
HAL Id: tel-04190587
https://theses.hal.science/tel-04190587v1

Submitted on 29 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards efficient, general and robust entity
disambiguation systems

Lihu Chen

To cite this version:
Lihu Chen. Towards efficient, general and robust entity disambiguation systems. Computation and
Language [cs.CL]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IPPAT017�. �tel-
04190587�

https://theses.hal.science/tel-04190587v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

PP
AT

01
7

Towards Efficient, General and
Robust Entity Disambiguation

Systems
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (ED
IP Paris)

Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 14 Juin 2023, par

LIHU CHEN

Composition du Jury :

Chloé Clavel
Professeur, Institut Polytechnique de Paris Présidente /
Examinatrice

Evangelos Kanoulas
Professeur, Université d’Amsterdam Rapporteur

Gerard de Melo
Professeur, Hasso Plattner Institute / Université de Potsdam Rapporteur

Serena Villata
Directrice de recherche, Université Côte d’Azur / CNRS Examinatrice

Mrinmaya Sachan
Assistant Professor, École polytechnique fédérale de Zurich Examinateur

Fabian Suchanek
Professeur, Institut Polytechnique de Paris Directeur de thèse

Gaël Varoquaux
Directeur de Recherche, Inria Saclay Co-Directeur de thèse

PHD THESIS

Towards Efficient, General and Robust
Entity Disambiguation Systems

Author:
Lihu CHEN

TÉLÉCOM PARIS

Institut Polytechnique de Paris

August 26, 2023

Abrégé

La désambiguı̈sation des entités vise à faire correspondre les mentions dans les doc-
uments à des entités standard dans une base de connaissances donnée, ce qui est
important pour diverses applications telles que l’extraction d’informations, la recherche
sur le web et la réponse aux questions. Bien que le domaine soit très dynamique et que
de nombreux travaux nouveaux apparaissent, trois questions sont sous-explorées par
les travaux antérieurs.

1) Peut-on utiliser un petit modèle pour approcher les performances d’un grand
modèle? Pour répondre à cette question, nous proposons un réseau neuronal léger mais
réseau neuronal léger mais efficace pour la désambiguı̈sation d’entités biomédicales.
Notre modèle est 23 Notre modèle est 23 fois plus petit et 6,4 fois plus rapide que
le modèle de base BERT. empiriques démontrent que le modèle est très compétitif et
atteint une performance qui est statistiquement indiscernable de l’état de l’art.

2) Comment développer un système de désambiguı̈sation unique adapté à plusieurs
domaines? Pour répondre à cette question, nous présentons notre construction GLADIS,
un nouveau benchmark pour la désambiguı̈sation d’acronymes, qui est plus grand et
plus difficile que que les travaux existants. Ce benchmark contient trois éléments : un
dictionnaire plus grand, trois ensembles de données provenant des domaines général,
scientifique et biomédical, ainsi qu’un corpus de corpus de pré-entraı̂nement à grande
échelle. Nous avons également proposé AcroBERT, le premier modèle de langage
pré-entraı̂né pour la désambiguı̈sation des acronymes. pour la désambiguı̈sation des
acronymes, dont les performances sont nettement supérieures à celles d’autres modèles
de référence dans de nombreux domaines

3) Les systèmes existants sont-ils robustes face aux mots hors-vocabulaire et aux
différents ordres de mots? Pour la première sous-question, nous abordons la question de
l’absence de vocabulaire en en concevant un cadre d’apprentissage contrastif, baptisé
LOVE (Learning Out-of- Vocabulary Embeddings). LOVE est capable de générer des
représentations de mots pour n’importe quel mot non vu en apprenant le comporte-
ment des mots non vus. mots non vus en apprenant le comportement d’encastrements
pré-entraı̂nés en utilisant uniquement la forme superficielle des mots. la forme su-

i

perficielle des mots. LOVE peut rendre les modèles de langage plus robustes avec
quelques paramètres supplémentaires. Des évaluations approfondies démontrent que
notre modèle léger performances similaires, voire supérieures, à celles de ses concur-
rents, à la fois sur des ensembles de données sur des ensembles de données originaux
et sur des variantes corrompues. Pour la deuxième sous-question, nous soulignons une
faiblesse potentielle faiblesse potentielle des encodages positionnels, qui sont largement
utilisés dans les modèles basés sur les transformateurs. Les codages positionnels sont
utilisés pour injecter des caractéristiques d’ordre des mots dans les modèles linguis-
tiques. Bien qu’ils puissent Bien qu’ils puissent améliorer de manière significative les
représentations de phrases, leur fonction spécifique dans les modèles de langage n’est
pas entièrement comprise. aux modèles de langage n’est pas entièrement comprise,
surtout si l’on tient compte des récentes la compréhension du langage naturel à partir
de modèles de langage avec des encodages positionnels sont insensibles à l’ordre des
mots. sont insensibles à l’ordre des mots. Dans ce travail, nous menons des études
plus approfondies et systématiques sur les encodages positionnels. systématique des
encodages positionnels, complétant ainsi les travaux existants sur deux aspects : Nous
Nous révélons d’abord la fonction principale des PE en identifiant deux propriétés com-
munes, la localité et la symétrie. la symétrie. Ensuite, nous mettons en évidence une
faiblesse potentielle des PE actuels en introduisant deux nouvelles tâches d’évaluation
de la permutation de mots. en introduisant deux nouvelles tâches d’évaluation de
l’échange de mots. Nous espérons que ces nouveaux résultats et conclusions pourront
nous éclairer sur la manière de concevoir et d’injecter des encodages positionnels dans
les modèles de langage.

Enfin, nous présentons une nouvelle méthode d’achèvement de la KB basée sur
LM, spécifiquement adaptée aux faits concernant les entités à longue queue. KB basée
sur LM qui est spécifiquement conçue pour les faits concernant les entités à longue
traı̂ne. Plus précisément, nous présentons une nouvelle méthode de complétion de
KB basée sur LM, spécifiquement des faits concernant des entités à longue traı̂ne. La
méthode exploite deux LM différents en deux étapes : pour la recherche de candidats et
pour la vérification et la désambiguı̈sation des candidats. Pour évaluer notre méthode
et diverses lignes de base, nous introduisons un nouvel ensemble de données, appelé
MALT, enraciné dans Wikidata. dans Wikidata. Notre méthode surpasse toutes les
lignes de base en F1, avec des gains importants, en particulier dans le rappel.

ii

Acknowledgements

I spent three wonderful years in France and finally finished my PhD. I would like to
thank many people who help me, support me and accompany me.

First of all, I want to thank my two thesis advisors. I would like to first thank my
advisor at Telecom, Fabian. He is a knowledgeable, amiable, and altruistic person.
Every time I meet him, he always talks with me with warmth and passion, and the
topics of the talk can be very diverse, from traveling to culture, and we certainly discuss
our research work as well. Fabian is very rigorous and responsible with our research
work. At the same time, he highly emphasizes integrity and openness. I would say
that I benefit a lot from working with Fabian. Next, I would like to thank my advisor
at Inria, Gaël. He has a great passion and taste for research. He is able to give me
suggestions from a very high-level view, which is the right thing that I am lacking. Gaël
is committed to open-source projects and high-impact work, and this spirit inspires me
a lot. It is great luck to be able to work with the two advisors, and I have obtained so
much happiness, confidence, and achievements by working with them.

Secondly, I would like to thank my family members, my father, my mother, and
especially my wife, Lixue. She is a sweet, kind, tender girl, and makes a warm, cozy
and clean home for me. She always supports me and loves me. Without her, I would
not be able to focus on my career and dreams. I appreciate her efforts very much.

Finally, I would like to thank my colleagues and friends. I have had great three
years with all of you Diggers (people at the DIG team) and I enjoy all the lunchtime,
seminars, and outings with you. Also, I would like to thank my friends for their
accompany. I cherish the great memories of going to restaurants and playing football
together, and you bring me a lot of joy.

i

Contents

1 Introduction 1
1.1 Entity Disambiguation . 2
1.2 Challenges for Entity Disambiguation 4

1.2.1 Contributions . 6

2 Preliminaries 9
2.1 Knowledge Bases . 9

2.1.1 Entities . 10
2.1.2 Classes . 10
2.1.3 Properties of Entities: Attributes and Relations 11

2.2 Entity Disambiguation . 12
2.2.1 Candidate Generation . 12
2.2.2 Ranking . 12
2.2.3 Unlinkable Mention Prediction 13
2.2.4 Generative Entity Disambiguation 14

2.3 Language Models . 14
2.3.1 Statistical Language Models 14
2.3.2 Neural Language Models . 15
2.3.3 Pre-trained Language Models 16

3 Efficiency: Disambiguating Biomedical Entity with Lightweight Models 22
3.1 Introduction . 22
3.2 Related Work . 23
3.3 Our Approach . 24
3.4 Experiments . 30

3.4.1 Datasets and Metrics. 30
3.4.2 Experimental Settings . 31
3.4.3 Competitors . 31

3.5 Results . 32

ii

3.5.1 Overall Performance . 32
3.5.2 Ablation Study . 32
3.5.3 Performance in the Face of Typos 33
3.5.4 Parameters and Inference Time 34
3.5.5 Model Performance as Data Grows 34

3.6 Conclusion . 35

4 Generalizability: Disambiguating Acronym in General Domain 36
4.1 Introduction . 36
4.2 Related Work . 38

4.2.1 Acronym Identification and Disambiguation 38
4.2.2 Existing benchmarks . 39

4.3 Constructing GLADIS . 40
4.3.1 Dictionary and Pre-training Corpus 40
4.3.2 Acronym Disambiguation Dataset 43

4.4 AcroBERT . 44
4.5 Experiments . 46

4.5.1 Experimental Settings . 46
4.5.2 Competitors . 47
4.5.3 Metrics . 48
4.5.4 Results . 49
4.5.5 Case Study . 51

4.6 Conclusion . 52

5 Robustness: Imputing Out-of-vocabulary Embeddings 53
5.1 Introduction . 53
5.2 Related Work . 56

5.2.1 Character-level Embeddings 56
5.2.2 Pre-trained Language Models 56
5.2.3 Contrastive Learning . 56

5.3 Preliminaries . 57
5.3.1 Mimick-like Model . 57
5.3.2 Contrastive Learning . 57

5.4 Our Approach: LOVE . 58
5.4.1 Input Method . 59
5.4.2 Encoder . 59
5.4.3 Loss Function . 60
5.4.4 Data Augmentation and Hard Negatives 61
5.4.5 Mimicking Dynamical Embeddings 62
5.4.6 Plug and Play . 62

5.5 Experiments . 62
5.5.1 Evaluation Datasets . 62
5.5.2 Experimental Settings . 63
5.5.3 Results on Intrinsic Tasks 64
5.5.4 Results on Extrinsic Tasks 65

iii

5.5.5 Robustness Evaluation . 65
5.5.6 Qualitative Analysis . 66
5.5.7 Ablation Study . 67
5.5.8 Shrinking Our Model . 68
5.5.9 The performance of mimicking BERT 70
5.5.10 Visualization of Encoder . 71

5.6 Conclusion . 72

6 Robustness: A Weakness of Positional Encodings 73
6.1 Introduction . 73
6.2 Preliminaries . 74
6.3 Positional Encodings Enforce Locality and Symmetry 76

6.3.1 The Properties of Locality and Symmetry 76
6.3.2 Are Locality and Symmetry Learned? 77
6.3.3 Can Locality and Symmetry Yield Better Inductive Bias? . . . 78
6.3.4 What Is the Drawback of Symmetry? 79

6.4 Conclusion . 81

7 Application: Using Entity Disambiguation Models for Knowledge Base
Completion 83
7.1 Introduction . 83
7.2 Related Work . 84
7.3 Two-Stage KBC Method . 85
7.4 MALT: New Dataset for Benchmarking 86
7.5 Experimental Evaluation . 87
7.6 Conclusion . 89

8 Conclusion 90
8.1 Summary . 90
8.2 Future Work . 91

Bibliography 92

A Appendix for Chapter 6 122
A.1 Details of Experiments . 122

A.1.1 Visualizations of Positional Encodings 122
A.1.2 Word Swap Probing . 122
A.1.3 Linguistic Discussions of Locality and Symmetry 124
A.1.4 Details of Downstream Datasets 126

A.2 Additional Experiments . 128
A.2.1 Loss Curves of Pre-training 128
A.2.2 Ablation Study of Positional and Contextual Encodings 128

iv

List of Figures

1.1 A question sample from TriviaQA [131]. The mention “will” and “as
the world turns” means the fictional character Will Munson and the
soap opera As the World Turns, respectively. 1

1.2 An example of entity disambiguation [284]. The green cells are four
mentions found in the input text, and the blue cells are respective entity
candidates. The lines between mentions and entities are correct labels.
The lines among entities are the coherence strength, i.e., a semantic
relationship between them. 3

1.3 Comparison of the size of existing popular pre-trained language models.
The size of models ranges from 0 to 540 billion. 5

2.1 An example of neural machine translation [172]: a stacking recurrent
architecture for translating a source sentence A B C D into a target
sentence X Y Z. The left blue blocks are the Encoder, and the right
red blocks are the Decoder. The arrows show the sequential way of
encoding and decoding. Here, <eos> marks the end of a sentence. . . 15

2.2 The illustration of the attention-based machine translation model [10],
which generates the t-th target word yt given a source sentence (x1,x2, ...,xT). 18

2.3 The transformer - model architecture [270]. 19
2.4 An illustration of multi-head self-attention [270]. Multi-Head Attention

consists of several attention layers running in parallel. 21

3.1 The architecture of our ranking model, with the input mention “de-
creases in hemoglobin” and the input entity candidate “haemoglobin
decreased”. 25

3.2 Model efficiency on a small amount of data. 34

4.1 An end-to-end acronym disambiguation system using AcroBERT. You
can try the Demo at https://huggingface.co/spaces/Lihuchen/AcroBERT. 38

v

https://huggingface.co/spaces/Lihuchen/AcroBERT

4.2 Framework of our benchmark construction. The “ED” in the lower
right corner means “Entity Disambiguation”. 39

4.3 The pre-training strategy of AcroBERT. λ is a margin between pos-
itive and negative pairs, here ⟨Adequate Intake, AI⟩ and ⟨Artificial
Intelligence, AI⟩. 46

4.4 Robustness evaluation of hard samples on the General test set. The
samples are divided evenly into ten chunks according to the number of
candidates of each sample. 51

5.1 Performances of existing word embeddings as we gradually add typos
to the datasets. Using our model, LOVE, to produce vectors for OOV
words makes the models more robust. 54

5.2 Our lightweight OOV model, LOVE, learns the behavior of pre-trained
embeddings (e.g., FastText and BERT), and is then able to impute
vectors for unseen words. LOVE can enhance the robustness of existing
word representations in a plug-and-play fashion. 55

5.3 The framework of LOVE with an example of the word misspelling. 58
5.4 An illustration of our Mixed input for the word misspell. 59
5.5 Illustrations of different augmentations for the word misspelling. 61
5.6 Evaluation of different methods based on FastText under typos. . . . 66
5.7 PCA visualizations of word vectors generated by LOVE, BoS, and

KVQ-FH. Different colors mean different clusters, as predicted by
K-means. There are three OOV words: oxgen, archiitect and
leukamia. 67

5.8 Performances of different augmentations on RareWord, measured as
Spearman’s ρ . Diagonal entries correspond to individual augmentation
and off-diagonal entries correspond to composite augmentation. . . . 69

5.9 Visualization of positional weights for the post-OCR word bec0me
(the correct one is become). 71

5.10 Visualization of self-attention weights for the post-OCR word bec0me. 71

6.1 Visualizations of different pre-trained language models by using Iden-
tical Word Probing [276]. The attention weights are averaged across
different layers. 74

6.2 Empirical studies of the properties of locality and symmetry. The
accuracy is tested on the MR dataset [199] The yellow line shows the
locality or symmetry for the pre-trained BERT. 77

6.3 Illustration of constituent parsing for one sentence in SNLI “a man
playing an electric guitar on stage”. The result is generated by Berkeley
Neural Parser. 80

vi

List of Tables

3.1 Dataset Statistics . 30
3.2 Performance of different models. Results in gray are not statistically

different from the top result. 31
3.3 Ablation study . 32
3.4 Performance in the face of typos: Simulated ADR Datasets 32
3.5 Number of model parameters and observed inference time 33

4.1 Long form candidates for the acronym “AI” from our acronym dic-
tionary. The SciAD benchmark [272] only includes two long terms
(black) in the scientific domain. The popularity is the occurrence
frequency in our collected corpora. 37

4.2 Sources for acronym extraction. All corpora except Wikidata Alias and
UMLS Concept are from Pile [81]. 40

4.3 Samples of extracted acronyms, long forms and provenances by using
the rule-based algorithm from this work [237]. 42

4.4 Statistics for three acronym dictionaries. The “Avg” column shows the
average number of long forms per acronym. 43

4.5 Statistics of our new Acronym Disambiguation Benchmark. The last
column shows the ratio of overshadowed samples in the dataset: long
forms with the same acronym but not the most popular one. 43

4.6 Performances of the unsupervised setting across different models, mea-
sured by macro F1 and Accuracy. 49

4.7 Performances of fine-tuned setting across different models, measured
by macro F1 and Accuracy. 49

4.8 Performances on benchmarks with fewer candidates, measured by
macro F1 and Accuracy. 50

4.9 Robustness evaluation of overshadowed entities on General test set,measured
by Accuracy. 50

4.10 Case study of predicted results by BERT and AcroBERT. 52

vii

5.1 Details of different mimick-like models, with the word spell as an
example. 57

5.2 Hyperparameters for extrinsic datasets. 64
5.3 Performance on the intrinsic tasks, measured as Spearman’s ρ and

purity for word similarity and clustering. Best performance among the
mimick-like models in bold, second-best underlined. 65

5.4 Performance on the extrinsic tasks, measured as accuracy and F1 (five
runs of different learning rates) for text classification and NER, respec-
tively. Typos are generated by simulated errors of an OCR engine [174].
The speed of producing word vectors with Edit Distance and LOVE is
380s/10K words and 0.9s/10K words, respectively. 65

5.5 Robust evaluation (five runs of different learning rates) on text classifi-
cation and NER under simulated post-OCR typos. We use uncased and
cased BERT-base model for SST2 and CoNLL-03, respectively. . . . 66

5.6 Ablation studies for the architecture of LOVE, measured as Spearman’s
ρ and accuracy, respectively. 67

5.7 Performances of different strategies that work with BERT together,
measured as the accuracy among five different learning rates. 69

5.8 Performance of different shrinkage strategies, measured as Spear-
man’s ρ and accuracy, respectively. The target vectors are from
fasttext-crawl-300d-2M. 70

6.1 Evaluations of handcrafted encodings across 10 downstream tasks. We
report the average score (Spearman correlation for textual similarity and
accuracy for others) of five runs using different learning rates. ∗ means
the encodings are learnable and s means that positional encodings are
shared within the attention headers of layers. 79

6.2 Some cases of the shuffled SNLI datasets in our word swap probing.
Texts in the same color mean the corresponding phrases. 80

6.3 Results of Constituency Shuffling and Semantic Role Shuffling, mea-
sured by accuracy. Shuffle-x means phrases with length x are shuffled.
Shuffle-SR means the semantic roles of agent and patient are swapped. 81

7.1 Estimated fractions of long-tail S entities across different datasets,
where long-tail means at most 13 triples in Wikidata. The estimations
are based on 200 samples across 8 relations. 86

7.2 Statistics for MALT dataset. 87
7.3 Performance comparison on MALT data. 87
7.4 Prompts for relations in MALT. [x] is a placeholder for the subject

entity and [ENT] is a special token for the mention. 88

A.1 Details of pre-trained language models used in visualizations. 122
A.2 Details of pre-trained language models used in word swap probing. . 123
A.3 Ablation study across 10 sentence-level tasks. We report the average

score of five runs using different learning rates. 128

viii

ix

1
Introduction

Entity-centric knowledge bases are large collections of facts about entities of public
interest, such as countries, politicians, or movies [255]. A prominent usage of this
type of knowledge is Web search, where we strive to retrieve factual information
of entities, e.g., the birth date, spouse and education background of “Joe Biden”.
For such queries, the key assets are Knowledge Bases (KBs), which contain large
amounts of entity-centric facts such as the birth date, spouse, and graduate school of
Joe Biden <Joe Biden, date of birth, 1942-11-20>, <Joe Biden, spouse, Jill Biden>
and <Joe Biden, graduated at, Syracuse University>. Recently, an increasing number
of large-scale and high-quality KBs have been constructed, such as Wikidata [274],
DBpedia [9], YAGO [254], Freebase [21], and BabelNet [189]. These KBs contain
millions of entities and their respective relational facts, which provide machine-readable
knowledge. Bridging plain text and KBs is beneficial for a wide range of language
understanding tasks like information extraction and question answering [238, 240].
However, natural language is notorious for its ambiguity: words or phrases (including
sentences) have more than one meaning [78]. A concrete ambiguous example is below,
which is a real sample from the question answering dataset TriviaQA [131]. This

who played will on as the world turns?

Will Munson
(fictional character)

As the World Turns
(soap opera)

Figure 1.1: A question sample from TriviaQA [131]. The mention “will” and “as the
world turns” means the fictional character Will Munson and the soap opera As the
World Turns, respectively.

1

question wonders about the name of a specific actor, but machines may have difficulty
understanding it due two the two ambiguous mentions “will” (blue) and “as the world
turns” (red). “will” can be common names for male, song, film, etc. “as the world
turns” can be a television soap opera, an album or a song. Actually, the first mention
means a fictional character whose name is “Will Munson” and the second mention
means an American television soap opera. Equipped with the entity information, we
can better understand the semantics of the question.

In order to mitigate the gap between natural language and entities in KBs, one
can use Entity Linking (EL), which aims to map mentions (or recognized entities) in
documents to the canonicalized entities in a given KB. In general, there are two steps
in EL: Named Entity Recognition (NER) and Entity Disambiguation (ED). The first
step detects entity mentions in text documents, i.e., it detects mention “Paris”, while
the next step maps them to standard entities in the KB, i.e., link the mention to the
entity “Paris (mythology)”. The task of NER is already well-studied as shown in
several surveys [187, 297, 160]. In addition, there are many publicly available NER
tools and systems, such as spaCy1, AllenNLP2 and HuggingFace3. Since NER has
already been explored well, in this work, we focus on entity disambiguation.

1.1 Entity Disambiguation
An example of entity disambiguation is shown in Figure 1.2. In the input text, there
are four mentions: Hurricane, Carter, Bob and Washington, and our goal here is to
link them to the correct entity in a given knowledge base. Note that each mention
is ambiguous with multiple candidates. To construct the correct mapping, entity
disambiguation systems commonly consider several signals that are related to the
mentions and entity candidates, and we use the example to illustrate these signals briefly.
The mention-entity popularity can offer some priori information for disambiguation.
In this case, the mention “Bob” mostly denotes Bob Dylan because the American
singer is famous around the world and the name “Bob” is highly associated with the
entity. Besides, the Mention-Entity context similarity is also beneficial. For example,
the context word “tracks” around the mention “Hurricane” reveals that it is probably
related to a song. Moreover, the entity-entity coherence provides some useful clues. For
example, the song Hurricane is a protest song by Bob Dylan, and its lyrics are about the
Afro-American boxer Rubin Carter, who was wrongfully convicted for murder in the
1970s and later released after 20 years in prison. A system can obtain better performance
by mapping mentions to a set of thematically self-consistent candidate entities. You
can find the details of these features in Section 2.2. The entity disambiguation task has
a long history of research with several surveys for references [241, 238, 240]. and it is
important for many applications. Next, we briefly present several scenarios.

1 https://spacy.io/api/entityrecognizer
2 https://demo.allennlp.org/named-entity-recognition
3 https://huggingface.co/models?sort=downloads&search=ner

2

https://spacy.io/api/entityrecognizer
https://demo.allennlp.org/named-entity-recognition
https://huggingface.co/models?sort=downloads&search=ner

Input Text

Entities in KB

Entity Mentions

Coherence

Figure 1.2: An example of entity disambiguation [284]. The green cells are four
mentions found in the input text, and the blue cells are respective entity candidates.
The lines between mentions and entities are correct labels. The lines among entities
are the coherence strength, i.e., a semantic relationship between them.

Information Extraction (IE) is the task of automatically extracting structured infor-
mation from unstructured or semi-structured documents. However, extracted entities or
relations are usually ambiguous. Linking them to existing KBs needs entity disambigua-
tion, which is essential for knowledge base completion [284] and population [120].
Given the sentence “Paris is the son of King Priam”, we can extract two entities “Paris”
and “King Priam”, meanwhile, there is an extracted relation “son of” between the
two entities. Suppose that we like to add this piece of fact into a newly constructed
KB, but the KB already contains one Paris entity (the capital of France). Therefore,
we need to create a new entity Paris (mythology) with a short description “Paris is
a mythological nobleman that appears in a number of Greek legends.”, and link the
mention to it. Likewise, we repeat the operation for the other mention and also the
relation. After, we insert a new fact to the KB successfully. Entity disambiguation is
a key step for associating the extracted entities or relations to a KB, which can help
enrich the scope and scale of KBs.

3

Question Answering (QA) aims to retrieve the answer to a question from a given
text, which is useful for searching for answers in documents. Many question answering
systems use a knowledge base to give answers to user questions. As shown in the exam-
ple in Figure 1.1, question answering systems can benefit from entity disambiguation
by better understanding questions.

Information Retrieval (IR) is the search for documents that meet information needs
in unstructured text. Named entities usually appear in search queries and they are
usually ambiguous [94]. For example, the entity mention “Barcelona” in the search
query can mean many different entities, such as the capital city of Catalonia, the
football club from Barcelona, a community in the United States and many songs and
films whose names are “Barcelona”. Disambiguating mentions in queries is beneficial
for search systems to locate relevant documents more precisely.

Knowledge-Enhanced Pre-trained Language Models. The reasoning power of pre-
trained language models is also limited because they are purely data-driven. This draw-
back can be improved by incorporating external knowledge, which leads to knowledge-
enhanced pre-trained language models. To inject knowledge into pre-trained language
models, we might need entity disambiguation. For example, KnowBERT [206] uses
an entity linker to retrieve relevant entity embeddings from a KB for enriching the
entity-span representations. ERNIE [309] integrates entity representations, which are
obtained by aligning mentions to their corresponding entities in KBs, into the under-
lying layers of transformer architecture for encoding knowledge information. Entity
disambiguation is an effective measure to integrate knowledge into language models.

1.2 Challenges for Entity Disambiguation
Entity disambiguation is challenging due to the variation and the ambiguity of entity
names. First, an entity in a KB may have many different surface forms, e.g., full name,
nickname, partial name and abbreviation. For example, the entity Elvis Presley (Q303)
has many names: “Elvis Aaron Presley”, “King of Rock’n’Roll”, “Elvis”, “Elvis A.
Presley”, etc. Second, a mention in a document may refer to many different entities.
For example, there are in total more than one hundred “Paris” in Wikipedia that cover
places, people, media and so on. Moreover, considering that the scale of knowledge
bases is continuously growing, e.g., the current Wikidata contains over 102M entities4,
it is increasingly difficult to perform entity disambiguation.

The field of entity disambiguation is vibrant with many novel works popping up, and
recent works have developed new approaches for addressing the issues above [240, 238].
However, there are still three challenges that are underexplored by prior work:

Efficiency. The large pre-trained language models like GPT-X [219, 26] nowadays
take a lead in various NLP tasks, and their sizes are growing larger and larger with

4 https://www.wikidata.org/wiki/Special:Statistics

4

https://www.wikidata.org/wiki/Special:Statistics

ELMo BERT-large BART XLM GPT-2 ERNIE-3 T5 Turing NLG M6 LaMDA GPT-3 PaLM
Language Models

0

100

200

300

400

500
Pa

ra
m

et
er

s
(B

illi
on

)

0.094 0.34 0.4 0.8 1.5 10 11 17

100

137

175

540

Figure 1.3: Comparison of the size of existing popular pre-trained language models.
The size of models ranges from 0 to 540 billion.

millions or billions of parameters, as shown in Figure 1.3. The current state-of-the-art
entity disambiguation models mostly use large pre-trained language models as the
backbone [291, 57, 11]. To pre-train such language models, we need large-scale data
and powerful computing resources, and the inference speed might be slow due to the
large size, which is impractical for resource-limited users. Hence we ask that Can we
use a small model to approach the performance of a big model?

Generalizability refers to the model’s capability to adapt and react properly to previ-
ously unseen data. Most existing entity disambiguation systems target one particular
knowledge base or one single specific domain, therefore, the performances of these
systems deteriorate drastically when we apply them to another domain. For example,
many systems use Wikipedia as the target KB [291, 57], but Wikipedia only contains a
small fraction of biomedical concepts. Therefore, researchers prefer to design separate
disambiguation systems for medical knowledge bases such as UMLS [19]. Likewise,
the existing benchmarks for evaluation focus mainly on one domain, which make
it difficult to develop a general system. A question naturally appears here: How to
develop a single disambiguation system adapted to multiple domains?

Robustness. Although today’s language models are exceptionally powerful, they are
not robust enough. Liang et al. [162] show that text classifiers based on deep learning
can be easily fooled by small character-level perturbations. Sun et al. [257] demonstrate
that the BERT model is not robust when dealing with misspellings. Boukkouri et al. [68]
point out that the BERT does not output good representations for certain medical words.
These phenomena indicate that some language models are not robust enough for the
Out-of-Vocabulary (OOV) problem. For example, the first sentence below is a movie
comment from a real-world dataset. If we fine-tune BERT on it, then BERT can
know this sample is a positive comment. However, if we slightly modify the word

“successful” by removing one s, BERT then classifies it as negative, which means small
perturbations can flip the prediction of advanced models. Terribly, some malicious

5

people may exploit this weakness to attack NLP systems such as the systems of spam
check or hate speech detection.

1) altogether, this is successful as a film
2) altogether, this is succesful as a film

On the other hand, many pre-trained language models are not sensitive to word orders,
which are essential for understanding languages. For example, the sentence pair below
from SNLI [23] satisfies the entailment relation (the semantic of the second sentence
can be derived from the inference of the first sentence):

1) A man playing an electric guitar on stage
2) A man playing guitar on stage

If we change the word order of the premise sentence so that it becomes “an electric
guitar playing a man”. Then the relationship between the two sentences is neutral or
even contradicted, but we surprisingly found that the predicted result of a fine-tuned
LM does not change, which shows that some existing language models are not robust
to the swap of Word Orders. Because current entity disambiguation systems highly
rely on language models, we may ask: Can we make these systems more robust?

1.2.1 Contributions
In Chapter 3, we answer the question about efficiency by looking at the task of dis-
ambiguating biomedical entities. Concretely, we present a lightweight yet effective
neural model for biomedical entity disambiguation. Our experimental results on three
biomedical evaluation benchmarks show that the model is very effective, and achieves a
performance that is statistically indistinguishable from the state-of-the-art. BERT-based
models, e.g., have 23 times more parameters and require 6.4 times more computing
time for inference. Chapter 3 is based on the paper [38]:

Lihu Chen, Gaël Varoquaux, and Fabian M. Suchanek. ”A Lightweight
Neural Model for Biomedical Entity Linking.” (Full Paper) Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 35. No. 14. 2021.

In Chapter 4, We reply to the question about generalizability by focusing on the
task of disambiguation of acronyms. Specifically, we construct GLADIS, a challenging
benchmark for Acronym Disambiguation, which includes a larger dictionary, three
datasets from the general, scientific, and biomedical domains, and a large-scale pre-
training corpus. We also propose AcroBERT, a BERT-based model that is pre-trained on
our collected acronym documents, which can significantly outperform other baselines
across multiple domains, and which is more robust in the presence of very ambiguous
acronyms and overshadowed samples. Chapter 4 is based on the paper [40]:

Lihu Chen, Gaël Varoquaux, and Fabian M. Suchanek. ”GLADIS: A
General and Large Acronym Disambiguation Benchmark.” (Full Paper)
Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume. 2023

6

In Chapter 5, we answer the question about robustness by addressing the out-
of-vocabulary (OOV) problem. In this part, we follow the principle of mimick-like
models to generate vectors for unseen words, by learning the behavior of pre-trained
embeddings using only the surface form of words. We present a simple contrastive
learning framework, LOVE, which extends the word representation of an existing
pre-trained language model (such as BERT), and makes it robust to the OOV with few
additional parameters. Extensive evaluations demonstrate that our lightweight model
achieves similar or even better performances than prior competitors, both on original
datasets and on corrupted variants. Moreover, it can be used in a plug-and-play fashion
with FastText and BERT, where it significantly improves their robustness. Chapter 5 is
based on the paper [37]:

Lihu Chen, Gaël Varoquaux, and Fabian M. Suchanek. ”Imputing Out-
of-Vocabulary Embeddings with LOVE Makes LanguageModels Robust
with Little Cost.” (Full Paper) Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
2022.

In Chapter 6, we continue our discussion of robustness by identifying a potential
flaw in positional encodings. Positional Encodings (PEs) are used to infuse word-order
information into transformer-based language models. Although they can significantly
enhance sentence representations, their specific function for language models are
not fully understood, especially given recent findings that building natural-language
understanding from language models with positional encodings are insensitive to word
order. In this work, we conduct more in-depth and systematic studies of positional
encodings, thus complementing existing work in two aspects: We first reveal the core
function of PEs by identifying two common properties, Locality and Symmetry. Then,
we first point out a potential weakness of current PEs by introducing two new probing
tasks of word swap. We hope these new probing results and findings can shed light
on how to design and inject positional encodings into language models. Chapter 6 is
based on the paper [39]:

Lihu Chen, Gaël Varoquaux, and Fabian M. Suchanek. ”Understanding
The Role of Positional Encodings in Sentence Representations.” (Full
Paper) In Progress.

