literature. The thesis [START_REF] Hellwig | Sequential models in economic dynamics[END_REF] explores the connections between the inherent uncertainty in trading processes and the immediate opportunities of an agent to buy or sell assets. Other works [START_REF] Arthur | Designing economic agents that act like human agents: A behavioral approach to bounded rationality[END_REF][START_REF] Barto | On the computational economics of reinforcement learning[END_REF] identify reinforcement learning techniques in computational economics. Recently, a work [START_REF] Hughes | Applying reinforcement learning to economic problems[END_REF] on applications of reinforcement learning to economic problems with more current algorithms has been proposed for water storage management. The case where multiple agents are interacting is of particular interest, as it models general behavior, and a review describes these methods [START_REF] Zhang | Multi-agent reinforcement learning: A selective overview of theories and algorithms[END_REF]. Mean-field games from the perspective of reinforcement learning have been very popular recently, and a review of the state-of-the-art in economics is available [START_REF] Angiuli | Reinforcement learning for mean field games, with applications to economics[END_REF]. Another review focuses on financial applications and in particular on mean field control [START_REF] Carmona | Deep learning for mean field games and mean field control with applications to finance[END_REF].

Contributions:

The good results of reinforcement learning for games (Go, video games) give hope for multiple applications. In particular in economics and finance, its appropriation is not a panacea; such algorithms seem to be underused even though the problems are closely related. The lack of a literature review on the subject naturally called for an in-depth study of their close links. We highlight that sequential decision making models have a long history in economics, even if they are rarely mentioned in the computer science literature. Most articles published in economic journals mention the difficulty of solving these problems numerically. Nevertheless, we try to show that recent progress is extremely promising and that it is now possible to model more and more complex economic problems.

a) Description of reinforcement learning

In order to facilitate the introduction of the key notions of reinforcement learning, we first propose to explain the principles of machine learning by defining the standard tools. These are then extended to the notions of loss function, risk of an estimator or regret minimization.

The supervised machine learning techniques appear as a static problem. It consists in learning a correspondence f n between explanatory variables x and a label y from a dataset D n " ppy i , x i qq iPt1,...,nu fixed in advance, for n P N ˚. The function f n can take values in a binary space, which can be to accept or reject a mortgage in credit risk models, or to invest or not in a specific asset. This is called binary classification, but others propose to learn a correspondence including more classes. The values of f n can also fit in the real line, and represent a forecast, an amount of money to save, a quantity to buy or a price to ask.

We then introduce online learning [START_REF] Bottou | Online algorithms and stochastic approximations[END_REF], where information arrives sequentially and can be dynamically exploited. In particular, we present a classical problem, that of the one-armed bandit with multiple arms [START_REF] Katehakis | The multi-armed bandit problem: Decomposition and computation[END_REF]: at each moment an agent makes choices whose consequences influence the information it obtains. Online learning is based on the assumption that the pairs py n , x n q arrive in a sequential order, and the focus is on the evolution of f n as the number of observations n increases. To do this, the training dataset is updated from The environment represents the world in which the agent evolves and with which it interacts. At each step of the interaction, the agent perceives an observation of the state of the world s t , then decides on an action a t to take. The environment changes when the agent acts on it, but it can also change by itself. The agent's action gives rise (or not) to a reward r t from the environment which evaluates its relevance. The agent's objective is to maximize its cumulative reward, called output.

D n to D n`1 . Agent Environment Action État, Récompense
Finally, we begin to formalize models of reinforcement learning in a general framework. We first focus on explaining the links between the different learning terms and notions used in the literature. Reinforcement learning incorporates the idea that at time n, a choice has been made that will influence py n`1 , x n`1 q. It thus appears that the classical i.i.d. assumption of the dataset is no longer valid. While standard machine learning is about learning from pre-fixed data, reinforcement learning is about sequential decision making and controlling its influence on the environment.

In the following, we formalize reinforcement learning and some general mathematical properties more precisely. We recall the assumption that the dynamics satisfy the Markov property and that we focus only on Markov decision processes. More formally, at time t, the agent at a state of the world s t P S performs an action a t P A, obtains a reward r t P R and the state of the world becomes s t`1 P S. What is the point of formalizing? A policy is defined as a function from S to A, and the goal is to learn from past data (past actions, past rewards) how to find an optimal policy. A diagram describing the interaction loop between the agent and the environment is shown in Figure 2.9.

Finally, we specify the approach based on a known model, the model-free approach, as well as the time-difference approach and the approximate solution methods. These approaches find a singular echo in economics and finance. A presentation of a classical problem is then proposed, called inverse reinforcement learning, where observed decisions are used to infer various quantities, such as the reward or the policy function.

b) Applications to Economics and Finance

A popular application of reinforcement learning algorithms is to games, such as chess or Go as explained by [START_REF] Silver | A general reinforcement learning algorithm that masters chess, shogi, and go through self-play[END_REF]. A work [START_REF] Igami | Artificial intelligence as structural estimation: Economic interpretations of deep blue, bonanza, and alphago[END_REF] provides an economic interpretation of several algorithms used on games based on structural estimation and machine (reinforcement) learning.

Following this idea, we present different applications of reinforcement learning in economics and finance. We discuss a classical optimal control problem in economics, the classical dynamics of consumption and income, but also different applications in economic modeling. The close links between bounded rationality and reinforcement learning are also discussed. We highlight that the modeling of the dynamics of a firm can be seen under the prism of a reinforcement approach. Then, we broaden the topic by presenting the possible connections with adaptive experimental designs, inspired in particular by multi-armed bandits.

We then focus on the links between game theory and reinforcement learning, which has since experienced a prolific dynamic [START_REF] Angiuli | Reinforcement learning for mean field games, with applications to economics[END_REF][START_REF] Carmona | Deep learning for mean field games and mean field control with applications to finance[END_REF]. In operations research, classical applications, such as the traveling salesman, can take advantage of the standard exploration/exploitation dilemma to converge more rapidly to (near) optimal solutions. Stochastic games and equilibrium, mean-field games, auctions and real-time auctions are all topics that can be addressed under the reinforcement formalism. We then extend the example of the firm discussed above to the case of an oligopoly and dynamic games.

Finally, we detail the applications in finance. The literature has appropriated the reinforcement learning approach to problems of risk management, valuation and hedging of financial derivatives. Portfolio allocation issues are also addressed. Finally, we present a very natural framework for such algorithms: market impact and market making. Despite the generally non-stationary environment known in finance, reinforcement learning is a promising avenue for improvement.

Introduction to expert aggregation

This chapter is based on Remlinger et al. (2022)

The goal is to predict the continuation of an arbitrarily random series, such as the evolution of temperature over time, electricity consumption, or returns on financial assets. For this purpose, models, called experts, are trained on historical data in a supervised regression task. We seek to forecast the next values of our series of interest from explanatory variables and according to an optimization criterion fixed in advance (typically a distance between the forecasts and the true values). The quality of the forecasts depends largely on these variables, but also on the construction of the model, its objective function and its hyper-parameters. The latter are regularization parameters that allow us to avoid overfitting, i.e. when the model does not generalize its forecasts well to new observations. However, the choice of model or hyper-parameters is not always obvious and requires a thorough work.

Expert blending consists in no longer considering a single model, but a whole set. By combining their estimates, we hope to obtain a new estimator, called aggregated, which ensures to be on average a little worse than the best of the experts [START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF]. This makes it possible to take into account the forecasts of all the models, whose accuracy can vary significantly depending on the time period considered or situations that are poorly represented in the data. Expert aggregation provides a theoretically sound framework for mixing estimators with different assumptions in a single model. Moreover, expert blending makes no assumptions about the estimates that comprise it and thus makes the approach particularly attractive. This partly explains the success of the method in recent years [START_REF] Littlestone | The weighted majority algorithm[END_REF][START_REF] Vovk | Aggregating strategies[END_REF][START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF][START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF][START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF].

Related work

Expert aggregation became particularly popular a little over a decade ago, popularized by Cesa-Bianchi and Lugosi's book [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF], which provides a thorough introduction to this approach. The way weights are computed may differ from one application to another. For example, some work proposes to use exponential weighted average (EWA) [START_REF] Littlestone | The weighted majority algorithm[END_REF][START_REF] Vovk | Aggregating strategies[END_REF], a convex online aggregation rule that allows for abrupt changes in weight allocation. The multiple learning rate (ML Poly) has its own online learning parameter calibration rule that is faster than the empirical setting described by Devaine, Gaillard, Goude, and Stoltz. The fixed share (FS) estimator [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF][START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF], meanwhile, competes not only with the best expert but also with the best sequence of experts. The Ridge approach allows non-positive weights and non-convex combinations [START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF][START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF]. The expert mixture has been used for power consumption forecasting [START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF][START_REF] Goude | Mélange de prédicteurs et application à la prévision de consommation électrique[END_REF] and the set of laws stated above are tested and compared in a paper [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF].

However, these methods have not been explored in finance. However, expert aggregation can be useful for asset management. Several works have focused on studying these factors for forecasting market returns [START_REF] Welch | A comprehensive look at the empirical performance of equity premium prediction[END_REF] or for describing stock market behavior [START_REF] Harvey | and the cross-section of expected returns[END_REF]. In their enumeration, Green, Hand, and Zhang names up to 330 factors proposed in the literature. Most of them are highly correlated, such as asset-level lagged characteristics (book-to-market, momentum...). Such a large number of signals, combined with the large structured databases in market finance, naturally calls for the consideration of statistical learning tools.

In recent years, new data science techniques have been tested to improve on traditional methods in finance. The promise of machine learning is, among other things, that it can scale up to higher dimensions and consider a broader class of functions (and thus finer modeling). In terms of portfolio construction, Moritz and Zimmermann use treebased techniques to classify stock returns and construct portfolios accordingly. Heaton, Polson, and Witte tackle portfolio selection using deep neural networks. Other papers focus on forecasting time series of interest. For example, Rapach, Strauss, and Zhou use lagged US stock market returns and leverage LASSO models [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] to forecast global stock returns. Extensions of this model with the LASSO adaptive group were also used to select features and forecast expected returns [START_REF] Freyberger | Dissecting characteristics nonparametrically[END_REF]. Kozak, Nagel, and Santosh use a shrinking method to construct a robust stochastic discount factor. Hutchinson, Lo, and Poggio, Yao, Li, and Tan consider a nonparametric approach with neural networks to forecast derivative prices. Finally, Gu, Kelly, and Xiu compare in a detailed study the performance of thirteen machine learning models, including neural networks and random forests, to forecast asset returns. More recently, Rasekhschaffe and Jones explore how these types of models can improve stock return forecasts while avoiding overlearning.

Formalism Time series forecasting consists in estimating the sequence of observations y 1 , y 2 , ..., y T with values in Y. An expert uses a set of features to estimate the next value in the sequence. The observations D t " tpx 1 , y 1 q, . . . , px t , y t qu are considered as realizations of random variables `pX s , Y s q ˘1ďsďt . An expert must predict Y t`1 P Y given X t`1 P X by learning the (assumed) relationship between the features of the input space X and the realizations of the dataset D t .

We consider an online learning framework. The data become available in a sequential order and the goal is to update the models with the new observations (see Bottou). Following Wintenberger, an expert k at t is a function f k t : X Þ Ñ Y that depends on past observations D t and such that the forecast f k t pX t`1 q should be as close as possible to Y t`1 . An online expert f k is a sequential algorithm that produces at each time t ě 1 an expert

f k " pf k 0 , f k 1 , f k 2 , . . .q.
The quality of an estimate f k t pX t`1 q is measured for each time t by the prediction error:

E " pY t`1 , f k t pX t`1 qq|D t ‰ ,
where : Y 2 Ñ R `is the loss (or cost) function assumed to be convex (usually the squared error). An estimator performs better when it minimizes its cumulative prediction error, or cumulative risk, defined by :

R T pf q " T ÿ t"1 Er pY t`1 , f k t pX t`1 qq|D t s
The whole point of expert blending is to take into account several estimates from a set of methods, say K methods. The mixture operates as a linear combination of the predictions of the models, whose weight associated to each expert corresponds to the confidence that is granted to him. Each k model makes its own f k,t predictions independently and the aggregation then constructs its prediction as a weighted average:

f " ˜K ÿ k"1 w k,1 f k 1 , K ÿ k"1 w k,2 f k 2 , . . . , K ÿ k"1 w k,t f k t , . . .
where pw k,t q tě1 denotes the weights assigned to the expert k. The weights generally belong to the simplex S " tw k P R K `, ř K k"1 w k " 1u subset of R K (but other sets are possible [START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF]).

The notion of regret [START_REF] Freund | Using and combining predictors that specialize[END_REF] allows us to distinguish two sources of improvement of estimates:

R T " R T ´inf k T ÿ t"1 Er pY t`1 , f k t`1 qs. (2.5.1)
Regret represents the ability of the mixture to recover the best of the experts sequentially. By minimizing the regret, we ensure that we have predictions close to the best of the experts. The first term in the definition (2.5.1) gives the cumulative performance of the mixture, while the second gives the approximation error, i.e. the reference performance of the best model. The objective is to minimize the approximation error by finding the best convex combination of the experts' forecasts. The weighting is done according to a predefined rule and learning rates allowing to calibrate their convergence (often online). The aggregation rule thus assigns at each time t and for each expert k a weight w k,t according to an error k,t . It allows to dynamically adapt the weights of each expert according to their past performances. The more accurate an expert is, the higher its weight will be. This makes the estimation all the more accurate, the aggregation can evolve according to the accuracy of the forecasts and adapt to a change in the data regime.

Contributions

We apply expert aggregation to a use case in finance. We wish to address the difficulties that an agent would have to choose among a set of strategies and that would wish to adapt to the non-stationary regime of markets. For this purpose, the set of model forecasts is combined dynamically, i.e. adaptively over time, in order to build a robust estimate.

a) Bernstein Online Aggregation

We consider the Bernstein Online Aggregation (BOA) [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF] rule which has a better convergence rate than other rules thanks to its second order refinement. At each time t P r0, T s for a time horizon T , the rule modifies the weight of an expert according to the quality of his forecast and compared to those of the other experts. To do this, BOA considers the following loss function: k,t " pY t , f k t´1 pX t qq ´Ew t´1 r pY t , f w,t´1 pX t qs, where is the convex loss function. Given t " p 1,t , . . . , K,t q the loss experienced by each expert at t, the BOA procedure assigns expert k the weight:

w k,t " expp´η k,t p1 `η k,t qqw k,t´1
E w t´1 rexpp´η t p1 `η t qs The learning rate η is optimally determined in the adaptive BOA process and ensures regret minimization with the fast convergence rate logpKq{T . For more details, see [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. The rule is deterministic and requires full feedback. However, theoretical guarantees exist on regret convergences when expert forecasts are missing [START_REF] Gaillard | A second-order bound with excess losses[END_REF]. Called dormant experts, we can replace the missing estimates with those from the aggregation. Furthermore, a uniform mixture is used as a reference in the sequel and associates the same weight to each expert and consistently over time.

b) Investment Strategies

The data contains more than 60 years of historical data on various characteristics of financial assets in the U.S. market, from the largest capitalizations to the smallest. The 94 explanatory variables, most of which are monthly, have been constructed from this dataset, and feed the experts. The latter are trained to predict the next value of asset returns. A particularity of our approach lies in the fact that the experts are global, i.e. only one model is trained for all assets (and not one per asset) in order to gain stability.

The final objective is to use these estimated values of asset returns to build a longshort investment strategy. We buy the assets that we expect to increase in value, and sell the others. For each expert, we sort the assets every month according to their expected return. We define two zero net investment portfolios, one long and one short, consisting of buying 10% of the assets with the highest predicted returns and selling 10% with the lowest.

Expert aggregation occurs at the portfolio level. We weight each strategy according to its performance in terms of profitability over time. The strategies are aggregated sequentially (online), which allows us to compensate for changes in the market regime. We evaluate the performance of the strategies according to different criteria of profitability, risk and various classical statistics such as turnover or maximum draw down.

c) Numerical Study

In the numerical study, we consider thirteen experts with various assumptions, such as linear models, random forests or neural networks. We wish to take advantage of their structural differences in order to refine our mixture. These models are the same as in Gu, Kelly, and Xiu in order to compare to the literature, and are referenced in Figure 2.10 shows the cumulative log returns of the long and short strategies and the associated weights of the PtfBOA portfolio aggregation. The aggregation appears to be the second most profitable model on both portfolios. Ordinary least squares regression with Huber loss (OLS+H) is the most efficient expert for the short portfolio until 2002, after which NN2 takes the lead. The best long model remains NN2 over the entire test period in terms of cumulative returns. The most complex models are therefore not necessarily the most profitable, as a linear model can perform better than random forests or neural networks. The performance gap between PtfBOA and PtfUNI (uniform mixture) is significant and increases over time, encouraging the adoption of online adaptive aggregation. Focusing on the average weights of the thirteen expert strategies (Figure 2.10), we can see from the first months how the aggregation operates: starting with uniform weights, the mixture converges quickly and favors the best experts. The weights are stable from 1992 to 2001, when a regime break decreases the importance of OLS+H in favor of neural networks. Over the entire test period, the weights of the experts seem to follow a stationary regime before the year 2000, and then another one from 2001 to 2016. The aggregation adapts its weights accordingly and thus ensures that it is a robust and cost-effective strategy.

In this study, aggregation does not necessarily seek the best heterogeneous mixture, but the best expert. Aggregation is nevertheless as profitable a strategy as the best portfolios. We obtain an overall performance gain of about 25% in terms of Sharpe ratio compared to the best expert. Equally significant gains are obtained for other financial statistics, notably the maximum monthly loss which is more than twice lower than the best expert.

Beyond the good empirical results offered by aggregation, we are also interested in the creation of new experts. Building new experts consists in deriving the best models in a series of neighboring models (for example by varying structural parameters of the model) and then including them in the initial set of experts. In this way, we give more importance to the best performing experts and broaden their spectrum. The proposed approach, called bagging [START_REF] Breiman | Bagging predictors[END_REF], consists in re-training the best experts on subsets of the training set.

We then focus on the creation of new mixtures, by modifying the data that feeds the aggregation. We propose to highlight the simplicity and efficiency of expert mixing by proposing new aggregations trained on specific portfolios. By focusing only on one asset class of the largest (or smallest) capitalizations, new predictive models emerge. During initialization, the experts' weights are defined in a uniform manner and then adapted according to the pre-determined law and the experts' errors. In order to accelerate the convergence of weights, we propose to pre-train the mixture online over a validation period. Thus, in the first year of the test set, i.e., the unobserved samples, the experts' weights benefit from a priori. We note that this improves the overall performance of the aggregation, although the regimes observed in the classical case persist.

Expert aggregation appears to be an efficient, adaptive, interpretive investment strategy, free of assumptions about the expert and supported by strong theoretical results [START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF][START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. The aggregation provides high average return and limited risk by returning the highest Sharpe ratio among the different strategies tested.

Learning operators for solving PDEs

This chapter is based on Remlinger et al. (2022)

A model solving a family of partial differential equations (PDEs) with a single training is proposed. Re-calibrating a risk factor model or re-training a solver every time the market conditions change is costly and unsatisfactory. We therefore want to solve PDEs when the environment is not stationary or for several initial conditions at the same time. For this purpose, we consider deep operator networks to accurately approximate continuous nonlinear operators. Our model learns the general solution associated with each parameter function simultaneously. But, ultimately, we want to generalize by solving the PDE with underlying models or conditions that were not present during training. We confirm the effectiveness of the method with several risk management problems by comparing it with other machine learning approaches. We evaluate our DeepOHedger on option pricing tasks, including local volatility models and option spreads involved in energy markets. Finally, we present a purely data-driven approach to risk hedging, from time series generation to learning optimal controls. Our model then solves a family of parametric PDEs from synthetic samples produced by a deep generator previously trained on spot price data from different countries.

Related works

Many works are interested in solving PDEs using machine learning tools, including in the nonlinear case. However, most of them focus on the high dimensional scourge. A first numerical method for solving fully nonlinear high-dimensional PDEs was introduced in Cheridito, Soner, Touzi, and Victoir [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF], and then extended with efficient schemes developed in Fahim, Touzi, and Warin [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic pdes[END_REF], Tan [START_REF] Tan | A splitting method for fully nonlinear degenerate parabolic pdes[END_REF]. Despite encouraging results, these approaches could not solve PDEs of dimension greater than 5. By designing a specific scheme based on Monte Carlo nesting, Warin [START_REF] Warin | Monte carlo for high-dimensional degenerated semi linear and full non linear pdes[END_REF] allows to consider very high dimensions. Considerations in a fully nonlinear framework are proposed in Weinan, Han, and Jentzen [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF], Han, Jentzen, and Weinan [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF], and have shed light on how promising machine learning methods are for solving PDEs in high dimensions. Other work relies on a second-order refinement of the inverse stochastic differential equation (BSDE) representation [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF]. Considering a global approach, proposals seek to solve semi-linear PDEs [START_REF] Chan-Wai-Nam | Machine learning for semi linear pdes[END_REF] or fully non-linear PDEs [START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF]. More recently, Huré, Pham, and Warin [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF] propose to simultaneously estimate the solution and its gradient with deep neural networks. The Galerkin approach is particularly flexible to a wide range of PDEs with or without boundary conditions making this method particularly attractive. Solutions are evaluated by automatically differentiating the network function approximating the solution of the PDE sirignano2018dgm,khoo2021solving,glau2020deep. A comprehensive review of neural network-based algorithms for stochastic control and PDE solution in finance is available in Germain, Pham, and Warin [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF] and presents several use cases.

Recent proposals focus on robust stochastic control and aim to solve PDE problems with uncertainty using neural networks. In physics, Khoo, Lu, and Ying [START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF] is based on the solution of deterministic PDEs from physical quantities initially chosen randomly. A recent paper presents a general deep parametric method able to solve a family of PDEs with a single neural network. To approximate the solution, the network is conditioned with constant values describing the risk factor model or option. The loss function is based on the least squares formulation of a PDE as in Deep Galerkin [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF]. This model allows broad applications and is tested on multi-asset option pricing.

General framework of stochastic control

Let T be a finite horizon. Let X " pX t q tPr0,T s be a continuous time controlled diffusion dynamics whose realizations belong to

R d dX t " µpt, X t , α t qdt `σpt, X t , α t qdW t ,
where W is a standard Brownian motion of dimension d on a probability space pΩ, F, Pq equipped with a filtration pF t q tPr0,T s representing the information available at time t, and X 0 a random variable F 0 -measurable to a value in R d . The function µ : r0, T s ˆR ˆRd describes the drift and σ : r0, T sˆR d Ñ M d (the set of dˆd matrices) the volatility. Both functions satisfy the usual Lipschitz [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] conditions ensuring the existence and uniqueness of the solution of Eq.(2.5.2). The control α " pα t q tPr0,T s is a F t process adapted on the set of admissible controls A. We seek an optimal strategy, which minimizes the cost J of the process α :

Jpαq " E "ż T 0 f pt, X t , α t qdt `gpX T qq  .
In this case, the Bellman equation of dynamic programming leads to a PDE of the form

B t v `µD x v `1 2 Trpσ T D 2 x vq " f p., ., v, σ T D x vq on r0, T q ˆRd (2.5.2) vpT, .q " g on ˆRd
where f is a nonlinear running cost function defined on r0, T s ˆRd , and g is a terminal function defined on R d called payoff.

Contributions

Stochastic control based on Monte Carlo simulations requires modeling assumptions. In practice, there is often uncertainty about the model and the environment can change over time. The rapid regime changes imposed by the weather on the energy sector require the adoption of more flexible and robust models for risk management. The classical models Black and Scholes [START_REF] Black | The pricing of options and corporate liabilites[END_REF], Heston [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF], Dupire et al. [START_REF] Dupire | Pricing with a smile[END_REF] are rigid and do not allow for changes in correlations for example. Using poorly calibrated models can lead to suboptimal decisions. Moreover, calibration should ideally be done continuously, but is not done in practice because of the computational cost and the need for stability.

We therefore propose to solve a stochastic control problem for multiple models in a single training, but which generalizes to unknown models during training. We learn operators for a set of PDEs, i.e., that associate one set of parameter functions with another set of functions, instead of conditioning the solution on real-valued parameters [START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF][START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF]. The parameter functions can describe the underlying risk model (in particular its volatility function), characteristics of an option, or constraints. In order to correctly capture the links between the functions and the solution at a given time, we consider deep operator networks (DeepONets) [START_REF] Lu | Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[END_REF] in an unsupervised approach. The model architecture consists of two subnetworks, one that learns an approximate input function on a fixed number of points and another to represent the state of the underlying process at a given time. The numerical application focuses on risk coverage. The introduced Deep Operator Hedger (DeepOHedger) is a universal solver for a set of given risk factor or objective models.

a) Learning an operator

The parameter function is denoted by u P U, and v P V is the corresponding unknown solution of the PDE. The problem 2.5.2 is solved for a given u by the traditional methods [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF]. The question is whether a solution can be found for any u P U. We can then define the solution operator G : U Ñ V as follows

Gpuq " vpuq

The introduced method requires providing an approximation of the u-function. By giving a misleading function, we could add a model error to the approximation error. Since our primary goal is to be able to solve robustly, we train our model not on a ufunction but on a family of functions. The operator network learns different u-functions, so we really take advantage of the use of neural networks, tackling a high-dimensional problem and functions that are possibly difficult to estimate. When uncertain about the market structure, we can provide an approximation of the volatility functions, our model should be able to solve the PDE correctly, whether the network has been trained with the function or not. b) A global approach A hedging strategy can be reduced to the stochastic control problem, buying or selling a certain quantity α of an asset S " pS t i q iPt0,...,N u for N P N at each date. By discretizing on a regular time grid T " tt 0 " 0, . . . , t N " T u, we define a self-financing portfolio of terminal value X T,θ;u as: We give ourselves the opportunity to rebalance the portfolio every day. There is no control at the last date. The global approach to solving (2.5.2) leads to the following optimization problem:

X T,θ;u " p θ `N´1 ÿ i"0 α θ pt i , S t i ; uqpS t i`1 ´St i q.
min θ ErpX T,θ;u ´gpS T ; uqq 2 s.
In practice, we consider the quadratic loss for . The notation gpS T ; uq allows learning the optimal solution for several payoffs. This global approach is very convenient because of its formulation and the simplicity of optimizing the θ parameter by machine learning. First introduced by Gobet and Munos [START_REF] Gobet | Sensitivity analysis using itô-malliavin calculus and martingales, and application to stochastic optimal control[END_REF], the method consisted in approximating the control by feedback at each time t i , i.e. a function of the state process. Then, the method was extended with deep neural networks [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF] or more recently with delay considerations [START_REF] Han | Recurrent neural networks for stochastic control problems with delay[END_REF]. However, these methods require a solver at each time step, which complicates the convergence (the set of parameters to be estimated being very large) and makes it difficult to take into account a large T horizon. One way to solve these problems is to consider a single neural network, as we do, which is fed by the time step and the states, thus gaining in stability [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. Other methods are detailed in the literature [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF], in particular the local approaches [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF]. However, no extension of these methods by operator learning is available in the literature.

c) Application to risk hedging

We confirm the effectiveness of our method on an option risk hedging problem. Our model, named DeepOHedger, is compared to other deep learning-based approaches applied to various risk models. We evaluate DeepOHedger on a classical call pricing task, including first Black-Scholes and local volatility models. Indeed, no error jump appears for these unknown σ, either the error on the controls or the replication error. The latter increases when volatility is high, which is an expected behavior: it is more difficult to replicate an option when the market is unstable.

We also propose to hedge an option spread. An electricity supplier may need to buy gas to produce electricity. A power plant can then be modeled as a spread option, where electricity is sold at a given price X e t minus the gas price X g t , CO2 taxes X co2 t , and fixed costs K. The gain of such an option is then:

gpS e
T , S g T , S co2 T q " pS e T ´βS g T ´γS co2 T ´Kq ẁhere β, γ P R the conversion rates. In order to build a robust hedging strategy, our model is trained with several models, such as Black-Scholes or Ornstein-Uhlenbeck two processes generally used to describe commodities, and for different correlations. Our approach ensures better performances than other methods, in particular the one conditioned with parameter values instead of learning operators, and is notably able to generalize better for unknown parameters of a given hazard model.

Finally, we propose a completely data-driven approach to risk coverage. We jointly generate time series of electricity, gas and CO2 prices from CEGEN and correlated exogenous variables such as renewable generation (solar and wind), date (day, month) and residual demand. These synthetic data are then used to train the DeepOHedger. The CEGEN drift and volatility functions are used as parameter function u. The model uncertainty comes from the location of the electricity prices, which can be French, German, Belgian, Swiss, Spanish or Italian. The table 2.2 shows the replication error and the initial risk for each location. The latter corresponds to the risk of gain without any hedging, i.e. ErpgpS e T , S g T , S co2 T q 2 s. The performance across countries is close, as they all belong to the same power grid in Europe. This could be an expected behavior. A discrepancy is observed between the replication errors of the training set and the test set (including only real prices). One explanation lies in the fact that the performance on the test set combines a model error from CEGEN as well as a generalization error from DeepOHedger. However, these results compared to an unhedged portfolio highlight a good generalization capability of our approach. This last experiment highlights the interest of these approaches based on learning from data, and suggests many avenues for further research.

Conclusion and perspectives

In this section, we have proposed machine learning models to develop optimal strategies. Our solutions aim at answering the various challenges in risk management brought by the specificities of energy markets and our new energy consumption habits. In the Chapter 6, we investigate the links between reinforcement learning and classical economics and finance problems, and show that their solution is now numerically affordable. In the Chapter Theoretical guarantees on the influence of weighting on classical risk criteria (Sharpe ratio, turnover) could be particularly relevant for expert aggregation.

A natural perspective would be to extend the operator solver to a more general framework, that of solving completely nonlinear partial differential equations. For this purpose, several approaches are possible depending on the way they are solved. Global approaches, easy to implement and empirically efficient, should certainly be undertaken. Moreover, theoretical guarantees on the convergence with feed-forward neural networks are possible with local schemes [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF][START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF]. In particular, the Deep Backward Dynamic Programming methods rely on the recursive dynamic programming relation resulting from the temporal discretization of the backward stochastic differential equation, and allow to approach the solution of the PDE [START_REF] Pham | Neural networks-based backward scheme for fully nonlinear pdes[END_REF]. These approaches are accompanied by guarantees of convergence of the solution and results on the speed of convergence in the framework of Lipschitz neural networks (called GroupSort) [START_REF] Germain | Approximation error analysis of some deep backward schemes for nonlinear pdes[END_REF]. Although there are no network size theoretical results for operator approximation similar to the width and depth bounds for function approximation, future research could focus on adapting some of the known results to the case where we consider a single PDE. Some further works on why deep operator networks can induce small generalization errors could also lead to useful theoretical results. The resulting applications are numerous and identified.

Extensions to more complex cases, for example in the McKean Vlasov case, would make it possible to include the variance of a portfolio in the elaboration of strategies [START_REF] Germain | A level-set approach to the control of stateconstrained mckean-vlasov equations: application to renewable energy storage and portfolio selection[END_REF]. Our model would then aim at learning the optimal controls for several given laws, such as quantile levels. Typically, we would be interested in a mean-variance portfolio selection problem with probabilistic constraints on wealth. In the same vein, operator learning could solve mean-field game problems for several initial distributions. This would allow a broader modeling of interactions between agents.

Part I

Generative Methods for Time Series Abstract

The temporal structure inherent to sequence generation adds new challenges to those already existing in the deep generative methods. We first review different approaches addressing these difficulty in the Chapter 3. An emphasis is put on the choice of evaluation metrics to assess the quality of the outputs from a generator.

In Chapter 4, we introduce a new data-driven model to generate synthetic time series, based on a conditional objective function and a stochastic differential equation formulation. The generator allows theoretical bounds on the estimation error of Itô processes. Empirically, our method competes with state-of-the-art time series GANs.

Finally, in Chapter 5 we propose an application of several deep generative methods, besides our previously introduced generator, on energy markets. A joint simulation on commodity prices is performed. Then, we use the generated time series for the training of deep hedgers model in order to provide a fully data-driven approach for risk hedging.

Chapter 3

Generative Methods for Time

Series: a Survey

Introduction

Generating realistic scenarios is of significant interest in physics, finance or other industrial fields. For this purpose a strong research effort focuses on probabilistic model-based approaches [START_REF] Black | The pricing of options and corporate liabilites[END_REF][START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF][START_REF] Dupire | Pricing with a smile[END_REF]. With the rise of deep learning [START_REF] Lecun | Deep learning[END_REF][START_REF] Goodfellow | Deep Learning[END_REF], new data-driven methods based on neural networks were proposed. In particular, the impressive successes that Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF] and Variational Auto-Encoders (VAE) [START_REF] Kingma | Auto-encoding variational bayes[END_REF] achieved on synthetic imaging offer new research perspectives. From realistic image generation, imputation of corrupt data to improving the quality of an image, there are many applications.

The development of similar methods for time series is appealing, and broadened the use cases to several research areas. Whether it is to generate meteorological data, medical signals, price scenarios or any other sequences, a key challenge arises: capturing the temporal dynamics. A good generator must therefore be able to correctly learn the marginal distributions at each time step, but also to capture the temporal structure. Classical Monte Carlo methods depend on modeling assumptions not always met in practice. Moreover, these approaches are not flexible when a new regime occurs and may make a simulation model obsolete. One could hope from a data-driven generator to gain in realism and make its adaptation to non-stationary environments easier (by feeding it with new samples). Considering larger class of function representation to be more faithful to real data dynamics or exhibit non-linear auto-correlations between variables is also a recurrent request [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF]. Time series generation is a very active field since 2018, notably carried by the GAN community. The simplicity and efficiency of deep generative methods naturally led the community to adapt these algorithms to time series. The fast growing literature may make it difficult to track the different contributions. Most of the works propose generators for uni-dimensional time series or stationary distribution (sometimes both) and may not be appropriate the new challenges brought by the specific domain of time series. Yet, it is possible to see more clearly by organizing the different proposals according to their way of trying to solve the problem.

Very recently, three reviews on GAN-based model have been proposed. A first one [START_REF] Brophy | Generative adversarial networks in time series: A survey and taxonomy[END_REF] exhibits a survey on time series GAN including ten detailed model descriptions. A specific emphasis is done on how synthetic data could tackle the privacy issues associated with sensible data. Another review [START_REF] Gao | Generative adversarial networks for spatio-temporal data: A survey[END_REF] also focuses exclusively on GANs but extend the survey for more general spatio-temporal data. Not only the generation of time series is considered, but also a discussion on spatio-temporal events (traffic flow, forest fire), time series forecasting and graph modelling. Finally, Eckerli describe several GAN applications in the financial fields. The scope is thus wider than the time series generation, including portfolio management or fraud detection. Moreover, the authors proposed a numerical application of three GANs on financial index returns.

The purpose of this review is to highlight the open challenges of sequence generation, the solutions proposed by the most recent works, and the various promises of applications. We identify four main approaches in the generation of time series, depending on the objective function, data embedding, specific network architecture or more global models. We also emphasis on the metric evaluation challenges as these metrics are determinant for identify to quality of generations.

Generative Adversarial Networks

How to produce new data from noise? Generative methods such as GAN propose an outstanding approach to answer this question. Most of the deep generative models for time series rely on GANs, thus we propose to detail here the design and the different challenges of this framework.

GAN Model

Historically, early generative methods focused on designing meaningful loss functions to train the model and metrics to evaluate the generations. In 2014, the idea of training at the same time a generator and a classifier arises with Goodfellow [START_REF] Goodfellow | Generative adversarial nets[END_REF].

The specific adversarial training is a key element of the impressive performances of GANs. In the original settings, the generator has to produce fake samples and tries to fool the discriminator, while the latter attempts to distinguish between the real and fake samples. Both networks are thus trained against each other. This framework allows a straightforward generation while being robust to over-fitting, since the generator never sees the training data. Empirically, GANs are also good at capturing the modes of the real and fake probability distributions. We introduce some quick mathematical formalism to highlight the framework.

Let be z some random noise of distribution α, most of the time Gaussian, and valued in some latent space Z. The generator is a function g : Z Ñ X from Z to the real data space X . The data distribution is denoted µ and approximated on N P N ˚number of points by 1 N ř N i"1 δ x i for x i P X . The generator aims at producing synthetic samples as close as possible to µ from the induced distribution ν " g ˝α. The discriminator is a function f : X Ñ r0, 1s indicating if a given sample is whether from the real distribution µ or was generated from ν. In practice, both functions g and d are often approximated by neural networks. The adversarial learning can be formulated as a two agent zero-sum game between g and d in which each player has to maximize its own payoff:

inf g sup d vpg, dq.
The convergence is reached when the generator's samples are indistinguishable from real data, when the discriminator cannot classify samples accurately as real or fake. The original proposal for vpg, dq was the Jensen-Shannon divergence, a robust metric to vanishing gradient issue (details in the next section) vpg, dq " E x"µ rlogpdpxqqs `Ez"ν rlogp1 ´dpgpzqqqs.

Then, the generator and the discriminator are trained concurrently to find a Nash equilibrium [START_REF] Nash | Equilibrium points in n-person games[END_REF] in a two-player non-cooperative game.

GANs drawn a lot of attention due to their simplicity and effectiveness. Considerable progress was made in order to answer to their inherent challenges (explored in the next Section 3.2.2). If some improvements focused on the neural networks architectures [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF][START_REF] Zhang | Self-attention generative adversarial networks[END_REF], most of the researches develop new models [START_REF] Mirza | Conditional generative adversarial nets[END_REF][START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF] or objective functions [START_REF] Nowozin | f-gan: Training generative neural samplers using variational divergence minimization[END_REF][START_REF] Li | Towards deeper understanding of moment matching network[END_REF][START_REF] Arbel | On gradient regularizers for mmd gans[END_REF][START_REF] Kim | Learning to discover cross-domain relations with generative adversarial networks[END_REF]. New value functions vpg, dq have been considered ensuring stable and diverse generations, for instance Wassertein GAN [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF][START_REF] Arjovsky | [END_REF][START_REF] Gulrajani | Improved training of wasserstein gans[END_REF] or Sinkhorn GAN [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF].

GAN Challenges

Unfortunately, GANs are difficult to train [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]. Several flaws, detailed hereafter, make the training slow, unstable and may complicate to achieve Nash equilibrium.

A strong flaw of this framework is actually the primarily strength of the method. This strength yields in the implicit way of learning the data distribution: the model generates directly data thus there is no need of explicit representation of ν. Then, the global quality of the model depends widely on the discriminator outputs.

Moreover, the minmax approach necessitates to be careful during the joint learning. The specific dynamic dialog between the generator and the discriminator makes harder to control the convergence, worst can lead to instability. Indeed, updating gradients of both models simultaneously does not guarantee the convergence of the Nash equilibrium, as each model updates its cost independently with no respect to the player in the game [START_REF] Weng | From gan to wgan[END_REF].

A generator trained too much without updating the discriminator may produce fine samples but a few diversity of them. This phenomena, known as mode collapse, is one of the most challenging problem of the GAN framework. The purpose of the generative methods is not to produce only high realistic images, but also to produce new images as varied as possible.

On the opposite, a too optimal discriminator may not provide enough feedback for the generator to converge. Called the vanishing gradient flaw, this problem is due to generator loss gradient updates becoming too small for the model (usually a neural network) parameters to be properly weighted, or that the discriminator outputs cannot represent accurately the target. The only way to remedy such a problem is to change the objective function.

These difficulties are well known and were actually already described in the original paper [START_REF] Goodfellow | Generative adversarial nets[END_REF]. Since, many works try to prevent them [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF], for instance by changing the value function [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF][START_REF] Lim | Geometric gan[END_REF] or by adapting the model architecture [START_REF] Mirza | Conditional generative adversarial nets[END_REF][START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF].

Another challenge, which is not directly due to GANs, is the network's architecture and the hyper-parameters choice. Considering specific architectures, such as Deep Convolutional GAN for image classification [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF], may provide much better performances than classical feed-forward networks. When considering the generation of time series, recurrent neural networks seems suitable architecture. However, we will see in the following that these models are not sufficient to properly capture the temporal structure. Moreover, more suitable architecture has a cost : increasing number of hyperparameters. Considering the many parameters used in the neural networks training, such as the hidden dimension, the number of layers, the batch size or learning rate (among others), it is computationally intensive to adjust or calibrate all these parameters.

Evaluation Metrics for Synthetic Time Series

Adapting Image Evaluation Metrics

A common challenge in the generation community is the lack of evaluation metrics [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF][START_REF] Wang | Generative adversarial networks in computer vision: A survey and taxonomy[END_REF]. Most of the proposed metrics in the literature are suited for computer vision. These measures could be used to quantify statically the accuracy of synthetic time series. However, generation metrics in imaging rely mostly on state-of-the-art image classifiers and distributional distances.

Inception Score (IS) [START_REF] Salimans | Improved techniques for training gans[END_REF][START_REF] Barratt | A note on the inception score[END_REF] quantifies the fidelity and the diversity of a collection of synthetic images. This score is named from Inception-v3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF], a state-of-the-art image classification network. The classifier compares the synthetic images to many known labeled objects of the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] and attributes a real number to each generation. IS combines the confidence class prediction, quantifying the faithfulness, and the marginal class distribution, representing the diversity of the synthetic collection. Empirically, IS correlates well with human judgement of a realistic image. The higher, the better, the ideal generator should provide meaningful objects and diverse images.

