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Résumé en Français
Cette thèse s’inscrit dans le domaine des mathématiques appliquées à la radiologie inter-

ventionnelle - un domaine médical qui s’appuie sur des systèmes d’imagerie radiologique
en temps réel pour réaliser des interventions peu invasives. Nous nous concentrons sur
les interventions endovasculaires au cours desquelles les radiologues guident leurs outils
à l’intérieur du système vasculaire du patient. Ces outils sont utilisés, par exemple, pour ad-
ministrer un traitement ou à des fins de diagnostic. Pour préparer leurs procédures cliniques,
les médecins réalisent une cartographie 3D des vaisseaux sanguins au niveau de l’anatomie
d’intérêt. L’arbre vasculaire peut être extrait d’une image 3D, ce qui permet d’améliorer la
visualisation et la planification du trajet dans l’arbre pour atteindre la zone cible.

Une procédure qui a gagné en intérêt des dernières années est l’embolisation de l’artère
prostatique pour traiter l’hyperplasie bénigne de la prostate : une croissance anormale de la
prostate qui touche un homme sur deux passé cinquante ans, et qui dégrade considérable-
ment la qualité de vie au quotidien. Pour réaliser l’embolisation de l’artère prostatique, les
cliniciens injectent un agent embolique dans les vaisseaux des patients alimentant l’artère
prostatique. L’identification des artères dans lesquelles injecter l’agent, ainsi que des artères
potentielles non ciblées, est essentielle pour le bon déroulement de la procédure.

Ainsi, le fait de pouvoir placer un nom anatomiquement sur les vaisseaux sanguins ex-
traits des images facilite grandement les procédures endovasculaires en aidant à la com-
préhension de l’arbre vasculaire. En ce qui concerne la complexité de la collecte de données
annotées, en particulier dans le domaine médical, les solutions d’annotation basées sur de
petites bases de données qui ont été étiquetées manuellement sont d’un grand intérêt. Les
méthodes dites basées atlas répondent exactement à ce critère, par opposition aux méthodes
dites basées apprentissage.

Les méthodes basées atlas comparent un modèle de référence, appelé modèle, aux ob-
servations de la base de données. Il est ensuite utilisé pour transférer des informations (par
exemple, une étiquette) du modèle aux observations. Il peut y avoir plusieurs modèles, qui
forment un atlas : l’espace des modèles possible. Pour les arbres vasculaires, le modèle
choisi peut être construit ex nihilo à partir d’une connaissance a priori de l’anatomie. Cette
solution est intéressante mais nécessite une connaissance précise de l’anatomie. Une autre
solution classique consiste à sélectionner des cas dans la base de données, à les étiqueter
puis à les utiliser tous comme modèles. Une solution plus rapide et plus simple consiste
à utiliser un seul cas que l’on étiquette manuellement. La plupart de ces approches basées
sur l’atlas dans le cadre des arbres vasculaires utilisent peu de déformations pour aligner le
modèle avec les observations : en effet, la complexité des arbres vasculaires en termes de
nombre de branches et de géométrie rend ces alignements compliqués, surtout dans le cas
de déformations non-rigides. Cependant, si nous alignions correctement le modèle sur une
observation, leur comparaison serait simplifiée.

C’est exactement le point de vue de la théorie de l’anatomie computationnelle, qui con-
siste à étudier des populations de formes à travers les déformations qu’il faut générer pour
aligner les formes entre elles. Dans ce cadre, les chercheurs ont construit des déforma-
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CHAPTER 0

tions lisses de l’espace dans lequel les formes existent. Ces déformations agissent ainsi
sur les formes et peuvent être appliquées à d’autres objets existant dans le même espace.
Lorsqu’elles sont appliquées aux modèles, les déformations fournissent un espace de mod-
èles admissibles que nous avons utilisons comme atlas.

Dans le cadre classique du recalage, les formes ne peuvent pas être parfaitement alignées
les unes avec les autres. On peut formuler un recalage dit inexact, consistant à minimiser la
distance entre l’objet déformé et la cible, sous condition d’une déformation aussi régulière
que possible. C’est le principe du Large Deformation Diffeomorphic Metric Mapping (LD-
DMM), qui génère des difféomorphismes de l’espace ambiant et que nous utiliserons tout au
long de la thèse.

Cependant, les déformations étant lisses, elles n’expliquent pas les changements de topolo-
gie entre le modèle et les observations. Ces changements peuvent provenir de toutes sortes
de sources, depuis la méthode d’acquisition des données et leur construction jusqu’aux in-
dividus observés eux-mêmes. L’exemple des arbres vasculaires est typique : des différences
dans le nombre de branches, l’ordre des bifurcations, ou la présence ou l’absence d’artères
sont autant de changements topologiques. Par la suite, nous proposons un cadre pour le re-
calage des arbres vasculaires sous déformations non-rigides : il s’agit d’une approche basée
sur l’atlas qui s’appuie sur l’alignement des formes pour faciliter l’étiquetage automatique.

La déformation non-rigide doit être adaptée à la variabilité de la forme des arbres vascu-
laires, tant en termes de géométrie que de topologie. Nous adaptons donc le LDDMM à deux
cas typiques de changements topologiques : le correspondance partielle, ou le recalage d’un
arbre modèle sur une sous-partie de l’arbre cible ; et le changements dans les bifurcations,
ordonnancement rendu possible par l’intégration de l’arbre modèle dans un espace de formes
arborescentes adapté à ces changements topologiques.

Nous utilisons le recalage et la correspondance partielle du LDDMM dans des applica-
tions de radiologie interventionnelle en travaillant sur les arbres vasculaires. Tout d’abord,
les LDDMM et la construction du modèle associé sont utilisés comme prétraitement pour un
étiquetage automatique des arbres vasculaires basé sur un atlas. Nous profitons du fait que
les déformations ne nécessitent aucune annotation des arbres vasculaires. Ainsi, la construc-
tion du modèle et de l’atlas peut être effectuée avant l’étape d’étiquetage. Nous montrons
que cela rend le pipeline d’étiquetage proposé plus robuste au choix initial de la forme de
référence comme modèle et améliore la performance de l’étiquetage.
Nous appliquons ensuite le cadre de correspondance partielle à deux problèmes différents
: le recalage d’un arbre modèle simplifié sur des arbres complets, et le recalage de sur-
faces hépatiques tronquées sur des surfaces complètes. Dans cette application, nous évalu-
ons l’intégration du modèle déformé dans la cible complète du point de vue anatomique :
nous voulons évaluer si les artères déformées du modèle correspondent effectivement à un
sous-ensemble des artères correspondantes dans la cible.
La deuxième application s’inscrit dans un autre cadre : le recalage de volumes multimodaux,
et plus précisément le recalage de tomographies injectées préopératoires sur des volumes 3D
de tomographie à faisceau conique (CBCT) en direct pour le même patient dans la région de
l’abdomen. Le recalage est basé sur l’alignement d’une surface hépatique tronquée extraite
de l’image CBCT sur la surface hépatique complète extraite du CT-scan correspondant, d’où
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une correspondance partielle des surfaces.

L’organisation du document est la suivante : Les chapitres 1 et 2 présentent à la fois le
contexte clinique et la théorie existante sur laquelle nous nous appuyons. Le chapitre 1
motive ce travail, en illustrant les multiples interactions de la radiologie interventionnelle
(RI) avec les techniques d’acquisition et de traitement d’images. Nous montrons la grande
variété d’applications de recalage en RI et l’importance de disposer d’outils d’annotation
automatique des arbres vasculaires dans le contexte de l’embolisation de l’artère prostatique
pour l’hyperplasie prostatique bénigne. Plus généralement, le fait de disposer d’outils de
recalage automatique en radiologie interventionnelle est un plus, et tant les interventions
peropératoires que les études cliniques pourraient bénéficier de tels outils.

Dans le chapitre 2, nous fournissons les ingrédients clés pour la construction d’outils
efficaces pour l’analyse de forme dans le contexte de l’anatomie computationnelle. Dans
ce chapitre, nous exploitons le cadre du Large Deformation Diffeomorphic Metric Mapping
(LDDMM) et les espaces à noyaux reproduisants pour calculer des déformations réalistes et
construire des statistiques sur celles-ci. Nous utilisons ces outils théoriques et informatiques
bien étudiés pour l’alignement non rigide d’un arbre vasculaire modèle sur un arbre cible.
Les statistiques sur les déformations sont ensuite utilisées pour construire l’atlas, dans lequel
le modèle vit. Nous montrons qu’un modèle significatif peut être dérivé des statistiques, et
aider au recalage sur une nouvelle observation.

Dans le chapitre 3, nous abordons le problème du recalage de formes sous la contrainte
de la correspondance partielle des formes qui est un type de changement topologique. La
déformation que nous recherchons est l’alignement du modèle déformé sur un sous-ensemble
de la cible. Nous concevons un nouveau terme d’attachement des données dans l’espace
de forme, et nous détaillons sa construction tout au long du chapitre. Nous introduisons
également un terme de régularisation comparant la forme déformée à sa position initiale,
afin d’éviter que le modèle déformé ne soit rétréci. Tout au long du chapitre nous illustrons
les résultats sur des exemples simples de correspondance partielle, puis nous appliquons la
méthode proposée à nos arbres vasculaires ainsi qu’à une surface simple.

Le chapitre 4 est consacré à un autre changement topologique entre les arbres : les
changements dans l’ordre des bifurcations. En fait, les déformations difféomorphes que
nous construisons avec le LDDMM ne permettent pas de tels changements topologiques, et
nous cherchons à construire un cadre de recalage plus adapté. À cette fin, nous intégrons les
arbres vasculaires dans un espace pertinent de formes arborescentes et décrivons une façon
d’effectuer le recalage entre un modèle annoté et une cible qui est un arbre vasculaire non
étiqueté. Le recalage est formulé comme un problème de minimisation et le modèle vit dans
l’espace des formes arborescentes dans lequel les changements dans l’ordre des bifurcations
sont disponibles.

Dans le chapitre 5, nous rassemblons les trois applications à des données réelles que nous
avons menées : annotation d’arbres vasculaires pelvien simplifiés en utilisant la construction
et le recalage d’atlas basés sur le LDDMM, extension au recalage d’arbres simplifiés sur des
cas réels, et enregistrements CT/CBCT multi-modalité basés sur le recalage de surfaces de
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CHAPTER 0

foie. Dans la première application nous montrons que les recalages d’un exemple annoté sur
le reste de la base de données (non annotée) permettent de construire un modèle spatialement
cohérent. Cela permet d’améliorer les performances de recalage de ce modèle sur la base
de données, et ainsi améliore les performances d’annotation qui en découlent. Nous com-
parons également la méthode d’annotation proposée à des méthodes basées apprentissage, et
nous montrons que lorsque la base de données annotées est petite, la méthode proposée est
largement plus performante et robuste. Dans la seconde application, nous montrons que le
recalage de notre modèle de référence simplifié de l’arbre pelvien sur une base de données
d’arbres complet en utilisant notre matching partiel donne des résultats prometteurs : non
seulement l’inclusion du modèle dans la cible est obtenue via des déformations diffeomor-
phiques non rigides, mais en plus il y a un sens anatomique dans les recalages obtenus, en
particulier au niveau des feuilles. Enfin l’application aux recalages de volumes de foies issus
de scanners et de tomosynthèse basé surface des foies permet d’illustrer l’intérêt et la versa-
tilité du terme de matching partiel que nous avons proposé. En effet, à travers l’évaluation sur
une petite base de données et des marqueurs anatomiques à l’intérieur des foies, nous mon-
trons que le bon recalage des volumes (associés à un même patient) sont composés d’une
translation et de déformations non-rigides.

En conclusion, les méthodes basées atlas peuvent être très efficaces, en particulier dans
le cas de données peu annotées, lorsqu’elles sont couplées à des modèles de déformation
pertinents. Ceci est vrai même pour des formes aussi complexes que les arbres vasculaires,
avec une grande variabilité géométrique ainsi que des différences topologiques importantes
en termes de nombre de branches et d’ordre des bifurcations. Dans le cas de grandes bases
de données annotées, d’autres solutions, comme celles basées sur l’apprentissage, devraient
également être explorées, et une combinaison des deux approches permettrait de tirer le
meilleur de chacune d’entre elles : statistiques et méthodes robustes, inférence rapide et
bonne extraction de caractéristiques. Les perspectives sont nombreuses, à commencer par la
combinaison du matching partiel et de la représentation dans un espace de formes arbores-
centes pour la construction d’un atlas encore plus complet. Dans ce contexte, les statistiques
sur les déformations seraient plus compliquées à générer, car elles dépendraient à la fois du
champ de vecteurs générant le difféomorphisme, mais aussi de la position dans l’espace de
formes arborescentes. Les perspectives d’applications sont également nombreuses, en parti-
culier en radiologie interventionnelle, où l’analyse des arbres vasculaires et la comparaison
de données issues de différentes modalités d’acquisition sont essentielles.
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Introduction
This thesis falls within the field of mathematics applied to interventional radiology - a

medical field relying on real-time X-ray imaging systems to perform minimally invasive
interventions. We focus on endovascular interventions during which radiologists navigate
their tools inside the patient’s vasculature. These tools are used for example to deliver a
treatment or for diagnosis purposes. To prepare their clinical procedures, the physicians carry
out a 3D mapping of the blood vessels at the level of the anatomy of interest. The vascular
tree can be extracted from a 3D image, which allows for improved visualization and planning
of the path through the tree to reach the target area. In Prostatic Artery Embolization, the
clinicians inject an embolic agent into the vessels of the patients feeding the prostatic artery.
The identification of the arteries in which to inject the agent, as well as the potential non-
target arteries is key for the good outcome of the procedure.

Thus being able to place an anatomical name on the blood vessels thus extracted from the
images greatly facilitates endovascular procedures by helping understand the tree. Regard-
ing the complexity of collecting annotated data, especially in the medical field, annotation
solutions based on small databases that have been manually labeled are of great interest. The
so-called atlas-based methods meet exactly this criterion.

Atlas-based methods compare a reference model, called the template, to observations in
the database. It is then used to transfer information (for example, a label) from the model
to the observations. For vascular trees, the chosen model can be built ex nihilo from a pri-
ori knowledge of anatomy. This solution is interesting but requires precise knowledge of
anatomy. Another classical solution is to select cases from the database, label them and then
use them all as models. A faster and simpler solution is to use a single case. Most of these
atlas-based approaches in the framework of vascular trees use few deformations to align the
model with the observations: indeed, the complexity of vascular trees in terms of numbers of
branches and geometry makes such alignments complicated, especially in the case of non-
rigid deformations. However, if we correctly aligned the model on an observation, their
comparison would be simplified.

This is exactly the point of view of the theory of computational anatomy, which consists
in studying populations of shapes through the deformations that must be generated to align
the shapes with each other. In this framework, the researchers have constructed smooth de-
formations of the space in which the shapes exist. These deformations thus act on the shapes
and can be inferred to other objects existing in the same space. When applied to the tem-
plates, the deformations provide a space of admissible templates that we called the atlas.

In the classical framework of registration, the shapes cannot be perfectly aligned with
each other. A so-called inexact registration can be formulated, consisting in minimizing the
distance between the deformed object and the target, under the condition of a deformation as
regular as possible. This is the principle of Large Deformation Diffeomorphic Metric Map-
ping (LDDMM), which generates diffeomorphisms of the ambient space and which we will
use throughout the thesis.
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However, the deformations being smooth, they do not explain the changes in topology be-
tween the template and the observations. These changes can come from all sorts of sources,
from the data acquisition method and their construction to the observed individuals them-
selves. The example of vascular trees is typical: differences in the number of branches,
the order of bifurcations, or the presence or absence of arteries are all topological changes.
Thereafter, we propose a framework for vascular tree registration under non-rigid deforma-
tions: it is an atlas-based approach that relies on shape alignment to facilitate the automatic
labeling.

The non-rigid deformation should be adapted to the shape variability of the vascular trees,
both in terms of geometry and topology. Therefore we adapt the LDDMM to two typical
cases of topological changes: the partial matching, or the registration of a template tree
onto a subset of the target tree; and the changes in the bifurcations ordering made possible
by embedding the template tree in a space of tree-like shapes adapted to such topological
changes.

We use the LDDMM registration and partial matching in IR applications. First, the LD-
DMM and the associated template construction are used as a preprocessing to an atlas-based
automatic vascular tree labeling. We take advantage of the fact that the deformations do not
need any annotation of the vascular trees. Hence the template and atlas construction can be
done before the labeling step. We show that it makes the proposed labeling pipeline more
robust to the initial choice of the reference shape as a template and improves the labeling
performance.
We then apply the partial matching framework to two different problems: the registration of
a simplified template tree onto complete ones, and the registration of truncated liver surfaces
onto complete ones. In this application we assess the embedding of the deformed template
into the complete target from the anatomical point of view: we want to assess whether the
deformed arteries of the template are actually matched to a subset of the corresponding ar-
teries in the target.
The second application is part of another framework: the multi-modality volumes registra-
tion, and more specifically the registration of pre-operative injected CT-scans onto live Cone
Beam Computed Tomography (CBCT) 3D volumes for the same patient in the abdomen
area. The registration is based on the alignment of a truncated liver surface extracted from
the CBCT image onto the complete liver surface extracted from the corresponding CT-scan,
hence a partial correspondence of the surfaces.

The organization of the document is the following: Chapters 1 and 2 introduce both the
clinical context and the existing theory on which we rely. Chapter 1 motivates this work,
illustrating the multiple interactions of Interventional Radiology (IR) with image acquisi-
tions and processing techniques. We show the importance of having automatic vascular tree
annotation tools in the context of Prostatic Artery Embolization for Benign Prostatic Hy-
perplasia. More generally having automatic registration tools in IR is a plus, and both per
operative interventions and clinical studies could benefit from such tools.

In Chapter 2 we provide the key ingredients for the construction of efficient tools for
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shape analysis in the context of Computational Anatomy. In this chapter, we exploit the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework and the Repro-
ducing Kernel Hilbert Spaces to compute realistic deformations and build statistics over
them. We use these well-studied theoretical and computational tools for the non-rigid align-
ment of a template vascular tree onto a target one. The statistics are then used to build the
atlas, in which the template lives. We show that a meaningful template can be derived from
the statistics, and help the registration of an observation.

In Chapter 3, we address the problem of shape registration under the constraint of partial
shape correspondence which is one type of topological change. The deformation we seek is
the alignment of the deformed template onto a subset of the target. We design a new data
attachment term in shape space, and we detail its construction throughout the chapter. We
also introduce a regularization term comparing the deformed shape to its initial position, to
prevent the deformed template from being shrunk.

Chapter 4 is dedicated to another topological change between the trees: the changes in
the bifurcations ordering. In fact, the diffeomorphic deformations we build with LDDMM
do not allow such topological changes, and we seek to build a more adapted registration
framework. To that end, we embed the vascular trees into a relevant space of tree-like shapes
and describe a way to perform registration between some annotated template and a target
that is a vascular tree unlabeled. The registration is formulated as a minimization problem
and the template lives in the space of tree-like shapes in which the changes in bifurcations
ordering are available.

In Chapter 5 we bring together the three applications to real data that we have conducted:
annotation of simplified vascular trees using LDDMM-based atlas construction and regis-
tration, extension to simplified tree registration on real cases, and multi-modality CT/CBCT
registrations based on registration of liver surfaces.
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CHAPTER 1

INTERVENTIONAL RADIOLOGY AND AU-
TOMATIC VASCULAR TREES ANNOTATION

Interventional radiology is a medical sub-specialty of radiology utilizing minimally-invasive
image-guided procedures to diagnose and treat diseases in nearly every organ system. The
concept behind interventional radiology is to diagnose and treat patients using the least
invasive techniques currently available in order to minimize risk to the patient and improve
health outcomes. Source: John Hopkins.
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INTERVENTIONAL RADIOLOGY AND AUTOMATIC VASCULAR TREES ANNOTATION

1.1 The Field of Interventional Radiology

This thesis is part of the applications that image processing and applied mathematics bring to
interventional radiology (IR). This discipline is a specialty of radiology and allows to obtain
diagnostic images and perform minimally invasive image-guided interventions on patients
with diseases affecting nearly any organ or system. Compared to classical surgery, IR pro-
vides alternative solutions causing less pain to the patients with less risk of infection and
significantly reducing the length of hospital stay. There are three levels of IR procedures,
classified according to their severity, the type of anesthesia, the guidance equipment, and the
medical team required. The simple procedures, usually involving needle insertion, are per-
formed by any versatile radiologist: peripheral biopsy, guided puncture, or peripheral joint
infiltration. Intermediate procedures require a technical imaging platform in line with the
targeted activity and cover simple angioplasties, programmed embolization, and drainage,
usually involving catheter1 and guidewire navigation in the patient. Complex procedures
require specialized teams and equipment to ensure permanent care and to handle heavy pro-
cedures requiring a specific environment: emergency embolization, aortic stent-graft, carotid
angioplasty.

All these procedures are done during minimally invasive interventions: the radiologist
navigates tools, like needles or catheters, inside the patient’s anatomy without being able
to see them directly. The intermediate imaging device plays a key role in the procedure
workflow, allowing the clinicians to navigate the tools as effectively as possible and assess
the risks, thus mitigate the doubts regarding the patient’s anatomy, and eventually assess
the outcome of the procedure. During a typical intervention, interventionalists take advan-
tage of their knowledge of the anatomy and pathology (mostly resulting from pre-operative
examination) to navigate tools guided by per-operative real-time images of the patient.

Such procedures are usually classified into two categories: endovascular and extra-vascular.
In the case of extra-vascular procedures, one of the main issues is the visualization of the
needles, involved in numerous applications: from biopsies to tumor ablation, including ce-
mentoplasty2. The endovascular procedures find many applications as well, and target almost
all organs in our body: tumor chemo – or radio – embolization, prostatic arteries emboliza-
tion, or brain Arterio-Venous Malformation (AVM) treatment, brain aneurysm coiling, an-
gioplasty3 or the injection of clot-dissolving medicines to dissolve blood clots and increases
blood flow to arms, legs, or organs in the body.

The type of imaging depends on the procedure. The standard interventional system,
however, is the C-arm (named after its C-shape) which provides live X-ray videos used for
real-time guidance. In the next section, we detail the different types of images that interven-
tional radiologists can use before and after procedures to plan and evaluate the treatment. We
also describe the intraoperative imaging systems available to them to perform the procedures.

1Flexible thin tube that can be inserted in the body.
2Treatment involving the injection of bone cement to reinforce weakened bones, preventing pathological

fractures and relieving pain in patients with osteoporosis and bone metastases.
3Placement of stents to expand the vessel at the site of a partial or entire blockage.
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Figure 1.1: View of a typical interventional radiology suite (© GE Healthcare). The interventional
radiologists navigate the tools with X-ray imaging guidance and must refer to the screen to assess the
position of the tools inside the patient’s anatomy.

1.1.1 Imaging Modalities for Interventional Radiology

Pre and Post-operative Imaging Pre and post-operative acquisitions can be done with
many systems. The computed tomography scanner (CT scan) is a medical X-ray imag-
ing technique used in radiology to obtain detailed internal images of the patient body non-
invasively for diagnostic purposes. It is usually used before an intervention to provide a 3D
reconstruction of the patient’s anatomy. The imaged parts of the body range from the ex-
tremities to the head, with application to aneurysm detection, blood vessels analysis under
the injection of contrast agent, diagnosis of urinary stones, or tumor detection. When the
diagnostic leads to an intervention, this pre-operative CT scan can be used to assess tumors
size and positions to guide ablation or to accurately understand the patient’s vasculature to
identify arteries to embolize [Bil+11].

One other system of choice for diagnostic purposes is Magnetic Resonance Imaging
(MRI) (see Figure 1.4.A). It uses the response of different atomic nuclei (mainly hydrogen)
to the excitation generated by an external magnetic field. Compared to CT, MRI provides
better contrast in images of soft-tissues, e.g. in the brain or abdomen, and does not induce
any X-ray dose to the patient. MRI is widely used in hospitals and clinics for medical di-
agnosis, staging, and follow-up of the disease. It also allows forming of pictures of the
physiological processes in the body. It is used for diagnosis, for example: to identify the
cause of spinal pain and to select the appropriate treatment [Mas+05], to identify arteries of
interest for procedure planning [Kim+18], to assess the ischemic areas and patient response
to artery embolization [Car+21] as follow-up imaging, or for blood vessels imaging. The lat-
ter, called Magnetic Resonance Angiography (MRA), is used to generate images of arteries
in order to evaluate them for stenosis (abnormal narrowing), occlusions, aneurysms, or other
abnormalities. MRA is often used to evaluate the arteries of the neck and of the brain, the
thoracic and abdominal aorta, the renal arteries, and the legs.

A third imaging modality is the Ultrasound (US) imaging based on the propagation of
high-frequency sound waves to view inside the body (Figure 1.4.B). Because ultrasound
images are captured in real-time, they can also show the movement of the body’s internal

10



INTERVENTIONAL RADIOLOGY AND AUTOMATIC VASCULAR TREES ANNOTATION

organs as well as blood flowing through the blood vessels. Unlike X-ray imaging, there is no
ionizing radiation exposure associated with ultrasound imaging. Therefore they are routinely
used to assess bone fragility, listen to the fetal heartbeat, visualize blood flow through a blood
vessel, organs or, visualize abdominal tissues, and so on. It is often used as pre-operative
imaging for procedure planning or diagnosis, and as post-operative imaging as a follow-up
exam. Ultra-sounds are also very useful during the intervention, with the major drawback of
being highly operator dependent.

Per Operative Imaging The image guidance performed during IR procedures requires
specific settings to allow both the acquisition of the images and the intervention of the pa-
tient. Two imaging modalities that are sometimes used during interventional procedures are
interventional CT and ultrasounds, e.g. for needle guidance or tumor identification. These
two imaging techniques remain however marginal in the field of IR. The standard imaging
system guidance for endovascular interventions is called the C-arm, which is the central el-
ement of a classic interventional room. This system is composed of a frame in shape of a
"C" called gantry supporting the X-Ray tube and a flat-panel detector. The gantry rotates
around two– or –three orthogonal axes allowing to turn around a table on which the patient
lies. These rotations provide the degree of freedom to acquire images under every possible
angulation. In practice however these angulation are limited by the patient, the operators
and other systems in the interventional room. To attain every part of the patient, translations
are also needed and are achieved by the table which has two– or –three translation axes and
sometimes two rotation axes (title and cradle). This setup is illustrated in Figure 1.2.

(a)

Figure 1.2: GE Healthcare IGS 730 interventional guiding system. Three rotational axes and three
translation axes.

The tube generates a conic X-ray beam in the direction of the detector, providing the
2D real-time projection of the patient’s anatomy. The X-rays are produced by a beam of
electrons traveling from the cathode to the anode inside the X-ray tube. The photons are
produced in random directions at the surface of the anode, called the focal spot, and modeled
by a point. They are absorbed by the tube except for a small window designed to limit the
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cone-beam angle. Metal filters and a square shape collimator then restrict the beam to a
given region of interest, the targeted anatomy of the patient. The different tissues of this
anatomy attenuate the X-rays according to the Beer-Lambert law. The remaining photons
are caught by the detector and converted into an electric signal by a matrix of photo-diodes.
The induced intensities are then converted by capacitors into pixel intensities forming the
raw input image. The fluoroscopy denomination comes from the initial technology based
on fluorescent screens that converted the X-ray photons into images. In many detectors,
a scintillator is still used to convert the X-ray photons into visible ones. The images are
processed according to the application and displayed on a Large Display Monitor, that can
be seen in Figures 1.2 and 1.1.

The fluoroscopic mode on the interventional system allows producing low-dose live X-
ray sequences, a video of the target anatomy of up to 30 frames per second. In addition to the
position of the imaging system, the clinician can also control the X-ray dose levels, the post-
processing applied to the raw images, and so on. A control room isolated from the X-rays
and adjacent to the operating room is also available, in which the clinician and the assistants
can monitor the imaging system and review the recorded and stored images. Fluoroscopy is
the most common imaging technique acquired with the interventional system, and it exploits
the differential absorption of X-rays by different tissues and organs. It provides real-time 2D
images of the movement of a body part (like the heart) or the course that a medical instrument
or dye (contrast agent) takes as it travels through the body.

Imaging during Endovascular Interventions In the scope of fluoroscopy, the traditional
angiography consists in injecting via a catheter a contrast agent such as iodine-based dye that
is radiopaque. The obtained images include the blood vessels as well as the other surrounding
radiopaque structures. It is acquired usually with a high-dose X-ray, and the obtained images
are stored for future review. In order to better capture the vasculature, Digital Subtraction
Angiography (DSA) (illustrated in Figure 1.3) is a numerical technique in which a mask of
the anatomy is first acquired before the injection of the contrast agent. Then images of the
same area are acquired with the latter injected, and the mask – considered as background – is
subtracted from the incoming images. The radiologists can play with the injection time and
the amount of injected medium to be as selective as possible in the extracted structures.

When dealing with endovascular procedures, the classic approach is to perform an an-
giography to guide small instruments such as catheters, stents, or coils through blood vessels.
The iodinated contrast agent flows through the patient’s vasculature and provides real-time
2D images in which the vessels have low intensity. Other structures such as bones or other
tools such as metallic screws may have similar intensities, and the DSA allows dealing with
them. On the contrary, the moving structures such as the navigated tools and the vessels
will appear in the images. This is the standard per-operative imaging during endovascular
procedures. The contrast agent, however, quickly fades away as the clinician stops injecting
the medium and the blood keeps flowing inside the vessels. Due to the toxicity of the con-
trast agent, one wants to avoid injecting it continuously, and roadmap solutions have been
proposed: combining the previously acquired injected images with the fluoroscopy, resulting
in a superimposed fixed version of the vasculature well contrasted onto a time varying image
with lower vessel visibility.
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(a) (b)

Figure 1.3: Example of Digital Subtraction Angiography (DSA) of the pelvic anatomy. (a) The
injected fluoroscopy before subtraction. (b) The DSA shows the difference between an initial fluoro-
scopic acquisition the injected one of (a). Thus, the vessels are clearly depicted in (b).

All these solutions, however, address the problem of vessel visualization in 2D. Most
of the time the projection of the patient’s vasculature results in a complex structure with
a lot of ambiguities, in particular when trying to distinguish real vessel bifurcations from
artificial vessel intersections induced by the projection. To cope with these limitations, Cone-
Beam Computed Tomography (CBCT) is now routinely used in interventional rooms for
vascular imaging [Anx+98]. A CBCT acquisition consists of a rotation over 200° of the
C-arm around the patient. During the rotation, a series of 2D X-ray projections are acquired
(like fluoroscopy) resulting in a stack of images called a spin. A reconstruction algorithm
then estimates a 3D image based on the linear attenuation coefficients from the spin and the
system parameters, this is further described in Section 1.2. The 3D reconstruction mitigates
the ambiguities and allows the acquisition of soft tissue images like classic CT-scans (the
detector is a flat panel though). In addition, if the contrast agent is injected during the rotation
of the acquisition system, the vessels will have a high contrast in the 3D volumes as well as
other radio-opaque objects in the volume. They will also have a good spatial resolution. Like
the DSA, a subtracted CBCT can also be computed. This technique is not real-time (due to
the system rotation) yet it allows to mitigate the ambiguities inherent to the 2D projection of
a volume.

In short, the live X-ray guidance is done with fluoroscopy, which is low-dose. All
the other kinds of acquisitions are high-dose to perform a refined analysis of the patient’s
anatomy. Regarding the applications of IR, the discipline is constantly interacting with other
modalities and specialities. In particular, the interventionalists take advantage of the multiple
sources of data available and must be able to compare the patients’ information both during
and outside the procedures.
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1.1.2 Diversity of Interventional Radiology Procedures

The interactions between IR and other modalities are numerous: the intervention can be
made upon a diagnosis coming from another clinician, and the procedure planning can be
based on acquisitions from a different system than the X-ray acquisitions that are the standard
ones in IR... That involves two types of interactions, the ones involving different specialities
and the ones between the data. Since we are focusing on interventions in rooms equipped
with the C-arm system, diagnostic IR procedures are not discussed. We distinguish three
types of procedures, depending on the type of performed gesture.

Needles The first type of procedure performed in IR consists in introducing a needle into
the patient’s anatomy. That, can be done to remove a solid body for diagnostic purposes
(biopsy), or to perform a localized treatment (such as tumor ablation). The latter often aims
at destroying tumors that cannot be removed by conventional surgery. These ablative pro-
cedures are the minimally invasive pendant of surgical resections. It includes cryoablation,
radiofrequency and microwave ablations, and aims at navigating the tool delivering the treat-
ment as close to the tumor as possible to ensure efficient destruction of the diseased tissue
while preserving the healthy one.

As mentioned above, ultrasound is often used to guide the needles, but CBCT-based as-
sessments can be performed in conjunction with it to verify the position of the needles. In
[Mon+21] US are acquired in multimodality procedure with US/CBCT fusion for percuta-
neous ablation of small renal tumors. The US are used to guide the needle toward the tumor
and a CBCT is then acquired to assess the position of the needle in the patient’s anatomy.
Differently in [Cor+19], electrochemotherapy of unresectable liver metastasis from renal cell
cancer is done, and the US are merged with the CBCT to enhance the tumor inside the vol-
ume. The fusion, however, requires a learning curve, and doing it manually, either by the
clinician or the assistant, is time-consuming for the inexperienced operator.

The Figure 1.4 illustrates the use case from [Cor+19] during which the procedure plan-
ning and the diagnosis were done under MRI and US imaging. The intervention was guided
by CBCT/US fusion, and the post-operative follow-up by MRI. This specific case shows
the different interactions between the imaging modalities. The differences in terms of tissue
contrasts, the geometry of the imaging system, and the patient’s anatomy that may evolve
between the acquisitions (tumor growth, breathing, fluids...) make the comparison of the
data even more challenging.

Unclogging Another IR procedure is the management of narrowed or clogged blood ves-
sels. One of its application is in neurology with the treatment of acute ischemic strokes
through endovascular treatment delivery. Strokes occur when blood flow to a part of the
brain is interrupted as a result of a broken (hemorrhagic) or severely restricted (ischemic)
vessel. First, a plain CT is acquired to exclude hemorrhage, then an angio CT is done to con-
firm the large vessel occlusion. The latter can be caused for instance by narrowed arteries or
blood clots, and the interventionalist can perform under live X-ray a mechanical thrombec-
tomy via a catheter navigated toward the pathological artery. Similar procedures can be done
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Figure 1.4: Case study from [Cor+19], the patient underwent multi-modality image guided elec-
trochemotherapy of liver metastasis from renal clear cell adenocarcinoma. A. Preprocedural postcon-
trast T1-weighted MR image shows a single metastasis (arrow)
B. Perprocedural ultrasound partially shows the tumor (arrow).
C. Axial fused reconstruction of contrast-enhanced cone-beam computed tomography (CBCT) acqui-
sition using electromagnetic tracking of the ultrasound probe allows three-dimensional visualization
of the tumor and adequate needle placement. The dashed arrow shows enhancing metastasis.
D. Individualized treatment plan, coronal reconstruction of T1-weighted MR images.
E. Seven needles were inserted under multimodal imaging guidance including ultrasound and CBCT
to cover the whole tumor.
F. Postcontrast T1-weighted MR image in the axial plane at 2 months post-procedure demonstrates
complete tumor response.

in cardiology to treat the narrowing of the coronary arteries of the heart found in coronary
artery disease. The procedure called Percutaneous Coronary Intervention (PCI) combines
coronary angioplasty with stenting, which is the insertion of a permanent wire-meshed tube
after inflating a balloon from the angioplasty catheter to widen the blood vessel diameter.

Embolization The last type of procedure in IR consists in blocking arteries at the level
of malformations (arteriovenous malformations, aneurysms) by placing a tiny metal coil to
repair the ruptured aneurysms, or to place a stent-graft across an aneurysm to prevent the
expansion of the defective vessel. Embolization can also be done to arteries feeding a tumor
or an organ with an embolizing product, sometimes mixed with a product intended to destroy
cells. For the latter, the referenced methods are the Transcatheter Arterial Chemoemboliza-
tion (TACE) combining the embolic agent with a chemotherapy, and the Selective Internal
Radiation Therapy (SIRT) combining it with a radiating glass or plastic microsphere using
radionuclide (e.g. yttrium-90) emitting locally high energy beta radiation. The injection of
embolic and destructive agents, if properly done, stops the tumor growth and kills its cells.
The risks of impacting healthy tissues, however, are high, and these procedures require par-
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ticular planning and assessment of the tumors as well as feeding vessels, leading to multiple
image acquisitions such as SPECT and CT.

In the case of radioembolization of unresectable Hepatocellular Carcinoma (HCC), the
patient is first catheterized in the IR room and injected with a low-dose radiating agent to
assess where the radiating markers arrive. The patient is then sent to nuclear medicine and
a Single-Photon Emission Computed Tomography (SPECT) based on gamma rays is per-
formed allowing a direct correlation of anatomic and functional information in patients. This
is also done to avoid extrahepatic deposition of the radiating microspheres as well as to assess
their intrahepatic distribution. This work-up phase is an important step in the radioemboli-
sation procedure planning and the dose-finding. During the intervention, sometimes weeks
later, the interventionalist can refer to the previous acquisition to verify the injection points
and the position of the catheter with respect to the tumor-feeding arteries.

In such context, every computational tool for data comparison at the disposal of the
interventionalists – and more generally the radiologists – is a potential gain in time for the
clinicians and for the clinical outcome for the patient. In addition, these tools facilitate the
communication between the interventionalists and their colleagues from other specialities,
for: the description of the patient’s disease, the procedure planning, the description of the
delivered treatment afterward, or the evaluation of the response to treatment.

Given the exceptional diversity of procedures performed in interventional radiology, in
terms of anatomy, treatment variants, or clinical gestures, it is important that tools developed
are adaptable and allow different data to be combined. In particular, the development of
methods that can be adapted to different anatomies – and therefore potentially to different
shapes – seems indispensable. A particular IR application to the male reproductive system
is the treatment of Benign Prostatic Hyperplasia through Prostatic Artery Embolization.

1.1.3 Prostatic Artery Embolization for Benign Prostatic Hyperplasia

Prostatic Artery Embolization (PAE) as a treatment of Benign Prostatic Hyperplasia (BPH)
is a procedure of growing interest for IR. We have been able to work with interventional
radiologists performing this procedure, and we describe it in the following section. BPH,
sometimes called benign prostatic hypertrophy, is a condition in men in which the prostate
gland is enlarged and not cancerous 4. The prostate (illustrated in Figure 1.5) is a walnut-
shaped gland that is part of the male reproductive system. The main function of the prostate
is to make a fluid that goes into semen. Prostate fluid is essential for man fertility. The gland
surrounds the urethra at the area where the urethra joins the bladder: the bladder neck. The
bladder and urethra are parts of the lower urinary tract. The prostate is in front of the rectum,
just below the bladder. The urethra is the tube that carries urine from the bladder to the
outside of the body. In men, the urethra also carries semen out through the penis.

The prostate goes through two main growth periods as a man age. The first occurs early
in puberty, when the prostate doubles in size. The second phase of growth begins around
age 25 and continues during most of a man’s life. Benign prostatic hyperplasia often occurs

4The information comes from the National Institute of Diabetes and Digestive and Kidney Diseases.
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Figure 1.5: The male reproductive and urinary systems: the prostate is located at the bladder neck, at
the junction between the two systems.

with the second growth phase, most of the time in men above 40 or 50 years old. As the
prostate enlarges, the gland presses against and pinches the urethra. The bladder wall be-
comes thicker. Eventually, the bladder may weaken and lose the ability to empty completely,
leaving some urine in the bladder. The narrowing of the urethra and urinary retention—the
inability to empty the bladder completely—cause many of the problems associated with be-
nign prostatic hyperplasia.

The causes of BPH are not well understood but could be related to the decrease of testos-
terone production with age, or on the contrary to the production of dihydrotestosterone which
would encourage the tissues to continue to grow. BPH particularly affects men after the age
of 50, with a ratio of about 50% for men between 50 and 60 years old, and up to 90% for men
aged 80 years and more. In particular, in addition to age, obesity, type 2 diabetes, erectile
dysfunction or heart disease can lead to the development of BPH.

The symptoms of BPH are mostly due to the blocked urethra and the overworking blad-
der, so they are related to the difficulty to urinate normally: high urinary frequency, inability
to delay urination, urinary incontinence, or on the contrary troubles starting a urine stream,
weak or interrupted urine stream, urinary retention... Sometimes the symptoms also involve
pain after ejaculation or during urination, urine unusual color, or smell. Consequently, an
evaluation of the symptoms is made from a questionnaire called International Prostate Symp-
tom Score (IPSS) around these problems described above. It consists of seven questions with
a score from 0 – no such a symptom – to 5 – the symptom always occurs –. A specific dete-
rioration of everyday life is the number of times one has to get up at night to urinate. From 0
to 7, the patient is mildly symptomatic, from 8 to 19 he is moderately symptomatic and from
20 to 35 he is severely symptomatic.
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Complications and Treatments The complications of BPH may lead to acute urinary re-
tention, chronic urinary retention, blood in the urine, urinary tract infection, bladder or kid-
ney damages, or bladder stones. BPH is diagnosed on the base of personal and family med-
ical history, a physical exam, and medical tests. During the physical exam the health care
provider checks for discharge from the urethra, enlarged or tender lymph nodes in the groin,
or a swollen, or tender scrotum. He or she also taps on specific areas of the patient’s body
and can perform a digital rectal exam. The medical tests at the health care provider’s disposal
are urinalysis, prostate specific antigen blood test, urodynamic test, transrectal ultrasound,
and biopsy. The treatment options for BPH may include lifestyle changes, medications, min-
imally invasive procedures, and surgery. These solutions go from the less invasive treatment
to the most invasive one. Lifestyle changes are primarily designed to avoid complications
in public or during sleep periods. These include learning to hold urine for longer periods
of time, or avoiding drinking when you can’t easily urinate. Medications can be prescribed
to stop the growth of the prostate, try to reduce its size, or reduce symptoms. Medications
however may have side effects that sometimes can be serious: dizziness or fainting, rapid,
pounding, or irregular heartbeat, sudden decrease, loss or blurred vision, decreased sexual
drive, problems with ejaculation...

A urologist may recommend removing enlarged prostate tissue or making cuts in the
prostate to widen the urethra. Urologists recommend surgery when medications and min-
imally invasive procedures are ineffective, symptoms are particularly severe, or complica-
tions arise. Like minimally invasive procedures, removing troublesome prostate tissue does
not cure BPH. Surgery to remove enlarged prostate tissue includes Transurethral Resec-
tion of the Prostate (TURP), laser surgery, open prostatectomy, and transurethral incision of
the prostate (TUIP). The surgery, however, is associated with higher risks of major adverse
events such as bleeding, urinary incontinence, retrograde ejaculation, and impotence.

An alternative to conventional surgery is the minimally invasive approach. This inter-
mediate solution can aim, in the same way as surgery, to destroy the problematic tissues of
the prostate. Such approaches are image-guided and include transurethral needle ablation
or transurethral microwave thermotherapy. The transurethral method involves inserting a
catheter or cystoscope through the urethra to reach the prostate. Although destroying trou-
blesome prostate tissue relieves many benign prostatic hyperplasia symptoms, tissue destruc-
tion does not cure benign prostatic hyperplasia. Prostatic stent insertion is sometimes done
to widen the urethra, which can help relieve the blockage and urinary retention caused by
benign prostatic hyperplasia.

Another approach called Prostatic Artery Embolization consists in clogging the feeding
arteries of the prostate in the manner of tumor embolization. This intervention has received
a growing interest in the last decade, and we will discuss it in the following section. As
for these IR procedures, the potential complications are urinary tract infection, painful, dif-
ficult or irregular urination, urinary incontinence, blood in the urine for several days after
the procedure, or sexual dysfunction. These complications subsequent to minimally invasive
procedures go away within a few days or weeks, and they are less likely to have complica-
tions than surgery.
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Prostatic Artery Embolization

As we have seen, for patients who do not respond favorably to drug treatments, PAE has
become an important alternative to surgical approaches, its benefits to patients, and reduced
cost, have been demonstrated [Bag+17; BSS19]. Prostatic Artery Embolization (PAE) is a
safe procedure for the treatment symptoms due to Benign Prostatic Hyperplasia (BPH), with
a major complication rate of less than 0.5% [BSS19]. In [Ray+18; Bro+22] the Interna-
tional Prostate Symptom Score (IPSS) median score is significantly improved after PAE at
12 months post-procedure (lower than the TURP) and causes less high-risk major adverse
events.

In [Car+21] the authors propose a multicenter technical note based on several years of
PAE procedures. They highlight the requirements in terms of understanding of the vascular
anatomy, microcatheterization skills, and high precision in selecting the injection points to
deliver the embolic agent without reflux [Ass+15b]. This is further illustrated in [Bro+22],
with a PAE study using a radiopaque embolic agent, showing that in 100% of the post-
procedure imaging non-target ischemia were seen, caused by unexpected embolic agent flow
in the patient’s vasculature. The procedures were done under angiography, and positioning
was confirmed with DSA. The authors suggest therefore using a radiopaque embolic agent
to assess its injection during PAE procedures. The non-target embolizations are reported
to correlate with post-procedure symptoms (e.g. rectal pain). In [Car+21], however, the
authors propose a standard workflow for PAE procedures, to minimize the risks of non-
target embolization as well as the procedure time and the radiation dose for the patient and
the clinician. This workflow is based on pre-procedural MRI or CT angiography for the
understanding of the patient’s anatomy, however, their lack of spatial resolution makes the
complete visualization of the prostatic arteries difficult. Additionally, pre-operative US are
recommended to measure the postvoid residual volume. Post-procedurals MRI, 3 months
and one year after the procedure, are recommended to assess the prostate reduction and the
ischemic areas, pelvic US is recommended to measure the postvoid residual volume and
prostate size.

The DSA offers good spatial resolution from a selective injection point. Its projective
nature, however, can be misleading and does not allow the identification of small tortuous
arteries. The need for multiple projections arises, increasing the radiation exposure, the pro-
cedure time, and the amount of injected contrast medium. As for that, CBCT acquisitions are
encouraged [Roc+20] during the procedure. While capturing at least the same information,
it also provides, in 46 to 60.8% of the cases, supplementary information such as potential
non-target sites or prostatic artery origins, and anastomoses. Additionally, 3D roadmaps are
recommended to perform safer, faster, and lower x-ray dose procedures.

The classic PAE consists of a bilateral successive embolization. For each side, proximal
injected CBCT are performed from the internal iliac artery. These proximal CBCT are an-
alyzed to identify arteries feeding the prostate, their pathways, and non-target vessels. This
identification must be done bilaterally and with maximum attention to maximize treatment
completion and reduce symptom recurrence risks. At this point, advanced planning soft-
ware are suggested to facilitate the identification of the arteries and accelerate the procedure.
Road-mapping and automatic vessel segmentation also facilitate the procedure planning and
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visualization tools for augmented fluoroscopy.

Minimally invasive procedures allow for local treatments of pathologies with minimal side
effects for the patients. They are alternatives to procedures that are sometimes burdensome
for patients, or as solutions for patients who cannot undergo surgical procedures. In the case
of PAE, while it does not cure BPH, the procedure has been shown to significantly reduce the
symptoms of BPH for up to several years after the procedure. However, the position of the
prostate in the male anatomy, and in particular the position of the prostatic artery in relation
to other arteries irrigating sensitive anatomies such as the penis, the rectum or the bladder,
increase the risks associated with the procedure.

Through this example of IR application, we realize the many issues related to advanced
software applications for image analysis during procedures. The risks associated with artery
embolization require physicians to be particularly cautious, and PAE requires a great deal of
anatomical understanding as well as catheterization skills. The recommendations published
in [Car+21] emphasize all precautions and the need to properly analyze the 3D volumes
from the injected CBCT to understand the upcoming procedure. Despite their great exper-
tise, the authors of the paper insist on the benefits of using advanced navigation software
applications: roadmaps, virtual injections, automatic segmentation, all tools that allow a
better understanding of the patient’s anatomy.

The stakes for a facilitated PAE are clinical: non-targeted areas and small tortuous ar-
teries, as well as injection points, are better identified, and interventional tools navigation
is facilitated. The stakes are also economic by reducing the time of the procedures and by
making the PAE easier to perform, it would decrease the number of surgical interventions
and thus the time spent in the hospital for the patients. The stakes are also for communica-
tion, analysis, and follow-up of patient data: having the data analyzed during the procedure
makes it easier to communicate the results or even to carry out follow-up interviews several
months later.

Figure 1.6: Illustrations from [Car+17]: two DSA in the pelvic anatomy. The prostate is hardly
visible, and the 2D view introduces ambiguities slowing down the procedure.
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1.2 Modeling the Vascular Trees

In this thesis, we take advantage of 3D volumes acquired with interventional systems. These
CBCT volumes are used in most endovascular interventions where doubts exist about the
patient’s anatomy in 2D projections. The benefits are a better understanding of the vascular
network, and a potentially reduced dose to the patient because the acquisition of multiple
injected 2D projections can generate more dose than a single CBCT. It also reduces the
amount of contrast material injected into blood vessels.

Injected CBCT Workflow

Figure 1.7: CBCT angiography for Hepatocellular Carcinoma (HCC) embolization in the liver, from
[Dur+18]. The vessels are clearly visible in the injected CBCT (a) under MIP, they are segmented in
the volume with one click at the root (b). A manual segmentation of the tumor is done in (c) allowing
a procedure planning in (d), and a navigation route. The 3D planning is superimposed on the live
fluoroscopy (e).

During a typical angiography, a contrast agent is injected before the acquisition to reveal
the arteries. The clinician decides which contrast agent is injected, its concentration, the
delay before starting the CBCT acquisition as well as the injection rate during the acquisition.
The choice of these parameters depends on the clinical application. For example, a large
delay allows good opacification of tumors and the thin vessels in their vicinity that feed
them.

In the pelvic anatomy, the 2D images corresponding to DSA do not allow to correctly
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identify the target arteries to embolize: the prostate is hardly visible, and the dense vascu-
lature introduces numerous ambiguities – due to the 2D projection –. The injected CBCT
provides a 3D reconstruction that tackles the ambiguities and an improved visualization of
the vasculature. In most of the anatomy, this solution is sufficient for the clinicians to plan
their procedures.

In [Dur+18] the acquisition is done during a HCC embolization, the injected vessels are
well depicted (Figure 1.7 A) in the CBCT volumes, and the vascular tree is segmented. In
this example the tumor is also visible, and a Region of Interest (RoI) is manually contoured
by the radiology technologist. It allows to identify the arteries feeding the tumor. Using
EmboASSIST and Virtual Injection (GE Healthcare software), the clinician can assess the
trajectory of the embolic agent inside the patient’s vasculature and detect potential non-target
arteries.

In the pelvic anatomy however, solutions such solutions cannot be used because of the
pelvic bones and the prostate that is hardly visible. The segmentation of the vessels is then
key to properly visualize the tree, for instance to remove the bones from the volume. It also
allows the clinicians to analyze in-depth the region of interest, and to define of the location
where the treatment is to be done (as well as the potential non-target arteries close to the
prostate).

