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Résumé —

La surveillance des cultures va devenir un enjeu majeur dans les années à venir. Soumise
aux pressions liées au changement climatique d’une part, et à l’augmentation de la population
mondiale d’autre part, les chaînes d’approvisionnement alimentaire risquent d’être fortement
contraintes, impactant la sécurité alimentaire dans de nombreuses zones de la planète. Dans
ce contexte, l’utilisation de la télédétection pour acquérir des informations sur l’état de la
végétation sera un outil primordial. Un des domaines directement concerné est l’agriculture
de précision, qui consiste à optimiser les rendements et les pratiques agricoles. Avec l’arrivée
des satellites de la mission Copernicus, Sentinel-1 (radar à synthèse d’ouverture) et Sentinel-2
(imagerie multispectrale), les possibilités d’applications dans le domaine ont été décuplées. En
effet, les données Sentinel sont disponibles gratuitement, et ce, avec une résolution temporelle
et spatiale adaptée à la surveillance des cultures au niveau de la parcelle. L’objectif princi-
pal de cette thèse est de proposer une stratégie pour détecter automatiquement les parcelles
agricoles qui ont un développement agronomique anormal. Une attention particulière a été
donnée à l’utilisation conjointe des données Sentinel-1 et Sentinel-2. De plus, afin d’être dé-
ployée facilement dans un contexte opérationnel, une contrainte est de proposer une méthode
capable d’analyser un seul cycle de croissance (ou une partie de celui-ci).

Pour répondre aux objectifs de la thèse, nous proposons dans un premier temps une
chaîne de traitement permettant l’extraction d’indicateurs agronomiques au niveau de la
parcelle. Ces indicateurs sont calculés en deux temps : 1) calcul d’indicateurs agronomiques
au niveau pixel et 2) calcul de statistiques spatiales au niveau parcelle. Par la suite, ces
indicateurs sont utilisés pour détecter des parcelles qui ont un comportement phénologique
anormal. La détection est non supervisée et réalisée à l’aide d’un algorithme de détection
d’anomalie. Une comparaison de plusieurs approches a été faite pour trouver la méthode
la plus adaptée à notre problème. Parmi les différents algorithmes testés, la méthode la
plus efficace est la forêt d’isolement, qui présente également l’avantage d’être rapide et peu
sensible aux choix de ses paramètres. Grâce à la méthode proposée, il est possible de détecter
des parcelles au comportement anormal avec une grande précision. Les résultats obtenus
ont été validés sur deux types de cultures différentes, le blé et le colza. Dans un second
temps, nous traitons le problème de détection d’anomalie en présence de données manquantes.
Cette problématique est fondamentale en télédétection, en particulier pour les données issues
d’images multispectrales car celles-ci sont sensibles au couvert nuageux. Pour résoudre ce
problème, nous proposons de reconstruire les données manquantes (au niveau parcelle) en
utilisant des modèles de mélange gaussien. Cette approche s’est montrée significativement
meilleure que les autres approches testées pour reconstruire les données manquantes et pour
permettre de détecter des anomalies sur des parcelles agricoles avec des séries temporelles
incomplètes. De plus, nous avons également proposé une méthode d’estimation des modèles
de mélange gaussien qui est robuste à la présence de valeurs aberrantes dans les données.
Cette méthode est particulièrement utile en présence de forte valeurs anormales, par exemple
en présence de parcelles provenant d’un type de culture différent de celui analysé. Enfin, nous
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explorons dans cette thèse des approches de détection d’anomalie qui prennent en compte la
structure temporelle des données. En particulier, nous proposons une méthode basée sur un
ensemble de modèles de Markov cachés. Un des intérêts de cette approche est de pouvoir
également localiser les anomalies dans le temps.

Mots clés : télédétection, imagerie multispectrale, imagerie radar, surveillance des
cultures, détection d’anomalies, reconstruction de données manquantes (imputation).



Abstract —

Crop monitoring will become a major challenge in the coming years. Under the pressure of
climate change on the one hand, and the increase of the world population on the other hand,
food supply chains are likely to be strongly constrained, impacting food security in many areas
of the planet. In this context, using remote sensing to acquire information on vegetation status
will be a key asset. One of the areas directly concerned is precision agriculture, which consists
in optimizing yields and agricultural practices. With the arrival of the Copernicus mission
satellites, Sentinel-1 (synthetic aperture radar) and Sentinel-2 (multispectral imagery), the
possibilities of applications in this area have increased drastically. Indeed, Sentinel data are
freely available, with a temporal and spatial resolution adapted to crop monitoring at the
parcel level. The main objective of this thesis is to propose a strategy to automatically detect
agricultural parcels with abnormal agronomic development. Special attention was given to
the joint use of Sentinel-1 and Sentinel-2 data. Moreover, in order to be easily deployed in an
operational context, a constraint is to have a method able to analyzing a single growth cycle
(or a part of it).

To meet the objectives of the thesis, we first propose a processing chain allowing the
extraction of agronomic indicators at the parcel-level. These indicators are calculated in
two steps: 1) calculation of agronomic indicators at the pixel level and 2) calculation of
spatial statistics at the plot level. Then, these indicators are used to detect parcels with
abnormal phenological behavior. The detection is unsupervised and performed using an
anomaly detection algorithm. A comparison of several approaches was made to find the most
suitable method for our problem. Among the different algorithms tested, the most efficient
method is the isolation forest, which also has the advantage of being fast and not very sensitive
to the choice of its parameters. Thanks to the proposed method, it is possible to detect plots
with abnormal behavior with a high accuracy. The results obtained were validated on two
different types of crops, wheat and rapeseed. In a second step, we addressed the problem of
anomaly detection in the presence of missing data. This problem is fundamental in remote
sensing, in particular for multispectral data because they are sensitive to cloud cover. To solve
this problem, we propose to reconstruct the missing data (at the parcel-level) using Gaussian
mixture models. This approach has been found to be significantly better than the other
tested approaches for reconstructing missing data and for detecting anomalies on parcels
with incomplete time series. In addition, we also have proposed a method for estimating
Gaussian mixture models that are robust to the presence of outliers in the data. This method
is particularly useful in the presence of strong outlier values, for example in the presence of
parcels coming from a different crop type than the one analyzed. Finally, we explore in this
thesis anomaly detection approaches that take into account the temporal structure of the
data. In particular, we propose a method based on an ensemble of hidden Markov models.
One of the interests of this approach is to be able to localize the anomalies in time.

Keywords: remote sensing, multispectral imagery, radar imagery, crop monitoring,
anomaly detection, data imputation.
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2 Chapter 1. Introduction

1.1 Remote sensing for agriculture

1.1.1 General context

Farming is expected to feed more than 10 billions people by 2050, increasing agricultural
demand by 50% compared to 2013 under modest growth scenario (FAO, 2017). This boost in
the food production is challenged by climate change, which will affect food security at various
stages of the food chain (Tirado et al., 2010; Wheeler and von Braun, 2013). In addition, a
change in agricultural practices is needed to decrease their negative impact on biodiversity
(Newbold et al., 2015), water resources and green-house gas emissions (Gomiero et al., 2011).

In this context, monitoring crop growth and status becomes a necessary issue for a wide
variety stakeholders (Weiss et al., 2020). Remote sensing can provide critical information to
the agricultural sector in a timely and reliable manner at large-scale (Atzberger, 2013), which
is important to measure sustainable intensification and optimize crop practices (Areal et al.,
2018). Moreover, near real-time monitoring can help to improve food system resilience and
react to extreme events (Wheeler and von Braun, 2013).

The different remote sensing applications in agriculture can be grouped into 4 categories:
phenotyping, yield forecasting, ecosystem services and precision farming (Weiss et al., 2020).
Precision agriculture, which is the focus of this thesis, aims at monitoring crops for the
optimization of yields as well as farming practices. It covers a wide range of applications,
such as weed and disease detection (López-Granados, 2011; Mahlein, 2016) and nutrient and
water stress monitoring (Baret et al., 2007; Calera et al., 2017). The use of remotely sensed
imagery for precision agriculture is particularly interesting because it provides spatial and
temporal information about the condition of crops in a non-destructive manner and without
needing on-site visits (Schulz et al., 2021).

1.1.2 Precision agriculture with Sentinel-1 and Sentinel-2 satellites

Until recently, the current limitations for image-based remote sensing applications were mainly
due to sensor attributes (e.g., spectral range), spatial resolution and revisit time (Moran
et al., 1997). Nowadays, the amount of freely accessible remote sensed images has drasti-
cally increased, thanks to the Copernicus mission of the European Union operated by the
European Space Agency (ESA). Its first multispectral high resolution satellite (Sentinel-2A)
was launched in 2015, followed by a second satellite in 2017 (Sentinel-2B) (Drusch et al.,
2012). Two synthetic aperture radar (SAR) satellites, Sentinel-1A and Sentinel-1B, are also
part of the Copernicus mission and were launched in 2014 and 2016, respectively (Torres
et al., 2012). Sentinel-1 (S1) and Sentinel-2 (S2) satellites have a high temporal and a spatial
resolution. This is adapted to work at the parcel level (for very high resolution analysis, e.g.,
at the plant-level, these resolutions are however not sufficient). Both types of sensors are
complementary and have been largely studied for this application. An example illustrating
the information available using S1 and S2 images is displayed in Figure 1.1.
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(a)

(b)

Figure 1.1: (a) Sentinel 2 image acquired on June 28, 2018 (true colors) and (b) Sentinel-
1 image acquired on June 25, 2018 (multitemporal speckle filtering was applied, composite
colors: Red=VH, Green=VV). Orange boundaries are rapeseed crop fields to be monitored.
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1.1.2.1 Sentinel-2: multispectral imaging satellites

S2-A and S2-B are multispectral imaging satellites with 13 spectral bands covering the visible,
the near infra-red (NIR) and the shortwave-infrared (SWIR) spectral regions (Drusch et al.,
2012). Details about the S2 spectral bands are reported in Table 1.1, where it can be seen
that the different spectral bands have different spatial resolutions (from 10m to 60m). When
using both S2-A and S2-B satellites, a theoretical revisit time of 5 days can be reached.

Table 1.1: Sentinel-2 multispectral bands. NIR refers to Near Infrared whereas SWIR refers
to Shortwave Infrared.

Spectral bands Central wavelength (µm) Bandwidth (µm) Resolution (m)
Band 1: Coastal aerosol 0.443 0.021 60
Band 2: Blue 0.492 0.066 10
Band 3: Green 0.560 0.035 10
Band 4: Red 0.665 0.030 10
Band 5: Vegetation Red Edge 0.705 0.015 20
Band 6: Vegetation Red Edge 0.740 0.015 20
Band 7: Vegetation Red Edge 0.783 0.020 20
Band 8: NIR 0.842 0.115 10
Band 8: Narrow NIR 0.864 0.021 20
Band 9: Water vapour 0.945 0.020 60
Band 10: SWIR - Cirrus 1.374 0.031 60
Band 11: SWIR 1.610 0.090 20
Band 12: SWIR 2.202 0.175 20

Multispectral images have been used for decades thanks to their convenient interpretation
and exploitation. Many Vegetation Indices (VI) have been proposed to provide a simple and
easy evaluation of the vegetation cover (Bannari et al., 1995). One can mention the famous
Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974), which is still widely used
nowadays to monitor vegetation health and vigor (Meroni et al., 2019; Garioud et al., 2021).
Bio-physical properties of the vegetation, e.g., the Leaf Area Index (LAI) or the fraction
of green vegetation cover (fCover) (Djamai et al., 2019; Verrelst et al., 2015), can also be
retrieved with multispectral images. Finally, machine learning methods can take advantage
of the various spectral bands to perform tasks such as land cover classification (Gómez et al.,
2016; Inglada et al., 2017). In this context, the use of S2 satellites is a great opportunity to
use multispectral data in a consistent manner (Segarra et al., 2020).

1.1.2.2 Sentinel-1: SAR C-band imaging satellites

S1-A and S1-B are SAR C-band imaging satellites whose center frequency is 5.405 GHz.
When using both S1-A and S1-B satellites, a theoretical revisit time of 6 days can be reached.
S1 images are available in dual polarization (VH+VV) with a 5× 20 m spatial resolution (in
Interferometric Wide (IW) swath mode). SAR remote sensing is sensitive to the dielectric and
geometrical characteristics of the plant, as illustrated in Figure 1.2. SAR data are available
for any sunlight and cloud coverage conditions, unlike optical images that are sensitive to
these phenomenona (Wang et al., 2009).
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Figure 1.2: Illustrative examples of different factors influencing the SAR backscatter. Ar-
rows indicate the radar waves and line width represents higher or lower backscattering (van
Emmerik, 2017).

SAR data have been used for instance for crop monitoring (Betbeder et al., 2016; Khab-
bazan et al., 2019), crop mapping (Abdikan et al., 2016) or water stress detection (van
Emmerik, 2017). As an example, SAR data have proven to be well suited to rice monitoring,
particularly because rice crops grow in cloudy or foggy areas (Bouvet et al., 2009; He et al.,
2018). A Detailed review on the different applications of SAR in agriculture is available in
(Liu et al., 2019), which concludes on the great potential of SAR data in the various fields of
agricultural remote sensing.

1.1.2.3 On the complementarity of S1 and S2 data

The complementarity of SAR and multispectral images has been used to address problems
including crop type classification (Inglada et al., 2016; Denize et al., 2018; Kussul et al.,
2018; Campos-Taberner et al., 2019; Orynbaikyzy et al., 2019), estimation of crop water
requirement (Navarro et al., 2016) and change detection (Prendes et al., 2015a,b,c). In most
of these studies, using additional SAR data was found important to provide complementary
information on the vegetation status. For instance, Campos-Taberner et al. (2019) observed
better classification scores when using additional S1 data, especially for the most confusing
classes. Inglada et al. (2016) pointed out the interest of using SAR data to complete sparse
mutlispectral time series (due to cloud coverage). A comprehensive analysis of the temporal
behavior of S1 and S2 data has also been proposed (Veloso et al., 2017), concluding on the
unique opportunity to monitor crops systematically using these data. Finally, in a recent
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study Meroni et al. (2021) demonstrated that both S1 and S2 data can provide relevant and
at times complementary land surface phenology (LSP) information at field and crop-level.

All these factors (free access, adapted temporal/spatial resolutions and good properties
for crop monitoring) motivated to use S1 and S2 sensors for this thesis.

1.2 Detecting anomalies in the vegetation status: state-of-the-
art

One remaining challenge in precision agriculture is the automatic detection of agricultural
parcels that have an abnormal vegetation development. An illustrative example is displayed
in Figure 1.3, where several crop fields are visualized using S2 images acquired on (a) February
25, 2018 and (b) April 21, 2018. At this stage of the growing season (end of winter / beginning
of the flowering stage), one can notice that some crop fields (here rapeseed crops) are more
or less affected by heterogeneity and that this heterogeneity can be more or less transient.
Detecting parcels whose phenological behaviors significantly differ from the others could help
users such as farmers or agricultural cooperatives to optimize agricultural practices, disease
detection or fertilization management. It could also be valuable in areas such as subsidy
control or crop insurance.

(a) (b)

Figure 1.3: Rapeseed parcels (red and yellow boundaries) visualized using S2 images acquired
on (a) February 25, 2018 and (b) April 21, 2018 (true colors).

This section first provides a general state of the art on outlier detection, mainly to present
the main concepts and challenges related to this area. In a second step, a focus is made on
the literature related to the detection of anomalies in the vegetation status. Finally, based on
this literature, we motivate a need to find new methods adapted to the specific case of crop
monitoring at the parcel-level.
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1.2.1 Outlier detection: general survey

In the literature, the problem of finding samples that are unusual or different from the major-
ity of the data is known as outlier detection (also referred to as anomaly detection). Outlier
detection techniques have received a considerable attention (Aggarwal, 2017; Chandola et al.,
2009) since they are used in a large variety of application domains, e.g., fraud detection or
medical diagnosis. Outlier detection algorithms typically provide an outlier score for each
sample of the dataset, which quantifies the degree of abnormality of the samples (some algo-
rithms only provide binary labels). Outlier scores can be converted to binary labels for the
final decision making, for instance by detecting a percentage of the samples with the highest
scores. This percentage is known as the outlier ratio.

Outliers or anomalies are samples that do not conform to expected behavior. Outlier
detection seems to be a simple task, but several factors make this approach very difficult in
practice (Chandola et al., 2009). First, the boundary between normal data (also called inliers)
and anomalies is generally subjective or not precise, as illustrated in Figure 1.4. Moreover,
anomalies are specific to each application domain and labeled data are generally not available.
Therefore, in practice the outlier detection strategy must be designed specifically for the
problem at hand, generally in a fully unsupervised mode.

Normal data / Inliers

INCREASING OUTLIERNESS SCORE FROM LEFT TO RIGHT

Noise Anomalies

Weak or strong outliers

Figure 1.4: The spectrum from normal data to outliers (Aggarwal, 2017).

Three types of anomalies have been defined by Chandola et al. (2009):

• Point anomalies: a sample considered anomalous with respect to the rest of the data is a
point anomaly. Hence, point anomaly detection algorithms generally aim at comparing
each instance to the rest of the data to find the most isolated / far from the others
samples. Most of the literature on outlier detection focuses on finding point anomalies.

• Contextual anomalies: if a value is considered anomalous in a specific context (but not
otherwise), it is a contextual anomaly. To find such anomaly, contextual attributes
(e.g., typically spatial or temporal information) are mandatory since they are needed
to separate outlier values from the normal ones.

• Collective anomalies: if a set of samples is anomalous with respect to the entire dataset
whereas each individual sample of this set is not anomalous by itself, it is considered
as a collective anomaly. A typical example is a sequence of actions occurring in a
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computer being victim of a remote attack. Generally, each element of the sequence is
not anomalous by itself whereas the complete sequence should be detected as a threat.

Anomalies occurring in remote sensing time series are either contextual (i.e., a unique time
stamp is anomalous) or collective (large sub-sequence or the entire time series is anomalous)
anomalies (Aggarwal, 2017, Chapter 9). In all cases, the time attribute is crucial to determine
which values of the time series are anomalous. An example illustrating the importance of time
information is displayed in Figure 1.5, which shows the median NDVI time series of a rapeseed
parcel (orange line) which is compared to the whole dataset (the blue area is filled between
the 10th and 90th percentiles of all the other analyzed rapeseed parcels). One can observe
that having a median NDVI close to 0.5 is not anomalous by itself, but can be anomalous at
specific times of the growing season. Moreover, while a unique abnormal value (contextual
anomaly) could be related to noise or acquisition problem (e.g., undetected cloud), having
most of the time series abnormal (collective anomaly) can indicate a strong problem in the
parcel behavior.
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Figure 1.5: Median NDVI time series of an outlier rapeseed parcel (orange line). The blue
line is the median value of the whole dataset composed of 2218 rapeseed parcels. The blue
area is filled between the 10th and 90th percentiles.

Two main approaches can be used to detect anomalies in multidimensional time series,
e.g., formed by the concatenation of several vegetation indices such as the NDVI:

• Prediction-based techniques (Aggarwal, 2017, Chapter 9.2): these techniques aim at
modeling the normal temporal behavior of the data, and use this dynamic model to
detect anomalies. If an observed value does not correspond to the value predicted
by the model, it is detected as an anomaly. Such technique is well suited to detect
contextual anomalies, which are disturbances deviating from the expected forecasting.

• Time series of unusual shapes and reduction to the point anomaly detection problem
(Aggarwal, 2017, Chapter 9.3): such approach is adapted to detect collective anomalies
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that lead to have time series with unusual shapes when compared to the underlying
series (it is for instance the case in the example provided in Figure 1.5). This problem
is generally addressed by a reduction to the point anomaly detection problem, e.g., by
considering each time series as a feature vector to be compared with the rest of the
data. By doing this, one can take advantage of the various point anomaly detection
algorithms available in the literature.

In the next part of this section, we will see that the detection of anomalies in remote
sensing time series have been mostly addressed by using prediction-based techniques. Then,
we will explain why these techniques are not particularly well suited to our use case and
motivate the need for a new detection strategy.

1.2.2 Application to remote sensing data for the analysis of the vegetation
status

In Earth observation, the majority of the studies have been devoted to the detection of
abnormal vegetation status at the country-level using time series constructed from the NDVI.
Most of these approaches are prediction-based techniques (as defined in the previous section),
and aim at modeling NDVI time series using historical data and detecting potential anomalies
by comparing new observations with their corresponding predicted values.

Common approaches are based on a parametric model for the time evolution of NDVI
such as the double logistic or symmetric Gaussian models (Atzberger and Eilers, 2011a; Beck
et al., 2006). Smoothing techniques can help to have more reliable time series and to work
in near real time (NRT) (Atzberger and Eilers, 2011b; Hird and McDermid, 2009; Klisch and
Atzberger, 2016; Meroni et al., 2019). Various other approaches have been investigated using
season trend models (Verbesselt et al., 2012; Zhou and Tang, 2016), Seasonal Autoregressive
Integrated Moving Average (SARIMA) models (Zhou et al., 2016) and prediction models such
as extended Kalman filters (Sedano et al., 2015). Finally, recent studies have investigated
similar techniques for S2 data, as for instance in Kanjir et al. (2018) where Breaks for Additive
Season and Trend (BFAST) are used to detect land use anomalies. Note that the BFAST
technique was introduced earlier by Verbesselt et al. (2010) to monitor phenological change
detection in NDVI time series.

1.2.3 A need for new strategies adapted to precision agriculture and parcel-
level analysis

The aforementioned approaches can be difficult to implement for our specific use case, which
consists of detecting abnormal development in parcels of a given crop type. First, modeling the
normal behavior of the data implies having access to normal representative examples, which
can be challenging and time consuming in practice. Crop rotation, lack of historical data and
the inconsistency of S2 time series due to the cloud coverage are other factors leading to a
harder practical implementation. Moreover, forecasting techniques need long historical data



10 Chapter 1. Introduction

to be fitted efficiently. In our case, analyzing a unique growing season is more appropriate,
mainly to facilitate operational service and costs for practical applications (having access to
reliable parcel data coming from multiple growing seasons to build accurate temporal models
is another major issue). Finally, while most of the studies focus only on the analysis of the
NDVI, it seems relevant to use a larger variety of indicators coming from S1 and S2 data.
This literature overview motivates the need to investigate new approaches for outlier detection
dedicated to crop monitoring.

1.3 Problem formulation and objectives of the thesis

This thesis aims to explore the challenge of automatic crop monitoring using S1 and S2
data. More precisely, it aims at detecting agricultural parcels whose phenological behavior
significantly differs from the others. Since the study is conducted at the parcel-level for a
specific crop type, one hypothesis is that parcel boundaries and the crop type are available
a priori. The temporal analysis was limited to a single growing season, mainly to have an
easier operational deployment (as explained in the previous section), to avoid theoretical issues
(caused by crop rotation, time series inconsistencies, etc). For the same reasons, the proposed
method has to be the most unsupervised possible (e.g., regarding parameter tuning and need
for labeled data, etc) and robust to changes (e.g., in crop types, data types, etc). Another
important challenge, which is recurrent in remote sensing, is the need to deal with missing
data (coming from clouds for S2 images or acquisition problems). Finally, considerations
related to the end-user needs have to be taken into account (e.g., interpretability of the
detection results, adaptation to the user feedback, etc.). The main objectives and challenges
of the thesis are summarized in what follows:

→ Detect relevant anomalies (i.e., related to agronomic phenomenon) at the parcel-level.

→ Give a relevant score of abnormality for each parcel (i.e., strong anomalies have a higher
outlier score).

→ Analyze the crop parcels within a single growing season (or a part of the growing season
if possible).

→ Use efficiently the complementary of S1 and S2 data.

→ Validate the method on various crop types.

→ Propose a fully automated method (no need for manual labeling and parameter tuning).

→ Handle missing data (e.g., due to images partially covered by clouds or acquisition
problem).
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1.4 Organization of the manuscript

The main steps of the proposed approach are summarized in the diagram presented in Fig-
ure 1.6 and described in the first chapters of this manuscript. The remaining of this thesis is
organized as follows:

• Chapter 2 is devoted to the data preprocessing and the feature extraction. Since the
proposed method is fully unsupervised, having relevant features is needed. Moreover, for
post-analysis, a particular attention has to be given to their interpretability. The main
contribution of this chapter is to propose a feature extraction procedure that provides
parcel-level features which characterize efficiently the parcel behavior, in terms of vigor
and heterogeneity.

• Chapter 3 introduces a strategy to detect agricultural parcels with anomalous pheno-
logical development. Various outlier detection methods are compared and the effects of
changes in the features set and configuration are analyzed. The main contribution of
this chapter is to propose a fully unsupervised method for the detection of parcels with
abnormal development. Another important contribution is the systematic characteriza-
tion of the different anomalies observed, which have been grouped in different categories.
The main results of this chapter have been published in Mouret et al. (2021a).

• Chapter 4 focuses on the reconstruction of missing data, which is a recurrent problem
in remote sensing. The main contribution of this chapter is to propose a Gaussian
Mixture Model (GMM) imputation strategy, which is very competitive with respect to
the existing reconstruction methods. Moreover, a new robust GMM is proposed to take
into account the presence of irrelevant samples in the dataset. The main results of this
paper are currently under review for publication (Mouret et al., 2021b).

• Chapter 5 focuses on techniques based on the analysis of time series for the detection
of anomalous crop development at the parcel-level. These experiments aim to challenge
the method proposed in Chapter 3. Since they rely on a temporal analysis, these
methods generally provide additional outputs that can be interesting for crop monitoring
(temporal localization of the anomalies, temporal state of the analyzed parcels, etc).

• Chapter 6 provides a general conclusion to this manuscript.
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Figure 1.6: Diagram summarizing the methodological steps for the detection of anomalous
crop development.
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2.1 Introduction

This section presents the study area, parcel data and remote sensing data used in the differ-
ent experiments conducted throughout the thesis. A particular attention is devoted to the
processing of the remote sensing data. Indeed, using raw remote sensing data is generally not
suitable for two main reasons: 1) data preprocessing can improve the quality of the remote
sensed images (e.g., correction of atmospheric effects for S2 images (Hagolle et al., 2015),
calibration and terrain correction for S1 images), 2) having features whose interpretation is
easy can help to understand the crop behavior in a straightforward way. Moreover, extracting
relevant features from these data is better suited to work with machine learning algorithms,
especially in the unsupervised case.

