

200 av. de la République 92001 Nanterre Cedex www.parisnanterre.fr École doctorale 395 : Espaces, Temps, Cultures UMR 7055 Préhistoire et Technologie

Membre de l'université Paris Lumières

Mélissa CADET

Reconstitution technologique de la production préhistorique tardive (env. 1000 av. J.-C - 500 ap. J.-C) de cuivre au Complexe de Vilabouly (Laos central)

Volume 2 : Annexes

Thèse présentée et soutenue publiquement le 14/06/2021

en vue de l'obtention du doctorat de Archéologie-Ethnologie de l'Université Paris Nanterre

sous la direction de M. Philippe Dillmann (UMR 3685 LAPA/NIMBE, Université Paris

Nanterre)

et de M. T.O Pryce (co encadrant, UMR 7055 PreTech)

Jury *:

Rapporteur∙e :	M. Thilo Rehren	Prof., UCL Institute of Archaeology, University College London, Londres
Rapporteur∙e :	Mme. Miriam Stark	Prof., College of Social Sciences, UH Manoa, Hawaï
Membre du jury :	Mme. Bérénice Bellina	Chargée de recherches, UMR 7055 Préhistoire et Technologie (CNRS)
Membre du jury :	Mme. Aude Mongiatti	Chercheur senior, Scientific Research Department; The British Museum, Londres
Membre du jury :	M. Oliver Pryce	Chargée de recherches, UMR 7055 Préhistoire et Technologie (CNRS)
Membre du jury :	M. Philippe Dillmann	Directeur de Recherches, UMR 3685 LAPA/NIMBE. CEA/CNRS

ANNEXE 1 : Fiches Objets

N°: B14/2/4/7005

Site : Puen Baolo Unité : B14 Niveau : 2 Contexte : 7005 Masse : 40 g

Type : Minerai de fer

0	Fe	Mn	AI	Si
30	65,5	1	1,2	1,5

Image au Microscope Optique en Champ noir Analyse structurale en DRX

- Hematite +++
- Goethite ++
- Quartz +

Image au MEB-EDS en BSE

N°: B17/2/2/3311

Unité : B17 Niveau : 2 Contexte : 3311 Masse : 2 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

Image au Microscope Optique en Champ noir

Image au MEB-EDS en BSE

Analyse structurale en DRX :

- Malachite (Cu₂CO₃(OH)₂)+++
- Quartz (SiO₂) +

N°: C14/2/3/7217

Unité : C14 Niveau : 2 Contexte : 7217 Masse : 3 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

0	Cu	Si	Al
68,5	29	1,5	0,7

Image au Microscope Optique en Champ noir

Image au Microscope Optique

Analyse structurale en Diffraction des rayons X

- Malachite (Cu₂CO₃(OH)₂)+++
- Quartz (SiO₂) +

N°: C16/3/2/3523

Unité : C16 Niveau : 3 Contexte : 3523 Masse : 3 g

Type : Minerai de cuivre

Images au Microscope Optique en champ noir Analyse structurale en DRX:

- Malachite (Cu₂CO₃(OH)₂)+++
- Cuprite (Cu₂O) +
- Goethite (FeO(OH) ++

N°: C17/3/1/a

Unité : C17 Niveau : 3 Contexte : Masse : 4 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

0	Cu	Si	Fe	As	Mn	Cl	Mg	Mn	S
20,8	63,8	6,5	2,9	2	0,5	1,3	1,4	0,5	0,5

Image au Microscope Optique en Champ noir

Image au MEB-EDS en BSE

Analyse structurale en DRX :

N°:C17/3/1/b

Unité : C17 Niveau : 3 Couche : 1 *Masse* : 34,5 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

0	Cu	Si	Fe	Mn	Al	Mg
40	29,8	13	12	0,7	3	0,7

Image au Microscope Optique en Champ noir

Image au MEB-EDS en BSE

Analyse structural en DRX

- Malachite (Cu₂CO₃(OH)₂)+++ •

N°: E15/2/2/3218

Unité : E15 Niveau : 2 Couche : 2 Contexte : 3218 *Masse* : 51,5 g

Type : Minerai de cuivre

0	Cu	Si	Fe
38,5	37	24	0,4

Image au Microscope Optique en Champ noir Analyse structurale en DRX

- Quartz (SiO₂) +++ •
- Malachite (Cu₂CO₃(OH)₂)++
- Cuprite (Cu₂O) +

Image au Microscope Optique

N°: E15/2/3/3282

Unité : E15 Niveau : 2 Couche : 3 Contexte : 3282 Masse: 2 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

0	Cu	Si	Fe	Al	Mn	
29	55	6	7	2	0,4	

Image au Microscope Optique en Champ noir Analyse Structurale en DRX

Malachite (Cu₂CO₃(OH)₂)++

Cuprite (Cu₂O) ++

•

•

•

Image au MEB-EDS en BSE

10

N°: G15/2/1/7305

Unité : G15 Niveau : 2 Contexte : 7305 Masse : 3 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

Image au Microscope Optique en Champ noir

Analyse structurale par DRX

•

•

Image au MEB-EDS en BSE

N° : DF/1/A/4/152 Unité : DF Contexte : 152 Masse : 4 g

Type : Minerai de cuivre

Composition moyenne au MEB-EDS (%mass.) :

0	Cu	Fe
54	45,4	0,7

Image au Microscope Optique en Champ noir

Image au Microscope Optique

Analyse structurale en DRX :

N° : DF/1/A/B1/53 Unité : DF Contexte : 53 Masse : 2,5 g

Type : Gangue (minerai de cuivre)

Composition moyenne au MEB-EDS (%mass.) :

0	Fe	Al	Si	Mn	Р	
53 <i>,</i> 5	20	1,4	22,5	0,4	0,4	

Image au Microscope Optique en Champ noir

Image au Microscope Optique

Analyse Structurale en DRX :

Quartz (SiO₂) +++ • Malachite (Cu₂CO₃(OH)₂) ++ Goethite (FeO[OH]) + MC_DF-1A-53_0.raw PDF 41-1390 Cu2 +2 (C O3) (O H)2 Malachite, syn PDF 46-1045 Si O2 Quartz, syn <u>6</u> PDF 29-0713 Fe +3 O (O H) Goethite 8 Coups 80 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 5 6 7 8 4 2Thêta (Coupled TwoTheta/Theta) WL=0.70929

N°: E15/3/3/4040

Unité : E15 Niveau : 3 Contexte : 4040 Masse : 3 g

Type : Minerai de fer

Composition moyenne au MEB-EDS (%mass.) :

0	Fe	Si	Cu	Al	
31	65 <i>,</i> 5	2	1	1	

Image au Microscope Optique en Champ noir

Image au MEB-EDS en BSE

Analyse Structurale en DRX :

- Goethite (FeO[OH) ++
- Hématite (Fe₂O₃) ++
- Quartz (SiO₂) +

N°:G15/3/3/7311/b

Unité : G15 Niveau : 3 Contexte : 7311 Masse : 8,5 g

Type : Minerai de fer

0	Fe	Cu	Si
33	64	1,4	1,4

Image au Microscope Optique en Champ noir Analyse Structurale en DRX :

Image au MEB-EDS en BSE

N° : A15/3/1/6703 Unité : A15 Niveau : 3 Couche : 1 Masse : 15 g Epaisseur : 1 cm Hauteur : 4 cm

Type de fragment : fragment de bord

Couche de scorie : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

Image au Microscope Optique

- Grains de quartz majoritaire d'environs 10 µm à 1 mm de longueur pour un grain.
- Rutile
- Zircon
- Dégraissant = balle de riz

Composition de la pâte céramique (moyenne %mass. au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	SO₃	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO	ZnO	Total
0,5	20	73			0,4	2,4	0,4	0,9	2	0,5		100,0

Scorie interne :

Image au Microscope Optique

- Phase vitreuse majoritaire
- Inclusions de cuivre métallique

Image au MEB-EDS en BSE Pas de phases cristallisées Grains de quart dans la matrice vitreuse.

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
1	14,5	54	3	2	0,5	0,4	18	6,5

N°:A15/4/1/6709/b

Unité : A15 Niveau : 4 Couche : 1 Masse : 4 g Epaisseur pâte : 1 cm Hauteur : 2 cm

Type de fragment : bord

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Rutile •
- Grains de quartz < 100 μ m (rare cas à • 300 µm)

Comp

osition	moyeni	<u>ne au M</u>	<u>EB-EDS (</u>	<u>%mass.)</u>							
	-										
MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO₃	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO	
0,7	21	67	0,3	0,6	0,5	3	0,5	0,7	2	0,4	

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	S
72,18	18,70	1,39	< L.D.	0,63	0,21	0,05	2,82	0,63	0,26	<0.01

Scorie interne :

Images au Microscope Optique

• Dégraissant : balle de riz

Images au Microscope Optique

- Phase vitreuse majoritaire
- Présence de d'oxydes de fer, principalement en dendrite
- Inclusions de cuivre métallique

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	TiO₂	FeO	CuO
0,9	14	54	0,4	2,5	0,6	0,6	18	9,5

N°: AA15/2/2/6803/a

Unité : AA15 Niveau : 2 Contexte : 6903 Masse : 11 g Epaisseur pâte : 2 cm Hauteur : 3 cm

Type de fragment : Bord supérieur

Scorie interne : Oui

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Rutile
- Zircon
- Quartz

Image au Microscope Optique

• Dégraissant : Balle de riz

Composition de la pâte (moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	Cl	K ₂ O	CaO	TiO ₂	FeO
0,5	14	78	0,3	0,5	1	0,4	1	3,5

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO₂	P ₂ O ₅	S
76,52	12,77	3,82	0,04	0,48	0,22	0,09	1,12	0,90	0,24	0,02

Scorie interne :

Image au MEB-EDS en BSE

- Non visible à l'œil nu
- Vitrification de la partie inférieur et extérieur
- Scorie vitreuse
- Présence de delafossite cristallisée en aiguille

N°: B14/1/1/7001/a

Unité : B14 Niveau : 1 Contexte : 7001 Masse : 19 g Epaisseur : 1,5 cm Hauteur : 3 cm

Type de fragment : Fond

Scorie interne : Oui

Pâte céramique

Cartographie des rayons X au MEB-EDS

- Forte pénétration des résidus scoriacés
- Pâte céramique très altérée
- Zircon

Image au Microscope Optique

- Grains de quartz macroscopiques (1 mm) jusqu'à inférieur à 10 μm
- Rutile

Composition moyenne de la pâte céramique (MEB-EDS, %mass.) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	FeO	CuO
0,6	17	64,5	0,5	3,5	0,4	1	12	0,3

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	S
57,61	13,67	18,37	0,46	0,66	0,34	0,07	2,15	0,58	0,34	0,06

Scorie interne :

- Phases cristallisées : fayalite et Oxydes de fer (magnétite)
- Scorie de type fayalitique
- Verre minoritaire
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)

Image au Microscope Optique

MgO	Al ₂ O ₃	SiO2	P2O5	SO ₃	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO
0,7	8	29	0,5	0,6	1,5	1,5	0,5	1,5	54,5	2	0,5

N°: B17/2/1/3303/f

Unité : B17 Niveau : 2 Contexte : 3303 Masse : Epaisseur : 2,4 cm Hauteur : 2,4 cm

Scorie interne : Non

Pâte céramique :

Cartographie Rayons X au MEB-EDS

- Grains de quartz
- Dégraissant : Balle de riz
- Rutile

Image au Microscope Optique

- Céramique non altérée par la chauffe, pâte crue ?
- Feldspath potassiques

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	TiO ₂	FeO	CuO
0,7	23	70,5	0,5	3	0,5	0,7	1	0,2

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO₂	P2O5	S	Cu
70,33	21,17	1,20	0,00	0,65	0,25	0,04	2,25	0,71	0,62	0,01	0,13

N°: B17/2/1/3303/h

Unité : B17 Niveau : 2 Contexte : 3303 Masse : 34 g Epaisseur pâte : 2 cm Hauteur : 4 cm

Type de fragment : Bord entier

Scorie interne : Oui

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Rutile (jusqu' à 20 μm)
- Quartz (jusqu'à 200 μm)

Image au Microscope Optique

- Dégraissant : balle de riz
- Grains de quartz
- Feldspaths potassique (jusqu'à 100 μm)

Composition de la pâte céramique (%mass. moyenne MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO	Total
0,7	25,6	67,1	0,4	0,3	2,1	0,4	0,7	2,2	0,4	100,0

%mass. CRPG :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na₂O	K ₂ O	TiO ₂	P ₂ O ₅	Zn	Cu	Total
70,3	21,2	FeO	<. L.D	0,7	0,2	0,0	2,2	0,7	0,6	0,0	0,2	100

Scorie interne :

- Scorie de type fayalite
- Olivine ferreuse cristallisée en polyèdres et en squelettes (jusqu'à 700 μm en longueur)
- Oxydes de fer cristallisés en polyèdre = magnétite
- Verre
- Inclusions métalliques de cuivre et de sulfures de cuivre (chalcocite) : jusqu'à 250 µm

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	TiO₂	MnO	FeO	CuO	ZnO	BaO	Total
0,4	3,9	30,2	0,4	0,5	0,3	0,2	3,5	58	1,5	0,4	0,7	100

N°: B17/2/2/3314/a

Unité : B17 Niveau : 2 Contexte : 3314 Masse : 37 g Epaisseur : 1,5 Hauteur : 6 cm

Partie du fragment : Bord

Scorie interne : Oui

Pâte céramique :

Image EDS en superposition 4

Cartographie des Rayons X au MEB-EDS

- Dégraissant : Balle de riz
- Grains de quartz (< 200 μm)

Image au Microscope Optique

- Rutile (10 μm)
- Zircon (10 μm)

Composition moyenne de la pâte céramique (MEB-EDS, %mass.) :

MgO	Al ₂ O ₃	SiO ₂	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO
0,6	22	71,0	0,2	3	0,5	0,7	1	1

Scorie interne :

Image au Microscope Optique

- Oxydes de fer riche en Cuivre = Delafossite ? (10 μm)
- Verre majoritaire

Image au MEB-EDS en BSE

• Pas d'inclusions métalliques

ſ	MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
ſ	1,0	11	41,5	2,0	1	0,4	0,3	19	23,5

N°: C14/1/4/7205

Unité : C14 Niveau : 1 Couche : 4 Contexte : 7209 Masse : 42 g Epaisseur pâte : jusqu'à 2cm Hauteur : 3 cm

Type de fragment : Bord entier

Scorie interne : Oui

10 cm

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Dégraissant : Balle de riz
- Grains de quartz(jusqu'à 500 μm)

Image au Microscope Optique

- Rutile (jusqu'à 10 μm)
- Zircon (jusqu'à 40 μm)

Composition de la pâte céramique (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO₃	K ₂ O	CaO	TiO ₂	FeO	CuO	Total
0,8	19	72,5	0,1	0,1	2	0,3	1	4	0,3	100,0

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na₂O	K ₂ O	TiO ₂	P ₂ O ₅	Cu	Zn	Total
71,6	16,9	6,0	0,0	0,6	0,0	< L.D.	1,1	1,0	0,1	0,0	0,0	99,4

Scorie interne :

Image au Microscope Optique

• Scorie de type fayalite

- Olivines ferreuses cristallisées en squelettes (jusqu'à 300 µm en longueur)
- Oxydes de fer cristallisés en polyèdres = magnétite (jusqu'à 100 μm)
- Verre
- Inclusions métalliques de cuivre et de sulfures (chalcocite) = jusqu'à 100 µm

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K₂O	CaO	TiO ₂	MnO	FeO	CuO	ZnO	Total
0,5	4	38	0,3	0,6	0,4	0,2	0,6	53	2,5	0,2	100

N°: C14/2/3/7217

Unité : C14 Niveau : 2 Contexte : 7217 Masse : 12 g Epaisseur : 0,5 cm Hauteur : 3 cm

Partie de fragment : Fond + bord

Scorie adhérente : Oui

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (<800 µm)
- Dégraissant organique = balle de riz

Image au Microscope Optique

- Rutile
- Zircon

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	FeO	CuO
0 ,4	15	69	1,0	2	0,3	0,8	10,5	1

Image au Microscope Optique

- Scorie de type fayalite
- Olivines ferreuses
- Oxydes de fer = magnétite

Image au MEB-EDS en BSE

- Verre minoritaire
- Inclusions métalliques : Cu métal + sulfures de cuivre (chalcocite, covellite)

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO₂	MnO	FeO	CuO
0,7	5	22,5	0,5	0,7	0,2	0,9	67	2,5

N°: C16/3/1/3529

Unité : C16 Niveau : 3 Contexte : 3529 Masse : 50 g Epaisseur pâte : jusqu'à 3 cm Hauteur : 4,5 cm

Type de fragment : Bord complet

Scorie interne : Oui

8 cm

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Dégraissant organique : Balle de riz
- Grains de quartz (<400 μm)

Image au Microscope Optique

- Rutile (< 10 μm)
- Feldspaths potassiques (<100 μm)

Composition moyenne de la pâte céramique au MEB-EDS (w%) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO	Total
0,7	26	66	0,9	0,3	2	0,3	0,6	2,5	0,8	100,0

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	S	Cu
68,84	20,09	1,73	0,00	0,63	0,12	0,04	1,94	0,64	0,56	0,03	0,24

Scorie interne :

Image au MEB-EDS en BSE

- Scorie de type fayalite
- Olivines ferreuses cristallisées en squelette (jusqu'à 300 µm en longueur)
- Oxydes de fer cristallisés en polyèdres = magnétite (jusqu'à 50 μm)

Image au Microscope Optique

- Verre
- Inclusions métalliques de cuivre et de sulfure de cuivre (chalcocite) = jusqu'à 100 μm

Composition de la scorie interne (%mass., moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	SO₃	K ₂ O	CaO	MnO	FeO	CuO	Total
0,7	7	37	0,4	0,9	0,8	2	50	1,5	100,0

N°: C17/1/2/b

Unité : C17 Niveau : 1 Couche : 2 Masse : 5 g Epaisseur : 0,5 cm Hauteur : 1,6 cm

Partie du fragment : Bord

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (<400 μm)
- Pas de dégraissant organique

- Image au MEB-EDS en BSE
 - Rutile

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	FeO	CuO
0,6	20	72,5	3,5	0,2	0,7	2	0,4

Scorie interne :

Image au Microscope Optique

- Dominante de verre riche en cuivre
- Cu métallique + sulfures de cuivre

Image au MEB-EDS en BSE

• Pas de phases cristallisées

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	TiO₂	FeO	CuO
0,6	15	62,5	0,3	3	0,4	0,5	12,5	5
N°: C17/3/2/3119

Unité : C17 Niveau : 3 Contexte : 3119 Masse : 14 g Epaisseur pâte : jusqu'à 2 cm Hauteur : 2,6 cm

Type de fragment : Bord supérieur

Scorie interne : Vitrification

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Dégraissant organique : Balle de riz
- Grains de quartz (<300 μm)

Image au Microscope Optique

• Rutile (<50 μm)

Composition de la pâte céramique (%mass., moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	FeO	Total
0,6	18,5	70,5	1,4	0,6	1,0	7,5	100,0

Composition globale en ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	S	Cu
67,32	18,18	6,16	0,10	1,23	0,15	0,06	1,26	0,92	0,22	0,01	0,06

- Scorie vitreuse riche en cuivre
- Le taux en calcium est plus élevé que dans les autres fragments (moyenne à 6,6 %mass.)
- Oxydes de fer cristallisés en polyèdres (<50 μm)
- Inclusions de cuivre métallique (<10 μm)
- Aiguille blanche (Augite ?) : CaO (22,5 %mass.), SiO₂ (45,2 %mass.), Al₂O₃ (9,5 %mass.), MgO (8,5 %mass.), FeO (12,5 %mass.)
- Aiguille noire: CaO (17,5 %mass.), SiO₂ (49 %mass.), Al₂O₃ (28 %mass.), FeO (3,5 %mass.)