The reconstruction of CBCT volumes is a whole topic of its own. For a detailed descrip-
tion of the volumes and their specificity, we refer to the work of [Res18]. In the following we
focus on the segmentation of the vascular tree, taking the CBCT as input. We also discuss
the centerline extraction and the pelvic vascular tree nomenclature.

1.2.1 From Images to Vessels

According to the US National Cancer Institute Dictionary, a blood vessel is a tube through
which the blood circulates in the body. Blood vessels include a network of arteries, arterioles,
capillaries, venules, and veins. In our case, and to this point, the blood vessels are identified
by high-intensity voxels in the 3D volumes due to the injection of a contrast agent. In order
to extract the vascular tree structure from the rest of the image, a segmentation can be made
resulting in binary 3D volumes in which voxels with value 1 indicate the presence of injected
blood vessels, and 0 indicates any other structure or non-injected vessels. They can also be
represented with the centerlines as described in the following.

Vessel Segmentation

A hessian-based filtering provides a volume in which the tubular structures such as the ves-
sels are enhanced. The most frequently used filters, the Frangi filter,- [Fra+98] use the Hes-
sian of the image at multiple scales to detect vessels of various radius. If I is a 3D image,
it’s associated hessian matrix is given by:
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H(I) =


∂2I

∂i2
∂2I

∂i∂j

∂2I

∂i∂k
∂2I

∂j∂i

∂2I

∂j2
∂2I

∂j∂k
∂2I

∂k∂i

∂2I

∂k∂j

∂2I

∂k2


The eigenvalues of H(I) at a point q = (i, j, k) are denoted λ1, λ2 and λ3, with |λ1| ≤

|λ2| ≤ |λ3|.

The "vesselness" is given by the function:

RF =


0, if λ2 < 0.(
1− e

−
r21
2a

)
.e

−
r22
2b .

(
1− e

−
s2

2c

)
, otherwise.

(1.1)

with r1 =
|λ2|
|λ3|

that penalizes the plate-like structures , r2 =
|λ1|√
|λ2||λ3|

enforcing tubular

structures (opposed to blob-like ones), and s =
√
λ2
1 + λ2

2 + λ2
3 allows a focus on areas with

high contrast, a, b and c are constant parameters.

The hessian and vesselness can be computed in a multiscale fashion. Thresholding and
post-processing the multiscale vesselness maps provides an accurate segmentation of the
vessels. Such methods require a seed initialization, hence a manual click at the root r of the
tree to select the seed point. This intermediate representation is helpful for understanding the
patient’s anatomy and for the procedure planning, however, it is not a sparse representation.

Centerlines Extraction

Vessels can be accurately represented by their centerlines, which may include a local radius.
Such a format is much lighter to store and manipulate than their equivalent binary volume.
Centerline extraction from the binary voxel segmentation S can be done through the follow-
ing 4-steps:

1 The distance to the boundary db(x) = d(x, ∂S) is computed for each voxel x of the
segmentation.

2 The hessian of db is computed. A potential function Pdb(x) is built from its eigenvalues
such that P takes very low values along the central axes of S and very large values
elsewhere.

3 A front is propagated from the user indicated root point r inside S solving the eikonal
equation: {

|∇T (x)| = Pdb(x)

T (r) = 0
(1.2)
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4 Extremities are detected and geodesics are backtracked to the root using gradient de-
scent in the function T .

A tree is then built from the extracted set of centerlines. The centerlines from the root to
points in the vascular tree can be seen as potential navigation paths for the interventionalist’s
tools, or potential target path for the injected agents (in fact, the contrast agent flowed across
these paths).

During the segmentation procedure, a click is made on a point of the volume which
is then considered as the root of the vascular tree. In order to have an orientation, one
can imagine that the indicated point corresponds to the artery from which the blood flows.
The blood then flows from this point to all the other extremities of the tree, which gives a
natural orientation to the structure: from the root to these extremities. The 3D segmentation
will provide visualization tools, especially fusion with the 2D fluoroscopy. The centerlines
representation provides geometric information that one can exploit to compute features and
compare the curves.

We denote by xu = (xu,i)i=1,..,nu a set of ordered points in Rd. This defines a polygonal
curve interpolated by straight lines. The length of a polygonal curve is then the cumulative
length of all its straight segments : l(xu) =

∑nj

i=2 |xu,i − xu,i−1|2. We can now define a tree:

Definition 1. A tree is a connected acyclic graph denoted (V ,Σ) with V the set of nodes (or
vertices) {0, ...,M−1} and Σ the M×M connectivity matrix with Σi,j = 1 if i is connected
to j and 0 otherwise.

This definition allows a variety of interpretation for the trees of centerlines, for instance
one can see the centerlines as the nodes in a tree (V ,Σ), or as the features associated with
the edges connecting these nodes:

Definition 2. Given a tree, we define an edge as any couple (i, j) such that Σi,j = 1. The set
of edges in a tree is written b = {bk}k=0,..M−2.

Note that the adjacency matrix Σ can be retrieved from the edges b. We chose to represent
the vascular trees as trees of centerlines, and define the 3D curves as spatial representation
of the edges:

Definition 3 (Vascular Tree). A vascular tree T is a tree whose edges b = (bk)k have a
spatial representation as polygonal curve: T = (V , b, x), with x = (xk)k ∈ Eb.

From the construction of the centerlines, the nodes of a vascular tree can be seen as
endpoints of the polygonal curves xk = (xk,i)i. The vascular trees are also binary trees: one
node is connected to either one or three other nodes. As a consequence, if the edge bj has
two children bk and bl, then xj,nj

= xk,0 = xl,0.

Arteries and Labeling

In CBCT angiography, the imaged vessels are the arteries, namely the vessels feeding the or-
gans. The blood then streams from the heart to the organs. In the pelvic anatomy, the vessels
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are named accordingly to the organs they feed. In this context, one artery may correspond
to one or several branches of the vascular tree, curves in the centerline representation. In the
binary volumes, one artery then corresponds to a subset of the white pixels.

A label can be stored as an integer that corresponds to one artery name, and a labeling is
the process of assigning a label to a subset of the vascular tree. More formally if a vascular
tree is denoted T = (V , b, x), and L = {1, .., N} is a set of labels, then a labeling is an
application L : L 7→ Ṽ , with Ṽ a subset of V . In the rest of the thesis, we will use the words
annotation and labeling in an equivalent way. If there is a need to make a distinction it will
be made clear in the appropriate place.

If the artery name design the vessels feeding a specific organ in the anatomy, its associ-
ated structure in the vascular tree is the image of L in T. Most of the time, when talking
about automatic annotation, the application L is surjective: one tries to assign a label to all
the branches in the tree. In some cases however, it is possible to only assign label to a subset
of the tree.

Manual Labeling The manual annotation of the arteries can be seen in the same way as a
virtual injection: by clicking on a point in the tree, all downstream branches are identified.
This can be compared to identifying all the blood vessels through which the product injected
from the clicked point would flow. Note that the selected blood vessels form a subtree of the
initial tree: a set of nodes, edges and centerlines that are connected and part of the complete
tree. When manually labeling the trees, the technologist must identify the subtrees whose
edges share the same label. Since the pelvic arteries are labeled accordingly to the organs
they feed, manually annotating them consists in identifying the subtrees going to the same
organ.

Two observations can be made at this point: this identification of the arteries is done on
the CBCT during the interventions, either by a radiologist technician or by the radiologist
himself. In addition to requiring a very good understanding of the anatomy, there are many
sources of error (see Figure 1.8). It is therefore a complex and time-consuming task that is
done during the procedure.

1.2.2 The Pelvic Vascular Tree

In line with the application to PAE, a specific focus on the male pelvic vasculature can be
made to better understand it. During the PAE procedures, the radiologist acquires two in-
jected CBCT : one per side of the patient. For each acquisition, the contrast agent is injected
in the internal iliac artery, above the bifurcation of the anterior and posterior branches. From
this point of injection, a number of arteries are clearly irrigated and visible in the injected
CBCT:

• The internal pudendal artery branches off the internal iliac artery, the main artery of
the pelvis, and supplies blood to the sex organs. The internal pudendal artery gives
rise to the inferior rectal artery.
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Figure 1.8: Illustration from Pr. Carnevale conference at Society of Interventional Radiology con-
ference, 2022/06/11 - 2022/06/16, Boston USA. Annotation of arteries in the pelvic anatomy. Top:
identification of the capsular artery, part of the prostatic artery. Bottom: identification of the rectal
artery, that must not receive embolic agent. Left: 3D vascular tree segmented with different path from
the root to end points. Right: Slice MIP, with selected branched highlighted.

• The superior vesical artery, supplying the upper part of the bladder. This artery often
gives branches to the vas deferens (part of the male reproductive system) and can
provide minor collateral circulation for the testicles.

• The inferior vesical artery, supplying the inferior part of the bladder. It is associated
with the prostatic artery, feeding the prostate. Sometimes two subtrees are feeding the
prostate, and the secondary tree is called the capsular artery.

• The obturator artery that passes forwards and downwards the lateral wall of the pelvis,
and goes to the head of femur as well as muscles such as adductors.

• The superior gluteal artery, that supplies the muscles, as well as some skin over the
sacrum.

• The inferior gluteal artery supplies the pelvic floor muscles. Upon exiting the pelvis
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and emerging in the gluteal region, it splits into two branches to supply the sciatic
nerve and the muscles and skin of the gluteal, hip and thigh regions.

• The middle rectal artery supplying the rectum.

• The sacral artery feeding the sacrum and the coccyx.

• The iliolumbar artery supplying the psoas major and the iliacus muscle.

Note the large number of possible anatomic variabilities. This illustrates the importance
of understanding the patient’s anatomy to avoid embolizing nontarget arteries. In [Ass+15b],
the clinicians classify 5 types of pelvic vasculature of interest for the PAE procedures (Fig-
ure 1.9). The types 1 to 4 depends on the artery from which arises the prostatic artery.
Classifying the patient anatomy in one of these four types helps the clinician understanding
the vasculature and plan the embolization procedure. The fifth category is a catch-all, and
includes all cases that do not fit the first four types. According to [Ass+15b], this represents
about 8% of the vascular trees (among a population of 286 trees).

Figure 1.9: Illustration from [Car+17]. The four principal types of male pelvic vascular trees for PAE
procedures. These illustrations focus on the arteries of interest (depending on the prostatic artery’s
source) and do not show all the possible arteries in the male pelvic vasculature.

The proposed classification is focused on the branching point of the prostatic artery. The
total number of anatomical variants is in fact way higher and must take all the other arteries
and their relative positions into account. As we will see in Chapter 4, in binary trees, the total
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number of "variants", that we can call topologies, is of order 2N !! = 2N×(2N−2)× . . .×1
given N different leaves – or arteries.

The Variability of a Vascular Tree

The vascular tree of one patient can be very different from the one of another patient, and
even more surprisingly, the tree on one side of the patient can vary from the one on the
other side. These remarks are in the context of pelvic anatomy, however, one can keep in
mind that the differences that can be listed here apply to many anatomies such as coronary,
hepatic or brain vascular trees. We distinguish two kinds of differences between the vascular
trees: the geometrical differences like the shape of the branches, and the regularity of the 3D
curves, and the topological differences which come from the variability in terms of arteries,
branching and density of branches.

(a) (b) (c)

Figure 1.10: Two different pelvic vascular trees. One color corresponds to one type of artery. The
arteries feeding the right of the trees are the outer ones. The arteries feeding the left area are the
inner ones. (a) A dense vessel tree with all the arteries (except for the middle rectal). (b) A vessel
tree without obturator artery, and thin sparse interior arteries (left of the tree, from top to bottom):
superior vesical, prostatic, pudendal.

Geometrical The geometrical variability of trees comes from the shape of their branches.
We then talk about descriptors calculated on the curves, or functions allowing us to compare
sets of curves. The variability can come the density of points along the curves, the tortuosity
of the branches, and their general shape. The pudendal artery, for example, forms a bend,
almost a right angle, which makes it return to the interior of the body. This is the case in all
patients (with rare exceptions). In Figure 1.10, the prostatic artery (interior of the patient,
left of the figures) is much longer and more tortuous in Figure (a) than (b). The pudendal
artery on the contrary has a similar shape (yet a different number of branches).

Topological Among the possible causes of topological variability across the vascular trees,
we distinguish the anatomical, hierarchical and artificial reasons. The anatomical variability
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is the presence or absence of certain arteries in the vascular trees. For example, the obturator
is not always present on both sides of the patient. As the vascular trees are imaged on each
side, one sometimes observes trees with this missing artery. It is illustrated in Figure 1.10 in
which the obturator artery is present in the patient associated with the tree of (a) and not in
associated with the tree of (b). This is true for the prostatic artery, the middle rectal and the
sacral arteries as well. The other kind of anatomical variability is the complexity of the tree
in terms of number of branches, which is also visible in Figure 1.10. Some vascular trees
are dense and filled with small branches when some others contain only a few individual
branches.

The other type of topological variability, in terms of tree topology, is the branching struc-
ture of the arteries characterized by [Ass+15b] for the PAE. When studying the trees as
defined in 1, the branching structure can not be reduced to the information of where the
prostatic artery originates. All the artery positions relative to the others must be taken into
account. There are in theory a combinatorial number of possible topologies, function of the
number of arteries in the tree.

The last kind of topological change comes from the vascular tree imaging pipeline, which
may miss branches and arteries or introduce artifacts such as false anastomoses during the
centerlines extraction. Such differences can also come from different injected CBCT acqui-
sitions and parameters: the choice of the contrast agent, its density, the delay between the
injection and the CBCT acquisition, etc.

Applied Mathematics in Interventional Radiology We realize through these multiple
examples that mathematics applied to image and signal processing plays a major role in IR.
Without proposing an exhaustive list of applications (for this we refer to [Gur+21]) we dis-
tinguish two major applications that can contribute a lot to the navigation of tools in the
patient’s anatomy: the augmented reality, using the pre-operative and per-operative supple-
mentary information to enhance the 2D real-time fluoroscopy, and the multi-modality vol-
umes registration providing an alignment of shapes and anatomies of interest in a common
referential that is easier to read. In the case of PAE, this could be for instance the fusion
of pre-operative US or MRA to better assess the position of the prostate with respect to the
injected blood vessels. In order to further help the comprehension of the vascular tree and
the navigation of the catheter as well as the planning of the PAE, the automatic annotation of
the blood vessels in the CBCT could be of great interest for the interventionalists as well.

The multiplicity of information sources, along with need for image guidance in IR, create
naturally a playground for the development of mathematical and computational applications.
As many potential applications that lead today to an exponentially growing number of pub-
lications, especially since deep learning entered the scene. No matter the application or the
proposed method, however, one of the essential problems remains the collection and anno-
tation of data. This is all the more true in medical applications in which the data contains
sensitive information and often requires expert annotations. These two aspects of the con-
stitution of a consistent and representative database make it time-consuming, expensive, and
sometimes unrealistic. In addition, the physicians do not always have time to dedicate to
these annotations. The solutions one seeks to derive automatic tools to analyse the images
may not only be learning-based and most of the time the first solutions engineered are classic

29



CHAPTER 1

image – or data – processing tools. The results of these first algorithms are also often used
as initialization for ground-truth creation, to feed future learning-based solutions. This can
be done for example by using the output of the first algorithm as ground truth for training the
second. However, such an approach risks introducing bias in the data, and there are methods
to limit the impact of this bias in the learning procedure. It is the case of data synthesis
approaches, or the semi-supervised ones. We will not discuss here the methods for boosting
the training of learning based approaches, one must simply keep in mind that having a large,
annotated and verified database is a luxury in most medical applications.

1.3 Automatic Annotation of Vascular Trees: A State of the
Art

We have seen that understanding the pelvic vascular tree is absolutely necessary for the
proper conduct of PAE interventions. More generally, the automatic annotation of tree-like
structures has many clinical applications, from workflow simplification in cardiac disease
diagnosis [Ezq+98; Aki+09; Cao+17; Wu+19] to intervention planning in arterio-venous
malformations [Bog+13; GLS14; Rob+16; Wan+17] through lesion detection in pneumol-
ogy [GBR08; Lo+11; Fer+12a].

1.3.1 Learning-based labeling

With the emergence of machine learning, many articles address the problem of automatic
labeling of anatomical trees by feeding learning algorithms with a set of features describing
the trees. The general framework consists in extracting features from the centerlines, learning
from them to predict labels probabilities, and deciding the overall label assignment.

Early works [GBR08; Aki+09], first propose to learn from features on branches. The
authors extract geometrical features (radius, length, direction, curvature...) and tree-shape
features (angle between a branch and its parent) introducing a parent-child relationship. The
label probabilities are learned for each branch independently using multivariate Gaussian
models. Their assignments follow different rules according to the anatomy: respectively the
airway tree and the coronary tree. These methods are direct but sensitive to the high variabil-
ity in the data because neither the probability computation nor the final labeling guarantee
anatomical consistency.

More recently, the K Nearest Neighbors (KNN) algorithm has been used in [Lo+11] to
estimate the label probabilities per branch in airway trees. The approach takes into account
the high variability of features and is robust to labels distributed over several clusters. Ge-
ometrical features are used too, and other tree-wise features - relative to the tree root - are
introduced. The assignment is then performed bottom-up with a set of rules learned from the
training set. All the previous methods are still limited in the case of high dimensional space:
both multivariate Gaussian and KNN overfit in such spaces.

Moreover, other works [Hoa+11] and [Mat+14] propose the use of boosting algorithms
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that search for the most discriminant features by cascading weak classifiers. That allows
to introduce more features and be more accurate while preventing overfitting. In the first
article [Hoa+11], the assignment follows a global optimization method which in the second
[Mat+14] is performed as a maximum likelihood conditioned by the parent’s labels and a set
of rules specific to hepatic portal anatomy. Some articles also propose to work with a graph
representation (especially for the brain vasculature). The authors of [Rob+16] compute label
probabilities with an extremely randomized tree classifier. The assignment is performed
through a maximum a posteriori with a set of transition rules - learned from the training
set. Both previous solutions complement probability predictions with a set of strong rules
implemented in the label assignment procedure.

This label assignment has been refined in [GLS14] and [Wan+17] by assuming the
Markovian property: a branch label only depends on its direct neighbours. Supposing that
the connectivity between labels should be more consistent across subjects than branch fea-
tures only, the authors of [GLS14] use the simulated annealing scholastic relaxation as a label
assignment’s optimization. Authors of [Wan+17] use hidden Markov models with restricted
transitions learned from the training set to provide better labels assignment.

As we saw, learning-based methods explicitly learn rules from the training set. In our
context of frequent topological variations, this would require a lot of training data to cover as
many anatomical variants as possible to be efficient. In practice, most of the aforementioned
articles are trained on a limited size database (around 50). Because of this lack of data, very
few articles propose deep learning solutions on the anatomical trees or graphs. The first
applications as [AF18] were intended for binary classification of branches into arteries and
veins. In [Wu+19], the authors propose to train a recurrent neural network preserving the
topology of the coronary tree on a database composed of 436 annotated trees. The network
is performing well in this application, automatically learning the transitions probabilities
between the labels without the need for an explicit set of rules.

1.3.2 Atlas-based labeling

To be robust in the case of a limited-size database, some authors propose atlas-based methods
to automatically annotate new cases. An atlas is defined as a reference model that can be built
from prior knowledge [Bog+13; Cao+17] or from available annotated database [Ezq+98;
Bul+06; Fer+15]. Most of the altas-based methods follow a four steps framework: the atlas
choice/construction, the registration onto the target, the estimation of the labels probabilities
and the assignment.

In [Bul+06] the authors propose a point-wise solution for airway trees. There is no
registration between the tree and the atlas; features are extracted at the point level. A distance
between points in the feature space is computed to assign to each point a label. In order to
assign labels to the branches a voting system is proposed. With these two steps, the authors
try to address potential missing branches from the automatic tree extraction. On the other
hand, there is no guarantee regarding the anatomical consistency along branches, and the use
of a single atlas can be limiting in the case of high variability.

To take this variability into account, in [Bog+13] authors build as many graph atlases as
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noticed topologies in the circle of Willis. Without any registration step, the authors calculate
matching probabilities between the target and the atlas bifurcations. The assignment follows
a maximum a posteriori on the likelihoods. Like learning-based methods, such a solution
cannot adapt to unseen topologies.

Another approach, first described in [Ezq+98], uses a semi-automatic algorithm to man-
ually register the coronary tree onto the target. The label assignment is performed following
a branch-and-bound algorithm. The solution takes advantage of the registration: a better
manual registration results in a simpler annotation solution.

Annotation in Tree Space To get rid of the need for manual interaction, the authors of
[Fer+12a] have developed a non-classical topology registration method in the so-called tree-
space. In such space, it is possible to compute continuous deformations between trees of
different topologies. This approach is therefore robust to noise and anatomical variants and
introduces a notion of distance between trees given their labels. The annotation follows a
hierarchical scheme where a subtree is extracted and every labeling is tested at each iteration.
The method selects the labeling minimizing the geodesic distance to the atlas’ corresponding
subtree. This solution is one way to cope with the limitation of using a single atlas but
requires testing all possible labeling.

In [Fer+15], the authors further developped their tree-space annotation with a hierarchi-
cal assignment method. But instead of using a single case as an atlas, all annotated cases
from the database are used. At each iteration, distances to all corresponding subtrees in the
annotated database are computed. Once again, the labeling minimizing the sum of these dis-
tances is selected afterward. It has the advantage of taking into account all annotated trees
available. On the other hand, it tends to label all the trees like the median of the training
set. It also needs to compute all possible labeling in each selected subtree in addition to
the distance to every atlas. These methods, testing all possible solutions, may be robust to
anatomical variants, yet they are computationally expensive.

In [Gül+14] the authors use an atlas of the coronary tree defined by experts and build
a two-step annotation taking advantage of some assumptions on coronary trees. As in
[Fer+12a], the distances are computed in the tree space. A second cost is taken into ac-
count, based on the likelihood of the assigned labels. This second cost introduces a new a
priori corresponding to the spatial distribution of the arteries relative to the heart surface. In
order to speed up the optimization, the authors propose to follow the Dijkstra algorithm.

More recently in [Cao+17] the atlas is built by selecting the best example in a training
set following a leave-one-in cross-validation design. To label a new tree, a rigid point-set
registration is done and the labels are assigned according to a 2-step hierarchical algorithm.
A direct label assignment to the main branches is performed first. Then, labeling the distal
part is performed by trying all possible pairings between the atlas’ and the target’s branches
as in [Fer+12a], although by staying in R3 the authors ensure faster results.

Recently in [Fey+19] the labeling is performed via an Optimal Transport (OT) algorithm.
The algorithm is applied to brain tractograms instead of anatomical trees, yet it is close
enough to this problem: the annotation is deduced from branch pairings between an atlas
and a new case to annotate. The authors use the transport plan obtained for the annotation
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and propose an interesting tool for automatic labeling.

In [Wu+19] the authors mention that the atlas-based methods perform well in the case of
small databases. Yet, such techniques are generally sensitive to the anatomical variations and
require, like the learning approaches, a set of rules or a priori information added to the la-
beling procedure. From this recent literature, [Cao+17; DKS18; Fey+19] computing mean-
ingful matches between branches appears to be a promising approach to the tree-labeling
problem. While a relevant registration would greatly improve the matches, the atlas-based
articles working in R3 are limited to rigid deformations.

An early attempt for pulmonary trees registration has been proposed in [Gor+09], taking
advantage of the currents representation in a LDDMM framework to register both airway
tree centerlines and lung surfaces. In another medical application of atlas-based methods,
[Bai+12; Cer+13] propose to use LDDMM as registration step to segment a brain atlas.
In particular, [Bai+12] compares elaborated segmentation models to registration-based ap-
proaches on small dataset. Few papers take advantage of the registration of the template
onto an observation. In [Pan+16] the authors successfully register a 2D template of the air-
way tree onto a target, minimizing a distance in the space of varifolds. The LDDMM is
selected as the best registration method, and its multi-atlas version provides them with the
best segmentation results.

We see in the literature that a large variety of approaches address the automatic annotation
of vascular trees. If learning based-methods – and in particular the deep learning ones –
have shown increasing performance for such tasks in the past years, the lack of large, repre-
sentative and annotated databases makes their use limited. On the contrary, the atlas-based
approaches are suited to the limited amount of annotated data. Most of the methods however
do not take advantage of the available unlabeled observations, or apply relevant automatic
spatial deformations as a preprocessing to the annotation step.

1.4 Conclusion

We have seen that applied mathematics are deeply involved in the interventional radiology.
From a clinical point of view, we have seen that the injected 3D CBCT reconstruction is key
during endovascular IR procedures for the understanding of the vascular tree of the patient,
and thus the navigation of the tools in the vessels. Today, interventional radiologists have at
their disposal tools to detect and extract automatically these vessels from 3D volumes.

The automatic annotation of the branches of the extracted trees would be an asset for the
smooth and shorter running of endovascular procedures, and could have many applications.
It would facilitate the procedure planning, by helping the identification of target arteries and
non-target ones. To that extent, it would also reduce the risks in particular when the injection
of some treatment is involved. An example of application could be hiding the arteries of
poor interest to the procedure and highlighting the potential arteries to treat or representing
a high risk of complications. One could also provide a more focused roadmap, highlighting
the vessels of interest, on top of the fluoroscopic images (guiding the operator).
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The report of the procedure would also be more precise, with the potential application
of indicating the different actions taken by the operator, as well as their locations within the
blood vessels. This would facilitate the post-operative follow-up. In general, all the points
listed above imply better technical and clinical outcomes for the patients. Regarding the
benefits automatic vascular tree annotation could bring to endovascular IR, its development
in a rigorous mathematical setting is key.

From the applied mathematics point of view, we emphasize the fact that a good learning-
based approach always requires a large, representative, annotated and cleaned-up database.
Having such a database is a big challenge, especially in medical imaging where the sensitiv-
ity of the data and the difficulty to annotate slow down the development of learning-based
techniques [LY17]. In this context, solutions to the tree labeling problem should ideally
work from a limited number of annotated samples. The atlas-based approaches are therefore
best adapted. We identify three main stakes in the use of automatic annotation of vascular
trees based on an atlas: the construction of realistic deformations to align one observation to
another, the construction of a relevant atlas in which we can select a template, and the use of
deformations in the framework of automatic annotation.

We believe in the paradigm: "The better the shapes are aligned, the easier it is to compare
them". Thereafter, the non-rigid registration of a template annotated vascular tree onto an
unlabeled one would facilitate its automatic labeling. Regarding the high complexity of the
vascular trees, the template should be a synthetic and representative summary of the real
observations. In order to take advantage of the available information despite the lack of
annotations, we propose to derive a statistical analysis of the deformations of the template
onto the rest of the unlabeled (and simplified) observations. The challenge is then to adapt
the registration of the template shape to real targets, and thus to the potential topological
changes that often occur when comparing different trees. To that end, we propose to search
for relevant deformations that would include the simplified template in the target tree. The
topological changes can also be encoded within the atlas, providing a valuable space for the
template.
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LARGE DIFFEOMORPHIC DEFORMATIONS

AND APPLICATION TO VASCULAR TREE ALIGN-
MENT

The variability of anatomical shapes across individuals makes the study of populations chal-
lenging. One point of view is to observe the shapes as elements of the same atlas and
consider the deformations one must generate to align two points of this atlas. Computa-
tional Anatomy formalizes it by studying deformation maps for the shape alignment, deriv-
ing statistics from a population of shapes, and infer on new geometric data embedded in the
same space.
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2.1 Computational Anatomy

Computational anatomy as we see it nowadays was first formulated in the seminal work
of Grenander and Miller [GM98] which made the connection between the initial theory of
d’Arcy Thompson in 1917 [Tho17] and the contemporary tools both in mathematics and
informatics. In [Tho17] the key idea is to see the population of shapes through the geometric
transformations to align the individuals together.

Such transformations should be both computationally tractable and one should be able
to apply these deformations to other shapes belonging to the same space. Moreover, they
should be sufficiently regular and potentially invertible. Let us take for example the Thin
Plate Splines (TPS) model proposed by [Duc77; Mei84], corresponding to the estimation
of a vector field for the registration of landmarks: the model provides a deformation that
only depends on the landmarks. However, there is no guarantee that the deformation is
invertible, which can lead to folds in the space. In the context of computational anatomy, such
deformations are not satisfactory as they do not allow for robust inference. On the contrary
diffeomorphisms of the ambient space provide smooth and invertible transformations that act
upon the embedded shapes. They were formalized and made computationally tractable in the
90s by the seminal works of [Tro95; CRM96; DGM98; Tro98] proposing to build the large
deformations upon a group of diffeomorphisms acting on the ambient space of the shapes.
It has been summarized later in [You10]. Other works introduced alternative diffeomorphic
deformations that are now standard in the community: the DARTEL algorithm [Ash07]
adapting the large diffeomorphic deformations and the diffeomorphic DEMONS [Ver+09].

Regarding the large variability of shapes that are being digitized today, one key step in
the analysis of the shapes is to implement metrics adapted to their comparison. Getting back
to the TPS example, if the landmark representation can be used for any discrete shape, the
TPS requires them to be labeled in both shapes to align to establish correspondences. Most
of the time the labeling is done manually, and such a process requires time and makes the
constitution of a database even more complicated. In line with the computational anatomy
framework, attempts have been made to model the shapes in a relevant space in order to
derive metrics to properly compare them. It has been applied to images [Beg+05] and diffu-
sion tensor images [Cao+06] as well as measures and spaces adapted to smooth curves and
surfaces [Gla05; CT13; KCC17; RG16].

The inexact registration framework has been applied to various shapes, and most of the
methods do not require any annotation of the shapes to be applied: this way one can apply
them to databases without the need for manual labeling. On the other hand, the statistics
over the deformations and the inference to new shapes are well adapted to statistical analysis
[Pen06], and methods have been developed to build templates from sets of deformations be-
tween the shapes [Vai+04] with applications for instance to the study of brain MRI [Cur+18].
It has also been developed in the context of temporal data [Dur10].

Due to the ever increasing efficiency of deep learning methods in a large range of do-
mains, it has also been applied to the computational anatomy framework. Several authors
adapt deep-learning methods to the classical registration frameworks to provide more ef-
ficient inference. Such approaches are inspired by the Stationary Velocity Fields frame-
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work using spacial transformer networks first introduced in [JSZ+15], to register the source
(moving image) to the target (fixed image) by optimizing a loss function including both an
image similarity term and a regularization on the transformations term. One pioneering ap-
proach is called VoxelMorph and works on (structured) 3D medical images [Dal+18]. One
other slightly different application of deep-learning is to learn a spatially-varying regularizer
[NKV19]. Such approaches allow estimating deformations to align shapes and derive statis-
tics over the deformations. They compare to the classical methods such as ANTS [ATS+09]
and diffeomorphic DEMONS, with similar registration performances but provide an infer-
ence time about 100 times faster on CPU ([Dal+18], Table 1).

The tools of computational anatomy have been used in many medical applications for the
understanding of diseases or the modeling of organs. Due to the growing use of (medical)
imaging devices, the available data are also more and more numerous. Thus, one can find
for example studies of cardiovascular Magnetic Resonance Images (MRI) for the statisti-
cal shape analysis of repaired aortic coarctation arches, and allowing the extraction of 3D
anatomical features and assess their variation to template features’ [Gui+21]. One can also
find statistical shape analysis of the population of hippocampus [Cur+18] extracted from
MRI for the construction of population centroid and the disease detection, or longitudinal
study of the same organ along a human lifespan [Yan+13] providing robust methods for eval-
uating morphological measures. Such studies find applications to the study of Alzheimer’s
disease. Applications can be found on retinal fundus surfaces [Lee+17] extracted from reti-
nal fundus photographs for the purpose of glaucoma diagnosis. In [Zol+17], the ear shapes
are modelled and the authors compare the models with the ear acoustic, in the perspective
of ear prosthesis fabrication. Of course, the registration framework has also been applied to
images [Ash07] for numerous kinds of imaging techniques, let’s cite for instance brain MRI
[Kle+09], cardiac MRI [Beg+04], or lung Computed Tomography (CT) [Ris+13].

Apart from the human anatomy, some authors are interested in the study of shape growth,
for instance, the leaves growth with modelling of multiple global and local deformations
[Lac+21] or the study of horn shapes through growth models [KT18]. In [Még+21] the
authors characterize the shape deformation of gene expression to identify gene deregulation
among Huntington’s disease knock-in mice.

One sees that the approach of Computational Anatomy fits perfectly in the context of
atlas construction and template registration for automatic annotation of vascular trees.

Chapter Organization In this chapter we introduce the minimum theoretical background
needed to understand the computational tools we use in the rest of the thesis. Section 2.2 is
dedicated to the construction of Reproducing Kernel Hilbert Spaces with relevant properties
adapted to deformations generation and shapes comparison. In Section 2.3, we provide the
main ideas of the space of deformations we use to compute diffeomorphisms. In Section
2.4, we discuss the different metrics at our disposal to derive inexact matching methods, in
particular for curves and surfaces registration. In Section 2.5 we discuss the statistical tools
to derive statistics over the deformations of templates on populations of shapes. They allow
building a template as well as an atlas adapted to the observations in the sets.

The reader familiar with the LDDMM framework might skip these sections and go im-
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mediately to Section 2.6, in which we apply the LDDMM to the registration of vascular trees.
This first utilization with simplified vascular trees allows us to identify areas of improvement
for the computation of realistic diffeomorphic deformations of vascular trees. Their use in a
atlas-based automatic tree annotation method is developped in Chapter 5, Section 5.1.

2.2 Reproducing Kernel Hilbert Spaces: a Cornerstone

We first provide the key ingredients to the construction of Reproducing Kernels Hilbert
Spaces (RKHS), which will serve as a basis for writing equations in the discrete domain
for both computing the deformations and the shape’s comparison. The underlying classi-
cal notions, first introduced in [Aro50] and extensively studied in the literature will be used
throughout the thesis. Note that contrary to the classic RKHS framework, we are working
with vector-valued function, thus matrix kernels.

Let H be a Hilbert space equipped with its inner product ⟨., .⟩H and its norm |.|H . Its
dual H ′ is the space containing all the continuous linear functions ϕ : H 7→ R. The normed
space structure of H ′ is defined by:

|ϕ|H′ = max
{h∈H,|h|H=1}

ϕ(h).

For any h ∈ H , the function ϕh : h′ 7→ ⟨h, h′⟩H belongs to H ′, and using the Schwartz
inequality in the definition of the dual norm, one can prove that |ϕh|H′ = |h|H .

Theorem 1 (Riesz Representation Theorem). If ϕ ∈ H ′, there exists a unique h ∈ H such
that ϕ = ϕh.

The proof is given, for instance, in [You10], Appendix A. The theorem provides, there-
fore, both a mapping between the dual space and the primal and the equivalence in the norm
of the element of the dual and its representer in the primal that will be essential in the RKHS
theory.

Definition 4 (Reproducing Kernel Hilbert Space). Let H be a Hilbert space of vector-valued
functions defined on a set Ω with values in Rd. Then, H is said to be a Reproducing Kernel
Hilbert Space (RKHS) if for all x ∈ Ω and α ∈ Rd, the functional δαx : u ∈ H → ⟨α, u(x)⟩Rd

is a continuous linear form on H, in other words if δαx ∈ H ′.

Note that we did not use the notion of kernel in the definition of the RKHS. For a RKHS,
we can define its reproducing kernel as follows:

Proposition 1 (Reproducing Kernel). Let H be a a RKHS of functions defined on a set Ω
with values in Rd. There exists a unique function K : Ω× Ω 7→ Md(R) which is called the
reproducing kernel of H and satisfies:

1 For all x ∈ Ω and α ∈ Rd, K(x, .)α ∈ H .

2 For all x ∈ Ω, α ∈ Rd, and u ∈ H , ⟨u,K(x, .)α⟩H = ⟨u(x), α⟩Rd
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From the definition of the RKHS, since δαx ∈ H ′, the Riesz representation theorem 1
gives us that there is a unique function Kα

x ∈ H such that for all u ∈ H :

δαx (u) = ⟨α, u(x)⟩Rd = ⟨Kα
x , u⟩H .

Such a function is called the representer of the evaluation functional δαx . In addition, it
is easy to prove that Kα

x is a linear function of α so that it can be written K(x, .)α, with
K : Ω × Ω 7→ Md(R). The functions K(x, .)α are called the fundamental functions of the
RKHS and K its associated Reproducing Kernel.

Reproducing Property Given y ∈ Ω, β ∈ Rd, and choosing u = K(y, .)β, the second
point of Proposition 1 gives:

⟨K(x, .)α,K(y, .)β⟩H = αT K(x, y) β,

which is called the reproducing property.

Positivity Another fundamental property of reproducing kernels is that they are positive.
It can be shown similarly to the reproducing property. We recall the definition of positive
kernels in the context of matrix kernels:

Definition 5. Let Ω be a set and E = Rd a finite dimension euclidean space andMd(R) the
space of d× d real matrices. We say that K is a positive symmetric definite kernel on Ω with
values in Rd if K : Ω× Ω 7→ Md(R) and satisfies:

1 For all x, y ∈ Ω, K(x, y) = K(y, x)T .

2 For all N ∈ N, x1, ..., xN ∈ Ω and α1, ..., αN ∈ Rd we have:

N∑
i,j=1

αT
i K(xi, xj) αj ≥ 0.

In other words, the block matrix defined by (K(xi, xj))i,j=1..N , x1, ..., xN ∈ Ω is sym-
metric positive.

Proposition 2. Let H be a RKHS, then the reproducing kernel of H is a positive definite
kernel.

Let H be a RKHS of vector-valued functions defined on a set Ω with values in Rd,
and K its reproducing kernel. Consider x1, ..., xN ∈ Ω and α1, ..., αN ∈ Rd, we have :∑N

i,j=1 α
T
i K(xj, xj)αj = ⟨

∑N
i=1 K(xi, .)αi,

∑N
j=1K(xj, .)αj⟩H ≥ 0
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From Kernels to RKHS We can now recall the following central theorem:

Theorem 2 (Moore-Aronszajn). To any symmetric, positive definite kernel K on Ω with val-
ues in Rd, there corresponds a unique RKHS H of functions from the set Ω to Rd whose
reproducing kernel is K.

The proof (see for instance [Gla05] Chapter 2) relies on the construction of the vector
space H0 spanned by the fundamental functions K(x, .)α that is in fact dense in H so H is
also an RKHS of functions limit of Cauchy sequences in H0 with the reproducing kernel K
and is unique. To this point, we have seen that a RKHS theory provides a simple and elegant
way to compute norms of elements in the RKHS, and most of the calculus and functions
evaluations boil down to scalar products in euclidean spaces.

Example 1: Vector Splines Interpolation

As mentioned in Section 2.1 a fundamental example is the landmarks registration
in the ambient space E = Rd, most of the time d = 2, 3. The problem can be
formulated as : Given x1, ..., xN distinct points in Ω ⊂ Rd and y1, ..., yN ∈ Rd

N distinct landmarks, we are looking for a vector field v ∈ V living in a RKHS
canonically embedded in L2(Ω,Rd) with minimum norm such that v(xi) = yi, ∀i ∈
{1, .., N}.
The solution to this problem has the form v(x) =

∑N
i=1 K(x, xi).αi, where the

αi ∈ Rd are solutions of the linear system of equations
∑N

i=1 K(xj, xi).αi = yj ∀j,
and moreover one has that |v|2V =

∑N
i,j=1 α

T
j .K(xj, xi).αi.

Figure 2.1: Landmark pairing by solving a linear system. Left: the source points. Center:
the target points. Right: the pairing and the associated deformation applied to the ambient
space.
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Example 2: Relaxed Vector Splines Interpolation

The result of Example 1 allows pairing labeled points with a vector field that can
be applied to the whole space, however, as mentioned in the introduction such a
solution raises several issues: first the landmarks must be labeled – most of the time
manually –, second the deformation of the ambient space can lead to folding and
non-invertible transformations as illustrated in Figure 2.1. In practice, the Vector
Splines Interpolation Problem can be reformulated with soft constraints, by relaxing
the exact landmark correspondence with a distance term :

argminv∈V |v|2V + γ.

N∑
i=1

|v(xi)− yi|2Rd .

The solution to this problem has the form v(x) =
∑N

i=1K(x, xi).αi, where the αi ∈

Rd are solutions of the linear system of equations
∑N

i=1

(
K(xj, xi) +

1

γ

)
.αi =

yj ∀j. The relaxed formulation provides one way to play with the regularity of the
vector field by adjusting the parameter γ, and we call this new problem the inexact
registration framework.

Figure 2.2: Relaxed landmark pairing by solving a linear system with γ = 0.5. Left: the
source points. Center: the target points. Right: the pairing and the associated deformation
applied to the ambient space.

The theorem 2 will be fundamental for the construction of RKHS since it will allow
the construction of spaces from the construction of their reproducing kernel. However, the
choice of the RK is decisive, and the counterpart will be to build kernels with the "right
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properties".

Definition 6 (Continuous embedding). If (X, |.|X), (Y, |.|Y ) are two normed spaces, if X ⊂
Y and there is a constant c > 0 such that for all x ∈ X , |x|Y ≤ c. |x|X , then we say that X
is continuously embedded in Y and we write X ↪→ Y .

Proposition 3 ([Gla05], Chapter 2, Theorem 9). Let K : Rd × Rd 7→ Md(R) be a positive
definite kernel with its derivatives at order ≤ 2p, p ∈ N continuous and bounded. Suppose
also that for all x ∈ Rd, K(x, .) and all its derivatives at order ≤ p vanish at infinity. Then
the RKHS H associated with K is continuously embedded into Cp

0 (Rd,Rd).

This last property provides guarantees about the regularity of the element of the RKHS,
functions from Rd to Rd, depending on the regularity of the chosen kernel. This is important
in the construction of the RKHS of interest since the RKHS will be used both in the con-
struction of the deformations and in the data attachment term for the shape comparison. The
regularity of the functions guarantees the regularity of the generated deformation. Moreover,
the fact that the kernel vanishes at infinity ensures that the deformation gets close to identity
at infinity.

We now need to provide some invariance properties for the kernels to adapt them to the
deformations and shape comparison purposes.

Theorem 3 (Bochner). Let k : Rd 7→ L(Rm) be an integrable function and its Fourier
transform k̂ verifying k = F−1k̂. Then K(x, y) = k(y−x) is positive if and only if k̂ is such
that for any w ∈ Rd, k̂(w) is a positive hermitian operator.

Proposition 4. Suppose the conditions of Theorem. 3 true. If in complement, the function
k̂(ω) is positive and bounded on Rd, then the scalar product of the RKHS H associated with
k(x, y) = k(y − x) can be written:

⟨f, g⟩H =
1

(2π)d

∫
Rd

¯̂
f(ω)k̂(ω)−1ĝ(ω)dω

The two previous results provide a method to build kernels inducing metrics invariant to
rotations and translations. This is particularly important for instance in the construction of
metrics between the shapes since one would like the metric to be invariant for example to
change of referential.

Scalar Radial Kernels

In practice, we are interested in comparing the shapes no matter the referential, so the rota-
tions and translations should be isometric for the metric induced by the reproducing kernel
we build. In other words, the kernels we are looking for should be invariant to rotations and
translations. In theory, it is possible to build matrix kernels with the correct properties. In
Appendix 5.5 we build such kernels with, in addition, divergence-free and curl-free proper-
ties. In practice, we exclusively worked with scalar kernels of the form K(x, y) = k(x, y).Id
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with k a scalar valued function. We focus therefore on the construction of the last ones. One
way to build kernels invariant to isometry [Gla05] is to set

K(x, y) = k(|y − x|).Id, ∀x, y ∈ Rd

with k: R+ 7→ R a positive scalar function. This is a convenient construction but note that
the class of isometry invariant RKHS remains larger.

Proposition 5. A function k: R+ 7→ R defined as in 2.2 is a positive kernel on Rd if one of
the following condition is true:

(a) r 7→ k(
√
r) is strictly monotonous.

(b) k(
√
r) =

∫∞
0

e−r2u2
dµ(u), with µ a positive bounded Borel measure on [0,∞[ .

This proposition comes from the work of Schoenberg [Sch38] and provides the charac-
terization of a convenient class of functions to use in order to build scalar kernels with the
correct invariance properties.

Scale Parameter In practice, one would like the reproducing kernel to be scale invariant.
For instance, when comparing the shapes with distance in a RKHS, one would like this
distance |x− y|H to be the same as |α x− α y|H for α ∈ R+∗. In particular, one would like
kH(α.x − α.y) = kH(x − y) which is impossible. A classic answer is to introduce a scale
parameter σ ∈ R+∗ in the kernel:

KH(x, y) = kH

(
|y − x|2

σ2

)
.Id.

This scale is particularly important in practice since it defines a range of interaction between
an element of the RKHS and its ambient space.

Gaussian Kernels For σ > 0, the most commonly used kernel is the Gaussian kernel:

Kσ(x, y) = e
−
|y − x|2

σ2 .Id.

Using Proposition. 4, Kσ is a positive kernel and its associated RKHS Hσ is continuously
embedded in Ck

0 (Rd,Rm) for all k ∈ N. We have

|f |2Hσ
=

σd

2dπd/2

∫
Rd

e

σ2|ω|2

4 |f̂(ω)|2dω

and two distinct σ and σ′ define two distinct RKHS associated with Kσ and Kσ′ and Kσ′(x, .)α

belongs to Hσ if and only if σ′ >
σ√
2

.

The norm being finite, it implies that the Fourier transform decreases quickly, which
ensures the smoothness of the elements of Hσ. Such – well known – Gaussian kernels must
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be tuned carefully in order to build a RKHS adapted to the shapes. For instance the smaller
the scale, the more local the variations of the shapes are taken into account but the less far
it will "see" other shapes. In the rest of the thesis, the Gaussian kernels will be extensively
used for both computing the deformations of the ambient space and the distance between the
shapes in the shapes spaces.

As the tuning of the scale parameter is key in the construction of relevant registration
solutions, one classic approach is to use multi-scale kernels similarly to a coarse-to-fine
solution:

K(x, y) =
1

n

n∑
i=1

e
−
|x− y|2

(σ0/si)2 .Id

where (si)i ∈ (R∗
+)

n are the scaling coefficients and σ0 ∈ R∗
+ is a reference scale.

There exist other kernels that can be used such as the Cauchy kernel:

K(x, y) =
1

1 +
|x− y|2

σ2

.Id.

In some cases (e.g. the Sobolev spaces), one can start constructing the RKHS and then
deduce the associated kernel with the right properties.

2.3 A Space of Deformations

In the previous section we built the basic tools to generate reproducing kernel spaces with
invariance and regularity properties. We are now interested in the construction of large de-
formations suitable or the statistical analysis of anatomical shapes. From [You10] we can
identify the required properties for the deformations of the ambient space Ω, open set of Rd.
Getting back to the registration problem, we need that the deformation y = ϕ(x) ∈ Ω of a
point x ∈ Ω provides at least the following guarantees: first not to create holes in Ω so the
deformation should be onto, and second it should not fold the space (see for example Fig-
ure 2.1), so it must be injective. All in all the deformations we are looking for are bijections
of Ω.

One way to quantify the difference between two shapes is to quantify the amount of
deformations needed to align them – thus an extrinsic quantification –. In an ideal setting,
one would like to align exactly the shapes m of a set M living in Ω. The actions on the
shapes belong to a certain group G of transformations Ω. In the following we will build
such a group of transformations and assume that the action of G is transitive on M : for any
m0,m1 ∈M , there exists g ∈ G such that g.m0 = m1.

This may look restrictive, in particular in the case of discrete shapes and regular transfor-
mations. There is however at least one typical application to the registration of one reference
shape S onto a set of target shapes M = (m0, ...,mn). If solutions to inexact registrations
gk · S, with (gk)k ∈ G exist, the set (gk.S)k belongs in fact to the orbit G · S. The LD-
DMM theory allows building such a group of bijective transformations, and we detail it in
the following.

44



LARGE DIFFEOMORPHIC DEFORMATIONS AND APPLICATION TO VASCULAR TREE

ALIGNMENT

Definition 7. A homeomorphism of Ω is a continuous bijection ϕ : Ω 7→ Ω such that its
inverse ϕ−1 is continuous. A diffeomorphism – or C1-diffeomorphism – of Ω is a continu-
ously differentiable homeomorphism ϕ : Ω 7→ Ω such that its inverse ϕ−1 is continuously
differentiable.

In order to build bijective deformations of the shapes preserving their structure (as well as
their tangent structure for the manifolds), from now on the group G is chosen as a subgroup
of the group of C1-diffeomorphisms of Ω. For a function f ∈ Cp

0 (Ω,Rm) we define the norm
|f |p,∞ = Supx∈Ω{|f(x)|+

∑p
k=1 |dkxf |} with dkxf the k − th differential of f at x.

The intuition behind the construction of the subgroup is to start by considering "small
perturbations" of elements in Ω. Consider a function v ∈ C1

0(Ω,Rd) such that there exists
δ0 such that for all x ∈ Ω and all δ < δ0, x + δv(x) ∈ Ω. One can show ([You10] chapter
8) that for a real ϵ > 0 small enough, ϕ : x 7→ x + ϵv(x) is a diffeomorphism of Ω. This
basic diffeomorphism may not provide the large deformations expected, but we can retrieve
them using a composition of small perturbations. Taking the limit ϵ → 0, one can see the
diffeomorphism as a composition of infinitely small deformations. This corresponds to the
explicit Euler scheme for the differential equation:{

ẋ(t) = vt(x(t))

x(0) = x0,
(2.1)

The resulting diffeomorphism is therefore intrinsically linked to the flow of a time varying
vector field of the ambient space.

2.3.1 Flows of Vector Fields

In the previous elementary example of the small perturbation of the identity as a first dif-
feomorphism, we already required some assumption for the function v ∈ C1

0(Ω,Rd). We
will now build a space of admissible vector fields, and assume that Ω is Rd which is more
natural when looking at deformations of the ambient space.

Definition 8 (Admissible Vector Fields). A vector space V of vector fields on Rd is admissi-
ble if it verifies:

1. V is a Hilbert space.

2. (V, |.|V ) is continuously embedded in (C1
0(Rd,Rd), |.|1,∞) the space of C1 vector fields

on Rd vanishing at infinity along with all their partial derivatives: there exists a con-
stant cV > 0 such that for all v ∈ V , |v|1,∞ ≤ cV |v|V

From now on, we will denote by V a space of admissible vector fields. This space can be
seen as the tangent space of G at identity and its norm |.|V can be seen as the infinitesimal
displacement cost.
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We define L2
V =

{
(vt)0≤t≤1 ∈ V [0,1] s.t.