2.2 Study area and parcel data

2.2.1 Study area

The analyzed area is located in the Beauce region in France. The area has an extent of
109.8 × 109.8 km2 and is centered approximately at 48◦24′N latitude and 1◦00′E longitude
(corresponding to the T31UCP S2 tile). Figure 2.1 shows the tile location and the studied
area, which was chosen due to its richness of large crop fields such as wheat and rapeseed.

Figure 2.1: The Sentinel-2 tile T31UCP considered in this work is located in the Beauce area
(near Paris) and delimited by the red box. On the right, the S2 image processed in level 2A
acquired on May 19 2018 is displayed in natural colors.
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2.2.2 Parcel boundaries

The analysis is conducted on a total of 2218 rapeseed parcels (associated with the 2017/2018
growing season) and 3361 wheat parcels (associated with the 2016/2017 growing season).
Parcel delineations are defined using a customer database, which allows us focusing on crop
anomalies rather than detecting anomalies related to information coming from the database
(such as the reported crop type, reported field delineation, etc.). To avoid problems in parcel
boundaries, a buffer of 10 m was applied allowing too small parcels (area less than 0.5 ha)
to be discarded from the database. All the parcels affected by clouds were discarded in a
first analysis in order to have a reliable ground-truth. The French Land Parcel Identification
System (LPIS) (Barbottin et al., 2018), which is available in open license, was also used to
validate the robustness of our analysis to changes in parcel boundaries. This database is
however generally available with a delay of 2 years, which is problematic for an operational
service. An example of parcel delineations is provided in Figure 2.2 (another example is also
provided in Figure B.8).

Figure 2.2: Example of parcel boundaries (rapeseed crop, growing season 2017/2018). In
orange: customer database, in green: LPIS database.
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2.3 Remote sensing data

The acquisition dates of S1 and S2 images are depicted in Figure 2.3 for the 2016/2017 and
2017/2018 growing seasons. It was decided to select S2 images with a low cloud coverage
(cloud coverage lower than 20%). The strategy considered to handle remaining clouds is
detailed in the next section. Regarding the S1 images, we used Ground Range Detected
(GRD) products in the Interferometric Wide (IW) swath mode: phase information are lost
compared to Single Look Complex (SLC) products but the volume of data is considerably
reduced (which is a huge advantage for an operational service). For the 2016/2017 growing
season, 41 S1 images and 10 S2 images were selected whereas 40 S1 images and 13 S2 images
were selected in 2017/2018. Due to cloud coverage, the acquisition dates for S2 images are
very different for the two growing seasons. Note that a reduced number of S1 images was
available between May and July 2018. The absence of data during this period can be observed
in all S1 data providers, which confirms problems in data acquisition.
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Figure 2.3: Each marker corresponds to the acquisition date of a used image for the growing
season (a) 2016/2017 and (b) 2017/2018.
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2.3.1 Preprocessing of Sentinel-1 data

To build the database of S1 images, an offline processing inspired by the workflow proposed
by Filipponi (2019) (illustrated in Figure 2.4) was conducted with the Sentinel Application
Platform (SNAP, version 7.0)1.

Apply orbit 
file

Thermal 
noise 

removal
Calibration Terrain 

Flattening

Range 
Doppler 
Terrain 

Correction

Figure 2.4: Sentinel-1 preprocessing chain used in the Sentinel Application Platform (SNAP).
The yellow box, terrain flattening, was added to the workflow proposed in Filipponi (2019)
to take into account the local incidence angle.

The different processing steps are detailed in the following:

• Apply orbit file: metadata of SAR products contain orbit state vectors that can be
inaccurate. The precise orbit of the products can be updated using SNAP to address
this issue.

• Thermal noise removal: S1 images can be corrupted by additive thermal noise (es-
pecially in areas with low backscatter).

• Calibration: this operation converts digital pixel values to radiometrically calibrated
SAR backscatter. A calibration to β0 backscatter (also called radar brightness) was
used, since it is required to apply the terrain flattening operation. β0 corresponds to
the reflectivity per unit area in slant range.

• Terrain flattening: SAR backscattering is generally calibrated to σ0 by considering
the incidence angle θ (as proposed for instance in Filipponi (2019)). Instead, we used a
terrain flattening operation that takes into account the local incidence angles (denoted
as θl in Figure 2.5), since the analyzed area is wide and parcel features are compared to
each other (the interest of using the local incidence is illustrated in Figure 2.5). This
operation uses the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM) to produce γ0 backscattering coefficients (Small, 2011).

• Range Doppler terrain correction: this operation provides orthorectified images to
compensate for the distortions caused by the acquisition angle.

Note that a multi-temporal speckle filtering step was also tested without significant dif-
ferences on the results (we implemented our own Python version of the filter introduced in
Eq. (14) of Quegan and Jiong Jiong Yu (2001)). The best results were obtained with the
workflow of Figure 1.6.

1http://step.esa.int/main/toolboxes/snap/, online accessed 8 December 2020

http://step.esa.int/main/toolboxes/snap/
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Figure 2.5: Reference geometry for the incidence angle θ and for the local incidence angle θl
(Rizzoli and Bräutigam, 2014).

2.3.2 Sentinel-2 data preprocessing

S2 images were preprocessed using the MAJA processing chain (Hagolle et al., 2015) available
on the PEPS platform of CNES. This preprocessing step provides level-2A ortho-rectified
products expressed in surface reflectance. In addition to atmospheric correction, level-2A
images are available with a cloud and shadow mask discarding irrelevant pixels in the images.
A resampling strategy was adopted to obtain a spatial resolution of 10 m for the channels with
a lower spatial resolution. Parcels fully covered by clouds during at least one time instant
were discarded from the database and parcels partially covered by clouds were analyzed using
pixels not covered by the cloud mask (the shadow mask was used in a similar way).

2.4 Pixel-level features

The following section describes the pixel-level features derived from multispectral and SAR
images considered in this work (reported in Table 2.1) and their importance for monitoring
crop growth. It was observed that choosing irrelevant features can lead to poor detection
results, since unsupervised algorithms use all the features available for the analysis. For post-
analysis and practical applications, it is also important to choose features whose interpretation
is convenient in order to understand why an anomaly has been detected.

2.4.1 Multispectral vegetation indices

Many multispectral VIs have been introduced in the literature e.g., (Bannari et al., 1995; Wu
et al., 2008). A VI relates the acquired spectral information to the observed vegetation, and
thus allows better quantitative and qualitative evaluations of the vegetation covers. The five
multispectral VIs considered in this work are reported in Table 2.1 and described below. Note
that raw S2 bands were also tested without any improvement in the detection precision and
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a more difficult interpretation of the results when compared to VIs.

• The NDVI is a benchmark indicator for agronomic analyses and is mainly related
to the plant vigor (Rouse et al., 1974; Bannari et al., 1995). Nowadays, the NDVI is
still extensively used for vegetation monitoring (Klisch and Atzberger, 2016; Meroni
et al., 2019; Garioud et al., 2021). This success is mainly due to the simplicity of
NDVI computation, as well as its ability to efficiently capture information on vegetation
phenology and health (Zeng et al., 2020).

• The Normal Difference Water Index (NDWI) actually refers to two different
widely used indicators. The first version uses NIR and SWIR to monitor changes in the
water content of leaves (Gao, 1996). The second version uses the green band and NIR
to monitor changes related to content in water bodies (McFeeters, 1996). Both formulas
are similar to NDVI with different bands involved. The SWIR version of NDWI seems
to be more appropriate for crop analysis but the GREEN version of NDWI can also
provide relevant information, e.g., for flooded parcels.

• The Modified Chlorophyll Absorption Ratio Index (MCARI) was designed
to extract information from the chlorophyll content in plants with a resistance to the
variation of the Leaf Area Index (LAI). A variant called MCARI/OSAVI uses the
Optimized Soil Adjusted Vegetation Index (OSAVI) to minimize the contribution of
background reflectance (Daughtry et al., 2000; Wu et al., 2008).

• The Green Red Vegetation Index (GRVI) is similar to NDVI but uses the red
and green bands. According to Motohka et al. (2010), GRVI “can be a site-independent
single threshold for detection of the early phase of leaf green-up and the middle phase of
autumn coloring” (referred to as senescence for crops).

2.4.2 SAR features

Many investigations have been performed to establish a relationship between SAR images and
vegetation and have been reported in two recent reviews (McNairn and Shang, 2016; Liu et al.,
2019). The backscattering coefficients (denoted as γ0

VH and γ0
VV) have been used intensively

in the literature (Whelen and Siqueira, 2018; Khabbazan et al., 2019). The polarization ratio
γ0

VH/γ
0
VV, also used in various studies (Abdikan et al., 2016; Denize et al., 2018; Veloso et al.,

2017; Vreugdenhil et al., 2018), was tested without showing any clear improvement. The
same observation stands for the Radar Vegetation Index (RVI) (Kumar et al., 2013), which
has been adapted to S1 with an alternative form 4σ0

V H/(σ0
V H +σ0

V V ) (Nasirzadehdizaji et al.,
2019). Thus, the results presented in this thesis have been obtained with the backscattering
coefficients reported in Table 2.1.
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Table 2.1: Pixel-level features computed from S2 and S1 images used in this work. For S2,
The near infrared (band 8), red edge (band 5), short wave infrared (band 11), green (band 3)
and red (band 4) channels are denoted as NIR, RE, SWIR, GREEN and RED, respectively.

Sensor type Indicator Formula

Multispectral

NDVI NIR−RED
NIR+RED

NDWISWIR
NIR−SWIR
NIR+SWIR

NDWIGREEN
GREEN−NIR
GREEN+NIR

MCARI
OSAVI

(RE−IR)−0.2(RE−RED)
(1+0.16) NIR−RED

NIR+RED+0.16

GRVI GREEN−RED
GREEN+RED

SAR

Cross-polarized backscattering
coefficient VH γ0

VH

Co-polarized backscattering
coefficient VV γ0

VV

2.5 Parcel-level features: Input data for the outlier detection
algorithms

2.5.1 Extraction of parcel-level features with zonal statistics

The pixel-level features are averaged using spatial statistics referred to as “zonal statistics”
in order to provide parcel-level features. Two zonal statistics are considered for the S2 VIs,
namely the median and interquartile range (IQR). The median captures the mean behavior
of a given parcel with more robustness than the classical mean as it is not affected by extreme
values (Huber, 2011). It is used to detect anomalies affecting the entire agricultural parcel,
such as anomalies in crop vigor. IQR is defined as the difference between the 75th and 25th
percentiles. It contains information related to the heterogeneity of a given parcel while being
robust to the presence of extreme values. These statistics were computed using the Python
libraries SciPy version 1.4.1 (Virtanen et al., 2020) and rasterstats version 0.13.02. Since
cloud and shadow pixels were discarded, these statistics were computed from the remaining
pixels after applying the cloud and shadow masks. Other zonal statistics were also tested,
namely the skewness (which is related to the asymmetry of a distribution) and the kurtosis

2https://pythonhosted.org/rasterstats/, online accessed 8 December 2020

https://pythonhosted.org/rasterstats/
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(which can be used to characterize the tail of a distribution) but led to a deterioration of the
detection results (see results in Chapter 3). The set of SAR features reduces to the median of
backscatter intensities, as IQR of S1 data is directly proportional to the median (more details
regarding the choice of these statistics are provided in Section B.1.2).

2.5.1.1 Feature matrix

Each parcel is represented by a vector concatenating the zonal statistics computed for all
pixel-level features at each date. The construction of the feature matrix, used as the input
of the outlier detection algorithms, is illustrated in Table 2.2 when using the NDVI with 2
statistics. In the general case, the number of columns of this matrix is Ncol = N1,im×N1,f ×
N1,s + N2,im × N2,f × N2,s, where N1,im is the number of S1 images, N1,f is the number of
pixel-level features extracted for each S1 image, N1,s is the number of statistics computed for
each S1 feature and similar definitions apply to N2,im, N2,f and N2,s for S2 images. As each
column corresponds to a unique combination statistics/feature/time, it is possible to compare
each parcel columnwise. Finally, classical preprocessings such as the Principal Component
Analysis (PCA) (Jolliffe, 1986) or the Multidimensional Scaling (MDS) (Borg and Groenen,
1997) were applied to this feature matrix without significant improvement regarding the
outlier detection results. Thus, these preprocessing steps were ignored from our analysis.

Table 2.2: Simplified version of the feature matrix using NDVI only and two statistics (me-
dian/IQR) for n dates and M parcels. NDVItn means NDVI computed for image #n and
medianPM

means spatial median of the feature computed inside the parcel #M
.

Parcel # Feature 1 Feature 2 . Feature L-1 Feature L
P1 medianP1(NDVIt0) IQRP1(NDVIt0) . medianP1(NDVItn) IQRP1(NDVItn)
P2 medianP2(NDVIt0) IQRP2(NDVIt0) . medianP2(NDVItn) IQRP2(NDVItn)
... ... ... . ... ...
PM medianPM

(NDVIt0) IQRPM
(NDVIt0) . medianPM

(NDVItn) IQRPM
(NDVItn)





Chapter 3

Outlier detection at the parcel-level
in wheat and rapeseed crops using
multispectral and SAR time series

Part of this chapter has been adapted from the journal paper Mouret et al. (2021a).
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3.1 Introduction

This Chapter presents two main contributions of this thesis. In a first step, a systematic
description of the outlier parcels encountered throughout the study is conducted. In what
follows, agricultural parcels are considered as abnormal (true positives) if they have an agro-
nomic behavior significantly different from the majority of the other parcels. Errors in the
parcel data (crop type reported or field boundaries) are also considered as true positives,
since it is important to detect such problems in the database. On the other hand, noise or
anomalies not relevant for crop monitoring (e.g., undetected clouds) are considered as false
positives since they are not relevant for the end user.

In a second step, outlier detection algorithms adapted to detect point anomalies are inves-
tigated and compared. We also provide complementary results obtained using the Isolation
Forest (IF) algorithm to analyze the effect of changing various factors impacting the detection
results. As mentioned in the introduction of this thesis, reducing the anomaly detection task
to a point anomaly detection problem is a common approach since classical outlier detection
algorithms can be used. Moreover, these approaches are compatible with the various con-
straints detailed in Chapter 1 (single growing season analysis, unlabeled dataset, etc). In that
context, the feature matrix whose construction has been detailed in Chapter 2 is directly used
as input of the outlier detection algorithm to find the most unusual samples.

Note that one potential limitation of point anomaly detection algorithms is that the
temporal structure of the feature is not explicitly used (even if each column corresponds
to a specific time instant). Methods using explicitly the time information of the data are
investigated in Chapter 5.

3.2 Experiments conducted to evaluate the proposed method

In what follows, what is called “experiment” corresponds to an outlier detection conducted
with a specific initial configuration (set of features, algorithm, outlier ratio, temporal interval)
using one of the two datasets (wheat or rapeseed). Various experiments are conducted to
evaluate the proposed approach: each time a new set of features or a new algorithm tuning
was tested, the parcels declared as outliers were counterchecked by experts (if not previously
detected), confirming the anomaly (true positive) or not (false positive), and determining the
type of anomaly (see details later). This iterative procedure is illustrated in Figure 3.1.

Experiment configuration:
- Features
- Algorithm
- Outlier ratio
- Temporal interval

Outlier detection

Labeling

New unseen outlier parcels
→ to be labeled by expert

Parcels previously 
detected and labeled

Performance evaluation: 
- Precision
- Distribution within the 
outlier categories

Figure 3.1: Diagram illustrating the idea behind the different experiments conducted.
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For the rapeseed dataset, 252 initial configurations were tested to evaluate the factors that
can influence the detection results. Most of these experiments were conducted on a complete
growing season to evaluate the capacity of the proposed approach to detect anomalies occur-
ring at different periods of the crop growth, and to determine whether differences between
the detected parcels can be observed or not. Some other experiments were also made with a
lower amount of data, in particular for a mid season analysis between October and February.
Early detection can be of interest for warning purposes at the beginning of the growth cycle
and gives more details on the effect of having only few images available for the analysis. The
influence of the amount of parcels to be detected (called outlier ratio) is also tested to analyze
the relevance of the outlier score given to each parcel.

For the wheat dataset, 25 experiments were made: the main idea was to determine whether
our approach can be applied with minor modifications to other kinds of crops. The different
experiments conducted during the study are reported in Table 3.1.

Table 3.1: Summary of the evaluated factors analyzed throughout the study. In parentheses,
the number of different initial configurations tested (features, algorithm, time interval, outlier
ratio).

Evaluated crop type Time interval Evaluated factors

Rapeseed
(252)

Complete season
(218)

Outlier detection algorithms
Feature sets
Outlier ratio
Zonal statistics
Missing S2 images
Changes in parcel boundaries

Mid season
(34) Feature sets, algorithms, outlier ratio

Wheat
(25)

Complete season
(20) Feature sets, algorithm

Mid season
(5) Feature sets, algorithm
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3.3 Labeling and description of the outlier parcels

3.3.1 Outlier categories

The outlier parcels were identified during multiple outlier detection analyses presented in
Section 3.2. With the help of agronomic experts, the labeling of the detected parcels was
conducted by visual-interpretation using all the available S1 and S2 images and by using all
the time series of the different features/statistics to compare any analyzed parcel to the rest
of the dataset. In order to compare the analyzed parcel to the rest of the data, the median,
the 10th and the 90th percentiles of the whole dataset can be displayed (similar to a boxplot
visualization). This representation allows the agronomic expert to easily know if the observed
parcel has indicator values higher (or lower) than 90% of the data. Each detected parcel was
then assigned to one of the outlier categories described in what follows.

The different anomalies analyzed throughout the study can be decomposed into 4 main
categories: heterogeneity problems, growth anomalies, database errors and others. The cate-
gory “others” corresponds to non-agronomic outliers that were considered not relevant for crop
monitoring (referred to as false positives). A brief description of each category is proposed in
Table 3.2 and more details and examples are provided below.

Table 3.2: Description of the different categories of anomalies detected during the labeling
process. Subcategories were added to have a more precise description. For each category TP
means true positive, considered relevant for crop monitoring, and FP means false positive,
considered irrelevant for crop monitoring.

Category
(TP/FP)

Subcategory Description

Heterogeneity
(TP)

Heterogeneity Affects the parcel most of the season
Heterogeneity (2 different parts) The parcel is separated into two homogeneous differ-

ent parts
Heterogeneity after senescence Occurs during senescence phase
Early heterogeneity Occurs during early growing season

Growth
(TP)

Late growth A late development is observed (non-vigorous crop)
Vigorous crop A vigorous development is observed
Early flowers Early flowering phase
Early senescence Early senescence phase
Late senescence Late senescence phase

Error in database
(TP)

Wrong type A wrong crop type is reported in the database
Wrong shape The parcel boundaries are not accurately reported

Others
(FP)

Normal (checked) The parcel was declared normal by the agronomic ex-
pert

Too small The parcel is too small, causing abnormal features
SAR anomaly Soil surface conditions causes abnormal SAR features
Shadow perturbation
(cloud or forest) Shadows cause abnormality in the features.
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• Heterogeneity corresponds to parcels presenting a clear heterogeneous development
(i.e., spatially heterogeneous development). The most common cases of heterogeneity
can be observed all along the growing season and are for instance related to soil hetero-
geneity, presence of weed or diseases. An example of a heterogeneous parcel is shown
in Figure 3.2 (yellow boundaries). More transient cases of heterogeneity can affect the
beginning (early heterogeneity) or the end of the growing season (heterogeneity after
senescence) and can be for instance related to differences in soil characteristics or par-
cel exposure (e.g., Figure 3.4). Heterogeneity (2 different parts) parcels have two areas
of the same crop separated by a clear frontier (e.g., strong difference in the phenological
stages). An example of this type of anomaly is provided in Figure 3.3, where it can be
observed that it is difficult to decide if wrong boundaries were provided, if two different
varieties of rapeseed were sown or if soil differences led to heterogeneity.
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Figure 3.2: Example of a heterogeneity affecting a parcel. (a): true color S2 image in February.
(b): Interquartile range (IQR) of the parcel NDVI. The blue line is the median value of the
whole dataset. The blue area is filled between the 10th and 90th percentiles. The orange line
is the IQR NDVI for the analyzed parcel.

Figure 3.3: A rapeseed field (yellow boundaries) affected by a two-part heterogeneity. The
left image was acquired in February 2018 and the right image in April 2018.
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Figure 3.4: (a) A rapeseed field (yellow boundaries) affected by an heterogeneity after senes-
cence. The left image was acquired in May and the right image in June. (b) Corresponding
Interquartile Range (IQR) of the parcel NDVI time series. The blue line is the median value
of the whole dataset. The blue area is filled between the 10th and 90th percentiles.

• Growth anomalies are related to an abnormal development of the crop. The two
main categories of growth anomalies are parcels with a low vigor (late growth) or, on
the contrary, with a high vigor (vigorous crop). Figure 3.5 illustrates how the different
growth anomalies can affect the median NDVI of the parcels within a growing season.
Figure 3.6 provides an example of growth anomaly where the S1 VH time series is
affected by a late growth issue. Examples of vigorous parcels are provided in Figure 3.7.
For wheat crops, we noticed that in the S2 image acquired in March 2017, a small amount
of vigorous wheat parcels have the majority of their red pixels equal to zero, causing
extreme values of the S2 features as illustrated in Figure 3.7. This issue was caused
by the MAJA processing1 and could be easily fixed using another processing chain like

1https://labo.obs-mip.fr/multitemp/using-ndvi-with-atmospherically-corrected-data/, online
accessed 10 March 2020

https://labo.obs-mip.fr/multitemp/using-ndvi-with-atmospherically-corrected-data/
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Sen2core or with a threshold added to the red band. Since this phenomenon affected
only a small amount of vigorous parcels, it did not change the quality of the detection
results. As for heterogeneity, more transient growth anomalies, such as a delay in the
flowering or senescence phase, can affect a parcel as illustrated in Figure 3.8.

Late growth

Vigorous crop
Early flowering Late 

senescence

Early 
senescence

M
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Figure 3.5: Illustration of the different growth anomalies that were detected and their poten-
tial influence on the median NDVI of the parcels (rapeseed crop). The blue line is the median
value of the whole dataset. The blue area is filled between the 10th and 90th percentiles. Note
that the labeling was conducted using all the S1 and S2 features (not only median NDVI).
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Figure 3.6: Example of time series subjected to late growth for a rapeseed parcel: (a) median
VH and (b) median NDVI for a rapeseed parcel. The blue line is the median value of the
whole dataset. The blue area is filled between the 10th and 90th percentiles. The orange line
corresponds to a specific parcel subjected to late growth.
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Figure 3.7: Example of time series subjected to a red channel problem in March 2017 for a
wheat parcel: (a) median NDVI and (b) median MCARI/OSAVI (c) corresponding S2 image
acquired in March (a parcel with a late growth can be observed at the bottom of the image
(triangle with red boundaries)). The blue line is the median value of the whole dataset. The
blue area is filled between the 10th and 90th percentiles. The orange line is a specific parcel
analyzed.
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Figure 3.8: Time series of median NDVI for a rapeseed parcel presenting signs of (a) early
senescence and (b) early flowering. The blue line is the median value of the whole dataset.
The blue area is filled between the 10th and 90th percentiles. The orange line is a specific
parcel analyzed.

• Database errors are considered as relevant anomalies to be detected. This type of
error is a common problem in large databases and can be challenging and time consum-
ing to be detected manually. Examples of “wrong shape” and “wrong type” reported in
the database are provided in Figure 3.9. This category of anomalies presents in general
a strong sign of abnormality.
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Figure 3.9: Two examples of error in the parcel contour database (a): an error in the parcel
delineation is visible (true color S2 image). (b): median NDVI time series for a parcel having
a wrong crop type declared.
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• The “Normal (checked)” label was given to parcels that were labeled as normal
after inspecting the features and images. In some cases, some few extreme values were
observed explaining why the parcel was detected as abnormal by the outlier detection
algorithms. In any case, all these parcels should have an outlier score (i.e., the score
given by an outlier detection algorithm) lower than the parcels affected by agronomic
anomalies (e.g., heterogeneity or growth anomaly).

• Other non-agronomic anomalies considered as false positives concern a small per-
centage of the analyzed parcels. Some very small sized parcels were still present in the
dataset and are labeled as “too small” (it is sometimes difficult to clean efficiently too
small parcels that are long and narrow). Analyzing this type of parcels is not possible
due to the spatial resolution of Sentinel data. These parcels were kept in the database to
illustrate problems that can occur in practical applications. “Shadow” is another kind of
non-agronomic anomaly that can be caused by forests near the parcel (see Figure 3.10)
or clouds that are not detected using the cloud mask.

Figure 3.10: Rapeseed parcels: the parcel with yellow boundaries is affected by shadow caused
by the trees located next to the parcel. Also, at the bottom a too small parcel is visible.

