
HAL Id: tel-04191338
https://theses.hal.science/tel-04191338v1

Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biquality learning : from weakly supervised learning to
distribution shifts

Pierre Nodet

To cite this version:
Pierre Nodet. Biquality learning : from weakly supervised learning to distribution shifts. Artificial
Intelligence [cs.AI]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG030�. �tel-04191338�

https://theses.hal.science/tel-04191338v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

023
UPA

SG0
30

Biquality Learning: from Weakly
Supervised Learning to Distribution Shifts

Apprentissage biqualité: de l’apprentissage faiblement
supervisé aux décalages de distribution

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦580 : sciences et technologies de l’information et de
la communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique

Référent : Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche UMR MIA Paris-Saclay (Université
Paris-Saclay, AgroParisTech, INRAE), sous la direction de Antoine CORNUÉJOLS,
Professeur en Informatique, la co-encadrement de Vincent LEMAIRE, Research

Scientist, le co-encadrement de Alexis Bondu, Research Scientist

Thèse soutenue à Paris-Saclay, le 12 avril 2023, par

Pierre NODET

Composition du jury
Membres du jury avec voix délibérative
Alexandre Gramfort Président
Research Scientist, PhD & HDR
Meta AI
Albert Bifet Rapporteur & Examinateur
Professeur en Informatique
Université de Waikato et Télécom Paris
Pascale Kuntz Rapportrice & Examinatrice
Professeure en Informatique
Ecole Polytechnique de l’Université de Nantes
Mathilde Mougeot Examinatrice
Professeure en Science des données
Université Paris-Saclay, ENSIIE
Charlotte Pelletier Examinatrice
Maitre de Conférence en Informatique
Université Bretagne Sud

Titre: Apprentissage biqualité: de l’apprentissage faiblement supervisé aux décalages de distribution
Mots clés: apprentissage faiblement supervisé, décalage de jeu de données, apprentissage biqualité

Résumé: Le domaine de l’apprentissage avec des
faiblesses en supervision est appelé apprentissage
faiblement supervisé et regroupe une variété de sit-
uations où la vérité terrain collectée est imparfaite.
Les étiquettes collectées peuvent souffrir de mau-
vaise qualité, de non-adaptabilité ou de quantité
insuffisante. Dans ce mémoire nous proposons une
nouvelle taxonomie de l’apprentissage faiblement
supervisé sous la forme d’un cube continu appelé
le cube de la supervision faible qui englobe toutes
les faiblesses en supervision. Pour concevoir des
algorithmes capables de gérer toutes supervisions
faibles, nous supposons la disponibilité d’un petit
ensemble de données de confiance, sans biais ni
corruption, en plus de l’ensemble de données po-
tentiellement corrompu. L’ensemble de données
de confiance permet de définir un cadre de travail
formel appelé apprentissage biqualité. Nous avons
examiné l’état de l’art de ces algorithmes qui sup-
posent la disponibilité d’un petit jeu de données
de confiance. Dans ce cadre, nous proposons un
algorithme basé sur la repondération préférentielle

pour l’apprentissage biqualité (IRBL). Cette ap-
proche agnostique du classificateur est basée sur
l’estimation empirique de la dérivée de Radon-
Nikodym (RND), pour apprendre un estimateur
conforme au risque sur des données non fiables
repesées. Nous étendrons ensuite le cadre pro-
posé aux décalages de jeu de données. Les dé-
calages de jeu de données se produisent lorsque la
distribution des données observée au moment de
l’apprentissage est différente de celle attendue au
moment de la prédiction. Nous proposons alors
une version améliorée d’IRBL, appelée IRBL2, ca-
pable de gérer de tels décalages de jeux de don-
nées. Nous proposons aussi KPDR basé sur le
même fondement théorique mais axé sur le dé-
calage de covariable plutôt que le bruit des éti-
quettes. Pour diffuser et démocratiser le cadre de
l’apprentissage biqualité, nous rendons ouvert le
code source d’une bibliothèque Python à la Scikit-
Learn pour l’apprentissage biqualité : biquality-
learn.

Title: Biquality Learning: from Weakly Supervised Learning to Distribution Shifts
Keywords: Weakly Supervised Learning, Distribution Shift, Biquality Learning

Abstract: The field of Learning with weak super-
vision is called Weakly Supervised Learning and
aggregates a variety of situations where the col-
lected ground truth is imperfect. The collected la-
bels may suffer from bad quality, non-adaptability,
or insufficient quantity. In this report, we propose
a novel taxonomy of Weakly Supervised Learning
as a continuous cube called the Weak Supervision
Cube that encompasses all of the weaknesses of
supervision. To design algorithms capable of han-
dling any weak supervisions, we suppose the avail-
ability of a small trusted dataset, without bias and
corruption, in addition to the potentially corrupted
dataset. The trusted dataset allows the definition
of a generic learning framework named Biquality
Learning. We review the state-of-the-art of these
algorithms that assumed the availability of a small
trusted dataset. Under this framework, we propose

an algorithm based on Importance Reweighting for
Biquality Learning (IRBL). This classifier-agnostic
approach is based on the empirical estimation of
the Radon-Nikodym derivative (RND), to build a
risk-consistent estimator on reweighted untrusted
data. Then we extend the proposed framework
to dataset shifts. Dataset shifts happen when the
data distribution observed at training time is dif-
ferent from what is expected from the data distri-
bution at testing time. So we propose an improved
version of IRBL named IRBL2, capable of handling
such dataset shifts. Additionally, we propose an-
other algorithm named KPDR based on the same
theory but focused on covariate shift instead of the
label noise formulation. To diffuse and democra-
tize the Biquality Learning Framework, we release
an open-source Python library à la Scikit-Learn for
Biquality Learning named biquality-learn.

Synthèse

L’apprentissage supervisé est le domaine d’étude dédié à rendre les machines capables d’apprendre des
tâches à partir d’exemples étiquetés. Ce paradigme repose sur l’apprentissage statistique d’une fonction
de correspondance entre l’espace des exemples et l’espace des étiquettes, via des paires d’exemples et
d’étiquettes. Dans ce paradigme, la disponibilité d’une quantité de paires suffisante, et la véracité des éti-
quettes présentes, sont nécessaires pour que les machines puissent correctement généraliser sur des exemples
différents de ceux vu à l’apprentissage. Si par exemple les étiquettes à disposition ne représentent pas la
vérité terrain, alors les machines n’arriveront pas à généraliser et surapprendront les motifs bruités.

Le domaine de l’apprentissage avec des faiblesses en supervision est appelé apprentissage faiblement su-
pervisé et regroupe une variété de situations où la vérité terrain collectée est imparfaite. Les étiquettes
collectées peuvent souffrir de mauvaise qualité, de non-adaptabilité ou de quantité insuffisante. Hors, les
taxonomies existentes de l’apprentissage faiblement supervisées sont segméntées, limitant les interactions
entre ses sous-domaines, correspondants à chacune des faiblesses en supervision. Dans ce mémoire nous
proposons une nouvelle taxonomie de l’apprentissage faiblement supervisé sous la forme d’un cube continu
appelé le cube de la supervision faible qui englobe toutes les faiblesses en supervision. Néanmoins, aucune
solution existante ne permet de résoudre cette catégorie continue de tâches d’apprentissage automatique.

