Résumé étendu en français

Introduction

Les mousses liquides sont des assemblées de bulles de gaz dans une matrice liquide savonneuse. Elles sont exploitées dans un large éventail d'applications qui peuvent bénéficier de leur faible poids, de leur grande surface spécifique ou de leur pouvoir isolant [START_REF] Masson | Application and future of solid foams[END_REF][START_REF] Cantat | Foams: structure and dynamics[END_REF]. Dans le bâtiment, par exemple, les mousses liquides sont utilisées comme précurseurs pour la fabrication de mousses solides telles que le béton poreux et les mousses isolantes polymères qui sont mises en forme par pulvérisation. De même, pour lutter contre les incendies, relativement peu de matière première est nécessaire pour produire de grands volumes de mousse par un processus d'injection d'air à travers des buses de décharge. La mousse s'étale sur les flammes et forme une couverture "solide", étouffant efficacement le feu. Les mousses sont également utilisées dans les applications de transformation alimentaire, de traitement chimique et de décontamination [START_REF] Masson | Application and future of solid foams[END_REF][START_REF] Hill | Foams: From nature to industry[END_REF]. La gamme des comportements mécaniques souhaités peut être aussi variée que l'ensemble des applications possibles. Enfin, des mousses sont aussi présentes dans la nature, par exemple des nids de mousse sont utilisés par certains types de poissons ou de grenouilles. Il est aussi fréquent d'observer une couche de mousse à la surface de la mer et des rivières, ce qui donne une indication de la pollution de ces plans d'eau.

Pour toutes ces applications ou ces diagnostics, il est crucial de comprendre ce qui fixe les propriétés d'une mousse liquide. Dans ce domaine, il existe au moins deux enjeux: le premier est de prédire et contrôler la stabilité d'une mousse, le second est de comprendre ses propriétés d'écoulement.

Stabilité: problématique

En raison de la grande quantité d'interface liquide -gaz, une assemblée de bulles de gaz est un matériau hors-équilibre. Son évolution irréversible vers son état d'équilibre avec deux phases séparées le condamne à disparaître. Quelle est la dynamique de cette évolution ? Quels sont les mécanismes sous-jacents ? Est-il possible de les contrôler pour maîtriser l'évolution de la mousse ? Ces questions ne sont pas directement abordées dans cette thèse, mais les méthodes développées et les travaux réalisés peuvent fournir des pistes et des outils pour y répondre. v

Rhéologie: problématique

Comme les suspensions et les émulsions, une mousse liquide est un matériau divisé et relève de la classe des fluides complexes. En effet, ses propriétés d'écoulements se caractérisent par un seuil -il faut appliquer une contrainte suffisante sur le matériau pour qu'une mousse s'écoule -, et par une loi d'écoulement, généralement en loi de puissance, qui relie la contrainte au taux de cisaillement dans le matériau. Alors que la valeur du seuil est plutôt bien comprise et dépend essentiellement des propriétés structurelles d'une mousse liquide (taille des bulles, polydispersité, fraction liquide...), les lois d'écoulement restent empiriques. Pour les comprendre et les prédire, il faut identifier l'origine de la dissipation qui est mise en oeuvre lorsqu'une mousse est cisaillée. Est-elle d'origine visqueuse ou surfacique ? Les outils analytiques et numériques développés dans ce travail répondent en partie à cette question.

Ce manuscrit est divisé en quatre chapitres, dont nous allons à présent résumer les résultats principaux. 

Chapitre 1: État de l'art

Dans cet état de l'art, nous rappelons que les mousses sont des matériaux multi-échelles (figure 1.1). En effet, leur structure implique quatre niveaux distincts: l'échelle moléculaire des tensioactifs, l'échelle des films de savon qui séparent les bulles, de l'ordre de la dizaine ou la centaine de nanomètre, l'échelle des bulles, et enfin l'échelle du matériau macroscopique. Les dynamiques propres à chaque niveau sont complexes et ont des conséquences sur les propriétés de stabilité et d'écoulement des matériaux.

Les points principaux à retenir de ces études sont :

• Au niveau macroscopique, la nature des tensioactifs modifie totalement le comportement rhéologique d'une mousse. Pour des mousses de structure comparable mais fabriquées avec des tensioactifs différents, la courbe d'écoulement n'a plus la même forme [START_REF] Denkov | The role of surfactant type and bubble surface mobility in foam rheology[END_REF] et les dynamiques locales mises en jeu sont aussi différentes [START_REF] Merrer | Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity[END_REF].

• Au niveau local d'une assemblée de bulles, changer la nature des tensioactifs modifie la nature des écoulements dans les films, et donc fondamentalement les dynamiques mises en jeu [START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF].

• Lorsqu'une interface liquide-gaz est sollicitée de manière dynamique, les dynamiques d'échanges des tensioactifs entre le volume et la surface ont des conséquences sur la mécanique des interfaces et il existe une dissipation associée à la présence de ces tensioactifs. Cet effet a été modélisé dans le modèle de Lucassen pour le cas d'une seule interface où se produisent des échanges infiniment rapides [START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF].

Chapitre 2 : Dissipation associée à la déformation d'interfaces recouvertes de tensioactifs: un modèle de Lucassen étendu.

Dans ce chapitre théorique, nous avons fait le lien entre certaines propriétés microscopiques des tensioactifs (coefficient de diffusion en volume, en surface, dynamiques d'échange entre le volume et la surface) et les propriétés mécaniques des interfaces d'une part, et la dissipation associée à ces déformations d'autre part. Les résultats principaux de ce chapitre sont les suivants:

• Le modèle de Lucassen [START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF] a été étendu au cas où l'épaisseur de film liquide sous la surface a une taille finie, et les dynamiques d'échanges entre le volume et la surface ne sont plus instantanées. La dynamique des tensioactifs n'est plus pilotée uniquement par la diffusion. Nous montrons que le module mécanique complexe de l'interface s'écrit comme
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avec P e le nombre de Peclet qui compare les temps typiques de diffusion et de convection, E GM le module de Gibbs-Marangoni, Bi le nombre de Biot qui compare le temps d'oscillation de la surface et le temps de désorption des tensioactifs, h qui compare la quantité de tensioactifs à la surface et en volume, et χ la couverture de surface en tensioactifs.

• Par une approche cette fois-ci thermodynamique, nous avons évalué les deux sources de dissipation mises en jeu dans ce problème: la dissipation due aux gradients de concentration en tensioactifs et la dissipation due aux phénomènes d'adsorptiondésorption aux interfaces et à la différence de potentiel chimique associée entre ces deux états.

• Pour comparer les deux approches, nous avons calculé la dissipation obtenue par l'approche mécanique grâce à la partie imaginaire du module de surface obtenu précédemment. Les deux approches sont cohérentes. Par ailleurs, l'étude des cas limites nous permet de discuter le mécanisme dominant à l'origine de la dissipation aux interfaces en fonction des propriétés microscopiques des tensioactifs.

Chapitre 3 : Problème physique et méthodes numériques.

Pour aller au-delà des situations simples considérées au chapitre 2 et mettre au jour le lien entre échelle moléculaire et échelle macroscopique, il nous faut considérer des systèmes dont la géométrie est plus proche de celle d'une mousse réelle. Nous avons considéré le cisaillement d'un amas de quelques bulles. Une approche analytique n'étant pas envisageable dans ce cas, nous nous sommes tournés vers des simulations numériques de système diphasique. Dans ce chapitre, nous avons présenté le problème physique que nous considérons, les nombres sans dimension associés, et les équations que nous devons résoudre en tout point de l'espace (équations de Navier Stokes, équations d'advection diffusion pour les tensioactifs, équations d'échanges aux interfaces). Ensuite, nous avons détaillé la méthode utilisée, qui est une méthode de type "levelset " que nous avons dû adapter pour prendre en compte les effets des tensioactifs. Les schémas numériques, l'implémentation des conditions aux limites et les tests de validation sont détaillés. Le résultat principal de cette partie est la mise en oeuvre d'une simulation opérationnelle. En pratique, le point clé a été le développement d'une méthode satisfaisant la conservation du nombre de tensio-actifs dans la simulation. Cela a été possible en rédéfinissant à chaque étape la position et l'épaisseur de l'interface pour s'affranchir d'un biais diffusif d'origine numérique.

Enfin, quelques méthodes plus prospectives pour introduire des effets plus locaux comme une pression de disjonction, ou pour étudier des problèmes connexes (comme la forme d'une bulle dans un écoulement tournant) sont succintement présentés.

Chapitre 4: Résultats numériques et discussion.

Les outils de simulation développés au chapitre précédent sont ici exploités pour conduire une étude paramétrique du problème. Les résultats principaux sont les suivants: viii • La dissipation globale est essentiellement d'origine visqueuse. Cependant, elle dépend fortement de la nature des tensioactifs utilisés.

• Quand on s'intéresse uniquement à la dissipation de surface, et qu'on étudie ses variations avec les paramètres du problème, on retrouve un comportement assez similaire à celui du modèle de Lucassen étendu présenté au chapitre 2 (figure 2). Plus précisément, concernant la dissipation de surface, les contributions relatives des échanges et de la diffusion à la dissipation ont pu être déterminées et une fois encore un bon accord avec le modèle thermodynamique a pu être observé. Les différences observées nous ont enfin permis de tester les limites du modèle, notamment à grand h (figure 3).

Figure 2: Module complexe de perte normalisé en fonction de h pour différents nombres de Biot et de Péclet. Les points sont issus des simulations, les lignes du modèle de Lucassen étendu (chapitre 2).

Figure 3: Rapport entre la dissipation due à la diffusion et à l'adsorption en fonction de h et pour différents nombres de Peclet. La loi d'échelle à petits h est en bon accord avec l'analyse théorique.

• L'étude des champs de vitesse et des concentrations locales en tensio-actifs nous permet de comprendre qualitativement le lien que l'on peut faire entre l'amplitude de la dissipation visqueuse observée et les propriétés microscopiques des tensioactifs utilisés. On observe en particulier que le motif de l'écoulement (plutôt élongationnel ou plutôt en cisaillement) est directement relié à l'amplitude des contraintes Marangoni aux interfaces, qui sont elles-mêmes pilotées par les concentrations locales de tensioactifs en surface, et donc aussi plus indirectement en volume (figure 4). 

Conclusion

En conclusion, ces résultats nous donnent des informations sur le lien entre la rhéologie d'une assemblée de bulles et les caractéristiques microscopiques des tensioactifs utilisés pour fabriquer une mousse, même si de nombreuses questions restent en suspens: (i) Peuton se rapprocher de simulations de mousses plus réalistes, avec des fractions liquides plus faibles et donc des films plus fins ? (ii) Comment modéliser et quantifier la dissipation visqueuse ? Peut-on ajouter cet ingrédient dans le modèle analytique proposé, ce qui permettrait de modéliser le couplage entre contraintes interfaciales et écoulement ? (iii) La gamme de paramètres sans dimensions explorées correspond-elle aux situations pratiques réelles ? (iv) Quelle est l'effet de la vitesse de sollicitation des interfaces sur ces modes de dissipation ? Peut-on passer d'un régime quasistatique à un régime dynamique où toute la structure de la mousse est modifiée ? Quelle grandeur contrôle ce changement de régime ?
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Chapter 1

Introduction

General introduction

Liquid foams are assemblies of gas bubbles in a soapy liquid matrix. They are in demand for a wide range of applications that may benefit from their low weight, their large specific area, or their high insulating capacity [START_REF] Masson | Application and future of solid foams[END_REF][START_REF] Cantat | Foams: structure and dynamics[END_REF]. In construction, for example, liquid foams are used as precursors for the manufacturing of solid foams (e.g. foam concrete and spray foam insulation). For fighting fires, relatively little raw material is needed to produce large volumes of foam by a process of aeration through discharge nozzles. The foam flows onto the flames and then forms a solid blanket, effectively suffocating the fire. Foams are also used in food processing, chemical processing and decontamination applications [START_REF] Masson | Application and future of solid foams[END_REF][START_REF] Hill | Foams: From nature to industry[END_REF]. The range of desired mechanical behavior can be as diverse as the set of possible applications. Nature also uses foams. Foam nests are used by certain types of fishes or frogs, where as foamy water is an indication of pollution in sea or rivers [START_REF] Dalgetty | Building a home from foam-túngara frog foam nest architecture and three-phase construction process[END_REF].

An aqueous foam is a two-phase medium composed of an arrangement of gas bubbles in a solution containing surfactants that stabilize the liquid-gas interfaces. Foams are classified as a complex material, and have a multiscale structure composed of millimetric bubbles bounded by micrometric films that contain nanometric layers of surfactant molecules at their interfaces (figure 1.1). Foams are generally characterized by a small liquid volume fraction, V liq V liq +Vgas 1 [START_REF] Cantat | Foams: structure and dynamics[END_REF]. The liquid phase forms thin films between bubbles, where surface tension effects are significant. The soapy solution in the films contains some concentration of amphiphilic molecules (the surfactants) which adsorb at the interfaces between the two phases. The presence of these surfactants lowers the surface tension at interfaces, and imposes a disjoining pressure in the films that inhibit their rupture. This mechanism stabilizes the films, and thus the foam [START_REF] Rio | Thermodynamic and Mechanical Timescales Involved in Foam Film Rupture and Liquid Foam Coalescence[END_REF] (Figure 1.1).

Macroscopic mechanical properties of foams, including both stability and rheology, are known to depend heavily on the type of surfactant molecules used to generate the foam. Yet the mechanism relating the microscopic and macroscopic levels so far remains unclear. The structure and mechanics of foams in quasi-static equilibrium are fairly well understood in terms of Laplace's law and Plateau's laws, which relate interfacial and film geometries to surface tension and pressure gradients between the gas and liquid phases [START_REF] Cantat | Foams: structure and dynamics[END_REF][START_REF] De Gennes | Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves[END_REF]. These laws describe a short term equilibrium, but standing foams decay over time due to instabilities, for instance, by thinning of films in the course of liquid Chapter 1. Introduction drainage. A liquid foam is also a complex yield stress fluid, solid-like at low stresses, but flowing under large external stresses. In this study we address the flow rheology of this material when submitted to external shear stresses, which we examine at the bubble scale.

A foam at rest

Pick up a half-filled water bottle and shake it, and bubbles will appear. Put the bottle back down on the table, and the bubbles will have just as soon disappeared. Now add some dish detergent, shake it up, and put it back down. We will find the bottle filled with a bubble network that patiently persists long enough for the dishes to be cleaned; that is, if we do not wait too long to start that chore. Aqueous foams are quasi-stable structures that age and collapse over time. So when we talk about a liquid foam at rest, we are really considering time scales that range from tens of minutes to days. The key active ingredient for foam stability is the surface active agent, or surfactant, and the foam's longevity will depend strongly on the surfactant type. In this section we will describe the structure and inner mechanics of a foam at rest, proceeding from the smallest to largest length scales. 

Interfaces

At the smallest scale of the foam we consider the liquid-air interfaces. The energetic cost of generating a foam is spent in the creation of the gas-liquid interfaces that bound the films that separate the bubbles of a liquid foam. By lowering the surface tension, surfactants reduce the energy cost of generating an aqueous foam.

Surface tension

Surface tension arises from the cohesive forces between liquid molecules [START_REF] De Gennes | Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves[END_REF]. These forces act equally in all directions on any individual molecule when it is completely surrounded, so that there is an average null net force on liquid molecules in the bulk. Meanwhile, there is a net inward pull on the molecules at the surface towards the liquid bulk, resulting in a tendency for the surface to minimize its area, or energy. The interface thus acts as an elastic membrane with a surface tension, γ, which depends on the physicochemistry of the two constitutive phases. For example, the surface tension of an air-water interface in normal temperature and pressure conditions is about 72 mN/m [START_REF] Cantat | Foams: structure and dynamics[END_REF]. For a pure fluidfluid interface the surface tension is constant, and the surface shape is determined by the Young-Laplace law:

P liq -P air = Cγ. (1.1)
The left hand side is the pressure difference across the interface, and C is the mean curvature of the interface. This equation says that for surface tension to balance a pressure difference across an interface, it must be curved. Solutions to equation 1.1 determine the shapes of minimal surface area for objects like small sitting drops and soap films. This applies, of course, in the absence of other external forces like gravity.

Surfactants

Surfactants are amphiphilic compounds whose molecules are composed of a hydrophilic head and a hydrophobic tail [START_REF] Cantat | Foams: structure and dynamics[END_REF][START_REF] Hill | Foams: From nature to industry[END_REF]. This property gives them a preference for interfaces, where the polar head is plunged in the aqueous phase, and the non-polar tail is out in the gas phase. Thus accumulating at the interfaces, surfactants form monolayers of nanometric thickness. If surfactants are soluble, they also desorb from the surface and diffuse into the bulk solution. So there is some thermodynamic equilibrium between bulk and surface concentrations that is dictated by its solubility. Importantly, the presence of surfactants at fluid-fluid interfaces reduces the surface tension. The difference between the tension of an interface with and without surfactants is called the surface, or Langmuir pressure, Π l :

Π l = γ 0 -γ. (1.2)
were γ 0 is the surface tension for a clean interface, and γ is the surface tension for a contaminated interface. Figure 1.3 shows the surface pressure, Π l , versus liquid-bulk surfactant concentration, F . The surface tension declines with concentration up to a critical micelle concentration (CMC). At the CMC the interface becomes saturated, and excess dissolved surfactant molecules collect into clusters, called micelles, with the hydrophobic tails in the interior and the hydrophilic heads forming an outer shell (figure 1.2).

Langmuir model and equation of state

Some thermodynamic relations are needed to establish how the surface tension depends on the surface concentration, f , and bulk concentration, F . At equilibrium, thermodynamic balance is described by the Gibbs-Duhem equation:

dγ = i f i dμ i , (1.3)
where dμ i is a differential variation in the chemical potential of species i. Assuming a single species of surfactant, the chemical potential for an ideal solution is μ = μ 0 + RT ln(F/F e ); where μ 0 is the equilibrium chemical potential, R is the ideal gas constant, T is temperature, and F e is the equilibrium bulk concentration. The Gibbs-Duhem equation in this case is:

dγ = -fRT d (ln F ) . (1.4)
All that remains to integrate equation 1.4 is a relation between surface and bulk concentrations at equilibrium. For this we assume Langmuir adsorption for which the flux of surfactants onto the surface is expressed as [START_REF] Cantat | Foams: structure and dynamics[END_REF]:

j = r a F s (f ∞ -f ) -r d f, (1.5) 1.2. A foam at rest
where f ∞ is the maximum packing surface concentration, F s is the bulk concentration adjacent to the interface, and r a and r d are adsorption and desorption rate coefficients, respectively. The first term on the right hand side of equation 1.5 is the adsorption flux, which is proportional to the number of sites available at the interface and the amount of surfactants available in the adjacent sublayer. The second term is the desorption flux, which is proportional to the amount of surfactant adsorbed. At equilibrium, j = 0, the Langmuir adsorption isotherm is:

f e f ∞ = kF e 1 + kF e , ( 1.6) 
were k ≡ r a /r d , and kF e is the so-called adsorption number [START_REF] Erik Teigen | A diffuse-interface method for two-phase flows with soluble surfactants[END_REF]. Substituting equation 1.6 into equation 1.4, and integrating, the Langmuir equation of state for the surface tension is obtained:

γ(f ) = γ 0 1 + RT f ∞ γ 0 ln 1 - f f ∞ . (1.7)
For f f e , γ decreases linearly with f . However, the domain of validity is limited in the Langmuir model, as it predicts negative surface tension for concentrations that are less than f ∞ . More sophisticated models do exist [START_REF] Cantat | Foams: structure and dynamics[END_REF][START_REF] Jayalakshmi | Viscoelasticity of Surfactant Monolayers[END_REF][START_REF] Martínez-Vitela | The Langmuir-Gibbs surface equation of state[END_REF]. A consequence of the local dependence of surface tension on concentration is the possibility of variation in surface tension in an interface. Gradients in surface tension induce flows from regions of low surface tension to regions of high tension. We will introduce such so-called Marangoni effects in section 1.3.1.

Foam films

The overall stability of a liquid foam relies on the stability of the network of films containing the gas bubbles. If interfaces on either side of a film ever come into contact, a hole will be created. An irreversible expansion of the hole will be driven by the surface tension until the film is destroyed. Thin liquid films are inherently unstable without surfactants, because there is no barrier to prevent contact between the interfaces. On the other hand, the presence of surfactant monolayers generate surface force interactions which indeed act to prevent interfaces from touching (figure 1.4). The surface force interactions between interfaces in close proximity give rise to a disjoining pressure, Π. The disjoining pressure in a thin film at static equilibrium, can be approximated by the Young-Laplace equation as:

Π = P gas -P liq γ r m , ( 1.8) 
where P gas and P liq are the pressures in the gas and liquid phases, respectively, and r m is the radius of curvature of the meniscus (figure 1.4). Contributions to the disjoining pressure are multiple, and are briefly detailed below. Bergeron provides a thorough review [START_REF] Bergeron | Forces and structure in thin liquid soap films[END_REF].

Disjoining pressure

A disjoining pressure, Π, appears in thin films when the separation between interfaces, h, is sufficiently small that they interact: h 100 nm. This pressure originates from three types of intermolecular forces [START_REF] Bergeron | Forces and structure in thin liquid soap films[END_REF]: • Electrostatic repulsion of charged interfaces. Ionic surfactants at interfaces attract a cloud of counter-ions in the liquid film, forming an electric double-layer. This double-layer has a characteristic length scale, the Debye length, λ dl :

λ dl = kT 8πne 2 ∼ 1 √ F , (1.9)
where n is the number density of ions, e is the elementary charge, is the dielectric constant of the liquid, T is temperature, k is the Boltzmann constant, and F is the bulk concentration of ions. Interfaces will interact when the film thickness approaches twice the Debye length, h 2λ, typically in the range of 1 -100 nm.