√∫ 1

0
|vt|2V dt < ∞

}
the set of time varying

vector fields with finite energy with respect to the norm on V. L2
V is a Hilbert space with the

correct properties, and we can define the group GV : {φv
t , v ∈ L2

V } where φv
t verifies the

flow equation: 
∂φv

t

∂t
= v ◦ φv

t

φv
0 = id,

(2.2)

The construction of this group is well detailed in [You10], in particular the existence, unique-
ness and control of the solutions to the flow equation in GV . We simply provide here the
structure of GV :

Theorem 4 ([Tro95]). GV is a group of diffeomorphisms.

We will now explain how a right-invariant metric on GV can be defined from the previous
construction. First we can notice that if such a right-invariant metric exists on GV , we can
remark that for ϕ, ϕ1, ϕ2 ∈ GV , d(ϕ1◦ϕ, ϕ2◦ϕ) = d(ϕ1, ϕ2), and in particular taking ϕ = ϕ−1

1

we obtain d(ϕ1, ϕ2) = d(id, ϕ2 ◦ ϕ−1
1 ). This shows that we can restrict the definition of the

distance in GV to the distance to identity:

d(id, ϕ) := inf
v∈L2

V

{√∫ 1

0

|vt|2V dt | φv
1 = ϕ

}
(2.3)

which can be extended to a right invariant distance on GV via:

dGV
(ϕ, ϕ′) := d(id, ϕ′ ◦ ϕ−1) = inf

v∈L2
V

{√∫ 1

0

|vt|2V dt | ϕ′ = φv
1 ◦ ϕ

}
(2.4)

Theorem 5 ([Tro95]). dGV
is a metric on GV and (GV , dGV

) is complete.

The energy of the flow equation 2.2, given by the squared distance to identity, measures
the amount of deformations induced by the vector field on the whole space.

Corollary 1. The infimum in Equation 2.3 is attained at some v ∈ L2
V , and moreover |vt|V

is constant.

This result provides the following theorem, and is fundamental for the construction of
computable diffeomorphic solutions to the flow equation.

Theorem 6. If V is admissible and ϕ, ϕ′ ∈ GV , there exists a time varying vector field
v ∈ L2

V such that

dGV
(ϕ, ϕ′) = |v|L2

V

and ϕ′ = φv
1 ◦ ϕ
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We can now get back to the initial problem: how to compare and align two shapes S and
T in the set of shapes M living in Rd ? Since we consider that all shapes belong to the orbit
GV .S, we can express the distance between S and T through the distance of Theorem 6 we
just built in GV :

d(S, T )2 := inf
v∈L2

V

{∫ 1

0

|vt|2V dt | T = φv
1(S)

}
= inf

ϕ∈GV

{
dGV

(id, ϕ)2 | T = ϕ(S)

}
(2.5)

This term is called the energy of deformation, and from Corollary 1 we know that given
v inL2

V minimizing this distance, d(S, T )2 = E(v) = E(v0) = |v0|2V . For a given solution
to the Exact Matching problem, we are able to easily compute the energy of deformation of
the solution. We now need to explicitly build such a solution.

2.3.2 Computing Large Diffeomorphic Deformation

We have seen that the space of diffeomorphisms can be built upon a space of admissible
vector fields (Definition 8), and we provided in Proposition 3 a condition on the reproducing
kernel to build such admissible RKHS. In a discrete setting in the case of exact matching of
landmarks, one may prove (see for instance [You10], chapter 11) that optimal vector fields
for the minimization of functional E can be written by the means of the Reproducing Kernel
KV of the admissible RKHS V , as follows:

vt(x) =
N∑
i=1

KV (x, q
i
t)p

i
t (2.6)

where the qt = (qit)i correspond to the trajectories of the finite number of points called
control points of Rd under the flow equation, and the pt = (pit)i are the auxiliary dual vari-
ables called momenta.

This result puts the reproducing kernel as the central object to model discrete shapes de-
formations. Classically, one may chose an appropriate kernel KV first and then deduce the
corresponding Hilbert space V . From the construction of the RKHS described in Section 2.2,
we simply need to build a kernel KV with the correct properties: KV is continuously dif-
ferentiable of order 2, all the derivatives of KV up to the order 2 are bounded and for any
x ∈ Rd, the function KV (x, .) and all its derivatives up to order 2 vanish at infinity. Then,
for such a kernel KV , its corresponding RKHS is an admissible space of vector fields. In
practice, we will use the radial basis Gaussian kernel (Example 2.2).

One can remark that the functions KV (., q
i
t)p

i
t correspond to the fundamental functions

of V similarly to the Vector Spline Interpolation Example 1, but contrary to this previous ex-
ample we now generate time varying vector fields. This result can be extended to the inexact
matching framework for any shapes, provided some conditions on the data attachment term
that depends only on the displacement of the landmarks, as detailed in Section 2.4.
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If a framework has been studied for more generic shapes, we limit the discussion to the
case of landmarks trajectories, which is the typical discrete setting. In fact, the discrete
shapes are considered as sets of vertices connected or not. We then apply the deformation to
the vertices of these discrete shapes, and report their connectivity at the new location of the
deformed vertices. The trajectories are thus parameterized by the control points and initial
momenta qit and pit. Using the flow equation of Equation 2.2, we are looking for solutions to
the Exact Matching problem 2.5. In the case of landmarks, the solution exists.

Shooting Along the Geodesics As shown in [MTY06], one may further derive optimality
equations that must be satisfied by the trajectories qit when considering deformations that
minimize the cost function. These equations take the following form:{

ṗit = −v̇t(qit))T .pit
q̇it = vt(q

i
t)

(2.7)

Which can be written by the mean of the reproducing kernel:


ṗit = −

1

2
∇qit

(
N∑
j=1

N∑
l=1

〈
pjt , KV (q

j
t , q

l
t)p

l
t

〉
Rd

)

q̇it =
N∑
j=1

KV (q
i
t, q

j
t )p

j
t

(2.8)

Figure 2.3: Illustration of a LDDMM registration from an atlas shape S to a target T .

They correspond to geodesic equations with respect to a specific Riemannian metric in-
duced therefore by the Reproducing Kernel, written in Hamiltonian form inspired from the
study of the dynamic of particles systems. Thus, optimal trajectories correspond to geodesics
and in particular, the total energy (and the reduced Hamiltonian) is conserved over time :

|vt|2V = |v0|2V =
N∑
i=1

N∑
j=1

〈
pi0 , KV (q

i
0, q

j
0)p

j
0

〉
= pT0 .K(q0, q0)p0 = Hr(p0, q0) (2.9)
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The points qi0 can be taken for instance as the discretization points of the source shape S,
the deformations are then fully parametrized by the initial momenta pi0. More precisely, given
any vectors pi0, one may retrieve the full corresponding time-dependent momenta pit and
trajectories qit by integrating the geodesic equations (2.7) (this process is called shooting),
and from this retrieve the full deformation ϕ = φv

1 by integrating the flow equation (2.1).

Induced Metric on Landmarks When looking at the infinitesimal deformation η = (ηi)
of q = (qi)i, if v is solution to the interpolation problem v(qi) = ηi in V , with mini-
mal |v|V . Then we have that the local metric satisfies |η|2 := |v|2V , which gives |η|2 =
⟨KV (q, q)

−1η, η⟩, with KV (q, q) the block matrix of the KV (q
i, qj). We thus have the Rie-

mannian manifold of landmarks, with metric tensor at q equal to KV (q, q)
−1, and we can

build the geodesic path and distance – the geodesic length. We retrieve the global metric on
the shapes defined in Equation 2.5.

In the case of more generic shapes than the landmarks, the construction of the riemannian
structure on M would require a formal construction at this stage, according to the shapes.

2.4 Metric Mapping: from Exact to Inexact Registration

The diffeomorphic alignment of the shapes presented so far is based on the assumption that
differences between similar anatomical shapes may be analysed via the estimation of diffeo-
morphisms of the ambient space that act upon them. We have defined a space of admissible
deformations and a way to compute them, however the assumption of studying populations
of shapes belonging to the same orbit is too restrictive. In real world applications one can
– almost – never expect a perfect mapping of one shape onto the other: there can be differ-
ent samplings, noise, artifacts, missing structures across the population, etc. In practice, the
registration algorithms search for the shape alignment with respect to a given metric. Such
methods make the registrations robust to the real-world challenges listed, but deeply rely on
the choice of the metric – or data attachment – and the representation of the shapes. Once
again we will build metrics induced by reproducing kernels that will provide efficient formu-
las for computing the metrics. Thanks to their flexibility, we will also encode properties in
the induced metric, for instance taking into account the orientation of the shapes or not.

In this setting, the registration illustrated in Figure 2.3 of a source shape S (in our case
the atlas) onto a target shape T , is performed by minimizing a cost function:

J(ϕ) = γ E(ϕ) + A(ϕ(S), T ) (2.10)

where A is a data attachment term that penalizes mismatch between the deformed source
φ(S) and the target T . In the case of non-diffeomorphic deformations (Example 1), intro-
ducing the data attachment terms provided regularized vector splines solutions. A similar
methodology can be followed for diffeomorphic framework: it will provide solutions when
registering shapes that do not belong to the same orbit. Using the following theorem, one can
show that the inexact registration framework can be adapted to the diffeomorphic registration
framework by building data attachment terms with a certain regularity:
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Theorem 7 ([Gla05] Theorem 7). Let S, T be two shapes of Ω, and consider a matching
problem of the form 2.10. If v 7→ A(φv

1(S), T ) is weakly continuous from L2
V to R; then

there always exists for γ > 0 a minimum to the matching problem.

The result 2.9 associated with a differentiable data attachment term verifying Theorem 7
allows building an explicit forward-backward algorithm for registration called geodesic shoot-
ing (Algorithm 1, illustrated in Figure 2.3) introduced in [MTY06]: with q0 = (x1, . . . , xN)

Algorithm 1 Geodesic shooting (fixed-step gradient descent).
Input: q0, δ (step size)
Output:argminp0∈(Rd)nJ(p0)

Set p0 = 0

repeat
Compute (q1, p1) = ((qi1)i, (p

i
1)i) through forward integration of (2.7)

Compute∇q1A(q1, T )

Compute∇q0A(q1, T ) through backward integration
Compute∇p0J(p0) = KV (q0, q0)p0 +∇q0A(q1, T )

p0 ← p0 − δ∇p0J(p0)

until convergence

the discretization points of the source shape to deform S and q1 = (qi1)i defined as qi1 =
φv
1(q

i
0). Similarly to the construction of computable spaces of diffeomorphisms, the metrics

we seek for shapes comparison will also be derived from RKHS.
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Example 3: Labeled Landmark Diffeomorphic Registration

In the case of the annotated landmark registration, one is given two sets of paired
source x = (xi)i and target y = (yi)i points. One simple data attachment term is to
take the sum of the squared point-wise L2 distance :

A(x, y) =
N∑
i=1

|φv
1(xi)− yi|22

Let (vn) be a sequence in L2
V , weakly converging to some v ∈ L2

V . We need to show
that A(φvn

1 (x), y) −→ A(φv
1(xi), y) which is true if φvn

1 (xi) −→ φv
1(xi). This last

condition is true by definition, the Theorem 7 is verified and by setting the control
points qi0 to the initial positions xi, the minimization function becomes

J(p0) = γ pT0K(q0, q0)p0 + A(φv
1(q0), y)

Figure 2.4: Exact landmark matching using diffeomorphic deformations with explicit cor-
respondences. The data attachment is the point wise L2 distance between the paired points,
with γ = 0 and the scale of the Gaussian kernel s = 0.25. Left: the source points (blue
points) and the targets (red cross) and their correspondences. Right: the output deformation
applied to the ambient space.

When compared to the Vector Spline Interpolation 1, we immediately see that the deforma-
tion in the previous Example 3 does not fold the ambient space thanks to the diffeomorphic
deformation despite the parameter γ equal to 0. The matching in this case is exact. Fur-
thermore, the deformation is less smooth than the regularized Vector Spline Interpolation
of Figure 2.2, which can be corrected by using γ > 0 or playing with the scale of the re-
producing kernel. We observe in Figure 2.5 (a) that increasing γ increases the regularity of
the deformations, and that the result approaches the regularized Vector Spline Interpolation,
with the guarantee of a diffeomorphic deformation in addition. In Figure 2.5 (b) we have
kept the same γ but we have decreased the scale of the reproducing kernel which has the
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(a) (b)

Figure 2.5: Influence of the regularization parameters on the inexact diffeomorphic registration of
the landmarks. (a): γ = 1 and s = 0.25 and (b): γ = 1 and s = 0.1.

effect of decreasing the range of influence of each control point xi on its surrounding space.
We then find an almost perfect registration although γ is not zero, and the deformations are
much more localized. These experiments show that the geodesic shooting method provides a
particularly flexible smooth non-rigid registration method: by playing with two parameters,
without even discussing the choice of the reproducing kernel one is able to generate more
or less regular and local deformations. This also illustrates the importance of these parame-
ters, which must be adjusted for each new application to find the right trade-off between the
amount of deformation generated and the alignment of the shapes.

This example of annotated points gives a first way to non-rigidly align any shapes by
manually discretizing them with correspondence points. This is what was done in the first
applications of computational anatomy for matching landmarks [JM00]. However, as we
discussed previously such a framework is not suited to automatic tools for processing the
data: either it requires human time that the users, like the physicians, can not afford for
instance during their procedures, or it introduces a variability inherent to the complexity of
the task and the human mistakes. This is why many authors have been interested in the
construction of metrics in spaces adapted to their data in order to dispense with annotations
to generate deformations. The construction of such data fidelity terms deeply depends on
the type of data to register: the data attachment between images may be very different from
the one between curves in Rd. In this manuscript we will focus on the curves of R2 and R3

and surfaces of R3 and their unions, which are the most common shape representation of the
organs and vascular trees.

2.4.1 Spaces for the Data Attachment

We now introduce the data attachment terms (A in (2.10)) usually used in the diffeomor-
phic registration algorithms. These similarity terms should depend on the shape features
one wants to consider in the registration. In the case of sub-manifolds of Rd, the invariance
to some reparameterization makes the distances used for the case of labeled landmarks in-
tractable. In addition, the computing tools work with discrete shapes and there exist no a
priori on the number of discretization points per mesh in the population of shapes, on the
structure of the meshing (density of vertices for instance) or on the way it was constructed
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(a population of shapes may be a concatenation of several databases obtained from different
subjects). The objective is hence to build metrics robust to artifacts and noise one can get
when constructing a database and adapted to the comparison of submanifolds of Rd, in our
case curves and surfaces. Finally, such metrics should be efficiently computable and scalable
to large data, and ϕ 7→ A(ϕ(S), T ) should be differentiable on any group of diffeomorphisms
GV .

A convenient framework inspired from the field of Geometric Measure theory [Fed69]
is to compare shapes in certain spaces of generalized measures: Currents [Gla05], Varifolds
[CT13] or Normal Cycles [RG16]. Such methods are reviewed in [Cha+20], and we provide
in this section the definitions as well as some toy examples illustrating the behaviour of the
different metrics and how they drive the diffeomorphisms. This corresponds to the LDDMM
framework introduced in Section 2.1 based on the geodesic shooting algorithm described in
Algorithm 1. The key idea is then to build some appropriate RKHS structure on spaces of
measures that allow to derive computable norms. Moreover these methods have the advan-
tage of being independent of any correspondence between the points, and they are adapted
to both continuous and discrete settings.

From Labeled Points to Points Clouds

As a first example, one can adapt the problem of matching labeled points to the one of match-
ing unlabeled points clouds by seeing them as sum of weighted Dirac in the ambient space.
This setting, corresponding to distributions of points Rd does not require any points corre-
spondences or assumptions on the number of points per distribution. We are then considering
elements of Ms(Rd) the space of signed Borel measures in Rd which is the dual space of
C0(Rd,R) with the total variation norm:

|µ|TV = Sup

{∫
Rd

fdµ, f ∈ C0(Rd,R), |f |∞ ≤ 1

}

We can then define the action of a transformation ϕ : Rd → Rd on a test function
f ∈ C0(Rd,R) as:

ϕ.f := f ◦ ϕ−1.

Then the action of the transformation on a measure µ is defined by:∫
Rd

fd(ϕ · µ) :=
∫
Rd

ϕ−1 · fdµ =

∫
Rd

f ◦ ϕdµ,

To define a data attachment term between measures,Ms(Rd) is continuously embedded
in the dual I ′ of a RKHS I (See [Gla05].4.2.3). Using the reproducing property we can
therefore retrieve the norm in I ′ with the reproducing kernel kI . Remarking that a measure
µ ∈Ms(Rd) can be approached by a sum of Dirac masses µ̃ =

∑N
i=1 aiδxi

, ai ∈ R, xi ∈ Rd,
the norm writes:

|µ̃|2I′ =
N∑

i,j=1

aiajkI(xi, xj).
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Proposition 6. Supposing that I is continuously embedded in C1
0(Rd,R) and µS, µT ∈

Ms(Rd) with µS on a compact set. Then the application v 7→ |φv
1 · µS − µT |2I′ is weakly

continuous on L2
V .

Using the Theorem 7 and the last proposition, we have a distance in the space of measures
adapted to the LDDMM framework and computable thanks to the RKHS structure:

d(µ1, µ2) = |µ1 − µ2|2I′ .

Provided some regularity assumption on the reproducing kernel, we have the existence and
the consistency of the solutions to the minimization problem of the function

J(v) = γ.E(v) + |φv
1 · µS − µT |2I′

Figure 2.6: Diffeomorphic registration of a point cloud seen as a sum of Diracs, with γ = 1 and
s = 0.25 and for the reproducing kernel kI : sI = 0.2.

As illustrated in Figure 2.6 since the points are not labeled anymore, the deformation
leads to a new solution and the overall solution now matches the points with a smoother
diffeomorphism. The weight of each Dirac were set to 1 in this experiment considering that
there is the same number of points in the source and in the target. This data representation
is though adapted to more general settings: points clouds and shapes with different numbers
of points and weights.

This first application shows that the space of measures seems to be adapted to the con-
struction of metrics to compare shapes. However, the action of deformations on this metric
is not geometric, so we want to use more adapted tools. In particular, one would like to take
into account the tangent information inherent to the submanifold structure of the shapes. The
first precursor work on the construction of a metric allowing the geometric action of diffeo-
morphisms is Glaunès [Gla05] who proposes to work on currents instead of measures, or in
other words measures on the space of m-differential forms for submanifolds of dimension
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m ≤ d. It can be shown that the measures are in fact a particular case of the current represen-
tation. Later on, Charon [CT13] focused on the Varifold representation (and the framework
of the functional shapes, which is out of the scope of this thesis) getting rid of the orienta-
tion of the shapes and paying more attention to thin structures while being more sensitive
to the noise. The varifolds are distributions on the product Rd × Gm(Rd), or in other words
continuous linear forms on a space of smooth test functions from Rd ×Gm(Rd) to R, where
Gm(Rd) is the m-dimensional Grassmannian in Rd. This second embedding space for the
shapes introduced a representation sensitive to the thin structures which were not seen in the
current representation. In a more recent work, [KCC17] proposed a slightly different version
of the varifolds allowing to take into account the orientation. In this setting, the varifolds and
the currents are particular cases of the oriented varifolds, and we will use this latter space to
build our metrics.

Shapes Representation

We limit the notions and definitions to the essential ones and focus on the case of match-
ing curves and surfaces, and the reader may refer to the works of Glaunès, Charon, and
Roussillon [Gla05; CT13; RG16], introducing the general setting for each shape space rep-
resentation of the submanifolds. The ambient space is Rd with d = 2, 3 and since we are
working with smooth curves and surfaces (or union of them) of Rd, we introduce the tangent
space to the shape S at x denoted TxS. We also define the orientation of a shape by using
oriented tangent spaces, represented by vectors in the unit sphere Sd−1 and written t⃗(x) the
unit tangent vector for the curves and n⃗(x) the unit normal vector for the surfaces.

Note that apart from the dimension-1 and codimension-1 manifolds (curves and hyper-
surfaces of Rd) one can not represent the tangent space with a unit tangent vector. One can
chose the opposite orientation of a shape by using −t⃗(x) instead of t⃗(x). To properly define
the shapes we are dealing with, we need to define the rectifiable subsets:

Definition 9. We say that S is a k-rectifiable subset of Rd if the k-dimensional Hausdorff
measure of S is finite, and if there exists a countable family (fi)i∈N of Lipschitz maps fi :

Rk → Rd such that
Hk
(
S \ ∪ifi(Rk)

)
= 0.

In particular, one property of the rectifiable curves and surfaces is that for almost every
point in the x ∈ S, the tangent space TxS exists. In addition, we work with oriented rectifi-
able sets. In the particular case of vascular trees, it is indeed natural to define the orientation
of the centerlines from the root to the leaves.

From Curves and Surfaces to Meshes Since we manipulate discrete shapes represented
as meshes, we must define their structure.

The curves, illustrated in Figure 2.7(a), are represented as polygonal curves in Rd, letting
{xi}i=1...N ∈ Rd be the discretization points, with xi connected to xi+1 for i ∈ {1, .., N −
1} we can compute the centers (ci) of each discretization segment [xi, xi+1] along with its
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associated weight (the segments length) ai and the tangent space to the center TciS spanned
by the unit tangent vector t⃗S(ci):

ci = xi+xi+1

2

ai = |xi+1 − xi|Rd

TciX = span

(
xi+1 − xi

|xi+1 − xi|Rd

)
= span(⃗tS(ci)))

(2.11)

The surfaces are represented as triangulated meshes. Let ∧ denote the cross product in
R3 Let S be a triangulated surface in E = R3 with N points {xk}k=1...N and n triangles
(f 1

i , f
2
i , f

3
i ) ∈ {1, ..., N}3 for i = 1, ..., n. As illustrated in Figure 2.7(b), we can compute

the centers of each cell ci ∈ R3, the (unoriented) tangent space to the shape at ci, TciS ∈ S2
and the surface area of each cell ai ∈ R∗

+:


ci =

x
f1
i
+x

f2
i
+x

f3
i

3

ai = 1
2

∣∣∣xf2
i
− xf1

i
∧ xf3

i
− xf1

i

∣∣∣
TciS = span

(
xf1

i
− xf2

i
, xf1

i
− xf3

i

) (2.12)

(a) (b)

Figure 2.7: Meshes structure for (a) curves and (b) surfaces.

2.4.2 Matching Oriented Varifolds

We focus now on the oriented varifolds representation introduced in [KCC17], of which
classical representations such as the varifolds or the currents are particular cases. In the dif-
ferent examples and applications of the thesis, the oriented varifolds are the default selected
shape space. If another representation is chosen, this will be specified in the description of
the application. Let S be such a 1 or 2-rectifiable subset, we associate with S an oriented
varifold:

µS(ω) =
∫
Rd×Sd−1 ω(x, τxS)dµS(x, τxS) (2.13)

=
∫
S
ω(x, τxS)dvol(x) (2.14)
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with ω a smooth test functionRd×Sd−1 7→ R. In particular, the Diracs δ(x,τ) with x ∈ Rd

and τ ∈ Sd−1 in the space of oriented varifolds act on functions of C0(Rd × Sd−1) by the
relation:

δ(x,τ)(ω) = ω(x, τ), ∀ω ∈ C0(Rd × Sd−1).

If S is a smooth compact submanifold, given a parametrization γ : U 7→ Rd with U an
open subset of Rn, with n = 1 or 2 the dimension of S, then for all ω ∈ C0(Rd × Sd−1), we
have:

µS(ω) =

∫
U

ω(γ(u), τγ(u)S)|γ′(u)|du

with γ′(u) = Λd
i=1

∂γ

∂ui

∈ Λd(Rd). The intuition for |γ′(u)| is that it corresponds to

the element of volume of the parallelepiped supported by the partial derivatives. This last
equation shows in particular that the varifold associated with a shape S is independent to any
reparametrization of S.

In a discrete setting defined in Section 2.4.1, the shapes can be associated with sums of
Diracs and coded by the varifolds: µS =

∑n
i=1 ci.δ(ci,τciS). (see [KCC17] Proposition 1 for

the proof of the discrete approximation).

Action of Diffeomorphism Similarly to the transport of measures in the case of point
clouds, one can build a transport of varifolds through the action of diffeomorphisms in GV .

We have thus constructed objects that can be transported by diffeomorphisms and asso-
ciated with the shapes we are interested in, curves and surfaces, and their finite unions.

Kernel Metrics for Oriented Varifolds

In order to focus on a specific class of computable test functions to build our varifolds,
we take advantage of the RKHS theory once more. Let W be a Reproducing Kernel Hilbert
Space (RKHS) of functions defined overRd×Sd−1 continuously embedded in C0(Rd×Sd−1),
the space of continuous test functions vanishing at infinity. Its dual space W ′ is a space of
varifolds and the following proposition gives a practical way to define such a space:

Proposition 7. Assume that we are given a positive-definite real kernel ke on the space Rd

such that ke is continuous, bounded and for all x ∈ Rd, the function ke(x, .) vanishes at
infinity. Assume that a second positive-definite real kernel kt is defined on the manifold Sd−1

and is also continuous. Then the RKHS W associated with the positive-definite kernel ke⊗kt
is continuously embedded into the space C0(Rd × Sd−1).

In the following we assume that the reproducing kernel of W is of the form ke⊗ kt, with
the assumptions of proposition 7. The Diracs belong to the dual W’ of the RKHS, and the
dual metric satisfies:

⟨ δx1,τ1 , δx2,τ2⟩W ′ = kW ((x1, τ1), (x2, τ2)) (2.15)
= ke(x1, x2) kt(τ1, τ2) (2.16)

57



CHAPTER 2

We associate with shape S the canonical function ωS ∈ W defined for all y ∈ Rd and
τ ∈ Sd−1 as follows:

ωS(y, τ) =

∫
S

ke(y, x)kt(τ, τxS)dvol(x) .

This function corresponds to the unique representer of the varifold µS ∈ W ′ via the Riesz
representation theorem. Similarly, we define the canonical function ωT associated with shape
T . Via this representation of shapes, one may express the scalar product between the vari-
folds µS, µT , or equivalently between the canonical functions ωS, ωT as follows:

⟨µS, µT ⟩W ′ = ⟨ωS, ωT ⟩W =

∫
S

∫
T

ke(x, y)kt(τxS, τyT )dx dy .

Finally, the shape matching distance as defined in [CT13] is the following:

dW ′(S, T )2 = ∥ωS − ωT∥2W = ∥µS − µT∥2W ′

= ⟨µS, µS⟩W ′ − 2⟨µS, µT ⟩W ′ + ⟨µT , µT ⟩W ′ .

While this separable structure does not cover all possible kernels on Rd × Sd−1, it pro-
vides a large and interpretable set of kernels, independently defining the behaviour of the
position (encoded by ke) and the orientation (encoded by kt). Similarly to the discussion of
Proposition. 4, a property we seek for the metric is the equivariance to rigid motion.

Proposition 8. Within the class of separable kernels defined in Proposition. 7, the metric
W’ is equivariant to the action of rigid transformations for kernels kW ((x1, τ1), (x2, τ2)) =

ke(|x2 − x1|) kt(⟨τ1, τ2⟩Rd).

We have seen admissible conditions for such a radial kernel ke in Section 2.2, from
[KCC17], a necessary and sufficient condition on kt is that kt(u) =

∑∞
1 akP

(λ)
k (u) with

ak ≥ 0,
∑∞

1 akP
(λ)
k (1) < ∞ and P

(λ)
k the ultraspherical polynomials of order λ =

d− 1

2
.

In order to induce a metric on W ′ instead of a pseudometric, a sufficient condition can be
added:

Proposition 9. Let ke and kt be two kernels as in Proposition. 7, if in addition W is dense
in C0(Rd × Sd−1) and for all τ ∈ Sd−1 kt(τ, τ) > 0, then dW ′(S, T ) = |µT − µS|W ′ defines
a distance on the set of shapes.

The Different Shape Distances as Functions of kt Until now we have built reproducing
kernels with the right properties for the induced metric to define a distance in W ′, and the
generic definitions proposed to provide freedom of modelling for the oriented varifolds. In
particular, depending on the choice of the reproducing kernel for the tangent space kt, one
may retrieve the particular cases of the currents and (unoriented) varifolds:

- kt(τ1, τ2) = ⟨τ1, τ2⟩Rd , the current representation proposed in [Gla05].
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- kt(τ1, τ2) = ⟨τ1, τ2⟩2Rd , the simplest unoriented varifold representation proposed in
[CT13].

- kt(τ1, τ2) = e

2⟨τ1, τ2⟩Rd

σ2
t the restriction of the gaussian kernel of Rd to Sd−1, which is

fast to compute and one can control the angular sensitivity through the scale parameter
σt.

A further discussion about the choice of the different metrics as data attachment terms is
provided in Chapter 3. It can be noted here that the currents allow us to have an orientation of
the shapes, which is particularly interesting in the case of vascular trees, for example, which
have a natural orientation from the root to the leaves. However, their lack of sensitivity to
structures of opposite orientation and spatially close to each other creates disappearances
or inappropriate appearances of high frequency structures. The unoriented varifolds on the
contrary will be very sensitive to such structures and thus they will preserve them. However,
they do not encode the orientation and therefore the natural choice that can be made to
compare the shapes of centerline trees is that of oriented varifolds.

2.4.3 Optimal Transport Cost as Data Attachment Term

A second kind of data attachment term is used in Chapter 4, based on the optimal transport
cost that was first used in [Fey+17] as data attachment term in the LDDMM framework.

This new type of data fidelity term designed as a transport between measures in a space
of representation for our data. In the discrete framework, these measures are expressed as
sum of weighted Diracs located in Rn×d with d = 2 or 3 in our case:

α =
∑
i∈I

aiδxi
, and β =

∑
j∈J

bjδyj .

with xi, yj ∈ Rn×d the discretization points of d-dimensional curves, and
∑

i ai = 1,∑
j bj = 1. The vector formulation of (ai)i = a and (bi)i = b then denotes the proba-

bility vectors associated with each measure.

First formalized by Monge in 1781 as the earth mover’s problem, the original idea was
to find a minimum cost transport to move a distribution to another. Following this idea
the Wasserstein distance was defined by Kantorovitch [Kan60]. The key idea was to adapt
the Monge problem, which could be seen as an assignment problem namely a point xi can
only be assigned to a target point yσ(i) yielding the necessity of finding correspondences
between the same number of source and target points, with the same weights w. Kantorovitch
introduces the notion of mass splitting, by introducing a coupling matrix P = (Pij)i,j ∈
Rn×m

+ denoting the cost of a transport (the amount of mass flowing) from xi to yj .

Admissible couplings then read:

U(α, β) =

P ∈ Rn×m
+ , C.1n =

(∑
j

Pij

)
i

(ai)i, P
T .1m =

(∑
i

Pij

)
j

(bj)j

 . (2.17)
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Denoting C = (d(xi, yj))i,j the cost matrix determined by the pairwise distance between the
unit elements of S and T , we have that a coupling is always symmetric since if P ∈ U(α, β),
then P T ∈ U(β, α). Kantorovitch OT is given by:

LC(a,b) = min
P∈U(α,β)

∑
i,j

CijPij.

This is by definition the OT between discrete measures as well as the one between their
probability weights. Note that the OT can be formulated through numerous interpretations
such as probabilistic viewpoint or generalized sorting, and applied to more general arbitrary
measures. In this section we focus on the discrete measures that are our typical working
case.

Dual Problem and Sinkhorn

The set of matrices U(a,b) in the problem 2.17 is bounded and defined by n +m equality
constraints which makes U(a,b) the convex hull of a finite set of matrices. The problem
2.17 is convex and admits a dual problem:

LC(a,b) = max
f,g∈R(C)

⟨f, a⟩+ ⟨g, b⟩

with R(C) = {f ∈ Rn, g ∈ Rm s.t. ∀(i, j) ∈ I × J, fi + gj ≤ Cij}

The dual variables f, g are called Kantorovitch Potential, and provide a location of the
OT solution: P ∈ Rn×m

+ ⊂ {(i, j) ∈ I × J, fi + gj = Cij} The solutions to the Kantorovitch
problem is classically solved by regularizing the transport cost [Cut13] using the entropic
regularization:

H(P ) = −
∑
i,j

Pijlog(Pij − 1).

This entropic regularization provides a way to minimize the cost by iteratively optimizing
on the dual vectors f and g. In addition, their update can be formulated as matrix vector
products which makes it suited to GPU implementation. Regularizing the exact optimal
transport with entropic regularization speeds up the computation of OT solutions regardless
the metric chosen to compare the data.

The new minimization problem then writes:

Lϵ
C(a,b) = min

P∈U(α,β)

∑
i,j

CijPij − ϵH(P ).

Remarkably for our framework, this problem is convex and has a unique minima. In addi-
tion, the solution of the regularized cost function is smooth with respect to the weights and
positions of the Diracs, and it can be differentiated [CD14] hence used as data fidelity term
[MMC16] to compare shapes represented as sums of weighted Diracs.

In particular the Sinkhorn’s iterations on the dual variables are given by:

fk+1
i = minϵ(Cij − gkj )j + ϵ log(ai) (2.18)

gk+1
j = minϵ(Cij − fk

i )i + ϵ log(bj) (2.19)
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With minϵ a differentiable approximation of the function minimum. This procedure allows
to freeze one dual variable to update the other and conversely.

Unbalanced Optimal Transport

The framework presented so far suppose that the two distributions have the same total mass.
In [LMS18; Chi+18a] an extension of OT to unbalanced problems between measures of
different total mass is proposed. A new variational metric is introduced allowing for inter-
polation between the optimal transport metric and the Fisher Rao one. This distance is a
spatially localized version of the OT in the sense that masses too far won’t interact with each
other. It provides a geodesic interpolation introducing spatial displacement as well as change
of mass formulated as a convex problem.

Similarly to the case of balanced OT, the unbalanced one can be efficiently computed
via entropic regularization [Chi+18b]. The generalization of the sinkhorn algorithm to point
wise weighted data provides a smooth differentiable and tractable distance function in the
case of unbalanced OT as well. The solution then writes:

Lϵ,ρ
C (a,b) = min

P∈U(α,β)

∑
i,j

CijPij − ϵH(P ) + ρKL(P.1n|a) + ρKL(P T .1m|b), (2.20)

with KL(h, p) =
∑

i hi log(
hi

pi
) − hi + pi. This unbalanced formulation of the OT can be

solved using a generalized version of the Sinkhorn algorithm (see [Fey+17]) and given ϵ > 0
the derivatives of the function (a, x)→ are given by:

∇aL
ϵ,ρ
C (a,b) = ρ

1− e
−
u

ρ


∇xL

ϵ,ρ
C (a,b) =

(∑
j

Pij∂1Cij

)
i

(2.21)

with P the solution of 2.20 and u the limit of the first dual variable associated with a in
the generalized Sinkhorn algorithm.

Normal Cycles There are many other metrics used in shape registration frameworks that
are not described here. One of interest kernel metric on normal cycles on sub-manifold
structures of Rd, and introduced in [RG16]. The specificity of this representation is to better
take singular points like bifurcations or boundaries into account. The basic idea is to consider
currents on the unit normal bundle to the shape which encodes order-2 information such as
the curvature. In particular, in R3, the unit normal bundle of curves and surfaces is a surface,
and the metric for these shapes is similar. More details can be found in Annex 5.6, in which
we provide the basic information for curves and surfaces in R3.
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2.5 Statistics over Deformations

One of the objectives of the Computational Anatomy that has not yet been discussed is the
statistical study of populations. It has been shown in many papers [Gla05; Pen06; Fer+13;
Cur+18] that the statistical analysis of the deformation between the observations of a popu-
lation provides anatomical information. It allows for instance to compute principal compo-
nents or outlier detection regarding the dataset. In this setting one can build an admissible
space of shapes – e.g. the orbit of one or several templates for the group action GV – with
respect to the deformations generated to align the observations. This space is called the atlas
in which a representative shape called template can be drawn. Most of the time, the selected
template is a sort of "center of mass" of the distribution.

In general, statistics can be done on data sets that do not live in a classical vector space
but on a Riemannian manifold of this vector space. When we can assign to this manifold a
Riemannian metric (M, g) we are able to deduce the associated local volume: dV ol(x) =
det(g(x)) which allows us to define the integrals on the manifold (i.e. measures), and so
some class of probability distributions can be written with respect to that measure.

For LDDMM, when working with sets of points in the ambient space Rd, one can con-
sider that the associated metric is given by the energy of deformation of the diffeomorphism
aligning points together:

d(Si, Sj) = d(Id, ϕ),

with ϕ(Si) = Sj . This is the exact registration framework, one can also work with the inexact
registration by using the diffeomorphism φ = arg min

ϕ∈GV

E(v) + A(ϕ(Si), Sj).

When studying deformations between shapes in a dataset, one way to reduce the compu-

tational cost and avoid computing
N(N − 1)

2
functions minimization, one can consider the

registration of a template S onto the two shapes Si and Sj and then compare the deformations
obtained. This reduces the number of registrations to N .

2.5.1 Building a Template of a Population

The template should be an element of the atlas representative of the database. In general, the
euclidean barycenter of a finite set of points lying on a submanifold of a vectorial space does
not belong to this submanifold. Take for instance points x = (x1, ..., xn), n ≥ 2 living on the
hypersphere Sd−1. To adapt the notion of barycenter to Riemannian manifolds, the Fréchet
mean was introduced:

Definition 10 (Fréchet Mean). Let (M,g) be a Riemannian manifold with the Riemannian
distance function d and let x1, ..., xn be an i.i.d data set. The sample Fréchet mean is defined
as the set of minimizers of the sum of squared distances:

x̄ = argmin
y∈M

n∑
i=1

d(y, xi)
2.
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Of course, this definition depends on the Riemannian distance function chosen. The exis-
tence and uniqueness of the solution also depend on the distance, and we have one condition
of the existence for a finite set of points:

Theorem 8 (Pennec, Sommer et al. 2020, Chapter 2 [PSF20]). If (M,g) is a complete Rie-
mannian metric space then the Fréchet mean of any finite set of points (x1, ..., xn) exists.

It follows that given a finite set of elements on a complete Riemannian manifold for a
metric one can construct a Fréchet mean but this construction depends greatly on the choice
of data representation. As discussed in [Dur10], one has a metric in a chosen space to
compute the data attachment term, and could construct statistics in such a space. However,
these statistics would be strongly perturbed by the presence of large deformations such as
changes of reference points (rigid deformations). In addition, there is no guarantee that
data generated by statistics done with respect to the chosen metric provide data lying on the
manifold.

On the contrary, the population of shapes can be studied by the mean of smooth defor-
mations capturing the geometrical variations of a template in a population of shapes, and a
residual distance, capturing the differences that the deformations could not explain (such as
noise or topological changes). The template thus belong to an atlas corresponding to its orbit
under the group action of diffeomorphisms GV .

There are two ways to formulate this approach. First, one can see a set of shapes (T i)i
as perturbations (ϵi) of a template T̄ in the chosen representation space : ϕ(T i) = T̄ + ϵi. In
this case shapes in the set are co-registered into a common space, and then statistics can be
performed in this space. This is the backward model.

Second, we can see the shapes in the set as perturbations of a template after deformation:
T i = ϕ(T̄ )+ϵi. In this model, the residual ϵi – what could not be matched by the registration
– is intrinsic to the individuals in the set of shapes. It is called the forward model.

The forward representation introduced by Stephanie Allassonnière [AAT07] allows in-
troducing the i.i.d perturbation in the observation space of the data T i. This is equivalent to
saying that the perturbation is intrinsically linked to the observation, whereas in the back-
ward approach the perturbation is deformed by the diffeomorphism, so it is specific to the
deformation associated with the observation. The ϵi are no longer identically distributed
between the observations.

In particular, in the forward framework, one can notice that the observation, the deformed
template and the perturbation belong the the chosen shape space. In a discrete setting the
template as well as the initial momenta belong to some fixed grid/tensor of vectors in Rd.

Average Shooting Let T be a fixed reference shape. We minimize the functional

J(p1, . . . , pn) =
n∑

i=1

A(φvi
1 (T ), T

i) + γ E(vi),

corresponding to the registration of T onto the observations T 1, . . . , T n. Using this func-
tional, the template can then be estimated with a simple mean in the vectorial space of initial
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momenta that is associated with TIdGV . The template is then given by:

T̄ = φv̄
1(T ), v̄ =

m∑
k=1

KV (qk, .).p̄k,

with p̄ =
1

n

∑n
i=1 p

i and vi =
∑m

k=1KV (qk, .)p
i
k.

Most of the time in this setting the reference shape is chosen as one element of the
observations. It can also be a shape built a priori. The statistical analysis is then lifted to the
tangent space, in which the classical linear tools are available [Dur+11]. The new template
T̄ can be seen as the result of the average deformation of the reference shape onto the rest of
the database. This can be applied iteratively following the Algorithm.2.

Algorithm 2 Average geodesic shooting (fixed-step gradient descent).
Input: q0, δ (step size), (T1, ..., Tn) (the targets), k (maximum iteration)
Output:q̄ the template tree after average deformation

Set pi = 0 for i ∈ (1, .., n)

Set q̄ = q0
Set it = 0

repeat
Compute (p1, ..., pn) with Algorithm.1.
Set q̄it+1 = φv̄(q̄it) using Equation. 2.5.1.
it = it+ 1

until it ≥ k

Unknown Template Coordinates An other estimation of the template through forward
scheme can be done by considering the discretization points (qk) of T as optimization vari-
ables:

J(q, p1, ..., pn) =
n∑

i=1

A(φvi
1 (T ), T

i) + γ.E(vi),

and vi =
∑m

k=1KV (qk, .)p
i
k

This can be interpreted as searching both the template position and the optimal deforma-
tions of the template we are estimating onto the observations. The optimization in this setting
can be done alternatively by registering first the template to all the observations, which cor-
responds to n classical registrations done independently, then updating the initial momenta
and the template coordinates. Note that the backward model would compute the average
of the observations in the space of representation of the data (in which we define the data
attachment term).

Hyper Template While providing straightforward ways to estimate the template provided
a set of observations, the last approach does not guarantee the existence of a solution for
all the shape space representations (for example in the case of normal cycles) and does not
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prevent abnormal updates of the template’s coordinates such as folding. To mitigate this, a
two-steps optimization can be used consisting in considering the template as part of the orbit
of a hyper template Tref under the group action GV0 of diffeomorphisms which can differ
from GV . The function to minimize becomes:

J(p1, ..., pn) = α.E(v0) +
n∑

i=1

A(φvi
1 (T ), Y

i) + γ E(vi),

with T = φv0
1 (Tref ). The existence of a solution in this context can be ensured by the

condition V0 ↪→ C3
0(Rd,Rd). Using the hyper template enforces a regularity that is then

given by both the initial position Tref and the regularity of the diffeomorphisms in GV0 .

No matter the approach for computing the template, it is then possible to compute an
"average" deformation from a set of registrations from an atlas onto a set of targets, by
averaging the corresponding initial momenta, and then shooting via geodesic equations to
deform the atlas along this average. This process may be iterated by replacing the atlas
shape with this deformed atlas and repeating the same steps. This was first introduced by
[Vai+04] in order to build an average atlas of the database.

2.5.2 PCA and LDDMM

We have seen different ways to build a template seen as a statistically representative element
of the observations, that can be registered to these latters up to small perturbations in the
space of representation of the shapes. When fixing the template’s coordinates, and computing
its registration to a set of observations, the atlas could be for instance the space covered by the
linear combinations of the initial momenta computed and used to generate the vector fields
encoding the diffeomorphism. The approach was proposed in [Vai+04], by considering the
space tangent to the space of diffeomorphisms at identity TIdGV when the control points
are fixed. This PCA is in fact a kernel-PCA introduced by [SSM97] where the euclidean
metric is replaced by the kernel metric given by KV , which is more natural in the space of
momenta. It is therefore possible to use classical statistical concepts such as eigenvectors and
eigenvalues to describe the directions of interest and their associated variance in the space of
initial momenta.

As specified in equation (2.7) the optimal deformations generated by LDDMM are fully
parameterized by the initial momenta when fixing the template’s coordinates. Their represen-
tation in the euclidean space E allows performing classical linear statistics. In the euclidean
space E, the classic PCA of a set of vectors P = (p1, . . . , pn) ( where the pi are column
vectors) is done by studying the eigenvectors of the covariance matrix C = P P T . This cor-
responds to the case of a matrix C whose coordinates are given by the scalar product in E:
Cij = ⟨pi, pj⟩. The metric being induced by the reproducing kernel KV , we can define the
intermediate block squared matrix K = (Kij) with Kij = KV (qi, qj). The matrix C can then
be obtained by using the associated metric: Cij = ⟨pi,K pj⟩. When registering a template
onto a data set, for instance following one of the procedure of mean estimation described in
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2.5.1 one obtains a template with T with its associated control points (qk)k and a set of initial
moment (pik)k corresponding to the registration of T on the observations (T 1, ..., TN).

Given the average vector field v̄, we now have the "kernel covariance matrix" ΓV :

ΓV
ij = ⟨vi − v̄, vi − v̄⟩V = (pi − p̄)T .K.(pi − p̄). (2.22)

Then if V k is the k − th eigenvector of ΓV , the k − th principal mode is given by:

mp,k = p̄+
n∑

i=1

V k
i (p

i − p̄). (2.23)

It follows that the vector field associated with the k − th mod of the deformation writes

mV k

=
∑
i

KV (xi, .) m
p,k. (2.24)

By integrating the geodesic equations from the principal modes of the vector fields, one
is able to generate new deformations representative of the variations in the database.

Principal Geodesic Analysis

When the statistical analysis cannot be lifted to the tangent space at some point of the mani-
fold, another approach is to consider the Principal Geodesic Analysis introduced in [Fle+03;
Fle+04], consisting in finding a submanifold maximizing the projected variance of the ob-
servation along that submanifold. The basic idea is to build recursively an orthonormal basis
in the tangent space τ1, ..., τk ∈ TT̄X at the estimated mean T̄ of the observations. The i− th
principal geodesic submanifold is the image of the subspace spanned by the i first tangent
vectors under the exponential map.

These tangent vectors can be estimated recursively by optimizing a loss function

max
τ∈TT̄X,|τ |=1

N∑
i=1

d(T̄ , πH(T
i))

with H = expT̄ (span({τ1, ..., τk−1, τ})

2.6 Application to the Registration of Simplified Pelvic Vas-
cular Trees

We have given the main notions for the construction and computation of smooth and relevant
deformations of shapes as well as their ambient space. These deformations are furthermore
adapted to a statistical study of a population of shapes, which allows the construction of a
template as well as admissible deformations (and thus an atlas and potentially allow a data
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augmentation). The diffeomorphic deformations are associated with a data attachment term
expressed in shape space, yielding inexact registrations and computationally tractable mini-
mization procedures. We now apply the LDDMM registration to the alignment of simplified
vascular trees extracted from CBCT images of the pelvic area.

Its use in the automatic annotation of vascular trees will be detailed later in Chapter 5,
Section 5.1. In this section, we will focus on applying the diffeomorphic deformations we
have constructed so far in the registration of vascular trees. For this purpose, we study
simplified versions of the trees so that the centerline trees have the same number of branches.
These simplified vascular trees are additionally composed of the arteries of interest for the
identification of the vascular tree type defined in the literature [Ass+15a] (see Figure 1.9).
We focus here on the diffeomorphic deformations one can generate with LDDMM between
one annotated template vascular tree and a dataset of unlabeled target vascular trees.

The shapes we consider are then vascular trees of discretized 3D curves (Definition.3).
The vertices are connected, and we can use the discrete varifolds representation 2.4.2.

Registration and Optimization

In all the following experiments, we initialize the registration by aligning objects centers of
mass since no prior positioning is known. To model non-rigid deformations, we define the
reproducing kernel KV of V to be a sum of Gaussian kernels

KV (x, y) =
1

4

∑
s

exp

(
−∥x− y∥2

(σ0/s)2

)
.Id,

where s ∈ [1, 4, 8, 16] and σ0 = 100 is about the size of the shapes bounding boxes. In
terms of data attachment scale for the space of varifolds, we use a multiscale optimization
framework as well to avoid falling into local minima. This classic coarse to fine approach in
the registration applications [Ris+10; TQ16; Sah20] is done by optimizing the functional of
Equation.2.10 and iteratively reducing the scale σW of the varifolds reproducing kernel. In
this application we use two scales σW = 50 and σW = 25. The optimization is done using
Limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm [LN89], with a
strong-wolfe line search strategy. Our Python implementation makes use of the libraries
PyTorch [Pas+17] and KeOps [Cha+21], to benefit from automatic differentiation and GPU
acceleration of kernel convolutions.

Registering all Sources onto all Targets

Two trees from the dataset can be used in the LDDMM framework as the source and target
shapes. The LDDMM registration of a source tree S onto a target T is done by minimizing
the functional of Equation.2.10 with the distance in the space of unoriented varifolds:

J(v) = γ |v|2V +
∣∣µφv

1(S)
− µT

∣∣2
W ′ .

We illustrate in Figure 2.8 the LDDMM registration output using the provided parame-
ters. For more results concerning the anatomical consistency of the registrations, we refer to
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Section 5.1.3. During the LDDMM registration, the shapes do not need to be annotated. We
illustrate the output of the deformation using a color-free target and the annotated deformed
source shape to recall that the absence of a label in the target during automatic annotations
procedures. In all the illustrations that follow the root in the labeled trees is the red leaf,
usually at the middle-top of the 2D images. We see that the deformed source shape is well

(a) (b)

(c)

Figure 2.8: Registration of a template tree S (a) onto a target tree T (b). The labels are represented
by the colormap. The output of the optimization procedure φ1

v(S) at the finest data attachment scale
σW = 25 is illustrated in (c). The deformed template tree is represented as a thick, transparent
structure. The target in (c) has no colormap to illustrate that it does not need to be annotated in the
registration procedure.

aligned to the target. In this experiment, the leaves of the trees are correctly aligned. A lack
of alignment can be observed in Figure 2.8 (c) in the proximal part of the trees, close to the
root.

In a second illustration, we show a typical bad registration that illustrates the two prin-
cipal sources of bad registration observed when aligning the simplified vascular trees with
LDDMM. The first type of error is illustrated in Figure 2.9 (c), and is typical of the errors in
the proximal parts of the trees. We observe indeed that the top left artery is abnormally dis-
torted to match both one inner branch of the target and its real associated branch in the target.
Moreover, the prostatic artery of the target (darkest blue one in Figure 2.9 (b)) is aligned with
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(a) (b)

(c) (d)

Figure 2.9: Registration of a template tree S (a) onto a target tree T (b). The labels are represented
by the colormap. The inconsistent output of the optimization procedure φ1

v(S) at the finest data
attachment scale σW = 25 is illustrated under a first point of view (c) and a second one (d). In (d) we
observe a "jump" of one deformed branch from one artery to the other in the target.

the wrong deformed artery of the source. In Figure 2.9 (d) we see the other typical erroneous
registration we observed within the registrations: a "jump" of one deformed branch from one
branch of the target to another.

The two abnormal deformations illustrated in Figure 2.9 have several explanations. First
of all the minimization frameworks tends to minimize the deformations cost according to
the regularization parameter γ. When the initial position of the source shape with respect to
the target is a bad start, the diffeomorphisms might drive the registration to a local minima.
In addition, the coarse to fine approach for the data attachment term does not help avoiding
such a local minima at the largest scale.