Composition de la partie vitrifiée (%mass., moyenne au MEB-EDS) :

MgO	AI_2O_3	SiO ₂	K ₂ O	CaO	TiO ₂	FeO	CuO	Total
1,5	12,5	62	2	7	0,7	6,5	8	100,0

N°: D13/2/1/3706/a

Unité : D13 Niveau : 2 Couche : 1 Contexte : 3706 *Masse* : 105 g Epaisseur pâte : jusqu'à 2,5 cm Hauteur : 3,5 cm

Type de fragment : Bord entier

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Dégraissant : Balle de riz •
- Grains de quartz (jusqu'à 600 µm) •

Image au Microscope Optique

- Rutile (jusqu'à 50 µm) •
- Zircon (jusqu'à 10 µm)

Composition de la pâte céramique (%mass., moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	Cu	BaO	Total
1,5	34,5	52	0,5	2,0	0,4	1,0	3	5,0	0,1	0,1	100,0

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	Cu	Zn	Total
66,1	20,5	3,6	0,0	1,0	0,3	0,0	1,8	1,1	0,5	0,1	0,0	100

Image au MEB-EDS en BSE

- Scorie de type fayalite
- Olivines ferreuses cristallisées en polyèdres, aiguille et squelette (jusqu'à 500 μm)
- Oxydes de fer cristallisés en polyèdres = magnétite (jusqu'à 50 μm)

Image au Microscope Optique

- Verre
- Inclusions métalliques de sulfures de cuivre (chalcocite et covellite) = jusqu'à 10 µm

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al_2O_3	SiO2	SO₃	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	Total
0,5	9	32	0,2	1	0,4	0,5	0,3	55	0,8	100,0

N°: D13/2/1/3706/b

Unité : D13 Niveau : 2 Contexte : 3706 Masse : 28 g Epaisseur : 1 cm Hauteur : 2,9 cm

Partie du fragment : Bord

Scorie interne : Oui

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (< 500 μm)
- Dégraissant organique : Balle de riz

Image au MEB-EDS en BSE

- Rutile (< 10 μm)
- Feldspaths potassiques (<100 μm)

Composition moyenne de la pâte céramique (MEB-EDS, %mass.) :

MgO	Al ₂ O ₃	SiO2	P2O5	SO₃	K ₂ O	CaO	TiO ₂	FeO	CuO
0,8	26,5	65	0,6	0,5	2	0,3	0,9	3	0,3

Scorie interne :

Image au Microscope Optique

- Scorie de type fayalite
- Olivines ferreuses squelette

Composition moyenne au MEB-EDS (%mass.) :

• Oxydes de fer (magnétite) en polyèdre

Image au MEB-EDS en BSE

- Verre minoritaire
- Inclusions métalliques : sulfures de cuivre (sulfures, covellite) + Cu métal

MgO	Al2O3	SiO2	P2O5	К2О	CaO	TiO2	MnO	FeO	CuO
0,7	7,5	25	0,8	0,4	0,4	0,2	0,7	63 <i>,</i> 5	0,8

N°: DD14/2/1/7123/a

Unité : DD14 Niveau : 2 Contexte : 7123 Masse : 12 g Epaisseur : 1 cm Hauteur : 2,4 cm

Partie du creuset : bord supérieur

Scorie interne : Oui

Pâte céramique

Image au Microscope Optique

- Grains de quartz (<400 μm)
- Dégraissant organique : Balle de riz
 - Z

•

Rutile

Composition moyenne au MEB-EDS (%mass.)

MgO	Al ₂ O ₃	SiO ₂	Cl	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
0,7	18,7	72,2	0,4	3,4	0,5	0,7	0,0	3,0	0,3

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	S	Cu
68,70	19,10	3,18	0,02	0,71	0,19	0,06	2,43	0,80	0,25	0,02	0,14

Image au MEB-EDS en BSE

- A dominance vitreuse et riche en cuivre
- Pas de phases cristallisées

Image au Microscope Optique

Inclusions métalliques : Cu métal (< 10 μm)

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	MnO	FeO	CuO
1,0	12,9	45,7	0,6	2,5	2,3	2,8	19,3	1,7

N°: E15/2/1/3211

Unité : E15 Niveau : 2 Contexte : 3211 Masse : 57 g Epaisseur pâte : 4 cm Hauteur : 4 cm

Type de fragment : Fond

Scorie interne : Oui

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Dégraissant : balle de riz
- Grains de quartz (jusqu'à 500 μm)

Image au Microscope Optique

- Rutile (jusqu'à 10 μm)
- Zircon (<10µm)

• Feldspaths potassiques (jusqu'à 100 μm)

Composition de la pâte céramique (%mass. moyenne au ME-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO
0,8	26,9	65,7	0,8	0,3	2,1	0,5	0,7	1,6	0,6

Composition globale par ICP-MS et ICP-OES:

SiO ₂	Al ₂ O ₃	FeO	MgO	CaO	K ₂ O	TiO₂	P ₂ O ₅	Cu
67,4	22,1	1,3	0,7	0,1	1,7	0,7	0,6	0,2

- Scorie de type fayalite
- Olivines ferreuses cristallisées en squelettes et en aiguille (jusqu'à 100 µm)
- Verre
- Oxydes de fer cristallisés en polyèdres = magnétite (jusqu'à 20 μm)
- Inclusions métalliques de cuivre et de sulfures de cuivre (jusqu'à 50 μm)

Image au MEB-EDS en BSE

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO2	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
0,5	8,6	36,6	0,7	0,4	0,3	1,0	47,6	4,4

N° : E15/3225/a Unité : E15 Contexte : 3225 Masse : 18 g Epaisseur : 2 cm Hauteur : 2 cm

Partie du fragment : Fond

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (< 600 μm)
- Dégraissant organique : Balle de riz

Image au Microscope Optique

- Rutile
- Feldspaths potassiques

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	Cl	K ₂ O	CaO	TiO ₂	FeO	CuO
0,5	27,9	63,2	0,7	0,4	1,2	0,3	0,8	2,5	2,5

Composition globale par ICP-MS et ICP-OES :

SiO2	Al2O3	FeO	MnO	MgO	CaO	Na2O	К2О	TiO2	P2O5	S	Cu
69,15	20,84	1,55	< L.D.	0,66	0,31	0,04	2,63	0,65	0,28	0,02	0,17

Image au MEB-EDS en BSE

- Cristallisation de fayalite mais en très fine aiguilles, se confondant presque avec le verre
- Oxydes de fer en polyèdre et dendrite = magnétite

Image au Microscope Optique

• Inclusions métalliques : Cu métal + sulfures de cuivre (chalcocite)

Composition moyenne de la scorie au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO
0,8	5,7	38,4	0,7	0,8	0,6	0,2	0,7	49,1	2,7	0,3

N°: G15/3/1/7309/7303/b

Unité : G15 Niveau : 3 Couche : 1 Contexte : 7309/7303 Masse : 20 g Epaisseur pâte : 1,5cm Hauteur : 5 cm

Type de fragment : Bord entier

Scorie interne : Oui

10 cm

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Fragment très altéré
- Grains de quartz (jusqu'à 200 μm)
- Dégraissant ?

Image au Microscope Optique • Rutile (<10 μm)

- Zircon (< 10 μm)
- Composition de la pâte céramique (%mass. moyenne MEB-EDS) :

MgO	Al ₂ O ₃	SiO2	K ₂ O	CaO	TiO ₂	FeO	CuO
0,9	25,9	62,4	2,5	0,3	0,5	7,2	0,3

- Scorie de type fayalite
- Olivines ferreuses cristallisées en aiguille (jusqu'à 100 μm en longueur)
- Verre
- Inclusions métalliques de cuivre et de sulfures de cuivre (<5 μm)

Image au MEB-EDS en BSE

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
0,9	10,5	41,9	0,6	1,3	1,3	0,4	0,9	41,7	0,6

N°:G15/3/3/3311/c

Unité : G15 Niveau : 3 Contexte : 3311 Masse : 10 g Epaisseur pâte : jusqu'à 1 cm Hauteur : cm

Type de fragment : Bord supérieur

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Pâte céramique altérée
- Grains de quartz (jusqu'à 400 μm)
- Rutile (<20 μm)

Image au Microscope Optique

- Oxyde cuivreux identifiés dans la matrice argileuse, probablement lié à la forte vitrification du fragment
- Pâte riche en silice et alumine

Composition de la pâte céramique (%mass., moyenne au MEB-EDS) :

MgO	Al_2O_3	SiO ₂	K ₂ O	CaO	TiO ₂	FeO	CuO
1,0	29,1	58 <i>,</i> 0	2,5	0,4	0,7	7,9	0,5

Scorie interne :

Image au MEB-EDS en BSE

- Scorie de type fayalite
- Olivines ferreuses cristallisées en aiguilles, squelettes et polyèdre (jusqu'à 200 µm en longueur)

Image au Microscope Optique

- Oxydes de fer éparses cristallisés en polyèdres = magnétite (< 10 μm)
- Verre
- Inclusions métalliques de cuivre (jusqu'à 50 μm)

Composition de la scorie interne (%mass., moyenne au MEB-EDS) :

MgO	AI_2O_3	SiO2	K₂O	CaO	MnO	FeO	CuO
1,2	10,7	38,0	1,3	1,6	1,6	45,1	0,7

N°: G15/3/4/7316/d

Unité : G15 Niveau : 3 Couche : 4 Contexte : 7316 Masse : 37 g Epaisseur pâte : 1,5 cm Hauteur : 2 cm

Type de fragment : Bord

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Dégraissant : Balle de riz
- Grains de quartz (jusqu'à 1000 μm)

Image au Microscope Optique

- Rutile (<30 μm)
- Zircon (<10 μm)

Composition de la pâte céramique (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	FeO
0,9	26,9	62,5	3,0	0,3	1,0	5,1

Composition globale par ICP-MS et ICP-OES:

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	Cu
60,4	24,1	6,4	0,1	0,8	0,1	2,4	0,7	0,2	0,1

Image au MEB-EDS en BSE

- Scorie vitreuse
- Oxydes de fer cristallisés en dendrites (jusqu'à 50 μm)

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	SO₃	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
1,2	5,9	45,5	1,6	0,8	1,0	0,4	3,2	36,4	3,9

•

N°: S9/1/1/5503/c

Unité : S9 Niveau : 1 Couche : 1 Contexte : 5503 Masse : 4 g Epaisseur : 0,5 cm Hauteur : 1,6 cm

Scorie interne : Oui

Partie du fragment : Bord supérieur

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (< 200 μm)
- Dégraissant organique : balle de riz

Image au Microscope Optique

- Rutile (< 10 μm)
- Zircon (< 20 μm)

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al2O3	SiO2	Cl	K2O	TiO2	MnO	FeO	CuO
0,7	18,9	72,4	0,2	1,7	1,1	0,0	3,7	0,6

Scorie interne :

Image au MEB-EDS en BSE

Image au Microscope Optique

- Scorie à dominance de verre riche en cuivre
- Oxydes de fer en polyèdre et dendrite = magnétite

Composition moyenne de la scorie au MEB-EDS (%mass.) :

MgO	Al2O3	SiO2	P2O5	К2О	CaO	TiO2	MnO	FeO	CuO	ZnO
0,7	10,7	44,3	0,0	1,8	1,6	0,6	0,3	24,9	14,9	0,2

N°: WEST/1/2/3

Unité : PBL/WEST Niveau : 1 Couche : 2 Contexte : Masse : 68 g Epaisseur pâte : jusqu'à 2,5 cm Hauteur : 4 cm

Type de fragment : Bord entier

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Dégraissant : Balle de riz
- Grains de quartz (jusqu'à 500 μm)

Image au Microscope Optique

- Rutile (<20 μm)
- Feldspaths potassiques (jusqu'à 100 μm)

Composition de la pâte céramique (%mass. en moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO2	K ₂ O	CaO	TiO ₂	FeO	CuO
0,6	25,1	64,9	2,8	0,4	1,0	4,1	1,2

Composition globale par ICP-MS et ICP-OES:

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na₂O	K ₂ O	TiO₂	P ₂ O ₅	Cu
67,8	19,8	1,8	< L.D.	0,6	0,1	0,1	2,6	0,8	0,2	0,1

Image au MEB-EDS en BSE

- Scorie de type fayalite
- Olivines ferreuses cristallisées en aiguille et en squelette (jusqu'à 200 µm en longueur)

Image au Microscope Optique

- Oxydes de fer cristallisés en polyèdres (jusqu'à 100 μm)
- Verre
- Inclusion métalliques de cuivre et sulfures de cuivre (chalcocite, covellite)
 = jusqu'à 10 μm

Composition de scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
5,1	7,7	35,0	1,0	1,4	0,4	0,7	47,5	1,2

N° : DF/1/A/4/131/a Unité : DF Contexte : 131 Masse : 20 g Epaisseur : 1,5 cm Hauteur : 2 cm

Partie du creuset : Fond ?

Scorie interne : Oui

Fragment très altéré

Pâte céramique :

100µm

- Cartographie des Rayons X au MEB-EDS
 - Dégraissant organique : Balle de riz
 - Grains de quartz (<200 μm)

Image au Microscope Optique

- Rutile
- Zircon

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K₂O	CaO	TiO₂	FeO	CuO
0,8	21,8	67,8	0,6	4,1	0,7	0,8	2,0	1,4

Image au Microscope Optique

• A dominance vitreuse riche en cuivre

Image au MEB-EDS en BSE

- Delafossite cristallisée en aiguille
- Polyèdre d'oxydes de fer

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO2	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO
1,2	13,3	50,5	1,1	3,9	3,7	0,6	1,3	7,9	15,1	1,1

N° : DF/1-A/131/b Unité : DF Contexte : 131 Masse : 10 g Epaisseur : 1 cm Hauteur : 1,7 cm

Partie du fragment : Bord

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (jusqu'à 1200 μm)
- Dégraissant organique : Balle de Riz

Image au Microscope Optique

• Rutile

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO2	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
0,6	17,8	74,4	0,0	2,1	0,1	0,6	0,0	3,0	0,9

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	S	Cu
64,42	22,30	2,81	0,06	0,72	0,04	0,03	2,02	0,83	1,74	0,01	0,35

Image au Microscope Optique

- Scorie à dominance vitreuse
- Oxydes de fer en polyèdre = magnétite

Image au MEB-EDS en BSE

- Inclusions métalliques : Cu métal
- Présence de Delafossite en bâton

Composition moyenne de la scorie au MEB-EDS (%mass.)

MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO
0,8	9,6	46,0	0,6	2,8	1,6	0,4	1,8	28,4	6,0	1,8

N° : DF/1-A/B3/90 Unité : DF Contexte : 90 Masse : 7 g Epaisseur : 1 cm Hauteur : 1,8 cm

Partie du fragment : Bord supérieur

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (< 600 μm)
- Dégraissant organique ?

Image au Microscope Optique

- Rutile (< 20 μm)
- Zircon

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO2	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
0,6	22,0	67,3	0,5	2,3	0,4	0,6	0,2	5 <i>,</i> 3	0,6

Composition globale par ICP-MS et ICP-OES :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO₂	P2O5	S	Cu
65,45	21,97	4,12	0,47	0,56	0,16	0,04	1,92	0,59	0,40	0,03	0,32

Image au Microscope Optique

- Scorie à dominance de verre riche en • cuivre
- Oxydes de fer (polyèdre et dendrite) = • magnétite

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO₂	MnO	FeO	CuO	ZnO
0,6	12,5	46,6	2,3	0,8	0,4	1,1	26,5	8,6	0,5

Image au MEB-EDS en BSE

Inclusions métalliques : Cu métal •

N° : DF/1-B/3/113

Unité : 1-B Niveau : 3 Contexte : 113 Masse : 26 g Epaisseur pâte : jusqu'à 2 cm Hauteur : ? cm

Type de fragment : Bord supérieur

Scorie interne :Oui

Pâte céramique

Cartographie des Rayons X au MEB-EDS

- Pâte dégradée
- Dégraissant : balle de riz
- Quartz (jusqu'à 800 μm)

Image au Microscope Optique

- Rutile (jusqu'à 30 μm)
- Zircon (jusqu'à 20 μm)

Composition pâte céramique (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO₂	MnO	FeO	CuO	Мо	Total
0,8	20,6	69,7	2,7	0,5	0,7	0,1	3,5	0,3	0,7	100

Composition globale par ICP-MS et ICP-OES:

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	Cu	Zn
73,1	17,4	2,4	0,04	0,7	0,3	0,0	1,9	0,7	0,6	0,1	0,0

Image au MEB-EDS en BSE

- Scorie de type fayalite
- Olivines ferreuses cristallisées en squelette (jusqu'à 300 μm)
- Oxydes de fer cristallisés en polyèdres
 = magnétite (jusqu'à 20 μm)

Image au Microscope Optique

- Verre
- Inclusions métalliques de cuivre et de sulfures de cuivre (chalcocite, covellite)
 = jusqu'à 50 μm

Composition de la scorie interne (%mass. moyenne au MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	FeO	CuO	BaO	Total
0,5	9,5	36,9	1,6	0,6	0,3	49,2	0,8	0,4	100

N° : DF/1/C/2 Unité : DF Contexte : 2 Masse : 10 g Epaisseur : 1 cm Hauteur : 1,5 cm

Partie du fragment : Fond ?

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

• Grains de quartz (< 1000 μm)

• Dégraissant organique : Balle de riz

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al2O3	SiO2	K2O	CaO	TiO2	FeO
0,8	24,9	68,2	3,1	0,4	0,4	2,0

Composition globale par ICP-MS et ICP-OES :

SiO2	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	S	Cu
63,13	23,64	3,56	0,91	0,80	0,55	0,07	2,93	0,46	0,20	<0,01	1,53

Image au Microscope OptiqueRutile (< 20 μm)

Image au MEB-EDS en BSE

• Scorie à dominance de verre riche en cuivre

Image au Microscope Optique

• Oxydes de fer en polyèdre et dendrite riche en cuivre : magnétite

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	MnO	FeO	CuO	ZnO
0,6	12,3	42,4	0,0	2,3	1,6	5,4	13,7	19,3	1,5

N° : DF/1-E/3/37 Unité : DF Contexte : 37 Masse : 10 g Epaisseur : 1 cm Hauteur : 1 cm

Partie du fragment : Fond

Scorie interne : Oui

Pâte céramique :

Cartographie des Rayons X au MEB-EDS

- Grains de quartz (< 300 μm)
- Dégraissant organique : balle

Image Microscopie Optique

- Rutile
- Zircon

Composition moyenne de la pâte céramique au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO2	K₂O	CaO	TiO₂	MnO	FeO	CuO
0,7	20,7	66,9	3,0	0,1	0,8	0,4	6,3	1,1

Scorie interne :

Image au Microscope Optique

Image au MEB-EDS en BSE

- Scorie à dominance de verre riche en cuivre
- Cu métallique
- Oxydes de fer en polyèdre et dendrite = magnétite

Composition moyenne au MEB-EDS (%mass.) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO
0,6	12,6	45,1	2,5	0,3	0,5	7,6	21,3	6,9	1,9

N°: E15/3/1/3278/e

Unité : E15 Niveau : 3 Contexte : 3278 Masse : 5 g

Type : Minerai de cuivre ou scorie ?

Cet échantillon pourrait également être une scorie produite lors d'une étape oxydante ayant amené la production de delafossite. Cette scorie est un cas isolé.