• A subcategory of non-agronomic anomalies are “SAR anomalies” . These anomalies
correspond to parcels where SAR features have an abnormal time evolution in early
growing season (i.e., the SAR indicators are abnormal compared to the rest of the
data), whereas multispectral images and their features were counterchecked as normal.
It is a known issue in crop monitoring with SAR data that was studied in Wegmuller
et al. (2006); Wegmüller et al. (2011); Marzahn et al. (2012), which is reported as a
“Flashing field” phenomenon. These anomalies are considered as non-agronomic since
SAR data are affected by other factors than the vegetation status such as soil moisture,
soil structure, row orientation or soil roughness. This kind of anomalies was observed
more frequently for wheat crops and in early growing season when there is a low veg-
etation cover. The “flashing field” terminology can easily be understood by looking at
the example displayed in Figure 3.11.
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Figure 3.11: Time series of (a) median NDVI and (b) median VV polarization for a wheat
parcel. The blue line is the median value of the whole dataset. The blue area is filled between
the 10th and 90th percentiles. The orange line corresponds to a specific flashing-field parcel.
Images acquired at the end of November: (c) true color S2 image and (d) S1 composite image
(Green=VV, Red=VH).
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3.3.1.1 Complementary information about SAR images and their anomalies

A strong correlation between SAR and plant vigor (late growth / vigorous crop) was observed
in this study. Figure 3.12 illustrates the effect of late growth on S1 features. Figure 3.13 shows
that SAR images are not always affected by heterogeneity within the parcel, as highlighted in
the main document. Heterogeneity is detectable with SAR features when the crop structure
is affected, which is understandable considering the nature of the sensor.
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Figure 3.12: Time series of median SAR features (VV, VH, VH/VV) and median NDVI for
a rapeseed parcel. The blue line is the median value of the whole dataset. The blue area is
filled between the 10th and 90th percentiles. The orange line is a specific parcel analyzed.(a):
median VH, (b): median VV, (c): median ratio VH/VV, (d): median NDVI
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Figure 3.13: Example of a parcel of rapeseed crop (yellow boundaries) where heterogeneity oc-
curs almost during the complete season. Some other parcels show some signs of heterogeneity
too. Top: true color S2 image acquired in May, bottom: composite SAR image (green channel
is VV polarization and red channel is VH polarization) acquired in May with multi-temporal
speckle filtering.
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3.3.2 Distribution of the labeled parcels in the two datasets

Figure 3.14 summarizes the distribution of the anomaly categories for both wheat and rape-
seed crops. Approximately 55% of the rapeseed dataset was checked by the agronomic experts,
ensuring that the outlier parcels analyzed in the study are representative. Similarly, 30% of
the most abnormal wheat parcels were checked to validate the relevance of our method when
applied to another crop type. Figure 3.14 shows that heterogeneity and growth problems are
the most detected anomalies for both types of crops.
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Figure 3.14: Distribution and description of the labels of the parcels for (a, b) rapeseed crops
and (c,d) wheat crops. Red categories correspond to abnormal parcels that have been labeled
and categorized by experts. Green categories correspond to normal parcels and are divided
in 2 main groups in (a) and (c): 1) the normal parcels never detected during the conducted
experiments that have not been checked by experts and 2) the normal parcels that were
detected during the experiments and have been declared normal by experts.
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3.4 Performance evaluation for quantifying the quality of the
detection results

The precision is used to evaluate the quality of a detection and is defined as

precision = TP
TP + FP (3.1)

where TP and FP are the numbers of true positives and false positives, respectively. The pre-
cision expresses the percentage of detected parcels that are true positives (here, agronomic
anomalies checked by the experts). Plotting precision vs. outlier ratio curves is a good
way to compare various detection results: for a given outlier ratio, a good algorithm or fea-
ture choice has generally detection results with a higher precision. Note that these curves
also provide information regarding the false negatives samples since for a given outlier ratio,
a higher precision means less false negatives. These curves are similar to the Receiver Op-
erating Characteristics (ROC) or the precision vs. recall curves but with the advantage of
being more adapted to outlier detection (Saito and Rehmsmeier, 2015). Indeed, the outlier
ratio can be adjusted without ground-truth, by selecting the parcels with the highest outlier
scores. Moreover, when analyzing these curves one can focus on realistic values of the outlier
ratio (e.g., precision obtained when detecting more than 50% of the data instances seems not
adapted to our problem). More details on these evaluation curves are provided in Appendix
A. The area under the precision vs. outlier ratio curve (AUC) can be used to provide a
quantitative measure of detection performance summarizing the information contained in the
whole curve. In the analysis, we computed the AUC for outlier ratios in the range [0, 0.5].
The AUC was then divided by 0.5 to normalize the obtained value: the resulting score can
be seen as the average precision for outlier ratios in the range [0, 0.5].

This representation does not give information regarding the distribution of the different
detected categories since two algorithms can have the same precision without detecting the
same parcels (e.g., one algorithm can detect more heterogeneous parcels whereas another one
detects more late growth anomalies). Using the distribution of the different types of anomalies
detected for a given outlier ratio is a complementary way to address this limitation. Note
that to highlight the distribution of the false negative instances, it is possible to display the
number of detected parcels in each category divided by the total number of parcels in each
category.
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3.5 Comparing unsupervised outlier detection techniques for
crop monitoring at the parcel-level

3.5.1 Outlier detection algorithms

This section provides a general reminder about the four benchmark algorithms tested in this
work. Implementation details and hyperparameter tuning related to our specific use case are
provided in Section 3.5.2.1.

3.5.1.1 Local Outlier Probabilities

The LoOP algorithm (Kriegel et al., 2009) is based on the nearest neighbors of the observed
samples. It is a probabilistic extension of the local outlier factor (LOF) algorithm (Breunig
et al., 2000). The main idea behind LoOP is that normal data instances occur in dense
neighborhoods and that anomalies occur far from their closest neighbors (Chandola et al.,
2009). The LoOP algorithm is briefly detailed in what follows. Let knn(P ) be the set of k
nearest neighbors of a sample P . Let d(P ,O) be the distance between the object P and O
(e.g., the Euclidean distance is generally used). The LoOP algorithm first introduces a (local)
probabilistic distance denoted as pdist, which aims to be less sensitive to the choice of k:

pdist(λ,P , knn(P )) = λ

√∑
O∈knn(P ) d(P ,O)2

|knn(P )| = λ
√

EO∈knn(P ) [d(P ,O)2] (3.2)

where the expected value of a random variable X is denoted E[X] and λ is known as the
“extent” parameter (Constantinou, 2018). This parameter defines the statistical notion of an
outlier as an object deviating more than a given λ time the standard deviation from the mean.
For example, λ=2 implies outliers deviating more than 2 standard deviations and correspond
to 95% in the empirical three sigma rule. Note that pdist can be seen as an estimation of the
density around P .

In a second step, Probabilistic Outlier Factor (PLOF) and its standard deviation (nPLOF)
are computed:

PLOFk,λ(P ) = pdist(λ,P , knn(P ))∑
O∈knn(P ) pdist(λ,P ,O)

|knn(P )|

− 1 = pdist(λ,P , knn(P ))
EO∈knn(P ) [pdist(λ,P ,O)] − 1 (3.3)

nPLOF = λ

√
E
[
PLOF2

]
(3.4)

PLOF is similar to the LOF score (Breunig et al., 2000) and nPLOF can be seen as the
standard deviation of PLOF values, assuming mean(PLOF)=0. The LoOP score is finally
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computed using the Gaussian Error Function (noted “erf”):

LoOPk,λ(P ) = max
(

0, erf
(PLOFk,λ(P )

nPLOF
√

2

))
(3.5)

This final normalization step allows LoOP to provide a score in the range [0,1], which is
consistent in every region of the dataset. An example of the LoOP scores obtained in a 2
dimensional dataset is provided in Figure 3.15 extracted from Kriegel et al. (2009).

Figure 3.15: LoOP values on 2D synthetic data, with k = 20 and λ = 3 (Kriegel et al., 2009).

The Python library PyNomaly (version 0.3.3) was used for the implementation of the
LoOP algorithm (Constantinou, 2018). Two hyperparameters have to be fixed: k, the number
of nearest neighbors and the extent parameter λ.

3.5.1.2 Autoencoders

AE have been considered intensively for feature learning and dimensionality reduction (Kramer,
1991) and have been popularized thanks to the advent of deep learning. Similarly to other
dimensionality reduction techniques such as PCA, AE can be used for outlier detection: the
idea is that outliers tend to have a larger reconstruction error compared to nominal vectors
(Aggarwal, 2017). AEs are able to learn a non-linear representation of the data for classifi-
cation or outlier detection. However, they tend to be subject to overfitting and convergence
issues. A classical autoencoder structure is depicted in Figure 3.16.



40 Chapter 3. Outlier detection at the parcel-level
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Figure 3.16: Schematic picture of an autoencoder architecture.

The implementation of the AE algorithm was made using the Python library Keras2

(version 2.3.0). AEs need a large amount of parameter tunings to work efficiently, e.g., the
user needs to set the number of hidden layers, the activation functions, the regularization
parameters, the loss function, the number of epochs for training, the batch size, etc.

3.5.1.3 Isolation Forest

The IF algorithm (Liu et al., 2012) aims at detecting anomalies without using any distance or
density measure by assuming that outliers can be isolated more easily than other instances.
Using binary isolation trees to separate instances, outliers are more likely to be isolated at the
root of the trees whereas inliers tend to be isolated at deeper parts of the trees as illustrated in
Figure 3.17. The IF algorithm constructs multiple random isolation trees defining a so-called
forest of iTrees. The construction of an iTree is random: at each node, a random feature is
chosen with a random split value. When using random splits with random features, outliers
are more likely to be isolated first. The number of splitting required to isolate an instance
is called the path length. The anomaly score of a given instance can be defined from the
averaged path length in the forest. Outliers tend to have a short average path length whereas
inliers are isolated with a large number of splits. The IF algorithm is known to be very fast
compared to other algorithms (especially for large datasets), since for instance comparing a
number to a threshold does not need to calculate complicated test statistics. Using a large
number of iTrees generally improves convergence and makes the algorithm less sensitive to
the random nature of the trees.

2https://keras.io/, online accessed 04 February 2021

https://keras.io/
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Figure 3.17: Isolation tree: outliers tend to be isolated much faster than inliers.

The Python library Scikit-learn (version 0.23.0) was used for the implementation of IF
(Pedregosa et al., 2011). Hyperparameters that have to be tuned are the number of iTrees
ntrees and the size of the data subsampling nsamples used to construct the iTrees.

3.5.1.4 One-Class Support Vector Machine

OC-SVM (Schölkopf et al., 1999) is a model-based technique assuming that normal instances
of the training set are part of the same class delimited by a separating boundary (Chandola
et al., 2009). The instances that are not inside this boundary are then considered as anomalies.
OC-SVM, as defined in Schölkopf et al. (1999), determines the maximal margin hyperplane
between the data points and the origin. For a set of instances xi ∈ X, with a separating
hyperplane defined by wTx+ b = 0, the OC-SVM algorithm solves the following problem:

min
w,ξ,ρ

1
2 ||w||

2 + 1
νn

n∑
i=1

ξi − ρ, (3.6)

subject to
wTφ(xi) ≥ ρ− ξi and ξi ≥ 0, ∀i = 1, ..., n. (3.7)

The hyperparameter ν is an upper bound for the fraction of training samples located outside
the frontier that has to be fixed by the user (it is the amount of outliers to be detected even if
this number is not guaranteed). The variables ξi are slack variables, which allow the classifier
to create a soft margin in order to avoid overfitting. Finally, using a kernel associated with
the non-linearity φ transforms the OC-SVM linear model into a non-linear model. The radial
basis function (RBF) kernel K between two vectors x and x′ is defined as follows

K(x,x′) = exp
(
−‖x− x

′‖2

2σ2

)
. (3.8)
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The output of OC-SVM is deterministic for a given training set since it is the solution
of a convex optimization problem. Moreover, the OC-SVM algorithm has a particularity
regarding the anomaly score given to each instance. The three other algorithms tested here
provide an anomaly score to each instance independently from the amount of outliers to be
detected, called the outlier ratio. Conversely, in order to construct the OC-SVM boundary,
the outlier ratio ν has to be fixed by the user. If the percentage of anomalies to be detected
is changing with time, the separating frontier needs to be updated accordingly. The choice of
ν can significantly impact the behavior of the classifier (Schölkopf et al., 1999).

The Python library Scikit-learn (version 0.23.0) was used for the implementation of OC-
SVM (Pedregosa et al., 2011). An RBF kernel was investigated, motivated by its effectiveness
that has been observed in many applications (Schölkopf et al., 2004). The RBF kernel has a
single hyperparameter σ referred to as kernel bandwidth, which has to be adjusted for each
dataset.

3.5.2 Comparison results on rapeseed and wheat crops

This section analyzes the performance of each algorithm applied to crop monitoring. Obvi-
ously, the outlier detection algorithm should be able to detect a majority of relevant anomalies.
For practical reasons the algorithm with the simplest and most robust hyperparameter tuning
should be preferred. Finally, the algorithm should also provide results that are stable for a
given configuration and robust to changes in the feature set and crop type.

3.5.2.1 Hyperparameter tuning

Hyperparameter tuning is an important step in the design of outlier detection algorithms.
As explained in (Aggarwal, 2017, Section 13.10.1), having an outlier detection algorithm
whose results are highly dependent on the choice of its parameters can lead to poor results
when applied to a broad range of real-world datasets. This section provides details about our
hyperparameter tuning and their influence on the different results. This tuning was conducted
using the rapeseed dataset, and tested without any change using the wheat crop to analyze
the robustness to crop changes. All the hyperparameters used in the study are reported in
Table 3.3.

For the LoOP algorithm, the number of nearest neighbors k was fixed by grid search
leading to k = 701. This value provided detection results of higher precision compared to the
other tested values (small changes in the value of k do not significantly affect the results). It
was found that choosing a too small number of neighbors (e.g., choosing an odd-valued integer
close to the square root of the number of observations as proposed in Constantinou (2018)
leads to detect too subtle anomalies that are not related to agronomic issues. Intuitively,
choosing a relatively high number for k means that anomalies are defined with respect to the
majority of the data, which seems coherent when looking at the behavior of the abnormal
parcels. Nevertheless, this sensitivity to the number of neighbors, discussed for instance in
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Aggarwal (2017, Section 13.10.1) can be problematic when changing the dataset. The extent
parameter of LoOP was fixed to λ = 2 as recommended in Constantinou (2018). The value
of λ did not have a significant influence on the detection results for the rapeseed and wheat
crops.

For the OC-SVM algorithm, an efficient heuristic ((Jaakkola et al., 1999), (Aggarwal, 2017,
p.93)) consists of estimating the parameter σ as the median of the pairwise Euclidean distances
between vectors from the learning set X, denoted as median(dist(X)). This estimator of σ
provided good results without a need for a manual tuning for each new dataset.

The parameters of the AE were tuned by grid search. We considered a classical structure
similar to the one proposed in the Python library for outlier detection PyOD (Zhao et al.,
2019): 4 hidden layers with 64, 32, 32 and 64 neurons. A Relu activation function was used
for all layers except for the output using a sigmoid function. Layer weights were regularized
using an `2 penalty with a regularization value (referred to as “kernel regularizer” in Keras)
set to 10−4. This specific regularization significantly improved the detection results, contrary
to changes in the network structure (e.g., number of neurons). In particular, a small regular-
ization induces some overfitting, making the separation between inliers and outliers difficult
since the reconstruction error is close to zero for every sample. On the other hand, when the
regularization is too strong, the AE tends to reconstruct all the time series by a simple linear
regression, which is clearly not satisfactory. Another important hyperparameter is the num-
ber of epochs, which has to be fixed to avoid underfitting or overfitting. Since the rapeseed
and wheat datasets are relatively small, 10 epochs were sufficient to obtain good detection
results with a batch size of 128 samples. Considering the large number of parameters to be
set and their influence on the behavior of the algorithm, it is clear that AE is the most chal-
lenging algorithm to use in practice when compared to the other tested algorithms. For an
unsupervised task, this can be problematic, as explained in the introduction of this Section.

The IF algorithm was used with a number of iTrees equal to ntrees = 1000 and a subsam-
pling fixed to nsamples = 256 as in the original paper (Liu et al., 2012). Changing these two
parameters did not have a significant effect on the results, which is an advantage compared
to the other algorithms. This robustness of the IF algorithm with respect to hyperparameter
tuning is coherent with the observations made in (Aggarwal, 2017, Section 13.10.1).

Because they are sensitive to scaling, the OC-SVM, LoOP and AE algorithms also require
a normalization step in order to have input features in the interval [0, 1], while this step is
not mandatory when using the IF algorithm.
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Table 3.3: Hyperparameters used in the different algorithms

Algorithm Hyperparameter Value

IF ntrees 1000
nsamples 256

LoOP k 701
λ 2

AE
hidden neurons 64, 32, 32, 64
epoch 10
output regularization 10−4

OC-SVM σ median(dist(X ))

3.5.2.2 Performance evaluation

In practical applications, the percentage of parcels to be detected or analyzed can depend
on the user needs. Thus, it is important to evaluate the performance of the algorithms
for different outlier ratios, as explained in Section 3.4. This outlier ratio corresponds to
parameter ν in OC-SVM, to the (1− ν)% highest anomaly scores in LoOP, to the ν% highest
reconstruction errors in the AE algorithm, or to the ν% highest average path length for IF.
Recall that precision versus outlier ratio curves summarize the detection performance for all
the outlier ratios. They provide similar information as the receiver operating characteristics
(ROC) curves that are classically used in detection theory, with the advantage of being more
adapted to outlier detection since the classes are unbalanced (Saito and Rehmsmeier, 2015).

Precision versus outlier ratio curves (averaged using 100 Monte Carlo runs) obtained
for the rapeseed dataset are displayed in Figure 3.18 when using the features detailed in
Chapter 2. All the tested algorithms reach similar precision for a given outlier ratio, showing
that the multiple methods for detecting anomalies provide consistent results. However, the IF
algorithm provides the best overall performance with an area under the curve AUC = 0.885.
The better performance of IF can be particularly observed for high outlier ratios (higher than
0.3), allowing more subtle anomalies to be detected.

LoOP and OC-SVM algorithms provide a unique solution for a given dataset, contrary to
AE and IF whose results vary from one run to another. In order to evaluate the variability of
the results for these two algorithms, 100 Monte Carlo simulations have been performed. The
distributions of the resulting AUC values obtained for the precision vs. outlier ratio curves
are displayed in Figure 3.19. The AE algorithm provides less stable results when compared to
IF, with a minimum AUC close to 0.83 (minimum AUC is 0.88 for IF). Based on the analysis,
the use of the IF for outlier detection in agricultural parcels is recommended.
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Figure 3.18: Precision vs. outlier ratio curves for the rapeseed dataset (averaged using 100
Monte Carlo runs). AUC means area under the curve computed for outlier ratios in the range
[0, 0.5] (i.e., the average precision in that range).
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3.5.2.3 Sensitivity to a crop change

This section analyzes the robustness of the algorithm with respect to other types of crops using
the wheat dataset. The different algorithms were run with the hyperparameters determined
for the rapeseed dataset. The precision of the results obtained for an outlier ratio ν = 0.10
(which is a realistic choice from an operational point of view) is reported in Table 3.4. OC-
SVM and LoOP seem to be more affected by a crop change, when compared to AE and IF.
For OCSVM and LoOP, a significant improvement was observed after a good hyperparameter
tuning, confirming instability with respect to the choice of the parameters (precision after
tuning is 92.80 for LoOP and 91.3 for OCSVM).

Table 3.4: Precision of the results with an outlier ratio fixed to 10%

Crop type IF AE LoOP OCSVM
Rapeseed 94.1 95.0 92.7 93.6
Wheat 95.5 95.8 86.0 89.1

3.5.3 Conclusions regarding the outlier algorithm to be used

Overall, the IF algorithm provided the best performance: a precision of 95% is reached for
both rapeseed and wheat crops for an outlier ratio of 10%. A similar precision is obtained
using autoencoders. However this technique is more difficult to implement due to its large
number of hyperparameters. Moreover, it provides more instability when considering different
initializations. The one-class SVM and local outlier probabilities algorithms provided similar
results for the rapeseed crops, but did not scale well to a change in the dataset. This lack of
robustness can be a problem in practical applications. As a consequence, the IF algorithm
seems to be well adapted to crop monitoring at the parcel-level.
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3.6 Detailed results on rapeseed and wheat crops using the
Isolation Forest algorithm

The different feature combinations tested in this section are identified in the figures using
abbreviations that are defined in Table 3.5.

Table 3.5: Abbreviations used with their corresponding sets of features used for outlier de-
tection. Each abbreviation can be read as follows: “sensor: pixel-level feature (parcel-level
statistics)”.

Abbreviated name Features used

S1: VV, VH (median) Median of S1 features listed in Chapter 2

S2: all (median / IQR) Median and IQR of all S2 features listed in Chap-
ter 2

S2: all (median / IQR), S1: VV, VH (me-
dian)

Median and IQR of all the S2 features and median
of the 2 S1 features VV and VH.

3.6.1 Anomaly detection results for rapeseed crops

The results presented in this section were conducted by analyzing the complete rapeseed
dataset with the IF algorithm. First, the outlier detection is conducted using S1 features
only, since SAR data are available permanently through all the crop cycle, which is important
for crop monitoring applications. Then, the effect of using S2 features only is investigated.
Finally, S1 and S2 features are used jointly to study the effect of combining the contribution
of both sensors.

3.6.1.1 Outlier detection with S1 features

The strength of S1 data for crop anomaly detection is confirmed when analyzing Figure 3.20
(black curve): the precision is equal to 92.3% for an outlier ratio fixed to 10%. For lower
outlier ratios, the precision obtained when using S1 features is slightly higher than the pre-
cision obtained when using S2 features (which will be discussed later). For higher outlier
ratios, the precision decreases (more false positives are detected) but remains close to 85%
for an outlier ratio equal to 20%. These results highlight the ability of the IF algorithm to
provide relevant outlier scores: the parcels with the highest outlier scores are more likely to
be true positives. Figure 3.21(a) shows the distribution of the detected parcels in the different
anomaly categories. The majority of the detected parcels are affected by late growth (35%)
and heterogeneity (25%). Anomalies coming from an error in the database (wrong shape and
wrong crop type reported) are also largely detected (18.5%). To further investigate these re-
sults, Figure 3.21(b) depicts for each category the percentage of detected parcels. All parcels
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of the category wrong type are detected, which can be understood since this anomaly strongly
affects the features at the parcel-level. Using S1 features leads to detect more parcels of the
category wrong shape when compared to using S2 features. A similar observation can be done
for vigorous crops and early flowering to a lesser extent (for this outlier ratio, only few of
these transient anomalies are detected).
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Figure 3.20: Precision vs. outlier ratio using the IF algorithm on the rapeseed parcels. Black:
S1 features only, blue: S2 features only, green: S1 and S2 features jointly. The red line
corresponds to the outlier ratio used in Figure 3.21

.
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Figure 3.21: (a) 100×(Number of detected parcels in each category / Number of detected
parcels) (b) 100×(Number of detected parcels in each category / Number of parcels in each
category). The analysis is conducted using rapeseed parcels with an outlier ratio equal to
10% and the IF algorithm. Black: S1 features only, blue: S2 features only, green: S1 and S2
features jointly. The precision (Pr) of the results for each feature set is added in the legend.
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3.6.1.2 Outlier detection with S2 features

Although S2 time series have lower temporal resolution when compared to S1 time series,
they are useful for outlier analysis as shown in Figure 3.20 (blue curve). For an outlier ratio
fixed to 20%, the precision of the detection obtained using S2 features only is still above 90%.
Moreover, the average precision for outlier ratios in the range [0, 0.5] is equal to 87% whereas
it is 80% when using S1 features only. For a complete growing season, having 13 S2 images
is sufficient to detect a majority of relevant anomalies. However, it appears that S1 and S2
features tend to detect different types of anomalies as highlighted in Figure 3.21(a). When
using S2 features, the IF algorithm detects a majority of heterogeneous parcels (52%) and
less late growth parcels (15%). This observation justifies the joint use of S1 and S2 features,
which is investigated below. Figure 3.21(b) shows that 40% of the parcels affected by two
parts heterogeneity are detected when using S2 features (only 10% are detected when using S1
features). Moreover, a larger amount of too small parcels are detected when using S2 features
(around 40% whereas it is close to 20% when using S1 features). This last observation should
be put in perspective with the small number of parcels belonging to this category (less than
5% of the detected parcels).

3.6.1.3 Outlier detection with S1 and S2 features

One of the main objectives of this study is to investigate the joint use of S1 and S2 for
outlier detection in agricultural crops. Figure 3.20 (green curve) shows that the average
precision obtained when using S1 and S2 features jointly is close to 89%, which is the best
performance obtained for a complete growing season analysis of the rapeseed parcels. This
result means that a larger amount of relevant anomalies are detected for a given outlier ratio
when compared to using S1 or S2 features separately. Moreover, it also means that the IF
algorithm is able to efficiently use the characteristics of each sensor. Figure 3.21(a) shows
that using S1 and S2 features jointly allows the contribution of each sensor to be accounted.
In particular, late growth anomalies are more detected when compared to using S2 features
only (24% vs. 15% of the detected parcels) and heterogeneous parcels are more detected when
compared to using S1 features only (45% vs. 25% of the detected parcels). These observations
are confirmed by Figure 3.21(b).

Overall, the best combination of features obtained throughout the study consists in using
S1 and S2 features jointly. This combination exploits the strength of each sensor for crop
monitoring. To be more specific, on the one hand some heterogeneous parcels are not im-
pacting the features extracted from S1 images since this sensor is not sensitive to the color
of the agricultural parcels. On the other hand, some anomalies affecting the crop growth are
impacting more clearly the S1 time series that are more sensitive to the vegetation structure.
Moreover, since S1 time series are dense, it is in some cases easier to detect late growth or
senescence problems (e.g., as mentioned for the wheat crop analysis where only few S2 images
were available during the senescence phase). These results are confirmed in what follows when
analyzing a different crop type.
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3.6.2 Extension to wheat crops

A complementary analysis was conducted to measure the robustness of the proposed method
to a change in the crop type. An experiment is presented with the selection of the best
features used for rapeseed crops, i.e., all the features listed in Table 3.5. The IF algorithm
was used to detect abnormal wheat parcels for a complete growing season with an outlier ratio
of 10%. The distribution of the detected anomalies in the different categories is depicted in
Figure 3.22, which also indicates the precision obtained for each detection. Again, combining
S1 and S2 data leads to the best precision (95.5%). Similar to rapeseed crops, using S1 data
allows more growth anomalies to be detected when compared to S2 data only. The precision
obtained using S1 features only is lower due to a higher number of SAR anomalies (i.e.,
22 SAR anomalies) but the results are still accurate (precision=86.9%). As for the rapeseed
analysis, no SAR anomaly is detected when using S1 and S2 data jointly. Finally, since less S2
images were available during the senescence phase, using S1 features logically leads to better
detect problems affecting this growing phase and confirms the interest of using both types of
features. These results confirm the interest of the proposed approach and its robustness to
changes in the crop type.