The electrostatic contribution to the disjoining pressure is repulsive and depends on the distance between the two interfaces such as [START_REF] Bergeron | Forces and structure in thin liquid soap films[END_REF]:

Π dl ∼ exp (-h/λ dl ). (1.10) 
• Van der Waals interaction forces are caused by interaction of fluctuating electric dipoles of molecules. The van de Waals pair potential varies as u(r) ∼ r -6 , where r is the distance between molecules. Integrating this potential over the film volume gives a disjoining pressure of :

Π vdW = - A H 6πh 3 , (1.11)
where the Hamaker coefficient, A H , is positive for a symmetric liquid film. Therefore, the van der Waals contribution to the disjoining pressure is negative, a signature of an attractive pressure between the interfaces. This disjoining pressure is significant for film thicknesses up to tens of nanometers.

• Steric repulsion between surfactant monolayers occurs when the film thickness approaches the molecular scale (h 0.5 nm). The excluded volume interaction between surfactants prevents the merging of interfaces. Figure 1.5 shows a schematic representation of the disjoining pressure, Π, versus film thickness, h, including the three contributions described above. There are three equilibrium thicknesses where the disjoining capillary pressures balance each other, as indicated by the intersection points 1, 2 and 3 of the Π and P c curves shown in green in figure 1.5. The films are stable at thicknesses corresponding to points 1 and 3, where Π has negative slope, because thinning of the film produces an increase in the disjoining pressure. Whereas at thickness 2, the slope of Π is positive, the disjoining pressure decreases with 1.2. A foam at rest Figure 1.5: Disjoining pressure versus film thickness. Adapted from reference [START_REF] Bergeron | Forces and structure in thin liquid soap films[END_REF]. thickness, thus promoting further film thinning. Two stable thicknesses exist: (i) common black films at h 50 nm, and (ii) Newton black films at h 5 nm [START_REF] Bergeron | Forces and structure in thin liquid soap films[END_REF]. For the former, long range electrostatic forces repel the interfaces, whereas for the latter, steric interactions come into play. An energy barrier must be overcome to pass from common to Newton black films. This process is generally irreversible, and sometimes even leads directly to film rupture.

Bubbles

A bubble in the center of a foam is tighly packed among its neighbors, giving it a polyhedral shape (figure 1.6). Its faces are thin films with a small curvature that is determined by the shape of the film's borders and pressure difference between the faces. The films stably meet in threes at Plateau borders, which are the main liquid-carrying channels that form the skeleton of a foam. The Plateau borders have a triangular cross section with concave sides and meet in fours to form vertices.

Plateau's rules

The geometry of a foam at rest is described by Plateau's Laws, which were developed by Joseph Plateau in 1873, and proven more than a century later by Jean Taylor [START_REF] Cantat | Foams: structure and dynamics[END_REF]. Plateau's laws describe an ideal foam at mechanical equilibrium and are as follows:

1. The films are smooth, with a constant mean curvature determined by the Young-Laplace law.

2. Films join in threes at a Plateau border, forming angles of 120 • .

3. Plateau borders join in fours at the nodes forming angles of 109.5 • .

Dry and wet Plateau borders

Plateau's laws are exactly true in the limit of vanishing liquid content, or very dry bubbles, as illustrated on the left side of figure 1.6. For bubbles with higher liquid content, the edges thicken, but these geometric rules remain approximately true. The liquid pressure in the Plateau borders is lower than in the films, because the curvature of the films is much smaller than that of the Plateau borders. Therefore, for more wet arrangements, the liquid accumulates in the Plateau borders through capillary suction. Again, at equilibrium, the curvature of the Plateau border is determined by the Young-Laplace equation:

P bubble -P PB = γ 1 R bubble + 1 r PB γ r PB , ( 1.12) 
where R bubble and r PB are the radii of curvature of the bubble edge and the Plateau border, respectively. Since most of the liquid is contained in the Plateau borders and is at constant pressure everywhere (neglecting gravity), the liquid content can be approximated as:

φ r 2 PB R 2 , ( 1.13) 
where φ = V liq /V foam is the liquid fraction of the foam and R is the average bubble radius. Now we are starting to get a view of a resting foam at the macroscopic scale, which we will discuss further in the following subsection.

Macroscopic foam

Liquid fraction

At the largest scale, a foam is either a mono-or polydisperse assembly of bubbles that spans anywhere from many centimeters (e.g. shaving cream, or beer, or soufflé) to meters (e.g. for fire-fighting, construction or mineral flotation) in dimension. As alluded to above, a primary defining parameter of any foam is its liquid fraction, φ = V liq /V foam , where:

• φ > φ * is a bubbly liquid,

• φ * > φ > 0.05 is a wet foam, and The jamming fraction, φ * , corresponds to the transition from a bubbly liquid to a wet foam, where spherical bubbles begin to be deformed as they become more densely packed and pressed against each other. Generally, φ * ∼ 0.3, but its precise value depends on whether the foam is 2D or 3D, ordered or disordered, and mono-or polydisperse [START_REF] Cantat | Foams: structure and dynamics[END_REF].

Destabilizing mechanisms: foam aging While we have been referring to a liquid foam being at rest, this is only a useful approximation at sufficiently small timescales. Liquid foams are actually metastable materials that age and whose structures degenerate at long enough time scales, putting aside evaporation. The three destabilization mechanisms are drainage, coarsening and coalescence.

•Drainage In freshly made foams the liquid will drain through the Plateau borders under the influence of gravity (figure 1.7). Thinning of the draining Plateau borders increases their curvature, 1/r PB , thereby increasing the capillary suction of liquid from the films. Thus during the course of drainage, bubbles at the top of the foam dry out, developing thinner films that are more susceptible to rupture. The drainage, however, is retarded by the surfactants. Figure 1.8 shows schematically the redistribution of adsorbed Figure 1.7: Liquid drains to the bottom of a foam under the influence of gravity, resulting in dry, polyhedral bubbles at the top and wet, nearly spherical bubbles at the bottom. From reference [START_REF] Hill | Foams: From nature to industry[END_REF]. surfactants during drainage. As liquid flows out of the film toward the plateau borders, surfactants at the interfaces become more concentrated at the perimeter of the film. This sets up surface tension gradients, the Marangoni stresses, which act to counteract the flow in the film. This same effect occurs within the Plateau borders as well.

•Coarsening This aging process is due to Laplace pressure differences between neighboring bubbles of different sizes. Because the gas phase is soluble in the liquid phase, Figure 1.8: Surfactants accumulate at the edges of films as liquid drains towards the meniscii (blue velocity profile). The resulting redistribution of surfactants sets up surface tension gradients, the so-called Marangoni stresses, which resist the drainage flow. the liquid films act as permeable barriers between bubbles. The smaller bubbles, having larger curvature, have a higher internal pressure than their larger bubble neighbors, and it is this pressure difference that drives diffusion of gas towards the larger bubble (figure 1.9). Over time, the number of bubbles in the foam decreases as small bubbles disappear, and the average bubble size increases as illustrated in figure 1.10. •Coalescence Coalescence is the merging of two bubbles by rupture of the contacting film that initially separates them. Compared with drainage and coarsening, coalescence is the least understood destabilizing mechanism [START_REF] Hill | Foams: From nature to industry[END_REF][START_REF] Rio | Thermodynamic and Mechanical Timescales Involved in Foam Film Rupture and Liquid Foam Coalescence[END_REF]. A film breaks when instabilities (thermal or mechanical) trigger the initiation of a hole as it approaches some critical thickness. In the absence of surfactant or some other surface active agent that provides repulsion between the two interfaces, the development of an instability triggers immediate rupture. As we have seen in subsection 1.2.2, surfactants do stabilize the films through a disjoining pressure, nevertheless, soapy films are fragile enough to break. Initiation of a hole in the film can occur in surfactant-containing thin films after the appearance of a bare zone. Such an example is illustrated in figure 1.11 where a weak spot has developed in the film by a sudden pinching, producing a localized depletion of surfactants. If the Marangoni stresses are not strong enough to repair this weak spot in time, the film will rupture. Films on the outside of the foam are more susceptible to Figure 1.12: An example of coalescence in a 2D foam. From reference [START_REF] Hill | Foams: From nature to industry[END_REF]. rupture, since they are exposed to external perturbations such as evaporation of liquid and contaminants from the atmosphere. Sooner or later, film rupture reduces the total number of bubbles until the foam disappears, as shown in figure 1.12.

Influence of surfactants

All three aging mechanisms are coupled and a foam's lifetime will strongly depend on the type of surfactants present. The nature of the coupling between drainage, coarsening and coalescence is complex and depends on various factors including the liquid fraction, the bubble size, and the nature of the instabilities that trigger film rupture. As dry foams are less stable than wet foams, the lifetime of a foam is, to a first approximation, set by the drainage time. As previously mentioned, surfactants will affect drainage time by creating interfacial stresses that modify the flow of liquid through the films and Plateau borders.

In a dry foam, timescales of coarsening and coalescence will be governed by the stability of the films, again largely controlled by the nature of the surfactants. Figure 1.13 shows that the nature of surfactants can have tremendous influence on the lifetime of a foam. In this figure, the lifetime of a foam, defined as the time for the foam to collapse to half its starting height, spans three orders of magnitude, depending on the surfactant used to generate it. The intricacies involved in the role of surfactants in foam stability and collapse along with the coupled effects of drainage, coarsening and coalescence are outside the scope of this work. For more details on this matter the reader is invited to consult references [START_REF] Rio | Thermodynamic and Mechanical Timescales Involved in Foam Film Rupture and Liquid Foam Coalescence[END_REF][START_REF] Georgieva | Link between surface elasticity and foam stability[END_REF][START_REF] Biance | How Topological Rearrangements and Liquid Fraction Control Liquid Foam Stability[END_REF][START_REF] Durand | Contributions théorique et expérimentale à l'étude du drainage d'une mousse aqueuse[END_REF].

Chapter 1. Introduction Figure 1.13: Foam height, normalized by initial height H 0 , versus time for foams generated with different three surfactant solutions. Foam lifetime is defined as the time for foam height to reach H/H 0 = 1/2. A change in chemistry modifies the life expectancy of the foam from about 30 minutes to about 2 days. From reference [START_REF] Georgieva | Link between surface elasticity and foam stability[END_REF].

A flowing foam

The focus of this work is on the rheology of a liquid-foam. The aim, more specifically, is to elucidate the dissipative mechanisms that determine the foam's viscous behavior. While it is composed of two Newtonian fluids, a liquid foam itself is non-Newtonian, and its effective viscosity depends strongly on the type of surfactants used to stabilize it. From a macroscopic view, flow in a foam consists of bubble rearrangements during which films are stretched, compressed, created and vanished. At the microscopic scale, viscoelasticity of the surfactant-laden interfaces induces complex boundary conditions, which control the film dynamics. The question then is how to make the link between micro-and macroscopic scales.

Mechanics of surfactant-laden interfaces

Deformation types

We will start with a basic overview of the mechanical response of surfactant-laden interfaces. For simplicity, consider a flat interface submitted to some mechanical stress in its plane. The deformation can be decomposed into two modes: a shear deformation that is area preserving, and a dilational or compressive deformation that is purely an increase or decrease of the surface area (figure 1.14). In the presence of surfactants, both modes of deformation will to a greater or lesser extent induce both viscous and elastic responses of the interface. We will first consider the case of insoluble surfactants, that remain at the interface, and then the one of soluble surfactants, for which exchanges between the bulk and interface occurs. •Response to dilation/compression For interfaces populated with insoluble surfactants, the surface stress σ and the strain of dilation/compression, = dA/A, will vary in phase such that:

Insoluble surfactants

σ = E GM , (1.14)
where the Gibbs-Marangoni elasticity, E GM , is the sensitivity of the surface tension to variations of surfactant concentration when the interface is expanded or compressed. Because the surfactants are insoluble, the total adsorbed mass is constant. Therefore variations of surface concentration will go like the dilational strain, δf /f = -δA/A. Then, on the one hand, Gibbs-Marangoni elasticity is

E GM = dγ d ln(A) = - dγ d ln(f ) . (1.15)
On the other hand, the viscous response of an interface laden with insoluble surfactants is simply:

σ = μ d ˙ , ( 1.16) 
where μ d is an intrinsic surface dilational viscosity, and ˙ is the rate of strain of dilation/compression.

•Response to shear deformation:

A shear deformation involves a change in the shape of the interface while maintaining a constant area (Figure 1.14). Because the area remains constant, the Gibbs-Marangoni elasticity plays no role in this case. The surface response to a shear stress, nevertheless, can be expressed as:

σ s = G s s + K s ˙ s , (1.17)
were σ s is the shear stress, s is the shear strain, G s is the shear elasticity, and K s is the shear viscosity. The shear elastic modulus, G s , is typically zero except when the surface active agents form rigid interconnected networks, as may happen with some proteins or polymers [START_REF] Cantat | Foams: structure and dynamics[END_REF]. This type of behavior is not considered in this work. The shear viscosity K s is typically orders of magnitude smaller than the dilational viscosity, and its relevance to foamability or foam dynamics is often considered to be negligible [START_REF] Biance | Topological transition dynamics in a strained bubble cluster[END_REF][START_REF] Durand | Relaxation Time of the Topological T 1 Process in a Two-Dimensional Foam[END_REF][START_REF] Buzza | Linear Shear Rheology of Incompressible Foams[END_REF][START_REF] Zell | Surface shear inviscidity of soluble surfactants[END_REF].

Chapter 1. Introduction

Soluble surfactants

When the surfactants are soluble, the viscoelastic response of the interface is more complex due to exchanges between the adsorption layer and the bulk solution. With compression or dilation of the interface, surface and adjacent bulk concentrations are taken out of thermodynamic equilibrium. For example, when an interface is locally stretched, surfactant molecules at the surface spread apart, and molecules in the adjacent bulk will adsorb to the surface. Subsequently, depletion of the adjacent sublayer will set up diffusive flux of surfactants from deeper within the bulk.

•Exchanges as a relaxation mechanism Exchange of surfactants between the bulk and surface is thus a two step process, and one that dampens the elastic response by delaying variations in surface concentration with strain. For this reason, the viscoelasticity is expressed in terms of a complex modulus, which depends on the excitation frequency ω:

E(ω) = E (ω) + iE (ω).
(1.18)

The real part, E , is the storage or elastic modulus, and captures the in-phase stress response to the applied strain. The imaginary part, E , is the loss or viscous modulus, and captures a stress response 90 • out of phase with the applied strain. The surface dilational viscosity, μ d , is then related to the loss modulus by : E = ωμ d . The relative contribution of the elastic and loss moduli is determined by the rate of change of the surface concentration with respect to dilation/compression. Since d(ln f )/d(ln A) = -1, the dilational surface elasticity must be expressed as:

E = dγ d(ln f ) d(ln f ) d(ln A) = -E GM d(ln f ) d(ln A) , ( 1.19) 
and the factor d(ln f )/d(ln A) is a complex valued function of the timescales of adsorption and diffusion of surfactants, and the mechanical excitation frequency.

•Lucassen model Lucassen and Van den Tempel [START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF] developed a model to predict E for planar surfactant laden interfaces submitted to small, sinusoidal, and uniformly driven dilations/compressions assuming the following conditions:

• Surfactant exchanges are limited by diffusion, i.e. adsorption/desorption timescales at the surface are much shorter than typical times required for species transport by diffusion through the adjacent liquid.

• The liquid reservoir of surfactants is infinite.

Under these assumptions, they obtain the following dynamic modulus:

E = E GM 1 + Ω + iΩ 1 + 2Ω + 2Ω 2 , (1.20)
with the dimensionless term, Ω, defined as:

Ω ≡ dF df D F 2ω .
(1.21)

A flowing foam

This dimensionless parameter is a ratio of the time scale of mechanical excitation to that of relaxation due to surfactant exchanges. In this model, the relaxation time, τ D , of exchanges is limited by diffusion, and:

τ D = 2 D F df dF 2 .
(1.22)

In the limit of infinitely high excitations frequencies, Ω → 0, dilation/compression of the surface occurs so rapidly that exchanges of surfactant between the surface and bulk is negligible, and E(ω) tends to E GM , as for insoluble surfactants. For very low excitation frequencies, Ω → ∞, exchanges with the infinite reservoir are fast enough that the surface tension remains constant, and E → 0. When the period of excitation is comparable to the characteristic relaxation time of exchanges, Ω = 1/ √ ωτ D 1, the loss modulus passes through a maximum (Figure 1.15). While the Lucassen model establishes a visco-elastic response due to surfactant exchanges between the surface and liquid bulk, it is missing at least four relevant ingredients involved in the rheology of surfactant-laden interfaces:

• Adsorption/desorption limiting time scales,

• Limited surfactant reservoirs, which can be expected for the relevant sizes of films or plateau borders in a dense packing of bubbles,

• Surface diffusion, and Marangoni flow effects when surface concentrations are not uniformly distributed along an interface due to more complex geometries ( 

Interfacial forces & flow boundary conditions

We just discussed the mechanics of surfactant-laden interfaces, namely their viscoelastic response. The mechanical behavior of the interfaces is coupled to the surrounding flow by the stress boundary conditions between the gas and liquid phases:

σ • n = F . (1.23)
The brackets denote a jump in quantity across an interface: [x] = (x liqx gas ), n is the unit normal vector pointing from the liquid to gas phase, and σ = -p Ī +μ ∇u + (∇u) T is the stress tensor for the adjacent gas and liquid phases, which are assumed to be incompressible Newtonian fluids. Interfacial forces maintain the stress jumps across an interface, and contain two contributions: surface tension and viscosity. The total interfacial force is:

F = ∇ • γ Īs + σBS , ( 1.24) 
where Īs = Īn ⊗ n is the projection tensor on the interface, and σBS is the Boussinesq-Scriven tensor. This is a standard constitutive model for a fluid-fluid interface, which assumes a linear relation between the surface stress and rate of deformation [START_REF] Jaensson | Computational interfacial rheology[END_REF][START_REF] Scriven | Dynamics of a fluid interface Equation of motion for Newtonian surface fluids[END_REF]:

σBS = (μ d -K s ) tr Ds Īs + 2K s Ds . (1.25)
Here, tr denotes the trace and Ds is the rate of deformation tensor of the interface:

Ds = 1 2 (∇ s u) • Īs + Īs • (∇ s u) T , ( 1.26) 
where ∇ s = Īs • ∇ is the surface gradient tensor. In the Boussinesq-Scriven model, the intrinsic dilational and shear viscosities, μ d and K s , are constant and originate from interactions within the adsorption layer. In this work, however, these surface interactions are not taken into account, and the intrinsic surface viscosity is assumed to be negligible.

A flowing foam

With this assumption, the hydrodynamic boundary condition expressed in equation 1.23 becomes: σ

• n = ∇ • γ Īs = -γCn -∇ s γ, ( 1.27) 
where C = -∇ • n is the interface curvature as seen from the liquid phase. The Young-Laplace pressure jump is recovered in the first term on the right hand side, giving the normal component of the stress balance across the interface:

n • σ • n = -p Ī • n = -γCn.
(1.28)

The second term on the right hand side of equation 1.27, the Marangoni stress, balances the jump in traction, or the tangential stresses, across the interface:

t • σ • n = μ ∇u + (∇u) T • n = -∇ s γ, ( 1.29) 
with tangent unit vector to the interface denoted as t. This tangential component determines the so-called "rigidity" of the interface. The interface is considered mobile in the case of zero Marangoni stress. When the Marangoni stress is high, the tangential boundary condition approaches the no-slip case, and the interface is called rigid. Given that a foam has high surface to volume ratio, this boundary condition has important consequences on the macroscopic flow.

Bubble rearrangements: T1

We now consider the mechanisms involved in foam flow at the bubble scale.

Definition of T1

When observing a flowing foam at the bubble scale, one identifies elementary topological rearrangements, called T1 transformations. A T1 event results in an irreversible switching of neighboring bubble-pairs. This is illustrated for a 2D hexagonal bubble arrangement in figure 1.17. Initially at equilibrium (A), the hexagonal bubble assembly undergoes a shear strain in the elastic range, where energy is stored in the interfaces of the deformed bubbles, which are no longer at equilibrium (B). The film separating the shaded bubbles at stage (B) is then gradually compressed and disappears when its end-vertices meet at an unstable 4-film junction (C). Then there is a spontaneous regeneration of a new film driven by the surface tension, which separates a new bubble pair, as the bubbles relax back towards a configuration of minimum surface energy (D).

T1 dynamics

The T1 rearrangement is the basic unit from which a foam flow is built up. The flow is irregular when bubble rearrangements occur locally and intermittently, whereas the flow is more laminar when the T1s overlap in time and space. Whether the flow that arises is irregular or laminar will depend on the T1 dynamics. Meanwhile, T1 dynamics are controlled by film and interfacial dynamics, which are influenced by the type of surfactants present. Therefore, understanding T1 dynamics is key to making the link between microscopic and macroscopic scales of a flowing foam.

Figure 1.17: A T1 process for a 2D hexagonal arrangement of bubbles: As a bubble assembly initially at static equilibrium (A) undergoes a macroscopic shear strain ε, certain films separating neighboring bubble pairs are compressed (B) until the film edges meet to form unstable four-fold vertices (C). At this yield strain ε a new film is spontaneously generated, and the bubble assembly relaxes to stable equilibrium with a new arrangement resulting in the switching of neighbors (D). From reference [START_REF] Cantat | Foams: structure and dynamics[END_REF].