Composition moyenne au MEB-EDS (%mass.) :

0	Cu	Si	Fe	Mn	Al	Р	Mg	Са
30	33	13,5	16	1	5	0,8	0,5	0,4

Image au Microscope Optique en Champ noir

Image au MEB-EDS en BSE

Analyse Structurale en DRX

- Delafossite (CuFeO₂) +++
- Malachite (Cu₂CO₃(OH)₂) ++

N°: A15/3/1/6705/a

Unité : A15 Niveau : 3 Couche : 1 Type : Massive Masse : 25 g

Epaisseur : 1,2 cm

Pas de résidu de céramique/sol

Microstructure :

Image au MEB-EDS en BSE Composition globale (ICP-MS/ICP-OES) :

- Olivine (polyèdre, squelette)
- Très peu de verre
- Oxyde de fer en polyèdre, aiguille et en bande
- Différents types d'inclusions de sulfures de cuivre : covellite + chalcopyrite

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
20,74	2,96	71,92	0,40	0,23	0,21	0,20	0,19	0,19	1,30	0,08	1,54	0,03
N°: AA15/2/2/6803/b

Unité : AA15 Niveau : 2 Type : plate Masse : 2 g Epaisseur : 0,3 cm

Microstructure :

Image au MEB-EDS en BSE

- Olivine (plume) = refroidissement rapide
- Très peu de verre

Image au Microscope Optique

- Oxydes de fer (polyèdre)
- Inclusions métalliques (chalcocite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
29,43	5,45	56,24	2,55	0,63	1,81	1,00	0,30	0,30	0,97	0,35	0,76	0,18

N°:AA15/2/3/6811/b

Unité : AA15 Niveau : 2 Couche : 3 Type : Massive Masse : 20 g Epaisseur : 1 cm

Microstructure:

Image au MEB-EDS en BSE

- Olivine (plume, squelette)
- Oxydes de fer (polyèdre) éparses

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

- Verre : medium
- Inclusions métalliques : sulfures de cuivre (chalcocite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
29,61	5,37	60,24	0,41	0,54	0,41	0,95	0,25	0,32	1,09	0,08	0,69	0,04

N°: AA15/3/1/6808/b

Unité : AA15 Niveau : 3 Type : grossière Masse : 10g Epaisseur : 1,3 cm

Microstructure:

Image au Microscope Optique

Image au MEB-EDS en BSE

Image au MEB-EDS en BSE

- Olivine (polyèdre, squelette)
- Oxydes de fer (polyèdre)+ few wüstite (dendrite)
- Peu de verre
- Inclusions métalliques= sulfures de cuivre (covellite, chalcopyrite, chalcocite)

N°:AA15/3/1/6808/d

Unité : AA15 Niveau : 3 Type : Massive Masse : 10 g

Couche : 1

Epaisseur : 0,7 cm

Microstructure:

Image au MEB-EDS en BSE

- Olivine (polyèdre, squelette)
- Oxydes de fer (polyèdre, dendrite)

Image au Microscope Optique

- Peu de verre
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite, chalcopyrite)

Composition :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
18,64	2,14	72,91	1,01	0,30	0,57	0,19	0,14	0,18	1,69	0,14	2,06	0,03

N°: AA15/3 /1/6808/e

Unité : AA15 Niveau : 3 Type : plate Masse : 5 g

Couche : 1

Epaisseur : 0,3 cm

Microstructure:

Image au Microscope Optique

Image au MEB-EDS en BSE

	and the state of t	Man I have have
A LANK CARE	CRIME THE THE	Martin States
S. 6/5 38 - 50 - 51		Carl Carl Carl Carl
STEPHON SSIL	LI-	
And I have been see		month and the
The state of the	a faith of the the	
A Frank I The		The Constantion
and the second states and the	- A The All and the All	the second more and
1.1.1. A. A. A. T. A.		
the spectrum 3/160	Very March Color	
Martin Constant		
A STATES ASS		attended and the second
- tone when	Level	A BACK AND A
- Nor PERSON	the state of the s	- 2 A Marky
Carl and the state	the second a lotter	- 1. A. T. M. T
	A DE TATA	
1 1 1	a second and a second and	
and the second state	and the second second	
manter and the state	and the second second	
CAR STOR ST. THE	and the second s	

Image au MEB-EDS en BSE

- Olivine (squelette)
- Oxydes de fer (polyèdre, dendrite, aiguille)
- Verre très faible
- Inclusions métalliques : sulfures de cuivre (covellite, chalcocite), few Cu

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
20,94	3,41	70,83	0,70	0,33	0,34	0,44	0,19	0,27	1,56	0,26	0,69	0,04

$N^{\circ}: B14/1/1/7001/c$

Unité : B14 Niveau : 1 Type : plate Masse : 4 g

Couche : 1

Epaisseur : 0,3 cm

Microstructure:

Image au MEB-EDS en BSE

- Olivine (squelette)
- Oxydes de fer (polyèdre)

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

- Verre faible
- Inclusions métalliques : sulfures de cuivre (covellite, chalcocite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
26,41	4,77	62,87	0,49	0,51	0,35	0,78	0,39	0,40	1,32	0,23	1,40	0,06

$N^{\circ}: B14/1/2/7002/b$

Unité : B14 Niveau : 1 Type : plate Masse : 14 g

Couche : 2

Epaisseur : 0,6 cm

Microstructure:

Image au MEB-EDS en BSE

- Olivine (squelette)
- Oxydes de fer (polyèdre, dendrite, aiguille, bande)

Image au Microscope Optique

- Verre faible
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite, chalcopyrite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
20,47	4,53	68,00	0,53	0,43	0,23	0,56	0,28	0,34	2,11	0,30	2,18	0,04

N°: B17/1/1/3301/b

Unité : B17 Niveau : 1 Type : massive Masse : 22 g

Couche : 1

Epaisseur : 1,2 cm

Bord arrondi Scorie moulée ?

Microstructure :

Image au Microscope Optique

Image au Microscope Optique : Oxyde de fer résiduel

Image au Microscope Optique : minerai ayant partiellement réagi

- Olivine (polyèdre, squelette
- Oxydes de fer
- Verre medium
- Inclusions métalliques : sulfures de cuivre (covellite, chalcocite, chalcopyrite)
- Minerai résiduel
- Oxyde de fer résiduel

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
29,83	5,45	57,52	1,35	0,58	0,88	0,03	0,62	0,35	0,69	0,74	0,07	1,74	0,14

$N^{\circ}: B17/2/1/3303/d$

Unité : B17 Niveau : 2 Type : plate Masse : 2 g

Couche : 1

Epaisseur : 0,3 cm

Microstructure:

Image au MEB-EDS en BSE

- Olivine (squelette)
- Oxydes de fer (polyèdre, dendrite) wüstite

Image au Microscope Optique

- Verre altéré
- Inclusions métalliques : sulfures de cuivre (covellite, chalcocite, chalcopyrite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
21,34	3,48	71,49	0,50	0,38	0,18	0,28	0,18	0,50	0,60	0,20	0,85	0,03

N° : B17/2/1/3303/i

Unité : B17 Niveau : 2 Type : plate Masse : 11 g

Couche : 1

Epaisseur : 0,4 cm

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

- Olivine (polyèdre, plume)
- Oxydes de fer (polyèdre)
- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite)

Image au MEB-EDS en BSE

Composition élémentaire globale (ICP-MS/ICP-OES)

SiO ₂	Al2O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
28,83	4,95	60,80	0,42	0,57	0,78	0,78	0,30	0,35	1,32	0,17	0,63	0,05

N° B17/3/1/3312/c

Unité : B17 Niveau : 3 Type : grossière Masse : 1 g

Couche : 1 Epaisseur : 1 cm

Microstructure:

Image au MEB-EDS en BSE

- Olivines (squelette, plume)
- Oxydes de fer (polyèdre)
- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite), few Cu

Image au Microscope Optique

- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite), few Cu

SiO2	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
30,31	6,02	57,29	1,37	0,71	0,81	0,70	0,38	0,45	1,35	0,23	0,23	0,15

N° : C14/1/4/7205/a

Unité : C14 Niveau : 1 Type : grossière Masse : 18 g cm

Couche : 4

Epaisseur : 2

Microstructure :

Image au MEB-EDS en BSE

- Fayalite
- Oxydes de fer (polyèdre, arrondi)

Composition globale (ICP-OES/ICP-MS) :

• Verre (medium)

Image au Microscope Optique

- Inclusions métalliques : sulfures de cuivre (covellite, chalcocite), few Cu
- Barite

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
22,09	3,09	68,53	0,45	0,41	0,30	0,40	0,22	0,52	2,43	0,17	1,36	0,03

Analyse structurale (DRX) :

N°:C14/1/4/7205/c

Unité : C14 Niveau : 1 Type : plate Masse : 4 g

Couche : 4

Epaisseur : 0,5 cm

Microstructure :

Image au MEB-EDS en BSE

- Olivine (plume)
- Magnétite (polyèdre)
- Verre (medium)

Image au Microscope Optique

- Inclusions métalliques : sulfures de cuivre, Cu métal
- Chalcocite enveloppant les nodules de cuivre

Composition :

SiO2	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
31,01	10,46	46,09	1,60	2,20	2,39	1,04	0,49	0,44	2,33	0,25	0,65	1,02

N°:C14/2/1/7209/b

Unité : C14 Niveau :2 Type : massive Masse : 8 g

Couche :1 Epaisseur : 0,6

Céramique dans la partie basse

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

- Olivine (polyèdre, squelette)
- Oxydes de fer (polyèdre)

Composition :

Image au Microscope Optique

Image au MEB-EDS en BSE de la partie céramique

- Verre (medium)
- Inclusions métalliques : sulfures de cuivre (covellite, chalcocite), Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
29,03	5,51	57,36	0,37	0,51	0,38	0,97	0,32	0,34	4,61	0,10	0,43	0,04

N°: C14/2/3/7219/a

Unité : C14 Niveau : 2 Type : Massive Masse : 7 g

Couche : 3

Epaisseur : 0,7 cm

Bord arrondi

Image au MEB-EDS en BSE

- Olivine (polyèdre)
- Oxydes de fer (polyèdre)

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

• Verre altéré

 Inclusions métalliques : sulfures de cuivre (covellite, chalcocite, chalcopyrite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
23,75	3,50	67,19	0,48	0,24	0,23	0,26	0,21	0,67	1,85	0,11	1,47	0,03

N°:C14/2/3/7219/c

Unité :C14 Niveau : 2 Type : Plate Masse : 3 g

Couche :3

Epaisseur : 0,2 cm

Microstructure :

Image au MEB-EDS en BSE

- Fayalite (squelette)
- Oxydes de fer (polyèdre, aiguille)

Image au Microscope Optique

- Verre (medium)
- Inclusions métalliques : sulfures de cuivre (chalcocite), Cu métal

Composition :

SiO ₂	AI_2O_3	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
25,66	4,32	64,67	0,59	0,48	0,60	0,68	0,28	0,67	1,26	0,18	0,53	0,06

N° : C16/3503/a Unité : C16 Type : Grossière Masse : 45 g Epaisseur : 0,7 cm

Céramique à la base

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

- Olivine (polyèdre, plume)
- Oxydes de fer (polyèdre)

Image au Microscope Optique

Image au MEB-EDS en BSE de la partie céramique

- Verre (medium)
- Inclusions métalliques : sulfures de cuivre (chalcocite) Cu métal
- Chalcocite enveloppant

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
26,82	6,71	59,08	0,56	0,51	0,83	0,72	0,38	0,00	3,56	0,07	0,70	0,06

N° : C16/3503/b Unité : C16 Type : Plate Masse : 8 g cm

Epaisseur: 0,3

Microstructure :

Image au Microscope Optique

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique d'un minerai ayant partiellement réagi

- Olivine (polyèdre, squelette)
- Oxydes de fer (polyèdre, dendrite, bande)
- Verre (medium)
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite), few Cu métal
- Minerais résiduel : covellite, chalcopyrite

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
25,71	4,29	64,41	0,55	0,50	0,72	0,82	0,24	0,00	1,47	0,20	1,01	0,05

N° : C16/GENSPIT/3501/a

Unité : C16 Type : plate Masse : 7 g

Microstructure :

Epaisseur: 0,2

Image au MEB-EDS en BSE

- Olivines (squelette)
- Oxydes de fer (polyèdre, aiguille)
- Verre faible

Image au Microscope Optique

- Inclusions métalliques : sulfures de cuivre (chalcocite), Cu métal
- Chalcocite enveloppant le cuivre
- Inclusions métalliques : sulfures de cuivre (chalcocite), Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
22,44	4,26	68,52	0,42	0,46	0,33	0,67	0,20	0,00	1,83	0,16	0,69	0,02

N°:C17/1/1/3117/b

Unité : C17 Niveau : 1 Type : massive Masse : 10 g

Couche : 1 Epaisseur : 1 cm

Bord arrondi

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (polyèdre)
- Verre medium

Composition globale (ICP-OES/ICP-MS) :

- Inclusions métalliques : sulfures de cuivre (chalcocite)
- Cu métal
- Minerai résiduel

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
32,16	6,10	55,67	0,56	0,41	0,32	0,08	1,12	0,29	0,20	2,35	0,12	0,53	0,08

N°:C17/1/1/3117/c

Unité : C17 Niveau : 1 Couche : 1 Type : grossière Masse : 10 g Epaisseur : 2 cm

Microstructure :

Image au MEB-EDS en BSE

- Olivines (polyèdre)
- Oxydes de fer (polyèdre)

Image au Microscope Optique

- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite, bornite)
- Cu corrodé ?

Composition globale (IPC-OES/ICP-MS) :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
25,88	3,90	62,12	1,03	0,48	0,12	0,35	0,18	0,40	2,61	0,21	2,64	0,07

N°: C17/1/2/a

Unité : C17 Niveau : 1 C Type : grossière Masse : 80 g

Couche : 2

Epaisseur : 2 cm

Scorie ferreuse ?

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

- Olivines (polyèdre)
- Oxydes de fer (aiguille, dendrite)
- Verre (medium)
- Wüstite

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)
- Autres phase : K ? dans l'espace intergranulaire

SiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
15,57	2,71	78,86	0,14	0,20	0,58	0,04	0,31	0,17	0,65	0,37	0,02	0,37	0,02

N°:C17/1/2/d

Unité : C17 Niveau : 1 Couche : 2 Type : plate Masse : 8 g Epaisseur : 0,4 cm

Microstructure :

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)

Composition globale (IPC-MS/ICP-OES) :

- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
29,00	5,04	59,95	0,43	0,54	0,84	0,03	0,86	0,28	0,34	1,73	0,17	0,71	0,07

N° :C17/2/1/3107/b

Unité :C17 Niveau :2 Type : massive Masse : 72g Epaisseur : 0,5 cm

Céramique/sol dans la partie basse

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

- Olivines (squelette, polyèdre)
- Oxydes de fer (polyèdre, aiguille,
- Autre phase : Leucite

Image au Microscope Optique

- Verre faible
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
20,34	4,86	69 <i>,</i> 56	0,38	0,35	0,13	0,57	0,31	0,27	1,99	0,26	0,96	0,02

N°:C17/2/1/3107/e

Unité :C17 Niveau : 2 Type : grossière Masse : 2 g Epaisseur : 1 cm

Microstructure :

Image au MEB-EDS en BSE

- Pas de cristallisation d'olivine- plume ?
- Oxydes de fer (polyèdre, dendrite)

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

- Scorie très vitreuse
- Inclusions métalliques : Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	Na ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
29,15	5,41	51,69	2,05	0,54	2,19	0,97	0,03	0,35	0,33	6,64	0,21	0,13	0,31

Microstructure :

Image au MEB-EDS en BSE

LAPA 13/09/2019 Image au MEB-EDS en BSE

Composition globale	(ICP-MS/	ICP-OES) :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
26,51	3,60	64,92	0,41	0,32	0,30	0,41	0,21	0,36	0,60	0,16	2,18	0,03

Image au Microscope Optique

- Olivines (polyèdre)
- Oxydes de fer (polyèdre, bande)
- Verre faible
- Inclusions métalliques : sulfures de cuivre (chalcopyrite)

N° : CC14/3/7116/c Unité :CC14 Niveau :3 Type : massive Masse : 35 g Epaisseur : 1,8 cm

Céramique dans la partie basse

Microstructure :

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)
- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite)
- Matte
- Cu métal

Image au MEB-EDS en BSE

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
25,05	7,13	59,94	0,52	0,75	0,37	1,16	0,40	0,38	3,21	0,16	0,88	0,05

N°: CC14/3/7116/g

Unité :CC14 Niveau : 3 Type : grossière Masse: 3 g

Epaisseur : 0,8 cm

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

- Olivines (squelette) •
- Oxydes de fer (polyèdre)
- Verre faible
- Inclusions métalliques : sulfures de cuivre (chalcocite),
- Few Cu

Composition	globale	(ICP-MS/	ICP-OES) :
-	-			

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	Na ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
26,16	5,11	62,26	1,01	0,58	0,30	0,99	0,03	0,32	0,45	2,05	0,32	0,36	0,07

N°: D10/1/1/2004/2525

Unité : D10 Niveau :1 Couche : 1 Type : Grossière Masse : 118 g Epaisseur : 2,9 cm

Empreintes de sol dans la partie basse ?

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (polyèdre, bande)
- Verre medium

Image au MEB-EDS en BSE

- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite entourant le Cu métal

Composition (MEB-EDS) :

MgO	Al ₂ O ₃	SiO ₂	K ₂ O	CaO	MnO	FeO	CuO
0,5	7,2	35,0	1,8	0,6	0,5	52,7	1,7

N° : D13/3729/1709 Unité : D13 Type : grossière

Epaisseur : 2,6 cm

Fragment de creuset dans la partie basse

Microstructure :

Masse : 76 g

Image au Microscope Optique

Image au Microscope Optique en Champ Sombre

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)
- Verre (faible)

Image au Microscope Optique

- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite, bornite, chalcopyrite)
- Cu métal
- Autre phase ?

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
20,31	2,99	70,42	0,28	0,25	0,37	0,48	0,17	0,24	3,42	0,17	0,88	0,03

N°: E15/1/2/3204/a

Unité : E15 Niveau : 1 Couche : 2 Type : massive Masse : Epaisseur :

Céramique dans la partie basse

Microstructure :

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)
- Verre medium

Image au Microscope Optique

- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite entourant Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	Na ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
26,61	5,44	59 <i>,</i> 30	0,53	0,42	0,42	0,79	0,03	0,40	0,30	3,92	0,32	1,02	0,51

N°: E15/2/2/3218/b

Unité : E15 Niveau : 2 Type : grossière Masse : 8 g Epaisseur : 1,4 cm

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

- Olivines (plume)
- Oxydes de fer (bande, dendrite)
- Verre majoritaire
- Inclusions métalliques : sulfures de cuivre (covellite, chalcopyrite)

Composition globale (ICP-MS/ICP-OES):

Image au Microscope Optique

- Minerai ayant partiellement réagi
- Abondante inclusion de quartz résiduel

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	Na ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
35,31	4,75	50 <i>,</i> 45	0,20	0,45	0,16	0,62	0,03	0,20	0,29	2,55	0,11	4,87	0,02

N°: E15/2/2/3218/c

Unité : E15 Niveau : 2 Type : grossière Masse : 11 g Epaisseur : 1,5 cm

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (polyèdre)
- Verre medium

Image au MEB-EDS en BSE

- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
25,03	5,57	62,21	0,34	0,52	0,49	0,03	0,94	0,31	0,60	3,31	0,30	0,33	0,04

N°: E15/2/2/3218/e

Unité : E15 Niveau : 2 Type : plate Masse : 12 g

Couche : 2

Epaisseur : 0,4 cm

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre, dendrite, aiguille)
- Verre faible

Composition globale (ICP-MS/ICP-OES) :

Image au MEB-EDS en BSE

Image au MEB-EDS en BSE

 Inclusions métalliques : sulfures de cuivre (covellite, chalcocite, chalcopyrite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
24,95	4,10	65,20	0,53	0,41	0,40	0,03	0,67	0,25	0,36	0,79	0,22	2,02	0,05

Analyse structurale (DRX) :

N°: E15/3/1/3277/b

Unité : E15 Niveau : 3 Type : grossière Masse : 2 g Epaisseur : 0,7 cm

Microstructure :

Image au Microscope Optique

Composition globale (IPC-MS/ICP-OES) :

Image au MEB-EDS en BSE

- Olivines (plume)
- Oxydes de fer (polyèdre)
- Verre majoritaire
- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite enveloppant Cu métal
- Inclusions de quartz résiduel

SiO2	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
34,03	7,13	49,65	1,82	0,68	1,23	0,09	1,05	0,40	0,48	2,77	0,17	0,30	0,18
N°:G15/1/3/7304/c

Unité : G15 Niveau :1 Couche : 3 Type : massive Masse : 45 g Epaisseur : 0,6 cm

Microstructure :

Image au Microscope Optique Olivines (squelette) Oxydes de fer (polyèdre) Verre medium Inclusions métalliques : sulfures de cuivre (chalcocite, covellite) Oxyde de fer résiduel

Image au MEB-EDS en BSE

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
21,81	4,88	64,80	2,30	0,79	1,50	0,42	0,41	0,46	1,65	0,24	0,60	0,15

N°:G15/2/2/7305/b

Unité : G15 Niveau :2 Type : plate Epaisseur : 0,4 cm Masse: 3 g

Couche : 2

Microstructure :

Image au MEB-EDS en BSE

- Olivines (squelette) •
- Oxydes de fer (polyèdre, aiguille)
- Verre medium

Composition globale (ICP-MS/ICP-OES) :