IS does not actually compares the real and generated images, at least not directly. That is why some distributional metrics have been used to evaluate some inherent statistics of both samples. Maximum Mean Discrepancy (MMD) [START_REF] Gretton | A kernel two-sample test[END_REF] measures the dissimilarity between two probability distributions using samples drawn independently from each distribution (real and fake). More recently, Fréchet Inception Distance (FID) [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF] was introduced for images and has since become a new standard metric for deep generative methods. Avoiding some drawbacks of the IS while maintaining the human judgement correlation, the Fréchet distance also considers Inception-v3 features. FID is the score obtained by computing the squared Wasserstein metric which compares the mean and the covariance between two Gaussians distributions N pα, Aq, N pβ, Bq:

W 2 2 pN pα, Aq, N pβ, Bqq " }α ´β} 2 2 `TrpA `B ´2pA 1{2 BA 1{2 q 1{2 q.
The Gaussians represent the last pooling layer prior to the output classification of images from Inception-v3. The last pooling layer is used to capture computer vision characteristics of a given image. Kernel Inception Distance (KID) [START_REF] Bińkowski | Demystifying mmd gans[END_REF] is defined to be the squared MMD between Inception representations and has been introduced as improvement of FID (KID having a simple unbiased estimator). Thus, as IS, the FID and KID are intrinsically related to a pre-trained classifier. Such classifier dedicated to time series could be relevant. Inception v3 adaption for time series exists, InceptionTime [START_REF] Fawaz | Inceptiontime: Finding alexnet for time series classification[END_REF], but does not seem to be used by the time series generation literature yet. None of the metrics mentioned is universally accepted in the generative community, as each measure includes shortcomings. Barratt and Sharma lists out the many issues with the Inception Score such as its sub-optimality, its usage beyond ImageNet dataset or its inability to postpone overfitting. IS is limited by what the Inception classifier can detect which leads to several drawbacks, which stay in the time series case. For instance, an object not present in the classifier training dataset or a model generating only a specific class would lead to low score. More importantly, a strong shortcoming shared with FID and KID yields in the classifier performance. If the classifier is not able to capture meaningful features of the generation samples, the score could be high despite poor quality. This problem persists with other metrics such as discriminative and predictive scores discussed later. Beyond that, it is hard to tell if the methodologies for computing Inception-based scores are consistent. In imaging, some papers report different values for a same model or do not precise the size of the testing set. A blog note [START_REF] Jean | Fréchet inception distance[END_REF] and a survey [START_REF] Wang | Generative adversarial networks in computer vision: A survey and taxonomy[END_REF] try to provide relevant GAN comparisons for these metrics on image generation.

Evaluating time series on distributional aspects seems relevant, for instance by ensuring that the marginals at each time step are faithful or the global flatten distribution is respected. In that sense, using evaluation metrics used for image generation is appealing but bring back the flaws already occurring in computer vision. The lack of efficient metrics is a call for deep learning classifiers. One can hope from a neural network to learn a meaningful metric. However, how to ensure that the classifier capture significant features to proper evaluate the generation accuracy?

Sequence Specificity

Some extensions of image based metrics are provided for video or audio generation, such as Fréchet Audio Distance (FAD) [START_REF] Kilgour | Frz'echet audio distance: A metric for evaluating music enhancement algorithms[END_REF], Fréchet Vidéo Distance (FVD) and its kernel counterpart Kernel Video Distance (KVD) [START_REF] Unterthiner | Towards accurate generative models of video: A new metric & challenges[END_REF][START_REF] Bińkowski | Demystifying mmd gans[END_REF]. But the challenges in time series generation also rely on the dimension, the trend, the seasonality or the noise of the sequence. For instance, to the best of our knowledge, there is no study on the impact of the sequence length on the generation quality yet.

The metrics proposed in the sequence generation community include post-hoc metrics, divergences, projection among others. Metrics based on auto-correlation are naturally present in the literature [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF], being informative for the time dependence between states. Discriminate and predictive scores are quantitative measures of similarity. Close to "to Train on Synthetic, Test on Real (TSTR)" [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Yoon | Time-series generative adversarial networks[END_REF], this idea is to confront generated data to real applications. Both scores are obtained by training a model (linear or a neural network) in a supervised task, classification for the discriminative score and regression for the predictive one. The discriminate model aims at quantifying the fidelity of a time series by learning to distinguish between real and synthetic data. The generated sequences are labeled as fake and original ones as real, then the classifier is trained to recover the good classes. The score indicates its accuracy, the lower the better, if the generator provides high-fidelity time series, the disciminative score is low. The predictive score focuses on the usefulness of the synthetic sequences. The supervised model is trained on a generated dataset in a regression task, forecasting the next value of a sequence. Then, the trained model is evaluated on the original data. If one observes a drop of performance between real and fake data, for instance in Mean Absolute Error (MAE), the predictive score is high and so the generator proposes poor results. Distribution visualizations project both synthetic and real time series in a plan. Two dimensional reduction techniques are used in the literature [START_REF] Yoon | Time-series generative adversarial networks[END_REF], the t-Distributed Stochastic Neighbor Embedding (t-SNE) [START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] and Principal Component Analysis (PCA) [START_REF] Jolliffe | Principal component analysis. Encyclopedia of statistics in behavioral science[END_REF]. These methods illustrates how the generated sample distribution is close to the original one, omitting the dynamic aspects because the temporal dimension is flattened. At last, another approach [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF] compares the path signatures [START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF] of real and synthetic data to ensure that significant characteristics are well captured. The main idea is to transform a discrete time series to a time joint path (a vector) ensuring the uniqueness of the signature. The embedding is an infinite collection to summarize the path faithfully and can characterize any continuous functions. Definition 3.3.1. The signature of a path X : ra, bs Ñ R d , denoted SpXq a,b is a collection of all the iterated integrals of X: SpXq a,b " p1, SpXq p1q , ..., SpXq pdq , SpXq p1,1q , SpXq p1,2q , ...q where the k-fold iterated integral of X is:

SpXq pi 1 ,...i k q a,b " ż aăt k ăb ... ż aăt 1 ăt 2 dX i 1 t 1 ...dX i k t k .
Thus, comparing two signatures is a way to compare the similarity of two time series. The universality and uniqueness of signature makes it a powerful tool, however the computation depends on a number of parameters increasing exponentially with the dimension of the sequence.

A Focus on Financial Time Series

Despite the complexity and the inherent randomness of real world phenomena, the dynamics of specific time series have some statistical known characteristics. In the finance fields, these properties are known as stylized facts and are well-studied [START_REF] Chakraborti | Econophysics review: I. empirical facts[END_REF][START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF][START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF]. For stock returns, stylized facts include:

-heavy tail distribution, -presence of jumps, -unstationary environment, -volatility correlation, -asymmetry. These regularities can be useful to design or improve generators. This allows to develop specific architectures, objective functions but also quantitative evaluation metrics. Advised operators are then able to better understand and critic the synthetic sequences using their knowledge of the real sequence behavior. For instance, one can check accuracy with auto-correlation function (ACF) or the difference between real and fake empirical probability density functions of t-differenced log paths [START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF].

Most of generative methods for time series applied in financial context focus on stationary data. Considering log-return is endorse to ease the distribution learning in an invariant environment [START_REF] Lezmi | Improving the robustness of trading strategy backtesting with boltzmann machines and generative adversarial networks[END_REF][START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF][START_REF] Takahashi | Modeling financial time-series with generative adversarial networks[END_REF][START_REF] Zhang | Stock market prediction based on generative adversarial network[END_REF][START_REF] Zhou | Stock market prediction on highfrequency data using generative adversarial nets[END_REF]. This hypothesis help the model by learning only one distribution, but turns out to be a strong approximation, especially in finance where it is well-known that the environment is not stationary. Another difficulty in the world of financial time series is that a data point is a potentially long chronicle realized only few some times in history, leading to small datasets. The limitation of samples for the training of deep generative methods (as many learning models) could be a strong obstacle to their use.

Time Series Generators

A large research effort focuses on deep generative models, especially GANs benefit of a very active community. We propose to classify the different works according to whether the contributions are based on the architecture of the network, on the global model, on the mathematical representation of the sequences or on the design of objective loss.

Contribution Based on Network Architecture

A natural way to adapt deep generative methods on time series is to use temporalspecific neural network architecture. Recurrent neural networks (RNN) allow to keep previous states in memory in order to refine the model outputs for instance. Many other architectures have been explored, we propose here to detail some of them.

C-RNN-GAN (2016)

Continuous RNN-GAN [START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF] uses recurrent neural networks to generate continuous time sequences. The generator is fed successively with a noise vector and the previous generated time step to output the next element of the time series. The generator is a LSTM network and the discriminator a BiLSTM, allowing to read the sequence in both direction. The loss function is the Jensen-Shanon (JS) entropy as in the original GoodFellow paper [START_REF] Goodfellow | Generative adversarial nets[END_REF]:

1 m ř m
i"1 logp1 ´dpgpz piq qqq for the generator and

1 m
ř m i"1 rlogpdpx piq q `logp1 ´dpgpz piq qqqs for the discriminator. C-RNN-GAN is applied on continuous data, and aims at generating (classical) music. The dataset consists in midi samples from 160 composers. The accuracy evaluation lies on listening impression only and would need a proper analysis as stated by the author. However, C-RNN-GAN is one of the first model to apply directly the GAN framework for time series.

RCGAN (2017)

Recurrent Conditional GAN (RCGAN) [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF] lies on a similar approach of C-RNN-GAN, introducing minor architectural differences partly inspired of the image-based Conditional GAN [START_REF] Mirza | Conditional generative adversarial nets[END_REF]. Both discriminator and generator are conditioned with additional inputs to facilitate the learning with associated labels. Moreover, the dependence on the previous output is dropped and the LSTMs are unidirectional. The considered loss is the negative cross-entropy (instead of the original JS) between the discriminator outputs and the labels of the sequence. The main objective of their approach is to be able to generate data while respecting the constraints linked to respect for privacy, in particular in medicine. The authors first attempt to generate synthetic data, such as sinuses or Gaussian processes. Subsequently, they apply their generators on images, considered as one-dimensional vectors. Finally, they consider real medical data. To quantify the quality of their generations, three metrics are used. A first one focuses on the distributional aspect of the generation with a unbiased MMD [START_REF] Smola | A hilbert space embedding for distributions[END_REF]. The two other metrics are the Train on Synthetic, Test on Real (TSTR) and Train on Real, Test on Synthetic (TRTS) which evaluates how a classifier is able to distinguish real to fake (more details on the metric evaluation section 7.5.1). The idea of conditioning with additional information seems natural and useful, underlined by the empirical study. [START_REF] Donahue | Adversarial audio synthesis[END_REF] considers the WaveNet architecture [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF] to improve the generation. This specific structure uses Temporal Convolutional Networks (TCN) designed to capture long-range dependencies of the time series. To improve training stability and avoiding training failure, the authors consider the Wasserstein-1 distance, known to be smoother than the original JS divergence [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF]. In order to respect the Lipschitz condition needed in Wasserstein GAN [START_REF] Arjovsky | [END_REF], a gradient penalty improvement is added [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]. The experiments are tested on audio such as drums, bird vocalizations, piano and large vocabulary speech. The main result is that the generator reproduces intelligible work when trained with few hours of vocabulary speech dataset. The evaluation of generation is done with Inception Scores on Fourier transform of the inputs to measure the diversity, as well as with the nearest neighbour comparison [START_REF] Cover | Nearest neighbor pattern classification[END_REF]. The authors add also human-based judgments which are correlated with the quantitative measures of sample quality. The paper highlights how TCN combined with GAN are efficient and can help spark further research in adversarial training for time series modeling. However, the lack of benchmarks makes the improvement evaluation difficult compared to recurrent architectures [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF].

WaveGAN (2018) WaveGAN

QuantGAN (2019)

QuantGAN [START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF] is a direct application of WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] on stationary financial data. The paper proposes also a rigorous mathematical definition of TCN. After having operated a specific transformation of stock returns, the TCN architecture is able to reproduce faithfully the data distribution by optimizing the JS divergence. The authors use a Lambert W probability transform [START_REF] Goerg | The lambert way to gaussianize heavy-tailed data with the inverse of tukey'sh transformation as a special case[END_REF] of the data to facilitate the training and being able to capture the heavy tails of the distribution. Data is uni-dimensional and consists of S&P500 log-returns. The generations are compared with two models: a calibrated GARCH(1,1) [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] and an introduced Constrained Stochastic Volatility Neural Network (C-SVNN) which decomposes the time series in a mean and a volatility term. The evaluation metrics used, in addition to histograms on several time basis (daily, weekly, monthly), focus on the overall distribution, the temporal structure as well as some stylized facts of log-returns. The EMD metric (Wasserstein-1) highlights how QuantGAN manages to learn properly the real data distribution, while the mean auto-correlation function ensures that synthetic dynamics fit with real market. Another metric considers greater moments, such as skewness and kurtosis, two statistics well captured in the numerical application. Moreover, the experiments show that the autocorrelation between log-returns is captured, even with long dependencies. The strengths of this proposal rely on the combination between TCN and the Lambert W transform but also on the various evaluation metrics considered and two benchmarks. The good performances let hope promising results in multi-dimensional cases.

Contribution Based on Model

SeqGAN (2017) Sequence GAN [START_REF] Yu | Seqgan: Sequence generative adversarial nets with policy gradient[END_REF] tackles the difficulty that has a generative model to update its weights from the feedback of the discriminant when considering discrete sequences. In order to address this issue, SeqGAN combines a GAN framework with a Reinforcement Learning [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF] approach to generate text and music. By modeling the generator as a stochastic policy in reinforcement learning, the Monte Carlo search allows to provide meaningful feed-backs. The generator produces structured sequences and is updated by a policy gradient [START_REF] Sutton | Policy gradient methods for reinforcement learning with function approximation[END_REF] on the expected reward from the discriminant. In practice, the generator is a LSTM thus benefiting of a recurrent neural network whereas the discriminator is a convolutional neural network. The considered data include Chinese poems and politic speeches for text, and folk tunes for music. The model is compared with a LSTM trained with maximum likelihood estimation, scheduled sampling [START_REF] Bengio | Scheduled sampling for sequence prediction with recurrent neural networks[END_REF] and Policy Gradient trained with bilingual evaluation understudy (BLEU) score [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF], a metric measuring the similarity between a generated text and references. SeqGAN outperforms the other algorithms on real data according to a human-based evaluation metric. This generator is one of the first model to extend GANs to produce sequences of discrete token, but continuous time extension could be possible. One shortcoming of this approach could be the complexity of the model, which may lead to instability.

SDE-GAN (2021)

Even if the purpose of this model is not directly to generate time series, SDE-GAN [START_REF] Kidger | Neural sdes as infinitedimensional gans[END_REF] can be used as such. The authors propose a novel approach to fit SDEs without reference to either pre-specified statistics, as classically done in finance for instance (by calibrating SDE parameters according to a given payoff in risk hedging for instance). To do so, the model uses a Neural Controlled Differential Equation (CDE) [START_REF] Kidger | Neural controlled differential equations for irregular time series[END_REF] architecture with a GAN framework. The generator of the GAN, denoted g θ , depends on the parameter θ and generates samples by transforming random noise. g θ behaves as a numerical solver and takes a Brownian motion W as inputs, characterizing noise, to output samples of trajectories structured as SDE. The generated time series is produced as follows:

X 0 " ζ θ pW 0 q, dX t " µ θ pt, X t qdt `σθ pt, X t q ˝dW t , (3.4.1)
Y θ t " α θ X t `βθ
where ζ θ : R v Ñ R x , µ θ : r0, T s ˆRx Ñ R x , σ θ : r0, T s ˆRx Ñ R xˆw are Lipschitz neural networks, and α θ P R yˆx , β θ P R y . The dimensions w, x, y are hyper-parameters describing the size of respectively a w-dimensional Brownian motion, the hidden state and the y-dimensional path space of the time series Y . The distribution of Y θ :" g θ pW q should be close to the one of target Y , corresponding to the real time series. Then, the discriminator d ϕ , parameterised by ϕ, produces a score by controlling at each time step the generator outputs g θ pW q or the real time series Y .

H 0 " ϕ pY 0 q, dH t " f ϕ pt, H t qdt `gϕ pt, H t q ˝dY t , (3.4.2) d " m ϕ H T
where ϕ : R y Ñ R h , f ϕ : r0, T s ˆRh Ñ R h , g ϕ : r0, T s ˆRh Ñ R hˆh are Lipschitz neural networks and m ϕ a vector in R h . The dimension h is a hyperparameter describing the size of the hidden state. The value d P R corresponds to the score of the discriminator indicating either the samples is real or fake, and is a function of the terminal hidden state H T .

Because Brownian motion is continuously injected into the generator, SDE-GAN can handle unstationary processes. Moreover, the model allows the SDE fitting to be performed by directly matching learned statistics. In practice, any arbitrary drift and volatility functions are admissible in the SDE formulation. Thus, the generator allows a more flexible parametrisation with larger class for the process parameters (approximated with neural networks), and the discriminator allows a more general calibration of those functions. The training loss 3.4.3 used is the Wasserstein-1 distance, as done in Arjovsky and Bottou and the Lipschitz regularisation of this WGAN is obtained using gradient penalty [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]. inf θ sup ϕ E W rd ϕ pY θ pW qqs ´Ez rd ϕ pY qs where d ϕ : R y Ñ R represents the overall action of the discriminator. The numerical experiments focus on both synthetic and real-world sequences. A continuous-time process is first considered with a one-dimensional Ornstein-Uhlenbeck process of length 64. Then real data with a company stock price of length 100 is considered, with a 6-dimensional time series of length 24 with Beijing Air Quality and eventually weights updates of a neural network training with stochastic gradient descent of length 100. Performance evaluation relies on three test metrics: classification, prediction, and MMD. The classification is a discriminative score as discuss in Section (7.5.1), obtained with an auxiliary neural CDE which aims at distinguish real and synthetic samples. The prediction score is computed with a neural CDE/ODE as an encoder/decoder which has to predict the next values of a sequence using the generated times series. The MMD ensures that the probability distribution is well estimated, and uses a depth-5 signature transform as the feature map considered in [START_REF] Király | Kernels for sequentially ordered data[END_REF]. Finally, the authors proposed a deep generator model whose formulation is theoretically sound, relying on stochastic process which allow large model of time series of interest. Nevertheless, this class process restriction makes the SDE-GAN less general than other deep generators, despite that many applications consider Itô processes.

Contribution Based on Data Embedding

Data embedding aims at facilitating the training of the generator by learning a mapping between features and latent representations to reduce the dimension of the space. For time series, one want also to capture the temporal dependencies as well as the overall data distribution. Several researches went in this way, from deep embedding to more theoretical grounded ones. [START_REF] Yoon | Time-series generative adversarial networks[END_REF] is one of the first model tackling to multidimensional sequence generation. The specificity of TimeGAN lies in the joint embedding space and GAN learning. An embedding network provides a mapping between real time series and a latent representation on where a GAN operates. By combining both supervised and unsupervised approaches, the model is able to produce realistic time series data in various domains. Let be H S , H X the latent and real spaces respectively. The embedding function is defined as:

TimeGAN (2019) Time series GAN

e : S ˆΠt X Ñ H S ˆΠt H X ps, x 1 , . . . , x T q Þ Ñ ph S , h T q
takes as inputs a static features s and temporal features x 1 , . . . , x T to transform them onto their latent codes. To reconstruct the embed signals, the recovery function bring back codes to their features representions:

r : H S ˆΠt H X Ñ S ˆΠt X ph S , h T q Þ Ñ ps, x1 , . . . , xT q
Let Z denotes the noise space on which random vectors are drawn, from a given known distribution, as input for generating H S , H X . The generator is a function g : Z Ñ H S ˆΠt H X producing latent codes form noise. Finally, the discriminator, which also operates on the latent space, is a function d : H S ˆΠt H X Ñ r0, 1s ˆΠt r0, 1s outputting classification probability.

The experiments include synthetic data such as sine waves but also three distinct real datasets on market stocks, energy ad medical events (including discrete sequences). The evaluation metrics consider the predictive and discriminative scores, as well as a visualization analysis with t-SNE and PCA (by flattening the temporal dimension). Moreover, a section is dedicated to sources of gain of the supervised loss, the embedding networks, and the joint training scheme highlighting the different contributions. TimeGAN is compared with six other generators, RCGAN [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF], C-RNN-GAN [START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF], T-Forcing, P-Forcing, WaveNet [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF] and WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF]. On every metrics, the model demonstrates outstanding performances, RCGAN being the only generator proposing close results. Nevertheless, TimeGAN minimises three loss functions and necessitates five LSTMs. A first loss is dedicated to learn the embedding space, a second one for the GAN, and a last one to supervise how the generator outputs fit with the latent representation of the real sequences. The training is thus computationally intensive and may leads to instability. Yet, this paper is the first to include 6 competing benchmarks with various datasets and the results are promising.

CSigWGAN (2020)

Signature embedding has get a lot of attention this last year [START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF][START_REF] Fermanian | Embedding and learning with signatures[END_REF]. Under the regularity condition, the distribution of a stochastic process on the path space is characterized by the expectation of the signature E X rSpXqs for X a Ω 1 0 pra, bs, R d q-valued random variable. Then, two processes having the same expectation of signature (which has infinite radius of convergence) leads to equality of the process in the distribution sense. In other words, one can minimize the difference between the expectations of the signature to learn accurately the distribution. In practice, the signature is truncated up to a degree M which determines its accuracy.

Conditional Sig-Wasserstein GAN [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF] aims at capturing the temporal dependence of joint probability distributions induced by time-series data. To do so, the authors propose a specific network architecture to capture the auto-regressive structure of the time series as well as a theoretically grounded metric relying on signatures to efficiently extract path features.

The conditional AR-FNN generator G θ parametrized by θ is a feed-forward network. The algorithm takes as inputs at each time step t `1 a noise Z t`1 , the previous part of the real time series X t´p`1:t as well as the previous generated state Xt and outputs the next generated step Xt`1 :

Xt`1 " G θ pX t´p`1:t , Xt , Z t`1 q.
The generator is then able to map past series and noise into future series.

Contrarily to classical Wasserstein GAN [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF][START_REF] Arjovsky | [END_REF], C-Sig-W1 GAN does not have a discriminator to be optimized. The authors propose a new objective function, the conditional Sig-W1, that captures the conditional joint distribution of the time series signature, and use it as a discriminator. The loss to be optimized is the Wasserstein-1 distance between the distribution µ and ν for time t:

ˇˇE µ " S M pX t`1:t`q q|X t´p`1:t ‰ ´Eν " S M p Xt`1:t`q q|X t´p`1:t ‰ ˇˇ.
where X indicates the real time series and X the one obtained by G θ . The objective function is then obtained by summing over each time steps. Generations are evaluated with the help of three metrics: MAE between empirical probability density functions from real and generated data, MAE on auto-correlation estimator, and R2 on synthetic-data-based regression prediction. Numerical experiments include synthetic data such as on VAR(1), ARCH(1) up to dimension 3, and real data with S&P500 log-returns and log-median volatilities. Their model outperforms TimeGAN [START_REF] Yoon | Time-series generative adversarial networks[END_REF], RCGAN [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF] and Generative Moment Matching Networks (GMMN) [START_REF] Li | Generative moment matching networks[END_REF].

Eventually, this (not-really a) GAN proposes promising results and new mathematically grounded evaluation metric. Indeed, one can compare easily the path signatures of generated time series with real ones and quantify the accuracy on the generator. The signature precision depends on an order parameter. Increasing this order grows exponential fast with the time series dimension [START_REF] Fermanian | Embedding and learning with signatures[END_REF], and thus can be more costly than training an adversarial network. Besides, it is not clear how the signature approach improves the generation compared to the AR-FNN architecture. C-Sig-WGAN appears however as an outstanding generator without the need to train a discriminator.

Contribution Based on Loss

The following works focus on designing an objective function dedicated to capture temporal dependencies. Moreover, for GANs the only way to get rid of vanishing gradient is to consider more suitable loss function.

COT-GAN (2020) Some works in Causal Optimal Transport (COT) [START_REF] Backhoff | Causal transport in discrete time and applications[END_REF][START_REF] Backhoff-Veraguas | Adapted wasserstein distances and stability in mathematical finance[END_REF] adapt the Wasserstein distance to continuous time processes. The obtained distance is theoretical grounded and easy to compute, as the time adaptation consists in a penalisation of anticipative transport plan, added to the traditional cost function. COT-GAN [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF] applies a regularization of this adapted Wasserstein-2, with the help of the Sinkhorn algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] in a GAN framework. The approach mimics the Sinkhorn divergence of Genevay, Peyré, and Cuturi, but here the discriminant network parameters the time penalty.

c K ϕ px, yq " cpx, yq `J ÿ j"1 T ´1 ÿ t"1 h j ϕ 1 ,t pyq∆ t`1 M j ϕ 2 ,t pxq,
where h, M are neural networks parametrized by ϕ " pϕ 1 , ϕ 2 q. Both functions h and M are approximated by truncating at a fixed J, required in the Adapted Wasserstein distance formulation. COT-GAN necessitates three neural networks, two discriminators in order to compute the cost of the distributional distance in a non-anticipating way, and a network for the generator which seeks the best generative function. The classical minmax setup of GAN stays. The discriminators seek to maximise the cost, i.e. penalize all anticipating costs, while the generator aims at minimizing the Wasserstein-2 distance between the distributions of the time series. The empirical results include auto-regressive processes AR(1), noisy oscillations and Electroencephalography (EEG) as well as two video datasets (Animated Sprites and Human Action). The sequence lengths vary from a little more than ten time-steps (for videos) to one hundred for EEG. For videos, the evaluation metrics include FID and KID and their temporal extensions FVD and KVD. On these metrics, COT-GAN is able to outperform MoCoGAN [START_REF] Tulyakov | Mocogan: Decomposing motion and content for video generation[END_REF] a specific video GAN. For the rest of the time series, only auto-correlation and time average correlation coefficients are provided accompanied by figures. On correlation aspects, the causal model is more faithful than the benchmark TimeGAN [START_REF] Yoon | Time-series generative adversarial networks[END_REF] and WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF]. The idea of adapting a distributional distance to propose a focus on dynamics for GAN is promising. The objective function is theoretically grounded, easy to implement and shows standout empirical results. The authors suggest opportunities for more theoretical analyses in future studies, ongoing works should concern on financial time series.

Applications

We nor describe the main applications of time series generation proposed by the literature. We focus on learning methods, thus we do not survey classical approaches relying on time domain, frequency domain or decomposition. Moreover, we focus the review on deep generative models then we omit methods focusing only on embedding space learning such proposed in [START_REF] Devries | Dataset augmentation in feature space[END_REF] for instance.

Data augmentation A way to deal with incomplete or sparse datasets is to increase the amount of data with faithful synthetic one. Data augmentation is a set of methods used to increase the amount of data by creating new synthetic data or modifying copies. A survey of data augmentation for deep learning is proposed in [START_REF] Shorten | A survey on image data augmentation for deep learning[END_REF]. Proper training of most machine learning algorithms (especially neural networks) need diverse and numerous samples, which are not always available in practice. The lack of labeled data, lack of diversity, too short historic or restricted database due to sensitive information is a common flaw. Labeling data is a thankless task, time consuming and mostly done by hand. Having a realistic generator providing new various labeled samples as much as needed would be a big step forward. Due to privacy or competitive context (in medical or financial sectors) large databases are available but restricted and thus not accessible. A common generator to benchmark models would increase the robustness of such models. Moreover, the study of these generators is an opportunity to better understand the geometric and statistic properties of specific data, such as images, videos or time series. This field offers also a unique discussion on quantitative metrics of fidelity, usefulness and diversity of samples.

Data imputation

Missing values in dataset is a common flaw. Using incomplete data could lead to ineffective analysis or erratic training of models. Data imputation is a research field at its own, with various methods [START_REF] Little | Statistical analysis with missing data[END_REF][START_REF] Van Buuren | Flexible imputation of missing data[END_REF], see [START_REF] Mayer | R-miss-tastic: a unified platform for missing values methods and workflows[END_REF] for a survey. A natural approach is to drop observations containing missing values, in order to keep a complete dataset [START_REF] Kaiser | Dealing with missing values in data[END_REF]. However, by definition every incomplete information is lost. Another way to handle incomplete dataset is to use statistical methods, which can add approximation error [START_REF] Graham | Missing data analysis: Making it work in the real world[END_REF]. Machine learning based methods have also been used, for instance a k-nearest neighbor predicts plausible values for imputation [START_REF] Batista | An analysis of four missing data treatment methods for supervised learning[END_REF]. More recently data imputation lying on optimal transport proposed promising results, even for high percentages of missing values [START_REF] Muzellec | Missing data imputation using optimal transport[END_REF]. However, these methods struggle handling missing sequences, the imputation is static and does not include the temporal dynamic.

Generators for time series are naturally appealing for imputation, as the model is specially designed to capture the periodicity or the trend of the sequences, and many approaches have been proposed [START_REF] Luo | Multivariate time series imputation with generative adversarial networks[END_REF][START_REF] Luo | E2gan: End-to-end generative adversarial network for multivariate time series imputation[END_REF][START_REF] Liu | Naomi: Non-autoregressive multiresolution sequence imputation[END_REF][START_REF] Guo | A data imputation method for multivariate time series based on generative adversarial network[END_REF].

Time series super-resolution

In images, being able to produce high-resolution images from a low-resolution allow interesting applications in satellite imaging, medical processing, biometrics recognition among others (see [START_REF] Nasrollahi | Super-resolution: a comprehensive survey[END_REF] for comprehensive survey on super-resolution). SRGAN [START_REF] Ledig | Photo-realistic single image superresolution using a generative adversarial network[END_REF] takes advantages of GANs to learn latent representations of high-resolution images and is able to achieve a 4ˆupscaling factor. Following this idea, some temporal focused works propose to enhance the resolution of audio sequences [START_REF] Kuleshov | Audio super resolution using neural networks[END_REF]. In physics, super-resolution models are recurrent for the reconstruction of fluid flows, turbulent flows or in other atmospheric fields [START_REF] Xie | tempogan: A temporally coherent, volumetric gan for super-resolution fluid flow[END_REF][START_REF] Liu | Deep learning methods for super-resolution reconstruction of turbulent flows[END_REF][START_REF] Leinonen | Stochastic super-resolution for downscaling timeevolving atmospheric fields with a generative adversarial network[END_REF].

Anomaly detection Given the challenges of both data scarcity and data imbalance in time series anomaly detection, adopting deep generative methods could be beneficial to generate more labeled data or compare synthetic distribution with suspect ones. Anomaly detection is closely related to a risk measures and thus to data augmentation. GAN have been used to detect stock price manipulation by increasing the set of [START_REF] Leangarun | Stock price manipulation detection using generative adversarial networks[END_REF]. There exists many works focusing on other time series [START_REF] Lüer | Anomaly detection in time series using generative adversarial networks[END_REF], especially multivariate sequences with MAD-GAN [START_REF] Li | Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks[END_REF]. An energy focused proposal adapts GAN for multivariate time series in order to detect anomaly and localization from power plant data [START_REF] Choi | Gan-based anomaly detection and localization of multivariate time series data for power plant[END_REF].

Discussion

Generating time series is of significant interest in diverse applications, such as in physic, medical or financial fields. Privacy issues, incomplete datasets or the need of faithful and various training data push researchers to improve actual generators. Machine learning models aim to tackle the main challenges identified in the section 7.5.1. Especially GAN community is very active due to the simplicity and the effectiveness of the model. Time series raise new challenges due to the intrinsic dynamic structure. A wide research effort addresses these challenges by developing specific network architectures, better sequence embedding, new model structures or objective functions. Despite the profusion of proposed models, it is hard to determine a best generator. The lack of efficient evaluation metrics makes comparisons difficult. Application based models may produce better results but have difficulties to generalize for other use cases or data. Heterogeneous metrics or datasets complicate to assess the fidelity or usefulness of the proposed generators. A thorough comparison would be useful when proper evaluation metrics would be introduced.

Conclusion

Deep generative models for time series benefit of a very active community. The lack of available data, effective data augmentation methods or privacy issues nourish opportunities for future research and applications. However, inherent challenges complicates the learning of temporal dependencies and the evaluation process. We proposed a comprehensive survey on deep time series generators, their applications and the evaluation metrics considered in the literature. We organized the reviewed method by their contributions depending on either the global model, the neural network architecture, the data embedding or the customized loss function. We summarized representative methods in each category and describe in a more detailed manner some promising generators.

Chapter 4

Conditional Loss and Deep Euler Scheme

This chapter is based on the publication Remlinger et al. (2022), AAAI.

We introduce three new generative models for time series that are based on Euler discretization of Stochastic Differential Equations (SDEs) and Wasserstein metrics. Two of these methods rely on the adaptation of generative adversarial networks (GANs) to time series. The third algorithm, called Conditional Euler Generator (CEGEN), minimizes a dedicated distance between the transition probability distributions over all time steps. In the context of Itô processes, we provide theoretical guarantees that minimizing this criterion implies accurate estimations of the drift and volatility parameters. Empirically, CEGEN outperforms state-of-the-art and GANs on both marginal and temporal dynamic metrics. Besides, correlation structures are accurately identified in high dimension. When few real data points are available, we verify the effectiveness of CEGEN when combined with transfer learning methods on model-based simulations. Finally, we illustrate the robustness of our methods on various real-world data sets.

Introduction

Time series Monte Carlo simulations are widely used for multiple industrial applications such as investment decisions [START_REF] Kelliher | Using monte carlo simulation to improve long-term investment decisions[END_REF], stochastic control [START_REF] Pham | Continuous-time stochastic control and optimization with financial applications[END_REF] or weather forecasts [START_REF] Mullen | Monte carlo simulations of explosive cyclogenesis[END_REF]. They are notably considered in the financial sector, for market stress tests [START_REF] Sorge | Stress-testing financial systems: an overview of current methodologies[END_REF], risk management and deep hedging [START_REF] Buehler | Deep hedging[END_REF][START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF], or for measuring risk indicators such as Value at Risks [START_REF] Jorion | Value at risk[END_REF] among others. Providing Monte Carlo simulations representative of the time series of interest is a difficult and mostly manual task, which requires underlying modeling assumptions about the time dependence of the variables. Hence, it is difficult to update these models when a new type of data is observed, such as negative interest rates, negative electricity prices or unusual weather conditions. This naturally calls for the development of reliable model-free data generators for time series.

Generative methods such as Variational Auto Encoders [START_REF] Kingma | Auto-encoding variational bayes[END_REF] or Generative Adversarial Networks (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF] provide state-of-the-art accuracy for the generation of realistic images [START_REF] Xu | Dp-gan: diversity-promoting generative adversarial network for generating informative and diversified text[END_REF] or text [START_REF] Zhang | Adversarial feature matching for text generation[END_REF]. The development of similar generative methods for time series is very promising [START_REF] Lyu | Improving clinical predictions through unsupervised time series representation learning[END_REF][START_REF] Chen | Model-free renewable scenario generation using generative adversarial networks[END_REF]. However, due to the complex and possibly non-stationary underlying temporal structure of some time series, these generative methods, especially GANs, are unsatisfactory applied as is [START_REF] Yoon | Time-series generative adversarial networks[END_REF]. Efficient generation of time series requires a proper learning of time-marginals as well as a faithfully representation of the underlying temporal dynamic.

In this paper, time series are represented as a discretized Euler approximation of continuous-time Itô processes. The three proposed generators rely on deep learning approximation of the deterministic drift and volatility functions. This representation benefits from a theoretically grounded temporal dynamic and provides a meaningful structure that avoids complex neural network architectures. Moreover, the considered Euler generators allow tractable, at least controllable, outputs, which can be difficult with deep embedding such as Yoon, Jarrett, and van der Schaar [START_REF] Yoon | Time-series generative adversarial networks[END_REF]. This feature is a key component in industrial applications, especially for decision-making-process. By combining deep Euler representation with Wasserstein distance [?], we introduce the Euler Wasserstein GAN (EWGAN), inspired by [START_REF] Arjovsky | [END_REF]. Our second GAN-based-model, called Euler Dual Discriminator (EDGAN) is an adaptation of the DVDGAN presented in Clark, Donahue, and Simonyan [START_REF] Clark | Efficient video generation on complex datasets[END_REF]. A spatial discriminator focuses on the accuracy of time-marginal distributions, while a temporal one focuses on the full sequence. Nevertheless, all these GAN approaches still have difficulties to capture a proper temporal dynamic.We remedy to this problem by introducing the Conditional Euler Generator (CEGEN) which optimizes a distance between the transition probability distributions at each time step. On the (large) class of Itô processes, we prove that minimizing this metric provides an accurate estimation of both the drift and volatility parameters.

A numerical study compares the three approaches with state-of-the-art GANs on synthetic and real data sets. We first verify that our methods can learn to replicate Monte Carlo simulations of classical stochastic processes. Synthetic models give access to more reliable metrics (including theoretical), and allow to make connections between model-based and model-free approaches. EWGAN and EDGAN show a similar accuracy as state-of-the-art GANs but capture more efficiently the time dynamics in dimension up to 20. The best performing model, CEGEN, recovers the underlying correlation (or independence) structure of time series particularly well, even in high dimensions. On real data, CEGEN outperforms every other GAN-based methods on five quantitative metrics. Moreover, we highlight the robustness of CEGEN, when combined with a transfer learning procedure when too few data are available. By properly mixing modelbased simulations with sparse real data during training, the generator can take advantage of the prior from synthetic samples to improve its accuracy.

Main Contributions:

-A theoretically grounded time series generator combining an Euler discretization of Itô processes with a dedicated loss on conditional distributions (CEGEN) is proposed. The conditional distance ensures that the generator learns the distribution around each data point and the temporal dependence. -Relying on a similar Itô process restriction, we also introduce two Euler GANs alternatives inspired by [START_REF] Arjovsky | [END_REF] and [START_REF] Clark | Efficient video generation on complex datasets[END_REF].

-A thorough numerical study on synthetic and various real world data sets demonstrate the robustness of our generators. CEGEN outperforms the other considered methods on five distinct metrics. A transfer learning application when sparse data is available is provided. Euler GANs exhibit close performance to the state-ofthe-art GANs on marginal metrics, but capture more accurately the correlation and temporal structure on Itô processes.

Related Works

The bootstrap method [START_REF] Efron | The jackknife, the bootstrap and other resampling plans[END_REF] is one of the first purely data-driven attempt to generate data. Samples are simply taken randomly with replacement. The scope of this technique is limited as it does not generate additional information. On the opposite, model-free approaches such as GAN allow to learn empirical distribution from data and thus to generate new samples. However, initial GAN proposals focus on the generation of nontemporally ordered outputs. GAN's architecture improvement for the time series case is an intensive area of research. For instance, WaveGAN [START_REF] Donahue | Adversarial audio synthesis[END_REF] uses the causal architecture of WaveNet [START_REF] Oord | Wavenet: A generative model for raw audio[END_REF] for unsupervised synthesis of raw-waveform audio. Alternatively, several works consider recurrent neural networks to generate data sequentially and keep memory of the previous states [START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF][START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF]. Time Series GAN (TSGAN, Yoon, Jarrett, and van der Schaar [START_REF] Yoon | Time-series generative adversarial networks[END_REF]) introduces a state-of-the-art method for time series generation which stands out by its specific learning process. At each time step, an embedding network projects the sequences onto a latent space on which a GAN operates. TSGAN manages to get accurate distributions and correlation on classical processes, we use it as a baseline in this paper. This method makes theoretical analysis of the generator outputs difficult due to its specific embedding. As the usage of model-free methods grows rapidly, their application to sensitive fields (e.g. finance) must be considered cautiously and requires theoretical and empirical guarantees on the behavior of these generators. For this purpose, an active line of research looks towards reliable embedding of time series, such as signature [START_REF] Fermanian | Embedding and learning with signatures[END_REF][START_REF] Buehler | Deep hedging[END_REF] or Fourier representation [START_REF] Steinerberger | Wasserstein distance, fourier series and applications[END_REF]. Most recent applications on video generation focus on specific GAN architectures to capture the spatial-temporal dynamics. For instance, MoCoGAN [START_REF] Tulyakov | Mocogan: Decomposing motion and content for video generation[END_REF] and DVD GAN [START_REF] Clark | Efficient video generation on complex datasets[END_REF] combine two discriminators, one for the temporal dynamic and another one on each static frame. Specialized generator structures have also been designed, TGAN [START_REF] Saito | Temporal generative adversarial nets with singular value clipping[END_REF] proposed to generate a dynamic latent space and VGAN [START_REF] Vondrick | Generating videos with scene dynamics[END_REF] combines two generators, one for marginals and another one for temporal dependencies. Following the idea of applying optimal transport to GANs [START_REF] Arjovsky | [END_REF][START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF], COTGAN [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF] uses causal optimal transport (COT) for video sequence generation. To do so, the discriminant penalizes not-causal transport plans, ensuring that the generator minimizes an adapted (regularized) Wasserstein distance for time series. This approach benefits of solid theoretical foundations but still lacks of empirical success on noisy time series. A very recent approach [START_REF] Kidger | Neural sdes as infinitedimensional gans[END_REF] proposes as well to use Stochastic Differential Equation (SDE) formulation for time series. By combing a neural SDE and a neural CDE (Controlled Differential Equation) in a GAN setup, the authors show that the classical approach to fit SDEs may be generalized. Our generators do not use any of these neural SDE and our discriminators do not aim to solve SDE.

Problem Formulation

We aspire to design a time series generator which combines accurate estimation of time-marginal distributions while properly capturing temporal dynamics. The generator we propose is designed to be simple enough to be tractable (in the sense that outputs could be controlled) and theoretically grounded. To do so, we feed our algorithms with training time series data and seek to learn an empirical probability distribution that best approximates the data one. This task can be tricky, depending on the sequences lengths, the dimension, and the shape of the data distribution.

Although the idea of a model-free approach is attractive, we restrict ourselves to the context of Itô processes. This class of processes encompasses a wide range of time series and yet allows us to develop tractable models based on theory. In addition to providing a robust theoretical framework and controls on the generation, Itô processes allow to measure the accuracy of our generators on synthetic samples via closed form expressions or Monte Carlo simulators. In comparison to common literature [START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF][START_REF] Buehler | A data-driven market simulator for small data environments[END_REF], we do not assume the time series to be stationary and allow ourselves to consider not-stationary sequences.

Itô process A time series observed on a time grid T " t0 " t 0 ă t 1 ă ... ă t N " T u. For the sake of simplicity, we assume a regular time grid with mesh size ∆t. We are given i.i.d. samples of a random vector X " pX t i q t i PT on R dˆpN `1q , N P N ˚, starting from X 0 valued in R d . The discrete time samples are supposed to be drawn from a continuous time underlying process having the following Itô dynamics:

dX t " b X pt, X t qdt `σX pt, X t qdW t , (4.3.1)
where b X : R ˆRd Ñ R d is the drift, σ X : R ˆRd Ñ M dˆd the volatility and W is a d-dimensional Brownian motion on some probability space pΩ, F, Pq equipped with a filtration pF t q tPr0,T s representing the information available at time t. The parameters b X and σ X are supposed to satisfy the usual Lipschitz conditions [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] ensuring existence and uniqueness of the solution of Eq.(4.3.1).