•Experiments Many experimental investigations of T1s have been conducted towards understanding the relative importance of competing mechanisms that determine their duration. Durand and Stone measured the relaxation times for isolated T1s trigerred in 2D dry foams [START_REF] Durand | Relaxation Time of the Topological T 1 Process in a Two-Dimensional Foam[END_REF]. The foams were generated from two types of surfactant that produce interfaces of either low or high rigidity, and the liquid viscosity was controlled by adding varying concentrations of glycerol. The relaxation times varied little with solution viscosity, but depend strongly on the type of surfactants. T1 relaxation times were observed to be orders of magnitude longer in foams generated by surfactants that produce interfaces of high rigidity, than for those with surfactants that produce mobile interfaces (see figure 1.18 a).

Biance et al. went further with experiments in dry 3D bubble clusters, this time controlling the imposed shear rate for triggering T1 events [START_REF] Biance | Topological transition dynamics in a strained bubble cluster[END_REF]. Two regimes were identified: (i) a quasi-static regime at low shear rates where the relaxation time is independent of shear rate, (ii) a dynamic regime where the duration of T1s decreased with increased shear rates. In the quasi-static regime, the results were similar to those of Durand and Stone: little effect of solution viscosity, but pronounced effect of surfactant type on relaxation times. Transition to the dynamic regime was found to depend on the relaxation times in the quasi-static regime; again, demonstrating strong influence of the interfacial rheology and thus the surfactant type.

Le Merrer et al. conducted a study of the duration of bubble rearrangements in coarsening 3D wet foams. In addition to the influence of interfacial rigidity, a pronounced effect of liquid viscosity on T1 durations was observed. Figure 1.18 b shows their results for the osmotic pressure Π, a proxy for liquid fraction, versus average rearrangement duration T for foams with low and high interfacial rigidity. T1 durations were found to be up to an order of magnitude longer in foams with high interfacial rigidity, indicated by white circles, than those with low interfacial rigidity, indicated by black circles. Moreover, the liquid content has little influence on T1 duration for rigid interfaces, whereas a distinct decrease in T with liquid fraction was observed for mobile interfaces.

Petit et al. investigated the film generation in a T1 using a dedicated film architecture, wherein the evolution of the film thickness and local liquid velocities were measured [START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF]. Figure 1.19 illustrates the two limiting regimes identified: (i) films of high interfacial rigidity are generated by pulling liquid from the plateau borders, and (ii) films of low interfacial rigidity are generated by uniform stretching of the interfaces while main- Typical time for the film to reach 90% of its final length is about 0.5 seconds for SDS foams and about 3.7 sec for BSA/PGA foams. From reference [START_REF] Durand | Relaxation Time of the Topological T 1 Process in a Two-Dimensional Foam[END_REF]. Right: Average rearrangement duration T versus osmotic pressure Π for coarsening 3D wet foams. Data shown for foams with similar bubble sizes and liquid viscosity, but with different interfacial rigidity: white circles for low rigidity, and black circles for high rigidity. From reference [START_REF] Merrer | Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity[END_REF].

taining a uniformly decreasing thickness profile over the length of the film. •Models Generation of a fresh film in the final step of a T1 is driven by surface tension and resisted by viscous forces that originate in the liquid bulk of the films and Figure 1.20: Thickness profiles of newly generated film during T1 relaxation. From reference [START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF] Plateau borders, as well as at the interfaces. Models for T1 relaxation times will account for these effects. In the model proposed by Durand and Stone, the duration of a T1 is controlled by a balance between surface tension and surface viscosity, with negligible contribution of shear viscosity in the liquid solution [START_REF] Durand | Relaxation Time of the Topological T 1 Process in a Two-Dimensional Foam[END_REF]. Specifically, they estimate a relaxation time T = (μ * /γ eq )f (E GM /γ eq ), where μ * is the total interfacial viscosity, γ eq is the equilbrium surface tension, and f is an increasing function of the Gibbs-Marangoni elasticity. This model may be adequate for dry foams, but bulk viscosity contributions may be more important at higher liquid fractions.

Tcholakova et al. propose a very different model; one that accounts first for dissipation by shear viscosity in the liquid bulk, assuming a no-slip boundary condition at the interfaces [START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF]. This contribution gives a prediction of viscous stresses in the foam that are proportional to Ca 1/2 , where the Capillary number, Ca = μ liq ˙ /γ eq , is a dimensionless shear rate. Interfacial viscosity is added when needed as a correction for foams exhibiting higher viscous stresses. This additional contribution leads to more viscous foams, but with a non-monotonic dependence of viscosity on the shear rate. At low shear rates the total viscosity scales as Ca n , with n < 1/2, but then decreases at higher shear rates. Tcholakova et al. attribute this behavior to a possible "destruction of the crystalline adsorption layer" at higher shear rates [START_REF] Tcholakova | Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions[END_REF], but this feature maybe reminiscent of the Lucassen viscoelastic behavior of surfactant laden interfaces explained previously.

In contrast to these two aforementioned models, Le Merrer et al. and Petit et al. take into consideration the coupling between the interfacial rheology and the flow type in the liquid to explain the dissipative mechanisms of film formation during T1 [START_REF] Merrer | Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity[END_REF][START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF]. For example, in Petit et. al, mobile interfaces favor film generation by stretching. In this case, the drag force is mainly related to the surface viscosity, which scales as f ext ∼ μ * ˙ . Conversely, film is generated by pulling liquid from the Plateau border in the case of rigid interfaces, and shear flows in the contacting meniscus supply the viscous drag: f pull ∼ γCa 2/3 . The competing contributions of surface and bulk viscosity become comparable at a critical film length L c ∼ μ * /μ liq [START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF]. This implies a dependency of T1 dynamics on the bubble sizes, a result also demonstrated in the recent work of Bussonière and Cantat [START_REF] Bussonnière | Local origin of the visco-elasticity of a millimetric elementary foam[END_REF].

These questions surrounding the role of interfacial viscoelasticity and the influence of surfactants are not only important for understanding T1 dynamics but are also relevant in 1.3. A flowing foam more general film flows, such as dip coating, pulling of free liquid films, and film drainage and rupture [START_REF] Buzza | Linear Shear Rheology of Incompressible Foams[END_REF][START_REF] Bussonnière | Local origin of the visco-elasticity of a millimetric elementary foam[END_REF][START_REF] Saulnier | A study of generation and rupture of soap films[END_REF][START_REF] Champougny | Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films[END_REF].

Macroscopic foam flow

Liquid foams are part of a class of complex fluids called yield-stress fluids. As we have seen above, below a threshold yield-stress, σ < σ 0 , the foam exhibits an elastic response due to a reversible increase in the gas-liquid interfacial area. When the applied stress exceeds what can be supported by the film tension, σ ∼ σ 0 , the foam begins to yield. As the static equilibrium is lost and bubbles begin to slide against one another, competing viscous forces come into play. The liquid fraction is a determining factor for σ 0 , as shown in figure 1.21. Note that σ 0 is higher for dryer foams, and vanishes as the liquid fraction approaches the jamming point, φ * . Figure 1.21: The yield stress is the maximum stress supported by a solid-like liquid foam, and above it the foam flows. From reference [START_REF] Cohen-Addad | Flow in Foams and Flowing Foams[END_REF] A flowing liquid foam is shear-thinning, meaning that the effective viscosity decreases as the shear rate increases, and is well described by the Herschel-Bulkley law:

σ = σ 0 + K ˙ n , (1.30)
where σ 0 is the yield stress, ˙ the shear rate, and K is known as the consistency rather than the viscosity when the exponent n = 1. The shear-thinning exponent, n, for typical foams and concentrated emulsions usually lies between 0.2 and 0.5 [START_REF] Denkov | The role of surfactant type and bubble surface mobility in foam rheology[END_REF]. It has been found that the value of n depends significantly on the type of surfactants used to produce the foam. Denkov et al. present experimental results demonstrating a correlation between shear thinning behavior and surface mobility [START_REF] Denkov | The role of surfactant type and bubble surface mobility in foam rheology[END_REF]. Figure 1.22 shows the dimensionless viscous stress versus capillary number, which is proportional to ˙ , for foams generated by what they have termed as High Surface Modulus (HSM) and Low Surface Modulus (LSM) surfactants. They report two observations. Firstly, that foams with rigid interfaces, generated by HSM surfactants, are more viscous than foams with mobile interfaces (LSM). Secondly, that the two types of surfactants generate foams with distinctly different ranges for the shear-thinning exponent: 0.42 < n < 0.5 using LSM surfactants, and 0.20 < n < 0.27 using HSM surfactants. These differences in the scaling law at the macroscopic scale suggests that the mechanisms of energy dissipation at the microscopic and intermediate length scales depend strongly on the type of surfactants. 

General problem outlook

We have shown here that a liquid foam is a complex fluid. As for many complex fluids such as colloidal suspensions and gels, the complexity of a liquid foam arises from its structure, but this is not the only factor at play. Indeed, the presence of surfactants, which are crucial for efficiently stabilizing a foam, induces an intricate coupling between their dynamics at interfaces, in the bulk and the liquid flow. As shown in the last section, their microscopic properties significantly modify the foam rheological properties, and the link between both scales is far from obvious. In the following, I will try to make this link by (i) identifying how the microscopic properties modify the mechanical properties of interfaces of a film of finite thickness in which surfactants are exchanged between the bulk and the interface, (ii) evaluating the different sources of dissipation in a foam flow from a thermodynamic point of view, (iii) carrying out numerical simulations to test if the identified contributions are indeed present in a real system, and then identifying the main contributions to dissipation as a function of the liquid and surfactant properties.

Chapter 2

Dissipation during deformation of surfactant-laden interfaces: an extended Lucassen model.

Introduction

Energy is dissipated in the course of dilatational deformations of surfactant-laden liquid surfaces when the surfactant matter can be exchanged with the bulk solution by adsorption and desorption. The aim of this chapter is to describe this energy dissipation at the interfaces when they are submitted to small-amplitude periodic dilatational deformations (figure 2.1), and to do so, we consider two points of view.

In the first, a global mechanical approach, we think of the interfaces as a visco-elastic "material" with a dynamic modulus. In the limit of infinitely rapid deformation, when there is no exchange of surfactants with the bulk solution, the interface is purely elastic. In the limit of infinitely slow deformation, when rapid exchange between bulk and surfaces maintain a homogeneous distribution at the surface, the surface tension is constant and there is no viscoelastic response due to the surfactants in this case. We wish to describe the intermediate regime. The case where diffusion is the limiting process has been derived in the classical model of Lucassen et al. [START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF]. Later works have extended this model to account for the kinetics of adsorption/desorption [START_REF] Johnson | Oscillating Bubble Tensiometry: A Method for Measuring the Surfactant Adsorptive-Desorptive Kinetics and the Surface Dilatational Viscosity[END_REF][START_REF] Wantke | The oscillating bubble method[END_REF][START_REF] Christov | The apparent dilational viscoelastic properties of fluid interfaces[END_REF], or some specific geometries, including spherical system [START_REF] Johnson | Oscillating Bubble Tensiometry: A Method for Measuring the Surfactant Adsorptive-Desorptive Kinetics and the Surface Dilatational Viscosity[END_REF] or dilation due to longitudinal waves [START_REF] Christov | The apparent dilational viscoelastic properties of fluid interfaces[END_REF]. Here, we consider a flat liquid film with finite thickness. The effect of diffusion, sorption kinetics and confinement are all taken into account.

In the second point of view, we consider an out-of-equilibrium thermodynamic approach. The energy dissipation is quantified locally and is calculated from entropy generation due to spontaneous surfactant transport by diffusion in the bulk and adsorption/desorption at the interfaces. This allows the straightforward determination of which of these two processes contributes most to energy dissipation.

As this chapter is rather heavy with formulas, we have emphasized the essential results with boxes.

Chapter 2. Dissipation during deformation of surfactant-laden interfaces: an extended Lucassen model. 

A mechanical approach

The Lucassen model

We begin here with a brief review of the calculation of the Lucassen result for viscoelasticity of surfactant-laden interfaces. The Lucassen model considers an infinite reservoir of surfactant solution with a flat surface as illustrated on the left side of figure 2.1. A barrier at the surface sets up uniform and periodic dilation and compression, expressed as a strain:

≡ ΔA/A = 0 e iωt , ( 2.1) 
where A is the interface area, 0 the amplitude and complex notation for time dependence will be used throughout. The (complex) viscoelastic modulus is:

E ≡ E + iE = dγ d (ln A) = -dγ d (ln f ) × -d (ln f ) d (ln A) , (2.2)
where γ is the surface tension, f the surfactant concentration on the interface and E and E are the storage and loss moduli respectively. The first factor on the rightmost side of equation 2.2 is the Gibbs elasticity in the limiting case of insoluble surfactants, and corresponds to E GM = -dγ/d (ln f ) evaluated at thermodynamic equilibrium. For the Langmuir adsorption model (equations 1.6 and 1.7), this reads as:

E GM = RT f e 1 -χ , ( 2.3) 

A mechanical approach

where the dimensionless surfactant coverage χ ≡ f e /f ∞ is the ratio of equilibrium to maximum packing concentrations. For future use, we also introduce an adsorption length scale defined as

l a ≡ (dF/df )| -1 e , ( 2.4) 
Note that other nomenclatures exist, such as adsorption depth or depletion depth [START_REF] Manikantan | Surfactant dynamics: hidden variables controlling fluid flows[END_REF].

The adsorption length establishes the relative concentrations at the surface and in the subsurface at thermodynamic equilibrium, and is determined by the adsorption isotherm.

In the case of the Langmuir model (equation 1.6) it is expressed as:

l a = f e F e (1 -χ) .
(2.5)

The complex factor in equation 2.2, d (ln f ) /d (ln A), contains the contribution of surfactant exchanges with the bulk. Such exchanges between surface and bulk occur in two steps: i) exchanges of molecules between the interface and subsurface layer by adsorption/desorption, and ii) diffusion of molecules between the subsurface layer and bulk liquid farther from the surface. In the Lucassen model, it is assumed that the adsorption/desorption time scale is always much shorter than the period of the surface excitation, 2π/ω. Equivalently, the surface and subsurface concentrations, respectively, f and F s , remain in thermodynamic equilibrium at all time. As a consequence, the exchange of surfactants between surface and bulk is limited by only by diffusion and we have

1 A d (fA) dt = D ∂F ∂z z=0 , ( 2.6) 
where D is the bulk diffusivity and the vertical coordinate is denoted z, with z = 0 at the top surface and pointing positively down into the liquid (figure 2.1). The left hand side of equation 2.6 is the flux, taken to be positive when surfactants are added to the surface from the bulk. The right hand side is the diffusive flux in the subsurface layer as described by Fick's law. Upon expansion of the left hand side and some rearrangements employing the chain rule, equation 2.6 can be rewritten to obtain the complex factor:

d (ln f ) d (ln A) = -1 -D dF df e (∂F/∂z) z=0 (∂F/∂t) z=0 -1 . (2.7)
The next step is to express the bulk concentration profile F (z, t). Surfactant transport in the bulk is governed by the diffusion equation:

∂F ∂t = D ∂ 2 F ∂z 2 . (2.8)
Assuming an infinite reservoir of surfactants, the bulk concentration far from the interface does not vary from its initial equilibrium value F e . The linear response of subsurface concentration variation is proportional to the excitation, giving a boundary condition at the interface of F (0, t) -F e = B exp(iωt). With these boundary conditions, the solution to equation 2.8 is:

F (z, t) = F e + Be -κz e iωt , ( 2.9) 
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where we have introduced

κ ≡ (1 + i) ω 2D . (2.10)
|κ| -1 is the thickness of the diffusive boundary layer, that is the typical distance through which surfactants diffuse over the excitation timescale ω -1 . The prefactor B is cancelled upon substitution of equation 2.9 into equation 2.7, yielding:

d (ln f ) d (ln A) = - ⎡ ⎣ 1 + (1 -i) dF df e D 2ω ⎤ ⎦ -1
.

(2.11)

Here, Lucassen et al. [START_REF] Lucassen | Dynamic measurements of dilational properties of a liquid interface[END_REF] define a dimensionless parameter:

Ω ≡ dF df e D 2ω = |κ| -1 l a , (2.12)
which is the ratio of the diffusive boundary layer thickness to the adsorption depth.

Equivalently Ω is the ratio of the time scales of excitation and diffusion of surfactants across the boundary layer thickness. Substituting Ω into equation 2.7 gives for the complex factor:

- d (ln f ) d (ln A) = [1 + (1 -i) Ω] -1 . (2.13)
The final result for the viscoelastic modulus in the Lucassen model is then

E = E GM 1 + Ω + iΩ 1 + 2Ω + 2Ω 2 .
(2.14)

The normalized storage and loss moduli, respectively E /E GM and E /E GM , are plotted as a function of Ω -1 ∼ √ ω in figure 2.2. At Ω -1 → ∞, the response is purely elastic, as the excitation frequency is too rapid for surfactant exchanges to occur. On the other end, for Ω -1 → 0, the rate of dilation of the interface is slow enough that surfactant exchanges between the interface and bulk maintain the adsorption layer at thermodynamic equilibrium with the bulk. Therefore, the surface tension remains constant and the dynamic modulus is E = 0. There is a transition at Ω = 1/ √ 2, where the normalized loss modulus passes through a maximum,

E max /E GM = 1/ √ 2 -1/2 0.207. At this point, the normalized elastic modulus is E max /E GM = 1/2.
The maximum in dissipation arises when the adsorption length and the boundary layer thickness are comparable, or said otherwise when the actuation frequency matches the natural relaxation time of the system.

Extended Lucassen model

In a foam, the liquid domain is not infinite but restricted to the films and Plateau borders. Moreover, exchange of surfactants between bulk and interface may require times that are comparable or greater than typical time of transport by diffusion. In what follows, we extend the Lucassen model to account for both confinement effects and finite sorption kinetics. We consider a liquid film containing surfactants bounded above and below by flat, free surfaces that are separated through a distance 2W , and submitted to periodic, inphase dilatational deformations given by equation 2.1. This setup is illustrated on the right hand side of figure 2.1. To derive the dynamic modulus of interfaces, we will proceed in two steps. First, accounting for the new boundary conditions, the surface and bulk concentration profiles are solved. Second, we deduce the dynamic modulus, as was done in the traditional Lucassen model. Once we have obtained the general formula, we will explore some limiting cases.

A mechanical approach

Bulk and surface mass transport

Here we solve for the evolution of the surfactant concentration, f , at the interfaces of our film of thickness 2W , in order to later compute the complex factor of the dynamic modulus: d (ln f ) /d (ln A). Introducing F ≡ F -F e , the deviation from equilibrium value, the diffusion equation describing transport in the bulk can be written as

∂ F ∂t = D ∂ 2 F ∂z 2 , ( 2.15) 
again with z = 0 at the top surface and pointing positively down into the liquid. By symmetry, the boundary condition midway between surfaces, z = W , is:

∂ F ∂z z=W = 0, (2.16)
and at the top surface, z = 0, the flux boundary condition is:

D ∂ F ∂z z=0 = j, ( 2.17) 
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where the source term j describes a Langmuir type adsorption/desorption process

j = r a F s (f ∞ -f ) -r d f, (2.18)
with r a and r d the adsorption and desorption rate respectively. As a first approximation we consider small deviations from equilibrium for all quantities throughout this calculation. The source term is approximated by a first order Taylor series about equilibrium, where j(F e , f e ) = 0, as follows:

j = k F Fs -k f f, (2.19) 
with f ≡ ff e , and coefficients k F and k f defined as:

k F = ∂j ∂F Fe, fe = r a (f ∞ -f e ) , and k f = - ∂j ∂f Fe, fe = r a F e + r d = r d 1 -χ . (2.20)
Note that the adsorption length here is:

l a ≡ d Fs df | e = k F k f . (2.21)
The solution to equation 2.15 has the form:

F = e iωt Ae κz + Be -κz , ( 2.22) 
with the complex κ defined in equation 2.10 and |κ| -1 the boundary layer thickness. Substituting 2.22 into boundary conditions 2.16 and 2.17 gives:

F = α cosh (κ(z -W )) sinh (κW ) f. (2.23)
To lighten the notation we have introduced the length α -1 defined by:

α -1 ≡ k F coth(κW ) + κD k f = l a coth(κW ) + κD k f . (2.24)
Note that in the Lucassen limit, W → ∞ and k f , k F → ∞, we get α -1 → l a . The mass balance equation at the interfaces is:

1 A d(fA) dt = D ∂ F ∂z z=0 , ( 2.25) 
which for small perturbations around equilibrium leads to

df dt + f e d(ln A) dt = -κDα f. (2.26)
Then, substituting df /dt = d f/dt = iω f , and rearranging gives:

(iω + κDα) f = -iωf e 0 e iωt , ( 2.27) 

A mechanical approach

where we used d(ln A)/dt = ˙ = iω 0 e iωt . Finally, the deviation of the surface concentration from its equilibrium value, f = ff e , simplifies as:

f = - f e 0 1 + ακ -1 e iωt .
(2.28)

Now the bulk concentration profile can be simplified after substituting the solution from equation 2.28 into 2.23 as:

F = -B cosh (κ(z -W )) sinh (κW ) e iωt , ( 2.29) 
where the complex prefactor B is:

B ≡ f e 0 α -1 + κ -1 .
(2.30)

Derivation of the complex modulus

Now, to get the contribution of surfactant exchanges to the viscoelastic modulus, start again with the mass balance equation at the surface (2.25), and reformulate as:

f A dA dt = D ∂ F ∂z z=0 - df dt , (2.31) 
or equivalently as:

d(ln f ) d(ln A) = - ⎡ ⎣ 1 -D ∂ F ∂z z=0 df dt ⎤ ⎦ -1
.