In Chapter 7, we explore how to use current entity disambiguation model for
knowledge base completion.Despite their impressive size, knowledge bases (KBs) are
still far from complete. Language models (LMs) have been proposed as a source to
fill these gaps. However, prior work has focused on salient entities with rich coverage
of LMs, ignoring the important case of ignoring long-tail entities. In this work, we
present a novel method for LM-based-KB completion that is specifically geared to
facts about long-tail entities. The method leverages two different LMs in two stages:
for candidate retrieval and for candidate verification and disambiguation. To evaluate
our method and various baselines, we introduce a novel dataset, called MALT, rooted

7

in Wikidata. Our method outperforms all baselines in F1, with major gains especially
in recall. Chapter 7 is based on the paper [36]:

Lihu Chen, Gaël Varoquaux, Fabian Suchanek, Simon Razniewski and
Gerhard Weikum. ”Knowledge Base Completion for Long-Tail Entities.”
ACL 2023 MATCHING workshop

I have also been involved in one collaboration during my thesis project which is
not included in this thesis:

Yaru Wu, Lihu Chen, Benjamin Elie, Fabian Suchanek, Ioana Vasilescu
and Lori Lamel. ”Who’s speaking? Predicting speaker profession from
speech..” (Full Paper) Under Submission at ICPhS 2023

8

2
Preliminaries

In this chapter, we present the basic background knowledge upon which the following
chapters are based. We first explain the concept of knowledge bases and their history
in Section 2.1. We then explain the task of entity disambiguation and previous work in
Section 2.2. Next, we consider the attention mechanism in Section 2.3.3.1. Finally, the
concept of the language model is described in Section 2.3.

2.1 Knowledge Bases
Knowledge bases have gradually become a key asset that can be used for a variety of
machine intelligence applications such as question answering [256, 232], recommenda-
tion system [305, 4], etc. In this section, we begin with a quick history of knowledge
bases. Knowledge bases (KBs) comprise salient information about entities, seman-
tic classes to which entities belong, attributes of entities, and relationships between
entities.

The concept of knowledge base can be traced back to pioneering work, the Cyc
project [153] and the WordNet project [180]. However, these KBs are constructed
manually and therefore limited to scope and scale. Later, automatic knowledge acquisi-
tion from web and text resources becomes a major research approach, and there are
many publicly accessible and large-scale KBs such as KnowItAll [72], DBpedia [9],
YAGO [254], Freebase [21], NELL [32], BabelNet [189], ConceptNet [251], Wiki-
data [274], and DeepDive [243]. These large general-purpose KBs play a huge role
in practical artificial intelligence applications and have made substantial impact in the
research community.

Next, we discuss the knowledge representation that has emerged as a pragmatic
consensus in the research community of entity-centric knowledge bases by reusing the
definitions of prior work [255, 284]. Concretely, we discuss the three key concepts of
KBs: Entities (Section 2.1.1), Classes (Section 2.1.2), and Relations (Section 2.1.3).

9

2.1.1 Entities
The most basic element of a KB is an entity.

An entity is whatever may be an object of thought.

This definition includes people, places, organizations and also creative works (books,
films, songs, etc.) An entity can be real (Steve Jobs) as well as fictional (Harry Porter),
and also general concepts such as love and Buddhism. In other words, KBs model the
real world. This means that they select certain entities of interest entities, give them
names, and put them into a structure. Thus, a knowledge base is a structured view of a
selected part of the world.

To denote an entity unambiguously, we need an identifier that can refer to only a
single entity.

An identifier for an entity is a string of characters that uniquely denotes
the entity.

The identifier can be a unique name, but can also be specifically introduced keys
such as URLs for websites, Google Scholar URLs etc. In the data model of the
Semantic Web, the Resource Description Framework (RDF) [51], identifiers always
take the form of Unique Resource Identifiers (URIs). Since the form of an identi-
fier is not always well-readable and directly interpretable, we usually need human-
readable labels or names. For example, the mythology character, Paris, is a nobleman
that appears in a number of Greek legends, and Wikidata has an identifier for him
https://www.wikidata.org/wiki/Q167646. Meanwhile, Wikidata contains “Also known
as” labels for him, e.g., Alexander and Alexandros. When an entity has several labels,
they are called synonyms or alias names. When an entity label appears in a text, we
call that appearance a mention of that entity. The label that appears in the mention is
called the surface form of the entity (two different mentions can use the same surface
form).

A mention of an entity in a data source (including text) is a string
including acronyms and abbreviations) intended to denote an entity.

Ideally, the mention is one of the labels with which the entity is associated, and it can
also be another variant that is not in the KB. We refer to them as unlinkable (NIL)
mentions, and these surveys introduce solutions to these mentions [238, 240].

2.1.2 Classes
KBs model real-world entities, which can be categorized into specific classes based on
their characteristics. For example, Paris, Beijing, New York are all cities. We represent
this knowledge by organizing entities into classes or types.

A class, or interchangeably type, is a named set of entities that share a
common trait. An element of that set is called an instance of the class.

10

https://www.wikidata.org/wiki/Q167646

In this setting, the following are classes: The class of cities (i.e., a human settlement
of notable size), the class of business companies in the U.S., and the rivers in China.
Some instances of these classes are, respectively, Beijing, Amazon and Yangtze River.
Since everything is an entity, a class is also an entity, which has an identifier and a label
as well.

Meanwhile, there is a hierarchical relation between different classes, i.e., Class A
is a subclass of class B if A is a subset of B. For example, city is a subclass of place.
By combining these pairwise relations across all classes, we can thus construct a class
hierarchy.

A taxonomy is a directed acyclic graph, where the nodes are classes and
there is an edge from class X to class Y if X is a direct subclass of Y.

2.1.3 Properties of Entities: Attributes and Relations
Entities have properties such as birthplace, nationality, height, weight, spouse and so
on. KBs capture these in the form of mathematical relations:

A relation for entities E1, ...,En is a subset of the Cartesian product
E1 × ...×En, along with an identifier for the relation.

For example, the Cartesian product of the relation birth can be denoted as:

birth ∈ persons × dates × cities

This instance of the birth relation is a ternary tuple, that is, it has three arguments: the
person entity, the birthdate, and the birthplace. We can state the birthdate and birthplace
of Joe Biden in the relational form:

<Joe Biden, 20-11-1942, Scranton(Pennsylvania)>

In the above example about the birth relation, the birthdate is a particular entity, which
is a design choice whether we regard numerical values like dates, heights or amounts
as entities. Often, we want to regard them simply as values for which we do not have
any additional properties. For example, the height of Joe Biden is 1.83 meters. The
case for binary relations with values as second argument largely corresponds to the
attribute of entities.

The frequent case of binary relations models the relationship between exactly
two entities. The advantage of binary relations is that it can express facts in a self-
contained way, even if some properties of entities are missing. For example, if we
know Joe Biden’s birthplace but not his birthdate, and we use the ternary relation to
represent this piece of fact. Then, we have to put a null value to the birthdate position,
which makes the representation way awkward and complicated. In KBs, the common
practice is to avoid null values and prefer binary relations where we can simply have
a triple for the known argument (birthplace). Some KBs focus exclusively on so-
called subject-predicate-object triples, or SPO triples. For example, <Joe Biden,
birthplace, Scranton(Pennsylvania)> is a triple, and the predicate (P)
is birthplace, Joe Biden and Scranton(Pennsylvania) are the subject
(S) and object (O), respectively.

11

2.2 Entity Disambiguation
Natural text in the real-world is extremely ambiguous, i.e., a word or phrase can have
multiple meaning in a given context. For example, the mention “Paris” in the query

“Pairs is the son of king Priam” can represent names of cities, songs, people (real or
fictional), etc. In the context, the mention “will” actually means a fictional character in
an American soap opera. To map the mention name to the standard entity, we need the
the Entity Disambiguation (ED). Formally, the technology of entity disambiguation
aims to map mentions in documents to standard entities in a given knowledge base, and
you can reference these surveys [241, 238, 240].

In general, entity disambiguation consists of two key steps: candidate generation
and ranking. Considering that the scale of KBs is large, it is impractical to compare each
pair of mention and entity. A trade-off is to construct a manageable set of candidates
that are related to the given mention. Then, we rank all candidates by computing the
semantic similarity. The candidate entity with the highest score is regarded as the
correct mapping. However, some mentions do not have corresponding profiles in a
knowledge base due to incompleteness. Therefore, we have to introduce another step
for the prediction of unlinkable mentions. This part is organized as follows. We present
the techniques of candidate generation, ranking and unlinkable mention prediction in
Section 2.2.1, 2.2.2 and 2.2.3, respectively. Moreover, we present the newly proposed
generative entity disambiguation in Section 2.2.4.

2.2.1 Candidate Generation
Given a mention, this step aims to generate a set of candidate entities from a KB,
such as ”Paris”, to provide a list of entities that are related to the ambiguous mention.
Commonly used methods are (1) surface form matching, (2) alias dictionary and (3)
methods based on search engines. In the first approach, a candidate list is constructed
by matching various surface forms of mentions in the document [185, 149]. There
are many heuristics for the generation of mention forms and matching criteria like the
Hamming distance [64], edit distance [315], and n-grams. For the second approach, the
candidate set can be retrieved by using disambiguation/redirect pages of Wikipedia [73,
318], alias/synonym dictionary of KBs [311]. In the third approach, we can leverage
the web search engines to obtain relevant entity pages, e.g., Wikipedia pages, when
you query it based on keyword matching [184, 64].

2.2.2 Ranking
After obtaining a set of candidates, the remaining problem is to rank all the candidates
according to different types of signals related to the mention and candidates. There
are three commonly used features for ranking [113]: (1) Mention-Entity Popularity (2)
Mention-Entity Context Similarity (3) Entity-Entity Coherence.

12

Mention-Entity Popularity. If an entity is frequently referred by the name of the
mention, this entity is a likely candidate. For example, in the sentence “Paris is the
capital city of France”, the mention“Paris” most likely denotes the famous city Paris
instead of the character Paris (mythology). We call this feature mention-entity
popularity, and it describes how often a mention should be linked to a particular entity.
Some approaches apply it to entity disambiguation for better performances [120, 225,
83, 96].

Mention-Entity Context Similarity. Mentions have surrounding text, which can
be compared to descriptions of entities such as short paragraphs from Wikipedia
or keyphrases derived from such texts. For the input sentence “Paris is the song
of King Priam”, the context words “King Priam” are cues for the mention “Paris”
towards the topic of Greek legends, then we know it more likely represents the mytho-
logical character entity Paris (mythology). The mention-entity context simi-
larity measures the textual similarity between the context around the mention and
the descriptions associated with the candidate entity. There are several methods for
capturing the context similarity such bag-of-words [28, 145, 102, 168] and concept
vector [64, 45, 242, 258, 77, 144, 170, 291].

Entity-Entity Coherence. In meaningful texts, different entities do not co-occur
uniformly at random. For two entities to co-occur, a semantic relationship should
hold between them. The existing KB may have such prior knowledge that can be
harnessed. For example, the entity Paris and France often co-appear together in
the same document. We refer to this feature as entity-entity coherence. In general,
there is one or a few related topics for a given document, and the topical coherence
could be beneficial for collectively diambiguating mentions in the same document.
We call this series of methods that use the coherence feature as collective entity
disambiguation [90, 318, 299].

Apart from the three features, the entity type information is also an useful feature.
Some KBs contain a type hierarchy (or taxonomy) and entities that are instances of
types. For example, the entity Paris is a place and Paris (mythology) is a
person (mythological). This example shows that even a coarse-grained entity type is
beneficial for distinguishing two mentions. A series of disambiguation systems have
incorporated entity type information [258, 98, 193].

2.2.3 Unlinkable Mention Prediction
The target entities of some mentions can be absent in the KBs, e.g., there is no entity in
a given KB for a newly published book or a new product on the market. We call these
mentions unlinkable mentions, and it is necessary for a system to predict that these
mentions should not be mapped to any entities, which is known as the NIL prediction
task. There are several ways of predicting unlinkable mentions. If the candidate set
is empty for a mention, it is considered unlinkable [246]. Or we can set a threshold
for the ranking output, mentions with scores below it are unlinkable mentions [206]. It

13

is also possible to train a binary classifier to predict whether a mention-entity pair is
linkable or not [185].

2.2.4 Generative Entity Disambiguation
Although existing models that use these features are effective enough for disambiguat-
ing mentions, they usually learn entity representations for comparing the semantic
similarity between a mention and an entity, which consumes a large memory foot-
print for storing the entire real-world KB, e.g., about 24GB to store 1024-dimensional
vectors for all of the 6M Wikipedia pages, and the size linearly grows with respect
to new entities. To address the issue, GENRE [57] first proposes to link entities by
generating their unique names completely based on the context in an autoregressive
way. The parameters of this novel generative model scale linearly with vocabulary
size instead of entity count and it achieves significant improvements across a series
of entity disambiguation and end-to-end entity linking tasks. This generative mode
of entity disambiguation has a great advantage in inference speed, and is a promising
research direction. Recently, another novel approach cast entity diambiguation to text
extraction [11], which have achieved very promising results.

2.3 Language Models
Language models (LMs) are able to estimate the probability distribution over sequences
of words. Specifically, a language model can predict the next word for a given sequence.
Given the input sequence “the capital of France is”, a language model knows that the
word Paris should probably appear in the next position. In general, the input for LMs
are a large corpus with natural and unlabeled sentences and the output is a model that
can predict the target word given a context. In fact, word embeddings [17, 177, 204]
are by-products of language models. LMs are the basis for a wide range NLP tasks [6],
including sentiment analysis, question answering, machine comprehension, information
retrieval, etc [219, 26].

There are several different approaches to modeling language, which can be roughly
categorized into three classes: Statistical Language Models (Section 2.3.1), Neural
Language Models (Section 2.3.2) and Pre-trained Language Models (Section 2.3.3).

2.3.1 Statistical Language Models
Traditional statistical language models are probabilistic models of the distribution of
words in a language. These models aim to estimate the likelihood of a sequence with
multiple n words (w1,w2, ...,wn). However, counting the likelihood of each word that
may occur in a given context in a language is obviously difficult to achieve, but it has
been empirically observed that satisfactory results can be obtained using contexts as
small as 3 words [91]. A simple mathematical formulation of such an n-gram model

14

Figure 2.1: An example of neural machine translation [172]: a stacking recurrent
architecture for translating a source sentence A B C D into a target sentence X Y Z.
The left blue blocks are the Encoder, and the right red blocks are the Decoder. The
arrows show the sequential way of encoding and decoding. Here, <eos> marks the
end of a sentence.

with a window size equal to T follows:

P(wT
1) =

T

∏
t=1

P(wt |wt−1
1) (2.1)

where wt is the t-th word and wT
i refers to the sequence of words from wi to wT ,

i.e., (wi,wi+1, ...,wT). P(wt |wt−1
1) refers to the fraction of times wt appears after the

sequence. Actual prediction of the next word given a context is done via maximum
likelihood estimation (MLE), over all words in the vocabulary [6].

However, the methods have difficulties in generalizing to word sequences not
present in the training set. To address this issue, early attempts use a smoothing
strategy, e.g., assuming every new sequence has count one, rather than zero in the
training set (this is referred to as add-one or Laplace smoothing). Another strategy
which helps with generalization is the clustering of words in so-called classes [25].

2.3.2 Neural Language Models
Although n-gram LMs with smoothing strategies work out, there are still other problems.
A basic problem is the high dimensionality involved in calculating discrete joint
distributions of words because the number of parameters grow exponentially by the
size of the vocabulary [128]. To mitigate this gap, Neural Network (NN) is introduced
for language modeling in continuous space. The first feedforward neural network
LM is proposed by Bengio et al. [17], which is able to represent words by using low

15

dimensional vectors. Some of the notable work includes Word2Vec [177], GloVe [204],
fastText [20], etc. Some of the subsequent work uses CNNs or RNNs as the architecture
for language models [178, 55].

2.3.3 Pre-trained Language Models
For neural language models, they provide a fixed word embedding for each word.
However, words with multiple meanings (Polysemy) are widespread in natural language,
e.g., Paris can be a city or a mythology character, which means we should understand
the word meaning under a particular context. To address this issue, the pre-trained
models (or contextualized language models) appeared.

The emergency of Pre-trained Language Models (PLMs) has achieved significant
success in the field of Natural Language Processing (NLP) by learning contextual
representations on large corpora in a self-supervised manner. ELMo [205] uses a deep
bidirectional LSTM model to build word representations, which is able to represent
each word according to the entire context in which it is actually used. More specifically,
instead of having a table of query word embedding matrices, ELMo is used by feeding
the words and their surrounding text into a deep neural network that converts the words
into a low-dimensional vector.

Afterwards, transformer-based language models like BERT [59] and GPT [218]
have been proposed and soon drastically changed the natural language processing
field. Most of these models use the Transformer [270] as the backbone, which is fully
attention-based methods. These models adopt a two-step paradigm for solving various
NLP tasks: Pre-training and Fine-tuning. For the first step, a large transformer-base
model is trained on massive unlabeled corpus by designing unsupervised objectives.
For example, BERT is pre-trained by using two unsupervised tasks, Masked Language
Model (MLM) and Next Sentence Prediction (NSP). The Masked Language Model
task randomly masks some percentage of the input tokens, and then forces the model
to predict the masked tokens, e.g., Paris is the capital of [MASK]. The Next Sentence
Prediction task asks the model to predict whether one sentence follows the other. For the
second step, the pre-trained model are fine-tuned on limited samples for transferring to
the target tasks. Due to the complex pre-training objectives and huge model parameters,
large-scale pre-trained language models can effectively capture knowledge from large
amounts of unlabeled data. The rich knowledge implicit in the huge parameters
can benefit a variety of downstream tasks by storing the knowledge into the huge
parameters and fine-tuning it on specific tasks, as has been extensively demonstrated
through experimental validation and empirical analysis.

Due to the great success of pre-trained models, the field has become extremely
active, with numerous variants emerging, such as RoBERTa [169], ALBERT [147],
BART [155], ELECTRA [49], T5 [222]. Recent advances in pre-trained language
models have led to the development of powerful language-understanding models, such
as GPT-x [219, 26] and ChatGPT, which have resulted in a huge revolution in this field.

The Transformer architecture [270] is widely used by most of pre-trained LMs, and
the attention module is the basic component of the Transformer. Next, we first present

16

the Attention Mechanism 2.3.3.1, then describe the Transformer 2.3.3.2.

2.3.3.1 Attention Mechanism

Attention has arguably become one of the most important concepts in the deep learning
field. Many famous models are designed based on the attention mechanism, e.g.,
Transformer [270] and BERT [59]. In this part, we present the basic principle of the
attention, by first introducing the history of attention briefly (Section 2.3.3.1), and
then discuss the Normal Attention (Section 2.3.3.1). Finally, we explain the model:
Transformer (Section 2.3.3.2).

A Brief History of Attention. Attention is a complex cognitive function that is
indispensable to humans [52]. Humans do not process information in its entirety at
once. Instead, humans tend to selectively focus on a portion of information when and
where it is needed while ignoring other, less important information. For example, when
we are driving, drivers pay special attention to moving objects such as pedestrians and
other moving cars, and allocate less attention to stationary objects such as billboards on
the roadside. This is a way for humans to quickly select high-value information from a
large amount of information using limited resources. As mentioned above, the attention
mechanism can be used as a resource allocation scheme, which enables humans to
focus attention on a certain object consciously and actively [191].

In the field of computers, early research work introduced the attention mechanism
into the processing of images [118, 181]. Subsequently, attention mechanisms have
been an increasingly common component of neural networks and have been applied to
a variety of tasks, such as machine translation [10, 172], text classification [164, 200],
recommendation system [279] and so on. Specifically, we illustrate how the attention
mechanism works by using an example of machine translation. Figure 2.1 shows
a conventional encoder-decoder framework for machine translation. The left blue
blocks are the Encoder, which is used to represent the input sentence. The right red
blocks are the Decoder, which generates the translated sequence based on the last
output of decoder. However, this way is overly dependent on the compression of the
entire sentence into a single fixed representation. Actually, the input sequence may
contain hundreds of words, therefore, this will inevitably cause information loss and
the translation result will not be accurate.

In order to address this issue, we can infuse am attention mechanism into the
encoder-decoder model. As shown in Figure 2.2, the attentional model generates
a word in a translation at each step of decoding process, it softly searches for a
set of positions in the input source sentence where the most relevant information is
concentrated. The model then predicts a target word based on the context vector
associated with these source locations and all previously generated target words. The
most important difference between this approach and the basic encoder-decoder is
that it does not attempt to encode the entire input sentence as a vector of fixed length.
Instead, it encodes the input sentence as a sequence of vectors and adaptively selects
a subset of these vectors at the decoding time, which avoid information loss during
decoding.

17

Figure 2.2: The illustration of the attention-based machine translation model [10],
which generates the t-th target word yt given a source sentence (x1,x2, ...,xT).

Normal Attention. The attention mechanism is introduced by Bahdanau et al. [10] to
address the bottleneck created by the use of fixed-length vectors, where the decoder has
limited access to the information provided by the input, especially considering that the
input length can be very long. The attention mechanism can assign different weights
to different words at each step of the decoding, so that the input information can be
fully leveraged. The normal attention mechanism makes use of three main components,
namely the queries, the keys, and the values. In the context of machine translation,
each word in the input sentence is given its own query, key and value vectors. Next, the
attention mechanism takes a query vector belonging to a specific word in the sequence
and computes the correlation between the query and each key. In doing so, it captures
the relationship of the word under consideration to other words in the sequence. Then,
it adjusts the values based on the attention weights (computed from the correlations) to
maintain focus on those words that are relevant to the query. In this way, it generates
an attention output for the words by using the attentional weights and value vectors.

Formally, an attention module maps a query and a set of key-value pairs to a new
output, where the input query, keys, values, and output are all vectors. The inputs are
given as a set of n query vectors, grouped horizontally in a matrix Q. The vectors of
keys and the vectors of values, likewise, are stacked as matrices K and V. Then, the

18

Figure 2.3: The transformer - model architecture [270].

new output matrix V̄ is computed by the Scaled Dot-Product Attention [270]:

V̄ = Attention(Q,K,V) = Softmax
(

QWQ(KWK)T√
d

)
(VWV) (2.2)

Here, WQ ∈ Rd×dK ,WK ∈ Rd×dK ,WV ∈ Rd×dV are trainable parameter matrices, d is
the input dimension of Q,K,V, and dK,dV are the dimensions of the Key and Value
after projection.

Self-Attention applies attention to a single set of tokens: the key, query, and values
are all functions of token embeddings. The input (e.g., a sentence or a sequence of
words) is a sequence matrix X = {x1,x2, ...,xn} ∈ Rn×d , and the output vector of the
ith token is given by:

x̄i =
n

∑
j=1

exp(αi j)

Z
x jWV ,where αi j =

(xiWQ)(x jWK)T√
d

,Z =
n

∑
j=1

exp(αi j) (2.3)

As tokens appear in the keys and the queries, self-attention can learn the importance of
the interactions between words. It has drastically improved performance in many NLP
tasks.

2.3.3.2 Transformers

The Transformers rely entirely on self-attention to compute representations of its in-
put and output without using recurrent or convolutional neural networks [270]. The

19

emergence of the transformer has attracted widespread attention, and various studies
have found that it has superior performance in a wide variety of fields [163]. The
Transformer is a encoder-decoder model, which is composed of three basic compo-
nents: input embedding, multi-head self-attention layer and position-wise feed-forward
network (FFN) layer. The overall architecture is shown in Figure 2.3.

Input Embedding. Similar to other sequence models, the Transformer uses learned
embeddings to transform the input tokens and output tokens into vectors of dimension
dmodel (the width of neural network). The token embedding layer can be considered
a lookup table to obtain a representation of the learned vector for each word. Unlike
CNNs or RNNs, an attention module cannot intrinsically capture the word order in a
sequence. Therefore, the Transformers inject some information about the relative or
absolute position of the tokens into the sequence. For this goal, they add Positional
Encodings to the input embeddings at the bottom of the encoder and decoder blocks.
The positional encodings have the same dimension dmodel as the input embeddings, so
that we can add the two. The positional encoding for each position is computed using
pre-defined cosine and sin functions:

PE(pos,i) = sin(pos/100002d/dmodel) (2.4)

PE(pos,2i+1) = cos(pos/100002d/dmodel)

where pos is the position and i is the dimension. This makes that each dimension of
the positional encoding corresponds to a sinusoid. The wavelengths form a geometric
progression from 2π to 10000 · 2π . This design allows the model to easily learn to
attend by relative positions, since for any fixed offset k, PEpos+k can be represented as
a linear function of PEpos.

Multi-Head Self-Attention. The Transformer projects queries, keys, and values to
dk, dk, and dv dimensions with different, learned linear projections to obtain a better
representation than a single attention. Multi-head attention allows the model to jointly
attend to information from different representation subspaces at different positions.
On each of these projected versions of queries, keys and values the transformer then
performs the attention function in parallel, yielding multiple dimensional output values.
These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.4. Multi-head attention linearly projects the queries, keys and
values h times with different, learned linear projections to dk, dk and dv dimensions,
respectively, which can be denoted as:

MultiHead(Q,K,V) =Concat(head1, ...,headh)W O (2.5)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i)

Where the projections are parameter matrices W Q
i ∈Rdmodel×dq , W K

i ∈Rdmodel×dk , WV
i ∈

Rdmodel×dv and W O
i ∈ Rhdv×dmodel .

20

Figure 2.4: An illustration of multi-head self-attention [270]. Multi-Head Attention
consists of several attention layers running in parallel.

Feed-Forward Network. Apart from the attention sub-layers, each of the layers in
the encoder and decoder has a fully connected feed-forward network, which is applied
to each position separately and identically. It consists of two linear transformations
with a ReLU activation in between:

FFN(x) = max(0,xW1 +b1)W2 +b2 (2.6)

While the linear transformations are the same across different positions, they use
different parameters from layer to layer.

Transformers have achieved significant success in a wide range of artificial in-
telligence tasks, and a variety of transformer variants have been proposed, such as
Linformer [281], Longformer [16], Reformer [141], Shortformer [213] etc.

21

3
Efficiency: Disambiguating Biomedical Entity

with Lightweight Models

Biomedical entity linking aims to map biomedical mentions, such as diseases and drugs,
to standard entities in a given knowledge base. The specific challenge in this context is
that the same biomedical entity can have a wide range of names, including synonyms,
morphological variations, and names with different word orderings. Recently, BERT-
based methods have advanced the state-of-the-art by allowing for rich representations
of word sequences. However, they often have hundreds of millions of parameters
and require heavy computing resources, which limits their applications in resource-
limited scenarios. Here, we propose a lightweight neural method for biomedical entity
linking, which needs just a fraction of the parameters of a BERT model and much
less computing resources. Our method uses a simple alignment layer with attention
mechanisms to capture the variations between mention and entity names. Yet, we show
that our model is competitive with previous work on standard evaluation benchmarks.

3.1 Introduction
Entity linking (Entity Normalization) is the task of mapping entity mentions in text
documents to standard entities in a given knowledge base. For example, the word
“Paris” is ambiguous: It can refer either to the capital of France or to a hero of Greek
mythology. Now given the text “Paris is the son of King Priam”, the goal is to determine
that, in this sentence, the word refers to the Greek hero, and to link the word to the
corresponding entity in a knowledge base such as DBpedia [9] or YAGO [254].

In the biomedical domain, entity linking maps mentions of diseases, drugs, and
measures to normalized entities in standard vocabularies. It is an important ingredient
for automation in medical practice, research, and public health. Different names of the
same entities in Hospital Information Systems seriously hinder the integration and use
of medical data. If a medication appears with different names, researchers cannot study
its impact, and patients may erroneously be prescribed the same medication twice.

The particular challenge of biomedical entity linking is not the ambiguity: a word

22

usually refers to only a single entity. Rather, the challenge is that the surface forms
vary markedly, due to abbreviations, morphological variations, synonymous words,
and different word orderings. For example, “Diabetes Mellitus, Type 2” is also written
as “DM2” and “lung cancer” is also known as “lung neoplasm malignant”. In fact,
the surface forms vary so much that all the possible expressions of an entity cannot be
known upfront. This means that standard disambiguation systems cannot be applied in
our scenario, because they assume that all forms of an entity are known.

One may think that variation in surface forms is not such a big problem, as long
as all variations of an entity are sufficiently close to its canonical form. Yet, this is
not the case. For example, the phrase ”decreases in hemoglobin” could refer to at
least 4 different entities in MedDRA, which all look alike: ”changes in hemoglobin”,

”increase in hematocrit”, ”haemoglobin decreased”, and ”decreases in platelets”. In
addition, biomedical entity linking cannot rely on external resources such as alias
tables, entity descriptions, or entity co-occurrence, which are often used in classical
entity linking settings.

For this reason, entity linking approaches have been developed particularly for
biomedical entity linking. Many methods use deep learning: an early work of casts
biomedical entity linking as a ranking problem, leveraging convolutional neural net-
works (CNNs) [159]. More recently, the introduction of BERT has advanced the perfor-
mance of many NLP tasks, including in the biomedical domain [115, 152, 122]. BERT
creates rich pre-trained representations on unlabeled data and achieves state-of-the-art
performance on a large suite of sentence-level and token-level tasks, outperforming
many task-specific architectures. However, considering the number of parameters
of pre-trained BERT models, the improvements brought by fine-tuning them come
with a heavy computational cost and memory footprint. This is a problem for energy
efficiency, for smaller organizations, or in poorer countries.

In this paper, we introduce a very lightweight model that achieves a performance
statistically indistinguishable from the state-of-the-art BERT-based models. The central
idea is to use an alignment layer with an attention mechanism, which can capture
the similarity and difference of corresponding parts between candidate and mention
names. Our model is 23x smaller and 6.4x faster than BERT-based models on average;
and more than twice smaller and faster than the lightweight BERT models. Yet, as
we show, our model achieves comparable performance on all standard benchmarks.
Further, we can show that adding more complexity to our model is not necessary: the
entity-mention priors, the context around the mention, or the coherence of extracted
entities [as used, e.g., in 113] do not improve the results any further. All data and code
are available at GitHub 1.

3.2 Related Work
In the biomedical domain, much early research focuses on capturing string similarity of
mentions and entity names with rule-based systems [62, 133, 67]. Rule-based systems

1 https://github.com/tigerchen52/Biomedical-Entity-Linking

23

https://github.com/tigerchen52/Biomedical-Entity-Linking

are simple and transparent, but researchers need to define rules manually, and these are
bound to an application.

To avoid manual rules, machine-learning approaches learn suitable similarity mea-
sures between mentions and entity names automatically from training sets [150, 61,
85, 151]. However, one drawback of these methods is that they cannot recognize
semantically related words.

Recently, deep learning methods have been successfully applied to different NLP
tasks, based on pre-trained word embeddings, such as word2vec [179] and Glove [204].
Other approaches introduce a CNN [159] and RNN [289], respectively, with pre-trained
word embeddings, which casts biomedical entity linking into a ranking problem.

However, traditional methods for learning word embeddings allow for only a single
context-independent representation of each word. Bidirectional Encoder Representa-
tions from Transformers (BERT) address this problem by pre-training deep bidirectional
representations from unlabeled text, jointly conditioning on both the left and the right
context in all layers. A recent work [122] proposed an biomedical entity normalization
architecture by fine-tuning the pre-trained BERT / BioBERT / ClinicalBERT models
[59, 115, 152]. Extensive experiments show that their model outperforms previous
methods and advanced the state-of-the-art for biomedical entity linking. A shortcoming
of BERT is that it needs high-performance machines.

3.3 Our Approach
Formally, our inputs are (1) a knowledge base (KB), i.e., a list of entities, each with
one or more names, and (2) a corpus, i.e., a set of text documents in which certain text
spans have been tagged as entity mentions. The goal is to link each entity mention to
the correct entity in the KB. To solve this problem, we are given a training set, i.e., a
part of the corpus where the entity mentions have been linked already to the correct
entities in the KB. Our method proceeds in 3 steps:

Preprocessing. We preprocess all mentions in the corpus and entity names in the KB
to bring them to a uniform format.

Candidate Generation. For each mention, we generate a set of candidate entities
from the KB.

Ranking Model. For each mention with its candidate entities, we use a ranking model
to score each pair of mention and candidate, outputting the top-ranked result.

Let us now describe these steps in detail.

Preprocessing
We preprocess all mentions in the corpus and all entity names in the KB by the following
steps:

24

decreases Attention Matrix

𝝓 𝑴,𝑬

Entity Coherence

CNN

𝑝𝑟𝑖𝑜𝑟(𝑀, 𝐸)

𝒇𝑴 𝒇𝑬

𝒃𝒂𝒔𝒆𝒎𝒐𝒅𝒆𝒍 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑀, 𝐸)𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑀, 𝐸)

word embedding

character embedding

alignment feature

output layer

Mention (M) Entity Candidate (E)

CNN

extra features

base feature

in hemoglobin PAD PAD haemoglobin decreased PAD PAD PAD

Figure 3.1: The architecture of our ranking model, with the input mention “decreases
in hemoglobin” and the input entity candidate “haemoglobin decreased”.

Abbreviation Expansion. Like previous work [122], we use the Ab3p Toolkit [250]
to expand medical abbreviations. The Ab3p tool outputs a probability for each possible
expansion, and we use the most probable expansion. For example, Ab3p knows that
“DM” is an abbreviation of “Diabetes Mellitus”, and so we replace the abbreviation
with its expanded term. We also expand mentions by the first matching one from an
abbreviation dictionary constructed by previous work [67], and supplement 20 biomed-
ical abbreviations manually (such as Glycated hemoglobin (HbA1c)). Our dictionary
is available in the supplementary material and online.