Deep Euler representation

Samples of X can be viewed as samples drawn from the Euler discretization scheme of (4.3.1) given by

X t i `∆t " X t i `bX pt i , X t i q∆t `σX pt i , X t i q∆W t i ,
where p∆W t i q t i PT is a collection of i.i.d. N p0, ∆tI d q random variables. Relying on this scheme, we introduce the deep Euler representation. Starting at t 0 " 0, from Y θ 0 " X 0 we generate time series Y θ " pY θ t i q t i PT by the following scheme:

Y θ t i `∆t " Y θ t i `bθ Y pt i , Y θ t i q∆t `σθ Y pt i , Y θ t i qZ t i , (4.3.2)
where Z t i are N p0, ∆tI d q i.i.d. random variables. b θ Y and σ θ Y are θ-parametrized functions approximated by a neural network. Our objective is to learn b θ Y and σ θ Y , so that the distributions of the processes Y θ and X are close.

Evaluation During the learning phase, neither b X nor σ X are given as inputs to any of the proposed generator. However, this formulation allows to compare a posteriori b X and σ X , when they are known, to the estimated b θ Y and σ θ Y . This provides a reliable metric on the generation accuracy. Moreover, this setup provides a convenient way to control the drift b θ Y and volatility σ θ Y functions. This task is delicate with deep embedding proposals for instance.

Euler Generators

Euler Generators proposed in this paper rely on two main elements: a network generating the drift and volatility terms of an Itô process and a distance between distributions to be minimized. The Itô structure facilitates the time series construction, while the distance focuses on the probability law accuracy of the generated sequences. Both GAN-based and Conditional loss methods described hereafter share this design.

Euler Generative Adversarial Networks

Among various generative models, GAN [START_REF] Goodfellow | Generative adversarial nets[END_REF] stands out by its specific optimization process. The adversarial training defined by a zero-sum game between a discriminator and a generator allows to implicitly learn data distributions while preventing over-fitting. The Wasserstein GAN [START_REF] Arjovsky | [END_REF] seems to get rid of stability problems encountered in training (mainly mode collapse) by adapting to the geometry of the underlying space. We propose two adaptations of GANs to time series that are based on the deep Euler representation presented in Eq.(4.3.2) and on the (differentiable) Wasserstein-1 (W 1) distance. The Rubinstein-Kantorovich duality allows to rewrite W 1 between two random variables Z 1 and Z 2 as follow:

W 1 pLpZ 1 q, LpZ 2 qq " sup ||f || L ď1 E Z 1 "LpZ 1 q rf pZ 1 qs ´EZ 2 "LpZ 2 q rf pZ 2 qs , (4.4.1)
where ||f || L denotes the smallest Lipschitz constant of the real-valued function f .

Euler Wasserstein GAN (EWGAN) This model considers a Wasserstein GAN,

where the generator relies on the Deep Euler representation (4.3.2) and optimizes the corresponding parameter θ. The discriminator d ϕ parametrized by ϕ tries to find the optimal 1-Lipschitz function allowing to compute W 1 pLpXq, LpY θ qq using the Rubinstein-Kantorovich duality of Eq.(4.4.1). The Lipschitz property of d ϕ is guaranteed using the gradient penalty trick mentioned in Gulrajani et al. [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]. Overall, EWGAN minimizes the W 1 distance between the distribution of the original X " pX t i q t i PT and the generated one Y θ " pY θ t i q t i PT :

inf θ W 1 pLpXq, LpY θ qq " inf θ sup ϕ E X"LpXq rd ϕ pXqs ´EY θ "LpY θ q rd ϕ pY θ qs.
Pseudocode of EWGAN is given in Alg.2 in Appendix 4.8.

Euler Dual Discriminator (EDGAN)

Our second GAN-based model is an adaptation of the Dual Video Discriminator GAN [START_REF] Clark | Adversarial video generation on complex datasets[END_REF]. DVD GAN uses attention networks and two discriminators in order to generate high fidelity videos. While the spatial discriminator focuses on time marginals and critics images in high resolution, the temporal one considers the full sequence of frames in low resolution. We adapt these ideas to our context by considering in EDGAN a similar dual discriminator architecture while the generator creates samples using the Deep Euler representation of Eq.(4.3.2). The temporal discriminator is similar as the one of EWGAN and focuses on W 1 pLpXq, LpY θ qq.

At the same time, the marginal discriminator focuses on the computation of the W 1 distance between marginal distributions W 1 pLpX t q, LpY θ t qq, for each t i P T . Pseudocode is given in Alg.3 in Appendix 4.8.

Conditional Loss Method

As already mentioned, it is highly challenging for generators of temporally ordered data to capture the temporal dynamic [START_REF] Yoon | Time-series generative adversarial networks[END_REF]. In order to remedy to this weakness, we introduce below an innovative loss function based on conditional distributions.

A Loss Function Based on Conditional Distributions

The difficulty arising when trying to design a loss function for a data-driven time series generator comes from the need to get the correct balance between the marginal distribution fitness and the good representation of the temporal structure. On the one hand, we cannot only focus on marginals because having LpX t i q " LpY θ t i q for all t i P T does not imply that b X " b Y θ nor that σ X " σ Y θ (see the counterexample in Appendix 4.6.1). On the other hand, instead of working on marginals, one can wonder if considering time series realization as a vector defined on R dˆpN `1q provides better results. Unfortunately, and as mentioned in Yoon, Jarrett, and van der Schaar [START_REF] Yoon | Time-series generative adversarial networks[END_REF], learning the joint distribution LpX t 0 , . . . , X t N q may not be sufficient to guarantee that the network captures the temporal dynamics, even with memory-based networks. An empirical example of unsatisfactory generations based on joint laws is illustrated in Figure 4.4 in Appendix, the generated trajectories are smooth. In the case of time series, one should simply refrain from applying a loss based only on marginal or joint distributions. To provide a reliable solution to this issue, we propose to focus on the transition probabilities at each time step by conditioning on the previous state. Moreover, by doing so, we are able to produce theoretical bounds on Itô coefficient estimation accuracy.

CEGEN Algorithm

Contrarily to the previous GAN-based methods, CEGEN does not require a discriminator network. The idea consists in considering a loss function that compares the conditional distributions LpY θ t i`1 | Y θ t i q with LpX t i`1 | X t i q for each time step t i P T . The latter conditional distributions are Gaussian when considering Euler-discretized Itô processes. We consider the following metric: where B is the Bures metrics [START_REF] Bhatia | On the bures-wasserstein distance between positive definite matrices[END_REF][START_REF] Malago | Wasserstein riemannian geometry of positive definite matrices[END_REF] defined by B 2 pA, Bq " T rpAq `T rpBq 2T rpA

1 2 BA 1 2 q 1 2
, for positive definite matrices A and B. If X and Y are gaussian, W 2 is the definition of the Wasserstein-2 distance [START_REF] Gelbrich | On a formula for the l2 wasserstein metric between measures on euclidean and hilbert spaces[END_REF]. This metric (4.4.2) captures meaningful geometric features between distributions, and W 2 transportation plan is very sensitive to the outliers thus increases the distribution estimation accuracy. The Bures formulation allows us to consider exactly the Wasserstein-2 distance, instead of regularized ones [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF][START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. The benefit is double, its value as well as its gradients admit closed forms, and can handle degenerate measures [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF]. Moreover, the Bures metric allows us to provide theoretically guarantees that minimizing the conditional loss implies accurate estimation for the drift and volatility coefficients. Indeed, whenever the distributions of the form LpX t i`1 | X t i " zq and LpY θ t i`1 | Y θ t i " zq for z P R d coincide in W 2 , the process parameters coincide as well (see Prop. A.1 in Appendix). This is encouraging but in general conditioning from the very same point is complicated. Proposition 4.4.1 extends this property when the previous states belong to a small ball around z. To compute the loss, we create at each time t i a partition pI j q 1ďjďJ of the union of supports of X t i and Y θ t i . For a given batch of samples, LpX t i`1 | X t i P I j q is approximated by extracting the elements X t i`1 such that X t i P I j . LpY θ t i`1 | Y θ t i P I j q is approximated in the same way. The W 2 2 distance between conditional distributions are then summed up over all subdivisions and over all time steps:

lpX, Y θ q " N ´1 ÿ i"0 J ÿ j"1 W 2 2 ´LpX t i`1 |X t i P I j q, LpY θ t i`1 |Y θ t i P I j q ¯.
By computing W 2 2 between the elements such that the previous states are close to each other, i.e. belonging to the same ensemble, the generator is able to learn the distribution around data points and ensures the temporal dependence. The pseudocode of CEGEN is given in Alg.1 and details are provided in Appendix 4.9. Bures metrics is computed using the Newton-Schulz method [START_REF] Muzellec | Generalizing point embeddings using the wasserstein space of elliptical distributions[END_REF], which is a differentiable way to get covariance matrice square roots.

Algorithm 1 CEGEN

Input: D samples of X, m batch size, K Nb of subdivisions, γ learning rate Initialize: θ (randomly picked) while Not converged do for i "

0 . . . N ´1 do Sample m observations xt i`1 from of Xt i`1 Sample z " N p0, I d ∆tq yt i`1 Ð yt i `gb θ pti, yt i q∆t `gσ θ pti, yt i qz IJ Ð J subdivisions of SupppXt i qY SupppYt i q for j " 1 . . . J do t i`1 ,j Ð W 2 2 pLpxt i`1 |xt i PIjq, Lpyt i `1|yt i PIjqq end for end for θ " θ ´γ∇ θ ř N ´1 i"0 ř J j"1 t i`1 ,j
end while Output: y " pyt i q iPt0,...,N u

Theoretical Guarantee

In order to theoretically ground the choice of the loss function, we need to quantify how reducing the W 2 distance implies proximity between drift and volatility parameters. The following result is allowed by the specific Bures-Wasserstein formulation (Eq.4.4.2) implemented in CEGEN. Proposition 4.4.1. Let t i P T . Assume that σ 2 X pt i , .q, σ 2 Y pt i , .q are strictly positive and, together with b X pt i , .q and b Y pt i , .q, are K-Lipschitz in their second coordinate. Let pI j q 1ďjďJ be a regular partition covering SupppX t i qY SupppY t i q with mesh size ∆x. Let ε ą 0. If W 2 2 `LpX t i`1 |X t i P I j q, LpY t i`1 |Y t i P I j q ˘ď ε for any j, then, for z in

I j }b X pt i , zq ´bY pt i , zq} 2 ď ? ε `∆x ∆t `2K∆x. Furthermore, }σ X pt i , zq ´σY pt i , zq} 2 ď $ & % a ε ∆t `2K∆x if d " 1 b 2α 2 ε ∆t `2K∆x if d ą 1 , where Tr `σ2 X pt i , zq ˘" Tr `σ2 Y pt i , zq ˘" α.
As described in Appendix 4.6.3, this result is proved using useful inequalities between Hellinger and Bures distances. The α coefficient comes from the need of using density matrices, in practice one can easily normalize covariance matrices by their traces. Proposition 4.4.1 implies that by conditioning over sufficiently small intervals, a low W 2 loss between transition distributions guarantees a good process estimation.

Numerical Study

We now turn to the numerical evaluation of EWGAN, EDGAN and CEGEN in comparison to the state-of-the-art TSGAN and COTGAN. Two additional benchmarks are provided, but in Appendix due to poor results: RCGAN [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF] a conditional GAN based on recurrent neural networks and GMMN [START_REF] Li | Generative moment matching networks[END_REF] an unconditional MMD with Gaussian kernel. Networks are composed of 3-layers of 4 times the data dimension neurons each. Euler generator networks are feed-forward, while benchmarks benefit of recurrent networks (LSTMs). Hyper-parameters are described in Appendix 4.9.

Data Sets

Two kinds of data sets are used: synthetic and real time series. In single dimension, we use Black-Scholes (BS) model (dX t " rX t dt`σX t dW t) and Ornstein-Uhlenbeck (OU) model (dX t " θpµ ´Xt qdt `σdW t). For these two stochastic models, our empirical references are drawn from Monte Carlo simulations. The latter are performed on a regular time grid of 30 dates, the maturity is 0.25 (1 simulation per day for 3 months) and X 0 " 0.2. BS model (resp. OU) has coefficients of r " 0.8, σ " 0.3 (resp. σ " 0.1, µ " 0.6, θ " 7). In higher dimensions, we proceed with the same methodology but with multivariate correlated BS time series (d = 4, 10, 20). The real data sets include various nature of time series and are detailed in Appendix 7.3.1.

Evaluation Metrics

We consider five metrics to evaluate the accuracy of the generators. For all metrics the lower, the better.

(1) Marginal metrics. These metrics quantify the quality at each time step of the marginal distributions induced by the generated samples compared to the reference ones. This includes Fréchet Distance (FD) [START_REF] Fréchet | Sur la distance de deux lois de probabilité[END_REF][START_REF] Dowson | The fréchet distance between multivariate normal distributions[END_REF] as well as classical statistics (mean, 95% and 5% percentiles denoted respectively Avg, q95, q05). We compute the mean squared error (MSE) over time of these statistics. This helps measuring whether a generator manages to get an accurate overall envelope of the processes.

(2) Temporal dynamics. This metric aims at quantifying how the generator is able to capture the underlying time structure of the signal. For this purpose, we compute the difference between the quadratic variations of both reference and generated time series.

The quadratic variation (QVar) of an Itô process X is given by rXs t " ş t 0 σ 2 X ps, X s qds. Thus the temporal metric ensures that the diffusion σ X is well estimated too. We compute rXs t in the discrete case with

ř i |X t i`1 ´Xt i | 2 .
(3) Correlation structure. The metric denoted Corr is the term-by-term MSE between empirical correlation from reference samples on one side and from generated samples on the other side. It evaluates the ability of a generator to capture the multidimensional structure of the signal.

(4) Process parameters. A by-product output of Euler generators are the estimated drift b θ Y p.q and volatility σ θ Y p.q functions. When using synthetic data, we can compare them with the true process parameters. In the BS case, the coefficients are estimated by the empirical average of pb θ Y pt, Y θ t q{Y θ t q tPT and pσ θ Y pt, Y θ t q{Y θ t q tPT . For OU, σ is estimated in a similar manner, while θ and µ are estimated by regressing b θ Y on pt, Y θ t q. These statistics cannot be computed in the same way with TSGAN due to its specific deep embedding, nor COTGAN.

(5) Discriminative and predictive scores. We use two distinct scores, as proposed in Yoon, Jarrett, and van der Schaar [START_REF] Yoon | Time-series generative adversarial networks[END_REF]. First, we train a classification model (a 2-layer LSTM) to distinguish real sequences from the generated ones. The accuracy of the classifier provides the discriminative score. Second, the predictive score is obtained by training a sequence-prediction model (a 2-layer LSTM) on generated time series to predict the next time step value over each input sequence. The performance is measured then by evaluating the trained model on the original data, in term of MSE.

One-Dimensional Simulated Process (Exp. A)

We start comparing the generators on unidimensional synthetic data. Figure 4 and the temporal structure. On the one hand, the trend and marginals of generations seem close to the empirical reference. On the other hand, GANs struggle to capture the temporal dynamics between two time steps. COTGAN tends to smooth the time series while TSGAN outputs too noisy samples. However, CEGEN manages to capture the overall envelope and is able to fit the dynamics of time series. These results are confirmed quantitatively by the QVar metric in Table 5 (in Appendix B). Table 4.1 reports the reference drift and volatility coefficients with those obtained by the three Euler generators. CEGEN provides an accurate estimation and to a lesser extent of EWGAN. Despite benefiting of a dedicated temporal discriminator, EDGAN returns the poorest estimation. Euler structure alone does not manage to recover the right parameter values. Regarding the overall dynamics and the marginals, CEGEN seems a reliable generator for time series. The question we address in the next section is how CEGEN scales to higher dimensions.

Scaling the Dimension (Exp. B)

Table 4.2 reports the discrepancies between reference empirical correlation and generated time series correlation for dimensions d " 4, 10, 20 on BS simulations. Up to dimension 20, CEGEN obtains a significant improvement compared to every GANs. Figure 4.2 illustrates how well CEGEN outperforms the other generators with respect to the FD and QVar in higher dimensions. This is confirmed by statistics on drift and volatility of Table 4.7 in Appendix 4.7.2, where one can also find an illustration of the process envelopes of CEGEN for the d " 20 case (Figure 4.5). These good global performances encourage us to focus on the conditional generator in the following transfer learning section.

Transfer Learning for Small Dataset (Exp. C)

Deep generators may need more data than available to be trained effectively. As is done in transfer learning [START_REF] Torrey | Handbook of research on machine learning applications and trends: algorithms, methods, and techniques[END_REF], we propose to start the training with a reasonably wrong probabilistic model and finish up with a few real data samples. This situation is tested on synthetic data to allows us to track the drift and volatility learning during the training phase. Both target and misspecified samples come from Monte Carlo simulations, but target sequences include only 60 trajectories of 30 dates (5 years of monthly measures). The first phase of transfer learning includes new simulated samples from the misspecified model each iteration, while the second phase loops randomly with only the 60 samples of the target model. The reference (resp. misspecified) parameters are σ ˚" 0.15, µ ˚" 0.6, θ ˚" 2.0 (resp. σ " 0.1, µ " 0.8, θ " 3.0). The CEGEN with transfer is compared with a CEGEN only trained with the few available target sequences. Figure 4.3 provides the coefficient evolution of both generators during the training process. The transfer iteration start is represented by the red vertical line. Firstly trained with the mis-calibrated OU model, the transfer learning approach is able to retrieve the parameters when fed with few samples of the target model. The generator only trained with few real samples is unable to estimate correctly the θ and σ coefficients, but exhibits a better estimation of µ. Table 8 in Appendix confirms quantitatively the process estimation comparison. The model benefiting from the transfer takes advantage of the initial training phase and provides an overall better estimation.

This framework is a way to update an existing model with the help of incoming real data. Transfer learning tests show how model-free methods can rely on a proven simulation model without replacing it completely.

Experiments on Real-World Data Sets (Exp. D)

Finally, we test generators on various real time series (depending on the dimension, periodicity or noise). In Table 4.3, we evaluate models with the help of FD, QVar and Corr. CEGEN outperforms GANs or is close in term of FD, and captures well the correlation structure of the signals. However, some QVar from TSGAN or COTGAN are lower than CEGEN despite their generated trajectories being significantly smoother than real data. To better evaluate the fidelity of the generation we need to consider other metrics. Table 4.4 reports discriminative and predictive scores for each model (except EWGAN, RCGAN and GMMN where scores can be found in Appendix as we focus on state-of-the-art models). Our conditional generator almost consistently produces higher-quality time series in comparison to the benchmarks. On Electric Load data, COTGAN is able to better capture seasonality of the times series, but generates too smooth trajectories. In the opposite, CEGEN proposes more faithful times series in term of noise, but struggles to fool the classifier.

Conclusion

We introduced three generative methods for times series, relying on a Deep Euler scheme of Itô processes. Considering Itô structure is a compromise between an intuitive representation and a large class of processes to help generators. Two methods EWGAN and EDGAN demonstrate an accuracy close to state-of-the-art GANs. The third method CEGEN computes a distance between the conditional distributions of the time series. The generator is thus able to learn the distribution around data points and ensures the link between time-dependent states. We prove that minimizing this loss guarantees a proper estimation of the drift and volatility coefficients of the Itô process. Our experiments on synthetic and real-world data sets demonstrate that CEGEN outperforms the other generators on marginal and temporal dynamics metrics. CEGEN is able to capture correlation structures in high dimensions and is efficient when combined with transfer learning on sparse data sets. can combine model-based simulations with a data-driven approach. In further work, we plan to consider more specialized neural networks architectures for time series, extend our results to more general Lévy processes which may include jumps, and consider not Gaussian noise.

Broader impact

Generative methods for time series may be involved in industries using stochastic control and simulation methods making them of particular interest in physics, finance or for energy companies. When applied within a decision-making process, generative methods has to be used carefully as a failure during learning phase may lead to damageable consequences. Thus, the outputs of the generators should not be left free, as this could lead to erratic optimal controls. Contrarily to the existing approaches which applies GANs and embedding to generate any kind of time series, we impose an Euler structure and we restrain ourselves within the (sufficiently) large class of Itô processes. Moreover, theoretical results give an error estimate of the process parameters for a given loss level.

Material of Section 4.4.2 4.6.1 Counterexample

Consider a timegrid tt 0 , t 1 , t 2 u with ∆t " t i`1 ´ti , @i P t0, 1u. Let For the uni-dimentional case, we have:

X t 0 " 0, X t 1 " ε X t 1 , X t 2 " ´Xt 1 `εX t 2 , Y t 0 " 0, Y t 1 " ε Y t 1 , Y t 2 " Y t 1 `εY t 2 ,
with ε X t i , ε Y t i " N p0, ∆tq and being i.i.d. Then, for i P t0, 1, 2u, we have LpX t i q " LpY t i q but ErX t 2 |X t 1 " zs " ´z ‰ z " ErY t 2 |Y t 1 " zs.

Motivation -Details

Proposition 4.6.1. Assume that for all t i P T " tt 0 " 0, . . . , t N " T u, for all z P R d , X t i `∆t |X t i " z and Y t i `∆t |Y t i " z are identically distributed and that σ X pt i , zqσ X pt i , zq T (resp. σ Y pt i , zqσ Y pt i , zq T) are positive semi-definite. Then b X pt i , zq " b Y pt i , zq and σ X pt i , zq " σ Y pt i , zq.

Proof. Let t i P T . For z P R d we have, T being PSD, has a unique square root which is σ X pt i , zq. The same goes for σ Y pt i , zq. So, σ X pt i , zq " σ Y pt i , zq.

X t i `∆t |pX t i " zq " N `z `bX pt i , zq∆t, σ 2 X pt i , zq∆t ˘, Y t i `∆t |pY t i " zq " N `z `bY pt i , zq∆t, σ 2 Y pt i , zq∆t . Then, b Y pt i , zq " b Y pt i , zq and σ X pt i , zqσ X pt i , zq T " σ Y pt i , zqσ Y pt i , zq T for z P R d . Matrix σ X pt i , zqσ X pt i , zq

Proof of Proposition 4.4.1

Assume that σ X pt i , .q, σ Y pt i , .q are strictly positive and, together with b X pt i , .q and b Y pt i , .q, K-Lipschitz in their second coordinate. For t i P T , let pI j q jPt1,...,Ju with J P N be a regular partition covering SupppX t i qY SupppY t i q with mesh size ∆x " }a j`1 áj } 2 , @j P t1, . . . , J ´1u. Let ε ą 0. We have for X:

X t i `∆t " X t i `bX pt i , X t i q∆t `σX pt i , X t i qU, with U " N p0, ∆tq.
Thus, for all z P R d , X t i `∆t |pX t i " zq " N `z `bX pt i , zq∆t, σ 2 X pt i , zq∆t ˘and the same goes for process Y .

Let I j " ra 1 j , a 1 j`1 s ˆ¨¨¨ˆra d j , a d j`1 s for j P t1, . . . , J ´1u. Suppose that for all t i P T we have W 2 2 `LpX t i`1 |pX t i P I j qq, LpY t i`1 |pY t i P I j q ˘ď ε.

Then, using the Bures-Wasserstein formulation of W 2 2 in the Gaussian case, there exists z 1 , z 2 P I j such that:

}z 1 `bX pt i , z 1 q∆t ´z2 ´bY pt i , z 2 q∆t} 2 2 `B2 pσ 2 X pt i , z 1 q∆t, σ 2 Y pt i , z 2 q∆tq ď ε.
By standard norm inequalities and Lipschitz properties of b X pt i , .q and b Y pt i , .q, we bound the squared distance of drifts for all z P I j and with mesh grid ∆x.

} pb X pt i , z 1 q ´bY pt i , z 2 qq ∆t `pz 1 ´z2 q} 2 2 ď ε }b X pt i , z 1 q ´bY pt i , z 2 q} 2 ď ? ε `∆x ∆t }b Y pt i , z 2 q ´bX pt i , zq} 2 ´}b X pt i , z 1 q ´bX pt i , zq} 2 ď ? ε `∆x ∆t }b Y pt i , z 2 q ´bX pt i , zq} 2 ď ? ε `∆x ∆t `K∆x }b Y pt i , zq ´bX pt i , zq} 2 ď ? ε `∆x ∆t `2K∆x
For volatility bound, we recall that the Bures metrics [START_REF] Bhatia | On the bures-wasserstein distance between positive definite matrices[END_REF][START_REF] Malago | Wasserstein riemannian geometry of positive definite matrices[END_REF] between positive definite matrices A and B is defined by

B 2 pA, Bq " T rpAq `T rpBq ´2T rpA 1{2 BA 1{2 q 1{2 .
In the d " 1 case, }σ X pt i , z 1 q ? ∆t ´σY pt i , z 2 q ? ∆t} 2 2 ď ε implies: @z P I j ,

}σ X pt i , zq ´σY pt i , zq} 2 ď c ε ∆t `2K∆x.
For d ą 1, let's denote H the Hellinger distance between positive density matrices:

HpA, Bq"}A 1{2 ´B1{2 } 2 .
For two density matrices A and B, from [START_REF] Spehner | Geometric measures of quantum correlations with bures and hellinger distances[END_REF] (Equation 74) we have HpA, Bq ă ? 2BpA, Bq. Following the trace assumption, Trpσ 2 X pt i , z 1 qq " Trpσ 2 Y pt i , z 2 qq " α and then, Thus we get,

H ˆσ2 X pt i , z 1 q α ∆t, σ 2 Y pt i , z 2 q α ∆t ˙ď ? 2ε.
}σ X pt i , z 1 q ´σY pt i , z 2 q} 2 ď c 2αε ∆t .
In particular, using the K-Lipschitz property of the volatility functions, we obtain:

@z P I j , }σ X pt i , zq ´σY pt i , zq} 2 ď c 2αε ∆t `2K∆x.
Remark 4.6.2. The Proposition above extends to the Wasserstein-2 loss if we conditionate by points instead of conditioning by intervals. Indeed, suppose for all t i P T , we have

W 2 2 `LpX t i`1 |pX t i " z 1 q, LpY t i`1 |pY t i " z 2 q ˘ď ε,
then, as we have :

X t i `∆t |pX t i " z 1 q " N `z1 `bX pt i , z 1 q∆t, σ 2 X pt i , z 1 q∆t ˘, Y t i `∆t |pY t i " z 2 q " N `z2 `bY pt i , z 2 q∆t, σ 2 Y pt i , z 2 q∆t ˘.
We can use the closed form of the Gaussian expression of Wasserstein-2:

}z 1 `bX pt i , z 1 q∆t ´z2 ´bY pt i , z 2 q∆t} 2 2 `B2 pσ 2 X pt i , z 1 q∆t, σ 2 Y pt i , z 2 q∆tq ď ε.
Similar results as proof 4.4.1 follow.

Additional Numerical Results

Experiment A -Uni-Dimensional Case With Synthetic Data (Exp. A)

Quantitative evaluations provided by Table 4.5 report time-average moments accuracy for a 1-dimensional processes of CEGEN and GANs. Our model CEGEN and TSGAN are faithful to synthetic trajectories and outperform both Euler GANs. However, CEGEN is also able to capture the temporal dynamics of the processes, as QVar metric reports.

Black-Scholes

Experiment B -Multidimensional Case With Synthetic Data (Exp. B)

Figure 4.5 reports envelope of samples from CEGEN model (orange) on a 20dimensional Black-Scholes samples (blue). Full lines give the marginal averages over time, and dash lines give average 5% and 95% quantiles respectively. Our generator is still able to retrieve faithfully the average moments in high dimension. This is confirmed with the quantitative evaluation provided by Table 4.6, where the benchmark TSGAN and CEGEN stand out compared to Euler GANs. In Figure 4.6, the empirical correlations are illustrated for both correlated and independent case. The term-by-term MSE of correlation matrices (the more black, the better) confirms that correlation is also retrieved by CEGEN up to dimension 20.

Experiment C -Transfer Learning (Exp. C)

Table 4.8 provides the empirical coefficients of the Ornstein-Ulhenbeck we try to generate. The CEGEN algorithm benefiting of transfer learning gives the closer estimation of the real parameters. However, the CEGEN only trained on the few available samples proposes a better estimation of µ term. A deeper analysis would be welcome and is the subject of future work. bpt, X t q 7.28e-02 1.32e-01 1.34e-01 σpt, X t q 5.13e-03 9.56e-03 9.56e-03 10 bpt, X t q 1.11e-01 2.60e-01 2.56e-01 σpt, X t q 2.66e-02 4.65e-02 4.67e-02 20 bpt, X t q 1.68e-01 4.80e-02 4.72e-02 σpt, X t q 4.02e-02 5.83e-01 5.84e-01

Experiment D -Real Data and Additional Benchmarks (Exp. D)

Table 4.9 reports discriminative and predictive scores for EWGAN, the conditional recurrent RCGAN [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF] and an unconditional MMD with Gaussian kernel GMMN [START_REF] Li | Generative moment matching networks[END_REF] on the real data sets. The results are to be compared with Table 4.4. The deep Euler scheme alone is not enough to provides faithful time series, but seems much more efficient than the other proposals. RCGAN benefits of a recurrent network architecture, and GMMN of a specific distributional objective function, none of them is able to reach close performances of CEGEN, COTGAN or TSGAN.

Algorithms Details

Pseudo-algorithms of both Euler GANS are detailed in Alg.2 (EWGAN) and Alg.3 (EDGAN). We also explain more deeply the conditional loss computation, as well as some tested variants.

Algorithm 2 Euler Wasserstein-1 Generative Adversarial Networks (EWGAN).

Input: θ 0 , ϕ 0 randomly chosen, α, β, learning rates, m batch size, n critic critic iterations, X " pX t 0 , . . . , X t N q real data Output: θ, ϕ θ Ð θ 0 , ϕ Ð ϕ 0 while NOT CONVERGE do for j P t1, . . . , n critic u do x Ð m samples from X z Ð m samples from i.i.d. Gaussian noise y θ Ð m generations from g θ pzq and Euler scheme ϕ Ð ϕ `αAdam `∇ϕ pErd ϕ pxqs ´Erd ϕ py θ qsq, α φ Ð gradient penalty pϕ, 10q end for x Ð m samples with X z Ð m samples i.i.d. Gaussian noise y θ Ð m generations from g θ pzq and Euler scheme θ Ð θ ´βAdam `∇θ Erd ϕ py θ qs, β ȇnd while For given loss (Bures-Wasserstein (4.4.2) in the paper), we compute the conditional loss by extracting the elements at a certain date such that the previous state belongs to an ensemble I. We propose below two ways to do it. The first approach consists in sorting each dimension k P t1, . . . , du at each time step t i P T in order to get J quantiles pa k j q jPt1,...,Ju for both X t i and Y t i . At date t i P T and for each dimension k P t1, . . . , du, LpX t i`1 | X t i P Iq is approximated by selecting only the realizations x k t i`1 such that the previous state x k t i belongs to the interval I k j " ra k j , a k j`1 s. The losses k k between the two conditional distributions are then summed up over all dimensions and subdivisions. To take into account the disjoint support case (for instance samples x k t i P r´1, 0r and y k t i Ps0, 1s), we penalize by the distance separating the supports. See Algorithm 4 for further details. Another approach is to compute the partitions of SupppX t q before the generator training phase. We use T Kmeans to compute the centers of J clusters at each time step. Then, during the generator training we compute the loss between X t i`1 and Y t i`1 such that their respective previous states belong to the same cluster j. This method has the advantage that the generated samples share the same support as the real data one.

We use the conditional loss by disjoint quantiles in our experiments, because the

Algorithm 3 Euler Dual Generative Adversarial Networks (EDGAN).

Input: θ 0 , ϕ 0 randomly chosen, α, β, γ learning rates, m batch size, n critic critic iterations, X " pX t 0 , . . . , X Input: processes of length T X " pX 1 , . . . , X D q, Y " pY 1 , . . . , Y D q, λ for t " 0...T ´1 do for d " 0...D do

I d K,x Ð K subdivisions of SupppX d t q; I d K,y Ð K subdivisions of SupppY d t q; for k " 0...K do if SupppX d t qY SupppY d t q ‰ H then d t`1,k Ð W 2 2 pLpXt`1|X d t P I d K,x q, LpYt`1|Y
ř D d"1 ř K k"1 d t`1,k
Output:

Models and Hyperparameters

We use Tensorflow to implement neural networks. The network architecture is composed of 3-layers of 4 times the data dimension neurons each (for d " 6 there are 4ˆ6=24 neurons). Networks of Euler generators are feed-forward, TSGAN and COTGAN benefit of recurrent networks (GRU, LSTM). Code of TSGAN is available online as well as the code of COTGAN. Other details are precised in Table 7.10. Real data sets are normalized with MinMax scaler ((x -min)/(max -min)) and the first date always starts at X 0 " 0.2. To compute the discriminative and predictive scores, we use the same network architecture and parameters as [START_REF] Yoon | Time-series generative adversarial networks[END_REF] (actually we use their code). The neural networks are 2-layer LSTMs with hidden dimensions 4 times the size of the input features, and use tanh as the activation function and sigmoid as the output layer activation function (such that output belongs to [0,1]).

Settings of neural networks

The training is done on 12 i7-9750H processors at 2.60 GHz. Table 4.12 reports the number of observations of each dataset, the sequence length chosen in our experiments, as well as their dimension. All data sets are freely available online, and can be downloaded from: Réseau de Transport d'Électricité (RTE) for Electric Load and Price, Keras for Jena climate The description of Stocks and the download link are provided in [START_REF] Yoon | Time-series generative adversarial networks[END_REF] . *For Electric Load and Jena Climate we take only the first 50000 observations.

Results Variation

Introduction

Whether for pricing, stress testing or risk measurement, utilities make an intensive use of time series simulations. Regarding prices, most of the literature focuses on the design of stochastic models among which one can cite Schwartz, Schwartz and Smith. We refer to Deschatre, Féron, and Gruet for a complete survey of such commodity stochastic models. These models are costly to design and once we have a model, the painful task of its calibration need to be addressed. Moreover, a model cannot be updated quickly when market conditions change, as the task require a profound expertise.

Other arguments advocate even more for a change in the way commodity prices are simulated. The number of time series that need to be simulated jointly increase with the emergence of renewable energies and new markets, making the model design more complex. The need of joint simulation of prices and volume arise with the conjunction of new methods for stochastic control able to handle a large class of models [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. Recent successive crisis (sanitary, Texan, Russian), where consequences are especially observed on commodity prices, advocates also for the fast adaptation of models to new market conditions.

The rise of deep generative methods for images [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Kingma | Auto-encoding variational bayes[END_REF] allows to hope for purely data-driven time series simulators, designed to be more flexible and realistic. Compared to probabilistic models, these deep generative approaches can also tackle high dimension problems. The literature on deep generative methods for time series has particularly benefited from the GAN community. Dedicated neural network architectures capturing temporal dependencies were first proposed [START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF][START_REF] Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Clark | Adversarial video generation on complex datasets[END_REF][START_REF] Wiese | Quant gans: Deep generation of financial time series[END_REF] To help the generator capturing temporal dependencies or conditional distributions, some other proposals embed the series in a latent space. Yoon, Jarrett, and van der Schaar propose to transform the time series in a supervised manner on a lower dimensional space on which a GAN is applied. This method lies in particular on the simultaneously training of the GAN and the latent space and necessitates five neural networks. Ni et al. use a theoretically grounded embedding based on the signature to extract significant features of the trajectories, avoiding the need of learning the representation of the series. Methods based on SDE formulation of the sequences have also been introduced to help the generator [START_REF] Kidger | Neural sdes as infinitedimensional gans[END_REF][START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF]. Another method consists in designing objective functions to be optimized which take into account the temporal structure, such as conditional distribution between time steps [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF].

Some attempts towards the application of generative methods to time series involved in commodity markets has already been proposed. GANs can help operation and planning of power systems and produce synthetic power generations [START_REF] Chen | Model-free renewable scenario generation using generative adversarial networks[END_REF][START_REF] Qiao | Renewable scenario generation using controllable generative adversarial networks with transparent latent space[END_REF]. In particular, Chen, Wang, Kirschen, and Zhang conditioned the generator on weather events, such as high wind day or intense ramp events, and on period of the year.

We propose to test out state-of-the-art methods and adapt these frameworks to commodity markets (electricity, gas, coal and fuel). Moreover, in order to provide an operational metric, we propose to (deep) hedge commodity options. Contributions -four state-of-the-art deep generative methods and some evaluation metrics for time series generation are described, -a thorough comparison of the deep generative models is proposed on commodity price datasets, -an application on deep hedging provides exploratory works to combine deep generators with new hedging approaches.

Generative Methods for Time Series

Deep Generative Models

Time Series GAN (TSGAN) [START_REF] Yoon | Time-series generative adversarial networks[END_REF] stands out by its specific training combining both supervised and unsupervised approaches. An embedding space is jointly learned with a GAN model to better capture the temporal dynamics. The generator thus produces sequences on a latent representation which are then reconstructed on the initial data space. By optimizing with both supervised and adversarial objectives, the model takes advantage of the efficiency of GANs with a controllable learning approach.

Causal Optimal Transport GAN (COTGAN) [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF] is an adversarial generator adapting the adapted Wasserstein distance to continuous time processes [START_REF] Backhoff-Veraguas | Adapted wasserstein distances and stability in mathematical finance[END_REF]. The model extends the regularized approach of the Wasserstein distance [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF] to Causal Optimal Transport by adding a penalization on the traditional cost function. The discriminant networks learns to penalize anticipating transports and then ensures the temporal causality constraint. This model is theoretical sound, easy to implement and demonstrates less bias in learning than other GANs [START_REF] Yoon | Time-series generative adversarial networks[END_REF][START_REF] Donahue | Adversarial audio synthesis[END_REF] Signature GAN (SIGGAN) [START_REF] Ni | Conditional sig-wasserstein gans for time series generation[END_REF] combines a novel conditional Auto-Regressive Feedforward Neural Network (AR-FNN) for the generator with signature embedding. AR-FNN is a dedicated network architecture to learn auto-regressive structure of the sequence and maps past real time series and noise into future synthetic values. Signature [START_REF] Chevyrev | A primer on the signature method in machine learning[END_REF] is a theoretically grounded representation of series which characterize uniquely any continuous functions by extracting path features. Unlike classical Wasserstein GAN [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF], in this approach there are no needs to optimizing the discriminator, as conditional signature loss is used as critic.

Conditional loss Euler Generator (CEGEN) [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF] relies on a SDE representation of the time series and minimizes a conditional distance between transition distributions of the real and generated sequences. The stochastic process formulation helps the generator to build the series, while the conditional loss ensures the fidelity of the generations. The authors provide theoretical bounds error on the estimation of Itô processes. Contrarily to the three other generators, CEGEN does not rely on a GAN framework and requires the training of one single neural network.

For each model, we retake the exact settings of the original paper, excepting the number of units and hidden layers set at 16 and 3 respectively for fairness. The number of iterations is 10.000 for a batch size of 300. We use Adam as optimizer with learning rate set at 0.001.

Metrics Description

One well-known challenge in the deep generation community is the lack of efficient evaluation metrics [START_REF] Wang | Generative adversarial networks in computer vision: A survey and taxonomy[END_REF]. The temporal dependencies increases the difficulty of the analysis [START_REF] Eckerli | Generative adversarial networks in finance: an overview[END_REF][START_REF] Gao | Generative adversarial networks for spatio-temporal data: A survey[END_REF][START_REF] Eckerli | Generative adversarial networks in finance: an overview[END_REF]. However, one can provide a set of metrics to better characterizes specific features of the generations. As done in [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF], we consider the following metrics:

-Marginal based metrics includes classical statistics (mean, 95% and 5% percentiles denoted respectively avg, q95, q05). We compute the Relative Mean Squared Error (rMSE, detailed in the following) over time of these statistics. generations. These metrics ensure that the distribution is accurate and quantify the quality of the overall time series envelop.

-The temporal dependencies are measure with the rMSE between quadratic variations (QVar) of the real and synthetic time series. The QVar is computed as follow: QVarppX t q tě0 q " ř t |X t`1 ´Xt | 2). -Correlation structure Corr is evaluated with the time average MSE between the terms of the covariance matrices of synthetic and reference sequences. -Predictive score characterizes the usefulness of the generations in a regression task. A LSTM network is trained on the synthetic data to predict the next values of a sequence. Then, the model is evaluated on real time series with mean squared error (MSE). The lower, the better, as faithful generated sequences mean that the LSTM is properly trained and provides a low prediction error. -Discriminative score focuses on the fidelity of the generator outputs. We train a LSTM to distinguish between synthetic and real time series in a classical supervised classification. The accuracy of the LSTM provides the discriminative score. The lower, the better, the classifier being unable to discern between real and fake sequences. Contrarily of [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF], we use Relative Mean Squared Error instead of the Mean Squared Error (MSE). If x denotes the target value and y the predicted one, then rMSE is defined as rMSEpx, yq "

1 n ř n i"1 px ´yq 2 ř n i"1 y 2 .
rMSE is a MSE normalized by the mean squared value where each residual is scaled against the actual value. While MSE is restricted by the scale of original measurements, rMSE can be used to compare different measurement techniques. The error is expressed in a percentage form.

Numerical Experiments

Joint Simulation of Forwards

We consider prices of 3 Month Ahead (3MAH) french electricity market, European coal, gas and fuel market forward prices from Jan, 1st 2010 to Jan 1st 2022. We generate a sequence of 30 successive dates. Thus, deep generators have to produce 4-dimensional sequences. The testing set is a randomly fixed set of 1000 historical trajectories. Commodity market prices are characterized by the presence of jumps. Those are difficult to be reproduced by the generators. In order to facilitate the training, a filter is operated on the data as pre-processing. Prices values greater than the 95% quantile are capped by the quantile value. By doing so, the trends of the original time series are preserved while avoiding extreme values.