Image au MEB-EDS en BSE

Image au MEB-EDS en BSE

Inclusions métalliques : sulfures de • cuivre (chalcocite, covellite, few chalcopyrite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
39,81	4,19	50,42	0,36	0,49	0,89	0,04	0,67	0,41	0,33	0,94	0,56	0,77	0,12

N°:G15/2/2/7305/h

Unité : G15 Niveau : 2 Type : grossière Masse : 12 g Epaisseur : 1,2 cm

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)

Image au MEB-EDS en BSE

- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite)
- Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
24,78	8,59	60,97	0,63	0,95	0,45	0,68	0,37	0,36	1,17	0,37	0,58	0,08

N°: G15/3/1/7309/a

Unité : G15 Niveau : 3 Couche : 1 Type : plate Masse : 6 g Epaisseur : 0,2 cm

Microstructure :

Image au Microscope Optique

- Olivine (squelette)
- Oxydes de fer (polyèdre, aiguille)

Image au MEB-EDS en BSE

- Verre altéré
- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
21,40	3,55	71,04	0,37	0,46	0,36	0,45	0,21	0,44	1,04	0,11	0,54	0,02

N°: G15/3/4/7316/7309

Unité : G15 Niveau : 3 Couche : 4 Type : plate Masse : 75 g Epaisseur : 1,5

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)
- Verre faible
- Inclusions métalliques : sulfures de cuivre (chalcocite), Cu métal
- Chalcocite entourant métal
- Quartz résiduel

x 300 20.0kV COMPO SEM WD 10.0mm 09:45:43 Image au MEB-EDS en BSE Composition globale (ICP-MS/ICP-OES) :

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
27,76	4,70	59 <i>,</i> 80	0,42	0,48	0,65	0,03	0,90	0,28	0,29	3,82	0,23	0,61	0,03

N°:S9/2/2/5505/b

Unité : S9 Niveau :2 Type : grossière Masse : 4 g Epaisseur : 1,3 cm

Microstructure :

Image au Microscope Optique

Composition globale (ICP-MS/ICP-OES):

Image au Microscope Optique

- Olivines (polyèdre)
- Oxydes de fer (polyèdre)
- Verre faible
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)
- Leucite

Image au MEB-EDS en BSE

SiO2	Al ₂ O ₃	FeO	MnO	MgO	CaO	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
24,61	5,18	55,66	8,21	0,69	0,43	0,60	0,28	0,33	0,86	1,91	0,78	0,47

N°: S9/2/2/5508

Unité : S9 Niveau : 2 Couche : 2 Type : grossière Masse : 4 g Epaisseur : 1,5

Microstructure :

Image au Microscope Optique

- Olivines (polyèdre, plume)
- Oxydes de fer (polyèdre)

Composition globale (ICP-MS/ICP-OES) :

Image au MEB-EDS en BSE

- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)
- Few Cu

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
24,16	4,21	45,87	17,98	0,45	0,22	0,04	0,44	0,24	0,39	0,90	4,14	0,31	0,64

N° : DF/1/2/2/43

Site : Thong Na Nguak Type : grossière Masse : 10 g Epaisseur : 1,2 cm

Microstructure :

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)
- Verre faible

Image au MEB-EDS en BSE

- Inclusions métalliques : sulfures de cuivre (chalcocite)
- Cu métal
- Leucite

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na₂O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
23,3	6,4	50,6	10,2	0,5	0,4	0,0	0,8	0,3	0,6	1,8	3,8	0,7	0,5

N° : DF/1/A/2/40

Site : Thong Na Nguak Type : grossière Masse : 4 g Epaisseur : 1,2 cm

Microstructure :

Image au Microscope Optique

Composition globale (ICP-MS/ICP-OES) :

Image au MEB-EDS en BSE

- Olivines (squelette, plume)
- Oxydes de fer (polyèdre, bande, aiguille)
- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)

Image au MEB-EDS en BSE

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
26,9	6,7	54,4	4,5	0,5	0,4	0,0	1,1	0,3	0,9	0,9	2,3	0,8	0,2

N°: DF/1/A/4/165/b

Site : Thong Na Nguak Type : grossière Masse : 28 g Epaisseur : 1,7 cm

Microstructure :

Image au Microscope Optique

- Olivines (squelette, plume)
- Oxydes de fer (polyèdre)

Image au MEB-EDS en BSE

- Verre medium
- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)

SiO ₂	AI_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
33,1	6,3	51,2	0,6	2,2	0,7	0,0	0,9	0,2	0,6	3,3	0,3	0,2	0,3

N°: DF/1/A/4/133

Site : Thong Na Nguak Type : plate Masse : 3 g Epaisseur : 0,3 cm

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre)
- Verre medium
- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite enveloppant Cu métal
- Oxydes de fer ayant partiellement réagi

Image au MEB-EDS en BSE

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
28,3	4,5	45,7	12,1	0,4	0,6	0,0	0,9	0,3	0,8	1,6	2,8	0,3	1,6

N°:DF/1/A/4/165/a

Site : Thong Na Nguak Type : grossière Masse : 15 g Epaisseur : 1,3 cm

Microstructure :

Image au Microscope Optique

- Olivines (polyèdre, squelette)
- Oxydes de fer (polyèdre, dendrites) •

- Verre medium •
- Inclusions métalliques : Cu métal •

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
34,2	5,6	51,9	0,5	2,7	0,5	0,0	0,8	0,2	0,7	1,9	0,3	0,1	0,6

N° : DF/1/A/138/a

Site : Thong Na Nguak Type : grossière/scorie coulée Masse : 31 g Epaisseur : 2,5 cm

Microstructure :

Image au Microscope Optique

- Pas d'olivine
- Oxydes de fer (dendrites)

Image au MEB-EDS en BSE

- Verre majoritaire
- Inclusions métalliques : Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
37,1	8,2	32,3	6,4	0,7	0,6	0,1	1,7	0,4	0,1	9,8	2,2	0,1	0,4

N°: DF/1/A/138/b

Site : Thong Na Nguak Type : grossière Masse : 3 g Epaisseur : 1 cm

Microstructure :

Image au Microscope Optique

- Olivines (skeletal, plume)
- Oxydes de fer (polyèdre)

Image au MEB-EDS en BSE

- Verre medium
- Inclusions métalliques : Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na₂O	K ₂ O	TiO₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO
34,9	8,4	42,0	6,0	0,6	0,7	0,0	1,6	0,4	1,5	2,2	1,4	0,1	0,5

N° : DF/1/B/2/42 Site: Thong Na Nguak Type : grossière

Masse : 28 g Epaisseur : 1,6 cm

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (polyèdre, dendrite, bande)
- Verre medium

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite enveloppant Cu métal

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO ₃	BaO
32,3	6,2	46,1	7,0	0,5	0,5	0,0	1,1	0,3	0,7	2,8	1,8	0,1	0,7

N° : DF/1/B/3/93/a

Site : Thong Na Nguak Type : plate Masse : 5 g Epaisseur : 0,3 cm

Forme incurvée

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

- Olivines (plume, squelette)
- Oxydes de fer (polyèdre), few
- Verre medium
- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite enveloppant Cu métal

Image au MEB-EDS en BSE

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
28,2	6,5	54,3	3,1	0,7	0,4	0,0	0,8	0,4	1,2	1,2	2,8	0,3	0,1

$N^{\circ}: DF/1/B/3/93/b$

Site : Thong Na Nguak Type : grossière Masse : 5 g Epaisseur : 1 cm

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (dendrite, polyèdre) few
- Verre medium

Image au MEB-EDS en BSE

- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)
- Chalcocite enveloppant Cu

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
29,9	6,0	53,7	3,7	0,4	0,3	0,0	1,0	0,3	0,8	1,0	2,4	0,4	0,2

N° : DF/1/C/3/8/c Unité : DF Type : grossière Masse : 4 g Ep

Epaisseur : 1,5 cm

Microstructure :

Image au Microscope Optique

Composition globale (ICP-MS/ICP-OES) :

Image au Microscope Optique

- Olivines absente
- Oxydes de fer (polyèdre, dendrite), résiduel
- Verre majoritaire
- Inclusions métalliques : Cu métal
- Sulfures de cuivre (chalcocite)
- Chalcocite enveloppant Cu métal

Image au MEB-EDS en BSE

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
32,7	6,6	40,8	8,2	0,6	0,6	0,0	1,2	0,3	0,9	4,3	2,6	0,4	0,8

N° : DF/1/D/3/99 Unité : DF Type : grossière/coulée Masse : 34 g Epaisseur : 2,3 cm

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (polyèdre)
- Verre medium

Composition globale (ICP-MS/ICP-OES) :

- Verre medium
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
28,8	7,1	55,7	2,2	0,5	0,4	0,0	1,2	0,3	0,9	0,8	1,5	0,4	0,2

Analyse structurale (DRX) :

N° : DF/1/E/2/39

Unité : DF Type : plate Masse : 1 g

Epaisseur : 0,2 cm

Microstructure :

Image au Microscope Optique

- Olivines (squelette)
- Oxydes de fer (polyèdre)

Composition globale (ICP-MS/ICP-OES) :

Image au MEB-EDS en BSE

- Verre altéré
- Inclusions métalliques : sulfures de cuivre (chalcocite, covellite)

SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P2O5	CuO	ZnO	SO₃	BaO
23,1	3,4	64,1	4,7	0,4	0,3	0,0	0,3	1,5	0,5	0,4	1,0	0,2	0,1

N° : SEALIP/LA/PBL/42

Unité : F15 Niveau : 2 Contexte : 5416 Type : Lingot conique « multicouche »

Masse : 129 g Diamètre : 6,5 cm

Le prélèvement effectué sur cet objet se compose uniquement de matte.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

Composition (MEB-EDS) :

0	Si	S	Fe	Cu
8	0,1	23	0,2	67

N° : SEALIP/LA/PBL/48 Unité : B17 Niveau : 1 Contexte : 3303 Type : Lingot « multicouche »

Masse : 65 g Diamètre : 4,5 cm

Lingot sectionné dans sa longueur. Il se compose de couches superposées, une couche de matte surmontant un bouton de cuivre.

Microstructure :

Image au Microscope Optique de la couche de matte

Image au Microscope Optique du bouton de cuivre.

Composition (MEB-EDS):

	0	S	Fe	Cu
matte	3	22	1	74
Cuivre	2	1,5		96,5

N° : SEALIP/LA/PBL/49 Unité : C15 Niveau : 3 Contexte : 2423 Type : Lingot multicouche

Masse : 32 g Diamètre : 4,3 cm

Lingot composé d'une couche de scorie de type fayalitique.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

Composition (MEB-EDS):

MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO₃	K ₂ O	CaO	TiO₂	MnO	FeO	CuO
0,7	6	27	0,6	0,3	0,9	1	0,7	2	59	1,5

N° : SEALIP/LA/PBL/50 Unité : C15 Niveau :3 Contexte : 2423 Type : Lingot multicouche

Masse : 46 g Diamètre : 4,5 cm

Lingot composé de deux couches superposées : une couche de scorie de type fayalitique surmontant un bouton de cuivre.

Microstructure :

Image au Microscope Optique de la couche de scorie

Image au Microscope Optique du bouton de cuivre.

Composition (MEB-EDS) :

	MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
Scorie	0,7	6	30	0,5	1	1	0,7	2	55	2

	0	S	Cu
Cuivre	0,8	1	98

N° : SEALIP/LA/PBL/51 Unité : C15 Niveau : 3 Contexte : 2423 Type : Lingot multicouche

Masse : 34 g Diamètre : 4,6 cm

Lingot composé de trois couche : une couche de scorie de type de fayalitique surmontant un bouton de cuivre et également une couche de matte qui a été séparée au moment de la découpe.

Microstructure :

Image au Microscope Optique de la couche de scorie

Image au Microscope Optique de la couche de matte

Image au Microscope Optique du bouton de cuivre

Composition (MEB-EDS) :

	0	S	Fe	Cu
matte	3 <i>,</i> 5	23,5	1	72

	0	Fe	Cu	As
cuivre	0,7	1	97,5	0,6

Γ

	MgO	Al ₂ O ₃	SiO ₂	P2O5	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO
Scorie	0,7	5,5	28	0,5	1	1	0,6	2	58	2

N° : SEALIP/LA/PBL/52 Unité : E4 Niveau : 2 Contexte : 5006 Type : Lingot multicouche

Masse : 84 g Diamètre : 4 cm

Lingot composé de deux couches superposées : une couche de matte surmontant un bouton de cuivre métallique.

Microstructure :

Image au Microscope Optique de la couche de matte

Image au Microscope Optique du bouton de cuivre

Composition (MEB-EDS) :

	0	Si	S	Fe	Cu	Al
matte	8	1	17	1,5	71,5	0,6

	0	S	Cu
cuivre	0,9	1	98

N°: SEALIP/LA/PBL/8

Unité : A15 Couche : 4 Contexte : 6720 Type : Ge

Longueur : environs 40 cm Largeur : 20 cm pour le manche- 5 cm pour le tranchant

Bronze martelé et recuit avec des macles mécaniques et des grains homogénéisés. On observe aussi des zones où se trouvent du cuivre non allié à 100%.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	S	Si	
	11,1	86,0	1,4	1,4	XRF
1	13	86			MEB-EDS

N°: SEALIP/LA/PBL/9

Unité : AA15 Couche : 4 Contexte : 6812 Type : hache

Longueur : 6,8 cm Largeur : tranchant= 4,8, manche=2,7 cm Masse : 53 g

Bronze avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	Fe	
	12,9	86,4	0,3	XRF
3,0	12,0	84,0		MEB-EDS

N° : SEALIP/LA/PBL/10 Unité : AA16 Couche : 3 Contexte : 5204 Type : Lingot nœud papillon

Longueur : environs 13 cm Largueur : extrémités= 7 cm, milieu=3 cm Masse : 114 g

Objet en cuivre avec une structure de brut de fonderie et la présence de l'eutectique Cu-Cu₂O.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

0	Cu	
	98,3	XRF
2,5	98,5	MEB-EDS

N°: SEALIP/LA/PBL/11

Unité : AA16 Couche :3 Contexte : 5204 Type : Lingot nœud papillon

Longueur : 13 cm Largueur : extrémités= 8 cm, milieu=5 cm Masse : 418 g

Objet en cuivre avec une structure de brut de fonderie en grains équiaxes et un taux de fer à 2,5 %mass. localement au MEB-EDS et de 16 %mass. pour l'ensemble de l'échantillon en pXRF. Les analyses au μ-Spectroscopie Raman révèle également la présence de goethite signifiant que du α-Fe devait être originellement présent dans l'objet. La présence de α-Fe indiquerait que le taux de fer originelle était plus élevé

Microstructure :

Image au Microscope Optique avant attaque Composition :

Image au Microscope Optique après attaque

0	Cu	Fe	
	82,9	16,3	XRF
0,5	97	2,5	MEB-EDS

<u>µ-Spectroscopie Raman :</u>

Image au MEB-EDS en BSE

Spectre Raman de la Goethite obtenu pour cet échantillon

N°: SEALIP/LA/PBL/12

Unité : AA16 Couche : 3 Contexte : 5204 Type : Lingot nœud papillon

Masse : 102 Longueur : 12,6 cm Largeur : extrémités= 6,6, intérieur= 4 cm

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Bi	Pb	As	Cu	Fe	
	0,1	0,2	0,2	98,6	0,9	XRF
0,7				98	0,9	MEB-EDS

N° : SEALIP/LA/PLB/13

Unité : AA16 Couche :3 Contexte : 5209 Type : Lingot nœud papillon

Longueur : 12,6 cm Largeur : extrémités = 6,8, centre=4,7 cm Masse : 123 g

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	As	Cu	Fe	
	0,12	97,9	1,3	XRF
1		96	3	MEB-EDS

N°: SEALIP/LA/PLB/14

Unité : AA17 Couche : 3 Contexte : 5705 Type : Lingot nœud papillon

Longueur : 15 cm Largeur : extrémités=6 cm, milieu=4cm Masse : 238 g

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

0	Zn	Cu	Fe	
	0,16	96 <i>,</i> 5	2,8	XRF
1		96,5	2,5	MEB-EDS

N° : SEALIP/LA/PBL/15

Unité : AA17 Couche : 3 Contexte : 5707 Type : Lingot nœud papillon

Longueur : 15,9 Largueur : extrémités= 6,7, milieu= 4,5 Masse : 148 g

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Zn	Cu	
	0,15	99,5	XRF
2		98	MEB-EDS

N°: SEALIP/LA/PBL/16

Unité : AA17 Couche :3 Contexte : 5208 Type : Lingot nœud papillon

Longueur : 13,6 cm Largueur : extrémités= 8,5 cm, milieu=4,5 cm Masse : 195 g

Cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	Fe	
	99,4	0,3	XRF
1,5	98	0,5	MEB-EDS
Unité : AA17 Niveau : 3 Contexte : 5709 Type : burin

Longueur : 8,3 cm Largeur : 1,8 – 2,7 cm Masse : 47,436 g

Bronze recuit et martelé avec la présence de macle et de grains homogénéisés.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

Composition :

(Échantillon de trop petites dimensions pour une analyse par pXRF)

0	Sn	Cu	
9	19	71	MEB-EDS

Unité : AA17 Contexte : 3019 Type : Lingot nœud papillon

Longueur : 13 cm Largueur : extrémités= 7,8 cm, milieu= 3,7 cm Masse : 127 g

Cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	Fe	
	98,9	0,8	XRF
0,6	98,7	0,7	MEB-EDS

Unité : AA17 Contexte : 3019 Type : Lingot nœud papillon

Longueur : 12,7 cm Largeur : extrémités=8,1, milieu=3,9 Masse : 174

Objet en cuivre avec une structure de brut de fonderie avec des grains equiaxes.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	As	Zn	Cu	Fe	
	0,14	0,16	92,9	5,7	XRF
1			96,5	2,5	MEB-EDS

Unité : AA17 Contexte : 3019 Type : Lingot nœud papillon

Longueur : environs 13 cm Largeur : extrémités= 7 cm, milieu= 4 cm Masse : 158 g

Objet en cuivre avec une structure de brut de fonderie composée de grains equiaxes.

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	Fe	
	98,2	1,5	XRF
0,7	96,8	2,5	MEB-EDS

Unité : AA17 Contexte : 3019 Type : Lingot nœud papillon

Longueur : 13 cm Largeur : extrémités = 6 cm, centre = 3 cm Masse : 144 g

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

0	Zn	Cu	Fe	
	0,16	95,2	4,3	XRF
1		96,5	2,5	MEB-EDS

N° : SEALIP/LA/PBL/22 Unité : AA17 Contexte : 3019 Type : hache

Longueur : 5,9 cm Largeur : tranchant= 3,9, manche=3 cm Masse : 38,6 g

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	As	Cu	Fe	
	12,1	0,1	87,3	0,2	XRF
2	12		86		MEB-EDS

Unité : AA17 Contexte : 3019

PHOTO MANQUANTE

(objet très fragile)

Masse : 4 g

Fragmentaire

Bronze avec une structure de brut de fonderie visible par la présence de dendrite.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	
	10,6	89,1	XRF
1	8	91	MEB-EDS

N° : SEALIP/LA/PBL/24 Unité : AA17 Type : Hache

Masse : 26,6 g

Objet en bronze avec une structure écrouie visible par les macles mécaniques.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Fe	Cu	
	18,3	0,5	80,9	XRF
1,5	14		87	MEB-EDS

Unité : B10 Couche : 3 Contexte : 2166 Type : hache

Longueur : 7,8 cm Largeur : tranchant= 5, manche=3 cm Masse : 78 g

Bronze avec une structure comportant des macles thermiques et mécaniques ainsi que des grains homogénéisés, signes de martelage et de recuit.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

Composition :

(échantillon de trop petites dimensions pour analyse par pXRF)

0	Sn	Cu	Ρ	
7,8	20,4	70,7	0,5	MEB-EDS

Unité : B14 Couche : 2 Contexte :7003 Type : hache

Longueur : 8 cm Largeur : tranchant =4 cm, bout= 3 cm Masse : 79 g

Bronze avec une structure dont les dendrites sont toujours visibles mais avec un martelage léger identifiable par la présence de macles mécaniques.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

<u>Composition :</u>

0	Sn		Cu	Fe	
	7,2	0,1	92,3	0,1	XRF
1	7		92		MEB-EDS

PHOTO MANQUANTE (objet fragile)

Unité : B17 Niveau :2 Contexte : 3301 Type : fragment de tige

Masse : 1,2 g

Bronze avec une structure de brut de fonderie visible par la présence de dendrites.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

0	Sn	Cu	S	
	25,9	73,3	0,3	XRF
10	20	69	0,7	MEB-EDS

PHOTO MANQUANTE (objet fragile)

Unité : C10 Niveau : profond 342,005 Type : Herminette

Masse : 0,57 g

Bronze écroui visible par la présence de macles mécaniques.