Pour concevoir des algorithmes capables de gérer toutes supervisions faibles, nous supposons la disponibilité
d’un petit ensemble de données de confiance, sans biais ni corruption, en plus de l’ensemble de données
potentiellement corrompu. L’ensemble de données de confiance permet de définir un cadre de travail formel
appelé apprentissage biqualité. Nous avons examiné l’état de l’art de ces algorithmes qui supposent la
disponibilité d’un petit jeu de données de confiance et proposons de l’organiser par leur manière de corriger
les données non-fiables, notamment par repondération, correction des étiquettes, ou adaptation des attributs.

Dans ce cadre, nous proposons un algorithme basé sur la repondération préférentielle pour l’apprentissage
biqualité (IRBL). Cette approche agnostique du classificateur est basée sur l’estimation empirique de la
dérivée de Radon-Nikodym (RND), pour apprendre un estimateur conforme au risque sur des données non
fiables repesées. Nous avons comparé empiriquement l’approche proposée sur un grand nombre de jeux de
données variés montrant de manière significative la performance de celle-ci. Nous avons aussi réalisé une
étude sur l’impact de la calibration et de l’expressivité du classifieur sur IRBL.

Nous étendons ensuite le cadre proposé aux décalages de jeu de données. Les décalages de jeu de données
se produisent lorsque la distribution des données observée au moment de l’apprentissage est différente de
celle attendue au moment de la prédiction. Ce changement de distribution peut prendre plusieurs formes,
comme un changement dans la distribution d’un seul attribut, d’une combinaison d’attributs, ou bien dans
le concept à apprendre. Ainsi, l’hypothèse selon laquelle les données d’entraînement et de test suivent
les mêmes distributions est souvent rejetée dans les applications réelles. Nous croyons que le cadre de
l’apprentissage biqualité est un cadre approprié pour concevoir des algorithmes capables de gérer à la fois
les décalages de jeu de données et les faiblesses en supervision. Nous avons donc proposé une version

iii

améliorée d’IRBL, appelée IRBL2, capable de gérer de tels décalages de jeux de données. Nous proposons
aussi KPDR basé sur le même fondement théorique mais axé sur le décalage de covariable plutôt que sur le
bruit des étiquettes. Grâce à une comparaison étendues aux décalages de distributions, nous avons montrés
que KPDR superforme de manière significative par rapport aux compétiteurs de l’état de l’art.

Pour diffuser et démocratiser le cadre de l’apprentissage biqualité, nous rendons ouvert le code source
d’une bibliothèque Python à la scikit-learn pour l’apprentissage biqualité. biquality-learn vise à rendre acces-
sibles les algorithmes biqualité les plus connus et éprouvés à tous, et à aider les chercheurs à expérimenter
de manière reproductible sur des données biqualitées. Elle a été spécialement conçue pour s’intégrer par-
faitement à scikit-learn et à d’autres packages basés sur la même API.

iv

Remerciements

Tout d’abord, je tiens à exprimer ma profonde gratitude envers mes encadrants de thèse, le docteur Vin-
cent Lemaire et le docteur Alexis Bondu, ainsi que mon directeur de thèse, le Professeur Antoine Cornuéjols.
Leurs enseignements, conseils et discussions ont été d’une valeur inestimable tout au long de ce parcours
de recherche. Leur soutien constant et leurs précieuses orientations ont été les piliers qui ont permis la
réalisation de ces travaux. Leurs contributions ont éclairé mon chemin académique, stimulé ma réflexion
et m’ont poussé à repousser les limites de mes connaissances. Leurs retours constructifs m’ont permis de
perfectionner mon travail. Sans leur expertise, leur disponibilité et leur bienveillance, cette thèse n’aurait pu
aboutir de la sorte. Je suis honoré d’avoir eu l’opportunité de travailler à leurs côtés, et je leur suis infini-
ment reconnaissant pour leur contribution exceptionnelle à mon développement académique et professionnel.

J’adresse tous mes remerciements au Professeur Albert Bifet, ainsi qu’à la Professeure Pascale Kuntz,
d’avoir accepté d’être rapporteurs de cette thèse et d’avoir pris le temps de relire ce manuscrit. J’exprime
aussi ma gratitude au docteur Alexandre Gramfort, à la Professeure Mathilde Mougeot et à la Maitre de
Conférence Charlotte Pelletier qui ont bien voulu être mes examinateurs. Je remercie tous les membres du
jury pour leurs remarques pertinentes et leur enthousiasme quant à mes travaux.

Je tiens aussi à remercier l’équipe BRAIN et PROF d’Orange Labs et l’équipe Ekinocs de l’INRAe pour
leur bienveillance et leur soutien qui m’ont permis de pleinement travailler sur ma thèse et de grandir en
tant que personne, mais aussi pour tous les échanges enrichissants qui m’ont toujours poussé à aller plus
loin dans ma démarche d’apprenti chercheur.

Je souhaite remercier chaleureseument les trois autres fantastiques Antoine, Dinesh et Romain pour les
superbes soirées d’été mais aussi Jérémy, Sylvain et Matthias qui m’ont encouragé de tout coeur à com-
mencer cette aventure depuis la Chine. Merci aussi aux joyeux lurons, Samir, Frédéric, Jules et Henri pour
ces rigolades jusqu’au bout de la nuit. Par tous ces moments passé ensemble, vous avez tous contribué à
la réussite de cette thèse.

Je remercie du fond du coeur Laure la méritante, qui aura vécu cette thèse à mes côtés avec ses hauts
et ses bas, mais qui, part son soutien indéfectible, m’a permis de garder le cap pendant ces trois années de
thèse.

Enfin il m’est impossible pour moi de terminer ces remerciements sans remercier mes parents et ma soeur
qui sont à l’origine de tout ce qui je suis et et de tout ce que j’accomplis. Je remercie leur amour et leurs
encouragements sans lesquels je n’aurais jamais pu réaliser cette thèse.