Numeral Replacement. Entity names may contain numerals in different forms
(e.g., Arabic, Roman, spelt out in English, etc.) We replace all forms with spelled-out
English numerals. For example, “type II diabetes mellitus” becomes “type two diabetes
mellitus”. For this purpose, we manually compiled a dictionary of numerals from the
corresponding Wikipedia pages. Finally, we remove all punctuation, and convert all
words to lowercase.

KB Augmentation. We augment the KB by adding all names from the training set
to the corresponding entities. For example, if the training set links the mention “GS” in
the corpus to the entity “Adenomatous polyposis coli” in the KB, we add “GS” to the
names of that entity in the KB.

Candidate Generation
Our ranking approach is based on a deep learning architecture that can compute a
similarity score for each pair of a mention in the corpus and an entity name in the KB.
However, it is too slow to apply this model to all combinations of all mentions and
all entities. Therefore, we generate, for each mention M in the corpus, a set CM of
candidate entities from the KB. Then we apply the deep learning method only to the

25

set CM.
To generate the candidate set CM, we calculate a score for M and each entity in the

KB, and return the top-k entities with the highest score as the candidate set CM (in our
experiments, k = 20). As each entity has several names, we calculate the score of M
and all names of the entity E, and use the maximum score as the score of M and the
entity E.

To compute the score between a mention M and an entity name S, we split each of
them into tokens, so that we have M = {m1,m2, ...,m|M|} and S = {s1,s2, ...,s|S|}.

We represent each token by a vector taken from pre-trained embedding matrix
V ∈Rd×|V | where d is the dimension of word vectors and V is a fixed-sized vocabulary
(details in the section of Experimental Settings). To take into account the possibility of
different token orderings in M and S, we design the aligned cosine similarity (ACos),
which maps a given token mi ∈ M to the most similar token s j ∈ S and returns the
cosine similarity to that token:

ACos(mi,S) = max{cos(mi,s j) | s j ∈ S} (3.1)

The similarity score is then computed as the sum of the aligned cosine similarities. To
avoid tending to long text, and to make the metric symmetric, we add the similarity
scores in the other direction as well, yielding:

sim(M,S) =
1

|M|+ |S|
(∑

mi∈M
ACos(mi,S) + ∑

s j∈S
ACos(s j,M)) (3.2)

We can now construct the candidate set CM = {⟨E1,S1⟩, ⟨E2,S2⟩, ...,⟨Ek,Sk⟩} where
Ei is the id of the entity, and Si is the chosen name of the entity. This set contains the
top-k ranked entity candidates for each mention M. Specifically, if there are candidates
whose score is equal to 1 in this set, we will filter out other candidates whose score is
less than 1.

Ranking Model
Given a mention M and its candidate set CM = {⟨E1,S1⟩, ⟨E2,S2⟩, ...,⟨Ek,Sk⟩}, the
ranking model computes a score for each pair of the mention and an entity name
candidate Si. Figure 3.1 shows the corresponding neural network architecture. Let us
first describe the base model. This model relies exclusively on the text similarity of
mentions and entity names. It ignores the context in which a mention appears, or the
prior probability of the target entities. To compute the text similarity, we crafted the
neural network following the candidate generation: it determines, for each token in
the mention, the most similar token in the entity name, and vice versa. Different from
the candidate generation, we also take into account character level information here
and use an alignment layer to capture the similarity and difference of correspondences
between mention and entity names.

26

Representation Layer. As mentioned in the , we represent a mention M and an entity
name S by the set of the embeddings of its tokens in the vocabulary V . However, not
all tokens exist in the vocabulary V . To handle out-of-vocabulary words, we adopt
a recurrent Neural Network (RNN) to capture character-level features for each word.
This has the additional advantage of learning the morphological variations of words.
We use a Bi-directional LSTM (BiLSTM), running a forward and backward LSTM on
a character sequence [92]. We concatenate the last output states of these two LSTMs as
the character-level representation of a word. To use both word-level and character-level
information, we represent each token of a mention or entity name as the concatenation
of its embedding in V and its character-level representation.

Alignment Layer. To counter the problem of different word orderings in the mention
and the entity name, we want the network to find, for each token in the mention, the most
similar token in the entity name. For this purpose, we adapt the attention mechanisms
that have been developed for machine comprehension and answer selection [41, 280].

Assume that we have a mention M = {m̄1, m̄2, ..., m̄|M|} and an entity name S= {s̄1,
s̄2, ..., s̄|S|}, which were generated by the Representation Layer. We calculate a |M|×|S|-
dimensional weight matrix W , whose element wi, j indicates the similarity between the
token i of the mention and the token j of the entity name, wi j = m̄T

i s̄ j. Thus, the ith

row in W represents the similarity between the ith token in M and each token in S. We
apply a softmax function on each row of W to normalize the values, yielding a matrix
W ′. We can then compute a vector m̃i for the ith token of the mention, which is the sum
of the vectors of the tokens of S, weighted by their similarity to m̄i:

m̃i =
t

∑
j=1

w′
i j s̄ j (3.3)

This vector “reconstructs” m̄i by adding up suitable vectors from S, using mainly those
vectors of S that are similar to m̄i. If this reconstruction succeeds (i.e., if m̄i is similar
to m̃i), then S contained tokens which, together, contain the same information as m̄i.

To measure this similarity, we could use a simple dot-product. However, this
reduces the similarity to a single scalar value, which erases precious element-wise
similarities. Therefore, we use the following two comparison functions[262, 280]:

sub(m̄i, m̃i) = (m̄i − m̃i)⊙ (m̄i − m̃i) (3.4)

mul(m̄i, m̃i) = m̄i ⊙ m̃i (3.5)

where the operator ⊙ means element-wise multiplication. Intuitively, the functions
sub and mul represent subtraction and multiplication, respectively. The function sub
has similarities to the Euclidean distance, while mul has similarities to the cosine
similarity – while preserving the element-wise information. Finally, we obtain a
new representation of each token i of the mention by concatenating m̄i, m̃i and their

27

difference and similarity:

m̂i = [m̄i, m̃i,sub(m̄i, m̃i),mul(m̄i, m̃i)] (3.6)

By applying the same procedure on the columns of W , we can compute analogously a
vector s̃ j for each token vector s j of S, and obtain the new representation for the jth

token of the entity name as

ŝ j = [s̄ j, s̃ j,sub(s̄ j, s̃ j),mul(s̄ j, s̃ j)] (3.7)

This representation augments the original representation s̄ j of the token by the “recon-
structed” token s̃ j, and by information about how similar s̃ j is to s̄ j.

CNN Layer. We now have rich representations for the mention and the entity name,
and we apply a one-layer CNN on the mention [m̂1, m̂2, ..., m̂|M|] and the entity name
[ŝ1, ŝ2, ..., ŝ|S|]. We adopt the CNN architecture proposed by [138] to extract n-gram
features of each text:

fM = CNN([m̂1, m̂2, ..., m̂M]) (3.8)

fE = CNN([ŝ1, ŝ2, ..., ŝS]) (3.9)

We concatenate these to a single vector fout = [fM, fE].

Output Layer. We are now ready to compute the final output of our network using a
two-layer fully connected neural network:

Φ(M,E) = sigmoid(W2 ReLU(W1 fout +b1)+b2) (3.10)

where W2 and W1 are learned weight matrices, and b1 and b2 are bias values. This
constitutes our base model, which relies solely on string similarity. We will now see
how we can add add prior, context, and coherence features.

Extra Features
Mention-Entity Prior. Consider an ambiguous case such as “You should shower,
let water flow over wounds, pat dry with a towel.” appearing in hospital Discharge
Instructions. In this context, the disease name “wounds” is much more likely to
refer to “surgical wound” than “gunshot wound”. This prior probability is called
the mention-entity prior. It can be estimated, e.g., by counting in Wikipedia how
often a mention is linked to the page of an entity [113]. Unlike DBpedia and YAGO,
biomedical knowledge bases generally do not provide links to Wikipedia. Hence, we
estimate the mention-entity prior from the training set, as:

prior(M,E) = logcount(M,E) (3.11)

where count(M,E) is the frequency with which the mention M is linked to the target
entity E in the training dataset. To reduce the effect of overly large values, we apply
the logarithm. This prior can be added easily to our model by concatenating it in fout:

fout = [fM, fE ,prior(M,E)] (3.12)

28

Context. The context around a mention can provide clues on which candidate entity
to choose. We compute a context score that measures how relevant the keywords of
the context are to the candidate entity name. We first represent the sentence containing
the mention by pre-trained word embeddings. We then run a Bi-directional LSTM on
the sentence to get a new representation for each word. In the same way, we apply a
Bi-directional LSTM on the entity name tokens to get the entity name representation
cxtE . To select keywords relevant to the entity while ignoring noise words, we adopt
an attention strategy to assign a weight for each token in the sentence. Then we use a
weighted sum to represent the sentence as cxtM. The context score is then computed as
the cosine similarity between both representations:

context(M,E) = cos(cxtM,cxtE) (3.13)

As before, we concatenate this score to the vector fout .

Coherence. Certain entities are more likely to occur together in the same document
than others, and we can leverage this disposition to help the entity linking. To capture
the co-occurrence of entities, we pre-train entity embeddings in such a way that entities
that often co-occur together have a similar distributed representation. We train these
embeddings with Word2Vec [179] on a collection of PubMed abstracts2. Since the
entities in this corpus are not linked to our KB, we consider every occurrence of an
exact entity name as a mention of that entity.

Given a mention M and a candidate entity E, we compute a coherence score
to measure how often the candidate entity co-occurs with the other entities in the
document. We first select the mentions around M. For each mention, we use the first
entity candidate (as given by the candidate selection). This gives us a set of entities
PM = {p1, p2, ..., pk}, where each element is a pre-trained entity vector. Finally, the
coherence score is computed as:

coherence(M,E) =
1
k

k

∑
i=1

cos(pi, pE) (3.14)

where pE is the pre-trained vector of the entity candidate E. This score measures
how close the candidate entity E is, on average, to the other presumed entities in the
document. As before, we concatenate this score to the vector fout. More precisely, we
pre-trained separate entity embeddings for the three datasets and used the mean value
of all entity embeddings to represent missing entities.

NIL Problem
The NIL problem occurs when a mention does not correspond to any entity in the KB.
We adopt a traditional threshold method, which considers a mention unlinkable if its
score is less than a threshold τ . This means that we map a mention to the highest-
scoring entity if that score exceeds τ , and to NIL otherwise. The threshold τ is learned
2 ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/

29

from a training set. For datasets that do not contain unlinkable mentions, we set the
threshold τ to zero.

Training
For training, we adopt a triplet ranking loss function to make the score of the positive
candidates higher than the score of the negative candidates. The objective function is:

θ
∗ = argmin

θ
∑

D∈D
∑

M∈D
∑

E∈C
max(0,γ + Φ(M,E+) − Φ(M,E−)) (3.15)

where θ stands for the parameters of our model. D is a training set containing a
certain number of documents and γ is the parameter of margin. E+ and E− represent
a positive entity candidate and a negative entity candidate, respectively. Our goal is
to find an optimal θ , which makes the score difference between positive and negative
entity candidates as large as possible. For this, we need triplets of a mention M, a
positive example E+ and a negative example E−. The positive example can be obtained
from the training set. The negative examples are usually chosen by random sampling
from the KB. In our case, we sample the negative example from the candidates that
were produced by the candidate generation phase (excluding the correct entity). This
choice makes the negative examples very similar to the positive example, and forces
the process to learn what distinguishes the positive candidate from the others.

3.4 Experiments

3.4.1 Datasets and Metrics.
We evaluate our model on three datasets (shown in Table 3.1). The ShARe/CLEF
corpus [211] comprises 199 medical reports for training and 99 for testing. As Table 3.1
shows, 28.2% of the mentions in the training set and 32.7% of the mentions in the
test set are unlinkable. The reference knowledge base used here is the SNOMED-CT
subset of the UMLS 2012AA [19]. The NCBI disease corpus [61] is a collection
of 793 PubMed abstracts partitioned into 693 abstracts for training and development
and 100 abstracts for testing. We use the July 6, 2012 version of MEDIC [56], which

ShARe/CLEF NCBI ADR
train test train test train test

documents 199 99 692 100 101 99
mentions 5816 5351 5921 964 7038 6343
NIL 1641 1750 0 0 47 18

concepts 88140 9656 23668
synonyms 42929 59280 0

Table 3.1: Dataset Statistics

30

Model ShARe/CLEF NCBI ADR

DNorm [150] - 82.20±3.09 -
UWM [85] 89.50±1.02 - -

Sieve-based Model [67] 90.75±0.96 84.65±3.00 -
TaggerOne [151] - 88.80±2.59 -

Learning to Rank [296] - - 92.05±0.84
CNN-based Ranking [159] 90.30±1.00 86.10±2.79 -
BERT-based Ranking [122] 91.06±0.96 89.06±2.63 93.22±0.79

Our Base Model 90.10±1.00 89.07±2.63 92.63±0.81
Our Base Model + Extra Features 90.43±0.99 89.59±2.59 92.74±0.80

Table 3.2: Performance of different models. Results in gray are not statistically different
from the top result.

contains 9,664 disease concepts. The TAC 2017 Adverse Reaction Extraction (ADR)
dataset consists of a training set of 101 labels and a test set of 99 labels. The mentions
have been mapped manually to the MedDRA 18.1 KB, which contains 23,668 unique
concepts.

Following previous work, we adopt accuracy to compare the performance of differ-
ent models.

3.4.2 Experimental Settings
We implemented our model using Keras, and trained our model on a single Intel(R)
Xeon(R) Gold 6154 CPU @ 3.00GHz, using less than 10Gb of memory. Each token
is represented by a 200-dimensional word embedding computed on the PubMed and
MIMIC-III corpora [307]. As for the character embeddings, we use a random matrix
initialized as proposed in this work [105], with a dimension of 128. The dimension of
the character LSTM is 64, which yields 128-dimensional character feature vectors. In
the CNN layer, the number of feature maps is 32, and the filter windows are [1,2,3]. The
dimension of the context LSTM and entity embedding is set to 32 and 50 respectively.
We adopt a grid search on a hold-out set from training samples to select the value τ ,
and and find an optimal for τ = 0.75.

During the training phase, we select at most 20 entity candidates per mention, and
the parameter of the triplet rank loss is 0.1. For the optimization, we use Adam with a
learning rate of 0.0005 and a batch size of 64. To avoid overfitting, we adopt a dropout
strategy with a dropout rate of 0.1.

3.4.3 Competitors
We compare our model to the following competitors: DNorm [150]; UWM [85];
Sieve-based Model [67]; TaggerOne [151]; a model based on Learning to Rank
[296]; CNN-based Ranking [159]; and BERT-based Ranking [122].

31

Model ShARe/CLEF NCBI ADR

- Character Feature -1.21 -0.31 -0.30
- Alignment Layer -3.80 -4.06 -3.17

- CNN Layer -1.87 -0.93 -0.35
Our Base Method 90.10 89.07 92.63

+ Mention-Entity Prior +0.33 +0.04 +0.03
+ Context -0.09 +0.21 -0.24

+ Coherence -0.02 +0.27 +0.11

Table 3.3: Ablation study

Model Original ADR 10% 30% 50% 70% 90%

+ Ordering Change 92.63 92.20 92.18 91.95 92.31 92.05
+ Typo 92.63 92.03 91.61 91.38 91.41 91.13

Table 3.4: Performance in the face of typos: Simulated ADR Datasets

3.5 Results

3.5.1 Overall Performance
During the candidate generation, we generate 20 candidates for each mention. The
recall of correct entities on the ShARe/CLEF, NCBI, and ADR test datasets is 97.79%,
94.27%, and 96.66% respectively. We thus conclude that our candidate generation does
not eliminate too many correct candidates. Table 3.2 shows the performance of our
model and the baselines. Besides accuracy, we also compute a binomial confidence
interval for each model (at a confidence level of 0.02), based on the total number of
mentions and the number of correctly mapped mentions. The best results are shown in
bold text, and all performances that are within the error margin of the best-performing
model are shown in gray. We first observe that, for each dataset, several methods
perform within the margin of the best-performing model. However, only two models
are consistently within the margin across all datasets: BERT and our method. Adding
extra features (prior, context, coherence) to our base model yields a small increase on
the three datasets. However, overall, even our base model achieves a performance that
is statistically indistinguishable from the state of the art.

3.5.2 Ablation Study
To understand the effect of each component of our model, we measured the performance
of our model when individual components are removed or added. The results of this
ablation study on all three datasets are shown in Table 3.3. The gray row is the accuracy
of our base model. The removal of the components of the base model is shown above
the gray line; the addition of extra features (see the section of) below. If we remove the

32

Model Parameters ShARe/CLEF NCBI ADR Avg Speedup
CPU GPU CPU GPU CPU GPU

BERT (large) 340M 2230s 1551s 353s 285s 2736s 1968s 1521s 12.3x
BERT (base) 110M 1847s 446s 443s 83s 1666s 605s 848s 6.4x
TinyBERT6 67M 1618s 255s 344s 42s 2192s 322s 796s 6.0x

MobileBERT (base) 25.3M 1202s 330s 322s 58s 1562s 419s 649s 4.7x
ALBERT (base) 12M 836s 129s 101s 24s 1192s 170s 409s 2.6x
Our Base Model 4.6M 181s 131s 38s 22s 196s 116s 114s -

Table 3.5: Number of model parameters and observed inference time

Alignment Layer (underlined), the accuracy drops the most, with up to 4.06 percentage
points. This indicates that the alignment layer can effectively capture the similarity of
the corresponding parts of mentions and entity names. The CNN Layer extracts the key
components of the names, and removing this part causes a drop of up to 1.87 percentage
points. The character-level feature captures morphological variations, and removing it
results in a decrease of up to 1.21 percentage points. Therefore, we conclude that all
components of our base model are necessary.

Let us now turn to the effect of the extra features of our model. The Mention-Entity
Prior can bring a small improvement, because it helps with ambiguous mentions, which
occupy only a small portion of the dataset. The context feature, likewise, can achieve a
small increase on the NCBI dataset. On the other datasets, however, the feature has a
negative impact. We believe that this is because the documents in the NCBI datasets are
PubMed abstracts, which have more relevant and informative contexts. The documents
in the ShARe/CLEF and ADR datasets, in contrast, are more like semi-structured text
with a lot of tabular data. Thus, the context around a mention in these documents is less
helpful. The coherence feature brings only slight improvements. This could be because
our method of estimating co-occurrence is rather coarse-grained, and the naive string
matching we use may generate errors and omissions. In conclusion, the extra features
do bring a small improvement, and they are thus an interesting direction of future
work. However, our simple base model is fully sufficient to achieve state-of-the-art
performance already.

3.5.3 Performance in the Face of Typos
To reveal how our base model works, we further evaluate it on simulated ADR datasets.
We generate two simulated datasets by randomly adding typos and changing word
orderings of mention names. As described in Table 3.4, as we gradually add typos,
the accuracy does not drop too much, and adding 90% of typos only results in a 1.5
percent drop. This shows our model can deal well with morphological variations of
biomedical names. Besides, ordering changes almost have no effect on our base model,
which means it can capture correspondences between mention and entity names.

33

20% 40% 60% 80% 100%
Percent of Training Samples

0.82

0.84

0.86

0.88

0.90

0.92
A

cc
ur

ac
y

ShARe/CLEF
NCBI
ADR

Figure 3.2: Model efficiency on a small amount of data.

3.5.4 Parameters and Inference Time
To measure the simplicity of our base model, we analyze two dimensions: the number
of model parameters and the practical inference time. In Table 3.5, we compare our
model with BERT models, including three popular lightweight models: ALBERT[147],
TinyBERT[125], and MobileBert[260]. Although ALBERT’s size is close to our
model, its performance is still 2.2 percentage points lower than the BERTBASE model
on average.

The second column in the table shows the number of parameters of different models.
Our model uses an average of only 4.6M parameters across the three data sets, which
is 1.6x to 72.9x smaller than the other models. The third column to the tenth column
show the practical inference time of the models on the CPU and GPU. The CPU is
described in the Experimental Settings, and the GPU we used is a single NVIDIA Tesla
V100 (32G). Our model is consistently the fastest across all three datasets, both for
CPU and GPU (except in the fourth column). On average, our model is 6.4x faster than
other BERT models, and our model is much lighter on the CPU.

3.5.5 Model Performance as Data Grows
In this section, we study how our model performs with an increasing amount of training
samples, by subsampling the datasets. As shown in Figure 3.2, the performance of our
base model keeps growing when we gradually increase the number of training samples.
When using 50% of the training samples, the accuracies of ShARe/CLEF, NCBI, and
ADR dataset are already 0.8342,0.8747, and 0.9106, respectively. More data leads to
better performance, and thus our model is not limited by its expressivity, even though it
is very simple.

34

3.6 Conclusion
In this paper, we propose a simple and lightweight neural model for biomedical
entity linking. Our experimental results on three standard evaluation benchmarks
show that the model is very effective, and achieves a performance that is statistically
indistinguishable from the state of the art. BERT-based models, e.g., have 23 times
more parameters and require 6.4 times more computing time for inference. Future
work to improve the architecture can explore 1) automatically assigning a weight for
each word in the mentions and entity names to capture the importance of each word,
depending, e.g., on its grammatical role; 2) Graph Convolutional Networks (GCNs)
[140, 290] to capture graph structure across mentions and improve our notion of entity
coherence.

35

4
Generalizability: Disambiguating Acronym in

General Domain

Acronym Disambiguation (AD) is crucial for natural language understanding on various
sources, including biomedical reports, scientific papers, and search engine queries.
However, existing acronym disambiguation benchmarks and tools are limited to specific
domains, and the size of prior benchmarks is rather small. To accelerate the research on
acronym disambiguation, we construct a new benchmark named GLADIS with three
components: (1) a much larger acronym dictionary with 1.5M acronyms and 6.4M
long forms; (2) a pre-training corpus with 160 million sentences; (3) three datasets that
cover the general, scientific, and biomedical domains. We then pre-train a language
model, AcroBERT, on our constructed corpus for general acronym disambiguation, and
show the challenges and values of our new benchmark.

4.1 Introduction
An acronym is an abbreviation formed from the initial letters of a longer name. For in-
stance, the following two sentences contain the acronym “AI”: (1) This is the product’s
first true AI version, and it understands your voice instantly. (2) In the United States,
the AI for potassium for adults is 4.7 grams. The long forms (or expanded forms) for
the same acronym are “Artificial Intelligence” and “Adequate Intake”, respectively.

Acronym Disambiguation (AD) is the task of mapping a given acronym in a given
sentence to the intended long form. Acronym disambiguation is crucial for downstream
tasks such as information extraction, machine translation, and query analysis in search
engines [119, 117]. Acronym disambiguation is also important for humans: acronyms
may make a text more difficult to understand for readers who are not familiar with the
specific domain. A study on a Microsoft question answering forum found that only
7% of the acronyms co-occur with their corresponding long forms, which confuses the
readers about the meaning of a text [161].

Acronym Disambiguation has received more attention in the past few years. The
first step in acronym disambiguation is usually the creation of a dictionary, i.e., a
mapping of each acronym to one or more long forms. Early systems extracted acronyms

36

ID Long Form Popularity Domain

1 Artificial Intelligence ⋆⋆⋆⋆⋆ Computer Science
2 Adequate Intake ⋆⋆⋆⋆ Food and Nutrition
3 Aromatase Inhibitor ⋆⋆⋆ Chemistry
4 Apoptotic Index ⋆⋆⋆ Biomedicine
5 Asynchronous Irregular ⋆⋆⋆ Neuroscience
6 Amnesty International ⋆⋆ Organization
7 Anterior Insula ⋆⋆ Biomedicine
8 Air India ⋆⋆ Organization
9 Article Influence ⋆⋆ Science

......
2243 Agricultural Implement ⋆ Agriculture

Table 4.1: Long form candidates for the acronym “AI” from our
acronym dictionary. The SciAD benchmark [272] only includes
two long terms (black) in the scientific domain. The popularity is
the occurrence frequency in our collected corpora.

and their definitions automatically from texts by rule-based [237] or supervised [188]
methods. Once a dictionary is available, acronym disambiguation methods expand
acronyms in a given text by capturing the contexts for specific domains, e.g., the
enterprise domain [161], biomedical texts [127], and scientific papers [35]. Madog
[271] was the first general and web-based system, recognizing and expanding acronyms
across multiple domains. Several benchmarks have also been constructed, including
for the biomedical area [261] and the scientific area [SciAD, 272]. Several methods
fine-tuned SciBERT [15] on SciAD to disambiguate acronyms in scientific documents
[197, 312, 156].

Although these works have significantly advanced the progress of acronym disam-
biguation, they suffer from three main limitations. First, most existing dictionaries
(and benchmarks) focus on one specific domain. In real-world applications, however,
the input text may be general, cross-domain, or of an unspecified domain (as in search
engine queries). Second, existing dictionaries are limited in size. For example, there are
only two long forms for the acronym “AI” in SciAD (Table 4.1), which is constructed
from arXiv. However, we find that the two long forms “Asynchronous Irregular” and

“Anterior Insula” also appear in scientific papers on arXiv [89, 269], and the acronym
“AI” also appears separately without the long form in sentences. In our work, we actually
find at least 2 243 different long forms for “AI”. Besides, SciAD suffers from the
problem of data leakage, because the train and test sets have overlapping pairs of
acronym and long form. Finally, current general AD systems such as MadDog [271]
rely on static word embeddings and LSTMs (Long Short Term Memory [112]). Thus,
they do not leverage pre-training on large corpora, which drives the current state of the
art in most NLP tasks with contextual embeddings like BERT [59].

With this work, we aim to improve Acronym Disambiguation along two dimen-
sions: First, we automatically construct GLADIS, a General and Large Acronym

37

Figure 4.1: An end-to-end acronym disambiguation system using AcroBERT. You can
try the Demo at https://huggingface.co/spaces/Lihuchen/AcroBERT.

DISambiguation benchmark that includes a larger dictionary, a pre-training corpus and
three datasets covering the general, biomedical, and scientific domains. Our dictionary
contains 1.5M acronyms and 6.4M long forms, which trumps existing dictionaries
by a factor of 3. We complement this dictionary by three domain-specific datasets
for acronym disambiguation, which are adapted from three existing human-annotated
and crowd-sourced datasets [182, 193, 272]. The pre-training corpus has 160 million
sentences with acronyms, collected from the Pile dataset [81] with a rule-based algo-
rithm [237]. Second, we propose AcroBERT, the first pre-trained language model for
general acronym disambiguation. Our experiments show that this model outperforms
existing systems across multiple domains. All code and data are publicly available at
https://github.com/tigerchen52/GLADIS.

4.2 Related Work

4.2.1 Acronym Identification and Disambiguation
To expand acronyms, there are usually two sub-tasks: Acronym Identification (AI),
which creates a dictionary of acronyms and their definitions from a given document,
and Acronym Disambiguation (AD), which aims to link acronyms in the input text to
the correct long forms from a dictionary.

The study of acronym identification has a long history. Early work observed
that acronyms and their long forms appear frequently together in a document, as

38

https://huggingface.co/spaces/Lihuchen/AcroBERT
https://github.com/tigerchen52/GLADIS

Unstructured Text

Pile

Structured Text

838 GiB Corpora

Sentence

Artificial intelligence (AI) is intelligence demonstrated by machines.

Machine Learning (ML) is a method of data analysis that automates analytical
model building.

Acronym Long Form

AI Artificial intelligence

ML Machine Learning

Rule-based

Algorithm

Acronym Extraction

Acronym Dictionary ED Benchmark

BERTPre-training Corpus

AD Dataset Construction

Pre-training AcroBERT

Pre-train

Map

Re-split

Figure 4.2: Framework of our benchmark construction. The “ED” in the lower right
corner means “Entity Disambiguation”.

in “Artificial Intelligence (AI)”. Based on this pattern, many approaches identify and
extract acronyms by using rules [302, 148, 216, 201, 303, 237, 2, 8, 192, 250, 271]
or supervised methods [34, 188, 146, 186, 166, 292, 314]. In our work, we build on
previous work [237] for Acronym Identification, and focus mainly on disambiguation.

As for acronym disambiguation, early solutions manually designed features to score
each pair of acronyms and long forms, by either unsupervised [119, 109] or supervised
machine learning [196, 304, 252, 76, 161]. Later, deep learning approaches were
introduced to the task, using embeddings to represent word sequences. The methods can
be categorized as static embedding-based [294, 158, 35] and dynamic embedding-based
[127, 197, 312, 156], where the former generates fixed representations for words in a
pre-defined vocabulary and the latter can represent arbitrary words dynamically based
on specific contexts. One main limitation of these methods is that they are domain-
specific systems that can be applied only to a certain field such as the biomedical
domain or scientific documents. To generalize the system, Abbreviation Expander [48]
and MadDog [271] are proposed, both of which can be used in multiple domains. In
this paper, we improve over the performance of these systems by adapting transformer-
based methods and pre-training strategies.

4.2.2 Existing benchmarks
Most current public datasets for acronym expansion are focused on a particular domain,
such as the biomedical domain [261, 285] or science [35, 272]. Some works adopt
two domain-specific datasets for better evaluations [47, 273]. The main limitation of
these benchmarks is two-fold: first, their acronym dictionaries are rather small. For
instance, the average number of candidates per acronym in the SciAD benchmark [272]
is 3.15 while in our benchmark the number is greater than 200. Second, there are no
AD evaluation sets that cover multiple domains. We also note that, in SciAD, the train
and test sets have overlapping pairs of acronym and long form. For example, the pair
⟨CT, Computed Tomography⟩ appears in the training, validation, and test sets.

39

4.3 Constructing GLADIS
Our GLADIS benchmark consists of three components: a dictionary, a pre-training
corpus, and three domain-specific datasets.

4.3.1 Dictionary and Pre-training Corpus
We propose an acronym dictionary that addresses the shortcomings of existing dictio-
naries (Section 4.2.2) by being (1) cross-domain and (2) large in size. To construct
this dictionary, we apply rule-based extraction on a large set of corpora that contain
acronym definitions. In this process, we can also obtain a large number of sentences
containing acronyms as the pre-training corpus.

Subset Domain Size (GiB)

Pile-CC Web Archive files 227.12
Books3 Books 100.96
Github Open-source codes 95.16

PubMed Central Biomedical articles 90.27
OpenWebText2 Reddit submissions 62.77

ArXiv Research papers 56.21
FreeLaw Legal proceedings 51.15

Stack Exchange Question-answer texts 32.20
USPTO Backgrounds Patents 22.90

PubMed Abstracts Biomedical abstracts 19.26
OpenSubtitles Subtitles 12.98

Gutenberg (PG-19) Western literatures 10.88
DM Mathematics mathematical problems 7.75

Wikipedia (en) Wikipedia pages 6.38
BookCorpus2 Books 6.30
Ubuntu IRC Chatlog data 5.52

EuroParl Proceedings 4.59
HackerNews Comments of social news 3.90

YoutubeSubtitles YouTube subtitles 3.73
PhilPapers Philosophy publications 2.38

NIH ExPorter Awarded applications 1.89
Enron Emails Emails 0.88

Wikidata Alias Alias Table 11.00
UMLS Concept Biomedical Vocabulary 1.96

Total - 838.14

Table 4.2: Sources for acronym extraction. All corpora except
Wikidata Alias and UMLS Concept are from Pile [81].

Input Corpora. For the textual data source, we use the Pile dataset [81], an 825
GiB English corpus constructed from 22 diverse high-quality subsets. Pile [81] is an
825 GiB English text corpus designed to train large-scale language models, which is

40

constructed from 22 diverse high-quality academic or professional sources. Pile is
constructed from existing or newly introduced datasets, and we present these sources
here. Pile-CC is a collection of web pages, metadata and texts, which is extracted from
jusText [70]. Books3 is a book dataset of fiction and nonfiction books derived from
Bibliotik 1. Project Gutenberg has classic Western literature derived from PG-19
[220]. OpenSubtitles provides a large corpus of English subtitles from movies and
television shows collected by this work [265]. DeepMind Mathematics is a collection
of many different types of mathematics questions [233]. BookCorpus2 is an expanded
version of BookCorpus [317], a corpus of books from the web. EuroParl is a corpus
of parallel text in 11 languages from the proceedings of the European Parliament[143].
Enron Emails is a large set of email messages, which contains 619,446 messages
belonging to 158 users [142].

We also make use of structured knowledge from knowledge bases, namely the
Alias Table from Wikidata and the Concept Names from UMLS. Both of them contain
alternate names for canonical entities, and these may be acronyms or not. To consider
only the acronyms, we produce pairs of the canonical name and an alternate name
in the form “canonical form (alternate name)”. The rule-based algorithm will then
decide whether to extract an acronym or not. Table 4.2 shows the statistics of our
sources. They cover a wide range of domains including Web pages, books, scientific
and biomedical papers, legal documents, etc.

Acronym Extraction. To extract acronyms from the textual sources, we use a
rule-based algorithm [237]. It assumes that acronyms follow a predictable pattern, e.g.,
long form (acronym) or acronym (long form), and then uses rules to extract candidate
pairs by identifying parentheses and surrounding tokens. Experimental results show
that this simple algorithm achieves 95% precision and 82% recall, averaged over two
datasets. As the method has good results at low time complexity, we decided to not
adopt more sophisticated methods. Some extracted samples are shown in Table 4.3 in
the appendix. A manual evaluation on a random sample of 100 extracted sentences
yields a precision of 94%.