Some differences were observed after analyzing the results obtained for rapeseed and wheat
crops. These differences are interesting to analyze since they provide specific information for
the monitoring of each crop type. For the wheat crops, the percentage of detected hetero-
geneous parcels is lower: when using S2 features, 31% of the detected wheat parcels belong
to this category whereas 52% of heterogeneous parcels are detected for the rapeseed crops.
On the other hand, the amount of detected vigorous parcels is higher (28% when using S2
features only) whereas only few vigorous parcels were detected during the rapeseed analysis.
It is also interesting to note that these parcels are more easily detected using S2 features only
whereas late growth anomalies are still detected in higher proportion (52%) when using S1
features only.

The fact that more late growth anomalies have been detected for wheat parcels is coher-
ent with the observations made during the labeling, where it was noticed that late growth
problems frequently have a bigger impact on the wheat parcels. A representative example is
provided in Figure 3.23: the rapeseed parcel affected by a late growth anomaly has a normal
vigor after the flowering phase, whereas the wheat parcel has a low vigor for the complete
growing season. It was also observed that few abnormally vigorous parcels have been detected
among the rapeseed dataset: this could be related to an early sowing date and a high vigor
shortly after the plant emergence as pointed out in Veloso et al. (2017). Finally, the fact that
few abnormally vigorous wheat parcels have been detected when using S1 features only is also
coherent with the observations made in Veloso et al. (2017), where it was highlighted that the
SAR signal remains stable during early growing season whereas the NDVI starts increasing
after the emergence of the plant.
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The analysis is conducted using wheat parcels with an outlier ratio equal to 10% and the IF
algorithm. Black: S1 features only, blue: S2 features only, green: S1 and S2 features jointly.
The precision (Pr) of the results for each feature set is added in the legend.
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Figure 3.23: Median NDVI for late growth parcels (a) rapeseed parcel and (b) wheat parcel.
The blue line is the median value of the whole dataset. The blue area is filled between the
10th and 90th percentiles. The orange line is a specific parcel analyzed.
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3.7 Influence of other factors on the detection results

Various other factors that can influence the detection results were analyzed in complement of
the experiments presented in the previous section. A summary of the influence of each factor
is available in Table 3.6 and detailed experiments are provided in Appendix B.

Table 3.6: Summary of the influence of the different analyzed factors for the detection of
anomalous crop development.

Evaluated factor Effect and recommendation

Outlier detection algorithm Similar results obtained with various algorithms. IF is rec-
ommended for its robustness and easy tuning.

Outlier score Strongest anomalies have a higher outlier score than tran-
sient anomalies, which is interesting for crop monitoring.

Size of the dataset The proposed method can work with a limited number of
parcels.

Zonal statistics Adding new zonal statistics did not improve the detection
results.

Missing S2 data The proposed method is robust to missing S2 data. Using
S1 dense time series improves the results.

Mid growing season analysis Results with high precision are obtained, early analysis is
possible.

Changes in parcel delineation Small changes in the parcel delineation do not affect the
detection results

Experiments were conducted by changing the outlier ratio and analyzing their distribution
among the different categories of outliers (Figure B.1). For a low outlier ratio (e.g., 10%),
the detected parcels are affected by strong agronomic anomalies (e.g., global heterogeneity,
globally low vigor). It is of crucial importance because it means that the IF algorithm
attributes to these parcels the highest anomaly scores, which is relevant from an agronomic
point of view. Then, parcels with lower outlier scores are affected by more transient anomalies,
such as senescence problems. Using an outlier ratio equal to 20% ensures the detection of
the most important anomalies among the parcels, with a low amount of false positives when
using both S1 and S2 features.

An experiment was conducted by selecting randomly a subset of parcels from the original
dataset in order to evaluate the robustness of the proposed methods with respect to the
number of parcels in the dataset. Results are displayed in Figure 3.24, which shows the area
under the Precision-Recall with respect to the number of parcels in the dataset (averaged after
50 Monte Carlo runs). In that experiment, we choose to use Precision-Recall curves instead
of Precision-oultier ratio curve since the amount of parcels in the dataset is varying. It can
be observed that the AUC (i.g., the average precision) obtained is stable, independently from
the number of parcel in the dataset. This show that the proposed method can be used even
in small dataset. We should note however that in very small dataset (e.g., 50 parcels), the
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standard deviation of the AUC increase, which seems logical regarding at the small amount
of potential anomalies to be detected.
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Figure 3.24: Area under the Precision-Recall curve (AUC) with respect to the number of
parcels in the dataset, using the IF algorithm with S1 and S2 features. Results are averaged
after 100 Monte Carlo simulations.

The impact of changing the zonal statistics used to extract parcel-level features was eval-
uated (Figure B.2). It appears that IQR and median statistics are of crucial importance to
characterize efficiently the parcels behaviors. On the other hand, adding more subtle spatial
statistics such as the kurtosis or the skewness was found to decrease the precision of the
detection results.

The robustness of our method was also tested regarding the impact of missing S2 images.
A good precision was obtained even with a low amount of S2 images: by using half of the
S2 images, a similar precision is obtained thanks to the complementary of S1 data, which is
permanently available (Figure B.4 and Figure B.5). Moreover, an outlier analysis conducted
on a mid growing season (all images acquired before February) was investigated in more
detail. The main reasons were to 1) measure the impact of a reduced temporal interval for
the analysis and 2) investigate the interest of such analysis for early warning purposes. The
results (Figure B.6 and Figure B.7) show that a large amount of abnormal parcels are detected
with high precision and that the presented method can be used for an early growing season
analysis.

Finally parcel delineations coming from the French Land Parcel Identification System
(LPIS) were investigated to confirm the robustness of the proposed method to small changes
in the parcel boundaries for the rapeseed parcels (Figure B.8 and Figure B.9). Our results con-
firm that the proposed method provides consistent results even when using parcel boundaries
of lower precision.
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3.8 Explaining the output of the IF algorithm

Interpreting the output of machine learning algorithms has become more and more important
in the context of explainable artificial intelligence (XAI) (Gunning et al., 2019). XAI aims
at improving the end-user experience by explaining why an algorithm arrived at a specific
decision. In the context of crop monitoring and the automatic detection of anomalous crop
development, using XAI can help to identify why a specific agricultural parcel was detected
as abnormal. Recent improvements were made to explain the output of any machine learning
algorithm using game theory leading to SHAP (SHapley Additive exPlanations) (Gunning
et al., 2019). TreeExplainer, an algorithm specifically adapted to explain the output of tree
based machine learning models, was proposed by Lundberg et al. (2020) and has the advantage
of being fast and providing exact computation of Shapley values, which are used to explain
the output of an algorithm. More precisely, Shapley values reflect the contribution of each
features when attributing a score to each sample of the dataset.

An example applied to a rapeseed parcel with a late senescence is displayed in Figure 3.25
when using only NDVI statistics computed at the parcel-level. Using Shapley values at-
tributed to each feature of a specific parcel (Figure 3.25(c)), one can easily identify the
features that increase the parcel outlier score and localize in time the anomaly. In that figure,
Shapley values are displayed using a color map varying from green, which corresponds to
feature with SHAP values close to 0 (i.e., that do not contribute to increase the abnormality
of the considered sample), to red, which corresponds to features that increase the outlier score
of the considered sample (i.e., here negative Shapeley values). In that case, using IQR and
median of the parcel NDVI is particularly useful since these indicators have the advantage
of being easily connected to the parcel behavior in terms of vigor and heterogeneity. The
main limitation of this representation is that it is not possible to identify if the feature values
are higher or lower than the rest of the parcels (the temporal localization is however always
possible). Consequently, it is not possible to separate for instance late senescence and early
senescence anomalies. Another limitation is that the features used should be easily under-
standable by the user, which may reduce the potential interest of using more complex features
such as the one extracted from S1 data.
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Figure 3.25: Example of a rapeseed parcel with late senescence. (a): median of the parcel
NDVI (b): Interquartile range (IQR) of the parcel NDVI. The blue line is the median value of
the whole dataset. The blue area is filled between the 10th and 90th percentiles. The orange
line is the IQR NDVI for the analyzed parcel. (c) Shapeley computed for the parcel features,
using a color map varying from green to red.
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3.9 Conclusion

This chapter studied a new anomaly detection method for crop monitoring based on out-
lier analysis at the parcel-level using S1 and S2 images. This method is decomposed into 4
main steps: 1) preprocessing of multispectral and SAR images, 2) computation of pixel-level
features, 3) computation of zonal statistics at the parcel-level for all pixel-level features at
each date (these three steps are presented in Chapter 2), 4) detection of abnormal agricul-
tural parcels using the Isolation Forest algorithm with the features extracted in step 3. The
proposed method is fully unsupervised and can be used without historical data. It can be
applied to different kinds of crops (such as rapeseed or wheat, considered here) and is able
to detect a majority of parcels that are abnormal in an agronomic sense. Moreover, a rele-
vant anomaly score is attributed to each parcel: agronomic anomalies affecting most of the
growing season have a higher score than transient anomalies. Finally, it was shown that the
proposed method can be used even with a small number of parcels, which can be valuable for
operational applications which are not always conducted on large datasets.

This chapter showed that S1 and S2 features are complementary for the detection of ab-
normal parcels in agricultural crops. Regarding S1 features, it is recommended to use median
statistics computed at the parcel-level from VV and VH backscattering coefficients. For S2
features, median and IQR statistics computed at the parcel-level from the Normalized Differ-
ence Vegetation Index (NDVI), the Green-Red Vegetation Index (GRVI), two variants of the
Normalized Difference Water Index (NDWI) and a variant of the Modified Chlorophyll Ab-
sorption Ratio Index (MCARI/OSAVI) provided the best results, especially when combined
with S1 features. Finally, the Isolation Forest algorithm is the outlier detection algorithm that
provides the best results for identifying abnormal parcels with a simple parameter tuning.
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4.1 Introduction

A main challenge for applications based on remote sensing is the presence of missing data.
Multispectral images are particularly sensitive to this issue since they are affected by clouds (to
a lesser extent, acquisition problems can also affect SAR images). As an example, Figure 4.1
illustrates the impact of missing S2 data on the rapeseed parcels analyzed in Chapter 3.
Figure 4.1(a) provides the distribution of the number of S2 images with missing data among
the analyzed parcels and Figure 4.1(b) shows the percentage of parcels affected by missing
values for each S2 image. One can see in Figure 4.1(a) that only 67% of the parcels available for
analysis have no missing data (representing 2218 parcels among the 3297 initially available),
and this after selecting the least cloudy images available during the growing season. Moreover,
Figure 4.1(b) shows that only 2 of the 13 S2 images selected for the analysis are not impacted
by missing data problems (obviously, selecting more cloudy S2 images would lead to a higher
percentage of parcels with missing data).

The lack of timely information on crops has been identified for decades as a main limi-
tation for precision agriculture based on remote sensing (Moran et al., 1997). Moreover, the
problem of missing data is of crucial importance when using machine learning techniques,
which generally assume a complete feature matrix. It is for instance the case with the outlier
detection algorithms used in Chapter 3 to detect anomalous crop developments at the parcel-
level. Regarding this previous analysis, we recall here two main points related to missing
data: 1) we did not select the S2 images covered by too many clouds (i.e., only 10 and 13
S2 images were selected for the two growing seasons analyzed) and 2) we discarded all the
parcels with missing data from the analysis, as depicted in Figure 4.1(a). Concerning the first
point, we showed in Chapter 3 that it is possible to detect anomalous crop development with
few S2 images. Nevertheless, exploiting the information provided by additional (but cloudy)
S2 images could be interesting to capture transient events affecting the crop parcels. It could
also be useful for other applications or for the end user (e.g., farmers may wish to have access
to consistent and timely time series for each parcel). Regarding the second point, discarding
from the analysis a parcel with missing data is obviously not acceptable for operational ap-
plications, which mainly motivates the need to address the missing data problem. To that
extent, this chapter focuses on the reconstruction of multiple parcel-level features extracted
from S1 and S2 data (their computation is detailed in Chapter 2), when part of S2 images
are missing due to the presence of clouds.

Various methods have been proposed in the remote sensing literature to deal with missing
data. A general review (Shen et al., 2015) has grouped the different methods into four cate-
gories: 1) spatial-based methods, 2) spectral-based methods, 3) temporal-based methods and
4) hybrid methods (combining the spatial, spectral and temporal strategies). For crop moni-
toring, temporal-based and hybrid methods are generally used, since the temporal information
is an essential indicator when analyzing the vegetation status. Temporal-based methods are
also known as “gap filling” and traditionally rely on linear or spline interpolations. They are
well suited to dense noisy time series and have provided interesting results, e.g., for the clas-
sification of crop types or the prediction of plant diversity (Inglada et al., 2015; Vuolo et al.,
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Figure 4.1: Missing data for the rapeseed analysis, (a) Distribution of the number of S2
images with missing data among the analyzed parcels (the green box correspond to the parcels
analyzed in Chapter 3 whereas the parcels in the red box were discarded from this analysis due
to the presence of clouds) (b) percentage of parcels with missing data for each S2 acquisition.



62 Chapter 4. Reconstruction of Sentinel-2 Time Series

2017; Fauvel et al., 2020). However, they can lack precision when there is a need to monitor
abrupt changes or when data from a large period of time is missing. Hybrid methods have
been used intensively in remote sensing, mostly because they are able to impute missing data
in multimodal signals and images, such as multispectral and SAR images. Recent techniques
based on deep learning have also been investigated for SAR-Optical image matching (Mazza
et al., 2018; Hughes et al., 2019). Image matching can be interesting to reconstruct large
parts of an S2 image. However it generally uses a single SAR image acquired at a date close
to the multispectral image to be reconstructed. Consequently, this method does not fully ex-
ploit all the available data acquired throughout the growing season. Deep learning methods
have also been used to regress NDVI time series based on SAR times series and various other
external indicators (e.g., weather, terrain) (Garioud et al., 2020, 2021). While being relevant
to impute dense time series for large scale applications, these methods need a huge amount
of training data (more than 23850 parcels are analyzed in Garioud et al. (2020) and even
more in Garioud et al. (2021)), which is not always accessible in practice. For instance, the
French Land Parcel Identification System (LPIS) used in these studies is generally available
with a delay of one or two years, which is not adapter for operational services. Moreover, the
method proposed by Garioud et al. (2021) has been designed to express NDVI as a function
of SAR time series and does not exploit the available S2 information for the imputation task.
Similarly, Pipia et al. (2019) proposed to estimate the leaf area index (LAI) at the pixel level
using Gaussian processes. However, this method has been designed to reconstruct a single
optical time series using a single SAR time series, which is too restrictive for the problem
addressed here. Moreover, the Gaussian assumption used in this method can be restrictive,
as will be shown in this chapter.

The method investigated in this Chapter can impute missing features computed from
S2 data in a robust fashion by using Gaussian Mixture Models (GMMs). The parameters
of GMMs can be estimated efficiently using the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977). The main originality of the proposed approach is to use outlier scores
resulting from an outlier detection algorithm within the EM algorithm to 1) detect abnormal
agricultural parcels and 2) have a robust parameter estimation of the GMM parameters.
GMMs have been used successfully in remote sensing, e.g., for clustering (Lopes et al., 2017)
and supervised classification (Tadjudin and Landgrebe, 2000; Lagrange et al., 2017). However,
despite their natural ability to reconstruct missing data (Ghahramani and Jordan, 1994;
Eirola et al., 2014), they have not been investigated for crop monitoring (to the best of our
knowledge). The main motivation for using GMMs is their faculty to learn complex behaviors
in a fully unsupervised way. Even if these models also suffer from the curse of dimensionality,
they can be used with a limited amount of data, which is important here since the number
of analyzed parcels is relatively small (the database used in the experiments contains around
2000 parcels).

The rest of this Chapter is organized as follows. Section 4.2 presents the proposed method
for reconstructing missing data in features extracted from S2 images. Experimental impu-
tation results are presented in Section 4.3. Moreover, applications to crop monitoring and
the detection of anomalies in the development of rapeseed crops are presented in Section 4.4
(additional experiments were conducted on wheat crops and are available in Appendix C).
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In Section 4.5, a discussion on the results and the different imputation methods is proposed.
Finally, some conclusions are drawn in Section 4.6.

4.2 Imputation of Missing Values with Mixture of Gaussians
using the EM Algorithm

The proposed approach uses a multivariate GMM to impute the potential missing values
of the feature matrix. GMMs can be learned using the Expectation-Maximization (EM)
algorithm, which can be naturally extended to handle missing data in a multivariate space
(Dempster et al., 1977; Ghahramani and Jordan, 1994). After presenting the general principle
of the EM algorithm for GMM estimation in Sections 4.2.1 and 4.2.2, Section 4.2.3 introduces
a robust modification of this method taking into account the presence of outliers in the
dataset and improving the estimation of the model parameters. More details about GMMs
can be found in the classic book from Bishop (2006), while an interesting review dealing with
regularization techniques for GMM in high dimension was proposed in Bouveyron and Brunet-
Saumard (2014). Regarding the different applications of GMMs to agricultural machine vision
systems, it is worth mentioning the review proposed by Rehman et al. (2019). An interesting
application of the EM algorithm to the detection of cucumber disease was also considered in
Zhang et al. (2017).

4.2.1 The standard EM algorithm

Given a feature matrix X in RN×p, where N is the number of parcels in the dataset and p
is the number of features computed for each parcel, we assume that each row of this matrix
is distributed according to a mixture of K Gaussian distributions. The corresponding log-
likelihood can be expressed as (up to an additive constant):

logL(θ;X) =
N∑
n=1

log
(

K∑
k=1

πkN (xn|µk,Σk)
)
, (4.1)

where xn ∈ Rp is a specific sample contained in the nth row of X, N (xn|µk,Σk) is the
probability density function (PDF) of the multivariate normal distribution and θ = {π1, ..., πk,

µ1, ...,µk,Σ1, ...,ΣK} contains the parameters to be estimated. These parameters are the
mean vectors µk ∈ Rp, the covariance matrices Σk ∈ Rp×p and the mixing coefficients πk ∈
]0, 1[ of the GMM are such that ∑K

k=1 πk = 1. The maximization of (4.1) with respect to
(w.r.t.) θ being complex, it is classical to introduce binary label vectors z = {z1, ...,zN}
(with zn ∈ {0, 1}K , n = 1, ..., N), indicating the Gaussians associated with the observed
vectors x1, ...,xN (the maximization of the likelihood is straightforward for known labels)
and the complete log-likelihood:

logLc(θ;X, z) =
N∑
n=1

K∑
k=1

znk log [πkN (xn|µk,Σk)] , (4.2)
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where znk = 1 if the vector xn belongs to the kth component of the GMM and znk = 0
otherwise. After an appropriate initialization of θ, the EM algorithm aims at maximizing the
conditional expectation of logLc(θ;X, z) in an iterative fashion until convergence. The ex-
pectation step (E-step) computes the expectation of the complete log-likelihood conditionally
to the current set of the mixture parameters, θ(t):

E[logLc(θ;X, z))|θ(t)] =
N∑
n=1

K∑
k=1

γnk log [πkN (xn|µk,Σk)] , (4.3)

where γnk = E[zn = k|xn,θ(t)] is referred to as the responsibility of xn for class k. The
maximization step (M-step) maximizes E[logLc(θ; z)|θ(t)] w.r.t. θ to provide an updated
parameter vector θ(t+1):

θ(t+1) = arg maxθE[logLc(θ; z)|θ(t)]. (4.4)

For brevity, we will denote θ(t) = θ, i.e., µ(t)
k = µk, Σ(t)

k = Σk and π(t)
k = πk the current set

of parameters in the rest of the paper.

E-step: the E-step reduces to the computation of the responsibilities γnk, which are also
the probabilities that the sample xn has been generated by the kth Gaussian component:

γnk = πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

. (4.5)

M-step: the parameters are re-estimated using the updated responsibilities:

µ
(t+1)
k = 1

Nk

N∑
n=1

γnkxn, Σ(t+1)
k = 1

Nk

N∑
n=1

γnk(xn − µk)(xn − µk)T , π
(t+1)
k = Nk

N
, (4.6)

with Nk = ∑N
n=1 γnk. The EM algorithm is stopped when the log-likelihood does not change

significantly, or when the parameter values do not change significantly or after a fixed number
of iterations.

4.2.2 Extension to handle missing data

The EM algorithm is known to be able to handle missing data since the estimation of mixture
densities can be itself viewed as a missing data problem Ghahramani and Jordan (1994). In
the presence of missing values, each sample can be decomposed into xn = (xon

n ,x
mn
n ), where

xon
n and xmn

n are the vectors of observed and missing variables respectively. More generally,
the superscripts on and mn denote the observed and missing components of the sample n.
These subscripts can be used for matrices too, e.g., Σonmn

k refers to the elements of the matrix
Σk in the rows and columns specified by on and mn (and so on). For brevity, we will denote
on = o and mn = m in the following. Using these notations, the log-likelihood of the observed



4.2. Imputation of Missing Values with Mixture of Gaussians 65

vectors can be expressed as follows:

logLc(θ;Xo,Xm, z) =
N∑
n=1

K∑
k=1

znk log [πkN (xon|µk,Σk)] , (4.7)

withXo the set of all observed variables,Xm the set of all missing variables, andN (xon|µk,Σk)
the marginal multivariate normal probability density of the observed sample xon. The E-step
of the EM algorithm used for missing data computes the component responsibilities using the
observed variables (Ghahramani and Jordan, 1994):

γnk = πkN (xon,µok,Σoo
k )∑K

j=1 πjN (xon,µoj ,Σoo
j )
. (4.8)

In the presence of missing values, the expectation of the complete data likelihood requires
the computation of additional terms due to the evaluation of E

[
(xn − µk)Σ−1

k (xn − µk)|θ,xon
]
.

More precisely, the following quantities have to be computed:

µ̂mnk = µmk + Σmo
k (Σoo

k )−1(xon − µok), (4.9)
x̂mnk = (xon,µmnk), (4.10)
Σ̂mm
nk = Σmm

k −Σmo
k (Σoo

k )−1Σmo
k , (4.11)

Σ̂nk =
(

0oo 0om

0mo Σ̂mm
nk

)
, (4.12)

where 0oo,0om and 0mo are matrices of zeros of appropriate dimensions. Note that (4.9) and
(4.11) are the conditional expectation and the conditional covariance matrix of the missing
variables of a sample xn assuming that it has been generated by Gaussian #k, i.e., µ̂mnk =
E[xmn |xon] and Σ̂mm

nk = Var[xmn |xon]. Note also that the missing values of xnk have been
replaced by their expectations µ̂mnk in (4.10). Similarly, the matrix Σ̂nk of (4.12) has been
filled with zeros except for the missing components, which corresponds to Σ̂mm

nk .

In the presence of missing data, the M-step replaces the means by their imputed values
and updates the covariance matrices using an additional term taking into account the missing
values:

µ
(t+1)
k = 1

Nk

N∑
n=1

γnkx̂n, Σ(t+1)
k = 1

Nk

N∑
n=1

γnk
[
(x̂n − µ̂k)(x̂n − µ̂k)T + Σ̂nk

]
, π

(t+1)
k = Nk

N
.

(4.13)
More details about the EM algorithm for the GMM with missing data can be found for
instance in Ghahramani and Jordan (1994). It is also worth mentioning the interesting work
conducted in Eirola et al. (2014) devoted to the estimation of distances with missing values
and applied to various tasks including classification and regression.
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4.2.3 Robust GMM

The estimation of the means and covariances of a GMM using the EM algorithm is sensitive to
the presence of outliers, especially in the M-step (Campbell, 1984; Tadjudin and Landgrebe,
2000). To address this issue in the context of semi supervised classification with remote
sensing images, Tadjudin and Landgrebe (2000) introduced a robust parameter estimation
method associating weights to the observed samples. The idea is that samples with a reduced
weight (corresponding ideally to outliers) will have a small influence on the estimation of
the model parameters. However, the method proposed in Tadjudin and Landgrebe (2000)
suffers from two main limitations, which prevents its use for crop monitoring: 1) It does not
detect the outliers in an unsupervised way and 2) It does not take into account the presence
of missing data. To overcome these issues, we propose to modify this method by using the
output of the Isolation Forest (IF) algorithm, which is a reference method for the detection
of outliers (Liu et al., 2012). As shown in Chapter 3, this algorithm was found to be efficient
to detect relevant abnormal parcels and has the advantage of providing an outlier score in
the range [0,1]. In order to build a robust GMM, we propose to weight the importance of
each sample in the M-step by using the anomaly score provided by the IF algorithm. The
resulting robust EM algorithm updates the unknown GMM parameters in the M-step as in
Tadjudin and Landgrebe (2000)

µt+1
j =

∑N
n=1wnγnkx̂nk∑N
n=1wnγnk

,Σ(t+1)
k =

∑N
i=1w

2
nγnk

[
(x̂n − µ̂k)(x̂n − µ̂k)T + Σ̂nk

]
∑N
n=1w

2
nγnk

, π
(t+1)
k = Nk

N
.

(4.14)
However, contrary to Tadjudin and Landgrebe (2000), the weights wn are computed using
the outlier score of the IF algorithm (denoted as scoreIF(x̂n) for the imputed sample x̂n) as
follows:

wn = 1
1 + exp (α(scoreIF(x̂n)− th)) , (4.15)

where α and th are two constants to be fixed by the user. Motivations for using the sigmoid
(4.15) include the fact that it is a smooth monotonically function of the weights taking its
values in the range [0,1], with a unique inflection point equal to th. Note that the parameter
α controls the speed of the inflection: for high values of th, the sigmoid (4.15) reduces to a
hard thresholding operation around th, whereas it decreases more slowly from 1 to 0 for lower
values of th. A score of 0.5 is a natural threshold in the IF algorithm, as explained in Liu
et al. (2012). An example of the evolution of the weights with respect to the anomaly score
is depicted in Figure 4.2 for α = 50 and th = 0.5.
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Figure 4.2: Variation of the weight wn versus the outlier score attributed by the IF algorithm,
with α = 50 and th = 0.5.