Table 5.1 reports the performances on the four generators. As benchmark, we also provides the results obtained by a 4-dimensional Black-Scholes (BS) [START_REF] Black | The pricing of options and corporate liabilites[END_REF] process calibrated on the historical dataset. CEGEN and COTGAN appear to produce the more faithful time series. The time marginals are well estimated by CEGEN, without any high error value, emphasis that the global envelop is well respected. On the temporal aspects, SIGGAN and COTGAN provide consistent QVar depending on the considered dimension. Despite the low rMSE, CEGEN struggles with the Oil price temporal dependencies. As the SDE formulation is imposed on the generator, this result may express that Oil price dynamic may be not characterized with an Itô process. These three generators manage to properly capture the average correlation between electricity, gas, oil and coal. Discriminative scores are quit deceiving for every generators expecting CE-GEN. As designed, the score is bounded between 0 and 50%, so the performances of SIGGAN and TSGAN indicate than the classifier is able to distinguish accurately historical prices to synthetic ones almost systematically. Only CEGEN manages to provide faithful generations on this metric. Concerning the predictive score, the results between each generator are close, favoring COTGAN. The evaluation of the calibrated BS highlights that probabilistic models can be effective to model such time series. However, on the temporal dynamics the BS simulations seem not adapted. Even if jumps have been pre-treated, more adapted processes (such as Lévy) could prevent the high QVar values.

At this step, CEGEN seems to stand out. However, it is not clear whereas these generators are good enough to be applied in an operational way. In the next couple of sections we go beyond statistical metrics and we propose financial and operational metrics on a practical application.

Hedging Related Tests

Synthetic time series may be used in the evaluation of risks, portfolio structuring and last but not least in the derivatives pricing and the design of associated hedging strategy. In the latter use case, a same model with two different calibrations may lead to two different pricing and hedging policies. In this section, we use samples from the previously tested generators to (deep) hedge an option on commodity derivatives. By comparing the replication errors on the basis of historical data, this test allows us to go beyond the statistics of the previous section by comparing the different generators on an operational problem.

Deep Hedging

We consider learning models to hedge options as done in [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. A self-financing strategy is a d-dimensional pF t q-adapted process pα t q tPr0,T s on some probability space pΩ, F, Pq, where T is the terminal date. We are given some market prices S " pS t i q t i PT valued on R and observed on a discrete time grid T :" t0 " t 0 ă t 1 ă ... ă t N " T u, where S t 0 is the spot. For the sake of simplicity, we assume a regular time grid with mesh size ∆t " t i`1 ´ti .

The hedging model of parameter θ is given successive time steps t i and commodity prices S t i as inputs, and has to output a control α θ pt i , S t i q. The terminal value of the Table 5.1 -Evaluation metrics on joint simulation of electricity, natural gas, coal and oil 3 months forward prices. For all metrics, the lower, the better. portfolio at time t N " T is denoted X T and defined as:

X T,θ " p θ `N´1 ÿ i"0 α θ pt i , S t i qpS t i`1 ´St i q,
where the premium p θ is a variable to be learned. We give ourselves the opportunity to re-balance the portfolio every day. There are no controls to optimize at the last date. We favor a global approach due to its ease of use (others are reviewed in Germain, Pham, and Warin). The hedging problem leads to the following optimization problem:

min θ Er pX T,θ ´gpS T qqs,
where the function indicates the loss, quadratic in our tests, and gp.q the payoff. The model considered is approximated by a feed-forward neural network call deep hedger, and has to learn the optimal controls which minimise a hedging risk at the terminal value T . The network consist in 3 hidden layers of 10 units each with relu activation. We use Adam optimizer with learning rate 0.001. The number of iterations is 10.000 and batch size is 300. We consider as many deep hedger as deep generators, each model being trained on the simulations of one deep generator. At the end, we obtain four different hedging policies that we test them on unobserved price time series from the historical datasets. We propose also a classical Black-Scholes hedging as benchmark. To evaluate the accuracy of the generators, we compare the replication error of the hedged portfolio.

Option Hedging With Deep Generative Methods

We train the deep hedgers on synthetic data produced by the generative methods listed out in Section 5.2. New generations are computed each training iteration, and the test set consists in a fixed set of 750 sequences of the actual historical prices. Then, faithful generated time series should inherit the hedging policy of the original prices. In particular, we do not except a gap between the replication losses obtained from synthetic and real prices. We propose to deep hedge on a daily basis a call option gpS T q " pS T ´Kq `with T " 30{365, where the strike K equals the spot. The spot for electricity is S 0 " 10.34, for gas S 0 " 42.41, for coal S 0 " 52.76 and for fuel S 0 " 370.49.

Table 5.2 reports the replication errors of deep hedgers back-tested on unobserved historical prices. Initial risk indicates ErpgpS T qq 2 s the risk of the payoff without hedging. The deep hedging policies bring improvements on the every options compared to the initial risk and the BS model. The policy learned with CEGEN samples provides a significant lower replication loss than every other methods. On the oil case however, the very specific case where CEGEN did not manage to get correct QVar (Table 5.1), the replication loss is significantly higher (and close to BS). COTGAN, SIGGAN and TSGAN have close results, improving against BS. In particular, COTGAN does not stand out despite the good performances from Table 5 We propose to go further by analysing the different policies. Samples of controls from each models on a single historical price trajectory are illustrated in Figure 5.1. The controls of CEGEN and SIGGAN are very reactive to the price, and propose similar policy on each option. COTGAN as for it provides low volatility controls on electricity and gas data, in the opposite on oil and fuel the deep hedger seem to follow the price of the commodity. Such instability may question the validity of the policy, and would need further analysis. In all cases, TSGAN and BS controls are relatively consistent and appear to be unaffected by the price, buying the same amount of asset over time during the period.

Conclusion

A comparison between state-of-the-art deep generative method is proposed on energy market applications. First, we evaluate the accuracy of the generations on energy commodity prices. Then, we introduced a study evaluating the usefulness of these generator in a risk hedging task. Deep hedgers are trained on synthetic data produced by the deep generators for option pricing. Deep generative methods outperform classical pricing methods, the hedging performance aligns very closely with the generation fidelity.

Abstract

In this part, we present some machine learning approaches for designing robust investment or risk hedging strategies. Many economic or financial problems can be formulated in a reinforcement learning setting, however these algorithms do not seem to be widely used in the field. For instance, no studies were available to highlight the links between them.

In the chapter 6, we provide a comprehensive survey of reinforcement learning methods applied in economics and finance. We highlight that the reinforcement approach has been present in the economic literature for a long time, without however clearly establishing its links with reinforcement learning. These algorithms can be used to describe and solve many classical problems in economics, and recent advances in computational power let's hope promising results.

In the chapter 7, we address the issues that a portfolio manager would have in choosing between several investment strategies. We provide thirteen machine learning-based models to forecast monthly asset returns, which are used to design a long-short strategy. We then consider expert aggregation to build a theoretically sound mixture of these strategies. This allows us to take advantage of each model and avoid the risk of having bet on a wrong portfolio.

In the final chapter 8, we introduce a model that solves a family of PDEs with a single training, and is able to generalize with a unknown models during training. A variant of the universal approximation theorem for operators is considered, and we use it for risk hedging problems. Finally, a fully data-driven approach for risk management is described and tested. We propose a complete unsupervised learning chain, from joint generation of historical prices to training a hedging model. The generator includes many explanatory variables correlated to commodity prices and provides synthetic time series. These feed a deep hedging operator solving a multiple PDEs, describing a stochastic control problem for different spot prices according to their locations.

Chapter 6

Reinforcement Learning in Economics and Finance

This chapter is based on the publication Computational Economics, 2021.

Introduction

An Historical Overview

Reinforcement learning is related to the study of how agents, animals, autonomous robots use experience to adapt their behavior in order to maximize some rewards. It differs from other types of learning (such as unsupervized or supervised) since the learning follows from feedback and experience (and not from some fixed training sample of data). Thorndike [START_REF] Thorndike | Animal Intelligence[END_REF] or Skinner [START_REF] Skinner | The behavior of organisms: An experimental analysis[END_REF] used reinforcement learning in the context of behavioral psychology, ethology and biology. For instance, Thorndike [START_REF] Thorndike | Animal Intelligence[END_REF] studied learning behavior in cats, with some popular experiences, using some 'puzzle box' that can be opened (from the inside) via various mechanisms (with latches and strings) to obtain some food that was outside the box. Edward Thorndike observed that cats usually began experimenting -by pressing levers, pulling cords, pawing, etc. -to escape, and over time, cats will learn how particular actions, repeated in a given order, could lead to the outcome (here some food). To be more specific, it was necessary for cats to explore alternative actions in order to escape the puzzle box. Over time, cats did explore less, and start to exploit experience, and repeat successful actions to escape faster. And the cat needed enough time to explore all techniques, since some could possibly lead more quickly -or with less effort -to the escape. Thorndike [START_REF] Thorndike | Animal Intelligence[END_REF] proved that there was a balance between exploration and exploitation. This issue could remind us of the simulated annealing in optimization, where a classical optimization routine is pursued, and we allow to move randomly to another point (which would be the exploration part) and start over (the exploitation part). Such a procedure reinforces the chances of converging towards a global optimum, instead of converging to a more local one.

Another issue was that a multi-action sequence was necessary to escape, and therefore, when the cat was able to escape at the first time it was difficult to assign which action actually caused the escape. An action taken at the beginning (such as pulling a string) might have an impact some time later, after other actions are performed. This is usually called a credit assignment problem, as in [START_REF] Minsky | Steps toward artificial intelligence[END_REF]. Skinner [START_REF] Skinner | The behavior of organisms: An experimental analysis[END_REF] refined the puzzle box experiment, and introduced the concept of operant conditioning (see Jenkins [START_REF] Jenkins | Animal learning and behavior theory[END_REF] or Garcia [START_REF] Garcia | The nature of learning explanations[END_REF] for an overview). The idea was to modify a part, such as a lever, such that at some points in time pressing the lever will provide a positive reward (such as food) or a negative one (i.e. a punishment, such as electric shocks). The goal of those experiments was to understand how past voluntary actions modify future ones. Those experiments were performed on rats, and no longer cats. Tolman [START_REF] Tolman | Cognitive maps in rats and men[END_REF] used similar experiments (including also mazes) to prove that the classical approach, based on chaining of stimulus-responses, was maybe not the good one to model animal (and men) behaviors. A pure stimulus-responses learning could not be used by rats to escape a maze, when experimenters start to block roads with obstacles. He introduced the idea of cognitive maps of the maze that allow for more flexibility. All those techniques could be related to the ones used in reinforcement learning.

Reinforcement learning is about understanding how agents might learn to make optimal decisions through repeated experience, as discussed in Sutton and Barto [START_REF] Sutton | Toward a modern theory of adaptive networks: Expectation and prediction[END_REF]. More formally, agents (animals, humans or machines) strive to maximize some long-term reward, that is the cumulated discounted sum of future rewards, as in classical economic models. Even if animals can be seen as have a short-term horizon, they do understand that a punishment followed by a large reward can be better than two small rewards, as explained in Rescorla [START_REF] Rescorla | Aspects of the reinforcer learned in second-order Pavlovian conditioning[END_REF], that introduced the concept of second-order conditioning. A technical assumption, that could be seen as relevant in many human and animal behaviors, is that the dynamics satisfies some Markov property, and in this article we will focus only on Markov decision processes. Reinforcement learning is about solving the credit assignment problem by matching actions, states of the world and rewards.

As we will see in the next section, formally, at time t, the agent at state of the world s t P S makes an action a t P A, obtains a reward r t P R and the state of the world becomes s t`1 P S. A policy is a mapping from S to A, and the goal is to learn from past data (past actions, past rewards) how to find an optimal policy. A popular application of reinforcement learning algorithms is in games, such as playing chess or Go, as discussed in Silver et al. [START_REF] Silver | A general reinforcement learning algorithm that masters chess, shogi, and go through self-play[END_REF], or Igami [START_REF] Igami | Artificial intelligence as structural estimation: Economic interpretations of deep blue, bonanza, and alphago[END_REF] which provides economic interpretation of several algorithms used on games (Deep Blue for chess or AlphaGo for Go) based on structural estimation and machine (reinforcement) learning. More simply, Russell and Norvig [START_REF] Russell | Artificial Intelligence: A Modern Approach, 3rd Edition[END_REF] introduced a grid world to explain heuristics about reinforcement learning, see Figure 6.1. Positions on the 4 ˆ3 grid are the states S, and actions A are movements allowed. The optimal policy π : S Ñ A is here computed using sequential machine learning techniques that we will describe in this article.

From Machine to Reinforcement Learning

Supervised Machine Learning techniques is a static problem: given a dataset D n " tpy i , x i qu, the goal is to learn a mapping p m n between x and y. In decision theory p m n typically takes values in a binary space, which could be to accept or reject a mortgage in Figure 6.1 -Sequential decision making problem on a 4 ˆ3 grid (S states), from Russell and Norvig [START_REF] Russell | Artificial Intelligence: A Modern Approach, 3rd Edition[END_REF]. The agent starts at the state (A,1), and moves around the environment, trying to reach terminal state (D,3) to get a +1 reward -and to avoid terminal state (D,2) where a -1 reward (punishment) is given. Possible actions (A) are given on the top-right figure. On the bottom, two policies are given with π : S Ñ A on the left, and π : S Ñ A Ă A on the right. In the later case, there can be random selection of actions in some states, for instance πp(A,1)q P tup, rightu.

credit risk models, or to invest or not in some specific asset. p m n can also take values in the real line, and denote an amount of money to save, a quantity to purchase or a price to ask. Online learning is based on the assumption that py i , x i q arrive in a sequential order, and the focus is on the evolution of p m n as n growth, updating the training dataset from D n´1 to D n . Reinforcement learning incorporates the idea that at time n ´1, a choice was made, that will influence py n , x n q, and the standard i.i.d. assumption of the dataset is no longer valid. Reinforcement learning is related to sequential decision making and control.

Consider an online shop, where the retailer tries to maximize profit by sequentially suggesting products to consumers. Consumers are characterized by some features, such as their age, or their gender, as well as information about what's in their shopping cart. The consumer and the shop will have sequential interactions. Each round, the consumer can either add a product to the shopping cart, or not buy a product and continue shopping, or finally stop shopping and check out. Those transitions are characterized by transition probabilities, function of past states and actions. Such transition probability function is unknown and must be learned by the shop. Should the retailer display the most profitable products, exploiting information he obtained previously, or explore actions, that could be less profitable, but might provide relevant information ?

The induced problems are related to the fact that acting has consequences, possibly delayed. It is about learning to sacrifice small immediate rewards in order to gain larger long-term ones. If standard Machine Learning is about learning from given data, reinforcement learning is about active experimentation. Actions can be seen as an intervention, so there are strong connections between reinforcement learning and causality modeling. Reinforcement learning allows us to infer consequences of interventions (or actions) used in the past. [START_REF] Pearl | The seven tools of causal inference, with reflections on machine learning[END_REF] asked the simple economic question 'what will happen if we double the price' (of an item we try to sell)? 'Such questions cannot be answered from sales data alone, because they involve a change in customers behaviour, in reaction to the new pricing'. Reinforcement learning is related to such problem: inferring the impact of interventions. And the fact that intervention will impact the environment, mentioned by [START_REF] Pearl | The seven tools of causal inference, with reflections on machine learning[END_REF], is precisely what reinforcement learning is about. So this theory, central in decision science will appear naturally in sequential experimentation, optimization, decision theory, game theory, auction design, etc. As we will see in the article (and as already mentioned in the previous section), models in sequential decision making as long history in economics, even if rarely mentioned in the computational science literature. Most of the articles published in economic journal mentioned that such problems were computationally difficult to solve. Nevertheless, we will try to show that recent advances are extremely promising, and it is now to possible to model more and more complex economic problems.

Agenda

In section 6.2, we will explain connections between reinforcement learning and various related topics. We will start with machine learning principles, defining standard tools that will be extended later one (with the loss function, the risk of an estimator and regret minimization), in section 6.2.1. In section 6.2.2, we introduce dynamical problems with online learning, where we exploit past information sequentially. In section 6.2.3, we present briefly the multi-armed bandit problem, where choices are made, at each period of time, and those have consequences on the information we obtain. And finally, in section 6.2.4 we start formalizing reinforcement learning models, and give a general framework. In those sections, we mainly explain the connections between various learning terms used in the literature.

Then, we present various problems tackled in the literature, in section 6.3. We will start with some general mathematical properties, giving various interpretations of the optimization problem, in section 6.3.1. Finally, we will conclude, in section 6.3.4, with a presentation of a classical related problem, called inverse reinforcement learning, where we try to use observed decisions in order to infer various quantities, such as the reward or the policy function.

Finally, three sections are presenting applications of reinforcement learning. In section 6.4.1, we discuss applications in economic modeling, starting with the classical consumption and income dynamics, which is a classical optimal control problem in economics. We then discuss bounded rationality and strong connections with reinforcement learning. Then we will see, starting from Jovanovic [START_REF] Jovanovic | Selection and the evolution of industry[END_REF], that reinforcement learning can be used to model single firm dynamics. And finally, we present connections with adaptative design for experiments, inspired by Weber [START_REF] Weber | On the gittins index for multiarmed bandits[END_REF] (and multi-armed bandits).

In section 6.4.2, we discuss applications of reinforcement learning in operation research, such as the traveling salesman, where the standard dilemma exploration/exploitation can be used to converge faster to (near) optimal solutions. Then we discuss stochastic games and equilibrium, as well as mean-field games, and auctions and real-time bidding. Finally, we will extend the single firm approach of the previous section to the case of oligopoly and dynamic games.

Finally, in section 6.4.3, we detail applications in finance. We start with risk management, valuation and hedging of financial derivatives problems on then focus on portfolio allocation issues. At last, we present a very natural framework for such algorithms: market impact and market making.

From Machine to Reinforcement Learning

Machine learning methods generally make decision based on known properties learned from the training data, using many principles and tools from statistics. Most learning problems could be seen as an optimization of a cost: minimizing a loss or maximizing a reward. However, machine learning models aspire to find generalized predictive pattern, learning algorithms seek to optimize a criterion (loss, reward, regret) on training and unseen samples.

Machine Learning principles

Machine learning has so many branches (supervised vs unsupervised learning, online or not,...) that it is not always easy to identify the label associated to a given real world problem. Therefore, seeing machine learning as a set of data and an optimization criterion is often helpful. To introduce Reinforcement Learning (RL), we propose here a regret approach, which ties machine learning, online aggregation, bandits and, more generally, reinforcement learning.

In order to introduce most of machine learning terminology and schemes, we detail a class of models: supervised learning. In this class of models, one variable is the variable of interest, denoted y and usually called the endogeneous variable in econometrics. To do so, consider some learning sample D n " tpx 1 , y 1 q, ..., px n , y n qu seen as realizations of n i.i.d. random variables pY, Xq. We wish to map the dataset D n into a model from the (supposed) statistical relations between x i and y i that are relevant to a task. Note that in the context of sequential data we will prefer the generic notation py t , x t q.

The goal, when learning, is to find a function f P F from the input space X into the action space A: f : X Þ Ñ A optimizing an objective function. Thus, f px|D n q is the action at some point x. An action could be a prediction (for example what temperature will it be tomorrow? Is there a cat on this image?) or a decision (a chess move, go move...). Note that in a standard regression problem A is the same as Y, but not necessarily in a classification problem: in a logistic regression, Y " t0, 1u but actions can be probabilities A P r0, 1s.

The decision function f is all the better as its actions f pxq are good when confronted to the unseen corresponding output y from Y. The loss function (or cost) measures the relevance of these actions when f pxq is taken and y has occurred: :

A ˆY Þ Ñ R `.
The risk is the expectation of the loss:

Rpf q " E " pf pXq, Y q ‰ .
Thus formalized, the learning is seen as an optimization problem. We wish to find a function f ˚P F which minimizes the cost:

Rpf ˚q " inf f PF tRpf qu .
If such a function f ˚exists and is unique it is called oracle or target.

In most applications we do not know the distribution of the data. However, given a training set D n " tpx 1 , y 1 q, . . . , px n , y n qu, we use the empirical distribution of the training data and define p R n pf q " 1 n

n ÿ i"1
pf px i q, y i q.

Thus, we minimize this empirical risk while trying to avoid over-fitting and keeping in mind that the real objective is to minimize Rpf q, i.e. the average loss computed on any additional observations. The main difficulty is that the target function is only defined at the training points. One way to evaluate the learning performance is to compute regret. Regret is defined as the difference between the actual risk, and the optimal oracle risk,

R " Rpf q ´Rpf ˚q " Rpf q ´inf f PF tRpf qu " E " pf pXq, Y q ‰ ´E" pf ˚pX q, Y q ‰ .
In supervised learning, we prefer the name of excess risk, or excess loss. This notion of regret is particularly relevant in sequential learning, where your action at t depends on previous ones on t ´1, t ´2, In online (or sequential) learning, the regret is measured by the cumulative loss it suffers along its run on a sequence of examples. We could see it as the excess loss for not consistently predicting with the optimal model.

R T " 1 T T ÿ t"1 pf t px t q, y t q ´inf f PF # 1 T T ÿ t"1 pf px t q, y t q + ,
where the first term is the estimation error between the target and the prediction, the second is the approximation error. Bandits and Reinforcement Learning deal with maximizing a reward, instead of minimizing a loss. Thus, we can re-write regret as the difference between the reward that could have been achieved and what was actually achieved according to a sequence of actions

R T " max a # 1 T T ÿ t"1 rpaq + ´1 T T ÿ t"1 rpa t q
Thus, minimizing a loss or maximizing a reward is the same optimization problem as minimizing the regret, as defined in [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF].

For instance, in the ordinary least squares regression, A " Y " R, and we use the squared loss: : pa, yq Þ Ñ pa ´yq 2 . In that case, the mean squared risk is Rpf q " E " pf pXq ´Y q 2 ‰ while the target is f ˚pX q " E rY |Xs. In the case of classification, where y is a variable in K categories, A can be a selection of a class, so A " Y " t1, . . . , Ku. The classical loss in that case is the missclassification dummy loss pa, yq " 1 a‰y , and the associated risk is the misspecification probability, Rpf q " E " 1 f pXq‰Y ‰ " Ppf pXq ‰ Y q, while the target: is f ˚pX q " argmax 1ďkďK tPpY " k|Xqu.

To go further, [START_REF] Mullainathan | Machine learning: An applied econometric approach[END_REF], [START_REF] Charpentier | Econometrics and machine learning[END_REF] or [START_REF] Athey | Machine learning methods that economists should know about[END_REF] recently discussed connections between econometrics and machine learning, and possible applications of machine learning techniques in econometrics.

Online learning

In classical (or batch) learning described previously, we want to build an estimator p f from D n " tpx i , y i qu such as the regret ErRp p f qs ´inf f PF tRpf qu is as small as possible. However, in the online learning framework, we get the data through a sequential process and the training set is changing at each iteration. Here, observations are not i.i.d, and not necessarily random.

Following [START_REF] Bottou | Online algorithms and stochastic approximations[END_REF], assume that data become available at a sequential order, and the goal is to update our previous predictor with the new observation. To emphasize the dynamic procedure, let t denote the number of available observations (instead of n, in order to emphasize the sequential aspect of the problem). Formally, from our samples D t " tpy 1 , x 1 q, ¨¨¨, py t , x t qu we can derive a model f px|D t q, denoted f t . The goal in online learning is to compute an update f t`1 of f t using the new observation py t`1 , x t`1 q.

At step t, the learner gets x t P X and predicts p y t P Y, exploiting past information D t´1 . Then, the real observation y t is revealed and generates a loss pp y t , y t q. Thus, p y t is a function of px t , px i , y i q i"1...t´1 q.

Consider the case of forecasting with expert advice: expert aggregation. Assume here, as before, a sequential model. We want to predict element by element a sequence of observations y 1 , . . . , y T . At each step t, K experts provide their forecasts p y 1,t , . . . , p y K,t for the next outcome y t . Quite naturally, it is possible to build a linear combination (or a weighted average) of those models

p y t " K ÿ k"1 ω k,t p y k,t
A natural question is the optimal choice of the weights ω k,t . The aggregation weights expert's prediction p y k,t according to a rule in order to build its own forecast p y t . The weighting process is online: each instant t, the rule adapts the weights to the past observations and the accuracy of their respective experts, measured by the loss function for each expert py t , p y k,t q. Here, the oracle (or target) is the optimal expert aggregation rule. The prediction p y ˚use best possible weight combination by minimizing the loss. The empirical regret of the aggregation rule f is defined by:

R T " 1 T T ÿ t"1 pp y t , y t q ´inf ωPΩ # 1 T T ÿ t"1 pp y t , y t q +
where the first term is the estimation error between the target and the prediction, and the second is the approximation error.

There exist several rules for aggregation, the most popular one is probably the Bernstein Online Aggregation (BOA) [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF], described in Algorithm 5, which is optimal with bounded iid setting for the mean squared loss.

Algorithm 5 Bernstein Online Aggregator (BOA).

Data: Learning rate γ Result: Sequence ω k,t ą 0 for k " 1..K and t " 0..T Initialization: ω k,0 Ð uniform weights (e.g. 1{K)

for t P t1, 2, . . . , nu do k,t Ð py t , p y k,t´1 q ´Ew t´1 r py t , p y k,t´1 qs

ω k,t Ð exp p´γ k,t p1 `γq k,t qq ω k,t´1 E w t´1 rexp p´γ k,t p1 `γ k,t

qqs end

This technique, also called ensemble prediction, based on aggregation of predictive models, gives an easy way to improve forecasting by using expert forecasts directly. In the context of energy markets, [START_REF] O'neill | Residential demand response using reinforcement learning[END_REF] shows that a model based on aggregation of simple ones can reduce residential energy cost and smooths energy usage. [START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF] forecasts electricity consumption using different aggregation rules with specialized experts, and proposes ideas to improve the online mix by varying expert training. [START_REF] Levina | Dynamic pricing with online learning and strategic consumers: An application of the aggregating algorithm[END_REF] considered the case where a supplier predicts consumer demand by applying an aggregating algorithm to a pool of online predictors.

Bandits

A related problem is the one where an agent have to choose, repeatedly, among various options but with incomplete information. Multi-armed bandits come from onearmed bandit used in casinos. Imagine an agent playing with several slot machines, each one having a different (unknown) probability of reward associated with. The game is seen as a sequence of single arm pull action and the goal is to maximize its cumulative reward. What could be the optimal strategy to get the highest return?

In order to solve this problem and find the best empirical strategy, the agent has to explore the environment to figure out which arm gives the best reward, but at the same time must choose most of the time the empirical optimal one. It is the explorationexploitation trade-off: each step either searching for new actions or exploiting the current best one.

The one-armed bandit problem was used in economics in [START_REF] Rothschild | A two-armed bandit theory of market pricing[END_REF], when trying to model the strategy of a single firm facing a market with unknown demand. In an extension, [START_REF] Keller | Optimal experimentation in a changing environment[END_REF] consider the problem of the monopolistic firm facing an unknown demand that is subject to random changes over time. Note that the case of several firms experimenting independently in the same market was addressed in [START_REF] Mclennan | Price dispersion and incomplete learning in the long run[END_REF]. The choice between various research projects often takes the form of a bandit problem. In [START_REF] Weitzman | Optimal search for the best alternative[END_REF], each arm represents a distinct research project with a random reward associated with it. The issue is to characterize the optimal sequencing over time in which the projects should be undertaken. It shows that as novel projects provide an option value to the research, the optimal sequence is not necessarily the sequence of decreasing expected rewards. More recently, [START_REF] Bergemann | Venture capital financing, moral hazard, and learning[END_REF] and [START_REF] Bergemann | The financing of innovation: Learning and stopping[END_REF] model venture, or innovation, as a Poisson bandit model with variable learning intensity.

Bandits are a subset of models in online learning and benefits of theoretical results under strong assumptions, most of the time too strong for real-world problems. The multi-armed bandit problem, originally described by [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF], is a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. The multi-armed bandit problem and many variations are presented in detail in [START_REF] Gittins | Bandit Processes and Dynamic Allocation Indices[END_REF] and [START_REF] Berry | Bandits Problems Sequential Allocation of Experiments[END_REF]. An alternative proof of the main theorem, based on dynamic programming can be found in [START_REF] Whittle | Optimization Over Time[END_REF]. The basic idea is to find for every arm a retirement value, and then to choose in every period the arm with the highest retirement value.

In bandits, the information that the learner gets is more restraint than in general online learning: the learner has only access to the cost (loss or reward). At each step t, the learner choose p y t P t1, . . . , Ku. Then the loss vector p t p1q, . . . , t pKqq is established. Eventually, the learner has access to t pp y t q.

Such a problem is called |A|´multi-armed bandit in the literature, where A is the set of action. The learner has K arms, i.e K probability distributions pν 1 , . . . , ν K q. Each step t, the agent pulls an arm a t P t1, . . . , Ku and receives a reward r t following the probability distribution ν at"k . Let µ k be the mean reward of distribution ν k , it is the true value when action a t " k is selected. The estimated value of an action a t is the expected reward Qpa t q " Err t |a t s: if action a t at t is referring to picking the k-th arm of the slot machine, then Qpa t q " µ k . The goal is to maximize the cumulative rewards ř T t"1 r t . The bandit algorithm is thus a sequential sampling strategy: a t`1 " f t pa t , r t , . . . , a 1 , r 1 q.

To measure the bandit algorithm performance, we use the previous defined regret. Maximizing the cumulative reward becomes minimizing the potential regret, i.e. the loss of not choosing the optimal actions. We note µ ˚" max aPt1,...,Ku tµ a u and the optimal policy is

a ˚" argmax aPt1,...,Ku µ a (" argmax aPt1,...,Ku Qpaq (.
The regret of a bandit algorithm is thus:

R ν pA, T q " T µ ˚´E « T ÿ t"1 r t ff " T µ ˚´E « T ÿ t"1 Qpa t q ff ,
where the first term is the sum of rewards of the oracle strategy which always selects a ˚, and the second is the cumulative reward of the agent's strategy. What could be an optimal strategy ? To get a small regret, a strategy should not select to much sub-optimally arms, i.e. µ ˚´µ a ą 0, which requires to try all arms to estimate the values of these gaps. This leads to the exploration exploitation trade-off previously mentioned. Betting on the current best arm a t " argmax tµ at u is called exploitation, while checking that no other arm are better a t ‰ argmax tµ at u to find a lower gap is called exploration. This process is called a greedy action, since it might also be interesting to explore by selecting a non-optimal action that might improve our estimation.

For essentially computational reasons (mainly keeping record of all the rewards on the period), it is preferred to write the value function in an incremental expression, as described in [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]

Q t`1 " 1 t t ÿ i"1 r i " 1 t ppt ´1qQ t `rt q " Q t `1 t pr t ´Qt q.
This leads to the general update rule:

NewEstimate = OldEstimate + StepSize (Target -OldEstimate),
where Target is a noisy estimate of the true target, and StepSize may depend on t and a. This value function expression, which also identifies to a gradient descent, has already be observed in Section 6.2.2 concerning expert aggregation and is mentioned again in the following.

Recently, [START_REF] Misra | Dynamic online pricing with incomplete information using multiarmed bandit experiments[END_REF] consider the case where sellers must decide, on real-time, prices for a large number of item, with incomplete demand information. Using experiments, the seller learns about the demand curve and the profit-maximizing price. The multi-armed bandit algorithms provides an automated pricing policy, using a scalable distribution-free algorithm.

Reinforcement Learning: a short description

In the context of prediction and games (tic-tac-toe, chess, go, or video games), choosing the 'best' move is tricky. Creating data sets for the training process like in the previous approaches (possibly using random simulations) is too costly, since ideally we would like to get all possible actions (positions on the go board or hands of cards). As mentioned in Goodfellow, Bengio, and Courville [151, page 105], "some machine learning algorithms do not just experience a fixed dataset. For example, reinforcement learning algorithms interact with an environment, so there is a feedback loop between the learning system and its experiences".

The concepts

In Reinforcement Learning, as in Multi-armed Bandits, data is available at sequential order. However, in the bandits case the action does not impact the agent state, whereas the RL action depends on the environment: an action at a certain state could give a different reward re-visiting the same state. More specifically, at time t -the learner takes an action a t P A -the learner obtains a (short-term) reward r t P R -then the state of the world becomes s t`1 P S The states S refer to the different situations the agent might be in. In the maze example, the location of the rat is a state of the world. The actions A refer to the set of options available to the agent at some point in time, across all states of the world, and therefore, actions might depend on the state. If the rat is facing a wall, in a dead-end, the only possible action is usually to turn back, while, at some crossroad, the rat can choose various actions. The rewards set R refer to how rewards (and possibly punishments) are distributed. It can be deterministic, or probabilistic, so in many cases, agents will compute expected values of rewards, conditional on states and actions. These notations were settled in Sutton and Barto [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], where the goal is to maximize rewards, while previously, Bertsekas and Tsitsiklis [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF] suggested to minimze costs, with some cost-to-go functions.

As in Bandits, the interaction between the environment and the agent involves a trajectory (called also episode). The trajectory is characterized by a sequence of states, actions and rewards. The initial state leads to the first action which gives a reward; then the model is fed by a new state followed by another action and so on.

To determine the dynamics of the environment, and thus the interaction with the agent, the model relies on transition probabilities, based on past states as well as past actions. Nevertheless, with the Markov assumption, we assume that transition probabilities depend only on the current state and action, and not the full history.

Let T be a transition function S ˆA ˆS Ñ r0, 1s where:

P " s t`1 " s 1 ˇˇs t " s, a t " a, a t´1 , a t´2 , . . . ‰ " T ps, a, s 1 q.
As a consequence, when selecting an action a, the probability distribution over the next states is the same as the last time we tried this action in the same state.

A policy is an action, decided at some state of the world. Formally policies are mapping from S into A, in the sense that πpsq P A is an action chosen in state s P S. Note that stochastic policies can be considered, and in that case, π is a S ˆA Ñ r0, 1s function, such that πpa, sq is interpreted as the probability to chose action a P A in state s P S. The set of policies is denoted Π.

After time step t, the agent receives a reward r t . The goal is to maximize its cumulative reward in the long run, thus to maximize the expected return. Resuming [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], we can defined the return as the sum of the reward:

G t " T ÿ k"t`1 r k .
Unlike Bandits approaches, here the cumulative reward is computed starting from t. Sometimes the agents can receive running reward, associated to tasks where there is no notion of final time step, so we introduce the discounted return:

G t " 8 ÿ k"0 γ k r t`1`k ,
where 0 ď γ ď 1 is the discount factor which gives more importance to recent reward (and can allow G t to exist). We can also re-write G t in a recursive (or incremental way too) since G t " r t`1 `γG t`1 .

To quantify the performance of an action, we introduce, as in the previous section, the action-function, or Q-value on S ˆA:

Q π ps t , a t q " E P " G t ˇˇs t , a t , π ı . (6.2.1)
In order to maximize the reward, the optimal strategy is characterized by the optimal policies π ‹ ps t q " argmax aPA Q ‹ ps t , aq (.

That function can be used to derive an optimal policy, and the optimal value function producing the best possible return (in sense of regret):

Q ‹ ps t , a t q " max πPΠ Q π ps t , a t q (.
Considering optimal strategy and regret leads to the previously mentioned exploration exploitation trade-off. As seen in the bandits section 6.2.3, the learner try various actions to explore the unknown environment in order to learn the transition function T and the reward R. The exploration is commonly implemented by ε-greedy algorithm (described in the bandits section 6.2.3), as in Monte-Carlo methods or Q-learning.

[34] provided a nice economic application of the exploration-exploitation dilemma. In this model, the true value of each seller's product to the buyer is initially unknown, but additional information can be gained by experimentation. When assuming that prices are given exogeneously, the buyer's problem is a standard multi-armed bandit problem. The paper in nevertheless original since the cost of experimentation is here endogenized.

An inventory illustration

A classical application of such framework is the control of inventory, with limited size, when the demand is uncertain. Action a t P A denote the number of ordered items arriving on the morning of day t. The cost is pa t if the individual price of items is p (but some fixed costs to order items can also be considered). Here A " t0, 1, 2, . . . , mu where m is the maximum size of storage. States s t " S are the number of items available at the end of the day (before ordering new items for the next day). Here also, S " t0, 1, 2, . . . , mu. Then, the state dynamics are s t`1 " `mintps t `at q, mu ´εt ˘ẁhere ε t is the unpredictable demand, independent and identically distributed variables, taking values in S. Clearly, ps t q is a Markov chain, that can be described by its transition function T , T ps, a, s 1 q " P " s t`1 " s 1 ˇˇs t " s, a t " a ‰ " P " ε t " `mintps `aq, mu ´s1 ˘`‰

The reward function R is such that, on day t, revenue made is r t " ´pa t `pε t " ´pa t `p`m intps t `at q, mu ´st`1 ˘`" Rps t , a t , s t`1 q

where p is the price when items are sold to consumers (and p is the price when items are purchased). Note that in order to have a more interesting (and realistic) model, we should introduce fixed costs to order items, as costs to store item. In that case

r t " ´pa t `p`m intps t `at q, mu ´st`1 ˘`´k 1 1 atą0 ´k2 s t ,
for some costs k 1 and k 2 . Thus, reinforcement learning will appear quite naturally in economic problems, and as we will see in the next section, several algorithms can be used to solve such problems, especially when some quantities are unknown, and can only be estimated... assuming that enough observations can be collected to do so.

Reinforcement Learning

Now that most of essential notions have been defined and explained, we can focus on Reinforcement Learning principles, and possible extensions. This section deals with the most common approaches, their links with ordinary economy or finance problems and some known difficulties or constraints.

Mathematical context

Classically, a Markov property is assumed on the reward and the observations. A Markov decision process (MDP) is a collection pS, A, T, r, γq where S is a state space, A is an action space, T the transition function S ˆA ˆS Ñ r0, 1s, R is a reward function S ˆAˆS Ñ R `and γ P r0, 1q is some discount factor. A policy π P Π is a mapping from S to A. Each time t, the agent takes one of many actions a t P A, obtains a (short-term) reward r t P R, and then switches from state s t to s t`1 P S.

Algorithm 6 Policy generation

Data: transition function T and policy π Result: Sequence pa t , s t q initialization: s 1 Ð initial state for t P t1, 2, . . .u do a t Ð πps t q P A s t`1 Ð T ps t , a t , ¨q " P " s t`1 " ¨ˇs t , a t , ‰ P S

end

The expected reward given a policy π and starting from state s P S at time t, is

V π ps t q " E P ˜ÿ kPN γ k r t`k ˇˇs t , π ¸, (6.3.1)
called value of a state s under policy π, where r t " E a rRps t , a, s t`1 qs when a " πps t , ¨q and P is such that PpS t`1 " s t`1 |s t , a t q " T ps t , a, s t`1 q. Algorithm 6 describes how policy is built sequentially. Since the goal is to find a best policy -that is the policy that receives the most reward -we define

V ‹ ps t q " max πPΠ V π ps t q, (
which is the maximal reward that could be expected in the given set of policies Π. The algorithm 7 indicates a way to evaluate and quantify the relevance of a policy. As in Watkins and Dayan [START_REF] Watkins | q-learning[END_REF], one can define the Q-value (or action-value function) for policy π on S ˆA as

Q π ps t , a t q " E P ˜ÿ kPN γ k r t`k ˇˇs t , a t , π ¸,

Algorithm 7 Policy valuation

Data: policy π, threshold ε ą 0, reward Rps, a, s 1 q, @s, a, s 1 Result: Value of policy π, V π initialization: V psq for all s P S and ∆ " 2ε

while ∆ ą ε do ∆ Ð 0 for s P S do v Ð V psq V psq Ð ÿ aPA πpa, sq ÿ s 1 P∫
T ps, a, s 1 q " Rps, a, s 1 q `γV ps 1 q ‰ ∆ Ð maxt∆, |v ´V psq|u end end which can be written, from Bellman's equation (see Bellman [START_REF] Bellman | Dynamic Programming[END_REF])

Q π ps t , a t q " ÿ s 1 PS " rps t , a t , s 1 q `γQ π ps 1 , πps 1 qq ‰ T ps t , a t , s 1 q, (6.3.2)
and as previously, let

Q ‹ ps t , a t q " max πPΠ Q π ps t , a t q (.
Observe that Q π ps t , a t q identifies to the value function in state s t when playing action a t at time t and then acting optimally. Hence, knowing the Q-function directly provides the derivation of an optimal policy π ‹ ps t q " argmax aPA Q ‹ ps t , aq (.

This optimal policy π ‹ assigns to each states s the highest-valued action. In most applications, solving a problem boils down to computing the optimal policy π ‹ . Note that with finite size spaces S and A, we can use a vector form for Q π ps, aq's, Q π , which is a vector of size |S||A|. In that case, Equation (6.3.2) can be written

Q π " R `γP ΠQ π , (6.3.3)
where R is such that R ps,aq "

ÿ s 1 PS
rps t , a t , s 1 qT ps t , a t , s 1 q and P Π is the matrix of size |S||A| ˆ|S||A| that constraints transition probabilities, from ps, aq to ps 1 , πps 1 qq (and therefore depends on policy π).

If we use notations introduced in section 6.2.4, we have to estimate Qps, aq for all states s and actions a, or function V psq. Bellman equation on Q π means that V π satisfies V π ps t q " ÿ s 1 PS " rps t , πps t q, s 1 q `γV π ps 1 q ‰ T ps t , πps t q, s 1 q. (6.3.4)

Unfortunately, in many applications, agents have no prior knowledge of reward function r, or transition function T (but do know that it satisfies the Markov property). Thus, the agent will have to explore -or perform actions -that will give some feedback, that can be used, or exploited.