Merci à vous tous.

v

Contents

Introduction 1

1 Weakly Supervised Learning 5
1.1 Introduction . 7
1.2 The Weak Supervision Tree . 8
1.3 The Weak Supervision Cube . 10

1.3.1 Axis 1: Inaccurate Supervision - True Labels vs. Inaccurate Labels 11
1.3.2 Axis 2: Inexact Supervision - Labels at the Right Proxy vs. not at the Right Proxy 12
1.3.3 Axis 3: Incomplete Supervision - Few labels vs. Numerous 13

1.4 A Lookup on Axis 3 . 13
1.4.1 Active Learning (AL) . 13
1.4.2 Semi-Supervised Learning (SSL) . 14
1.4.3 Postive Unlabeled Learning (PUL) . 15
1.4.4 Self Training (ST) . 15
1.4.5 Co-Training (CT) . 16

1.5 Beyond the Axes . 16
1.5.1 Learning at the crossroad of the three axes . 16
1.5.2 Deficiency Model . 17
1.5.3 Transductive learning vs. Inductive Learning . 17

1.6 Measurable quantities of WSL . 18
1.6.1 Quantity . 18
1.6.2 Quality . 18
1.6.3 Adaptability . 19

1.7 From Weakly Supervised Learning to Biquality Learning 19
1.8 Conclusion . 22

2 Biquality Learning 23
2.1 Introduction . 25
2.2 Biquality Learning Framework . 26
2.3 Related Domains . 27

2.3.1 Inductive Transfer Learning . 27
2.3.2 Supervised Domain Adaptation . 28
2.3.3 Multi-Source Learning . 30
2.3.4 Concept Drift . 30
2.3.5 Table of Domains . 31

2.4 State of the Art . 31
2.4.1 Transition Matrices . 32
2.4.2 Radon-Nikodym Derivative . 33

vii

2.4.3 Auxiliary Data Sources . 34
2.4.4 Small Loss Samples . 35
2.4.5 Meta Learning . 36
2.4.6 Table of methods . 37

2.5 Biquality Datasets . 38
2.6 Simulated Deficiencies . 39

2.6.1 Label Noise . 39
2.6.2 Weak Labels . 40
2.6.3 Data Poisoning . 41

2.7 Evaluation of Biquality Learning Algorithms . 41
2.7.1 Baselines . 41
2.7.2 What Makes an Efficient Biquality Learning Algorithm ? 41

2.8 SotA Limits for Orange . 43
2.9 Conclusion . 43

3 Importance Reweighting for Biquality Learning 45
3.1 Introduction . 47
3.2 A new Importance Reweighting approach for Biquality Learning 48
3.3 Simulating Supervision Deficiencies . 50

3.3.1 Datasets . 50
3.3.2 Simulated Supervision Deficiencies . 51

3.4 Experiments . 52
3.4.1 Quality of the Reweighting Scheme . 53
3.4.2 Benchmark against State-of-the-art-competitors 54
3.4.3 Results . 56

3.5 On the Calibration of Classifiers . 59
3.5.1 Under-Confidence and Over-Confidence . 59
3.5.2 Calibrating non-calibrated Classifiers . 60
3.5.3 Simulating Poorly Calibrated Classifiers . 60
3.5.4 Results . 61

3.6 On the Specification of Classifiers . 64
3.6.1 Suitability and Expressiveness of Classifiers . 65
3.6.2 Wrongly Specified Classifiers . 67
3.6.3 Effects on IRBL . 67
3.6.4 Results . 68

3.7 IRBL and Multiclass Classification . 69
3.8 Conclusion . 72

4 Reboot Biquality Learning with Distribution Shifts 73
4.1 Introduction . 75
4.2 Related work . 77
4.3 Reweighting for distribution shift . 78
4.4 First proposed approach: IRBLV2 . 80

viii

4.5 Second proposed approach: K-PDR . 81
4.6 Experiments . 83

4.6.1 Concept Drift . 84
4.6.2 Covariate Shift . 84
4.6.3 Class-Conditional Shift . 84
4.6.4 Prior Shift . 84
4.6.5 Datasets . 84
4.6.6 Competitors . 85

4.7 Results . 86
4.7.1 First part: Concept Drift and Covariate Shift . 86
4.7.2 Second part: Class-Conditional Shift and Prior Shift 89

4.8 Conclusion . 90
5 Learning Deep Representations from Weak Supervision 91

5.1 Introduction . 93
5.2 Representation Preserving with Noisy Labels . 94

5.2.1 Preserving by Recovering . 94
5.2.2 Preserving by Collaboration . 95
5.2.3 Preserving by Correcting . 95
5.2.4 Preserving by Robustness . 96

5.3 Experimental Protocol . 97
5.3.1 The tested Algorithms . 97
5.3.2 Datasets . 100
5.3.3 Simulated Noise . 100
5.3.4 Implementation Details . 100

5.4 Results . 101
5.5 Conclusion . 104

6 Biquality Learning at Orange 107
6.0.1 Design of the API . 108
6.0.2 Training Biquality Learning Classifiers . 108
6.0.3 Criteria of Inclusion in biquality-learn . 109
6.0.4 scikit-learn’s metadata routing . 109
6.0.5 Cross-Validating Biquality Classifiers . 110
6.0.6 Quality Implementations of Biquality Learning Algorithms 111
6.0.7 Simulating Corruptions with the Corruption API 112

Conclusion 115

ix

List of Figures

1.1 Classification of Classification from [166] . 7
1.2 The Weak Supervision Tree . 9
1.3 Taxonomy: an attempt - The big picture . 10
1.4 The different learning tasks covered by the biquality setting, represented on a 2D representation. 20
2.1 Illustration of the equivalence of Conditional Covariate Shift and Concept Drift on a toy

dataset. 29
2.2 Mentor Net Architecture from [88] . 36
2.3 Example of on Error Curve plotting the accuracy w.r.t to noise level on uniform label noise

on CIFAR10 from [218] . 42
3.1 Artificial dataset perturbed by different label noises, NCAR (uniform), and NNAR (uncer-

tainty) with decreasing quality (1 to 0:2). 52
3.2 Histogram of the ˛ values on AD for p = 0:1 and q = 0:5 for NCAR for the clean and

corrupted untrusted examples. 53
3.3 Boxplot the ˛ values on AD for p = 0:1 versus the quality, from q = 0 to q = 1 for NCAR

for the clean and corrupted untrusted examples.. 54
3.4 Nemenyi test for the 20 binary classification datasets ∀p; q for NCAR. 56
3.5 Nemenyi test for the 20 binary classification datasets ∀p; q for NNAR. 56
3.6 Results of the Wilcoxon signed rank test computed on the 20 datasets. Each Figure compares

IRBL versus one of the competitors. In each figure “◦”, “·” and “•” indicate respectively a
win, a tie or a loss of the first competitor compared to the second competitor. The vertical
axis is p and the horizontal axis is q. 58

3.7 Calibration plots of poorly calibrated Logistic Regressions on an artificial dataset. 61
3.8 Normalized histograms of ˛ estimated by IRBL with differently calibrated classifiers on ad

dataset with NCAR label noise and q = 0:5 . 61
3.9 Nemenyi test with variations of poorly calibrated Logistic Regressions for the 20 datasets,

∀p; q, and for NCAR and NNAR combined. 62
3.10 Results of the Wilcoxon signed rank test computed on the 20 datasets. Each Figure compares