Dictionary Construction. Next, we build a large-scale acronym dictionary with fre-
quencies (popularity) by merging the extracted outputs. This merger may regroup dupli-
cate long forms for an acronym, e.g., “convolutional neural network”, “convolutional-
neural network” or “convolutional neural networks”. Therefore, we merge long forms
that are identical after stemming and removing punctuation. In our case, the above three
forms are merged into “convolutional neural network”. We keep the most frequent,
unpreprocessed, long form as the canonical name in our dictionary, discarding other
forms. There are still some noisy long forms that cannot be merged, caused by typos
and nested acronyms. However, a manual evaluation on a sample shows that 94% of the
long forms are clean. If the long forms are weighted by their frequency, the percentage
of clean forms increases to 97%. Most notably, all most frequent long forms for a given
acronym were clean in our sample. The statistics of our dataset are shown in Table 4.4.
Our resource will be the largest publicly available dictionary for acronyms that covers
various domains.
1 https://twitter.com/theshawwn/status/1320282149329784833

41

https://twitter.com/theshawwn/status/1320282149329784833

Acronym Long Form Provenance

ELEC Election Law Enforce-
ment Commission

Christie, some legislators and the state Elec-
tion Law Enforcement Commission (ELEC), have
joined the comptroller in voicing support for the
elimination of the loophole.

ISR in-stent restenosis Although conventional stents are routinely used in
clinical procedures, clinical data shows that these
stents are not capable of completely preventing
in-stent restenosis (ISR) or restenosis caused by
intimal hyperplasia.

IL-6 interleukin-6 Consistent blood markers in afflicted patients are
normal to low white cell counts and elevated
interleukin-6 (IL-6) levels which, among its many
activities, signal the liver to increase synthesis
and secretion of CRP.

PCP Planar cell polarity Establishment of photoreceptor cell polarity
and ciliogenesis Planar cell polarity (PCP)-
associated Prickle genes (Pk1 and Pk2) are tissue
polarity genes necessary for the establishment of
PCP in Drosophila.

DEP dielectrophoretic They included: a particle counter, trypan blue
exclusion (Cedex), an in situ bulk capacitance
probe, an off-line fluorescent flow cytometer, and
a prototype dielectrophoretic (DEP) cytometer.

AQP3 aquaporin3 The laxative effect of bisacodyl is attributable
to decreased aquaporin-3 expression in the
colon induced by increased PGE2 secretion from
macrophages.The purpose of this study was to
investigate the role of aquaporin3 (AQP3) in the
colon in the laxative effect of bisacodyl.

Table 4.3: Samples of extracted acronyms, long forms and provenances by using
the rule-based algorithm from this work [237].

42

Short Form Long Form Avg

SciAD [272] 732 2,308 3.15
MadDog [271] 426,389 3,781,739 8.87

Ours 1,542,819 6,381,257 4.14

Table 4.4: Statistics for three acronym dictionar-
ies. The “Avg” column shows the average number
of long forms per acronym.

Pre-training Corpus. While building the dictionary, we can also collect the
sentences that contain acronyms for pre-training. For example, the following sentence
contains the acronym ELEC: “Christie, some legislators and the state Election Law
Enforcement Commission (ELEC), have joined the comptroller in voicing support
for the elimination of the loophole.” For pre-training, the long form Election Law
Enforcement Commission is removed, and we then force the model to restore the long
form from our constructed dictionary, based on the input sentence and the acronym. In
total, we collect a pre-training corpus with ˜160 million sentences. More examples are
shown in Table 4.3.

train valid test unique short form long forms per acronym overshadowed ratio

General 13,269 7,024 7,125 1,147 248 29.8%
Scientific 28,023 14,134 14,066 2,922 262 68.7%

Biomedical 6,295 3,150 3,149 2,909 278 27.4%

Table 4.5: Statistics of our new Acronym Disambiguation Benchmark. The last
column shows the ratio of overshadowed samples in the dataset: long forms with
the same acronym but not the most popular one.

4.3.2 Acronym Disambiguation Dataset
We use our acronym dictionary to construct new, larger datasets for evaluating AD
systems. To automatically construct the datasets, we adapt the existing two Entity
Disambiguation datasets by replacing the long form of entity with the acronym. For
example, one sentence in Medmentions [182] contains the long form of Cerebral Blood
Flow: “The reconstructed volume was then compared with corresponding magnetic
resonance images demonstrating that the volume of reduced Cerebral Blood Flow
agrees with the infarct zone at twenty-four hours”. The dataset provides the unique
ID of this long form in UMLS (C1623258), and we use it to find the acronym CBF in
UMLS. Therefore, a new sample can be obtained by replacing the long form with its
corresponding acronym.

Specifically, we use the following human-annotated and crowd-sourced datasets:
WikilinksNED Unseen Mentions [193] is an Entity Disambiguation dataset, i.e., a set
of text documents that have mentions of entities, together with a reference knowledge
base (KB) that contains, for each entity, one or several names. WikilinksNED Unseen

43

Mentions re-splits the WikilinksNED dataset [71] to ensure that all mentions in the
validation and test sets do not appear in the training set. This is a large-scale, crowd-
sourced ED dataset from websites in various fields, which is significantly noisier and
more challenging than prior datasets. The reference KB is Wikidata (or Wikipedia),
and we adapt this WikilinksNED Unseen Mentions to an AD dataset in the general
domain.
Medmentions [182] is an entity disambiguation dataset of 4,392 PubMed papers that
were annotated by professional and experienced annotators in the biomedical domain.
The reference KB is UMLS [19], and this is a biomedical dataset.
SciAD [272] is the previously mentioned acronym disambiguation dataset in the
scientific domain.

SciAD is already an AD dataset, and we only re-split it to avoid data leakage. As
for the two ED datasets, they both provide a unique ID to the reference KB for each
long form. We then replace the long forms with the acronyms from their corresponding
reference KB, i.e., Wikidata and UMLS. To make sure this replacement is correct, we
apply the rule-based algorithm [237] to the pair of long form and acronym again for
verification. We manually checked 100 random sentences constructed in this way and
did not find problematic cases. Hence, this semi-synthetic construction results in a
dataset of natural text in which the long form and the acronym are mutually replaceable
in the context. Besides, the pair is added to our dictionary with a frequency of 1 if it
does not appear in our dictionary. For the WikilinksNED dataset, we use the taxonomy
of YAGO 4 [203] to label each long form with a top-level class. For example, “rhythm
and blues” is a CreativeWork and “United States Navy” is an Organization.

We then partition the three datasets separately into training, test, and validation
set, ensuring that the acronyms in the training set do not appear in the validation and
test sets. We repartition the datasets at the ratio of 6:2:2. Table 4.5 gives the statistics
of this new benchmark. It is not only larger but also more challenging than existing
benchmarks, because acronyms in our benchmark have more than 200 candidates on
average. Moreover, it contains many overshadowed forms [214], which means that
an acronym has to be disambiguated to a long form that is not the most popular long
form for that acronym. For example, “Adequate Intake” is overshadowed by the more
popular form “Artificial Intelligence” for the acronym “AI”.

4.4 AcroBERT
We can now capitalize on our dictionary and pre-training corpus to propose a new
method for acronym disambiguation. It takes as input (1) a dictionary of acronyms with
their long form(s), and (2) a large-scale corpus that contains acronyms (we assume that
the boundaries of the acronym have already been recognized). Our goal is to pre-train
a language model for acronym disambiguation, which has a strong generalizability
across multiple domains.

The Pre-training Strategy of BERT. We adapt the BERT model for our purpose.
BERT is pre-trained by using two unsupervised tasks, Masked Language Model (MLM)

44

and Next Sentence Prediction (NSP). The Masked Language Model task randomly
masks some percentage of the input tokens, and then forces the model to predict the
masked tokens, similar to a cloze task. The Next Sentence Prediction task asks the
model to predict whether one sentence follows the other.

The Next Sentence Prediction task can be used to predict, from the input text (e.g.,
“This is the product’s first true AI version, and it understands your voice instantly.”),
the correct long form (“Artificial Intelligence”). Here, the model learns to judge
whether the input context that contains the acronym “AI” is coherent with the long
form “Artificial Intelligence”. The Masked Language Model task can memorize the
correlation of tokens between the context sequence and long form. Thus, the model
learns that the phrase “Artificial Intelligence” often co-occurs with “product” or

“understand”.
However, we find that this naive technique does not perform well (see the ablation

studies in Table 3.3). We believe that the reason is that the acronym is usually ambigu-
ous with many candidates (as shown in Table 4.1), so that the model has difficulties
predicting the correct long form by only using the cross-entropy loss of the binary
classification. We also observe that the Masked Language Model loss is so small that
the model focuses on adapting the Next Sentence Prediction task only.

AcroBERT. To mitigate the weaknesses of the original BERT, we pre-train an adapted
BERT, called AcroBERT, by slightly adjusting the Next Sentence Prediction task. The
framework is shown in Figure 4.3. It aims to bring the positive sample pairs closer
together, and to push apart the negative sample pairs. We find that already such a
simple model can perform very well. For each pair of a candidate long form and a
sentence with an acronym, we compose an input for the Next Sentence Prediction task
as “[CLS] long form [SEP] sentence [SEP]”. Then, we obtain representations of
this sequence by applying BERT to this new input. The final hidden vector e[CLS] ∈RH

of the first input token ([CLS]) is used as the aggregate representation, where H is the
dimension of the hidden vector. Next, the scores for the binary classification are:

P(y) = softmax(e[CLS]W),y ∈ {0,1} (4.1)

where W ∈RH×2 is a trainable matrix initialized with the weights of the original BERT,
and the label 0 signifies that this pair of sentences are coherent. We use d = P(y = 1)
as the distance between the candidate and the context, and we want the distances of
negative pairs to be larger than for positive pairs. For this, we use a triplet loss function
that aims to assign higher scores to the correct candidates that match the topic of the
input sentence while reducing the scores of irrelevant candidates:

L = max
{

0,λ −dneg +dpos
}

(4.2)

where λ is the margin value, and dpos and dneg are the distances for positive and negative
pairs, respectively.

The negatives in this triplet framework can be randomly sampled from the dictionary.
However, we observe that such random negatives contribute less to the training and

45

AI
Adequate Intake

Artificial Intelligence the AI for potassium for adults is 4.7 grams.

the AI for potassium for adults is 4.7 grams.

BERT

Acronym Candidates Next Sentence Prediction Triplet Loss

[SEP]

[SEP]

Negative

Positive

Figure 4.3: The pre-training strategy of AcroBERT. λ is a margin between positive and
negative pairs, here ⟨Adequate Intake, AI⟩ and ⟨Artificial Intelligence, AI⟩.

result in slower convergence because the initial model can easily distinguish these
triplets. Therefore, it is crucial to select harder triplets that are active and beneficial to
the training. For this purpose, we introduce a certain number of ambiguous negatives
to each mini-batch, e.g., “Artificial Intelligence” can be added to the input context as
an ambiguous negative sample for the positive pair “Adequate Intake [SEP] In the
United States, the AI for potassium for adults is 4.7 grams.” Through the pre-training
step, AcroBERT is able to identify the correct long form with the most consistent theme
from numerous candidates based on the input context.

4.5 Experiments
In this section, we compare AcroBERT empirically to other acronym disambiguation
approaches.

4.5.1 Experimental Settings
Datasets. We use the following datasets for evaluation: Our GLADIS benchmark
consists of three subsets covering the General, Scientific, and Biomedical domains. This
benchmark is more challenging than prior work due to a large number of ambiguous
long forms: each acronym has around 200 candidates on average. We also evaluate
AcroBERT on two existing datasets: UAD [47] and SciAd [272]. They are general and
scientific AD datasets, respectively. We reuse the test set of Medmentions but use the
UMLS as the target dictionary. We refer to them as datasets with fewer candidates
because they have fewer candidates per acronym.

Our GLADIS benchmark consists of three subsets covering the General, Sci-
entific, and Biomedical domains. It is a very challenging benchmark, due to a large
number of ambiguous long forms, as described in Section 4.3.2.

• General has 45K samples gathered from the WikilinksNED Unseen Mentions
[193].

• Scientific is adapted from SciAD [272] with 56K samples, and the long forms in
the original dataset are mapped to the new acronym dictionary. We re-split the
training, validation and test sets to assure there are no overlaps.

46

• Biomedical includes 12K samples obtained from Medmentions [182].

Datasets with fewer candidates per acronym.

• UAD [47] is gathered from the English Wikipedia and we use the manually
labeled 7K samples for evaluation.

• SciAD [272] is a human-annotated dataset for the scientific domain with 62K
samples gathered from the ArXiv preprint papers, and the validation set with 6K
samples is used for experiments.

• Biomedical-UMLS is a dataset with 3K samples obtained from the test set in
our benchmark by using the UMLS concepts as the acronym dictionary

The average candidates per acronym for the three datasets are 2.1, 3.1, and 34.2,
respectively.

4.5.2 Competitors
We compare our approach to the following publicly available competitors:

• BM25 [228] is a classical ranking function in information retrieval.

• Popularity-Ours is a baseline that uses the frequency of long forms of our col-
lected pre-training datasets.

• BERT [59] is a strong baseline, which pre-trains contextual language models
on large corpora. The scores for the NSP task can be used for the acronym
disambiguation.

• FastText [20] is a character-level embeddings and can produce representations
for arbitrary words. In this experiment, we first represent the input sentence and
candidates by the sum of word embeddings from FastText. Then, all candidates
are ranked by their cosine similarity score.

• MadDog [271] is a web-based acronym disambiguation system for multiple
domains. It first creates chunks in which all samples with the same acronyms
are assigned to the same chunks. After, a separate Bi-LSTM model is trained
for each chunk. To deploy the MadDog server, it needs at least 125 GB of disk
space and 70 GB of RAM memory 2.

• BioBERT [152] is a biomedical language representation model mainly pre-
trained on PubMed Abstracts and PMC Full-text articles, which is a strong
baseline in the biomedical domain.

• SciBERT [15] is a scientific language model based on BERT pre-trained on a
large multi-domain corpus of scientific publications, which can improve perfor-
mance on downstream scientific NLP tasks.

2 https://github.com/amirveyseh/MadDog

47

https://github.com/amirveyseh/MadDog

Besides, we introduce a Popularity-Ours baseline that uses the frequency of long
forms of our collected pre-training datasets. We do not compare to general entity linking
methods, because prior work has already found that general systems like AIDA [113]
tend to lag behind acronym disambiguation models by 10-30 absolute percentage points
[161].

Implementation Details. All approaches are implemented with PyTorch [202] and
HuggingFace [288]. When pre-training AcroBERT, the model is initialized by the
parameters in the original BERT, and then pre-trained on our collected datasets for
one epoch. In total, there are ˜160 million samples in this corpus, covering various
domains. The batch size is 32, and we use Adam [139] with a learning rate 2e−5 for
optimization. The learning rate is exponentially decayed for every 10,000 steps with a
rate of 0.95. The margin of triplet loss is 0.2 and the number of ambiguous negatives is
2 for each mini-batch.

For the fine-tuning stage, each competitor model is initialized with the pre-trained
parameters from HuggingFace, and we use AcroBERT after pre-training for comparison.
All models are fine-tuned by using the Triplet loss. All parameters of each model are
fine-tuned in this experiment, across all domains by using the same hyper-parameters.
The batch size is 8 and the learning rate is among [1e−5,8e−6,6e−6,4e−6,2e−6]
for the Adam optimizer. The model that has the best performance on the validation set
among 5 epochs is evaluated on the test set. We use one NVIDIA Tesla V100S PCIe
32 GB Specs.

Inference. For the inference stage, every pair of a context sentence and a candidate
with the matching short form in the dictionary constitutes an input to the Next Sentence
Prediction task. The language model produces a score for each candidate and we select
the one with the highest score as the final predicted output.

4.5.3 Metrics
Acronym disambiguation can be seen as a classification problem, where the input is (1)
a dictionary of acronyms and (2) a sentence with an acronym. Each long form for that
acronym from the dictionary is considered a class, and the acronym disambiguation
has to choose the correct class. We evaluate the models by precision, recall, and macro
F1. There are two ways to calculate the macro F1: “F1 of Averages” and “Averaged
F1”. The first computes the F1 value over the arithmetic means of precision and recall,
while the second computes the F1 value for each class, and then averages them. Some
prior works adopt the first method. However, this method gives a higher weight to
popular classes, and it may thus unfairly yield a high score if the model works well on
these popular classes only [195]. Therefore, we use the Averaged F1 across classes as

48

our metric, which is more robust towards the error type distribution. That is:

Precisioni =
TPi

TPi +FPi
, i ∈ {1,2, ...,n} (4.3)

Recalli =
TPi

TPi +FNi
, i ∈ {1,2, ...,n} (4.4)

F1 =
1
n

n

∑
i=1

2×Precisioni ×Recalli
Precisioni +Recalli

(4.5)

4.5.4 Results

4.5.4.1 Overall Performance

Model General Scientific Biomedical Avg
Dev Test Dev Test Dev Test

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

BM25 [228] 29.9 32.6 35.5 25.8 14.1 5.4 17.1 10.7 13.1 8.3 17.0 14.3 21.1 16.2
FastText [20] 11.3 12.9 18.7 12.7 3.3 0.9 5.7 2.5 0.2 0.1 1.3 0.7 6.8 5.0

MadDog [271] 28.1 11.7 29.9 23.1 17.8 15.5 22.4 17.9 33.8 19.3 41.2 35.9 28.9 20.6
BERT [59] 32.3 32.5 37.7 28.2 15.1 5.8 17.6 9.3 3.1 1.3 3.5 2.1 18.2 13.2

Popularity-Ours 35.2 39.1 39.0 43.2 5.5 22.9 4.9 12.3 46.0 61.3 49.9 54.0 30.1 38.8
AcroBERT 63.9 68.0 69.1 67.7 28.1 34.6 32.2 28.7 53.9 57.4 57.1 56.4 50.7 52.1

Table 4.6: Performances of the unsupervised setting across different models, measured
by macro F1 and Accuracy.

General Scientific Biomedical Avg
Dev Test Dev Test Dev Test

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

BERT [59] 53.8 70.7 54.9 53.1 13.5 9.9 14.3 10.4 9.8 12.4 9.4 7.5 26.0 27.3
SciBERT [15] 32.4 38.6 33.6 27.7 22.7 19.4 23.4 17.7 31.2 35.6 31.0 28.3 29.5 27.9

BioBERT [152] 26.0 23.6 25.7 20.3 11.2 9.7 12.4 9.0 24.0 21.8 20.2 16.8 19.9 16.9
AcroBERT 68.6 81.3 71.7 74.1 31.7 37.8 34.2 27.7 56.9 62.7 60.5 58.9 53.9 57.0

Table 4.7: Performances of fine-tuned setting across different models, measured by
macro F1 and Accuracy.

Unsupervised Setting. Table 4.6 shows the experimental results in the unsupervised
setting. We first observe that our AcroBERT significantly outperforms the baselines
across the three domains. For example, AcroBERT can improve the original BERT by
32.5 absolute percentage points of F1 on average on our benchmark. Second, the naive
popularity method comes second on this benchmark, most likely because it contains a
limited number of overshadowed terms. However, it performs badly on the scientific
dataset. We assume that this is because this dataset contains 68.7% of overshadowed
terms (as shown in Table 4.5).

Besides, we conduct experiments on existing datasets, namely UAD [47] and
SciAD [272]. Our method performs consistently well, as shown in Table 4.8.

49

Model UAD SciAD Biomedical-UMLS Avg
F1 Acc F1 Acc F1 Acc F1 Acc

BERT [59] 89.3 91.1 54.1 57.2 38.0 32.7 60.5 60.3
SciBERT [15] 74.8 78.4 65.6 71.7 54.9 50.3 65.1 66.8

BioBERT [152] 66.2 68.2 19.7 22.4 37.4 31.4 41.1 40.7
AcroBERT 88.8 93.7 58.0 72.0 67.5 65.3 71.4 77.0

Table 4.8: Performances on benchmarks with fewer candidates, measured by
macro F1 and Accuracy.

Model Popular Overshadowed Avg

BERT [59] 13.3 12.7 13.0
SciBERT [15] 11.6 8.1 9.9

BioBERT [152] 2.1 1.0 1.6
AcroBERT 61.9 33.4 47.7

Table 4.9: Robustness evaluation of overshadowed
entities on General test set,measured by Accuracy.

Fine-tuned Setting. In this experiment, every pre-trained language model is fine-
tuned on the training set by the triplet loss, as introduced in the pre-training step.
Negatives are randomly sampled from ambiguous long forms for the correct label, and
the results are shown in Table 4.7. BERT, SciBERT, and BioBERT perform better
in their respective fields. However, our AcroBERT achieves the best result across
the three fields on average, which demonstrates the effectiveness of the pre-training
strategy. One might think that it is unfair that AcroBERT uses the pre-training corpus,
while the other models do not. However, there is no other pre-trained model for general
disambiguation. Our approach is the first that capitalizes on large-scale corpora and
pre-training.

4.5.4.2 Robustness Evaluation

Our GLADIS benchmark is more challenging than existing acronym disambiguation
datasets due to the much larger acronym dictionary, which means more candidates per
acronym. To measure the robustness of acronym disambiguation systems against more
candidates, we sort the samples in the dataset in descending order of the number of
candidates per acronym, and divide them evenly into 10 chunks. For example, samples
in the first chunk have 1.58 candidates on average while that number is 2159 for the last
chunk. The experimental results are shown in Figure 4.4. As expected, the performance
of BERT and AcroBERT decreases as the number of candidates increases. However,
AcroBERT consistently outperforms BERT on each data chunk, which shows that
AcroBERT is able to select the correct long form among the numerous candidates.

Moreover, the challenge with our GLADIS benchmark comes from overshadowed
samples, which are harder to disambiguate. To validate the robustness of the models,

50

1 2 3 4 5 6 7 8 9 10

Chunks by the number of candidates

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

AcroBERT BERT

Figure 4.4: Robustness evaluation of hard samples on the General test set. The samples
are divided evenly into ten chunks according to the number of candidates of each
sample.

we divide the General test set into two parts: Popular and Overshadowed, as described
in Section 4.3.2. Next, we compare different language models in the unsupervised
setting. As shown in Table 4.9, our AcroBERT performs best on both the Popular
and the Overshadowed subset. We conclude that AcroBERT is more robust against
ambiguous and overshadowed samples in acronym disambiguation task.

4.5.5 Case Study
Table 4.10 shows case studies of the outputs by BERT and AcroBERT. BERT often
uses the memorized correlations of tokens for reasoning and this can cause errors. For
example, External Commercial Borrowings are loans in India made by non-resident
lenders in foreign currency to Indian borrowers 3. BERT can determine this correct
long form probably with help of the key phrase “external financing”. For the third case,
Peptic Ulcer Disease is more consistent with the input context. However, BERT fails
on it while AcroBERT benefits from the pre-training strategy and is able to distinguish
different candidates based on contexts. For the fourth sample, both methods fail, most
likely because of the low frequency of the long forms and the uninformative contexts.

3 https://en.wikipedia.org/wiki/External commercial borrowing

51

https://en.wikipedia.org/wiki/External_commercial_borrowing

Acronym Long Form Context BERT AcroBERT

ECB European Central Bank Being made to bring the main road network in Romania
in the European corridors. There have been initiated sev-
eral projects to modernize the network of ECB corridors,
financed from ispa funds and state-guaranteed loans from
international financial institutions. Government seeks exter-
nal financing or public-private partnerships for other road
network upgrades , especially

External Commercial
Borrowing

European Central Bank

PR Public Relations A whistleblower like monologist Mike Daisey gets targeted
as a scapegoat who must be discredited and diminished in
the public ’s eye. More often than not, PR is a preemptive
process. Celebrity publicists are paid lots of money to keep
certain stories out of the news.

Preemptive-Resume Public Relations

PUD Peptic Ulcer Disease Tumors cause an overactivation of these hormone-producing
glands, leading to serious health problems such as severe
PUD (due to gastrin hypersecretion, which stimulates secre-
tion of hydrochloric acd).

Psychogenic Urinary
Dysfunction

Peptic Ulcer Disease

WFC Walsall F.C. Injury during a game against Norwich city on the 13 march
2010, forcing him to miss Huddersfields next five games. He
made his return against WFC on the 13 April 2010 , coming
on as a 75th minute substitute and scoring a stoppage time
winner to make the score 4a3 to town.

Wide Free Choice World Fighting Champi-
onships

Table 4.10: Case study of predicted results by BERT and AcroBERT.

4.6 Conclusion
In this paper, we have presented GLADIS, a challenging benchmark for Acronym
Disambiguation, which includes a larger dictionary, three datasets from the general,
scientific, and biomedical domains, and a large-scale pre-training corpus. We have
also proposed AcroBERT, a BERT-based model that is pre-trained on our collected
acronym documents, which can significantly outperform other baselines across multiple
domains, and which is more robust in the presence of very ambiguous acronyms
and overshadowed samples. For future work, we aim to enhance the performance of
AcroBERT on the overshadowed cases, which is crucial for the acronym disambiguation
task.

52

5
Robustness: Imputing Out-of-vocabulary

Embeddings

State-of-the-art NLP systems represent inputs with word embeddings, but these are
brittle when faced with Out-of-Vocabulary (OOV) words. To address this issue, we
follow the principle of mimick-like models to generate vectors for unseen words, by
learning the behavior of pre-trained embeddings using only the surface form of words.
We present a simple contrastive learning framework, LOVE, which extends the word
representation of an existing pre-trained language model (such as BERT), and makes
it robust to OOV with few additional parameters. Extensive evaluations demonstrate
that our lightweight model achieves similar or even better performances than prior
competitors, both on original datasets and on corrupted variants. Moreover, it can
be used in a plug-and-play fashion with FastText and BERT, where it significantly
improves their robustness.

5.1 Introduction
Word embeddings represent words as vectors [177, 179, 204]. They have been instru-
mental in neural network approaches that brought impressive performance gains to
many natural language processing (NLP) tasks. These approaches use a fixed-size
vocabulary. Thus they can deal only with words that have been seen during training.
While this works well on many benchmark datasets, real-word corpora are typically
much noisier and contain Out-of-Vocabulary (OOV) words, i.e., rare words, domain-
specific words, slang words, and words with typos, which have not been seen during
training. Model performance deteriorates a lot with unseen words, and minor character
perturbations can flip the prediction of a model [162, 14, 257, 126]. Simple experi-
ments (Figure 5.1) show that the addition of typos to datasets degrades the performance
for text classification models considerably.

To alleviate this problem, pioneering work pre-trained word embeddings with
morphological features (sub-word tokens) on large-scale datasets [286, 20, 108, 307].
One of the most prominent works in this direction is FastText [20], which incorporates

53

0.0 0.2 0.4 0.6 0.8
Typo Probability

60.0

65.0

70.0

75.0

80.0

85.0

90.0

Ac
cu

ra
cy

 (%
)

SST2
FastText
FastText + LOVE
BERT
BERT + LOVE

Figure 5.1: Performances of existing word embeddings as we gradually add typos to
the datasets. Using our model, LOVE, to produce vectors for OOV words makes the
models more robust.

character n-grams into the skip-gram model. With FastText, vectors of unseen words
can be imputed by summing up the n-gram vectors. However, these subword-level
models come with great costs: the requirements of pre-training from scratch and
high memory footprint. Hence, several simpler approaches have been developed, e.g.,
MIMICK [210], BoS [310] and KVQ-FH [231]. These use only the surface form
of words to generate vectors for unseen words, through learning from pre-trained
embeddings.

Although MIMICK-like models can efficiently reduce the parameters of pre-trained
representations and alleviate the OOV problem, two main challenges remain. First,
the models remain bound in the trade-off between complexity and performance: The
original MIMICK is lightweight but does not produce high-quality word vectors
consistently. BoS and KVQ-FH obtain better word representations but need more
parameters. Second, these models cannot be used with existing pre-trained language
models such as BERT. It is these models, however, to which we owe so much progress
in the domain [205, 60, 300, 169]. To date, these high-performant models are still
fragile when dealing with rare words [236], misspellings [257] and domain-specific
words [68].

We address these two challenges head-on: we design a new contrastive learning

54

a mispelling of my name

Pre-trained Embeddings Out-Of-Vocabulary

Model

Learn

Impute

Figure 5.2: Our lightweight OOV model, LOVE, learns the behavior of pre-trained
embeddings (e.g., FastText and BERT), and is then able to impute vectors for unseen
words. LOVE can enhance the robustness of existing word representations in a plug-
and-play fashion.

framework to learn the behavior of pre-trained embeddings, dubbed LOVE, Learning
Out-of-Vocabulary Embeddings. Our model builds upon a memory-saving mixed input
of character and subwords instead of n-gram characters. It encodes this input by a
lightweight Positional Attention Module. During training, LOVE uses novel types of
data augmentation and hard negative generation. The model is then able to produce
high-quality word representations that are robust to character perturbations, while
consuming only a fraction of the cost of existing models. For instance, LOVE with
6.5M parameters can obtain similar representations as the original FastText model with
more than 900M parameters. What is more, our model can be used in a plug-and-play
fashion to robustify existing language models. We find that using LOVE to produce
vectors for unseen words improves the performance of FastText and BERT by around
1.4-6.8 percentage points on noisy text – without hampering their original capabilities
(As shown in Figure 5.2).

In the following, Section 5.2 discusses related work, Section 5.3 introduces pre-
liminaries, Section 5.4 presents our approach, Section 5.5 shows our experiments, and
Section 5.6 concludes. The appendix contains additional experiments and analyses.
Our code and data is available at GitHub 1.
1 https://github.com/tigerchen52/LOVE

55

https://github.com/tigerchen52/LOVE

5.2 Related Work

5.2.1 Character-level Embeddings
To address OOV problems, some approaches inject character-level features into word
embeddings during the pre-training [286, 31, 20, 108, 137, 157, 268, 209, 316, 307,
114]. One drawback of these methods is that they need to pre-train on a large-scale
corpus from scratch. Therefore, simpler models have been developed, which directly
mimic the well-trained word embeddings to impute vectors for OOV words. Some
of these methods use only the surface form of words to generate embeddings for
unseen words [210, 310, 231, 79, 129], while others use both surface and contextual
information to create OOV vectors [234, 235]. In both cases, the models need an
excessive number of parameters. FastText, e.g., uses ˜2 million n-gram characters to
impute vectors for unseen words.

5.2.2 Pre-trained Language Models
Currently, the state-of-the-art word representations are pre-trained language models,
such as ELMo [205], BERT [60] and XLnet [300], which adopt subwords to avoid
OOV problems. However, BERT is brittle when faced with rare words [236] and
misspellings [257]. To make BERT more robust, CharacterBERT [68] and Char-
BERT [175] infuse character-level features into BERT and pre-train the variant from
scratch. This method can significantly improve the performance and robustness of
BERT, but requires pre-training an adapted transformer on a large amount of data.
Another work on combating spelling mistakes recommends placing a word corrector
before downstream models [215], which is effective and reusable. The main weakness
of this method is that an error generated by the word corrector propagates to down-
stream tasks. For example, converting “aleph” to “alpha” may break the meaning of a
mathematical statement. And indeed, using the word corrector consistently leads to a
drop (0.5-2.0 percentage points) in BERT’s performance on the SST dataset [249].

5.2.3 Contrastive Learning
The origin of contrastive learning can be traced back to the work [13, 24]. This method
has achieved outstanding success in self-supervised representation learning for im-
ages [194, 111, 104, 42, 93]. The contrastive learning framework learns representations
from unlabeled data by pulling positive pairs together and pushing negative pairs apart.
For training, the positive pairs are often obtained by taking two randomly augmented
versions of the same sample and treating the other augmented examples within a mini-
batch as negative examples [43, 42]. The most widely used loss is the infoNCE loss
(or contrastive loss) [111, 171, 42, 104]. Although many approaches adopt contrastive
learning to represent sentences [88, 295, 82], it has so far not been applied to word
representations.

56

Input Encoder Loss

MIMICK
[210]

character sequence
{s,p,e,l,l} RNNs Ldis

BoS
[310]

n-gram subword
{spe,pel,ell} SUM Ldis

KVQ-FH
[231]

adapted n-gram subword
{spe,pel,ell} Attention Ldis

Table 5.1: Details of different mimick-like models, with the
word spell as an example.

5.3 Preliminaries

5.3.1 Mimick-like Model
Given pre-trained word embeddings, and given an OOV word, the core idea of MIM-
ICK [210] is to impute an embedding for the OOV word using the surface form of
the word, so as to mimic the behavior of the known embeddings. BoS [310], KVQ-
FH [231], Robust Backed-off Estimation [79], and PBoS [129] work similarly, and we
refer to them as mimick-like models.

Formally, we have a fixed-size vocabulary set V , with an embedding matrix W ∈
R|V |×m, in which each row is a word vector uw ∈ Rm for the word w. A mimick-like
model aims to impute a vector vw for an arbitrary word w ̸∈ V . The training objective
of mimick-like models is to minimize the expected distance between uw and vw pairs:

Ldis =
1
|V | ∑

w∈V

ψ(uw,vw) (5.1)

Here, ψ(·) is a distance function, e.g., the Euclidean distance ψ = ∥uw −vw∥2
2 or the

cosine distance ψ = 1− cos(uw,vw). The vector vw is generated by the following
equation:

vw = φ(ζ (w)), for w ∈ V or w /∈ V (5.2)

Here, ζ (·) is a function that maps w to a list of subunits based on the surface form of
the word (e.g., a character or subword sequence). After that, the sequence is fed into
the function φ(·) to produce vectors, and the inside structure can be CNNs, RNNs, or a
simple summation function. After training, the model can impute vectors for arbitrary
words. Table 5.1 shows some features of three mimick-like models.