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	Fe	Bal	
	10,3	44,9	1,8	24	XRF
5	11	83			MEB-EDS

Unité : C10/B10 Couche : 1 Type : hache

PHOTO MANQUANTE

(objet très fragile)

Masse : 0,89 g

Bronze avec une structure de brut de fonderie

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope optique après attaque

Composition :

(Échantillon de trop petites dimensions pour une analyse par pXRF)

0	Sn	Cu	Cl	
6	18	74,5	0,6	MEB-EDS

Unité : C10/B10 Couche : 1 Contexte : 2118 Type : Hache

Longueur = 5-6 cm Largeur= 3 cm Masse= 20 g

Bronze avec une structure martelée et recuite montrant des macles mécaniques ainsi que des grains homogénéisés.

Microstructure :

Images au Microscope Optique

0	Sn	As	Cu	
	30,2	0,3	67,9	XRF
4	16		80,0	MEB-EDS

Unité : C10/B10 Niveau : 1 Contexte : 2118 Type : Pointe de lance

Longueur : 13 cm Largeur : 3 cm Masse : 89 g

Bronze avec une structure écrouie et recuite visible par la présence de macles et de grains homogénéisés.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	As	Cu	
	10,1	0,1	89,7	XRF
3	10		86	MEB-EDS

N° : SEALIP/LA/PBL/32 Unité : C15 Couche : 4 Contexte : 3560 Type : Lingot nœud papillon

Masse : 44 g Fragmentaire

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope optique avant attaque

Image au Microscope Optique après attaque

0	Pb	Cu	Fe	
	0,1	99,3	0,5	XRF
0,6		98,7	0,7	MEB-EDS

N° : SEALIP/LA/PBL/33 Unité : C15 Couche : 4 Contexte : 3560 Type : Lingot nœud papillon

Longueur : 11,4 Largeur : fragmentaire Masse : 57 g

Objet avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Pb	As	Cu	Fe	
	0,1	0,1	99,4	0,2	XRF
1,5			98	0,2	MEB-EDS

N° : SEALIP/LA/PBL/34 Unité : C15 Couche : 4 Contexte : 3560 Type : Lingot nœud papillon

Fragmentaire Masse : 59 g

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	As	Cu	Fe	
	0,1	99,0	0,5	XRF
0,6		98,9	0,5	MEB-EDS

N° : SEALIP/LA/PBL/35 Unité : C15 Couche : 4 Contexte : 3560 Type : Lingot nœud papillon

Masse : 113 g Longueur : 12, 5 cm Largeur : 3,7 cm

Objet en cuivre dont la structure se compose presque exclusivement de produits de corrosion rendant son identification difficile. Il semblerait tout de même que la forme des produits de corrosion suggère qu'il s'agit d'un brut de fonderie.

Microstructure :

Images au Microscope Optique

0	Cu	
	99,8	XRF
12	88	MEB-EDS

N° : SEALIP/LA/PBL/36 Unité : C15 Couche : 4

Contexte : 3560 Type : Lingot nœud papillon

Masse : 171 g Longueur : 12, 2 cm Largeur : 3,7 cm

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	Fe	
	99 <i>,</i> 5	0,2	XRF
2,3	92,2		MEB-EDS

Unité : C15 Niveau : 4 Contexte : 3560 Type : Lingot nœud papillon

Masse : 74 g Fragmentaire

Objet en cuivre dont la structure est presque exclusivement composée de produits de corrosion rendant sont identification difficile.

Microstructure :

Images au Microscope Optique

0	Cu	Bal	
	33,6	65,8	XRF
12	87		MEB-EDS

Unité : C15 Couche : 4 Contexte : 2461 Type : hache PHOTO MANQUANTE

(objet très fragile)

Masse : 7,943 g Objet fragmentaire

Bronze avec une structure martelée et recuite comportant des macles mécaniques et des grains homogénéisés.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	
	16,7	82,2	XRF
2,5	11	86,5	MEB-EDS

N° : SEALIP/LA/PBL/39 Unité : C16 Niveau : 4

Contexte : 3555 Type : Lingot nœud papillon

Masse : 95 g Fragmentaire

Objet en cuivre dont la structure se compose presque exclusivement de produits de corrosion rendant son identification difficile.

Microstructure :

Images au Microscope Optique

0	Cu	Bal	
	83,7	15,8	XRF
9,5	90,5		MEB-EDS

N° : SEALIP/LA/PBL/40 Unité : C16 Niveau : 4 Contexte : 3555 Type : Lingot nœud papillon

Masse : 81 g Fragmentaire

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	As	Cu	Fe	
	0,1	99,6	0,2	XRF
2,5		97,5		ME-EDS

N : SEALIP/LA/PBL/41 Unité : D15 Niveau : 3 Contexte : 3919 Type : Fragment

Masse : 6,37

Bronze avec une structure écrouie visible par la présence de macles mécaniques dans la microstructure.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cl	As	Cu	
	13,9		0,1	85,9	XRF
3	13	0,6		84	MEB-EDS

N° : SEALIP/LA/PBL/43 Unité : PBL WEST Niveau : 1 Type : Fragment

Masse : 17,9 g

Bronze avec une microstructure partiellement homogénéisée et la présence de macle dans les îlots de cuivre non alliés signe que l'objet a dû également subir un léger martelage.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	
	12,3	87,5	XRF
3	13	84	MEB-EDS

N° : SEALIP/LA/PBL/44 Unité : PBL WEST

Masse : 22,37 g Objet fragmentaire

Bronze avec des signes de recuit et de martelage visible par des macles thermiques et des grains homogénéisés.

Microstructure :

Images au Microscope Optique

0	Sn	Cu	Fe	
	26	69,5	3,4	XRF
6	13	80	0.5	MEB-EDS

Unité/aire : OPWL/ PBL WEST Catalogue : 619

Longueur : 7,4 cm Largeur : tranchant= 5,6, centre= 2,9 cm Masse : 78 g

Bronze avec une structure de recuit et de martelage visible par des grains homogénéisés et des macles mécaniques.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Pb	As	Cu	Fe	
	10,4	0,1	0,1	87,9	0,1	XRF
2	10			88		MEB-EDS

N° : SEALIP/LA/PBL/46 Contexte : 5204 Type : Poignard

PHOTO MANQUANTE (objet fragile)

Bronze en grande partie composé de produits de corrosion rendant l'étude de sa microstructure difficile. Il semblerait tout de même que l'objet soit un brut de fonderie.

Microstructure :

Images au Microscope Optique

0	Sn	Cu	
	12,8	86,5	XRF
0,6	5	94	MEB-EDS

N° : SEALIP/LA/PBL/47 Contexte : 3019 Type : Lingot nœud papillon

Masse : 205 g Longueur : 14,3 cm Largeur : 4 cm

Objet en cuivre avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	Fe	
	99,6	0,2	XRF
1	99		MEB-EDS

N° : SEALIP/LA/TNN/4

Thong Na Nguak AREA 1-C Contexte : AN 685 Type : Lingot conique

Masse : 29,7 g Diamètre : 3 cm

Lingot en cuivre avec une structure de brut de fonderie visible par la présence de dendrites. On identifie également la présence de l'eutectique Cu-Cu₂S.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Zn	Cu	S	
	0,2	98 <i>,</i> 4	1	XRF
0,5	0,5	98	1	MEB-EDS

Musée de Vilabouly (Découvert hors fouille) Catalogue : AF0030/13-10

Type : Ge

Longueur : environs 25 cm Largeur : manche = environs 7 cm, lame =3 cm

Bronze avec une structure de brut de fonderie

Microstructure

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Cu	Fe	
	4,3	95,6	0,1	XRF
3	3	93		MEB-EDS

N° : SEALIP/LA/VC/2 Musée de Vilabouly (découvert hors contexte de fouille)

Catalogue : AF0030/15-10

Type : Ge

Longueur : environs 24 cm Largeur : manche= 10 cm, lame = 2 cm

Bronze avec une structure de brut de fonderie

Microstructure :

Image au Microscope Optique avant attaque

0	Sn	Cu	Fe	
	5,9	94,0	0,1	XRF
1	5	94		MEB-EDS

Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF0030/16-10

Type : Ge

Longueur : environs 25 cm Largeur : manche = environs 7 cm, lame =3 cm

Bronze avec une structure de brut de fonderie

Microstructure :

Image au Microscope Optique

Image au Microscope Optique

0	Sn	Cu	
	1,6	97,9	XRF
4	2	94	MEB-EDS

Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF17/1-11 Type : Lingot bol Prélèvement sur le lingot du haut

Objet en cuivre avec une structure de brut de fonderie et d'abondantes inclusions de sulfures de cuivre.

Microstructure

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	S	Cl	
	98,6	1,1		XRF
2	95	1,5	1	MEB-EDS

Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF17/1-11 Type : Lingot bol

Prélèvement sur le lingot du milieu Diamètre : environs 13 cm

Objet en cuivre avec une structure de brut de fonderie et d'abondante inclusion de sulfures de cuivre.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Cu	S	Cl	
	98,6	1		XRF
3	93,5	2	1,5	MEB-EDS
N° : SEALIP/LA/VC/6 Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF17/1-11

Type : Lingot bol

Prélèvement dans le lingot du bas

Objet en cuivre avec une structure de brut de fonderie et d'abondante inclusions de sulfures de cuivre.

Microstructure :

Images au Microscope Optique

0	Cu	S	
4	94,5	1,5	MEB-EDS

N° : SEALIP/LA/VC/7 Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF17/11-2 Type : Lingot bol

Prélèvement dans le lingot du haut

Objet en cuivre avec une structure de brut de fonderie et d'abondante inclusions de sulfures de cuivre.

Microstructure :

Images au Microscope Optique

Images au Microscope Optique

0	Cu	S	
	98,1	1	XRF
1,3	97	1,5	MEB-EDS

N° : SEALIP/LA/VC/8 Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF17/11-2 Type : Lingot bol

Prélèvement dans le lingot du bas

Objet en cuivre avec une structure de brut de fonderie et d'abondante inclusions de sulfures de cuivre.

Microstructure :

Images au Microscope Optique

0	Cu	S	
	98,5	1,0	XRF
2	96,5	1,5	MEB-EDS

N°: SEALIP/LA/VC/9

Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : VC1 Type : cloche

Bronze au plomb avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

0	Sn	Pb	As	Zn	Cu	
	3	4,3	0,5	0,2	91,4	XRF
6	2	3,5			88	MEB-EDS

N°:SEALIP/LA/VC/10

Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : VC2 Type : cloche

Bronze au plomb avec une structure de brut de fonderie visible par la présence de dendrites.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

Image au MEB-EDS en BSE

0	Sn	Pb	As	Cu	Cl	Bal	
	10,9	3,9	2,2	51,1		26,8	XRF
4	7	7	0,8	80	0,8		MEB-EDS

N° : SEALIP/LA/VC/11 Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : VC3

Bronze composé en majorité de produits de corrosion rendant l'identification de la microstructure difficile mais il semblerait tout de même qu'il s'agisse d'un brut de fonderie.

Microstructure :

Type : cloche

Image au MEB-EDS en BSE

0	Sn	Pb	As	Cu	Cl	Bal	
	2,3	10,6	1,5	33,4		40,5	XRF
13	3	5	0,5	79	0,5		MEB-EDS

N°: SEALIP/LA/VC/12

Musée de Vilabouly (découvert hors contexte de fouille) Catalogue : AF48-2010 Type : Tambour

Hauteur : 48 cm Largeur : 64 cm :

Bronze au plomb avec une structure de brut de fonderie.

Microstructure :

Image au Microscope Optique avant attaque

Image au Microscope Optique après attaque

0	Sn	Pb	Cu	Fe	Al	
	7,7	20,6	70,5	0,4	0,8	XRF
3	9	18	69			MEB-EDS

N° : SEALIP/LA/VC/13

Complexe de Vilabouly-Musée de Vientiane (Découvert hors contexte de fouille) Type : Tambour

Hauteur : 110 cm Diamètre : 80 cm

Echantillon composé exclusivement de produits de corrosion rendant l'identification de la microstructure et de la composition impossible.

Microstructure :

Image au Microscope Optique

Image au MEB-EDS en BSE

0	Cu	Fe	Al	Si	Bal	
	12,7	1,2	2,3	10,3	72,2	XRF
37	45	1,5	5	10		MEB-EDS

ANNEXE 2 : Données élémentaires pour les creusets

Données élémentaires globales (ICP-OES et ICP-MS, %mass.)

N°	As	Ва	Cu	Pb	Zn	Zr	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K ₂ O	TiO₂	P ₂ O ₅	Total
B17/2/1/3303/f	0,00	0,03	0,13	0,02	0,03	0,02	70,33	21,17	1,33	< L.D.	0,65	0,25	0,04	2,25	0,71	0,62	100,13
B17/2/1/3303/h	0,00	0,03	0,18	0,01	0,02	0,02	59,40	26,59	4,27	< L.D.	0,79	0,19	0,05	2,29	0,89	0,32	100,08
E15/3225/a	0,00	0,03	0,17	0,01	0,02	0,02	69,15	20,84	1,73	< L.D.	0,66	0,31	0,04	2,63	0,65	0,28	98,79
E15/2/1/3211	0,00	0,02	0,20	0,03	0,03	0,02	67,42	22,15	1,49	< L.D.	0,68	0,14	0,04	1,66	0,71	0,58	100,01
D13/2/1/3706	0,00	0,02	0,06	0,01	0,01	0,03	66,11	20,47	3,98	0,03	0,99	0,32	0,03	1,82	1,05	0,51	100,12
AA15/2/2/6803/a	0,00	0,03	0,05	0,00	0,01	0,04	76,52	12,77	4,24	0,04	0,48	0,22	0,09	1,12	0,90	0,24	99,93
G15/3/4/7316/d	0,01	0,02	0,11		0,02	0,02	60,43	24,10	7,13	0,12	0,84	0,13	0,03	2,38	0,70	0,24	99,82
C14/2/1/7209/a	0,00	0,01	0,03	0,00	0,01	0,03	71,64	16,85	6,62	0,04	0,63	0,03	< L.D.	1,13	0,98	0,13	99,37
C17/3/2/3119	0,00	0,02	0,06	0,01	0,01	0,04	67,32	18,18	6,85	0,10	1,23	0,15	0,06	1,26	0,92	0,22	99,25
B14/1/1/7001/a	0,01	0,06	0,26	0,05	0,11	0,02	57,61	13,67	20,42	0,46	0,66	0,34	0,07	2,15	0,58	0,34	98,98
C16/3/1/3529	0,01	0,03	0,24	0,02	0,03	0,02	68,84	20,09	1,92	< L.D.	0,63	0,12	0,04	1,94	0,64	0,56	99,47
DD14/2/1/7123/a	0,00	0,03	0,14	0,01	0,02	0,03	68,70	19,10	3,54	0,02	0,71	0,19	0,06	2,43	0,80	0,25	99,03
A15/4/1/6709/b	0,00	0,03	0,50	0,01	0,03	0,02	72,18	18,70	1,55	< L.D.	0,63	0,21	0,05	2,82	0,63	0,26	99,86
WEST1/2/3/a	0,00	0,03	0,07	0,01	0,01	0,03	67,80	19,82	2,00	< L.D.	0,57	0,13	0,06	2,56	0,76	0,17	99,36
DF/1-A/4/131/b	0,01	0,07	0,35	0,01	0,03	0,02	64,42	22,30	3,12	0,06	0,72	0,04	0,03	2,02	0,83	1,74	99,56
DF/1-A/B3/90	0,00	0,04	0,32	0,02	0,03	0,02	65,45	21,97	4,58	0,47	0,56	0,16	0,04	1,92	0,59	0,40	99,75
DF/1-B/3/113	0,00	0,03	0,08	0,02	0,03	0,02	73,06	17,43	2,70	0,04	0,74	0,24	0,04	1,99	0,70	0,62	100,67
DF/1-C/2	0,01	0,10	1,53	0,04	0,15	0,02	63,13	23,64	3,96	0,91	0,80	0,55	0,07	2,93	0,46	0,20	98,79
Moyenne	0,00	0,03	0,25	0,02	0,03	0,02	67,20	19,99	4,07	0,13	0,72	0,21	0,05	2,07	0,75	0,43	
Ecart-type	0,0	0,0	0,3	0,0	0,0	0,0	4,9	3,5	3,9	0,2	0,2	0,1	0,0	0,5	0,2	0,4	
CV	52%	65%	138%	89%	109%	26%	7%	17%	97%	190%	24%	59%	41%	26%	21%	86%	

	MgO	AI_2O_3	SiO ₂	P_2O_5	SO₃	Cl	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO	Total
A15_3_1_6703	0,5	20,2	72,9			0,4	2,4	0,4	0,9	0,0	1,7	0,5		100
A15_4_1_5709_b	0,7	21,1	69,6	0,3	0,6	0,5	3,3	0,5	0,7	0,0	2,3	0,4		100
B14_1_1_7001_a	0,6	17,3	64,4	0,5	0,2	0,2	3,4	0,4	0,8	0,0	11,8	0,3		100
B17_2_1_3303_f	0,7	22,8	70,5	0,5			3,0	0,5	0,7	0,0	1,2	0,2		100
B17_2_2_3314_a	0,6	21,8	71,0			0,2	2,8	0,5	0,7	0,0	1,3	1,1		100
C14_2_3_7217	0,4	15,3	68,7	1,0			1,8	0,3	0,8	0,0	10,5	1,1		100
C17_1_2_b	0,6	19,8	72,5				3,6	0,2	0,7	0,0	1,8	0,4		100
D13_2_1_3706_b	0,8	26,4	64,8	0,6	0,5		2,1	0,3	0,9	0,0	3,2	0,3		100
DD14_2_1_7123_a	0,7	18,7	72,2			0,4	3,4	0,5	0,7	0,0	3,1	0,3		100
E15_3225_a	0,5	27,9	63,2	0,7		0,4	1,2	0,3	0,8	0,0	2,5	2,5		100
S9_1_1_5503	0,7	18,9	72,4			0,2	1,7		1,1	0,0	3,7	0,6		100
C14_2_1_7209_a	0,8	18,8	72,5	0,1	0,1	0,0	2,1	0,3	1,1	0,0	3,8	0,3	0,0	100
B17_2_1_3303_h	0,7	25,6	67,1	0,4		0,3	2,1	0,4	0,7	2,2	0,0	0,4		100
AA15_2_2_6803_a	0,5	14,1	78,2	0,3		0,5	1,3	0,4	1,0	0,0	3,5	0,1		100
G15_3_4_7316_d	0,9	26,9	62,5			0,1	3,0	0,3	1,0	0,1	5,1	0,1		100
G15_3_1_7309_7303_b	0,9	25,9	62,4				2,5	0,3	0,5	0,0	7,2	0,3		100
E15_2_1_3211	0,8	26,9	65,7	0,8		0,3	2,1	0,5	0,7	0,0	1,6	0,6		100
WEST_1_2_3	0,6	25,1	64,9				2,8	0,4	1,0	0,0	4,1	1,2		100
D13_2_1_3706_a	1,0	25,3	65,5				1,8	0,4	1,3	0,0	4,6	0,2		100
G15_3_3_7311_c	1,0	29,1	58,0				2,5	0,4	0,7	0,0	7,9	0,5		100
C16_3_1_3529	0,7	25,7	66,3	0,9		0,3	1,9	0,3	0,6	0,0	2,4	0,8		100
C17_3_2_3119	0,6	18,6	70,5				1,4	0,6	1,0	0,0	7,4	0,0		100
Moyenne	0,7	22,4	68,0	0,6	0,3	0,3	2,4	0,4	0,8	0,1	4,1	0,6	0,0	100
Ecartype	0,2	4,3	4,7	0,3	0,2	0,1	0,7	0,1	0,2	0,5	3,1	0,5	#DIV/0!	0
сv	22%	19%	7%	53%	66%	47%	30%	25%	22%	445%	74%	97%	#DIV/0!	0