As discussed previously, Q function is updated using Qps, aq Ð p1 ´αqQps, aq `α`r ps, a, s 1 q `γ max

a 1 PA Qps 1 , a 1 q (˘.
A standard procedure for exploration is the ε-greedy policy, mentioned already in the bandit context, where the learner makes the best action with probability 1 ´ε, and consider a randomly selected action with probability ε. Alternatively, consider some exploration function that will give preference to less-visited states, using some sort of penalty Qps, aq Ð p1 ´αqQps, aq `α ˆrps, a, s 1 q `γ max

a 1 PA " Qps 1 , a 1 q `κ n s,a *˙.
where n s,a denotes the number of times where state ps, aq has been visited, where κ will be related to some exploration rate. Finally, with the Boltzmann exploration strategy, probabilities are weighted with their relative Q-values, with

ppaq " e βQps,aq e βQps,a 1 q `¨¨¨`e βQps,anq , for some β ą 0 parameter. On the one hand, with a low value for β, the selection strategy tends to be purely random. On the other hand, with a high value for β, the algorithm selects the action with the highest Q-value, and thus, ceases the experiment.

Some Dynamical Programming principles

In Dynamic Programming, as well as in most of Reinforcement Learning problems, we use value functions to choose actions and build an optimal policy. Many algorithms of this field compute optimal policies in a fully known model in a Markov decision process environment. It is not always possible in real-world problems or too computationally expensive. However, Reinforcement Learning lies on several principles of Dynamic Programming and we present here a way to obtain an optimal policy once we have found the optimal value function which satisfy the Bellman equation: the Policy iteration.

Policy iteration

Value function V π satifies Equation (6.3.4), or to be more specific a system of |S| linear equations, that can be solved when all functions -T and r -are known. An alternative is to use an iterative procedure, where Bellman's Equation is seen as a updating rule, where

V π k`1 is an updated version of V π k V π k`1 ps t q " ÿ s 1 PS
" rps t , πps t q, s 1 q `γV π k ps 1 q ‰ T ps t , πps t q, s 1 q. (6.3.5)

The value function V π is a fixed point of this recursive equation.

Once we can evaluate a policy π, Howard [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF] suggested a simple iterative procedure to find the optimal policy, called policy iteration. The value of action a is obtained using

Q π ps t , aq " ÿ s 1 PS
" rps t , a, s 1 q `γV π ps 1 q ‰ T ps t , a, s 1 q, so if Q π ps t , aq is larger than V π ps t q for some a P A, choosing a instead of πps t q would have a higher value. It is then possible to improve the policy by selecting that better action. Hence, a greedy policy π 1 can be considered, simply by choosing the best action π 1 ps t q " argmax aPA tQ π ps t , aqu.

The algorithm suggested by Howard [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF] starts from a policy π 0 . Then, at step k, given a policy π k , the algorithm computes its value V π k , improves it with π k`1 , and eventually iterates.

Unfortunately, such a procedure can be very long, as discussed in Bertsekas and Tsitsiklis [START_REF] Bertsekas | Neuro-Dynamic Programming[END_REF]. And it assumes that all information is available, which is not the case in many applications. As we will see in the next sections, it is then necessary to sample to learn the model -the transition rate and the reward function.

Policy Iteration using least squares

Q π ps, aq is essentially an unknown function, since it is the expected value of the cumulated sum of discounted future random rewards. As discussed in Section 6.2.2, a natural stategy is to use a parametric model, Q π ps, a, βq that will approximate Q π ps, aq. Linear predictors are obtained using a linear combination of some basis functions, Q π ps, a, βq " k ÿ j"1 ψ j ps, aqβ j " ψps, aq J β j , for some simple functions ψ j , such as polynomial transformations. With the notation of section 6.2.4.1, write Q π " Ψβ. Thus, substituting in equation (6.3.3), we obtain

Ψβ « R `γP ΠΨβ or `Φ ´γP ΠΨ ˘β « R.
As in section 6.2.4.1, we have an over-constrained system of linear equations, and the least-square solution is

β ‹ " `pΨ ´γP ΠΨq J pΨ ´γP ΠΨq ˘´1 pΨ ´γP ΠΨq J R.
This is also called Bellman residual minimizing approximation. And as proved in Nedić and Bertsekas [START_REF] Nedić | Least squares policy evaluation algorithms with linear function approximation[END_REF] and Lagoudakis and Parr [START_REF] Lagoudakis | Least-squares policy iteration[END_REF], for any policy π, the later can be written β ‹ " `ΨJ pΨ ´γP ΠΨq loooooooooomoooooooooon

"A ˘´1 Ψ J R lo omo on "b
.

Unfortunately, when rewards and transition probabilities are not given, we cannot use (directly) the equations obtained above. But some approximation, based on previous t observed values can be used. More precisely, at time t we have a sample D t " ps i , a i , r i q, and we can use algorithm 8.

Algorithm 8

Least square policy iteration Data: Policy π, γ, sample D t and basis functions ψ j Result: Optimal π initialization p A Ð 0 and p B Ð 0 for i P t1, 2, ¨¨¨, t ´1u do

p A Ð p A `ψps i , a i q `ψps i , a i q ´γψps i`1 , πps i`1 qq ˘J p b Ð p b `ψps i , a i qr i end p β ‹ Ð p A ´1p b π ‹ psq Ð argmax aPA ! ψps, aq J p β ‹)
If states and actions are uniformely observed on those t past values, p A and p b converge respectively towards A and b and therefore, p β ‹ " p A ´1p b is a consistent approximation of β ‹ .

Model-Based vs Model-Free Learning

Model-based strategies are based on a fully known environment. We can learn about the state transition T ps t , a t , s t`1 q " PpS t`1 " s t`1 |s t , a t q and the reward function Rps t q in order to find the optimal solution using Dynamic programming. Starting from s 0 , the agent will chose randomly actions in A at each step. Let ps i , a i , s i`1 q denote the simulated set of present state, present action and future state. After n generations, the empirical transition is p T n ps, a, s 1 q " ř i 1 ps,a,s 1 q ps i , a i , s i`1 q ř i 1 ps,aq ps i , a i q and p R n ps, a, s 1 q "

ř i Rps i , a i , s i`1 q ř i 1 ps,a,s 1 q ps i , a i , s i`1 q
By the law of large numbers, p T n and p R n will respectively converge towards T and R, as n goes to infinity. This is the exploration part.

That strategy is opposed to so-called model-free approaches, where the learning process could deal with incomplete information or the model is just unknown. In the next sections, we describe classical model-free algorithms: Temporal-Difference (TD), Policy Gradient and Actor-Critic.

Some Model-free Methods

Here is presented briefly some common model-free approaches in Reinforcement Learning where the model is unknown or has to learn with incomplete information. For the first one, we focus on one significant breakthroughs in reinforcement learning, the Q-learning (introduced in [START_REF] Watkins | Learning from delayed reward[END_REF]), an off-policy Temporal-Difference (TD) control model in discrete action space. Then, we quickly describe Policy Gradient and Actor-Critic, two methods considering continuous action space.

Q-learning

As TD approaches, Q-learning needs to interact with the environment, meaning that it is necessary to simulate the policy and generate samples. Recent works using neural network, like Deep Q-Network (DQN) show impressive results in complex environments, not without training constraints. Q-learning was introduced in Watkins and Dayan [START_REF] Watkins | q-learning[END_REF]. Bellman Equation (6.3.2) is expressed as

Q π ps t , a t q " ÿ s 1 PS " Rps t , a t , s 1 q `γQ π ps 1 , πps 1 qq ‰ T ps t , a t , s 1 q,
and the optimal value satisfies

Q ‹ ps t , a t q " ÿ s 1 PS " Rps t , a t , s 1 q `γV ‹ ps 1 q ‰ T ps t , a t , s 1 q,
where V ‹ ps 1 q " max a 1 PA Q ‹ ps 1 , a 1 q (. Thus, Q-learning is based on the following algorithm: starting from Q 0 ps, aq,

at step k `1 set Q k`1 ps, aq " ÿ s 1 PS " Rps, a, s 1 q `γ max a 1 PA Q k ps 1 , a 1 q (‰ T ps, a, s 1 q.
This approach is used in [START_REF] Hasselt | Double q-learning[END_REF] where the Q-function, i.e. value-function, is approximated by a neural network for example. However, Q-learning has some pitfalls depending of the use-case considered. First, the action space has to be discrete and finite, a strong assumption if we handle prices or risk hedging. Moreover, because the algorithm seeks to figure out the quality of each possible action, if the action space is too large the algorithm might converge to local maxima, or the exploration might be too long. To overcome these difficulties, an idea would be learn the policy directly. Policy Gradient approaches, detailed in the following, simply evaluate the probability of selecting each action and chose the preferred one.

Policy Optimization

In order to avoid computing and comparing the expected return of different actions, as in Q-learning, an agent could learn directly a mapping from states to actions. Here, we try to infer a parameterized policy πpa|s, θq that maximizes the outcomes reward from an action on an environment. Policy learning converges faster than value-based learning process and allows continuous action space of the agent as the policy is now a parameterized function depending on θ. An infinite number of actions would be computationally too expensive to optimize otherwise.

Algorithm 9 Direct policy search

Data: A threshold ε, reward Rps, a, s 1 q, @s, a, s 1 Result: Optimal policy π ‹ initialization: V psq for all s P S and ∆ " 2ε

while ∆ ą ε do ∆ Ð 0 for s P S do v Ð V psq V psq Ð max aPA # ÿ s 1 PS
T ps, a, s 1 q " Rps, a, s 1 q `γV ps

1 q ‰ + ∆ Ð maxt∆, |v ´V psq|u end end for s P S do πpsq Ð argmax aPA # ÿ s 1 PS T ps, a, s 1 q " Rpsq `γV ps 1 q ‰ + end
This approach is based on the Policy Gradient Theorem from [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF]. Algorithm 9 details the Direct Policy Search, where action-function is not computed (as in Qlearning) but only value-function and policy. Some application examples can be found in the application section 6.4.

Actor-Critic

Actor-Critic aims to take advantage of both Value and Policy approaches. By merging them, it can benefit of continuous and stochastic environments and faster convergence from Policy learning, as well as sample efficiency and steady from Value one. In the Actor-Critic setup, two models interact in order to give the best cumulative reward. Using simultaneously an actor, which updates the policy parameter θ in πpa|s; θq, and a critic which updates the value function V psq or action-value function Qpa|sq, this model is able to learn complex environments as well as complex Value-functions. [START_REF] Tamar | Policy gradient for coherent risk measures[END_REF] propose risk-sensitive policy gradient methods using a Actor-Critic model, handling popular financial tools such as the variance or conditional value at risk (CVaR).

Inverse Reinforcement Learning

In the econometric literature, this problem can be found in many articles published in the 80's, such as Miller [START_REF] Miller | Job matching and occupational choice[END_REF] in the context of job matching and occupational choice, Pakes and Schankerman [START_REF] Pakes | The Rate of Obsolescence of Patents, Research Gestation Lags, and the Private Rate of Return to Research Resources[END_REF] on the rate of obsolescence of patents, and research gestation lags, Wolpin [START_REF] Wolpin | An estimable dynamic stochastic model of fertility and child mortality[END_REF] on the estimation of a dynamic stochastic model of fertility and child mortality, Pakes [START_REF] Pakes | Patents as options: Some estimates of the value of holding european patent stocks[END_REF] on optimal investment strategies or Rust [START_REF] Rust | Optimal replacement of gmc bus engines: An empirical model of harold zurcher[END_REF] on replacement of bus engines, where structural models are used to better understand human decision making. Hotz and Miller [START_REF] Hotz | Conditional choice probabilities and the estimation of dynamic models[END_REF], Aguirregabiria and Mira [4] or more recently Magnac and Thesmar [START_REF] Magnac | Identifying dynamic discrete decision processes[END_REF] or Su and Judd [START_REF] Su | Constrained optimization approaches to estimation of structural models[END_REF] mentioned the computational complexity of such algorithms on economic applications.

Most of those approaches are related to the literature on dynamic discrete choice model (see Aguirregabiria and Mira [START_REF] Aguirregabiria | Dynamic discrete choice structural models: A survey[END_REF] for a survey, or Semenova [START_REF] Semenova | Machine learning for dynamic discrete choice[END_REF] for connections with machine learning tools). In those models, there is a finite set of possible actions A, as assumed also in the previous descriptions, and they focus on conditional choice probability, which is the probability that choosing a P A is optimal in state s P S, ccppa|sq " Pra is optimal in state ss " P " tQpa, sq ě Qpa 1 , sq, @a 1 P Au ‰ .

Assuming that rewards have a Gumbel distribution, we obtain a multinomial logit model, where the log-odds ratios are proportional to the value function. For instance in the busrepair problem of Rust [START_REF] Rust | Optimal replacement of gmc bus engines: An empirical model of harold zurcher[END_REF], the state s is the mileage of the bus, and the action a is in the set topr, repu (either operate, or replace). Per period, the utility is

U θ ps t , ε t , aq " ε t `uθ " ε t `" ´OC θ ps t q if a " opr ´RC ´OC θ p0q if a " rep
where RC is some (fixed) replacing cost, OC θ is the operating cost (that might depend on some parameter θ), and ε t is supposed to have a Gumbel distribution. The respective costs are supposed to be known. Then ccp θ pa|sq " exprv θ ps, aqs exprv θ ps, oprqs `exprv θ ps, repqs where v θ ps, aq " u θ ps, aq `βEV θ ps, aq where ES θ ps, aq is the unique solution of

EV θ ps, aq " ż log " u θ ps, oprq `uθ ps 1 , oprq `βpEV θ ps, oprq `EV θ ps 1 , repqq ‰ T ps 1 |s, aq
Hotz and Miller [START_REF] Hotz | Conditional choice probabilities and the estimation of dynamic models[END_REF] proved that the mapping between conditional choice probabilities and choice specific value function is invertible. As discussed in Su and Judd [START_REF] Su | Constrained optimization approaches to estimation of structural models[END_REF], based on observed decisions made by the superintendent of maintenance of the bus company, structural estimation is computationally complex. The main idea of inverse reinforcement learning (or learning from demonstration, as defined in Schaal [START_REF]Learning from demonstration[END_REF]) is to learn the reward function based on the agent's decisions, and then find the optimal policy (the one that maximizes this reward function) using reinforcement learning techniques. Similar techniques are related to this idea. In imitation learning (also called behavioral cloning in Bain and Sammut [START_REF] Bain | A framework for behavioural cloning[END_REF]), we learn the policy using supervised learning algorithms, based on the sample of observations tps i , a i qu, that is unfortunately not distributed independently and identically in the state-action space. In apprenticeship learning, we try to find a policy that performs as well as the expert policy, as introduced in Abbeel and Ng [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF]. Rothkopf and Dimitrakakis [START_REF] Rothkopf | Preference elicitation and inverse reinforcement learning[END_REF] mentioned applications of reinforcement learning on preference elicitation, extended in Klein, Geist, Piot, and Pietquin [START_REF] Klein | Inverse reinforcement learning through structured classification[END_REF]. See Ng, Russell et al. [START_REF] Ng | Algorithms for inverse reinforcement learning[END_REF] for a survey of various algorithms used in inverse reinforcement learning, as well as Abbeel and Ng [START_REF] Abbeel | Apprenticeship learning via inverse reinforcement learning[END_REF].

Applications

Applications in Economic Modeling

If it is possible to find a framework very similar to the one use in reinforcement learning in old economic literature (see for instance the seminal thesis Hellwig [START_REF] Hellwig | Sequential models in economic dynamics[END_REF]), as mentioned in Arthur [START_REF] Arthur | Designing economic agents that act like human agents: A behavioral approach to bounded rationality[END_REF] or Barto and Singh [START_REF] Barto | On the computational economics of reinforcement learning[END_REF], two survey of reinforcement learning techniques in computational economics, published thirty years ago. Recently, Hughes [START_REF] Hughes | Applying reinforcement learning to economic problems[END_REF] updated the survey on applications of reinforcement learning to economic problems with up-to-date algorithms.

Consumption and Income Dynamics

Consider an infinitely living agent, with utility upc t q when consuming c t ě 0 in period t. That agent receives random income y t at time t, and assume that py t q is a Markov process with transition T ps, s 1 q " Pry t`1 " s 1 |y t " ss. Let w t denote the wealth of the agent, at time t, so that w t`1 " w t `yt ´ct . Assume that the wealth must be nonnegative, so c t ď w t `yt . And for convenience, w 0 " 0, as in Lettau and Uhlig [START_REF] Lettau | Rules of thumb versus dynamic programming[END_REF]. At time t, given state s t " pw t , y t q, we seek c ‹ t solution of vpw t , y t q " max cPr0,wt`yts

upcq `γ ÿ y 1 " vpw t `yt ´c, y 1 q ‰ T py t , y 1 q

+

This is a standard recursive model, discussed in Ljungqvist and Sargent [START_REF] Ljungqvist | Recursive Macroeconomic Theory[END_REF] or Hansen and Sargent [START_REF] Hansen | Recursive Models of Dynamic Linear Economies[END_REF], assuming that utility function u is continuous, concave, strictly increasing and bounded, the value function v is itself continuous, concave, strictly increasing and bounded in wealth w t , and gives a unique decision function c ‹ pw t , y t q. Stokey, Lucas, and Prescott [START_REF] Stokey | Recursive Methods in Economic Dynamics[END_REF] extented that model to derive a general dynamic decision problem where income y is now a state s P S " ts 1 , . . . , s n u, and consumption c is now an action a P A " ta 1 , . . . , a m u. Utility is now a function of ps, aq, and it is assume that the state process ps t q is a Markov chain, with transition matrix T a (and transition function T a). The decision problem is written as a dynamic problem vpsq " max aPA ups, aq `γE s 1 "Ta " vps 1 q ‰(Using contraction mapping theorems, there is a unique solution v ‹ to this problem, that can be characterized by some decision function π ‹ : S Þ Ñ A that prescribes the best action π ‹ psq in each state s.

v π psq " ups, πpsqq `γE s 1 "Ta " v π ps 1 q ‰

The solution can be obtained easily using some matrix formulation, v π " pI n ´γT π q ´1u π , where v π " pv π ps i qq P R n , T π " rT πps i q ps j qs is a n ˆn matrix, and u π " ps i , πps i qq P R n . Once v π is obtained for any policy π, then v ‹ is the maximum value. Stokey, Lucas, and Prescott [START_REF] Stokey | Recursive Methods in Economic Dynamics[END_REF] gives several rules of thumb to solve that problem more efficiently, inspired by Holland [START_REF] Holland | Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems[END_REF].

In the context of multiple agents, [START_REF] Kiyotaki | On money as a medium of exchange[END_REF] describes an economy with three indivisible goods, that could be stored, but with a cost, and three types of agents, infinitely living, favoring one of the good. In [START_REF] Basci | Learning by imitation[END_REF], agents do not know the equilibrium strategies and act according to some randomly held beliefs regarding the values of the possible actions. Agents have opportunities of both learning by experience, and by imitation. [START_REF] Basci | Learning by imitation[END_REF] observes that the presence of imitation either speeds up social convergence to the theoretical Markov-Nash equilibrium or leads every agent of the same type to the same mode of suboptimal behavior. We will discuss Nash equilibrium with multiple agents in the next section.

Bounded Rationality

Simon [START_REF] Simon | Theories of bounded rationality[END_REF] discussed the limits of the rationality concept, central in most economic models, introducing the notion of bounded rationality, related to various concepts that were studied afterwards, such as bounded optimality (as in Russell and Subramanian [START_REF] Russell | Provably bounded-optimal agents[END_REF] with possible limited thinking time, or memory constraints) or computational rationality (as defined in Gershman, Horvitz, and Tenenbaum [START_REF] Gershman | Computational rationality: A converging paradigm for intelligence in brains, minds, and machines[END_REF]) minimal rationality (such as Cherniak [START_REF] Cherniak | Minimal Rationality[END_REF] where minimal sets of conditions to have rationality are studied), ecological or environmental rationality (with a close look at the environment, that will influence decisions, as discussed in Gigerenzer and Goldstein [START_REF] Gigerenzer | Reasoning the fast and frugal way: models of bounded rationality[END_REF]). More recently, Kahneman [START_REF] Kahneman | Thinking, fast and slow[END_REF] popularized this concept with the two modes of thought: system 1 is fast, instinctive and emotional while System 2 is slower, more deliberative, and more logical. Simon [START_REF] Simon | Theories of bounded rationality[END_REF] suggests that bounded rationality can be related to uncertainty, incomplete information, and possible deviations from the original goal, emphasizing the importance of heuristics to solve complex problems, also called practical rationality (see [START_REF] Rubinstein | Modeling Bounded Rationality[END_REF] of Aumann [START_REF] Aumann | Rationality and bounded rationality[END_REF] for some detailed survey). Recently, Leimar and McNamara [START_REF] Leimar | Learning leads to bounded rationality and the evolution of cognitive bias in public goods games[END_REF] suggested that adaptive and reinforcement learning leads to bounded rationality, while Abel [2] motivates reinforcement learning as a suitable formalism for studying boundedly rational agents, since "at a high level, Reinforcement Learning unifies learning and decision making into a single, general framework".

Simon [START_REF] Simon | Theories of bounded rationality[END_REF] introduce dthe problem of infinite regress, where agents are spending more resources on finding the optimal simplification of the problem than solving the original problem. This simplification problem is related to the sparsity issue in standard supervised learning. Gabaix [START_REF] Gabaix | A Sparsity-Based model of bounded rationality[END_REF] discussed algorithms for finding a sparse model, either with short range memory, or focusing on local thinking, as defined in Gennaioli and Shleifer [START_REF] Gennaioli | What Comes to Mind*[END_REF] (where agents combine data received from the external world with information retrieved from memory to evaluate a hypothesis). Reinforcement learning provides powerful tools to solve complex problems, where agents are suppose to have bounded rationality. And the literature (in reinforcement learning) has developed several measures for evaluating the capacity of an agent to effectively explore its environment. The first one is the regret of an agent, which measures how much worse the agent is relative to the optimal strategy (that could be related to unbounded rationality). The second one is the sample complexity (or computational complexity) which measures the number of samples an agent need before it can act near-optimally, with high probability. In connection with models with bounded rational heterogeneous agents, [START_REF] Granato | Learning from the expectations of others[END_REF] investigates the equilibrium properties under adaptive learning. They prove that the conditions for at least one learnable equilibrium are similar to those under homogeneous expectations, even if this assymetric information might yield to multiple equilibria.

Agent-based models, from micro to macro

In macro-economic models, agents' behavior should be in line with the solutions of dynamic optimization problems. Agents are assumed to form expectations and solve complex problems. Reinforcement learning does not require from the agents to use sophisticated reasoning and to compute accurate expectations. Inspired by [START_REF] Holland | Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[END_REF], [START_REF] Lettau | Rules of thumb versus dynamic programming[END_REF] compare dynamic programming problems and the asymptotic behavior of some simple algorithm that can be seen as reinforcement learning. [START_REF] Lettau | Rules of thumb versus dynamic programming[END_REF] describe the limiting behavior and prove that it converges to the values given by the solution to the Bellman equation.

[143] used agent-based macroeconomics to describe labor mobility, with agents willing to experiment in order to learn, as in reinforcement learning algorithms, as in [START_REF] Sinitskaya | Macroeconomies as constructively rational games[END_REF]. [START_REF] Dilaver | Agent-based macroeconomics and dynamic stochastic general equilibrium models: Where do we go from here[END_REF] goes even further, suggesting that Agent-based computational models can provide an alternative to dynamic stochastic general equilibrium (DSGE) models. [START_REF] Börgers | Expedient and monotone learning rules[END_REF], proves decision-makers, with simple learning rules, that obtain feedback information, behave in suggested in standard models developed in dynamic evolutionary game theory. Finally, [START_REF] Rustichini | Optimal properties of stimulus-response learning models[END_REF] provides a very interesting discussion about feedback and available information. It compares the case of individuals learning in isolation, having partial information, and the case of social learning, where agents have full information. The convergence to optimal actions depends on procedures used (linear and exponential procedures do not exhibit the same properties).

Single firm dynamics

Jovanovic [START_REF] Jovanovic | Selection and the evolution of industry[END_REF] gave the framework for most models dealing with industry dynamics with Bayesian learning. In a model of competition between firms with multiple equilibrium, firms are engaged in an adaptive process, where they learn how to play an equilibrium of the game, as in Fudenberg and Levine [START_REF] Fudenberg | The Theory of Learning in Games[END_REF]. In those models, firms know the model that describes the environment, but there are uncertainties. So agents will learn over time about these elements, when new information arrives. Note that this approach is different from the one in evolutionary game theory (as in Samuelson [START_REF] Samuelson | Evolutionary games and equilibrium selection[END_REF]) for instance, where agents might not even know that they play a game.

Consider a monopolistic firm, taking actions a t P A -say investment decisions -in order to maximize its expected discounted inter-temporal profit. States of the world are s t P S, and we assume that they can be modeled via a Markov process. If future investments are uncertain, it can be assumed that the first will use the same optimal decision rule that the one it uses at time t, taking into account available information. Let r t denote the profit obtained at time t.

In economic literature, rational expectations were usually considered in early models, meaning that the expectation is computed under the true transition probability. Nevertheless, Cyert and DeGroot [START_REF] Cyert | Rational expectations and bayesian analysis[END_REF] or Feldman [START_REF] Feldman | Bayesian learning and convergence to rational expectations[END_REF] suggested that the first should learn this transition probability π, and a Bayesian framework was considered. Starting from a prior belief, transition probabilities T are supposed to belong to some space T , and experience is used to update mixing probabilities on T . [START_REF] Sargent | Bounded Rationality in Macroeconomics[END_REF] considered a weaker updating rule, simpler (related to linear approximations in Bayesian models) but not optimal, usually called adaptative learning. In that case, belief at time t, T t ps, a, s 1 q is a weighted sum of T t´1 ps, a, s 1 q and some distance between T ps, a, s 1 q and ps t´1 , a t´1 , s t q (through some kernel function). If the weight related to the new observation is of order 1{t, recursive least squares learning is obtained; if weights are constant, adaptative learning is here faster than standard Bayesian learning, which is usually seen as a good property when there are shocks in the economy.

Erev and Roth [START_REF] Erev | Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria[END_REF] explicitly introduced the idea of stock of reinforcement, corresponding to the standard Q-function. and for any action-state pair pa, sq, the updating rule is Q t`1 pa, sq Ð Q t pa, sq `γt k `pa, sq ´pa t , s t q where some kernel k is considered. Recently, Ito and Reguant [START_REF] Ito | Sequential markets, market power, and arbitrage[END_REF] used reinforcement learning to describe sequential energy markets.

Adaptative design for experiments

Most experiments are designed to inform about the impact of choosing a policy, among various that can be considered. And more precisely, as discussed in Kasy and Sautmann [START_REF] Kasy | Adaptive treatment assignment in experiments for policy choice[END_REF], the question which program will have the largest effect is usually preferred to the question does this program have a significant effect, in many cases, see Chattopadhyay and Duflo [START_REF] Chattopadhyay | Women as policy makers: Evidence from a randomized policy experiment in india[END_REF] and more recently Athey and Imbens [START_REF] Athey | The econometrics of randomized experiments[END_REF], and references therein. If dynamic experiments are considered, there are usually several waves, and the optimal experimental design would usually learn from earlier waves, and assign more experimental agents to the better-performing treatments in future waves. Thus, this policy choice problem is a finite-horizon dynamic stochastic optimization problem. Thompson [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF] introduced this idea of adaptive treatment assignment, and Weber [START_REF] Weber | On the gittins index for multiarmed bandits[END_REF] proved that this problem can be expressed using multi-armed bandits, and the optimal solution to this bandit problem is to choose the arm with the to the highest Gittins index, that can be related to the so-called Thompson sampling strategy. Thompson sampling simply assigns the next wave of agents to each treatment with frequencies proportional to the probability that that each treatment is the optimal one.

As explained in Kasy and Sautmann [START_REF] Kasy | Adaptive treatment assignment in experiments for policy choice[END_REF], standard experimental designs are geared toward point estimation and hypothesis testing. But they consider the problem of treatment assignment in an experiment with several non-overlapping waves, where the goal is to choose among a set of possible policies (here treatments). The optimal experimental design learns from earlier waves, and assigns more experimental units to the better-performing treatments in later waves : assignment probabilities are an increasing concave function of the posterior probabilities that each treatment is optimal. They provide theoretical results to this exploration sampling design.

Applications in Operations Research and Game Theory

Probably more interesting is the case where there are multiple strategic agents, interacting (see [START_REF] Zhang | Multi-agent reinforcement learning: A selective overview of theories and algorithms[END_REF] for a nice survey). But before, let us mention the use of reinforcement learning techniques in operation research, and graphs.

Traveling Salesman

A graph pE, V q is a collection of edges E (possibly oriented, possibly weighted) and vertices (or nodes) V . There are many several classical optimization problems on graphs. In the traveling salesman problem, we want to find a subgraph pE ‹ , V q (with E ‹ Ă E) which forms a cycle of minimum total weight that visits each node V at least once. But one might also think of max-flow or max-cut problems, or optimal matching on bipartite graphs (see Galichon [START_REF] Galichon | Optimal Transport Methods in Economics[END_REF] for more examples, with economic applications). In several problems, we seek an optimal solution, which can be a subset V ‹ or E ‹ , of vertices or edges. In the traveling salesman problem (TSP), given an order list of nodes V 1 that defines a cycle (E ‹ Ă E is the subset of edges

tpV 1 i , V 1 i`1 qu with V Ă V and V 1 i , V 1 i`1
P E for all i), the associated loss function is

pV 1 q " ÿ iP|V 1 | `wpV 1 i , V 1 i`1 q ˘, with V 1 |V 1 |`1 " V 1 .
Most TSP algorithms are sequential, which will make reinforcement learning perfectly appropriate here. For instance, the 2-opt algorithm (developed in Flood [START_REF] Flood | The Travelling Salesman Problem[END_REF] and Croes [START_REF] Croes | A method for solving traveling-salesman problems[END_REF]) suggests to iteratively remove two edges and replace these with two different edges that reconnect the fragments created by edge removal into a shorter tour (or that increases the tour least), pi ‹ , j ‹ q " argmin i,j"1,...,

|V 1 | ! pV 1 q ´ p Ṽ pijq q) , where Ṽ pijq k " $ & % V 1 j if k " i V 1 i if k " j V 1 k otherwise
Other popular techniques are for instance Christophides algorithm (developed in Christofides [START_REF] Christofides | Worst-case analysis of a new heuristic for the travelling salesman problem[END_REF]) or some evolutionary model inspired by ant colonies (as developed in Dorigo and Gambardella [START_REF] Dorigo | Ant colonies for the traveling salesman problem[END_REF]). Here also, it can be interesting to explore possibly non-optimal moves on a short term basis (in the sense that locally they end-up in a longer route) Such sequential techniques can be formulated using the framework of reinforcement learning. The states S are subsets of edges E in the context of TSP that form a cycle. In the 2-opt algorithm, actions A are nodes that will be permuted. Rewards are related to changes in the loss function (and the non-discounted sum of rewards is considered here). The nearest neighbour algorithm (which is a greedy algorithm) or cheapest insertion (as defined in Rosenkrantz, Stearns, and Lewis [START_REF] Rosenkrantz | Approximate algorithms for the traveling salesperson problem[END_REF]) can also be seen with a reinforcement learning algorithm. States S are subsets of edges E that form partial cycles, and the action A means growing the route with one node, by inserting it optimally. The rewards is related to the change in the tour length. That idea was developed in Gambardella and Dorigo [START_REF] Gambardella | Ant-Q: A reinforcement learning approach to the traveling salesman problem[END_REF] recently, or Dai et al. [START_REF] Dai | Learning combinatorial optimization algorithms over graphs[END_REF] for a recent survey of reinforcement learning techniques in the context of optimization over graphs. Deudon et al. [START_REF] Deudon | Learning heuristics for the tsp by policy gradient[END_REF] provides insights on how efficient machine learning algorithms could be adapted to solve combinatorial optimization problems in conjunction with existing heuristic procedures. In Bello et al. [START_REF] Bello | Neural combinatorial optimization with reinforcement learning[END_REF] the heuristic procedure is replaced by some neural networks. Despite the computational expense, an efficient algorithm is obtained.

Stochastic Games and Equilibrium

Consider n players, each of them taking actions a i P A i and receives a reward r i . Let a " pa 1 , . . . , a n q P A and r " pr 1 , . . . , r n q. Note that r i is defined on S ˆA. When S is a singleton (and there is no uncertainty), it is a simple repeated game (or matrix game). A policy π i maps S into A i . Let π " pπ 1 , . . . , π n q, and π ´i the collection of all component policies. Thus, π " pπ i , π ´iq means that player i uses policy π i while competitors follow π ´i.

Maskin and Tirole [START_REF] Maskin | A theory of dynamic oligopoly, I: Overview and quantity competition with large fixed costs[END_REF] introduced the concept of Markov perfect equilibrium, which is a set of Markovian policies π " which simultaneously forms a Nash equilibrium, as discussed in details in [START_REF] Horst | Stationary equilibria in discounted stochastic games with weakly interacting players[END_REF] or Escobar [START_REF] Escobar | Equilibrium analysis of dynamic models of imperfect competition[END_REF]. The existence results of such equilibrium are usually performed in two step: first, we should prove that given any policies chosen by opponents, π ´i, there is a unique solution V ‹ i psq; and then we prove that the static game has a Nash equilibrium for any state s. For the first step, the set of best response for player i is Π i pπ ´iq such that π ‹ i P Π i pπ ´iq if and only if for any π i and s P S,

V pπ ‹ i ,π ´iq i psq ě V pπ i ,π ´iq i
psq. And a Nash equilibrium is a collection of policies π " pπ 1 , . . . , π n q such that for each player i, π i P Π i pπ ´iq. And therefore, no player can do better when changing policies, when other players continue to use their own strategies.

Littman [START_REF] Littman | Markov games as a framework for multi-agent reinforcement learning[END_REF] used Q-learning algorithms for zero-sum stochastic games, with two players. More precisely,

V 1 psq " max π # min a 2 PA 2 # ÿ a 1 PA 1
πps, a 1 qQ 1 ps, aq ++ " ´V2 psq.

Erev and Roth [START_REF] Erev | Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria[END_REF] proved that in many games, a one-parameter reinforcement learning model robustly outperforms the equilibrium predictions. Predictive power is improved by adding a forgetting property and valuing experimentation, with strong connections with rationality concepts. In the context of games, [START_REF] Franke | Reinforcement learning in the el farol model[END_REF] applies the approach of reinforcement learning to [START_REF] Arthur | Inductive reasoning and bounded rationality[END_REF]'s El Farol problem, where repeatedly a population of agents decides to go to a bar or stay home, and going is enjoyable if, and only if, the bar is not crowded.

The main difficulty arising when several agents are learning simultaneously in a game is that, for each player, the strategy of all the other players becomes part of the environment. Hence the environment dynamics do not remain stationary as the other players are learning as they play. In such context, classical single agent based reinforcement learning algorithms may not converge to a targeted Nash equilibrium, and typically cycles in between several of them, see [START_REF] Hart | Uncoupled dynamics do not lead to nash equilibrium[END_REF]. As observed by Erev and Roth [START_REF] Erev | Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria[END_REF] or in a more general setting by [START_REF] Perolat | Actor-critic fictitious play in simultaneous move multistage games[END_REF], stabilizing procedures such as fictitious play ([START_REF] Robinson | An iterative method of solving a game[END_REF]) allows to reach Nash equilibria in some (but not all, [START_REF] Shapley | Some topics in two-person games[END_REF]) multi Agent learning setting. [START_REF] Elie | On the convergence of model free learning in mean field games[END_REF] observed that such property also extends to the asymptotic mean field game setting introduced by [START_REF] Huang | Large population stochastic dynamic games: closed-loop mckean-vlasov systems and the nash certainty equivalence principle[END_REF] and [START_REF] Lasry | Jeux à champ moyen. i -le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. ii -horizon fini et contrôle optimal[END_REF], where the size of the population is infinite and shares mean field interaction. Multi-Agent reinforcement learning algorithms still lack scalability when the number of agents becomes large, a weakness that mean field games asymptotic properties may hopefully allow to partially overcome.

Auctions and real-time bidding

The majority of online display ads are served through real-time bidding. To place an ad automatically, and optimally, it is critical for advertisers to have a learning algorithm that cleverly bids. [START_REF] Schwind | Dynamic Pricing and Automated Resource Allocation for Complex Information Services: Reinforcement Learning and Combinatorial Auctions[END_REF] did show that seeing the bid decision process as a reinforcement learning problem, where the state space is represented by the auction information and the campaign's real-time parameters, while an action is the bid price to set, was very promising. More recently, [START_REF] Dar | Bid optimization for broad match ad auctions[END_REF], [START_REF] Zhang | Optimal real-time bidding for display advertising[END_REF], [START_REF] Cai | Real-time bidding by reinforcement learning in display advertising[END_REF] or [START_REF] Zhao | Deep reinforcement learning for sponsored search real-time bidding[END_REF] use reinforcement learning algorithms to design a bidding strategy.

As pointed out by recent articles, the scalability problem from the large real-world auction volume, and campaign budget, is well handled by state value approximation using neural networks. [START_REF] Dütting | Optimal auctions through deep learning[END_REF] and [START_REF] Feng | Deep learning for revenue-optimal auctions with budgets[END_REF] suggested to use deep reinforcement learning (with deep neural networks) for the automated design of optimal auctions. Even if the optimal mechanism is unknown, they obtain very efficient algorithm, that outperforms more classical ones.

Oligopoly and dynamic games

As in the monopolistic case, the profit of firm i will depend on its investing strategies a i,t , the capital of firm i as well as competitors. Models of oligopoly with investment and firm entry and exit have been studied in Ericson and Pakes [START_REF] Ericson | Markov-perfect industry dynamics: A framework for empirical work[END_REF]. And in that framework, multiple equilibira are commonly observed, as proved in Doraszelski and Satterthwaite [START_REF] Doraszelski | Computable markov-perfect industry dynamics[END_REF]. The concept of experience-based equilibrium was introduced in Fershtman and Pakes [START_REF] Fershtman | Dynamic Games with Asymmetric Information: A Framework for Empirical Work*[END_REF], with possibly asymmetric information. Hence, firms use past payoffs to reinforce the probability of choosing an action. In that framework, agents explicitly construct beliefs, which is no longer necessary with reinforcement learning.

With adaptative learning, Marcet and Sargent [START_REF] Marcet | Convergence of least-squares learning in environments with hidden state variables and private information[END_REF][START_REF] Marcet | Convergence of least squares learning mechanisms in self-referential linear stochastic models[END_REF] proved that there was convergence to a rational expectations equilibrium. The reinforcement learning model is here similar to the previous one, there are no assumption about belief of opponents' strategies. Somehow, those algorithms are more related to evolutionary games. Brown [START_REF] Brown | Iterative solutions of games by fictitious play[END_REF] suggested that firms could form beliefs about competitors' choice probabilities, using some fictitious plays, also called Cournot learnning (studied more deeply in Hopkins [START_REF] Hopkins | Two competing models of how people learn in games[END_REF]). Bernheim [START_REF] Bernheim | Rationalizable strategic behavior[END_REF] and Pearce [START_REF] Pearce | Rationalizable strategic behavior and the problem of perfection[END_REF] added assumptions on firms beliefs, called rationalizability, under which we can end-up with Nash equilibria.

Maskin and Tirole [START_REF] Maskin | A theory of dynamic oligopoly, I: Overview and quantity competition with large fixed costs[END_REF][START_REF] Maskin | A theory of dynamic oligopoly, II: Price competition, kinked demand curves, and edgeworth cycles[END_REF] considered the case where two firms compete in a Stackelberg competition: they alternate in moving, and then commit to a price for two periods, before (possibly) adjusting. They did observe cycles and tacit collusion within the two firms. Such a result was confirmed by Kimbrough and Murphy [START_REF] Kimbrough | Learning to collude tacitly on production levels by oligopolistic agents[END_REF] and Waltman and Kaymak [START_REF] Waltman | q-learning agents in a cournot oligopoly model[END_REF]. The later studied repeated Cournot games where all players act simultaneously. They study the use of Q-learning for modeling the learning behavior of firms in that repeated Cournot oligopoly games, and they show that Q-learning firms generally learn to collude with each other, although full collusion usually does not emerge. Such a behavior was also observed in Schwalbe [START_REF] Schwalbe | Algorithms, Machine Learning, and Collusion[END_REF] where self-learning price-setting algorithms can coordinate their pricing behavior to achieve a collusive outcome that maximizes the joint profits of the firms using them.

Applications in Finance

The dynamic control or hedge of risks on financial markets is a natural playground for the use of reinforcement learning algorithms. In the literature, dynamic risk management problems have been extensively studied in model-driven settings, using the tools from dynamic programming either in continuous or discrete time. In such framework, reinforcement learning algorithms naturally opens the door to innovative model-free numerical approximation schemes for hedging strategies, as soon as a realistic financial market simulator is available. Such simulator may typically incorporate market imperfections and frictions (transaction costs, market impact, liquidity issues...). In the following sections, we detail more specifically recent applications on three topics of interest in such context: pricing and hedging of financial derivatives, optimal asset allocation and market impact modeling.

Risk management

The valuation and hedging of financial derivatives are usually tackled in the quantitative finance literature using model-driven decision rules in a stochastic environment. Namely, for given model dynamics of the assets on a financial market, pricing and hedging of a derivative boils down to solving a dynamic optimal control problem for a well chosen arbitrage free martingale measure. The practical hedging strategy then makes use of the so-called Greeks, the sensitivities of the risk valuation to the different parameters of the model.

Such analysis usually lacks efficient numerical approximation methods in high dimensional settings, as well as precise tractable analytical solutions in the presence of realistic market frictions or imperfections. In the spirit of [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF] , [START_REF] Buehler | Deep hedging[END_REF] introduced the idea of using reinforcement learning based algorithm in such context, see also [START_REF] Fécamp | Risk management with machine-learning-based algorithms[END_REF]. Let consider given a realistic simulator of the financial market possible trajectories. We can encompass the price and/or hedging strategy of the financial derivative in a neural deep network (or any other approximating class of function), and train/estimate the approximating function in a dynamic way. At each iteration, we measure the empirical performance (i.e. loss) of the hedging strategy obtained on a large number of Monte Carlo simulations, and update its parameters dynamically using any typical reinforcement learning algorithm. In particular, such approach allows to encompass scalable high dimensional risk dynamics as well as realistic market frictions or hedging using a large number of financial derivatives.