Secondly, in the inner part of the trees, we observe changes in terms of bifurcations
ordering. In the target tree Figure 2.9 (b) for instance, the two gluteal arteries (most right
arteries in the 2D images) branch together. On the contrary, the inferior gluteal in Figure 2.9
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(a) takes source deeper in the tree. The diffeomorphisms can not explain such topological
changes.

Statistics over the Deformations

We now apply the template construction described in Algorithm. 2 using the source tree of
Figure 2.8(a) as initial position. We stop the template construction after 4 iterations, which
results in 3 ∗ 50 = 150 registrations in total for the construction of the template, and 50
other LDDMM procedures to register this new template on the database. We illustrate in
Figure 2.10 the template tree S, S̄1, S̄2 and S̄3 across the iterations of Algorithm.2. We

(a) (b)

(c) (d)

Figure 2.10: Construction of a template tree across the iterations of Algorithm. 2, with . (a): Initial
shape. (b): S̄1. (c): S̄2. (d): S̄3.

observe that within a few iterations the average deformation of the template vascular tree
onto the database is captured. This new template captures the average geometry of the shapes
in the database, and is a shape representative of the data. It is therefore a good initialization
for a registration procedure. We use S̄3 in the registration to the target of Figure 2.9 as an
illustration in Figure2.11. We observe in this new figure that the registration that failed using
the raw tree of the database in Figure 2.9 is now successful. No supplementary information
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(a) (b)

(c) (d)

Figure 2.11: Registration of a template tree S̄3 (a) onto a target tree T (b). The labels are repre-
sented by the colormap. The successful output of the optimization procedure φ1

v(S) at the finest data
attachment scale σW = 25 is illustrated under a first point of view (c) and a second one (d).

was used than the available shapes in the database (that did not need to be labeled). The
inner branches are still slightly mismatched.

We also generate the first deformations eigen modes in Figure 2.12. These modes seem to
be consistent with the variations across the database: we observe for instance strong deforma-
tions in the proximal part of the tree and the extremities, where respectively the topological
and geometrical variations are the largest.

2.7 Conclusion

The LDDMM registration of one case onto the other observations of the database allows
capturing spatial variability across the shapes. The construction of relevant templates helps
the registration by providing a good initialization to the minimization procedure. In addition,
the available statistics over the deformations have a number of applications: it could be used
in data augmentation applications, or for outlier detection (such as a missing artery in the
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(a) (b) (c)

Figure 2.12: Illustrating PCA of the initial momenta. (a) Template; (b) Shooting along the first mode;
(c) Shooting along the second mode.

target).

The simplified tree template we obtained from the set of manually built examples is a
realistic schematic representation of the clinicians’ representation. The initial classification
of the male pelvic trees was made according to the source of the prostatic artery in the
tree: it depends if it starts from the superior vesicle, the obturator, the pudendal, a gluteal
or "the rest" (see Figure 1.9). One limitation of this classification regarding the non-rigid
registration alignment of vascular trees is the fact that each type described relatively to the
prostatic artery hides a combinatorial number of other bifurcations ordering. In other terms,
it suffices to switch two arteries that do not branch or take root from the prostatic artery to
obtain a new tree topology. We observed that the diffeomorphic vascular tree registration
could not cope with such topological changes (Figure 2.11).

In line with the idea of comparing a new vascular tree extracted from our CBCT volumes
to a reference atlas, relying on a simplified vessel template seems to be a reasonable a priori:
it is better to avoid trying to compare two complex trees at first, and start by comparing
a simple and easily annotated template to a complete tree. The problem with this second
idea is that LDDMM are then used to generate a deformation of the whole source shape on
the whole target. In Figure 2.13 we apply the LDDMM registration to the alignment of a
simplified tree with 17 branches on a complete tree with more than a hundred branches. The
resulting deformation that has neither anatomical nor geometrical consistency, and it would
require tuning the regularization parameter at each registration on a new target to get realistic
deformations, which is not affordable.

Intermediate solutions such as the automatic simplification of complete trees could re-
duce the complexity of the problem, and must be tried before considering more complicated
solutions. It would include limiting the depth of the tree or the length of the paths from
the root to the extremities, or the regularization of the deformations to avoid abnormal dis-
tortions. However, it is clear that this can not be a satisfying solution as is when working
on structures as complicated as vascular trees with so much topological and geometrical
variability. These two observations motivate the following chapters.
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(a)

(b)

(c)

Figure 2.13: Illustrating the LDDMM registration using varifold distance of (a) a simplified tree onto
(b) a complete target tree. (c) The resulting deformation that has neither anatomical nor geometrical
consistency.
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ALIGNING A SHAPE ONTO A SUBSET OF

A TARGET

We all have been confronted with a treasure map with a missing part (or at least we would
have wanted it). When we try to compare this partial map to a recent one, we still man-
age to establish correspondences between the two. It often happens in medical imaging,
where anatomical structures only partially correspond to one another in two complemen-
tary modalities (such CT and MRI). In the case of artery tree registration, this constitutes
a change in topology that needs to be managed when trying to build anatomically relevant
shape alignments.
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3.1 Missing Pieces: A Topological Challenge

Finding shape correspondences is a standard problem in computer vision that has numerous
fields of application: pattern recognition [BBK06; Bro+09; KZH13], annotation [BMV13;
Fer+15] and reconstruction [Hal+20]. In medical imaging, matching an atlas and a patient’s
anatomy [Fer+15], or comparing exams of the same patient acquired with different imag-
ing techniques [Zhe+12; Bas+18], can provide critical information to physicians for both
decision making and intervention planning.

As illustrated in Chapter 2 (Figure 2.8), the correct alignment of a labeled vascular tree
(template) can be used as a relevant initialization for atlas based automatic annotation. Yet,
most of the time, the data cannot be manually processed to the level of simplification pro-
posed in Section 2.6 during interventional procedures. In such a case, the vascular tree
obtained during the procedure is far more complex and richer than the previously built and
annotated template. To perform automatic alignment of the simplified template onto the
complex target, we need to deform the source to match a subset of the target. In this work,
we will focus on the comparison of shapes described in Section 2.4.1, namely points clouds,
curves, and surfaces of R3 and curves and points clouds of R2.

Chapter Organization The chapter is articulated as follows: we first discuss in Sec-
tion 3.1.1 the problem of partial matching for shape analysis and establish a state of the
art on this topic. We then show that the previous data fidelity metrics introduced in Chap-
ter 2 Section 2.4 and the classical LDDMM framework for the non-rigid registration of non-
diffeomorphic shapes with missing parts. We also provide a first intuitive – yet unsatisfying
– adaptation of the oriented varifold distance for approximating the injection of the deformed
source into the target under non-rigid deformations. Afterwards, we introduce the data fi-
delity metric that was used in the joint work with Irene Kaltenmark, which we published in
Information Processing in Medical Images1 [Ant+21]. Section 3.3 is dedicated to the im-
plementation of regularization terms to alleviate issues related to the combination of partial
matching and non-rigid shape registration, which is an extension of the IPMI paper published
in [Ant+22]. Finally, in Section 3.4, we use the proposed partial matching term for the reg-
istration of the template vascular tree constructed in Chapter 2 onto real trees. In addition,
we discuss two other use-cases: for the registration of a truncated surface in R3 onto a subset
of a complete target, and the converse framework, namely the deformation of a shape onto a
truncated target.

3.1.1 Partial Matching between Shapes: a State of The Art

In many real-world applications, an observation often contains only a piece of the desired in-
formation. In medical imaging, it is possible to complement the missing information through
other acquisitions, for example :

• Bring a third dimension from 2D images through stereoscopic acquisitions.
1http://ipmi2021.org/
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• Diagnose a pathology from complementary tissue visibility in CT and MRI acquisi-
tions.

• Quantify treatment effectiveness through tumour size evolution measured on pre and
post-treatment CT scans.

One condition to take advantage of two complementary acquisitions is to be able to compare
them and establish a robust correspondence between the two. Because the two observations
may differ in terms of content, level of details, field of view, or even acquisition quality, the
correspondence needs to be robust to missing information.

The problem of shape comparison has been extensively studied during the past decades
[Kai+11], with applications to shape registration, analysis, and reconstruction. It has been
often associated with shape registration both in medicine and for generic shape analysis
[KBD17; Sah20].

In this context, missing information can be interpreted as a problem of partial correspon-
dence between shapes: this can be for instance related to truncation in one of the shapes
coming from a limited signal (field of view, no X-ray absorption...) in one acquisition. This
can also be related to the changes from one individual to the other, inducing supplemen-
tary or missing structures. In medical imaging, this can corresponds for instance to tumor
growth, clinical tool insertion, or ablation of an anatomical region, which leads to topological
changes in the shape of interest. Thus, establishing a robust comparison necessitates taking
into account that shapes can only be partially matched.

In the specific case of partial matching, one can find two main approaches to such a prob-
lem: either by finding correspondences, sparse or dense, between structures from descriptors
that are invariant to different transformations [AMC08; BMV13; Fer+15; Rod+17; Hal+19],
or by looking for a deformation aligning the shapes with respect to a given metric [HC21;
SBC21].

Partial Matching as Explicit Correspondences

The simplest way to compare shapes (spatially embedded in the same space) is through the
search for nearest neighbors between the discretization of the source and target shapes. The
fundamental distance that has been introduced with this in mind is the Hausdorff distance:

d(S, T ) = Max

{
Sup
y∈T

(
Inf
x∈S
|x− y|

)
, Sup
x∈S

(
Inf
y∈T
|x− y|

)}
.

It has been used for instance for points cloud comparison [Gir+05], and derived for regis-
tration when coupled for instance with ICP by alternatively updating the point pairing to
deform the source and compute the new distance to the target with the updated source. In the
case of partial matching, this distance has been adapted by using a directed – or asymmetric

– term, for instance δ(S, T ) = Sup
y∈T

(
Inf
x∈S
|x− y|

)
. Using such a term that is not a metric

anymore, one aims at including one shape into the other [Vel01]. The problem with this
specific approach is that under non-rigid deformations, collapsing the source to one point
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of the target minimizes the data term. A regularized version of the ICP is introduced in
[Che+02] based on the least trimmed squares: this provides an outlier rejection that allows
partial correspondences between the shapes.

In order to refine the shape representation, and potentially reduce the dimension of the
discretized shape, most of the methods comparing the shapes in a sparse, point-wise fashion,
extract representative features from the shapes, located in areas of interest that are then used
to perform explicit correspondences. In [AMC08] a regularized version of the ICP selects
the sets of four co-planar points in the points cloud. The early works on partial shape corre-
spondence as reviewed in [Kai+11] rely on correspondences between points computed from
geometric descriptors extracted from an isotropic local region around the selected points.
These could be seen as descriptors that are characteristic and invariant to certain transforma-
tions (e.g. the SIFT descriptors in images [Low99]). Such features are usually invariant by
translation and rotation, allowing to compare shapes without any prior step of rigid registra-
tion (which is a topic of its own). The method proposed in [Kai+11] is refined in [KZH13] by
selecting pairs of points to better fit the local geometry using a bilateral map. This bilateral
map is built starting from two points in the shape and the geodesic path connecting them
in this shape. A distance map to the geodesic path is then computed, providing a region of
interest seen as the points in the shapes closer than a fixed threshold to the geodesic. The
features extracted can also be invariant to non-rigid transformations, as in [Rod+13] where
extracted descriptors are scale invariant. Similarly to the trimmed ICP, in the case of partial
matching the correspondences between the descriptors are filtered according to some met-
ric: this allows us to restrict the number of pairings and adapt to partial correspondences
[Ang+04; Hua+08]. The challenge in such approaches is to find relevant descriptors of the
shapes as well as a rejection criterion for inconsistent pairings. In [Hua+08] for instance,
the criterion is based on the intrinsic geodesic distance induced by the points pairings. The
registration pipeline is adapted to piecewise rigid deformations.

These sparse correspondences are naturally adapted to partial matching, yet they may not
be adapted to guide non-rigid registration in particular since they do not consider the shapes
as a whole. Instead of comparing points or point features extracted from the shapes, some
authors focus on the subset of the shapes. In the case of vascular trees, for instance, this
was done in the Iterative Closest Curve procedure [BMV13]. When such a decomposition
as a union of subsets is available, finding correspondences between the subsets allows for
piece-wise distances and paves the way to more refined registration methods. Interestingly,
the deformation cost to align the shapes can be seen as a distance between shapes itself
as in [Fer+12a; Fer+15] by quantifying the amount of deformation necessary to register one
shape onto the other. This is similar to the case of exact matching described in Chapter 2 with
the distance in the space of tree-like shapes instead of the space of diffeomorphisms. This
provides a complementary tool to the metrics used to quantify the shape’s dissimilarities.
This approach uses explicit correspondences between the subset of the shapes – here, the
leaves – based on the annotation and the distance induced by the annotation.

In all the aforementioned works, the authors seek explicit correspondences. The increas-
ing size of the data in the literature, in terms of shape complexity and sampling size, makes
the explicit correspondences increasingly expensive as well. Different approaches mitigate
the cost of computing all the possible correspondences. One classic approach is to use mul-
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tiscale methods looking for correspondences at a coarse scale first and progressively refining
this scale. A second and natural interpretation is to search for a minimal transportation cost
between shapes. In the case of trees and graphs, [DKS18] recently proposed an Optimal
Transport term between the edges of the graph seen as elastic curves. It was also used for
statistics and data synthesis in [GSS21]. The optimal transport - which can be seen as gener-
alized sorting in 2-dimensions and higher is an efficient, robust and scalable solution [Cut13;
Fey+17] for pairing sparse data seen as sums of diracs measures over the discrete shapes.
Yet such pairing procedures cannot be used without a good calibration of the data: they are
sensitive to rigid transformations of the shapes for instance, and the deformations induced
by the transport might not be realistic as well.

Dense Representation of the Shapes

In between the explicit sparse correspondences and the shapes seen as a whole, some authors
compare the shapes with dense data attachment terms. Similar subsets of the shapes are
then matched with respect to a given distance (deformation cost, distance between response
maps...).

The early work [BBK06] and its extension [Bro+09] propose to look for the optimal
trade-off between the size of the subsets of the shapes to be matched and the amount of
deformations needed to align them in an embedding metric space. It is applied to surfaces
and computes a regular non-rigid deformation whose cost is taken as the distance between
the selected subsets. More recently, functional maps were introduced in [Ovs+12] allowing
dense correspondences between shapes by transferring the problem to linear functions be-
tween spaces of functions defined over the shapes. In [Rod+17] the non-rigid partial shape
correspondence is based on the Laplace-Beltrami eigenfunctions used as a prior in the spec-
tral representation of the shapes. Similarly to the case of sparse discrete correspondences,
a regularization term is introduced, and an optimization procedure alternatively optimizes
the part that is mapped and the correspondences between those parts. In [Lit+17] the partial
shape correspondences are computed in the spectral domain, and the partial correspondence
is enforced by constraining the set of solutions of the minimization problem but requires an
a priori on the ratio of partial correspondence between the truncated shape and the complete
one. Recently in [Hal+19], such functional map models were adapted in a deep unsupervised
framework by finding correspondences minimizing the distortion between shapes. These
methods are yet limited to surface correspondences.

The correspondences, both sparse and dense, fail at considering the shapes as a whole.
This can be a limitation when the goal is to generate a non-rigid registration between the
shapes. One valid solution is to regularize the deformations. However, in terms of data
comparison term, one would like a function that takes the geometric information of the whole
shapes into account instead of focusing on sparse or limited representation.
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Partial Matching without Explicit Correspondences

The methods described in the previous section highlight techniques for finding partial corre-
spondences between the shapes by explicitly looking for matching correspondences, either
sparse or dense, between the shapes. On the contrary, methods considering the shapes as a
whole are usually adapted to nearly-isometric deformations but they are highly sensitive to
topological changes.

In the case of image registration, metamorphosis [Fra+22] allows to make structures
appear or disappear in the images, by adding a variational term encoding the intensity. This
has applications for example in the study of glioblastomas (brain tumors) in MRI images of
the brain. Through the registration of the images with topological changes, one can retrieve
which part of the images can be aligned with diffeomorphisms, and which part cannot. A
similar idea is introduced in [HC21] applied to the shape space of varifolds. The source
shape is represented as a sum of weighted diracs for which the weights can vary during the
optimization procedure. A penalization term is introduced to prevent inconsistent weight
variations.

For graphs, another approach proposed in [SBC21] is based on the use of a mask allowing
to make appear/disappear sub-parts of the source shape for partial graph matching. The
advantage of this method is that it allows to make structures appear but they must be added a
priori in the shape. On the other hand, it allows quite naturally to make the excess structures
disappear in the deformed source instead of making them shrink in an unrealistic way. The
method, however, requires a strong a priori on the data if one is to introduce structures that
might appear. It could be for instance supplementary branches in the target that should be
added to the source. This could be estimated automatically as a pre-processing step but
would require the first step of data comparison to estimate the components of the shape that
cannot be consistently matched by a realistic deformation. Thus, one has to define what a
consistent matching is, as well as a realistic deformation, depending on the application.

In this work, we want to build a shape comparison function that encodes the inclusion
of the whole source shape in the target. This term must be differentiable to be used in
the geodesic shooting algorithm and thus be included in the LDDMM framework. Such a
function would then allow working with the tools of computational anatomy described in
Chapter 2.

Shape Distances are not Suited Anymore

Now that we have discussed how partial shape correspondence is addressed in the literature,
we can look at the behavior of classical cost functions. In the following, we show that the
terms we have used in Chapter 2 generate unrealistic deformations since they try to cover the
whole target with the whole deformed source.

We propose a simple illustration of the problem with toy examples of curves in dimension
d = 2. The shapes we build (illustrated in Figure 3.1) are: a first tree composed of 3 branches
and the same tree trimmed of one branch, which in this particular case is a single curve inR2;
a two target segments aligned and sharing the same orientation, and a single source segment
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whit the same orientation; and a target circle and an arc as the source shape, again, sharing
the same orientation.

(a) (b)

(c)

Figure 3.1: The toy examples shapes used for illustrations. The complete shape in red is the target
and the blue trimmed shape resulting in a curve in R2 which is the source shape to deform.

Using such examples, we illustrate in Figure 3.3 the output of the LDDMM registration of
the source in blue onto the target in red. The deformations of the ambient space are illustrated
with the deformation of a 2D grid. The data attachment terms used are the distances in the
space of currents, varifolds and oriented varifolds described in Section 2.4.2.

In Figure 3.2 we illustrate the registration of the full shape onto the same shape translated
with the tree shape space representations described in Chapter 2 Section 2.4.2. We see that
using the classic distance as data attachment term, and for the three shapes representation,
the LDDMM registration is satisfying and allows to correctly align the shapes, with each
branch deformed onto its corresponding branch in the target.

In Figure 3.3 (a,b), the LDDMM registration of the trimmed shape onto the complete tar-
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(a) (b)

(c) (d)

Figure 3.2: Classic LDDMM registration between diffeomorphic shapes in (a). The source is the left-
hand tree (blue) and the target is the right-hand one (red). The parameters are γ = 0.01, σV = 0.5

and σW = 0.5. (a) Using currents representation. (b) Using non-oriented varifolds representation.
(c) Using oriented varifolds representation.

get guided by the current metric shows inconsistent results when looking at the deformations
of the ambient space. The multi-scale approach tends to better match part of the deformed
source to the target, however, the bad local minima of the largest data attachment scale can
not be mitigated with the multiscale approach, and a spike is created, which is almost zero
for the currents norm due to the orientation. This approach allows in fact to avoid the tuning
of the scale parameter and is widely used in the literature [Sah20].

Similar observations can be made in Figure 3.3 (c,d,e,f) for the partial matching in the
case of varifolds (both oriented and non-oriented) representation. The varifolds (both ori-
ented and non-oriented) fail at providing satisfying LDDMM registration of the truncated
tree onto the target. The first column of Figure 3.3 (c and e) illustrates the single scale LD-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Non-robust behavior of LDDMM registration with the distance in the space of currents
(a,b), varifolds (c,d) and oriented varifolds (e,f) in the context of partial matching with the parameters
γ = 0.01, σV = 0.5. First column (a,c,e): single scale approach with σW = 0.5 for the data

attachment. Second column: multiscale approach with σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. Note that the output of

figure (a) (resp. c,e) is the input for the scale σW = 0.25 of figure (b) (resp. d,f).

DMM registration: the non-oriented varifolds are sensitive to the supplementary branch ,
creating a spike in the deformed source to match the supplementary branch. The oriented
varifolds both create a spike and the lower part of the source ends up in a local minima
between the two lower branches of the target. In the case of non-oriented varifolds (Fig-
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ure 3.3 (d)) with multiscale scheme, the result at initial scale σW = 0.5 is refined, a part of
the source is correctly matched to one branch of the target while the rest of the deformed
source is attracted by the two remaining curves in the target inducing strong local deforma-
tions of the ambient space. The multiscale oriented varifolds (Figure 3.3 (f)) do not provide
better deformations: they seem to align the source onto a subset of the target similarly to
the currents, yet the deformations of the ambient space are completely inconsistent with the
expected ones (namely, a translation).

None of the distances presented here allow us to manage the missing branch in the source
shape: the currents may look more robust because the supplementary branch is almost or-
thogonal to the rest of the structure and almost zero in the data attachment term because of
the scalar product. In practice, vascular tree branches rarely are orthogonal. Yet as discussed
in [Cha+20], this model of currents may create artificial thin structures (which can be noted
in Figure 3.3 (a)) because they cancel in the currents space. Moreover, both varifolds terms
take the additional branch into account which leads to a bad shape as well as the ambient
space deformations. The orientation, however, when available, seems to be an information
of interest when matching a shape onto a subset of the target.

We illustrate the LDDMM registration with the two other toy examples in Figure 3.1
(b,c). We focus on the multiscale registration to reduce the number of experiments here.
On the registration of one segment onto two segments target, in Figure 3.4, the three shapes
representations provide similar results: the segment is stretched to match the two targets,
filling the hole between the two. When registering an arc onto a complete circle in Figure 3.5
we observe a similar result, the three models tend to guide the deformed source to match the
whole target circle leading to strong deformations of the ambient space. The orientation,
however, leads the oriented varifolds and the currents to similar results slightly different
from the varifolds one.
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(a) (b)

(c) (d)

Figure 3.4: Registration of a blue segment onto two red segments. Multiscale LDDMM registration

with γ = 0.01, σV = 0.5 and σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. (a) Initial positions. (b) Currents. (c) Varifolds.

(d) Oriented varifolds.

Regularizing the Deformations

A first and intuitive way to deal with the inconsistent deformations is to regularize them by
playing with the regularity of the vector field encoding the diffeomorphism. For instance,
rigid deformations would never produce collapsed branches or the appearance of thin elon-
gated structures. The first way to regularize the LDDMM deformations is to play with the
hyper parameters σV the scale of the RK KV of V (Equation 2.6) and γ the regularization
weight in the cost function of Equation 2.10. In Figure 3.6 we show the influence of the
regularization parameter γ on the registration of the trimmed source shape with oriented
varifolds. We see that when using γ = 0.1 with the classic distance in the space of ori-
ented varifolds and a multiscale scale approach, the obtained deformation corresponds to the
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(a) (b)

(c) (d)

Figure 3.5: Registration of a blue arc onto a red circle. Multiscale LDDMM registration with γ =

0.01, σV = 0.5 and σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. (a) Initial positions. (b) Currents. (c) Varifolds. (d) Oriented

varifolds.

expected inclusion. The single scale approach, on the contrary, still results in inconsistent
deformations. Similar behaviour can be observed using the currents representation. The so-
lution may seem satisfying but one will see that in more complex cases (see Figure 2.13)
the parameter γ would need to be tuned for every case, which is not compatible with an
automatic application. For example in Figure 3.7, using the same multiscale approach with
oriented varifolds distance and γ = 0.1 or γ = 1 in the two other toy examples, the regis-
tration results still tend to match the whole target shape, or to stretch the source shape. The
variability in terms of registration results despite the simplicity of the examples illustrates the
difficulty to adapt the regularization parameter γ to any vascular tree in a real application.
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(a) (b)

Figure 3.6: (a) Single scale LDDMM registration with oriented varifolds, and parameters γ = 0.1,
σV = 0.5 and σW = 0.5. (b) Multiscale LDDMM registration with oriented varifolds, and σW ∈
[
1

2
,
1

4
,
1

8
,
1

16
]. Note that the output of figure (a) is the input for the scale σW = 0.25 of figure (b).

Divergence-Free Kernels A second solution could be using reproducing kernel encoding
the admissible space for the deformations. By using matrix kernels as proposed in [MG13],
one can derive properties of the vector field which will allow for example to preserve the
total deformed volume.

In Chapter 2 we introduced the properties of the reproducing kernels in the generic case
of vector-valued functions and then focused on the specific case of scalar kernels, so kernels
that are scalar-valued functions or scalar-valued functions multiplied by the identity matrix
Id with d the dimension of the ambient space. Considering more generic class of kernels such
as vector-valued ones provides the tools to construct vector fields with certain properties that
are not available with scalar-valued kernels.

Such an approach gives theoretical guarantees on the nature of the generated deforma-
tions, however, two problems remain. On the one hand, the computational cost of these de-
formations is increased, as KV is called at all evaluations of the geodesic shooting as many
times as there are integration steps along this geodesic. In the registration of the trimmed
tree example illustrated in Figure 3.8 the computing time was 32.6 seconds on CPU with the
divergence free kernel and oriented varifolds distance against 6.90 seconds for the classic
scalar Gaussian kernel with the same data attachment term. On the other hand, the defor-
mations of the surrounding space are not natural. When we think about the registration of a
vascular tree, the deformations generated will be very complex. Moreover, in the perspective
of applying the diffeomorphisms obtained to surrounding structures, we are likely to obtain
unrealistic deformations.

In summary, there are partial shape matching solutions that are adapted to realistic prob-
lems but do not necessarily allow non-rigid matching of various shapes such as unions of
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(a) (b)

(c) (d)

Figure 3.7: Multiscale LDDMM registration with σV = 0.5 and σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. (a) Applied to

a blue arc onto a red circle, with γ = 0.1. (b) Applied to a blue arc onto a red circle, with γ = 1. (c)
Applied to a blue segment onto two red segments, γ = 0.1. (d) Applied to a blue segment onto two
red segments, γ = 1.

curves and surfaces (or other submanifolds in general).

On the one hand, we have classical metrics in the shapes spaces, designed for LDDMM
registration. Yet since they compare the shapes as a whole, such distances do not allow non-
rigid matching between shapes with topological differences. On the other hand, regularizing
the deformations seems appealing at first sight but necessitates careful construction and tun-
ing of the reproducing kernel for the diffeomorphic deformations. At the minimum of the
optimization problem, the resulting distance in the shape space can be seen as the "noise"
that can not be explained by the diffeomorphism. However, using the hyper parameters of
the cost function may not be adapted to the complexity of the shapes in a dataset, while using
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(a)

Figure 3.8: LDDMM registration of a trimmed tree onto the complete target. The reproducing kernel
used is a matrix divergence free kernel conserving the total deformed volume. γ = 0.01 and σV = 0.5

and σW = 0.5.

matrix kernels increases the computational time of the deformation.

Therefore, we decided to approach the problem by adapting the shape comparison func-
tions used in the LDDMM to encode the inclusion of a deformed source object in a target.
The objective is to obtain a data attachment term that would be zero when the deformed
shape is totally included in the target. In addition, to be differentiable, one would like this
function to have comparable computational cost with respect to classical distances for shape
matching. Ideally, such functions should also be adapted to the comparison of various shapes
(basically unions of curves and surfaces) extracted from the medical images, in particular
centerline trees.

3.1.2 First Ideas with a Toy Example

To build a relevant shape representation, we start from the shape space representation of
oriented varifolds (Chapter 2, Section 2.4.2) which can be expressed by the mean of a repro-
ducing kernel. Let W be a Reproducing Kernel Hilbert Space (RKHS) of functions defined
over Rd×Sd−1 continuously embedded in C0(Rd×Sd−1), the space of continuous test func-
tions vanishing at infinity. Its dual space W ′ is a space of oriented varifolds.

In the following, we assume that the reproducing kernel of W is of the form ke⊗kt, with
the assumptions of proposition 7. We recall the dual metric:

⟨ δx1,τ1 , δx2,τ2⟩W ′ = kW ((x1, τ1), (x2, τ2)) (3.1)
= ke(x1, x2) kt(τ1, τ2) (3.2)

Here we suppose that ke and kt are non-negative (N.B. as functions, and not only as kernels),
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excluding therefore the current representation. In order to adapt this distance for partial
matching, a first and intuitive way could be to use half of the expression as follows:

∆0(S, T ) = ⟨µS, µT − µS⟩2W ′ =
(
|µS|2W ′ − ⟨µS, µT ⟩W ′

)2
(3.3)

The intuition behind this definition is that if S is a subset of T , then µT − µS is the
varifold corresponding to T \S, which is disjoint from shape S and thus roughly orthogonal
to it from the varifold metric viewpoint. We illustrate in Figure 3.9 the output of the LDDMM
registration with different configurations of the partial dissimilarity term ∆0(φ(S), T ).

(a) (b)

(c)

Figure 3.9: First intuition of partial matching with ∆0 as data attachment term. (a) LDDMM registra-
tion with σW = 0.5. (b) LDDMM registration with σW = 0.1. (c) Multiscale LDDMM registration

with σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
].

First of all, we can see in Figure 3.9 (a) that at a large scale of data attachment, the
source shape tends to stop quite far from the target. In fact, there are two phenomena that
are at work here: first the fact that if the target locally has a larger weight than the source, it
will contribute negatively to the proposed term and so the minimum will be reached while S
is not included in T .

In particular, if we take the case of a shape S partially included in a target T : S = S1⊔S2

such that S1 ∩ T = ∅ and S2 ∩ T = S2. This is characterized by ⟨µS1 , µS − µT ⟩W ′ > 0,
which can be compensated by an overrated characterization of the inclusion S2 ⊂ T with
⟨µS2 , µS − µT ⟩W ′ < 0, which happens if the mass of T around S2 is larger than the mass of
S.
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Then if we look at the experiment in Figure 3.9 (b), we realize that at small scales σW ,
the source, and the target cannot be seen and the diffeomorphism will generate a deformation
that minimizes the norm of the deformed source. The diffeomorphisms risk, if we are not
careful, to shrink the source to reduce its norm (see Equation 3.3) and, if it is possible, to
include it in the target. This is observed in the third Figure 3.9 (c) which uses a multi-scale
registration scheme for the attachment to the data. In this experiment, the source shape is
progressively included in the target while being shrunk.

This is illustrated in Figure 3.10. In this experiment, we translate the trimmed tree of
Figure 3.1(b) around the complete one and compute the function ∆ for each position. The
point of reference of the translation is the former bifurcation: the best possible response
would hence be a single 0 at the target’s bifurcation. This gives a response map in which we
see that the minimum value of ∆ is not in the area where the trimmed tree is included in the
target.

(a)

Figure 3.10: Target T in red. Left: Response map F of ∆(τ(S), T ) for σW = 0.5 with S the curve
presented in Figure 3.1(b) and translated to each coordinates of the images. Right: the same image
thresholded. The yellow area corresponds to F ≤ t with t = min(F )+1e−2∗(max(F )−min(F )).

This result, in the case of one single supplementary bifurcation in the target, would be
even worse when comparing the simplified template to a real target tree as in Figure 2.13.
Thus this direct adaptation of the oriented varifolds distance is not satisfying.

3.2 Partial Matching in the Space of Oriented Varifolds

Using the shape representation in a RKHS provides convenient tools for computational shape
analysis that are worth exploiting to build dissimilarity terms. In this section, we show how
we deal with the mass imbalance between the deformed source and the target, and how to
seek the local embedding of the source shape in the target. We also construct associated
LDDMM deformations that do not cause abnormal deformations – in particular shrinkage of
the source – as observed in Figure 3.9(b).
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3.2.1 Adding a Local A Priori

To simplify the notation, we denote for x, x′ ∈ S, x⃗ = (x, τxS) and k(x⃗, x⃗′) = ke(x, x
′)kt(τxS, τx′S).

In addition given x⃗ = (x, τ), we denote ωS(x⃗) = ωS(x, τ) the unique representer of µS(x⃗)
with Riesz representer theorem.

Definition 11. Let g : R ⇒ R defined as g(s) = (max(0, s))2. We define the partial
matching dissimilarity as follows:

∆(S, T ) =

∫
S

g (ωS(x⃗)− ωT (x⃗)) dx (3.4)

=

∫
S

g

(∫
S

k(x⃗, x⃗′)dx′ −
∫
T

k(x⃗, y⃗)dy

)
dx . (3.5)

Note that by taking g as the identity, we would retrieve ⟨µS, µS − µT ⟩W ′ . The threshold
max(0, ·) prevents the compensation of a local mismatch by an overrated match in another
area.

Proposition 10. If S ⊂ T then ∆(S, T ) = 0.

Since ke and kt are assumed to be non negative functions, we have

∆(S, T ) =

∫
S

g

(∫
S

k(x⃗, y⃗)dy −
∫
T

k(x⃗, y⃗)dy

)
dx

=

∫
S

g

(
−
∫
T\S

k(x⃗, y⃗)dy

)
dx = 0 . (3.6)

The next proposition highlights the local nature of the dissimilarity function ∆.

Proposition 11. If S ′ ⊂ S, then ∆(S ′, T ) ≤ ∆(S, T ). In particular, if ∆(S, T ) = 0 then for
any subset S ′ of S, ∆(S ′, T ) = 0.

Since k ≥ 0, we have for any S ′ ⊂ S and any y⃗ ∈ Rd × Sd−1

ωS′(y⃗) =

∫
S′
k(x⃗, y⃗)dx ≤

∫
S

k(x⃗, y⃗)dx = ωS(y⃗) .

Hence, since g is an increasing function

g (ωS′(y⃗)− ωT (y⃗)) ≤ g (ωS(y⃗)− ωT (y⃗)),

and thus ∆(S ′, T ) ≤
∫
S

g (ωS(x⃗)− ωT (x⃗)) dx = ∆(S, T ).

Proposition 12. ∆(S, T ) = 0 does not imply that S ⊆ T .
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Proof. In this proof we exhibit a counter example. Consider the two following shapes. The
source is a segment
Sϵ = {(s, ϵ) | s ∈ [−α, α]} slightly shifted by a step ϵ > 0 above a larger target T =

{(t, 0) | t ∈ [−β, β]}, with 0 < α < β. Since the tangent vectors are almost all equal, we can
ignore kt and consider a kernel ke defined by a decreasing function ρ : R+ → R+ as follows
ke(x, x

′) = ρ(|x − x′|2). Then for any such ρ, there exists (ϵ, α, β) such that ∆(Sϵ, T ) = 0

and Sϵ ∩ T = ∅.

We need to show that for any x0 ∈ Sϵ, ωSϵ(x0) ≤ ωT (x0) where
ωSϵ(x0) =

∫
Sϵ
ke(x0, x)dx and ωT (x0) =

∫
T
ke(x0, x

′)dx′. Denote x = (s, ϵ) ∈ Sϵ, x0 =

(s0, ϵ) ∈ Sϵ and x′ = (t, 0) ∈ T then ∥x − x0∥2 = ∥(s, ϵ) − (s0, ϵ)∥2 = (s − s0)
2 and

∥x′ − x0∥2 = ∥(t, ϵ)− (s0, ϵ)∥2 = (t− s0)
2 + ϵ2.

We then obtain

ωSϵ(x0) =

∫ α

−α

ρ((s− s0)
2)ds, ωT (x0) =

∫ β

−β

ρ((s− s0)
2 + ϵ2)ds .

Denote these integrals Iα(s0) =
∫ α

−α
ρ((s− s0)

2)ds and Iβ(s0, ϵ) =
∫ β

−β
ρ((s− s0)

2 + ϵ2)ds.

The integrals are symmetric with respect to s = s0 and since ρ is decreasing, we have the
following inequalities:

for any s0 ∈ [−α, α], Iα(α) ≤ Iα(s0) ≤ Iα(0), (3.7)

for any s0 ∈ [−α, α], for any ϵ > 0, Iβ(α, ϵ) ≤ Iβ(s0, ϵ) ≤ Iβ(0, ϵ). (3.8)

Let us now show that there exist (ϵ, α, β) such that Iα(0) ≤ Iβ(α, ϵ) that is∫ α

−α
ρ(s2)ds ≤

∫ β

−β
ρ((s− α)2 + ϵ2)ds.

For α small enough and β large enough,
∫ β

−β
ρ((s− α)2 + ϵ2)ds ≥

∫ 2α

−2α
ρ(s2 + ϵ2)ds. This

last integral tends to
∫ 2α

−2α
ρ(s2)ds when ϵ tends to 0 and this limit is strictly larger than Iα(0)

(with α small enough, ρ(α) > 0). Thus, for ϵ small enough, we have Iα(0) < Iβ(α, ϵ).
Thanks to eq. (3.7) and (3.8), we deduce that for any x0 ∈ S, ωS(x0) ≤ ωT (x0).

This example shows that if the mass of the target is larger than the mass of the source
then this excess of mass can compensate the lack of alignment between the shapes. It is
illustrated in Figure 3.11 with an experiment similar to Figure 3.10 in which we replaced the
first proposed term with its local version of Equation 3.4.

In this illustration, we see that the local characterization of the inclusion provides a cor-
rect estimation of the local minimum area. The localization however could be better and is
partly explained by the local excess of mass in the target at the bifurcation point. The other
source of the extended minimum area is the square term flattening the values smaller than
one.
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(a)

Figure 3.11: Target T in red. Left: Response map F of ∆(τ(S), T ) for σW = 0.5, kt(u, v) =

e⟨u,v⟩Rd , and with S the trimmed tree presented in Figure 3.1(b) and translated to each coordinates
of the images. Right: the same image thresholded. The yellow area corresponds to F ≤ t with
t = min(F ) + 1e− 2 ∗ (max(F )−min(F )).

3.2.2 Normalizing the Kernels

We now have a correctly localised term encoding the inclusion of a source in a target, and
we are looking for a way to better deal with the mass imbalance between the shapes. To
that end, we introduce a normalizing term that will penalize locally the excess of mass in the
target.

Assume that x0 ∈ S and y0 ∈ T are two close points. If, around these points, the mass
of T is twice the mass of S, i.e. ωS(x⃗0) ≈ 1

2
ωT (y⃗0), then the local embedding of S in

T is characterized by ωS(x⃗0) ≤ 1
2
ωT (x⃗0) and more generally by ωS(x⃗0) ≤ ωS(x⃗0)

ωT (y⃗0)
ωT (x⃗0).

Conversely, if the mass of S is twice the mass of T , then we consider that locally S ⊊ T
(e.g. two branches of a tree should not match the same branch of a target). Hence, the
criterion of Definition 11 that should be preserved : ωS(x⃗0) ≤ ωT (x⃗0) is not satisfied. These
observations lead to a new dissimilarity term that encompasses these two cases.

Definition 12. Using the same threshold function g as in Definition 11, we define the nor-
malized partial matching dissimilarity as follows:

∆(S, T ) =

∫
S

g

(
ωS(x⃗)−

∫
T

minϵ

(
1,

ωS(x⃗)

ωT (y⃗)

)
k(x⃗, y⃗)dy

)
dx

where minϵ(1, s) =
s+1−
√

ϵ+(s−1)2

2
with ϵ > 0 small, is used as a smooth approximation of

the min(1, ·) function.

Discrete Formulation The discrete version of the partial matching dissimilarity can be
derived by following the same discrete setting described in Chapter 2, Section 2.4.1 for
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the shape approximations. We are working with surfaces, seen as triangular meshes with
vertices q1, ..., qK . Each triangle fi, i ∈ [1, .., NS] with the vertices (q1i , q

2
i , q

3
i ) of the shape

S is associated with the center ci =
q1i +q2i +q3i

3
and to the normal vector ηxi

S = (1/2) ∗ (q2i −
q1i )× (q3i − q1i ). The unit normal vector is then τciS =

ηciS

|ηciS|
. We define similarly the centers

yl of the target shape T and their associated normal vectors ηylT and unit normal vectors
τylT . In the case of curve C, the unit tangent vector to C at x will also be denoted τxC, and

(a)

(b)

Figure 3.12: Target T in red. Left: Response map F of ∆(τ(S), T ) for σW = 0.5, and with S

the trimmed tree presented in Figure 3.1(b) and translated to each coordinates of the images. Right:
the same image thresholded. The yellow area corresponds to F ≤ t with t = min(F ) + 1e − 2 ∗
(max(F )−min(F )).
(a) Top row illustrates the response map for kt(u, v) = ⟨u, v⟩2Rd (varifolds). (b) Bottom row illustrates
the response map for kt(u, v) = e⟨u,v⟩Rd (oriented varifolds.)

the center are the centers of the segments connecting the discretization points qi.

The discrete normalized partial matching term is then written as follows:

∆(S, T ) =
NS∑
i=1

g

(
ωS(x⃗i)−

NT∑
l=1

minϵ

(
1,

ωS(x⃗i)

ωT (y⃗l)

)
k(x⃗i, y⃗l)

)
(3.9)
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with ωS(x⃗i) =
NS∑
j=1

ke(xi, xj)kt(τxi
S, τxj

S) |ηxi
S|
∣∣ηxj

S
∣∣.

Following the same experiment as previously, we compute the response map of ∆ in
Figure 3.12 for both oriented and non-oriented varifold representation. To compare to the
previous experiment in Figure 3.11, the proposed normalization provides a better localized
minimum: the excess of mass at the bifurcation of the target is compensated. When compar-
ing the two rows in Figure 3.12, we see that using the non-oriented representation the surface
of the flat minimal area explodes: the orientation plays in this example an important role in
the construction of a function that should be zero when the source shape is included, and not
too flat around its minima.

Remark 1. Interestingly, the minimum value of ∆ in the case of oriented varifolds never
reaches 0. This comes from the introduced normalization, and whenever ⟨u, v⟩Rd > 0 we
have that kt(u, v) ≥ 1. In such a case the normalization overcompensate the local excess of
mass in the target and we have S ⊆ T ⇏ ∆(S, T ) = 0.

We show that when S is included in T , the cost function remains positive. Let y⃗0 ∈ T
such that ∀y⃗ ∈ T we have ωT (y⃗) ≥ ωT (y⃗0) > 0 (y⃗0 exists since ωT is continuous and
bounded, and T is compact). Let S ⊆ T such that y⃗0 ∈ S. We have that ∀y ∈ T , ωT (y⃗) ≥
ωS(x⃗0). Then we have:

ωS(y⃗0)−
∫
T

minϵ

(
1,

ωS(y⃗0)

ωT (y⃗)

)
k(y⃗0, y⃗)dy = ωS(y⃗0)−

∫
T

ωS(y⃗0)

ωT (y⃗)
k(y⃗0, y⃗)dy

= ωS(y⃗0)

(
1−

∫
T

k(y⃗0, y⃗)

ωT (y⃗)
dy

)
.

In addition, we have that
∫
T

k(y⃗0, y⃗)

ωT (y⃗)
dy ≤ 1

ωT (y⃗0)

∫
T
k(y⃗0, y⃗)dy = 1, hence:

ωS(y⃗0)−
∫
T

minϵ

(
1,

ωS(y⃗0)

ωT (y⃗)

)
k(y⃗0, y⃗)dy ≥ 0,

and if there is y⃗ ∈ T s.t. ωT (y⃗) > ωT (y⃗0), then:

ωS(y⃗0)−
∫
T

minϵ

(
1,

ωS(y⃗0)

ωT (y⃗)

)
k(y⃗0, y⃗)dy > 0,

So ∆(S, T ) > 0.

With that in mind, one must pay attention to the initialization and the scale σW of the
spatial kernel ke. We have in fact that ∆(S, T ) is minimal when S ⊆ T .
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3.2.3 Use with Rigid

We can define a first minimization problem for a rigid registration, by minimizing the func-
tion:

Jrig(r) = ∆(r(S), T ) ,

with r a rigid deformation composed of a translation t and a rotation R.

For any rigid deformation ωr(S)(r(x⃗)) = ωS(x⃗), ∀x ∈ S, and we can thus write in the
discrete setting:

∆(r(S), T ) =
NS∑
i=1

g

(
ωS(x⃗i)−

NT∑
l=1

minϵ

(
1,

ωS(x⃗i)

ωT (y⃗l)

)
k(r(x⃗i), y⃗l)

)
We have that Jrig is a composition of continuous functions and that : k(r(x⃗i), y⃗l) −→ 0

when the translation goes to infinity from the construction of the kernel k. We can deduce

that for all rigid deformation we have minϵ

(
1,

ωS(x⃗i)

ωT (y⃗l)

)
k(r(x⃗i), y⃗l) > 0 and Jrig(r) <

NS∑
i=1

g (ωS(x⃗i)). Jrig is continuous and bounded over the space of finite dimension of rotations

and translations, the minimization problem has a solution.

3.2.4 Use with LDDMM

The framework we propose is sufficiently flexible to be embedded in a variety of inexact
registration methods; and we use it in the LDDMM framework:

Proposition 13. Let γ > 0 be a fixed parameter. The partial matching problem, which
consists in minimizing over L2

V the function :

J(v) = γ

∫ 1

0

∥vt∥2V dt+∆(ϕv
1(S), T ) ,

has a solution.

Proof. From [Gla05], theorem 7, the proof boils down to showing that the mapping v 7→
A(v) = ∆(ϕv

1(S), T ), is weakly continuous on L2
V . Let (vn) be a sequence in L2

V , weakly
converging to some v ∈ L2

V . We need to show that ∆(ϕvn
1 (S), T ) −→ ∆(ϕv

1(S), T ).
To simplify we denote Sn = ϕvn

1 (S), S∗ = ϕv
1(S) and for any x⃗ ∈ Rd × Sd−1, fn(x⃗) =

ωSn(x⃗)−
∫
T

minϵ

(
1,

ωSn(x⃗)

ωT (y⃗)

)
k(x⃗, y⃗)dy and f∗(x⃗) likewise for S∗.

We then have
∆(Sn, T )−∆(S∗, T ) = µSn(g ◦ fn)− µS∗(g ◦ f∗) . (3.10)

The area formula

µϕ(S)(ω) =

∫
S

ω(ϕ(x), dxϕ(τxS))
∣∣dxϕ|τxS

∣∣ dx,
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leads to ∣∣∣µSn(g ◦ fn)− µS∗(g ◦ f∗)
∣∣∣ ≤ ∫

S

∣∣∣g ◦ fn(ϕn(x), dxϕ
n(τxS)) ·

∣∣dxϕn
|τxS
∣∣

− g ◦ f∗(ϕ(x), dxϕ(τxS)) ·
∣∣dxϕ|τxS

∣∣ ∣∣∣dx
≤
∫
S

∣∣∣g ◦ fn(ϕn(x), dxϕ
n(τxS)) ·

∣∣dxϕn
|τxS
∣∣− g ◦ fn(ϕ(x), dxϕ(τxS)) ·

∣∣dxϕ|τxS
∣∣

+ g ◦ fn(ϕ(x), dxϕ(τxS)) ·
∣∣dxϕ|τxS

∣∣− g ◦ f∗(ϕ(x), dxϕ(τxS)) ·
∣∣dxϕ|τxS

∣∣ ∣∣∣dx
≤
∫
S

|g ◦ fn|∞ ·
∣∣∣ ∣∣dxϕn

|τxS
∣∣− ∣∣dxϕ|τxS

∣∣ ∣∣∣+ |dxϕ|∞ |g ◦ fn − g ◦ f∗|∞ dx .

Since dxϕ
n converge to dxϕ, uniformly on x ∈ S [Gla05], we only need to show that |g ◦

fn − g ◦ f∗|∞ → 0. We first show that |fn − f∗|∞ → 0. For any x⃗ ∈ Rd × Sd−1

fn(x⃗)− f∗(x⃗) = ωSn(x⃗)− ωS∗(x⃗)

+

∫
T

k(x⃗, y⃗)

[
minϵ

(
1,

ωSn(x⃗)

ωT (y⃗)

)
−minϵ

(
1,

ωS∗(x⃗)

ωT (y⃗)

)]
dy .

(3.11)

Since W is continuously embedded in C2
0(Rd × Sd−1), there exists cW such that for any n,

|ωSn − ωS∗|∞ ≤ cW |ωSn − ωS∗ |W . Moreover, since vn weakly converges to v, Corollary 1
from [CCT17] ensures that |ωSn − ωS∗|W → 0.
Regarding the integral, since R ∋ s 7→ minϵ(1, s) is Lipschitz, there exists cϵ > 0 such that∣∣∣∣∫

T

k(x⃗, y⃗)

[
minϵ

(
1,

ωSn(x⃗)

ωT (y⃗)

)
−minϵ

(
1,

ωS∗(x⃗)

ωT (y⃗)

)]
dy

∣∣∣∣
≤
∫
T

k(x⃗, y⃗)

|ωT (y⃗)|
cϵ|ωSn(x⃗)− ωS∗(x⃗)|dy ≤ cϵcW |ωSn − ωS∗ |W

∫
T

k(x⃗, y⃗)

ωT (y⃗)
dy

(3.12)

Since T is compact and ωT is continuous and strictly positive on T⃗ = {(y, τyT ) | y ∈ T}, we

have cT = infT⃗ ωT (y⃗) > 0 so that
∫
T

k(x⃗, y⃗)

ωT (y⃗)
dy ≤ ωT (x⃗)

cT
≤ cW |ωT |W

cT
< +∞. This shows

that |fn − f∗|∞ → 0. Now, since f∗ is bounded, there exists M > 0 such that for any n,
|f∗|∞+|fn|∞ ≤M and since g is locally Lipschitz, we deduce that |g◦fn−g◦f∗|∞ → 0 .

We illustrate in Figure 3.13 the LDDMM registration of the trimmed tree onto the com-
plete target under two configurations: a single-scale approach and a multi-scale one. The
single-scale approach remains unsatisfying as the deformed source still ends up far from the
target. The second approach, however, shows better results. By gradually reducing the size
of the scale of the spatial kernel, the deformed source is gradually included in the target as
intended.

We still observe a shrinking of the source, induced by the carpool effect of the vector
fields generated by Gaussian scalar reproducing kernels, and that is worsened by the mini-
mization of the norm of the deformed source. Indeed we have the following property:

Proposition 14. If S2 ⊆ S1 ⊆ T , then ∆(S2, T ) ≤ ∆(S1, T ).

The proof is immediate, as for ∆(S2, T ) we integrate positive terms over a subset of S1.
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(a) (b)

Figure 3.13: LDDMM registration under partial matching using ∆ as data attachment term with
γ = 0.01 and σV = 0.5. (a) LDDMM registration with σW = 0.5. (b) Multiscale LDDMM

registration with σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. Note that the output of figure (a) is the input for the scale

σW = 0.25 of figure (b).