To illustrate the interest of a robust GMM estimation, a toy example is provided in
Figure 4.3. The initial dataset presented in Figure 4.3(a) is contaminated by outliers (in
red) in Figure 4.3(b). One can see that the GMM estimation is influenced by the presence
of outliers, with an overestimation of the cluster covariances (in particular for the orange
cluster). In Figure 4.3(c), we used the proposed robust GMM. One can observe that in that
case the estimation of the parameters is not impacted by the outliers.

4.2.4 Regularization of the covariance matrices

Learning the parameters of a GMM can be subject to instabilities, especially when the co-
variance matrices are ill-conditioned (in some extreme cases, the covariance matrix cannot
even be inverted). A heuristic strategy for regularizing a covariance matrix consists in adding
a small constant to its diagonal elements during the estimation (e.g., this regularization is
proposed in the Python library “scikit learn” Pedregosa et al. (2011)). Alternatively, Bou-
veyron et al. (2007) studied different regularization techniques adapted to the estimation of
covariance matrices for high dimensional problems. In this study, we have considered the
model referred to as [aijbQidi] (see Bouveyron et al. (2007) for details). The idea behind this
model is to use eigendecompositions of the covariance matrices Σk = Qk∆kQ

T
k and set the

smallest eigenvalues to the same constant bk = b (which can be justified when the data are
obtained in a common acquisition process). This operation significantly reduces the number
of model parameters to estimate, which is valuable to fight against the curse of dimensionality.
The scree test is used to find the number of eigenvalues to be set to the constant value b (see
Bouveyron et al. (2007) for details).
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Figure 4.3: Toy example with 3 clusters: (a) GMM estimation without outliers, (b) GMM
estimation in the presence of outliers (red points) and (c) Robust GMM estimation in the
presence of outliers.
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4.3 Imputation results

This section compares both robust and non-robust GMM imputation methods with imputa-
tions obtained using the k-nearest neighbors (KNN)(Troyanskaya et al., 2001). Note that the
non-robust version of the GMM is regularized using the technique mentioned in Section 4.2.4.
Various other imputation methods (gap filling, autoencoders, multiple imputations, soft im-
putation) were tested and are discussed in Section 4.5. The results presented here focus on
the imputation of multispectral S2 time series. However, the same method could be used to
reconstruct S1 features as well. Finally, note that each feature was scaled in the range [0, 1]
(before performing GMM and KNN imputations). Features in natural scale can then be of
course retrieved by using the inverse transformation.

4.3.1 Simulation scenarios

In order to evaluate the performance of missing data reconstruction with a controlled ground
truth, we have removed some existing features in the dataset introduced in Chapter 2. Two
parameters control the number of missing data: the percentage of S2 images having missing
values (e.g., due to the presence of clouds), and for each of these S2 images, the percentage of
parcels affected by missing values (the parcels affected by clouds are not necessarily the same
for each S2 image). For a given S2 image with missing data, we have removed all the features
associated with the affected parcels. In practice, for cloudy days, missing values are likely
to affect a significant amount of the parcels. In the presented experiments, half of the total
number of parcels (chosen equally likely in the database) was supposed to be cloudy with
all S2 features removed (other tests were made with different percentages of cloudy images
leading to similar conclusions). The different scenarios considered in this section.

Table 4.1: Summary of the experiments conducted in this chapter in terms of percentage
of cloudy S2 images and percentage of cloudy parcels within a given cloudy S2 image. The
column “Cloudy S2 images” indicates the percentage of S2 images with missing values whereas
the column “Affected parcels” provides the percentage of parcels with missing values within
a cloudy S2 image.

Section Evaluated factor Cloudy S2 images Affected
parcels

4.3.3 Convergence of the EM algorithm 8% (1 S2 image) 50%
4.3.4 Effect of the percentage of S2 images affected by

missing values
Varies in [0, 70]% 50%

4.3.5 Effect of adding irrelevant samples 23% (3 S2 images) 50%
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4.3.2 Performance measures

The mean absolute reconstruction error (MAE) is used to evaluate the quality of the re-
construction of the different missing features, with the advantage of being unambiguous and
naturally understandable compared to the root mean squared error (RMSE) (Willmott and
Matsuura, 2005). The MAE is defined as follows:

MAE =
∑Nm
i=1 |fi − f̂i|
Nm

, (4.16)

where Nm is the number of missing features, fi is the original value of the ith feature and f̂i
denotes its estimation (also referred to as imputation or reconstruction).

4.3.3 Parameter tuning and convergence

The hyperparameters used for the different reconstruction algorithms are reported in Ta-
ble 4.2, with more details included what follows.

Table 4.2: Hyperparameters used in the experiments for the GMM and KNN algorithms.
R-GMM refers to robust GMM.

Algorithm Hyperparameter Values
GMM K Estimated using BIC
GMM Regularization parameter (scree test) 10−5

R-GMM th 0.5
R-GMM α 40
KNN Number of neighbors k 5

4.3.3.1 GMM imputation

The number of Gaussians K in the GMM was estimated using the Bayesian Information Cri-
terion (BIC) as suggested in Bouveyron and Brunet-Saumard (2014). This estimation avoid
to manually choose the number of components, which can be difficult in practice (especially
for an unsupervised task). For the regularization of the covariance matrix, the stopping crite-
rion of the scree test was set to 10−5 (see Bouveyron et al. (2007) for more details on the scree
test). We observed that a too small value (typically lower than 10−6) can lead to unstable
results whereas too high values (typically 10−3) lead to a deterioration of the imputation
results.

The parameters of the weighting function wn are the threshold th and the slope α. The
threshold was fixed to th = 0.5, which is a natural value to separate outliers and inliers
when using the IF algorithm Liu et al. (2012). The slope parameter was fixed to α = 40 by
cross validation. Small changes in these parameters did not have a significant impact on the
imputation results.
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The outputs of the EM algorithm depend on its initialization, which is detailed in what
follows. The EM algorithm was initialized by the output of the K-means algorithm with K
centroids chosen equally likely in the dataset. This initialization yields a fast convergence
of the EM algorithm obtained in less than 10 iterations. The EM algorithm was stopped
when the difference between two consecutive values of the log-likelihood was less than 10−3.
In order to analyze the sensitivity of the algorithm to its initialization, we ran 50 Monte
Carlo (MC) simulations of the EM algorithm using the same dataset (1 S2 image covered by
clouds, 50% of the parcels affected by missing values) with different random initializations
and imputed the missing values. The distribution of the MAE obtained from these Monte
Carlo runs (evaluated using all the reconstructed features for the parcels with missing data)
is displayed in Figure 4.4. This figure shows that the values of MAE are very similar, varying
in the interval [0.02178, 0.02186], indicating that the EM algorithm is not very sensitive to
its initialization for the reconstruction of vegetation indices (VI) at the parcel level.
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Figure 4.4: Histogram of MAE obtained after 50 Monte Carlo runs (with different initializa-
tions) on the same dataset.

4.3.3.2 KNN imputation

The KNN imputation method (Troyanskaya et al., 2001) available in the Python library
Scikit-Learn (Pedregosa et al., 2011) (version 0.24) (named “KNNimputer”) was used as a
benchmark. The number of nearest neighbors was fixed to k = 5. Changing the value of this
parameter in a neighborhood did not have a huge effect on the reconstruction results. The
contribution of each neighbor was weighted by the inverse of its distance to the sample to be
imputed, similarly to the configuration used in (Albughdadi et al., 2017).
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4.3.4 Varying the amount of S2 images affected by missing values

The dataset used in this study is relatively exempt of errors coming from the parcel data
(e.g, less than 1% of errors in the crop type reported) or the features (e.g., few undetected
clouds) as detailed in Chapter 3. As a consequence, this dataset is a good start to test the
imputation methods in controlled conditions.

The influence of the amount of missing data on the imputation results was tested by
varying the percentage of S2 images affected by missing values, as depicted in Figure 4.5. All
the results were obtained by averaging the outputs of 50 MC runs. We recall that for each S2
image with missing data, 50% of the parcels were randomly chosen in the database and their
corresponding features were removed. The MAE obtained for all the S2 features is depicted
in Figure 4.5(a) whereas Figure 4.5(b) and (c) show specifically the MAE of the median and
IQR NDVI. Note that in Figure 4.5(a), the S2 features are scaled in the range [0,1] to be able
to have comparable results (e.g., MCARI/OSAVI features are not normalized), which can
lead to MAE greater than those obtained in natural scale. Our conclusions are summarized
below:

• One can observe that the GMM imputation outperforms the KNN imputation, with
accurate reconstructions even with a high amount of missing data.

• Results obtained with the classical GMM are close to those obtained with the robust
GMM in these experiments, which makes sense since the dataset contains strong outliers
(e.g., error in the crop type reported).

• Looking specifically at the median NDVI (Figure 4.5(b)), it appears that using S1 data
is particularly useful, especially when there is a high amount of missing S2 features.

• The reconstruction of IQR statistics is not favored by the use of S1 data, as shown
in Figure 4.5(c). For this statistics, the robust GMM provides a lower MAE than the
classical GMM.



4.3. Imputation results 73

10 20 30 40 50 60 70
S2 images with missing data [%]

0.040

0.045

0.050

0.055

M
AE

(a) S2 features (normalized)

S2
S1 + S2

KNN
Robust GMM
GMM

10 20 30 40 50 60 70
S2 images with missing data [%]

0.015

0.020

0.025

0.030

0.035

M
AE

(b) Median NDVI

10 20 30 40 50 60 70
S2 images with missing data [%]

0.008

0.010

0.012

0.014

0.016

M
AE

(c) IQR NDVI

Figure 4.5: MAE for rapeseed vegetation indices versus the percentage of missing images.
X-axis: percentage of S2 images with missing values. Y-axis: MAE for (a) the normalized
S2 features (all the S2 indicators are considered), (b) the median of NDVI and (c) the IQR
of the NDVI (computed at the parcel level). Results in dotted lines are obtained using S2
features only whereas solid lines correspond to the joint use of S1 and S2 data. The results
are averaged after 50 MC runs.
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4.3.5 Introducing samples coming from different crop types

In practice, errors or noise can contaminate the feature matrix with samples that are very
different from the rest of the data. In that case, GMM learning can be more difficult and lead
to inaccurate imputations. To investigate the sensitivity of the imputation method to the
presence of irrelevant samples, agricultural parcels with a different crop type than rapeseed
were included into the rapeseed dataset (these crop types mainly correspond to wheat, maize
and barley). The features of these parcels were extracted using field boundaries coming from
the French Land Parcel Identification System (LPIS), which is available in open license.

As an example, an imputation has been conducted on the rapeseed dataset by adding 5%
of contaminated samples (coming from wheat, maize and barley crops). For this experiment,
3 S2 images have missing data affecting 50% of the crop parcels. To illustrate how the
robust GMM operates, Figure 4.6 provides the distribution of the outlier scores given by
the IF algorithm to each sample, and their associated weight within the robust GMM. One
can see that all the parcels coming from a non-rapeseed crop type have a high outlier score
(i.e., generally above 0.5), implying a reduced weight when learning the GMM. Some specific
rapeseed parcels have also a high outlier score and consequently a reduced weight. These
parcels correspond to strong anomalies in the crop developments or errors in the crop type
reported, as studied in Chapter 3.
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Figure 4.6: Distribution of the outlier scores given by the IF algorithm within the Robust
GMM imputation. Parcels coming from the rapeseed dataset are displayed in green, whereas
parcels coming from a different crop type are displayed in red. The weight attributed by the
Robust GMM to each sample with respect to their outlier score is superposed in blue. For
this experiment, 3 S2 images have missing data affecting 50% of the crop parcels.

Imputation results obtained on the rapeseed parcels by varying the percentage of contami-
nation (i.e., the percentage of non-rapeseed parcels in the dataset) are provided in Figure 4.7,
showing the median of the MAE computed using 50 MC runs. The median of the MAE
is used here since some extreme MAE values are obtained when using the standard GMM
imputation, due the presence of non-rapeseed parcels (contrary to the robust GMM). For
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each run, there are three random S2 images with missing values affecting 50% of the parcels
(note that the MAE is computed using the rapeseed parcels only). Using the robust GMM
imputation is particularly useful in that case, with an MAE almost stable with respect to
the percentage of irrelevant samples in the dataset. Note that the standard GMM impu-
tation is highly impacted by the presence of outliers in the dataset and can lead to large
errors, with reconstruction sometimes worse than those obtained using the KNN approach
(this cannot be observed in Figure 4.7, which shows MAEs averaged over the whole dataset).
Consequently, using the robust GMM imputation is recommended in practice, especially if
the dataset contains some irrelevant samples.
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Figure 4.7: Median of MAE versus the percentage of contamination in the dataset (i.e.,
coming from non-rapeseed crops) after 50 MC runs for (a) the normalized S2 features (all the
S2 indicators are considered), (b) the median of NDVI and (c) the IQR of NDVI (computed
at the parcel level). Results are obtained using S1 and S2 features jointly. For each MC
run, the percentage of missing data has been fixed: three S2 images (23%) have missing data
affecting 50% of the parcels.
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4.4 Application to crop monitoring

This section evaluates the interest of the proposed imputation method for crop monitoring.
In Section 4.4.1, the detection of anomalous crop development is conducted in the presence
of missing data. This addresses a main issue of the method proposed in Chapter 3, which
use outlier detection algorithm that do not handle missing values in the feature matrix.
In Section 4.4.2, we analyze new rapeseed parcels with missing data that were previously
discarded from the analysis conducted in Chapter 3. Finally, in Figure C.7, the interest of
the proposed imputation method to increase the temporal resolution of the S2 features is
evaluated.

4.4.1 Detection of anomalous crop development in the presence of missing
data

In Chapter 3, the rapeseed parcels have been analyzed to detect potential anomalies in their
development. An example of a heterogeneous parcel is depicted in Figure 4.8 (a further
analysis showed that a part of the parcel was damaged during winter). Each parcel has been
labeled by an agronomic expert as true positive (relevant anomaly to be detected) or false
positive (not relevant for crop monitoring). Parcels with abnormal behavior are detected
using the IF algorithm, which computes anomaly scores using the feature matrix (whose
construction is detailed in Chapter 2). Since the IF algorithm cannot be used if the feature
matrix has missing values, we propose to impute missing data to address this issue.
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Figure 4.8: (a) A rapeseed parcel (yellow boundaries) affected by heterogeneity, the image
was acquired in May 2018. (b) Interquartile Range (IQR) of the NDVI time series for the
yellow parcel (orange line). The blue line is the median value of the whole dataset. The
blue area is filled between the 10th and 90th percentiles. The orange line clearly shows an
abnormal behaviour of the parcel due here to heterogeneity problems.

The following experiment evaluates the influence of missing values on the detection results
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resulting from the application of the IF algorithm. The AUC values (the higher the better)
obtained by varying the amount of S2 images affected by missing data are displayed in Fig-
ure 4.9 (more details on this metric were provided in Section 4.3.2). It can be observed that
accurate results are obtained with AUC greater than 0.84, even with a high percentage of
missing data in the dataset. In particular, the best results are obtained using S1 and S2 data
jointly and a reconstruction with the GMM (both robust and non-robust versions perform
similarly in that case, since there are few strong outliers). It is interesting to note that dis-
carding S2 images affected by missing values reduces the detection performance. This shows
that imputation methods are able to reconstruct the VI with sufficient accuracy to detect the
abnormal crop parcels whereas important information on the parcel behavior seems to be lost
without the reconstruction step.
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Figure 4.9: Area under the precision vs. outlier ratio curve (AUC) w.r.t. the percentage of
cloudy S2 images (50% of the parcels in a cloudy S2 image have missing data, i.e., do not
contain S2 features). Results in dotted lines are obtained using S2 features only whereas solid
lines correspond to the joint use of S1 and S2 data. All results are averaged using 50 MC
runs.



78 Chapter 4. Reconstruction of Sentinel-2 Time Series

4.4.2 Analyzing new crop parcels previously removed from the database

Using the proposed imputation strategy, it is now possible to analyze the rapeseed parcels
with missing data that were discarded from the analysis conducted in Chapter 3 (see the
introduction of this Section and Figure 4.1). In the following experiments, a total of 3297
parcels have been analyzed (1079 parcels have at least one S2 image with missing data and
2218 have no missing data). Table 4.3 shows the precisions obtained using the anomaly detec-
tion strategy of Chapter 3 with outlier ratios equal to 10 and 20% and features reconstructed
with the robust GMM or KNN methods (S1 and S2 features are used jointly). The parcels
never detected before were labeled following the method described in Chapter 3. In most of
the cases, the available features were sufficient to label with confidence these parcels. Overall,
a high precision is observed with both KNN and GMM imputations, confirming results of
Section 4.4.1. Thus, we can conclude that the parcels previously discarded can be analyzed
with accuracy thanks to the imputation of the feature matrix. Note that the new parcels de-
tected as abnormal and labeled as false positives are rare (14 parcels in total). These parcels
were difficult to label with confidence because of the lack of data (without ground truth the
imputed values cannot be validated).

Table 4.3: Precision (Pr.) of the detection results obtained using the IF algorithm with S1
and S2 features and outlier ratios equal to 10 and 20%. The third column indicates the
precision for the parcels never analyzed before (with their number into parentheses).

Imputation Outlier ratio Pr. - all Pr - samples with missing data (#)
KNN 10% 96.4 99.1 (116)
Robust GMM 10% 96.9 99.2 (128)
KNN 20% 94.2 96.1 (231)
Robust GMM 20% 94.2 96.0 (241)

A concrete example of the imputation obtained for a rapeseed parcel with missing data is
provided in Figure 4.10. For this parcel, only 5 S2 images can be exploited. Even with this very
limited number of images, an obvious late growth is visible when looking at the remaining S2
images (illustrated in Figure 4.11) and the corresponding S2 features (Figure 4.10(a,b)). This
growth problem is also visible using the S1 times series (especially the VH backscattering,
Figure 4.10(d)). Without ground-truth, it is difficult to know which imputation method
captures better the actual behavior of the crop parcel. However, the GMM imputation seems
more coherent when looking at the S1 times series and provides smoother imputed time
series (especially for the period between May and July, where more data are available for
comparison).
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Figure 4.10: For a specific rapeseed parcel, imputation of (a) median NDVI, (b) IQR NDVI,
and time series of (c) median VV (S1) and (d) median VH (S1). Actual values are plotted
in red dots. The gray area is filled between the 10th and 90th percentiles values of the whole
dataset.

Figure 4.11: A rapeseed parcel (yellow boundaries) affected by growth problems analyzed in
Figure 4.10 (image acquired in April 2018).



80 Chapter 4. Reconstruction of Sentinel-2 Time Series

4.4.2.1 Increasing the temporal resolution of the S2 features

So far, only 13 S2 images have been used to analyze the growing season of the rapeseed parcels.
With reliable imputation methods, adding more cloudy S2 images seems legitimate to fully
exploit the information available on the crop parcels. Increasing the temporal resolution of the
S2 features can be beneficial for post-analysis and crop monitoring in general (i.e., for farmers
and stakeholders who need timely information about the parcels and are not only interested
in the detection of the most anomalous parcels). In what follows, two specific examples
are provided to illustrate the interest of adding new S2 images. In total, 8 new cloudy S2
images were added to the database, for a total of 21 S2 images. Note that complementary
results showing that adding these new images do not impact the detection of anomalous crop
development are provided in Appendix C.

A first example illustrating the interest of using additional S2 images is displayed in
Figure 4.12 (the parcel analyzed is the same than the parcel analyzed in Figure 4.10). One
can appreciate with more details the crop development within the whole growing season,
especially during winter. The additional ground-truth acquired at the beginning of the season
confirms that this parcel has growth problems.
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Figure 4.12: For a specific rapeseed parcel, imputation of (a,c) median NDVI, (b,d) IQR. For
(a,b), only 13 S2 images are used whereas 21 images are considered for (c,d). The gray area
is filled between the 10th and 90th percentiles values of the whole dataset.

Another example (less extreme since more ground-truth is available) is displayed in Fig-
ure 4.13. One can observe the interest of data imputation with an increased amount of S2
data to appreciate more accurately the different phases of the growing season. Identifying
these phases is particularly difficult for crops such as rapeseed, due to fast and abrupt changes
in the crop phenology.
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Figure 4.13: For a specific rapeseed parcel, imputation of (a,c) median NDVI, (b,d) IQR. For
(a,b), only 13 S2 images are used whereas 21 images are considered for (c,d). The gray area
is filled between the 10th and 90th percentiles values of the whole dataset.

4.5 Discussion

This section provides some comments about the results obtained in this Chapter. Additional
experiments (available in Appendix C) are also discussed.

4.5.1 Analysis of the presented results

The experiments conducted in this study show that 1) GMM imputations outperform the
KNN method and 2) using a robust GMM is of crucial importance in the presence of strong
outliers. Thus, our results confirm the interest of using outlier detection techniques as stan-
dard preprocessing steps in remote sensing, as also recommended for instance in (Pelletier
et al., 2017) for the classification of land cover. Note that the obtained results are coherent
with the literature: an MAE of 0.0281 was obtained in (Yu et al., 2021) for the reconstruction
of NDVI in crop vegetation, an MAE of 0.038 was obtained in (Garioud et al., 2020) for the
reconstruction of NDVI for grassland parcels and MAEs varying from 0.035 to 0.042 (depend-
ing on the region analyzed) were obtained in (Garioud et al., 2021) for agricultural parcels.
While these results provide quantitative values for comparison purposes, important differ-
ences have to be highlighted: existing studies generally focus on NDVI time series acquired
at the pixel-level and do not analyze crops at the parcel level, as proposed here. Moreover,
some of these studies focus on the regression of NDVI time series using SAR data (Garioud
et al., 2021). Taking these differences into account, obtaining an MAE close to 0.013 (resp.
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to 0.019) when imputing the median NDVI for rapeseed (resp. wheat) crops is nevertheless
encouraging (see Table C.1 and Table C.2 in Appendix C).

The interest of using a combination of S1 and S2 features was confirmed by our exper-
iments. In particular, using S1 features is interesting to reconstruct more accurately S2
features and thus ensures a better detection of crop anomalies. Two specific examples illus-
trating the interest of using S1 data are provided in Appendix C for rapeseed and wheat
parcels (Figure C.1 and Figure C.2). The heterogeneity of a parcel (summarized using IQR
at the parcel-level) is less linked to S1 data, which confirms previous results obtained in
Chapter 3. It was also observed that using various features extracted from S2 data helps to
reconstruct missing data in NDVI time series when compared to using NDVI only.

When removing features from one of the S2 image (Figure C.3 and Figure C.4), it appears
that some specific stages of the growing season are more difficult to reconstruct, with dif-
ferences observed for rapeseed and wheat crops. For rapeseed crops, the first S2 acquisition
(October 10) is challenging to reconstruct. One explanation is that at this date some fields
are not sowed yet whereas others are already vigorous, leading to a higher dispersion of the
parcel indicators. The high MAE obtained for S2 data acquired in February can be explained
as follows: 1) S2 images before and after this date correspond to very distant dates 2) crop
parcels can be more or less affected by winter, which again leads to a larger dispersion of
the indicators. Regarding wheat crops, the high reconstruction errors observed for the data
acquired in June 2017 can be explained by the beginning of the senescence, which leads to
abrupt changes in the crop behavior.

4.5.2 Other imputation methods

Other strategies for the imputation of missing data were tested without bringing any im-
provement compared to the proposed method (see Figure C.5). Some observations are briefly
provided below.

Gap filling methods (linear interpolation, spline interpolation and Whittaker smoother)
(Cai et al., 2017) perform overall poorly compared to the methods investigated in this chapter.
These poor results are mainly due to the sparsity of S2 acquisitions, confirming the results
found in (Yu et al., 2021). Moreover, when applied to the detection of abnormal crop devel-
opment, smoothing methods tend to decrease the accuracy of the detection results. Other
benchmark imputation methods were tested, such as Multiple Imputation by Chained Equa-
tions (MICE) proposed in van Buuren and Groothuis-Oudshoorn (2011) and implemented in
the Scikit-Learn Python library (Pedregosa et al., 2011). Similarly to the KNN imputation,
MICE provides reconstruction results significantly less accurate than those obtained using
the proposed GMM imputation. Deep learning methods were also tested without success
due to the small number of parcels in the dataset (in particular, we considered a classical
structure referred to as denoising autoencoders and studied in Vincent et al. (2008); Pereira
et al. (2020)).

Finally, we considered some outlier detection methods that do not need to impute missing
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data. It is the case with the IF algorithm, which can be extended to handle missing values
without imputation using the strategies studied in Zemicheal and Dietterich (2019); Cortes
(2019). This type of strategy is appealing since it drastically reduces the computation time
when compared to GMM-based methods. However we observed that these methods are
sensitive to the amount of missing values in the dataset and can lead to poor results. Moreover,
having access to reliable reconstructed time series is interesting for crop monitoring since it
allows the user to analyze with more details the behavior of an abnormal parcel.

4.5.3 Regularization techniques for GMM

GMM are subject to the curse of dimensionality (Bouveyron and Brunet-Saumard, 2014).
This problem was confirmed in our application, especially due to the small number of parcels
compared to the high number of features. The regularization of Bouveyron et al. (2007) used
in our experiments provided the best results overall.

Another classical regularization consists of adding a sparsity constraint to the precision
matrices, which can be solved using the graphical lasso algorithm Friedman et al. (2008),
which has been adapted to the missing data problem (Ruan et al., 2011). However, using
such regularization yielded poor results for the reconstruction of vegetation indices. The
sparsity of the precision matrix is due to conditionally independent variables, which is not
the case in the proposed feature vector gathering the same features acquired at different time
instants. The sparsity of the covariance matrices was also investigated using the method
proposed in (Fop et al., 2019) without improving the results obtained with the [aijbQidi]
model suggested in Bouveyron et al. (2007).

4.6 Conclusion

This chapter studied an imputation method based on Gaussian Mixture Models (GMM) for
the reconstruction of remote sensing time series constructed from vegetation indices (VI) asso-
ciated with Sentinel-2 (S2) data. One contribution is to propose a method able to reconstruct
simultaneously various time series, coming from different VI whose statistics have been com-
puted at the parcel-level. These statistics (here, the median and interquartile range) are well
suited for crop monitoring since they can characterize efficiently the parcel behaviors, e.g.,
to detect abnormal growth or heterogeneity problems. It was also shown that using a GMM
imputation to reconstruct missing values in the feature matrix performs significantly better
than other reference methods such as the k-nearest neighbors or the Multiple Imputation by
Chained Equations (MICE)).