The design of the market simulator of course requires model-driven assumptions, such as the choice of a particular class of volatility models, as well as its calibration. Nevertheless, we can mention recent attempts on the design of model free financial market simulator based on generative methods, such as the one developed e.g. in [START_REF] Wiese | Deep hedging: learning to simulate equity option markets[END_REF][START_REF] Wiese | Quant gans: deep generation of financial time series[END_REF].

Portfolio allocation

In a similar manner, the design of dynamic optimal investment strategy naturally falls into the scope of reinforcement learning type algorithms. Such observation goes back to [START_REF] Moody | Learning to trade via direct reinforcement[END_REF] and has developed a growing interest in the recent literature [START_REF] Deng | Deep direct reinforcement learning for financial signal representation and trading[END_REF]8]: Classical Mean-variance trade-off in a continuous time setting is for example revisited in [START_REF] Wang | Continuous-time mean-variance portfolio optimization via reinforcement learning[END_REF] using such viewpoint. Being given a financial market simulator together with choices of return and risk measurement methods written in terms of running or terminal rewards, one can learn optimal investment strategies using typical reinforcement learning algorithms.

One could argue that such algorithms for portfolio allocation may often be reduced to less sophisticate online or bandit type learning algorithms [START_REF] Li | Online portfolio selection: A survey[END_REF]. Such argumentation does not remain valid in the more realistic cases where the investor has a significant impact on the financial assets dynamics, as discussed in the next section.

Market microstructure

When trades occur at a very high frequency or concern a large volume of shares, buying and selling orders have an impact on the financial market evolution, that one can not neglect. It modifies the shape of the order book, containing the list of waiting orders chosen by the other traders of the market. Being given a realistic order book dynamics simulator (or using the financial market as such), one can optimize using Reinforcement Learning algorithms the dynamic use of market and limit orders, see [START_REF] Spooner | Market making via reinforcement learning[END_REF][START_REF] Guéant | Deep reinforcement learning for market making in corporate bonds: beating the curse of dimensionality[END_REF][START_REF] Baldacci | Market making and incentives design in the presence of a dark pool: a deep reinforcement learning approach[END_REF]. The environment is given by the current order book shapes while the state typically represents the inventory of the trader, on a possibly high-dimensional financial market.

Such framework is with no doubt a perfect fit for reinforcement learning algorithms. Nevertheless, a finer modeling perspective should take into account that the order book dynamics result from the aggregation of other traders actions, i.e. buy or sell orders. Hence, as observed e.g. in [START_REF] Ganesh | Reinforcement learning for market making in a multi-agent dealer market[END_REF][START_REF] Vyetrenko | Risk-sensitive compact decision trees for autonomous execution in presence of simulated market response[END_REF], such setting is more precisely described as a multi-agent learning problem, as the one described above in Section 6.4.2.2.

The practical use of reinforcement based learning algorithms on financial markets suffers two main drawbacks. The first one is the difficulty to create a realistic financial market simulator, together with the necessity to create a robust optimal trading strategy, in response to the differences between the real market and the virtual one. The second and main one is the lack of stationarity of the financial dynamics, which hereby do not allow to apply efficiently on future market dynamics, the investment strategies learned on the past market data points. Besides, the aggregate use of model-free approaches combined with hardly interpretable black box output policy shall inevitably lead to hardly controllable financial market dynamics.

Conclusion

Deep Reinforcement learning is nowadays the most popular technique for (artificial) agent to learn closely optimal strategy by experience. Majors companies are training self driving cars using reinforcement learning (see [START_REF] Folkers | Controlling an autonomous vehicle with deep reinforcement learning[END_REF], or [START_REF] Kiran | Deep reinforcement learning for autonomous driving: A survey[END_REF] for a state-of-the-art). Such techniques are extremely powerful to models behaviors of animals, consumers, investors, etc. Economists have laid the groundwork for this literature, but computational difficulties slowed them down. Recent advances in computational science are extremely promising, and complex economic or financial problems would benefit from being reviewed in the light of these new results.

Nevertheless, algorithms perform well assuming that a lot of information is available. More importantly, as the exploration may represent a very large number of possibilities, the use of deep reinforcement learning algorithms rapidly requires very important computer power. In finance, despite the lack of stationary of the market, it is worth noting that these algorithms begin to be quite popular.

Chapter 7

Expert Aggregation for Financial Forecasting

This chapter is based on the pre-print Remlinger et al. (2022).

Machine learning algorithms dedicated to financial time series forecasting have gained a lot of interest over the last few years. One difficulty lies in the choice between several algorithms, as their estimation accuracy may be unstable over time. Aggregation combines a finite set of forecasting models, called experts, without making assumptions about the models and dynamically adapts to market conditions. We apply expert aggregation to the construction of long-short strategies, built from the individual stock return forecasts. The online mixture outperforms individual algorithms in terms of both portfolio performance and stability. Extensions to both expert and aggregation specializations are also proposed and improve the overall mixture on portfolio evaluation metrics.

Introduction

Many data science techniques have been tested out to improve traditional techniques in the finance field over the last few years. The promise of modern machine learning being, among others, to address the issues of the high dimension flaw and consider broader class of functions. For instance, on the credit risk side, [START_REF] Khandani | Consumer credit-risk models via machinelearning algorithms[END_REF][START_REF] Butaru | Risk and risk management in the credit card industry[END_REF] use regression trees to forecast consumer delinquencies or defaults and [START_REF] Sadhwani | Deep learning for mortgage risk[END_REF] consider neural networks for mortgage risk. On the portfolio construction side, [START_REF] Moritz | Tree-based conditional portfolio sorts: The relation between past and future stock returns[END_REF] use tree-based techniques to classify stock returns and build portfolios accordingly, while [START_REF] Heaton | Deep learning for finance: deep portfolios[END_REF] tackle the portfolio selection problem by using deep neural networks. Other works focus on the prediction of time series of interest and aim to consider larger classes of models in this task. For example, [START_REF] Rapach | International stock return predictability: what is the role of the united states?[END_REF] use lagged U.S. stock market returns and take advantage of LASSO models to forecast global stock returns. [START_REF] Hutchinson | A nonparametric approach to pricing and hedging derivative securities via learning networks[END_REF][START_REF] Yao | Option price forecasting using neural networks[END_REF] consider a non-parametric approach with neural networks to forecast derivatives prices. [START_REF] Freyberger | Dissecting characteristics nonparametrically[END_REF] use adaptive group LASSO to select characteristics and to forecast expected returns. [START_REF] Kozak | Shrinking the cross-section[END_REF] use shrinkage and construct a robust stochastic discount factor. [START_REF] Rasekhschaffe | Machine learning for stock selection[END_REF] explores how machine learning models can improve stock return forecasts while avoiding over-fitting. Finally, [START_REF] Gu | Empirical asset pricing via machine learning[END_REF] compare the performance of thirteen different machine learning techniques including neural networks, random forest, or linear models to forecast stock returns and constitute portfolios from the predictions.

However, these models come with their hyper-parameters and it is not straightforward to choose which model and which hyper-parameters to select in which context. Moreover, an algorithm may outperform another during specific time periods only. Given the large number of possible forecasting models, [START_REF] Littlestone | The weighted majority algorithm[END_REF][START_REF] Vovk | Aggregating strategies[END_REF] introduce one successful approach to avoid the choice of a unique model. Instead, the aggregation of experts mix up all the available forecasters, called experts, with the help of sequential decision techniques. The idea of mixing models in a supervised learning procedure has also been proposed with Gated Mixture-of-Experts [START_REF] Jacobs | Adaptive mixtures of local experts[END_REF], but divides the problem space between the experts. These ensemble methods are composed of several distinct networks that must each learn on a subset of the training set, and allow specialization on the partition of the problem space.

The aggregation, as for it, only considers the predictions of the experts and does not make any assumptions about the models. The resulting mixture is updated continuously when data becomes available. This is a desirable feature in non-stationary environments as it allows to reconsider at each time step what is the best estimators. The framework is also a way to meet the challenge of tuning hyper-parameters, by considering every possible models in a single approach. The aggregation has been tested out in daily electric load curve forecasting, where the best linear combination and the best convex combination perform better than the original set of experts [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF]. In this case, the historical French electricity provider EDF has investigated successfully a manner to combine several forecasting models independently developed within the company for years, all at a low computational cost.

Aggregation with expert advice has the advantage of considering several forecasters instead of one, keeping the knowledge of each expert across time. It benefits from theoretical results on optimal regret bounds and reduces the average forecast excess risk. These properties are one of the reasons why sequential aggregation procedures have been intensively studied in recent years. [START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF][START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF][START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF][START_REF] Berrisch | Crps learning[END_REF]. Moreover, several refinements can be used to improve the global aggregation at a very low cost, such as adding new experts which are slight variations of high-quality experts in the mixture. The book by Cesa-Bianchi and Lugosi [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF] offers an in-depth introduction to this approach. Besides, there exists a R package for expert aggregation OPERA [START_REF] Gaillard | Package 'opera[END_REF].

In this paper, the aggregation of expert is proposed to build portfolios, assuming that each strategy is an expert. A finite set of forecasting machine learning algorithm has to forecast one-month-ahead stock returns from large dataset of financial characteristics. Portfolios are reconstituted based on a decile sort of the stocks according to each model's forecasts. Then, zero-net-investment portfolios are built by buying the highest expected return stock decile and selling the lowest. Finally, the aggregation provides online a convex combination of the set of long-short strategies by assigning each month a weight to each expert according to its accuracy. By weighting dynamically portfolios the mix-ture decreases the mean mixture excess risk, ensuring that on average the aggregation forecasting loss is close or better than the one of the best expert.

To our knowledge, this is the first application of online expert aggregation for financial forecasting. This paper aspires to contribute to the expanding literature testing the application of machine learning techniques to portfolio management, by using an adaptive mixture of several models and applying it to long-short strategies. The contribution is plural. First, a method is proposed without the need for hyper-parameter optimization or intensive computation. The method is also tractable, the analysis of the weights is straightforward and highlights the accuracy or errors of a given model over a certain period of time, and allows the identification of market regime changes. The aggregation ponders directly the outputs of the experts, allowing to consider blackbox models or any custom forecasting algorithm. The performance of the aggregated strategy is compared with previous academic results proposed by [START_REF] Gu | Empirical asset pricing via machine learning[END_REF], where thirteen machine learning experts are considered. Note that, in practice, the mixture can handles dozen of experts [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF]. Finally, expert and aggregation specializations are proposed in order to improve the global mixture. An expert outperforming the aggregation gives the opportunity to increase the initial set of experts with additional models derived from this best expert. There exists many methods to create new models, this paper explores the bagging approach. In the same spirit, studies are introduced to refine the aggregation by applied on data subset or pre-training the rule on a given period.

The aggregation rule describes how weights are assigned to each expert in the time. The chosen rule is the state-of-the-art Bernstein Online Aggregation from [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. The rule benefits of a second order refinement and of solid theoretical results about its convergence and regret bounds. The considered dataset includes a large collection of 30,000 stocks over the 1957-2016 period. For each stock, 94 characteristics (size, momentum,...) are used by the forecasting algorithms to estimate next month returns. The online mixture may improve the portfolio return if the set of experts is sufficiently heterogeneous, and systematically reduce the risk. The aggregation provides an annual Sharpe ratio of 2.82, higher than the best expert (a neural network) with 2.74, while having a maximum monthly loss of 7%, more than twice as low as that same best expert (16%). The skewness of the mixture returns reaches 3.11 while the neural networks are capped at 2.40, and kurtosis is at 19.63 when the best expert is 19.56. Eventually, the asset turnover is not affected by the mixture process, and stay close to the expert ones at 120%. If a specific neural network can be more profitable than the mixture on the out-of-sample testing period in terms of cumulative log returns, tests show that more robustness is possible with online aggregation, in a flexible manner that is not computationally costly.

The paper is organized as follow: Section 7.2 describes the model of aggregation with expert advice. Section 7.3 presents data and first empirical results on individual experts' portfolio strategies. Section 7.4 is dedicated to expert aggregation portfolio construction.

Methodology

Given the large number of prediction algorithms, two questions may arise: is there one algorithm that is always more accurate than the others? And if not, how to take advantage of all the algorithms? In this section, aggregation that learns to build an optimal combination of prediction experts is described. First, some notations are introduced, then expert aggregation is applied for portfolio construction.

Expert Construction

A set of forecasting algorithms, called experts, estimate independently the next value of a given sequence. A set of observations D t " tpx 1 , y 1 q, ..., px t , y t qu is given where y t indicates a bounded value on R and x t P R d is a vector. An expert k at t is a function f k t : R d Þ Ñ R providing a forecast f k t px t`1 q that has to be as close as possible to y t`1 . The forecasts are obtained element by element by learning the (assumed) relationship between the input space R d and a bounded subset of R. An online expert f k is a sequential algorithm that produces at each time t ě 1 an expert f k " pf k 0 , f k 1 , f k 2 , . . .q. The relevance of the expert's forecast is measured at each time step t `1 by a convex loss function : R ˆR Þ Ñ R `(mostly the squared loss). The loss suffered by an expert at t `1 between the expert's forecast f k t px t`1 q and the true value y t`1 is denoted k,t`1 . An expert is all the more accurate as soon as it has a low cumulative empirical error 1 T ř T t"1 py t`1 , f k t px t`1 qq estimated from the past realizations. In the empirical test Section 7.3.2, forecasting experts cover algorithms such as linear regression, tree based-models or neural networks. Their descriptions are given in Appendix 7.5.3.

Expert Aggregation

Aggregation of experts is a sequential forecasting framework mixing several expert advice [START_REF] Cesa-Bianchi | Prediction, learning, and games[END_REF]. The algorithm provides as forecast a convex combination of the outcomes from a finite set of experts, where the weights are set according to a chosen rule 1 . Aggregation allows to consider different classes of forecasting models in a robust and deterministic approach.

Mathematical Context

The mixture considers only the predictions of the experts, allowing to combine blackbox models or with any custom forecasting algorithm in a single approach. The aggregation procedure makes no assumption on the data and is supported by strong theoretical results ([START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF][START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]). There is no need to optimize its hyper-parameters (mostly learning rate) as most aggregation rules calibrate them online.

Let be f 1 , ..., f K K online experts providing bounded estimations f k " pf k t q tě0 (so that losses are bounded as well). Aggregation aims at finding optimal online convex combination:

f w " K ÿ k"1 w k f k " ˜K ÿ k"1 w k,t f k t ¸tě0
with weights w k,t P S where S is a closed and bounded subset of R K . In the following S " tw k P R K `, ř K k"1 w k " 1u. The performance of online aggregation procedures is measured using the average error ř tě1 t`1 where t`1 " py t`1 , f wt px t`1 qq is the loss at t between the mixture f wt px t`1 q and the value y t`1 to be predicted. The better the estimates, the lower the average error, but the goal is to minimize this average error while keeping a small regret.

The regret [START_REF] Freund | Using and combining predictors that specialize[END_REF] compares a given online aggregation procedure with the best possible weight expert combination in the sense of minimizing the loss. This optimal deterministic aggregation rule is called the oracle. The regret is defined by at time T :

R T " 1 T T ÿ t"1 py t`1 , f w,t px t`1 qq ´inf uPS # 1 T T ÿ t"1 py t`1 , f u,t px t`1 qq + ,
where the first term is the average error of the mixture and the second term is the approximation error. The average error gives the accuracy of aggregation's forecasts, while the second term quantifies how the aggregation rule retrieves the best possible mixture. The approximation error is closely related to the expert accuracy and decreases with larger heterogeneity of the experts. However, increasing the size of the set S complicates the ability of the aggregation to outperform the best experts. By minimizing regret, one seeks to avoid sub-optimal aggregations and thus reduce the number of actions taken where, in hindsight, a better choice would have been possible. These choices, i.e. the weights assigned to each expert, are directed by a given policy, called rule.

Most of the aggregation rules, in particular the one used in this paper, ensure that the regret converges to zero when T goes to infinity, so we focus on reducing the approximation error. One can refer to [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF] and [START_REF] Stoltz | Incomplete information and internal regret in prediction of individual sequences[END_REF] for further details.

Aggregation Rules

Aggregation rules determine how weights are assigned to each expert and depend on a learning rate parameter η ą 0. The weighting is deterministic and needs all expert forecasts at each instant2 . The learning rate, which is preferably tuned online, guides the aggregation rule behavior. Having a high η leads to follow the best expert, while a lower rate leads the mixture to a uniform distribution and more conservative.

Many rules are proposed by the literature and differ from an application to another. For instance, [START_REF] Littlestone | The weighted majority algorithm[END_REF] and [START_REF] Vovk | Aggregating strategies[END_REF] propose to use Exponentially Weighted Average (EWA), an online convex aggregation rule allowing rough changes in the weights allocation. Multiple Learning rate (ML Poly) has its own learning parameter calibration rule which is faster than the empirical tuning described by [START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF]. Other possible rules include the Fixed Share forecaster (FS) which competes not only with the best fixed expert but with the best sequence of experts or Ridge which allows non-positive weights and non-convex combinations ([START_REF] Azoury | Relative loss bounds for on-line density estimation with the exponential family of distributions[END_REF][START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF]).

In this paper, two different aggregation rules are considered: uniform mixture (UNI), which assigns constant 1{K weights to each expert along the testing period, and Bernstein Online Aggregation (BOA [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]). At first sight, aggregating uniformly is not an optimal choice and is used as a benchmark. BOA is an adaptive rule and benefits from a faster rate of convergence than other adaptive rules. BOA procedure is reported in Algorithm 10.

At each date t, BOA assigns a new weight at each expert according to its accuracy and compared to the other forecasters. To do so, BOA rule considers the following loss k,t`1 " py t`1 , f k,t px t`1 qq ´řt s"1 py s`1 , f w,s px s`1 qq. Given t " p 1,t , . . . , K,t q the losses suffered by each expert at each instance t, BOA procedure assigns to expert k the weight:

w k,t " expp´η k,t p1 `η k,t qqw k,t´1 ř t´1 s"1 expp´η s p1 `η s qq .
The learning rate η is optimally tuned in the adaptive BOA process and ensures minimizing regret with the fast rate of convergence logpKq{T in deviation. The second order refinement 2 k,t penalizes more the error of the experts (or the mixture) and is also designed to stabilize the weight allocation. For further details see [START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF].

Algorithm 10 Bernstein Online Aggregation with learning rate (BOA) Require: Weights w k,0 ą 0 such as ř K k"1 w k,0 " 1 and parameter learning rate η ą 0 for each t " 1 : T , compute the weight vector w t do w k,t " expp´η k,t p1 `η k,t qqw k,t´1 ř t´1 s"1 expp´η s p1 `η s qq end for

Application to Portfolio

The previously described aggregation method is applied to portfolio construction. In a first step, a set of experts has to forecast one-month-ahead asset returns. Stocks are then sorted according to their expert's prediction, allowing to build two portfolios (stocks to be invested or shorted) for each expert. In a second step, the expert portfolios are aggregated based on the strategy returns, building an adaptive convex combination of the family of portfolios.

Expert Portfolios

These stocks return estimates are used to design long-short strategies. For each expert, stocks are sorted each month according to their return forecast. Two zero-netinvestment portfolios are thus defined, one long and one short, which consists in buying 10% the assets having the highest estimated returns and selling 10% of the assets having the lowest estimated returns. In the following, if not precised, the portfolios studied are considered equally weighted because the forecasting algorithms learn to minimise the forecast errors regardless the size of the stock. However, as value weighted portfolios are less sensitive to illiquidity of small market capitalization assets, value weighted portfolios are also provided as baseline in most of the studies.

A natural approach would be to build the zero-net portfolio on aggregation's stock return forecasts, instead of aggregate portfolio's returns. However, by buying the first decile (stocks having the highest return forecast) and selling the last one (lowest return forecast), experts having low prediction accuracy but which are accurate in the asset's return sorting may perform well. Because the final goal is to improve portfolio performance and not return forecast accuracy, the online mixture is applied directly on portfolio returns. Empirically, aggregation of experts based on stock returns provides lower performance on portfolio metrics. As provided in Appendix, the %R2 of forecasts are significantly low (as the results reported in [START_REF] Gu | Empirical asset pricing via machine learning[END_REF]) and a slight forecasting improvement does not necessarily leads to better Sharpe ratio for instance. On the contrary, the R2 heatmap in Figure 7.6 and the annual return heatmap in Figure 7.7 provided in Appendix report that the significant R2 drop of neural networks on the 2005-2008 period does not result in a drop in yields over the same period.

Aggregation of Expert Portfolios

In order to apply aggregation procedure on portfolio returns, one need to compare each expert's strategy to the best possible strategy, the target. The target is the portfolio returns obtained by being ubiquitous, and should not be confused with the best possible mixture of experts called oracle discussed in Section 7.2.2. The strategy return at t of the target is denoted r t and is obtained by buying the realized first decile stocks and selling the realized last decile stocks at each instant. The target strategy pr t q tě0 is determined with the returns from the forecaster which always predict exactly the next asset return. We denote r k t " f k px t q the portfolio return of an expert k at month t, where f k is the long-short strategy built from the stock return predictions of the selected realized decile returns x t .

The aggregation framework provides a convex combination that maximize the portfolio returns. In practice, the error between the best possible strategy (the target) with the online mixture is minimized for a given loss. Expert strategies are compared by minimizing the loss t between returns of the target r t and the strategy mixture r t . At each date, aggregation assigns a weight w k t to each expert strategy of return r k t with respect to the aggregation rule in order the minimize its error t . Two aggregations are applied, one for long strategy returns and another for short strategies. Best long experts are not necessarily the same at each instant as the short ones. Using different aggregations is a way to ensure that weights are assigned more accurately and to take advantage of different experts at any given time. The returns of the long aggregation portfolios are then subtracted from the returns of the short portfolios in order to construct the long-short aggregation strategy, by constructing either equally weighted or value weighted portfolios.

Empirical Results

The same forecasting methodology as [START_REF] Gu | Empirical asset pricing via machine learning[END_REF] is proceed, regarding data construction, forecasting windows and experts parameters, in order to light out how aggregation performs next to each single machine learning experts. The dataset and the features used as predictor variables are detailed in this section, then a focus is provided on the thirteen experts considered and their construction. Finally, the empirical results on long-short strategies are reported.

Data

Data comes from Wharton Research Data Services ([373]), including CRSP and Compustat database, and contains more than 30,000 stocks over 1957-2017 period. The firm characteristics of [START_REF] Gu | Empirical asset pricing via machine learning[END_REF] are used as features to feed the different forecasting algorithms.

Although their eight macroeconomic predictors are omitted as well as the interactions between stock-level characteristics and macroeconomic state variables (leading to 920 variables), our benchmark results are essentially the same and detailed in Table 7.11 in Appendix. The set of features includes only the 94 characteristics, such as momentum or stock size, and are detailed in Appendix. Twenty among these features are updated monthly, 13 updated quarterly and 61 updated annually.

As done in [START_REF] Gu | Empirical asset pricing via machine learning[END_REF][START_REF] Freyberger | Dissecting characteristics nonparametrically[END_REF], cross-section rank transformation is done on all firm characteristics for each month and maps these ranks into the r´1, 1s interval. Missing data are replaced by their cross-sectional median. In order to avoid forward-looking bias (information at month t is only known at month t `1 for monthly characteristics, t `4 for quarterly and t `6 for annual ones), monthly variables are delayed by one month, quarterly data by four months, and annual data by 6 months.

Expert Description

The monthly return of stock i P t1, . . . , N u at time t P t1, . . . , T u is denoted y i,t . A stock is characterised by P features (e.g. stock characteristics such as size, value, momentum, etc.) denoted z i,t " pz p1q i,t , . . . , z pP q i,t q. Each month t, and for each stock i, an expert g k θ of parameter θ is fed with the P features to forecast the next expected return ŷk i,t " g k θ pz i,t q. In the aggregation formulation, data become available at a sequential order. However, due to computationally intensive forecasting procedures, the experts are re-calibrated each year (and not each month t). For each expert, a unique model is shared for all stocks: the forecasting function g k θ depends neither on individual stocks i nor on month t. This means that the model stays the same function across different stocks and over the training period. This avoids the intensive computational cost of forecasting each month or for each asset, tends to stabilize return estimates of individual assets and follows the same methodology as [START_REF] Gu | Empirical asset pricing via machine learning[END_REF]. Note that the forecasting experts are not strictly online, but their associated portfolios are, and meet online aggregation framework. The thirteen experts used in this paper are described in Table 7 All experts are trained with the mean squared error between the observed and the estimated stock returns, except for experts followed by "+H" that indicates the use of Huber loss defined in Appendix. Huber loss minimises the squared loss when residuals are below a (optimized) parameter and is the absolute loss above this given threshold. Huber is thus robust to outliers while not ignoring their effects.

Individual experts forecasting performance are reported in Table 7.5 in Appendix. The accuracy of three basic forecasting benchmarks are also provided in Table 7.11 in Appendix based on three ordinary least squared regressions with respectively 3, 7 or 15 variables, following [START_REF] Lewellen | The cross section of expected stock returns[END_REF] recommendation. From the stock return predictive R2 scores, one can observe that neural network advantage over linear regression with Huber loss is not decisive. Moreover, even if their accuracy is obviously convincing at certain periods of time, neural networks and random forest experts suffer from large forecasting errors on other periods compared to linear models. These unstable scores complicate the choice of the most appropriate expert and light out why expert aggregation is appealing.

Expert-based Strategy Performances

The returns predictions of the experts are used to sort stocks by deciles. From this sorting, portfolios are then built by being long of the highest decile assets and short of the lowest decile.

Table 7.2 reports the high-minus-Low portfolios (H-L) performances for all experts on the out-of-sample testing period. The annualized returns are correlated with experts complexity in both equally and value weighted cases, expecting for the experts OLS+H which provides performance close to that of the neural networks. This is a notable distinction from the results of Gu, Kelly, and Xiu where OLS+H is significantly outperformed by tree-based models and neural networks. These average realized returns generally increase monotonically decile by decile for every algorithms, as reported in Appendix with Table 7.6 for equally weighted portfolios and Table 7.7 for value weighted.

Strategy performances are consistent with forecast accuracy results, the best realized H-L portfolio returns are the neural network ones. Neural networks outperform the others experts with an annual SR always greater than 2.20. The expert NN2 dominates the other algorithms with a realized monthly return of 4.20% on equally weighted portfolio and 3.11% on value weighted, leading to an annual Sharpe ratio of 2.74 and 2.71 respectively. Linear models ENet+H and GLM+H seem to give relatively effective strategy with an annual SR being 1.77 and 1.81 respectively, very close to experts based on dimension reduction (PLS 1.85 and PCR 1.78). Tree-based models GBRT+H and RF have annual SR of 1.71 and 1.96 respectively, carried by a low volatility. Surprisingly, OLS+H proposes a comparable annual SR (2.28) as neural networks. While, at first sight, the model is not fitted for high-dimensional data and is restricted to linear functions, when considering long-short strategy OLS+H competes with model having larger functional transformations. OLS3+H is limited to stock-level information and is the only expert having an annual SR near 1.00.

Aggregation of Portfolio Strategies

An empirical study shows how aggregation of strategies based on forecasting experts can enhance portfolio performance and adapt to changing market conditions. Then, specialized aggregations are presented and consist in taking advantage of the simplicity and efficiency of the framework to improve the mixtures based on specific training. Finally, a study on the importance of the experts in the aggregation and description the expert specialization is held.

Expert Aggregation Performance

The BOA rule described in Section 7.2.2.2 is considered, minimizing the square loss between portfolio returns, including the K " 13 strategy experts detailed in Table 7.1, and the target portfolio returns. The resulting portfolio is called Portfolio Bernstein Online Aggregation (PtfBOA). By dynamically weighting long and short strategies, one can expect to retrieve (at least) the best expert's portfolio returns and reduce risk of betting on only one (possibly wrong) expert. The uniform mix of portfolios is denoted PtfUNI and is used as a baseline.

Portfolio statistics Table 7.3 reports several portfolio-related metrics whose definitions are precised in Appendix. Very interestingly, the aggregation decreases the volatility by averaging all expert strategies, while allowing similar annualized returns as the best expert NN2. These results should be put in perspective with the fact that the aggregation model does not directly optimize these indicators, but only considers the PtfBOA's skewness (3.11), kurtosis (19.63) and maximum monthly loss (0.08) shows that aggregation brings a significant improvement to classical machine learning techniques. For instance, NN2 skewness reaches 2.27 and its kurtosis drops at 13.94, while the lowest maximum monthly loss among experts is 0.13 for OLS+H. All long-short strategies have closed results in terms of turnover, around 120%, apart from Random Forest (92%). As the aggregation turnover is inherited from the expert behavior aggregation does not degrade it. The online aggregation appears to perform well on annualized average returns and risk criterion while being able to outperform the experts on the other portfolio metrics such as annual Sharpe ratio. In particular, the aggregation tends to be more robust.

Figure 7.1 shows cumulative log returns of both long and short strategies alongside the weights of PtfBOA. The adaption portfolio aggregation is the second best profitable model on both long and short strategies. The best long model stays NN2 on all the testing period in terms of cumulative returns. Ordinary Least Square regression with Huber loss (OLS+H) is the most efficient expert for short strategy until 2002 after which NN2 takes the lead. The performance spread between PtfBOA and PtfUNI is significant, this encourages the adoption of online-adaptive mixture. Weights analysis When focusing on the weights of the thirteen expert strategies in Figure 7.1, a transition phase on the first months is observed. This phase highlights how aggregation proceeds: starting with uniform weights, the mixture quickly converges and favors the best experts (neural networks and OLS+H). NN1 and NN2 share 65% of the weight on average over the test period. Yet the linear OLS+H model takes a large part of the mix until 2001. Aggregation weights are stable from 1992 to 2001, where a regime breakout drops OLS+H importance for the benefit of neural networks. The 2009 crisis strikes every expert's performances, however the crisis has small influence on the weights of neural networks. This is explained by the fact that neural networks still manage to get high average returns on this specific period (Figure 7.7 in Appendix). Over the entire testing period, expert weights seem to follow a stationary regime before year 2000 and then another one from 2001 until 2016. Aggregation adapts quickly its weights accordingly with 2001 rupture and thus ensures to be a robust and profitable strategy. Due to the long stationary periods and the recurrent profitability of some experts, the portfolio returns encourage the mixture to follow the leading expert, and not to consider the best convex combination. to 20% of the time on the testing period, followed by OLS+H with 16%. However, OLS+H is often a less profitable expert with a significant proportion of low ranks (from 6 to 12). Nevertheless, if the five neural networks (over thirteen experts) and BOA portfolios represent more than the half of the overall area on the top 3 ranks, the other experts manages the other (small) half. Again, the neural network domination is not decisive and aggregation is a way to benefit of every models. In particular, aggregation provides consistently one of the top 3 annual SR, where those of NN2 or OLS+H are more disparate. However, despite illustrating the distribution of experts for each rank, note that the figure does not tell how close the Sharpe ratios are between two ranks.

Distribution of best portfolios

Conclusion

Here, the aggregation is not necessarily looking for the best heterogeneous mixture, but the best expert. The aggregation seems to be an efficient portfolio manager, adaptive and interpretive. Indeed, aggregation provides average returns closed to the highest expert with a limited risk, leading to the highest annual Sharpe ratio among the different tested strategies. Besides, the mixture reduces drastically the maximum monthly loss compared to the best experts (mostly neural networks) and does not impact the portfolio turnover.

Specialized Aggregation

A strong advantage of the aggregation lies in the way in which forecasts are considered directly. Alternative aggregations are proposed either to specialize on particular portfolios (Section 7.4.2.1) or in order to improve the global mixture (Section 7.4.2.2).

Aggregation on Sub-portfolio

Aggregation on sub-portfolios focuses on the top and bottom 1000 market capitalization assets. Depending on the market capitalization, some experts provide more profitable strategies. The aim is to report how the mixture improves sub-portfolios returns compared to expert's strategies or the global aggregation on all stocks. Only forecasts of assets from top (or bottom) 1000 market capitalization are selected, then a long-short strategy is proceed as described in Section 7.2.3.2 on which BOA is applied. Table 7.4 reports the annual Sharpe ratios of experts and aggregation-based strategies on the market capitalization selection. On the one hand, OLS+H is able to provide the highest annual SR (0.94) among the experts in the Top 1000 case, especially NN2 (0.76). On the other hand, NN1 describes more accurately low capitalization assets which leads to an annual SR at 2.57, very closed to NN2 with 2.56. However, PtfBOA outperforms every experts in each case with an annual SR of 0.95 in the top 1000 case and 2.59 with the bottom 1000 market capitalization. The naive constant weighting PtfUNI provides the highest annual SR value in the bottom 1000 case with 3.07. This could be explained by the strong volatility of little market capitalization which can pull down a given expert, where the uniform mixture muffles the portfolio return losses. Depending on the size of the stock considered, experts do not perform in the same way and the mixture adjusts its weights accordingly.

Pre-trained Aggregation

At initialization, expert's weights are uniformly set (at 1/K with K=13 the number of experts) and are then updated accordingly to BOA rule and their return losses. In order to speed up weight convergences, one can pre-train the online mixture on 1-year from the validation set, namely the year 1986. Thus, in the first year of the out-of-sample testing set (1987) the aggregation benefits from a prior. The pre-trained PtfBOA gives on average a lower returns than neural networks NN2 with tight results around 2.5%. However, the BOA rule significantly improves the average yields compared to the naive uniform mixture (1.4%) and experts that are not neural networks, all below 1.5%. Looking at cumulative returns, PtfBOA is the second best portfolio, slightly overtaken by NN2, but appears more resilient in crisis period such as 2001. The boxplot shows how the experts are distributed on average over the test period, while the graph on the right reports the behavior of the weight at each date. The BOA mixture starts by giving more importance to OLS+H and NN2, therefore converge faster to the first stationary regime. The retained experts however remain the same: OLS+H and neural networks dominate the mixture.

Pre-training enables to converge faster. Adding some prior information seems to be beneficial for the mixture, which (slightly) improves its portfolio performances compared to the standard aggregation. Additional statistics of the pre-trained aggregation are reported in Table 7.8 in Appendix.

Expert Importance and Specialization

Expert Importance To emphasise the expert's importance in the aggregation, the variation of several portfolio performance indicators are calculated when dropping each expert individually from the mixture. The four criterion are the annualized average return, the annualized volatility, the Sharpe ratio and the last date of the cumulative log return. Expert importance is normalized to sum to one and can be found in Figure 7.4. As already noticed, the influences of OLS+H and NN2 are significantly profitable in the mixture. The aggregation decreases its profitability if one these models is dropped out, and cannot be compensated by the other experts or any convex combination of them. Dropping OLS+H from the aggregation leads to higher variance, as annualized volatility graph illustrates. That is why the linear expert has such strong influence on the Sharpe ratio: OLS+H seems to be a stable expert on which the mixture can rely on average. This is unexpected as linear models in high dimension can be sensitive to over-fitting. In the opposite, the importance of NN2 lies on its return performances, at a higher volatility cost. These results lead to search how a variation of OLS+H or NN2 predictions could affect the global mixture. Expert Specialization A portfolio alone can give on average on the testing period a better return than the aggregated one. this is an opportunity to improve the overall mixture by adding new experts in the initial set of experts. To do so, if an expert obtains a lower loss than the aggregation, the model is divided into several new experts by recalibrating it several times with new parameters or less inputs. This new set of experts is added to the initial set and a new aggregation is proceed. There are different methods to create new expert such as Bagging, Specialization, Temp Double Scale, Boosting [START_REF] Gaillard | Forecasting electricity consumption by aggregating experts; how to design a good set of experts[END_REF].

As already noted in Figure 7.1 and Table 7.3, the neural network NN2 and OLS+H provides the best performances among the experts. Thus, these algorithms are declined by the Bagging method, which gives better empirical results and for computational convenience. The method consists in training a bunch of identical models in a parallel way, where each model is trained by a random subset of the data. K 1 " 10 new Ordinary Least Squared with Huber loss are made and differ from OLS+H by the way they are fed during the training process. Models optimized with the Huber loss (noted "+H") are trained by gradient descent which could be sensitive to local minima, Bagging appears then as a means of making the estimate more robust. For each new linear expert, 80% of the data is selected randomly, and the model is trained as described in Section 7.3.2. Then, long-short process is computed and these new strategies are added to the initial set of experts. Bagging with NN2 is done in a similar manner.

Figure 7.5 illustrates annual Sharpe ratios of the specialized aggregation with pK 2K 1 q experts (K 1 for OSL+H and K 1 for NN2). PtfBOA outperforms all experts and reaches 2.82, followed by uniform mixture with 2.79. More statistics can be found in Table 7.9 in Appendix, in particular PtfBOA keeps its maximum monthly loss of 7%. Expert specialization brings improvement in term of annual SR while keeping good property of the original mixture.

Conclusion

A portfolio construction methodology based on a sequential aggregation of experts is presented. The strategies lie on several forecasting algorithms, called experts, such as linear models, tree-based models and neural networks. The aggregation performs online a convex combination of the experts and adapts their weights dynamically according to their previous losses. This is particularly useful in finance where market conditions are known to be non-stationary. The aggregation is not computationally costly and considers directly the forecasts of the experts without any assumption on the models, allowing any black-box models. Moreover, the aggregation rules can easily be interpreted and are theoretically grounded. Tests on stock returns are proposed and show that the aggregation brings an improvement in terms of annual Sharpe ratio compared to the set of experts. Betting on a single expert could be more interesting in terms of cumulative log returns, but the aggregation appears to more robust and reduces the risk by minimizing significantly the maximum monthly losses.

More Materials

Algorithms

In this section we provide details about the experts used, in particular hyperparameters. For more elements about theoretical models or algorithms, see appendix of [START_REF] Gu | Empirical asset pricing via machine learning[END_REF]. Neural networks denoted NN1, NN2, NN3, NN4 and NN5 have hidden layer(s) of 32, [START_REF] Bergemann | Venture capital financing, moral hazard, and learning[END_REF][START_REF] Athey | Machine learning methods that economists should know about[END_REF], [START_REF] Bergemann | Venture capital financing, moral hazard, and learning[END_REF][START_REF] Athey | Machine learning methods that economists should know about[END_REF]8), [START_REF] Bergemann | Venture capital financing, moral hazard, and learning[END_REF][START_REF] Athey | Machine learning methods that economists should know about[END_REF]8,4) and [START_REF] Bergemann | Venture capital financing, moral hazard, and learning[END_REF][START_REF] Athey | Machine learning methods that economists should know about[END_REF]8,4,2) nodes respectively. We use ReLU activation function for each hidden layer, batch normalization4 , learning rate shrinking (Adam), early stopping and ensemble as regularization methods. These setups are common standards in deep learning literature.

Variables

All the variables used are precisely described in the Table A.6 of [START_REF] Gu | Empirical asset pricing via machine learning[END_REF] in appendix.

Chapter 8

Robust Learning for Risk Hedging

A model solving a family of parametric partial differential equation (PDE) involved in option pricing is proposed. By learning operators in a single training, we ensure of the robustness of optimal controls with variations of the underlying models, options or constraints. We confirm the effectiveness of our method, called DeepOHedger, with several a risk hedging problems, including local volatility models and spread option involved in commodity markets. Finally, we introduce a purely unsupervised data-driven approach for risk hedging, from time series generation to optimal control learning. Our model solves a family of PDE based on synthetic prices produced by a deep generator previously trained on real data.

Introduction

Stochastic control relying on Monte Carlo simulations requires underlying time series modeling assumptions. In practice, there is often uncertainty on the environment. Financial markets, for example, are constantly changing and models can therefore quickly be invalidated. In the energy field, electricity market prices are highly dependent on the weather. The rapid regime changes imposed by unusual weather conditions (cold winters, droughts, windy days influencing renewable production thus prices) require the use of more flexible and robust models for risk management in the energy sector.

Unlike classical models [START_REF] Black | The pricing of options and corporate liabilites[END_REF][START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF][START_REF] Dupire | Pricing with a smile[END_REF], an optimal model must involve correlations changes or jumps. Integrating these phenomena into classical models would make them difficult to calibrate and therefore unstable. Moreover, using miscalibrated models may lead to erratic derivatives pricing. Properly calibrate stochastic models has to be done cautiously and ideally continuously. However, due to the related computational cost and to the need for stability, it is not the always the case. Moreover, one popular numerical method for risk hedging relies on PDE resolution but struggle in high-dimension and lack flexibility. To answer this issue, some new methods have been developed using machine learning. Deep BSDE approaches is one of the first attempt to tackle the curse of dimensionality [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] The models are trained to find the optimal controls when fed with asset prices for instance [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF]. Moreover, these proposals allow specific objective functions and thus can take into account stylized facts [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF] such as the gain-loss asymmetry or classical constraints (illiquidity for instance) [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. However, these deep hedgers are trained for a given risk factor model which, if not accurate, could lead to add approximation errors.

Recent papers propose to use deep parametric PDE methods to learn the solutions of a whole family of equations depending on fixed set of parameters [START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF][START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF]. Instead of conditioning the solution with real-valued parameters, we learn operators associated with the solutions of PDEs, i.e. a mapping from set of parameter functions with the set of solutions.

We therefore propose to solve a stochastic control problem for multiple models in a single training, but which generalizes to unknown models during training. The parameter functions can describe the underlying risk model (in particular its volatility function), characteristics of an option, or constraints. In order to correctly capture the mapping between the functions and the solution, we consider deep operator networks (DeepONets) [START_REF] Lu | Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[END_REF] in an unsupervised approach. The model architecture consists of two subnetworks, one that learns an approximate input function on a fixed number of sensors and another to represent the state of the underlying process at a given time.

The application focuses on risk hedging. The introduced Deep Operator Hedger (DeepOHedger) is an universal solver for a set of risk factor models or derivative objectives. The parameter functions can describe the underlying risk model (in particular its volatility function), characteristics of an option, or constraints.

Contributions

-We introduce a model based on continuous operator approximation being able to solve nonlinear parametric PDE. -The model solves a family of parametric PDEs with one single neural network by learning several operators. -Numerical applications on risk hedging using neural networks are proposed, our DeepOHedger competes with classical machine learning based methods on diverse underlying models. -A purely data-driven method for risk management is proposed, from time series generation to optimal control learning.