5.3.2 Contrastive Learning
Contrastive learning methods have achieved significant success for image representa-
tion [194, 42]. The core idea of these methods is to encourage learned representations

57

“mispelling”
Data

Augmentation
Encoder

Pre-trained
Embeddings

Maximize
Similarity“misspelling”

Figure 5.3: The framework of LOVE with an example of the word misspelling.

for positive pairs to be close, while pushing representations from sampled negative
pairs apart. The widely used contrastive loss [111, 171, 42, 104] is defined as:

ℓcl =− log
esim(uT

i u+)/τ

esim(uT
i u+)/τ +∑esim(uT

i u−)/τ
(5.3)

Here, τ is a temperature parameter, sim(·) is a similarity function such as cosine
similarity, and (ui,u+), (ui,u−) are positive pairs and negative pairs, respectively
(assuming that all vectors are normalized). During training, positive pairs are usually
obtained by augmentation for the same sample, and negative examples are the other
samples in the mini-batch. This process learns representations that are invariant against
noisy factors to some extent.

5.4 Our Approach: LOVE
LOVE (Learning Out-of-Vocabulary Embeddings) draws on the principles of con-
trastive learning to maximize the similarity between target and generated vectors, and
to push apart negative pairs. An overview of our framework is shown in Figure 5.3. It
is inspired by work in visual representation learning [42], but differs in that one of the
positive pairs is obtained from pre-trained embeddings instead of using two augmented
versions. We adopt five novel types of word-level augmentations and a lightweight
Positional Attention Module in this framework. Moreover, we find that adding hard
negatives during training can effectively yield better representations. We removed the
nonlinear projection head after the encoder layer, because its improvements are specific
to the representation quality in the visual field. Furthermore, our approach is not an
unsupervised contrastive learning framework, but a supervised learning approach.

Our framework takes a word from the original vocabulary and uses data aug-
mentation to produce a corruption of it. For example, "misspelling" becomes
"mispelling" after dropping one letter "s". Next, we obtain a target vector from
the pre-trained embeddings for the original word, and we generate a vector for the

58

m i s s p e l [SUB] mis spell[SUB] [SEP][CLS]

E1 E2 E3 E4 E5 E6 E7 E8 E9 E11E10 E12E0

Input

Embedding

l

E7

Figure 5.4: An illustration of our Mixed input for the word misspell.

corrupted word. These two vectors are a pair of positive samples, and we maximize
the similarity between them while making the distance of negative pairs (other sam-
ples in the same mini-batch) as large as possible. As mentioned before, we use the
contrastive loss as an objective function (Eq 5.3). There are five key ingredients in the
framework that we will detail in the following (similar to the ones in Table 5.1): the
Input Method, the Encoder, the Loss Function, our Data Augmentation, and the choice
of Hard Negatives.

5.4.1 Input Method
Our goal is to use the surface form to impute vectors for words. The question is thus
how to design the function ζ (·) mentioned in Section 5.3.1 to represent each input word.
MIMICK [210] straightforwardly uses the character sequence (see Table 5.1). This,
however, loses the information of morphemes, i.e., sequences of characters that together
contribute a meaning. Hence, FastText [20] adopts character n-grams. Such n-grams,
however, are highly redundant. For example, if we use substrings of length 3 to 5 to
represent the word misspelling, we obtain a list with 24 n-gram characters – while
only the substrings {mis, spell, ing} are the three crucial units to understand
the word. Hence, like BERT, we use WordPiece [293] with a vocabulary size of around
30000 to obtain meaningful subwords of the input word. For the word misspelling,
this yields {miss, ##pel, ##ling }. However, if we just swap two letters (as by a
typo), then the sequence becomes completely different: {mi, ##sp, ##sell, ##ing
}. Therefore, we use both the character sequence and subwords (Figure 5.4).

We shrink our vocabulary by stemming all words and keeping only the base form
of each word, and by removing words with numerals. This decreases the size of
vocabulary from 30 000 to 21 257 without degrading performance too much.

5.4.2 Encoder
Let us now design the function φ(·) mentioned in Section 5.3.1. We are looking for
a function that can encode both local features and global features. Local features
are character n-grams, which provide robustness against minor variations such as
character swaps or omissions. Global features combine local features regardless of
their distance. For the word misspelling, a pattern of prefix and suffix mis+ing
can be obtained by combining the local information at the beginning and the end of
the word. Conventional CNNs, RNNs, and self-attention cannot extract such local

59

and global information at the same time. Therefore, we design a new Positional
Attention Module. Suppose we have an aforementioned mixed input sequence and
a corresponding embedding matrix V ∈ R|V |×d where d is the dimension of vectors.
Then the input can be represented by a list of vectors: X = {x1,x2, ...,xn} ∈ Rn×d

where n is the length of the input. To extract local information, we first adopt positional
attention to obtain n-gram features, and then feed them into a conventional self-attention
layer to combine them in a global way. This can be written as:

X̄ = SA(PA(X))WO (5.4)

Here, SA is a standard multi-head self-attention and PA is a positional attention.
WO ∈ RdV×dO is a trainable parameter matrix, where dV are the dimensions of values
in SA and PA, and dO is that of X̄. As for the Positional Attention, we adopt absolute
sinusoidal embeddings [270] to compute positional correlations:

PA(X) = Softmax
(

PPT

√
d

)
(XWV) (5.5)

Here, P ∈ Rn×d are the position embeddings, and WV ∈ Rd×dV are the corresponding
parameters.

5.4.3 Loss Function
In this section, we focus on the loss function L (·). Mimick-like models often adopt
the mean squared error (MSE), which tries to give words with the same surface forms
similar embeddings. However, the MSE only pulls positive word pairs closer, and
does not push negative word pairs apart. Therefore, we use the contrastive loss instead
(Equation 5.3). (author?) [282] found that the contrastive loss optimizes two key
properties: Alignment and Uniformity. The Alignment describes the expected distance
(closeness) between positive pairs:

ℓalign ≜ E
(x,y)∼ppos

ψ(ux,uy) (5.6)

Here, ppos is the distribution of positive pairs. The Uniformity measures whether the
learned representations are uniformly distributed in the hypersphere:

ℓuniform ≜ log E
(x,y)i.i.d.∼ pdata

e−t·ψ(ux,uy) (5.7)

Here, pdata is the data distribution and t > 0 is a parameter. The two properties are
consistent with our expected word representations: positive word pairs should be kept
close and negative word pairs should be far from each other, finally scattered over the
hypersphere.

60

Swap misspelling -> misspleling

Drop misspelling -> mispelling

Keyboard misspelling -> mosspelling

Insert misspelling -> misspellling

Synonym misspelling -> heterography

Figure 5.5: Illustrations of different augmentations for the word misspelling.

5.4.4 Data Augmentation and Hard Negatives
Our positive word pairs are generated by data augmentation, which can increase the
amount of training samples by using existing data. We use various strategies (Figure
5.5) to increase the diversity of our training samples: (1) Swap two adjacent characters,
(2) Drop a character, (3) Insert a new character, (4) Replace a character according to
keyboard distance, (5) Replace the original word by a synonymous word. The first
four augmentations are originally designed to protect against adversarial attacks [215].
We add the synonym replacement strategy to keep semantically similar words close in
the embedding space – something that cannot be achieved by the surface form alone.
Specifically, a set of synonyms is obtained by retrieving the nearest neighbors from
pre-trained embeddings like FastText.

Negative word pairs are usually chosen randomly from the mini-batch. However,
we train our model to be specifically resilient to hard negatives (or difficult negatives),
i.e., words with similar surface forms but different meanings (e.g., misspelling and
dispelling). To this end, we add a certain number of hard negative samples (currently 3
of them) to the mini-batch, by selecting word pairs that are not synonyms and have a
small edit distance.

61

5.4.5 Mimicking Dynamical Embeddings
Pre-trained Language Models (e.g., ELMo [205] and BERT [60]) dynamically generate
word representations based on specific contexts, which cannot be mimicked directly.
To this end, we have two options: We can either learn the behavior of the input
embeddings in BERT before the multi-layer attentions or mimic the static distilled
embeddings [22, 99].

We use the BERT as an example to explain these two methods. Suppose we have a
subword sequence after applying WordPiece to a sentence: W = {w1,w2, ...,wn}. For
the subword sequence W , BERT first represents it as a list of subword embeddings:
Ein = {esub

1 ,esub
2 , ...,esub

n }. We refer to this static representation as the Input Embedding
of BERT, and we can use our model to mimic the behavior of this part. We call
this method mimicking input embeddings. For ease of implementation, we learn only
from the words that are not separated into pieces. After that step, BERT applies a
multi-layer multi-head attention to the input embeddings E in, which yields a contextual
representation for each subword: Eout = {eout

1 ,eout
2 , ...,eout

n }. However, these contextual
representations vary according to the input sentence and we cannot learn from them
directly. Instead, we choose to mimic the distilled static embeddings from BERT,
which are obtained by pooling (max or average) the contextual embeddings of the
word in different sentences. We call this method mimicking distilled embeddings.
The latter allows for better word representations, while the former does not require
training on a large-scale corpus. Our empirical studies show that mimicking distilled
embeddings performs only marginally better. Therefore, we decided to rather learn the
input embeddings of BERT, which is simple yet effective.

5.4.6 Plug and Play
One of the key advantages of our model is that it can be used as a plug-in for other
models. For models with static word embeddings like FastText, one can simply use our
model to generate vectors for unseen words. For models with dynamic word embed-
dings like BERT, if a single word is tokenized into several parts, e.g. misspelling
= {miss, ##pel, ##ling }, we regard it as an OOV word. Then, we replace the
embeddings of the subwords by a single embedding produced by our model before
the attention layer. Our final enhanced BERT model has 768 dimensions and 16M
parameters. Note that the BERT-base model has ˜110M parameters and its distilled one
has ˜550M parameters.

5.5 Experiments

5.5.1 Evaluation Datasets
There are two main methods to evaluate word representations: Intrinsic and Extrin-
sic. Intrinsic evaluations measure syntactic or semantic relationships between words
directly, e.g., word similarity in word clusters. Extrinsic evaluations measure the

62

performance of word embeddings as input features to a downstream task, e.g., named
entity recognition (NER) and text classification. Several studies have shown that
there is no consistent correlation between intrinsic and extrinsic evaluation results
[46, 74, 278]. Hence, we evaluate our representation by both intrinsic and extrinsic met-
rics. Specifically, we use 8 intrinsic datasets (6 word similarity and 2 word cluster tasks):
RareWord [173], SimLex [110], MTurk [101], MEN [27], WordSim [3], Simverb [3],
AP [7] and BLESS [12]. We use four extrinsic datasets (2 text classification and 2
NER tasks): SST2 [249], MR [199], CoNLL-03 [230] and BC2GM [248]. It is worth
noting that the RareWord dataset contains many long-tail words and the BC2GM is
a domain-specific NER dataset. All data augmentations and typo simulations are
implemented by NLPAUG2.

5.5.2 Experimental Settings

5.5.2.1 Training of Mimick-like Models

Our target pre-trained embeddings are those from FastText, because they provide
a strong baseline. They sum up subword-level information to produce vectors for
arbitrary words. We also compare to MIMICK, BoS, and KVQ-FH, which do not
train on contextual words. We do not compare to Robust Backed-off Estimation [79]
and PBoS [129], because they need larger and more complex models. Robust Backed-
off Estimation uses string matching to find the top-k similar words from the entire
vocabulary when imputing. Using the same target vectors, the number of parameter
of BoS and PBoS are 163M and 316M, respectively. We re-train MIMICK, BoS, and
KVQ-FH as baselines according to the published settings. In order to compare at the
same parameter level, we use subwords for MIMICK instead of pure characters and
adjust the hashing size H = 40K for KVQ-FH.

5.5.2.2 Robustness Evaluations

As for our model, we first lower-case and tokenize each word by using WordPiece [293]
with a vocabulary of 30K subwords and preprocess them by stemming and removing
subwords with numerals. This yields a vocabulary of 21257 words. Each subword
is represented by corresponding vectors from our model and we adopt a modified
attention model to encode the subword sequence. Specifically, the layer number
of this encoder is just 1 for efficiency and the hidden dimension is 300. In each
block, the number of attention heads is 1 and we use fixed sinusoidal position em-
beddings [270] for positional information. To train the contrastive learning frame-
work, we use the open-source tool [174] to augment a word, and use the probabilities
{0.07,0.07,0.07,0.07,0.36,0.36} for six augmentations: swap, drop, insert, keyboard,
synonym, no-operation. Hard negatives are generated by edit distance. For each target
word, we store the top-100 similar words and insert 3 of them into a mini-batch as hard
negatives. The loss function is a standard contrastive loss with temperature τ = 0.07.

2 https://github.com/makcedward/nlpaug

63

https://github.com/makcedward/nlpaug

Hyperparam SST2 MR CONLL-03 BC2GM

model CNN CNN BiLSTM+CRF BiLSTM+CRF
layer 1 1 1 1
kernel [3,4,5] [3,4,5] - -
filter 100 100 - -

hidden size 300 300 300 300
optimizer Adam Adam SGD SGD
dropout 0.5 0.5 0.5 0.5

batch size 50 50 768 768
epoch 5 5 100 100

Table 5.2: Hyperparameters for extrinsic datasets.

The optimizer is Adam and the learning rate is 0.002. The dropout rate is 0.2 and we
train the model for 20 epochs in total.

5.5.2.3 Intrinsic and Extrinsic Evaluations

We choose the setting discussed in Section 5.4 to train our model for 20 epochs, and
evaluate each intrinsic task based on the vectors that the models produce. As for the
extrinsic tasks, we feed word vectors into each neural network and fix them during
training. We use CNNs for text classification [306] and BiLSTM+CRF for NER [116].
We compare different embeddings on both intrinsic and extrinsic datasets by using
generated vectors. For the word cluster tasks, the produced vectors are clustered by
K-Means and then measured by Purity. The hyper-parameters of the extrinsic tasks
are shown in Table 5.2. For each dataset, our model is trained with five learning rates
{5e−3,3e−3,1e−3,8e−4,5e−4}. We select the best one on the development set
to report its score on the test set.

To generate a corrupted dataset, we simulate post-OCR errors. We adopt the
augmentation tool [174] to corrupt 70% of the original words. To check the robustness
of BERT, we directly finetune a BERT-base model using Huggingface [288]. During
finetuning, the batch size is 16 and we train 5 epochs. We select the best model among
five learning rates {9e−5,7e−5,5e−5,3e−5,1e−5} on the development set and
report the score of the model on the test set.

5.5.3 Results on Intrinsic Tasks
Table 5.3 shows the experimental results on 8 intrinsic tasks. Compared to other
mimick-like models, our model achieves the best average score across 8 datasets while
using the least number of parameters. Specifically, our model performs best on 5 word
similarity tasks, and second-best on the word cluster tasks. Although there is a gap
between our model and the original FastText, we find our performance acceptable,
given that our model is 100x times smaller.

64

parameters Word Similarity Word Cluster Avg
embedding others RareWord SimLex MTurk MEN WordSim SimVerb AP BLESS

FastText [20] 969M - 48.1 30.4 66.9 78.1 68.2 25.7 58.0 71.5 55.9

MIMICK [210] 9M 517K 27.1 15.9 32.5 36.5 15.0 7.5 59.3 72.0 33.2
BoS [310] 500M - 44.2 27.4 55.8 65.5 53.8 22.1 41.8 39.0 43.7

KVQ-FH [231] 12M - 42.4 20.4 55.2 63.4 53.1 16.4 39.1 42.5 41.6
LOVE 6.3M 200K 42.2 35.0 62.0 68.8 55.1 29.4 53.2 51.5 49.7

Table 5.3: Performance on the intrinsic tasks, measured as Spearman’s ρ and
purity for word similarity and clustering. Best performance among the mimick-
like models in bold, second-best underlined.

parameters SST2 MR CoNLL-03 BC2GM Avg
embedding others original +typo original +typo original +typo original +typo

FastText [20] 969M - 82.3 60.5 73.3 62.2 86.4 66.3 71.8 53.4 69.5
Edit Distance 969M - - 67.4 - 68.3 - 76.2 - 66.6 -

MIMICK [310] 9M 517K 69.7 62.3 73.6 61.4 68.0 65.2 56.6 56.7 64.2
BoS [310] 500M - 79.7 72.6 73.6 69.5 79.5 68.6 66.4 61.5 71.5

KVQ-FH [231] 12M - 77.8 71.4 72.9 66.5 73.1 70.4 46.2 53.5 66.5
LOVE 6.3M 200K 81.4 73.2 74.4 66.7 78.6 69.7 64.7 63.8 71.6

Table 5.4: Performance on the extrinsic tasks, measured as accuracy and F1
(five runs of different learning rates) for text classification and NER, respec-
tively. Typos are generated by simulated errors of an OCR engine [174]. The
speed of producing word vectors with Edit Distance and LOVE is 380s/10K
words and 0.9s/10K words, respectively.

5.5.4 Results on Extrinsic Tasks
Table 5.4 shows the results on four downstream datasets and their corrupted version.
In this experiment, we introduce another non-trivial baseline: Edit Distance. For each
corrupted word, we find the most similar word from a vocabulary using edit distance
and then use the pre-trained vectors of the retrieved word. Considering the time cost, we
only use the first 20K words appearing in FastText (2M words) as reference vocabulary.

The typo words are generated by simulating post-OCR errors. For the original
datasets, our model obtains the best results across 2 datasets and the second-best on
NER datasets compared to other mimick-like models. For the corrupted datasets, the
performance of the FastText model decreases a lot and our model is the second best but
has very close scores with BoS consistently. Compared to other mimick-like models,
our model with 6.5M achieves the best average score. Although Edit Distance can
effectively restore the original meaning of word, it is 400x times more time-consuming
than our model.

5.5.5 Robustness Evaluation
In this experiment, we evaluate the robustness of our model by gradually adding
simulated post-OCR typos [174]. Table 5.5 shows the performances on SST2 and
CoNLL-03 datasets. We observe that our model can improve the robustness of the orig-
inal embeddings without degrading their performance. Moreover, we find our model
can make FastText more robust compared to other commonly used methods against

65

SST2 CoNLL-03
Typo Probability original 10% 30% 50% 70% 90% original 10% 30% 50% 70% 90% Avg

Static Embeddings

FastText 82.3 68.2 59.8 56.7 57.8 60.3 86.4 81.6 78.9 73.9 70.2 63.4 70.0
FastText + LOVE 82.1 79.8 74.9 74.2 68.8 67.2 86.3 84.7 81.8 77.5 73.1 71.3 76.8

Dynamical Embeddings

BERT 91.5 88.2 78.9 74.7 69.0 60.1 91.2 89.8 86.2 83.4 79.9 76.5 80.7
BERT + LOVE 91.5 88.3 83.7 77.4 72.7 63.3 89.9 88.3 86.1 84.3 80.8 78.3 82.1

Table 5.5: Robust evaluation (five runs of different learning rates) on text
classification and NER under simulated post-OCR typos. We use uncased and
cased BERT-base model for SST2 and CoNLL-03, respectively.

SST-2 CoNLL-03
Dataset

0

10

20

30

40

50

60

70

Ac
c

/ F
1

Model
FastText
UNK
CharCNN
FT+LOVE

Figure 5.6: Evaluation of different methods based on FastText under typos.

unseen words: a generic UNK token or character-level representation of neural networks.
Figure 5.6 shows the robustness check of different strategies. FastText+LOVE has
a consistent improvement on both SST2 and CoNLL-03 datasets. At the same time,
LOVE degrades the performance on the original datasets only marginally if at all.

5.5.6 Qualitative Analysis
To better understand the clusterings produced by LOVE, we chose 15 words from the
AP dataset [7], covering three topics (Chemical Substance, Illness, and Occupation).
We added 3 corrupted words, oxgen, archiitect and leukamia. Figure 5.7
shows how LOVE, BoS, and KVQ-FH cluster these words (using a PCA projection
and K-means). All approaches space out the clusters to some degree. In particular, BoS
and KVQ-FH have trouble separating professions and chemical substances. For the
corrupted words, only LOVE is able to embed them close enough to their original form,
so that they appear in the correct cluster.

66

parameters RareWord SST2
embedding others

The original LOVE 6.3M 200K 42.2 81.4

Varying the input method

only use Char 299K 200K 17.7 71.5
only use Subword 6.0M 200K 25.3 76.0

Varying the encoder

replace PAM with CNN 6.3M 270K 28.4 61.1
replace PAM with RNN 6.3M 517K 27.2 67.2
replace PAM with SA 6.3M - 36.9 78.7

Varying the loss function

use MSE 6.3M 200K 34.5 76.0
use ℓau(λ = 1.0) 6.3M 200K 40.8 80.8

Ablation of data augmentation and hard negatives

w/out hard negatives 6.3M 200K 37.7 78.6
w/out hard negatives

and augmentation 6.3M 200K 37.8 78.2

Table 5.6: Ablation studies for the architecture of LOVE, mea-
sured as Spearman’s ρ and accuracy, respectively.

BoS Model (500M) KVQ-FH Model (12M) LOVE (6.5M)

Figure 5.7: PCA visualizations of word vectors generated by LOVE, BoS, and KVQ-
FH. Different colors mean different clusters, as predicted by K-means. There are three
OOV words: oxgen, archiitect and leukamia.

5.5.7 Ablation Study
We now vary the components in our architecture (input method, encoder and loss
function) to demonstrate the effectiveness of our architecture.

67

Input Method. To validate the effect of our Mixed Input strategy, we compare it with
two other methods: using only the character sequence or only the subword sequence.
Table 5.6 shows that the Mixed method achieves better representations, and any removal
of char or subword information can decrease the performance.

Encoder. To encode the input sequence, we developed the Positional Attention
Module (PAM), which first extracts ngram-like local features and then uses self-
attention combine them without distance restrictions. Table 5.6 shows that PAM
performs the best, which validates our strategy of incorporating both local and global
parts inside a word. At the same time, the number of parameters of PAM is acceptable
in comparison. We visualize the attention weights of PAM in Appendix 5.5.10, to show
how the encoder extracts local and global morphological features of a word.

Loss Function. LOVE uses the contrastive loss, which increases alignment and
uniformity. An existing work proves that optimizing directly these two metrics leads to
comparable or better performance than the original contrastive loss [282] . Such a loss
function can be written as:

ℓau = ℓalign +λ · ℓuniform (5.8)

Here, λ is a hyperparameter that controls the impact of ℓuniform. We set this value to
1.0 because it achieves the best average score on RareWord and SST2. An alternative is
to use the Mean Squared Error (MSE), as in mimick-like models. Table 5.6 compares
the performances of these different loss functions. The contrastive loss significantly
outperforms the MSE, and there is no obvious improvement by directly using alignment
and uniformity.

Data Augmentation and Hard Negatives. In Table 5.6, we observe that the removal
of our hard negatives decreases the performance, which demonstrates the importance
of semantically different words with similar surface forms. LOVE uses five types of
word augmentation.

We find that removing this augmentation does not deteriorate performance too
much on the word similarity task, while it causes a 0.4 point drop in the text classi-
fication task (the last row in Table 5.6), where data augmentations prove helpful in
dealing with misspellings. We further analyze the performance of single and composite
augmentations on RareWord and SST2 in the appendix in Figure 5.8. We find that a
combination of all five types yields the best results.

5.5.8 Shrinking Our Model
We consider the following four methods to reduce the total parameters of our model:
(1) Matrix Decomposition. The original matrix can be decomposed into two smaller
matrices V = U×M,U ∈ R|V |×h,M ∈ Rh×m and h < m. Here, we set m = 300 and
h = 200 respectively.

68

swap drop insert
keyboard

synonym

swap

drop

insert

keyboard

synonym

30.80 32.40 29.30 30.60 33.10

32.40 33.30 32.80 31.90 36.60

29.30 32.80 31.50 31.80 36.60

30.60 31.90 31.80 31.40 37.20

33.10 36.60 36.60 37.20 37.80 30

31

32

33

34

35

36

37

Figure 5.8: Performances of different augmentations on RareWord, measured as
Spearman’s ρ . Diagonal entries correspond to individual augmentation and off-diagonal
entries correspond to composite augmentation.

SST2
typos per sentence typo-0 typo-1 typo-2 typo-3

BERT 91.5 77.2 73.2 69.4

Mimicking Input Embeddings

BERT + Add 91.3 77.2 73.5 70.7
BERT + Linear [79] 91.4 79.6 77.2 72.8

BERT + Replacement 91.5 81.4 78.7 73.6

Mimicking Distilled Embeddings

BERT + Add 91.3 78.8 75.6 72.3
BERT + Linear [79] 91.3 81.4 78.7 73.6

BERT + Replacement 91.4 81.5 78.9 73.8

Table 5.7: Performances of different strategies that work with BERT
together, measured as the accuracy among five different learning
rates.

(2) Top Subword. We use only the top-k frequent subwords, using the word frequencies
from a corpus. We set the parameter k = 20000.
(3) Hashing. We use a hashing strategy to share memory for subwords aiming to
reduce the parameters. We use a bucket size of 20000.
(4) Preprocessing. The original vocabulary contains plurals and conjugations, there-
fore we stem all complete words and remove words with numerals, obtaining a new

69

vocabulary of 21257 words.
Table 5.8 shows that the preprocessing method can reduce parameters very effec-

tively while obtaining a very competitive performance.

parameters RareWord SST2
embedding non-embedding

Original 9M 200K 43.5 80.7

Decomposition 5.6M 200K 38.1 80.3
Top-K 6M 200K 39.2 80.1

Hashing 6M 200K 40.5 80.4
Preprocessing 6.3M 200K 42.4 80.7

Table 5.8: Performance of different shrinkage strategies, measured as
Spearman’s ρ and accuracy, respectively. The target vectors are from
fasttext-crawl-300d-2M.

5.5.9 The performance of mimicking BERT
As described in Section 5.4.5, we can mimic the input or distilled embeddings of
BERT. After learning from BERT, we use the vectors generated by LOVE to replace
the embeddings of OOV subwords. Finally, these new representations are fed into
the multi-layer attentions. We call this method the Replacement strategy. To valid its
effectiveness, we compare it with two other baselines: (1) Linear Combination [79].
For each subword esub, the generated vectors of word eword containing the subwords
are added to the subword vectors of BERT:

enew = (1−α) esub +α eword (5.9)

α = sigmoid (W · esub)

where esub ∈ Rd is a subword vector of BERT, and eword ∈ Rd is a generated vector of
our model. W ∈ Rd are trainable parameters.
(2) Add. A generated word vector is directly added to a corresponding subword vector
of BERT:

enew = esub + eword (5.10)

Table 5.7 shows the result of these strategies. All of them can bring a certain degree
of robustness to BERT without decreasing the original capability, which demonstrates
the effectiveness of our framework. Second, the replacement strategy consistently
performs best. We conjecture that BERT cannot restore a reasonable meaning for
those rare and misspelling words that are tokenized into subwords, and our generated
vectors can be located nearby the original word in the space. Third, we find mimicking
distilled embeddings performs the best while mimicking input embeddings comes close.
Considering that the first method needs training on large-scale data, mimicking the
input embeddings is our method of choice.

70

[CLS]
b e c 0 m e [SUB]

be##c##0##me
[SEP]

[CLS]
b
e
c
0

m
e

[SUB]
be

##c
##0

##me
[SEP]

Figure 5.9: Visualization of positional weights for the post-OCR word bec0me (the
correct one is become).

[CLS]
b e c 0 m e [SUB]

be ##c##0##me
[SEP]

[CLS]
b
e
c
0

m
e

[SUB]
be

##c
##0

##me
[SEP]

Figure 5.10: Visualization of self-attention weights for the post-OCR word bec0me.

5.5.10 Visualization of Encoder
As mentioned before, we combine two types of attention heads (self-attention and
positional attention) to encode a subword sequence. Here, we visualize the attention
weights on each side and show how they work. Figure 5.9 shows the position-dependent
weights. We use sinusoidal functions to generate positional embeddings, and the
weights are the dot product between these embeddings. We observe the positional
weights tend to the left and right subwords in addition to themselves, which yields
trigram representations.

Figure 5.10 shows the self-attention weights which are computed from the trigram
subwords of positional attention. Hence, each subword in this figure is a trigram
representation instead of a single subword representation. As we see, self-attention
can capture global features regardless of distance. We take the first token [CLS] as
an example, and this self-attention assigns high weights for the token e and [SEP],

71

which constructs a representation like this: [CLS]b + me[SUB] + ##me[SEP].
This segment tells us this word starts with b and ends with me.

5.6 Conclusion
We have presented a lightweight contrastive-learning framework, LOVE, to learn word
representations that are robust even in the face of out-of-vocabulary words. Through a
series of empirical studies, we have shown that our model (with only 6.5M parameters)
can achieve similar or even better word embeddings on both intrinsic and extrinsic
evaluations compared to other mimick-like models. Moreover, our model can be added
to models with static embeddings (such as FastText) or dynamical embeddings (such
as BERT) in a plug-and-play fashion, and bring significant improvements there. For
future work, we aim to extend our model to languages other than English.

72

6
Robustness: A Weakness of Positional

Encodings

Positional Encodings (PEs) are used to inject word-order information into transformer-
based language models. While they can significantly enhance the quality of sentence
representations, their specific contribution to language models are not fully understood,
especially given recent findings that building natural-language understanding from
language models with positional encodings are insensitive to word order. In this
work, we conduct more in-depth and systematic studies of positional encodings, thus
complementing existing work in two aspects: (1) We uncover the core function of PEs
by identifying two common properties, Locality and Symmetry; (2) We first point out a
potential weakness of current PEs by introducing two new probing tasks of word swap.
We hope these new probing results and findings can shed light on how to design and
inject positional encodings into language models.

6.1 Introduction
Transformer-based language models with Positional Encodings (PEs) can improve
performance considerably across a wide range of natural language understanding tasks.
Existing work resort to either fixed [270, 253, 212] or learned [239, 60, 277] PEs to
infuse order information into attention-based models. To understand how PEs capture
word order, prior studies apply visualized [283] and quantitative analyses [276] to
various PEs, and their findings conclude that all encodings, both human-designed and
learned, exhibit a consistent behavior: First, the position-wise weight matrices show
that non-zero values gather on local adjacent positions. Second, the matrices are highly
symmetrical, as shown in Figure 6.1. These are intriguing phenomena, with reasons
not well understood.

To bridge this gap, we strive to uncover the core properties of PEs by introducing
two quantitative metrics, Locality and Symmetry. Our empirical studies demonstrate
that these two properties are correlated with sentence representation capability. This
explains why fixed encodings are designed to satisfy them and learned encodings are

73

Figure 6.1: Visualizations of different pre-trained language models by using Identical
Word Probing [276]. The attention weights are averaged across different layers.

favorable to be local and symmetrical. Moreover, we show that if BERT is initialized
with PEs that already share good locality and symmetry, it can obtain better inductive
bias and significant improvements across 10 downstream tasks.

Although PEs with locality and symmetry can achieve promising results on natural
language understanding tasks (such as GLUE [275]), the symmetry property itself has
an obvious weakness, which is not revealed by previous work. Existing studies use
shuffled text to probe the sensitivity of PEs to word orders [298, 208, 247, 97, 1], and
they all assume that the meaning of sentences with random swaps remains unchanged.
However, the random shuffling of words may change the semantics of the original
sentence and thus cause the change of labels. For example, the sentence pair below
from SNLI [23] satisfies the entailment relation:

a. A man playing an electric guitar on stage b. A man playing guitar on stage
If we change the word order of the premise sentence so that it becomes “an electric

guitar playing a man on stage”, but a fine-tuned BERT still finds that the premise
entails the hypothesis. Starting from this point, we design two new probing tasks of
word swap: Constituency Shuffling and Semantic Role Shuffling. The former attempt to
preserve the original semantics of the sentence by swapping words inside constituents
(local structure) while the latter intentionally changes the semantics by swapping the
semantic roles in a sentence (global structure), e.g., the agent and patient. Our probing
results show that existing language models with various PEs are robust against local
swaps but extremely fragile against global swaps.

6.2 Preliminaries
The central building block of transformer architectures is the self-attention mecha-
nism [270]. Given an input sentence: X = {x1,x2, ...,xn} ∈ Rn×d , where n is the
number of words and d is the dimension of word embeddings, then the attention
computes the output of the i-th token in this way:

x̄i =
n

∑
j=1

exp(αi, j)

Z
x jWV where αi, j =

(xiWQ)(x jWK)T√
d

,Z =
n

∑
j=1

exp(αi, j) (6.1)

74

Self-attention heads do not intrinsically capture the word orders in a sequence.
Therefore, specific methods are used to infuse positional information into self-attention [65].

Absolute Positional Encoding (APE) computes a positional encoding for each token
and add it to the input content embedding to inject position information in the original
sequence. The αi, j in Equation 6.1 are then written:

αi, j =
(xi +pi)WQ

(
(x j +p j

)
WK)T

√
d

(6.2)

where pi ∈Rd is a position embedding of the ith token, obtained by fixed [270, 58, 263,
245, 253] or learned encodings [84, 60, 277, 213]. Further, TUPE model simplifies
Equation 6.2 by removing two redundant items:

αi, j =
(xiWQ)(x jWK)T+(piUQ)(p jUK)T√

d
(6.3)

In absolute positional encoding, the equation 6.2 can be expanded as:

αi j =
(xiWQ)(x jWK)T√

d
+

(xiWQ)(p jWK)T√
d

+
(piWQ)(x jWK)T√

d
+

(piWQ)(p jWK)T√
d

(6.4)

There are four terms in this expression: context-to-context, context-to-position,
position-to-context, and position-to-position. While the first and the fourth term are
intuitive, the token encodings and positional encodings do not have strong correlations
with each other, and the context-position correlations may even induce unnecessary
noise. Based on this analysis proposed by TUPE (Transformer with Untied Positional
Encoding) [135] that removes the second and third redundant terms and introduces
different parameters for the position encoding:

αi j =
(xiWQ)(x jWK)T+(piUQ)(p jUK)T√

d
, (6.5)

Here, UQ and UK are weights that need to be learned, capturing positional queries
and keys, respectively. Their empirical results confirm that the removal of the two
context-to-position terms consistently improves the model performance on a series of
tasks.