IRBL versus one of the poorly calibrated IRBLs. In each figure “◦”, “·” and “•” indicate
respectively a win, a tie or a loss of the first competitor compared to the second competitor.
The vertical axis is p and the horizontal axis is q. 63

3.11 Learning curves of a Gradient Boosting Machine with Decision Stumps on an artificial dataset
for binary classification [74]. 66

3.12 Learning curves of GBM Classifiers with Decision Stumps on an artificial dataset for binary
classification [74]. 66

xi

3.13 Nemenyi test for the 20 binary classification datasets ∀p; q for NCAR and NNAR combined.
The average accuracy over all datasets, p, and q is reported between parenthesis next to
each methods. The methods’ name is composed of the name of the classifier used for weight
estimation and then the name of the final classifier. 68

3.14 Accuracy of IRBL in function of the expressiveness of the base classifier (number of iterations
of a GBM) for the 20 binary classification datasets ∀p; q for NCAR and NNAR combined. . 69

3.15 Nemenyi test for the 20 multi-class classification datasets ∀p; q for NCAR. 70
3.16 Nemenyi test for the 20 multi-class classification datasets ∀p; q for NNAR. 70
3.17 Results of the Wilcoxon signed rank test computed on the 20 datasets. Each Figure compares

IRBL versus one of the competitors. In each figure “◦”, “·” and “•” indicate respectively a
win, a tie or a loss of the first competitor compared to the second competitor. The vertical
axis is p and the horizontal axis is q. 71

4.1 Nemenyi test for all datasets ∀p; r with ȷ = 1. 87
4.2 Nemenyi test for all datasets ∀p; ȷ with r = 0. 87
4.3 Results of the Wilcoxon signed rank test computed on all datasets. Each figure compares

one competitor versus another for a given trusted data ratio. Figures in the same row are
the same competitors against different case of trusted data ratio: p = 0:01, p = 0:02,
p = 0:05. In each figure “◦”, “·” and “•” indicate respectively a win, a tie or a loss of the
first competitor compared to the second competitor, the vertical axis is ȷ and the horizontal
axis is r . 88

4.4 Nemenyi test for all datasets ∀p; ȷC with ȷ = 0. 89
4.5 Results of the Wilcoxon signed rank test computed on all datasets. Each figure compares

one competitor versus another for a given trusted data ratio. Figures in the same row are
the same competitors against different case of trusted data ratio: p = 0:01, p = 0:02,
p = 0:05. In each figure “◦”, “·” and “•” indicate respectively a win, a tie or a loss of the
first competitor compared to the second competitor, the vertical axis is ȷ and the horizontal
axis is ȷC . 90

5.1 Figure from [25]: “A simple framework for contrastive learning of visual representations. Two
separate data augmentation operators are sampled from the same family of augmentations
(t ∼ T and t ′ ∼ T) and applied to each data example to obtain two correlated views. A
base encoder network f (·) and a projection head g(·) are trained to maximize agreement
using a contrastive loss. After training is completed, we throw away the projection head g(·)
and use encoder f (·) and representation h for downstream tasks.” 99

xii

List of Tables

2.1 Table of Related Domains of state-of-the-art . 31
2.2 Table of Biquality Learning State-of-the-Art. 38
2.3 Natural Biquality Datasets used for the evaluation. Columns: number of trusted examples

(|DT |), number of untrusted examples (|DU |), estimation of untrusted quality (q̂), and
number of classes (|Y|). 39

3.1 Binary classification datasets used for the evaluation. Columns: number of examples (|D|),
number of features (|X|), number of classes (|Y|), and ratio of examples from the minority
class (min). 50

3.2 Mean Accuracy (rescaled score to be from 0 to 100) and standard deviation computed on
the 20 binary classification datasets ∀q for (1) NCAR and (2) NNAR. 57

3.3 Multi-class classification datasets used for the evaluation. Columns: number of examples
(|D|), number of features (|X|), number of classes (|Y|), and ratio of examples from the
minority class (min). 69

3.4 Mean Accuracy (rescaled score to be from 0 to 100) and standard deviation computed on
the 20 multi-class classification datasets ∀q for (1) NCAR and (2) NNAR. 70

4.1 Hierarchy of Distribution Shift sources . 83
4.2 Multi-class classification datasets used for the evaluation. Columns: number of examples

(|D|), number of features (|X|), number of classes (|Y|), and ratio of examples from the
minority class (min). 85

5.1 Taxonomy of robust deep learning algorithms studied in this paper. The Noise Ratio column
corresponds to whether the algorithm needs the noise rate (X) to learn from noisy data or
not (×). The Clean Validation column corresponds to whether the algorithm needs an
additional clean validation dataset (X) to learn from noisy data or not (×). 98

5.2 Final accuracy for the different models on CIFAR10 under symmetric and asymmetric noises
and multiple noise rates. 102

5.3 Final accuracy for the different models on CIFAR100 under symmetric and asymmetric noises
and multiple noise rates. 103

6.1 Implemented Algorithms in Biquality Learn . 110

xiii

Introduction

Context

Supervised Learning is the field of study dedicated to making machine learn
tasks from labeled examples. This paradigm is based on the statistical learning
of a mapping function from the input space to the label space, thanks to pairs of
samples and labels. It seeks to learn a mapping function that can generalize to new
data thanks to a massive amount of training data and the correctness of the label
associated with each sample. For example, when training a machine to classify
images of dogs and cats, we have to provide the machine with pictures of dogs
and cats, and for every image, the label tells the machine if the picture is one of a
dog or one of a cat. By learning by heart on a massive amount of perfectly labeled
images, the machine can correctly guess the nature of the animal on completely
new images with better accuracy than humans.

In real-world scenarios, the labels’ quality could be imperfect for multiple rea-
sons, such as human errors, cyber-attacks on databases, or even a lack of resources
to annotate datasets. With our previous example of machine learning to classify
images of dogs and cats, achieving better accuracy than humans will require a vast
amount of annotated images which is many hours of repetitive human labor. That
is why practitioners resorts to using weaker way to annotate samples, such as using
Amazon Mechanical Turk.

Training classic supervised learning algorithms with poorly labeled data will
considerably reduce their accuracy as they tend to focus more and more on more
challenging examples during their training process. These curriculums lead to
better generalization with perfectly labeled data, but with poorly labeled data,
they lead to machines that overfit on noisy patterns.

This situation could be even direr when only annotated pictures of wolfs and
tigers are the only source of training data available to learn an efficient classifier of
dogs and cats, or when only pictures of prehistorical dogs and cats are available.

These real-world scenarios are pretty diversified and could happen simultane-
ously, making learning from weak supervision quite a vast field of study. This thesis
aims to determine if the design of a training algorithm that could automatically
adapt to all these constraints is possible.