Related Works

Most of the current literature in stochastic control addresses the high-dimensional challenge. Due to the inefficiency of classical Monte Carlo methods or PDE approaches in high dimensions, the use of deep neural networks expends over the last few years. In finance, supervised learning approaches were first considered to price derivatives [START_REF] Malliaris | A neural network model for estimating option prices[END_REF][START_REF] Hutchinson | A nonparametric approach to pricing and hedging derivative securities via learning networks[END_REF]. Recent literature reviews of neural networks for option pricing and hedging can be found in [START_REF] Ruf | Neural networks for option pricing and hedging: a literature review[END_REF]. Although wide research efforts focusing on high-dimension with neural networks, only few methods are available to solve fully nonlinear equations. A first numerical method for solving high dimensional fully nonlinear PDE were introduced [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF], then extended with effective schemes developed [START_REF] Fahim | A probabilistic numerical method for fully nonlinear parabolic pdes[END_REF][START_REF] Tan | A splitting method for fully nonlinear degenerate parabolic pdes[END_REF]. Despite encouraging results, these approaches could not solve PDEs in dimension greater than 5. To answer this issue, Warin [START_REF] Warin | Monte carlo for high-dimensional degenerated semi linear and full non linear pdes[END_REF] proposed to design a specific scheme based on nesting Monte Carlo allowing to consider very high-dimension.

Global approach methods, minimizing a terminal objective function to solve fully nonlinear PDEs, were also introduced [START_REF] Beck | Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations[END_REF]. The method relies on a second order refinement of the backward stochastic differential equation (BSDE) representation of [START_REF] Cheridito | Second-order backward stochastic differential equations and fully nonlinear parabolic pdes[END_REF]. Other proposals use BSDE for semilinear PDEs [START_REF] Henry-Labordere | Branching diffusion representation of semilinear pdes and monte carlo approximation[END_REF][START_REF] Chan-Wai-Nam | Machine learning for semi linear pdes[END_REF] or consider to estimate simultaneously the solution and its gradient with deep neural networks [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear pdes[END_REF]. Real fully nonlinear cases were then proposed [START_REF] Weinan | Deep learning-based numerical methods for highdimensional parabolic partial differential equations and backward stochastic differential equations[END_REF][START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF] highlighting how machine learning models hold promise for solving large-dimensional PDEs.

A specific related deterministic method is the deep Galerkin approach [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF]. Solutions are evaluated by automatic differentiation of the network function approximating the solution of the PDE. The adaptability to a large range of PDEs with or without boundary conditions makes this method particularly appealing. First experimented in discrete case [START_REF] Barucci | Neural networks for contingent claim pricing via the galerkin method[END_REF][START_REF] Meade | The numerical solution of linear ordinary differential equations by feedforward neural networks[END_REF] , deep Galerkin solvers were extended in continuous time [6,7,[START_REF] Li | The deep learning galerkin method for the general stokes equations[END_REF]. Deep parametric PDE method using the deep Galerkin were also proposed [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF][START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF][START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF].

Some papers try to solve risk hedging problems in incomplete markets, where illiquidity and transactions costs makes classical approaches inoperative [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. A complete review of neural networks-based algorithms for stochastic control and PDEs in finance is available, presenting several use cases [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF].

Recent proposals focus on robust stochastic control and aim at solving PDEs with uncertainty on the underlying model using neural networks. The uncertainty can be restricted to generalized affine diffusions [START_REF] Lütkebohmert | Robust deep hedging[END_REF], but limits the uncertainty to a realvalued parameter estimation in a linear setting. The physical approach of [START_REF] Khoo | Solving parametric pde problems with artificial neural networks[END_REF] lies on solving deterministic parametric PDEs with neural networks from some physical quantities initially randomly chosen. The considered parametric PDE are linked to elliptic homogenisation and nonlinear Schrödinger eigenvalue problem. A recent paper [START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF] introduce a general deep parametric method being able to solve a family of PDEs with one single neural network. To approximate the solution, the network is conditioned with constant values describing the risk factor model or the option. The loss function relies on the least-squares formulation of a PDE as done in Deep Galerkin [START_REF] Sirignano | Dgm: A deep learning algorithm for solving partial differential equations[END_REF]. This deep solver allows wide applications and is tested on multi-asset option pricing, but the numerical results is restricted to the Black-Scholes model [START_REF] Black | The pricing of options and corporate liabilites[END_REF].

Background

We introduce below some background on stochastic control and DeepONets.

Stochastic Control

Let T be a fixed time horizon and d be an integer describing the dimension. Let be X " pX t q tPr0,T s a continuous-time controlled diffusion dynamics whose realisations belong to R d dX t " µpX t , α t qdt `σpX t , α t qdW t , (8.3.1) where W is a d-dimensional standard Brownian motion on some probability space pΩ, F, Pq equipped with a filtration pF t q tPr0,T s representing the information available at time t, and X 0 a F 0 -measurable random variable valued in R d . At each time step t, X t , α t designate respectively the state of an agent and the control performed by the agent. The functions µ : R d ˆRd Ñ R d describes the drift and σ : R d ˆRd Ñ M d (the set of d ˆd matrices) the volatility. These two functions also depend on time at the expense of heavier notations. Both parameters µ and σ are supposed to satisfy the usual Lipschitz conditions [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] ensuring existence and uniqueness of the solution of Eq.8.3.1.

The control α " pα t q tPr0,T s is a F t -adapted process on the set A. We seek for an optimal strategy, minimizing the following cost functional over control process α:

Jpαq " E "ż T 0 f pX t , α t qdt `gpX T qq  ,
where f is a nonlinear running cost function function defined on r0, T s ˆRd ˆRd , and g is a terminal function defined on R d , called payoff. The admissible set of controls A is the set of controls α which satisfy the usual integrability conditions ensuring that the cost function Jpαq is well-defined and finite. Following [START_REF] Pham | Continuous-time stochastic control and optimization with financial applications[END_REF], the dynamic programming Bellman equation leads to the partial differential equation:

B t v `Hpx, D x v, D 2
x vq " 0 on r0, T q ˆRd vpT, .; .q " g on R d (8.3.2)

where Hpx, y, zq " inf aPA " µpx, aqy `1 2 Trpσσ T px, aqzq `f px, aq ‰ is the so-called Hamiltonian function.

DeepONets

Deep Operator Network [START_REF] Lu | Learning nonlinear operators via deeponet based on the universal approximation theorem of operators[END_REF] is a specific network architecture to approximate operators, that is a mapping from a space of functions into another space of functions. Following [START_REF] Lu | Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[END_REF], we denote an operator G taking a parameter function u P U as input and returning a function Gpuq. We evaluate Gpuq on a vector x P R d such that the output Gpuqpxq is a real number. The Universal Approximation Theorem for Operator [START_REF] Chen | Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems[END_REF] indicates that neural networks can learn faithfully any nonlinear continuous operators from data.

Theorem 8.3.1. (Universal Approximation Theorem for Operator).

Suppose that σ is a continuous non-polynomial function, X is a Banach Space, K 1 Ă X, K 2 Ă R d operators is considered.

Methodology

We want to solve the optimisation problem of (8.3.2) when the environment is not stationary or for several initial conditions at once. Re-calibrate a risk factor model or retrain a deep hedger each time the market conditions change is costly and unsatisfactory.

For this purpose, we consider deep operator networks to learn the general solution associated with several risk factor models simultaneously. The basic idea of learning operator, that boils down to learn simultaneously the optimal controls and the parameter function, is justified by the desire to solve a family of parametric PDEs with a single training. We design a robust model solving (8.3.2) for a set of given underlying models, but, ultimately, we want to generalize by solving the PDE with models or conditions that were not present during training.

By learning the optimal controls α according to a given parameter function u, we also seek to better generalize compared with learning a unique parameter (as done in [START_REF] Glau | The deep parametric pde method: application to option pricing[END_REF]). The parameter function can describe the model parameters, such as the volatility function σp.q of the price model (in Eq.(8.3.1)), option parameters (payoff function g, strike, correlation) or constraints. When considering the Itô process terms, µ and σ stay Lipschitz in x P R d , uniformly in t P r0, T s, ensuring the existence of a solution. Typically, uncertainty on volatility is a bound set among the admissible volatility functions.

Operator Formulation

We consider DeepONets as the architecture is suitable to learn both the parameter function u and the controls α.

Learning with one function

The parameter function (i.e. input function) is denoted u P U, and v P V is the corresponding unknown solution of the PDE 8.3.2. The problem is solved for a given u with machine learning methods reviewed in [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF]. The question is whether one can find a solution v " vpuq P V of the PDE 8.3.2 for any u P U (subject to appropriate initial and boundary conditions). Then, we can define the solution operator G : U Ñ V as Gpuq " vpuq

The approximation of the function u is decisive in the identification of the underlying dynamics or the option. Thus, the number of sensors tx 1 , . . . , x q u has to be cautiously chosen. We consider a regular grid of q P N points of R d . On each dimension, we construct a fixed interval ra, bs Ă R, pa, bq P R 2 where the sensors are defined as x p.q j " a `jpb ´aqq for j P t1, . . . , qu.

Generalizing with a family of functions

The introduced method requires to provide an approximation of the function u. By giving a misleading function we could add a model error to the approximation error. As our first objective is being able to solve in a robust manner, we train our model not on one u but on a family of functions. The branch net has to learn various functions u, thus we really take advantage of using neural networks, tackling a high-dimensional problem and functions possibly difficult to estimate.

In the numerical section, we propose to learn a set of volatility functions (linear or not) and data-driven estimations. When uncertain on the market structure, one can provide an approximation of the volatility functions, our model has to be able to properly solve the PDE, whether branch net was trained with the function or not.

A Global Approach for Deep Hedging

A hedging strategy can be reduced to the stochastic control problem defined in (8.3.1), by buying or selling some discounted asset at each date. We consider risky assets with price process S and a derivative asset with underlying S and maturity T . In the following, we focus on European call options or option spreads. We are trying to define a self-financing portfolio strategy based on asset S such that wealth at maturity T replicates the option payoff. In case of incomplete market, a perfect replication is not reachable, thus we propose to train an agent by minimizing the residual hedging error. A numerical scheme for the approximation of the equation (8.3.2) is used and the solution is estimated from samples of S.

The samples are supposed to be drawn from a discretization of the continuous time process S, starting from S 0 valued in R d and observed on a time grid T " t0 " t 0 ă t 1 ă ... ă t N " T u for N ą 1. For the sake of simplicity, in the following, we assume a regular time grid with mesh size ∆t " t i`1 ´ti . The discrete model pS t i q iPt1,...,N u is obtained by the following Euler scheme for i P t0, . . . , N ´1u: where ∆W t i " W t i 1 ´Wt i is a collection of i.i.d. N p0, ∆tI d q random variables. The learning hedger agent consists in a single model parametrized by θ and trained to find the premium p and the optimal control α t i at each decision step t i P T . The model is fed successively with the time step t i , the previous state X t i and the parameter function u to provide a control α θ pt i , S t i ; uq for i P t0, . . . , N ´1u. The self-financing portfolio of terminal value at time t N " T is denoted X T and defined as: X T,θ;u " p θ `N´1 ÿ i"0 α θ pt i , S t i ; uqpS t i`1 ´St i q.

#
We give ourselves the opportunity to re-balance the portfolio every time steps. There is no control at the last date. The global approach for solving (8.3.2) leads to the following optimization problem: min θ Er pX T,θ;u , gpS T ; uqqs.

In the following, the quadratic loss is considered for px, yq " px ´yq 2 . Other objective functions could be considered such as the asymmetrical loss [START_REF] Simon | Theories of bounded rationality[END_REF] to take into account stylized facts [START_REF] Cont | Empirical properties of asset returns: stylized facts and statistical issues[END_REF]. The notation gpX T ; uq allows learning the optimal solution for different payoffs.

This approach is very convenient due to its formulation and the simplicity to optimize the parameter θ with machine learning. First introduced by [START_REF] Gobet | Sensitivity analysis using itô-malliavin calculus and martingales, and application to stochastic optimal control[END_REF], the method consisted in approximating the feedback control at any time, i.e. a function of the state process. Then, the method was extended with deep neural networks [START_REF] Han | Deep learning approximation for stochastic control problems[END_REF] or more recently with delay considerations [START_REF] Han | Recurrent neural networks for stochastic control problems with delay[END_REF]. However, these methods necessitate a solver at each time step, complicating the convergence (the set of parameters being huge) and making difficult to consider a large time horizon. A way to address these issues is to consider a single neural network fed with time step and controls, as we do, and thus gain in stability [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. Other methods are detailed in the literature, including local approaches [START_REF] Germain | Neural networks-based algorithms for stochastic control and pdes in finance[END_REF].

Numerical Results

We apply our model on a risk hedging task. We show that DeepOHedger provides better performance compared to several variant of deep hedgers and demonstrates ability to reduce the generalization error even in the easiest linear problem.

Only feed-forward neural networks are considered of 3 layers of 16 neurons each, and use the Adam optimizer with learning rate 0.001. The number of iterations is 10.000 guaranteeing convergence of the training. New samples are generated each iteration from model-based Monte Carlo simulations or deep generative models (in Section 8.5.4).

Benchmarks

Benchmarks consist in three variant of deep hedgers solving the problem of (8.3.2) with a global approach 8.4.3. Each model learns to minimise the replication loss at the terminal value T (Eq.8.4.2), but differs according to the conditional information given to them during the training process. The first model, called Misspecified Deep Hedger (MDeepHedger), is trained on a (reasonably) misspecified model, close to the unobserved real model. No information on the model is given to the neural network. The purpose is to quantify the error of using a unique model resulting of a erratic calibration. Robust Deep Hedger (RDeepHedger) shares the same design as MDeepHedger but is fed with samples of several price models, omitting the real model. Here again, no addition the optimal controls by alpha loss and the replication error by repl. loss. DeepOHedger indicates our method, MDeepHedger is only trained on a misspecified model (σ " 0.30 instead of 0.25), RDeepHedger is fed with the time step and current state from all 16 models, and CDeepHedger is conditioned by the volatility constant of each model thus fed with x " pt i , x j t i , σ j q. Table 8.1 reports the average performances of the DeepOHedger and the benchmarks on the 16 training models and on the real (unobserved) price model. On average, our model is better able to retrieve the premium than the other models. In particular, learning the volatility function as well as the optimal controls seems beneficial, as CDeepHedger provides a less accurate premium. The two other models return poor results because only one premium value is learned in the MDeepHedger case, and RDeep-Hedger proposes a unique average premium for all the 16 price models, being unable to distinguish between them. MDeepHedger, which is trained on a σ " 0.30 samples, provides better results on the real unobserved model with σ " 0.25 than on training set. Concerning the replication loss, again our model outperforms the others, in a lesser extent for CDeepHedger. The errors are particularly low, which could be close to the discretization approximation. A misleading calibration has a significant impact on the quality of the hedging. The optimal controls however seem to be better learned with the value-conditional deep hedger, on both training and unobserved models. Further analysis could be beneficial to explain this phenomena.

Figure 8.2 illustrates the losses of DeepOHedger according to each price models. The premium is uniformly retrieved for each volatility constant in the Black-Scholes model. DeepOHedger generalises well when being fed we unknown models, indicated with values at σ P t0.25, 0.45, 0.65u. The gap between our method and optimal controls decreases when the volatility increases. On the opposite, the replication error increases when the volatility is high, which is an expected behavior: replicating an option when the market is unstable is harder. An illustration of the optimal controls with the ones proposed by where K indicates the strike and β, γ P R are the conversion rates.

In order to build a robust hedging strategy, our model is trained with a set of models, from Black-Scholes to Ornstein-Uhlenbeck two usually processes used to describe commodities, and for different correlations. Ornstein-Uhlenbeck is defined by: dS t " θpµ ´St qdt `σdW t , where t P r0, T s, pθ, µ, σq P R 2 ˆR`a nd W is a Brownian motion. For Black-Scholes processes, the drift constant is set at r " 0.2 and θ " 1.5, µ " 1.5 for Ornstein-Uhlenbeck. The maturity is 0.25, the strike is set at K " 0.5 and the spot pS e 0 , S g 0 , S co2 0 q " p0.4, 0.15, 0.15q. The conversion rates are respectively β " 1.9 and γ " 0.35 as usually done.

The function u describes the volatility function σpt, X t q terms in the process X, then u : x Ñ σx or u : x Ñ σ, and is approximated on q " 10 sensors. We consider 36 price models varying according to the nature of the model, the value of the constant σ P t0.05, 0.10, ..., 5.00u and the correlation matrices ρ 1 , ρ 2 . The correlation values for pS e t , S g t , S co2 t q for any t are Table 8.3 reports the replication loss between the real payoff and the one provided by the deep hedgers, as well as the initial risk (i.e the risk of the payoff without hedging ErpgpS e T , S g T , S co2 T qq 2 s). The operator hedger outperforms the robust and the conditional hedgers on both training and unobserved models. The gap between DeepOHedger and CDeepHedger is tight, which could be explained by the too basic volatility functions from the BS and OU models. The RDeepHedger is not able to hedge the initial risk, being incapable to distinguish between model samples. However, the global low losses open perspectives to hedge option spread in a robust manner.

Purely Data-Driven Approach for Risk Hedging

In this section, the deep operator hedger is tested on real data. To do so, data generation is operated to improve the training process of the hedging model. The generative model is trained to provide realistic synthetic prices from historical data. Regarding commodity simulations, most of the literature focus on designing stochastic models [START_REF] Deschatre | A survey of electricity spot and futures price models for risk management applications[END_REF]. However, the selection of the model as well as its calibration are costly. Besides, new market conditions may negate these efforts. In the case of electricity price simulation, a joint simulation with other sources of energy (gas, coal) or weather conditions is also required. To address these issues, new deep generative methods inspired from computer vision [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Kingma | Auto-encoding variational bayes[END_REF] propose to provide realistic synthetic time series [START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF][START_REF] Yoon | Time-series generative adversarial networks[END_REF][START_REF] Esteban | Real-valued (medical) time series generation with recurrent conditional gans[END_REF][START_REF] Mogren | Continuous recurrent neural networks with adversarial training[END_REF]. Combined with data-driven approaches for stochastic control, one can thus be able to handle a large class of models [START_REF] Fecamp | Deep learning for discrete-time hedging in incomplete markets[END_REF]. The objective is plural:

-full chain of learning models for risk management, from real data to optimal control learning -joint data-driven generations of commodities -robust operator hedging depending on the commodity models For the generative method, we consider a model using a SDE formulation of the time series, whose drift and volatility functions can be given to the DeepOHedger as functions u.

Deep generative method for time series The Conditional loss Euler Generator (CEGEN) [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF] relies on Euler scheme of a SDE and on a conditional objective function to produce time series. A Itô structure (Eq.(8.3.1)) is proposed to ease the time series construction. The drift and volatility terms of the Itô process are approximated with a neural network of parameter ϕ, then the sequence is built with the Euler scheme (Eq.(8.4.1)) on the discrete grid T . The conditional distance focuses on the distribution accuracy of the generated sequences at each time step. The loss is computed between values whose previous states belong to a common set, allowing thus to learn the distribution between each data point. The considered loss is the Bures-Wasserstein distance, a Gaussian formulation of the Wasserstein-2 (W 2), providing theoretical bounds of the approximation errors of the drift and volatility terms. Unlike most of the works considering W 2 distance [START_REF] Genevay | Learning generative models with sinkhorn divergences[END_REF][START_REF] Xu | Cot-gan: Generating sequential data via causal optimal transport[END_REF], here there is no need of regularization. Y ϕ " pY ϕ q tPT denotes the synthetic series provided by CEGEN. For a time step t i , let be I a subset of R d covering SupppS t i qY SupppY ϕ t i q. The loss function is defined as: pS, Y ϕ q " Joint simulation of commodities Electricity prices depend on physical phenomena and other energy sources. As electricity is difficult to stock (excepting hydraulic dams), the offer-demand equilibrium has to be addressed at any time. The electric demand largely depends on weather conditions. For instance, low temperatures increase greater consumption and this affects electricity prices. In addition, the production of electricity is based on other sources of energy, including gas or coal. As these commodities are also traded on the markets, there exists a dependence between gas and electricity prices. Finally, renewable energies generate additional physical hazard due to intermittent production. When the wind is blowing, wind production increases and electricity prices decrease. In order to support the increasing integration of renewable energies and design effectively electricity prices, a joint modeling of risk factors is required. The model CEGEN is trained to generate daily commodities from 2016 to 2020. The time series considered are electric, gas and emission prices on European energy market. The generator is fed with samples of these prices and correlated exogenous variable such as dates (day, month), renewable production (solar, wind) and residual production. Finally, the generator outputs a 3-dimensional synthetic time series which will be dedicated to the training set of the deep operator hedger.

Deep hedging from generations Due to the specific SDE formulation, CEGEN provides drift and volatility functions which can be used as a parameter function u. In a first step, CEGEN is trained to generate new time series from different historical data depending on the location considered. In a second step, the DeepOHedger learns optimal controls from the synthetic data and approximations of the drift and volatility functions provided by the generator:

Gpuqpxq " α θ ˆµϕ pt i , x 1 q , . . . , µ ϕ pt i , x n q σ ϕ pt i , x 1 q , . . . , σ ϕ pt i , x n q ˙pt i , Y ϕ t i q

By doing so, we benefit of a purely data-driven approach, from data generation to robust strategy learning.

Applications to electricity prices

We aim to hedge an option spread for several location of spot prices with a single training. The location is France market and its boundary borders (Germany, Belgium, Italy, Swiss and Spain) 1 . Only the electricity price depends on the location, the gas and emission price stays the same. Six CEGEN are trained independently to produce jointly spot, gas and emission prices on the six locations. The payoff is described in Eq. 8.5.3. Finally, the deep hedger is evaluated on a testing set, a set of unobserved historical prices during the training of both CEGEN and DeepOHedger. Table 8.4 reports the replication loss and the initial risk on each location. The performances between countries are close, as every locations belong to the same electric network in Europe. This could be an expected behavior. A gap is observed between the replication losses of the training and testing set (including only real prices). An explanation lies on the fact that the performances on the testing set combine a model error from CEGEN as well as a generalization error from the DeepOHedger. However, these results compared to a non-hedged portfolio emphasis a good generalization ability of the deep operator hedger.

Conclusion

A new model solving several PDE in one single training is introduced and applied on risk hedging tasks. Brutal regime changes or unstationary environments are well known phenomenon, especially in finance. Relying on deep operator networks, our model addresses these issues and is able to learn the functions of input parameters simultaneously and thus solving a family of hedging problems. The benefit is double, the deep solver better generalizes with unobserved features and robust to unknown environments than several variant of deep hedgers. We evaluate our model named DeepOHedger several applications including local volatility models and option spread. We show that DeepO-Hedger reduces the generalization error even in the easiest linear problem. Finally, we present a purely data-driven approach to risk hedging, from time series generation to learning optimal controls. Our model then solves a family of parametric PDEs from synthetic samples produced by a deep generator previously trained on spot price data from different countries. Further works will focus on solving more general PDE. Extensions with other schemes such as local approach can be considered.

Supplemental Materials

Hedging with Volatility Function Parameter

Table 8.5 reports the theoretical values and outputs from the DeepOHedger for premium and portfolio for all the volatility constants σ. Bold values indicate unobserved volatilities, that is values not present in the training set. The premiums and payoffs provided by our model align very closely with the theoretical ones, however the hedger systematically tends to price a little higher the call options than real values. There is no significant gaps on the performances between the training and unobserved models, emphasis a good generalization ability of the deep operator hedger. Table 8.6 focuses on the optimal controls and the ones outputted by our model. We compare the average over time of the controls for theoretical formula and DeepOHedger and the Mean Squared Error (MSE) between theoretical values and controls from the deep hedger at each time step. The results align very closely with the volatility values, including on unobserved models. The DeepOHedger is then also able to learn accurately optimal controls without being directly trained to do so.

Generating Time Series

One well-known challenge in the generation community is the lack of efficient evaluation metrics [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF][START_REF] Wang | Generative adversarial networks in computer vision: A survey and taxonomy[END_REF]. The temporal dependencies of sequences makes even trickier the analysis [START_REF] Eckerli | Generative adversarial networks in finance: an overview[END_REF][START_REF] Gao | Generative adversarial networks for spatio-temporal data: A survey[END_REF][START_REF] Brophy | Generative adversarial networks in time series: A survey and taxonomy[END_REF]. However, one can provide a set of metrics to better characterizes specific features of the generations. As done in [START_REF] Remlinger | Conditional loss and deep euler scheme for time series generation[END_REF], we consider the following metrics:

-Marginal based metrics includes classical statistics (mean, 95% and 5% percentiles denoted respectively avg, q95, q05). We compute the relative mean squared error (MSE) over time of these statistics in percentage.

Figure 1 . 1 -

 11 Figure 1.1 -Prix spot électrique français sur la période 2016-2020.

Figure 1 . 2 -

 12 Figure 1.2 -Chaîne complète d'apprentissage pour la gestion des risques

Figure 1 . 3 -

 13 Figure 1.3 -Schéma du modèle DeepOnet (non empilé). La fonction u est approchée par m capteurs et donnée en entrée au branch net qui retourne un vecteur réel de dimension K. Le trunk net prend en entrée y P R d et produit un vecteur réel de dimension K. Les deux sorties sont ensuite concaténées pour approcher l'opérateur G : u Ñ Gpuq. Cette architecture est connue sous le nom de DeepONet non empilé.

où b 0 P

 0 R est une variable à apprendre représentant un biais visant à réduire l'erreur de généralisation. Un schéma du DeepOnet est proposé Figure 1.3.

Figure 1 . 4 -

 14 Figure 1.4 -Schéma de l'architecture autoencodeur.

Figure 1 . 5 -

 15 Figure 1.5 -Schéma de l'architecture GAN.

 des variables aléatoires i.i.d. suivant la loi N p0, ∆tI d q. Les fonctions b θ Y et σ θ Y sont estimées par un réseau de neurones dense paramétré par θ. Remarquons que, dans des cas simples comme Black-Scholes ou Ornstein-Uhlenbeck, des modèles linéaires suffisent à l'estimation de ces fonctions. Notre objectif est donc d'apprendre b θ Y et σ θ Y afin que les distributions des processus Y θ et X soient proches.

 zq pour z P R d implique une estimation précise des fonctions de drift et de volatilité des processus d'Itô. C'est encourageant, mais en général le conditionnement à partir du même point est compliqué. La proposition 1.4.1 étend cette propriété lorsque les états précédents appartiennent à une boule I Ă R d autour de z de rayon arbitrairement petit.

Figure 1 . 6 -

 16 Figure 1.6 -Trajectoires issues d'un processus Ornstein-Uhlenbeck (bleu) et des générations de COTGAN, TSGAN et CEGEN (orange) sur 30 dates.

Figure 1 . 7 -

 17 Figure 1.7 -Scores discriminant et de prévision. Ces scores sont évalués sur quatre jeux de données (Spot, Stocks, Load, Climate) pour les modèles CEGEN, EDGAN, TSGAN, COTGAN. Le score discriminant indique la fidélité des générations par rapport aux séries historiques d'après un classificateur LSTM. Le second score indique le décalage de performance en terme de prévision d'un LSTM entraîné sur les générations et évalué sur les données d'origine.

Figure 1 . 8 -

 18 Figure 1.8 -Contrôles pour une trajectoire de prix historique.

Figure 1 . 9 -

 19 Figure 1.9 -Boucle d'interaction agent-environnement.L'environnement représente le monde dans lequel l'agent évolue et avec lequel il interagit.A chaque étape de l'interaction, l'agent perçoit une observation de l'état du monde s t , puis décide d'une action a t à entreprendre. L'environnement change lorsque l'agent agit dessus, mais peut aussi changer de lui-même. L'action de l'agent donne lieu (ou non) à récompense r t de l'environnement qui évalue sa pertinence. L'objectif de l'agent est de maximiser sa récompense cumulée, appelée rendement.

Figure 1 .

 1 Figure 1.10 -Log-rendements cumulés des portefeuilles, et poids de l'agrégation BOA.Note : Le premier graphique présente les log-rendements cumulés des portefeuilles sur la période de test (1987-2017) ainsi que ceux du S&P500 (en gris). Les lignes pleines (resp. les lignes pointillées) indiquent les positions longues (resp. courtes). Les lignes noires en gras correspondent à l'agrégation PtfBOA et les lignes bleues en gras au mélange uniforme PtfUNI. Les deux agrégations sont réalisées avec les treize stratégies OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H,RF, GBRT+H, NN1, NN2, NN3, NN4, et NN5. Le graphique du bas indique les poids moyens associés à chaque stratégie pour les agrégations PtfBOA longues et courtes sur la période de test.

Figure 1 .

 1 Figure 1.11 -Prime, erreur sur les contrôles et erreur de réplication selon les valeur de la volatilité de modèles Black-Scholes.

Figure 2 . 2 -

 22 Figure 2.2 -Full learning chain for risk hedging.

Figure 2 . 4 -

 24 Figure 2.4 -Architecture scheme of autoencodeur.

Figure 2 . 5 -

 25 Figure 2.5 -Architecture scheme of GAN.

Figure 2 . 6 -

 26 Figure 2.6 -Realizations of Ornstein-Uhlenbeck process (blue) and generation from COTGAN, TSGAN and CEGEN (orange) on 30 dates.

Figure 2 . 7 -

 27 Figure 2.7 -Discriminative and predictive scores. These scores are evaluated on four datasets (Spot, Stocks, Load, Climate) for the CE-GEN, EDGAN, TSGAN, COTGAN models. The discriminant score indicates the fidelity of the generations with respect to the historical series according to a LSTM classifier. The second score indicates the forecasting performance spread of a LSTM trained on the generations and evaluated on the original data.

Figure 2 . 8 -

 28 Figure 2.8 -Controls of Deep Hedgers for a single historical price trajectory.

Figure 2 . 9 -

 29 Figure 2.9 -Agent-environnement interaction loop.The environment represents the world in which the agent evolves and with which it interacts. At each step of the interaction, the agent perceives an observation of the state of the world s t , then decides on an action a t to take. The environment changes when the agent acts on it, but it can also change by itself. The agent's action gives rise (or not) to a reward r t from the environment which evaluates its relevance. The agent's objective is to maximize its cumulative reward, called output.

Figure 2 .

 2 Figure 2.10 -Cumulative log-returns of portfolios and weights of BOA. Note: The first graph shows the cumulative log-returns of the portfolios over the test period (1987-2017) as well as those of the S&P500 (in grey). The solid lines (resp. the dash lines) indicate the long (resp. short) positions. The bold black lines correspond to the PtfBOA aggregation and the bold blue lines to the PtfUNI uniform mixture. Both aggregations are performed with the thirteen strategies OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H,RF, GBRT+H, NN1, NN2, NN3, NN4, and NN5. The bottom graph shows the average weights associated with each strategy for long and short PtfBOA aggregations over the test period.

Figure 2 .

 2 Figure 2.11 -Premium, control errors and replication losses according to volatility of a Black-Scholes.

Figure 2 .

 2 11 illustrates the DeepOHedger errors under each price model, where only the value of the volatility constant σ varies in a Black-Scholes model. The DeepOHedger generalizes well for unknown parameters, as indicated by the values at σt.25, .45, .65u.

W 2 2 2 `

 22 pLpXq, LpY qq " }ErXs ´ErY s} 2 B2 pV arpXq, V arpY qq, (4.4.2)

Figure 4 . 1 -

 41 Figure 4.1 -Exp. A. Ornstein-Uhlenbeck samples (in blue) with COTGAN, TSGAN and CEGEN generations (in orange).

Figure 4 . 2 -

 42 Figure 4.2 -Exp. B. Left: Average of Fréchet Distance between distributions at each time step. Right: Difference between quadratic variations. Ordinate axis is Log scale. Both scores are provided for d " 4, 10, 20.

Figure 4 . 3 -

 43 Figure 4.3 -Exp. C. Evolution of parameter estimations during training when a transfer occurs at iteration 1000 (red lines). The dashed green lines correspond to the theoretical target values. The orange lines indicate coefficient estimation of CEGEN only trained on few data and blue lines CEGEN which is first trained on the misspecified model then with few target samples.

 b X : pt, xq Ñ ´2x{∆t, b Y : pt, xq Ñ 0 and σ X pt, xq " σ Y pt, xq Ñ 1 for pt, xq P R `ˆR. Both drift and volatility functions are K-Lipschitz in the second coordinate: }b . pt, xq ´b. pt, yq} 2 ď K}x ´y} 2 }σ . pt, xq ´σ. pt, yq} 2 ď K}x ´y} 2 .

Figure 4 . 4 -

 44 Figure 4.4 -Left: Unsatisfactory generations from a GAN Right: Reference samples (from Ornstein-Uhlenbeck process)

Figure 4 . 5 -Table 4 . 6 -

 4546 Figure 4.5 -Exp. B. Samples from CEGEN model (orange) on 20-dimensional Black-Scholes model-based generations (blue).

Figure 4 . 6 -

 46 Figure 4.6 -Exp. B Mean over time of empirical correlation matrices of both reference and CEGEN. The first heat map is generated samples from CEGEN (left), second is Monte Carlo samples (right), the target, the third heat map (mostly black) represents the mean squared error of the two correlation matrices. The next three graphs report correlation accuracy in a independent case.

Figure 7 . 1 -

 71 Figure 7.1 -Cumulative returns of portfolios and weights of Bernstein Online Aggregation (BOA). Note: The first graph presents cumulative returns of portfolios on the testing period as well as S&P500 (in gray). Full lines (resp. dash lines) indicate long positions (resp. short). Black bold lines correspond to aggregation PtfBOA and blue bold lines to the uniform mixture PtfUNI. Both aggregation are done on the thirteen strategies OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H,RF, GBRT+H, NN1, NN2, NN3, NN4, and NN5. The bottom graphs indicates the average expert weights of the long and short PtfBOA aggregations over the period. Long-short strategies of the experts are equally weighted.

Figure 7 . 2 -

 72 Figure 7.2 -Expert distribution by ranks for annual Sharpe ratio. Note: The distribution is obtained by counting the number of times an expert gets the best, second, and so on, annual Sharpe ratio. During the 1987-2016 period the aggregation strategy PtfBOA (in black) is the best portfolio almost 20% of the time, and is never ranked worst portfolio in terms of annual Sharpe ratio. All portfolios are equally weighted.

Figure 7 . 3 -

 73 Figure 7.3 -Pre-trained aggregation analysis. Note: PtfBOA is pre-trained during the year 1986 and then tested on 1987-2016 period. First Row: Average and cumulative returns of experts and mixtures (PtfBOA and PtfUNI). Second Row: Average weights of PtfBOA and their evolution on the testing period. Long-short strategies are equally weighed.

Figure 7 .

 7 Figure 7.3 presents two main characterizations of this pre-trained aggregation: portfolio returns and corresponding weights. The first row shows a graph of the average returns and the cumulative log returns of all portfolios. The pre-trained PtfBOA gives on average a lower returns than neural networks NN2 with tight results around 2.5%. However, the BOA rule significantly improves the average yields compared to the naive uniform mixture (1.4%) and experts that are not neural networks, all below 1.5%. Looking at cumulative returns, PtfBOA is the second best portfolio, slightly overtaken by NN2, but appears more resilient in crisis period such as 2001. The boxplot shows how the experts are distributed on average over the test period, while the graph on the right reports the behavior of the weight at each date. The BOA mixture starts by giving more importance to OLS+H and NN2, therefore converge faster to the first stationary regime. The retained experts however remain the same: OLS+H and neural networks dominate the mixture.Pre-training enables to converge faster. Adding some prior information seems to be beneficial for the mixture, which (slightly) improves its portfolio performances compared to the standard aggregation. Additional statistics of the pre-trained aggregation are reported in Table7.8 in Appendix.

Figure 7 . 4 -

 74 Figure 7.4 -Importance of expert portfolios in the aggregation. Note: Expert importance is computed during the out-of-sample period. Four portfolio indicators are reported: annualized monthly return (Ann. Ret.), annualized volatility (Ann. Vol.), annual Sharpe Ratio (Sharpe) and the last date of the cumulative log return (Cumul. Ret.). The importance is obtained by measuring the mixture indicator spread when dropping a given expert. The importance is normalised to sum to one. Long-short strategies are equally weighted.

Figure 7 . 5 -

 75 Figure 7.5 -Annual Sharpe ratios of portfolios with expert specialization. Note: Aggregation is proceed with the initial set of K experts plus K 1 new specialized neural networks NN2 and K 1 new specialized OLS+H. New forecasting models are trained by Bagging, then the corresponding portfolios are added in the initial set of experts. Portfolios are equally weighted.

Figure 7 . 6 -

 76 Figure 7.6 -Heatmap of %R2 scores of each experts on out-the-sample testing period (1987-2016) for each year.

Figure 7 .

 7 Figure 7.7 illustrates annualized average returns of each long short expert strategy from 1987 to 2016. Up to 2002, strategies are profitable. However in 2003, several experts suffer from a breakout and are not able to retrieve the same performances afterward, even if models are re-calibrated each year. The variation in the rankings of the best experts from year to year emphasizes the usefulness of aggregation techniques.

Figure 7 . 7 -

 77 Figure 7.7 -Average annualized returns per year of expert's portfolios. Note: The long short strategies of experts are equi-weighted and computed on the 1987-2016 testing period.Experts includes OLS+H, OLS3+H, PLS, PCR, ENet+H, GLM+H, RF, GBRT+H and the five neural networks (NN1-NN5). "+H" indicates the use of Huber loss for the training process. PtfBOA is the portfolio obtained with the BernsteinOnline Aggregation (BOA) and PtfUNI is the portfolio from uniform mixture described in Section(7.4).

Figure 8 . 2 -

 82 Figure 8.2 -Premium, control and replication losses depending on the volatility value of a Black-Scholes model.

'

 The deep hedgers are fed with 32 models during the training process, omitting σ P t0.25, 0.45u for both processes. The misspecified deep hedger MDeepHedger is not considered in this application, as the model itself can vary. For the computation of the replication loss, Monte Carlo simulations are unnormalized with average real prices on the period 2019-2020 from the European Energy markets.

Figure 8 . 3 -

 83 Figure 8.3 -Training and testing losses by iterations.

Figure 8 . 4 -

 84 Figure 8.4 -Optimal controls (in blue) compared with DeepOHedger's ones (in orange) for unobserved Black-Scholes models (σ P t.25, .45, .65u) on 30 dates.

 Elle permet d'adapter dynamiquement les poids de chaque expert en fonction de leurs performances passées. Plus un expert est précis, plus son poids sera important.

.5.1) Le regret représente la capacité du mélange à retrouver le meilleur des experts de manière séquentielle. En minimisant le regret, nous nous assurons d'avoir des prévisions proches du meilleur des experts. Le premier terme dans la définition (1.5.1) donne la performance cumulée du mélange, quand le deuxième donne l'erreur d'approximation, c'est-à-dire la performance de référence du meilleur des modèles. L'objectif est de minimiser l'erreur d'approximation en trouvant la meilleure combinaison convexe des prévisions des experts. La pondération s'effectue selon une règle définie à l'avance et de taux d'apprentissage permettant de calibrer leur convergence (souvent en ligne). La règle de l'agrégation attribue donc à chaque instant t et pour chaque expert k un poids w k,t selon une erreur k,t .

b) Stratégies d'investissement Les données contiennent plus de 60 ans

 ,t " pY t , f k t´1 pX t qq ´Ew t´1 r pY t , f w,t´1 pX t qqs, où est une fonction de perte convexe. Étant donné t " p 1,t , . . . , K,t q la perte subie par chaque expert à t, la procédure BOA attribue à l'expert k le poids :

	deux portefeuilles à investissement net nul, consistant à acheter 10% des actifs ayant les
	rendements prédits les plus élevés et à vendre 10% ayant ceux les plus faibles.
	L'agrégation d'expert intervient au niveau des rendements des portefeuilles. Nous
	pondérons chaque stratégie selon sa performance en terme de rentabilité au cours du
	temps. Les stratégies sont agrégées en ligne ce qui permet de palier à des changements
	de régime du marché. Nous évaluons les performances des stratégies selon différents
	critères de rentabilité, de risque et diverses statistiques classiques telles que le turnover
	ou le maximum draw down.	
	w k,t "	expp´η k,t p1 `η k,t qqw k,t´1 E w t´1 rexpp´η t p1 `η t qqs
	Le taux d'apprentissage η est déterminé de manière optimale dans le processus BOA
	adaptatif et assure la minimisation du regret avec le taux de convergence rapide
	logpKq{T . Pour plus de détails, voir [371]. La règle est déterministe et nécessite un retour
	d'information complet. Cependant, des garanties théoriques existent sur les convergences
	de regret lorsqu'il manque des prévisions d'experts [130]. Appelés experts dormants, il
	suffit de remplacer les estimations manquantes par celles de l'agrégation. Par ailleurs,
	un mélange uniforme est utilisé comme référence dans la suite et associe le même poids
	à chaque expert et de manière constante au cours du temps.
		d'historique
	de caractéristiques diverses sur les actifs financiers du marché américain, des plus grandes
	capitalisations aux plus petites. Les 94 variables explicatives, pour la plupart mensuelles,
	ont été construites à partir de ce jeu de données, et alimentent les experts. Ces derniers
	sont entraînés à prévoir la valeur du mois suivant du rendement des actifs. Un particula-
	rité de notre approche réside dans le fait que les experts sont globaux, c'est-à-dire qu'un
	seul modèle est entraîné pour tous les actifs (et non pas un par actif) afin de gagner en
	stabilité.	
	L'objectif final est d'utiliser ces valeurs estimées des rendements des actifs pour
	construire une stratégie d'investissement long-court. Nous achetons les actifs dont nous
	prévoyons qu'ils prendront de la valeur, et vendons les autres. Pour chaque expert, nous
	trions les actifs tous les mois en fonction de leur prévision de rendement. Nous définissons

k

c) Étude numérique Dans

 l'étude numérique, nous considérons treize experts aux hypothèses variées, comme des modèles linéraires, des forêts aléatoires ou encore des réseaux de neurones. Nous souhaitons tirer parti de leurs différences structurelles afin de raffiner notre mélange. Ces modèles sont les mêmes que dans Gu, Kelly, and Xiu afin de se comparer à la littérature, et sont référencés dans la Tableau 1.1.