3.3 Regularization as Source Attachment Term

In this section we build the supplementary data attachment term that will be used in the final
data attachment term for LDDMM registration in the context of partial matching. So far we
only considered an objective function that would be minimal when the deformed shape is
completely embedded in the target, though we immediately see that such a situation can be
achieved with infinitely many different deformations and one may need additional a priori in
order to derive realistic deformations. There are many ways to regularize the LDDMM for
instance but we focus on encoding the regularization within the data term, which is simpler
to implement and faster than encoding regularity within the diffeomorphisms (divergence
free kernels for instance).

It is known from experiments that the deformations can lead to abnormal shrinkage or
stretching of the deformed shapes (Figure 3.13). This phenomenon comes from two things
combined: first, we introduce an asymmetric data attachment term that favors the inclu-
sion of a deformed object in a target. In the case of non-rigid deformations, it can create a
multitude of local minima. Second, in the regularization of the LDDMM model (2.9), the
deformations tend to shrink the objects along the geodesics, so it is possible that the diffeo-
morphisms create shrinkage of the non-realistic source shape. In order to limit, this we can
add a regularization term in the function J to minimize.

We illustrate a registration in Figure 3.14 the result of the LDDMM registration with the
toy example used so far, but using an increased deformation scale σV = 2, and a regulariza-
tion parameter γ = 0.01.

Using such parameters, we obtain in fact the expected inclusion of the source inside the
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(a) (b)

Figure 3.14: LDDMM registration under partial matching using ∆ as data attachment term with
γ = 1 and σV = 1. (a) LDDMM registration with σW = 0.5. (b) Multiscale LDDMM registration

with σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
].

target. With a single scale, the result is not perfect we have a slight shrinkage of the source,
however, switching to multiscale data attachments allows us to obtain the expected inclusion.
If the deformation is close to the expected one, the large σV does not allow to take the finest
details into account during the registration. To refine the model, one can use a multiscale
reproducing kernel, and this is the solution proposed in the IPMI publication [Ant+21].

We still observe that the usual regularization is not always best suited to the case of partial
matching and that shrinkage may be an admissible deformation regarding the regularization
parameter γ. One may want to preserve more information in the regularization, as the local
or global structure of the shape. In the next section, we discuss the use of a regularization
term designed to prevent the shrinking of the source shape under non-rigid deformations and
formulated in the space of oriented varifolds.

Expressions The purpose of this regularization term is to prevent the deformations from
shrinking or stretching the source shape. We chose to address it in the shape space of oriented
varifolds as well, by controlling the norm of the deformed shape:

Rglobal(S,Φ(S)) =
(
∥ωS∥2W − ∥ωΦ(S)∥2W

)2 (Global) (3.13)
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Interestingly this term can be written with the change of variable:

Rglobal(S,Φ(S)) =

(∫
S

ωS(x⃗)dx−
∫
Φ(S)

ωΦ(S)(y⃗)dy

)2

=

(∫
S

ωS(x⃗)− ωΦ(S)(Φ(x⃗))
∣∣dxϕ|τxS

∣∣ dx)2

This enforces the conservation of the norm of the deformed shape. Yet in practice, it
can lead to local deformations of one part of the shape compensated with another part (Fig-
ure 3.18). Therefore, we introduce a local regularization allowing us to locally preserve the
mass by enforcing the terms inside the integral to be close to 0 everywhere:

Rlocal(S,Φ(S)) =

∫
S

(
ωS(x⃗)− ωΦ(S) (Φ(x⃗))

∣∣dxϕ|τxS
∣∣)2 dx (Local) (3.14)

Discrete formulation Similarly to the partial matching term, we can write the regulariza-
tion terms (both global and local) in the discrete setting:

Rglobal(S,Φ(S)) =

(
NS∑
i=1

ωS(x⃗i)−
NS∑
i=1

ωΦ(S)(Φ(x⃗i))

)2

(Discrete Global) (3.15)

Rlocal(S,Φ(S)) =

NS∑
i=1

(
ωS(x⃗i)− ωΦ(S) (Φ(x⃗i))

∣∣ηΦ(x⃗i)Φ(S)
∣∣

|ηx⃗i
S|

)2

(Discrete Local) (3.16)

The overall function to minimize in this LDDMM setting is given by the formula:

Jreg(v) = γ

∫ 1

0

∥vt∥2V dt+∆(ϕv
1(S), T ) + γ1.R(S, ϕv

1(S)) (3.17)

with R = Rglobal or Rlocal.

Proposition 15. Let γ > 0 and γ1 > 0 be two fixed parameters. The regularized partial
matching problem, which consists in minimizing over L2

V the function Jreg (defined in Eq.3.3)
has a solution.

Similarly to the proof of Proposition. 13, the proof boils down to showing that the map-
ping v 7→ A(v) = ∆(ϕv

1(S), T ) + Rlocal(S, ϕ
v
1(S)) is weakly continuous on L2

V . We use the
same notations, and define (vn) a sequence in L2

V , weakly converging to some v ∈ L2
V . We
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only need to show that Rlocal(S, ϕ
vn
1 (S)) −→ Rlocal(S, ϕ

v
1(S)).

To simplify we denote Sn = ϕvn
1 (S), S∗ = ϕv

1(S) and for any x⃗ ∈ Rd × Sd−1, fn(x⃗) =

ωSn(x⃗)−
∫
T

minϵ

(
1,

ωSn(x⃗)

ωT (y⃗)

)
k(x⃗, y⃗)dy and f∗(x⃗) likewise for S∗.

Using the same arguments as in 13, we have that dxϕn converge to dxϕ, uniformly on
x ∈ S [Gla05]. In addition, ωSn converges uniformly to ωS∗ . We can deduce that

Rlocal(S, ϕ
vn
1 (S))−Rlocal(S, ϕ

v
1(S)) −→ 0.

We now apply the proposed regularized partial matching with diffeomorphic deforma-
tions to the toy example proposed along this chapter. It is illustrated in Figure 3.15 in the
case of a multiscale approach with the regularization parameter γ = 0.1.

(a) (b)

Figure 3.15: LDDMM registration with γ = 0.01, σV = 0.5 under partial matching using the cost
function of Equation 3.3 with local regularization term.(a) LDDMM registration with σW = 0.5. (b)

Multiscale LDDMM registration with σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. Note that the output of figure (a) is the

input for the scale σW = 0.25 of figure (b).

We observe in this experiment the correct alignment of the source shape onto its corre-
sponding subset in the target. In particular, there is little shrinkage effect when compared to
the (unregularized) partial matching with the same γ parameter of Figure 3.14.

Influence of the Regularization Term

We illustrate on the segment and the circle examples the influence of the proposed regular-
ization term on the partial matching. In the left column of Figure 3.16 we see that without
regularization, the registration ends up in a local minima and the deformed source shape is
shrunken. On the contrary, the proposed regularization on the right column tends to preserve
the size of the deformed source.
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(a) (b)

(c) (d)

Figure 3.16: Multiscale LDDMM registration with γ = 0.1, σV = 0.5 and σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
].

(a) Applied to a blue arc onto a red circle, with ∆. (b) Applied to a blue arc onto a red circle, with
∆+ Rlocal. (c) Applied to a blue segment onto two red segments, ∆. (d) Applied to a blue segment
onto two red segments, ∆+Rlocal.

In the rest of the manuscript, the term we selected for the partial matching is ∆+γ1Rlocal,
with γ1 = 1 in most of the experiments.

3.4 Examples of Applications

We have seen how we constructed the partial matching fidelity term for diffeomorphic match-
ing, and a regularizing term both derived from the oriented varifolds representation. In order
to illustrate different possible applications, we now provide some examples of diffeomorphic
registration of a truncated source shape onto the subset of a complete target. We apply this to
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a simplified pelvic vascular tree registered onto a real one, to the registration of a truncated
sphere onto a complete one, and finally to the converse case when one wants to register a
complete source onto a truncated one.

Similarly to Chapter 2, we model the non-rigid deformations using a reproducing kernel
KV of V as be a sum of Gaussian kernels. For each set of experiments we use the same
hyperparameters (σ0, σW , γ, γ1) to compare the influence of the regularization and for the
clinical application.

Simplified Template Aligned to Real Trees As we’ve shown in Figure 2.13, the classic
distance in the space of oriented varifolds is not adapted to the registration of a simplified
template vascular tree onto a complete real one. To illustrate the performance of the pro-
posed partial matching applied to the registration of the template vascular tree described in
Section 5.1.3, we register it with diffeomorphic deformations onto real vascular trees that
have not been processed. If we do not process the trees, we still suppose that the target trees
contain all the labels of the template. The registration is initialized by a translation, aligning
the root of the template with the one of the target.

We see in Figure 3.17 that the non-rigid deformations guided by partial matching with the
local regularization term allow to correctly include the template tree into the target. Note that
if there is no guarantee that the registration provides anatomically consistent registration, the
result in this example is quite satisfying. The relevant template and atlas construction of Sec-
tion 5.1.3 provides a relevant initialization of the registration. When associated with partial
matching and local regularization, it results in the embedding of the deformed source in the
target with smooth and relevant deformations without abnormal shrinking. A more detailed
analysis of the registration of this template onto the database is developped in Chapter 5
Section 5.2.

Application to Surfaces We illustrate the influence of the local and global regularization
terms with the registration of a truncated surface onto a complete one. To do so we per-
form a LDDMM registration using a small regularization parameter γ = 10 in the functional
Jreg and we set γ1 = 1. The data attachment term we use is the one proposed for the
partial matching in Section 3.2.2. In Figure. 3.18, we illustrate the result of the LDDMM
registration guided by the partial matching data attachment term using alternatively no reg-
ularization, the proposed global regularization and the proposed local regularization. The
ideal deformation should be a translation of 33 millimeters.

We observe that without any regularization, the non-rigid deformations lead to global
shrinkage of the source shape. On the contrary, the proposed regularizations both global and
local prevent such shrinkage. The global one though preserves the norm of the shape at the
end of the diffeomorphic deformation and does not prevent inconsistent local deformations.
The most regular deformation is thus induced by the local regularization, which allows pre-
serving the position of the relative position of the vertices and the relative orientation of the
tangent vectors associated with the deformed source. It should be noted that we work at a
small scale of attachment to the data and that this influences the regularization.
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(a) (b)

(c)

Figure 3.17: LDDMM registration of a template tree (a) onto a real case (b). The deformations are
guided by partial matching with local regularization. In (c) is plotted the deformed template (thick
tree) into the real target in transparent.

Including the target in the Deformed Source Another framework of interest is the inclu-
sion of a truncated target into a deformed source. The application of such a framework is the
exact opposite of the previous setting, and one can consider that the template is a complete
shape and that the data may have missing subsets and be truncated. With the same toy exam-
ple, we illustrate in Figure 3.19 the behaviour of the LDDMM registration of the complete
shape onto the truncated one. In Figure (a) we see that without the proposed regularization
(and a small γ = 0.1), the diffeomorphisms induce few deformations of the supplementary
branch. The target is yet correctly matched. In Figure 3.19 (b) the local regularization is
used in addition. In this second experiment, the supplementary branch is deformed ensuring
the local conservation of ωS(x⃗) for x⃗ ∈ S. The deformation is smooth: the resulting shape
in fact covers the target truncated one, and the deformations are global. This experiment
shows that the partial dissimilarity function we introduced in this chapter is adapted to both
inclusion frameworks: the truncated source, or the truncated target. Note that compared to
Figure 3.14 regularized with the σV scale, the deformation here is more local, indicating that
the proposed regularization term allows a different degree of freedom for the deformation.
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(a) Source and Target (b) Partial Oriented Varifold
No Regularization

(d) Partial Oriented Varifold
Global Regularization

(e) Partial Oriented Varifold
Local Regularization

Figure 3.18: Influence of the regularization term on the non-rigid deformation of a truncated sphere
onto a complete one. (a): Source (blue, opaque) and target (red, transparent) surfaces. (b-c-d):
registration results. The colormap for (b-c-d) indicates the euclidean distance (in mm) of the points
to their initial position before diffeomorphic deformations.

3.5 Conclusion

We propose a new way to easily encode partial matching in the space of varifolds (both ori-
ented and non-oriented) adapted to the LDDMM framework and allowing for the registration
of a shape onto a subset of a target. Dismantling the classic distance in the space of varifolds
provides the tools we need to build such functions. The solutions however require careful
attention in order to build consistent deformations and handle consistently the imbalance
between the deformed shape, simpler, and the target one supposed to include the deformed
source. Constructing a term that is no longer a distance, and reaching its minimum when
the distorted source is included in the target, produces many possible minima for the partial
matching function. The first and most important point for solving such problems is then to
correctly initialize the minimization. A good starting point will indeed prevent numerous
bad local minima while starting far from the target position will increase the risk of falling
into bad minima. A second solution is to regularize the deformation, creating a bias guiding
it to some realistic solution regarding the application. We chose to encode this regularization
as a regularization term comparing the deformed shape to its initial position, constraining the
deformed shape to locally resemble its original one. This choice has been motivated by the
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(a) (b)

Figure 3.19: LDDMM registration under partial matching using ∆ as data attachment term with γ =

0.1, γ1 = 1 and σV = 0.5 and σW ∈ [
1

2
,
1

4
,
1

8
,
1

16
]. (a) LDDMM registration without regularization.

(b) LDDMM registration with local regularization.

light computational cost of this term when compared to the cost of encoding more complex
deformations such as the ones generated with divergence-free vector fields.

We apply the proposed partial matching with LDDMM deformations to toy examples of
both curves of R2 and R3, and to surfaces of R3 taking advantage of the adapted oriented
varifold representation. Note that if no orientation is available, it is still possible to work
with the non-oriented version. This new framework is then applied to the registration of the
template constructed in Chapter 2 Section 2.5.1 onto real pelvic vascular trees automatically
simplified to derive a fully automated registration pipeline in which the target trees are neither
labeled nor manually processed.

We also show that the proposed partial matching with local regularization is adapted to
the registration of a complete shape onto a truncated one. One of the advantages of register-
ing a complete template onto truncated targets is the possibility to then find correspondences
between subset of multiple truncated shapes, using the intermediate complete template.

Clinical applications, particularly in interventional radiology, could therefore benefit
from the proposed realignment. Our partial matching term coupled with regularization can
be used with different registration models, and it is adapted to curves and surfaces. It can
therefore be used on many structures from medical images. The approach we propose is then
particularly suited to the comparison of structures extracted from various images acquired
with the limited field of view of the C-arm system.

In Chapter 5 we apply the proposed partial matching framework to typical use cases in
interventional radiology: trees and surfaces extracted from interventional images. In the
first application (Section 5.2) we study the anatomical consistency of the registration of the
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simplified template pelvic vascular tree that we built in 5.1.3 onto real cases that are not pre-
processed. The second application (Section 5.3) is dedicated to the partial correspondence
between the livers extracted from the CBCT volumes, and the ones extracted from the CT
volumes. Indeed, CBCT acquisitions have a field of view of limited size causing the portion
of the imaged liver to be cropped in the reconstructed volume. To compare efficiently the
volumes of both modalities, the CBCT acquired during the intervention and the CT used
as pre-operative acquisition for diagnosis or procedure planning. We use the proposed LD-
DMM partial matching framework to find a realistic non-rigid deformation between the liver
surfaces automatically extracted from both modalities. The diffeomorphisms obtained can
then be applied to the whole volume, which provides a tool for volume comparison and to
take the best out of the two modalities.

Next Steps

The functions proposed in this chapter to encode the partial matching in the data attachment
term gives promising results, however, there are some points that could benefit from further
exploration. Indeed, we have the non-negativity of ∆(S, T ) when S ⊆ T which is problem-
atic and favors the shrinkage of the source under the action of a non-rigid deformation. For
this, an interesting approach would be to manage the normalization differently by compen-
sating for k(x⃗, y⃗max) with y⃗max = arg maxy⃗∈T (k(x⃗, y⃗max)) instead of the integral over the
whole target ωT (y).

In the spirit of further investigating partial matching as a data attachment term, a natural
extension would be to use the representation of normal cycles [RG16] which would allow to
better take into account the boundaries of objects such as curves and surfaces. This shape
space is therefore even more challenging since truncation creates artificial edges that one
does not necessarily want to align with the target. In addition, in this study, we supposed that
there was an inclusion of one shape into the other, hence injective registrations. Following
the approach of [BBK06] one could search instead for an optimal trade-off between the size
of the subsets of the shapes matched in both the source and the target and the amount of
deformations required to register these selected sub-parts. This would be a solution to the
problem of missing artery in the target, meaning that one is aiming to register a subset of the
template onto a subset of the target.

Changes in the Bifurcation Ordering The partial matching allows dealing with the trun-
cation of the template tree for non-rigid alignment onto a subset of the target. The diffeomor-
phisms however cannot explain the topological changes in general. As listed in Section 1.2.2,
another kind of typical topological change that occurs between the trees is the variation in
terms of bifurcations order which must be encoded in the deformation model if one aims
at perfectly aligning the shapes. We illustrate in Figure 3.20 one registration example with
partial matching in which the target arteries’ connectivity differs from the template one.

This example illustrates that despite a consistent global registration, the alignment of the
source shape onto the target suffers from the incapacity of the diffeomorphisms to handle the
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(a) (b) (c)

(d) (e)

Figure 3.20: LDDMM registration of a template tree (a) onto a real case (c). One change in the
bifurcation ordering is illustrated with the obturator, highlighted in red for the source (b) and the
target (d). The resulting registration is globally consistent, the proximal branches however cannot be
correctly matched without further deformation of the template.

changes in terms of bifurcations ordering: the obturator branch close to the root cannot be
matched to the target associated obturator branch. One way to cope with this limitation is to
less regularize the deformations, which could lead to strong local and inconsistent deforma-
tions. In the next chapter, we embed the vascular tree in a new space called space of tree-like
shapes introduced by [Fer+11], in which the position of the tree is encoded by the geometry
of the branches as well as their connectivity. Moving in this space can provide topological
changes in terms of bifurcations ordering, and we associate this tree representation with the
registration framework presented so far to propose a tree registration method that allows both
diffeomorphic deformations and tree topological changes.
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REGISTRATION OF TREE-LIKE SHAPES

Let’s picture someone driving every day from point A to point B, and who has a map to
guide him. Let’s also imagine that every night the road changes, junctions are switched and
some roads may appear or disappear. The map on the other hand does not change. This is
typically the situation of the interventional radiologist during endovascular procedures, who
has a vascular tree model for a given anatomy, but who navigates his tools in a new tree for
each new patient.
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In the previous chapters, we have studied spatial alignment of tree-like shapes such as
the vascular trees, and the construction of atlas and templates from data sets. We have also
studied the essential challenge of registering a shape onto a subset of a target and showed
how to encode it in the space of Varifolds. However, as discussed in Chapter 1, the variability
of the vascular trees is not just partial correspondence of the shapes but encompasses other
structural and topological changes, in particular when dealing with annotated trees. In this
last case, the appearance order of the bifurcations induce a tree topology and we call the
changes in term of bifurcations ordering from one individual to another the hierarchical
changes. The application taking these changes into account are numerous, ranging from
the study of trees and plants [Wan+18] and phylogenetic trees in biology for the study of
the evolution between the species [BHV01] to anatomical trees analysis [Fer+12a], brains
connectivity [DDV17], and neurons [DKS18].

In the context of endovascular interventions in interventional radiology being able to take
these topological changes into account is decisive. In fact, following a map and navigating
tools must be done carefully, just like while driving on a road, and the physicians navigating
in the patients’ vessels must not make a mistake in the path they chose. It is even more
important since they are injecting treatment through the vasculature of the patient. In the
pelvic anatomy, there is no uniform map of the vessels, and the bifurcation order can change
from one patient to another. The risks range from prolonged intervention to destruction
of healthy tissue. We are therefore interested in a method allowing us to build an atlas of
the patients’ vasculature and encoding the changes in the bifurcations order that we call
hierarchical changes. To that end, we will embed our trees in a space of tree-like shapes
adapted to the hierarchical changes, and use this template representation in the registration
framework.

A State of the Art

The hierarchical changes in the trees are a well-known problem in tree-structured data anal-
ysis. Their management is particularly important in three applications of interest: the an-
notation of the branches, the alignment or registration of one tree shape onto the other, and
the statistical analysis of sets of trees with varying topologies. No matter how the authors
address the hierarchical changes in their applications, it can be separated into two categories,
either by treating such changes in a post-processing step or in the main step of the algo-
rithm. The first approach takes advantage of some rules derived from a priori knowledge or
observations of the database. Classical algorithms can then be used in the applications, and
their outputs are used as input for the post-processing step. The management of the hierar-
chical changes is extrinsic to the annotated tree shape models. The second approach on the
contrary takes advantage of the encoding of the hierarchical changes in the model to build
algorithms adapted to the annotated tree structures. Such intrinsic models are appealing but
often require a combinatorial algorithm to fully handle the hierarchical changes.

In the following, we discuss the way these hierarchical changes are managed in the three
applications we identified: annotation, alignment, and statistics applied to tree structures.
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Hierarchical Changes and Statistics

When studying a population of shapes, one classic approach is to compute statistics over
the observations. The classic statistics are done in euclidean spaces of finite dimensions.
More refined methods consider sets of points living on a manifold. In the case of trees there
are different representations due to the hierarchical structure of the shapes and in particular
stratified spaces and tropical ones.

Historically, these statistics in stratified spaces were intended to answer questions by
biologists and statisticians regarding the space of phylogenetic trees. They model hierar-
chical relationships between individuals, for example, the evolutionary relationship between
species or the speciation events across the evolution. The edge lengths would then represent
the degree of evolutionary divergence between the species. The geometry introduced by the
seminal work of [BHV01] induces a space with non-positive curvature for which there is a
unique shortest path between any two points. In addition, there is a centroid for any given
finite set of trees in the treespace. Their work inspired many further contributions in this
space also referred to as BHV -Billera-Holmes-Vogtmann- tree space after their authors.

In 2011, an algorithm introduced by [OP11] allowed to compute in polynomial time the
geodesics between any two points in the treespace. Since then, several statistical methods
have been proposed to study sets of points in this space, relying most of the time on the BHV
geometry. Algorithms have been developed for computing sample means [MOP15] when
others have developed Principal Component Analysis (PCA) in this space [Nye14; Fer+12b;
Nye+17] and confidence region for the population mean [Wil19]. Such methods allow not
only to perform statistical analysis of the data despite the topological changes but also to
set up data augmentation with respect to the statistics. One of the drawbacks of all these
methods was the necessity to pair leaves between any two trees of the datasets.

More recently in [GO19] the authors adapt the problem to a partial set of leaves by ex-
tending the space of possible trees. This setting matches the topological differences one
can encounter when dealing with prostatic vascular trees. In [FN20] the authors open new
perspectives by proposing to study a tree space without annotation, however for both meth-
ods the applications are limited and still under development, with no tractable algorithm to
compute statistics in such spaces.

Differently, in [Gar+21], the BHV space is embedded into a space of centered probability
distributions with positive semi-definite covariance matrices. The latter space seems to be a
promising lead to derive more advanced methods and transpose them to the BHV treespace.
It allows the study of trees with inner edges of infinite length, denoting disconnected sets of
leaves. However, it lacks theoretical tools such as the computation of the centroid of a set.

For the statistical analysis of populations of annotated trees, many tools allow taking
the hierarchical changes into account by embedding the trees into spaces of representation
encoding the hierarchical changes. However, it is important to keep in mind that some of the
embedding spaces do not provide methods to get back to the original tree representation, in
particular in the case of vascular trees.
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Hierarchical Changes and Automatic Annotation

We observe three different approaches to hierarchical change management in automatic an-
notation applications. First, the works that do not take these changes into account for the
label probability estimation, staying therefore at the point or branch level and using a set
of rules to assign the labels. Second, the approaches estimating relational features that feed
a learning method or enrich the atlas representation are used for the label probability esti-
mation. Such an approach is similar to the one we used for XGBoost classifier in the first
application described in Section 5.1. In most of the papers, the label assignment still follows
afterward sets of rules learned from the database or a priori knowledge.

In the last kind of approaches the hierarchical changes are encoded into the distance used
to compare the trees. It allows atlas-based annotation methods, and the distance is derived
from the tree space representation. Note that some papers cited in the following may work
on graphs instead of trees, the discussion could be extended to these structures but we only
cite them as other hierarchically structured shapes, on which automatic methods for annota-
tion are developed with topological considerations in the label probability computation and
assignment.

Hierarchical Changes as Post Processing After computing probabilities of labels assign-
ment to the branches, the post-processing approaches seek to find ways to discriminate be-
tween all possible annotations of each branch. The most direct and task-adapted approaches
build sets of rules learned from observations of a database or a priori knowledge of the data
on which one works [GBR08; Aki+09]. These rules then allow deciding between the dif-
ferent choices of annotation, considering or not the labels that have already been assigned
in the tree. In [Mat+14], the assignment follows a global optimization method using a max-
imum likelihood conditioned by the parent’s labels and a set of rules specific to hepatic
portal anatomy. More recently in [Rob+16], the vessels are simultaneously segmented and
annotated. The label assignment is done on edges pairs, and the probabilities are computed
through an extremely randomized tree classifier. The training phase learns hard rules on the
label assignment that cannot occur during the annotation: which successions of two edges
pairs labels (so the labels of 3 edges) do not exist in the database, which labels do not belong
to ending edges pairs and which edge pairs labels do not exist in the bifurcations. This re-
duces the space for possible transitions. The advantage of using explicit rules is that it’s easy
to implement and the output of the method is also easy to interpret. One limit, however, to
learn the set of rules from the database is the lack of adaptability.

Hierarchical Changes and Features Instead of building explicit rules, relational features
between the nodes or branches of the trees can be extracted. These features then provide rela-
tional information between the edges and do not require any label information. In [Tsc+05]
authors build a template in the space of features using population average. Use relational
features such as topological distance (in the tree) between the segments and ratio features
to the parent, children, and siblings. Similarly, [GBR08] uses relational features to estimate
distributions from the database and assign the labels to each branch independently. Never-
theless, the lack of topological consideration in their labeling process seems to be (according

112



REGISTRATION OF TREE-LIKE SHAPES

to the authors) one of the main limitations of their results. An intermediate approach for
integrating hierarchical changes to the prediction models is to learn labels probability transi-
tions by considering features of sets of branches and labels (e.g. pairs) and predict the labels
probabilities on the sets of features in the new trees to annotate. This way the topological
information is encoded in the features space and provides a first label probability based on
topological information.

Both previous solutions complement probability predictions with a set of hard rules
implemented in the labels assignment procedure. Such an approach is also proposed in
[GLS14], in which relational features as the relative diameter with the neighbors as well as
the angle they form are used in the feature space to predict labels probabilities. They also
compute a "connectivity matrix" for the labels, built on the training set and encoding the
probability of adjacency of each pair of labels. More recently in [Wan+17] the bifurcations
are labeled according to their features extracted from Circle of Willis (graph structure), seen
as sequences of observations supposed to only depend on their direct neighbors. The label
assignment problem is formulated with a Hidden Markov Model (HMM) with a restricted
transition strategy. The transition weights are learned from the training set and combined
with the probability output of an XGBoost classifier, working therefore on both feature and
hierarchical knowledge extracted from the database.

Deep learning is the most standard learning method used today for image analysis, it has
also been used in the context of vascular tree annotation. The hierarchical changes are im-
plicitly learned in tree modules like Long Short Term Memory (LSTM) networks [Wu+19].
In this work, the authors propose to train a recurrent neural network preserving the topology
of the coronary tree on a database, and the network is automatically learning the transitions
probabilities between the labels without the need for an explicit set of rules. In [Yan+20]
the trees do not need to be binary, and the hierarchical transition conditions are learned with
a similar bidirectional tree LSTM, which takes as input information extracted from 3D CT
images with a 3D CNN. Then the output of the bidirectional Tree LSTM is used as image
domain conditional weights for a (partial residual) Graph Convolution Network (GCN) that
also works on features extracted from the centerlines. This combination of information from
the image domain and the centerline representation of the curves brings, according to the au-
thors, robustness to missing branches as well as hierarchical changes. In [Zho20] the output
of the network is used as a likelihood for posterior estimation. The prior comes from the
rules learned in the database. Similarly authors in [Ham+21] propose an attention mecanism
in a Graph Convolutional Network on features extracted from the branches of the trees and
concatenated with the direct neighbors’ ones. The tree representation is the dual graph of the
tree (the edges become the nodes, so instead of bifurcations we have 3-nodes cycles).

In all the aforementioned methods, the management of the labels ordering is done extrin-
sically, either by learning labels transitions from the database or by adding hard rules during
the label assignment procedure. None of these methods takes advantage of the intrinsic shape
representation induced by the labeling of the tree.

Hierarchical Changes Encoded in the Distance between Trees As mentioned earlier,
the intrinsic approaches embed the annotated trees into space to compare this new point to
one or several other points in the embedding space. This provides a natural template-based
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method, in which the template is a reference point of the space.

In [Fer+12a] authors have developed a tree-space based method to automatically annotate
pulmonary trees using the distance between one annotation of the target tree and a template
tree. The annotation solution selected is the one minimizing the distance of the annotated
tree to the template. To reduce the computational cost, the annotation follows a hierarchical
scheme where a subtree of a certain depth is extracted at each step, and every labeling is
tested at each iteration. The method selects the annotation minimizing the geodesic distance
to the atlas’ corresponding subtree. This solution is one way to cope with the limitation of
using a single atlas but requires testing all possible annotations.

The approach is extended in [Fer+15] to the use of several templates, namely all anno-
tated cases from the database are used. At each iteration, the distances to all corresponding
subtrees in the annotated database are computed. Once again the labeling minimizing the
sum of these distances is selected afterward. It has the advantage of considering all available
annotated trees. On the other hand, it tends to label all the trees, like the median of the set.
It also needs to compute all possible annotations in each selected subtree in addition to the
distance to every atlas. These methods of testing all possible solutions may be robust to
anatomical variants, yet they are computationally expensive.

Similarly, in [Gül+14] the authors use an atlas of the coronary tree defined by experts and
build a two-step annotation taking advantage of some assumptions on coronary trees. As in
[Fer+12a], the distances are computed in the tree space. A second cost is used, based on the
likelihood of the assigned labels. This second cost introduces a new a priori corresponding
to the spatial distribution of the arteries relative to the heart surface.

More recently, in [Cao+17] the atlas is built by selecting the best example in a training
set following a leave-one-in cross-validation design. To label a new tree, a rigid point-set
registration is done, and the labels are assigned according to a 2-step hierarchical algorithm.
A direct label assignment to the main branches is performed first. Then, labeling the distal
part is performed by trying all possible pairings between the atlas’ and the target’s branches
as in [Fer+12a], although by staying in R3 the authors ensure faster results.

As we have seen, many automatic annotations of tree structures address the problem of
changes in the bifurcation ordering of the trees. Few of them however try to add some spatial
deformation to their algorithms.

Hierarchical Changes and Registration

In terms of tree shape registration and topological changes, few papers address this problem
using classic deformations. Some authors [Cao+17; CFV20] consider rigid registration of the
trees or graphs: the resulting deformation is robust to topological changes. It is yet limited
in terms of spatial shape matching, no precise registration of the underlying structures such
as the branches is available. In [BMV13] the authors use the iterative closest curve method,
and the deformations applied to the trees are both translations and rotations of R3 and 3D/2D
projections.
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Unknown Sets of Leaves In a tree space representation when no labeling of the leaves
is available, or when the tree structures have a different number of nodes and edges, corre-
spondences must be computed between the leaves to compare the subtrees spanned by the
matched edges. In this setting statistical shape analysis of the shapes – and their deforma-
tions – can then be performed as in [FN20]. For this purpose, a tree space is considered to
represent real unlabeled trees with points along 3D curves, and this has been used in [Fer+15;
Gül+14; Wan+18; DKS18].

In [Fer+12a; Fer+15; Gül+14; Wan+18] the authors are looking for a mapping of the
leaves by testing all the possible labeling following a coarse to the fine scheme. More re-
cently in [DKS18], statistical shape analysis was done on neural trees following a three step
method: first, the trees are aligned with translations and rotations, then a hierarchical frame-
work is proposed by iteratively matching the trees represented with increasing depth, hence
increasing complexity. The branch matching is found using the Hungarian algorithm with
a transport cost formulated as a distance between square root velocity functions adapted to
trees. Finally, the trees are interpolated in tree space, providing a spatial alignment of the
shapes as well as topological changes.

We saw in Section 2.6 that diffeomorphic alignment of tree shapes can be computed.
Such deformations provide efficient geometrical alignment of the structures but are sensitive
to topological changes: risks of shrinking, inconsistent jumps of a deformed branch from
one branch of the target onto another. On the contrary, to the tree space representation, this
approach does not require explicit correspondences between the shapes. One limitation of
such an approach is that the interpolation between the trees along the geodesic path results in
interpolation between the branch coordinates in the space of representation which may not
be the most realistic deformation of vascular trees.

It has been shown, however, that optimal transport plan could be efficiently computed
[Cut13], adapted to diffeomorphic registration and scaled up to large point clouds (the points
potentially belong to Rn×d) [Fey+17; Fey+19] . These results pave the way to a registration
framework in which the atlas would provide different topologies for the template tree. The
latter could then have a hierarchical structure, in the sense of bifurcations ordering, varying
during the registration procedure. From the registration point of view, the target tree is the
target shape to which we want to align the template, and just like the LDDMM registration
framework, it does not need any labeling. Statistics on tree populations could then be derived
with topological changes within the atlas.

Chapter Organization The organization of this chapter is the following: we first redefine
the tree-like shapes and their underlying structure. We also provide the grounding properties
of the space of tree-like shapes, allowing to compute geodesics between shapes and adapted
distance between the trees. We build a tree-space from a set of possible topologies, in which
we can minimize a cost function designed to compare shapes in Rd. Second, we discuss
the construction of the geodesics between the tree-like shapes following the algorithm pro-
posed in [OP11]. Third, we introduce a new formulation for tree-like shapes representation
providing a differentiable function to go from this first space to the spatial representation
of vascular trees using Bézier curves. The shapes registration tools are then available for
such vascular trees, and we can compute LDDMM registration as described in Chapter 2 and
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update the position in the space of tree-like shapes through gradient back-propagation. We
propose a python implementation of this registration as well as a python implementation of
the tree-like shapes and the statistical tools available in such a space. Fourth and last, we dis-
cuss the potential applications and study that are yet to be explored with this new registration
framework.

4.1 Building a Space of Tree-like Shapes

As observed in the literature, to perform realistic deformations of tree-like structures while
allowing topological changes, we need to build a suitable representation space. Tree spaces
have been built specifically to handle such cases, but they require to precisely define the
choices of metric and representation of nodes and edges.

4.1.1 A Tree from Leaves to Root

We now recall the definitions of a tree in order to further build tree-like shapes that will guide
the construction of the tree space throughout this section, and the registration methods in the
next sections.

Definition 13. A tree is a connected acyclic graph denoted (V ,Σ) with V the set of nodes
{0, . . . ,M − 1} and Σ the M ×M connectivity matrix with Σi,j = 1 if i is connected to j

and 0 otherwise.

This basic representation of a tree already provide the information regarding the edges
of this tree, derived from the connectivity matrix:

Definition 14. Given a tree, we define an edge as any couple (i, j) such that Σi,j = 1. The
set of edges in a tree is written b = {bk}k=0,..,K .

Remark 2. A tree can be written T = (V , b), and one can retrieve the adjacency matrix Σ

from b.

The degree of a node is the number of nodes it is connected to, and the leaves of the tree
are nodes of degree 1.

Definition 15. Let L = {0, . . . , N} be a set of leaves. A leaf-labeled tree on L is a tree
T = (V ,Σ) endowed with a bijective labeling L : L→ V1, with V1 the degree 1 nodes of T .

For now on, all trees we consider will be supposed to be resolved, meaning that they
don’t have degree 2 nodes. The degree 3 nodes correspond to bifurcations in the tree. As
a convention, if N + 1 is the number of leaves, we always associate the nodes (0, .., N) to
these degree-1 nodes in the tree. It does not change the generality of our tree definition, since
we can always reorder the nodes.
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Definition 16. A fully resolved tree is only composed of degree 1 and 3 nodes.

A fully resolved tree – also called binary tree – can always be constructed from trees with
degree 4 nodes or higher: such nodes can be split into degree-3 ones with new intermediate
edges. For instance a degree 4 node can be split into three different successions of two degree
3 nodes.

Remark 3. The vascular trees we build from CBCT volumes (see Chapter 1 Section 1.2) are
fully resolved.

In such fully resolved trees, it is possible to count the number of edges and nodes given
the number of leaves:

Proposition 16. In a fully resolved tree with N + 1 leaves, there are exactly 2N nodes and
2N − 1 edges.

This can be simply deduced by fixing one leaf, and removing all the other leaves and their
associated edge (a single one by definition). The remaining parents nodes become the new
degree-1 nodes in the tree. One can repeat this operation until the only node remaining is the
fixed one. Thus M−1 edges in a fully resolved tree composed of M nodes. In addition if the
number of leaves in the tree is N + 1, the total number of nodes M in the fully resolved tree
is exactly M = 2N . It can be shown by recurrence by seeing that, if κ(N) is the number of
nodes in a tree with N leaves, κ(1) = 0, κ(2) = 0 and κ(3) = 1. By induction, if it is true for
a given N ≥ 3, we can see that for a tree with N +1 leaves, by removing two siblings leaves
we obtain a fully resolved tree with N leaves so 2N − 2 nodes. Hence 2N = 2(N + 1)− 2
nodes in the complete tree.

Definition 17. A rooted tree is a tree for which we fix a reference leaf. As a convention we
set the root to the node 0.

Again this can be done without loss of generality since we can always build a rooted tree
T̃ with the root set to another node by permuting the nodes of T .

Proposition 17. A rooted tree defines a natural orientation given by the paths connecting
the root to the other leaves.

In the case of vascular trees, this natural orientation could be associated with the blood
stream in the vessels. We always suppose that the root is known in these trees, and that it
corresponds to the point of injection of contrast medium.

Characterizing the Tree Topology

The generic Definition 13 provides the information regarding the branching structure of the
tree, namely its topology:
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Definition 18. The topology of a tree T = (V , b) is the connectivity between its nodes, given
by b (or Σ).

In line with the seminal work on the subject [BHV01], we are working with a space
composed of euclidean subspaces corresponding to unique topologies that are glued together.
We are working with leaf-labeled trees, to characterize the topology with the connectivity
between the leaves instead of all the nodes, which will be convenient for the construction of
the space of tree-like shapes, we first introduce the splits:

Definition 19 (Split). Let T be a tree and L = {0, . . . , N} be the set of its leaves. A split
L1|L2 = L1|LC

1 is a partition of L.

Let T = (V , b) be a leaf-labeled tree, and consider an edge bi in b. By removing the edge
bi we create two disconnected subtrees T1 and T2. The split associated to an edge bi in T is
L1|L2 where L1 (resp L2) is the set of leaves of T1 (resp. T2).

Definition 20 (Compatible Splits). Two splits L1|LC
1 and L2|LC

2 are said compatible if one
of the sets : L1 ∩ L2, L1 ∩ LC

2 , LC
1 ∩ L2 and LC

1 ∩ LC
2 is empty.

In Figure 4.1, the two splits {1}|{0, 2, 3} and {2}|{0, 1, 3} are compatible. One can build
incompatible splits by permuting two leaves between the complementary sets of leaves: take
for instance {0, 1}|{2, 3} and {0, 3}|{1, 2} encoding edges that cannot exist in the same
leaf-labeled tree in the example in Figure 4.1.

Remark 4. In a given leaf-labeled tree T = (V , b) all the splits associated to edges in T are
pairwise compatible.

This split representation is the corner stone of the construction of tree spaces and com-
putation of geodesics between the trees that we detail in Section 4.2. From the tree point of
view, two splits L1|LC

1 and L2|LC
2 are compatible if and only if there exists a tree containing

the edges associated to them.

Definition 21 (Common Edges). Let T = (V , b) and T ′ = (V ′, b′) be two trees and L =

{0, . . . , N} be the set of their leaves. Two edges bi ∈ b and b′j ∈ b′ are called common edges
if they are associated with the same partitions of the leaves in T and T ′.

There exists a characterization of the topologies through the description of the splits,
provided in [Bun71]:

Theorem 9 (Splits Equivalence). Let L = {0, 1, .., N} be a set of leaves. Any set of pair-
wise compatible splits S which contains the splits {0}|{0)C , . . . , {N}|{N}C determines an
unweighted (leaf-labeled) tree T = (V , b) on L such that S is the set of splits associated with
all the edges in T .

In particular the tree determined by the minimal set of pairwise compatible splits

{(0)|(0)C , . . . , (N)|(N)C}

has a single node of degree N+1 and N+1 degree-1 nodes. Adding new pairwise compatible
split to this initial set consists in adding a node of degree strictly greater than 2.
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(a) (b)

(c) (d)

Figure 4.1: Examples of splits for the set of leaves L = {0, 1, 2, 3}.
(a)-(b): The two splits {1}|{0, 2, 3} and {0, 1, 2}|{3} are compatible with all the other splits (the
same goes for {0, 1, 3}|{2}).
(c)-(d): The two splits {1, 2}|{0, 3} and {0, 1}|{2, 3} are not compatible.

Remark 5. Theorem. 9 provides an alternative definition of the tree topology that does not
use the inner nodes of degree 3 or more.

We are now able to build a tree with a set of leaves and associated pairwise compatible
splits containing the minimal set. On the contrary, given a leaf-labeled tree T we can deduce
the set of all pairwise compatible splits associated to all the edges in T . In particular, we can
remark that this new characterization of the topology allows to introduce permutations of the
rows and columns of the connectivity matrix Σ in T = (V ,Σ) as long as the unordered set
of all pairwise compatible splits associated with T remains unchanged.

Remark 6. In the rest of the manuscript, we will denote by E ⊂ b the set of inner edges
associated with the tree T = (V , b).

We illustrate in Figure 4.1 two trees represented both spatially and with the splits of the
leaves.
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4.1.2 Definition of a Tree-Like Shape

We seek to construct trees for which the edges have additional information beyond the nodes
they connect. In the case of trees with edges that are curves in Rd, this could be any rep-
resentation of these curves. We define an edge representation that is fundamental in the
construction of a space of tree-like shapes:

Definition 22 (Edge attributes). Let T = (V , b) be a tree. Let E be a euclidean space
encoding different features associated to the edges in T . We define the edge attributes as a
vector e = (ek) ∈ Eb associated to the edges b = {bk} in the tree space.

Each edge attribute ek is then encoding the features of its corresponding edge bk: the
length, sampling points, edge parametrization... A tree-like shape is then a tree with edge
attributes:

Definition 23 (Tree-Like Shape). A tree-like shape T is a leaf-labeled tree with edge at-
tributes written as the triplet (V , b, e).

An example of tree-like shape with edge attributes in R2×3 and R3×50 is provided in
Figure 4.2 We now have the definition of one tree-like shape, and we want to get to the
description of the whole space containing such objects. Before getting to this construction
we give one more definition on the norm of a set of edges (that we associate with the edge
attributes) for a tree-like shape:

Definition 24 (Norm of a Set of Edges). Let T = (V , b, e) be a tree-like shape with e = (ek)

the edge attributes defined in Definition 22. Given a set of edges A in b = {bk}, we define
the norm of A:

|A| =
√∑

bk∈A

|ek|2.

This norm associated with a subset of the edges will be used throughout the chapter,
to compare tree-like shapes and calculate distances in the space of tree-like shapes as de-
scribed in Section 4.2. The coordinates of a tree in a tree space should provide both the
edge attributes and the connectivity information. When observing the trees sharing the same
topology, their position in the treespace then only depends on the edge attributes:

Definition 25 (Orthant). An orthant1 OΣ is the euclidean space EM−1 in which live the edge
attributes e = (ek) of a tree T = (V , b, e) for a fixed topology.

In Figure 4.2 are illustrated two different tree-like shapes sharing the same topology but
with different edge attributes. The use of a simple attribute such as the length allows an
infinity of spatial solutions and we prefer the segment representation for illustration purpose.

1We use the designation of orthant although in reality it corresponds to the generalization to n dimensions
of the quadrant. This allows us to remain consistent with the notation of phylogenetic tree spaces which use
length as an edge attribute, and thus work in actual orthants.
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Remark 7. In the case of fully resolved trees on N + 1 leaves, the orthant OΣ is E2N−1.

The borders of one orthant correspond to collapsed edges which, when the edge attributes
live in Rmd, is a sequence of m-times the same point at the origin the associated euclidean
space. In the connectivity matrix it corresponds to introducing nodes of order greater than
3 (collapsing one edge generates a trifurcation for instance). As a convention the vector of
points of one edge is translated so that the position of the first point of the edge and the last
one in the parent’s curve coincide if the parent exists. Like authors in [FN20], we simply add
a point fixed at the origin.

We are dealing with stratified spaces2. In the case of space of tree-like shapes, the or-
thants faces are glued together with the orthants sharing edges that induce the same splits of
leaves. Each edge attribute is then relative to the one of its parent edge. If the edge attributes
are points, the first point of the child’s attribute coincides with the last one of the parent’s.
We also allow an edge attribute to collapse by moving all its coordinates to 0.

(a) (b)

Figure 4.2: Examples of tree-like shapes with edge attributes as vectors of E = R3×50 (a) and one
representation with edge attributes as vectors of E = R3×2 (b).

4.1.3 The Space of Tree-like Shapes

Definition 26 (Space of Tree-like Shapes). The space of tree-like shapes TN on the finite and
fixed set of leaves L = (0, ..., N−1) is the space of leaf-labeled tree-like shapes T = (V , b, e)
on L.

Note that using the split equivalence theorem, the degree 3 nodes in T ∈ TN do not need
to be identified, since they can be constructed using the set of pairwise compatible splits
defining the tree. When the orthants are (R+)M−1, we retrieve the space of phylogenetic
trees described in [BHV01] and used in a number of works on tree spaces.

2topological space decomposed into manifolds required to fit together in a certain way
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Remark 8. We identify the trees in TN up to permutations of the degree 3 nodes and their
associated rows and columns in the connectivity matrix Σ.

The structure of the space of Tree-like Shapes TN consists in gluing together the orthants
associated to each fully resolved topology(called maximum orthants) and forming a con-
nected space. We build TN upon the set of N leaves, and set the root at the leaf 0. Such a
space is composed of euclidean spaces associated to each possible topology, which can be
counted as the number of unique subsets (up to permutations) in the leaves (1, ..., N − 1),
hence 2N−2−1 possible splits and (2N −5)!! = (2N −5)× (2N −7)× ...× (1) topologies.

Figure 4.3: Moving across orthants: the tree moves toward the face of the orthant (here all the
inner branches are shrunk) and the new inner branch associated to the second split grows. In order
to go from T0 to T1, the branch [ν5, ν6] must shrink in the topology 1, associated to the leaves split
(1, 4); (2, 3) and grow to produce the split (1, 2); (3, 4). For illustration purpose, the edge attribute
associated to a branch in this figure is its length.

The orthants are arranged as follows: when the edge attributes of one edge ek ∈ E is 0E
the nodes this edge, then they are reduced to one node. It can be extended to any number
of inner edges, the ones connecting degree 3 or more nodes. The resulting unresolved trees
are then located at the intersection between three or more orthants associated with different
fully resolved topologies. When shrinking a single edge of a resolved topology Σ one moves
toward the codimension-1 faces of OΣ (see Figure 4.3). This results in a degree 4 node
that can be resolved in 3 different ways, providing topologies Σ,Σ′ and Σ′′ hence two new
orthants OΣ′ and OΣ′′ . The intersection of all the orthants of TN , called the star tree, is then
the tree with all its internal edges collapsed: it is the leaf-labeled tree on the set of leaves
with the minimal set of splits described in Theorem. 9.
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Geodesics Metric Spaces

Suppose X is a space in which we want to develop a statistical methodology and d a metric on
X. To design relevant summary statistics, we consider the paths in X and their corresponding
lengths.

Definition 27 (Geodesics). A geodesic in a metric space [BH99] (X,d) is defined as a path
Γ : [0, 1]→ X such that for any t, t′ ∈ [0, 1] we have d(Γ(t),Γ(t′)) = |t− t′|d(Γ(0),Γ(1)).
The image of a geodesic Γ is called a geodesic segment in X.

In the space of tree-like shapes, this path (described in details in Section 4.2.1) is an
interpolation between the edge attributes of starting and arriving points corresponding to the
same splits. The rest of the edges in the starting point must collapse to let edges associated
to new splits grow.

Definition 28 (Geodesic Metric Space). (X,d) is called a geodesic metric space if there
exists at least one geodesic path between every two points in X. If in addition this path is
unique, it is called uniquely geodesic.

If the geodesic between two points x, y ∈ X exists, we note Γ(x, y) : [0, 1] → X this
geodesic.

Definition 29 (Path length). If c : [0, 1]→ X is a path in X then the length of c is

l(c) = sup
t0≤t1≤...≤tn

n−1∑
i=0

d(c(ti), c(ti+1))

where the supremum is taken over all possible n and partitions of the interval [0,1]. The
length of c is taken to be infinite when this expression is unbounded.

With the triangle inequality we have l(c) ≥ d(c(t1), c(t2)), t1, t2 ∈ [0, 1] for any path c.
It follows from the geodesic definition Γ on X that l(Γ) = d(Γ(0),Γ(1)). The geodesic seg-
ment between two points is then equivalent to the shortest path between them. The geodesic
length then provides an induced intrinsic metric on the geodesic metric spaces.

Theorem 10 (Generalized Hopf-Rinow [HR31]). If a length-metric space (M,d) of finite
dimension is complete and locally compact then any two points in M can be connected by a
minimizing geodesic, and any bounded closed set in M is compact.

We thus have a characterization of geodesic metric spaces, and of the metric induced by
the length of the geodesic between two points. The Hopf-Rinow theorem also gives us that
geodesic completeness is equivalent to metric completeness. We now want to make sure that
the space TN constructed so far is a unique geodesic metric space.
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Curvature of the Space of Tree-like Shapes

To derive tools in the constructed stratified space TN , in particular the geodesic existence and
uniqueness between two distinct points, we rely on its CAT(0) structure. It is characterized
with the triangles in TN and their comparison triangles in the euclidean space of same di-
mension. Take a geodesic triangle (x, y, z) in TN , three points in TN forming the nodes of a
triangle whose faces are the geodesic segments connecting x, y and z. A comparison triangle
(x′, y′, z′) is a triangle in the euclidean space preserving the edges length: d(x, y) = d(x′, y′)
and so on.

Definition 30 (Comparison Pair). Let X be a geodesic metric space, (x, y, z) be a geodesic
triangle in X, R2 an euclidean space of same dimension as X and (x′, y′, z′) a comparison
triangle inR2. A comparison pair (a, a′) is a pair of points a ∈ X, a on (x, y, z), for example
a ∈ Γ(x, y) and a′ ∈ Γ(x′, y′) such that d(x, a) = d(x′, a′).

Definition 31. A CAT (κ) space is a metric space in whose curvature is bounded above by
κ.