Données élémentaires de la pâte des creusets de Puen Baolo (%mass., MEB-EDS)

Données élémentaires de la pâte des creusets de Thong Na Nguak (%mass., MEB-EDS) :

	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	SO₃	Cl	K₂O	CaO	TiO ₂	MnO	FeO	CuO	Total
DF_1_A_4_131_a	0,8	21,8	67,8	0,6	0,0	0,0	4,1	0,7	0,8	0,0	2,0	1,4	100
DF_1_A_4_131_b	0,6	17,8	74,4	0,0	0,3	0,2	2,1	0,1	0,6	0,0	3,0	0,9	100
DF_1_A_B3_90	0,6	22,0	67,3	0,5	0,0	0,3	2,3	0,4	0,6	0,2	5,3	0,6	100
DF_1_C_2	0,8	24,9	68,2	0,0	0,0	0,2	3,1	0,4	0,4	0,0	2,0	0,0	100
DF_3_37	0,7	20,7	66,9	0,0	0,0	0,0	3,0	0,1	0,8	0,4	6,3	1,1	100
DF_1_B_113	0,8	20,6	69,7			0,4	2,7	0,5	0,7	0,1	3,5	0,3	100
Moyenne	0,7	21,5	68,9	0,2	0,1	0,1	2,9	0,4	0,6	0,1	3,7	0,8	
Ecartype	0,11	2,307	2,77	0,297	0,11	0,16	0,7	0,21	0,16	0,14	1,77	0,52	
Cov	16%	11%	4%	139%	224%	114%	24%	59%	25%	130%	48%	65%	

I	onnées élémentaires de la couche de scorie adhérente aux creusets de Puen Baolo
(%mass	MEB-EDS) :

	MgO	AI_2O_3	SiO ₂	P ₂ O ₅	SO₃	K ₂ O	CaO	TiO ₂	MnO	FeO	CuO	ZnO	BaO	Total
A15_3_1_6703	1,1	14,5	54,1	0,0	0,0	2,9	2,1	0,5	0,4	17,8	6,5	0,0	0,0	100,0
A15_4_1_5709_b	0,9	13,8	53,7	0,4	0,0	2,6	0,6	0,6	0,2	17,9	9,5	0,0	0,0	100
B14_1_1_7001_a	0,7	7,9	28,7	0,5	0,6	1,6	1,4	0,5	1,5	54,5	1,7	0,5	0,0	100
B17_2_2_3314_a	1,0	10,7	41,7	0,0	0,0	2,3	1,1	0,4	0,3	18,9	23,5	0,2	0,0	100
C14_2_3_7217	0,7	5,1	22,5	0,0	0,0	0,5	0,7	0,2	0,9	66,9	2,5	0,0	0,0	100
C17_1_2_b	0,6	14,8	62,5	0,3	0,0	3,1	0,4	0,5	0,0	12,6	5,3	0,0	0,0	100
D13_2_1_3706_b	0,7	7,4	24,8	0,8	0,0	0,4	0,4	0,2	0,7	63,5	0,8	0,3	0,0	100
DD14_2_1_7123_a	1,0	12,9	45,7	0,6	0,0	2,5	2,3	0,0	2,8	19,3	1,7	0,0	11,2	100
E15_3225_a	0,8	5,7	38,4	0,7	0,0	0,8	0,6	0,2	0,7	49,1	2,7	0,3	0,0	100
S9_1_1_5503	0,7	10,7	44,3	0,0	0,0	1,8	1,6	0,6	0,3	24,9	14,9	0,2	0,0	100
C14_2_1_7209_a	0,5	4,2	37,7	0,3	0,0	0,6	0,4	0,2	0,6	52,8	2,5	0,2		100
B17_2_1_3303_h	0,4	3,9	30,2	0,4	0,0	0,5	0,3	0,2	3,5	58,1	1,5	0,4	0,7	100
G15_3_4_7316_d	1,2	5,9	45,5	0,0	1,6	0,8	1,0	0,4	3,2	36,4	3,9	0,0		100
G15_3_1_7309_7303_b	0,9	10,5	41,9	0,6	0,0	1,3	1,3	0,4	0,9	41,7	0,6	0,0		100
E15_2_1_3211	0,5	8,6	36,6	0,0	0,0	0,7	0,4	0,3	1,0	47,6	4,4	0,0		100
WEST_1_2_3	5,1	7,7	35,0	0,0	0,0	1,0	1,4	0,4	0,7	47,5	1,2	0,0		100
D13_2_1_3706_a	0,5	8,6	32,3	0,0	0,2	1,3	0,4	0,5	0,3	55,2	0,8	0,0		100
G15_3_3_3311_c	1,2	10,7	38,0	0,0	0,0	1,3	1,6		1,6	45,1	0,7	0,0		100
C16_3_1_3529	0,7	6,8	36,8	0,0	0,4	0,9	0,8		1,8	50,1	1,7	0,0		100
C17_2_3_3119	1,4	12,6	62,1	0,0		2,3	6,6	0,7		6,4	7,9	0,0		100
Moyenne	1,0	9,2	40,6	0,2	0,1	1,5	1,3	0,4	1,1	39,3	4,7	0,1	1,1	100
Ecart type	1,0	3,4	11,1	0,3	0,4	0,9	1,4	0,2	1,0	18,5	5,7	0,2	3,4	0,0
Coeff var	97%	37%	27%	126%	264%	60%	111%	46%	92%	47%	121%	151%	311%	0%

Données élémentaires de la couche de scorie adhérente aux creusets de Thong Na Nguak (%mass., MEB-EDS):

	MgO	Al ₂ O ₃	SiO2	P ₂ O ₅	SO₃	K₂O	CaO	TiO ₂	MnO	FeO	CuO	ZnO	BaO	Total
DF_1_A_4_131_a	1,2	13,3	50,5	1,1		3,9	3,7	0,6	1,3	7,9	15,1	1,1	0,2	100
DF_1_A_4_131_b	0,8	9,6	46,0	0,6		2,8	1,6	0,4	1,8	28,4	6,0	1,8	0,2	100
DF_1_A_B3_90	0,6	12,5	46,6	0,0		2,3	0,8	0,4	1,1	26,5	8,6	0,5	0,0	100
DF_1_C_2	0,6	12,3	42,4	0,0		2,3	1,6	0,2	5,4	13,7	19,3	1,5	0,7	100
DF_3_37	0,6	12,6	45,1	0,0		2,5	0,3	0,5	7,6	21,3	6,9	1,9	0,7	100
DF_1_B_113	0,5	9,5	36,9			1,6	0,6	0,3	0,1	49,2	0,8	0,1	0,4	100
Moyenne	0,7	11,7	44,6	0,3	#DIV/0!	2,6	1,4	0,4	2,9	24,5	9,4	1,2	0,4	100
Ecart type	0,3	1,6	4,6	0,5	#DIV/0!	0,8	1,2	0,1	2,9	14,4	6,7	0,7	0,3	0,0
Coeff var	37%	14%	10%	148%	#DIV/0!	30%	86%	29%	102%	59%	71%	62%	74%	0%

ANNEXE 3 : Données élémentaires pour les scories

N°	Site	Unité	Niveau	Couche	Contexte	Туре	Epaisseur (cm)	Masse (g)
G15/1/3/7304/a	Puen	G15	1	3	7304	Plate	0,2	3,0
G15/1/3/7304/b	Puen	G15	1	3	7304	Grossière	2	5,0
G15/1/3/7304/c	Puen Baolo	G15	1	3	7304	Massive	0,6	45,0
G15/2/3/7308/a	Puen Baolo	G15	2	3	7308	Plate	0,1	2,0
G15/2/2/7305/b	Puen Baolo	G15	2	2	7305	Plate	0,4	3,0
G15/2/2/7305/c	Puen Baolo	G15	2	2	7305	Massive	0,55	7,0
G15/2/2/7305/f	Puen Baolo	G15	2	2	7305	Plate	0,2	5,0
G15/2/2/7305/g	Puen Baolo	G15	2	2	7305	Plate	0,2	3,0
G15/2/2/7305/h	Puen Baolo	G15	2	2	7305	Grossière	1,2	12,0
G15/2/3/7308/b	Puen Baolo	G15	2	3	7308	Massive	0,7	8,0
G15/3/1/7309/a	Puen Baolo	G15	3	1	7309	Plate	0,2	6,0
G15/3/2/7310/a	Puen Baolo	G15	3	2	7310	Plate	0,2	3,0
G15/3/2/7310/b	Puen Baolo	G15	3	2	7310	Massive	1	9,0
G15/3/2/7310/c	Puen Baolo	G15	3	2	7310	Grossière	1,5	13,0
G15/3/2/7310/d	Puen Baolo	G15	3	2	7310	Grossière	1	10,0
G15/3/3/7311/a	Puen Baolo	G15	3	3	7311	Plate	0,2	5,0
G15/3/3/7311/e	Puen Baolo	G15	3	3	7311	Massive	1,2	8,0
G15/3/4/7316/7306	Puen Baolo	G15	3	4	7316	Plate	0,4	75,0
G15/3/4/7316/a	Puen Baolo	G15	3	4	7316	Grossière	1,2	15,0
G15/3/4/7316/b	Puen Baolo	G15	3	4	7316	Plate	0,2	5,0
G15/3/4/7316/c	Puen Baolo	G15	3	4	7316	Massive	2	4,0
E15/1/2/3204/a	Puen Baolo	E15	1	2	7316	Massive	1,1	8,0
E15/1/2/3204/b	Puen Baolo	E15	1	2	3204	Plate	0,2	5,0
E15/1/2/3204/c	Puen Baolo	E15	1	2	3204	Grossière	1	9,0
E15/2/2/3218/b	Puen Baolo	E15	2	2	3218	Grossière	1,4	8,0
E15/2/2/3218/c	Puen Baolo	E15	2	2	3218	Grossière	1,5	11,0
E15/2/2/3218/d	Puen Baolo	E15	2	2	3218	Grossière	0,8	7,0
E15/2/2/3218/e	Puen Baolo	E15	2	2	3218	Plate	0,4	12,0
E15/2/3/3230/c	Puen Baolo	E15	2	3	3230	Plate	0,2	3,0
E15/2/3/3247/b	Puen Baolo	E15	2	3	3247	Grossière	1,2	8,0
E15/3/1/3277/b	Puen Baolo	E15	3	1	3277	Grossière	0,7	2,0
E15/3/1/3277/c	Puen Baolo	E15	3	1	3277	Grossière	1,4	9,0
C17/1/1/3117/a	Puen Baolo	C17	1	1	3117	Massive	0,9	55,0
C17/1/1/3117/b	Puen Baolo	C17	1	1	3117	Massive	1	10,0
C17/1/1/3117/c	Puen Baolo	C17	1	1	3117	Grossière	2	10,0

Informations de fouille pour les 137 scories sélectionnées :

C17/1/1/3117/d	Puen Baolo	C17	1	1	3117	Grossière	1	8,0
C17/1/2	Puen Baolo	C17	1	2		Massive	0,4	5,0
C17/1/2/a	Puen Baolo	C17	1	2		Grossière	2	80,0
C17/1/2/c	Puen Baolo	C17	1	2		Plate	0,3	3,0
C17/1/2/d	Puen Baolo	C17	1	2		Plate	0,3	8,0
C17/1/2/f	Puen Baolo	C17	1	2		Grossière	1,6	10,0
C17/2/1/3107/b	Puen Baolo	C17	2	1	3107	Massive	0,5	72,0
C17/2/1/3107/c	Puen Baolo	C17	2	1	3107	Grossière	1,2	12,0
C17/2/1/3107/e	Puen Baolo	C17	2	1	3107	Grossière	1	2,0
B14/1/1/7001/b	Puen Baolo	B14	1	1	7001	Grossière	2,2	12,0
B14/1/1/7001/c	Puen Baolo	B14	1	1	7001	Plate	0,3	4,0
B14/1/2/7002/b	Puen Baolo	B14	1	2	7002	Plate	0,6	14,0
B14/1/2/7002/c	Puen Baolo	B14	1	2	7002	Massive	1,1	9,0
B14/2/1/7003	Puen Baolo	B14	2	1	7003	Plate	0,4	4,0
CC14/1/1/a	Puen Baolo	CC14	1	1		Grossière	2	13,0
CC14/1/1/b	Puen Baolo	CC14	1	1		Plate	0,35	5,0
CC14/1/1/c	Puen Baolo	CC14	1	1		Massive	0,9	10,0
CC14/3/7116/a	Puen Baolo	CC14	3		7116	Plate	0,4	12,0
CC14/3/7116/b	Puen Baolo	CC14	3		7116	Grossière	2,3	15,0
CC14/3/7116/c	Puen Baolo	CC14	3		7116	Massive	1,8	35,0
CC14/3/7116/d	Puen Baolo	CC14	3		7116	Grossière	1,7	10,0
CC14/3/7116/e	Puen Baolo	CC14	3		7116	Plate	0,4	8,0
CC14/3/7116/f	Puen Baolo	CC14	3		7116	Grossière	1,4	15,0
CC14/3/7116/g	Puen Baolo	CC14	3		7116	Grossière	0,8	3,0
DD14/1/1/7108	Puen Baolo	DD14	1	1	7108	Grossière		17,0
A15/2/2/6703	Puen Baolo	A15	2	2	6703	Plate	0,2	5,0
A15/3/1/6705/a	Puen Baolo	A15	3	1	6705	Massive	1,2	25,0
A15/3/1/6705/b	Puen Baolo	A15	3	1	6705	Grossière	1,4	14,0
A15/3/1/6705/c	Puen Baolo	A15	3	1	6705	Plate	0,3	6,0
A15/4/1/6712	Puen Baolo	A15	4	1	6712	Plate	0,4	5,0
AA15/2/2/6803/b	Puen Baolo	AA15	2	2	6803	Plate	0,3	2,0
AA15/2/3/6811/a	Puen Baolo	AA15	2	3	6811	Plate	0,7	4,0
AA15/2/3/6811/b	Puen Baolo	AA15	2	3	6811	Massive	0,6	20,0
AA15/2/3/6811/c	Puen Baolo	AA15	2	3	6811	Grossière	1,35	12,0
AA15/3/1/6808/b	Puen Baolo	AA15	3	1	6808	Grossière	1,3	10,0
AA15/3/1/6808/d	Puen Baolo	AA15	3	1	6808	Massive	0,7	10,0
AA15/3/1/6808/e	Puen Baolo	AA15	3	1	6808	Plate	0,3	5,0
AA15/4/1/6818	Puen Baolo	AA15	4	1	6818	Plate	0,3	6,0
AA15/4/2/6822/a	Puen Baolo	AA15	4	2	6822	Grossière	0,4	9,0
AA15/4/3/6826	Puen Baolo	AA15	4	3	6826	Plate	0,3	3,0

C14/1/3/7204/a	Puen Baolo	C14	1	3	7204	Plate	0,2	6,0
C14/1/3/7204/b	Puen Baolo	C14	1	3	7204	Massive	0,8	10,0
C14/1/4/7205/a	Puen Baolo	C14	1	4	7205	Grossière	2	18,0
C14/1/4/7205/b	Puen Baolo	C14	1	4	7205	Massive	1,3	14,0
C14/1/4/7205/c	Puen Baolo	C14	1	4	7205	Plate	0,5	4,0
C14/1/4/7205/d	Puen Baolo	C14	1	4	7205	Grossière	1,3	12,0
C14/2/1/7209/b	Puen	C14	2	1	7209	Grossière	0,6	8,0
C14/2/3/7219/a	Puen	C14	2	3	7219	Massive	0,7	7,0
C14/2/3/7219/b	Puen Baolo	C14	2	3	7219	Grossière	2	3,0
C14/2/3/7219/c	Puen Baolo	C14	2	3	7219	Plate	0,2	3,0
B17/1/1/3301/a	Puen Baolo	B17	1	1	3301	Grossière	2	5,0
B17/1/1/3301/b	Puen Baolo	B17	1	1	3301	Massive	1,15	22,0
B17/1/1/3301/c	Puen Baolo	B17	1	1	3301	Plate	0,4	5,0
B17/2/1/3303/a	Puen Baolo	B17	2	1	3303	Grossière	2	4,0
B17/2/1/3303/b	Puen Baolo	B17	2	1	3303	Massive	0,7	5,0
B17/2/1/3303/c	Puen Baolo	B17	2	1	3303	Grossière	1,5	2,0
B17/2/1/3303/d	Puen Baolo	B17	2	1	3303	Massive	0,3	2,0
B17/2/1/3303/e	Puen	B17	2	1	3303	Grossière	0,8	7,0
B17/2/1/3303/i	Puen Baolo	B17	2	1	3303	Plate	0,4	11,0
B17/2/1/3303/j	Puen	B17	2	1	3303	Massive	0,5	9,0
B17/2/2/3311/a	Puen	B17	2	2	3311	Grossière	1,4	5,0
B17/2/2/3311/b	Puen	B17	2	2	3311	Massive	1,2	7,0
B17/2/2/3314/b	Puen	B17	2	2	3314	Grossière	0,6	3,0
B17/3/1/3312/b	Puen	B17	3	1	3312	Plate	0,2	10,0
B17/3/1/3312/c	Puen	B17	3	1	3312	Grossière	1	1,0
B17/3/1/3312/d	Puen	B17	3	1	3312	Massive	1	7,0
C16/1/1	Puen Baolo	C16	1	1		Plate	0,5	12,0
C16/GENSPIT/3501/a	Puen	C16	GEN SPIT		3501	Plate	0,2	7,0
C16/GENSPIT/3501/b	Puen	C16	GEN SPIT		3501	Massive	2	15,0
C16/3503/a	Puen	C16	GEN SPIT		3503	Massive	0,7	45,0
C16/3503/b	Puen	C16	GEN SPIT		3503	Plate	0,3	8,0
C16/3503/c	Puen	C16	GEN SPIT		3503	Grossière	2	3,0
C16/3/1/3524	Puen	C16	3	1	3524	Plate	0,2	13,0
S9/1/1/5503/a	Puen	S9	1	1	5503	Grossière	1	10,0
50/1/1/5502/b	West	50	1	1	5502	Massivo	10	8.0
39/1/1/3303/0	Palo	39	T	T	5505	IVIDSSIVE	1,2	8,0
S9/2/2/5505/a	Puen Palo West	S9	2	2	5505	Plate	0,2	5,0
S9/2/2/5505/b	Puen Palo West	S9	2	2	5505	Grossière	1,25	2,0
S9/2/2/5508	Puen Palo West	S9	2	2	5508	Grossière	1,5	18,0

WEST1/1/2/b	Puen Palo West	WEST 1	1	2		Grossière	1,8	12,0
WEST1/1/2/c	Puen Palo West	WEST 1	1	2		Grossière		10,0
D13/3729/3704	Puen Baolo	D13			3729	Massive		76,0
DF/1-A/138/a	Thong Na Nguak	DF-1- A			AN 138	Grossière	2,5	31,0
DF/1-A/138/b	Thong Na Nguak	DF-1- A			AN 138	Grossière	1	3,0
DF/1-A/2/40	Thong Na Nguak	DF-1- A			AN 40	Grossière	1,25	4,0
DF/1-A/4/133	Thong Na Nguak	DF-1- A			AN 133	Plate	0,2	3,0
DF/1-A/4/165/a	Thong Na Nguak	DF-1- A			AN 165	Grossière	1,35	15,0
DF/1-A/4/165/b	Thong Na Nguak	DF-1- A			AN 165	Grossière	1,75	28,0
DF/1-B/2/42	Thong Na Nguak	DF-1- B			AN 42	Grossière	1,6	28,0
DF/1-B/3/93/a	Thong Na Nguak	DF-1- B			AN 93	Plate	0,3	5,0
DF/1-B/3/93/b	Thong Na Nguak	DF-1- B			AN 93	Grossière	1	5,0
DF/1-C/3/8/c	Thong Na Nguak	DF-1- C			AN 8	Grossière	0,6	4,0
DF/1-D/3/99	Thong Na Nguak	DF-1- D			AN 99	Grossière	0,7	34,0
DF/1-E/2/39	Thong Na Nguak	DF-1- E			AN 39	Plate	0,3	1,0
DF/1-2/2/43	Thong Na Nguak	DF-1- 2			AN 43	Massive	1,2	10,0
DF/1A-B/3/96/526	Thong Na Nguak	DF-1- A/B			AN 96	Grossière	1	5,0
DF/1-C/1/8/533	Thong Na Nguak	DF-1- C			AN 533	Grossière	0,8	2,0