(2.32)

Noting that ∂F/∂z = ∂ F /∂z and df /dt = d f/dt, and using equation 2.23, the right hand side of equation 2.32 simplifies as1 :

d(ln f ) d(ln A) = -1 + α κ -1 , ( 2.33) 
or equivalently as:

d(ln f ) d(ln A) = -[1 + (1 -i)ζ] -1 = - 1 + ζ + iζ 1 + 2ζ + 2ζ 2 , ( 2.34) 
where we define the Lucassen number, ζ:

ζ ≡ α D 2ω . (2.35)
With this extended-Lucassen number, the new dynamic modulus that includes the effects of sorption time and finite-film thickness has a form similar to that of the basic Lucassen model (equation 2.14):

E = E GM 1 + ζ + iζ 1 + 2ζ + 2ζ 2 .
(2.36)
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The complex modulus

We now wish to express our result in a convenient way using dimensionless numbers. To do so, let us introduce

P e ≡ ωW 2 D = (|κ|W ) 2 , Bi ≡ r d ω , h ≡ f e F e W = l a W (1 -χ) , χ ≡ f e f ∞ .
(2.37)

• P e is the Péclet number, defined as the ratio between the typical diffusion time W 2 /D across the film and the oscillation period ∼ ω -1 . It can also be seen as the square of the ratio between film thickness and the diffusive boundary layer thickness.

• Bi is the Biot number, defined as the ratio of oscillation and sorption time scales. Surfactant exchanges are limited by sorption dynamics at values of Bi 1, whereas they becomes much faster than the actuation when Bi 1.

• h is the adsorption length normalized by the film thickness. This quantity represents the ratio of total surfactant content in the adsorption layer to that in the liquid bulk. Thus, when h 1 the film acts an infinite reservoir of surfactants. Confinement effects are felt at values of h > 1 as availability of surfactants in the liquid bulk become limited. This quantity depends on the physicochemistry of the surfactants: more soluble ones will result in smaller h.

• χ was already introduced above and is a dimensionless surfactant coverage, with f e the surface concentration at equilibrium and f ∞ is maximum value. In all the calculations that follow, χ is taken as a fixed parameter that is set to χ = 0.3. This choice will be justified in chapter 3.

Though the set of dimensionless numbers given by equation 2.37 is sufficient, it will prove convenient to introduce one more dimensionless number:

Da ≡ (1 -χ)hBi P e 2 = k F √ 2ωD . (2.38)
The Damköhler number is a ratio between sorption and diffusion time scales. Diffusionlimited kinetics correspond to large Da numbers whereas sorption-limited kinetics correspond to small values. We will see in the following that this notation will be particularly convenient for the case of thick films.

Once rewritten in terms of the dimensionless numbers P e, Bi, h and χ, the complex modulus in the extended Lucassen model reads as:

E E GM = ⎡ ⎢ ⎣1 + 1 (1 -χ) h P e 2 (1 + i) coth (1 + i) P e 2 + i Bi ⎤ ⎥ ⎦ -1 . (2.39)
This is one of the main results of the present chapter.

Some limiting cases

To better understand the various implications of equation 2.39, it is useful to consider several limiting cases. •Small h: The infinite reservoir. The Lucassen limit corresponds to h → 0, where the liquid bulk contains an infinite supply of surfactants. Taking the blue curve on the left side of figure 2.3, for which h = 10 -2 , the storage modulus obeys the following limits:

A mechanical approach

lim P e→∞ E E GM = 1, lim P e→0 E E GM = 0 (2.40)
as expected in the Lucassen model. The normalized loss modulus for h = 10 -2 , given by the blue curve on the right side of figure 2.3, reaches a maximum value of E max /E GM 0.207, again, as predicted by the Lucassen model in section 2.2.1. Furthermore, E max /E GM passes through its maximum near Ω max = 1/ √ 2.

To check this, we can reformulate the parameter Ω in terms of our dimensionless numbers as Ω = 1/((1χ)h √ 2P e), such that in the Lucassen limit, E max /E GM occurs at:

P e max = 1 (1 -χ) 2 h 2 .
(2.41)

Always keeping χ = 0.3, values of P e max are plotted with vertical dashed lines for 10 -2 ≤ h ≤ 1 on the right side of figure 2.3. In fact, the Lucassen approximation of

Ω max = 1/ √ 2 is good for h ≤ 10 -1 .
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•Large h: Strong confinement effects. When h 1, most of the surfactant content in the film is adsorbed at the surface and little remains in the liquid bulk for exchange with the surface. Therefore, it is as if the interface is populated with insoluble surfactants, and the film response is predominantly elastic. This is indeed visible in figure 2.3 for h = 10 2 , represented in yellow.

•Intermediate h: Reduced elasticity. The dimensionless adsorption depth determines the elasticity when the rate of deformation is sufficiently slow. This occurs in the limit P e → 0, where the dynamic modulus becomes a real valued function of h:

lim P e→0 E E GM = 1 1 + 1 (1-χ)h (2.42)
This limit was predicted in reference [START_REF] Tempel | Application of Surface Thermodynamics to Gibbs Elasticity[END_REF] and corresponds to the horizontal dashed lines in figure 2.3 (left). At slow excitation, there is sufficient time for exchange between the bulk and the surface but the total amount of surfactant available in the bulk is limited, hence a plateau is observed. So, whereas the interface is perfectly elastic for very thin films (h large), it has no elasticity for thick films (h small). This shows that for a given type of surfactant, thin films are more elastic than thicker films. When the external driving frequency is increased, it can be seen in figure 2.3 that even at intermediate values of h the elasticities increase and the loss moduli pass through significant peaks.

Thick film

Now we consider the limiting case of a thick film containing an infinite supply of surfactants, and examine the influence of the sorption rate. In particular, we would like to know the mechanical response of the interface as the sorption time scale varies with respect to the diffusion time scale. Remember that the Biot number was defined as the ratio of the time scales of sorption and deformation: Bi = r d /ω but that the deformation frequency ω is also contained in the Péclet number. It is therefore convenient to use the Damköhler number, introduced in equation 2.38 which is the ratio of sorption and diffusion time scales. Since the hyperbolic function becomes unity in the thick film limit, equation 2.39 reduces to:

E E GM = ⎡ ⎣ 1 + 2Ω 1 + i 1 + (1-χ) Da ⎤ ⎦ -1 , ( 2.43) 
where

Ω -1 = (1 -χ)h √ 2P e.
The normalized storage and loss moduli are shown on the left and right sides, respectively, of figure 2.4. The Lucassen moduli are recovered at large Da, as expected when the surfactant exchanges are limited by diffusion. On the other hand, exchanges are limited by sorption at small values of Da. As Da → 0, the maximum loss modulus increases to E max /E GM → 1/2, and occurs when the time scales of external forcing and sorption are comparable. In particular, for small Da and at lowest order, one expects that the maximum occurs at Ω (1χ)/(2Da).

We showed that we can predict the complex response modulus of a surfactant-laden interface subjected to a small deformation as a function of the microscopic parameters of the system. However, within this global approach, the microscopic origin of the dissipation is not elucidated. In the following section, we address this point in detail. 

A thermodynamic approach

A thermodynamic approach 2.3.1 Local dissipation

The overarching question addressed in this chapter is: Can we quantify the energy dissipated when the surface of a surfactant solution undergoes dilational deformations? The Lucassen model, and our extension of it, constitute a mechanical approach to this question. The total dissipation rate is computed from the loss modulus. While it is understood that the surfactant dynamics are at the source of this energy dissipation, this mechanical approach does not describe the mechanisms through which dissipation occurs.

In order to answer the question of where and how the energy is actually dissipated in the system, we take a different point of view. We adopt the framework of non-equilibrium thermodynamics, as presented by de Groot and Mazur [START_REF] De Groot | Non-equilibrium Thermodynamics[END_REF]. Our system is seen as a continuum that may be globally out-of-equilibrium, but it is assumed that, locally, a small fluid particle remains in a state of equilibrium (local equilibrium assumption). The local energy dissipation is then derived from the entropy generated during the course of external actuation of the system. The entropy balance equation at equilibrium is given by the Gibbs-Duhem relation:

T ds = du + pdv - n i=k μ k dc k , ( 2.44) 
with s the specific entropy, u the specific internal energy, p the pressure, v the specific volume, and μ k and c k the chemical potential and mass fraction of the species k, respectively. With the local equilibrium assumption, the entropy balance equation for a fluid particle followed along its center of mass motion is: as (see p. 24 in reference [START_REF] De Groot | Non-equilibrium Thermodynamics[END_REF] or section 4.1 in reference [START_REF] Gatignol | homme, Mechanical and thermodynamical modeling of fluid interfaces[END_REF]):

T ds dt = du dt + p dv dt - n k=1 μ k dc k dt , ( 2 
σ = - 1 T 1 T J q • ∇T + k J k • T ∇ μ k T -F k + Π : ∇u + J A ≥ 0, (2.46) 
where each term on the right hand side is the product of the flux of an extensive quantity and the gradient of its conjugate quantity. These gradients of intensive quantities are the so-called "thermodynamic forces" that drive the system back to equilibrium. The first term is the contribution of heat flow, J q , driven by temperature gradients. The second term gathers, for each species k, the contribution of mass flow, J k , driven by chemical potential gradients, ∇μ k , and external forces, F k . The third term is the contribution of viscous dissipation in flows, where the pressure tensor, Π, is a momentum flow. The final term is the contribution of chemical reactions, where J is the reaction rate, and A is the chemical affinity of the reaction. We assume that the deforming liquid film is a closed system that is undergoing an isothermal process. Therefore, there is no entropy exchange with the environment, nor any contribution of heat flow in equation 2.46. Additionally, fluid flow is not taken into account in the Lucassen framework; therefore, contribution of viscous flow is also neglected. Since there is only one species to consider -the surfactant-we are left with two terms: dissipation from concentration gradients and dissipation from sorption processes. We shall study each contribution in turn.

Dissipation due to concentration gradients

Assuming a dilute solution of surfactants in the bulk, the chemical potential is

μ F = μ 0 + RT ln F F e , ( 2.47) 
where R and T are the ideal gas constant and the temperature, respectively. With J = -D∇F the diffusive flux of surfactant, the local dissipation rate due to concentration gradient can thus be written as

D loc c (t) ≡ -J • ∇μ = DRT (∇F ) 2 F , ( 2.48) 
For small perturbations around equilibrium, substituting from equation 2.29, one gets the local dissipation rate per unit area as:

D loc c (t) = DRT F e (∇F ) 2 = DRT F e Bκ sinh (κ(z -W )) sinh (κW ) e iωt 2 , (2.49) 
where {x} denotes the real part of x. Calculating the time average of equation 2.49 over one period, T = 2π/ω, and integrating over the film thickness, from z = 0 to z = 2W , we get an average energy dissipation rate per unit area:

D c = DRT |B| 2 |κ| √ 2F e sinh( √ 2|κ|W ) -sin( √ 2|κ|W ) cosh( √ 2|κ|W ) -cos( √ 2|κ|W ) .
(2.50)

A thermodynamic approach

Finally, it is convenient to work with a dissipation Dc made dimensionless with E GM ω 2 0 /2. Formulated in terms of the dimensionless numbers P e, Bi, h and χ, our final expression for the dissipation induced by concentration gradient is:

Dc ≡ D c E GM ω 2 0 /2 = (1 -χ)h √ 8P e |ζ -1 + 1 -i| 2 G( √ 2P e), G(u) ≡ sinh(u) -sin(u) cosh(u) -cos(u) , ( 2.51) 
where ζ -1 , defined from equations 2.35 and 2.24, reads as:

ζ -1 = (1 -χ) ⎡ ⎣ h √ 2P e coth ⎛ ⎝ (1 + i) P e 2 ⎞ ⎠ + (1 + i) Bi ⎤ ⎦ .
(2.52)

Dissipation due to adsorption/desorption

The energy dissipation rate per unit area due to the adsorption/desorption processes is:

D a (t) ≡ -jA = -j(μ f -μ Fs ), (2.53) 
where j, A, μ f and μ Fs are the net flux of surfactant at the interface, the chemical affinity, and the chemical potentials at the surface and in the liquid bulk near the surface, respectively. The chemical potential of surfactant at the surface is:

μ f = μ 1 + RT ln f f ∞ -f . (2.54)
This, together with equation 2.47 for the bulk chemical potential near the surface, and the fact that at equilibrium A = 0, leads to the chemical affinity of sorption:

A = RT ln F e (f ∞ -f e ) f e f F s (f ∞ -f ) . ( 2 

.55)

A first order Taylor expansion around equilibrium then gives:

A = RT f f e (1 -χ) - Fs F e , ( 2.56) 
where as before f and F denotes deviation from equilibrium value. Substituting equation 2.19 for j then gives a linearized expression for the energy dissipation rate per unit area due to surfactant transport at the interface adsorption/desorption:

D a (t) = RT k f f -k F F f f e (1 -χ) - Fs F e .
(2.57) Using 2.20 to write k F /k f = f e (1χ)/F e , D a (t) can be written as a perfect square:

D a (t) = RT F e k F {k f f } -{k F Fs } 2 .
(2.58)
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Remember here that in the above expressions, f and F are complex valued functions. {X} denotes the real part of X. Now, substituting for f with equation 2.23 and reducing give:

D a (t) = RT F e k F ακD f 2 = RT F e k F j 2 .
(2.59)

Taking α as defined in equation 2.24, equation 2.59 can be rewritten:

D a (t) = RT F e k F (ωf e 0 ) 2 -(1 + i)ζ 1 + (1 -i)ζ e iωt 2 ,
(2.60) so that the time-averaged dissipation per unit area for one interface is:

D a = 2RT f 2 e 2 0 F e k f l A ω 2 |ζ -1 + 1 -i| 2 .
(2.61)

The final expression for the dimensionless dissipation rate associated to sorption process is:

Da ≡ D a E GM ω 2 0 /2 = 4(1 -χ) Bi|ζ -1 + 1 -i| 2 (2.62)
where ζ is given by equation 2.52.

Discussion

Now that all calculations have been made, we can discuss the different regimes of dissipation in the limiting cases discussed above.

Total dissipation

On the one hand, the total dissipation may be obtained by adding contributions from the the diffusion and sorption processes, that is:

D = Dc + 2 Da , ( 2.63) 
where dimensionless quantities have been used, and where the factor of 2 arises because our system is a film with two interfaces, while Da gives the dissipation of one interface.

On the other hand, the energy dissipated can also be obtained from the loss modulus, the imaginary part of the complex modulus E = E + iE . Indeed, the loss modulus is a measure of the energy dissipated per cycle of sinusoidal deformation. Remembering that 0 and ω are the dilation amplitude and frequency, respectively, the time averaged dissipation rate per unit area reads as

D s ≡ 2 0 ωE 2 , Ds ≡ D s E GM ω 2 0 /2 = E E GM , ( 2.64) 
which can be called an effective surface dissipation rate. Off course, one expects that the two routes to total dissipation gives the same result, namely: D = Ds .

(2.65)

A thermodynamic approach

That this is indeed the case has been verified analytically. This provides a check of the consistency between the mechanical and thermodynamic approaches, and confirms that all mechanisms of surface dissipation have been accounted for. The equality of equation 2.65 is also illustrated in figure 2.5. On the left is a plot of the normalized loss moduli as a function of the Péclet number for films with infinite sorption rates with varied valued of the dimensionless adsorption depth. On the right is a plot of the normalized loss moduli as a function of Ω -1 for thick films with varied sorption rates expressed by the Damköhler number. The solid curves are calculated from the mechanical method, and the circles are calculated from the thermodynamic approach. The two approaches are consistent. 

Dominant mechanism of dissipation

Dissipation may originate in diffusion or sorption processes but which mechanism prevails?

The answer is provided by looking at the ratio of diffusion and sorption contribution, which turns out to have a remarkably simple expression:

R ≡ D c D a = Da G( √ 2P e), G(u) ≡ sinh(u) -sin(u) cosh(u) -cos(u) , (2.66)
where Da is the Damköhler number defined in equation 2. [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF]. The function G(u) is plotted in figure 2.6. One can identify the limiting behaviors: 

P e → 0, G( √ 2P e) 1 3 √ 2P e, ( 2 
ω → 0, R → k F W 3D , (2.69) ω → ∞, R k F √ 2ωD .
(2.70)

For slow solicitation, the ratio approaches a constant value that depends on film thickness. For fast solicitation, the diffusion contribution becomes negligible with respect to the sorption contribution. We illustrate the importance of each mechanism in figure 2.7. The total normalized dissipation (solid line), and the contributions due to diffusion (•) and sorption (+) are shown for two sets of cases: (i) on the left, Da = 1, and confinement effects are examined by varying the dimensionless adsorption depth h, and (ii) on the right, the thick film acts as an infinite reservoir, and sorption rate is varied through Da. In the left plot, it is seen that the position of the maximum dissipation rate shifts along the abscissa depending on h. At h close to 10, the maximum dissipation occurs at P e 1, which is in the small P e regime. Then, with Da = 1, we see from equation 2.66 and 2.67 that the R ratio is small: sorption is the dominant mechanism, as observed in the curves. This tendency remains when h = 10 -1 , even though the maximum in total dissipation is reached at a moderate Péclet number and the two contributions become comparable.

The transition between sorption dominated-regime and diffusion-dominated regime can be seen more clearly in the right plot, where Da is varied. At low values of Da, when diffusion is faster than sorption, the maximum occurs at P e 10 -4 , Da and G( √ 2P e) are both small, and so is R: sorption prevails. In contrast, at high Da, the opposite is seen. With a maximum of dissipation occuring at P e 10 2 , G( √ 2P e) of order unity and Da large, the R ratio is large too: diffusion prevails. For the intermediate case of Da = 1, both dissipation mechanisms contribute. 

Conclusion

Conclusion

In this chapter, we considered the dissipation inside a liquid film with finite thickness and surfactant-laden interfaces, subjected to small deformations. We have been able to derive the complex response modulus of the interface and to provide an extension of the well-known Lucassen model that accounts for sorption kinetics and finite size effects. As a result, we determined how the total dissipation depends on the relevant parameters of the system. To go one step further, we investigated the origin of the dissipation by resorting to an alternative thermodynamic approach which identifies the dissipation source in surfactant diffusion and in sorption processes. The relative importance of those two contributions has then be discussed in the different regimes of our control parameters.

These two complementary approaches allowed us for the first time to make a link between rheological mechanical properties of interfaces and the underlying microscopic mechanisms. However, our approach so far remains limited by the simplifying assumptions required to build a tractable model. In the following, we will attempt to go further and to link these interface properties with the rheology of bubble assemblies by using some numerical methods.

Chapter 3

Physical Problem & Numerical Methods

Introduction

The shearing of a bubble assembly involves a host of intertwined phenomena: the surfactant diffuses and is transported by the flow, the liquid flow depends on the Marangoni stresses imposed at the interface by the inhomogeneous distribution of the surfactant, and the shape of the interface itself evolves in response to flow and surfactant influence. Such two-way coupling between the different effects can only be tackled with numerical methods. In this chapter, we present the level-set method that was used throughout our work. We first present our physical problem and its governing equations. The principle of the level-set method and the discretization schemes are briefly reviewed. Making the level-set method operational for our system is not an easy task: we discuss several challenges that were encountered along the way, as well as possible extensions of the method.

Physical Problem

Geometry

We consider a highly simplified two-dimensional geometry consisting of hemispherical bubbles attached to upper and lower impermeable walls separated by a height H, as shown in figure 3.1. The bubbles are arranged in a hexagonal array, with a distance of 2H/ √ 3 between nearest bubble centers and a liquid fraction of 0.3. Shear flow is imposed by the velocity ±U at the walls, where a no-slip boundary condition is imposed. Periodic boundary conditions are imposed at the sides of the physical domain, such that, for example, a bubble exiting the domain to the right reenters at the left.

Physical equations

Flow dynamics

Both fluids are assumed to be incompressible. Thus, the Navier-Stokes equations take the 

ρ i ∂u ∂t + (u • ∇)u = ∇ • σ, (3.2) 
where σ is the stress tensor for an incompressible, Newtonian fluid: σ = -p Ī+μ i (∇u+(∇u) T ). Equations 3.1 and 3.2 govern the flow in each phase i, with respective densities and viscosities ρ i and μ i . At the walls, we assume a no-slip condition, i.e. no relative motion between fluid and plates. The stress jump across gas-liquid interfaces determines the boundary condition:

[ σ • n] = -γCn -∇ s γ. (3.3)
Here, the brackets denote a jump in quantity across the interface, [x] = (x liqx gas ), and n is the unit normal vector at interfaces, which point outwards from the gas to the liquid (Figure 3.2). γ is the local surface tension and C = -∇ • n is the local interface curvature as seen from the liquid phase. ∇ s = Īs • ∇ is the surface gradient tensor,

Physical Problem

where Īs = Īn ⊗ n. Equation 3.3 says that the total stress jump across the interfaces is balanced by the surface tension. The jump in pressure is balanced by the normal component, -γCn, as given by the Young-Laplace equation. The tangential component, ∇ s γ, balances the jump in traction across interfaces due to Marangoni stresses that arise from variations in surface tension along the interfaces.