In order to verify the CAT(0) structure, a geodesic metric space must verify that its trian-
gles are "at least as thin" (see Figure 4.4) than their comparison ones:

Definition 32 (CAT(0) Space). A geodesic triangle (a, b, c) satisfies the CAT(0) inequality
if, for any comparison triangle, d(x, c) ≤ d(x′, c′) for all comparison pairs (x,x’) with x ∈
Γ(a, b), x′ ∈ Γ(a′, b′), and so on for all comparison pairs on the other two edges. The
geodesic metric space X is a CAT(0) space if every geodesic triangle satisfies the CAT(0)
inequality.

Figure 4.4: euclidean triangle (left) versus CAT(0) triangle (right).

Conversely, any CAT(0) space is a unique geodesic metric space. TN is of finite di-
mension, locally compact since the maximal orthants are glued together according to the
unresolved tree they represent at their boundaries: TN is a geodesic metric space. It is also
shown in [FN20], and following the proof of [BHV01], that TN is CAT(0) hence a unique
geodesic metric space.

The proof relies on the extension of the one provided in [BHV01] for the BHVN tree
space. The idea is to consider a space of tree-like shapes with an upper bound on the edge
attributes norm, which makes the space compact. It can the be seen as a gluing of unit hyper-
cubes of adequate finite dimension, and remark that each cube is connected to a finite number
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of other cubes: it is locally compact hence a geodesic metric space using Hopf-Rinow theo-
rem. The space is then a cubical complex, and Gromov’s theorem tells us that such spaces
are CAT (0) if and only if the link of their vertices (forming a simplicial complex) is flag
complex. In other word, if the 1-skeleton of one of the simplex belongs to the simplicial
complex, the associated simplex should also belong to the complex. In our case it is true
since the boundaries of the orthants are connected by faces determining valid tree topolo-
gies – yet unresolved –, seen as the set of all pairwise compatible splits with non collapsed
associated edge attributes.

We illustrate in Figure 4.5 an example of cubical complex that does not satisfy the CAT(0)
condition: the bottom-right simplex associated with the link of the vertices does not belong
to the cubical complex.

Figure 4.5: Example of a cubical complex that is not CAT(0).

All in all, we know that given two points in TN there is a unique geodesic segment
between them whose length is the induced metric on TN .

Building a Space of Admissible Topologies

As discussed, provided a set of leaves {0, 1, ..., N} with 0 the root, there are up to (2N−5)!!
possible topologies, which is intractable in practice. Considering a registration application,
unlike [Fer+12b], we set a space of admissible topologies and we set the number of leaves
in the space where the template lives. In the application to anatomical trees we can mitigate
this by considering admissible topologies such as the extrinsic methods in the literature (4):
such topologies can be defined a priori knowing the anatomy or derived from a database. In
the last case it is possible to list all the unique topologies and store all the corresponding Σ.
When computing the geodesic between the trees, one could cross new orthants that are not
represented in the database. Such orthants being used in the construction of the template,
they can be added to the space of admissible topologies. This reduces the sparsity of the
constructed space while preserving its limited size. This procedure corresponds to the con-
struction of an Atlas, i.e. the construction of a set of orthants in which the new trees can
be built. The Template is then the choice of one position within this Atlas. It is important
to note that the construction of the tree-space is done once, and the test of all the existing
topologies would also be done offline.

Example: simplified vascular trees We show in Figure 4.6 an example of admissible
topologies for a set of 49 trees with a root and 6 leaves. This example illustrates the al-
ready high variability in terms of topologies despite the few leaves in the trees. However,
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some subtrees are common to all the individuals and allow us to discard numerous unlikely
topologies. We can also notice the proximity in the treespace of all these trees: many of them

Figure 4.6: Example of unique topologies for vascular trees database of 50 trees and leaves
{0, 1, ..., 6}. The edge attributes in this figure are the vectors of endpoints in R3.

find their bifurcations – nodes of degree 3 – close one to another, meaning that all these trees
are close to a common boundary.

4.2 Computing Geodesics in the Space of Tree-like Shapes

So far, we described the space of tree-like shapes and provided some properties of its struc-
ture. We now discuss how to move in such a space along its geodesics segments. In a first
part we characterize the geodesics in TN , then we discuss the algorithm of [OP11] for com-
puting them, and finally we provide a python implementation of the geodesic space adapted
to tree-like shapes (Definition 23).

There exists many topological distances between trees along with algorithms to compute
them. The most basic topological change distance for a tree is the Nearest Neighbor Inter-
change (NNI) distance proposed in [Rob71] and describing one change of maximal orthant in
the space of tree-like shapes. Later the Robinson-Foulds (RF), or partition distance [RF81],
proposed to count the number of splits in T1 and not in T2 and the number of splits in T2

that are not in T1. Its weighted adaptation the Weighted Robinson-Foulds (WRF) sums the
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lengths of the edges associated to these splits, which corresponds to the geodesic (not unique
anymore) distance in in a space like BHV with an L1 metric on the orthants. More recently
two approaches (Subtree-Prune-And-Regraft distance [Hei90] and Tree Bisection and Re-
connection distance [AS01]) considered the topological changes between leaf-labeled trees
despite the shape (in most of the cases, the length) of the branches.

We chose to focus on the geodesic distance and the computation of the geodesic path,
adapted to both topological and spatial changes in the trees. In short, the approach of [OP11]
for computing the geodesic distance and path in polynomial time is to start from a simple
path going through the star tree, and transforming it into shorter paths successively until the
geodesic is obtained. They only consider then orthants intersected by the geodesic to limit
the number of iterations creating a polynomial time algorithm identifying at each step the
new orthant through which the updated path will go.

4.2.1 Characterization of the Geodesics

Before going into the details of the method, we must make several remarks. First, we rely
on the algorithm proposed by [OP11], but which was initially applied on edge attributes in
R+. Similarly to [Fer+14], we adapt this algorithm to the case of a spatial representation
with edge attributes as vectors of euclidean spaces. The properties for the characterization
of the geodesic, however, only depend on the edges norm. In the following, the norm of the
edge attributes thus depends on the space in which they live. Second, the initial algorithm
works on trees having no common edges. In practice, the method can also be applied to more
generic trees by applying the algorithm to each pair of subtrees sharing the same leaves but
having no common edges.

Definition 33. A path Γ is a local geodesic path if there exists some ϵ > 0 so that every
subpath of Γ of length inferior or equal to ϵ is the shortest path between its endpoints.

Lemma 1. In a CAT(0) space (Definition 32), every local geodesic is a geodesic.

This results yields that in a CAT(0) space, the local condition is sufficient to determine
the geodesic. (Proved in more generality in [BH99], Chapter II.1, Proposition 1.4.) The
following proof illustrates the philosophy of the algorithm used to compute the geodesics.

The principle of the geodesic construction is then to start with a given path, locally test
whether it is a geodesic and if it isn’t, build a shorter one. The path space described in
[BHV01] is a sequence of orthants containing the geodesic between two trees T = (V , b, e)
and T ′ = (V ′, b′, e′) with the sets of inner edges E and E ′ respectively, and satisfying certain
properties. These properties are given in [OP11] and we recall them here.

Assuming first that T and T ′ are disjoint, that is, they have no common edges. Two edges
sets A ⊂ E and B ⊂ E ′ are compatible if every pair of splits associated with A for T and B
for T ′ are compatible.

Proposition 18. Let T = (V , b, e) and T ′ = (V ′, b′, e′) be two disjoint trees on the set of
leaves L with their associated sets of inner edges E and E ′ respectively. LetA = (A1, ..., Ak)

127



CHAPTER 4

and B = (B1, ..., Bk) be partitions of E and E ′ such that (A,B) satisfies the following
property: for each i > j, Ai and Bj are compatible.

Then for all 1 ≤ i ≤ k, B1 ∪ ... ∪ Bi ∪ Ai+1 ∪ ... ∪ Ak is a compatible set and hence
Oi = O(B1 ∪ ...∪Bi ∪Ai+1 ∪ ...∪Ak) is an orthant in tree space associated with the edge
attributes of B1 ∪ ... ∪Bi ∪ Ai+1 ∪ ... ∪ Ak.

The union ∪
i=1..k
Oi is a connected path called "path space", and (A,B) its support. The

shortest path between T and T ′ through this path space is called the "path space geodesic"
for ∪

i=1..k
Oi.

Intuitively, with this proposition, one constructs a succession of connected orthants from
combinations of the inner branches of T and T’ that are compatible. For each i, we traverse a
new orthant: some branches of T have disappeared to make room for branches of T ′ encoding
a new connectivity. It is quite clear that the geodesic between two trees T and T ′ will cross
orthants, and thus be the path space geodesic for a certain path space.

That is given in [BHV01], Proposition 4.1: the geodesic between disjoint trees on n
leaves is a path space geodesic for some path space between T and T ′. In the following,
we provide the properties characterizing the path space between T and T ′ that contains the
geodesic Γ(T, T ′).

Theorem 11 ([OP11] Theorem 2.3). Let T = (V , b, e) and T ′ = (V ′, b′, e′) be two tree-like
shapes on the set of leaves L and E and E ′ be their associated sets of inner edges. Let Γ be
the geodesic in TN between T and T ′. Then Γ can be represented as a path space geodesic
with supportA = (A1, ..., Ak) of E and B = (B1, ..., Bk) of E ′ which satisfies Proposition 18
and the following property:

|A1|
|B1|

≤ |A2|
|B2|

≤ ... ≤ |Ak|
|Bk|

(4.1)

A path space satisfying Proposition 18 and Equation 4.1 is called a proper path space,
and the associated path space geodesic is called a proper path.

A proper path describes the sequence of inner edges that shrink until they completely
collapsed, and by which growing inner edges they are replaced. In other words, it describes in
which order the boundaries between the orthants are crossed. A proper path can be described
as follow:

Theorem 12 (Adapted from [OP11], Theorem 2.4). Let Γ = (γ(t) : 0 ≤ t ≤ 1) be a proper
path between T and T ′ two disjoint trees on the set of leaves L with support (A,B). Then Γ

can be represented in TN with segments:
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Γi =



[
γ(t) :

t

1− t
≤ |A1|
|B1|

]
, i = 0,[

γ(t) :
|Ai|
|Bi|
≤ t

1− t
≤ |Ai+1|
|Bi+1|

]
, i = 1, ..., k − 1,[

γ(t) :
t

1− t
≥ |Ak|
|Bk|

]
, i = k

where the points on each leg Γi are associated with the tree Ti = (V i, bi, ei) on L having
inner edges set E i = B1 ∪ ... ∪Bi ∪ Ai+1 ∪ ... ∪ Ak,

eil =


(1− t) |Aj| − t |Bj|

|Aj|
el, bl ∈ Aj,

t |Bj| − (1− t) |Aj|
|Bj|

e′l, b
′
l ∈ Bj

and splits

Si
e =

{
Le|LC

e , e ∈ Aj

L′
e|L′C

e , e ∈ Bj

and the length of Γ is l(Γ) = |(|A1|+ |B1| , ..., |Ak|+ |Bk|)|.

Even if a geodesic must describe a proper path, the theorem 11 does not fully characterize
a geodesic path space, take for instance the cone path space between T and T ′, with support
(A,B) = (E , E ′) even if the trees belongs to contiguous orthants. To obtain proper geodesic
path space, one needs to add intermediate orthants by making sure that the new generated
path space will lead to shorter proper path between the trees. In practice this corresponds to
splitting the current supports of edges for T and T ′ in order to combine part of them to create
a new orthant with some pairs (Ai, Bi), Ai ∈ A and Bi ∈ B.

Remark 9. When moving from T to T ′, adding the splits (Ai, Bi) to the support of the path
space corresponds to collapsing the edges of Ai in T when moving toward this new orthant,
and growing edges in Bi associated to T ′ once in the new orthant. This operation may not
lead to a shorter path in every case, and one needs to verify that the new path is indeed
shorter.

To build actual proper paths as geodesic, we need a supplementary condition:

Theorem 13 (Geodesic, [OP11] Theorem 2.5). A proper path Γ between T and T ′ with
support (A,B) satisfying Proposition 18 and Theorem 11 is a geodesic if and only if for
every support pair (Ai, Bi) there is no nontrivial partition C1 ∪C2 = Ai and D1 ∪D2 = Bi

such that C2 is compatible with D1 and
|C1|
|D1|

<
|C2|
|D2|
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We do not detail the proof here, in brief it consists in supposing that the last property
does not hold, and showing that there exist a shorter path so Γ cannot be a geodesic. On the
contrary, assuming that Γ is not a geodesic, there must exists a new orthant which provides
a shortcut and one can show that if so, the property Theorem 13 does not hold.

This last theorem gives us a way to select new orthants in order to refine the proper path
space and its associated proper path, making sure that the newly selected path space will
provide a "shortcut" and thus a shorter path closer to the geodesic between two trees.

We know how to build an iterative algorithm that starts from a certain path verifying the
properties of a proper path that we will refine during the iterations by finding new orthants to
cross. To do this, we just need to select subsets of the inner branches to be removed/pushed
that will verify the Theorem 13.

4.2.2 Geodesic Algorithm in a Space of Tree-Like Shapes

When the trees T and T ′ have no common edges (edges encoding the same splits in both
trees), the construction of the geodesic consists in finding splits of the pairs of the path
support verifying Theorem 13. It can be formulated as finding a partition for some pair of
set of edges (Ai

j, B
i
j) verifying the conditions 13, which can be formulated as a problem over

bipartite graphs.

Definition 34 (Incompatibility Graph). Given two sets of inner edge attributes A ⊂ E and
B ⊂ E ′ associated to trees T and T ′ and their sets of leaves L, the incompatibility graph
G(A,B) is the bipartite graph whose vertices correspond to A ∪ B and whose edges cor-
respond to the pairs (a, b) ∈ A × B such that La|LC

a and Lb|LC
b are incompatible. An

independent set in G(A,B) is a set of vertices having no edges of G(A,B) between them.

Lemma 2. Two edges sets A ⊆ E and B ⊆ E ′ are compatible if and only if they form an
independent set in G(E , E ′).

The search for shortcuts in the space of tree-like shapes can be formulated as follow:

Definition 35 (Extension Problem). Let A ⊂ E and B ⊂ E ′ be two sets of inner edges of
two trees T and T ′. The extension problem consists in looking for a partition of the support
verifying the Proposition 13: C1 ∪ C2 = A and D1 ∪ D2 = B such that C2 is compatible

with D1 (i.e. C2 ∪D1 is an independent set in G(A,B)) and
|C1|
|D1|

≤ |C2|
|D2|

.

It follows that if this extension problem (Definition 35) has no solution for any (Ai, Bi),
then the current path Γ(T, T ′) is the geodesic. In other words there is no more shortcut to
the current proper path currently defined. It can be shown that solving this problem boils
down to finding a vertex cover (C1, D2) for G(A,B), meaning that every edge of G(A,B)
is incident to a vertex of C1 or D2, and the minimum weight vertex cover for G(A,B) has
normalized weight |C1|2 + |D2|2 < 1. Such a problem can be formulated as Min Cardinality
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Vertex Cover problem using weights as capacities on the source and sink arcs [AMO93]
(Section 7.7).

The problem of finding the geodesic path between the trees can be summarized as follow:

1. Start with the cone path that is proper path Γ0 between T and T ′ with support (A0,B0).

2. A each step s, the proper path Γs with support (As,Bs) satisfying Prop. 18 and Prop. 4.1
is available. We check whether it satisfies the conditions 13 by solving the extension
problem 35 and if not, create a new proper path Γs+1 with support (As+1,Bs+1) shorter
that Γs.

3. Continue until the geodesic is found.

Theorem 14 ([OP11], Theorem 3.5). The algorithm solves the problem of finding the geodesic
between two trees can be done in O(N4) time.

Remark 10. Note that the geodesic construction described so far assumes that the two trees
have no common edges. In practice, two trees have such common edges (in particular, the
ones connecting the leaves) taken into account in the geodesic length. The method consists
then in splitting the trees at the level of the common edges, solve the geodesic construction
between the pairs of subtrees on the same sets of leaves. By denoting the pairs of subtrees
with no compatible edges (Tl, T

′
l )l=1,..n, the supports of the paths between them are (Al,Bl)l

with Al = (Al
1, ..., A

l
kl
) and Bl = (Bl

1, ..., B
l
kl
) and the vectors of common edges between T

and T ′ are written bTcommon and bT
′

common. The total geodesic length then becomes:

l(Γ) = |(
∣∣A1

1

∣∣+ ∣∣B1
1

∣∣ , ..., ∣∣A1
k1

∣∣+ ∣∣B1
k1

∣∣ , ...,
|An

1 |+ |Bn
1 | , ...,

∣∣An
kn

∣∣+ ∣∣Bn
kn

∣∣ , ∣∣∣bTcommon − bT
′

common

∣∣∣)|
When adapting Theorem 12 to the space of tree like shapes with edge attributes in Rp×d,

we thus have the following proper path description:

• At time t ∈ [0, 1], the edge attributes ei belonging to any Al
i in T are linearly interpo-

lated between their initial position at time t = 0 and the collapsed vector of p-times a

single point at time tli =

∣∣Al
i

∣∣∣∣Al
i

∣∣+ ∣∣Bl
i

∣∣ . It remains collapsed for t ≥ tli

• Similarly, the edges ej associated to ej belonging to any Bl
j in T ′ are linearly interpo-

lated between the collapsed vector of p-times a single point at time tlj =

∣∣Al
j

∣∣∣∣Al
j

∣∣+ ∣∣Bl
j

∣∣
and the edge ej at time t = 1. Otherwise it is collapsed for t ≤ tlj .
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• The common edges along the proper path are given by ecommon = (1 − t).eTcommon +

t.eT
′

common.

Remark 11. The complexity of the algorithm regarding the number of leaves seems unsus-
tainable in practice, yet the arteries in vascular trees correspond to whole subtrees: the
subtrees can be simplified in the space of tree-like shapes to reduce their complexity while
preserving the hierarchical changes. One can either consider one subtree as one leaf for
the template in the space of tree-like shapes (the subtree is a varifold with a fixed number
of points and tangent vectors) or select one representative path in the subtree that will be
used as the leaf. The pelvic vasculature for instance is composed of at most 17 labels, so in
worst case scenario about 30 subtree-leaves, several ones sharing the same labels, when the
unlabeled complete tree is composed of about 300 leaves.

4.3 Implementation

We propose a Python implementation available on github3 of the described trees along with
the geodesic construction adapted from [OP11] to apply to tree-like shapes.

To the best of our knowledge, there was no python implementation providing the basics
of tree-like shapes operations. If python libraries 4, 5 were recently published, they focus on
phylogenetic trees. The other libraries are written in R, Matlab or Java and also focus on phy-
logenetic trees. The proposed library provides tools for tree-like shapes manipulations with
different edge attributes, and allows for computing geodesic path, distance, and interpolation
between trees with the same set of leaves. It is also compatible with Newick format trees en-
coding trees with one attribute (as the norm of the edge attribute most of the time) per edge.
We also implemented statistical tools for such tree-like shapes, that we detail in Section 4.3.2.
Most of the statistics rely on the geodesic distance of one tree to another point or to paths in
this space. We illustrate in Figure 4.8 the output of the distance of a tree T3 to the geodesic
between trees T1 and T2 of Figure 4.7. As the function t ∈ [0, 1] → d(Γ(T1, T2)(t), T3) is
convex, we perform a golden ratio search to find its minimum.

4.3.1 Estimation of the Fréchet Mean

A first statistic we implemented is the estimation of the Fréchet mean of a set of trees in the
constructed space. There are numerous works looking at the Fréchet mean of set of points in
such stratified spaces as the tree spaces [Fer+12b; Bač14; Nye+17; Gar+21] and in particular
illustrating the limits of using certain metrics as the Tree Edit Distance. In this work we use
the Sturm Mean with the Quotient euclidean Distance [Fer+12b] in order to better capture
the shapes in the case of attribute spaces in Rd×n. This Fréchet mean estimation captures the
average geometry of the trees along with the average topology in the Tree Space. In practice

3https://github.com/plantonsanti/DiffeoAndTopo.git
4https://github.com/pbeerli/pathtrees_project
5https://github.com/kgori
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(a) t=0 (b) t=1

(c) t=0.25 (d) t=0.5 (e) t=0.75

Figure 4.7: Illustration of a geodesic between two tree-like shapes T1 and T2. There are two hier-
archical changes, meaning that three orthants are crossed along this geodesic. In this example, we
use a fixed number of discretization points per centerline curve as edge attribute: e = (ei)i, with
ei ∈ R50×3.

this often leads to a position close to a boundary between all the orthants meaning that the
edges corresponding to splits that are not shared by the different topologies will be close
to or at the 0 of their attribute space. It is illustrated in the Figure 4.6 in which the central
tree is the output of the Sturm algorithm. In this example with segment edges, the average
position in the space of tree-like shapes composed of 9 orthants corresponds to a shrinkage
of the uncommon splits between the trees of the database, the inner edges. This mean will
be used in the next section dedicated to the registration of a template tree onto a target. In
Figure 4.9 we show the output of the Sturm algorithm after 200 iterations for the database of
50 vascular trees used in Chapter 2. We see that in addition to the average topology, we also
capture the average position using edge attributes of 50 points in R3.

4.3.2 Principal Geodesic analysis in the Space of Tree-Like Shapes

Similarly to the principal geodesic analysis in the case of data lying on a manifold, one
can search for a geodesic in the space of tree-like shapes that will best explain a set of
observations in the space of tree-like shapes. This statistic of order 1 was computed in
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Figure 4.8: The space of tree-like shapes with the geodesic distance metric is CAT(0): the triangles
are "skinnier" than in a classic euclidean space. First row: the distance of a reference tree T3 to the
points along the geodesic between two other distinct trees Γ(T1, T2)(t), t ∈ [0, 1]. The red dot marks
the position of the closest point of Γ(T1, T2) to T3. Second row: the number of orthants crossed by
Γ(T1, T2) after a time t.

Figure 4.9: The Sturm mean estimate of the Fréchet mean of a set of 50 vascular trees after 200
iterations of the algorithm.

[Nye11] by firing geodesics from a selected mean in the dataset, and a greedy search in all
the directions. The geodesic minimizing the sum of the geodesic distances of the trees to
the geodesic was selected. As shown recently in [FN20], the principal geodesic in stratified
spaces may not go through the mean of the dataset.

In [Fer+13] the method consists in searching the best geodesic minimizing the score used
in [Nye11] among the geodesics connecting the pairs of points in the dataset. The output of
this method on a database is illustrated in Figure 4.10: the estimated principal geodesic
sampled at 5 time steps. However, in [Zha16], the authors show that in some cases it will fit
poorly in comparison to unconstrained geodesics.
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Algorithm 3 Sturm’s Algorithm ([Stu03])
Input: (T1, T2, ..., TK) K trees.
Output: An estimate of the Fréchet mean µ of the set of input trees.

Compute the geodesic Γ(Ta, Tb) between two trees Ta and Tb selected at random.

µ0 ← Γ(Ta, Tb)(
1

2
)

i← 1

repeat
Select a tree Ti at random
Compute Γ(µi−1, Ti)

µi ← Γ(µi−1, Ti)(
1

i+ 2
)

until Convergence or maximum iterations reached

In [Nye14] such constraints are dropped by employing a stochastic search algorithm to
vary the endpoints of the geodesic in the space of phylogenetic trees. The resulting segment
best fits the data with respect to a given criterion. This method however may be intractable
in a space of tree-like shapes with a large number of leaves and several points per edge
attributes.

Proposition 19. Given a point x ∈ TN and a geodesic segment Γ(T1, T2) between two other
points of TN , there is a unique closest point on Γ(T1, T2) to x with respect to the geodesic
distance metric, called the projection of x on Γ and denoted PΓ(x).

Proof. The function fx : y ∈ Γ(T1, T2)→ d(x, y) is continuous and bounded on a compact,
so the minimum exists and is achieved. Suppose now that fx reaches its minimum at two
distinct points y1 and y2 on Γ(T1, T2). If so, take any y ∈ Γ(y1, y2) and its comparison
pair in the comparison triangle (x′, y′1, y

′
2). This comparison triangle is isosceles, so for any

point y′ in Γ(y′1, y
′
2), d(x

′, y′) < d(x′, y′1). From the CAT(0) structure of the space ("skinnier
triangles") we have that d(x, y) ≤ d(x′, y′) < d(x′, y′1) = d(x, y1). Furthermore, since any
geodesic is locally geodesic x′ ∈ Γ(T1, T2), and so the minimum is not reached on y1 and y2,
which contradicts the hypothesis: the minimum is unique.

Note that sometimes the projection of x on Γ is one of the endpoints. We define a function
fΓ
par measuring the variance of the projections of a set of points onto the geodesic segment
Γ:

fΓ
par((ei)i) =

∑
i

d(Γ(0.5), PΓ(ei))
2

We also define a function fΓ
ort measuring the variance of the projections of a set of points

onto the geodesic segment Γ:

fΓ
ort((ei)i) =

∑
i

d(ei, PΓ(ei))
2
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(a) t=0 (b) t=1

(c) t=0.25 (d) t=0.5 (e) t=0.75

Figure 4.10: Principal geodesic segment for a database of 50 simplified pelvic vascular trees com-
posed of 10 leaves. The starting and end points have no leaves split in common, and the geodesic
passes close to the star tree.

From [Nye11] we have the following proposition:

Proposition 20. Given a set of points in TN , there is a geodesic segment minimizing the
function fΓ

ort and another one maximizing the function fΓ
par.

4.4 A Registration Problem for Deforming Tree-like Shapes

The principal problem of the described geodesic construction in Section 4.2.1 is the need to
know the leaves labels, otherwise the structure (V , b, e) does not describe a point in the space
of tree-like shapes. Methods are derived for unlabeled trees, to find the leaves mapping of
two unlabeled trees minimizing the associated geodesic distance between them. When one
of the tree is annotated, this leads to automatic annotation [Fer+12a]. When dealing with a
set of unlabeled trees it provides relative positions in one tree space.

We would like to be able to compare the template, seen as a point in the space of tree-like
shapes, to a target vascular tree that may not be labeled. To that end we build an appropriate
space of tree-like shapes, in order to be able to compare the template tree-like shape to the
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vascular trees with a given data attachment term such as the distance in the space of varifolds.

4.4.1 A Link between Tree-like Shapes and Vascular Trees

In the previous section we defined the basic structures and fundamental tools to analyze tree-
like shapes with edge attributes encoding the shapes representation. We must now bridge
this representation with the vascular trees we are working on. We can now define our tree
shape structure based on the previous definitions:

Definition 36 (Vascular Tree). We define a vascular tree T as a rooted fully resolved tree
(V , b) with V = {0, ...,M − 1} together with spatial coordinates x with x = (xk)k=0,..M−2,

and xk ∈ Rd×nk associated with the edges set b = {bk}k=0,..M−2. We write T = (V , b, x).

In Definition 36, each xk is the spatial representation of the edge bk as a set of sampling
points. This definition of the trees is slightly different from the one introduced in Chapter 1
since we now have the topological information encoded by the connectivity matrix and the
leaves.

Remark 12. To go back and forth between the edge attributes space and the ambient one,
in some cases we assume that there exists a function fk : Rd×nk → E the projection of the
spatial coordinates of the branches of a vascular tree onto the edge attributes space. If such
an operation is possible, we denote e = F(x) = (fk(xk))k. We also assume that there exists
in some cases a function gk : E → Rdnk the function converting the edge attribute to spatial
coordinates. Similarly, if such an operation is possible, we write x = G(e) = (gk(ek))k.

From Tree-like Shapes to Vascular Trees

One of the purpose of studying the trees through the tree space point of view is to derive
statistics that take hierarchical (thus, topological) changes into account. The statistics could
for instance be used for realistic data synthesis. Such an application requires the generated
data to be in the initial space of representation of the database. We seek therefore a way to
embed this original database into the space of tree-like shapes, but as importantly, a way to
get from this space back to the original one. In the tree space literature most of the works
are studying phylogenetic trees, which corresponds to edge attributes that are lengths of the
edges. This edge representation does not allow to retrieve a spatial representation of the trees,
since there are infinitely many ways to build a segment given one extremity and a length.

Refining the Treespace One way to easily go back and forth between a pure tree-like
shape description of our trees and their spatial representation is to simplify the curves to one
straight segment per edge of the tree. As we already mentioned, we are in a stratified space,
and the origin of each edge attributes’ space coincides with the parent’s last point. It implies
that the number of points encoding the trees is the number of edges plus one point for the
root. This representation is used, for instance, in Figure 4.2(b). It allows to reduce the size of
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the vascular tree representation while preserving, in the space of tree-like shapes, the spatial
resolution of the shapes we want to align in the ambient space.

However, if it provides a convenient way to embed the initial trees in a treespace, the
segment representation is poor regarding the geometric complexity of the vessels centerlines.
In [Fer+12a] the authors propose a first natural way to extend the tree shape representation to
tree spaces: the edge attributes are the discretization points of the centerlines, sampled with a
fixed number of points. This intuitive representation allows to embed the original tree shape
representation into a large tree space that is a product of large euclidean spaces containing the
coordinates of all the points in the trees. Using all the points coordinates provides a bijection
from the original representation to the tree space that is the identity modulo a permutation of
the discretization points indices and edges connections. This representation might be adapted
to the shapes complexity, and one can modify it by varying the number of discretization
points per edge. However, to respect the curves’ variability it requires to keep a minimum
number of points that makes the total number of parameters linearly grow with the number
of edges.

Edges as Bézier Curves Intermediate representations can therefore be used with a limited
number of edge attributes while allowing to retrieve a spatial representation close to the ones
of the original curves. One convenient curve representation is using the spline encoding
and its derivatives (B-splines, Bézier curves... ) summarized for instance in [DD78]. We
focus in this thesis on Bézier curves, reducing the the edge attributes to a small number of
coordinates encoding the splines and allowing to retrieve spatial curves representation with
varying number of sampling points along the curves while reducing the size of the tree space.

Definition 37. Let P = (P0, . . . , Pm), m ∈ N∗, m ≥ 2 be m + 1 points in Rd, the Bézier
curve associated to these control points is defined with the Bernstein basis polynomials of
degree m:

BP (t) =
m∑
i=0

(
m

i

)
(1− t)m−itiPi

with
(
i
m

)
the binomial coefficients, t ∈ [0, 1] and t0 and (1 − t)0 continuously extended to 1

throughout [0, 1].

Using this model, the edge attributes: ek = (P0, . . . , Pm) ∈ Rd×(m+1) then allow to com-
pute the xk and retrieve the vascular tree representation. Contrary to the previous segment
model, the Bézier curves proposed here introduce a representation that preserves the vascular
tree curves representation while providing a edge attributes space of smaller dimension. The
number of interpolation points to spatially represent the curves in the ambient space is then
equal to the number of time steps used in the spline model, plus one.

We now have access to different edges representations which can be covered by the
Bézier curve encoding, by varying the number of control points m+ 1 from 2 to the number
n of discretization points in the curves. In particular we retrieve the segment edge attributes
by choosing m = 1. Contrary to the embedding function G of the spatial coordinates into the
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tree space, the function mapping the tree space coordinates to the spatial ones is then well
defined:

F = B : EM−1 → ΠkRd×nk , e 7→ B(e) =
(
(Bek(tu))u

)
k
,

with tu =
u

nk − 1
, u ∈ {0, . . . , nk − 1}.

We can therefore play with a trade-off between the model complexity and the regularity
of the shapes encoded by few control points. In the rest of the document we fix the number
of sampling times per curve to retrieve a spatial representation close to the one in [Fer+12a],
however one could adapt the number of sampling times accordingly to the length of the
curves for instance.

Remark 13. In general, if the points of one branch of the vascular tree xk do not belong to
a Bézier curve, we cannot have F ◦ G(xk) = xk, no matter G. In our framework however,
we are only interested in the function F that inputs edge attributes and outputs a spatial
representation of the branches (the centerlines).

In brief, a vascular tree is a tree structure T = (V , b, x) with x the spatial coordinates in
the ambient space, and a tree-like shape is a leaf-labeled tree structure T = (V , b, e) with
e the edge attributes in the tree space representation. In our framework most of the time
x = F(e), if a function allowing to go from x to e is available we will specify it.

4.4.2 Registering Vascular Trees with Hierarchical Changes

Registration by updating the edge attributes When studying the deformations between
shapes of a same population of individuals, the interpolation between the discretization
points mapped from one individual onto another is rarely a natural one. In this section,
we take advantage of the tree-like shape representation to formulate a diffeomorphic reg-
istration framework adapted to hierarchical changes. In addition, to provide more realistic
deformations of the shapes, it prevents from computing explicit leaves pairings. We write the
problem as a minimization process with a gradient of the data attachment term with respect
to the edge attributes (thus in the space of tree-like shapes).

Now that we have provided the main points of tree-spaces and LDDMM, we introduce
the proposed method for which we seek to register an atlas built in a tree-space onto a new
tree. We do not know the labels of this target tree, and we optimize both the LDDMM and
the position of the template in the tree-space, as illustrated in Figure 4.11. The cost function
we write is a composition of the classical LDDMM cost and a regularization in the space of
tree-like shape. Given a tree T = (V , b, e) and its associated tree-like shape T = (V , b,B(e))
we consider the following function:

J(p0, e,Σ) = γ

M∑
i=1

M∑
j=1

〈
pi0 , KV (B(e)i,B(e)j)pj0

〉
+ A(φ(T), Target) + γ2.Rtree(T)

(4.2)

With A the data attachment term of the LDDMM framework (see Section 2.4.2). This cost
function is designed to enforce the diffeomorphic deformation of the template tree along
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with its update within the space of tree-like shapes. We recall that Σ in the previous equation
can be retrieved with the edges set b.

Figure 4.11: The overall optimization: the template tree can be represented both in a tree-space with
its edges length, and with a spatial representation. The latter is registered with LDDMM onto a new
target that is not annotated. From the update of the position of the vertices during LDDMM, we can
deduce a new position in the corresponding orthant.

The minimization procedure is two-folded: first, a minimization within the interior of
an orthant, given a fixed topology and second, the detection of the boundaries between the
orthants and the change of topology.

Updating the Edge Attributes

We now express the update the edge attributes in the minimization process. Since we may
apply diffeomorphic deformations to the vascular trees, we denote the discretization points
x = (xk)k associated with the branches bk of the vascular tree T0 = (V , b, x), at time
t = 0 of the diffeomorphism. We will also denote by x1 = φv

1(x) the discretization points
of the tree at time t = 1 of the diffeomorphic shooting. The vascular trees registration is
the classic LDDMM one, and the supplementary step in the algorithm is the expression of
∇eA(x

1, Target) with e the edge attributes of the tree-like shape T = (V , b, e) as a function
of∇xA(x

1, Target).

Updating the Bézier Curves As discussed in Section 4.4.1, if we use the tree-like shape
representation e = x, the dimension of the problem is too high. One way to reduce the
dimensionality is to use the Bézier curves representation. In such a case the interpolation
points of the spatial representation x in the data attachment term are also used as the control
points in the LDDMM framework. We have for the edge bk the edge attributes ek = (ek,i)i

for i = 0, 1, ..,m and xk = (xk,u)u = (Bek(tu))u for tu =
u

nk − 1
for u = 0, . . . , nk− 1. We

keep the general expression nk on purpose: one could vary the number of points along the
curves in the vascular tree, for instance to have a fixed sampling step. In practice we use the
same nk = n for all the edges bk in the vascular trees. The gradient with respect to the ek,i
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becomes:
∂J

∂eik
=

nk−1∑
u=0

(
m

i

)
(1− tu)

m−i (tu)
i ∂J

∂x0
k,u

(4.3)

The vertices of the tree are then updated by the formula e = e+δ∗de, where de is a direc-
tion of descent that depends on the optimization scheme (typically de = −∇eJ for gradient
descent). This additional step is used in Algorithm 4 after computing ∇q0A(q1, Target) to
update the position in the tree space. We now have a minimization problem that allows us to
compare shapes in a suitable space, such as that of oriented varifolds, and an update that is
done in the space of tree-like shapes.

Descent Inside an Orthant

We describe a minimization step in the interior of an orthant (synthesized in Algorithm 4),
with Σ fixed. Given a tree-like shape T = (V , b, e), we compute its corresponding vascular
tree shape T = (V , b, x) with x = B(e). We can then compute the gradient of a loss function
A(x1, Target) with respect to the edge attributes e.

Algorithm 4 Optimization Step Inside an Orthant (Σ fixed)
Input: Σ, e, p0, δ (step size)
Output: e, p0 ▷ The optimized variables

Compute x = B(e)
Compute (x1, p1) ▷ Geodesic shooting of Algorithm 1
Compute∇x1J(p0, e)

Compute∇xJ(p0, e) through backward integration
Compute∇eJ(p0, e) with Equation.4.3
Compute∇p0J(p0,V ,Σ) = K(x, x).p0 +∇p0A(x

1, Target)

Update directions of descent de, dp0 from ∇eJ , ∇p0J

Perform a line search to select a step size δ for the updates p0 ← p0+δdp0 and e← e+δde.

With K(x, x) the bloc matrix of the KV (xk,u, xl,v). When moving in the interior of an
orthant, the topology Σ is fixed and∇eJ is a vector in EN−2. The minimization in the interior
of the orthants is a classic minimization in some euclidean space of features encoding the
branches of the vascular trees. We now describe how we chose to address the change of
orthant, and how to detect possible topological changes with the distance to the boundaries
with the other orthants.

4.4.3 Dealing with the Change of Orthant

If the current position is at the boundary between several orthants, the gradient of J can be
computed with respect to each contiguous orthant. The direction is then argmaxΣi

∥∇e,Σi
J∥22,

for Σi the connectivity matrices associated with the orthantsOΣi
contiguous to the boundary.

This operation is made possible by the fact that the branches that are not shared by all the
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topologies contiguous to this boundary are collapsed to a single point (the associated edge
attributes ek are set to 0E), hence not used in the shape comparison term A.

In practice, after updating the spatial coordinates, we check the distance to the other
topologies OΣ′ . The distance of the current position T = (V ,Σ, e) to a new topology OΣ′ is
given by the formula:

d(T,OΣ′) = max
i∈UnCo(Σ,Σ′)

|ei| (4.4)

with UnCo(Σ,Σ′) the set of inner edges (not connected to a leaf) in T associated with leaves
splits that do not exist in Σ′. In other words, it is the set of inner edges that must shrink to
move to the topology Σ′. The other distance which can be used is the length of the centerlines
(vascular tree representation) edges is:

d(T,OΣ′) =
∑

k∈UnCo(Σ,Σ′)

nk−1∑
i=1

|xk,i+1 − xk,i|2 (4.5)

If there are topologies closer than a threshold ϵ, we test whether the current position in the
tree-space should be set at the boundary between all the topologies within the range ϵ as
described in Algorithm. 5. If the choice of orthant at the boundary is in fact a different from
the initial one, the optimizer is reset, and the minimization starts from the new position.
Otherwise, the classic optimization within the interior of the current orthant keeps going.
When moving to the boundary of one orthant, we set the momenta associated to shrunk
segments to zero to prevent from instabilities in the LDDMM iterations.

We emphasize the importance of the ϵ parameter that can be interpreted as seeing seeing
a thick boundary between the orthants, of width 2ϵ. Too large, we stick to the boundaries,
too small, we cannot cross them.

Remark 14. Instead of pre-computing the existing orthants from our database, another so-
lution could be to evaluate the accessible orthants on the fly and locally, by considering for
instance a ball around a tree, yet this solution would suffer from the combinatorial number
of solutions when getting close to the star tree (that we often get when computing the Sturm
mean).

The projection of the template onto the boundary of the current orthant is an important
step of the registration procedure. In our case the edge attributes ek associated with the edges
that must shrink are set to 0. Since the edge attributes are relative to the ones of the parents,
the descendant edge attributes must be translated: this way the first point of the children
branches still matches the last one of the (collapsed) parent’s.

Regularization Let T = (V , b, e) be a tree-like shape and T = (V , b, x) be a vascular
tree. In order to prevent from inconsistent updates in the space of tree-like shapes, one can
add some regularization Rtree(T) to the function to minimize. In practice the edge attribute
representation, as segments end points or control points of a Bézier curve already provide
some regularity of the 3D centerlines. One can also regularize to the spatial representation of
the vascular trees branches x. There are multiple ways to regularize the shape of a 3D curve,
we note three of them:
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Algorithm 5 Move To Boundary: A projection method onto the boundary between several
orthants.

Input: T = (V , b, e), AllTopo = (b1, b2, . . . , bj), ϵ
Output: e, bsel ▷ The new topology and coordinates in OΣsel

Set Selected = ∅
Set etmp = e

▷ Search accessible orthants:
for b′ in AllTopo do

Compute d = d(T,OΣ′)

if d ≤ ϵ then
Set Selected← Selected ∪ b′

end if
end for

▷ Project T onto the boundary between the selected topologies:
for all etmp

i s.t. ∃ bk ∈ Selected, eki = 0 do
Set etmp

i = 0

end for
Set bsel = b

Set norm = ∥∇eJ(p0, e
tmp,Σ)∥2

▷ Select a direction and possibly a new orthant:
for Σ′ in Selected do

Compute g = ∥∇etmpJ(p0, e
tmp,Σ′)∥2

if g > norm then
Set bsel = b′

Set norm = g

end if
end for
if bsel ̸= b then

Set e = etmp

end if
return e, bsel

- Penalizing the length of the branches. This regularization may help getting close to
the orthants boundaries, stick the template to the boundary between the orthants.

- Penalizing the curvature of the curves, to enforce the smoothness of the template before
diffeomorphic registration.

- Penalizing the tortuosity of the curves (
∑

k

∑nk−1
i=1 |xk,i+1 − xk,i|2∑

k

∑nk−1
i=1 |xk,nk

− xk,0|2
) to enforce the smooth-

ness of the template vascular tree as well.

In practice we chose the regularization of the length of the curves associated to the inner

143



CHAPTER 4

edges: it ensured numerical stability when dealing with infinitesimally small branches. We
thus have a cost function penalizing the length of the inner branches in the template rep-
resentation of the vascular tree. This cost is in fact added to prevent from the inconsistent
updates of the edge attributes that are unconstrained otherwise.

4.4.4 Experiments

In this section we illustrate the capacity of the proposed registration method to handle topo-
logical changes between trees. The registrations are evaluated on both synthetic and real
trees with various topologies. All the experiments were performed on trees in R3, although
in our first example trees are contained in a plane. We first illustrate the optimization behav-
ior on two synthetic examples. Then, we apply the method to the registration of a template
built from a database of vascular trees extracted from segmentation of Cone Beam Computed
Tomography volumes.

Minimization Scheme and Parameters Similarly to the previous LDDMM experiments,
we use a sum of Gaussian kernels at different scales as reproducing kernel. For each ex-
periment, we will precise the data attachment term selected. We use a multi-scale approach
for the data attachment term following [Ris+11], using σW ∈ {s, s

2
, s
4
} with s half the size

of the bounding box of our trees. The trees are first registered by aligning their root node.
Note that the algorithm 4 describes for simplicity a gradient descent on the functional J with
a line-search on the step size. In practice, we use more advanced optimization tools such as
Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [LN89] for faster conver-
gence inside the orthants.

In addition, in order to prevent from sticking to the boundary between the orthants, we
add a supplementary rule. The projection onto the boundary cannot be performed until we
have moved away from the last boundary on which we projected by more than ϵ, or a certain
number of iterations niter = 70 (arbitrarily fixed) was performed.

A First Experiment

We conducted a first experiment on a toy example tree. The edge attributes of a branch
bk in this experiment are the segment extremities ek ∈ R2×3 , that are interpolated to get
the vascular tree representation xk ∈ Rn×3. The data attachment term is the distance in
the space of varifolds, and the parameters of the LDDMM registration are the same in the
classic approach and in the proposed one. The source and target shapes have two different
topologies and are the ones illustrated in Figure 4.1. Note that in the registration setting
however, only the template shape is labeled. In this toy example the template can only have
one of the two topologies, no other one is available.

We illustrate the output of the registration in Figure 4.12 for both the proposed approach
and the LDDMM approach. We observe that the LDDMM deforms the source shape to align
the leaves correctly. The inner edge however is completely collapsed. On the contrary the
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(a)

Figure 4.12: First registration experiment with the proposed approach (tree-like shape template and
LDDMM registration) compared to the classic LDDMM registration.

proposed method allows to change the topology of the template, and correctly align all the
branches of the source onto the target. The registration could be further refined by reducing
the data attachment scale. The result however, remains satisfactory.

The collapsed edge in the case of the LDDMM registration comes from the topological
changes. As the diffeomorphisms cannot explain it, and the inner edge cannot be aligned to
the target, it may be collapsed to reduce the diffeomorphic cost of the deformations and the
distance in the space of varifolds. Contrary to [DKS18], in our setting we do not want to find
a rotation aligning the trees (this would provide a valid solution, but would fail in the sense
of the labels). The diffeomorphisms we build on the contrary are adapted to such spatially
localized and anatomically relevant registrations.

Second Experiment: three Available Topologies

We illustrate in Figure 4.13 the three available topologies in this experiment. Like the pre-
vious experiment, we use the segment representation for the edge attributes. The starting
template is the star tree, and the target one is a fully resolved tree composed of two inner
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branches and 5 leaves. The data attachment term is the oriented varifolds distance.

(a)

Figure 4.13: Second experiment: three available topologies for 5 leaves and two inner edges.

(a)

Figure 4.14: Deformations across the iterations: the registration of the template (blue) onto a target
(red) starting from the star tree. A first topology is selected at the scale σW = 4, the correct topology
is selected at the scale σW = 2. The first row shows the spatial representation of the template. The
second row shows the target and the evolution of the global deformation both in the tree space and
with the LDDMM.

The registration follows a 2-scales approach for the data attachment term. In this ex-
periment the threshold for the projection onto the boundary between the orthants is equal to
the data attachment scale. At the first scale (coarsest data attachment scale and ϵ), the cor-
rect orthant remains 1 topological change away from the current position in the tree space.
When changing the data attachment scale to a finer one, we authorize a new projection onto
the boundary of the orthants close enough to the current position, and this time the correct
topology is selected. The evaluation of the deformation and the associated position in the
tree space along the iterations is illustrated in Figure 4.14.

This second experiment highlights the importance of the data attachment scale in the
minimization process: a large data attachment scale may not detect topological changes. A
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too small scale however may miss structures far from each other with respect to this scale.
The coarse to fine or direct multiscale approaches mitigate these scales issues.

Consequently the choice of the threshold for the projection to the boundary is also deci-
sive. Using a too large threshold could make the borders sticky, and one would not be able to
move away from them. On the contrary, too small thresholds could prevent the projection on
the boundary. We decided to set the threshold to the value of the data attachment term: the
branches smaller than the data scale in this case can shrink. The intuition is to say that two
successive degree 3 nodes separated by a small branch (with respect to the data attachment
scale) are seen as one degree 4 node.

Registration of Simplified Vascular Trees

In this experiment we register a template simplified vascular tree to targets that have the
same number of leaves. The vascular trees are composed of 6 leaves, and the total number
of admissible topologies is 11. We denote the tree-like shape T = (V , b, e). A branch bk
is represented with edge attributes as 5 control points of Bézier curves: ek ∈ R5×3. The
associated vascular tree is then written T = (V , b, x) = (V , b,B(e)) and xk ∈ Rp×3, p = 30.
The target tree T′ = (V ′, b′, y) is sampled with the same fixed number of points p per curve.

In the following we use the optimal transport cost as data attachment defined in Chapter 2,
Section 2.4.3. It is a data attachment term that can be computed between measures seen as
sum of Diracs in Rn×d, which is one available representation of the branches of the vascular
trees.

The optimal transport cost is given in Equation 2.20. We first perform the registration
with no diffeomorphic deformation. The minimization function becomes:

J(e0,Σ) = γ1 |µT − µT′ |2W ′ + Lϵ,ρ
C (α, β) + γ2 Rtree(T), (4.6)

with α =
∑

i aixi and β =
∑

j bjyj . In practice we have that aibj =
1

2N − 2
∀i, j with N

the number of leaves in the tree (the source and target trees have the same number of leaves).
The distance cost we use for the optimal transport is the L2 norm in the euclidean spaceRp×3

with p = 30, normalized by 1/
√
p.

We set γ1 = 1 and γ2 = 0.1

The set of targets is chosen such as the inner branches of the targets all have a length
higher than 20mm. This threshold is equal to the smallest data attachment scale for the
varifolds distance. In total, 18 targets were selected, and we count 5 different topologies in
this set.

Results We illustrate in Figure 4.15 the output of a successful registration. Out of the 18
targets, the minimization procedure retrieved the correct topology in 15 cases. The registra-
tion as an update of the edge attributes allow both spatial and topological alignment. The
finest details of the shapes can not be matched given the number of control points for the
Bézier curves. In some cases the correct topology is selected, but the spatial registration is
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.15: Successful registrations of the template tree (a) onto a real target vascular trees (b-d-f)
by updating the coordinates of the edge attributes. The template is successfully aligned to the targets
(c-e-g).

not that satisfying since we observe branches of the template matching two branches of the
target. The 3 cases in which the optimization failed at retrieving the correct topology are
typical cases of wrong local minimum at a coarse scale from which the finest scales does not
manage to extract itself.

We applied the minimization framework with LDDMM registration as well, with less suc-
cess: 12 out of 18 cases were correctly registered topologically. Spatially, the resulting dif-
feomorphisms are close to identity. In fact, in order to make the template cross the orthants,
we use a high regularization parameter of the diffeomorphisms.

Adding the diffeomorphic shooting to the registration requires to tune the regularization
parameter γ of the deformations very carefully. In fact, we observe that using a γ high, the
registration provides results similar to the ones obtained with no diffeomorphic registration.
On the contrary using a small γ, the template does not change its topology: the diffeomor-
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(a) (b) (c)

(d) (e)

Figure 4.16: (a-b) Registration procedure finding the correct topology, but introducing a "jump" in
the result. (c-d) Wrong topological registration, despite a correct leaves matching.

phisms compensate the topological changes with strong deformations.

4.5 Conclusion

In this chapter we have shown that the template could be represented as a tree-like shape.
By doing so, it accesses a space specific to the leaf-labeled tree structures encoding both a
spatial representation (with the edge attributes) and the topology of the tree (according to the
connectivity of the nodes). Using control points of a Bézier curve as edge attributes, we are
able to both reduce the size of the template tree (in term of number of point per edge) and
retrieve a spatial representation that corresponds to the one of the vascular trees.

When moving the template within the space of tree-like shapes, we are able to change
the bifurcations ordering, thus the topology of the template. We adapt the registration frame-
work, namely the minimization of a cost function, to adapt the position of the template in
the space of tree-like shapes. This allows to manage this kind of topological changes during
the registration. This update in the space of tree-like shapes is compatible with the classic
LDDMM framework, and one is able to both update the template coordinates and apply a
diffeomorphism of the ambient space as well.

We have applied this new framework to the registration of toy examples and simplified
vascular trees, showing promising results for its use with the LDDMM registration in the case
of the toy examples. In the more complex case of simplified vascular trees, the registration
without the diffeomorphic shooting was successful in 15 cases out of 18.
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Next Steps Using the tree-like shape representation combined with LDDMM registration
in the case of real vascular trees is yet to be further explored: in particular if we are to
correctly update the position within the treespace without applying too much constraints to
the LDDMM.