Another contribution of this Chapter is to propose a robust GMM imputation method,
which attributes weights to each sample based on the outlier scores resulting from the Isolation
Forest algorithm. Samples with high outlier scores have reduced weights, limiting their impact
on the estimation of the GMM parameters. Using the proposed robust GMM method instead
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of the standard GMM imputation method is particularly useful in the presence of irrelevant
samples contaminating the dataset. For operational services, we then recommend to use this
robust version since it consistently provides reconstruction results similar or better than the
standard GMM imputation method.

The experiments conducted in this chapter confirmed that using additional Sentinel-1 (S1)
features can improve imputation results, especially to reconstruct S2 features at the parcel
level, such as the Normalized Difference Vegetation Index (NDVI). This indicator can be
reconstructed with good accuracy (mean absolute error (MAE) close to 0.013 for rapeseed
crops and to 0.020 for wheat crops), even with a high amount of missing data (e.g., for
rapeseed parcels, the MAE is close to 0.020 even when 70% of the S2 images have 50% of the
parcels affected by missing data).

An application to the detection of anomalous crop development in presence of missing data
was also investigated. Using S1 and S2 images jointly provided best results for this applica-
tion. Using a Gaussian mixture model (GMM) for the reconstruction of missing data provided
detection results significantly better than with KNN imputation. Note that discarding im-
ages affected by clouds prevents to detect many parcels with abnormal crop development.
Moreover, it was shown that the proposed imputation method can be used to increase the
temporal resolution of the S2 features, which is important for crop monitoring in general.

An interesting perspective could be to determine whether other regularizations could be
applied to GMM to improve the imputation results, for instance by finding an adapted struc-
ture for the covariance matrices or by reducing the dimensionality of the dataset. Moreover,
since GMM are good models for vegetation indices, other applications such as forecasting,
clustering or classification, would deserve to be investigated. In particular, the automatic
classification of the different anomalies could be considered as in León-López et al. (2021).
Adding external information such as climate data could also be relevant to reconstruct more
efficiently the various VI, since interesting results were obtained for the reconstruction of
NDVI time series (Vuolo et al., 2017; Yu et al., 2021). Finally, using the proposed imputation
method with dense S2 time series was found interesting to increase the temporal resolution of
the S2 features, which is always valuable for crop monitoring in general. Combining the pro-
posed method with smoothing or gap-filling techniques could be another relevant perspective
and could be for instance useful to reduce the problems of undetected clouds.



Chapter 5

Towards Temporal Approaches for
the Detection and Localization of

Anomalous Crop Development

Part of this chapter has been adapted from the journal paper León-López et al. (2021).
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5.1 Introduction

In Chapter 3, a strategy has been proposed to detect crop parcels with anomalous phenolog-
ical development. This detection is made using the IF algorithm, which attributes to each
parcel an outlier score proportional to its degree of abnormality. Although this strategy has
proven to be relevant, it seems legitimate to ask whether taking into account the temporal
structure of the data could be beneficial to this analysis. Indeed, the IF algorithm does not
make any assumption regarding the temporal relationship between the different features and
only attributes a unique outlier score for each parcel. On the other hand, using temporal
approaches could provide valuable information, e.g., to locate in time the anomalies. In this
Chapter, we explore the interest of using such approaches for the detection and localization of
anomalous crop development. In particular, we propose to use an ensemble of Hidden Markov
models (HMMs) for this task, taking advantage of their ability to efficiently model dynamic
phenomena. The presented method was first investigated in León-López et al. (2021) (collab-
oration made during this thesis) and was slightly adapted to our use cases, in particular to
be fully unsupervised.

5.2 Hidden Markov Models for the Detection and Localization
of Anomalous Vegetation Development

HMMs (Baum and Petrie, 1966) have been largely used to analyze time series, e.g., for speech
recognition (Rabiner, 1989). Thanks to their ability to model dynamic processes, they have
also been used in remote sensing in the context of multi-temporal analysis, as for instance for
the classification of crops (Siachalou et al., 2015) or to model vegetation dynamics (Viovy and
Saint, 1994). In what follows, we first introduce the main idea behind HMMs. In a second
step, we propose an adaptation of this idea to detect and localize anomalies.

5.2.1 HMM learning

An HMM is a statistical model in which the modeled system is assumed to be a Markov process
with unknown parameters. Lets call Y the modeled Markov process, with unobservable states
(i.e., “hidden states”) and X another process whose behavior depends on Y (Rabiner, 1989).
The goal of HMM is to model Y by observing X. Let S = {s1, s2, ..., sd} be the D states
of the model and T the length of the observed time series (theoretically, T can vary for
each observed sequence). Formally, an HMM can be described by the unknown parameters
θ = {π,A,B}, where π ∈ RD is the initial probability vector defining the initial probabilities
of the system to be in the different states, A ∈ RD×D is the transition probability matrix
defining the probabilities of the hidden latent variables to change from one state to another,
andB ∈ RD×T is the emission probability matrix, which provides the probability of observing
a given value in state s (León-López et al., 2021).
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As an example, let X(n) be the times series of parcel n (X(n) can be multivariate, e.g.,
considering median NDVI and IQR NDVI). The sequence of hidden states of the parcel n
across time is denoted Z(n) = {z(n)

1 , z
(n)
2 , ..., z

(n)
T }, with each z

(n)
t ∈ S. For brevity, we will

omit the subscript (n) and use the notations z(n)
t = zt and x

(n)
t = xt in the following. The

elements of the transition probability matrix A are defined as aij = P(zt = si|zt−1 = sj),
which corresponds to the probability transition from state si to state sj , with i, j ∈ {1, ..., D}.
Furthermore, the emission probability density bi(xt) denotes the probability density function
of xt given that xt is in the state si. Here, the emission probability densities are assumed
to be mixtures of K multivariate normal densities. The likelihood of a given parcel is then
defined as:

P(X(n)|θ) =
∑

all Z(n)

P(X(n)|Z(n), θ)P(Z(n), θ)

=
∑

all Z(n)

πz1bz1(x1)az1,z2 ...azT−1,zT bzT (xT ).
(5.1)

As explained in Rabiner (1989), one can interpret the above equation as follows. At time
t = 1, we are in state z1 with probability πz1 and generate observation x1 with probability
bz1(x1). At time t = 2, a transition from state z1 to z2 occurs with probability az1z2 and
generate observation x2 with probability bz2(x2). This process continues until the generation
of observation xT , with probability bzT (xT ). The calculation of (5.1) being too computation-
ally intensive, an efficient procedure known as the forward-backward procedure (Baum and
Eagon, 1967) is used in practice to determine P(X(n)|θ).

Finally, the HMM parameter vector θ is estimated by maximizing the log-likelihood when
considering all the training samples (here, the N crop parcels contained in the learning
database):

θ̂ = arg max
θ

log
N∑
n=1

P(X(n)|θ). (5.2)

This maximization is conducted with a special case of the EM algorithm, which makes use of
the forward-backward procedure known as the Baum-Welch algorithm (Rabiner, 1989).
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5.2.2 Anomaly detection based on an ensemble of HMMs

In what follows, we detail a HMM-based method for the detection and localization of anoma-
lies in time series (León-López et al., 2021). First, we introduce the general idea of the
proposed method, which is based on learning an ensemble of HMMs. Second, we provide a
general detection strategy at the parcel-level for a complete growing season analysis. Finally,
we show that it is also possible to analyze sub-sequences of the analyzed time series to localize
the anomalies in time, which is the main interest of the proposed approach.

1. HMM ensemble learning: the main originality of the proposed method is to build
an ensemble of L HMMs, which are estimated on subsets of the training dataset. The
number of samples in each subset is denoted Ns. Building various HMM models allows
us to consider different possible underlying structures in the data to better explain
them. This idea is for instance used in the famous classification method Random Forest
(Learning, 2001) or in the IF algorithm and have been previously used with HMMs,
e.g., for clustering (Hamdi and Frigui, 2015). In León-López et al. (2021), a strong
assumption was made on the availability of training data composed of normal parcels to
learn the ensemble of HMMs. Here, we propose to build the training dataset using the
IF algorithm by selecting the parcels with the lower IF scores. This allows us to have
a fully unsupervised method without a need for a manual selection of training samples.
This learning procedure is summarized in Figure 5.1.

Complete 
Dataset 

Outlier 
detection

Training 
Dataset 

Subset 1

Subset 2

Select the most 
normal parcels

Subset L

….

Divide the training 
set into L subsets  

….

HMM 1

HMM 2

HMM L

Learn L HMM 
models  

Figure 5.1: Methodological steps for learning an ensemble of HMMs.

2. Detection at the parcel-level: The log-probability that a parcel time series X(n)

has been generated by the lth HMM with parameters θ̂l is written as

p
(n)
l = logP(X(n)|θ̂l), (5.3)

which can be determined using the forward algorithm of the forward-backward proce-
dure. The forward algorithm is provided in Algorithm 5.1, which introduces the forward
variable αt(i), i.e., the probability that the partial observed vector [x1, ..., xt] is in state
i at time t. Using the L HMMs that have been estimated in the previous step, we
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propose to attribute to each parcel #n a score denoted as ρ(n):

ρ(n) = max
l=1,...,L

p
(n)
l . (5.4)

Note that ρ(n) is the log-probability for the parcel #n to be associated with the most
likely HMM among the L models learned during the training step. We propose to
detect the abnormal parcels by comparing the score ρ(n) to a threshold that can then
be fixed to detect a percentage of the most abnormal parcels, as with the IF algorithm.
An example of the log-probabilities obtained on the rapeseed parcels is displayed in
Figure 5.2. For a better visualization, these log-probabilities were scaled in the range
[0,1]. Moreover, since few samples can have very large or very low probabilities, the
scaling was conducted in a robust fashion using the 1th and 99th percentiles. In that
example, we set a threshold to detect 10% of the most abnormal parcels.

Algorithm 5.1 Forward algorithm (pseudocode).
Input: a time series X = [x1, ..., xT ], a HMM with D states and estimated parameters
θ̂ = {π,A,B}, with ai,j and bj,t the elements of the transition matrix A and the emission
matrix B, respectively.

1) Initialization: α1(i) = πibi(x1)
2) Induction: αt+1(i) =

(∑D
j=1 αt(j)aj,i

)
bi(xt+1)

3) Termination: logP (X|θ̂) = ∑D
j=1 αT (j)

Output: forward variables α, logP (X|θ̂).
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Figure 5.2: Distribution of the scaled log-probabilities attributed to each rapeseed parcel using
the HMM ensemble whose hyperparemeters are provided in Table 5.1. A robust scaling of
the log-probabilities was made using the 1th and 99th percentiles to have values in the range
[0,1]. The separation between inliers (in green) and outliers (in red) is made by selecting 10%
of the lowest probabilities.

3. Temporal localization: an interest of the proposed anomaly detection strategy based
on HMMs is the possibility of evaluating subsequences of the analyzed time series.
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Assuming that the first-order Markov chain rule stands (i.e., the current state at time
t depends only on state at time t − 1), one can evaluate the probability that the lth
HMM has generated the time series X(n) in the temporal segment [tc, td] (with c ≤ d).
First, the probability of generating X(n) at time t is written as follows:

ut =
D∑
j=1

{
D∑
i=1

(αt−1(i)ai,j) bj(xt)
}

=
D∑
j=1

αt(j). (5.5)

Then, the log-likelihood in the time segments [tc, td] is defined as

logP(xtc , ..., xtd |π,A, bi,[tc,...,td−1]) = log
(

td∑
t=tc

ut

)
. (5.6)

Defining p(n)
l,[tc,...,td] = logP(x(n)

tc , ..., x
(n)
td
|π(l),A(l), b

(l)
i,[tc,...,td−1]) the probability that the

time series of parcel #n have been generated by the lth learned HMM in the time
interval [tc, td], we can attribute an outlier score for a given time interval as follows:

ρ
(n)
[tc,td] = max

l=1,...,L
p

(n)
l,[tc,...,td], (5.7)

which can be used to detect abnormal crop development in the interval [tc, td]. In
practice, one could choose intervals associated with a predefined growth stage, such as
growing, flowering, adult-phase, senescence. For instance, to analyze the senescence
stage of the rapeseed parcels, choosing the 6 last time instants of the growing season
(between mid-May and early July) would be relevant. Note that if the time interval
[tc, td] contains all the dates t1, ..., tT , we retrieve the outlier score defined in (2) for a
complete growing season analysis and a single detection at the parcel-level.

5.3 Experimental results and discussion

This section validates the HMM-based anomaly detection strategy by experimental results
conducted on the rapeseed parcels analyzed in Chapter 3. These results are obtained using
NDVI time series (median and IQR), extracted from the 21 S2 images presented in Chapter 4
(missing features were reconstructed using the robust GMM algorithm of Chapter 4). We
should highlight here that when using temporal methods, it is generally not possible to mix
directly two types of data acquired at different temporal resolutions, which is the case with S1
and S2 time series. Interpolating S1 and S2 features on the same temporal grid is a possible
way of solving this problem. However, we focus in this section on the median and IQR NDVI
time series associated with the same S2 images, which does not require any interpolation
pre-preprocessing.

The results obtained with the HMM approach are compared to those obtained with the IF
algorithm (as in Chapter 3). We also consider the “Discord” algorithm (Keogh et al., 2005),
which is a classical method used to detect anomalies in time series. Initially, the discord
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algorithm has been designed to find the most abnormal subsequences contained in a single
time series. Here, we have adapted this idea to the analysis of multiple time series. More
precisely, each parcel time series is decomposed in subsequences using a sliding window of
fixed length. The subsequences of all the parcel time series are then considered jointly to
find the subsequences that are the farthest from their nearest neighbors. For this method,
we have used the distance to the kth nearest neighbor as the outlier score attributed to each
subsequence. In order to make a decision at the parcel-level, we have considered the sum
among the parcel subsequences.

Finally, we would like to mention that the implementation of the HMM algorithm con-
sidered in this chapter has been made in Python, using the library hmmlearn1 as a baseline.
To that extent, the results presented here might slightly differ from the one presented in
León-López et al. (2021), which were obtained using a MATLAB implementation based on
another HMM toolbox2.

5.3.1 Parameter tuning

• HMM ensemble: various hyperparameters have to be fixed to learn the ensemble
of HMMs in the training step. The values of these hyperparameters chosen for the
analysis are summarized in Table 5.1 and were selected by grid search. This relatively
large number of parameters can be a problem in practice, when compared to other
algorithms requiring simpler parameter tuning such as the IF or Discord algorithms.
Nevertheless, we have observed that changing these hyperparameter values around their
optimal values does not have a significant impact on the detection results.

Table 5.1: Hyperparameters used to learn the ensemble of HMMs.

Hyperparameter Value
Number of states in each HMM 18
Number of Gaussians for the emission distribution 13
Number of models L 10
Size of the training dataset Ntraining 500
Subsampling Ns 100

• Discord: the number of k-nearest neighbors and the length of the sliding windows
are the only hyperparameters to choose when using the Discord algorithm. A value of
k = 100 was chosen (varying k in the range [10, 1000] did not have a significant impact
on the detection results). The length of the sliding window was fixed to 3 by cross
validation (choosing close values leads to similar results).

• IF algorithm: the IF algorithm was used with the hyperparameters fixed in Chapter 3
(the number of trees is ntrees = 1000 and the subsampling parameter is nsamples = 256).

1https://github.com/hmmlearn/hmmlearn
2https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

https://github.com/hmmlearn/hmmlearn
https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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5.3.2 Detection results on the rapeseed parcels

Using the rapeseed dataset presented in Chapter 2, outlier scores were attributed to the
parcels by the 3 different algorithms (HMM, Discord and IF). Precision versus outlier curves
are displayed in Figure 5.3. It can be observed that similar area under the precision-recall
curve (AUC) can be reached with the IF and HMM approaches: AUC = 0.89 for the IF
algorithm, while it is slightly lower when using the HMM approach (AUC = 0.86). The
difference in AUC is explained by a lower precision obtained with the HMM algorithm for
outlier ratios higher than 10%, which means that the strongest anomalies are detected with
both algorithms. On the other hand, the Discord algorithm provides a lower AUC (equal
to 0.80). The small values of AUC obtained when using the Discord approach can mainly
be explained by two factors. First, using sliding windows leads to compare subsequences
delayed in time, which prevents some anomalies such as delayed senescence to be detected.
Second, the Discord algorithm uses the Euclidean distance as an outlier score, which seems
to be not appropriate for this application. More relevant metrics such as those used in
the IF algorithm might be investigated to improve the detection results. Finally, a further
investigation showed that when choosing an outlier ratio equal 10%, all the three approaches
detect similar proportions of parcels within each outlier category, as depicted in Figure 5.4.
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Figure 5.3: Precision vs. outlier ratio curves for the rapeseed dataset using the IF (green),
the ensemble of HMMs (orange) and the Discords (blue) algorithms.
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Figure 5.4: Distribution of the detected rapeseed parcels within the different outlier categories
using the IF (green), the ensemble of HMMs (orange) and the Discords (blue) algorithms.
The detection is made with an outlier ratio equal to 10%.

5.3.3 Anomaly localization

Figure 5.5(a, c,e) show three examples of anomaly localization obtained using the score of
Equation 3. For clarity, these figures show the most informative indicator for each analyzed
parcel (i.e., median NDVI or IQR NDVI). They were obtained using an outlier ratio equal to
10% and 5 different temporal intervals covering the growing season (delimited by the vertical
gray lines). One can appreciate that the most abnormal parts of the growing season are
detected as anomalous (in red). Figure 5.5(a) was labeled as “late growth”, Figure 5.5(c) as
“early flowering/senescence” and Figure 5.5(e) as “heterogeneity after senescence”.

Figure 5.5(b,d,f) provide the forward log-probabilities attributed by each of the 10 HMMs
to the parcels analyzed in Figure 5.5(a,c,e). These probabilities are computed using Equa-
tion 3. One can see the interest of using an ensemble of HMMs to capture the different
possible behaviors of the crop parcels. For instance, one can see that the behavior of parcel
(a) is better captured by models 4 and 7. Moreover, looking at the induction step of Algo-
rithm 5.1, one can notice that the forward probabilities computed at time t + 1 depends on
the forward probabilities computed at time t. In practice, this means that for “normal” subse-
quences, the forward log-probabilities tend to increase through time (i.e., each new “normal”
observation increases the probability that the time series has been generated by the HMM).
On the contrary, the log-probabilities tend to decrease when new observations do not conform
to the learned HMMs. This behavior can be observed for the parcel analyzed in Figure 5.5(c),
where its log-probabilities (Figure 5.5(d)) increase during the first part of the growing season,
and tend to decrease after winter.
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Figure 5.5: Examples of time series for 3 rapeseed parcels are displayed in (a,c,e). In each
figure, the blue line represents the median value of the whole dataset, whereas the orange
line corresponds to the time series of the analyzed parcel. The shaded area is filled between
the 10th and 90th percentiles. Areas in green were not detected as anomalies whereas areas
in red were detected as anomalies (the vertical gray lines delimitate the different temporal
segments considered). Forward log-probabilities attributed by each of the 10 HMM to the
parcels analyzed in figure (a), (c) and (e) are displayed in figures (b), (d) and (f), respectively.
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5.4 Conclusion and perspectives

This chapter is a preliminary work exploring temporal approaches for the detection and
temporal localization of anomalies in agricultural parcels. We proposed a method for detecting
anomalies in the development of crop parcels based on an ensemble of HMMS. The main idea
of this method is to model the underlying behavior of the crop parcels with various HMMs,
and detect the crop parcels that have phenological behaviors differing significantly from these
models. An advantage of the proposed approach is that it can be conducted on particular
temporal segments of the growing season, to localize the occurrence of the anomalies. These
temporal segments can be chosen regularly throughout the growing season or can be fixed by
the user (e.g., to match the phenological stages of the growing season).

The HMM-based approach is not significantly improving the results (in terms of preci-
sion/recall) when compared to simpler methods such as the IF algorithm. Moreover, the
localization of anomalies is also possible with IF using for instance the SHAP method, which
exploits the anomaly scores provided by the algorithm. However, once a HMM has been
learned, it can be used on new sequences of various lengths. An interesting application could
be for instance to learn HMMs on a given growing season, and then use the models on a
new growing season to predict potential anomalies. This could be particularly useful if few
samples are available for the new growing season (note that the IF algorithm cannot be used
directly for this usecase).

Various other perspectives would be interesting to study in future work. First, adapting
the HMM approach to allow the use of multiple sensors (e.g., S1 and S2 data) would be
relevant, particularly when looking at the results presented in Chapter 3, which showed that
using additional S1 data improves performance for detecting anomalies in rapeseed crops.
Promising results were obtained after interpolating S1 and S2 time series on the same temporal
grid. However, more tests should be conducted, e.g., to determine the best interpolation
method for this application.

Finally, we think that other models dedicated to the clustering of time series in differ-
ent phenological stages would deserve to be investigated. The idea is to analyze directly
subsequences of time series to capture more efficiently the intrinsic relationships between
the different time instants of the growing season. This problem can be addressed by using
clustering methods such as the Toeplitz Inverse Covariance-Based Clustering (TICC), which
was originally proposed in Hallac et al. (2017). In brief, the TICC method aims at cluster-
ing subsequences of multivariate time series within a GMM framework. An originality of this
approach is to perform the clustering based on a graphical dependency structure for each sub-
sequence (i.e., by imposing a Toeplitz inverse structure to the covariance matrices). Moreover,
a temporal consistency constraint is added to encourage adjacent subsequence to be part of
a same cluster. Promising results were already obtained by modifying the TICC method to
adapt it to crop monitoring, in particular to handle multiple time series coming from different
parcels. In addition to the detection and localization of anomalies, an interesting byproduct
of this approach is to automatically find for each parcel the different stages of the growing
season (e.g., growth, flowering, senescence, etc.). An example of the clustering obtained for
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two different rapeseed parcels is presented in Figure 5.6 (the different colors correspond to
different the stages attributed by the algorithm). In Figure 5.6(a), the late growth of the
parcel is captured and two new states are attributed to the early season when compared to
the state of the parcel presented in Figure 5.6(b). Moreover, one can see that the delay in the
flowering stages of the two parcels is also captured. Further investigations should be done to
validate these first results and their relevance for crop monitoring.
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Figure 5.6: Clustering obtained for two specific rapeseed parcels using our modified TICC
algorithm (the model is learned on the whole dataset with a number of clusters set to 6). The
parcel in (a) is affected by a late growth, and the parcel (b) has an early senescence. The
blue line correspond to the median of the NDVI time series of the analyzed parcel, while the
shaded area is filled between the 10th and 90th percentiles of the whole dataset. The different
colored rectangles correspond to different states attributed by TICC.
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Conclusions

The objective of this thesis was to study new crop monitoring methods at the parcel-level
using data extracted from multispectral and SAR satellites (such as Sentinel 1 and Sentinel
2 satellites). A particular attention has been given to the automatic detection of anomalous
crop development, a problem that has received few attention in the literature.

In Chapter 1, we have introduced the interest of remote sensing for agriculture. A focus
has been made on S1 and S2 satellites, which are particularly well suited for crop monitoring
at the parcel-level thanks to their spatial and temporal resolutions. Using data coming from
two types of satellites (synthetic aperture radar for S1 and multispectral imagery for S2) was
motivated by their complementary for the analysis of crop parcels. This chapter has also
introduced the problem of anomaly detection in the vegetation status and its interest for
the monitoring and optimization of agricultural practices. A state-of-the-art has motivated
the need for new strategies adapted to the detection of anomalous crop development at the
parcel-level, in particular when analyzing a single growing season (or a part of a growing
season).

In Chapter 2, we have detailed the different processing steps for the extraction of parcel-
level features coming from S1 and S2 data. This feature extraction is decomposed into 3
main steps: 1) preprocessing of S1 and S2 images, 2) computation of pixel-level features and
3) computation of spatial statistics at the parcel-level from the pixel-level features associated
with different dates. The preprocessing of remote sensing data is a classical step needed before
feature extraction. For our use case, one can mention that a terrain flattening operation was
added to the SAR processing chain to take into account the differences in soil geometry. The
pixel-level features recommended for crop monitoring are vegetation indices for S2 data (in
particular the NDVI) and backscattering coefficients VV and VH for S1 data. Throughout
this manuscript, we have shown their relevance and their complementary for crop monitoring,
as well as their ease of interpretation. To extract the parcel-level features, we have proposed
to use spatial statistics computed using the parcel boundaries. It has been shown that the
median and interquartile are two relevant statistics that can summarize efficiently and robustly
the pixel-level features in terms of mean value and heterogeneity.

In Chapter 3, we have proposed a fully unsupervised strategy to detect anomalous crop
development at the parcel-level using the features computed in Chapter 2. The core of this
strategy is based on outlier detection algorithms, which are designed to find samples that are
not conform to the majority of samples contained in the dataset. Overall, we showed that the
isolation forest algorithm is a good choice for crop monitoring since it is fast, robust to changes
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in the dataset or in the crop type and does not require an extensive hyperparameter tuning.
This chapter allowed us to meet various important objectives of the thesis. In particular, we
have shown that it is possible to detect anomalous crop development in various crop types by
analyzing a single (or a part of a) growing season. Moreover, we have shown the interest of
using SAR and multispectral data jointly to improve the detection results. Finally, the outlier
score provided by the isolation forest algorithm is generally higher for strong anomalies (e.g.,
errors related to the crop type), which is interesting to sort the parcels by their degree of
abnormality.

Chapter 4 addressed an important challenge related to the presence of missing data in the
parcel time series. We have proposed to impute missing data using a Gaussian Mixture Model
(GMM), whose parameters are estimated by the Expectation-Maximization (EM) algorithm.
All other tested methods were outperformed by this approach, which achieves competitive
reconstruction errors even with a small dataset (containing around two thousand samples).
In addition, we have proposed a novel strategy for the robust estimation of GMM parameters,
which is useful when the dataset is contaminated by strong outliers (e.g., parcels coming from
a different crop type than the one analyzed). The proposed robust GMM makes use of the
isolation forest algorithm to attribute weights to the different parcels of the database, which
leads to a data imputation and an anomaly detection within the same EM algorithm. We
have shown that the detection of anomalous crop development in the presence of missing
data can be conducted with good accuracy with this strategy. Finally, it has been shown that
using additional S1 data can help improve both reconstruction and detection results.