Relative Positional Encoding (RPE) produces a vector ri, j or a scalar value βi, j that
depends on the relative distance of tokens. Specifically, these methods apply such
vector or bias to the attention head so that the corresponding attentional weight can be
updated based on the relative distance of two tokens [239, 221]:

αi, j =
xiWQ

(
x jWK + rK

i, j)
T

√
d

; αi, j =
(xiWQ)(x jWK)T+βi, j√

d
(6.6)

where the left mode uses a vector ri, j while the right uses a scalar value βi, j, for
infusing relative distance into attentional weight.

Recent research of RPEs has been remarkably vibrant, with the emergence of
diverse novel and promising variants [54, 106, 212].

75

Unified Positional Encoding. Inspired by TUPE [135], we rewrite all above absolute
and relative positional encodings in a unified way:

αi, j =

contextual︷︸︸︷
γi, j +

positional︷︸︸︷
δi, j√

d
(6.7)

where, the left half of the numerator, γi, j, captures contextual correlations (or weights),
i.e., the semantic relations between token xi and x j. In this case, it is γi, j =(xiWQ)(x jWK)T.
δ , the right half, captures positional correlations, i.e., the positional relations between
tokens xi and x j. For example, TUPE’s positional correlation can be represented
as δi, j = (piWQ)(p jWK)T while the relative encoding in [239] can be represented
as δi, j = xiWQ(rK

i, j)
T. Thus, existing positional encodings all add contextual and

positional correlations together in every attention head.

6.3 Positional Encodings Enforce Locality and Symme-
try

6.3.1 The Properties of Locality and Symmetry
Existing work analyze positional encodings with the help of visualizations [283, 276, 1],
and their analyses of either fixed or learned encodings led to similar visualized results,
as shown in Figure 6.1. These position-wise weight matrices are computed by using the
Identical Word Probing [276]: many repeated identical words are fed to the pre-trained
language model, so that the attention values (αi, j) in Equation 6.7) are unaffected by
contextual weights. Each matrix in this figure is a positional weight map, where each
row is a vector for the i-th position and the element at (i, j) indicates the attention
weight between the i-th position and the j-th position. We can first observe these
attention matrices are all diagonal heavy, which means various positional encodings
highly attend to local positions. Second, all matrices are nearly symmetrical. We
call these two phenomena the Locality and Symmetry of positional encodings. The
symmetry property has been discovered and quantified already by prior work [276].
Here, we provide a more in-depth analysis of symmetry. We will also point out the
potential flaw of symmetry itself, which is not considered by prior work. To better
understand how encodings capture word order, we introduce two quantitative metrics
to depict the Locality and Symmetry for an attentional weight vector εi, where the
element εi, j can be denoted as:

εi, j =
exp(αi, j)

∑
n
j=1 exp(αi, j)

where εi, j ≥ 0 and
n

∑
j=1

εi, j = 1 (6.8)

Locality is a metric that depicts the degree of the gathering of weights in local
positions for an attentional weight vector. Given a weight vector for the i-th position
εi = {εi,1,εi,2, ...,εi,n}, we define locality as:

Locality(εi) ∈ [0,1] =
n

∑
j=1

εi, j

2|i− j| (6.9)

76

(a) Visualizations of Symmetry and Locality (b) Correlations between Locality and Accuracy (c) Correlations between Symmetry and Accuracy

Figure 6.2: Empirical studies of the properties of locality and symmetry. The accuracy
is tested on the MR dataset [199] The yellow line shows the locality or symmetry for
the pre-trained BERT.

Here, a value of 1 means the vector perfectly satisfies the locality property. For example,
given a sequence whose length is 5 and a weight vector for the first position [1,0,0,0,0],
the locality is 1, which means it perfectly matches the locality. In contrast, the locality is
1/16 if the weight only attends the last position [0,0,0,0,1]. For measuring the locality
of a matrix, we average the locality values of all vectors in the matrix. Symmetry is a
metric that describes how symmetrical the weights scatter around the current position
for an attentional weight vector. We adapt the Symmetrical Discrepancy [276] for this
goal:

Symmetry(εi) ∈ [0,1] = 1−
⌊n/2⌋

∑
j=1

Norm(

∣∣εi, j − εi,n− j+1
∣∣

⌊n/2⌋
) (6.10)

Here, a value of 1 means that the vector is completely symmetrical. We modify
the original formula in two points: First, we apply a min-max normalization to each
position to obtain more uniform distributions, because the values of the original one
extremely cluster around 0. Second, we reverse the value so that 1 means a perfect
symmetry instead of 0. Likewise, the average value of all vectors in a matrix is used as
the matrix-level symmetry.

6.3.2 Are Locality and Symmetry Learned?
The manually designed encodings Sinusoidal [270] and Roformer [253] both satisfy
the symmetry and locality properties. However, it is not clear why they were designed
this way. More surprisingly, learned encodings all display locality and symmetry.
Therefore, one may ask whether the two properties are learned after pre-training, and
what effect they have.

To answer this question, we use our two proposed metrics to quantify the positional
weight matrix (the averaged weight across layers) before and after pre-training. Specif-
ically, three language models, BERT [60], XLNet [300] and DeBERTa [106] are tested
in this experiment. As shown in the left in Figure 6.2, the three language models all
become much more local and symmetrical after pre-training, which proves that the two
properties are indeed learned.

77

To further explain why positional encodings have a preference for learning these two
properties, we probe the correlations between the two properties and the representation
ability in downstream tasks. To avoid pre-training all language models from scratch, we
use static word embeddings from GloVe [204] and an encoder that is fully based on our
handcrafted positional encodings for a sentence classification task. The benefit is that
we can adjust the hyper-parameter in the handcrafted encodings to obtain encodings
with different degrees of locality and symmetry, so that we can evaluate the correlations
precisely. Specifically, we obtain around 100 encoders whose locality (or symmetry)
varies from 0.01 to 1.0 and test their accuracy on the MR sentiment analysis task. We
will describe our handcrafted encodings in Section 6.3.3.

The middle figure in Figure 6.2 shows the results for different locality values. In this
experiment, the symmetry value is 1.0 for all encoders. We observe that the accuracy
constantly increases as the locality of encodings strengthens, which means a higher
locality induces better sentence representation. The yellow line is the locality value for
BERT (around 0.2), and BERT actually does not have an extreme locality, which means
that a perfect locality is unnecessary. The right figure in Figure 6.2 shows the results
for different symmetry values. In this experiment, we vary the symmetry while keeping
the locality in the interval [0.15,0.3], which is close to the value of BERT. Because the
change of symmetry will impact the value of locality, we can only observe this type
of partial correlation. We find that symmetry affects performance only after a certain
value (0.65), and a better symmetry leads to better accuracy. Also, the encodings of the
pre-trained BERT are highly symmetrical.

We conclude that positional encodings with more suitable locality and symmetry
can yield better performance on downstream tasks, which may explain why fixed
encodings are designed to meet the two properties and why learned encodings all
exhibit this behavior. However, encodings are not perfectly local, which might be due
to the network architectures and the specific target tasks.

6.3.3 Can Locality and Symmetry Yield Better Inductive Bias?
Given that locality and symmetry stand out as important learned features of existing
positional encodings, it begs the question that what happens if a language model is
initialized with positional encodings with good locality and symmetry.

For this purpose, we replace the positional correlations δi, j in Equation 6.7 with
handcrafted Positional Encodings to probe. There are various human-designed po-
sitional encodings, e.g., sinusoidal encodings [270], rotary encodings [253] and AL-
iBi [212], but the locality and symmetry cannot be modified easily for these encodings.
To address this issue, we propose the Attenuated Encoding, which use a Gaussian
kernel [95]:

δi, j = Φ(li, j) =
exp(αi, j)

∑
n
j=1 exp(αi, j)

where αi, j =

{
−swl2

i, j i ≤ j
−wl2

i, j i> j
(6.11)

where li, j is the relative distance, w > 0 is a scalar parameter that controls the locality
value, and s is a scalar parameter that controls the symmetry value. Note that there

78

Model Size Sentiment Analysis Textual Entailment Paraphrase Identification Textual Similarity
MR SUBJ SST-2 QNLI RTE MNLI MRPC QQP STS-B SICK-R Avg

(22K) (20K) (68.8K) (110K) (5.5K) (413K) (5.4K) (755k) (8.4K) (9.4K)

BERT 110M 72.5±5.3 91.0±2.7 86.4±2.7 85.8±1.0 59.2±1.2 78.2±0.8 73.5±1.8 88.7±0.6 77.8±4.1 64.9±6.0 77.8

BERT-A∗-s 113M 79.4±2.9 93.7±0.6 88.0±0.7 86.3±1.1 59.4±2.7 78.8±0.4 81.5±2.2 88.7±0.4 83.6±2.0 76.3±1.1 81.6
BERT-A∗ 138M 78.2±3.5 93.0±0.8 88.1±1.0 87.0±0.5 61.0±1.4 78.9±0.9 80.9±3.9 89.2±0.3 84.3±2.5 76.0±4.7 81.7

Table 6.1: Evaluations of handcrafted encodings across 10 downstream tasks. We
report the average score (Spearman correlation for textual similarity and accuracy for
others) of five runs using different learning rates. ∗ means the encodings are learnable
and s means that positional encodings are shared within the attention headers of
layers.

are two key differences between our encodings and other manually designed ones
such as the T5 bias [221] and ALiBi [212]. First, the output generated by our method
is an attentional vector (or a discrete probability distribution) that can be regarded
as a type of attention mechanism. Thus, we can estimate the locality and symmetry
individually. ALiBi biases, in contrast, cannot be measured by our proposed metrics
directly. Second, we can adjust the hyper-parameters in our method for obtaining
encodings with different localities and symmetry, which ALiBi does not allow.

In this experiment, we adjust the parameter w and s for obtaining weight vector δ

that share similar locality and symmetry with pre-trained BERT (Locality=0.17 and
Symmetry=1.0). After, we pre-train BERTbase initialized with δ and compare them
to learned encodings on downstream natural language understanding tasks. Three
variants are compared with the original BERT: 1) BERT-A∗-s uses learnable and shared
δ , but the weights are shared inside a particular layer; 2) BERT-A∗ uses learnable
but not shared δ , which means δ is different in each attentional head. The empirical
results are shown in Table 6.1. We observe that both BERT-A∗-s and BERT-A∗ can
significantly outperform the original BERT, which demonstrates positional encodings
with initialization of suitable locality and symmetry can have better inductive bias in
sentence representation.

6.3.4 What Is the Drawback of Symmetry?
Although positional encodings with good symmetry perform well on a series of down-
stream tasks, the symmetry property has an obvious flaw in sentence representations,
which is ignored by prior studies. Existing probes study the sensitivity of language mod-
els to word order by shuffling the words in a sentence, and they can be roughly divided
into three categories: random swap [208, 97, 1], n-gram swap [247], and subword-level
phrase swap [50]. All these works assume that the labels of the randomly shuffled
sentences are unchanged. However, this is obviously not the case. In particular, the
shuffled sentence may have another label (think of the textual entailment example from
the introduction).

To address the issue, we propose two new probing tasks of word swaps: Con-
stituency Shuffling and Semantic Role Shuffling. Constituency Shuffling aims to disrupt
the inside order of constituents, which is able to change the word order while preserving

79

a

DT

man

NN

on

IN

an electric guitar

an electric guitar

DT JJ NN

NP

playing

VBG

on stage

PP

a man

NP

playing an electric guitar on stage

VP

a man playing an electric guitar on stage

NP

stage

NN

Figure 6.3: Illustration of constituent parsing for one sentence in SNLI “a man playing
an electric guitar on stage”. The result is generated by Berkeley Neural Parser.

Original Shuffled

Shuffled-3 An old man with a package poses in front of an advertisement . An man old with package a poses in front of advertisement an .

Shuffled-4 A land rover is being driven across a river . A land rover is being a driven river across .

Shuffled-5 A man reads the paper in a bar with green lighting . A man reads the paper in with green a lighting bar .

Shuffled-6 A little boy in a gray and white striped sweater and tan pants is play-

ing on a piece of playground equipment .

A little boy in striped a sweater and white gray and tan pants is play-

ing piece playground of equipment on a .

Shuffled-SR several women are playing volleyball . volleyball are playing several women .

Shuffled-SR a man and woman are sharing a hotdog . a hotdog are sharing a man and woman .

Table 6.2: Some cases of the shuffled SNLI datasets in our word swap probing. Texts
in the same color mean the corresponding phrases.

the maximum degree of original semantics. A constituent parsing case is shown in
Figure 6.3, and we can shuffle the word order inside some phrases, e.g., the noun phrase
“an electric guitar” while the semantic will not be changed (the grammar structure
may be destroyed). We construct different shuffled datasets by phrase length, e.g.,
“an electric guitar” is a phrase of length 3 and we can obtain tri-gram shuffled sets.
Datasets constructed by constituency shuffling are referred to as Shuffle-x and x means
the length of phrase. On the other hand, Semantic Role Shuffling intentionally changes
the semantics by swapping the order of the agent and patient of sentences and thus
results in a new sentence with different meanings. In Figure 6.3, “a man” as the entity
that performs the action, technically known as the agent, and “an electric guitar” as the
entity that is involved in or affected by the action, which is called the patient. We refer
to this dataset as Shuffle-SR because it swap the semantic roles in a sentence. Some
shuffled examples are shown in Table 6.2.

80

Model Symmetry Locality Original Shuffle-3 (∆) Shuffle-4 (∆) Shuffle-5 (∆) Shuffle-6 (∆) Random (∆) Original Shuffle-SR (∆)

BERT 87.9 16.2 89.8 -0.4 -0.6 -0.3 -0.5 -2.7 89.8 -63.9
ALBERT 82.0 20.3 91.8 -0.5 -1.1 -1.3 -1.7 -6.0 92.0 -66.8
DeBERTa 85.0 17.8 91.6 -0.5 -0.7 -1.3 -1.1 -5.1 91.6 -58.9

XLNet 72.7 17.5 91.5 -0.2 -0.3 -0.7 -1.2 -5.4 91.3 -57.8
StrucBERT 96.3 7.5 90.9 -0.5 -0.9 -1.3 -1.1 -4.4 90.8 -44.6

Table 6.3: Results of Constituency Shuffling and Semantic Role Shuffling, measured
by accuracy. Shuffle-x means phrases with length x are shuffled. Shuffle-SR means the
semantic roles of agent and patient are swapped.

The distinction of our proposed two probing tasks is that one preserves the semantics
while another changes the semantics. Then, we can probe the capability of language
models to correctly recognize the new sentence’s meaning. Specifically, the Stanford
Natural Language Inference (SNLI) [23] dataset is used in this experiment and it
provided constituent structure for each sentence. To probe the sensitivity of language
models to the two types of shuffling, we fine-tune 5 pre-trained language models with
good symmetry on SNLI training set and evaluate them on the newly constructed
Shuffle-x and Shuffle-SR datasets. The overall results of word swap probing are shown
in Table 6.3 We first observe performances of all language models across Shuffle-x sets
basically do not degenerate, which confirms the benefits of the locality and symmetry
properties. Second, most models fail on the Shuffle-SR dataset, which demonstrates
local symmetry does not capture global position changes well, which explain the reason
that BERT fails on the example: “an electric guitar playing a man on stage”. Although
the local symmetry learned by positional encodings can performs well on a series
of language understanding tasks, the symmetry itself has obvious flaws. The better
performance of StrucBERT on the Shuffle-SR suggests that introducing additional
order-sensitive training tasks may improve this problem.

6.4 Conclusion
We have proposed a series of probing analyses for understanding the role of positional
encodings in sentence representations. We find two main properties of existing encod-
ings, Locality and Symmetry, which is correlated with the performance of downstream
tasks. Meanwhile, we point out an obvious flaw of the symmetry property.

The limitations of this work are two-fold. First, our analysis is limited to the natural
language understanding of the English language. Different languages display different
word order properties. For instance, English is subject-verb-object order (SVO) while
Japanese is subject-object-verb order (SOV), and natural language generation models
are not included in this work. Besides, a recent work finds that the autoregressive
models without any explicit positional encoding are still competitive with standard
models [103], which shows the generative model might not be a perfect target for
researching order information. Second, although our handcrafted positional encodings
satisfy the Symmetry property, it merely replicates the limitations of current positional
encoding, albeit in a simplified form. Further architecture development should address
the problem of the “an electric guitar playing a man on stage.” mentioned in the

81

introduction.

82

7
Application: Using Entity Disambiguation

Models for Knowledge Base Completion

Despite their impressive scale, knowledge bases (KBs), such as Wikidata, still contain
significant gaps. Language models (LMs) have been proposed as a source for filling
these gaps. However, prior works have focused on prominent entities with rich coverage
by LMs, neglecting the crucial case of long-tail entities. In this paper, we present a
novel method for LM-based-KB completion that is specifically geared for facts about
long-tail entities. The method leverages two different LMs in two stages: for candidate
retrieval and for candidate verification and disambiguation. To evaluate our method
and various baselines, we introduce a novel dataset, called MALT, rooted in Wikidata.
Our method outperforms all baselines in F1, with major gains especially in recall.

7.1 Introduction
Knowledge base completion (KBC) is crucial to continuously enhance the scope and
scale of large knowledge graphs (KGs). It is often cast into a link prediction task:
infer an O(bject) argument for a given S(ubject)-P(redicate) pair. However, the task
is focused on the KG itself as the only input, and thus largely bound to predict SPO
facts that are also derivable by simple logical rules for inverse predicates, transitive
predicates etc. [5, 259]. To obtain truly new facts, more recent methods tap into
large language models (LMs) that are learned from huge text collections, including all
Wikipedia articles, news articles and more. The most promising approaches to this end
generate cloze questions for knowledge acquisition and ask LMs to generate answers
[207]. The LM input is often augmented with carefully crafted short prompts (e.g., a
relevant Wikipedia paragraph) [244, 124, 217].

However, notwithstanding great success for question answering to humans, the LM-
based approach falls short on meeting the high quality requirements for enriching a KG
with crisp SPO facts. Even if most answers are correct, there is a non-negligible fraction
of false or even “hallucinated” outputs by the LM, and large KGs, like Wikidata [274],
cannot tolerate error rates above 10 percent. Moreover, even correct answers are not

83

properly canonicalized: they are surface phrases and not unique entities in the KG.
These problems are further aggravated when the to-be-inferred O arguments are long-
tail entities, with very few facts in Wikidata. Here, we call an entity long-tail when it
has less than 14 triples in Wikidata, because nearly 50% of the Wikidata entities have
fewer than 14 triples. These are exactly the pain point that calls for KBC. This paper
addresses this problem.

As an example, consider the late Canadian singer Lhasa de Sela. Wikidata solely
covers basic biographic facts and selected awards, nothing about her music. However,
text sources such as her Wikipedia article or other web pages provide expressive
statements about her albums, songs, collaborations etc. For example, we would like
to spot the facts that ⟨Lhasa de Sela, collaboratedWith, Bratsch⟩ and ⟨Lhasa de Sela,
performedSong, Anyone and Everyone⟩. Note that capturing these as SPO facts faces
the challenge of having to capture and disambiguate multi-word names (“Lhasa de
Sela”) and common-noun phrases (“anyone and everyone”). When trying to extract
such statements via cloze questions or more refined prompts to LMs such as GPT-
3 [26] or chatGPT, the outputs would often be “Lhasa”, which is highly ambiguous, or

“everyone”, which is incomplete and impossible to interpret.
Approach and Contribution. This paper devises a novel method for knowledge base
completion (KBC), specifically geared to cope with long-tail entities. Although we
will present experimental comparisons to prior works on relation extraction from text,
we believe that ours is among the first works to successfully cope with the challenge of
noise and ambiguity in the long tail.

Our method leverages Transformer-based language models in a new way. Most
notably, we employ two different LMs in a two-stage pipeline. The first stage generates
candidate answers to input prompts and gives cues to retrieve informative sentences
from Wikipedia and other sources. The second stage validates (or falsifies) the candi-
dates and disambiguates the retained answer strings onto entities in the underlying KG
(e.g., mapping “Lhasa” to Lhasa de Sela , and “Bratsch” to Bratsch (band)).

The novel contributions of this work are the following:
• the first KBC method that leverages LMs to cope with long-tail entities;
• a new dataset, called MALT, to benchmark methods with long-tail entities;
• experimental comparisons with baselines, using the MALT data.

7.2 Related Work
Knowledge Base Completion. This task, KBC for short, has mostly been tackled as a
form of link prediction: given a head entity S and a relation P, predict the respective
tail entity O, using the KG as sole input. A rich suite of methods have been developed
for this task, typically based on latent embeddings computed via matrix or tensor
factorization, neural auto-encoders, graph neural networks, and more (see, e.g., surveys
[44, 121] and original references given there). However, the premise of inferring
missing facts from the KG itself is a fundamental limitation. Indeed, several studies
have found that many facts predicted via the above KBC techniques are fairly obvious

84

and could also be derived by simple rules for transitivity, inverse relations etc. [5, 259].
Language Models as Knowledge Bases. The LAMA project [207] posed the hypothe-
sis that probing LMs with cloze questions is a powerful way of extracting structured
facts from the latently represented corpus on which the LM was trained. A suite of
follow-up works pursued this theme further and devised improvements and extensions
(e.g., [107, 123, 134, 227, 244, 313]). This gave rise to the notion of “prompt engi-
neering” for all kinds of NLP tasks [167]. In parallel, other works studied biases and
limitations of the LM-as-KB paradigm (e.g., [30, 69, 226, 124]). In this work, we
investigate the feasibility of leveraging LMs to complete real-world KBs, and mainly
focus on long-tail facts.

7.3 Two-Stage KBC Method
We propose an unsupervised method for KBC that taps into LMs as latent source
for facts that cannot be inferred from the KG itself. Our method operates in two
stages:
1. For a given S-P pair, generate candidate facts ⟨S,P,“O”⟩ where “O” is an entity

name and possibly a multi-word phrase.
2. Corroborate the candidates, retaining the ones with high confidence of being correct,

and disambiguate the “O” argument into a KG entity.

Candidate Generation. We devise a generic prompt template for cloze questions,
in order to infer an “O” answer for a given S-P pair. This merely requires a simple
verbalizer for the relation P:

“⟨S-type⟩ S ⟨P-verb⟩ which ⟨O-type⟩?”

(e.g., “the song ⟨S⟩ is performed by which person?” for the predicate performer).
The S-type and O-type are easily available by the predicate type-signature from the
KG schema. As additional context we feed a Wikipedia sentence from the S entity’s
article into the LM. This is repeated for all sentences in the respective Wikipedia article.
Specifically, we employ the SpanBERT language model [130], which is fine-tuned on
on the SQuAD 2.0 [223] 1. Note that all of this is completely unsupervised: there is no
need for any fine-tuning of the LM, and there is no prompt engineering.

Candidate Corroboration and Canonicalization. The first stage yields a scored
list of candidates in the form of pairs (“O”, s) with an entity name and a Wikipedia
sentence s. In the corroboration stage, the candidates are fed into a second LM for
re-ranking and pruning false positives. Specifically, we employ the generative entity
disambiguation model GENRE [57], which in turn is based on BART [155] and fine-
tuned on BLINK [291] and AIDA [113]. We construct the input by the template:
“⟨S-type⟩ S ⟨P-verb⟩ [ENT] this ⟨O-type⟩ [ENT]”
(e.g., “the song Anyone and Everyone is performed by [ENT] this person [ENT]”),

1 https://huggingface.co/mrm8488/spanbert-large-finetuned-squadv2

85

https://huggingface.co/mrm8488/spanbert-large-finetuned-squadv2

Dataset SPO triples Long-tail fraction

DocRED [301] 63K 32.0 %
LAMA-TREx [207] 34K 39.6 %

X-FACTR [123] 46K 49.6 %
MALT (Ours) 49K 87.0 %

Table 7.1: Estimated fractions of long-tail S entities across
different datasets, where long-tail means at most 13 triples
in Wikidata. The estimations are based on 200 samples
across 8 relations.

contextualized with the sentence s. GENRE generates a list of answer entities E, taken
from an underlying KG, like Wikidata, that is, no longer just surface names. If the
candidate name “O” approximately matches a generated E (considering alias names
provided by the KG), then the entire fact, now properly canonicalized, is kept. Since
we may still retain multiple facts for the same S-P input and cannot perfectly prevent
false positives, the inferred facts are scored by an average of the scores from stage 1
and stage 2.

7.4 MALT: New Dataset for Benchmarking
Benchmarks for KBC and LM-as-KB cover facts for all kinds of entities, but tend
to focus on prominent ones with frequent mentions. Likewise, benchmarks for re-
lation extraction (RE) from text, most notably TACRED [308], DocRED [301] and
LAMA [207] do not reflect the difficulty of coping with long-tail entities and the
amplified issue of surface-name ambiguity (see Table 7.1. Therefore, we developed a
new dataset with emphasis on the long-tail challenge, called MALT (for “Multi-token,
Ambiguous, Long-Tailed facts”).

To construct the dataset, we focus on three types of entities: Business,
MusicComposition and Human, richly covered in Wikidata and often involving
long-tail entities. We randomly select subjects from the respective relations in Wikidata,
and keep all objects for them. We select a total of 8 predicates for the 3 types; Table
7.2 lists these and gives statistics.

The dataset contains 65.3% triple facts where the O entity is a multi-word phrase,
and 58.6% ambiguous facts where the S or O entities share identical alias names in
Wikidata. For example, the two ambiguous entities ,“Birmingham, West Midlands
(Q2256)” and “Birmingham, Alabama (Q79867)”, have the same Label value “Birm-
ingham”. In total, 87.0% of the sample facts have S entities in the long tail, where we
define long-tail entities to have at most 13 Wikidata triples.

86

Subject Type Relation Wikidata ID Triples multi-token (%) ambiguous (%) long-tail (%)

Business founded by P112 5720 97.3 21.1 91.2

MusicComposition
performer P175 1876 91.1 62.0 47.3
composer P86 3016 98.2 59.8 88.5

Human

place of birth P19 13416 23.6 81.6 99.3
place of death P20 7247 25.9 84.8 99.6

employer P108 3503 96.5 37.4 81.4
educated at P69 13386 99.6 38.7 72.2
residence P551 886 32.1 87.1 96.4

Micro-Avg - - - 65.3 58.6 87.0

Table 7.2: Statistics for MALT dataset.

Relation ID NER + RC (CNN) REBEL KnowGL GenIE Ours
P R F1 P R F1 P R F1 P R F1 P R F1

founded by P112 13.5 21.2 16.5 42.8 27.3 33.3 0.0 0.0 0.0 59.1 7.9 13.9 57.0 44.5 50.0

performer P175 5.2 10.1 6.9 25.3 28.1 26.6 0.0 0.0 0.0 47.3 19.1 27.2 42.7 15.6 22.9
composer P86 17.3 20.5 18.8 37.9 27.7 32.0 37.6 25.7 30.6 70.0 16.6 26.8 67.3 65.6 66.4

place of birth P19 4.7 4.7 4.7 49.3 20.5 28.9 49.4 23.4 31.7 64.1 9.2 16.1 47.9 61.4 53.8
place of death P20 12.5 4.7 6.8 52.6 11.8 19.2 66.6 9.4 16.5 47.5 3.0 5.6 46.6 48.2 47.4

employer P108 8.7 4.9 6.3 50.0 4.9 8.8 0.0 0.0 0.0 54.0 0.1 0.2 30.0 29.3 29.6
educated at P69 8.9 8.4 7.7 15.4 1.1 2.1 22.2 1.1 2.2 46.7 0.1 0.2 42.9 39.5 41.2
residence P551 0.0 0.0 0.0 33.3 8.3 13.3 33.3 8.3 13.3 44.4 0.2 0.4 19.2 41.7 26.3

Micro-Avg - 26.7 13.7 13.7 38.3 16.2 20.6 26.2 8.5 11.8 52.2 6.9 11.2 44.2 43.2 42.2

Table 7.3: Performance comparison on MALT data.

7.5 Experimental Evaluation

Baselines. To the best of our knowledge, there is no prior work on KBC or LM-as-
KB that is specifically geared for coping with long-tail entities. As a proxy, we thus
compare to several state-of-the-art methods for relation extraction (RE) from text. At
test time, these methods receive the retrieved Wikipedia sentences for a ground-truth
SPO fact and the SP pair as input, and are run to extract the withheld O argument
(sentence-level extraction).

We compare to the following baselines:
• NER + RC (CNN) uses TNER [267] to recognize entity mentions in context

sentences, followed by a CNN-based relation classifier (author?) [190]. The
RC component is trained on REBEL [29].

• REBEL [29] is an end-to-end relation extraction for more than 200 different relation
types in Wikidata.

• KnowGL [229] is an open-source system that can convert text into a set of Wikidata
statements.

• GenIE [132] is an end-to-end closed triplet extraction model, which is trained
on REBEL dataset [29]. GenIE uses Wikidata as the target KB and can extract
5,891,959 entities and 857 relations.

87

Setup. There are two hyper-parameters for all competitors, the number of candi-
dates k (or the “top-k” hyper-parameter for baseline models) and the threshold α for
cutting off the extracted triples. For our framework, k is 20 for all competitors and the
threshold α is learned by using a hold-out (20%) validation set. We report results for
precision, recall and F1, with the original Wikidata triples as ground truth. Although
MALT provides canonicalized entities, we consider the extracted O to be a correct
prediction as long as it appears in the alias table because some baselines themselves
cannot do disambiguation.

Our method is completely unsupervised, and the only additional cost is prompt. We
manually design one template for each relation (as shown in Table 7.4).

Relation ID Candidate Generation Corroboration and Canonicalization

founded by P112 the business [x] is founded by which person? the business [x] is founded by [ENT] this
person [ENT]

performer P175 the song [x] is performed by which person? the song [x] is performed by [ENT] this per-
son [ENT]

composer P86 the song [x] is composed by which person? the song [x] is composed by [ENT] this per-
son [ENT]

place of birth P19 the person [x] was born in which place? the person [x] was born in [ENT] this place
[ENT]

place of
death

P20 the person [x] died in which place? the person [x] died in [ENT] this place
[ENT]

employer P108 the person [x] worked in which place? the person [x] worked in [ENT] this place
[ENT]

educated at P69 the person [x] graduated from which place? the person [x] graduated from [ENT] this
place [ENT]

residence P551 the person [x] lived in which place? the person [x] lived in [ENT] this place
[ENT]

Table 7.4: Prompts for relations in MALT. [x] is a placeholder for the subject entity
and [ENT] is a special token for the mention.

Results. Table 7.3 shows the results from this experimental comparison. We observe
that the GenIE baselines does well in terms of precision, but has very poor recall. In
contrast, our two-stage method achieves both good precision and recall. Regarding
precision, it is almost as good as GenIE (44% vs. 52%); regarding recall, it outperforms
GenIE and the other baselines by a large margin (43% vs. 7%). Our method still
leaves substantial room for further improvement, underlining the challenging nature of
inferring facts for long-tail entities. We think of our method as a building block to aid a
human curator by judicious suggestions for facts that would augment the KG.

Many of the inferred SPO facts are indeed completely missing in Wikidata; so they
are also not in the withheld ground-truth samples for the above evaluation. To estimate
how many facts we could potentially add to the KG and how good our automatically
inferred predictions are, we picked 25 samples for each relation, a total of 250 fact
candidates, and asked human annotators to assess their correctness. Over all relations,
this achieved an average precision of 61%.

For the relation educated at, our method even has 76% precision, and this is a

88

case where the KG has enormous gaps: out of 10M sampled entities of type Human,
only 65% have facts for this relation. For this case, our KBC method collected 1.2M
candidate facts, showing the great potential towards closing these gaps.

7.6 Conclusion
We highlighted the challenge of knowledge base completion (KBC) for long-tail
entities, introduced the MALT dataset for experimental comparisons and fostering
further research, and presented a completely unsupervised method for augmenting
knowledge bases with long-tail facts. Our method operates in two stages, candidate
generation and candidate corroboration (incl. disambiguation), and leverages two
different LMs in a complementary way. Experimental results show substantial gains
over state-of-the-art baselines, and highlight the benefits of our two-stage design with
two LMs complementing each other.

89

8
Conclusion

8.1 Summary
In this thesis, we addressed challenges related to entity disambiguation. More con-
cretely, we worked on the following topics:

Biomedical Entity Disambiguation In chapter 3, we propose a lightweight yet
effective neural network for biomedical entity disambiguation. Our model is 23
times smaller abd 6.4 times faster than the BERT-base model, and empirical results
demonstrate that the model is very competitive, and achieves a performance that is
statistically indistinguishable from the state of the art.

General Acronym Disambiguation In chapter 4, we present our constructed GLADIS,
a new benchmark for acronym disambiguation, which is larger and more challenging
than existing work. This benchmark contains three components: a larger dictionary,
three datasets from the general, scientific, and biomedical domains, and a large-scale
pre-training corpus. We have also proposed AcroBERT, the first pre-trained language
model for acronym disambiguation, which can significantly outperform other baselines
across multiple domains.

Out-of-Vocabulary Problem In chapter 5, we address the out-of-vocabulary by
designing a contrastive learning framework, which named LOVE (Learning Out-of-
Vocabulary Embeddings). LOVE is able to generate word representations for any
unseen words by learning the behavior of pre-trained embeddings using only the
surface form of words. LOVE can make language models more robust with few
additional parameters. Extensive evaluations demonstrate that our lightweight model
achieves similar or even better performances than prior competitors, both on original
datasets and on corrupted variants.

Positional Encodings in Transformers In chapter 6, we point out one potential
weakness of positional encodings, which are widely used in Transformer-based models.