Motivation

The field of Learning with weak supervision is called Weakly Supervised Learn-
ing and aggregates a variety of situations where the collected ground truth is
imperfect. The collected labels may suffer from bad quality, non-adaptability, or
insufficient quantity. We propose a novel taxonomy of Weakly Supervised Learning

1

as a continuous cube called the Weak Supervision Cube that encompasses all of
the weaknesses of supervision. However, an existing solution is needed to solve
this continuous category of machine learning tasks.

To design algorithms capable of handling weak supervisions, with robustness to
varying label quality, we suppose the availability of a small trusted dataset, without
bias and corruption, in addition to the potentially corrupted and untrusted dataset.
The trusted dataset allows the definition of a generic learning framework named
Biquality Learning that we define in Chapter 2. We reviewed the state-of-the-art
of these algorithms that supposed the availability of a small trusted dataset, and
we proposed to organize them by leveraging this dataset to correct and refine the
corrupted samples.

Under this framework, we proposed an algorithm based on Importance Reweight-
ing for Biquality Learning (IRBL). This classifier-agnostic approach is based on the
empirical estimation of the Radon-Nikodym derivative (RND), which is the sample
reweighting scheme to build a risk-consistent estimator on untrusted data. We es-
timate this RND using two probabilistic classifiers that model both the trusted and
untrusted concepts. Finally, we build a final classifier using trusted and reweighted
untrusted data. We extensively benchmarked the proposed approach against state-
of-the-art algorithms on various datasets and statistically showed that it beats com-
petitors on Biquality Tasks. We conducted ablation studies to empirically evaluate
the impact of the calibration and expressiveness of the classifier used on the final
performance of IRBL.

Then we extended the proposed framework to dataset shifts. Dataset shifts
happen when the data distribution observed at training time is different from what
is expected from the data distribution at testing time. This distribution change
can take multiple forms, such as a change in the distribution of a single feature,
a combination of features, or the concept to be learned. Thus, the common
assumption that the training and testing data follow the same distributions is
often violated in real-world applications. We believe that the biquality data setup
is a suitable framework to design algorithms capable of handling both dataset shifts
and weaknesses of supervision simultaneously. So we proposed an improved version
of IRBL named IRBL2, capable of handling such dataset shifts. Additionally, we
proposed another algorithm named KPDR based on the same RND but focused
on covariate shift instead of the label noise formulation. We conducted the same
exhaustive benchmarks and found that KPDR was significantly outperforming the
state-of-the-art on various datasets shifts and weaknesses of supervision.

Finally, we explored the impact of training Deep Neural Networks (DNN) on
untrusted data, especially on the learned representation of the features. Indeed
training DNN is fundamentally different from training shallow classifiers, as in
addition to learning the classification task, the representation learning task is added.
The representation learning part is at high risk when learning on noisy data, and we
review the state-of-the-art of method to preserve the representation while learning

2

on noisy labels. Finally, we studied the impact of these robust algorithms on the
representation learned thanks to samples only named Self Supervised Learning.

To diffuse and democratize the Biquality Learning Framework, we proposed a
Python library à la Scikit-Learn for Biquality Learning. biquality-learn aims to
make accessible well-known and proven biquality learning algorithms for everyone
and help researchers experiment in a reproducible way on biquality data. It was
specially designed to integrate perfectly with Scikit-Learn and other packages based
on the same API.

Contributions

Chapter 1 explains in detail the motivations of the thesis. This Chapter presents
the state-of-the-art of Weakly Supervised Learning in its current organization. We
highlight some practical and philosophical limits to this organization. We then
propose a new continuous organization of this state of the art through the cube
of weakly supervised Learning, allowing us to go beyond the dimensions studied
until now. We introduce the Biquality Data setup (training machine learning from
a trusted and untrusted dataset) and Biquality Learning as one of the faces of
this cube. Finally we explain why we think the Biquality Data setup is a suitable
framework for designing algorithms able to handle any weaknesses of supervision.
This introduction has been published at an international conference: Pierre Nodet,
Vincent Lemaire, Alexis Bondu, Antoine Cornuéjols, and Adam Ouorou. From
Weakly Supervised Learning to Biquality Learning: an Introduction. In International
Joint Conference on Neural Networks (IJCNN). IEEE, 2021.

Chapter 2 is a position chapter of Biquality Learning. We propose a generic
framework for Biquality Learning, allowing us to define formally the learning task
to be accomplished. Then we present a state of the art of Biquality Learning,
organized by their respective underlying intuitions. Finally, an experimental proto-
col for evaluating Biquality learning algorithms is proposed, using public Biquality
datasets, or proposing several synthetic corruptions models for usual supervised
classification datasets.

Chapter 3 proposes a Biquality Learning algorithm called Importance Reweight-
ing for Biquality Learning (IRBL). It is based on the estimation of the Radon-
Nykodym derivative (RND) [131] of the trusted concept with respect to the un-
trusted concept. This scheme is the theoretical reweighting scheme to correct the
untrusted dataset for a trusted dataset. We propose an estimation of the RND
thanks to two probabilistic classifiers learned on both datasets respectively. Exten-
sive experiments, as described in Chapter 2, demonstrate that the proposed ap-
proach outperforms baselines and state-of-the-art approaches. This Chapter was
published at an international conference: Pierre Nodet, Vincent Lemaire, Alexis
Bondu, Antoine Cornuejols, and Adam Ouorou. Importance reweighting for bi-
quality learning. In International Joint Conference on Neural Networks (IJCNN).

3

IEEE, 2021.
Chapter 4 extends our previous work to a broader definition of Biquality Learn-

ing including dataset shifts. Previously, Biquality Learning only considered super-
visory weaknesses by denoting a difference in concept between the two untrusted
and trusted distributions. This Chapter extends the previous work to a difference in
joint distribution between the two distributions, named distributions shifts. In this
framework, we propose a new version of IRBL, IRBL2 inspired from the concept
drift litterature, and an alternative instantiation of IRBL2 based on the work of
[49] named K-ProbabilisticDensityRatio (KPDR), inspired from the covariate shift
litterature. This Chapter has been submitted to an international machine learning
journal.

Chapter 5 explores Biquality Learning of deep neural networks, particularly the
difficulty of learning deep data representations from weak supervisions. In particu-
lar, this Chapter discusses the use of pre-trained unsupervised representation and
raises the question of the efficiency of Biuality learning algorithms (and learning
from noisy labels algorithms) to improve this representation. This Chapter also
describes how these algorithms attempt to preserve this deep representation from
weaknesses of supervisions. This Chapter has been published at an international
conference workshop: Pierre Nodet, Vincent Lemaire, Alexis Bondu, and Antoine
Cornuéjols. Contrastive representations for label noise require fine-tuning. In Georg
Krempl, Vincent Lemaire, Daniel Kottke, Andreas Holzinger, and Barbara Ham-
mer, editors, Proceedings of the ECML Workshop on Interactive Adaptive Learning
(IAL@ECML PKDD 2021), number 3079 in CEUR Workshop Proceedings, pages
89–104, Aachen, 2021.