Surfactant transport and surface tension

The surfactant molecules in the liquid phase and at the interface are initially uniformly distributed but are transported by the flow when the plates are set into motion. Both within the liquid phase and at the interface, the surfactant is transported by advection and diffusion mechanisms. In the liquid phase, the surfactant concentration F is described by an advection-diffusion equation [START_REF] Erik Teigen | A diffuse-interface method for two-phase flows with soluble surfactants[END_REF]:

∂F ∂t + ∇ • (F u) = D F ∇ 2 F, ( 3.4) 
where D F is the coefficient of diffusion in the liquid. The surfactant concentration along the interface f is also governed by a surface advection-diffusion equation with a source term. The sharp-interface formulation of this mass balance equation is [START_REF] Erik Teigen | A diffuse-interface method for two-phase flows with soluble surfactants[END_REF]:

df dt -u • ∇ s f + f (u • n)(∇ s • n) = -∇ s • (f u s ) + D f ∇ 2 s f + j, ( 3.5) 
where d/dt is the material derivative, and D f is the coefficient of diffusion at the interface. Equation 3.5 involves a source term j, arising from the fact that surfactant is exchanged between the interface and nearby fluid: j = -D F ∇F •n. The attachment and detachment of surfactant molecules to and from the interface are called adsorption and desorption, respectively. The source term is described by the Langmuir model as in chapter 2 [START_REF] Erik Teigen | A diffuse-interface method for two-phase flows with soluble surfactants[END_REF]:

j(f, F ) = r a F s (f ∞ -f ) -r d f. (3.6)
Here r a and r d are adsorption and desorption rate coefficients, f ∞ is the saturated interface concentration, and F s is the concentration in the liquid phase near the interface.

There is no surfactant flux across the upper and lower plates. So, boundary conditions for liquid bulk concentration transport at the walls is:

n pl • ∇F = 0, (3.7) 
where n pl is the unit normal vector to the wall pointing into the fluid (figure 3.2). For interface concentration transport, at the walls we have:

t • ∇f = 0, (3.8) 
where t is the unit tangent vector to the interface. Finally, we need an equation of state for the surface tension as a function of surfactant concentration. The Langmuir equation of state is used here (as in equation 1.7):

γ(f ) = γ 0 1 + RT f ∞ γ 0 ln 1 - f f ∞ , ( 3.9) 
where R, T , and γ 0 are respectively the ideal gas constant, the temperature, and the surface tension for clean interfaces (f = 0).

Chapter 3. Physical Problem & Numerical Methods

The key issue of coupled dynamics.

During T1 events, the system behavior is the result of the coupled problems of fluid flow, interface evolution and surfactant transport. The fluid motion is governed by the Navier-Stokes equations (equations 3.1 and 3.2) and the boundary conditions at liquid-gas interfaces (equation 3.3). These boundary conditions involve the surfactant concentration (equation 3.9), which is in turn advected by the velocity field (equations 3.4 and 3.5). This feedback between the flow and surfactant transport is a complex problem. In this study, we investigate the choreography of these dynamics and the resultant rheological behavior by numerical simulation. In the following section, we will present an overview of the numerical method used to simulate the system described above.

Level-Set Method

Two classes of numerical methods

Numerical simulations of two-phase flows pose two challenges: (i) the resolution of the evolution of the interfaces, and (ii) application of the stress-jump boundary conditions at these interfaces. The problem is rendered more complex when soluble surfactants are present, as their transport must account for advection, diffusion and exchanges between the liquid phase and the interfaces, whose geometry undergoes a continual and complex motion. Methods for resolving interfaces can be classified into two types: "interfacetracking" and "interface-capturing."

Interface-tracking methods

Interface tracking methods use either a dedicated moving grid or a set of connected markers to track the interface. In the front-tracking method the flow field is solved on a stationary structured grid, and the interface is explicitly represented by connected Lagrangian markers that move through the stationary grid [START_REF] Tryggvason | A Front-Tracking Method for the Computations of Multiphase Flow[END_REF]. This method has been used for instance to simulate cleavage of a drop containing soluble surfactants [START_REF] Muradoglu | A front-tracking method for computation of interfacial flows with soluble surfactants[END_REF]. Immersed boundary methods, on the other hand, use an unstructured mesh instead of markers to track the interfaces.

Interface-capturing methods

In interface-capturing methods, the interface is defined implicitly by means of a scalar field. The interface is then captured at each time step by advection of the scalar field with the flow. This class of methods includes the volume of fluid (VOF), diffuse-interface, and level-set methods. An advantage of interface-capturing methods is that a separate Lagrangian mesh is not required to resolve the interfaces. In the volume of fluid method, the scalar field is defined as the volume fraction of one of the phases occupied at each grid cell. While this method is inherently volume preserving, accurate resolution of the interface position and curvature is limited. This is due to the stiffness of the advection equation for the volume fraction function, which goes through a sharp jump from 0 to 1 across the interface. The diffuse-interface method uses a phase-field function that is evolved with the flow using an advective Cahn-Hilliard equation, which controls the resolution of the interface better than the VOF method [START_REF] Erik Teigen | A diffuse-interface method for two-phase flows with soluble surfactants[END_REF]. The level-set method, which will be described in more detail in the next part, uses a signed distance, or level-set, function as its scalar field. Because the level-set function is a smooth function of distance from the interface, stiffness of the advection equation is avoided. The resulting advantage is a robust method of capturing the interface and calculating its local curvature and normal vector. As we shall see further, the limitation of this method is that it is not inherently volume preserving. Even though significant improvements have been made in recent years [START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF], we will have to address this issue in this work.

Definitions and basic principles of the level-set method

The level-set method belongs to the class of interface-capturing methods. in which the interface is defined by the isocontour of a signed distance function. This is the level-set function φ, illustrated on the left side of figure 3.3, and defined as:

φ(x, t) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ d
for x in the liquid phase (film), 0 for x at interface, -d for x in gas phase (bubble).

(3.10) Here, d is the distance between a point in the domain, x, and the nearest interface. Assuming no phase changes in the gas-liquid mixture, interfaces are simply advected by the flow. The motion of the interface is followed by solving [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]:

∂φ ∂t + ∇ • (φu) = 0. (3.11) 
Advection of φ at points away from interfaces, however, results in what is no longer a signed distance function as defined in equation 3.10. The level-set function must therefore be reinitialized at each timestep [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. This point is discussed later in section 3.4.2. Nevertheless, we have a simple method for tracking interfaces that does not require, for example, a complex meshing method. This feature is indispensable for the system under consideration, where surfactant transport has a significant effect on the flow dynamics. The unit vector normal to the interface can be expressed in terms of the level-set function:

n = ∇φ |∇φ| , ( 3.12) 
where derivatives are taken at φ = 0. The interface curvature, C = -∇ • n, can thus be obtained with equation 3.12. The level-set function is also used to define a smoothed Heaviside function, H (φ), with a smoothing parameter, :

H = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 0 i fφ < -, 1 2 1 + φ + 1 π sin πφ if |φ| ≤ , 1 i fφ > . (3.13)
H is illustrated on the right side of figure 3.3. In this work, the smooth width is taken as = 1.5Δx, where Δx is the grid spacing of our cartesian grid. This Heaviside function allows a single-fluid, or distributed, formulation of the governing equations. For example, the density and viscosity can be expressed as a function of φ with a single equation over the entire domain:

ρ(φ) = ρ l H (φ) + ρ g (1 -H (φ)), (3.14) 
μ(φ) = μ l H (φ) + μ g (1 -H (φ)), (3.15) 
In order to capture quantities at the interfaces, such as surface concentration of surfactants or surface tension, we use a smoothed Dirac delta function, defined as δ = ∇H . We shall first introduce some dimensionless parameters of our system, and afterwards give the distributed form of the non-dimensionalized governing equations.

Dimensionless numbers and equations

The Navier-Stokes and surfactant transport equations are implemented numerically in dimensionless form. It is through these dimensionless parameters that different aspects of the dynamical system will be tuned to explore the influence of surfactants on the rheology of our sheared two-dimensional foam. The dimensionless numbers of the system are as follows:

• Re ≡ ρ l HU μ l
The Reynolds number is a measure of the competition between inertial and viscous forces in the flow. The domain height H and wall speed U are chosen as the characteristic length and velocity, respectively. Throughout this work, Re = 1.

• Ca ≡ μ l U γ
The capillary number is the ratio of viscous forces to surface tension. This number is defined both for clean surfaces, Ca 0 ≡ μ l U γ 0 , and for a system containing surfactants, Ca e ≡ μ l U γe , where γ e = γ(f e ) is the surface tension at equilibrium as evaluated with the Langmuir equation of state (equation 3.9). Throughout this work, Ca e = 0.1.
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• P e ≡ UH D The Péclet number is a ratio of the strengths of advective and diffusive mechanisms of surfactant transport. This parameter appears in the surfactant transport equations, and influences homogeneity of surfactant distribution. Bulk and surface values of the diffusion coefficient D F and D f are defined separately, with corresponding Péclet numbers P e F and P e f , respectively. Unless stated otherwise, P e f = 10 3 . In our simulations, P e F varies between 1 and 10 2 .

• Bi ≡ r d H U
The Biot number is a ratio of the sorption and deformation rates. The deformation rate is the system shear rate U/H, and r d is the desorption coefficient. In our simulations, Bi varies between 10 and 10 2 .

• h ≡ fe HFe The dimensionless adsorption depth is a ratio of the surfactant content at the interface and in the bulk, and is defined at thermodynamic equilibrium. As mentioned in chapter 2, this is an indicator of the availability of bulk surfactants for exchange with the bubble surfaces. In our simulations, h varies between 10 -3 and 10.

• β ≡ RT f∞ γ 0
The elasticity number is a measure of the sensitivity of surface tension to variations in surfactant concentration at the interfaces. Here R is the universal gas constant, T is the temperature, f ∞ is the maximum surface concentration, and γ 0 is the surface tension of a clean interface. Throughout this work, β = 1.

• χ = fe f∞ The surface coverage is the ratio of the surface concentration at equilibrium to the maximum concentration. Throughout this work, χ = 0.3 to ensure that the values of surface tension with and without surfactants correspond to a reasonable system. For example, we recover a ratio of surface tensions for saturated and clean interfaces of about 0.65, which is a reasonable value for common surfactants, like SDS or TTAB.

• ρ = ρ ρ l and μ = μ μ l are the dimensionless densities and viscosities, respectively. Throughout this work ρ g /ρ l = 0.1, and μ g /μ l = 0.1.

Distributed form of dimensionless governing equations

The dimensionless equation for advection of the level-set function is:

∂φ ∂ t + ∇ • (φũ) = 0. (3.16)
For the Navier-Stokes equations, the dimensionless continuity equation is written ∇•ũ = 0, and the momentum transport equation is:

ρ ∂ũ ∂ t + (ũ • ∇)ũ = -∇p + 1 Re ∇ • μ( ∇ũ + ( ∇ũ) T + 1 Ca 0 Re γ Cn δΓ + ∇s (γ) δΓ , (3.17)
where the dynamic pressure is used for the dimensionless pressure : p = p ρ l U 2 , and the dimensionless density and bulk viscosity :

ρ = H + ρ g ρ l (1 -H ) , (3.18a) μ = H + μ g μ l (1 -H ) . (3.18b)
In equation 3.17, the dimensionless surface tension is defined as γ ≡ γ γ 0 , where γ 0 is the surface tension between the phases in the absence of surfactants. The non-dimentionalized form of the Langmuir equation of state is then written as:

γ = 1 + β ln 1 -χ f . (3.19)
Finally, the surfactant transport equation along interfaces is:

∂ ∂ t( f δΓ ) + ∇ • ( f δΓ ũ) = 1 P e f ∇ • ( δΓ ∇ f ) + δΓ j, (3.20)
where the dimensionless surfactant flux, j, is :

j = Bi χ 1 -χ Fs 1 χ -f -f . (3.21)
Similarly, the dimensionless equation for surfactant transport in the liquid bulk is expressed as:

∂ ∂ t(H F ) + ∇ • (H F ũ) = 1 P e F ∇ • (H ∇ F ) -h δΓ j. (3.22)
Now, with the distributed form of the non-dimensionalized governing equations, the numerical implementation is greatly simplified. The finite difference schemes for this system of equations will be discussed next.

Numerical schemes

We include here a summary of the meshing of the domain and the finite differencing schemes used to solve the governing equations. The usual notation for finite differences will be used : the time index, n, will appear in the superscript, and spatial indices i, j, and k, corresponding to the spacial coordinates (x i , y j , z k ), will appear in the subscripts. The physical domain is discretized into a cartesian grid, with equal grid spacing in all directions : Δx = Δy = Δz. Note that we only show here results from two-dimensional simulations. In practice, because the code is actually three-dimensional, they are obtained by choosing a system size in the y dimension which is very small. For the simulations a so-called Marker And Cell (MAC) grid is used. This type of grid decomposes the domain into cells whereby the velocities are defined at the cell boundaries, and scalar quantities are defined at their centers [START_REF] Náraigh | Linear instability, nonlinear instability and ligament dynamics in three-dimensional laminar two-layer liquid-liquid flows[END_REF], as illustrated in figure 3.4.
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Figure 3.4: Marker and Cell grid. Reproduced from reference [START_REF] Titta | Simulations level-set d'un amas de bulles cisaillées: écoulement et dynamique des tensioactifs[END_REF] .

Advection of the level-set function

The discretized advection equation for the level-set function, φ, is:

φ n+1 -φ n Δt = -∇ • (φu) n+ 1 2 . (3.23)
An explicit time discretisation is used for the advection term, -∇ • (φu) n+ 1 2 , namely a third-order Adams-Bashforth scheme [START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF]:

φ n+1 -φ n Δt = - 23 12 ∇ • (φu) n - 4 3 ∇ • (φu) n-1 + 5 12 ∇ • (φu) n-2 (3.24)
Spatial derivatives of φ are implemented with the 5 th order Weighted-Essentially-Non-Oscillatory (WENO) scheme [START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF].

Navier-Stokes equations

For the incompressible Navier-Stokes equations (3.17) a standard projection method is used. The flow is resolved using finite difference. Specifically, the advection term is discretized in time using a third-order Adams-Bashforth scheme and fifth-order WENO in space, as is done for advection of the level-set function (equation 3.24). Central differences are used for spatial derivatives in the viscous terms and in the distributed form of the surface tension. The pressure is solved iteratively using a mixed Jacobi/Gauss-Seidel approach [START_REF] Titta | Simulations level-set d'un amas de bulles cisaillées: écoulement et dynamique des tensioactifs[END_REF].

∇ • u n+1 = 0, (3.25) and u n+1 -u n Δt = -(u • ∇u) n+ 1 2 - 1 ρ n+1 ∇p + 1 ρ n+1 1 2 (F n+1 + F n ) + 1 ρ n+1 Re ∇ • (μ∇u) + ∇ • μ(∇u) T n+ 1 2 (3.26)

Surfactant transport equations

For the surfactant transport equations (3.22 and 3.20), the advection terms are discretized as described above using a third-order Adams-Bashforth scheme for time discretisation, and spatial derivatives are discretized using a fifth-order WENO scheme. A Crank-Nicholson scheme is used for the diffusive and source terms, where spatial derivatives are discretized using central differences.

(δf ) n+1 -(δf ) n Δt = -∇ • (δf u) n+ 1 2 + (δj) n+ 1 2 , (3.27) (H F ) n+1 -(H F ) n Δt = -∇ • (H F u) n+ 1 2 -(δhj) n+ 1 2 + 1 P e F [∇ • (H ∇F )] n+ 1 2 , ( 3.28) 
where the advection term is obtained at time n + 1 2 explicitly from its values at times n, n -1, and n -2 using the 3 rd order Adams-Bashforth scheme :

-∇ • (uδf ) n+ 1 2 = - 23 12 ∇ • (δf u) n - 4 3 ∇ • (δf u) n-1 + 5 12 ∇ • (δf u) n-2 .
The diffusion and source terms at time n + 1 2 are approximated with the semi-implicit Crank Nicolson scheme. For the source term, this looks like :

(δf u) n+ 1 2 = 1 2 (δf u) n+1 + (δf u) n .
We summarized in this section the level-set method used to capture the evolving interface and the general numerical scheme used to solve the governing equations for our 2D sheared foam. The method described above was implemented in a Fortran code developed by Peter Spelt and collaborators for clean two-phase flows, and extended to include surfactants in the PhD work of Andrea Titta [START_REF] Titta | Levelset simulations of a 2D topological rearrangement in a bubble assembly: effects of surfactant properties[END_REF][START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF][START_REF] Náraigh | Linear instability, nonlinear instability and ligament dynamics in three-dimensional laminar two-layer liquid-liquid flows[END_REF]. This code was used in the present work to explore the parameter space relevant to surfactant dynamics, and which involves the diffusivity through the Péclet number, the adsorption rate through the Biot number, and confinement effects through the dimensionless adsorption depth. Numerical challenges appeared in the course of the exploration of this parameter space, requiring some modifications of parts of the method. In the following section we will describe these numerical challenges, our solutions, and some of the preliminary work completed towards simulating T1 rearrangements in larger bubble assemblies.

Numerical challenges and developments
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Surfactant leakage

A well known limitation of the level-set method is that it is not inherently mass preserving. This issue has been well resolved for the clean two-phase flow solver used herein [START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF]. While non-conservation of surfactant -"leakage" for short -had been encountered in the work of Titta et al., it was mitigated by modification of the wall boundary conditions for the surfactant transport equations [START_REF] Titta | Simulations level-set d'un amas de bulles cisaillées: écoulement et dynamique des tensioactifs[END_REF]. However, leaks were sprung anew in this work as our simulations were pushed beyond the parameter space heretofore explored. In particular, the simulations produce significant leakage at Péclet numbers close to or greater than 10 2 , when advection dominates over diffusion. We investigated this issue first by performing some basic kinematic tests, where velocity does not result from solving the Navier-Stokes equation but is explicitly imposed.

A basic kinematic test

For a first test, we consider a rigid body translation of the entire fluid (u = î), which is composed of a circular bubble immersed in the liquid. Initially, surfactant concentrations in the bulk and at the surface are uniformly F = 1 and f = 1. Because the fluid undergoes no deformation, surfactant concentration should remain constant and uniform during a simulated rigid body translation. Moreover, there should be no exchanges between the interface and liquid bulk, as Bi = 0.

What we find, however, is a steady leakage of surfactant from the sides of the bubble. Figure 3.5 shows snapshots of the surface concentration at t = 0 on the left, and on the right at t = 1.152, after the bubble has completed one lap through the periodic domain. Already after one lap the initial concentration f = 1 only remains in some small neighborhood of the top and bottom of the bubble (figure 3.5b), while f has fallen to half its initial value at the sides. This trend continues as the simulation time runs on, with the leakage spreading along the bubble sides towards the top and bottom. A clue to the source of the leak was the appearance of a halo on either side of the interfaces on the maps of f in the entire domain, as illustrated in figure 3.6. Similar degradation of the surfactant signal was observed in other kinematic tests, including a rigid body rotation and a simple Couette flow. This halo effect in fact pointed to some numerical error associated with the treatment of the smoothed delta and Heaviside functions.

The transport equation for surfactants at the interface is :

∂ ∂t (fδ) + u • ∇ (fδ) = 0. (3.29)
In the original code, the surface concentration is obtained from the smoothed Dirac function δf as f = (δf ) /δ, where δ is calculated as the gradient of the Heaviside function, which is obtained explicitly from the level-set function. This is done at every time step.

The leak thus appears to have been sprung at this step : (δf ) is smearing out on the left and right sides of the bubble, while the distribution function, δ, has not been smeared correspondingly by this numerical advection step.

Additional transport equations

It may seem natural to assume that, physically, the interface maintains a constant thickness during its evolution with the flow, but this turns out to be untrue numerically. The discretization for the advection term in equation (3.20), ∇ • (δf u), uses an explicit, 3 rd order finite differencing scheme in time (Adams-Bashforth), and spatial derivatives of (δf ) are obtained with a 5 th order WENO finite difference scheme. While these finite difference schemes are accurate to high order, advection of a delta function (i.e. the interface) in the normal direction will still produce some numerical diffusion. This is inevitable when the number of grid cells spanned by the delta function (smooth-width) is kept small. So, an alternative method is to advect the delta function as well, in the hopes that it will be smeared out appropriately in order to reliably extract the local surface concentration, f , from (δf ). The advection term in the bulk transport (equation (3.22)) also produces some numerical smearing across the interface thickness, so that extraction of bulk concentration, F = (H F ) /H , gives some surfactant leakage when the Heaviside function is computed directly from the level-set function at each time step. The transport equation
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for the Heaviside equation is :

∂H ∂t + u • ∇ (H ) = 0, (3.30)
from which the transport equation for the delta function can be derived, first by taking the gradient of equation (3.30) :

∇ ∂H ∂t + ∇ (u • ∇ (H )) = 0,
then expanding :

∂ (∇H ) ∂t + (∇u) • (∇H ) + (∇ (∇H )) • u = 0.
By definition, ∇ (H ) = nδ, where n is the unit normal vector to the interface pointing out from the gas to the liquid. After substituting and taking the dot product with n on the left, the previous equation can be reformulated as :

n • ∂ (nδ) ∂t + n • (∇u) • (nδ) + n • ∇ (nδ) • u = 0.
The first term simplifies as :

n • ∂ (nδ) ∂t = n • ∂n ∂t δ + n • n ∂δ ∂t = 1 2 ∂ |n| 2 ∂t δ + ∂δ ∂t = ∂δ ∂t .
Similarly, the third term can be rewritten as :

n • ∇ (nδ) • u = (∇δ) • u,
and so the transport equation for the delta function becomes : .31) as noted between equations ( 21) and ( 22) in reference [START_REF] Erik Teigen | A diffuse-interface method for two-phase flows with soluble surfactants[END_REF]. The solution is then to divide (fδ) by the advected δ function rather than the one calculated explicitly from the level-set function. Similarly, we divide (F H ) by a function H that is advected as:

∂δ ∂t + (n • ∇u • n) δ + u • ∇δ = 0, ( 3 
∂H ∂t + u • ∇H = 0. (3.32)
Simple validation tests worked well for the method where δ and H functions are initialized at t = 0 and then advected separately in order to extract surface and bulk concentrations of surfactants. The simulations reached a steady state with effectively no leakage of surfactants. Figure 3.7 shows the time variation in the liquid bulk and at interfaces of total surfactant mass relative to its initial value. However, when this method is applied to our sheared bubble assembly, we notice excessive smearing of δ and H , particularly near the contact lines. This effect produced numerical instabilities. A fix for this was to reinitialize the delta and Heaviside functions at the beginning of the next time step, after f and F have been recovered from the current time step. In the end, leakage was reduced from a range of 10% -40% to only 1% -2% on average for a simulation long enough to include 5 T1 rearrangements. Such a low level of leakage is acceptable. 