90

Positional encodings are used to inject word-order features into language models. Al-
though they can significantly enhance sentence representations, their specific function
to language models are not fully understood, especially given recent findings that build-
ing natural-language understanding from language models with positional encodings
are insensitive to word order. In this work, we conduct more in-depth and systematic
studies of positional encodings, thus complementing existing work in two aspects: We
first reveal the core function of PEs by identifying two common properties, Locality and
Symmetry. After, we first point out a potential weakness of current PEs by introducing
two new probing tasks of word swap. We hope these new probing results and findings
can shed light on how to design and inject positional encodings into language models.

Knowledge Base Completion In chapter 7, we present a novel method for LM-based-
KB completion that is specifically geared for facts about long-tail entities. Specifically,
we present a novel method for LM-based-KB completion that is specifically geared for
facts about long-tail entities. The method leverages two different LMs in two stages:
for candidate retrieval and for candidate verification and disambiguation. To evaluate
our method and various baselines, we introduce a novel dataset, called MALT, rooted
in Wikidata. Our method outperforms all baselines in F1, with major gains especially
in recall.

8.2 Future Work
There are still many challenges remaining in the task of entity disambiguation. We here
provide some possible research directions that would be worth exploring in the future.

A Cleaner GLADIS We see one main limitations of the GLADIS benchmark. The
current acronym dictionary is of relatively high quality, it still contains a small fraction
of duplicate long forms due to typos (as in “Convlutional Neural Network”), morpho-
logical changes (as in “Convolutional Neuronal Network”) and nested acronyms (as in

“convolutional NN”). A manual evaluation of 100 randomly chosen long forms from
the three datasets in GLADIS shows that 6% of them are noisy. At the same time, the
frequency of these noisy forms is much lower than that of the standard long forms: all
noisy forms in the sample taken together appear 100 times in the corpus – compared
to 31k times for the clean forms. Thus, the percentage of clean forms, weighted by
their frequency, is 97%. A good AD system should select the most frequent one among
noisy forms for an acronym, and in our sample none of the most frequent forms was
noisy. One possible future work is to clean these noisy long forms in a manual or
automatic way.

Phrase-LOVE The current LOVE focuses on word-level representations. In the
future, the contrastive learning framework of LOVE might be extended to phrase-level
representations. We envision the Phrase-LOVE can be applied to many applications
such as short text retrieval, record linkage, synonym detection etc.

91

New Positional Encodings We reveal that exiting positional encodings have one
important property, Symmetry, which has a potential weakness of insensitivity to
global word swaps. One possible future work is to design a completely new positional
encodings for addressing this issue.

92

Bibliography

[1] Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and Anders Søgaard. Word
order does matter and shuffled language models know it. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 6907–6919, 2022.

[2] Eytan Adar. Sarad: A simple and robust abbreviation dictionary. Bioinformatics,
20(4):527–533, 2004.

[3] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca,
and Aitor Soroa. A study on similarity and relatedness using distributional and
wordnet-based approaches. 2009.

[4] Qingyao Ai, Vahid Azizi, Xu Chen, and Yongfeng Zhang. Learning heteroge-
neous knowledge base embeddings for explainable recommendation. Algorithms,
11(9):137, 2018.

[5] Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and
Chengkai Li. Realistic re-evaluation of knowledge graph completion methods: An
experimental study. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, pages 1995–2010.
ACM, 2020.

[6] Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey. arXiv preprint
arXiv:1901.09069, 2019.

[7] Abdulrahman Almuhareb. Attributes in lexical acquisition. PhD thesis, University
of Essex, 2006.

93

[8] Hiroko Ao and Toshihisa Takagi. Alice: an algorithm to extract abbreviations from
medline. Journal of the American Medical Informatics Association, 12(5):576–586,
2005.

[9] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic
web, pages 722–735. Springer, 2007.

[10] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In 3rd International Conference on
Learning Representations, ICLR 2015, 2015.

[11] Edoardo Barba, Luigi Procopio, and Roberto Navigli. Extend: extractive entity
disambiguation. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2478–2488, 2022.

[12] Marco Baroni and Alessandro Lenci. How we blessed distributional semantic
evaluation. In Proceedings of the GEMS 2011 Workshop on GEometrical Models
of Natural Language Semantics, pages 1–10, 2011.

[13] Suzanna Becker and Geoffrey E Hinton. Self-organizing neural network that
discovers surfaces in random-dot stereograms. Nature, 355(6356):161–163, 1992.

[14] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural
machine translation. In International Conference on Learning Representations,
2018.

[15] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model
for scientific text. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 3615–3620, 2019.

[16] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150, 2020.

[17] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic
language model. Advances in neural information processing systems, 13, 2000.

[18] Luisa Bentivogli, Ido Kalman Dagan, Dang Hoa, Danilo Giampiccolo, and
Bernardo Magnini. The fifth pascal recognizing textual entailment challenge.
In TAC 2009 Workshop. no publisher, 2009.

[19] Olivier Bodenreider. The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

[20] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the association for
computational linguistics, 5:135–146, 2017.

94

[21] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1247–1250, 2008.

[22] Rishi Bommasani, Kelly Davis, and Claire Cardie. Interpreting pretrained con-
textualized representations via reductions to static embeddings. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages
4758–4781, 2020.

[23] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
A large annotated corpus for learning natural language inference. In EMNLP, 2015.

[24] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun,
Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature verification using a
“siamese” time delay neural network. International Journal of Pattern Recognition
and Artificial Intelligence, 7(04):669–688, 1993.

[25] Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and
Robert L Mercer. Class-based n-gram models of natural language. Computational
linguistics, 18(4):467–480, 1992.

[26] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

[27] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. Multimodal distributional
semantics. Journal of artificial intelligence research, 49:1–47, 2014.

[28] Razvan Bunescu and Marius Pasca. Using encyclopedic knowledge for named
entity disambiguation. 2006.

[29] Pere-Lluı́s Huguet Cabot and Roberto Navigli. Rebel: Relation extraction by
end-to-end language generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2370–2381, 2021.

[30] Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingyong Yan, Meng Liao, Tong
Xue, and Jin Xu. Knowledgeable or educated guess? revisiting language models as
knowledge bases. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 1860–1874, 2021.

[31] Kris Cao and Marek Rei. A joint model for word embedding and word morphol-
ogy. In Proceedings of the 1st Workshop on Representation Learning for NLP,
pages 18–26, 2016.

95

[32] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka,
and Tom Mitchell. Toward an architecture for never-ending language learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 24, pages
1306–1313, 2010.

[33] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia.
Semeval-2017 task 1: Semantic textual similarity multilingual and crosslingual
focused evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, 2017.

[34] Jeffrey T Chang, Hinrich Schütze, and Russ B Altman. Creating an online
dictionary of abbreviations from medline. Journal of the American Medical
Informatics Association, 9(6):612–620, 2002.

[35] Jean Charbonnier and Christian Wartena. Using word embeddings for unsuper-
vised acronym disambiguation. In Proceedings of the 27th International Confer-
ence on Computational Linguistics, pages 2610–2619, 2018.

[36] Lihu Chen, Simon Razniewski, and Gerhard Weikum. Knowledge base comple-
tion for long-tail entities. arXiv preprint arXiv:2306.17472, 2023.

[37] Lihu Chen, Gael Varoquaux, and Fabian Suchanek. Imputing out-of-vocabulary
embeddings with love makes languagemodels robust with little cost. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3488–3504, 2022.

[38] Lihu Chen, Gaël Varoquaux, and Fabian M Suchanek. A lightweight neural
model for biomedical entity linking. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 12657–12665, 2021.

[39] Lihu Chen, Gael Varoquaux, and Fabian M Suchanek. Understanding the role of
positional encodings in sentence representations. 2022.

[40] Lihu Chen, Gaël Varoquaux, and Fabian M Suchanek. Gladis: A general and
large acronym disambiguation benchmark. In The 17th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2023), 2023.

[41] Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, Hui Jiang, and Diana Inkpen.
Enhanced lstm for natural language inference. arXiv preprint arXiv:1609.06038,
2016.

[42] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[43] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. On sampling strategies
for neural network-based collaborative filtering. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 767–776, 2017.

96

[44] Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin Zhao, and Zongtao Duan.
Knowledge graph completion: A review. IEEE Access, 8:192435–192456, 2020.

[45] Zheng Chen and Heng Ji. Collaborative ranking: A case study on entity linking.
In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 771–781, 2011.

[46] Billy Chiu, Anna Korhonen, and Sampo Pyysalo. Intrinsic evaluation of word
vectors fails to predict extrinsic performance. In Proceedings of the 1st workshop
on evaluating vector-space representations for NLP, pages 1–6, 2016.

[47] Manuel Ciosici, Tobias Sommer, and Ira Assent. Unsupervised abbreviation
disambiguation contextual disambiguation using word embeddings. arXiv preprint
arXiv:1904.00929, 2019.

[48] Manuel R Ciosici and Ira Assent. Abbreviation expander-a web-based system
for easy reading of technical documents. In Proceedings of the 27th International
Conference on Computational Linguistics: System Demonstrations, pages 1–4,
2018.

[49] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning.
Electra: Pre-training text encoders as discriminators rather than generators. arXiv
preprint arXiv:2003.10555, 2020.

[50] Louis Clouatre, Prasanna Parthasarathi, Amal Zouaq, and Sarath Chandar. Local
structure matters most: Perturbation study in nlu. In Findings of the Association
for Computational Linguistics: ACL 2022, pages 3712–3731, 2022.

[51] World Wide Web Consortium et al. Rdf 1.1 concepts and abstract syntax. 2014.

[52] Maurizio Corbetta and Gordon L Shulman. Control of goal-directed and stimulus-
driven attention in the brain. Nature reviews neuroscience, 3(3):201–215, 2002.

[53] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising
textual entailment challenge. In Machine learning challenges workshop, pages
177–190. Springer, 2005.

[54] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2978–2988, 2019.

[55] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language
modeling with gated convolutional networks. In International conference on
machine learning, pages 933–941. PMLR, 2017.

[56] Allan Peter Davis, Thomas C Wiegers, Michael C Rosenstein, and Carolyn J
Mattingly. Medic: a practical disease vocabulary used at the comparative toxicoge-
nomics database. Database, 2012, 2012.

97

[57] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autore-
gressive entity retrieval. In International Conference on Learning Representations,
2020.

[58] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers. In International Conference on Learning Repre-
sentations, 2018.

[59] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. 2019.

[60] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, 2019.

[61] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus:
a resource for disease name recognition and concept normalization. Journal of
biomedical informatics, 47:1–10, 2014.

[62] Rezarta Islamaj Dogan and Zhiyong Lu. An inference method for disease name
normalization. In 2012 AAAI Fall Symposium Series, 2012.

[63] William B Dolan and Chris Brockett. Automatically constructing a corpus of
sentential paraphrases. In Proceedings of the Third International Workshop on
Paraphrasing (IWP2005), 2005.

[64] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, Tim Finin, et al. En-
tity disambiguation for knowledge base population. In Proceedings of the 23rd
International Conference on Computational Linguistics, 2010.

[65] Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in
transformers: An overview. Computational Linguistics, 48(3):733–763, 2022.

[66] William Edward Dyer. Minimizing integration cost: A general theory of con-
stituent order. PhD thesis, University of California, Davis, 2017.

[67] Jennifer D’Souza and Vincent Ng. Sieve-based entity linking for the biomed-
ical domain. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 297–302, 2015.

[68] Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, Hiroshi Noji, Pierre
Zweigenbaum, and Jun’ichi Tsujii. Characterbert: Reconciling elmo and bert for
word-level open-vocabulary representations from characters. In Proceedings of the
28th International Conference on Computational Linguistics, pages 6903–6915,
2020.

98

[69] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard H.
Hovy, Hinrich Schütze, and Yoav Goldberg. Measuring and improving consistency
in pretrained language models. Trans. Assoc. Comput. Linguistics, 9:1012–1031,
2021.

[70] István Endrédy and Attila Novák. More effective boilerplate removal-the gold-
miner algorithm. Polibits, (48):79–83, 2013.

[71] Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch, Ikuya Yamada,
and Omer Levy. Named entity disambiguation for noisy text. In Proceedings of
the 21st Conference on Computational Natural Language Learning (CoNLL 2017),
pages 58–68, 2017.

[72] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S Weld, and Alexander Yates. Unsupervised named-
entity extraction from the web: An experimental study. Artificial intelligence,
165(1):91–134, 2005.

[73] Zheng Fang, Yanan Cao, Qian Li, Dongjie Zhang, Zhenyu Zhang, and Yanbing
Liu. Joint entity linking with deep reinforcement learning. In The world wide web
conference, pages 438–447, 2019.

[74] Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, and Chris Dyer. Problems
with evaluation of word embeddings using word similarity tasks. arXiv preprint
arXiv:1605.02276, 2016.

[75] Fernanda Ferreira, Karl GD Bailey, and Vittoria Ferraro. Good-enough represen-
tations in language comprehension. Current directions in psychological science,
11(1):11–15, 2002.

[76] Gregory P Finley, Serguei VS Pakhomov, Reed McEwan, and Genevieve B
Melton. Towards comprehensive clinical abbreviation disambiguation using
machine-labeled training data. In AMIA Annual Symposium Proceedings, vol-
ume 2016, page 560. American Medical Informatics Association, 2016.

[77] Matthew Francis-Landau, Greg Durrett, and Dan Klein. Capturing semantic
similarity for entity linking with convolutional neural networks. In Proceedings
of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 1256–1261,
2016.

[78] Victoria Fromkin, Robert Rodman, and Nina Hyams. An Introduction to Language
(w/MLA9E Updates). Cengage Learning, 2018.

[79] Nobukazu Fukuda, Naoki Yoshinaga, and Masaru Kitsuregawa. Robust backed-
off estimation of out-of-vocabulary embeddings. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: Findings,
pages 4827–4838, 2020.

99

[80] Richard Futrell, Roger P Levy, and Edward Gibson. Dependency locality as an
explanatory principle for word order. Language, 96(2):371–412, 2020.

[81] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The
pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

[82] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive
learning of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021.

[83] Abhishek Gattani, Digvijay S Lamba, Nikesh Garera, Mitul Tiwari, Xiaoyong
Chai, Sanjib Das, Sri Subramaniam, Anand Rajaraman, Venky Harinarayan, and
AnHai Doan. Entity extraction, linking, classification, and tagging for social media:
a wikipedia-based approach. Proceedings of the VLDB Endowment, 6(11):1126–
1137, 2013.

[84] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In International Conference on
Machine Learning, pages 1243–1252. PMLR, 2017.

[85] Omid Ghiasvand and Rohit J Kate. R.: Uwm: Disorder mention extraction from
clinical text using crfs and normalization using learned edit distance patterns. In
In: Proc. SemEval 2014. Citeseer, 2014.

[86] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The
third pascal recognizing textual entailment challenge. In Proceedings of the ACL-
PASCAL workshop on textual entailment and paraphrasing, pages 1–9, 2007.

[87] Edward Gibson, Leon Bergen, and Steven T Piantadosi. Rational integration of
noisy evidence and prior semantic expectations in sentence interpretation. Pro-
ceedings of the National Academy of Sciences, 110(20):8051–8056, 2013.

[88] John M Giorgi, Osvald Nitski, Gary D Bader, and Bo Wang. Declutr: Deep
contrastive learning for unsupervised textual representations. arXiv preprint
arXiv:2006.03659, 2020.

[89] Mauricio Girardi-Schappo, Ludmila Brochini, Ariadne A Costa, Tawan TA Car-
valho, and Osame Kinouchi. Self-organized critical balanced networks: a unified
framework. arXiv preprint arXiv:1906.05624, 2019.

[90] Amir Globerson, Nevena Lazic, Soumen Chakrabarti, Amarnag Subramanya,
Michael Ringgaard, and Fernando Pereira. Collective entity resolution with multi-
focal attention. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 621–631, 2016.

[91] Joshua Goodman. Classes for fast maximum entropy training. In 2001 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No. 01CH37221), volume 1, pages 561–564. IEEE, 2001.

100

[92] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–6649. IEEE, 2013.

[93] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020.

[94] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity recognition
in query. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages 267–274, 2009.

[95] Maosheng Guo, Yu Zhang, and Ting Liu. Gaussian transformer: a lightweight
approach for natural language inference. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6489–6496, 2019.

[96] Stephen Guo, Ming-Wei Chang, and Emre Kiciman. To link or not to link? a
study on end-to-end tweet entity linking. In Proceedings of the 2013 conference
of the North American chapter of the association for computational linguistics:
human language technologies, pages 1020–1030, 2013.

[97] Ashim Gupta, Giorgi Kvernadze, and Vivek Srikumar. Bert & family eat word
salad: Experiments with text understanding. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pages 12946–12954, 2021.

[98] Nitish Gupta, Sameer Singh, and Dan Roth. Entity linking via joint encoding
of types, descriptions, and context. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 2681–2690, 2017.

[99] Prakhar Gupta and Martin Jaggi. Obtaining better static word embeddings using
contextual embedding models. arXiv preprint arXiv:2106.04302, 2021.

[100] R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. The second pascal recognising textual entailment chal-
lenge. In Proceedings of the Second PASCAL Challenges Workshop on Recognising
Textual Entailment, volume 7, 2006.

[101] Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. Large-scale
learning of word relatedness with constraints. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1406–1414, 2012.

[102] Xianpei Han, Le Sun, and Jun Zhao. Collective entity linking in web text:
a graph-based method. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 765–774,
2011.

101

[103] Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer
language models without positional encodings still learn positional information.
arXiv preprint arXiv:2203.16634, 2022.

[104] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–
9738, 2020.

[105] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[106] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta:
Decoding-enhanced bert with disentangled attention. In International Conference
on Learning Representations, 2020.

[107] Benjamin Heinzerling and Kentaro Inui. Language models as knowledge bases:
On entity representations, storage capacity, and paraphrased queries. In Pro-
ceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages 1772–1791, 2021.

[108] Benjamin Heinzerling and Michael Strube. Bpemb: Tokenization-free pre-
trained subword embeddings in 275 languages. arXiv preprint arXiv:1710.02187,
2017.

[109] Aron Henriksson, Hans Moen, Maria Skeppstedt, Vidas Daudaravičius, and
Martin Duneld. Synonym extraction and abbreviation expansion with ensembles
of semantic spaces. Journal of biomedical semantics, 5(1):1–25, 2014.

[110] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. Computational Linguistics, 41(4):665–
695, 2015.

[111] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by
mutual information estimation and maximization. arXiv preprint arXiv:1808.06670,
2018.

[112] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[113] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Man-
fred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
Robust disambiguation of named entities in text. In Proceedings of the 2011
conference on empirical methods in natural language processing, pages 782–792,
2011.

102

[114] Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun. Few-shot representation
learning for out-of-vocabulary words. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4102–4112, 2019.

[115] Kexin Huang, Jaan Altosaar, and Rajesh Ranganath. Clinicalbert: Modeling clin-
ical notes and predicting hospital readmission. arXiv preprint arXiv:1904.05342,
2019.

[116] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence
tagging. arXiv preprint arXiv:1508.01991, 2015.

[117] Rezarta Islamaj Dogan, G Craig Murray, Aurélie Névéol, and Zhiyong Lu.
Understanding pubmed® user search behavior through log analysis. Database,
2009, 2009.

[118] Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on pattern analysis and
machine intelligence, 20(11):1254–1259, 1998.

[119] Alpa Jain, Silviu Cucerzan, and Saliha Azzam. Acronym-expansion recognition
and ranking on the web. In 2007 IEEE International Conference on Information
Reuse and Integration, pages 209–214. IEEE, 2007.

[120] Heng Ji and Ralph Grishman. Knowledge base population: Successful ap-
proaches and challenges. In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human language technologies, pages
1148–1158, 2011.

[121] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A
survey on knowledge graphs: Representation, acquisition, and applications. IEEE
Trans. Neural Networks Learn. Syst., 33(2):494–514, 2022.

[122] Zongcheng Ji, Qiang Wei, and Hua Xu. Bert-based ranking for biomedical entity
normalization. AMIA Summits on Translational Science Proceedings, 2020:269,
2020.

[123] Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki, Haibo Ding, and Graham
Neubig. X-factr: Multilingual factual knowledge retrieval from pretrained language
models. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5943–5959, 2020.

[124] Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know
what language models know? Transactions of the Association for Computational
Linguistics, 8:423–438, 2020.

[125] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. Tinybert: Distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351, 2019.

103

[126] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is bert really robust?
a strong baseline for natural language attack on text classification and entailment.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
8018–8025, 2020.

[127] Qiao Jin, Jinling Liu, and Xinghua Lu. Deep contextualized biomedical abbrevi-
ation expansion. In Proceedings of the 18th BioNLP Workshop and Shared Task,
pages 88–96, 2019.

[128] Kun Jing and Jungang Xu. A survey on neural network language models. arXiv
preprint arXiv:1906.03591, 2019.

[129] Zhao Jinman, Shawn Zhong, Xiaomin Zhang, and Yingyu Liang. Pbos: Prob-
abilistic bag-of-subwords for generalizing word embedding. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 596–611, 2020.

[130] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and
Omer Levy. Spanbert: Improving pre-training by representing and predicting spans.
Transactions of the Association for Computational Linguistics, 8:64–77, 2020.

[131] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa:
A large scale distantly supervised challenge dataset for reading comprehension.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1601–1611, 2017.

[132] Martin Josifoski, Nicola De Cao, Maxime Peyrard, Fabio Petroni, and Robert
West. GenIE: Generative information extraction. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 4626–4643, July 2022.

[133] Ning Kang, Bharat Singh, Zubair Afzal, Erik M van Mulligen, and Jan A Kors.
Using rule-based natural language processing to improve disease normalization
in biomedical text. Journal of the American Medical Informatics Association,
20(5):876–881, 2013.

[134] Nora Kassner and Hinrich Schütze. Negated and misprimed probes for pretrained
language models: Birds can talk, but cannot fly. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 7811–7818, 2020.

[135] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language
pre-training. In International Conference on Learning Representations, 2021.

[136] Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky. Sharp nearby, fuzzy
far away: How neural language models use context. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 284–294, 2018.

104

[137] Yeachan Kim, Kang-Min Kim, Ji-Min Lee, and SangKeun Lee. Learning to
generate word representations using subword information. In Proceedings of the
27th International Conference on Computational Linguistics, pages 2551–2561,
2018.

[138] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[139] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[140] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[141] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451, 2020.

[142] Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email
classification research. In European conference on machine learning, pages 217–
226. Springer, 2004.

[143] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.
In Proceedings of machine translation summit x: papers, pages 79–86, 2005.

[144] Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hofmann. End-to-end
neural entity linking. CoNLL 2018, page 519, 2018.

[145] Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti.
Collective annotation of wikipedia entities in web text. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 457–466, 2009.

[146] Cheng-Ju Kuo, Maurice HT Ling, Kuan-Ting Lin, and Chun-Nan Hsu. Bioadi: a
machine learning approach to identifying abbreviations and definitions in biological
literature. In BMC bioinformatics, volume 10, pages 1–10. BioMed Central, 2009.

[147] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations. arXiv preprint arXiv:1909.11942, 2019.

[148] Leah S Larkey, Paul Ogilvie, M Andrew Price, and Brenden Tamilio. Acrophile:
an automated acronym extractor and server. In Proceedings of the fifth ACM
conference on Digital libraries, pages 205–214, 2000.

[149] Phong Le and Ivan Titov. Distant learning for entity linking with automatic
noise detection. In 57th Annual Meeting of the Association for Computational
Linguistics, pages 4081–4090. ACL Anthology, 2019.

105

[150] Robert Leaman, Rezarta Islamaj Doğan, and Zhiyong Lu. Dnorm: disease name
normalization with pairwise learning to rank. Bioinformatics, 29(22):2909–2917,
2013.

[151] Robert Leaman and Zhiyong Lu. Taggerone: joint named entity recognition
and normalization with semi-markov models. Bioinformatics, 32(18):2839–2846,
2016.

[152] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. Biobert: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics, 36(4):1234–
1240, 2020.

[153] Douglas B Lenat. Cyc: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33–38, 1995.

[154] Roger Levy. A noisy-channel model of human sentence comprehension under
uncertain input. In Proceedings of the 2008 conference on empirical methods in
natural language processing, pages 234–243, 2008.

[155] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880, 2020.

[156] Bin Li, Fei Xia, Yixuan Weng, Xiusheng Huang, Bin Sun, and Shutao Li.
Simclad: A simple framework for contrastive learning of acronym disambiguation.
arXiv preprint arXiv:2111.14306, 2021.

[157] Bofang Li, Aleksandr Drozd, Tao Liu, and Xiaoyong Du. Subword-level com-
position functions for learning word embeddings. In Proceedings of the second
workshop on subword/character level models, pages 38–48, 2018.

[158] Chao Li, Lei Ji, and Jun Yan. Acronym disambiguation using word embedding.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

[159] Haodi Li, Qingcai Chen, Buzhou Tang, Xiaolong Wang, Hua Xu, Baohua Wang,
and Dong Huang. Cnn-based ranking for biomedical entity normalization. BMC
bioinformatics, 18(11):79–86, 2017.

[160] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. A survey on deep learning for
named entity recognition. IEEE Transactions on Knowledge and Data Engineering,
34(1):50–70, 2020.

[161] Yang Li, Bo Zhao, Ariel Fuxman, and Fangbo Tao. Guess me if you can:
Acronym disambiguation for enterprises. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1308–1317, 2018.

106

[162] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and Wenchang
Shi. Deep text classification can be fooled. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pages 4208–4215, 2018.

[163] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of
transformers. AI Open, 2022.

[164] Gang Liu and Jiabao Guo. Bidirectional lstm with attention mechanism and
convolutional layer for text classification. Neurocomputing, 337:325–338, 2019.

[165] Haitao Liu, Chunshan Xu, and Junying Liang. Dependency distance: A new
perspective on syntactic patterns in natural languages. Physics of life reviews,
21:171–193, 2017.

[166] Jie Liu, Caihua Liu, and Yalou Huang. Multi-granularity sequence labeling
model for acronym expansion identification. Information Sciences, 378:462–474,
2017.

[167] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. CoRR, abs/2107.13586, 2021.

[168] Xiaohua Liu, Yitong Li, Haocheng Wu, Ming Zhou, Furu Wei, and Yi Lu. Entity
linking for tweets. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1304–1311, 2013.

[169] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A
robustly optimized {bert} pretraining approach, 2020.

[170] Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova,
Jacob Devlin, and Honglak Lee. Zero-shot entity linking by reading entity de-
scriptions. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3449–3460, 2019.

[171] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning
sentence representations. In International Conference on Learning Representations,
2018.

[172] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-
proaches to attention-based neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
1412–1421, 2015.

[173] Minh-Thang Luong, Richard Socher, and Christopher D Manning. Better word
representations with recursive neural networks for morphology. In Proceedings
of the seventeenth conference on computational natural language learning, pages
104–113, 2013.

107

[174] Edward Ma. Nlp augmentation. https://github.com/makcedward/nlpaug, 2019.

[175] Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shijin Wang, and Guoping Hu.
Charbert: Character-aware pre-trained language model. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 39–50, 2020.

[176] Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella
Bernardi, and Roberto Zamparelli. A sick cure for the evaluation of composi-
tional distributional semantic models. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), pages 216–223,
2014.

[177] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[178] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev
Khudanpur. Recurrent neural network based language model. In Interspeech,
volume 2, pages 1045–1048. Makuhari, 2010.

[179] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[180] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[181] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. Advances in neural information processing systems, 27, 2014.

[182] Sunil Mohan and Donghui Li. Medmentions: A large biomedical corpus anno-
tated with umls concepts. In Automated Knowledge Base Construction (AKBC),
2018.

[183] Francis Mollica, Matthew Siegelman, Evgeniia Diachek, Steven T Piantadosi,
Zachary Mineroff, Richard Futrell, Hope Kean, Peng Qian, and Evelina Fedorenko.
Composition is the core driver of the language-selective network. Neurobiology of
Language, 1(1):104–134, 2020.

[184] Sean Monahan, John Lehmann, Timothy Nyberg, Jesse Plymale, and Arnold
Jung. Cross-lingual cross-document coreference with entity linking. In TAC, 2011.

[185] Jose G Moreno, Romaric Besançon, Romain Beaumont, Eva D’hondt, Anne-
Laure Ligozat, Sophie Rosset, Xavier Tannier, and Brigitte Grau. Combining word
and entity embeddings for entity linking. In The Semantic Web: 14th International
Conference, ESWC 2017, Portorož, Slovenia, May 28–June 1, 2017, Proceedings,
Part I 14, pages 337–352. Springer, 2017.

[186] Dana Movshovitz-Attias and William Cohen. Alignment-hmm-based extraction
of abbreviations from biomedical text. In BioNLP: Proceedings of the 2012
Workshop on Biomedical Natural Language Processing, pages 47–55, 2012.

108

[187] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[188] David Nadeau and Peter D Turney. A supervised learning approach to acronym
identification. In Conference of the Canadian Society for Computational Studies of
Intelligence, pages 319–329. Springer, 2005.

[189] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic construc-
tion, evaluation and application of a wide-coverage multilingual semantic network.
Artificial intelligence, 193:217–250, 2012.

[190] Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from
convolutional neural networks. In Proceedings of the 1st workshop on vector space
modeling for natural language processing, pages 39–48, 2015.

[191] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention mecha-
nism of deep learning. Neurocomputing, 452:48–62, 2021.

[192] Naoaki Okazaki and Sophia Ananiadou. Building an abbreviation dictionary
using a term recognition approach. Bioinformatics, 22(24):3089–3095, 2006.

[193] Yasumasa Onoe and Greg Durrett. Fine-grained entity typing for domain in-
dependent entity linking. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8576–8583, 2020.

[194] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[195] Juri Opitz and Sebastian Burst. Macro f1 and macro f1. arXiv preprint
arXiv:1911.03347, 2019.

[196] Serguei Pakhomov, Ted Pedersen, and Christopher G Chute. Abbreviation
and acronym disambiguation in clinical discourse. In AMIA Annual Symposium
Proceedings, volume 2005, page 589. American Medical Informatics Association,
2005.

[197] Chunguang Pan, Bingyan Song, Shengguang Wang, and Zhipeng Luo. Bert-
based acronym disambiguation with multiple training strategies. arXiv preprint
arXiv:2103.00488, 2021.

[198] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts. In Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL-04), pages
271–278, 2004.

[199] Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sen-
timent categorization with respect to rating scales. arXiv preprint cs/0506075,
2005.

109

[200] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A de-
composable attention model for natural language inference. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages
2249–2255, 2016.

[201] Youngja Park and Roy J Byrd. Hybrid text mining for finding abbreviations and
their definitions. In Proceedings of the 2001 conference on empirical methods in
natural language processing, 2001.

[202] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32, 2019.

[203] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. Yago 4:
A reason-able knowledge base. In European Semantic Web Conference, pages
583–596. Springer, 2020.

[204] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[205] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227–2237, 2018.

[206] Matthew E Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi,
Sameer Singh, and Noah A Smith. Knowledge enhanced contextual word represen-
tations. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 43–54, 2019.

[207] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. Language models as knowledge bases? In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2463–2473, 2019.

[208] Thang Pham, Trung Bui, Long Mai, and Anh Nguyen. Out of order: How
important is the sequential order of words in a sentence in natural language un-
derstanding tasks? In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pages 1145–1160, 2021.

[209] Aleksandra Piktus, Necati Bora Edizel, Piotr Bojanowski, Édouard Grave, Rui
Ferreira, and Fabrizio Silvestri. Misspelling oblivious word embeddings. In Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association

110

for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 3226–3234, 2019.

[210] Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. Mimicking word embed-
dings using subword rnns. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 102–112, 2017.

[211] Sameer Pradhan, Noemie Elhadad, Brett R South, David Martinez, Lee M
Christensen, Amy Vogel, Hanna Suominen, Wendy W Chapman, and Guergana K
Savova. Task 1: Share/clef ehealth evaluation lab 2013. In CLEF (Working Notes),
pages 212–31, 2013.

[212] Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with
linear biases enables input length extrapolation. In International Conference on
Learning Representations, 2021.

[213] Ofir Press, Noah A Smith, and Mike Lewis. Shortformer: Better language
modeling using shorter inputs. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages
5493–5505, 2021.

[214] Vera Provatorova, Samarth Bhargav, Svitlana Vakulenko, and Evangelos
Kanoulas. Robustness evaluation of entity disambiguation using prior probes:
the case of entity overshadowing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 10501–10510, 2021.

[215] Danish Pruthi, Bhuwan Dhingra, and Zachary C Lipton. Combating adversarial
misspellings with robust word recognition. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5582–5591, 2019.

[216] James Pustejovsky, José Castano, Brent Cochran, Maciej Kotecki, and Michael
Morrell. Automatic extraction of acronym-meaning pairs from medline databases.
In MEDINFO 2001, pages 371–375. IOS Press, 2001.

[217] Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with
mixtures of soft prompts. In Kristina Toutanova, Anna Rumshisky, Luke Zettle-
moyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou, editors, Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages
5203–5212. Association for Computational Linguistics, 2021.

[218] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training, 2018.

111

[219] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

[220] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint
arXiv:1911.05507, 2019.

[221] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019.

[222] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020.

[223] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for squad. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pages
784–789, 2018.

[224] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages
2383–2392, 2016.

[225] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global
algorithms for disambiguation to wikipedia. In Proceedings of the 49th annual
meeting of the association for computational linguistics: Human language tech-
nologies, pages 1375–1384, 2011.

[226] Simon Razniewski, Andrew Yates, Nora Kassner, and Gerhard Weikum. Lan-
guage models as or for knowledge bases. arXiv preprint arXiv:2110.04888, 2021.

[227] Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you
pack into the parameters of a language model? arXiv preprint arXiv:2002.08910,
2020.

[228] Stephen E Robertson, Steve Walker, Susan Jones, et al. Okapi at trec-3. 1995.