Applications to the construction of the template, and to better vascular tree registrations
are yet to be explored, which will be of great interest in future works. In the next chapter
we will focus on applications of the LDDMM and the partial matching to vascular trees and
liver surfaces extracted from interventional images.
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APPLICATIONS

We have developed tools to generate reference maps adapted to vascular trees, and to deform
them to automatically provide information and analyze new observations. It is now time
to apply them to pelvic vascular trees, in order to provide interventional radiologists with
anatomical information to complete their maps and help them during their interventions.
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Chapter Organization This chapter is dedicated to applications of Chapters 2 and 3 to
real data. In the first section, we focus on the use of LDDMM for automatic vascular tree
annotation: constructing an atlas and a realistic template used as an initial processing to
perform automatic annotation.

In the second section we focus on the application of partial matching to the registration
of the previously built template on real trees. We are then interested in the anatomical con-
sistency of the obtained deformations, and we observe the influence of the different terms
proposed in Chapter 3 on the template matching. If the obtained deformations do not al-
low to generate an annotation of the whole target tree as they are, we can use them again to
compute statistics on the deformations.

Finally, in a third section, we illustrate the versatility of our work on another anatomy
and different data structure. We apply partial matching to the registration of liver surfaces
from different modalities. Alignments are generated between a couple of volumes of the
same patient (a pre-op CT and a per-op CBCT). Due to the limited field of view of CBCT,
only a part of the liver is visible, while it can be seen entirely in CT volume. We compute
the diffeomorphic registration of the truncated liver surface extracted from the CBCT onto
the complete one extracted from the CT. The resulting deformations are then applied to the
3D CT images from which the target surfaces are extracted.

5.1 LDDMM Application to Automatic Annotation of Sim-
plified Pelvic Vasculature

In this first application we use the LDDMM registration method described in 2 as a pre
processing for the automatic annotation of simplified vascular trees of the pelvic region based
on the comparison to a template annotated tree. We also take advantage of the statistical
analysis of the deformations to build an atlas in which we select a template representative of
the database. This work was published in MICCAI 2020 [Ant+20] and is reported here in this
section with additional illustrations and discussion. The objectives of this first application are
multiple: first, to assess whether LDDMM are suitable for vascular tree registration or not.
Second, to evaluate if the computational anatomy point of view and the template construction
are indeed useful, both for data synthesis and for automatic annotation of vascular trees.

Clinical Context As we have seen is Chapter 1, understanding the patient’s anatomy dur-
ing interventional radiology procedure is essential. This is especially important for Prostatic
Artery Embolization (PAE) procedures in which an embolizing agent is injected into the
feeding arteries of the prostate in order to resorb it in patients with benign prostatic hyper-
plasia. The segmentation of blood vessels in 3D volumes of the pelvic anatomy provides a
visualization of the vasculature without bones, allowing for a precise analysis of the prostate
vicinity. It can facilitate for instance the definition of the location where the treatment is to be
done as well as the identification of non target arteries. In this context, the automatic annota-
tion of the vascular tree can greatly facilitates the understanding of the patient’s anatomy and
limit the risk of missing a vessel feeding to prostate or embolizing an extra-prostatic vessel.
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5.1.1 Database Description

The vascular trees are extracted from injected CBCT 3D volumes. These images have been
acquired during PAE procedures to better understand the patient’s anatomy and assess the
position of the target arteries (the ones feeding the prostate). We conducted experiments
on a dataset of 50 pelvic vascular trees corresponding to 43 patients: some trees being the
left and right vasculature of a single patient. Each tree is composed of a set of 3D curves –
the centerlines – representing the center of each vessel. The centerlines are constructed as
described in Chapter 1, Section 1.2.1.

While the entire vascular tree is composed of up to 500 different branches, we manu-
ally extracted a simplified tree composed of the main arteries documented in the literature
[Ass+15a]. This allowed us to reduce the problem to the annotation of 17-branch trees that
corresponds to the typical size of trees found in the literature [Cao+17; Wan+17]. The se-
lected arteries of interest are the Prostatic Artery (PA), the Superior Vesicle (SV), the Obtura-
tor (O), the Pudendal (P), the Inferior Gluteal (IG) and the Superior Gluteal (SG). Following
the bottom-up labeling procedure 5.1.2, we introduced an additional label called "Common
Artery" (CA) for a total of 7 labels. This simplified representation still captures the anatom-
ical variability described in [Ass+15a], as we found 28 different tree label arrangements
among the 50 cases; and the variability of branches shape and position is illustrated in Fig-
ure 5.5a.

Simplified Male Pelvic Vascular Tree

In terms of tree representation, we recall that a vascular tree is defined as T = (V ,Σ, x),
according to the Definition 3. Σ is the adjacency n× n binary matrix, and let α ∈ [1, .., n]×
[1, .., n] denote the indices such that Σα0,α1 = 1 indicates that Vα0 is connected to Vα1 . The
template is a branch-labeled vascular tree, and the branches bα defined in Definition 14 are
labeled lα ∈ N with connections to other branches stored in Σ. Two labeled branches (bα, lα)
and (bβ, lβ) are connected if α0 = β1. Each branch bα is spatially represented by a polygonal
curve composed of ordered points xα,i ∈ R3 representing a vessel centerline.

5.1.2 Transferring the Labels from the Template to the Target

We propose an atlas-based automatic annotation pipeline illustrated in Figure 5.1 relying
on the LDDMM to build the atlas and estimate realistic deformations. The data attachment
term in this application is squared distance in the space of varifolds. The initial template S
is chosen among the available annotated data. The control points are then taken as the dis-
cretization points of S, the (qi)iIt can be registered onto the rest of the data – labeled or not
–, and used for automatic labeling which corresponds to the LDDMM-0 step of the proce-
dure. Following the template construction Algorithm.2, the initial template can be deformed
by the estimated average deformation providing the shape S̄1. This new shape can be once
more registered to the target, and this procedure will be denoted the LDDMM-1. This can
be repeat iteratively, thus we denote by LDDMM-k the k− th iteration. It is combined with
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an optimal transport matching (described in Section 5.1.2) to compute relevant correspon-
dences between atlas and target branches. The combination of these two previous steps is
called LDDMM-k+OT in the following. In the end, to handle the topological changes be-
tween the atlas and the target, a bottom-up label assignment is performed to achieve optimal
results for our pelvic vasculature labeling problem.

In our LDDMM framework, the label probabilities are computed through a voting system
similar to the one described in [Bul+06]. We simplify the process by computing the distances
inR3 instead of a feature space: for each point in the target, we assign the label of the nearest
point in the atlas. The estimated probabilities at the branch level are the voting percentages
for each label per branch. It must be emphasized that this label probabilities estimation is
weak and provides no anatomical consistency. The probabilities are then strongly dependent
on the registration. If one branch of the registered atlas does not match the target correctly,
the points correspondences will not be relevant.

Optimal Transport for Branch Correspondences During the LDDMM atlas construc-
tion and registration, each tree is seen as one shape. Consequently, there is no assumption
over branch matching and topological changes. In order to provide a relevant label assign-
ment that takes the mutual information into account we propose to use Optimal Transport.
It is convenient to compute the optimal one-to-one assignment between branches of the de-
formed source and the target with respect to a given distance.

Let the template tree be S = (V ,Σ, x), and the target one T = (V ′,Σ′, y). The diffeo-
morphic deformation is noted φ. Inspired from the works of [DKS18; Fey+19], each branch
is re-sampled with 20 points and the distance matrix D between each deformed branch φ(xα)
and yTβ is given by: Dα,β = ∥φ(xα) − yβ∥R3d . We tried different numbers of points d per
branch ranging from 20 to 500 with no significant impact over the matching results. Con-
sidering that our problem is of limited size (17 branches per tree), a simple Kuhn-Munkres
algorithm (also called Hungarian algorithm) was used to compute the assignment solution. It
consists in finding minimum weight matching in bipartite graphs by minimizing the function∑

α,β Dα,β.Xα,β with (Xα,β) ∈ {0, 1}17·17 the output boolean matrix with 1 if the branches
φ(xα) is assigned to yβ , 0 otherwise. We emphasize that in this application, the optimal
transport is not used as a data attachment term.

To be consistent with the alternative simple label probability estimation of our LDDMM-
k pipeline, we similarly define here π(bTβ , l

S
α) := Xα,β , although these "probabilities" are

always 0 or 1 in this case. This assignment process is complementary to the LDDMM-
k process since it focuses on assignment between branches while LDDMM-k focuses on
the atlas construction and the registration. We will also experiment the Optimal Transport
assignment without any registration (i.e. taking φ = id), which we denote OT.

Label Assignment

A first label assignment procedure directly takes the highest label probability for each branch.
As for the probabilities estimation, it does not provide any guarantee regarding the anatomi-
cal consistency and proceeds branch by branch : one branch from the atlas can be associated
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Figure 5.1: The proposed atlas-based vascular tree annotation pipeline. The annotation could be
performed without atlas construction step (k = 0), and without registration, optimal transport or
bottom-up assignment as well.

to several branches in the target. This direct assignment does not introduce any a priori and
reflects the performance of the registration methods.

Bottom-up label assignment In practice, the vessels are labeled by the expert accordingly
to the anatomy or area they irrigate [Ass+15a]. In the application to pelvic vascular tree,
when two branches of different labels share a parent, this parent is called "Common Artery".
This is the only clinical a priori we introduce in the method. To limit the effect of the
topological variations between the atlas and the target, we propose a bottom-up assignment
procedure: first for all bTα leaf of T , l̂(bTα) = argmaxl(π(b

T
α , l)) then recursively every parent

branch bTα is assigned a label with the rule:

l̂(bTα) =

{
l if l̂(bTβ ) = l for every branch bTβ child of bTα
0 (i.e.”Common Artery”), otherwise.

This recursive assignment procedure, although specific to this anatomy, is quite adaptable.
In fact, in most of the structured tree-shaped anatomies (coronary [Aki+09; Cao+17], airway
tree [Lo+11], pelvic [Ass+15a]) the branches names are also conditioned by the leaves labels.
When two arteries of different labels share a common parent, this parent is either unnamed
(as in our application), or named by a convention provided by the experts. The latter situation
corresponds to additional conditions (as in [Lo+11]) during the assignment. One limitation
of this procedure is that one risks to propagate the errors from the leaves to the root. On the
other hand, there is no need to build specific rules for the anatomical variants by learning
from the training data.

5.1.3 Evaluation and Results

Tree Registration

We can first observe that the deformations generated by LDDMM provide globally satisfac-
tory results, but that we have a strong sensitivity to the scaling parameters of the kernels both
for the vector fields generating the KV deformations and for the kernels associated with the
data attachment term formulated as a distance in the space of varifolds. Some registration
examples are provided in Chapter 2, Section 2.6. In this section we focus on the application
to automatic annotation of vascular trees.
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However, we notice first errors related to the spatial position of the source branches in
relation to those of the target. This may correspond to a branch of a certain label being
shifted to a branch of the tree that is eligible for another label, or it may also come from a
"jump" of a deformed branch that will shift to two branches of the target. The scale of the
data attachment kernel in particular plays a very important role here because it defines both
how far structures can be seen from each other, but conversely, if the scale of comparison
is too small compared to the scale of the kernel, differences such as the gap covered by a
branch jump is simply not taken into account by the metric.

A second type of error can be observed in the registration of a template tree on the rest
of the database, which is what diffeomorphisms cannot explain. As discussed in Chapter 2,
Section 2.4, the shapes in the database do not always belong to the same orbit for a given
group of actions. In the case of diffeomorphic transformations, one can therefore never ex-
plain topological changes such as the change in the order of bifurcations or missing branches
in trees. The last point has been handled through the manual construction of the database,
however changes in the order of bifurcations cannot be avoided, and this leads to anatomi-
cally unrealistic alignments.

Improving Annotation Performance with Post-Processing

These observations on the behavior and limitation of the diffeomorphic deformations lead us
to use post-processing to improve the annotation performances and to manage what LDDMM
cannot solve alone. A first experiment consists therefore in comparing our registration-based
approach (LDDMM-0) to a classical method of object matching which is the optimal trans-
port (OT) (the Hungarian algorithm) described in 5.1.2. The third atlas-based solution is a
combination of the two (LDDMM-0+OT). The results of the automatic annotation of the 49
remaining cases from a given template for all cases in the database are shown in Table 5.1.

Method Direct assignment
Bottom-up
assignment

OT 81.3 (±5.11) 94.4 (±2.79)
LDDMM-0 84.2 (±4.43) 93.3 (±3.44)
LDDMM-0+OT 89.3 (±5.20) 95.3 (±3.20)

Table 5.1: Average precision and standard deviation in function of the assignment procedure for
the three tested atlas-based annotation approaches: LDDMM-0, OT and LDDMM-0+OT. For each
method, every tree was tested as reference template, so the total number of tree annotations per tested
method is 50 ∗ 49 = 2450.

The first observation is that the best method without the bottom-up assignment is the
combination of optimal transport and LDDMM registration. This is due to the fact that the
Hungarian algorithm alone fails to separate spatially close arteries while the errors of the
LDDMM deformations were described in the previous section. The combination of the two
therefore compensates for some of these errors and manages to improve the average accuracy
of the LDDMM-0 method by 5%. However, none of the three methods managed to reach a
90% annotation accuracy without using the bottom-up post processing.
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(a) (b)

Figure 5.2: Influence of the label assignment procedure on the data annotation with LDDMM-0. (a)
Direct assignment and (b) bottom-up label assignment procedure.

The improvement for the LDDMM approach of the bottom-up post-processing allows to
gain 9.1% in accuracy on average, which is almost double the gain brought by OT alone.
The details of the labels that have been better predicted using post processing are illustrated
in Figure 5.2, and highlight that the label prediction that has been the most improved is the
Common Artery class, denoted "CA", which is logical since it is the label associated with the
branches close to the root for which there is the most variability. The same observations can
be made for the two other approaches, with for the optimal transport more false negatives
for the "CA" label compensated by the post processing. In comparison, LDDMM-0+OT
reaches the best average accuracy of 95.3%. The bottom-up assignment thus homogenized
the results for the three atlas-based methods, which corresponds to the fact that the methods
performed well for predicting the leaf labels, and less well for the inner branches of the tree.

Improving the Template It should be noted that the deformations performed so far have
not used the labels of the branches, and we can now exploit these deformations to build a
template from the registration of one case to all the others. We can thus take all the regis-
trations made in the LDDMM-0 experiment (that do no use any annotation or a posteriori
verification) to build 50 templates from the 50 × 49 registration already made. This tem-
plate construction, illustrated in Figure 5.5 (a) and (b), allows us to calculate the accuracy
performances for the LDDMM-1 procedure and its derivatives. We thus obtain an average
accuracy for LDDMM-1 with direct annotation of 86.6%(±4.87), and with the bottom-up
post processing an average accuracy of 96.8%(±3.40). Finally the LDDMM-1+OT method
with bottom-up assignment provides a score of 97.2%(±3.20), which is the best result so far.

We still managed to achieve an average precision level on label prediction of 95% on
all branches of the database by using one case to annotate all the others. This gives a good
confidence for the automatic annotation of a database with few annotated cases. Moreover,
building a template from a single annotated case also improves the average accuracy over
the entire database by an additional 2%. By putting all the bricks together we went from
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an average accuracy of 84.2% to 97.2%, from a single case used to annotate the rest of
the database. The bottom-up assignment helps atlas-based methods by bringing consistency
with the pelvic vasculature. The rule is a very light a priori in the assignment process, yet
specific to this anatomy: it adapts well to the high anatomical variants and is well-suited to
the atlas-based methods that are limited by the atlas’ topology.

Comparing to Learning-Based Methods

We have shown that LDDMMs are suitable, with the right metric for the shapes comparison,
for the registration of simplified vascular trees in our database. To provide an interesting
automatic annotation result, we still need a post-processing consisting of a label assign-
ment from the leaves to the root, and we also noticed that the optimal transport between
the branches instead of a simple point-by-point vote to the nearest one allowed to make our
method more robust to topological changes and to registration errors. We will now compare
the results obtained with learning-based methods by varying the size of the database.

Baseline Comparison To demonstrate that atlas based techniques described in Section 5.1.2
perform well compared to learning based ones in case of small size database, we imple-
mented two classification algorithms working on branch features, KNN and XGboost, in-
spired from the work of [Lo+11] and [Wan+17]. These algorithms compute the labels prob-
abilities per branch, and will be compared with the same assignment procedures described
in 5.1.2. Regarding the KNN method, all numbers of neighbours between 3 and 10 were
tested. We kept only the 8-Nearest-Neighbor method that was giving the best results on our
database. The XGBoost parameters are provided in [Wan+17]: the maximum depth in the
tree classifier is set to 8, and other parameters such as the weight regularization, the sampling
rate are provided in the paper as well. To be close to the work of [Lo+11] and [Mat+14], each
branch is represented by a vector composed of 41 branch features which can be grouped in
2 types:

• 25 geometric features: length (1), distance between end points (1), average and stan-
dard deviation of the curvature (2), invariant moments of 3D curves (3), eigenvalues
and eigenvectors of the curve covariance matrix (12), endpoint direction (3), unit ori-
entation (3)

• 16 tree features: number of children (1), radius ratio to parent (1), average and stan-
dard deviation of the radius ratio to children (2), average and standard deviation of vec-
tor from tree root to children endpoints (6), vector from tree root to branch’s barycentre
(3), vector from tree root to branch’s barycentre weighted by the points’ radius (3).

When testing KNN, it turned out that using all the features deteriorated significantly the
performance compared to using only a subset of them. In fact, by normalizing the features
to embed them in an euclidean space, the KNN gives equal importance to all of them. We
decided to keep the 10 most useful features selected by XGBoost during its training.

To compare all methods, precision has been evaluated using a cross-validation over the
50 cases with a training set and test set of varying size: from 2% (1 case) to 80% (40 cases)
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of the total dataset. While the notion of cross-validation is well defined for learning-based
techniques, in the case of atlas-based methods, the cross-validation follows the procedure
proposed by [Cao+17]: the best atlas is selected in the training set with a leave-one-in pro-
cedure and used to annotate the test set. This case is then used to annotate the test set.

Baseline comparison In Table 5.2, we provide the percentage of correctly annotated branches
and its standard deviation for both direct assignment and bottom-up assignment with a 90-
10 split. KNN performs poorly compared to the other methods. The good performance of
XGBoost illustrates in comparison that feature selection is key for a good generalization.
XGBoost confusion matrix in Figure 5.6 (c) shows that the most confused labels are either
corresponding to very similar branches or to highly variable ones.

Method Direct assignment
Bottom-up
assignment

KNN 77 (±4.0) 76 (±4.0)
XGBoost 94 (±2.0) 92 (±2.5)
OT 95 (±3.0) 98 (±2.4)
LDDMM-0 91 (±1.8) 98 (±1.1)

Table 5.2: Average precision and standard deviation in function of the assignment procedure over 10
folds cross-validation, 90% of the data for training. In this case the total number of annotations tested
is 10× 5 = 50

When assignment is performed at the branch level, OT gives the best results. It benefits
from both a branch-level representation that reduces the effects of topological variations, and
a transport plan that takes into account all the branch pairings to find the optimal solution.

When using the proposed task-adapted assignment, the accuracy of atlas based-methods
increases significantly (as shown in Table 5.2). For LDDMM, it increases the performance
to an higher accuracy than learning based methods, and equivalent to OT. The confusion
matrix of LDDMM using bottom-up assignment is summarized in Figure 5.6. With such an
assignment, the precision of LDDMM for the "Common Artery" is significantly improved
while the overall recall is slightly deteriorated. This is the consequence of errors at obtura-
tors, superior and inferior gluteals propagated to the parent branches. The same observations
can be made for OT to a lesser degree since both cost and probabilities predictions are com-
puted at the branch level. In addition, we can see the effect of LDDMM registration in the
standard deviation: the deformations smoothing the geometrical variations, the approach is
less dependent on the atlas choice.

On the contrary this dedicated assignment slightly degrades learning-based techniques.
Since they consider branches independently and do not take into account the labels proba-
bilities of the other branches, they are not impacted by a topological variation and thus the
bottom-up assignation procedure has no positive impact on their accuracy. As illustrated in
Figure 5.6 (c),(d) the bottom-up assignment in fact propagates XGBoost errors to the parents.
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Varying the Training Set Size We have shown that atlas-based methods can be compet-
itive with learning-based methods on "large" available database. We now want to study
the influence of the training set size as presented in Figure 5.3. For each method we used
the assignment technique giving the highest precision (direct assignment for training-based
methods and bottom-up for atlas-based ones). As expected, under 20% of training data (10
cases) precision of learning-based methods drastically drops. KNN is outperformed by other
approaches, and XGBoost seems to asymptotically reach the atlas-based performances. On
the other hand the atlas-based methods with bottom-up assignment perform with very little
influence of the size of the training set.

Despite topological variations, the LDDMM-1 approach generates meaningful registra-
tions showing good results when coupled with bottom-up assignment. OT also gives relevant
branch matching that provides the same level of performance with the bottom-up assignment.
Consequently LDDMM-1+OT with the bottom-up assignment have the best results, partic-
ularly in the case of small training sets. We illustrate in Figure 5.3 (b) the performances of
atlas-based methods for only 5 cases in the training set (Confusion matrices for this setting
are provided in the complementary material). The results of LDDMM-1+OT are significantly
better than each method taken independently with an average 97.6%(±0.97) precision.

Figure 5.3: Comparison of the annotation performance according to the training set size.

Template estimation for annotation

To illustrate the contributions of the atlas construction on the labeling of the database we
computed LDDMM-0 (pure registration) and LDDMM-1 (atlas construction) by registering
each of the 50 available cases onto the others. It is illustrated in Figure 5.5 (a,b). The
average precision of one reference case used in LDDMM-0 to annotate the 49 other trees
is 93.3%(±3.5) when associated to bottom-up assignment and 84.2%(±4.4) using direct
assignment. This drop of performance illustrates the sensitivity of atlas-based methods to
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Figure 5.4: Precision along iterations with one case used in atlas estimation following [Vai+04].

(a) (b) (c)

Figure 5.5: Building atlases via LDDMM registration. Following [Vai+04], given one atlas we
compute all the registrations onto the database and the corresponding average initial momenta. The
colours represent the ground truth labels, but these labels were not used to compute deformations.
(a) The initial trees; (b) Shooting along average momenta, iteration 1; (c) Shooting along average
momenta, iteration 2.

the choice of the atlas in the first place. The bottom-up assignment post processing allows to
overcome this sensitivity: we use it in the rest of the experiments. We then select one of the
worst cases in the database regarding LDDMM-0 labeling performance and iteratively build
the new atlas following the LDDMM-k procedure.

We can see that performance improves with iterations, which indicates that the atlas
gradually captures the database variability: it allows a better registration hence a better label
assignment. This single-case solution allows to annotate the 49 cases of the database with a
precision reaching 98.9%(±0.33) while being one of the worst with LDDMM-0. It must be
emphasized that the atlas construction did not rely on any other annotated case than the one
initially selected. In Figure 5.5 (c) we observe that one iteration of the atlas construction is
enough to greatly improve the labeling of the entire database, then the performance slowly
increases until iteration 4.
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(a) (b)

(c) (d)

Figure 5.6: 10-fold cross validation at training set size of 5 cases, label confusion matrices (a) OT
(b) LDDMM 1 (c) LDDMM 1 + OT (d) XGBoost.

Discussion

We have chosen to use the computational anatomy approach to address both the lack of
annotated data, particularly sensitive in medical imaging, and to study of the database sta-
tistically. For this purpose, we based ourselves on the LDDMM algorithm which allows to
generate smooth and reversible deformations of a reference object, the template, on a target.
These deformations can also be applied to the surrounding space using the flow of vector
fields belonging to RKHS, and thus be inferred to other objects. The data are compared
using metrics in RKHS and are inspired by the theory of geometric measurement, and allow
to establish distances between continuous and discrete shapes – thus particularly adapted to
discrete setting. We see in this first application that the proposed pipeline allows to set up
reliable automatic annotation methods using very little annotated data. We obtained a good
result with a single case iteratively aligned on the rest of the database and deformed accord-
ing to the average deformation. It could be further improved by using multiple templates in
the annotation process.This procedure does not required any branch or point pairing, and the
new template can the be aligned onto the database for a better registration and consequently,
a better annotation. We insist on the fact that the deformations of a selected case on the other
ones in the training set did not take advantage of the available labels. A room for improve-
ment in the case of training sets composed of more than one individual would be to compute
a label-wise data attachment term: the sum of distances between subsets of the source and
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target shapes sharing the same labels.

The overall automatic annotation pipeline then requires a database of unlabeled obser-
vations, and a single labeled template. The label assignment is made more robust through
a bottom-up label assignment procedure adapted to the annotation of the pelvic vasculature.
We see that this proposed method outperforms by far the learning based approaches when
using few annotated data. It is also competitive in the case of larger labeled training sets.

The best result we obtained yet depends on a post-processing label assignment due to
the limit of the diffeomorphism model used for the deformation: we are not able, despite the
most realistic diffeomorphism possible, to manage the topological changes in the registra-
tion.

One of the major drawbacks of this method is the computational time. One LDDMM
registration in this application took about 240 seconds. So the registration of the template
onto the rest of the database takes approximately 3 hours and 20 minutes. If there are ways
to reduce the computing time by reducing the number of variables, or approximating the
diffeomorphisms, most of the computing is done offline. It could be used for instance to
automatically annotate the database from few examples, and then feed a learning-based ap-
proach (as a deep neural network, or a XGBoost classifier) whose inference time would be
lower. In addition, the data attachment term was taken in the space of varifolds, that are non
oriented. The orientation is a relevant feature in the space representation, and a further study
should evaluate the use of the oriented varifolds representation in the data attachment term
for the registration pipeline.
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5.2 Registration of a Template Vascular Tree onto Real Ones

In the previous section we have applied the diffeomorphic registration to an atlas-based au-
tomatic vascular trees annotation pipeline. As a matter of fact, the classic distances are not
suited to the comparison of truncated and complete shapes as illustrated in Figure 2.13, and
in Figure 5.7. In particular the distance in the space of oriented varifolds is not suited to
the registration of the template vascular tree built in Section 5.1.3 onto real data. We now
apply the partial matching introduced in Chapter 3 to guide diffeomorphic registration of the
template onto real cases.

(a) (b) (c)

Figure 5.7: Diffeomorphic registration of a template (a) onto a target (b) using the distance in the
space of varifolds. Despite being diffeomorphic, the result (c) has neither anatomical nor geometrical
consistency. The target in (c) is shown in transparent black.

5.2.1 Database Description

We focus on the particular case of registering the previously constructed template onto a
subset of the target, that is the hypothesis of Chapter 3. To that end, we selected 124 vascular
trees containing the 6 leaves labels of the template, namely the prostatic artery, the superior
vesicle artery, the obturator artery, the superior and inferior gluteal arteries and the pudendal
artery. These trees, from which the manually simplified database of the previous section
was extracted, was built and annotated by an expert during 3 years. On the contrary, the
template tree is composed of 17 edges. Consequently we are not automatically labeling the
whole target tree, rather evaluating the anatomical consistency of the registration. The target
trees are composed of 413 branches in average, which yields a fairly imbalanced registration
problem. In addition, to the number of branches, the targets may have supplementary labels,
such as the middle rectal, the sacral or the iliolumbar arteries. With anatomically consistent
deformations, such arteries should not be matched by the deformed target.

For the sake of light notation, we will denote by S the template tree (the source), when
it should be written after the template construction used in the previous section: S̄3. The
output of the registration procedure of S onto the target T is denoted φT (S). We have
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that S = (V ,Σ, x), and given a branch bα its associated discretization points are denoted
xα = (xα,i)i ∈ (R3)nα , with i ∈ {1, .., nα}.

Registration Parameters We initialize the diffeomorphic registration of the template onto
a full target by aligning the first point of both trees. Due to the segmentation and centerlines
extraction procedure, this point is supposed to be close to the real point of injection of the
contrast agent. Additionally it is manually identified during the segmentation procedure and
used as reference point for the construction of the centerlines. The diffeomorphisms are
generated with multiscale reproducing kernel similarly to the previous experiment.

5.2.2 Evaluation and Results

In this experiment we focus on evaluating the correct embedding of the deformed template
into the target from the anatomical point of view. In fact we want to assess whether the
branches we align with diffeomorphisms share the same label. Additionally we want to
avoid strong deformations of the template such as strong distortions similar to the ones in
Figure 2.13, or shrinking observed when using the partial matching without regularization
as in Figure 3.13.

To assess these two information, we focus on two metrics. The first one is the total
length of the centerlines in the deformed template tree, which is to be compared to the initial
total length of the template tree (833mm). It provides a first criterion to detect inconsistent
deformations: the ratio of the length of the deformed template with the length of the template:

rl =

∑
α

∑nα−1
i=1 |φ(xα,i+1)− φ(xα,i)|2∑
α

∑nα−1
i=1 |xα,i+1 − xα,i|2

.

The second metric is based on the point-wise projection of the deformed template vertices
onto the target. Let T = (V ′,Σ′, y) be the target vascular tree and q a point in R3, we have
the projection:

p(q, T ) = argmax
yβ,j∈y

|q − yβ,j|2 .

To assess the correct embedding of the deformed template into the target, we verify that
the label of the deformed source points and their associated projections in the target are
equal. Let LS : xα,i ∈ S → [0, .., 12] be the labeling of the template points (both initial and
deformed) and let LT : yβ,j → [0, .., 12] be the labeling of the target ones. We define the
evaluation function per point:

f(xα,i, T ) =

{
1 if LS(xα,i) = LT (p(xα,i, T ))

0 otherwise
(5.1)

We can then define the score per label f l(S, T ) =
1

card(l, S)

∑
xα,i∈x, L(xα,i)=l f(xα,i, T )

with card(l, S) the number of points in S sharing the label l. Similarly we define a total
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score:
score(S, T ) =

1

card(S)

∑
xα,i∈x

f(xα,i, T ),

with card(S) the number of points in S.

Ablation Study We compare 3 different diffeomorphic registrations of the template tree
onto the targets. First we use the partial matching regularized we selected in chapter 3
(Equation 3.3 with the local regularization term of Equation 3.14). Second we use the partial
matching term without any regularization, to evaluate the influence of the regularization term.
Third we use the classic distance in the space of oriented varifold as data attachment term,
that we combine with the local regularization of Equation 3.14. These three registrations
problems allows to compare the influence of the proposed partial matching on the registration
of the template onto a subset of the target as well as the influence of the local regularization
we proposed on the deformations. We do not evaluated the registration of the template
onto real targets in the classic LDDMM framework and simply provide visual examples to
illustrate the difference with the other approaches.

We summarize in the following Table 5.3 the average projection score total of the de-
formed template onto the 115 target trees of the database, as well as the average length of the
deformed tree after all the registrations.

Evaluation Criterion
Average length ratio
to the template (%)

Pointwise total
projection score (%)

Varifolds distance with
local regularization

181 38.9

Partial Matching without
regularization

85.0 71.0

Partial Matching with
local regularization

98.3 74.1

Table 5.3: Average length and total score assessing the embedding of the template into the targets
after deformation. In total the registration was performed onto 124 real targets.

First we observe that the classic varifold distance fails at guiding the deformations of the
template onto the real targets despite the additional regularization. The average total length
of the deformed template is almost multiplied by a factor of 2. The amount of points correctly
registered to a point in the targets is 38.9%. The partial matching without any regularization
achieves better results with an average of 70.0% of the deformed points sharing a label with
their projection on the target. The total length of the deformed trees however is reduced by
125mm in average, which is about 15% of the initial length of the template. We illustrates
the typical inconsistent deformations associated with these two registration frameworks in
Figure 5.8.

On the contrary the partial matching term associated with the local regularization achieves
an average anatomically relevant matching of 72.9%. The performance is slightly better than
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the non-regularized partial matching, the total length of the deformed trees however remains
close to the one of the original template (98.7%) indicating smoother deformations.

(a) (b)

(c) (d) (e)

Figure 5.8: Output of the diffeomorphic registration of a template (a) onto a target (b). In (c-d-e)
the deformed tree is superimposed to the transparent target. The deformation is inconsistent under
varifold guidance with local regularization (c). The proposed partial matching allows the embedding
of the source in the target (d), but it tends to shrink the deformed template (here, the superior vesicle
artery). The partial matching with local regularization allows a consistent alignment of the source
onto a subset of the target (e).

In Figure 5.8 are illustrated typical examples of diffeomorphic deformations guided by
the three methods we study. The distance in the space of oriented varifolds is too high re-
garding the proposed local regularization we introduced, and the deformed source has been
strongly distorted. The partial matching without any regularization provides more realistic
deformations. The branches however are globally smaller than the template one. In this
example the length ratio is rl = 87.8%, due to the shrinking of the superior vesicle artery.
Finally the regularized partial matching produces regular deformations while correctly em-
bedding the deformed template in the target.

Embedding Evaluation We now focus on evaluating the embedding of the deformed ar-
teries of the template into subsets of the targets. We provide in Table 5.4 the projection scores
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per label in the template using the three proposed registration approaches. The registration
with regularized varifolds distance approach is outperformed by both partial matching ap-
proaches. The best average registration of one artery is achieved by the partial matching with
the local regularization for the obturator artery. The point-wise projection score is 84.2% of
the points of the source correctly matched to their pendant in the target. We observe that the
obturator artery, and the superior and inferior gluteal arteries are slightly better registered
with the partial matching (regularized or not). This corresponds to the arteries in the tem-
plate that are composed of 3 branches. On the contrary the labels prostatic, inferior pudendal
and superior vesicle arteries are showing lower point-wise projection score. The only artery
for which the partial matching without regularization is performing significantly better than
using the regularization is the prostatic one.

Registration Method
Varifolds distance with
local regularization

Partial Matching without
regularization

Partial Matching with
local regularization

Prostatic Artery 36.0 65.8 61.1
Superior Vesicle
Artery

30.0 56.6 69.3

Obturator Artery 33.7 79.7 84.7
Inferior Pudendal
Artery

41.1 72.5 73.4

Inferior Gluteal
Artery

45.1 78.1 77.9

Superior Gluteal
Artery

58.9 73.4 78.1

Table 5.4: Projection score per label (in %) for the three registration procedures.

The average projection score per point in one artery strongly changes as one moves away
from the root. We illustrate this for three arteries in Figure 5.9: the prostatic, the obturator
and the superior gluteal arteries. The two later arteries are composed of one parent branch
and two children. We observe for the prostatic artery (Figure 5.9(a)) that the average pro-
jection score for partial matching approaches increases with the depth in the tree. It is not
true for the regularized varifold distance since one artery tends to be aligned to several target
ones. In terms of projection scores, the two partial matching show similar trends for the
three arteries. For all of them, the first branch is increasingly better matched to the target
when going deeper in the tree. For the two arteries composed of 3 branches, the projection
score per point does not much vary in the children branches when using the partial matching
methods. On the contrary the behavior of the varifold distance varies a lot. In the case of
the obturator artery, the projection score decreases with the depth for both children branches
when it increases for one of the child branch of the superior gluteal arteries. In fact this
particular branch is deformed to match several ones in the targets. However, the branches in
this area all share the same label: superior gluteal artery. This last situation also helps the
partial matching for which the projection score slightly increases as well.
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(a)

(b)

(c)

Figure 5.9: PM stands for Partial Matching. The average projection scores per point for three arteries
of the template: (a) the prostatic artery composed of one branch, (b) the obturator artery composed of
three branches and (c) the superior gluteal artery composed of three branches. The first point is the
closest to the template’s root. The red dashes in (b) and (c) indicate the change of branch.
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5.2.3 Discussion

The deformations we produce with the proposed method seems realistic. This is achieved
thanks to the combination of the partial matching data attachment term and the local regu-
larization. The partial matching term guides the diffeomorphic deformations to embed the
template into the target. The regularization, formulated as a comparison to the initial tem-
plate, preserves the relative position of the source points before and after diffeomorphism. It
prevents for instance from inconsistent shrinkage of the template.

In the specific application to pelvic vascular trees, the registration of the template tree
onto a subset of the target has numerous solutions. The cost function in the minimization
problem has a lot of local minima. Some are avoided with the regularization of the diffeomor-
phic deformations and the local regularization term. The other way to prevent local minima
is to refine the template: in fact the more branches in the source shape the less solutions there
are to the embedding of the deformed template into the target. A single reference branch in
the template as a representation of a branch of reference is for instance too restrictive. The
number of solutions to the partial matching in such a case are too high.

In terms of projection scores, the only artery that is better anatomically matched without
regularization is the prostatic artery. One possible explanation is the high geometrical vari-
ability of this artery. In this situation, the regularization does not allow to correctly align
the deformed source onto its corresponding target artery, and the deformation seek another
subset of the target.

The projection score at the points level improves as one moves away from the root of
the tree. This is correlated to the tree topological changes that occur when comparing two
trees with the same labels and the same number of branches. It is all the more true when
comparing a simplified template to a real target composed of much more branches, leaves
and labels. The leaves of the tree are however more and more spatially separated, and the
labels are assigned according to the organs irrigated by the vessels. It is therefore normal
that the leaves sharing the same label are better represented by their position when compared
to the inner branches. In the perspective of an anatomically realistic partial matching, the
leaves of the template (if the latter is well constructed) are therefore close to their targets.
This is what we observe in the average scores per point that we have displayed along the
curves associated with each label.

Anomaly Detection In about 60 cases of the database, the vascular tree had no obturator
artery. Since it does not correspond to the actual partial matching framework we set-up, we
discarded them in the application Section 5.2. In line with a real application, we would like
to be able to work with all the existing most important labels despite some of them may be
missing in the target from time to time. To illustrate a potential solution, we registered the
template onto the 60 cases without obturator artery, and we show in Figure 5.10 two average
deformations: onto the cases with the obturator and onto the ones without this artery. It
appears clearly that they are different: in the case of absence of obturator in the target, the
artery is shrank by the average deformation while it does not move in the “normal” case.
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(a) (b) (c)

Figure 5.10: Average shooting of the template (a). On a set of trees containing all the arteries of
the template (b). On a set of trees that do not have the obturator artery (c). In transparent black we
superimpose the initial position of the template.

This automatic detection of abnormal deformations paves the way to solutions to adapt
the template tree to the new target: given a deformation belonging to the second distribution
(the deformations to a target in which one artery is missing), one could remove the missing
artery from the template and restart the registration procedure with the new template.

Further work A systematic study of the application of partial matching to the annotation
of complete vascular trees should be carried out to assess the annotation potential of that
method. Since the anatomical names of the arteries refer to entire subtrees, matching a
simplified tree to a subpart of a complete one would indeed allow to extend the labels to
all descending subtrees. In particular, arteries with typical shapes such as the pudendal and
inferior gluteal appear to map well, and seems to be efficiently detected with the registration
of the template under regularized partial matching guidance.
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5.3 Beyond Vascular Trees: Feature-based Multi-modality
Liver Volume Registration

So far we have only focused on the application of the proposed data attachment terms and
the LDDMM registration to vascular trees and more generally curves or set of curves struc-
tures. The LDDMM framework however, as well as the space of oriented varifolds, has been
developped for more diverse data namely submanifolds of Rd. In line with these approaches,
we proposed a partial matching data attachment term derived from the oriented varifold to
build a diffeomorphic registration framework under partial matching adapted to various type
of data. In particular the other usual structure extracted from 3D volumes is the surface or
union of surfaces, for instance delineating a segmented volume in the 3D volumes.

This application is taken from the MELBA paper [Ant+22] in which we extended the
partial matching application and applied it to the registration of CT/CBCT volumes based on
the registration of a truncated liver surface extracted from one patient onto a complete one
extracted from a CT volume.

As discussed in Chapter 1 Section 1.1.2, medical images are often acquired through differ-
ent modalities, including ultrasound, computed tomography, and magnetic resonance imag-
ing, each providing different and complementary information. In this context, image regis-
tration allows physicians to obtain combined inputs from different imaging modalities using
for instance image comparison or fusion. The latter has been shown to be valuable in image-
guided procedures, yielding less complications and decreasing radiation dose [RV16]. This
section is the clinical application of the work introducing the partial matching in the space
of varifolds [Ant+21] and the extensions proposed in 3.2.

(a) (b)

Figure 5.11: Examples of slices from a CBCT volume (a) and CT volume (b) from the same patient
visualized with a 3mm Maximum Intensity Projection (MIP). The liver and the tumors are only hardly
visible in CBCT while the vessels are well depicted. The injected CT volume is complementary: it
provides a well delineated liver.
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5.3.1 CT/CBCT Volume Registration

Transcatheter directed liver therapies are part of the therapeutic arsenal of primary and sec-
ondary liver malignancies. The objective of these procedures is to locally treat the tumor and
be as selective as possible (meaning placing the microcatheter used to inject the treatment as
close as possible to the tumor) to preserve surrounding healthy tissues, while ensuring the
destruction of the malignant cells.

These minimally invasive procedures are performed by navigating through the patient’s
arteries under real time 2D angiography, acquired through an imaging device called C-arm.
Additionally, the latter can perform a 200 degrees rotation to allow 3D reconstruction of the
patient’s anatomy, called Cone-Beam Computed Tomography (CBCT) [Tac+15], to obtain a
“live" 3D imaging of the patient at point of care. Performing CBCT during such procedure
improves tumor detection and navigation guidance (Figure 5.11a).

Classically, preprocedural diagnostic CT scan or MRI are reviewed by the interventional
radiologist to plan the procedure accordingly. The preprocedural acquisitions provide infor-
mation on the entire liver anatomy, tumor burden and tumor feeding arteries that are decisive
for procedural planning, such as number of tumors to be treated in one session and the dose
of therapeutic agent to inject. Contrary to CT or MRI, CBCT is performed during the proce-
dure, and the operator can compare procedural CBCT to preprocedural CT (Figure 5.11b) to
ensure adequate treatment delivery.

While CBCT offers a superior spatial resolution compared to conventional CT scan, with
intra-arterial injection of contrast agent providing a detailed visualization of the arteries, low
contrast visibility is better in CT (Figure 5.11a). CBCT can also be subject to several artifacts
such as beam hardening and motion artifacts that might decrease the CBCT performance to
visualize the tumor, which is key to selective and successful treatment. A major difficulty in
the fusion of a CT volume with a CBCT one comes from the fact that, unlike CT, liver is only
partially visible in CBCT (due to the limited size of the field of view in the latter modality).
In addition the acquisitions are taken at different times, potentially several weeks apart, and
with different patient stances introducing deformations of the liver. For all these reasons, the
two types of volumes are very different one from another as illustrated in Figure 5.11.

We propose a registration method based on liver surfaces1 providing a deformation of
the entire volume. To that extent we apply our partial matching dissimilarity term allowing
to tackle the issue of partial correspondence between the truncated surface extracted from
the CBCT and the one extracted from the CT. The registrations are evaluated on landmarks
inside the liver, which were annotated by a physician.

5.3.2 Database Description

The database is composed of CBCT/CT pairs where CBCT have been acquired during hep-
atic arteriography and CT scans obtained at early or late arterial phase. We do not pro-

1One of the feature that is visible in both the CT and CBCT whatever the clinical acquisition protocol,
unlike vessels that necessitate a dedicated injection protocol
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(a) (b)

(c) (d)

Figure 5.12: Examples of annotated Points of Interest on CBCT (a) and on CT (b). Examples of
annotated longest axis diameter lesion visualized on CBCT (c) and on CT (d). All images come from
the same patient.

vide the acquisition parameters here, yet the spatial resolution (in mm) of the volumes are
(0.45, 0.45, 0.45) for the CBCT and in average (0.75, 0.75, 1.25) for the CT. Both were se-
lected to show good visualization of the vessels and tumors. In total, 19 pairs of CT/CBCT
liver volumes were evaluated, as the one illustrated in Figure 5.11.

Liver Segmentation

The livers were segmented in each modality using a deep neural network [MNA16] providing
a binary volume in both modalities. In this application, the segmentations were evaluated by
a clinical specialist and manually corrected if a major error was detected such as missing
part of the liver. The underlying assumption being: staying as close as possible to clinical
conditions. By doing so, we ensure that the registrations are based on features as reliable as
possible. The mesh of the surfaces were then extracted and decimated, leading to meshes of
approximately 104 points per surface. In the case of CBCT volumes, the meshes are then cut
by the cylinder corresponding to the field of view using [Mus+21] resulting into truncated
liver surfaces.
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Points of Interest

For each patient, the branches of the proper hepatic artery visible on CT volume were anno-
tated with Points of Interest (POIs) for evaluation purpose. Each POI was similarly annotated
in the same location on the corresponding CBCT volume. Selected POIs often corresponded
to arterial bifurcations that are easily identifiable on both CT and CBCT. For each pair of vol-
umes, a physician annotated 10 POIs (Figure 5.12a,5.12b). Because of the limited visibility
of distal hepatic arteries on arterial phase CT compared to CBCT acquired during hepatic ar-
teriography, most of POIs were located close to the bifurcation of the proper hepatic artery,
thus mainly located at central parts of the livers, of importance to physicians.

Tumors Annotation

To evaluate the registrations, in addition to POIs, we annotated the longest axis diameter
of a tumor according to [Gho+21] to ensure better reproducibility of the annotations across
volumes (Figure 5.12c, Fig 5.12d). It was done in the axial view of the volumes for tumors
that were visible in both modalities. The axis can be decomposed into 3 Tumor Points :
the extremities and the center. In the database, one invasive tumor could not be annotated,
reducing the number of pairs of tumors to 18. The annotated tumors were located in all
the liver segments and their size varied from 9mm to 109mm. This variability in terms of
position and size provides a complementary information to that of the POIs.

5.3.3 Liver Surface Registration with Partial Matching

As a first registration step, the truncated liver surfaces from CBCT were registered onto
complete liver surfaces from CT scans with a LDDMM deformation model using the dis-
crete framework described in Section 3.3. The LDDMM deformations of the truncated livers
surfaces with partial dissimilarity function may lead to small shrinkage of the borders. To
compensate this phenomenon in the application we added the a priori regularization of Equa-
tion 3.14 to the partial data attachment term that prevents from strong local deformations.
For illustration purpose, one subject was registered twice with this model: once with the dis-
tance in the space of Varifolds, once with the normalized partial dissimilarity term (Def. 12)
with the local regularization (Equation 3.14). This particular experiment is illustrated in
Figure 5.13. Both results are generated with the same deformations and regularization pa-
rameters. As expected the varifolds distance leads to unrealistic deformations that tend to fill
the holes in the source shape to cover the entire target. The deformations applied to the am-
bient space may be even more difficult to visualize. From the anatomical and medical point
of view this is misleading and can not be used in a clinical application of multi-modality
volumes registration. On the contrary the partial matching produces a more realistic defor-
mation of the source onto a subset of the complete surface. We will only use and discuss this
model in the following.
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(a) (b)

(c) (d)

Figure 5.13: Registration of a truncated liver’s surface (Live) from a CBCT (a) onto a complete liver’s
surface (Liver) from a CT (b) for Patient 2. Varifold registration (c); Partial normalized registration
(Def. 12) with a local regularization (Eq. 3.14) (d). The color scale indicates the euclidean distance
(in mm) of the points to their initial position before diffeomorphic deformation.

To initialize the LDDMM deformations, one classically performs a rigid registration. We
find in the literature that the livers are principally deformed in translation, so we tested a set of
combinations between rigid deformations and LDDMM. We selected the methods providing
the best results: a translation followed by LDDMM (denoted translation+LDDMM) and a
rigid deformation of limited angulation followed by LDDMM (denoted rigid+LDDMM).
The rigid registration is limited to rotations between −15◦ and 15◦ around each axis that is
the range of realistic rotations for the liver deformations.

In addition to these registration methods, we tested the standard rigid Iterative Closest
Point (ICP) applied to the surfaces, using as data attachment term the function:

∆ICP (S, T ) =
1

Card(S)

∑
x∈S

min
y∈T

(|x− y|Rd) .

By minimizing this term one minimizes the average distance of the source points to the
target. This asymmetric function can be seen as a partial matching dissimilarity term, being
equal to 0 if S is included in T .
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Implementation details

LDDMM is computed with the partial matching dissimilarity term and the localized mass
preservation term Eq. 3.14. In the following, J is written:

J(v) = λ1

∫ 1

0

∥vt∥2V dt+∆(ϕv
1(S), T ) + λ2Rlocal(S, ϕ

v
1(S)) (5.2)

The optimization of this functional J is performed using Limited-memory Broyden–-
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. In the LDDMM framework the cost of the
deformations is controlled by the parameters λ1 and λ2. To enforce smooth deformations of
the surface as well as its ambient space, we set λ1 to 107, and we control the risk of shrinkage
of the partial matching non-rigid registration by setting λ2 = 1. The Reproducing Kernel
of the deformations is the same as in 3.4 allowing large deformations of the shapes along
with more detailed ones. To better register the shapes, we also use a multi-scale registration
scheme for the data attachment terms by iterative applications with σW = 10mm and σW =
5mm the output of the optimization at scale 10 is used as input at the scale 5.

Computational Cost

We now provide some quantitative details about the computation time of the different steps
of the registration procedure. To compute the registrations, we use a TITAN RTX Graphic
Processing Unit. One rigid deformation of a 444×512×512 voxel grid is computed in 9.10×
10−1s when the diffeomorphic deformation takes 57.0 seconds. In terms of optimization, the
ICP (on CPU) takes 4.64× 10−2s for a source and a target of approximately 104 points. On
the same data the rigid registration guided with our partial matching dissimilarity function
takes 9.63 × 10−1s and the LDDMM optimization takes 4 minutes 34 seconds. This huge
difference between LDDMM and the others methods comes from the number of parameters
to optimize in its framework : the dimension of the space times the number of points in the
source shape.

There are many possible ways to accelerate the LDDMM, from reducing the number of
points in the source to the approximation of the diffeomorphisms with other deformations
models such as successive combinations of splines. No matter the deformation, the compu-
tational cost of the partial matching dissimilarity function for the same data is 7.24× 10−3s.

5.3.4 From Surface to Volume Registration

The registration framework described so far focused on the spatial alignment of one shape
onto another. We are interested in this application to the CT/CBCT volumes registration and
both rigid deformation and LDDMM can be extended to the whole volume. To do so, the
voxel grid of the source volume is deformed and interpolated on the target volume. In the
case of LDDMM deformations, the voxel grid is deformed with the diffeomorphism of R3 as
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Rigid Rigid+LDDMM Translation+LDDMM
with ICP with Partial Varifold with Partial Varifold

(a) POIs metric: 2.77mm,
Tumor metric : 9.12mm

(b) POIs metric: 3.61mm,
Tumor metric : 9.32mm

(c) POIs metric: 4.22mm,
Tumor metric : 2.86mm

Figure 5.14: Tiled visualization of the registrations for Patient 11 for which the approaches using
rigid deformations (a,b) register correctly the vessels but fail to align the tumor. The tiles of the
CBCT target volume are the dark ones, those of the deformed CT volumes are the light ones.

described in 2.3.2. The values of the interpolated grid are then reported in the initial volume,
providing a registration of the CT volume onto the CBCT one as illustrated in Figure 5.14.