Finally, Chapter 6 presents a Python code library for Biquality Learning fol-
lowing the scikit-learn APIs [140], implementing the most recognized algorithms
of the domain for better reproducibility of the experiments for the researchers and
immediate handling for the engineers. It also provides tools to generate corruptions
in datasets to simulate Biquality datasets synthetically.

4

1 - Weakly Supervised Learning

Contents
1.1 Introduction . 7

1.2 The Weak Supervision Tree 8

1.3 The Weak Supervision Cube 10

1.3.1 Axis 1: Inaccurate Supervision - True Labels vs.
Inaccurate Labels 11

1.3.2 Axis 2: Inexact Supervision - Labels at the Right
Proxy vs. not at the Right Proxy 12

1.3.3 Axis 3: Incomplete Supervision - Few labels vs.
Numerous . 13

1.4 A Lookup on Axis 3 13

1.4.1 Active Learning (AL) 13

1.4.2 Semi-Supervised Learning (SSL) 14

1.4.3 Postive Unlabeled Learning (PUL) 15

1.4.4 Self Training (ST) 15

1.4.5 Co-Training (CT) 16

1.5 Beyond the Axes 16

1.5.1 Learning at the crossroad of the three axes . . . 16

1.5.2 Deficiency Model 17

1.5.3 Transductive learning vs. Inductive Learning . . 17

1.6 Measurable quantities of WSL 18

1.6.1 Quantity . 18

1.6.2 Quality . 18

1.6.3 Adaptability 19

1.7 From Weakly Supervised Learning to Biquality
Learning . 19

1.8 Conclusion . 22

This Chapter has been published at an international conference by the au-
thor: Pierre Nodet, Vincent Lemaire, Alexis Bondu, Antoine Cornuéjols, and Adam
Ouorou. From Weakly Supervised Learning to Biquality Learning: an Introduction.
In International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.

5

1.1 . Introduction

In the field of machine learning, the task of classification can be performed
by different approaches depending on the level of supervision of training data. As
shown in Figure 1.1, unsupervised, weakly supervised, and supervised approaches
form a continuum of possible situations, starting from the absence of ground truth
and ending with complete and perfect ground truth. For the most part, the accu-
racy of the models learned increases as the level of supervision of data increases.
Additionally, the level of supervision of a dataset can be increased in return for a
labeling cost. In [166], the authors indicate that an interesting goal could be to
obtain a high accuracy while spending a low labeling cost.

Figure 1.1: Classification of Classification from [166]

In Weakly Supervised Learning (WSL) use cases (e.g., fraud detection, cyber-
security, crowd-source labelling), a variety of situations exists where the collected
ground truth is imperfect. In this context, the collected labels may suffer from
bad quality, non-adaptability (defined in Section 1.6), or insufficient quantity. For
instance, an automatic labeling system could be used without guaranteeing that
the data is complete, exhaustive, and trustworthy. Alternatively, manual labeling
is also problematic in practice as obtaining labels from an expert is costly, and
the availability of experts is often limited. Consequently, there are many real-life
situations where imperfect ground truth must be used because of some practi-
cal considerations, such as cost optimization, expert availability, and difficulty to
certainly choose each label.

This general problem of supervision deficiency has attracted a recent focus in
the literature. The paradigm of Weakly Supervised Learning attempts to list and
cover these problems with associated solutions. The work of Zhou in [224] is one of
the first successful efforts to synthesize this domain. However, the proposed orga-
nization is segmented, limiting interactions between different subdomains of WSL,
and requiring knowledge on the weakness of supervision that might be unavailable

7

for the practitioner. Thus we propose a new organization of Weakly Supervised
Learning as a continuous cube that allows for a more encompassing interpretation
of the literature.

Section 1.2 proposes to review the usual Weakly-Supervised Learning state-
of-the-art organized hierarchically in a Tree. Then Section 1.3 proposed a new
organization of the Weakly-Supervised Learning literature named the Weak Super-
vision Cube. Section 1.4 will go through the third axis of the Weak Supervision
Cube and review the most notable subdomains of which it is composed. Section
1.5 gives additional elements that must be considered at the crossroad of these
three axes or when dealing with Weak learning problems. Section 1.6 suggests
three measurable quantities which help summarize WSL: Quantity, Quality, and
Adaptability. In Section 1.7, these quantities are used to raise links between some
learning frameworks jointly used in WSL as in Biquality Learning.

1.2 . The Weak Supervision Tree

Supervision deficiencies in weakly supervised learning refer to the lack of suf-
ficient or accurate labeling in the training data. In weakly supervised learning, a
model is trained on a dataset that has only been partially labeled, or has been
labeled in a vague or imprecise way. This can make it difficult for the model to
learn effectively and lead to poor performance on the task it is being trained for.
Various factors, such as limited resources for labeling data or the inherent ambi-
guity of the learned task, can cause supervision deficiencies in weakly supervised
learning. To overcome these deficiencies, weakly supervised learning techniques
often rely on additional assumptions or constraints to help the model make more
accurate predictions.

When supervision deficiencies arise, we leave the field of Strong Supervised
Learning and enter the Weakly Supervised Learning one. The Weakly Supervised
Learning field is characterized by a high degree of fragmentation, which is largely
attributed to the diverse nature of supervision weaknesses. Consequently, in order
to effectively utilize these methods, practitioners must have a clear understanding
of the specific weaknesses of their problem. This requirement renders the practical
application of the literature in real-world scenarios challenging, as it frequently
necessitates modifying the assumptions of the techniques employed, or leads to
sub-optimal performances.

Thus, we introduce a hierarchical organization of the taxonomy introduced in
[224] of the Weakly Supervised Learning literature that follows a pattern of yes-no
questions in the form of a Tree to deduce which sub-literature is adapted to solve
a particular weakly supervised machine learning task.

The first split of the Weakly Supervision Tree from Figure 1.2 is the strong-
weakly supervised split, denoting whether supervision deficiencies are present. Then
when labeled data are available, the first question to answer is about the noisiness

8

Figure 1.2: The Weak Supervision Tree

of the annotation process. If the labels are noisy, it is wise to refer to the literature
on Robust Learning under Label noise (RLL). Otherwise, we can follow the other
branch. Next, another split represents whether the labels are at the suitable proxy
or not, indicating if the labels are annotated for the machine-learning task of
interest. In this case, Domain Adapatation, Transfer Learning, or even Multi-
Instance Learning are among the literature of interest. If the labels are at the right
proxy (proxy definition will be given in the following Section), there is the last split
representing the level of annotated data that organize the Semi-Supervised learning
literature, from Active Learning to Multi-View Training going through Novel Class
Discovery [220, 174].

Finally, Weakly Supervised Learning is about answering these questions from
the data or prior knowledge and using the most adapted algorithms and method-
ologies to solve practical machine-learning tasks.