	Famille de modèles	Expert
	Linéaire	Ordinary Least Square (OLS+H)
		Ordinary Least Square 3 factors (OLS3+H)
		Generalized Linear model with group Lasso (GLM+H)
		Elastic Net (ENet+H)
	Linéaire avec	Partial Least Square (PLS)
	réduction de dimension	Principal Component Regressor (PCR)
	Reposant sur des arbres Random Forest (RF)
		Gradient Boosting Regressor Tree (GBRT+H)

Table 1 .

 1 2 -Erreur de réplication moyenne du DeepOHedger et risque initial.

	données, et laisse entrevoir de

Table 2 .

 2 1.

	Family of models	Expert
	Linear	Ordinary Least Square (OLS+H)
		Ordinary Least Square 3 factors (OLS3+H)
		Generalized Linear model with group Lasso (GLM+H)
		Elastic Net (ENet+H)
	Linear with	Partial Least Square (PLS)
	dimension reduction Principal Component Regressor (PCR)
	Based on trees	Random Forest (RF)
		Gradient Boosting Regressor Tree (GBRT+H)
	Neural Networks	Neural Network (NN1-NN5)

Table 2 .

 2

1 -Experts used for stock return forecasting.

Table 2 .

 2 7, we proposed to consider in a single model several investment 2 -Replication loss of the DeepOHedger and intial risk.

		Training data	Testing data
		Replication loss Initial Risk Replication loss Initial Risk
	French	42.35	694.32	128.83	564.96
	German	44.58	659.01	131.68	650.90
	Belgium	27.59	503.75	85.95	562.06
	Italy	34.09	743.23	116.53	660.95
	Swiss	42.41	694.70	135.70	699.01
	Spain	54.87	784.83	238.82	564.79
	Mean	40.99	679.98	139.59	617.12

strategies constructed independently by weighting them dynamically according to their performance at each time. Finally, in the last chapter, we are interested in developing a model capable of solving several stochastic control problems in a single training, and which generalizes to unknown models.

Table 4 .

 4

		CEGEN EWGAN EDGAN
		Black-Scholes	
	r (0.8)	0.739	0.581	0.996
	σ (0.3)	0.324	0.314	0.379
		Ornstein-Uhlenbeck	
	θ (7.0)	7.05	4.36	4.68
	μ (0.6)	0.60	0.75	0.72
	σ (0.1)	0.11	0.16	0.02

1 -Exp. A. Model parameter estimations.

Table 4 . 3

 43

	Transfer learning tests show how this type of methods

-Exp. D. Accuracy evaluations for generations on real time series (the lower, the better).

Table 4 .

 4

4 -Exp. D. Discriminative and predictive scores on real time series (the lower, the better).

Table 4 . 5

 45

	Metrics CEGEN EWGAN EDGAN	TSGAN
	q05	9.95e-05	2.55e-02	3.49e-03 2.61e-06
	Avg	8.01e-07 4.04e-02	2.20e-05	9.44e-07
	q95	7.85e-06 6.02e-02	2.85e-03	2.47e-05
	QVar	4.54e-04 7.30e-02	4.12e-02 2.38e+00
			Ornstein-Uhlenbeck
	Metrics CEGEN EWGAN EDGAN	TSGAN
	q05	4.89e-04	3.98e-03	7.30e-02 2.96e-06
	Avg	2.27e-07 2.39e-05	4.47e-02	2.25e-06
	q95	8.55e-04	3.98e-03	2.38e-02 6.49e-06
	QVar	4.59e-03 2.51e+00 1.67e-03 1.04e+00

-Exp. A Marginal and temporal metrics between reference and generated samples.

Table 4 .

 4

	7 -Exp. B Mean squared error (MSE) between reference and generated drift
	and volatility functions of d-dimensional BS
		Misspecified	CEGEN	CEGEN
		model	w/o transfer with transfer
	θ (2.00)	3.00	1.54	1.78
	µ (0.60)	0.80	0.65	1.01
	σ (0.15)	0.10	-0.03	0.15

Table 4 . 8

 48

-Exp. C. Empirical Ornstein-Uhlenbeck coefficient estimations according to three models : misspecifed samples, CEGEN trained on few original samples and CEGEN with transfer learning.

Table 4 . 9 -

 49 Exp. D. Discriminative and Predictive scores on real time series (the lower, the better).

		EWGAN	RCGAN	GMMN
	Data	Disc Pred Disc Pred Disc Pred
	Spot prices (d=2)	.225	.050	.427	.809	.137	.671
	Stocks (d=6)	.238	.042	.287	.616	.499	.626
	Electric Load (d=12) .410	.029	.495	.581	.499	.566
	Jena climate (d=15)	.479	.034	.499	.651	.295	.634

 Ð m samples i.i.d. Gaussian noise y θ Ð m generations from g θ pzq and Euler scheme θ Ð θ ´βAdam `∇θ Erd ϕ py θ qs, β ȇnd while algorithm runs faster and gives better empirical results. Conditional Loss by disjoint quantiles.

	Ð gradient penalty pψ, 10q end for end for x Ð m samples with X z Algorithm 4	ψ

t N q real data Output: θ, ϕ, ψ θ Ð θ 0 , ϕ Ð ϕ 0 , ψ Ð ψ 0 while NOT CONVERGE do for j P t1, . . . , n critic u do x Ð m samples of X z Ð m samples i.i.d. Gaussian noise y θ Ð m generations from g θ pzq and Euler scheme ϕ Ð ϕ `αAdam `∇ϕ pErd ϕ pxqs ´Erd ϕ py θ qsq; α φ Ð gradient penalty pϕ, 10q for t P tt 1 , . . . , t N u do ψ Ð ψ `γAdam `∇ψ pErd ψ px t qs ´Erd ψ py θ t qsq; γ

Table 4 .

 4 [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF] indicates the variation between 3 different training of each generators for stocks data. We recall that the discriminative and predictive scores are obtained by training 10 LSTM networks and by averaging their scores (thus including additional variations).

	Stocks data Discriminative Predictive
	EWGAN	.417(˘.041)	.041(˘.001)
	EDGAN	.444(˘.146)	.041(˘.000)
	CEGEN	.077(˘.015)	.040(˘.000)
	TSGAN	.168(˘.025)	.041(˘.001)
	COTGAN	.094(˘.022)	.041(˘.000)

Table 4 .

 4 [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF] -Performance variations of each generators for stocks data on discriminative and predictive scores, for three different trainings.

	4.11 Data			
	Dataset	Sequences Seq. length Dim.
	Price	52608	30	2
	Stocks	3600	30	6
	Electric Load*	50000	30	13
	Jena Climate*	50000	30	15

Table 4 .

 4

12 -Data description.

 The training set size starts in 1957 with 18 years and increases with time. Models are re-fitted by increasing the training sample by one year. The validation set size of 12 years is maintained constant by rolling it forward to include the most recent year. The testing set is a unobserved 30-year period from 1987 to 2016. So, the first training (over 30 ones) is done on the 1957-1974 period, the validation on 1975-1986 and the out-of-sample test on year 1987. The second training is then done on 1957-1975, validation on 1976-1987, test on 1988, and so on until the testing year reaches 2016.

Table 7 .

 7 .1 and their hyper-parameters are reported in Appendix. 1 -Experts used in the empirical tests. Note: Details of algorithms and hyper-parameters are given in Appendix.

	Family	Expert
	Linear models	Ordinary Least Square (OLS+H)
		Ordinary Least Square 3 factors 3 (OLS3+H)
		Generalized Linear Model with group Lasso (GLM+H)
		Elastic Net (ENet+H)
	Linear models	Partial Least Square (PLS)
	with dimension reduction Principal Component Regressor (PCR)
	Tree Based models	Random Forest (RF)
		Gradient Boosting Regressor Tree (GBRT+H)
	Neural Networks	Neural Network (NN1-NN5)

Table 7 .

 7 2 -Performance of expert portfolios.

	H-L OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5
		+H	+H	+H	+H		+H	
					Equally weighted	
	Pred 4.49	2.26 4.29 3.96	3.63	3.47	2.54	2.65	5.84 5.61 5.92 6.23 5.23
	Avg	2.99	1.76 2.57 2.50	2.53	2.66	2.31	2.11	4.04 4.20 4.01 4.03 3.62
	Std	4.50	5.47 4.79 4.85	4.90	5.06 4.05	4.25	5.80 5.27 5.70 5.56 5.64
	SR	2.28	1.11 1.85 1.78	1.77	1.81	1.96	1.71	2.39 2.74 2.42 2.58 2.21
					Value weighted	
	Pred 3.21	1.66 3.08 2.86	2.63	2.50	1.85	1.94	4.15 3.99 4.20 4.40 3.71
	Avg	2.24	1.35 1.91 1.89	1.90	2.01	1.74	1.56	3.03 3.11 2.98 3.00 2.68
	Std	3.34	4.14 3.58 3.54	3.64	3.74 2.93	3.10	4.45 3.98 4.31 4.13 4.27
	SR	2.33	1.13 1.85 1.84	1.81	1.86	2.06	1.74	2.35 2.71 2.39 2.51 2.17

Note: Performance on High-minus-Low decile of each expert for both equally and value weighted portfolios. Columns Pred, Avg, Std, and SR are predicted monthly returns for each decile, average realized monthly returns, real monthly standard deviations and Sharpe ratios, respectively.

Table 7 .

 7 3 -Statistical description of portfolios. Note: Column Ann. Ret., Ann. Vol., Skew, Kurt, Sharpe, Max DD, Max 1M loss and Turnover provide annualized mean return, annualized volatility, skewness, kurtosis, annualized Sharpe ratio, maximum drawdown, 1-month maximum loss and portfolio turnover. Symbol ˚indicates the lower, the better. error between expert portfolio returns and the target. Still, PtfBOA manages to get the highest annual SR with 2.77. The uniform aggregation PtfUNI gives the third best annual SR with 2.56, ex-aequo with NN4, despite lower expected returns compared to NN2 and PtfBOA, 0.36 against 0.50. This score is partially explained by its low volatility.

		OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4	NN5 PtfBOA PtfUNI
		+H	+H		+H	+H		+H						
								Equally Weighted					
	Ann. Ret.	0.36	0.21 0.31 0.30	0.30	0.32	0.28	0.25	0.48 0.50 0.48	0.48	0.43	0.49	0.36
	Ann. Vol. ˚0.16	0.19 0.17 0.17	0.17	0.18 0.14	0.15	0.20	0.18	0.20	0.19	0.20	0.18	0.14
	Skew	0.52	0.77 0.14 0.46 -0.05 -0.26 0.97	1.72	2.18	2.27	1.69	1.75	2.40	3.11	1.19
	Kurt	4.36 17.89 7.96 7.50	7.42	8.63	7.03	12.63 19.44 13.94 11.12 11.47 19.56	19.63	10.17
	Sharpe	2.28	1.11 1.85 1.78	1.77	1.81	1.96	1.71	2.39	2.74	2.42	2.56	2.21	2.77	2.56
	Max DD	0.39	0.59 0.48 0.49	0.49	0.53	0.44	0.47	0.62	0.53	0.56	0.54	0.63	0.55	0.46
	Max 1M loss ˚0.13	0.36 0.23	0.2	0.22	0.27	0.17	0.16	0.28	0.16	0.23	0.22	0.23	0.08	0.18
	Turnover ˚1.26	1.50 1.15 1.27	1.28	1.36 0.92	1.25	1.24	1.23	1.20	1.20	1.15	1.22	1.23
								Value Weighted					
	Ann. Ret.	0.27	0.16 0.23 0.23	0.23	0.24	0.21	0.19	0.36 0.37 0.36	0.36	0.32	0.36	0.27
	Ann. Vol. ˚0.12	0.14 0.12 0.12	0.13	0.13 0.10	0.11	0.16	0.14	0.15	0.14	0.15	0.13	0.11
	Skew	0.84	0.82 0.16 0.62	0.13 -0.21 1.28	1.89	2.39	2.48	1.87	1.90	2.71	3.00	1.20
	Kurt	5.30 23.68 9.14 7.84	7.58	9.78	6.52	14.23	23.0 16.41 13.35 13.26 24.58	18.85	10.73
	Sharpe	2.29	1.13 1.84 1.83	1.79	1.84	2.04	1.72	2.33	2.67	2.37	2.48	2.16	2.73	2.54
	Max DD	0.30	0.45 0.36 0.37	0.37	0.40	0.28	0.34	0.49 0.42	0.43	0.40	0.50	0.40	0.33
	Max 1M loss ˚0.09	0.30 0.19 0.14	0.16	0.22	0.10	0.12	0.23	0.13	0.19	0.18	0.19	0.05	0.15
	Turnover ˚1.05	1.33 1.02 1.06	0.97	1.07 0.51	0.67	0.66	0.60	0.69	0.55	0.52	0.73	0.82

Table 7 .

 7 Figure 7.2 illustrates the expert distributions of a given rank for annual Sharpe ratio for equally weighted portfolios. Rank 1 areas indicate that PtfBOA is more often the best portfolio strategy in term of annual SR with close 4 -Annual Sharpe ratios of sub-portfolios. Note: Annual Sharpe ratios are computed on the testing period 1987-2016. Expert's portfolios Top and Bot. include respectively only the top 1000 and the bottom 1000 market capitalization assets.

		OLS+H OLS3+H PLS PCR ENet+H GLM+H RF GBRT+H NN1 NN2 NN3 NN4 NN5 PtfBOA PtfUNI
							Equally weighed			
	All	2.28	1.11	1.85 1.78	1.77	1.81	1.96	1.71	2.39 2.74 2.42 2.56 2.21	2.77	2.56
	Top	0.94	0.34	0.79 0.78	0.34	0.34	0.52	0.39	0.70 0.76 0.64 0.65 0.54	0.95	0.82
	Bot.	2.25	2.21	1.99 1.99	2.21	2.21	2.43	2.26	2.57 2.56 2.51 2.50 2.09	2.59	3.07

Table 7 . 5

 75

-%R2 scores of each model on out-the-sample testing period (1987-2016). Note: Top (resp. Bot) is the top 1000 (resp. bottom 1000) market capitalization assets. %R2 is percent of R2 (1%R2 = 0.01 R2). As shown with bar plot in the top figure, bottom 1000 stock returns are better estimated than the top market cap stocks.

Table 7 .

 7

							OLS+H
	Decile					Pred Avg Std	SR
	L					-1.35 -0.61 6.95 -0.30
	2					-0.41 0.51 6.17 0.29
	3					-0.05 0.77 5.61 0.48
	4					0.39 0.97 5.23 0.64
	5					0.70 1.09 5.07 0.74
	6					0.98 1.21 5.05 0.84
	7					1.28 1.30 5.05 0.89
	8					1.61 1.49 5.23 0.98
	9					2.04 1.70 5.45 1.08
	H					2.88 2.11 6.00 1.22
	H-L					4.49 2.99 4.50 2.28
			OLS3+H			PLS	PCR
	Decile Pred Avg Std	SR	Pred Avg Std	SR	Pred Avg Std	SR
	L	-0.19 0.44 6.77 0.23 -1.03 -0.12 7.22 -0.06 -0.9 -0.12 6.86 -0.06
	2	0.16 0.72 5.48 0.46 -0.22 0.55 6.08 0.31 -0.15 0.58	6.0	0.33
	3	0.38 0.98 4.83	0.7	0.2	0.79 5.55 0.49 0.24 0.81 5.37 0.52
	4	0.58	1.0	4.49 0.77 0.52 0.89 5.21 0.59 0.54	0.9	5.21	0.6
	5	0.77 0.98 4.43 0.77 0.82 0.96 5.05 0.66 0.82 0.99 5.12 0.67
	6	0.94 0.96 4.79 0.69	1.1	1.07 5.16 0.72 1.08 1.03	5.2	0.69
	7	1.11 1.06 5.31 0.69	1.4	1.17 5.18 0.79 1.35 1.18 5.27 0.78
	8	1.28 1.22 6.09	0.7	1.74 1.39 5.25 0.92 1.66 1.42 5.27 0.94
	9	1.49 1.23 6.44 0.66 2.17 1.65 5.35 1.07 2.04 1.64 5.58 1.02
	H	1.81 1.94 8.08 0.83	3.0	2.18 5.87 1.29 2.79 2.11 6.14 1.19
	H-L	2.26 1.76 5.47 1.11 4.29 2.57 4.79 1.85 3.96	2.5	4.85 1.78
			ENet+H			GLM+H	RF
	Decile Pred Avg Std	SR	Pred Avg Std	SR	Pred Avg Std	SR
	L	-0.86 -0.21 7.24 -0.1 -0.78 -0.29 7.41 -0.13	0.2	0.37 7.13 0.18
	2	-0.16 0.61 6.28 0.34 -0.13 0.64 6.26 0.35 0.47 0.63 5.87 0.37
	3	0.2	0.88 5.62 0.54 0.23 0.87 5.65 0.53 0.62 0.71 5.73 0.43
	4	0.49 0.97 5.19 0.65	0.5	0.95	5.2	0.63 0.73 0.94 5.51 0.59
	5	0.75 1.09 5.03 0.75 0.75 1.09 5.07 0.74 0.85 1.04 5.59 0.65
	6	0.99 1.08 4.94 0.76 0.99 1.12 4.93 0.79 1.08 1.07 5.02 0.74
	7	1.25 1.21 5.01 0.84 1.23 1.17 5.09	0.8	1.22 1.09	4.7	0.8
	8	1.52 1.29	5.2	0.86 1.49 1.25 5.08 0.85 1.35 1.05 4.84 0.75
	9	1.87 1.56 5.67 0.95 1.82 1.64 5.59 1.02	1.5	1.23 5.03 0.85
	H	2.51 2.05 6.04 1.18 2.42 2.11 5.92 1.23 2.48 2.42 7.25 1.16
	H-L	3.63 2.53	4.9	1.77 3.47 2.66 5.06 1.81 2.54 2.31 4.05 1.96
			GBRT+H			NN1	NN2
	Decile Pred Avg Std	SR	Pred Avg Std	SR	Pred Avg Std	SR
	L	-0.12 0.14 6.91 0.07 -1.46 -0.59 8.17 -0.25 -1.26 -0.63 8.07 -0.27
	2	0.21 0.81 5.73 0.49 -0.33 0.46 6.34 0.25 -0.12 0.29 6.26 0.16
	3	0.36 0.98 5.45 0.62 0.17	0.7	5.38 0.45 0.36 0.59 5.28 0.39
	4	0.49 0.94 5.32 0.61 0.52 0.81 4.88 0.57 0.68 0.79 4.83 0.57
	5	0.62 1.16 5.52 0.73 0.82 0.91 4.66 0.68 0.95	0.9	4.64 0.67
	6	0.8	1.06 4.95 0.74 1.09 1.05 4.58 0.79	1.2	1.1	4.54 0.84
	7	1.05 1.13 4.75 0.82 1.38 1.18 4.62 0.88 1.46 1.21 4.64	0.9
	8	1.24 1.12 4.83	0.8	1.72 1.32 4.73 0.97 1.76 1.35	4.7	1.0
	9	1.44 1.23 5.72 0.75 2.19 1.52 5.07 1.04 2.19 1.63 5.14	1.1
	H	2.26 1.98 7.76 0.88 4.12 3.18 8.62 1.28 4.09 3.31 8.61 1.33
	H-L	2.65 2.11 4.25 1.71 5.84 4.04	5.8	2.39 5.61	4.2	5.27 2.74
			NN3			NN4	NN5
	Decile Pred Avg Std	SR	Pred Avg Std	SR	Pred Avg Std	SR
	L	-1.54 -0.58 8.27 -0.24 -1.49 -0.61 8.36 -0.25 -0.87 -0.43 8.03 -0.19
	2	-0.32 0.44 6.41 0.24 -0.17	0.4	6.38 0.22 0.16 0.49 6.22 0.27
	3	0.2	0.68 5.31 0.44 0.38	0.7	5.35 0.45 0.55 0.81 5.27 0.53
	4	0.55 0.75 4.91 0.53 0.74	0.8	4.84 0.57 0.82 0.92 4.72 0.68
	5	0.85 0.88 4.71 0.65 1.03 0.92 4.61 0.69 1.04 1.04 4.65 0.78
	6	1.11 1.07 4.59 0.81	1.3	1.08 4.54 0.83 1.24 0.98	4.6	0.74
	7	1.39 1.19 4.63 0.89 1.58 1.22 4.55 0.93 1.45 1.16 4.61 0.87
	8	1.7	1.38 4.72 1.01	1.9	1.35 4.74 0.99 1.71 1.26 4.74 0.92
	9	2.15 1.58 5.05 1.09 2.36 1.53	5.1	1.04 2.09 1.39 5.31	0.9
	H	4.12 3.16 8.43	1.3	4.48 3.16 8.33 1.31	4.1	2.92 8.81 1.15
	H-L	5.92 4.01	5.7	2.42 6.23 4.03 5.56 2.58 5.23 3.62 5.64 2.21

6 -Performance of equally weighted portfolios by decile. Note: Rows L, H and HL stand for Low, High and High-minus-Low deciles respectively. Columns Pred, Avg, Std, and SR are predicted monthly returns for each decile, average realized monthly returns, real monthly standard deviation and Sharpe Ratio, respectively. All portfolios are equi-weighted.

Table 7 .

 7

		OLS OLS3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5 PtfBOA PtfUNI
		+H	+H			+H	+H	+H							
								Equally Weighted						
	Ann. Ret.	0.36	0.21	0.3	0.29	0.29	0.31 0.27	0.25	0.48	0.5	0.47	0.48	0.43	0.49	0.36
	Ann. Vol.	0.15	0.19 0.16 0.17	0.17	0.17 0.14	0.15	0.2	0.18	0.2	0.19	0.19	0.17	0.14
	Skew	0.5	0.77 0.17 0.48 -0.01 -0.22 0.97	1.72	2.22	2.3	1.71	1.79	2.44	3.15	1.22
	Kurt	4.48 18.35 8.05 7.53	7.58	8.79 7.02 12.68 19.95 14.28 11.32 11.81 20.19	20.29	10.49
	Sharpe	2.35	1.13 1.83 1.74	1.74	1.78 1.94	1.69	2.4	2.73	2.41	2.54	2.23	2.78	2.56
	Max DD	0.39	0.59 0.48 0.49	0.49	0.53 0.44	0.47	0.62	0.53	0.56	0.54	0.63	0.55	0.46
	Max 1M loss 0.13	0.36 0.23	0.2	0.22	0.27 0.17	0.16	0.28	0.16	0.23	0.22	0.23	0.08	0.18

7 -Performance of value weighted portfolios by decile. Note: Rows L, H and HL stand for Low, High and High-minus-Low deciles respectively. Columns Pred, Avg, Std, and SR are predicted monthly returns for each decile, average realized monthly returns, real monthly standard deviations and Sharpe Ratios, respectively. All portfolios are value-weighted.

Table 7 .

 7 8 -Performances of portfolios for pre-trained aggregation. Note: Statistical description of portfolios by expert. Only PtfBOA and PtfUNI performances are modified by the pre-train process. Columns Ann. Ret., Ann. Vol., Skew, Kurt, Sharpe, Max DD and Max 1M Loss provide annualized mean return, annualized volatility, Skewness, Kurtosis annualized Sharpe ratio, maximum drawdown and 1-month maximum loss.

	Experts	Ann. Ret. Ann. Vol. Skew SR Max DD Max 1M Loss
	OLS+H	0.36	0.16	0.52 2.28	0.39	0.13
	OLS3+H	0.21	0.19	0.77 1.11	0.59	0.36
	PLS	0.31	0.17	0.14 1.85	0.48	0.23
	PCR	0.30	0.17	0.46 1.78	0.49	0.20
	ENet+H	0.30	0.17	-0.05 1.77	0.49	0.22
	GLM+H	0.32	0.18	-0.26 1.81	0.53	0.27
	RF	0.28	0.14	0.97 1.96	0.44	0.17
	GBRT+H	0.25	0.15	1.72 1.71	0.47	0.16
	NN1	0.48	0.20	2.18 2.39	0.62	0.28
	NN2	0.50	0.18	2.27 2.74	0.53	0.16
	NN3	0.48	0.20	1.69 2.42	0.56	0.23
	NN4	0.48	0.19	1.75 2.56	0.54	0.22
	NN5	0.43	0.20	2.40 2.21	0.63	0.23
	NN2_0	0.37	0.16	1.27 2.27	0.43	0.18
	NN2_1	0.40	0.18	1.00 2.27	0.55	0.25
	NN2_2	0.38	0.17	1.06 2.25	0.54	0.22
	NN2_3	0.39	0.20	0.77 1.91	0.62	0.26
	NN2_4	0.37	0.20	0.55 1.89	0.68	0.29
	NN2_5	0.37	0.17	1.41 2.11	0.46	0.10
	NN2_6	0.40	0.20	1.15 1.97	0.64	0.22
	NN2_7	0.36	0.18	2.83 2.06	0.64	0.14
	NN2_8	0.39	0.19	2.39 2.00	0.79	0.26
	NN2_9	0.39	0.17	1.22 2.26	0.60	0.22
	OLS+H_0	0.33	0.15	0.12 2.17	0.42	0.16
	OLS+H_1	0.32	0.16	0.22 1.97	0.46	0.23
	OLS+H_2	0.30	0.16	-0.05 1.92	0.40	0.19
	OLS+H_3	0.32	0.15	-0.30 2.16	0.41	0.26
	OLS+H_4	0.32	0.15	-1.03 2.10	0.43	0.29
	OLS+H_5	0.31	0.14	0.24 2.13	0.35	0.14
	OLS+H_6	0.35	0.16	0.53 2.23	0.37	0.14
	OLS+H_7	0.32	0.15	0.60 2.17	0.36	0.13
	OLS+H_8	0.32	0.15	0.30 2.11	0.38	0.18
	OLS+H_9	0.29	0.18	0.19 1.59	0.47	0.19
	PtfBOA	0.47	0.17	2.98 2.82	0.51	0.07
	PtfUNI	0.36	0.13	1.13 2.79	0.38	0.12

Table 7 .

 7 [START_REF] Angiuli | Reinforcement learning for mean field games, with applications to economics[END_REF] -Performances of long short strategies with specialized experts. Note: Columns Ann. Ret., Ann. Vol., Skew, SR, Max DD, Max 1M loss provide annualized mean return, annualized volatility, Skewness, annualized sharpe ratio, maximum drawdown and 1-month maximum loss. Here, PtfBOA indicates the BOA ruled mixture with the K " 13 initial experts plus K

1

" 10 new specialized neural networks NN2 and K 1 " 10 new specialized OLS+H

Table 7 .

 7 10 -Description of hyper-parameters of experts Note: P=94 number of variables. Hyper-parameters are optimized via the validation set.

		OLS-OLS3+H	PLS	PCR	ENet+H
	Huber loss	ξ " 0.999	-	-	ξ " 0.999
	Hyper param		P=94	P=94	α P p10e ´4, 10e ´1q
		Ensemble: 10			ρ " 0.5
					Ensemble: 10
		GLM+H	RF	GBRT+H	NN1-NN5
	Huber loss	ξ " 0.999	-	ξ " 0.999	-
	Hyper param α P p10e ´4, 10e ´1q Nb trees: 300	Nb trees: 1000	Batch size: 10000
		Ensemble: 10	DepthP p1, 6q	DepthP p1, 2q	Nb epoch: 100
			Bootstrap:True Learning rate: {0.01,0.1} Learning rate: 0.01
					Adam: Default
					Ensemble: 10
					Patience: 10
					L1 penP p10 ´5, 10 ´3q

Table 7 .

 7 [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF] -OLS benchmark models. Note: This table reports the performance of different Ordinary Least Squared benchmark models, as well as RF and NN3. We report predictive R2 for stock return forecasting on testing period and Sharpe ratios of long-short strategies as well as their turnover. OLS3 includes variables mom12m, size, bm, OLS7 adds acc, roaq, agr, egr, and OLS15 adds dy, mom36m, beta, retvol, turn, lev, sp. Models are trained on training and validation set data, as there is no hyper-parameters. This benchmark can be compared with TableA.11 of[START_REF] Gu | Empirical asset pricing via machine learning[END_REF].

		OLS3 OLS7 OLS15 RF NN3
	%R2	0.16	0.19	0.19	0.19 0.45
	SR	0.95	1.21	1.33	1.96 2.42
	Turnover 0.49	0.48	0.56	0.92 1.20

 S t i `∆t " S t i `µpt i , S t i q∆t `σpt i , S t i q∆W t i , S t 0 " s 0 P R d (8.4.1)

Table 8 .

 8 2 -Price and replication loss of deep hedger on CEV models. accordingly to conversion rates β, γ. Mathematical models for commodities markets can be then expressed as a finite factor models. The payoff is:

	Average on training models Real model (unobserved)
			σ " 0.25, p " 0.7
	p loss	repl. loss	p loss	repl. loss
	DeepOHedger 6.91e-07	8.48e-05	6.14e-08	3.63e-05
	MDeepHedger 8.48e-04	1.15e-03	2.59e-07	3.70e-05
	RDeepHedger 2.49e-03	2.68e-03	3.43e-03	3.62e-03
	CDeepHedger 3.77e-07	9.14e-05	7.36e-08	4.75e-05
	gpS e T , S g T , S co2 T q " pS e T ´βS g T ´γS co2 T ´Kq `(8.5.3)

Table 8 .

 8 3 -Average Replication loss on training and unobserved models.

	Replication loss Training models Unobserved models
	DeepOHedger	108.51	42.82
	RDeepHedger	1103.50	916.78
	CDeepHedger	110.63	43.45
	Initial Risk	1006.88	809.16

 |S t i P Iq, LpY ϕ t i`1 |Y ϕ t i P Iqq.

	N ´1
	ÿ i"0 2 pLpS t i`1 The parameter ϕ is optimized by minimizing W 2
	min

ϕ

Er pS, Y ϕ qs.

Table 8 .

 8 To conclude, this test highlights how unsupervised approaches can address the challenges of probabilistic methods and open new application perspectives in risk management. 4 -Average replication loss of DeepOHedger and initial risk on training and testing data.

		Training data	Testing data
		Replication loss Initial Risk Replication loss Initial Risk
	French	42.35	694.32	128.83	564.96
	German	44.58	659.01	131.68	650.90
	Belgium	27.59	503.75	85.95	562.06
	Italy	34.09	743.23	116.53	660.95
	Swiss	42.41	694.70	135.70	699.01
	Spain	54.87	784.83	238.82	564.79
	Mean	40.99	679.98	139.59	617.12

Table 8 .

 8 5 -Payoff and premium of both deep hedger pX T , pq and theoretical values (gpX T q, p th.) on BS. X 0 " K " 0.5, N " 30 and maturity is 0.25. The bold values indicates price models omitted in the training process of the deep hedger.

	These metrics ensure

Table 8 .

 8 6 -Controls both deep hedger and theoretical values on BS. X 0 " 0.5, N " 30, K " 0.5 and maturity is 0.25. α indicates the average over time of controls α, MSE is the mean squared error between theoretical values and controls from the deep hedger. The bold values indicates price models omitted in the training process of the deep hedger.

			Marginal		Temporal Correlation
		q05	Avg	q95	Qvar	Corr
	French	4.77e-04 5.97e-04 2.27e-03 3.87e-02	4.70e-03
	German 1.59e-03 8.20e-05 1.06e-03 6.70e-02	1.03e-02
	Belgium 8.13e-04 9.11e-06 4.15e-04 5.52e-03	1.08e-02
	Italy	2.06e-03 1.88e-04 7.90e-04 6.73e-02	1.61e-02
	Swiss	5.44e-04 3.47e-05 3.30e-04 3.29e-02	1.23e-02
	Spain	1.52e-03 4.39e-04 3.92e-03 3.95e-02	1.22e-02

Table 8 .

 8 7 -Evaluation metrics on gas price generation (the lower, the better).Marginal metrics measures how well the overall envelop of the synthetic sequences fits with the real ones. The metric Qvar focuses on the temporal structure by evaluating the value variations between each time step.that the distribution is accurate and quantify the quality of the overall time series envelop.-The temporal dependencies are measure with the relative quadratic variation (QVar) with QV arpXq "ř i |S t i`1 ´Xt i | 2).-Correlation structure Corr is evaluated with the time average MSE between the terms of the covariance matrices of synthetic and reference sequences.

Conditional loss and deep euler scheme for time series generation. En collaboration avec Joseph Mikael et Romuald Élie. Pré-publication arXiv:2102.05313 -To appear in AAAI Conference, 2022. Voir Chapitre 4.

Deep generators for commodity markets. En collaboration avec Nicolas Boursin et Joseph Mikael En préparation Voir Chapitre 5.

Reinforcement learning in economics and finance. En collaboration avec Arthur Charpentier et Romuald Élie. Paru dans Computational Economics, 2021. Voir Chapitre 6.

Expert aggregation for financial forecasting. En collaboration avec Marie Brière, Clémence Alasseur et Joseph Mikael Pré-publication arXiv:2111.15365 Voir Chapitre 7.

Ici, la comparaison est légèrement injuste, CEGEN étant avantagé par le schéma d'Euler par rapport aux deux GANs, plus généraux.

Nous nous intéressons ensuite à la création de nouveaux mélanges, en modifiant les données qui nourrissent l'agrégation. Nous proposons de mettre en évidence la simplicité et l'efficacité du mélange d'experts en proposant de nouvelles agrégations entraînées sur des portefeuilles spécifiques. En se concentrant uniquement sur une classe d'actifs des plus grandes capitalisations (ou des plus petites), de nouveaux modèles prévisionnels sortent du lot. Cela améliore significativement le mélange en terme de ratio de Sharpe, tout en gardant des pertes mensuelles maximales très faibles. Lors de l'initialisation, les poids des experts sont définis de manière uniforme puis sont adaptés en fonction de la loi fixée à l'avance et des erreurs des experts. Afin d'accélérer les convergences de poids, nous proposons de pré-entraîner le mélange en ligne sur une période de validation. Ainsi, au cours de la première année de l'ensemble de tests, les poids des experts bénéficient d'un a priori. Nous remarquons que cela améliore la performance générale de l'agrégation, même si les régimes observés dans le cas classique persistent. L'agrégation d'experts semble être une stratégie d'investissement efficace, adaptative, interprétative, sans hypothèse sur les modèles et soutenu par des résultats théoriques solides[START_REF] Vovk | On-line regression competitive with reproducing kernel hilbert spaces[END_REF][START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]. L'agrégation fournit une rentabilité moyenne élevée et un risque limité en retournant le ratio de Sharpe le plus élevé parmi les différentes stratégies testées.

Here the comparison is slightly unfair, CEGEN has an advantage with the Euler scheme over the two, more general, GANs.

Note that instead of considering convex combination of expert, some rules allow model selection aggregation problem (see[START_REF] Wintenberger | Optimal learning with bernstein online aggregation[END_REF]).

However,[START_REF] Devaine | Forecasting electricity consumption by aggregating specialized experts[END_REF][START_REF] Gaillard | A second-order bound with excess losses[END_REF] propose theoretical guarantees about regret convergences when some expert predictions are missing. Called sleeping experts, one can replace their missing estimation with the one of the aggregation.

We use the standard scale : px ´µq{σ, with µ, σ mean and standard deviation respectively.

The data comes from Réseau de transport d'électricité (RTE) datasets and are openly available online

Remerciements

Electricity controls Gas controls

Oil controls Coal controls

Part II

Learning Optimal Strategies 7.5 Appendix

Metric Definitions

Metrics used in this paper are detailed here with different performance criterion. The Mean Squared Error (MSE) and Huber loss on stock returns is defined as following. Let be y t and ŷt respectively the observed and the prediction values of one asset. We define the Mean Squared Error by M SE py t , ŷt q " 1 T T ÿ t"1 py t ´ŷ t q 2 , and the Huber Loss HL py t , ŷt ; ξq "

Hpy t ´ŷ t ; ξq, where Hpx; ξq "

The Huber loss is less sensitive to outliers in data than the MSE loss. ξ determines the threshold from which it is less important to make an error. To evaluate the accuracy of asset return estimation, the same R2 as [START_REF] Gu | Empirical asset pricing via machine learning[END_REF] is used:

Table 7.3 reports statistical descriptions of the long-short strategies including annualized monthly return, annualized volatility, skewness, kurtosis, annualized Sharpe ratio, maximum draw down, 1-month maximum loss and portfolio turnover. We define some of them below: Max DD: max

pr t 1 ´rt 2 q (7.5. The function u is approximated by q sensors and given as input to the branch net which outputs a real valued vector of dimension K. The trunk net takes as input x P R d and outputs a real valued vector of dimension K. Both outputs are then concatenated to learn the operator G : u Ñ Gpuq. This architecture is known as the unstacked DeepONet. are two compact sets in X and R d , respectively, V is a compact set in CpK 1 q, G is a nonlinear continuous operator, which maps V into CpK 2 q. CpKq indicates Banach space of all continuous functions defined on compact set K with norm ||f || CpKq " max xPK |f pxq|. Then for any ε ą 0, there are positive integers n, p, q, constants c

holds for all u P V and x P K 2 .

DeepOnets consist in two sub-networks to handle the inputs of the function u P U and the vector x P R d independently. The first one is called the branch network and aims at approximating the function u on a given number of scattered values x 1 , ..., x q called sensors. The branch network b : R q Ñ R K is fed with rupx 1 q, . . . , upx q qs T of the sensors and outputs a vector rb 1 , . . . , b K s T P R K . The second one, called trunk network, is a function a : R d Ñ R K which takes as input the vector x and outputs ra 1 , ..., a K s T P R K . A scheme of the DeepOnet is proposed Figure 8.1. Both outputs are then concatenated as follows:

where b 0 P R is a variable to be learned. b 0 represents a bias and may increase the performance by reducing the generalization error. Equation (8.3.3) thus boils down to a scalar product.

Problem Formulation

We aim to solve numerically several PDE involved in the pricing of financial derivatives with a single model and a single training. To do so, a robust model learning information is provided, thus the robust hedger has to learn the mapping between price realizations and the corresponding model. Conditional Deep Hedger (CDeepHedger) is a Robust Deep Hedger conditioned with the parameter value corresponding to each price model. The parameter boils down to a real value, characterizing for instance the constant σ in the volatility term of a Black-Scholes. CDeepHedger emphasis the need of learning operator Gpuq instead of conditioning with additional parameters.

Robust Hedging With Volatility Function

We apply our method on price European call options. The solver is given approximations of J P N volatility functions σ j p.q as well as underlying S j " pS j t q tPT . The underlying follows the Itô dynamics:

t " µpt, S j t qdt `σj pt, S j t qdW t , for j P t1, ..., Ju, where µ : r0, T s ˆRd Ñ R d , σ j : r0, T s ˆRd Ñ M d and W is a Brownian motion.

Here, u j : x Ñ σ j pxq describes the volatility function of the model j, for j P t1, . . . , Ju.

The number of dates is N " 30 and there is no control on the last date. We consider European call options, which can be exercised only at the maturity T and at an exercise price K (called strike), and which payoff is given by: gpS T q " pS T ´Kq `.

Linear volatility functions

The price of the underlying asset follows the Black-Scholes dynamics:

dS t " rS t dt `σS t dW t , (8.5.1)

where pr, σq P R ˆR`a nd W is a 1-dimensional Brownian motion. This model benefits of well-known closed formulas for the premium p ˚and the optimal controls α ˚, allowing us to properly evaluate the accuracy of our approach. The volatility uncertainty is σ j pxq " tσx : σ P rσ j , σj su, where σ j , σj P R `. Then, the function u describes the (linear) volatility function σpt, X t q terms in the process S, then u : x Ñ σx. We approximate u by q " 10 sensors on a fixed regular grid px i q iPt1..qu valued in R. The drift constant is set at r " 0, the maturity is 0.25, the strike is set at K " 0.5 as well as the spot X 0 " 0.5. We consider 19 price models varying according to the value of the constant σ P t0.05, 0.10, ..., 1.00u. The deep hedgers are fed with 16 models during the training process. We omit the values σ P t0.25, 0.45, 0.65u in order to evaluate the ability of the model the generalize on unknown parameters.

The outputs of the deep hedgers are compared with theoretical values of the underlying Black-Scholes models. Each loss is the mean squared error (MSE) between theoretical values and deep hedger's outputs. The premium accuracry is given by p loss,

Training models

Unobserved model (σ " 0. our method on unobserved models is illustrated in Figure 8.4 (in Appendix).

Non linear volatility functions

We now consider nonlinear functions u. The price of the underlying process follows the dynamics of a constant elasticity of variance (CEV) model [START_REF] Cox | The constant elasticity of variance option pricing model[END_REF]:

where pr, σ, pq P R ˆR`ˆR and W is a 1-dimensional Brownian motion. In this CEV case, σ j pxq " tσx p : σ P rσ j , σj s, p P rp j , pj su, where σ j , σj P R `, p j , pj P r 1 2 , 1s. The function u : x Ñ σx p with p " 0.7 describes the volatility function characterized by the parameter pσ, pq. As done in the linear case, we approximate u by q " 10 sensors on a fixed regular grid px i q iPt1..qu valued in R. The drift is also set at r " 0, the maturity is 0.25, the strike and the spot are set at K " X 0 " 0.5. We consider 14 price models varying according to the values σ P t0.1, 0.10, ..., 0.80u. We train the deep hedgers only with 11 models, omitting the parameters σ P t0.25, 0.45, 0.65u. Table 8.2 reports the performances of each deep hedger on training models and the unobserved real model (σ " 0.25, p " 0.7). The theoretical values of the premium for the CEV model is computed as done in [START_REF] Davydov | Pricing and hedging path-dependent options under the cev process[END_REF]. DeepOHedger outperforms significantly every benchmarks, closely followed by CDeepHedger. When fed with true constants of volatility σ and the order p, CDeepHedger provides less effective hedging than the DeepOHedger, emphasis the need of estimating functions instead of vectors. The cost of mis-calibrating a model, described with the performances of MDeepHedger (σ " 0.30, p " 0.7)

Hedging Option Spread for Energy Markets

We propose to hedge an option spread for several underlying models with a single training. An electricity provider may have to buy gas to produce electricity. Then, one can model a power plant as a option spread, where electricity is sold at a given price S e t from which the price of gas prices S g t and CO2 taxes S co2 t must be subtracted,