The registrations of the volumes can be visualized to qualitatively assess the registra-
tion in the livers. To provide a 2D visualization of the results, we use in Figure 5.14 and
Figure 5.15 a tiled representation that alternatively shows two volumes. Such visualization
allows to see the continuities between the volumes. Each tile contains a 2D view of the CT
volume (light tiles) or the CBCT one (dark tiles). As the dynamics of the images are very
different, and the tissues that emerge differ from one modality to another, we are interested
in the continuity of the emerging structures such as vessels, liver parenchyma or tumors.

5.3.5 Evaluation and Results

We recall that the key to clinical success is to register precisely the local area around the
tumor despite the fact that this tumor is not segmented in CBCT clinical routine (and thus
not usable in the registration procedure). Therefore the liver registration is evaluated through
the euclidean distance between the deformed points of interest of the CBCT and those of
the CT. It is done similarly with the tumors landmarks. Since the POIs are more centered
than the tumor landmarks (see Figure 5.12), this second evaluation is significant as we will
further explain in the discussion. The detailed results per case are provided in Table 5.5 and
Table 5.6. In addition, we evaluate the registration at the surface level, which provides an in-
dication of the overall registration quality, and gives the physician an additional benchmark
for the comparison of CT and CBCT volumes. We first compute the barycenters registra-
tions between the surfaces and apply the resulting translations to the volumes.We obtain an
average distance of 18.3mm between the POIs, and of 21.5mm between the tumors land-
marks. We show these values as red lines in the corresponding figures. They illustrate what
the physicians can quickly obtain during the procedures, registering the volumes in transla-
tion by clicking one corresponding point in both modalities. As a reference method for the
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Rigid Rigid Translation+LDDMM
with ICP with Partial Varifold with Partial Varifold

(a) POIs metric: 9.75mm (b) POIs metric : 8.53mm (c) POIs metric : 4.94mm

(d) Tumor metric : 19.8mm (e) Tumor metric : 17.4mm (f) Tumor metric : 3.62mm

Figure 5.15: Tiled visualization of the registrations for Patient 2. The tiles of the CBCT target
volume are the dark ones, those of the deformed CT volumes are the light ones. First row : sagittal
view, second row : axial view.

rigid registration, we also computed the ICP registration directly based on the distance be-
tween the points of interest. This registration setting is the only one to exploit the annotated
landmarks as input and it will only be used for quantitative comparison.

Therefore the liver registration is evaluated through the euclidean distance between the
deformed points of interest of the CBCT and those of the CT. It is done similarly with the
tumors landmarks. Since the POIs are more centered than the tumor landmarks (see Fig-
ure 5.12), this second evaluation is significant as we will further explain in the discussion.
The detailed results per case are provided in Table 5.5 and Table 5.6. In addition, we evaluate
the registration at the surface level, which provides an indication of the overall registration
quality, and gives the physician an additional benchmark for the comparison of CT and
CBCT volumes. We first compute the barycenters registrations between the surfaces and
apply the resulting translations to the volumes. We obtain an average distance of 18.3mm
between the POIs, and of 21.5mm between the tumors landmarks. We show these values as
red lines in the corresponding figures. They illustrate what the physicians can quickly obtain
during the procedures, registering the volumes in translation by clicking one corresponding
point in both modalities.
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Figure 5.16: Registration’s evaluation on the Points of Interest. The non-rigid LDDMM deformations
based on partial matching allow robust surface registration while ensuring consistent deformation of
the POIs. The red line corresponds to the average metric on POIs at initial position of registered
barycenters.

Evaluation on the POIs

We computed the euclidean distance between the POIs in the target volumes and the de-
formed ones. The results are presented in two figures: the first one (Figure 5.16) provides a
detail of the distances between the POIs as a function of the average distances from the points
of the deformed surface to those of the target surface. This gives an idea of the distance be-
tween the edges of the liver after registration and the influence on the distance between the
POIs. The associated box plots in Figure 5.17 provide a summary of the POIs registration
results according to the method used. The right box in Figure 5.17 corresponds to the ICP
rigid registration based on the POIs for the data attachment term and is used as reference.
Note that this box shows that the variations cannot be explained by rigid deformations only.
We observe in Figure 5.16 that the LDDMM deformations allow a consistent and robust reg-
istration of the surfaces with an average distance of the deformed source points to the target
of about 2mm in average. This cannot be achieved by only rigid deformations guided by
ICP (4mm in average), but must be validated with other metric to assess the quality of the
deformation applied to the whole livers volumes. In terms of POIs distances, none of the
three methods illustrated in this scatter plot shows significant difference with the others, as
validated in Figure 5.17.

Each of them performs differently depending on which patient they are evaluated as one
can see in the detailed table in Appendix 5.7.1, but none of them stands out for the POIs met-
ric. The best average performance 5.78mm±5.32 is achieved with the translation+LDDMM
deformation guided by our partial dissimilarity term yet it is not significantly better that the
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Figure 5.17: Registration’s evaluation on the Points of Interest. The rightmost box corresponds to
the reference rigid registration of the POIs, hence the best possible results for rigid deformations. The
red line corresponds to the average metric on POIs at initial position of registered barycenters.

rigid ICP (6.49mm ± 5.18) or the rigid+LDDMM method (6.54mm ± 5.09). When refer-
ring to the details in Appendix 5.7.1, we see that the LDDMM deformations significantly
improve the translations (reducing by 44% the distance between the POIs). However, rigid
registrations provide a poor initialization for the LDDMM deformations. By looking at the
rotations angles obtained with the ICP based on the surfaces in Table 5.7 (Appendix 5.7.3),
we observe a difference with those obtained with the reference rigid registration based on the
POIs. The wrong rotations of the rigid ICP based on the surfaces come from the truncation
of the source which can be interpreted as less constraints for the registration problem. Simi-
lar results are observed for the rigid registration guided by the partial varifold term. In such
cases, the LDDMM fails to compensate for the error that causes the non-rigid deformation to
start in a local minimum. It is illustrated in Figure 5.15, where the vessel and the tumor are
clearly mismatched for the volumes deformed by approaches using a rigid transformation.

Inherently, we will not be able to do better than the reference method based on POIs,
but we observe that the surface-based registration provides satisfactory results on the whole.
When viewing the results, the points of interest are quickly found from one volume to an-
other, even for Patient 14 which is the outlier. Even in this case (first row of Appendix 5.7.4)
we can see that the structures are not so far apart visually, which illustrates a certain ro-
bustness of the registrations. In particular, the partial varifold term allows both rigid and
non-rigid consistent registrations with respect to the metric on the POIs.

Figure 5.14 displays the results for Patient 11. This case corresponds to the best result
in terms of POIs distance (2.77mm), which is achieved by the rigid method guided by the
ICP. Yet this case illustrates that a good alignment of the POIs does not guarantee a good
alignment of the tumors: tumors boundaries have been highlighted for better visibility.
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Figure 5.18: Registration’s evaluation on the Tumors Landmarks. Only the Translation + LDDMM
deformation method using Partial Matching preserves the same level of performance on the Tumors
Landmarks as for the metric on POIs. The red line corresponds to the average metric on tumors using
barycenters registration. The outlier (Patient 14) is excluded from this evaluation.

Evaluation on the Tumors

In the Figure 5.18 we show the metric results for the lesions landmarks that we resume
per approach in Figure 5.19 and a detailed table is provided in Appendix 5.7.2. The first
remarkable result is that the methods using rigid deformations fail to register the tumors
closer than about 1cm in average while the translation+LDDMM guided by the partial var-
ifold term maintains the same performance level as for the POIs metric with an average
distance of 5.13mm. In the scatter plot of Figure 5.18 we observe that the rigid ICP and
the rigid+LDDMM are more spread than in the scatter plot with the metric on the POIs. In
particular, the reference deformation optimized with the POIs does not perform well on the
tumor registration. The main reason is that none of the POIs is located on the tumor. In
fact the results of rigid ICP and rigid+LDDMM Partial Varifolds are similar to those of the
reference rigid registration. These observations suggest that the rigid deformation, based on
surfaces or POIs, is not always the global solution to the volume registration and may lead
to local minimum. The non-rigid deformations driven by LDDMM do not improve rigid
registration, despite the limitation of the rotation angles.

Moreover, the rigid ICP tends to minimize the average distance from the deformed source
to the target. In some cases, as for patient 2 or patient 9, the truncation allows a freedom of
deformation which makes the method unsuitable and leads to errors, whereas the reference
method generating rigid deformations allowed to obtain good results on both POIs and tu-
mor landmarks. In some cases (Patients 1, 2, 9 for instance), the reference rigid method is
providing better results than the rigid ICP based on the livers surfaces, showing that despite
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Figure 5.19: Registration’s evaluation on the tumors landmarks. The rightmost box corresponds to
the application of the rigid registration computed with the POIs. The red line corresponds to the
average metric on tumors using barycenters registration.

an acceptable global rigid deformation, the rigid ICP fails at retrieving the correct one using
the surfaces to drive the registrations.

There is a clear difference between these methods and the registration with transla-
tion+LDDMM.

Figure 5.15 (Patient 2), second row, shows a case for which the translation+LDDMM
was better overall. In such case, the rotations based on the surfaces could not explain the
registration between the volumes with a poor result on the lesion metric (about 17.5mm). On
the contrary, the translation only guided by partial matching shows performance of 10.8mm
that is further improved by 7mm with LDDMM for a distance between the lesion landmarks
of 3.62mm.

In Appendix 5.7.4, first row, is illustrated the worst case (Patient 14) for which the in-
filtrated tumor was not annotated, and the liver is hardly visible in CBCT. Comparing the
results of rigid+LDDMM in Appendix 5.7.2 and Appendix 5.7.1, we see that the LDDMM
deformations fail to improve significantly the rigid registration guided by the partial match-
ing in the space of varifolds both regarding the POIs metric and the tumors one. The best
initialization for the non-rigid deformations of LDDMM is the translation, providing consis-
tent results for both metrics.

5.3.6 Discussion

We applied the proposed partial matching dissimilarity term to the registration of pre-op
CT volumes on CBCT volumes acquired during the interventions based on segmented liver
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surfaces. These surfaces, truncated in CBCT, present non-rigid deformations between one
another due to differences in time point and patient stances in each modality. Partial matching
can be used in a rigid registration process, providing results equivalent to a standard method
like ICP. It is important to note that the registered surfaces in this application are relatively
smooth, which favors the ICP for the rigid registration part. The deformation of the patient,
though, is non-rigid: the spinal chord merely moves when the liver may be deformed. If
a rigid deformation within the liver may suffice in some cases, it cannot be applied to the
whole volume. Moreover, the ICP approach in the non-rigid case can lead to projecting
several points on one single point of the target, and does not take into account the local
orientations of the objects or their resolution. On less regular anatomies, one could expect
less good performances.

The proposed Partial Matching can also be used with diffeomorphic shooting, providing
the tools of computational anatomy and allowing non-rigid, yet regular, deformations. The
diffeomorphic deformations lead to accurate registration of the liver surfaces (about 2mm
on average), which gives the physician a first tool to easily compare CT and CBCT volumes
during the procedure. However, the areas of interest for the procedures are also within the
liver, and care must be taken to ensure that the non-rigid deformations generated from the
surfaces generalize well within the liver volume.

The distance between the Points of Interest, close to the bifurcation of the proper hepatic
artery, provide a first evaluation metric to the registration methods. However, since they do
not cover the volume of the livers correctly, it does not allow to discriminate between the
deformation models. Regarding their location, a rigid registration is sufficient to align them
when it fails to extend to the tumors landmarks as illustrated in Figure 5.14. In particular,
the extremities of the livers seem to be deformed by non-rigid deformations which can be
explained by the better performance of the translation+LDDMM regarding the distance on
the tumor landmarks. In this case, the rigid deformations with rotation lead to a local min-
imum that the LDDMM are unable to compensate. On the contrary, translation+LDDMM
provide a consistent registration of both POIs and tumors. This last finding indicates that the
correct deformations to generate to register a liver from a CBCT acquisition to the liver from
the CT acquisition are translations and local non-rigid deformations without large (or even
no) rotations.

Although the methods based on surface registrations are sensitive to surface extraction,
we have seen through one case illustrated in Appendix 5.7.4 that the proposed registrations
remain suitable, despite the outlier (Patient 14) with respect to the metric on the POIs. In
particular natural the regularization of the LDDMM associated with the one proposed in this
paper provide a smooth and consistent non rigid registration of the surface and its ambient
space, ensuring realistic registrations of the volumes.

Regarding the computation time, we are studying a non-rigid multi-modality volume reg-
istration solution, with one of the volumes acquired during the procedure. The current com-
putation time does not allow to use this registration as is in a real time procedure, however
there are many levers to accelerate the diffeomorphic deformations, main source of compu-
tation cost. These solutions, such as limiting the number of control points (and therefore
variables), could allow the use of this solution in an application used during the procedures.
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This study was conducted to provide a visualization tool for the transcatheter directed
liver therapies in minimally invasive procedures. The results obtained with the transla-
tion+LDDMM method thus provide robust metrics around 5mm on average, which is useful
for physicians in the perspective of navigating their tools in the patient’s anatomy to locate
structures that are hardly visible in the CBCT used during the procedure. Such registrations
could facilitate the physician’s intervention by providing, for example through image fusion,
an improved visualization of the pre-procedure CT volume tumor placed in the CBCT vol-
ume. This would allow the physician to avoid redoing a traditional CBCT to see the tumor
correctly, thus limiting the X-ray dose sent to the patient and the time of the procedure.

5.4 Conclusion

We have shown that our work on atlas construction and shape registration (potentially under
partial matching constraints) is suitable for many situations. We first applied LDDMM to the
registration of an labeled vascular tree on a non-labeled database. These registrations allowed
us to build a template that captures the variability of the data. This template construction,
which is used as a new initialization of an LDDMM registration, allows to improve the
deformations and thus to be robust to the choice of the reference individual at the beginning.
It also allows the labels transfer from the deformed template to the targets, and an adapted
post processing makes the global pipeline very efficient for the annotation of vascular trees
— with the same number of leaves.

The template can also be realistically registered on more complete trees. This is made
possible thanks to the partial matching formulated as a data attachment term. Combined with
a dedicated regularization we designed, the partial matching guides the diffeomorphisms
towards a realistic registration on a sub-part of the target. Partial matching can also be used
to align a truncated surface to a complete one, which has been exploited in the context of
liver surfaces from CT (complete liver) and CBCT (truncated liver) acquired volumes. The
generated deformations can be applied to the volumes, which allows realistic and automatic
volume alignment.

These two applications of partial matching, which are a priori very different, give confi-
dence in the applicability of the solution for interventional radiology. This paves the way to
a lot of possible applications that are yet to be explored.

Automatic Labeling At least two applications could be derived from the registration of
the simplified template onto a new target. The projection of the deformed template onto a
subset of the complete target provides – up to a post-processing – a corresponding extracted
annotated subtree that can be embedded in the space of tree-like shapes in which the template
lives.

Similarly to the bottom-up labeling of Section 5.1, the labels could be propagated from
the annotated points in the target to the root, and to the descendants leaves. By doing so we
should be able to retrieve a larger subtree. Provided the correct registration of one artery, for
instance the obturator, one could extract the whole real obturator subtree.
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Anomaly Detection In many works analyzing populations of anatomical shapes, the de-
tection of outlier, or anomaly, is one key ingredient to the characterization of a disease. In
the case of the registration of the template onto real observations, this could be used, for in-
stance, to detect a missing artery or an inconsistent deformation of on artery in the template.
Such automatic detection in a registration procedure could help adapting the template to the
target. This could be done by detecting deformation mods corresponding to pathological
cases.

Changes in Bifurcations Now that we have seen that we can register the template tree to
a real target despite the large difference in term of number of branches, the next step would
be to change the topology of the template during the registration as well.

The possible combinations of LDDMM and tree space representation with edge attributes
(that are control points of several Bézier curves) are multiple. First, given an extracted tree
in the real target from the partial matching of the template, one could deduce the topology
of the extracted target tree. It is then possible to build a geodesic path between the template
embedded in the tree space and the extracted subtree with the labels of the template.

Second, we have shown that both the construction of a relevant template and its diffeo-
morphic alignment to new targets were both key in atlas-based automatic annotation solu-
tions. We provided theoretical tools to do it in Chapter. 4. Instead of deducing the topology
a posteriori, the next step is to combine these topological changes to the registration of the
template simplified trees onto the real targets.

Data augmentation Beyond pure registration purpose, one promising application of the
alignment of the template onto unlabeled targets is the statistical analysis one can perform
on the deformations. The relevant deformations and their principal components can exhibit
shapes associated with a disease, outliers as well as provide generative tools for the construc-
tion of synthetic data. We have constructed tools for statistical analysis of both the spatial and
topological changes. This is one step toward a more involved data augmentation, based on
both topological changes along geodesics in the treespace and diffeomorphic deformations.
Such tools could be used during the training of deep learning methods [Wu+19; Yan+20;
Zho20; Ham+21] for the automatic annotation of the vascular trees or other applications as
the vessels segmentation or the artifact correction in the CBCT reconstruction.

Visualization Tools One of the key steps in data comparison is the way it is displayed to
the clinicians. For the navigation of the interventional tools, having a labeled 3D vascular
tree could provide an augmented roadmap in the fluoroscopy with anatomical information
projected on the vessels. It could also provide some filtering tools to reduce the amount
of projected vessels from the CBCT volume to the fluoroscopy by removing from the seg-
mented tree (hence in the roadmap) the additional irrelevant arteries. The application to real
time images projection deserves a study on its own, which was studied in numerous works
[Mar+12; BMV15].
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Beyond Vascular Trees We developed these registration tools to be as versatile as possible:
such tools should be adaptable to other applications and frameworks or shapes – mostly
curves and surfaces of Rd. The hierarchical structures that can be encoded as trees with
features are numerous, and one can imagine applying the proposed framework to various
data, from pulmonary trees close to the structure of the vascular ones, to proteins that are
slightly different or more abstracted structures, and whose edges can be represented with
features in some euclidean space.

Converse Partial Matching The registration of the CT/CBCT was done using the surfaces
extracted from the segmentations. In order to be able to deform the whole volume in which
the livers were embedded, we had to use a large scale for the reproducing kernel associated
with the deformations. However, the control points and initial momenta encoding the dif-
feomorphic deformations do not need to be placed on the surface of the liver, and we could
improve the volume registration by having better located deformations.

We could use for example take advantage of the multiple data living in the same ambient
space: both the liver and the hepatic vascular tree can be segmented in CT and CBCT. Due
to its spatial resolution the CT scan fails at imaging the small vessels. Hence the vascular
tree extracted from the CT would be a truncated version of the vascular tree extracted from
CBCT. In this case it would be the same vascular tree acquired with different modalities: the
partial matching is perfectly adapted.

The framework, though, is converse to the one we used in Sections 5.2 and 5.3: the
deformed vascular tree from the CBCT should include the target tree from extracted from
the CT volume. We showed in Chapter 3, Section 3.4 that the proposed regularized partial
matching was adapted to this converse situation. One could then compute LDDMM regis-
tration with two different partial terms, applied to livers surfaces and vascular trees, yielding
better spatially located initial vector fields for the diffeomorphic shooting. Thus better vol-
ume deformations.

More generally, the problem of finding a trade-off between the amount of deformations
needed to register shapes subset, and the size of the selected subsets in the target and source
shapes is a problem that arises with a number of practical applications in computer vision and
computational anatomy. It happens when the data comes from different acquisition systems,
procedures or subjects (e.g two CBCT of different patients, or two CBCT of one patient
at different times), or even if the data are extracted by different specialists. To provide a
concrete example, take two truncated surfaces corresponding to the same organ truncated
differently and deformed. Without supplementary a priori, one cannot decide which one to
include in the other. On the contrary, they can be both registered to one complete target.
Conversely, and for better deformations of the ambient space, one could register a complete
template to truncated targets. This could be used for instance to better understand the non-
rigid deformations of the livers both across the patients and under the deformations caused
by the artificial breath holding during CBCT acquisitions.
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Conclusion and Perspectives
In this work we focused on the problem of template vascular tree construction and reg-

istration in the context of atlas-based automatic annotation. Among the different steps of a
generic atlas-based approach, we chose to study the construction of an atlas adapted to the
data, and the selection of a template within this atlas. The motivation was to build a template
as representative as possible of the data, labeled or not. Provided a realistic alignment of the
template onto a target, the automatic atlas-based labeling is facilitated.

Automatic Vascular Trees Annotation with LDDMM registration

We first introduced a new automatic vascular trees annotation pipeline, based on the con-
struction of an atlas and the registration of a template using the LDDMM. In this work we
showed the benefits of using diffeomorphic registration, and that the atlas-based approach
was adapted to the case of little annotated data.

In general the template and its atlas are built for a specific purpose, and a priori is often
used for their construction. For instance to identify the prostatic artery in the pelvic vascular
tree, one has to include it in the template. In the case of vascular trees, the atlas is usually
built following one of the following methods:

• Keep in the template and the atlas all the arteries listed a priori or detected in the
database.

• Select among the existing arteries a subset of arteries of interest that are expected in
new observations.

• Select the set of arteries that are common to all the annotated observations in the
database.

Such template constructions, though, do not take advantage of the available data that
are not annotated. The LDDMM does not require the trees to be annotated, and the atlas
construction can be done with the whole dataset of unlabeled observations by registering
one case onto the rest of the observations and deriving statistics on the deformations. We
showed that the template, taken as average shape obtained with the average diffeomorphic
deformation of the a reference shape onto the rest of the database, and its registration, were
good initialization for the automatic atlas-based annotation procedure one wants to use. In
addition it allows to be robust to the initial choice of the reference shape. We still used a
bottom-up label assignment post-processing that takes advantage of the a priori on the arter-
ies labels in the pelvic vasculature.
We showed in Chapter 5 that – as expected – our proposed atlas-based approach outperforms
by far the learning based approaches in the case of small training sets. To keep the compar-
ison fair, the template in this study was constructed using only the training dataset for the
learning based methods.

188



APPLICATIONS

Most of the time the template is a simplified version of the real data. When the template
has a tree structure, this often introduces topological differences with the real observations:
in terms of bifurcations ordering and number of branches. Dealing with such topological
changes was the second part of this work.

Diffeomorphic Registration and Topological Changes

One limitation of the diffeomorphic registration of vascular trees is the behavior in the case
of topological changes between the source and the target. In fact, the diffeomorphisms tend
to align the whole source shape onto the whole target. When the source shape is a trun-
cated version of the target, if the diffeomorphisms are not properly regularized, this leads
to abnormal deformations of the source branches, hence inconsistent clinical shapes corre-
spondences. In addition, when the bifurcations ordering is different from the source to the
target, the diffeomorphisms cannot explain such changes and lead to abnormal shrinking or
extension of the branches. These two observations led us to adapt the data attachment term
and the template representation.

Partial Matching in the case of Inclusion To address the problem of partial shape match-
ing in term of number of branches, we formulated in Chapter 3 a new data attachment term
in the space of oriented varifolds which is adapted to the inclusion of the deformed source
shape into the target. The proposed partial dissimilarity term can be differentiated which
makes it compatible with diffeomorphic shooting and rigid registration.
We explained the construction of the proposed function and illustrated its behavior on a toy
example. To cope with the shrinkage induced by diffeomorphic deformations guided by the
partial matching, we proposed a regularization term preserving varifold associated with the
source shapes. The global regularization term simply aims at preserving the norm of the
varifold associated with the source. The local version aims at preserving the value of this
later at the vertices of the shape.
We showed that the partial matching function associated with the local regularization allows
to build a non rigid registration framework to include the deformed source into the target, or
conversely include the target into the deformed source. Both are one step in the direction of
real applications of template registration onto real observation potentially truncated. Thanks
to the varifolds representation, we applied this framework to two kind of shapes extracted
from medical images: the vascular trees and livers surfaces. In both cases it shows consis-
tent deformations of the shapes, and in the case of the livers, allows a deformation of the
3D volumes from which the livers surfaces were extracted. It thus provides a multi-modality
volumes registration.

The proposed partial matching data attachment term could yet be improved by better dis-
entangling the local interaction between the discretization points of the shapes. In particular
this could prevent from an over-evaluated attraction to the center of mass of the target, or the
shrinking of the source.
One of the natural extension of the partial matching we proposed would be in the space of
functional shapes and normal cycles. For the latter, the definition of the inclusion would be
a challenge of its own since the model work on the unit normal bundle to the shapes: the
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normal cycle associated with a truncated shape is not included in the one associated with the
corresponding complete shape.

Registration and Hierarchical Changes The second kind of topological changes we ad-
dressed during this work is the changes in terms of bifurcations ordering. To that end we
adapted in Chapter 4 the tree-like shapes representation of [Fer+12b]. The template shape
is embedded in the space of tree-like shapes in which the edge attributes are Bézier curves
control points in Rd allowing to go back and forth between the template and the vascular tree
representation. In this space of tree-like shape, one topology is associated with one euclidean
space called orthants, which are "glued" together at the boundaries.
This tree-like shape representation provides a versatile space that takes into account the topo-
logical changes and a consistent representation of the vessels centerlines. The Bézier curves
provide a naturally regularized representation reducing the dimension of the orthants that
facilitates the optimization in the space of tree-like shapes. To change the topology of the
template, the distance of its position to the boundary of the current orthant is computed. If
the template is closer to the boundary than a threshold, we move to the boundary and test
each orthant contiguous to the boundary on which the template was projected. The new
topology is selected as the one maximizing the gradient of the cost function with respect to
the edge attributes.
This proposed minimization scheme has two main advantages: it is adapted to the registra-
tion of the template tree with potential changes in the bifurcations order, which is naturally
handled during the minimization, and it does not require the target to be labeled. The sec-
ond point is necessary for the tree-like shapes representation. The result of the minimization
procedure can then be used to automatically annotated the target tree, or as an element of the
tree-like shapes space as well.
In this space, one can derive statistics on a set of observations and geodesics between them.
It is therefore perfectly adequate to the construction of an atlas for a database of vascular – or
other biological – trees. The cost functions used to compare the vascular trees in this frame-
work relies on the differentiable unbalanced optimal transport cost between the branches
centerlines. The resulting transport plan is one solution to deal with the differences in terms
of number of branches between the source and the target. In addition, this is one solution to
the problem of comparing unlabeled tree shapes while authorizing topological changes, as it
is emphasized in [FN20].

Another option would be to use different centerlines trees distance to compare the shapes.
For instance [DKS18] propose a square root velocity formulation to compare neurons shapes.
An elastic metric is constructed capturing the amount of bending and stretching needed to
align the curves. The advantage of the tree space representation as control points of Bézier
curves is the versatility of this representation, and the capacity to generate various spatial
representations for the vascular trees. The distance function between the vascular trees can
then be adapted, and, as long as it can be differentiated, we are able to back-propagate the
gradient in the space of tree-like shapes.
Similarly, a different distance between curves could be used in the Optimal Transport map-
ping computation between the curves of the template tree and the ones of the target. In fact,
using a simple L2 distance between curves sampled by a fixed number of points may not
be the best metric for comparing the centerlines of the trees. In particular, the distance is
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sensitive to the sampling method, and if one solution is to increase the number of sampling
points, the square root velocity trees (seen as collections of square root velocity functions)
and elastic metrics were designed for this purpose.

Statistics in the Space of Tree-like Shapes A challenge for statistics in tree-like shapes
spaces would be to be able to compute the principal geodesics without having to fix the ends
of the geodesic with points of the database. This has been done in the case of phylogenetic
trees [Nye14] but is far from being transposed to the case of tree-like shapes. A particu-
larly interesting approach would be to adapt the notion of parallel transport [You+08; LP13;
Gui+21] to geodesics in such spaces. Indeed, we know how to project a point of these space
on a geodesic, and we also know how to move in this space according to a vector. It would
then be interesting to develop an optimization procedure on the extremities of the geodesic
according to the projections of the trees of the database on this geodesic.

A second open question is the use of initial momenta of diffeomorphic shooting as edge
attributes: if the edge attributes encode the whole vector field v associated with the dif-
feomorphism φv

t , the position in the space of tree-like shape the tangent to the space of
diffeomorphisms at identity. In such a case, by endowing the orthants with the metric on
V , one would get a stratified space that is not composed of euclidean spaces glued together
anymore: it would correspond to manifolds glued together. The main issue to this approach
would be the way the manifolds are glued together, and the norm of the diffeomorphism at
the boundaries between the orthants.

In conclusion, atlas based method can be very effective, in particular in the case of little
annotated data, when coupled with relevant deformation models. This is true even for shapes
as complex as vascular trees, with important topological differences both in terms of number
of branches and order of bifurcations.
In the case of large annotated databases, other solutions as learning-based ones should also
be explored, and a combination of the two approaches would bring out the best in each:
statistics and robust methods as well as fast inference and good features extraction.
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Appendices

5.5 Matrix Valued Kernels

Vector valued kernels were introduced in the seminal work of Laurent Schwartz [Sch64] and
used for instance in [CA04] to generate thin plate splines for the interpolation of dense and
sparse vector fields. In [MG13] the authors focus on kernels inducing translation and rotation
invariant kernels that are the ones we are interested in for geometric interpolations.

Let denote by τ : x 7→ x + t a translation of some fixed t ∈ Rd, and by ρ : x 7→ Rx a
generic rotation for some fixed R ∈ O(d,R) the orthogonal group over R of dimension d.

Theorem 15 (Translation Invariance). Let H be a RKHS with kernel K : Rd × Rd 7→ Rd×d.
The map u 7→ u ◦ τ is an isometry in H for any translation τ if and only if there exists a
function k : Rd 7→ Rd×d such that K(x, y) = k(x− y) for all x, y ∈ Rd.

A kernel K satisfying the conditions of Theorem. 15 is called translation invariant. The
authors in [MG13] also introduce the projection matrices:

Pr∥x :=
xxT

|x|2
and Pr⊥x := Id −

xxT

|x|2
, x ∈ Rd\{0} (5.3)

These projections onto the vector x and its orthogonal planes will be used in the decom-
position of translation and rotation invariant kernels:

Lemma 3. Let k : Rd 7→ Rd×d be a generic matrix valued function. The following are
equivalent:

(i) for any x ∈ Rd and R ∈ O(d,R) we have that k(−x) = k(x)T and

k(Rx) = Rk(x)R−1;

(ii) there exists a scalar k0 ∈ R such that k(0) = k0.Id and two scalar functions k⊥ and
k∥ such that for all x ∈ Rd, x ̸= 0:

k(x) = k∥(|x|)Pr∥x + k⊥(|x|)Pr⊥x .

Theorem 16 (Rotation Invariance). Let H be a RKHS with a translation invariant kernel
(K(x, y) = k(x− y) for all x, y ∈ Rd). The map v 7→ ρv ◦ ρ−1 is an isometry in H for any
rotation ρ : x 7→ Rx, with R ∈ O(d,R) if and only if Equation 3 holds for all R ∈ O(d,R).
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The kernels k inducing translation and rotation invariant inner product can thus be written
under the form of Equation 3. The associated vector fields are then functions v : x 7→ k(x)α
for α ∈ Rd. In the case of Gaussian scalar-valued functions k(x) = b.exp(−c |x|2) with
b, c > 0, one can show that the function:

k(x) = a.exp
(
−c |x|2

)
xxT +

(
(d− 1)a

2c
− a |x|2

)
exp

(
−c |x|2

)
Id, with a, c > 0

is a divergence free kernel.

Similarly, the function:

k(x) = −a.exp
(
−c |x|2

)
xxT +

a

2c
exp

(
−c |x|2

)
Id, with a, c > 0

defines a curl free kernel. These kernels are illustrated in Figure 5.20.

(a) (b)

(c)

Figure 5.20: Matrix Gaussian kernels (a) Curl free, (b) Divergence free, and (c) the sum of the two,
a classic scalar kernel (2.2).
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5.6 Normal Cycles

We have seen in Chapter. 2 Section. 2.4 that oriented varifolds allow us to define a framework
in which currents and non-oriented varifolds are special cases. This allows us to create
metrics suitable for many varieties of curves and surfaces, ranging from smooth shapes to
noisy and sub-sampled ones. However, one can be interested in rectifiable sets and sub-
varieties that represent the shapes of organs in anatomies, and other numerically analyzed
objects. These shapes frequently have edges: this can either be due to acquisition limitations
(resolution, field of view) or the objects structures themselves (ends of vessels, heart...). In
such cases the matching solution using a data attachment in the space of varifolds may lead
to degenerated solutions.

The specificity of this metric is to use a model of currents on the unit normal bundle of
the shapes, encoding second-order information (i.e. curvature). As presented in [RG16],
this representation shows better results at the areas of high curvature and at singular points
such as bifurcations or curves’ ends.In addition we can also derive kernel metrics on normal
cycles seen as currents over the unit normal bundles.

Definition 38. Let d ∈ N∗. A m-differential form is a mapping x 7→ ω(x) from Rd to the
space of alternating m-linear form of Rd. A m-current in Rd is a continuous linear mapping
from the space of continuous m-differential forms to R.

The space of test functions considered for the Normal Cycles is Cd−1
0 (Rd × Sd−1), the

space of continuous (d-1)-differential forms vanishing at infinity. In line with the varifolds
discussion, we still consider curves and surfaces in Rd, d = 2, 3 but the notions can be
extended to any m-differential forms in Rd, d ∈ N∗.

Definition 39. Unit Normal Bundle and Normal Cycle Consider a compact C2 curve or
surfaces X with or without boundary. The unit normal bundle of X is:

NX = {(x, n⃗)|x ∈ X, n⃗ ∈ Nor(X, x)},

with Nor(X, x) the set of all unit normal vectors of X at x. The normal cycle of X associ-
ated with NX is:

N(X)(ω) := [NX](ω) =

∫
NX

⟨ω(x, n⃗)|τ(x,n⃗)NX⟩dvol(x, (⃗n)),

with ω ∈ Cd−1
0 (Rd × Sd−1).

In particular for curves and surfaces in R3, the unit normal bundle is a 2-dimensional
surface in R3 × S2 and the integration is made over a surfaces: dvol(x, n⃗) can be written
dS(x, n⃗). In the case of curves in R2, the unit normal bundle corresponds to a curve in
R2 × S.

In particular, we are interested in unions of curves and surfaces, and the additive property
of the Normal Cycles requires a condition on the smoothness of the shapes, the positive reach
defined in [Fed59] which encompasses the C2 compact submanifolds with boundaries.
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Proposition 21. Consider X = X1 ∪X2 such that X1,X2, and X1 ∩X2 are C2 compact
submanifolds with or without boundaries. Then N(X) = N(X1) +N(X2)−N(X1 ∩X2).

This is specially important in the discrete setting in which the curves are unions of seg-
ments and the surfaces unions of triangles that are in fact C2 compact submanifolds with
boundaries. In general, the normal cycles allow to take into account the singular points, as
the bifurcations in a tree of central curves or the extremities of curves and surfaces. Indeed
for such points a sub-part of the unit normal bundle is associated, and one can imagine them
as areas of high curvature.

Kernel Metrics on Normal Cycles Once again we can derive kernel metrics on normal
cycles seen as currents over the unit normal bundles, and we can design reproducing kernels
k = ke × kt on Rd × Sd−1. This construction detailed in 2.4.2 allows to write the inner
product between normal cycles:

⟨N(S),N(T )⟩W ′ =

∫
N(S)

∫
N(T )

ke(x, y).kt(n⃗2, n⃗2)⟨τ(x,n⃗1)NS|τ(y,n⃗2)NT ⟩

dvol(y, n⃗1)dvol(x, n⃗2)

(5.4)

This last equation is only true for C2 compact submanifolds with or without boundaries,
and is adapted to discrete curves and surfaces through the additive property. Contrary to
the varifold representation, the inner product in the space of normal cycles pays attention
to both normal vectors to the shapes with kt(n⃗2, n⃗2) and to the tangent vectors to the unit
bundles with ⟨τ(x,n⃗1)NS|τ(y,n⃗2)NT ⟩. These two terms introduce a supplementary sensitivity
to the curvature of the shapes. When working with discrete curves and surfaces, represented
(see Section. 2.4.1) with unions of points, segments (edges of triangles, segments of curves)
and triangles for the faces of surface meshes. The associated unit normal bundle structures
are then respectively spheres, cylinders, and triangles. The spatial integration is approxi-
mated over those structures like for varifolds using weighted Diracs. For such structures, the
following property simplifies the computation of the inner product with kernel metrics:

Proposition 22. The spherical, cylindrical and planar components are orthogonal with re-
spect to the kernel metric on normal cycles defined in Equation. 5.4.

So the computation can be done independently on each component.

The choice of the function kt defines again the space of the test functions used to com-
pare the shapes, and allows (provided the same conditions on ke as ), to define a distance
d(S, T ) = |N(T )−N(S)|W ′ instead of a pseudo distance.

For the linear kernel kt(u, v) = ⟨u, v⟩, following the notations of Section. 2.4.1, the inner
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product for discrete curves (composed of vertices and segments) is written:

⟨N(S), N(T )⟩ =π2

2

n∑
i=1

m∑
j=1

ke(c
S
i , c

T
j )⟨τSi , τTj ⟩cos(αij)2

+
16π2

3

N∑
i=1

M∑
j=1

ke(x
S
i , x

T
j )

(
1−

nxS
i

2

)(
1−

nxT
j

2

) (5.5)

with nxT
j

the number of segments connected to the vertex xT
j in T , and αij the angle

between the tangent vectors τSi and τTj , n,m the number of segments in S, T and N,M the
number of vertices. More details about the computation of the terms can be found in [RG16],
Annex A. The first half of the term is associated to the cylindrical part of the curves, and the
second term corresponds to the spherical part.

For the surfaces, the author in [RG16] Annex A.2.2 only provide a truncated version of
the inner product with linear kernel:

⟨N(S), N(T )⟩ = 4
n∑

i=1

m∑
j=1

ke(c
S
i , c

T
j )a

S
i a

T
j ⟨τciS, τciT ⟩+

1

3

N∑
k=1

M∑
l=1

ke(x
S
i , x

T
j )×π(4− 2nxS

k
+ 2NxS

k
)− 2

N
xS
k∑

i=1

αi,xS
k


π(4− 2nxT

l
+ 2NxT

l
)− 2

N
xT
l∑

j=1

αj,xT
l

 (5.6)

with n,m the number of triangles in S, T and N,M their number of vertices. The value
nxS

k
corresponds to the number of vertices connected to xS

k and NxS
k

the number of triangles
with vertex xS

k . Finally αi,xS
k

is the angle of triangle i at vertex xS
k

5.7 Partial Matching Application to CT/CBCT volumes reg-
istration

5.7.1 POIs Detailed Results per Patients
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Patients ICP Rigid Rigid
Rigid
+ LDDMM

Translation
Translation
+ LDDMM

ICP Rigid
Based PoIs

Patient 0 5.18 4.29 4.15 18.6 4.71 2.47
Patient 1 7.33 22.5 15.8 14.1 7.86 4.32
Patient 2 9.75 9.88 8.53 12.8 4.94 4.92
Patient 3 5.9 5.97 5.09 9.09 6.14 2.87
Patient 4 5.04 5.95 6.05 8.31 6.89 5.66
Patient 5 5.1 6.14 4.89 5.06 3.37 2.26
Patient 6 4.26 4.42 6.08 6.91 10.8 1.28
Patient 7 4.06 2.93 3.75 6.36 3.6 1.74
Patient 8 4.72 3.55 4.76 5.87 3.67 2.36
Patient 9 13.7 7.4 9.14 14.0 6.26 1.66
Patient 10 3.7 2.93 2.88 5.25 2.93 1.65
Patient 11 2.77 3.48 3.61 8.87 4.22 1.48
Patient 12 5.97 5.31 6.02 9.03 6.3 3.02
Patient 13 6.53 5.71 5.56 13.4 5.6 2.47
Patient 14 18.9 22.3 22.8 28.1 13.6 1.69
Patient 15 2.97 2.3 2.55 6.46 3.59 2.64
Patient 16 4.12 3.34 3.75 4.07 4.4 2.28
Patient 17 6.17 11.0 3.1 5.72 5.32 2.34
Patient 18 7.17 7.05 5.74 13.9 5.76 1.89
Average 6.49 7.18 6.54 10.3 5.79 2.58

Stdev 3.93 5.83 4.95 5.9 2.66 1.18
Median 5.18 5.71 5.09 8.87 5.32 2.34

Table 5.5: Average distance between the Points of Interest per case

5.7.2 Lesions Detailed Results per Patients
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Patients ICP Rigid Rigid
Rigid
+ LDDMM

Translation
Translation
+ LDDMM

ICP Rigid
Based PoIs

Patient 0 5.19 3.94 5.11 17.6 3.31 13.6
Patient 1 11.2 18.2 6.05 1.41 2.93 5.2
Patient 2 19.8 18.8 17.4 10.8 3.62 2.21
Patient 3 16.6 16.8 16.0 16.7 11.2 14.0
Patient 4 7.14 9.34 7.92 9.78 6.91 13.7
Patient 5 5.68 6.77 6.03 7.25 3.18 8.0
Patient 6 4.67 4.32 4.15 4.37 5.7 12.0
Patient 7 3.24 4.02 2.14 2.8 0.59 6.39
Patient 8 6.76 6.17 7.48 6.77 4.93 5.76
Patient 9 23.3 18.4 16.6 6.86 3.94 8.68

Patient 10 13.9 14.4 15.1 13.0 8.81 9.15
Patient 11 9.12 7.49 9.32 3.66 2.86 18.7
Patient 12 7.56 8.22 8.0 6.73 4.48 4.04
Patient 13 21.4 21.2 17.7 22.7 8.55 13.4
Patient 14 None None None None None None
Patient 15 6.69 7.36 8.28 9.49 6.36 19.3
Patient 16 5.31 4.7 5.03 6.96 3.3 6.97
Patient 17 5.56 12.5 8.22 7.29 7.37 2.87
Patient 18 7.83 7.75 7.21 12.0 4.32 7.44
Average 10.1 10.6 9.31 9.23 5.13 9.52
StDev 6.06 5.71 4.8 5.37 2.56 5.08

Median 7.35 7.98 7.96 7.27 4.4 8.34

Table 5.6: Average distance between the tumors landmarks per case. The invasive tumor could not be
annotated for Patient 12.

5.7.3 Rotations Deformations Comparison
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Rigid ICP Based POIs Rigid ICP Based Surfaces
Patients X Y Z X Y Z

Patient 0 -1.15 -11.52 14.2 -1.53 -12.18 10.7
Patient 1 -5.58 -11.68 0.8 -9.69 -6.51 3.89
Patient 2 -8.66 -6.28 -0.03 -17.39 -2.59 0.64
Patient 3 -13.49 -0.11 2.58 -13.03 0.51 1.33
Patient 4 -9.02 3.17 -10.8 -8.37 0.93 -9.45
Patient 5 -2.37 -4.13 -2.43 -4.96 -1.93 1.89
Patient 6 -5.09 -1.27 -3.64 -6.42 0.65 -4.96
Patient 7 -6.13 2.37 -5.04 -4.85 0.85 -3.43
Patient 8 -6.36 4.98 6.14 -6.81 3.45 2.47
Patient 9 -0.77 -5.45 8.57 -3.49 -12.56 6.15
Patient 10 2.49 6.94 3.18 -0.72 6.71 3.68
Patient 11 -10.15 -5.21 1.52 -9.34 -3.62 0.27
Patient 12 5.1 4.96 -6.6 5.3 4.18 -4.14
Patient 13 -5.25 -2.79 11.2 -2.5 -6.93 10.2
Patient 14 3.3 -12.94 -4.14 -9.25 -16.26 6.0
Patient 15 -2.38 6.39 -5.4 -3.88 6.68 -5.35
Patient 16 1.71 -1.56 1.45 -2.71 -2.01 0.31
Patient 17 -0.93 -1.01 4.24 -4.11 -2.33 7.57
Patient 18 -3.28 10.3 -4.61 4.76 9.8 0.54

Table 5.7: Rigid ICP Rotation Values in degree along each axis, based on the Points of Interest and
based on the Surfaces. In bold are highlighted the most important differences in terms of rotation
angles.

5.7.4 Worst Case Scenario : Bad Feature Extraction
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Rigid Rigid+LDDMM Translation+LDDMM
with ICP with Partial Varifold with Partial Varifold

(a) POIs metric: 18.9mm,
Surface metric : 10.1mm

(b) POIs metric: 22.8mm,
Surface metric : 6.06mm

(c) POIs metric: 13.5mm,
Surface metric : 4.22mm

Figure 5.21: Tiled visualization of the registrations for Patient 14. The infiltrated tumor could not be
annotated. The tiles of the CBCT target volume are the dark ones, those of the deformed CT volumes
are the light ones.
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Recalages difféomorphiques avec changements de topologie: application à la radiologie
interventionnelle

Résumé Cette thèse de mathématiques appliquées s’inscrit dans le domaine de la radiologie
interventionnelle, en particulier les interventions endovasculaires minimalement invasives.
Afin de guider leurs outils à l’intérieur des patients, les praticiens peuvent s’appuyer sur des
logiciels avancés, par exemple pour analyser un arbre vasculaire 3D et identifier les vaisseaux
à traiter. Dans le cas du traitement de l’hyperplasie bénigne de la prostate par embolisation
de l’artère prostatique, il est important d’identifier le type de chaque artère afin de limiter les
risques d’embolisation incomplète ou non-désirée.

Comme il est difficile d’annoter les données médicales, les solutions techniques ne doivent
s’appuyer que sur de petites bases de données pour être utilisables. Les méthodes dites
"basées atlas" répondent exactement à ce critère. Cependant, peu d’entre elles exploitent
l’information disponible non étiquetée et, à cause de la forme complexe des arbres vascu-
laires, les déformations non rigides pour aligner les arbres sont rarement envisagées. Pourtant
de tels recalages favorisent le transfert automatique de l’étiquetage de l’arbre déformé vers
une base de données non annotée. Nous nous appuyons sur la théorie de l’anatomie compu-
tationnelle et des LDDMM pour l’analyse de l’arbre vasculaire pelvien. Nous montrons sur
un premier exemple d’arbres simplifiés qu’en utilisant un seul cas annoté, dit "template", et
recalé sur l’ensemble de la base de données, on peut construire un atlas réaliste capturant la
variabilité géométrique des observations. L’atlas une fois aligné sur un autre arbre est utilisé
pour l’annoter et atteindre une précision de 98.9%(±0.33) sur une base de 49 arbres.

Cependant, en passant à des données vasculaires complètes deux problèmes se posent :
1. les deux arbres à recaler n’ont pas le même nombre de branches et ne peuvent donc pas
exactement être mis en correspondance ; 2. deux arbres à recaler présentent dans la majorité
des cas des changements topologiques qui ne peuvent pas être gérés par des LDDMM. Ces
deux points nous conduisent d’abord à formuler le problème de l’inclusion d’une forme dans
une autre comme un terme d’attache aux données. Nous proposons également un terme de
régularisation comparant l’objet déformé et sa position initiale, et permettant de contrôler
les déformations induites par les difféomorphismes. Nous appliquons cette méthode au re-
calage du template de l’arbre pelvien sur des arbres réels. Nous l’appliquons aussi à celui de
surfaces de foies tronquées sur des surfaces complètes pour un recalage de volumes issus de
deux modalités d’imagerie différentes.

Pour gérer les changements topologiques, notre template est plongé dans un espace adapté.
Nous pouvons alors faire varier sa topologie en créant des changements dans l’ordre des bi-
furcations au cours du recalage sur un arbre cible. Jusqu’à présent ces recalages dans cet
espace ne pouvaient s’effectuer que si tous arbres étaient annotés. Grâce à une procédure
d’optimisation sur la position du template nous pouvons effectuer son recalage sur des arbres
non annotés. Les LDDMM peuvent y être associés pour combiner des recalages diffeomor-
phiques et topologiques qui sont appliqués à des exemples jouets. La combinaison de ces
méthodes offre de nombreux outils pour les méthodes basées atlas même dans le cas de forts
changements topologiques.

Mots-clés : Radiologie Interventionnelle, Anatomie Computationnelle, Arbres Vasculaires,
LDDMM, Changements de Topologie.
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Diffeomorphic Registration with Topological Changes: Application to Interventional
Radiology

Abstract This thesis falls within the field of mathematics applied to Interventional Radiol-
ogy, and more precisely minimally invasive endovascular interventions. To guide their tools
inside the patients, practitioners can rely on advanced software to analyze, for example, a 3D
vascular tree and identify the vessels to be treated. When treating benign prostatic hyperpla-
sia with prostatic artery embolization, it is particularly important to identify the type of each
artery in the tree in order to limit the risk of incomplete or unwanted embolization.

Because medical data is difficult to annotate, solutions to automatize this annotation pro-
cess may only rely on small databases to be developed. The so-called "atlas-based" methods
meet exactly this criterion, by transferring labels from an annotated tree to a new one through
registration. However, few techniques exploit the available unlabeled information and, be-
cause of the complex shape of vascular trees, non-rigid deformations to align the trees are
rarely considered. We rely on the theory of computational anatomy and Large Deformation
Diffeomorphic Mapping (LDDMM) for the analysis of the pelvic vascular tree. In a first
example on simplified trees, we register a single annotated case, called a "template", on the
whole database to then build a realistic atlas capturing the geometric variability of the ob-
servations by using deformation statistics. The atlas, once aligned on another tree, is used to
annotate it with an accuracy of 98.9%(±0.33) on a database of 49 trees.

When considering complete vascular data instead of simplified ones, two problems arise:
1. the two trees to be aligned do not have the same number of branches and therefore cannot
be exactly matched; 2. in most cases, trees to be aligned present topological changes in terms
of bifurcation ordering that cannot be modeled by LDDMM. The first problem pushes us to
adapt the registration to obtain the inclusion of a deformed shape in another. We also propose
a regularization term comparing the deformed object with its initial position and allowing to
control the deformations induced by the diffeomorphisms. We apply this method to the
registration of a simplified pelvic artery tree on complete and complex real trees. Thanks to
the flexibility of the shape representation and the LDDMM framework, we also apply it to
the registration of truncated liver surfaces on complete surfaces for a registration of volumes
from two different imaging modalities.

To manage topological changes in terms of bifurcation ordering, our template is immersed
into a suitable space called the "tree space". In this space, one can then vary its topology by
creating changes in the order of bifurcations during the registration on a target tree. Until
now, these changes in such space could only be performed if all the trees were annotated.
Thanks to an optimization procedure on the position of the template, we can perform its reg-
istration on non-annotated trees. The LDDMM can be associated to combine diffeomorphic
and topological registration which are applied to toy examples. The combination of these
methods offers many tools for atlas-based methods even in the case of strong topological
changes: for unlabeled database analysis, automatic annotation, data augmentation.

Key words: Interventional Radiology, Computational Anatomy, Vascular Trees, LDDMM,
Topological Changes
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