However, there is a crucial limit in the taxonomy proposed in Figure 1.2: we
need to be able to find our position in the Tree to go through it, meaning answer-
ing questions that relate to the compliance of the assumptions of a sub-domain.
Nonetheless, hypotheses used in different weakly supervised settings are pretty hard
to verify in practice. For example, when learning under label noise, identifying
whether the noise’s corruption model is independent of the features is impossible
in practice, leading to using approaches that lose their correctness.

Another limit is the divisive nature of a Decision Tree that cannot make contin-
uous connections between different sub-domains. Figure 1.2 makes adding a com-
bination of different weaknesses of supervision, such as Semi-Supervised Learning
with Noisy Labels, quite challenging.

9

Finally, if the literature does not yet cover a certain weakness of supervision,
Figure 1.2 does not provide any solutions whatsoever.

In the following Section, we propose a novel taxonomy of Weakly Supervised
Learning as a continuous cube that encompasses all of the weaknesses above su-
pervision. For a more graphic comparison: we need more than a map to navigate
in the 3D land of weak supervision, we need a GPS device.

1.3 . The Weak Supervision Cube

The taxonomy proposed in this Chapter is organized as a “cube" and presented
in Figure 1.3. This section progressively presents the differences between weakly
supervised approaches by going through the axes of this cube.

Figure 1.3: Taxonomy: an attempt - The big picture
First, a distinction must be made between strong and weak supervision. On

the one hand, strong supervision corresponds to the typical case in machine learn-
ing where the training examples are expected to be exhaustively labeled with true

10

labels, i.e., without any corruption or deficiency. On the other hand, weak su-
pervision means that the available ground truth is imperfect or even corrupted.
The WSL field aims to address a variety of supervision deficiencies which can be
categorized in a “cube” along the following three axes as illustrated in Figure 1.3:
inaccurate labels (Axis 1), inexact labels (Axis 2), incomplete labels (Axis 3).

These three dimensions are detailed in the rest of this section and constitute
the proposed taxonomy.

1.3.1 . Axis 1: Inaccurate Supervision - True Labels vs. Inaccurate
Labels

Lack of confidence in data sources is a frequent issue regarding real-life use
cases. The values used as learning targets, called labels or classes, can be incorrect
due to many factors.

In practice, a variety of situations can lead to inaccurate labels: (i) a label can
be assigned to a “bag of examples", such as a bunch of keys. In this case, at least
one of the examples in the keychain belongs to the class indicated by the label.
Multi-instance learning [200, 223, 53, 18] is an appropriate technique to deal with
this learning task. (ii) a label may not be “guaranteed" and may be noisy. In
theory, the learning set should be labeled in an unbiased way with respect to the
concept to be learned. However, the data used in real-world applications provide an
imperfect ground truth that does not match the concept to be learned. As defined
in [80], noise is “anything that obscures the relationship between the features of
an instance and its class”. According to this definition, every error or imprecision
in an attribute or label is considered as noise, including human deficiency. Noise
is not a trivial issue because its origin is never clearly evident. In practical cases,
this leads to trouble evaluating the existence and the strength level of noise in
a dataset. Frenay et al. in [55] provide a good overview of noise sources, the
impact of labeling noise, types of noise, and dependency on noise. Below is a
non-exhaustive list of common ways to learn a model in the presence of labeling
noise1:

• in case of marginal noise level, a standard learning algorithm that is natively
robust to label noise, is used [99, 126, 52, 227];

• uses a loss function which solves theoretically (or empirically) the problem
in case of (i) noise completely at random2 [24]; or (ii) class dependent noise
[79, 196]. In most cases, this type of approach is known in the literature as
“Robust Learning to Label noise (RLL)";

• model noise to assess the quality of each label (requires assumptions on
noise) [170];

1Note: the number of articles published on this topic has exploded in recent years.2defined in Section 1.6.2.
11

• enforce consistency between the model’s predictions and the proxy labels
[148];

• clean the training set by filtering noisy examples [172, 117, 121, 118, 176];

• trust a subset of data provided by the user to learn a model at once on
trusted examples (without label noise) and untrusted ones [79, 78, 134].

Another kind of “noise” appears when each training example is not equipped
with a single true label but a set of candidate labels containing the true label. To
deal with this kind of training examples, Partial Label Learning (PLL) has been
proposed [84] (also called ambiguously labeled learning). It has attracted attention
as, for example, in the algorithms IPAL [212], PL-KNN [84], CLPL [33], and PL-
SVM [128] or when suggesting semi-supervised partial label learning as in [185].
This setting is motivated, for example, by a common scenario in many images and
video collections, where only partial access to labels is available. The goal is to
learn a classifier that can disambiguate the partially-labeled training instances and
generalize to unseen data [34].

1.3.2 . Axis 2: Inexact Supervision - Labels at the Right Proxy vs.
not at the Right Proxy

The second axis describes inexact labeling, which is orthogonal to the first type
of supervision deficiency - i.e., inexact labeling and noisy labeling may coexist.
Here, the labels are provided not at the right proxy, which corresponds to one (or
possibly a mixture) of the following situations:

• Proxy domain: the target domain differs between the training set and the
test set. For instance, it could be learning to discriminate “panthers" from
other savanna animals based on “cats" and “dogs" labels. Two cases can be
distinguished: (i) training labels are available in another target domain than
test labels (ii) or training labels are available in a sub-domain that belongs
to the original target domain. Domain transfer [43] or domain adaptation
[8] are techniques aimed at addressing these learning tasks.

• Proxy labels: some unlabeled examples are automatically labeled, either by
a rule-based system or by a learned model, to increase the training set’s
size. These kinds of labels are called proxy labels and can be considered
as coming from a proxy concept close to the one to be learned. Only
the true labels stand for the ground truth. The way proxy labels are used
depends on their origin. In the case where the classifier itself provides proxy
labels without any additional supervision, the self-training (ST) [48], the co-
training (CT), and their variants attempt to improve the learned model by
including proxy-labels in the training set as regular labels. Other approaches
exploit the confidence level of the classifier to produce soft-proxy-labels and
then exploit it as weighted training examples [173]. When a rule-based

12

system generates proxy labels, the quality of labels depends on the expert’s
knowledge which is manually encoded into the rules. Ultimately, a classifier
learned from such labels can be considered a means of smoothing the set
of rules, allowing the end-user to score any new example. Some recent
automatic labeling systems offer an intermediate way that mixes rule-based
systems and machine learning approaches (MIX) [147, 181].

• Proxy individuals: the statistical individuals are not equally defined between
the training set and the test set. For instance, it could be learning to classify
images based on labels that only describe parts of the images. Multi-instance
learning (MIL) is another example that consists in learning from labeled
groups of individuals. In the literature, many algorithms have been adapted
to work within this paradigm [200, 223, 53, 18].