Pinned contact lines and level-set reinitialization

In simulations that produced very high bubble deformation, we encountered some numerical instabilities arising from two aspects of the re-distancing, or reinitialization step for the level-set function: (i) the pinning of the contact lines at the walls, and (ii) the reinitialization in the blind zone near the contact lines. Recall that at the start of every new time step, the Level-set function is advected to capture the new position of the interfaces, φ = 0, by [START_REF] Solomenko | Two-phase flows over complex surfaces: towards bridging the gap between computations and experiments with application to structured packings[END_REF]:

∂φ ∂t + ∇ • (φu) = 0. (3.33) 
Because the flow field is generally not uniform in the direction normal to the interfaces, this step yields an updated φ that is no longer a distance function away from the interface. A resulting "piling" and "twisting" of the isocontours of φ away from the interface will produce errors in computations of geometric quantities such as the normal to the interface its curvature. Therefore, after the advection step (equation 3.33) the level-set function is reinitialized by iteratively solving over a fictive time, τ , the following equation:

∂φ ∂τ + sgn(φ 0 )(|∇φ| -1) = 0, (3.34) 
where sgn(φ 0 ) is the sign of the advected level set function before reinitialization. This reinitialization equation forces |∇φ| = 1 along the characteristics starting at the interface and advancing normal to the interface into the liquid and gas phases. Special care has be taken in the choice of discretization schemes for equation 3.34 in order to avoid potential mass conservation problems caused by unintended shifting of the interfaces [START_REF] Solomenko | Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: A comparative study[END_REF]. The reader is referred to [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF][START_REF] Solomenko | Two-phase flows over complex surfaces: towards bridging the gap between computations and experiments with application to structured packings[END_REF][START_REF] Sussman | A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow[END_REF] for more details.

Pinned contact lines

In order to ensure the no-slip boundary conditions, the contact lines have been pinned to the walls [START_REF] Titta | Simulations level-set d'un amas de bulles cisaillées: écoulement et dynamique des tensioactifs[END_REF]. This step occurs after advection by equation 3.33, and before reinitialization by equation 3.34. In the original code, pinning of the contact lines is done by 3.4. Numerical challenges and developments copying ghost cell1 . This is only done for ghost cells that are within 3 grid spacings of φ = 0. Moreover, these ghost cells are not updated during the reinitialization step in order to prevent any movement of the contact line. This method of prescribing ghost cell values works well at contact angles near the initial value of 90 • . At much larger or smaller contact angles, however, numerical instabilities can appear. We have updated the method of fixing the contact line by accounting for the contact angle when extrapolating φ to the ghost cells. The contact angle θ is computed from inside the wall (layers P 1 and P 2 in figure 3.8 left) as:

cos θ = ∂φ ∂z |∇φ| . ( 3.35) 
The ghost cell values in layer P 0 are then extrapolated from layer P 1 using equation 3. [START_REF] De Groot | Non-equilibrium Thermodynamics[END_REF]. This method has allowed us to simulate T1 rearrangements without limitations due to the contact angle.

The blind spot

When there is a contact line that does not intersect the wall perpendicularly, there will be a blind zone on the obtuse side of the interface, where the direction of the characteristics are not well defined (Figure 3.8). We can see in the right hand image of figure 3.8 that, in our simulations, the isocontours of φ develop some inflection points in order to cross the top and bottom walls at right angles in the blind zone. As previously mentioned, these artifacts will corrupt a proper evaluation of delta and Heaviside functions in this region, as well as the local curvature of the interface. The physics involving surface tension is not faithfully described. This issue has been previously observed and has been treated by multiple methods for defining ghost cells for φ at the walls in the blind zone [START_REF] Solomenko | Two-phase flows over complex surfaces: towards bridging the gap between computations and experiments with application to structured packings[END_REF][START_REF] Xu | Reinitialization of the Level-Set Function in 3d Simulation of Moving Contact Lines[END_REF][START_REF] Della Rocca | Level set reinitialization at a contact line[END_REF]. The point is, that Chapter 3. Physical Problem & Numerical Methods there is some information missing in this blind zone : the direction of the characteristics. Moreover, this information should be coming from somewhere beyond the wall. So can we tell in equation 3.34 what direction to take when we are in this blind zone? One way is to extrapolate this direction, or wall angle for the isocontours of φ, into ghost cells. In fact, the right hand side image in figure 3.8 does use a ghost layer at the walls, where the cell values are extrapolated vertically from the domain. This method, however converges to wall angles of π/2, as explained in [START_REF] Solomenko | Two-phase flows over complex surfaces: towards bridging the gap between computations and experiments with application to structured packings[END_REF][START_REF] Della Rocca | Level set reinitialization at a contact line[END_REF], due to feedback between information propagating towards (by extrapolation) and away from (by solving along the characteristics in equation 3.34) the walls. Della Rocca & Blanquart propose to impose a so-called relaxation equation in wall-adjacent cells in the blind zone [START_REF] Della Rocca | Level set reinitialization at a contact line[END_REF]:

∂φ ∂τ = sgn(φ 0 ) ∂φ ∂n |∇φ| 0 - ∂φ ∂n |∇φ| . ( 3.36) 
Xu & Ren propose a straightforward extrapolation of the contact angle away from the interface in the wall-adjacent cells of the blind-zone, by [START_REF] Xu | Reinitialization of the Level-Set Function in 3d Simulation of Moving Contact Lines[END_REF]:

∂θ ∂τ + sgn(φ)n s • ∇ s θ = 0. (3.37) 
Both methods have been tested, and neither have stabilized the calculation. In the following, we therefore used the original implementation of the code. In the end, the noise at the blind spot that was produced in the advected delta and Heaviside functions was avoided by re-initializing these two functions at each time step, as explained in section 3.4.1. Given the difficulties associated with the solid plates and the contact line, one may wonder whether it is possible to dispense entirely with them. This is the idea behind shear-periodic boundary conditions.

Shear-periodic boundary conditions

Towards simulating a more physically realistic sheared foam, we have modified the top and bottom boundary conditions by replacing confining walls with a shear-rate dependent periodicity. The so-called shear-periodic boundary condition (SPBC) corresponds to an infinite bubble arrangement, as illustrated in figure 3.9. The computational domain is the center box, and the top and bottom rows illustrate the continuation of the self repeating infinite bubble arrangement. This configuration has the advantage that the bubble deformations are no longer artificially constrained by pinned contact lines, and thus better resembles T1 transformations as they would occur in the bulk of a foam.

Implementation of SPBC

The same steady average shear rate is maintained by fixing the horizontal speeds of the top and bottom boundaries to Uî and -Uî, respectively. A horizontal layer of ghost cells above and below the computational domain are used as for the case of no-slip, impermeable wall boundary conditions. However, here the bottom ghost layer corresponds to a horizontal shift of the top row that lies within the computational domain, and vice versa. Below, we describe the computation of the bottom layer of ghost cells for implementation of the SPBC, and note that the treatment of the top layer is completely analogous. The Figure 3.9: With shear-periodic boundary conditions, the physical domain simulates an infinite bubble array. The computational domain is inside the red dashed border.

relative horizontal distance after time t between corresponding points at top and bottom boundaries is 2Ut. So, after time t:

u(x, z = 0) = u(x + 2Ut, z = H), ( 3.38) 
for any quantity u. Now, x will be some grid cell location, but x + 2Ut is generally not. Consequently, ghost cell values below the domain must be interpolated using nearby cell center values of the corresponding position in the top row.

To do this in practice, the relative distance between X and the nearest cell center is needed. The horizontal position X of the particle at z = H that corresponds to the particle at (x, z = 0) is X = x + 2Ut -L x (x + 2Ut)/L x where is the floor function. Next, we get the grid cell number wherein X is located as i X = X /Δx +1. This assumes that if 0 ≤ X ≤ Δx, then i X = 0. The precise location X is then relative to the cell center. The latter is at (i x -1/2)Δx, so the relative position ΔX is ΔX = X -(i x -1/2)Δx. Once ΔX is obtained, we use a Lagrange polynomial interpolation fitted through u at {i xk, ..., i x -1, i x , i x + 1, ..., i x + k}, with 2k + 1 the number of points used for the interpolation:

P = k n=-k u n n (ΔX ), k (ΔX ) = m =k (ΔX -mΔx) (k -m)Δx . ( 3.39) 
Interpolation by first order polynomials have shown to be sufficiently stable, which can be expected since the boundary speed is constant. In fact, tests employing higher order Lagrange polynomials have produced effects of Runge's phenomenon, which is characterized by parasitic oscillations. Such oscillations have been observed at the gas-liquid transition, where the smoothed delta and Heaviside functions have strong gradients, for example.

Though the shear-periodic boundary conditions could be used, we have observed in several cases that they lead to the rupture of liquid film. With solid walls, the distance between contact lines remains fixed. With SPBC, there is no such constraint. The liquid film intersecting the top and bottom boundaries may thus becomes so thin that it eventually breaks, which prevents the investigation of T1 phenomenon. In a real foam, such film rupture would be opposed by a disjoining pressure. This suggests that the disjoining pressure also needs to be included in our description, at least in an effective manner, to prevent unwanted bubble coalescence.

Disjoining pressure

We want to first define a disjoining pressure as a function of the film thickness and then apply the pressure at the interfaces. We generally do not have uniform flat films, so the first question is how to define the film thickness. For this we can take the maximum value of level-set function as a first approximation. The loci of the maxima form "ridge lines" where the level set function abruptly changes slope. For example, in figure 3.10 the points of the ridge line are obtained numerically by imposing the condition that |∇φ| < 0.9. The film thickness is then twice the value of the level-set function at these points: h = 2 × φ max . The disjoining pressure Π(h), which is some function of film thickness h, will thus be defined at the points on the ridge lines. Now, supposing that we know the form of Π(h), the question is how to transfer its values from the ridge lines to the interfaces, where this pressure is actually applied. For this, Bastien Di Pierro proposes to use a method of characteristics analogous to our redistancing method for the level-set function. The idea is to send Π(h) down the hill along the gradient of the level-set function from the ridge lines to the interfaces by iteratively solving over a fictive time, τ , the following equation :

∂Π ∂τ -n • ∇(Π) = 0, (3.40) 
where the down hill direction, -n = -∇(φ)/|∇(φ)|, is indicated by the cyan arrows in figure 3.10. Once the distribution of Π is obtained at interface-adjacent cells via equation 3.40, the idea is to include this force in the source term in the momentum balance equation as is done for the surface tension, and as done in [START_REF] Li | Macroscopic Model for Head-On Binary Droplet Collisions in a Gaseous Medium[END_REF].

The present scheme provides a well-defined procedure to implement disjoining pressure. Choosing a simple form for Π(h), such as an exponential decay with a characteristic length of a few grid spacings, the next step would be to examine whether such effective disjoining pressure is sufficient to prevent rupture of thin films. If so, this would make possible the systematic use of shear-periodic boundary conditions. Time has lacked, however, to complete this program.

Extension to other geometries: a bubble in rotating water

This code is adaptable to other flow geometries for two-phase systems with soluble surfactants. Here, we will briefly present some simulations of a bubble in a rotating flow that were performed as a complement to experimental work of collaborators at the Laboratoire de Mécanique des Fluides et d'Acoustique in the ANR project Surfbreak [START_REF] Rodgar | Bubble behaviour in a horizontal high-speed solid-body rotating flow[END_REF]. The purpose of this study is to shed light on the influence of surfactants on the physics of bubbles in high inertia and high vorticity flows. Specifically, the question is: in such a flow, how are the bubbles distributed and how do they deform, and under what conditions do they breakup or coalesce?

The experimental setup, illustrated in figure 3.11, consists of a single gas bubble injected into a cylindrical tank with a diameter of 11 cm and depth of 10 cm, which is set into steady rotation about its horizontal axis. Experiments have shown that the bubble tends to an equilibrium position in the cylinder, where buoyant forces are balanced by hydrodynamic forces of lift, drag, added mass, and pressure. It was observed that the equilibrium position approaches the tank's center at high rotational velocities ω, as if it were trapped in the vortex core. Under these conditions, the bubble is observed to strongly deviate from its initial spherical shape. It will stretch out along its axis of rotation and even break up at high enough ω. By experiment, access to quantities such as the flow profile, lift and drag forces on the bubble, and of course surfactant distribution is either limited or not currently available. To obtain a more detailed view, we adapted our code to perform numerical simulations of a 2D version of this system. The simulations were run by Thibaut Juhan, who we supervised in his Master's internship. A first parametric study was conducted on a system with no surfactants in order to identify value ranges for which the bubble reaches an equilibrium position, and then to describe the relative influence between inertial, viscous and buoyancy forces on the position and shape of the bubble at equilibrium. We were also able to calculate drag and lift forces explicitly from the velocity field, which could only be obtained indirectly from experiments. We also ran simulations for a system with insoluble surfactants (Bi = 0) to compare with the dynamics of a clean bubble. Streamline plots for a clean and contaminated bubble at equilibrium under the same hydrodynamic conditions are shown side-by-side in figure 3.12. We see that the presence of surfactants affects both the shape of the bubble and the wake behind it. Comparisons between the simulations and experiments were limited, however, since the simulated geometry was in 2D. Though 3D simulations are feasible with this code, these were not explored due to the time limits of Thibaut's internship. This work could also be extended to explore the effects of surfactant exchanges, though some issues of leakage associated with the boundary conditions at the cylinder rim will have to be addressed. 

Validation test

In this part, we will detail some validation tests performed on the new version of the code described in sections 3.4.1 and 3.4.2.

A single bubble in a creeping shear flow

Problem statement Here we seek to validate our numerical method by comparing its results to an analytic solution of the problem of a surfactant laden bubble immersed in a fluid undergoing a linear Stokes flow [START_REF] Stone | The effects of surfactants on drop deformation and breakup[END_REF]. Consider a neutrally buoyant bubble with initial radius a and viscosity μ immersed in a suspending fluid of viscosity μ. Far from the bubble, a simple shear flow is prescribed with shear rate G, given in Cartesian coordinates by u ∞ = Gzî. As before, the jump in traction across the interface is maintained by surface tension, γ * . However, now the surface tension is assumed to vary linearly with surfactant concentration:

γ * (f ) = γ 0 (1 -βf ) , ( 3.41) 
where γ 0 is the surface tension for a clean surface, and β = f eq RT /γ 0 is the elasticity number, and f = f * /f eq is the dimensionless surface concentration. The surfactants are assumed to be insoluble and highly diffusive at the interface, so the source term is removed by setting Bi = 0.

Solution

Stone & Leal [START_REF] Stone | The effects of surfactants on drop deformation and breakup[END_REF] give the first order corrections for the deformation and surfactant distribution of a nearly spherical bubble in a general linear creeping flow (equations 18a & 18b). For the simple shear flow, u ∞ = Gzî considered, the rate of strain tensor, E, non-dimensionalized by G, is :

E = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 1 2 0 0 0 1 2 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . (3.42)
The bubble shape is found to satisfy the equation:

r = 1 + Ca eq b r (t) xz r 2 , ( 3.43) 
where Ca eq = Ca 0 /(1β) is the capillary number for an undeformed surfactant-laden bubble, and b r (t) is a time-dependent shape function. At steady-state, this shape function is given by : b r = 5 4

(16 + 19λ) + 4βα/(1 -β) 10(1 + λ) + 2βα/(1 -β) , ( 3.44) 
where λ = μ/μ is the viscosity ratio between the fluid inside and outside the bubble, and the dimensionless parameter α is the ratio of Péclet and capillary numbers :

α = γ eq a μD f = P e Ca eq . (3.45)
Similarly, the interfacial surfactant distribution in a creeping linear flow is :

f = 1 + P e b f (t) xz r 2 , ( 3.46) 
with b f (t) describing the time-dependent surfactant distribution. The steady-state surfactant distribution factor is :

b f = 5 10(1 + λ) + 2βα/(1 -β) . (3.47)
All those predictions are valid only when assuming Ca eq 1, P e f 1, and λ = O(1). Note that for the above formulae the Péclet and capillary numbers are defined at the bubble scale :

Ca eq = μGa γ 0 (1 -β) , Pe= Ga 2 D f . (3.48)

Tests

For all results presented here the Reynolds number, elasticity number and bubble-to-liquid viscosity ratio are Re = 0.1, β = 0.1 and λ = 0.1, respectively. X-Z cross sections of the bubble are taken here to compare bubble shapes and surfactant distributions produced by the simulations and the Stone & Leal theory. Figure 3.13 shows bubble contour and surfactant distributions for Ca = 0.1 and P e = 1/8. Though a small deviation exists, the numerical and theoretical curves are very close to each other. As Ca and P e are decreased by a factor of 10, reaching value where the theory is almost exact, we observed that the agreement is even better (note however that the bubble approaches a circle, which make the comparison less informative so we did not show the corresponding curves). We now seek to compare quantitatively our simulation results to the theory. Recall here that the Stone & Leal solutions assume small deformations of an initially spherical bubble. This deformation is typically quantified as follows :

D = L -B L + B , ( 3.49) 
where L and B are the span and breadth of the bubble, respectively. Two methods have been attempted for obtaining L and B : first as the maximum and minimum distances of the discretized bubble surface from its center, and second by fitting an ellipse to the So, instead of using the deformation, D, here we compare simulated and theoretical bubble shapes by means of a Hausdorff distance, which is a measure of how far two sets of points are from each other (see Appendix 3.6 for details). Table 3.2 shows results for cases A-D, where D (T S) is the Hausdorff distance between theoretical and simulated bubbles at steady state, and D (S 0 S) is the Hausdorff distance between the initial spherical bubble and the simulated bubble at steady state. Note that for all cases, D T S is on the order of the length of one grid spacing or less, which is Δx = 1/104 ≈ 0.0096. So we can affirm that the simulated and theoretical bubbles are "identical" to within the grid resolution. The last column in table 3.2 shows the maximum deviation between simulated and theoretical surfactant concentrations at the bubble surface, defined here as :

Err f = max f theory -f simulation max f theory -f eq , ( 3.50) 
where f eq = 1, so that the denominator is the amplitude of the concentration variations predicted by the theory. The error on surfactant profile obtained in this way is not more than 5% when the theory is fully valid (case D, P e = Ca = 0.01).

Convergence tests

We illustrate here one example of test in numerical convergence. We want to know how the simulation result varies with the grid size and whether it converges when the grid is refined. We used three grids sizes over a cubic domain, as listed in the first column of table 3.3. The coarsest grid, containing 72 cells in each direction, is near the lower limit for the code to run without crashing. The code sometimes crashes within the first 100 time steps. We think that this is because the initial velocity, a Couette profile, acts as a kind of shock or strong impulse for which the Navier-Stokes solver must quickly adapt the flow field to satisfy stress jumps across the interfaces. This issue appears very rarely when the grid is further refined. For a grid containing 160 cells in each direction, the simulations become computationally expensive in memory and take about 5 days to reach steady state. When the grid is refined, there is no change in the bubble shape and surfactant distribution along the interface when looking at figure 3.15, meaning that the convergence is reached. This can be confirmed quantitatively when looking at the errors (table 3.3). The Hausdorff distance is decreasing when the grid is refined, as expected. 

Nb. of Cells

Conclusion

In this chapter, we presented the physical equations governing our problem and introduced the basics of the level-set method. In the presence of surfactants, there is a (large) number of pitfalls that can prevent the level-set method to work properly. We discussed in detail the surfactant leakage and the difficulties with pinned contact lines. We also introduced a number of possible extensions -shear-periodic boundary conditions and disjoining pressure-that could in the future make the numerical simulations more robust and more relevant to real physical systems. In practice, the main achievement is a process to solve leakage of surfactant and to ensure proper behavior of the smooth Dirac delta function which was thwarted by numerical diffusion. Whereas previous simulations were severely restricted, this improvement in method enabled us to explore a much wider region 3.6. Conclusion Figure 3.14: Effect of grid refinement on the bubble shape. The computational domain is divided into 72 3 , 104 3 , and 160 3 cells for the coarse, mid, and fine grids, respectively (Ca = 0.01, P e = 1/8). Left: bubble contour. Right: surfactant concentration along the interface.

of the parameter space. These results are reported in the next chapter. As a final remark on the method, we note that it is demanding in computational power: a typical simulation involves 48 processors for 24 -48 hours. The results presented in chapter 4 were made possible by having access to computing facilities. some external force, F tot , is required to balance the forces of the bubble assembly on the walls. Note that F tot is a force per unit width for the 2D simulations studied herein. F tot contains three contributions: viscous friction from the gas and liquid phases, and the contact line forces. These are denoted F vg , F vl , and F cl , respectively. At the bottom wall, the contributions to F tot are:

• F vg = gas-wall μ g (∂u/∂z) dx

• F vl = liquid-wall μ l (∂u/∂z) dx

• F cl = -cl γ n z sgn(n x )
where n is the unit normal to the interface pointing into the liquid. The forces at the top wall have the opposite sign. The evolution of these forces during the course of simulated T1 rearrangements are illustrated in the left plot of figure 4.2. The system typically reaches a steady state after two T1 rearrangements, and the contact line forces tend to dominate.