[229] Gaetano Rossiello, Md. Faisal Mahbub Chowdhury, Nandana Mihindukula-
sooriya, Owen Cornec, and Alfio Gliozzo. Knowgl: Knowledge generation and
linking from text. In Proceedings of the AAAI Conference on Artificial Intelligence,
2023.

112

[230] Erik Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003
shared task: Language-independent named entity recognition. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003,
pages 142–147, 2003.

[231] Shota Sasaki, Jun Suzuki, and Kentaro Inui. Subword-based compact recon-
struction of word embeddings. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 3498–3508,
2019.

[232] Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. Improving multi-hop
question answering over knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th annual meeting of the association for computational
linguistics, pages 4498–4507, 2020.

[233] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing
mathematical reasoning abilities of neural models. In International Conference on
Learning Representations, 2018.

[234] Timo Schick and Hinrich Schütze. Attentive mimicking: Better word embed-
dings by attending to informative contexts. arXiv preprint arXiv:1904.01617,
2019.

[235] Timo Schick and Hinrich Schütze. Learning semantic representations for novel
words: Leveraging both form and context. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 6965–6973, 2019.

[236] Timo Schick and Hinrich Schütze. Rare words: A major problem for contextual-
ized embeddings and how to fix it by attentive mimicking. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 8766–8774, 2020.

[237] Ariel S Schwartz and Marti A Hearst. A simple algorithm for identifying
abbreviation definitions in biomedical text. In Biocomputing 2003, pages 451–462.
World Scientific, 2002.

[238] Özge Sevgili, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, and
Chris Biemann. Neural entity linking: A survey of models based on deep learning.
Semantic Web, (Preprint):1–44, 2022.

[239] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. arXiv preprint arXiv:1803.02155, 2018.

[240] Wei Shen, Yuhan Li, Yinan Liu, Jiawei Han, Jianyong Wang, and Xiaojie Yuan.
Entity linking meets deep learning: Techniques and solutions. IEEE Transactions
on Knowledge and Data Engineering, 2021.

113

[241] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge
base: Issues, techniques, and solutions. IEEE Transactions on Knowledge and
Data Engineering, 27(2):443–460, 2014.

[242] Wei Shen, Jianyong Wang, Ping Luo, and Min Wang. Linden: linking named
entities with knowledge base via semantic knowledge. In Proceedings of the 21st
international conference on World Wide Web, pages 449–458, 2012.

[243] Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christo-
pher Ré. Incremental knowledge base construction using deepdive. In Proceedings
of the VLDB Endowment International Conference on Very Large Data Bases,
volume 8, page 1310. NIH Public Access, 2015.

[244] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer
Singh. Autoprompt: Eliciting knowledge from language models with automatically
generated prompts. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 4222–4235, 2020.

[245] Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based
transformers. Advances in neural information processing systems, 32, 2019.

[246] Avirup Sil, Gourab Kundu, Radu Florian, and Wael Hamza. Neural cross-lingual
entity linking. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[247] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and
Douwe Kiela. Masked language modeling and the distributional hypothesis: Order
word matters pre-training for little. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 2888–2913, 2021.

[248] Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando, Cheng-Ju Kuo, I-
Fang Chung, Chun-Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph M Friedrich,
Kuzman Ganchev, et al. Overview of biocreative ii gene mention recognition.
Genome biology, 9(2):1–19, 2008.

[249] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Man-
ning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing, pages 1631–1642, 2013.

[250] Sunghwan Sohn, Donald C Comeau, Won Kim, and W John Wilbur. Abbre-
viation definition identification based on automatic precision estimates. BMC
bioinformatics, 9(1):1–10, 2008.

[251] Robyn Speer, Catherine Havasi, et al. Representing general relational knowledge
in conceptnet 5. In LREC, volume 2012, pages 3679–86, 2012.

114

[252] Mark Stevenson, Yikun Guo, Abdulaziz Alamri, and Robert Gaizauskas. Dis-
ambiguation of biomedical abbreviations. In Proceedings of the BioNLP 2009
Workshop, pages 71–79, 2009.

[253] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Ro-
former: Enhanced transformer with rotary position embedding. arXiv preprint
arXiv:2104.09864, 2021.

[254] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web, pages 697–706, 2007.

[255] Fabian M Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard Weikum.
Knowledge representation and rule mining in entity-centric knowledge bases.
Reasoning Web. Explainable Artificial Intelligence: 15th International Summer
School 2019, Bolzano, Italy, September 20–24, 2019, Tutorial Lectures, pages
110–152, 2019.

[256] Haitian Sun, Tania Bedrax-Weiss, and William Cohen. Pullnet: Open domain
question answering with iterative retrieval on knowledge bases and text. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2380–2390, 2019.

[257] Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu,
and Caiming Xiong. Adv-bert: Bert is not robust on misspellings! generating
nature adversarial samples on bert. arXiv preprint arXiv:2003.04985, 2020.

[258] Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou Ji, and Xiaolong
Wang. Modeling mention, context and entity with neural networks for entity
disambiguation. In Twenty-fourth international joint conference on artificial
intelligence, 2015.

[259] Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha P. Talukdar, and Yiming
Yang. A re-evaluation of knowledge graph completion methods. In Dan Juraf-
sky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 5516–5522. Association for Computational
Linguistics, 2020.

[260] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv
preprint arXiv:2004.02984, 2020.

[261] Hanna Suominen, Sanna Salanterä, Sumithra Velupillai, Wendy W Chapman,
Guergana Savova, Noemie Elhadad, Sameer Pradhan, Brett R South, Danielle L
Mowery, Gareth JF Jones, et al. Overview of the share/clef ehealth evaluation lab

115

2013. In International Conference of the Cross-Language Evaluation Forum for
European Languages, pages 212–231. Springer, 2013.

[262] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

[263] Sho Takase and Naoaki Okazaki. Positional encoding to control output sequence
length. arXiv preprint arXiv:1904.07418, 2019.

[264] David Temperley and Daniel Gildea. Minimizing syntactic dependency lengths:
Typological/cognitive universal? Annual Review of Linguistics, 4:67–80, 2018.

[265] Jörg Tiedemann. Finding alternative translations in a large corpus of movie
subtitle. In Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3518–3522, 2016.

[266] Matthew J Traxler. Trends in syntactic parsing: Anticipation, bayesian esti-
mation, and good-enough parsing. Trends in cognitive sciences, 18(11):605–611,
2014.

[267] Asahi Ushio and Jose Camacho-Collados. T-ner: An all-round python library
for transformer-based named entity recognition. arXiv preprint arXiv:2209.12616,
2022.

[268] Ahmet Üstün, Murathan Kurfalı, and Burcu Can. Characters or morphemes:
How to represent words? Association for Computational Linguistics, 2018.

[269] Karin Vadovičová. Affective and cognitive prefrontal cortex projections to the
lateral habenula in humans. Frontiers in human neuroscience, 8:819, 2014.

[270] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[271] Amir Pouran Ben Veyseh, Franck Dernoncourt, Walter Chang, and Thien Huu
Nguyen. Maddog: A web-based system for acronym identification and disam-
biguation. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: System Demonstrations, pages
160–167, 2021.

[272] Amir Pouran Ben Veyseh, Franck Dernoncourt, Quan Hung Tran, and Thien Huu
Nguyen. What does this acronym mean? introducing a new dataset for acronym
identification and disambiguation. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3285–3301, 2020.

116

[273] Amir Pouran Ben Veyseh, Nicole Meister, Seunghyun Yoon, Rajiv Jain, Franck
Dernoncourt, and Thien Huu Nguyen. Macronym: A large-scale dataset for multi-
lingual and multi-domain acronym extraction. arXiv preprint arXiv:2202.09694,
2022.

[274] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 57(10):78–85, 2014.

[275] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel Bowman. Glue: A multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
2018.

[276] Benyou Wang, Lifeng Shang, Christina Lioma, Xin Jiang, Hao Yang, Qun Liu,
and Jakob Grue Simonsen. On position embeddings in bert. In International
Conference on Learning Representations, 2020.

[277] Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, and
Jakob Grue Simonsen. Encoding word order in complex embeddings. In Interna-
tional Conference on Learning Representations, 2019.

[278] Bin Wang, Angela Wang, Fenxiao Chen, Yuncheng Wang, and C-C Jay Kuo.
Evaluating word embedding models: Methods and experimental results. APSIPA
transactions on signal and information processing, 8, 2019.

[279] Shoujin Wang, Liang Hu, Longbing Cao, Xiaoshui Huang, Defu Lian, and Wei
Liu. Attention-based transactional context embedding for next-item recommenda-
tion. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

[280] Shuohang WANG and Jing JIANG. A compare-aggregate model for matching
text sequences.(2017). In ICLR 2017: International Conference on Learning
Representations, Toulon, France, April 24-26: Proceedings, pages 1–15.

[281] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer:
Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[282] Tongzhou Wang and Phillip Isola. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
Conference on Machine Learning, pages 9929–9939. PMLR, 2020.

[283] Yu-An Wang and Yun-Nung Chen. What do position embeddings learn? an
empirical study of pre-trained language model positional encoding. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 6840–6849, 2020.

117

[284] Gerhard Weikum, Xin Luna Dong, Simon Razniewski, Fabian Suchanek, et al.
Machine knowledge: Creation and curation of comprehensive knowledge bases.
Foundations and Trends® in Databases, 10(2-4):108–490, 2021.

[285] Zhi Wen, Xing Han Lu, and Siva Reddy. Medal: Medical abbreviation disam-
biguation dataset for natural language understanding pretraining. arXiv preprint
arXiv:2012.13978, 2020.

[286] John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Charagram:
Embedding words and sentences via character n-grams. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages
1504–1515, 2016.

[287] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage chal-
lenge corpus for sentence understanding through inference. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
1112–1122, 2018.

[288] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 conference on empirical methods in natural language processing: system
demonstrations, pages 38–45, 2020.

[289] Dustin Wright. NormCo: Deep disease normalization for biomedical knowledge
base construction. PhD thesis, UC San Diego, 2019.

[290] Junshuang Wu, Richong Zhang, Yongyi Mao, Hongyu Guo, Masoumeh Soflaei,
and Jinpeng Huai. Dynamic graph convolutional networks for entity linking. In
Proceedings of The Web Conference 2020, pages 1149–1159, 2020.

[291] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettle-
moyer. Scalable zero-shot entity linking with dense entity retrieval. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 6397–6407, 2020.

[292] Yonghui Wu, Joshua C Denny, S Trent Rosenbloom, Randolph A Miller, Dario A
Giuse, Lulu Wang, Carmelo Blanquicett, Ergin Soysal, Jun Xu, and Hua Xu. A long
journey to short abbreviations: developing an open-source framework for clinical
abbreviation recognition and disambiguation (card). Journal of the American
Medical Informatics Association, 24(e1):e79–e86, 2017.

[293] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144, 2016.

118

[294] Yonghui Wu, Jun Xu, Yaoyun Zhang, and Hua Xu. Clinical abbreviation
disambiguation using neural word embeddings. In Proceedings of BioNLP 15,
pages 171–176, 2015.

[295] Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao
Ma. Clear: Contrastive learning for sentence representation. arXiv preprint
arXiv:2012.15466, 2020.

[296] Jun Xu, Hee-Jin Lee, Zongcheng Ji, Jingqi Wang, Qiang Wei, and Hua Xu.
Uth ccb system for adverse drug reaction extraction from drug labels at tac-adr
2017. In TAC, 2017.

[297] Vikas Yadav and Steven Bethard. A survey on recent advances in named entity
recognition from deep learning models. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2145–2158, 2018.

[298] Baosong Yang, Longyue Wang, Derek F Wong, Lidia S Chao, and Zhaopeng Tu.
Assessing the ability of self-attention networks to learn word order. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages
3635–3644, 2019.

[299] Xiyuan Yang, Xiaotao Gu, Sheng Lin, Siliang Tang, Yueting Zhuang, Fei
Wu, Zhigang Chen, Guoping Hu, and Xiang Ren. Learning dynamic context
augmentation for global entity linking. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 271–281,
2019.

[300] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems, 32, 2019.

[301] Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan
Liu, Lixin Huang, Jie Zhou, and Maosong Sun. Docred: A large-scale document-
level relation extraction dataset. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 764–777, 2019.

[302] Stuart Yeates, David Bainbridge, and Ian H Witten. Using compression to
identify acronyms in text. In Proceedings of the Conference on Data Compression,
page 582, 2000.

[303] Hong Yu, George Hripcsak, and Carol Friedman. Mapping abbreviations to
full forms in biomedical articles. Journal of the American Medical Informatics
Association, 9(3):262–272, 2002.

[304] Hong Yu, Won Kim, Vasileios Hatzivassiloglou, and W John Wilbur. Using
medline as a knowledge source for disambiguating abbreviations and acronyms in

119

full-text biomedical journal articles. Journal of biomedical informatics, 40(2):150–
159, 2007.

[305] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying
Ma. Collaborative knowledge base embedding for recommender systems. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 353–362, 2016.

[306] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820, 2015.

[307] Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin, and Zhiyong Lu.
Biowordvec, improving biomedical word embeddings with subword information
and mesh. Scientific data, 6(1):1–9, 2019.

[308] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D
Manning. Position-aware attention and supervised data improve slot filling. In
Conference on Empirical Methods in Natural Language Processing, 2017.

[309] Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu.
Ernie: Enhanced language representation with informative entities. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages
1441–1451, 2019.

[310] Jinman Zhao, Sidharth Mudgal, and Yingyu Liang. Generalizing word embed-
dings using bag of subwords. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 601–606, 2018.

[311] Zhicheng Zheng, Fangtao Li, Minlie Huang, and Xiaoyan Zhu. Learning to link
entities with knowledge base. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 483–491, 2010.

[312] Qiwei Zhong, Guanxiong Zeng, Danqing Zhu, Yang Zhang, Wangli Lin, Ben
Chen, and Jiayu Tang. Leveraging domain agnostic and specific knowledge for
acronym disambiguation. arXiv preprint arXiv:2107.00316, 2021.

[313] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]:
learning vs. learning to recall. In Kristina Toutanova, Anna Rumshisky, Luke
Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tan-
moy Chakraborty, and Yichao Zhou, editors, Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages
5017–5033. Association for Computational Linguistics, 2021.

120

[314] Danqing Zhu, Wangli Lin, Yang Zhang, Qiwei Zhong, Guanxiong Zeng, Weilin
Wu, and Jiayu Tang. At-bert: Adversarial training bert for acronym identification
winning solution for sdu@ aaai-21. arXiv preprint arXiv:2101.03700, 2021.

[315] Ganggao Zhu and Carlos A Iglesias. Exploiting semantic similarity for named
entity disambiguation in knowledge graphs. Expert Systems with Applications,
101:8–24, 2018.

[316] Yi Zhu, Ivan Vulić, and Anna Korhonen. A systematic study of leveraging
subword information for learning word representations. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 912–932, 2019.

[317] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like
visual explanations by watching movies and reading books. In Proceedings of the
IEEE international conference on computer vision, pages 19–27, 2015.

[318] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. Robust and col-
lective entity disambiguation through semantic embeddings. In Proceedings of
the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 425–434, 2016.

121

A
Appendix for Chapter 6

A.1 Details of Experiments

A.1.1 Visualizations of Positional Encodings

Model Size Version Language

BERT 110M bert-base-uncased English

DeBERTa 100M microsoft/deberta-base English

XLNet 110M xlnet-base-cased English

Table A.1: Details of pre-trained language models used in visualizations.

To understand what positional encodings learn after pre-training, we visualize the
positional weights in attentional heads. The Identical Word Probing is adopted in
this experiment [276]. The used pre-trained language models are shown in Table A.1,
and the repeated words are randomly selected from the corresponding vocabulary.
Note that sub-tokens like single characters and non-physical words are removed. For
visualization, we adopt the Identical Word Probing proposed [276], which feeds many
repeated identical words to pre-trained language models and thus the attention values
(αi, j in Equation 6.7) are disentangled with contextual weights. More specifically, we
randomly select 100 words from the corresponding vocabulary (filtering out single
characters and sub-words such as “##nd”). We repeat each word to compose a
sentence of length 128. These 100 sentences are fed into a language model and the
attention weights across different layers are averaged as the positional weight matrix of
a particular language model.

A.1.2 Word Swap Probing
To valid if language models with positional encodings are sensitive to the local and
global word swaps, we construct Shuffle-x and Shuffle-SR SNLI datasets. Shuffle-x

122

Model Size Version Fine-tuned by us

BERT 110M bert-base-uncased ✓

ALBERT 223M ynie/albert-xxlarge-v2-snli mnli fever anli R1 R2 R3nli ×

DeBERTa 100M microsoft/deberta-base ✓

XLNet 340M ynie/xlnet-large-cased-snli mnli fever anli R1 R2 R3-nli ×

StrucBERT 340M bayartsogt/structbert-large ✓

Table A.2: Details of pre-trained language models used in word swap probing.

means the word orders of phrases with length x are disrupted, e.g. “an electric guitar”
is a 3-gram phrase, and it might be “guitar an electric” in Shuffle-3 SNLI. Through
this way, a new sentence with the same meaning can be obtained and therefore the
initial label of the sample will not be changed. To construct such shuffled datasets, the
premise sentences in SNLI test set are shuffled and we keep the hypothesis sentences
intact. Here, we let x ∈ [3,6] and select a subset from SNLI to make sure that every
premise sentence has at least one phrase with length from 2 to 6. We select five types of
target phrases for shuffling: Noun Phrase, Verb Phrase, Prepositional Phrase, Adverb
Phrase, and Adjective Phrase. Finally, a Shuffle-x SNLI is obtained by disrupting the
order inside a phrase with length x and the size for each shuffle-x is around 5000. The
first fourth rows in Table 6.2 shows some samples.

As for the Shuffle-SR SNLI dataset, the semantic roles of agent and patient are
swapped in a sentence. We collect a subset from SNLI test set. This algorithm is
applied successively to the premise and hypothesis sentence for a sample whose label is
entailment, and if the result of either of them is not null, we consider it a valid shuffled
sample, which means we only shuffle the premise or hypothesis. After, we can obtain a
new sample and the pair of sentences are contradicted with each other. In total, there
are 1329 samples. To ensure that all sentences are semantically correct, we manually
selected 300 pairs from them. The last two rows in Table 6.2 shows two examples in
Shuffle-SR dataset.

To probe the capabilities of language models on our newly constructed datasets, we
adopt five different pre-trained language models (as shown in Table A.2) and we use
Hugging Face for implementation [288]. These models are fine-tuned on the training
set of SNLI, and the model with the best score on validation set is stored for the follow
experiments. Note that there are off-the-shell ALBERT and XLNet for natural language
inference, we therefore use them directly without fine-tuning. During fine-tuning stage,
the maximum length of the tokenized input sentence pair is 128, and the optimizer is
Adam [139] with learning rate of 2e-5. The batch size is 32 and the epoch is 3. After
fine-tuning, the best model is evaluated on our shuffle SNLI test set, an we record their
performances when faced with local and global word swaps.

123

A.1.3 Linguistic Discussions of Locality and Symmetry
Locality means that the positional weights favor the combination of units in a sentence to
their adjacent units when creating higher-level representations. For example, sub-tokens
can be composed into lexical meanings (e.g., {“context”,“##ual”} → “contextual”)
or words can be composed into phrase-level meaning (e.g., {”take”,”off”} → “take
off ”), and clause-level and sentence-level meaning can be obtained through an iterative
combination of low-level meanings, which is consistent with the multi-layer structure
in pre-trained language models. From a linguistic perspective, words linked in a
syntactic dependency should be close in linear order, which forms what can be called
a dependency locality [80]. Dependency locality provides a potential explanation
for the formal features of natural language word order. Consider the two sentences

“John throws out the trash” and “John throws the trash out”. Both are grammatically
correct. There is a dependency relationship between “throws” and “out” and the verb
is modified by the adverb. However, language users prefer the expression with the first
sentence because it has a shorter total dependency length [66, 165, 264]. Based on the
visualizations and dependency locality, we, therefore, speculate that one main function
that positional encodings have learned during pre-training is local composition, which
exists naturally in our understanding of sentences. Empirical studies also demonstrate
that performances of shuffled language models are correlated with the violation of local
structure [136, 50].

The symmetry (also observed by the two work [283, 276]) of the positional matrices
implies that the contributions of forward and backward sequences are equal when
combining adjacent units under the locality constraint. This is contrary to our intuition,
as the forward and backward tokens play different roles in the grammar, as we have seen
in the examples of “a man playing an electric guitar on stage” and “an electric guitar
playing a man on stage”. However, this symmetry is less disruptive at the local level
inside sentences. Recent work in psycholinguistics has shown that sentence processing
mechanisms are well designed for coping with word swaps [75, 154, 87, 266]. Further,
this work [183] hypothesizes that the composition process is robust to local word
violations. Consider the following example:

a. on their last day they were overwhelmed by farewell messages and gifts

b. on their last day they were overwhelmed by farewell and messages gifts

c. on their last they day were overwhelmed farewell messages by and gifts

The local word swaps (colored underlined words) are introduced in the latter two
sentences, leading to a less syntactically well-formed structure. However, experimental
results show that the neural response (fMRI blood oxygen level-dependent) in the
language region does not decrease when dealing with word order degradation [183],
suggesting that human sentence understanding is robust to local word swaps. Like-
wise, symmetry can be understood in this way: when a reader processes a word in a
sentence, the forward and backward nearby words are the most combinable, and the
comprehension of this composition is robust to its inside order. On the other hand,

124

symmetry is not an ideal property for sentence representations (consider the case of
“an electricity guitar”), and we show the flaws of symmetry in the word swap probing
task in Section 6.3.4.

Listing A.1 shows a code example about how to inject handcrafted positional
encodings to the BERT backbone. Each variant is fine-tuned on the training dataset
with different learning rates (among 9e-5, 7e-5, 5e-5, 3e-5, 1e-5). After, we evaluate
the fine-tuned model on the Dev set and report the average score of five learning rates.
Apart from BERT, we introduce the TUPE model as another baseline. Specifically, we
pre-train the following variants:

• BERT is the original one and we use it as a baseline.

• BERT-A∗ and BERT-I∗ are varaints of the former two, but the encodings are
learnable during pre-training.

• BERT-A∗-s shares learnable positional encodings within a layer.

• BERT-only-c is for ablation study, and the positional encodings pi in Equation 6.2
are removed.

• BERT-only-p is for ablation study, and the contextual encodings xi in Equation 6.2
are removed.

• BERT-A∗-Seq combines the two features in a sequential way, and the positional
attentions are first used and then contextual attentions.

• ALiBi adds linear biases to contextual weights [212], and we apply a softmax
layer to the original biases for obtaining a attention weight vector.

• ALiBi-Seq uses the same biases with ALiBi but combines the two features in a
sequential way.

Suppose that the hidden dimension is 768, the layer number is 12, the head number
is 12, and the maximum length is 512 for BERTbase model, we can calculate the size
for each variant. The number of parameters of handcrafted positional encoding for
each head is 262K (512×512). If positional heads are different across all layers, the
total cost is 37.7M (512×512×12×12). If the positional encodings are shared across
heads, the total cost is 3.1M (512×512×12).

125

class MultiHeadedSelfAttention(nn.Module):
""" Multi-Headed Scaled Dot Product Attention """
def __init__(self, config):
super().__init__()
self.n_heads = config.n_heads
self.drop = nn.Dropout(config.p_drop_attn)
self.proj_q = nn.Linear(config.dim, config.dim)
self.proj_k = nn.Linear(config.dim, config.dim)
self.proj_v = nn.Linear(config.dim, config.dim)

def forward(self, x, mask, pe):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
pe: positional weights (B(batch_size), H(Head_number)), S(seq_len), S(seq_len))

* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
(B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
(B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))

inject positional weights into contextual weights
(B, H, S, S) + (B, H, S, S) -> (B, H, S, S)
scores = scores + pe

if mask is not None:
mask = mask[:, None, None, :].float()
scores -= 10000.0 * (1.0 - mask)

scores = self.drop(F.softmax(scores, dim=-1))
(B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
-merge-> (B, S, D)
h = merge_last(h, 2)
return h

Listing A.1: A code example of how to inject handcrafted positional encodings into
self-attentions.

To inject handcrafted positional encodings, we pre-compute the positional weights
and add them to the contextual weights directly, as shown in Listing A.1. These
weights can be either frozen or learnable during pre-training. The code of the sequence
combination is shown in Listing A.2.

class Sequence(nn.Module):
""" Sequence Block """

def __init__(self, config):
super().__init__()
self.pos_mode = config.pos_mode
self.pos_learnable = config.pos_learnable
self.self_attention = MultiHeadedSelfAttention(config)
self.positional_attention = PositionalAttention(config, learnable=self.pos_learnable)

def forward(self, x, mask):
positional attention
pa = self.positional_attention(x, mask)
contextual attention
sa = self.self_attention(pa, mask)
return sa

Listing A.2: A code example of the Sequence combination of positional and contextual
features.

A.1.4 Details of Downstream Datasets

SentEval is based on a set of existing text classification tasks involving one or two
sentences as input. However, most tasks in SentEval are closely related to sentiment

126

analysis and thus not diverse enough. GLUE benchmark introduces a series of difficult
natural language understanding tasks while some particular tasks only contain one
dataset, e.g., sentiment analysis and textual similarity. Moreover, the size of WNLI
in GLUE is rather small and the GLUE webpage notes that there are issues with the
construction of this dataset 1. To better evaluate the capability of models for sentence
representation, we, therefore, select 10 datasets from SentEval and GLUE, covering
four types of sentence-level tasks:

• Sentiment Analysis is also known as opinion mining, which aims to classify the
polarity of a given text, whether the expressed opinion is positive, negative, or
neutral. We use MR [199], SUBJ [198], and SST [249] for this task.

• Textual Entailment describes the inference relation between a pair of sentences,
whether the premise sentence entails the hypothesis sentence. Actually, this is a
classification task with three labels: entailment, contradiction, and neutral. Here,
we use QNLI [224], RTE [53, 100, 86, 18] and MNLI [287] for evaluation. Note
that we report the average score for the two test sets of MNLI.

• Paraphrase Identification is to determine whether a pair of sentences have the
same meaning. We use MRPC [63] and QQP 2 for evaluation.

• Textual Similarity deals with determining how similar two pieces of texts are.
We use STS-B [33] and SICK-R [176] for evaluation.

class MultiHeadPositionalAttention(nn.Module):
""" Multi-Headed Scaled Dot Product Attention """
def __init__(self, config):
super().__init__()
self.n_heads = config.n_heads
self.drop = nn.Dropout(config.p_drop_attn)

def forward(self, x, mask, pe):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
pe: positional weights (B(batch_size), H(Head_number)), S(seq_len), S(seq_len))

* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
(B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
(B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)

scores = pe
if mask is not None:
scores.masked_fill_(˜mask, 0.)

(B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
-merge-> (B, S, D)
h = merge_last(h, 2)
return h

Listing A.3: A code example of the Positional Attention.

1 https://gluebenchmark.com/faq
2 data.quora.com/First-Quora-Dataset-Release-Question-Pairs

127

https://gluebenchmark.com/faq
 data.quora.com/First-Quora-Dataset-Release-Question-Pairs

A.2 Additional Experiments

A.2.1 Loss Curves of Pre-training
Apart from the performances on downstream tasks, the loss curves are also checked
for different variants. For this goal, the training loss and validation loss are stored
after certain steps. We use a hold-set as the validation set. As shown in Figure ??, our
proposed BERT-A∗ and BERT-A∗-Seq have smaller loss than the original BERT. This
can be observed again on the validation set.

A.2.2 Ablation Study of Positional and Contextual Encodings
To check the importance of positional and contextual Encodings, we conduct an
ablation study. For this goal, the contextual encodings xi or positional encodings
pi in Equation 6.2 are removed, respectively, during pre-training and the two new
models are evaluated on 10 sentence-level datasets. As shown in Table A.3, the BERT-
only-c and BERT-only-p both lag behind the original BERT models, which means
the combination of the two features is beneficial for sentence representations. On the
other hand, positional encodings are more important for sentiment analysis, and the
cross-attentions from contextual embeddings matter in sentence-pair tasks.

Model Sentiment Analysis Textual Entailment Paraphrase Identification Textual Similarity
MR SUBJ SST-2 QNLI RTE MNLI MRPC QQP STS-B SICK-R Avg

(22K) (20K) (68.8K) (110K) (5.5K) (413K) (5.4K) (755k) (8.4K) (9.4K)

BERT 72.5±5.3 91.0±2.7 86.4±2.7 85.8±1.0 59.2±1.2 78.2±0.8 73.5±1.8 88.7±0.6 77.8±4.1 64.9±6.0 77.8
BERT-only-c 73.0±4.6 88.9±2.5 82.9±0.4 82.0±0.1 62.7±4.3 70.8±0.8 74.1±0.3 86.9±0.5 78.5±0.3 64.5±5.7 76.2
BERT-only-p 73.8±4.6 90.8±1.4 84.0±0.7 79.8±1.2 50.9±1.4 68.3±1.0 73.9±1.6 85.8±0.6 47.1±18.0 51.7±9.2 70.6

Table A.3: Ablation study across 10 sentence-level tasks. We report the
average score of five runs using different learning rates.

Titre: Vers des systèmes de ésambiguı̈sation d’entités efficaces, généraux et robustes

Mots clés: résolution d’entité, apprentissage automatique, traitement automatique du langage

Résumé: La désambiguı̈sation des entités vise à faire
correspondre les mentions dans les documents à des en-
tités standard dans une base de connaissances donnée,
ce qui est important pour diverses applications telles
que l’extraction d’informations, la recherche sur le web
et la réponse aux questions. Bien que le domaine soit
très dynamique et que de nombreux travaux nouveaux
apparaissent, trois questions sont sous-explorées par les
travaux antérieurs. 1) Peut-on utiliser un petit modèle
pour approcher les performances d’un grand modèle ? 2)

Comment développer un système de désambiguı̈sation
unique adapté à plusieurs domaines ? 3) Les systèmes
existants sont-ils robustes aux mots hors-vocabulaire
et aux différents ordres de mots ? Sur la base de ces
trois questions, nous étudions comment construire un
système de désambiguı̈sation d’entités efficace, général
et robuste. Nous appliquons également avec succès la
désambiguı̈sation d’entités à la tâche d’achèvement de
la base de connaissances, en particulier pour les entités
à longue traı̂ne.

Title: Towards Efficient, General, and Robust Entity Disambiguation Systems

Keywords: entity disambiguation, automatic language processing, natural language processing

Abstract: Entity disambiguation aims to map mentions
in documents to standard entities in a given knowledge
base, which is important for various applications such
as information extraction, Web search and question an-
swering. Although the field is very vibrant with many
novel works popping up, there are three questions that
are underexplored by prior work. 1) Can we use a small
model to approach the performance of a big model? 2)

How to develop a single disambiguation system adapted
to multiple domains? 3) Are existing systems robust
to out-of-vocabulary words and different word order-
ings? Based on the three questions, we explore how
to construct an efficient, general and robust entity dis-
ambiguation system. We also successfully apply entity
disambiguation to the knowledge base completion task,
especially for the long-tail entities.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Entity Disambiguation
	Challenges for Entity Disambiguation
	Contributions

	Preliminaries
	Knowledge Bases
	Entities
	Classes
	Properties of Entities: Attributes and Relations

	Entity Disambiguation
	Candidate Generation
	Ranking
	Unlinkable Mention Prediction
	Generative Entity Disambiguation

	Language Models
	Statistical Language Models
	Neural Language Models
	Pre-trained Language Models

	Efficiency: Disambiguating Biomedical Entity with Lightweight Models
	Introduction
	Related Work
	Our Approach
	Experiments
	Datasets and Metrics.
	Experimental Settings
	Competitors

	Results
	Overall Performance
	Ablation Study
	Performance in the Face of Typos
	Parameters and Inference Time
	Model Performance as Data Grows

	Conclusion

	Generalizability: Disambiguating Acronym in General Domain
	Introduction
	Related Work
	Acronym Identification and Disambiguation
	Existing benchmarks

	Constructing GLADIS
	Dictionary and Pre-training Corpus
	Acronym Disambiguation Dataset

	AcroBERT
	Experiments
	Experimental Settings
	Competitors
	Metrics
	Results
	Case Study

	Conclusion

	Robustness: Imputing Out-of-vocabulary Embeddings
	Introduction
	Related Work
	Character-level Embeddings
	Pre-trained Language Models
	Contrastive Learning

	Preliminaries
	Mimick-like Model
	Contrastive Learning

	Our Approach: LOVE
	Input Method
	Encoder
	Loss Function
	Data Augmentation and Hard Negatives
	Mimicking Dynamical Embeddings
	Plug and Play

	Experiments
	Evaluation Datasets
	Experimental Settings
	Results on Intrinsic Tasks
	Results on Extrinsic Tasks
	Robustness Evaluation
	Qualitative Analysis
	Ablation Study
	Shrinking Our Model
	The performance of mimicking BERT
	Visualization of Encoder

	Conclusion

	Robustness: A Weakness of Positional Encodings
	Introduction
	Preliminaries
	Positional Encodings Enforce Locality and Symmetry
	The Properties of Locality and Symmetry
	Are Locality and Symmetry Learned?
	Can Locality and Symmetry Yield Better Inductive Bias?
	What Is the Drawback of Symmetry?

	Conclusion

	Application: Using Entity Disambiguation Models for Knowledge Base Completion
	Introduction
	Related Work
	Two-Stage KBC Method
	MALT: New Dataset for Benchmarking
	Experimental Evaluation
	Conclusion

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendix for Chapter 6
	Details of Experiments
	Visualizations of Positional Encodings
	Word Swap Probing
	Linguistic Discussions of Locality and Symmetry
	Details of Downstream Datasets

	Additional Experiments
	Loss Curves of Pre-training
	Ablation Study of Positional and Contextual Encodings