In Chapter 5, we have explored new anomaly detection strategies taking into account
temporal correlations of the times series associated with crop parcels. More precisely, we
have focused on an ensemble of hidden Markov models (HMMs) adapted to detect and lo-
calize anomalies in multivariate time series. We have shown that this approach can lead to
detection results similar to those obtained with the point outlier detection algorithms tested
in Chapter 3, with the advantage of allowing anomaly localization. For general applications
such as the one presented in this thesis, using the method proposed in Chapter 3 is recom-
mended since it is faster and less dependent on the choice of the hyperparameters. However,
the algorithm investigated in this chapter is interesting for applications requiring anomaly
localization. Finally, we have presented preliminary results on time series clustering with
GMMs. This approach could be interesting to automatically detect the different phenological
stages of a crop parcel.



99

The results presented in this thesis opens several interesting perspectives that should be
investigated in future work.

• Toward an operational service: a direct and important perspective is to adapt
the proposed method to an operational context. The detection of anomalous parcels
could for instance be an additional information provided by a crop monitoring service.
The main challenges for this implementation are related to automatic data processing
and feature extraction. Other challenges are related to the user experience, especially
to have a user-friendly interpretation of the results. In that context, an interesting
long-term perspective could be to incorporate user feedbacks to the anomaly detection
results. This could be for instance done with the isolation forest algorithm, as explained
in Das et al. (2016). The main difficulty of this task is to evaluate the performance and
the quality of this user feedback. Another difficulty is to find representative examples
that can minimize user interactions. Finally, the data imputation method proposed
in this thesis could be used in an operational context in a wider range of applications
related to vegetation monitoring (e.g., for the monitoring of vine production1). For such
applications, the number of parcels available for analysis could be a main challenge.

• Classification of the outlier parcels: a perspective directly related to the previous
point is to be able to classify the anomalies affecting the detected parcels. A short-term
perspective is to provide tools to help the user to identify the different types of anoma-
lies. A long-term (and much more difficult) perspective is the automatic classification
of the outlier parcels into different categories. First attempts for a supervised classifi-
cation of anomalies have been made in León-López et al. (2021). However, they would
deserve to be further studied for operational services. The main challenges related to
this task are 1) the relatively small number of anomalies annotated by experts, 2) the
variety of the anomaly types and 3) the fact that outlier parcels can belong to several
categories simultaneously (i.e., an anomalous parcel can be affected by late growth and
heterogeneity). Finally, it would not be realistic to label each new dataset from an
operational point of view.

• Crop types: an obvious future work is to apply the proposed method to other crop or
vegetation types. First attempts have been made for vineyards, with promising results
(these results have not been reported in this PhD thesis for brevity). We have observed
good reconstruction results with robust GMMs, even with small size datasets (Mean
absolute reconstruction error of the median NDVI around 0.018 in a databased composed
of 1200 parcels). For vineyards, using a GMM is particularly interesting, since this type
of vegetation can have a wide range of different phenological developments within a
same growing season (e.g., the inter-row surface can be covered by grass). A main
challenge related to this crop type is the relatively small size of the parcels, which can
be problematic with the spatial resolution of Sentinel data.

• Features: other pixel-level features could be investigated and compared to the ones
presented in this manuscript. Obvious examples are biophysical indicators extracted

1http://oenoview365.terranis.fr/

http://oenoview365.terranis.fr/
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from multispectral images (e.g., leaf area index) or indicators extracted from single
look complex (SLC) SAR images (e.g., phase coherence, entropy). Depending on the
final application, choosing the features and the spatial statistics can be a challenge,
since they are directly correlated to the type of anomalies detected.

• Pixel-level analysis: another perspective could be to propose crop monitoring meth-
ods applicable at the pixel-level. We should first highlight that working at the parcel-
level has multiple advantages, in particular 1) it reduces computing and storage require-
ments, which is a common issue in remote sensing applications (Inglada et al., 2017)
and 2) it allows us to work with SAR images without further processing to reduce the
speckle noise, which is also computationally intensive. On the other hand, working at
the pixel-level would increase the number of samples to be analyzed, which could be in-
teresting to fight against the curse of dimensionality. Having a decision at the pixel-level
could also be interesting to localize spatially the areas with anomalous development.

• Various growing seasons: an interesting long-term perspective is to extend the prob-
lem studied in this manuscript to the analysis of multiple growing seasons. Various
challenges should be addressed in that situation, as for instance the problem of crop
rotation (i.e., the crop type associated with a parcel changes with time), the problem of
temporal inconsistencies or the challenge caused by inter-annual variability (using grow-
ing degree days could be for instance important for such application). In that context,
more investigations should be conducted to analyze the potential interest of temporal
approaches, as for instance to analyze a small number of parcels coming from a new
growing season.

• GMM Regularization: we have found that imputing missing data with GMMs is well
suited to crop monitoring. However, we think that these results could be further im-
proved by constraining the structure of the covariance matrices, especially when working
with high dimensional data. We should remind here that various attempts have been
made during this PhD thesis without success (e.g., adding a sparsity constraint on the
precision or covariance matrices). One interesting possibility is to impose a Toeplitz
constraint on the covariance matrices. While we have obtained promising results on
synthetic datasets, it is not the case for real-world experiments, mainly because of the
reduced temporal resolution of S2 data, which breaks the Toeplitz structure of the co-
variance matrices. Using SAR data could be a way to address this issue. Moreover, all
our experimentations were made using a unique Toeplitz structure. Using multiple fea-
tures requires more theoretical work, e.g., allowing block-Toeplitz covariance matrices
to be considered.



Chapter 7

Résumé de la thèse en français

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.1 Contexte général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.2 Utilisation des satellites Sentinel-1 et Sentinel-2 pour l’agriculture de pré-

cision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.3 Détection d’anomalies dans la végétation : état de l’art . . . . . . . . . . 103
7.1.4 Formulation du problèmes et objectifs de la thèse . . . . . . . . . . . . . . 104

7.2 Résumé du Chapitre 2 : pré-traitement des données pour l’extraction
d’indicateurs au niveau parcelle . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Résumé du Chapitre 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Résumé du Chapitre 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 Résumé du Chapitre 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.6 Conclusion et perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 108

101



102 Chapter 7. Résumé de la thèse en français

7.1 Introduction

7.1.1 Contexte général

L’agriculture devra nourrir plus de 10 milliards de personnes d’ici 2050, augmentant la de-
mande agricole de 50% par rapport à 2013 dans un scénario de croissance modeste (FAO,
2017). Cet essor de la production alimentaire va se confronter au changement climatique, qui
impactera la sécurité alimentaire à différents niveaux de la chaîne de production alimentaire
(Tirado et al., 2010; Wheeler and von Braun, 2013). En outre, un changement des pratiques
agricoles est nécessaire pour diminuer leurs impacts négatifs sur la biodiversité (Newbold
et al., 2015), les ressources en eau et les émissions de gaz à effet de serre (Gomiero et al.,
2011).

Dans ce contexte, la surveillance de la croissance et de l’état des cultures agricoles de-
vient un enjeu nécessaire s’adressant à un grand nombre d’acteurs (Weiss et al., 2020). La
télédétection peut fournir des informations essentielles au secteur agricole en temps opportun
et de manière fiable, et ce, à grande échelle (Atzberger, 2013). Elle est donc importante pour
mesurer l’intensification durable de la production agricole et optimiser les pratiques culturales
(Areal et al., 2018). De plus, la surveillance en temps quasi-réel peut contribuer à améliorer
la résilience du système alimentaire et à réagir aux événements extrêmes (Wheeler and von
Braun, 2013).

Les différentes applications de la télédétection pour l’agriculture peuvent être regroupées
en 4 catégories : phénotypage, prévision du rendement, services écosystémiques et agriculture
de précision (Weiss et al., 2020). Cette dernière catégorie, qui fait l’objet de cette thèse, vise à
surveiller les cultures pour optimiser les rendements ainsi que les pratiques agricoles. Elle cou-
vre un large éventail d’applications, comme la détection de mauvaises herbes et de maladies
(López-Granados, 2011; Mahlein, 2016) et la surveillance des nutriments et du stress hydrique
(Baret et al., 2007; Calera et al., 2017). L’utilisation des images issues de la télédétection est
particulièrement intéressante pour l’agriculture de précision car elles fournissent des informa-
tions spatiales et temporelles sur l’état des cultures, et ce, de manière non destructive et sans
nécessiter de visites sur place (Schulz et al., 2021).

7.1.2 Utilisation des satellites Sentinel-1 et Sentinel-2 pour l’agriculture
de précision

Historiquement, les applications de la télédétection pour l’agriculture étaient principalement
limitées par les capteurs utilisés dans les satellites (en particulier, leur gamme spectrale et leur
résolution spatiale) et par le temps de revisite de ces derniers (Moran et al., 1997). Depuis
quelques années, la quantité d’images de télédétection librement accessibles a considérable-
ment augmenté, en particulier grâce à la mission Copernicus de l’Union européenne (UE),
opérée par l’Agence spatiale européenne (ASE). Son premier satellite multispectral à haute
résolution (Sentinel-2A) a été lancé en 2015, suivi par un deuxième en 2017 (Sentinel-2B)
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(Drusch et al., 2012). Deux satellites radar à synthèse d’ouverture (RSO ou SAR en anglais),
Sentinel-1A et Sentinel-1B, ont été lancés respectivement en 2014 et 2016 (Torres et al., 2012).
Les satellites Sentinel-1 (S1) et Sentinel-2 (S2) ont une haute résolution temporelle et spa-
tiale qui sont adaptées pour travailler au niveau de la parcelle (pour une analyse à très haute
résolution, par exemple au niveau de la plante, les résolutions ne sont cependant pas suff-
isantes). Les deux types de capteurs sont complémentaires et ont été largement étudiés dans
ce contexte. Tous ces facteurs (libre accès, résolutions temporelle et spatiale, caractéristiques
adaptées au suivi des cultures agricoles) ont motivé l’utilisation des satellites S1 et S2 dans
le cadre de cette thèse.

7.1.3 Détection d’anomalies dans la végétation : état de l’art

Un enjeu peu étudié en agriculture de précision est la détection automatique de parcelles
agricoles présentant un développement phénologique anormal. A titre d’exemple, la Fig-
ure 7.1 permet de visualiser plusieurs champs agricoles à l’aide d’images S2 acquises (a) le
25 février 2018 et (b) le 21 avril 2018. A ce stade de la saison de croissance (fin de l’hiver /
début de la floraison), on peut remarquer que certaines parcelles agricoles (ici de colza) sont
plus ou moins affectées par des hétérogénéités, et que celles-ci peuvent être plus ou moins
transitoires. La détection de parcelles dont le comportement phénologique diffèrent signi-
ficativement des autres pourrait aider des parties prenantes tels que les agriculteurs ou les
coopératives agricoles à optimiser les pratiques agricoles, détecter des maladies ou optimiser
la fertilisation des parcelles. Elle pourrait également être utile dans des domaines tels que
le contrôle des subventions (notamment dans le cadre de la politique agricole commune en
Europe) ou l’assurance-récolte.

(a) (b)

Figure 7.1: Parcelles de colza (contours rouges et jaunes) visualisées avec des images S2
acquises (a) le 25 février 2018 et (b) le 21 avril 2018.

Dans le domaine de l’observation de la Terre, la plupart des études se sont concentrées sur
la détection d’anomalie dans la végétation dans le cadre d’analyses à grande échelle (au niveau
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d’une région ou d’un pays). Dans la grande majorité des cas, ces études utilisent des séries
temporelles construites à partir de l’indice différentiel normalisé de végétation (Normalized
Difference Vegetation Index ou NDVI en anglais). La plupart des approches proposées sont
dites prédictives (Chandola et al., 2009; Aggarwal, 2017). Ces techniques cherchent d’abord à
modéliser les séries temporelles de NDVI, dans un second temps elles utilisent ce modèle pour
détecter de potentielles anomalies en comparant les nouvelles observations avec les valeurs
prédites.

Les approches les plus courantes sont basées sur des modèles paramétriques décrivant
l’évolution temporelle du NDVI (Atzberger and Eilers, 2011a; Beck et al., 2006) ou des tech-
niques de filtrage (ou lissage) (Atzberger and Eilers, 2011b; Hird and McDermid, 2009; Klisch
and Atzberger, 2016; Meroni et al., 2019). De nombreuses autres approches ont été étudiées,
comme par exemples les processus autorégressif SARIMA (Seasonal Autoregressive Integrated
Moving Average) (Zhou et al., 2016) ou les filtres de Kalman (extended Kalman filter) (Sedano
et al., 2015). Plus récemment, des techniques similaires (Breaks for Additive Season and
Trend, BFAST) ont été utilisées avec des données S2, par exemples pour détecter des anoma-
lies liées à l’utilisation des sols dans le cadre de la PAC (Kanjir et al., 2018). Notons que
la technique BFAST a été d’abord introduite par Verbesselt et al. (2010) pour contrôler la
détection des changements phénologiques dans les séries temporelles de NDVI.

Les approches mentionnées précédemment peuvent être difficiles à mettre en œuvre pour
notre cas d’utilisation, qui consiste à détecter un développement anormal dans les parcelles
d’un type de culture donné. Premièrement, la modélisation du comportement normal des
données implique d’avoir accès à des exemples représentatifs normaux, ce qui peut s’avérer
difficile et laborieux en pratique. La rotation des cultures, le manque de données de référence
et la parcimonie des séries temporelles S2 causée par la couverture nuageuse sont d’autres
facteurs qui rendent cette mise en œuvre encore plus difficile. Ceci est d’autant plus problé-
matique car les techniques prédictives ont généralement besoin de longues séries temporelles
de référence pour être calibrées efficacement. Dans notre cas, l’analyse d’une seule saison de
croissance est plus pertinente, principalement pour des raisons de coût et de mise en oeuvre
opérationnelle. Avoir accès à des données parcellaires fiables provenant de plusieurs saisons de
croissance pour construire des modèles temporels serait également problématique en pratique.
Enfin, tandis que la plupart des études se concentrent uniquement sur l’analyse du NDVI,
il semble pertinent d’utiliser une plus grande variété d’indicateurs provenant de données S1
et S2 afin de mieux caractériser les champs agricoles. Ce bref état de l’art montre qu’il est
nécessaire d’étudier de nouvelles approches de détection d’anomalies dédiées spécifiquement
à la surveillance des parcelles agricoles.

7.1.4 Formulation du problèmes et objectifs de la thèse

Cette thèse à pour but d’explorer les défis liés à la surveillance automatique des parcelles
agricoles à partir de données S1 et S2. En particulier, un enjeu principal est de détecter les
parcelles agricoles dont le comportement phénologique diffère significativement des autres.
Une hypothèse est que les contours de la parcelle et le type de culture sont disponibles,
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l’analyse étant conduite pour un type de culture agricole donné. L’analyse temporelle a été
limitée à une seule saison de croissance, principalement pour des raisons de faisabilités (comme
expliqué dans la section précédente). Pour les mêmes raisons, la méthode proposée doit être
la moins supervisée possible (par exemple, en ce qui concerne le réglage des paramètres de
l’algorithme de détection ou la nécessité d’avoir à disposition des données étiquetées). Un
autre défi important, qui est récurrent en télédétection, est la prise en compte des données
manquantes (provenant des nuages pour les images S2 ou des problèmes d’acquisition). Les
principaux objectifs et défis de cette thèse sont résumés dans ce qui suit :

→ Détecter des anomalies pertinentes, c’est-à-dire liées à un phénomène agronomique, au
niveau de la parcelle.

→ Attribuer un score d’anomalie proportionnel au degré d’anormalité de la parcelle.

→ Être capable d’analyser les parcelles au cours d’une seule saison de croissance (ou d’une
partie de la saison de croissance si possible)

→ Utiliser efficacement la complémentarité des données S1 et S2.

→ Valider la méthode sur différents types de cultures.

→ Proposer une méthode entièrement automatisée (sans besoin d’étiquetage manuel et de
réglage des paramètres).

→ Traiter les données manquantes causées par des nuages ou des problèmes d’acquisition.
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7.2 Résumé du Chapitre 2 : pré-traitement des données pour
l’extraction d’indicateurs au niveau parcelle

Ce chapitre présente la zone d’étude, les données parcellaires et les données de télédétection
utilisées dans les différentes expériences menées tout au long de la thèse. Une attention parti-
culière est consacrée au traitement des données issus des satellites S1 et S2. Ce pré-traitement
est justifié principalement par deux raisons : 1) le pré-traitement des données peut améliorer
la qualité des images de télédétection (par exemple, correction des effets atmosphériques pour
les images S2 (Hagolle et al., 2015), calibration et correction du terrain pour les images S1), 2)
disposer d’éléments dont l’interprétation est facilitée peut améliorer les résultats et, surtout,
faciliter leur interprétation. De plus, l’extraction d’indicateurs le plus pertinents possible est
généralement recommandée dans le cadre d’analyses non supervisées.

La chaîne de traitement proposées se décompose en 3 étapes principales : 1) prétraitement
des images S1 et S2, 2) extraction d’indicateurs au niveau du pixel pour chaque image et 3)
calcul de statistiques spatiales au niveau de la parcelle pour chaque indicateur en (2). Le
prétraitement des données de télédétection est une étape classique effectuée avant l’extraction
de caractéristiques au niveau pixel. Notons que dans notre cas, une opération d’aplatissement
du terrain (terrain flattening en anglais) a été ajoutée à la chaîne de traitement des données
S1 pour prendre en compte les différences de géométrie du sol. Les caractéristiques au niveau
pixel recommandées pour le suivi des cultures sont les indices de végétation pour les données
S2 (en particulier le NDVI) et les coefficients de rétrodiffusion VV et VH pour les données S1.
Tout au long de ce manuscrit, nous avons montré leur pertinence et leur complémentarité pour
la surveillance des parcelles agricoles, ainsi que leur facilité d’interprétation. Pour extraire
les caractéristiques au niveau des parcelles, nous avons proposé d’utiliser des statistiques
spatiales calculés à partir des contours des parcelles. Nous avons montré que la médiane et
l’écart interquartile sont deux statistiques pertinentes qui peuvent résumer de manière efficace
et robuste le comportement d’un indicateur agronomique en termes de valeur moyenne et
d’hétérogénéité.

7.3 Résumé du Chapitre 3 : détection de parcelles agricoles
anormales à l’aide de séries temporelles multispectrales et
RSO : application au blé et au colza

Dans ce chapitre, nous avons proposé une stratégie non supervisée dédiée à la détection de
parcelles agricoles qui ont un développement phénologique anormal. Cette méthode utilise en
entrée les indicateurs calculées dans chapitre précédent. La stratégie proposée est basée sur
des algorithmes de détection d’anomalie, spécialement conçus pour trouver des observations
différant de manière significative de la majorité des autres données. Dans l’ensemble, nous
avons montré que l’algorithme de forêt d’isolement (Isolation Forest en anglais) est le mieux
adapté à notre cas d’usage. En effet, il est rapide, peu sensible aux changements (par exemple
concernant les indicateurs utilisés ou le type de culture analysée) et ne nécessite pas un réglage
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approfondi de ses hyperparamètres (ce point est particulièrement important dans un contexte
non-supervisé). Ce chapitre nous a permis d’atteindre plusieurs objectifs importants de la
thèse. En particulier, nous avons montré qu’il est possible de détecter un développement
anormal dans différents types de cultures, et ce, en analysant une seule (ou une partie d’une)
saison de croissance. De plus, nous avons montré l’intérêt d’utiliser conjointement des données
RSO et multispectrales pour améliorer les résultats de détection. Enfin, le score d’anomalie
fourni par l’algorithme de forêt d’isolement est en moyenne plus élevé pour les anomalies
sévères (par exemple, causées par une erreurs liées au type de culture reporté dans la base de
donnée), ce qui est intéressant pour trier les parcelles selon leur degré d’anormalité.

7.4 Résumé du Chapitre 4 : reconstruction de séries tem-
porelles Sentinel-2 avec données manquantes à l’aide de
modèles de mélange gaussien

Ce chapitre a abordé un défi important lié à la présence de données manquantes dans les séries
temporelles associées aux parcelles agricoles. Nous avons proposé de reconstruire les données
manquantes en utilisant des modèles de mélange gaussien (Gaussian Mixture Model (GMM)
en anglais), dont les paramètres sont estimés par l’algorithme espérance-maximisation (EM).
Toutes les autres méthodes testées ont été significativement moins performantes que cette
approche, qui permet d’obtenir de faibles erreurs de reconstruction, et ce, même avec une
base de données de taille limitée (contenant tout au plus deux mille parcelles). De plus, nous
avons proposé une nouvelle stratégie pour l’estimation robuste des paramètres du GMM.
Ceci est utile lorsque l’ensemble de données est contaminé par de fortes valeurs anormales
(par exemple, à cause de parcelles provenant d’un type de culture différent de celui analysé).
L’estimation robuste du GMM qui est proposée utilise l’algorithme de forêt d’isolement pour
attribuer des poids aux différentes parcelles de la base de données (les parcelles anormales
ont un poids réduit, voire nul). Ceci conduit à une imputation des données manquantes et
à une détection d’anomalies au sein du même algorithme EM. Nous avons montré que la
détection de parcelles au développement anormal en présence de données manquantes peut
être réalisée avec une bonne précision grâce à cette stratégie. Enfin, nous avons également
mis en avant l’intérêt d’utiliser des données S1 supplémentaires pour améliorer les résultats
de reconstruction et détection.

7.5 Résumé du Chapitre 5 : vers des approches temporelles
pour la détection et la localisation de développement anor-
mal dans les parcelles agricoles

Dans ce chapitre, nous avons exploré l’intérêt d’utiliser des approches temporelles pour la
détection et la localisation de développement anormal dans les parcelles agricoles. Plus pré-
cisément, nous nous sommes concentrés sur l’utilisation d’un ensemble de modèles de Markov
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cachés (MMC ouHidden Markov model (HMM) en anglais) adapté pour détecter et localiser
des anomalies dans des séries temporelles multivariées. Nous avons montré que cette approche
peut conduire à des résultats de détection similaires à ceux obtenus avec les algorithmes de
détection testés dans le Chapitre 2, avec l’avantage de permettre la localisation des anomalies.
Pour des applications générales telles que celle présentée dans cette thèse, l’utilisation de la
méthode proposée dans le Chapitre 2 est toutefois recommandée car elle est plus rapide et
moins sensible au choix des hyperparamètres. Cependant, l’algorithme étudié dans ce chapitre
est intéressant pour les applications nécessitant la localisation d’anomalies. Enfin, nous avons
présenté des résultats préliminaires sur le partitionnement (ou clustering en anglais) de séries
temporelles avec des GMMs. Cette approche pourrait par exemple être intéressante pour
détecter automatiquement les différents stades phénologiques d’une parcelle de culture.

7.6 Conclusion et perspectives

L’objectif de cette thèse était d’étudier de nouvelles méthodes de suivi des cultures au niveau
de la parcelle en utilisant des données extraites de satellites multispectraux et RSO (tels que
les satellites Sentinel 1 et Sentinel 2). Une attention particulière a été accordée à la détection
automatique de développement anormal dans les cultures, un problème qui a reçu jusqu’à
présent peu d’attention dans la littérature.

Les résultats obtenus tout au long de cette thèse ouvrent plusieurs perspectives intéres-
santes qui devraient être étudiées dans des travaux futurs.

• Vers un service opérationnel : une perspective directe et importante est d’adapter la
méthode proposée à un contexte opérationnel. La détection de parcelles anormales pour-
rait par exemple être une information supplémentaire fournie par un service de surveil-
lance des cultures. Les principaux défis pour cette mise en œuvre sont liés au traitement
automatique des données. D’autres défis concernant l’expérience de l’utilisateur devront
être relevés, notamment pour faciliter l’interprétation des résultats. Une perspective in-
téressante à long terme pourrait être de prendre en compte les retours des utilisateurs
lors de la détection des anomalies. Cela pourrait être fait par exemple avec l’algorithme
de forêt d’isolement, comme proposé dans Das et al. (2016). La principale difficulté
de cette tâche est d’évaluer la performance et la qualité de la prise en compte du re-
tour utilisateur. Une autre difficulté est de trouver des exemples représentatifs afin de
minimiser les interactions de l’utilisateur. Enfin, la méthode d’imputation de données
proposée dans cette thèse pourrait être utilisée de manière opérationnelle dans un plus
large éventail d’applications liées au suivi de la végétation (e.g., pour le suivi de la
production de la vigne1). Pour de telles applications, le nombre de parcelles disponibles
pour l’analyse pourrait être un défi majeur.

• Classification des parcelles anormales : une perspective directement liée au point
précédent est de pouvoir classifier les anomalies affectant les parcelles détectées. Une

1http://oenoview365.terranis.fr/

http://oenoview365.terranis.fr/
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perspective à court terme est de fournir des outils pour aider l’utilisateur à identifier les
différents types d’anomalies. Une perspective à long terme (et beaucoup plus difficile)
est la classification automatique des parcelles anormales en différentes catégories. Une
première tentative de classification supervisée a été faite dans León-López et al. (2021).
Cependant, ces travaux mériteraient d’être approfondis pour être adaptés à un contexte
opérationnel. Les principaux défis liés à cette tâche sont 1) le nombre relativement
faible d’exemples d’anomalies annotées par des experts, 2) la diversité des différents
types d’anomalies et 3) le fait que les parcelles anormales puissent appartenir à plusieurs
catégories simultanément (par exemple, une parcelle anormales peut à la fois avoir une
croissance tardive et un problème d’hétérogénéité). Enfin, il ne serait pas réaliste en
pratique de devoir étiqueter chaque nouvel ensemble de données.