Puen Baolo (ICP-MS et ICP-OES) :

N°	Туре	SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO₃	BaO	Total
G15/1/3/7304/a	Plate	33,54	4,25	58,46	0,17	0,75	0,17	0,02	0,49	0,19	0,30	0,97	0,14	0,54	0,02	100
G15/1/3/7304/b	Grossière	49,12	5,61	35,06	1,81	1,11	0,85	0,00	0,65	0,27	0,57	4,56	0,18	0,10	0,11	100
G15/1/3/7304/c	Massive	21,81	4,88	64,80	2,30	0,79	1,50	0,00	0,42	0,41	0,46	1,65	0,24	0,60	0,15	100
G15/2/3/7308/a	Plate	26,86	5,44	63,15	0,52	0,77	0,19	0,00	0,61	0,27	0,51	1,26	0,18	0,21	0,01	100
G15/2/2/7305/b	Plate	39,81	4,19	50,42	0,36	0,49	0,89	0,04	0,67	0,41	0,33	0,94	0,56	0,77	0,12	100
G15/2/2/7305/c	Massive	20,66	3,51	70,96	0,34	0,49	0,48	0,00	0,24	0,19	0,25	1,08	0,11	1,67	0,02	100
G15/2/2/7305/f	Plate	40,16	8,73	44,41	0,48	0,88	0,25	0,02	1,67	0,43	0,37	2,01	0,21	0,35	0,04	100
G15/2/2/7305/g	Plate	22,04	4,40	69,05	0,30	0,40	0,21	0,00	0,24	0,34	0,30	1,31	0,13	1,26	0,01	100
G15/2/2/7305/h	Grossière	24,78	8,59	60,97	0,63	0,95	0,45	0,00	0,68	0,37	0,36	1,17	0,37	0,58	0,08	100
G15/2/3/7308/b	Massive	22,77	5,13	64,35	0,51	0,56	0,34	0,00	0,99	0,32	0,47	3,69	0,24	0,58	0,04	100
G15/3/1/7309/a	Plate	21,40	3,55	71,04	0,37	0,46	0,36	0,00	0,45	0,21	0,44	1,04	0,11	0,54	0,02	100
G15/3/2/7310/a	Plate	24,39	3,29	68,36	0,50	0,39	0,37	0,02	0,51	0,18	0,29	1,12	0,09	0,46	0,03	100

G15/3/2/7310/b	Massive	32,66	7,01	51,81	1,77	1,32	1,02	0,00	0,68	0,31	0,67	1,43	0,49	0,72	0,11	100
G15/3/2/7310/c	Grossière	25,78	5,66	59,96	0,57	0,53	0,43	0,00	1,01	0,34	0,37	4,62	0,30	0,39	0,04	100
G15/3/2/7310/d	Grossière	28,42	5,32	60,83	0,54	0,61	0,51	0,00	0,81	0,37	0,40	1,44	0,26	0,42	0,06	100
G15/3/3/7311/a	Plate	21,84	3,52	69,80	0,36	0,45	0,45	0,00	0,55	0,19	0,40	1,35	0,12	0,95	0,02	100
G15/3/3/7311/e	Massive	35,08	3,58	46,44	3,22	4,09	4,22	0,02	0,37	0,12	0,65	1,48	0,31	0,10	0,33	100
G15/3/4/7316/7306	Plate	27,76	4,70	59,80	0,42	0,48	0,65	0,03	0,90	0,28	0,29	3,82	0,23	0,61	0,03	100
G15/3/4/7316/a	Grossière	26,59	4,34	64,75	0,54	0,49	0,26		0,66	0,28	0,33	1,03	0,23	0,46	0,04	100
G15/3/4/7316/b	Plate	21,19	4,27	68,95	0,33	0,49	0,35	0,00	0,81	0,21	0,29	1,36	0,08	1,64	0,03	100
G15/3/4/7316/c	Massive	27,23	5,11	62,62	0,39	0,50	0,43	0,00	0,72	0,31	0,38	1,48	0,15	0,63	0,04	100
E15/1/2/3204/a	Massive	26,61	5,44	59,30	0,53	0,42	0,42	0,03	0,79	0,40	0,30	3,92	0,32	1,02	0,51	100
E15/1/2/3204/b	Plate	21,76	4,48	68,61	0,86	0,50	0,32	0,00	0,56	0,26	0,42	1,02	0,26	0,90	0,04	100
E15/1/2/3204/c	Grossière	37,72	6,95	45,99	0,96	0,90	0,65	0,04	0,77	0,25	0,51	4,78	0,30	0,10	0,06	100
E15/2/2/3218/b	Grossière	35,31	4,75	50,45	0,20	0,45	0,16	0,03	0,62	0,20	0,29	2,55	0,11	4,87	0,02	100
E15/2/2/3218/c	Grossière	25,03	5,57	62,21	0,34	0,52	0,49	0,03	0,94	0,31	0,60	3,31	0,30	0,33	0,04	100
E15/2/2/3218/d	Grossière	26,08	4,74	64,77	0,55	0,55	0,34	0,04	0,64	0,31	0,35	0,87	0,20	0,51	0,05	100
E15/2/2/3218/e	Plate	24,95	4,10	65,20	0,53	0,41	0,40	0,03	0,67	0,25	0,36	0,79	0,22	2,02	0,05	100
E15/2/3/3230/c	Plate	28,00	5,56	61,36	0,43	0,56	0,41	0,13	0,94	0,34	0,34	1,04	0,14	0,66	0,07	100
E15/2/3/3247/b	Grossière	29,19	5,93	59,79	0,31	0,71	0,35	0,04	0,74	0,27	0,27	0,97	0,18	1,22	0,02	100
E15/3/1/3277/b	Grossière	34,03	7,13	49,65	1,82	0,68	1,23	0,09	1,05	0,40	0,48	2,77	0,17	0,30	0,18	100
E15/3/1/3277/c ou	Grossière	25,18	4,63	61,85	0,93	0,50	0,50	0,02	0,82	0,28	0,41	4,19	0,32	0,31	0,05	100
C17/1/1/3117/a	Massive	25,76	4,76	63,33	0,43	0,59	0,38	0,02	1,14	0,29	0,21	1,94	0,26	0,86	0,02	100
C17/1/1/3117/b	Massive	32,16	6,10	55,67	0,56	0,41	0,32	0,08	1,12	0,29	0,20	2,35	0,12	0,53	0,08	100
C17/1/1/3117/c	Grossière	25,88	3,90	62,12	1,03	0,48	0,12	0,00	0,35	0,18	0,40	2,61	0,21	2,64	0,07	100
C17/1/1/3117/d	grossière	28,25	4,09	59,86	2,51	0,63	0,27	0,04	0,44	0,36	0,59	1,94	0,27	0,41	0,34	100
C17/1/2	Massive	25,91	4,02	64,93	0,87	0,58	0,58	0,02	0,49	0,40	0,55	0,79	0,18	0,65	0,05	100
C17/1/2/a	Grossière	15,57	2,71	78,86	0,14	0,20	0,58	0,04	0,31	0,17	0,65	0,37	0,02	0,37	0,02	100
C17/1/2/c	Plate	27,35	4,20	64,13	0,25	0,50	0,11	0,00	0,41	0,20	0,26	0,48	0,12	1,97	0,02	100
C17/1/2/d	Plate	29,00	5,04	59,95	0,43	0,54	0,84	0,03	0,86	0,28	0,34	1,73	0,17	0,71	0,07	100
C17/1/2/f	Grossière	30,79	5,89	57,95	0,48	0,61	0,22	0,00	0,92	0,27	0,31	1,90	0,23	0,41	0,03	100
C17/2/1/3107/b	Massive	20,34	4,86	69,56	0,38	0,35	0,13	0,00	0,57	0,31	0,27	1,99	0,26	0,96	0,02	100
C17/2/1/3107/c	Grossière	41,72	7,50	43,48	1,10	0,63	0,18	0,00	1,10	0,35	0,46	2,87	0,11	0,18	0,31	100
C17/2/1/3107/e	Grossière	29,15	5,41	51,69	2,05	0,54	2,19	0,03	0,97	0,35	0,33	6,64	0,21	0,13	0,31	100
B14/1/1/7001/b	Grossière	25,98	5,80	62,48	0,46	0,54	0,47	0,00	0,89	0,30	0,35	2,10	0,19	0,41	0,03	100
B14/1/1/7001/c	Plate	26,41	4,77	62,87	0,49	0,51	0,35	0,02	0,78	0,39	0,40	1,32	0,23	1,40	0,06	100
B14/1/2/7002/b	Plate	20,47	4,53	68,00	0,53	0,43	0,23	0,00	0,56	0,28	0,34	2,11	0,30	2,18	0,04	100
B14/1/2/7002/c	Massive	21,63	3,41	66,63	0,97	0,33	0,21	0,00	0,24	0,19	0,51	2,32	0,14	3,31	0,12	100
B14/2/1/7003	Plate	28,23	3,98	63,04	0,53	0,47	0,34	0,02	0,61	0,33	0,35	1,42	0,20	0,41	0,07	100
CC14/1/1/a	Grossière	27,84	4,98	62,59	1,17	0,60	0,26	0,00	0,36	0,23	0,38	0,97	0,33	0,26	0,03	100
CC14/1/1/b	Plate	28,18	5,35	60,31	0,51	0,58	0,31	0,00	0,95	0,37	0,42	1,81	0,17	0,98	0,04	100
CC14/1/1/c	Massive	30,72	6,03	55,48	0,71	0,66	0,53	0,02	1,17	0,45	0,32	3,40	0,19	0,25	0,06	100
CC14/3/7116/a	Plate	26,51	3,60	64,92	0,41	0,32	0,30	0,00	0,41	0,21	0,36	0,60	0,16	2,18	0,03	100
CC14/3/7116/b	Grossière	28,92	5,11	57,37	0,41	0,45	0,39	0,03	0,93	0,25	0,29	5,04	0,31	0,48	0,03	100
CC14/3/7116/c	Massive	25,05	7,13	59,94	0,52	0,75	0,37	0,00	1,16	0,40	0,38	3,21	0,16	0,88	0,05	100
CC14/3/7116/d	Grossière	17,39	4,30	74,45	0,33	0,41	0,12	0,00	0,29	0,29	0,41	0,88	0,57	0,56	0,01	100
CC14/3/7116/e	Plate	27,63	4,55	63,45	0,50	0,56	0,16	0,00	0,63	0,20	0,65	0,50	0,16	0,98	0,03	100
CC14/3/7116/f	Grossière	26,46	5,34	58,29	0,49	0,48	0,60	0,03	0,78	0,34	0,40	5,92	0,21	0,54	0,11	100

CC14/3/7116/g	Grossière	26,16	5,11	62,26	1,01	0,58	0,30	0,03	0,99	0,32	0,45	2,05	0,32	0,36	0,07	100
DD14/1/1/7108(à chercher)	Grossière	24,64	4,67	62,69	0,62	0,50	0,39	0,00	0,98	0,29	0,43	3,53	0,42	0,79	0,04	100
A15/2/2/6703	Plate	26,23	4,76	64,43	0,39	0,52	0,19	0,00	0,59	0,23	0,29	1,77	0,14	0,44	0,02	100
A15/3/1/6705/a	Massive	20,74	2,96	71,92	0,40	0,23	0,21	0,00	0,20	0,19	0,19	1,30	0,08	1,54	0,03	100
A15/3/1/6705/b	Grossière	24,02	3,77	67,96	0,34	0,41	0,15	0,00	0,45	0,25	0,81	1,30	0,16	0,37	0,02	100
A15/3/1/6705/c	Plate	24,74	4,33	65,47	0,45	0,47	0,34	0,00	0,71	0,31	0,37	1,72	0,24	0,80	0,04	100
A15/4/1/6712	Plate	29,24	4,40	62,58	0,32	0,58	0,20	0,00	0,62	0,22	0,24	0,54	0,11	0,94	0,02	100
AA15/2/2/6803/b	Plate	29,43	5,45	56,24	2,55	0,63	1,81	0,03	1,00	0,30	0,30	0,97	0,35	0,76	0,18	100
AA15/2/3/6811/a	Plate	29,16	6,34	59,78	0,41	0,73	0,28	0,00	0,80	0,35	0,30	0,71	0,22	0,86	0,04	100
AA15/2/3/6811/b	Massive	29,61	5,37	60,24	0,41	0,54	0,41	0,00	0,95	0,25	0,32	1,09	0,08	0,69	0,04	100
AA15/2/3/6811/c	Grossière	25,83	4,64	61,82	0,64	0,47	0,56	0,03	0,87	0,27	0,38	3,67	0,30	0,44	0,08	100
AA15/3/1/6808/b	Grossière	20,32	5,39	62,94	2,49	1,30	0,94	0,00	0,41	0,29	0,42	2,22	0,25	1,39	1,67	100
AA15/3/1/6808/d	Massive	18,64	2,14	72,91	1,01	0,30	0,57	0,00	0,19	0,14	0,18	1,69	0,14	2,06	0,03	100
AA15/3/1/6808/e	Plate	20,94	3,41	70,83	0,70	0,33	0,34	0,00	0,44	0,19	0,27	1,56	0,26	0,69	0,04	100
AA15/4/1/6818	Plate	26,42	4,86	63,14	0,70	0,50	0,21	0,00	0,73	0,23	0,54	1,02	0,41	1,22	0,04	100
AA15/4/2/6822/a	Scorie	34,73	7,28	53,11	0,43	0,65	0,34	0,03	1,07	0,29	0,41	1,04	0,22	0,34	0,05	100
AA15/4/3/6826	Plate	33,51	4,17	58,07	0,29	0,77	0,28	0,00	0,41	0,19	0,27	1,36	0,22	0,44	0,02	100
C14/1/3/7204/a	Plate	23,83	5,28	64,40	0,96	0,60	0,72	0,09	0,86	0,33	0,10	1,85	0,28	0,64	0,07	100
C14/1/3/7204/b	Massive	21,75	5,21	62,62	0,24	0,47	0,16	0,05	0,82	0,27	0,00	7,00	0,16	1,10	0,14	100
C14/1/4/7205/a	Grossière	20,06	5,84	55,71	5,77	0,36	0,07	0,00	0,79	0,31	1,97	1,62	0,38	0,99	6,13	100
C14/1/4/7205/b	Massive	22,09	3,09	68,53	0,45	0,41	0,30	0,00	0,40	0,22	0,52	2,43	0,17	1,36	0,03	100
C14/1/4/7205/c	Plate	31,01	10,46	46,09	1,60	2,20	2,39	0,04	1,04	0,49	0,44	2,33	0,25	0,65	1,02	100
C14/1/4/7205/d	Grossière	24,41	4,59	64,65	0,42	0,54	0,29	0,03	0,82	0,26	0,59	2,50	0,39	0,49	0,02	100
C14/2/1/7209/b	Grossière	29,03	5,51	57,36	0,37	0,51	0,38	0,04	0,97	0,32	0,34	4,61	0,10	0,43	0,04	100
C14/2/3/7219/a	Massive	23,75	3,50	67,19	0,48	0,24	0,23	0,00	0,26	0,21	0,67	1,85	0,11	1,47	0,03	100
C14/2/3/7219/b	Grossière	26,57	4,90	60,76	0,47	0,41	0,44	0,03	0,81	0,30	0,80	3,69	0,21	0,55	0,05	100
C14/2/3/7219/c	Plate	25,66	4,32	64,67	0,59	0,48	0,60	0,03	0,68	0,28	0,67	1,26	0,18	0,53	0,06	100
B17/1/1/3301/a	Grossière	26,51	5,21	59,95	1,28	0,64	1,23	0,04	0,71	0,41	0,84	2,16	0,19	0,72	0,13	100
B17/1/1/3301/b	Massive	29,83	5,45	57,52	1,35	0,58	0,88	0,03	0,62	0,35	0,69	0,74	0,07	1,74	0,14	100
B17/1/1/3301/c	Plate	23,31	3,52	68,99	0,45	0,37	0,17	0,00	0,45	0,19	0,40	0,83	0,26	1,03	0,02	100
B17/2/1/3303/a	Grossière	20,25	3,91	65,52	2,44	0,97	2,40	0,02	0,39	0,81	0,98	1,16	0,17	0,66	0,31	100
B17/2/1/3303/b	Massive	25,11	3,63	65,97	0,56	0,57	0,63	0,00	0,52	0,23	0,44	1,02	0,46	0,86	0,03	100
B17/2/1/3303/c	Grossière	29,30	5,05	60,65	0,65	0,38	0,23	0,00	0,76	0,20	0,46	1,33	0,15	0,67	0,17	100
B17/2/1/3303/d	Massive	21,34	3,48	71,49	0,50	0,38	0,18	0,00	0,28	0,18	0,50	0,60	0,20	0,85	0,03	100
B17/2/1/3303/e	Grossière	7,15	2,85	85,46	1,81	0,24	0,00	0,00	0,19	0,09	0,41	0,65	0,92	0,09	0,13	100
B17/2/1/3303/i	Plate	28,83	4,95	60,80	0,42	0,57	0,78	0,04	0,78	0,30	0,35	1,32	0,17	0,63	0,05	100
B17/2/1/3303/j	Massive	27,26	5,36	58,94	0,91	0,47	1,97	0,00	0,76	0,41	0,53	2,32	0,13	0,80	0,15	100
B17/2/2/3311/a	Grossière	19,53	4,55	67,10	1,68	0,81	1,64	0,00	0,41	0,90	0,48	0,89	0,12	1,32	0,57	100
B17/2/2/3311/b	Massive	23,12	4,30	65,99	0,34	0,35	0,52	0,02	0,83	0,23	0,19	2,93	0,20	0,83	0,16	100
B17/2/2/3314/b	Grossière	29,80	7,50	53,04	1,28	0,91	1,18	0,03	1,26	0,64	0,56	2,53	0,13	0,58	0,54	100
B17/3/1/3312/b	Plate	22,58	3,18	71,35	0,54	0,36	0,12	0,00	0,14	0,18	0,44	0,37	0,11	0,61	0,01	100
B17/3/1/3312/c	Grossière	30,31	6,02	57,29	1,37	0,71	0,81	0,00	0,70	0,38	0,45	1,35	0,23	0,23	0,15	100
B17/3/1/3312/d	Massive	26,79	5,49	61,39	0,71	0,70	1,54	0,02	0,74	0,29	0,35	1,35	0,08	0,43	0,13	100
C16/1/1	Plate	25,15	4,57	66,17	0,26	0,37	0,29	0,02	0,56	0,19	0,00	1,44	0,19	0,76	0,02	100
C16/GENSPIT/3501/a	Plate	22,44	4,26	68,52	0,42	0,46	0,33	0,00	0,67	0,20	0,00	1,83	0,16	0,69	0,02	100
C16/GENSPIT/3501/b	Massive	24,92	4,45	59,52	0,33	0,39	0,19	0,00	0,64	0,20	0,12	8,22	0,16	0,84	0,03	100