The total injected power is the sum over the top and bottom walls of wall speed U times the total wall force F tot :

P inj = (UF tot ) bot -(UF tot ) top . (4.1)
This is illustrated by the green curve in the right plot of figure 4.2. The method of computing the different mechanisms of energy dissipation in the simulations will be explained in the next part. 

Viscous dissipation

Mechanical energy injected into the system through the walls is partly dissipated in the fluid bulk by viscosity. The local rate of viscous dissipation is obtained from the velocity field:

D loc v = ∇u : μ ∇u + (∇u) T , ( 4.2) 
where μ is written in the distributed form as defined in equation 3.15. The total viscous dissipation is obtained by integration over the system's volume:

D v = V D loc v dV. (4.3)
The energy dissipation rate is normalized throughout this chamter by ρ l U 3 H, so that the dimensionless viscous dissipation rate is defined as:

Dv = D v ρ l U 3 H = 1 Re V Dloc v d Ṽ . (4.4)
Figure 4.2 (right) shows the injected power Pinj and the total viscous dissipation Dv as a function of time t for an example simulation. We observe that, once the steady state is reached, the average values of the two quantities do not coincide. This indicates that an additional source of dissipation is present.

Surfactant dissipation

There is also dissipation of mechanical energy associated with surfactant dynamics, what we call an effective surface dissipation. A question addressed in this work is: what is exact source or mechanism of this energy dissipation? Here, we present three formulations for the surface dissipation and show that, to a good approximation, their time averages are equivalent.

•Thermodynamic formulation From the thermodynamic formulation defined in chapter 2, the effective surface energy dissipation rate is expressed through the local entropy generation rate due to: (i) surfactant diffusion in the liquid solution, and (ii) surfactant sorption at bubble surfaces. Note that we here neglect the contribution of surface diffusion as we assumed it is negligible (large surface Péclet number P e f = 10 3 ). This was checked numerically.

The expression for the time dependent dissipation rate per unit volume due to diffusion in bulk is:

D loc c (t) = D F RT (∇F ) 2 F , ( 4.5) 
where D F is the bulk diffusivity, R is the ideal gas constant, and T is the temperature. The total diffusive dissipation rate D c (t) is obtained by convolution of equation 4.5 over the volume with the smoothed Heaviside function H :

D c (t) = V D loc c (t)H dV. (4.6)
The dimensionless form is obtained by normalizing D c by ρ l U 3 H such that:

Dc (t) = χβ h P e F Re Ca 0 V ∇ F 2 F H d Ṽ . (4.7)
Recalling equations 2.53 and 2.55, the contribution of sorption to the local dissipation rate per unit area is: The total time dependent contribution is obtained by integration over the interfaces by convolution with the delta function:

D loc a (t) = -jA = -jRT ln F e (f ∞ -f e ) f e f F s (f ∞ -f ) . ( 4 
D a (t) = Γ D loc a (t)δ Γ dΓ, ( 4.9) 
and the dimensionless dissipation rate due to sorption is then:

Da (t) = - χβ Re Ca 0 Γ jδ Γ ln (1 -χ) f (1 -χ f ) Fs d Γ, (4.10) 
where the influence of Bi is contained in the flux factor j:

j = Bi 1 -χ Fs (1 -χ f ) -(1 -χ) f . (4.11)
The total effective surface dissipation is the sum of the contributions of diffusion in the liquid bulk and sorption at the surfaces:

D thrm s (t) = D c (t) + D a (t). (4.12) 
If . denotes an average over time in steady state, we finally have

D thrm s = D c + D a . ( 4.13) 
•Mechanical formulation For a second formulation of the effective surface dissipation, we will consider the mechanical energy balance. Starting with the rate of change of the total kinetic energy K:

dK dt = v ρu • Du Dt dV, ( 4.14) 
The Navier-Stokes equation 3.2 and the boundary condition 3.3 can be reformulated in distributed form [START_REF] Titta | Levelset simulations of a 2D topological rearrangement in a bubble assembly: effects of surfactant properties[END_REF] as

ρ Du Dt = ∇ • T tot
where we define the total stress tensor T tot = μ ∇u + (∇u) T + δγI s . This yields:

dK dt = v u • (∇ • T tot ) dV. (4.15)
Expanding the right hand side gives:

dK dt = v ∇ • (u • T tot ) dV - v (∇u : T tot ) dV. (4.16)
The injected power P inj is recovered in first term on the right hand side after a reformulation using the divergence theorem: The viscous dissipation rate D v (t) is recovered in the first term on the left. The second term is the rate of change of surface energy, and can be rewritten as:

v ∇ • (u • T tot ) dV = S u • T tot • ndS = F top tot U -F bot tot U. ( 4 
D mech s (t) = v (∇u : δγI s ) dV = Γ γ (∇ s • u) dΓ. (4.19)
D mech s (t) contains both the stored elastic energy and the dissipative processes of the interfaces. When the system reaches steady state, typically after the second T1 rearrangement, the change in stored elastic energy is null over any single T1 cycle. Therefore, averaging equation 4.19 over the duration of a cycle T is another method to compute the effective surface dissipation rate:

D mech s = 1 T t+T t Γ γ (∇ s • u) dΓ dt. (4.20)
At steady state the time average of dK/dt over one cycle is also zero. This has been verified in simulations, and is illustrated by the black curve on the right plot of figure 4.2. With this, the averaged mechanical energy balance equation for a single T1 gives:

D mech s = P inj -D v . ( 4.21) 
The time average of the surfactant-induced dissipation rate can therefore be deduced from the mechanics in the two ways given by equations 4.20 and 4.21. and h = 1). For the smaller P e F and h, agreement between the three formulations of D s are typically within 5%. At large values of P e and h, the three estimates of the averaged surface dissipation rates take longer to converge and a discrepancy of 20% is always observed. The reason behind is that the computation of D s from simulation data by each of the three methods are subject to numerical error.

•Comparison of the formulations

One error source in obtaining D mech s from equation 4.20 is due to calculation of velocity gradients from interpolated values of the velocity field. In fact, the Navier-Stokes solver employs a MAC grid, where the velocity field is computed at cell faces (see section 3.3.5), while interpolated velocity values at cell centers were output in order to simplify post processing tasks. Because these interpolated data are taken, velocity gradients include information spanning an extra layer of cells beyond the immediate neighbors. This results in a kind of numerical diffusion effect when velocity gradients are significant. Calculation of ∇ s • u (used in equation 4.20) is especially susceptible to this error type Computation of D thrm s is delicate at higher P e and h. As we will see in the following section, high P e and h produce strong bulk concentration gradients. This causes degraded estimates of subsurface values of ∇F and F s , whereas they are of much better quality for simulations with small values of P e and h. Moreover, surfactant leakage is more difficult to manage in these regimes. The discrepancy between D mech In what follows, the time-averaged effective surface dissipation rate in the simulations will be computed as D s = P inj -D v as this formulation is less sensitive to postprocessing numerical error. 

Parametric study

We now investigate how the time-averaged values of the different contributions to dissipation change when the simulation parameters h (adsorption length), P e F (bulk Péclet number) and Bi (Biot number) are varied. Recall that h ≡ f e /(HF e ) is a measure of the quantity of surfactants available in the liquid phase for exchange with the interfaces, and that small values imply that the reservoir is ample.

Viscous dissipation

The time averaged rate of energy dissipated by viscosity D v is plotted as a function of h for various values of P e F and Bi in figure 4.4. All four curves in figure 4.4 show a significant increase of D v with h. Additionally, the sensitivity of D v on h is more pronounced at higher values of P e F , while there is no apparent effect of Bi in the investigated range. The total viscous dissipation rate is understood to be controlled by the extent to which interfacial boundary conditions generate shear flow in the liquid phase [START_REF] Titta | Levelset simulations of a 2D topological rearrangement in a bubble assembly: effects of surfactant properties[END_REF]. These flow patterns and the influence of h, P e F and Bi will be considered more closely in section 4.2. 

Surfactant dissipation

The dimensionless dissipation rate due to surfactants D s is reported as a function of h in figure 4 D s is controlled by Bi for small values of h, and is more controlled by P e F at larger h. D s passes through a maximum at h = 10 -1 for simulations with high P e F , but this trend is not clear at lower P e F . This data will be reviewed in the Lucassen framework in the following subsection.

We can also compare the surfactant-induced dissipation to the viscous one, as shown in figure 4.6. We observe that the viscous contribution is always dominant. Surfactant dissipation accounts for 10-30 % of the total dissipation. Note that previous work by Titta et al. showed that the surfactant contribution increases when the liquid fraction is decreased closer to realistic values for foams [START_REF] Titta | Levelset simulations of a 2D topological rearrangement in a bubble assembly: effects of surfactant properties[END_REF].

Global response

We finally consider the total of the two contributions to dissipation. The average injected power P inj that is required for maintaining steady shear at the walls during a T1 is reported as a function of h in figure 4.7 for various values of P e F and Bi. We observe that, in all cases, P inj increases with h, and that at high h it is controlled by P e F . This is consistent with the behaviour of the viscous dissipation D v (figure 4.4) and the fact that viscous dissipation dominates the surfactant-induced term (figure 4.6). At small h, the dimensionless viscous dissipation is very close (≈ 9) for all Péclet and Biot numbers, and the surfactant-induced dissipation is primarily determined by the Biot number (figure 4.5), so the total injected power is controlled by Bi, as observed in figure 4.7. 

Comparison to extended Lucassen model

We now want to estimate an average effective loss modulus in our simulations, to be compared to the prediction of the extended Lucassen model presented in chapter 2. In the Lucassen model, the time-average of the surfactant-induced dissipation is linked to the loss modulus as

D s = 1 2 E ω 2 0 × Γ dΓ. ( 4.22) 
The last term Γ dΓ corresponds to the total interface length in 2D or area in 3D.

In the Lucassen model, the deformation is uniform with value 0 everywhere at the surface but our sheared bubbles undergo varying dilation and compression along the interface. We therefore estimate

C ≡ Γ (∇ s • u) 2 dΓ . ( 4 

.23)

In the homogeneous Lucassen geometry, we have C = ( 2 0 ω 2 /2) Γ dΓ, so that

E = D s ω C . ( 4.24) 
Similarly, the apparent loss modulus in our simulations can be defined as

E = D s C U H . ( 4.25) 
Finally, this loss modulus should be made dimensionless by dividing by the Gibbs-Marangoni modulus:

E GM = βχγ 0 1 -χ , ( 4.26) 
to get 

E E GM = ReCa 0 (1 -χ) βχ Ds C . ( 4 
E E GM = ⎡ ⎢ ⎣1 + 1 (1 -χ) h P e F 2 (1 + i) coth (1 + i) P e F 2 + i Bi ⎤ ⎥ ⎦ -1 . ( 4.28) 
Note that we have here identified the domain height H with the characteristic length W of chapter 2. We observe several points of qualitative agreement between the model and the simulations.

In the limit h → 0, equation 4.28 simplifies to E GM /E ≈ 1 -iBi/(1χ), which depends only on the Biot number as found in our simulations. We get

E E GM ≈ Bi 1 -χ + Bi 2 /(1 -χ) , ( 4.29) 
which decreases when Bi increases from 10 to 100, as in the simulations. In the other limit h → ∞, equation 4.28 simplifies to

E GM E ≈ 1 + 1 (1 -χ)h P e F /2(1 + i) coth(1 + i) P e F /2 , ( 4.30) 
which yields:

E E GM ≈ - ⎧ ⎨ ⎩ 1 (1 -χ)h P e F /2(1 + i) coth(1 + i) P e F /2 ⎫ ⎬ ⎭ . (4.31)
where {x} stands for the imaginary part of x. E is supposed to be independent of the Biot number and to decrease at large h. The decreasing behavior is not clearly visible 4.2. Microscopic quantities for our simulations, although the explored range is limited at high h. We discuss below an argument for this discrepancy. However, for P e F = 100, we find that the simulation point at the highest h are very close for the two Bi values. Finally, we compare the relative contribution of the diffusion and sorption processes to the surfactant-induced dissipation. The ratio D c / D a is therefore shown in figure 4.9 as a function of h for various P e F and Bi. We first notice that the ratio is smaller or larger than 1, depending on the parameter range. Besides, from equations 2.51 and 2.62 in the extended Lucassen calculation, we can write We hypothetize that it is due to the influence of longitudinal concentration gradients, which are not accounted for in the 1D extended Lucassen model, but indeed present in our simulations, as we will see in the following section where we study the local fields characterizing our problem, i.e. the concentration and velocity fields. At large h, there are strong confinement effects and the film is a very limited reservoir, but in the sheared bubble geometry, diffusion longitudinal to the films can still bring some surfactants in the regions depleted in surfactants. 

D c D a = h √ P e F Bi √ 2 G( 2P e F ) ( 4 

Microscopic quantities

In this section, what happens at the micro-scale will be explored, as was done at the macroscale, by a parametric study of diffusivity, sorption rate and confinement through P e F , Bi and h, respectively. A detailed description of the time-dependent surfactant distribution is available via numerical simulation, which is very difficult to access experimentally. In this section, the evolution of the surfactant distribution, surfactant dissipation and viscous dissipation are followed during the course of a T1 after the system has reached steady state. The following figures will show a sequence of four still shots, evenly spaced in time, during a single T1 rearrangement. These instants are denoted t 1 ,t 2 , t 3 and t 4 .

Influence of P e F

The influence of bulk surfactant diffusivity is examined through variation of P e. For all simulations considered here, Bi = 10 and h = 1. In the figures that follow, top and bottom rows show T1s for simulations with values of P e = 1 and P e = 10 2 , respectively.

Surfactant distribution and induced dissipation

The effect of P e F on the surfactant distribution during T1 rearrangements is illustrated in figure 4.11. The bulk concentration F is shown in the liquid phase with a grey scale where concentration increases from white to black. The surface concentration f is shown with a color scale where concentration increases from yellow to violet. The distribution of surfactants in the bulk remains relatively homogeneous at P e F = 1 (top row). At P e F = 100 (bottom row), stronger gradients in bulk and surface concentrations appear, as well as more pronounced bubble deformation. Looking at the bottom row, we notice that the liquid adjacent to the stretched and flatter parts of the bubble surface (yellow) remains depleted of surfactants through the T1 rearrangement. At the same time, concentrations well in excess of Fe = 1 are maintained in the liquid adjacent to the compressed and curved parts of the surface (violet). This buildup of concentration gradients in the bulk due to low diffusivity for P e F = 100 hampers exchanges with the interfaces that would otherwise even out the surface concentration and surface tension distribution. One result 4.2. Microscopic quantities is an increase in the bubble deformation. From these data, one can compute the local dissipation of energy due to bulk diffusion and sorption of surfactants, as illustrated in figure 4.12. Dissipation due to diffusion in the bulk D loc c is shown in shades of red, increasing from light to dark. Dissipation due to sorption D loc a is indicated at the interfaces with a color scale increasing from yellow to blue. One can observe that due to the large bulk concentration gradient established at large P e F , large dissipation originates from diffusion, echoing the results obtained in figure 4.9.

Viscous dissipation and flow patterns

Even if the origin of surfactant dissipation can now be established, why viscous dissipation is always dominant and why it is increasing from small to large Peclet remains to be discussed. We report in figure 4.13 the velocity profile in the liquid and in the gas for P e F = 1 and P e F = 100 as before. From this velocity distribution, we can compute the local viscous dissipation in the liquid, in figure 4.14. One can observe a large increase in this dissipation from P e F = 1 to P e F = 100, especially near the interface where large surface concentration gradients appear, visible in figure 4.11. This effect is attributed to a modification of the liquid/gas boundary condition, enhancing locally shear of the liquid and subsequent viscous dissipation. It explains the increase in the total viscous dissipation with P e F evidenced in figure 4.4.

As a conclusion, we observed that increasing Péclet number induces large surfactant heterogeneities in the liquid, which do not have time to relax by diffusion, then some surfactant dissipation primarily due to gradients diffusion. However, it induces also some Marangoni stresses at interfaces, and some local shear of the liquid and a large viscous dissipation. This type of behavior is expected for viscous liquids (with low diffusion coefficient for the surfactant and large shear stresses).

Influence of Bi

The influence of the adsorption kinetics is tested by varying the Biot number. Similarly as before, we will investigate how local properties are modified for two Bi numbers, Bi = 10 and Bi = 100.

Surfactant distribution and induced dissipation

The influence of the sorption rate through Bi is illustrated in figure 4.15, where, as performed above, surface concentration f and bulk concentration F are reported. Here, values of P e F = 1 and h = 10 -1 were chosen in order to minimize the effects of diffusionlimited exchanges and of confinement. The top and bottom rows show a T1 at Bi = 10 and Bi = 10 2 , respectively. Stronger gradients in surface concentration ∇ f are observed at lower Bi, as would be expected with slower sorption rates. On the other hand, stronger bulk concentration gradients ∇ F are observed at higher Bi, as more surfactants are adsorbed and desorbed during the course of a T1. One must however note the difference in the scale bar when comparing the effect of the Péclet number (figure 4.11) and the Biot number (figure 4.15). In the latter, the gradient is less pronounced. Finally, a slight difference in the bubble and film shapes is also apparent between the top and bottom rows. Films appear to be thicker and flatter at lower Bi. Considering surfactant-induced dissipation, one can show that sorption-induced dissipation is predominant for Bi=10 while diffusion-induced dissipation is larger for Bi = 100. But considering the color bar scale, the effect is definitely less pronounced than for the effect of Péclet number.

Viscous dissipation

The local viscous dissipation is reported in figure 4.20 for the two Biot numbers considered here (Bi=10 and Bi=100), and is not really affected by the Biot number in the investigated range. In both cases, an elongational type pattern is observed, showing that the Marangoni stress at the interface is not large enough to sustain a shear. As the viscous dissipation is always dominant in our parametric study (figure 4.6), the total dissipation in the system is hardly modified (figure 4.7). It would be interesting in future work to investigate if this situation is modified at smaller Biot numbers.

Influence of h

Surfactant distribution and induced dissipation

Confinement effects on surfactant distribution are illustrated in figure 4.18. For these simulations, P e = 1 and Bi = 10 2 , and three decades of h are shown in increasing order from the top to bottom rows. Recall that the lower the value of h, the more ample is the surfactant reservoir. This is clearly reflected in figure 4.18: F remains nearly constant at h = 10 -1 , as adsorption to the interface depletes the nearby bulk solution very little. Going to h = 10, one observes much more depletion of surfactants near the flat zones of the interfaces, where film is being stretched. Correspondingly, much higher concentrations are found in the bulk near the highly curved parts of the interfaces, where surfactants are desorbing because of interface compression. We also note that in the central films, the concentration can be quite constant across the film. In this case, the longitudinal concentration gradients (along the interfaces) cannot be neglected against the transverse one. This might explain the deviations from the Lucassen model found in figure 4.9. Finally, during these rearrangements, the bubbles undergo much stronger deformations when h is increased.

Considering dissipation, one can observe that we switch from a sorption-induced dissipation, for small h, located on the curved parts of the interfaces, to a large dissipation in the bulk, due to surfactant diffusion, mostly in the adjacent thin films of the bubble.

Viscous dissipation

The influence of h on the local viscous dissipation field is shown in figure 4.20. We observe that, as h increases, the local viscous dissipation increases close to the flat interfaces. This is again attributed to the build-up of shear flows permitted by the more heterogeneous surface coverage and the associated Marangoni gradients (figure 4.18). This explains the increase in the total viscous dissipation with h evidenced in figure 4.4. 

Conclusion and outlooks

In this chapter, we presented a parametric study on the simulation of a 2D wet bubble assembly. We showed that in general, the viscous dissipation dominates the process but is strongly dependent on the surfactant microscopic properties.

By focusing on surface dissipation and by calculating a viscous modulus, we showed that our extended Lucassen model captures at least qualitatively several aspects of the simulation results, and in particular, the relative contribution of diffusion and adsorption processes to diffusion. However, some discrepancies are observed at large h, which we ascribe to the limitation of a one-dimensional model. Local maps of concentration fields show that at large h, some concentration gradients in a direction parallel to the interface may also affect the global response. Simulations of bubble assemblies with lower liquid fraction (and thinner films) will allow to decouple the transverse and longitudinal scales involved here. We thus expect the model to become increasingly more relevant, as the simulated system gets closer to real foams.

From local observations, some qualitative mechanism can be built to rationalize the observed results. The viscous dissipation depends on the flow pattern, which switches from an elongational-like flow (at small Péclet and small h) to a shear-like one, more dissipative. This flow pattern is directly set by the interfacial stress, or the surface elasticity, which is a consequence of the surfactant repartition at the interface, and then in the bulk. As a short-term prospect, evaluating the elastic modulus of the interfaces observed in the simulations and comparing it to the one from our extended Lucassen model would be a first step. Modeling its effect on the flow patterns and on the viscous dissipation in a simplified geometry would be useful to fully rationalize our observations. 

Conclusion and outlooks

Conclusion

The rheology of a liquid foam depends strongly on the nature of the surfactants used to stabilize the foam. Making the link between the molecular properties of the surfactants and the macroscopic mechanical properties of a foam is a complex problem, involving many different physical processes and lengthscales: deformation of free interfaces, coupling between flows and surfactant transport in the liquid and at the interfaces, surfactant exchange between bulk and interfaces (adsorption and desorption).

We attempt to contribute to this topic using analytical modeling of highly simplified systems and numerical simulations with rather complex geometry.