• Types de cultures : une perspective évidente consiste à appliquer la méthode pro-
posée à d’autres types de cultures ou de végétation. De premiers tests ont été faits
sur la vigne, avec des résultats prometteurs (ces résultats ne sont pas reportés dans ce
manuscrits par souci de concision). Nous avons observé de bons résultats concernant la
reconstruction de données manquantes à l’aide de GMM robuste, même avec des jeux
de données de petite taille (erreur absolue moyenne de reconstruction du NDVI médian
d’environ 0,018 dans une base de données contenant 1200 parcelles). Pour les vigno-
bles, l’utilisation d’un GMM est particulièrement intéressante car ce type de végétation
peut avoir une grande diversité de développements phénologiques au cours d’une même
saison de croissance (par exemple, la surface de l’inter-rang peut être couverte d’herbe
pour certaines parcelles). L’un des principaux défis liés à ce type de culture est la taille
relativement petite des parcelles, ce qui peut poser problème avec la résolution spatiale
des données Sentinel.

• Indices caractérisant la végétation : d’autres indicateurs caractérisant la végéta-
tion pourraient être étudiés et comparés à ceux présentés dans ce manuscrit. Parmi
les exemples évidents, nous pouvons citer les indicateurs biophysiques extraits d’images
multispectrales (comme par exemple l’indice de surface foliaire) ou les indicateurs ex-
traits en utilisant la phase du signal radar pour les images RSO (images dites single
look complex (SLC) en anglais). En fonction de l’application finale, le choix des indica-
teurs de végétation et des statistiques spatiales peut être un enjeu important, car il est
directement corrélé au type d’anomalies détectées par la suite.

• Analyse au niveau pixel: une autre perspective pourrait être de travailler au niveau
du pixel. Rappelons tout d’abord que travailler au niveau de la parcelle présente
plusieurs avantages, en particulier 1) cela réduit les coûts de calcul et de stockage,
ce qui est un enjeu important dans les applications basées sur la télédétection (Inglada
et al., 2017) et 2) cela permet de d’utiliser des images RSO sans avoir besoin de traite-
ments supplémentaires pour réduire le bruit de chatoiement (speckle noise en anglais),
traitements demandant également beaucoup de puissance de calcul. Toutefois, travailler
au niveau du pixel augmenterait le nombre d’échantillons à analyser, ce qui pourrait
être intéressant pour lutter contre le fléau de la dimension (curse of dimensionality
en anglais). Prendre une décision au niveau du pixel pourrait également être intéres-
sant pour localiser spatialement les zones présentant un développement anormal au sein
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d’une parcelle.

• Analyse de plusieurs saisons de croissance : une perspective intéressante à long
terme est d’étendre le problème étudié dans ce manuscrit à l’analyse de plusieurs saisons
de croissance. Divers défis devraient être relevés dans ce cadre là, comme par exemple
le problème de la rotation des cultures, les problèmes causés par la disparité temporelle
de l’acquisition des données satellites ou les défis liés à la variabilité interannuelle des
cultures. Dans ce contexte, des recherches supplémentaires devraient être menées pour
analyser l’intérêt des approches temporelles, par exemple pour analyser un petit nombre
de parcelles provenant d’une nouvelle saison de culture à l’aide d’un modèle appris sur
une saison précédente.

• Régularisation des GMM : nous avons constaté que la reconstruction des données
manquantes avec des GMM est adaptée pour les indicateurs de végétation utilisés dans
cette thèse. Cependant, nous pensons que ces résultats pourraient être encore améliorés
en contraignant la structure des matrices de covariance, en particulier pour des données
de grande dimension. Rappelons ici que plusieurs tentatives ont été faites sans succès
au cours de cette thèse (par exemple en ajoutant une contrainte de parcimonie sur les
matrices de précision ou de covariance). Une possibilité intéressante serait d’imposer
une contrainte Toeplitz sur les matrices de covariance. Nous avons obtenu des résultats
prometteurs sur des bases de données synthétiques. Cependant les expériences sur des
données réelles n’ont pour le moment pas été concluantes, principalement en raison de
la résolution temporelle réduite des données S2 qui casse la structure Toeplitz des ma-
trices de covariance. L’utilisation des données SAR pourrait être un moyen de résoudre
ce problème. De plus, toutes nos expérimentations ont été réalisées en utilisant une
structure Toeplitz unique. L’utilisation de caractéristiques multiples nécessite un tra-
vail théorique plus poussé, par exemple en permettant la prise en compte de matrices
de covariance Toeplitz en bloc.



Appendix A

A.1 Complementary information about precision vs. outlier
ratio curves

It was noticed that precision vs. outlier ratio curves are better suited for our study than
other similar evaluation curves (e.g., precision vs. recall or ROC curves). Indeed, the outlier
ratio is a parameter that is easier to adjust without ground-truth, by selecting the parcels
with the highest outlier scores. Moreover, when analyzing these curves one can focus on
realistic values of the outlier ratio (e.g., precision obtained when detecting more than 50%
of the data instances seems not adapted to our problem). A comparison between precision
vs. outlier ratio and precision vs. recall curves is displayed in Figure A.1, where it can
be seen that both curves lead to the same conclusions (similar results are obtained with
ROC curves). Evaluating outlier detection algorithm is difficult in practice, as pointed out
in (Aggarwal, 2017, Chapter 1.7). An interesting discussion on such evaluation curves is
available for instance in Saito and Rehmsmeier (2015).
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Figure A.1: (a) Precision vs. outlier ratio and (b) Precision vs. recall obtained using the IF
algorithm on the rapeseed parcels for a complete growing season analysis.
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Appendix B

B.1 Complementary results on various factors influencing the
outlier detection results

This section provides results on various factors influencing the detection results, which are
discussed in Chapter 3.

B.1.1 Effect of the outlier ratio

Three experiments were run using the median and IQR statistics derived from S2 images,
the median statistics derived from S1 images and the IF algorithm, varying the outlier ratio
in {0.1, 0.2, 0.3}. The percentages of detected parcels in the different anomaly categories for
each of these experiments are depicted in Figure B.1. For an outlier ratio of 10%, the detected
anomalies are mostly concentrated in wrong types, late growth and global heterogeneity which
is relevant and confirms the observations made in the main document of this study. Moreover,
for this outlier ratio, 45% of the detected parcels belong to the category referred to as “global
heterogeneity”, which is coherent since this type of anomaly is (generally) strongly affecting
the crop development of the parcels. Increasing the outlier ratio allows anomalies affecting
smaller time periods of the season to be detected, such as early flowering and senescence
problems in accordance to the observation made during labeling. For an outlier ratio of 30%,
much more false positives are detected (parcels labeled as normal). These results show that
the IF algorithm provides a relevant anomaly score since more severe anomalies have higher
anomaly scores. Moreover, because the score given by IF is computed only once, there is no
need to run the algorithm several times when changing the outlier ratio and the amount of
parcel to be detected can be easily adapted to the users’ needs. Finally, for a generic analysis,
choosing an outlier ratio of 20% is a good balance between the precision of the detection
results and the amount of parcel to be detected.
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Figure B.1: 100×(Number of detected parcels in each category / Number of detected parcels).
Various outlier ratio are tested with the same set of features and the IF algorithm for a
complete growing season analysis (rapeseed crops).

B.1.2 Effect of adding new statistics

All the previous experiments were conducted using the median and IQR of S2 data as statis-
tics computed at the parcel-level. This section investigates two new statistics for S2 data,
namely the skewness and kurtosis (i.e., the normalized third and fourth order moments of
the features). Figure B.2 shows the precision vs. outlier ratio when using the IF algorithm
and these two additional statistics computed from S2 images to detect anomalies in rapeseed
parcels. All the parcels are labeled for outlier ratios that are at least smaller than 10% (less
tests were made with skewness and kurtosis statistics as poor results were obtained). It can
be observed in this figure that even for an outlier ratio lower than 5%, using skewness and
kurtosis statistics leads to a significant difference in the precision results. One issue encoun-
tered when using these new statistics is the detection of too subtle anomalies that are not
always related to agronomic anomalies. Using the median only is also tested but provides a
lower average precision score. This analysis confirms the importance of IQR statistics, which
allows a larger number of relevant anomalies to be detected, and in particular heterogeneity
problems. This section showed that using median and IQR statistics of S2 features computed
at the parcel level is recommended for crop monitoring.

Similarly, the effect of changing zonal statistics for S1 data was tested. More precisely,
results obtained using 1) additional IQR statistics and 2) mean statistics instead of the median
are provided in Figure B.3. It appears that results obtained using the mean are very similar
to the one obtained using the median. However, adding IQR statistics significantly decrease
the average precision since more false positives are detected.
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Figure B.2: Precision vs. outlier ratio for a complete growing season analysis of the rapeseed
parcels. Various statistics of the NDVI are compared using the IF algorithm.
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Figure B.3: Precision vs. outlier ratio for a complete growing season analysis of the rape-
seed parcels. Various statistics of S1 back-scattering coefficients are compared using the IF
algorithm.

B.1.3 Effect of missing S2 images

Two scenarios were investigated to evaluate the effect of missing S2 images.

• Scenario 1: the proposed approach was investigated using 6 S2 images instead of 13 to
analyze the influence of a reduced amount of S2 images through the season. Only 1
image out of 2 was considered for the detection (the first S2 image was not used, the
second S2 image was used and so on). Precision vs. outlier ratio curves are presented
in Figure B.4, where it can be observed that the proposed method is robust to missing
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S2 images.
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Figure B.4: Precision vs. outlier ratio for a complete season analysis of the rapeseed dataset.
Missing dates means that only 1 S2 image out of 2 was taken (6 S2 images instead of 13).

• Scenario 2: another experiment was conducted to evaluate the effect of missing S2
images during the first part of the growing season (e.g, more clouds during winter).
Precisely, we consider only 7 dates of S2 data between May and June that are used
jointly with all S1 images. Precision vs. outlier ratio curves are presented in Figure B.5.
In that case, using S1 images improve significantly the precision of the results. The
reason is that using S1 features allows the algorithm to detect almost the same amount
of late growth crops when compared to using a complete season of S2 images which is
understandable since S1 data are well suited to detect growth anomalies. These results
confirm the interest of using S1 features as a complement to S2 sparse time series.
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Figure B.5: Precision vs. outlier ratio for complete season analysis of the rapeseed dataset.
Missing dates means that only the S2 images acquired after April were used (7 images).
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B.1.4 Mid-season analysis

A mid-season analysis (using only dates before February) was conducted for multiple reasons
detailed in Section 3.2. A first experiment was made with the best sets of features selected
in Section 3.6 for a complete season analysis using rapeseed parcels. Results displayed in
Figure B.6 show that even with a small number of images, many agronomic anomalies are
detected (best precision=87.7% for an outlier ratio equal to 20%). This confirms the previous
results found in the case of missing S2 images. Figure B.6 also shows that the best results
are again obtained using all S1 and S2 features jointly with a higher average precision since
more actual anomalies are detected for larger outlier ratios (e.g., the precision is 5% better
for an outlier ratio fixed to 30%).
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Figure B.6: Precision vs. outlier ratio for a mid-season analysis of rapeseed parcels (all images
available before February). Various sets of features are compared using the IF algorithm.

The impact of a mid-season analysis regarding the different categories of detected anoma-
lies is depicted in Figure B.7. In this case, almost no senescence problems are detected, which
is easy to understand. Even with only 3 S2 images acquired between October and December,
most other agronomic anomalies are detected by the algorithm. A mid-season analysis is able
to detect more late growth anomalies and fewer heterogeneous parcels because late growth is
impacting mostly the beginning of the season (especially for rapeseed crops). Finally, more
false positives are detected with a mid-season analysis, which can be understood since the
amount of potential anomalies to be detected is lower.

Complementary results for a mid season analysis are briefly presented in what follows
since they confirm the observations made for a complete growing season analysis. The IF
algorithm provides overall better results (AUC=0.83) and is more robust to changes. The
AE performs slightly worse than IF (AUC=0.81), especially for outlier ratios greater than
20%. OCSV (AUC=0.79) and LoOP (AUC=0.77) perform significantly worse in this case.
These differences in performance can be explained by the fact that the parameters of OC-
SVM, LoOP and AE algorithms are more difficult to tune compared to the IF algorithm.
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Figure B.7: 100×(Number of detected parcels in each category / Number of detected parcels).
Results obtained for a mid season analysis (before February) and a complete growing season
analysis are compared for a outlier ratio equal to 10% in the rapeseed dataset.

Regarding the influence of the outlier ratio, as for a complete season analysis increasing its
value logically leads to detect more subtle anomalies (i.e., affecting a limited time interval) and
more false positives, which confirms the relevance of the anomaly score given by IF. Almost
no early heterogeneity and vigorous crop is detected with an outlier ratio of 10%. Early
heterogeneity is a more subtle anomaly than global heterogeneity, which confirms separation
between these two categories. Finally, when using S1 data only, the detection results obtained
for an outlier ratio of 10% are still accurate with a precision equal to 89.6%. These results
confirm that S1 images are adapted to an early season analysis, especially thanks to an easier
detection of late growth problems.
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B.1.5 Robustness to changes in parcel boundaries

The robustness of the proposed method to changes in the parcel boundaries was validated
using another parcel delineation system for the rapeseed growing season. To that extent, 2118
parcel delineations resulting from the French Land Parcel Identification System (LPIS) was
considered. The French LPIS is also known as Registre Parcellaire Graphique (RPG). This
database is available with an open license 2 and is updated yearly (in general with a delay of
2 years) on the basis of the farmer’s Common Agricultural Policy (CAP) (Barbottin et al.,
2018). For comparison purposes, each parcel of database used in the main document was
intersected with a corresponding LPIS parcel. Some parcels were not defined in the LPIS file,
which explains why the number of parcels available for the LPIS analysis is slightly smaller
than the number of parcels obtained when using the customer database.

Examples of parcel delinations obtained with LPIS and the proprietary parcellation system
are depicted in Figure B.8. The parcel frontiers obtained using LPIS are generally less accurate
than those resulting from the proprietary system motivating the use of a buffer around the
different parcels and robust zonal statistics.

Figure B.8: Example of parcel boundaries (rapeseed crop, growing season 2017/2018). In
orange: customer database, in green: LPIS database.

Anomaly detection was run with an outlier ratio of 20% using these two different databases.
The numbers of detected anomalies for each category are depicted in Figure B.9. No significant
difference can be observed when using the customer and LPIS parcels, showing that the
proposed detection method is robust to this type of changes (probably because robust zonal
statistics are used for anomaly detection).

2https://www.data.gouv.fr/fr/datasets/58d8d8a0c751df17537c66be/, online accessed 8 July 2020

https://www.data.gouv.fr/fr/datasets/58d8d8a0c751df17537c66be/
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Figure B.9: 100×(Number of detected parcels in each category / Number of detected parcels).
LPIS and proprietary parcellation databases are compared with the IF algorithm and an
outlier ratio equal to 20%.
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This appendix provides complementary experiments conducted on rapeseed and wheat crops
regarding the reconstruction of vegetation indices computed using Sentinel-2 images, which
are presented in Chapter 4.

C.1 Examples of data imputation for rapeseed and wheat parcels

C.1.1 Rapeseed parcel

To have an easier appreciation of the challenges related to the data imputation in S2 data,
examples of reconstruction of 4 different time series (median NDVI (a), IQR NDVI (b),
median NDWI (c) and IQR NDWI (d)) for a specific parcel are displayed in Figure C.1. For
that experiment, the first 4 S2 acquisitions have missing values and 50% of the parcels are
affected, making the imputation problem particularly difficult.
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Figure C.1: For a specific rapeseed parcel, imputation of (a) median NDVI, (b) IQR NDVI,
(c) median NDWI (green) and (d) IQR NDWI (green). The crosses correspond to imputations
obtained by using S2 images only whereas triangles correspond to the joint use of S1 and S2
features. The gray area is filled between the 10th and 90th percentiles values of the whole
dataset. 50% of the parcels are affected by missing values.

It can be observed that the analyzed parcel (red curve) has a late development during
the first part of the growing season, which is an atypical behavior making the reconstruction
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task even harder. Here, the mean imputation is displayed (gray crosses) to show that this
method can be problematic if the values to be imputed are unusual. Overall, the robust
GMM (black) is generally more accurate, with almost perfect reconstruction for the median
features in November. The reconstruction of the IQR values tends to be overestimated in
that case, even if the heterogeneous behavior is captured. In this extreme example, the
interest of using S1 data (triangles) is particularly visible: since no data is available during
the first part of the growing season, using this information is of crucial importance for all
the tested methods. Finally, one can observe that the KNN imputation can provide good
results (especially when using S1 data), but is generally less accurate (e.g., median NDVI is
constantly underestimated).

C.1.2 Wheat parcel

Figure C.2 provides an example similar to the one displayed in Figure C.1 but for a wheat
parcel with a late and heterogeneous development. One can notice that the robust GMM
imputations are close to the original values and that again using S1 data is helpful to capture
the low vigor of the crop.
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Figure C.2: For a specific rapeseed parcel, imputation of (a) median NDVI, (b) IQR NDVI,
(c) median NDWI (green) and (d) IQR NDWI (green). The crosses correspond to imputations
obtained by using S2 images only whereas triangles correspond to the joint use of S1 and S2
features. The gray area is filled between the 10th and 90th percentiles values of the whole
dataset. 50% of the parcels are affected by missing values.
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C.2 Day by day imputation

C.2.1 Rapeseed crops

An experiment was conducted by removing S2 features at each S2 acquisition (50% of the
crop parcels are affected). The results obtained for the normalized S2 features are depicted
in Figure C.3 (similar results have been observed when looking at specific features and are
not plotted here for conciseness). In this example, two dates are more difficult to impute: the
first acquisition (during sowing) and the data acquired at the end of February during winter.
On the other hand, some stages of the growing season can be reconstructed with significantly
lower MAE. Again, GMM imputation outperforms KNN imputation. Moreover, using S1
data is also useful to improve the results (particularly for the most difficult imputations).
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Figure C.3: Rapeseed crops are analyzed. X-axis: S2 acquisition with missing values: for each
acquisition with missing data, 50% of the parcels are affected. Y-axis: MAE of the normalized
S2 features the parcels. The solid lines results are obtained using only the S2 data, whereas
dashed lines were obtained using both the S1 and S2 data. Results are averaged after 50
iterations
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C.2.2 Wheat crops

The experiments presented in Figure C.3 were also conducted for wheat crops. Results are
displayed in Figure C.4 for the normalized S2 signal. The robust GMM always provides the
best reconstructions, in particular for the most difficult imputations. The features extracted
from the S2 images acquired in June are the most difficult to reconstruct. For this acquisition,
using S1 data improves the imputation significantly. The other experiments conducted on
rapeseed crops lead to the same conclusions for the wheat parcels (not shown here).
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Figure C.4: Analysis of wheat crops. X-axis: S2 acquisitions with missing values: for each
acquisition with missing data, 50% of the parcels are affected. Y-axis: MAE for normalized
S2 features (all the S2 indicators are considered). The solid lines are obtained using S2 data
only, whereas the dashed lines were obtained using both S1 and S2 data. Results are averaged
using 50 Monte Carlo runs, each time 50% of the parcels are affected by missing data.

C.3 Detailed results for a specific S2 acquisition with missing
data

The MAE, RMSE and coefficient of determination (R2) were computed by averaging the
results obtained after 500 simulations. For each simulation, all the S1 and S2 data were used
and 50% of the parcels have missing values at a same random S2 acquisition. The obtained
scores for rapeseed crops are provided in Table C.1. These results confirm that the robust
GMM provides the best reconstructions overall (it is also the case when compared to the
classical GMM). Some features are harder to reconstruct: it is particularly the case for the
MCARI/OSAVI statistics, and more generally for the IQR of the different VI. IQR is not
well captured by the S1 data and has less smooth time variations, which could explain this
results.

The same experiment was done for wheat crops whose results are reported in Table C.2.
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Table C.1: Regression scores (MAE, RMSE, R2) obtained on the rapeseed dataset (200 MC
simulations). Each time, 50% of the parcels have missing values at one S2 acquisition. S1
and S2 features are used to impute missing values. Standard deviation (std) is added in
parenthesis. KNN and Robust-GMM (R-GMM) are compared, best results are in bold.

MAE (std) RMSE (std) R2 (std)
Feature / Algorithm KNN R-GMM KNN R-GMM KNN R-GMM
median(NDVI) 0.029 (0.008) 0.013 (0.007) 0.042 (0.009) 0.021 (0.009) 0.71 (0.17) 0.92 (0.09)
median(NDWIGREEN) 0.021 (0.007) 0.010 (0.005) 0.030 (0.007) 0.016 (0.006) 0.64 (0.15) 0.88 (0.10)
median(NDWISWIR) 0.029 (0.008) 0.012 (0.007) 0.043 (0.007) 0.019 (0.009) 0.77 (0.14) 0.95 (0.04)
median(GRVI) 0.027 (0.007) 0.014 (0.007) 0.037 (0.008) 0.020 (0.009) 0.72 (0.16) 0.89 (0.10)
median(MCARI/OSAVI) 133 (55) 79 (46) 180 (66) 117 (64) 0.61 (0.23) 0.81 (0.16)
IQR(NDVI) 0.015 (0.005) 0.008 (0.005) 0.024 (0.008) 0.014 (0.007) 0.58 (0.10) 0.83 (0.13)
IQR(NDWIGREEN) 0.009 (0.003) 0.006 (0.003) 0.016 (0.004) 0.010 (0.005) 0.52 (0.08) 0.80 (0.14)
IQR(NDWISWIR) 0.018 (0.003) 0.009 (0.005) 0.028 (0.005) 0.014 (0.007) 0.57 (0.12) 0.86 (0.14)
IQR(GRVI) 0.013 (0.004) 0.008 (0.004) 0.019 (0.005) 0.13 (0.006) 0.51 (0.15) 0.76 (0.18)
IQR(MCARI/OSAVI) 62 (22) 42 (20) 93 (30) 65 (30) 0.40 (0.18) 0.68 (0.21)

Table C.2: Regression scores (MAE, RMSE, R2) obtained on the wheat dataset (200 MC
simulations). Each time, 50% of the parcels have missing values at one S2 acquisition. S1
and S2 features are used to impute missing values. Standard deviation (std) is added in
parenthesis. KNN and Robust-GMM (R-GMM) are compared, best results are in bold.

MAE (std) RMSE (std) R2 (std)
Feature / Algorithm KNN R-GMM KNN R-GMM KNN R-GMM
median(NDVI) 0.032 (0.013) 0.020 (0.010) 0.044 (0.015) 0.029 (0.013) 0.70 (0.27) 0.81 (0.26)
median(NDWIGREEN) 0.026 (0.008) 0.018 (0.008) 0.035 (0.009) 0.024 (0.006) 0.67 (0.30) 0.79 (0.29)
median(NDWISWIR) 0.031 (0.012) 0.020 (0.009) 0.042 (0.015) 0.029 (0.012) 0.69 (0.21) 0.82 (0.21)
median(GRVI) 0.032 (0.020) 0.024 (0.018) 0.042 (0.027) 0.033 (0.024) 0.63 (0.18) 0.75 (0.27)
median(MCARI/OSAVI) 127 (93) 106 (113) 206 (215) 178 (228) 0.51 (0.25) 0.64 (0.28)
IQR(NDVI) 0.015 (0.008) 0.010 (0.007) 0.024 (0.009) 0.017 (0.01) 0.41 (0.18) 0.68 (0.26)
IQR(NDWIGREEN) 0.011 (0.004) 0.008 (0.004) 0.018 (0.006) 0.012 (0.005) 0.32 (0.19) 0.59 (0.27)
IQR(NDWISWIR) 0.015 (0.007) 0.010 (0.005) 0.022 (0.008) 0.016 (0.008) 0.29 (0.14) 0.60 (0.23)
IQR(GRVI) 0.014 (0.011) 0.012 (0.010) 0.021 (0.014) 0.18 (0.013) 0.35 (0.20) 0.55 (0.27)
IQR(MCARI/OSAVI) 83 (82) 88 (117) 163 (210) 154 (225) 0.29 (0.20) 0.44 (0.28)
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C.4 Imputation results using the MICE algorithm

The experiment presented in Figure 6 of the main document was conducted using various
imputation algorithms. Results obtained after adding the Multiple Imputation by Chained
Equations (MICE) algorithm are displayed in Figure C.5 (using S1 and S2 data jointly).
Overall, the MICE algorithm provides imputation slightly better than the KNN algorithms
(except when the amount of missing S2 images is greater than 50%). In any cases, using
GMM imputation is significantly better.
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Figure C.5: Analysis of rapeseed crops. X-axis: percentage of S2 with missing values. Y-
axis: MAE for the normalized S2 features (all the S2 indicators are considered). Results are
obtained using S1 and S2 data jointly. The results are averaged using 50 MC runs, each time
50% of the parcels are affected by missing data for each S2 image with missing data.
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C.5 Detecting anomalies in the rapeseed dataset with addi-
tional S2 images

Considering the 2218 rapeseed parcels analyzed in Chapter 3 as baseline, we added 8 S2
images to the database, yielding a total of 21 S2 images. The new images are cloudy, as
shown in Figure C.6, which explains why they were not selected in the analysis conducted in
Chapter 3.
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Figure C.6: Percentage of rapeseed parcels with missing data for each S2 acquisition. For 13
acquisitions, the 2218 parcel analyzed have no missing data.

Precision vs. outlier ratio curves have been computed for the two different rapeseed
datasets (i.e., the initial dataset with 13 S2 images, and the extended dataset with 21 S2
images) and are displayed in Figure C.7. One can see that similar precisions are obtained
with the two datasets independently from the imputation method, confirming the robustness
of the detection method with respect to changes in the features. Overall, using more S2
images leads to a precision slightly higher, especially when detecting more subtle anomalies
(i.e., for an outlier ratio close to 20%). Using the new S2 images, we have been able to detect
new anomalies associated with the analyzed parcels (these changes are only considered when
using the additional S2 images). Finally, some false positive have been detected because of
errors in the cloud masks. We have observed that these errors tend to occur more often when
adding very cloudy images.
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Figure C.7: Precision vs. outlier ratio when using the IF algorithm on the rapeseed parcels.
Green: original dataset analyzed in Chapter 3, black: dataset extended with new S2 images
and imputed with Robust GMM, orange: dataset extended with new S2 images and imputed
with KNN.
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