C16/3503/a	Massive	26,82	6,71	59,08	0,56	0,51	0,83	0,00	0,72	0,38	0,00	3,56	0,07	0,70	0,06	100
C16/3503/b	Plate	25,71	4,29	64,41	0,55	0,50	0,72	0,04	0,82	0,24	0,00	1,47	0,20	1,01	0,05	100
C16/3503/c	Grossière	26,06	4,80	60,23	3,68	0,57	0,41	0,00	0,51	0,24	0,00	2,55	0,32	0,31	0,33	100
C16/3/1/3524	Plate	23,60	2,89	70,19	0,41	0,28	0,14	0,00	0,26	0,16	0,00	0,52	0,25	1,28	0,02	100
D13/3729/3704	Massive	20,31	2,99	70,42	0,28	0,25	0,37	0,00	0,48	0,17	0,24	3,42	0,17	0,88	0,03	100
S9/1/1/5503/a	Grossière	21,62	4,32	62,25	6,93	0,54	0,27	0,00	0,27	0,23	0,35	0,62	1,97	0,39	0,24	100
S9/1/1/5503/b	Massive	21,70	4,32	60,81	6,92	0,31	0,17	0,00	0,44	0,23	0,33	0,95	2,64	0,88	0,31	100
S9/2/2/5505/a	Plate	27,25	5,94	61,54	0,63	0,47	0,29	0,00	0,61	0,22	0,34	2,18	0,27	0,23	0,03	100
S9/2/2/5505/b	Grossière	24,61	5,18	55,66	8,21	0,69	0,43	0,00	0,60	0,28	0,33	0,86	1,91	0,78	0,47	100
S9/2/2/5508	Grossière	24,16	4,21	45,87	17,98	0,45	0,22	0,04	0,44	0,24	0,39	0,90	4,14	0,31	0,64	100
WEST1/1/2/b	Grossière	29,70	5,10	52,63	0,16	6,19	1,28	0,00	0,58	0,13	0,42	3,03	0,20	0,51	0,07	100
WEST1/1/2/c	Grossière	26,13	5,67	60,18	0,74	0,98	0,18	0,00	0,62	0,25	0,32	3,97	0,31	0,59	0,05	100
Moyenne		26,33	4,89	61,76	1,13	0,64	0,55	0,02	0,67	0,29	0,40	2,03	0,31	0,82	0,17	
Ecart type		5,37	1,284	7,347	2,054	0,66	0,583	0,022	0,27	0,11	0,229	1,447	0,49	0,66	0,596	
Cov		20%	26%	12%	182%	104%	106%	149%	40%	39%	58%	71%	161%	81%	353%	

Thong Na Nguak

Ref Echantillon	Туре	SiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K₂O	TiO ₂	P ₂ O ₅	CuO	ZnO	SO3	BaO	Total
DF/1-A/138/a	Grossière	37,14	8,17	32,33	6,40	0,69	0,56	0,05	1,68	0,39	0,13	9,82	2,17	0,05	0,42	100
DF/1-A/138/b	Grossière	34,87	8,39	41,97	5,96	0,58	0,71	0,04	1,57	0,37	1,48	2,15	1,39	0,08	0,45	100
DF/1-A/2/40	Grossière	26,88	6,75	54,45	4,50	0,54	0,37	0,00	1,08	0,34	0,86	0,95	2,29	0,76	0,25	100
DF/1-A/4/133	Plate	28,32	4,51	45,75	12,06	0,42	0,57	0,02	0,89	0,28	0,82	1,62	2,82	0,28	1,64	100
DF/1- A/4/165/a	Grossière	34,20	5,57	51,91	0,48	2,67	0,49	0,00	0,85	0,22	0,75	1,95	0,27	0,05	0,60	100
DF/1- A/4/165/b	Grossière	33,13	6,27	51,25	0,65	2,18	0,73	0,00	0,90	0,22	0,65	3,26	0,28	0,18	0,29	100
DF/1-B/2/42	Grossière	32,31	6,20	46,07	7,04	0,46	0,49	0,03	1,10	0,28	0,67	2,76	1,83	0,10	0,66	100
DF/1- B/3/93/a	Plate	28,21	6,49	54,30	3,11	0,65	0,39	0,00	0,83	0,40	1,22	1,23	2,80	0,26	0,12	100
DF/1- B/3/93/b	Grossière	29,87	6,01	53,70	3,69	0,44	0,33	0,00	0,96	0,33	0,76	0,95	2,37	0,41	0,18	100
DF/1-C/3/8/c	Grossière	32,71	6,63	40,84	8,19	0,55	0,57	0,04	1,21	0,29	0,88	4,32	2,63	0,38	0,77	100
DF/1-D/3/99	Grossière	28,77	7,06	55,69	2,22	0,47	0,35	0,00	1,24	0,31	0,95	0,81	1,51	0,41	0,19	100
DF/1-E/2/39	Plate	23,10	3,37	64,12	4,68	0,39	0,30	0,00	0,30	1,48	0,50	0,45	0,96	0,21	0,14	100
DF/1-2/2/43	Massive	23,28	6,43	50,61	10,24	0,47	0,35	0,00	0,82	0,34	0,61	1,75	3,80	0,74	0,55	100
DF/1A- B/3/96/526	Grossière	31,39	6,79	49,67	3,10	0,62	0,52	0,03	1,19	0,36	1,08	2,11	2,78	0,18	0,17	100
DF/1- C/1/8/533	Grossière	28,10	7,31	45,68	2,41	0,49	0,33	0,03	1,25	0,36	0,93	10,54	1,66	0,70	0,19	100
MOYENNE		30,15	6,40	49,22	4,98	0,78	0,47	0,02	1,06	0,40	0,82	2,98	1,97	0,32	0,44	
ECART TYPE		4,05	1,26	7,53	3,35	0,68	0,14	0,02	0,33	0,30	0,31	3,10	0,98	0,24	0,39	
Coefficient variation		0,13	0,20	0,15	0,67	0,88	0,29	1,17	0,31	0,76	0,38	1,04	0,50	0,77	0,89	

ANNEXE 4 : Données isotopiques du plomb

N°	Туре	²⁰⁶ Pb/ ² ⁰⁴ Pb	err (2σ)	²⁰⁷ Pb/ ² ⁰⁴ Pb	err (2σ)	²⁰⁸ Pb/ ² ⁰⁴ Pb	err (2σ)	²⁰⁷ Pb/ ² ⁰⁶ Pb	err (2σ)	²⁰⁸ Pb/ ² ⁰⁶ Pb	err (2σ)
SEALIP/LA/ PBL/8	Ge	18,428	0,002	15,736	0,002	38,78	0,009	0,8540 1	0,0001	2,1044 2	0,0002 4
SEALIP/LA/ PBL/9	Hache	18,535 2566	0,03	15,743 9245	0.030	38,961 6886	0,01	0,8492 6186	0,0001 2	2,1017 4331	0,0003 2
SEALIP/LA/ PBL/10	Cu nœud papillon	18,510 2799	0,0035 1569	15,743 2731	0,0028 8532	38,737 4504	0,0080 8128	0,8503 7741	1,374E -05	2,0931 1515	0,0001 0212
SEALIP/LA/	Cu nœud	18,394	0,03	15,731	0.028	38,716	0,01	0,8552	0,0001	2,1047	0,0003
SEALIP/LA/	Cu nœud	18,387	0,03	15,727	0,016	38,701	0,01	0,8554	0,0001	2,1048	0,0003
SEALIP/LA/	Cu nœud	18,391	0,03	15,730	0,02	38,716	0,01	0,8553	0,0001	2,1050	0,0003
SEALIP/LA/	Cu nœud	18,401	0,03	15,735	0,026	38,747	0,01	0,8552	0,0001	2,1056	2 0,0003
PBL/14 SEALIP/LA/	Cu nœud	1788	0,03	4195	0,003	356	0,01	0,8544	2 0,0001	2,1033	2 0,0003
SEALIP/LA/	Cu nœud	4375 18,418	0,002	4664 15,738	0,002	0857 38,759	0,009	1547 0,8544	2 0,0001	159 2,1042	2 0,0002
PBL/16 SEALIP/LA/	papillon Burin	18,683	0,002	15,756	0,002	39,155	0,009	1 0,8433	0,0001	8 2,0957	4 0,0002
PBL/17 SEALIP/LA/	Cu nœud	18,400	0,03	15,729	0,022	38,730	0,01	2 0,8549	0,0001	2,1050	4 0,0003
PBL/18 SEALIP/LA/	papillon Cu nœud	7399 18,429	0,0022	2039 15,724	0,0019	0946 38,712	0,0051	5665 0,8533	2 1,2922	2803 2,1004	2 6,336E
PBL/19 SEALIP/LA/	papillon Cu nœud	8237 18,428	7093 0,03	5828 15,725	5984 0,005	4649 38,708	5895 0,01	1843 0,8532	E-05 0,0001	8296 2,1003	-05 0,0003
PBL/20 SEALIP/LA/	papillon Cu nœud	4391 18,434	0,03	4002 15,729	0,006	1176 38,723	0,01	7432 0,8534	2 0,0001	459 2,1006	2 0,0003
PBL/21 SFALIP/LA/	papillon Hache	3303 18,435	0.002	5806 15.737	0.002	8206 38.767	0.009	139 0.8536	2	1454 2.1029	2
PBL/22	Eningle	18 3/18	0.03	15 723	0.011	38 665	0.01	6 0 8569	0.0001	2	4
PBL/23	Hacho	7267	0,03	1121	0.01	7804	0.01	7505	2	163	2
PBL/24	Hache	0878	0,03	457	0,01	0521	0,01	0,8549	2	7243	2
SEALIP/LA/ PBL/25	Hacne	18,391 1283	0,03	15,733 0129	0.037	38,742 6903	0,01	0,8555 5106	0,0001	2,1064 9622	0,0003 2
SEALIP/LA/ PBL/26	Hache	18,376 777	0,03	15,732 2213	0,018	38,712 1146	0,01	0,8561 6583	0,0001 2	2,1065 8352	0,0003 2
SEALIP/LA/ PBL/27	Frag	18,347 275	0,03	15,726 2233	0,015	38,669 5492	0,01	0,8572 0856	0,0001 2	2,1074 6083	0,0003 2
SEALIP/LA/ PBL/28	Herminette	18,547 9819	0,0015 2882	15,756 9307	0,0017 1811	38,916 1018	0,0054 5158	0,8495 2108	7,1951 E-06	2,0983 447	0,0001 1904
SEALIP/LA/ PBL/29	Hache	18,363 68	0,03	15,728 8519	0.032	38,696 5994	0,01	0,8566 0502	0,0001 2	2,1072 869	0,0003 2
SEALIP/LA/ PBL/30	Hache	18,364 6034	0,03	15,730 2495	0,014	38,698 6078	0,01	0,8566 1237	0,0001 2	2,1071 083	0,0003 2
SEALIP/LA/ PBL/31	Pointe de lance	18,399 0803	0,03	15,723 2939	0,004	38,737 6118	0,01	0,8546 0883	0,0001 2	2,1052 4364	0,0003 2
SEALIP/LA/ PBL/32	Cu nœud papillon	18,381 9026	0,03	15,735 1029	0,012	38,729 2997	0,01	0,8562 5996	0,0001 2	2,1068 4978	0,0003 2
SEALIP/LA/ PBL/33	Cu nœud	18,404 0427	0,03	15,738 6948	0,013	38,761 0058	0,01	0,8552 2073	0,0001 2	2,1061 1306	0,0003 2
SEALIP/LA/ PBL/34	Cu nœud	18,381	0,03	15,732 6967	0,009	38,713 7602	0,01	0,8560	0,0001 2	2,1060 8673	0,0003 2
SEALIP/LA/	Cu nœud	18,388	0,03	15,738	0.040	38,741	0,01	0,8559	0,0001	2,1069	0,0003
SEALIP/LA/	Cu nœud	18,399	0,03	15,739	0,007	38,751	0,01	0,8553	0,0001	2,1060	0,0003
SEALIP/LA/	Cu nœud	18,403	0,03	15,738	0.041	38,750	0,01	0,8552	2 0,0001	2,1060	2 0,0003
PBL/37 SEALIP/LA/	papillon Hache	055 18,417	0,03	3946 15,730	0,008	1286 38,742	0,01	0,8542	2 0,0001	2,1034	2 0,0003
PBL/38 SEALIP/LA/ PBL/39	Cu nœud papillon	0539 18,395 0075	0,03	8028 15,742 5669	0.038	263 38,756 5922	0,01	5276 0,8556 0662	2 0,0001 2	6008 2,1068 5335	2 0,0003 2

SEALIP/LA/	Cu nœud	18,393	0,0023	15,740	0,0024	38,739	0,0071	0,8557	8,886E	2,1065	0,0001
PBL/40	papilion	9019	8663	4608	3249	8206	3072	8//1	-06	9359	1507
PBL/41	papillon	18,478 0287	0,03	15,743 0463	0,017	38,876 4964	0,01	0,8519 2947	2	2,1038 965	0,0003 2
SEALIP/LA/	Cu conique	18,332	0,03	15,716	0.039	38,675	0,01	0,8573	0,0001	2,1096	0,0003
PBL/42		9933		6947		8745		7163	2	6919	2
SEALIP/LA/	Frag	18,484	0,03	15,748	0.031	38,873	0,01	0,8519	0,0001	2,1028	0,0003
PBL/43		3592		9821		4617		5982	2	8829	2
SEALIP/LA/	Hache	18,390	0,03	15,710	0,023	38,695	0,01	0,8543	0,0001	2,1041	0,0003
PBL/44		6392		0752		7476		9351	2	1188	2
SEALIP/LA/	Hache	18,561	0,03	15,750	0,021	38,923	0,01	0,8486	0,0001	2,0971	0,0003
PBL/45	Coutoou	23//	0.0024	8604 15 747	0.0024	2237	0.0004	4461	1 7424	3279	2
DBI //6	Couleau	10,490	0,0034	0/28	0,0054 7287	30,070 /1810	3101	0,0515	1,7454 F-05	2,1019 68/1	0,0001 5674
SFALIP/LA/	Cunœud	18,596	0.0020	15.751	0.0021	38.814	0.0062	0.8466	6.3684	2.0873	0.0001
PBL/47	papillon	9106	9307	8606	2876	2475	3027	7143	E-06	3771	4401
SEALIP/LA/	Cu conique	18,335	0,03	15,722	0.029	38,687	0,01	0,8575	0,0001	2,1101	0,0003
TNN/4		8742		4683		6879		8015	2	3034	2
SEALIP/LA/	Ge	18,56	0,002	15,728	0,002	38,918	0,009	0,8474	0,0001	2,0969	0,0002
VC/1								9		4	4
SEALIP/LA/	Ge	18,474	0,0024	15,720	0,0025	38,762	0,0077	0,8505	1,7508	2,0984	0,0001
	6.	43/8	989	4206	4938	5392	101	3459	E-05	68/8	531
VC/3	Ge	18,430 1615	0,0022 1564	1606	0,0020 6934	38,792 0076	0,0060 9744	0,8535 9074	1,1459 E-05	2,1050 539	0,0001 564
SEALIP/LA/	Cu bol	18,323	0,002	15,715	0,002	38,626	0,009	0,8576	0,0001	2,1081	0,0002
	Cubal	10 220	0.02	15 705	0.024	28 600	0.01	9	0.0001	4	4
VC/5		18,320 8097	0,05	9855	0,024	58,009 6767	0,01	0,8373 4927	2	3357	0,0003 2
SEALIP/LA/	Cu bol	18,328	0,03	15,710	0.036	38,625	0,01	0,8572	0,0001	2,1073	0,0003
VC/6		6058		854		0372		5952	2	6079	2
SEALIP/LA/ VC/7	Cu bol	18,314 8489	0,03	15,708 5656	0,025	38,610 4533	0,01	0,8578 7508	0,0001 2	2,1081 3669	0,0003 2
SEALIP/LA/	Cu bol	18,342	0,03	15,727	0,019	38,664	0,01	0,8574	0,0001	2,1078	0,0003
VC/8		963		501		988		0238	2	7204	2
SEALIP/LA/	Cloche	18,373	0,03	15,691	0.033	38,929	0,01	0,8539	0,0001	2,1186	0,0003
VC/9		4587	0.00	3515		4899	0.04	2442	2	1814	2
SEALIP/LA/	Cloche	18,432	0,03	15,700	0.034	38,958	0,01	0,8517	0,0001	2,1135	0,0003
	clocho	19 261	0.02	15 686	0.025	21/0	0.01	4845	2	2 1105	2
VC/11	ciocne	4975	0,03	2113	0.055	7379	0,01	5629	2	2,1133 9046	2
SEALIP/LA/	Tambour	18,529	0,0035	15,732	0,0033	38,935	0,0088	0,8491	1,5003	2,1013	9,6141
VC/12		165	5663	35	8899	5768	2293	9444	E-05	6836	E-05
SEALIP/LA/	Tambour	18,637	0,0028	15,736	0,0027	39,033	0,0073	0,8443	1,3509	2,0941	9,2601
VC/13		3288	7344	037	8495	2311	3775	2647	E-05	8609	E-05

ANNEXE 5 : Limites de déterminations CRPG-SARM

	ICP-MS iCapQ et ICP-OES iCap6500 (Sc uniquement)	As	Ва	Ве	Bi	Cd	Со	Cr	Cs	Cu	Ga	Ge	Hf
Incertitudes	>100µg/g												
(%) en fonction	>50 µg/g	<5%	<5%	<5%		<10 %	<5%			<8%		<5%	
de la teneur	>10 µg/g	<15 %	<15 %	<15 %	<5%	<15 %	<10 %	<5%	<5%	<20 %	<5%		<5%
	>1 µg/g	<20 %	**		<10%		<20 %	<10 %	<15 %	**	<10 %	<10 %	<10 %
	>0.5 μg/g												
	>0.1 µg/g	**		<20 %	<20%	<20 %	**	**	<20 %		<20 %	<20 %	<15 %
	>0.01 µg/g			**	**	**			**		**	**	**
Limites de déterminatio n	L.D. μg/g	0,50	5,5	0,05	0,045	0,02	0,08	0,50	0,02	2.0	0,02	0,04	0,03

	ICP-MS iCapQ et ICP-OES iCap6500 (Sc uniquement)	In	Мо	Nb	Ni	Pb	Rb	Sb	Sc	Sn	Sr	ТА	TH
Incertitudes	>100µg/g								<5%				
(%)	>50 μg/g	<5%	<5%	<5%		<10%	<5%		<10%	<5%	<5%	<5%	<5%
la teneur	>10 µg/g		<15%		<5%		<15%	<5%		<15%	<10%		
	>1 µg/g	<15%	<20%	<10%	**	<20%	<20%	<10%	<15%	<20%	<20%	<10%	<10%
	>0.5 μg/g								**				
	>0.1 µg/g	<20%	**	<20%		**	**	<20%		**	**	<20%	<20%
	>0.01 µg/g	**		**				**					
Limites de détermination	L.D. μg/g	0,03	0,50	0,015	2,0	0,45	0,15	0,06	0,6	0,30	0,70	0,004	0,015

	ICP-MS iCapQ et ICP-OES iCap6500 (Sc uniquement)	U	V	w	Y	Zn	Zr	La	Ce	Pr	Nd	Sm	Eu
Incertitudes	>100µg/g												
(%) en fonction de la teneur	>50 µg/g	<5%	<5%	<5%	<5%	<10 %	<5%		<5%	<5%	<5%		
	>10 µg/g	<10 %	<10 %	<10 %		<20 %	<15 %	<5%	<10 %	<10%	<15%	<5%	
	>1 µg/g	<15 %	<15 %	<20 %	<15 %	**	**	<15 %	<15 %			<15%	<5%
	>0.5 μg/g												
	>0.1 µg/g	<20 %	**	**	<20 %			<20 %	<20 %	<20%	<20%	<20%	<10%
	>0.01 µg/g	**			**			**	**	**	**	**	**
Limites de déterminatio n	L.D. μg/g	0,01	0,85	0,80	0,02	7,0	1,50	0,02	0,03	0,00 4	0,01 6	0,00 5	0,00 2

	ICP-MS iCapQ et ICP-OES iCap6500 (Sc uniquement)	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Incertitudes	>100µg/g								
(%)	>50 µg/g		<5%		<5%		<5%	<5%	
de la teneur	>10 µg/g	<5%	<10%	<5%				<10%	<5%
	>1 µg/g	<10%	<15%	<10%	<10%	<5%	<10%	<15%	<10%
	>0.5 µg/g								
	>0.1 µg/g	<20%	<20%	<15%	<20%	<10%	<20%	<20%	<20%
	>0.01 µg/g	**	**	**	**	**	**	**	**
Limites de détermination	L.D. μg/g	0,005	0,001	0,004	0,001	0,002	0,001	0,002	0,001

ICP-OES iCap6500	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	TiO₂	P ₂ O ₅
>10 %	<2%	<2%	<2%			<2%				
>5 %		<10%			<2%	<5%	<5%	<5%	<5%	
>1 %		<15%	<10%	<5%	<10%		<10%	<10%	<10%	<5%
>0.5 %	<10%		<15%	<15%	<15%	<15%	<15%	<20%	<20%	<15%
>0.1 %	<20%	<20%								**
>0.05 %	**	**	<20%	<20%	<20%	<25%	<25%	<25%	<25%	
>0.01 %			**	**	**	**	**	**	**	
L.D. %	0,05	0,04	0,015	0,015	0,03	0,03	0,02	0,03	0,02	0,10