In a first part (chapter 2), we investigated analytically the dissipation due to the presence surfactants during the mechanical deformation of an interface. More specifically, we made the link between some microscopic properties of surfactants (diffusion coefficients, exchange dynamics between the volume and the surface) and the mechanical properties of the interfaces on the one hand, and the dissipation associated with these deformations on the other hand. In particular, we extended the so-called Lucassen model to the case where the liquid film thickness under the surface has a finite size, and the exchange dynamics between the volume and the surface are no longer instantaneous. We derive a new expression for the mechanical interface modulus in this case and showed that it depends mainly on three dimensionless parameters that are the Péclet number (which compares diffusion and advection timescales of the surfactants), the Biot number (that compares the interface deformation and surfactant desorption timescales) and a dimensionless length h that compares the amount of surfactants at interfaces and in the bulk.

Using a complementary thermodynamic approach, we have been able to identify the two sources of dissipation due to the surfactants in the situation considered: one is due to concentration gradients of surfactants and the other one originates from adsorptiondesorption processes at interfaces. The coherent quantitative comparison of the results obtained by both approaches shows the validity of our results. Determining which type of dissipation prevails depends mainly on a so-called Damköhler number, that compares sorption and diffusion timescale.

In a second part (chapter 3 and 4), we increased the complexity of our system by considering an assembly of four bubbles that are sheared at a constant velocity. In this case, we implemented level-set simulations, developing new schemes and reinitialization steps to avoid loss of surfactants with time.

Chapter 4. Results and Discussion

We carried out a parametric study using all the parameters identified in chapter 2. By computing the different contributions to the dissipation, we showed that in both cases, the viscous dissipation dominates the process, but is strongly coupled to the surfactant microscopic properties.

When focusing on surface dissipation, and in particular by calculating a viscous interfacial modulus, we showed that our extended Lucassen model captures pretty well the simulation results, some discrepancies being observed at large h. To be more specific, the simulation results on the relative contribution of diffusion and adsorption are in good agreement with the simplified model but also shows its limitations, that we believe comes from its one-dimensional character. At large h, some concentration gradients in a direction parallel to the interface may also affect the response. Looking at the local velocity and concentration maps, we can build a qualitative picture to rationalize the results. The viscous dissipation depends on the flow pattern, which switches from an elongational-like flow (at small Peclet and small h) to a shear-like one, more dissipative. This flow pattern is directly set by the interfacial stress, or the surface elasticity, which is a consequence of the surfactant repartition at the interface, and then in the bulk. This qualitative description opens of course many questions for future work.

Outlooks

The tools developed here can be used in future works to investigate in more details the link between the molecular properties of surfactants at interfaces and foam properties.

Origins of flow patterns and viscous dissipation

The simulations result highlighted the key role of viscous dissipation in the process. But it shows also that this viscous dissipation is directly linked to the interfacial stress, and then at some point the interface elasticity. We were able to predict the elastic modulus of interfaces in our analytical extended Lucassen model. Coupling it with a flow in a model situation and being able to derive the subsequent viscous dissipation would then be a key step in the modeling process. Similarly, from the simulations, correlating the viscous dissipation with interface elasticity would also give some quantitative views in the processes at stake.

Going to more realistic systems

A wet 2D four bubble assembly is far from being representative of a dry liquid foam. When decreasing the liquid fraction, one has to face numerical coalescence between the bubble, which can be managed by including a disjoining pressure in the simulations. Some preliminary work has been presented in chapter 3 but it deserves further developments. Similarly, three-dimensional simulations and shear-periodic boundary conditions to describe more faithfully the bulk of a foam should also be considered.

Conclusion and outlooks

The range of parameters considered has also to be extended. In particular, considering standard surfactants, evaluating Péclet and Biot numbers, and the adsorption length h, would result in quite different values. Simulations within a realistic range of parameters are needed, but this is only possible if some technical limitations can be overcome.

Foam stability and foam structure

Finally, some experiments show that shear can induce both bubble coalescence (and foam destabilization), but also bubble break-up. Including criteria for bubble coalescence and break-up in the simulation would then be a starting point to investigate how these effects depend on the nature of surfactant.
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 1 Figure 1: Vue d'une mousse liquide à différentes échelles, chacune contribuant à son comportement mécanique global : (a) vue macroscopique avec mousse sèche en haut et mousse humide en bas, les échelles de longueur vont ici du cm au m ; (b) bulles dans une mousse, avec des diamètres de l'ordre de 5 mm; (c) films et jonctions entre les films (bords de Plateau) d'épaisseur micrométrique ; (d) interfaces gaz-liquide peuplées de monocouches de molécules tensioactives amphiphiles d'épaisseur de l'ordre du nm. Tiré de la référence [2].
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 4 Figure 4: Champs de concentration locaux (surfacique et volumique) en fonction du temps lors d'un cisaillement de l'amas de bulles pour deux nombres de Peclet. Haut : P e = 1. Bas : P e = 10 2 . Dans les deux cas, Bi = 10, h = 1.

Figure 1 . 1 :

 11 Figure 1.1: A view of a liquid foam at different scales, each of which contribute to its overall mechanical behavior: (a) Macroscopic view with dry foam at the top and wet foam at the bottom, length scales here range from cm-m ; (b) bubbles in a foam, typically with diameters of mm-cm length; (c) films and their edges of nm-μm thickness; (d) and gas-liquid interfaces populated with monolayers of amphiphilic surfactant molecules with thicknesses of the order of nm. From reference [2].
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 12 Figure 1.2: Surfactant distribution in solution. Monolayers form at the interfaces with surface concentration, denoted f . Bulk concentration far from the surface is denoted F . F s is the concentration of surfactants in the bulk immediately adjacent to the surface that are available to adsorb to the surface. Note the micelle at the bottom left, indicating a concentration of surfactants above the CMC. From reference [2].
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 13 Figure 1.3: Surfactants lower the surface tension, γ, with increased concentration, F , up to the CMC. (Adapted from [2])
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 114 Figure 1.4: Films are stabilized by surfactant monolayers at the interfaces.
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 116 Figure 1.6: Left: Anatomy of a polyhedral bubble in a foam. Right: Local geometry of the faces and edges of a still foam are determined by Plateau's laws. Figures reproduced from [2].
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 19 Figure 1.9: During coarsening, gas diffuses from smaller to larger bubbles, and the average bubble size increases in the foam.
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 110 Figure 1.10: An example of coarsening in a 2D foam. From reference [3].
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 2111 Figure 1.11: Marangoni stresses repair weak spots.
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 114 Figure 1.14: Schematic of dilational and shear deformations of a flat 2D surface.
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 115 Figure 1.15: Lucassen and Van den Tempel prediction of storage and loss moduli as function of excitation frequency (ω/ω D = ωτ D ) [7].

•

  Intrinsic surface viscosity. Regarding this last point, the Lucassen and Van den Tempel model predicts a viscous contribution, establishing a surface viscosity, μ d = E /ω, due solely to exchange kinetics of surfactants. To what extent either contribution dominates is not clear.
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 116 Figure 1.16: Redistribution of surfactants at interfaces and associated variations in local surface tension influence the viscoelastic response of these interfaces. From reference [22].
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 118 Figure 1.18: Left: Evolution of film generation in final step of T1 process for 2D dry foams. Plot shows the film length normalized by its final length versus time. Blue data: BSA/PGA surfactant solution without glycerol; high rigidity. Red data: SDS solution without glycerol; low rigidity. Green data: SDS solution with 60% glycerol. The overlap of red and green data indicates little influence of solution viscosity on relaxation process.Typical time for the film to reach 90% of its final length is about 0.5 seconds for SDS foams and about 3.7 sec for BSA/PGA foams. From reference[START_REF] Durand | Relaxation Time of the Topological T 1 Process in a Two-Dimensional Foam[END_REF]. Right: Average rearrangement duration T versus osmotic pressure Π for coarsening 3D wet foams. Data shown for foams with similar bubble sizes and liquid viscosity, but with different interfacial rigidity: white circles for low rigidity, and black circles for high rigidity. From reference[START_REF] Merrer | Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: Impact of interfacial rigidity[END_REF].

  Figure 1.20 shows experimental results of the limiting cases of pulling and stretching on the left and right, and an intermediate case in the middle. The color scales indicate the time stamps for the thickness profiles. These experiments also demonstrate increasing relaxation times with increased interfacial rigidity.
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 119 Figure 1.19: Limiting regimes of film generation during a T1. Top: interfaces are rigid, and liquid is pulled from the meniscus to create new film. Bottom: interfaces are mobile, and the film is expanded by stretching of the surface. From reference[START_REF] Petit | On the generation of a foam film during a topological rearrangement[END_REF] 
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 122 Figure 1.22: Comparison of dimensionless viscous stress as a function of dimensionless shear rate, Ca, between foams stabilized by HSM and LSM surfactant types reported in [4]. Different scaling laws are observed for the foams generated by the two classes of surfactant.
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 21 Figure 2.1: Simplified geometries in which we study the rheology of surfactant laden interfaces. Flat interfaces undergo forced periodic and uniform compression and expansion of small amplitude. Left: The system considered by Lucassen et al. [7] involves the single interface of an infinite surfactant reservoir, where surfactant exchanges are limited only by diffusion. Right: we consider a flat film of surfactant solution bounded by two interfaces, both of which undergo the same forcing. Surfactant distribution is governed by diffusion and sorption kinetic at the interface.
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 22 Figure 2.2: Storage (blue) and loss (yellow) moduli for surfactant-laden interfaces as found in the Lucassen model (equation 2.14). The green vertical dashed line corresponds to Ω max = 1/ √ 2, where the maximum in loss modulus occurs

Figure 2 . 3 :

 23 Figure 2.3: Normalized elastic (left) and viscous (right) moduli for surfactant exchanges limited by diffusion (equation 2.39 with Bi → ∞). Confinement effects are considered by varying the dimensionless adsorption length h. Left: the horizontal dashed lines correspond to equation 2.42. Right: the vertical dashed lines correspond to the position of maximum dissipation expected from the Lucassen model
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 24 Figure 2.4: Normalized elastic (left) and viscous (right) moduli for a thick film acting as an infinite surfactant reservoir (equation 2.43). Effects of the sorption rate are considered by varying the Damköhler number, Da. The Lucassen result (+) is recovered for large Da (yellow curves), which corresponds to diffusion limited exchanges. Recall that Ω -1 = (1χ)h √ 2P e.

  .[START_REF] Xu | Reinitialization of the Level-Set Function in 3d Simulation of Moving Contact Lines[END_REF] where d/dt = ∂/∂t + u • ∇ is the material derivative. From equation 2.45, together with local energy and mass balance relations, the entropy production rate σ can be reformulated Chapter 2. Dissipation during deformation of surfactant-laden interfaces: an extended Lucassen model.

Figure 2 . 5 :

 25 Figure 2.5: Coinciding predictions for the total dissipation by the mechanical (solid curves) and thermodynamic (circles) approaches. Left: Influence of confinement (h) when exchanges are limited by diffusion. Right: The influence of sorption rate (Da) in a thick film. Recall that Ω -1 = (1χ)h √ 2P e.

  transition between the limiting behaviors of G(u) occurs at u = √ 2P e 5 ( figure 2.6), or P e 10. Thus, at large P e, the dominant mechanism can be simply deduced from by the Damköhler number, with diffusion prevailing at value well above unity. Alternatively, one can look at the dependence in solicitation frequency ω, all other parameters Chapter 2. Dissipation during deformation of surfactant-laden interfaces: an extended Lucassen model. remaining fixed:
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 26 Figure 2.6: Function G(u) defined in equation 2.66 plotted in log-log scale.
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 27 Figure 2.7: Total dissipation (solid line), dissipation due to diffusion (•) and due to sorption (+) at surfactant laden interfaces as a function of the Peclet number P e for various adsorption length h (left), and as a function of Ω -1 = (1-χ)h √ 2P e for various Da. Left: case with fixed Da = 1 with varied adsorption depths h. Right: case with thick film limit and varied Damköhler number Da.
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 31 Figure 3.1: Initial configuration: hemispherical bubbles in a liquid phase, confined between parallel moving plates. Reproduced from [37].
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 32 Figure 3.2: Shearing flow. Reproduced from [37].
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 33 Figure 3.3: Left: The level set function is defined as a signed distance function, where interfaces are isocontours of φ = 0. Right: A smoothed Heaviside function is employed to formulate the single-fluid form of the governing equations. H = 0 in the gas phase, and H = 1 in the liquid phase.
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 35 Figure 3.5: Surface concentration f of surfactant along the bubble interface during rigid body translation test. s is the curvilinear coordinate, starting at the bottom of the bubble and increasing in the clockwise direction. (inset) Same data shown with a colormap. Leakage is already apparent after the bubble has completed one lap through the domain (Bi = 0, h = 10 -2 , P e F = P e f = 10 2 ).
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 36 Figure 3.6: Surfactant concentration f as defined numerically outside the interface. Halos appear in the parts of interfaces where the leakage occurs. Same parameters as figure 3.5
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 37 Figure 3.7: Left: relative variation of total surfactant mass in the liquid bulk. Right: variation of total surfactant mass at the surface. (Bi = 0, h = 10 -2 , P e F = P e f = 10 2 )
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 38 Figure 3.8: Diagram of the blind zone. The left image is taken from [43] : solid black line shows the interface, φ = 0, and the dashed lines are the characteristics for the reinitialization equation (3.34). The physical domain is above the wall, and the ghost cell layer is below it. The image on the right shows the blind zone in our simulations of sheared two-dimensional foams.
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 310 Figure 3.10: Method of projecting Π(h) from ridge lines (φ max ) to interfaces down the slope of the level-set function (n = ∇φ/|∇(φ)|).

Figure 3 .

 3 Figure 3.11: Left: Schematic illustration of a gas bubble at equilibrium in a cylindrical tank of water that is rotating with angular speed ω. Right: Schematic of the experimental setup used by Rodgar et al. taken from reference [48].
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 312 Figure 3.12: Flow field around bubble at equilibrium in a rotational flow in a clean liquid (left) and in a surfactant solution (right). Colorbars show the local dimensionless velocity normalized by the speed of the tank's rim.
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 313 Figure 3.13: Steady state bubble shape (left), and surface concentration of surfactants (right) predicted by theory and simulation (Ca = 0.1, P e = 1/8).
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 632 80 3.0 × 10 -3 5.0 × 10 -4 4.Hausdorff distances and surfactant distribution errors.
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 42 Figure 4.2: Left: Forces at the wall normalized by the equilibrium surface tension γ eq , as a function of dimensionless time t. We show the total force F tot and the three contributions F vg , F vl , and F cl . Right: Injected power Pinj , viscous dissipation Dv and rate of change of kinetic energy d K/d t, as a function of time t. The parameters for this simulation are: P e = 1, Bi = 10, h = 10 -2 . The dashed lines show the time-averaged values once steady state is reached.
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 84 Chapter Results and Discussion

Figure 4 .

 4 3 illustrates simulation data for D s using the two mechanical formulations of equations 4.20 and 4.21 as well as the thermodynamic formulation obtained in equation 4.12. The time signals of D mech s as defined by equations 4.20 and 4.21 are shown by the blue and black curves respectively, and D thrm s in green. The horizontal segments show the time average over two periods. The two graphs correspond to different P e F and h values (left: P e F = 1 and h = 10 -2 , right: P e F = 10 2

Chapter 4 .

 4 Results and Discussionand accounts for the discrepancy (typically 5%) between the two mechanical formulations black and blue curves on the right plot in figure 4.3.

  of to a combination of these two effects. Nevertheless, agreement between D mech s and D thrm s is generally between 10 and 20%, which suggests that the averaged energy balance expressed in equation 4.21 is valid. This small discrepancy is illustrated by comparing both approaches in figure4.5. Overall, to a good approximation, the mechanisms of viscosity and surfactant dynamics account for the dissipation of mechanical energy.
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 43 Figure 4.3: Comparison of mechanical and thermodynamic computations of the effective surface dissipation rate. Left: P e F = 1, Bi = 10, h = 10 -2 . Right: P e F = 10 2 , Bi = 10, h = 1. The horizontal segments show the average value over two periods.
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 44 Figure 4.4: Total viscous dissipation of energy D v as a function of the dimensionless adsorption depth h during a T1 for various values of P e and Bi.

  .5 for the various P e F and Bi. D mech s = P inj -D v is shown with filled symbols connected by plain lines, and D thrm s with hollow symbols connected by dashed lines.

Figure 4 . 5 :

 45 Figure 4.5: Average effective surface dissipation D s as a function of h during a T1 for various values of P e F and Bi. The hollow symbols correspond to D thrm s
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 46 Figure 4.6: Ratio of surfactant and viscous dissipation rates D v / D s as a function of h for various P e F and Bi.
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 47 Figure 4.7: Average injected power P inj as a function of h for various values of P e F and Bi.
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 2748 Figure 4.8: Normalized loss modulus as a function of h for various Péclet and Biot numbers. The data points are deduced from the simulations, while the smooth lines are derived from the extended Lucassen model.
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 4 Figure 4.8 shows this quantity as a function of h for various Péclet and Biot numbers. It is compared to the prediction of the Lucassen model, that is, the imaginary part of equation 2.39:
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 49 Figure 4.9: D c / D a as a function of h for various P e F and Bi, as proposed in eq.4.32.
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 4 Figure 4.10: D c / D a as a function of h √ P e F Bi √ 2 G( √ 2P e F ) for various P e F and Bi.
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 411 Figure 4.11: Local surface (colormap) and bulk (greyscale) surfactant concentration during a T1 at evenly seperated times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text. Top row: P e F = 1. Bottom row: P e F = 10 2 . For both cases, Bi = 10, h = 1.
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 412 Figure 4.12: Local energy dissipation due to surfactant diffusion (redscale) and sorption (colorscale) during a T1 at evenly seperated times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text. Top row: P e F = 1. Bottom row: P e F = 10 2 . For both cases, Bi = 10, h = 1.
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 413 Figure 4.13: Local velocity field during a T1 at times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text. From top to bottom rows: P e F = 1 and P e F = 10 2 . For all cases, Bi = 10 and h = 1.
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 414 Figure 4.14: Local viscous dissipation during a T1 at times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text. P e F = 1 and P e F = 10 2 for the top and bottom rows, respectively. For all cases, Bi = 10, h = 1.
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 415 Figure 4.15: Local surface (colormap) and bulk (greyscale) surfactant concentration during a T1 at times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text, for two Biot numbers. Top row: Bi = 10. Bottom row: Bi = 10 2 . For both cases, P e F = 1, h = 10 -1 .
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 416 Figure 4.16: Local energy dissipation due to surfactant diffusion (redscale) and sorption (colorscale) during a T1 at evenly seperated times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text, for two Biot numbers. Top row: Bi = 10. Bottom row: Bi = 10 2 . For both cases, P e F = 1, h = 10 -1 .
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 417 Figure 4.17: Local viscous dissipation during a T1 for two Biot numbers, at times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text. Bi = 10 and Bi = 10 2 for the top and bottom rows, respectively. For all cases, P e F = 1, h = 10 -1 .

Figure 4 . 18 :

 418 Figure 4.18: Local surface (colormap) and bulk (greyscale) surfactant concentration during a T1 at times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text for various h. From top to bottom rows: h = 10 -1 , h = 1 and h = 10. For all cases, P e F = 1, Bi = 10 2 .

Figure 4 . 20 :

 420 Figure 4.20: Local viscous dissipation during a T1 for three h at times t 1 , t 2 , t 3 , t 4 from left to right, as defined in the text. From top to bottom rows: h = 10 -1 , h = 1 and h = 10. For all cases, P e F = 1, Bi = 10 2 .

  

Table 3 .

 3 1: Bubble deformations as defined in equation 3.49 discretized surface. However, it appears the precision of these methods is limited by the resolution quality of this discretization in our post processing software. It is due to these limitations that we get deviations of 4% -10% between theoretical and simulated values of D, as shown in Table3.1.

	3.5. Validation test

Table 3 .

 3 

	3: Effect of grid refinement on deviation between simulations and theory.
	(Ca = 0.01, P e = 1)

  .32) To be more precise, we plot on figure4.10, the left-hand side of equation 4.32, obtained from the simulations, as a function of the right-hand side of equation 4.32. A nice master curve is recovered, in agreement with the scaling predicted by equation 4.32. Deviations from a linear behavior are nevertheless observed at large h.

It can also be derived from the explicit solutions

2.28 and 2.29, which will be used in the following section.

Ghost cells are cells immediately outside the physical domain. In our case, they are above the upper plate and below the lower plate.
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Appendix: Hausdorff distance

The Hausdorff distance from one set to another is defined as the maximum distance one would have to travel from any point in the first set to get to its nearest neighbor in the second set. Consider for example sets A and B shown in red and blue, respectively, in figure 3 Chapter 4

Results and Discussion

Based on the improvements of method presented in chapter 3, we present here simulation results. Figure 4.1 illustrates a typical simulated T1 rearrangement. A parametric study was conducted, where the influence of three parameters is explored: the bulk Péclet number is P e F = 1 or 100, the adsorption length h varies between 10 -3 and 10, the Biot number Bi is 10 or 100. The surface Péclet number is fixed to 10 3 and the capillary number is 0.1. The values of the other dimensionless parameters are specified in section 3.3.3.

We first study the influence of these parameters on macroscopic quantities extracted from our simulations and compare with the behavior observed in the extended Lucassen model. Second, we analyse local velocity and surfactant concentration fields to understand the behavior of the macroscopic quantities. 

Macroscopic quantities

Definitions of integrated quantities

We start with some definitions of the integrated quantities computed from our simulation of T1 rearrangements. The question to be addressed with these quantities is the energy balance; that is, where is energy dissipated in the system.

Wall forces & injected power

A steady shear is maintained on the system by holding wall velocities constant. For this, Chapter 4. Results and Discussion