1.3.3 . Axis 3: Incomplete Supervision - Few labels vs. Numerous
The third axis describes incomplete supervision, which consists of processing

a partially labeled training set. In this situation, labeled and unlabeled examples
coexist within the training set, and it is assumed that there need to be more labeled
examples to train a performing classifier. The objective is to use the entire training
set, including the unlabeled examples, to achieve better classification performance
than learning a classifier only from labeled examples.

In the literature, many techniques exist capable of processing partially labeled
training data, i.e., active learning (AL), semi-supervised learning (SSL), positive
unlabeled learning (PUL), self-training (ST), and Co-Training (CT). At the bottom
of Figure 1.3, we suggest sorting these methods according to the quantity of labeled
examples they require. We decide to review all these subdomains in their own
separate Section for the sake of clarity.

1.4 . A Lookup on Axis 3

1.4.1 . Active Learning (AL)
Modern supervised learning approaches are known to require large amounts of

training examples in order to achieve their best performance. These examples are
mainly obtained by human experts who label them manually, making the labeling
process costly in practice. Active learning (AL) [157] is a field that includes all the
selection strategies that allow one to iteratively build the training set of a model
in interaction with a human expert (also called an oracle). The aim is to select
the most informative examples to minimize the labeling cost.

Active learning is an iterative process that continues until a labeling budget is
exhausted or a predefined performance threshold is reached. Each iteration begins
with the selection of the most informative example. This selection is generally
based on information collected during previous iterations (predictions of a classifier,
density measures). The selected example is then submitted to the oracle, which

13

returns the associated class, and the example is added to the training set (L). The
new learning set is then used to improve the model, and the new predictions are
used to perform the next iteration.

In conventional heuristics, the utility measures used by active learning strategies
[157] differ in their positioning with respect to the trade-off between exploiting the
current classifier and exploring training data. Selecting an unlabelled example in
an unknown region of the observation space helps to explore the data to limit the
risk of learning a hypothesis that is too specific to the set L of currently labeled
examples. Conversely, selecting an example in an already sampled region allows for
refining the predictive model locally. We do not intend to provide an exhaustive
overview of existing AL strategies and refer to [3, 157] for a detailed overview,
[141, 202, 142] for some recent benchmarks and a new way to treat uncertainty in
[85].

Another meta active learning paradigm exists, which combines conventional
strategies using bandit algorithms [6, 44, 82, 28, 30, 136]. These meta-learning
algorithms intend to select online the best AL strategy according to the observed
improvements of the classifier. These algorithms can adapt their choice over time
as the classifier improves. However, learning must be done using fewer examples to
be useful, and these algorithms suffer from the cold start problem. Even thought
these approaches are able to select online the best AL strategy, they are not capable
to learn new strategy from the data.

Other meta-active-learning algorithms have been developed to learn an AL
strategy starting from scratch, using multiple sources of datasets. These algo-
rithms transfer the learned AL strategy to new target datasets [94, 95, 137]. Most
of them are based on modern reinforcement learning methods. The major challenge
is to learn an AL strategy general enough to automatically control the exploita-
tion/exploration trade-off when used on new unlabeled datasets (which is impossi-
ble using heuristic strategies). A recent evaluation of learning active learning can
be found in [41].

1.4.2 . Semi-Supervised Learning (SSL)

Early work on semi-supervised learning dates back to the 2000s; an overview of
these pioneering papers can be found in [156, 22, 21, 226, 225]. In the literature,
the SSL approaches can be categorized into two groups:

• Algorithms that use unlabeled examples unchanged. In this case, the unla-
beled examples are treated as unsupervised information added to the labeled
examples. Four main categories exist: generative methods, graph-based
methods, low-density separation methods, and disagreement-based meth-
ods [224].

• Semi-supervised learning algorithms that produce proxy labels on unlabeled
examples, which are used as targets in addition to the labeled examples.

14

These proxy labels are produced by the model itself or by its variants. In
the end, these inaccurate labels (see Section 1.3.1) can be considered noisy.
The rest of this section deals with particular cases of SSL and presents the
Positive Unlabeled Learning, Self-Training, and Co-training approaches.

1.4.3 . Postive Unlabeled Learning (PUL)

Learning from Positive and Unlabeled examples (PUL) is a special case of binary
classification, and SSL [7]. In this particular setting, the unlabeled examples may
contain positive and negative examples with hidden labels. These approaches differ
from a one-class classification [92] since they explicitly use unlabeled examples in
the learning process. In the literature, the PUL approaches can be divided into
three groups:

1. Two-step techniques [109] for PUL build on the assumptions of separabil-
ity and smoothness. The idea is that all positive examples are similar to
the labeled examples and that the negative examples are very different from
them. The two-step technique consists of identifying reliable negative exam-
ples in the first step [60] and then using semi-supervised learning techniques
with the labeled positive examples, the reliable negatives, and optionally the
remaining unlabeled examples in the second step.

2. Biased PUL methods treat unlabeled examples as negatives examples with
class label noise, the noise is taken into account by, for example, placing
higher penalties on misclassified positive examples or tuning hyperparameters
based on an evaluation metric that is suitable for PU data [109].

3. Finally, under the selected completlty at random assumption, the class prior
can be incorporated directly into the training algorithms, or can be added
in a preprocessing or postprocessing step of the training procedure. Post-
processing trains a non-traditional probabilistic classifier by considering the
unlabeled data as negative and modifies the output probabilities [47], prepro-
cessing changes the dataset by using the class prior [45]. The class prior can
be determined using dedicated algorithms or it can be tuned using evaluation
metrics for PU data.

1.4.4 . Self Training (ST)

Self-training lacks a clear definition in the literature. It can be viewed as a
“single-view weakly supervised algorithm”. First, a classifier is trained from the
available labeled examples, and then this classifier is used to make predictions and
build new proxy labels. Only those examples where confidence in proxy labeling
exceeds a certain threshold are added to the training set. Then, the classifier is
retrained from the training set enriched with proxy-labels. This process is repeated
in an iterative way [48].

15

1.4.5 . Co-Training (CT)

Starting from a set of partially labeled examples, co-training algorithms [12,
39, 215, 120] aim to increase the number of labeled examples by generating proxy-
labels.

Co-training algorithms work by training several classifiers from the initially
labeled examples. Then, these classifiers are used to make predictions and generate
proxy-labels on the unlabeled examples. The most confident predictions on these
proxy-labels are then added to the set of labeled data for the next iteration.

One crucial aspect of co-training is the relationship between the views (the
sets of explicative variables) used in learning the different models.

The original co-training algorithm [12] states that the independence of the
views is required to properly perform automatic labeling. More recent works [130,
2, 29] show that this assumption can be relaxed. Another requirement is to obtain
at the iteration step a “reasonable” classifier in terms of performances, explaining
why we place co-training on the left of AL and SSL in Figure 1.3 and Figure 1.2.
In [127], a study is given on the optimal selection of the co-training parameters.

Co-training can also be considered as a member of "multi-view training" fam-
ily to which some other members belong to, such as: Democratic Co-learning [221],
Tri-training [219], Asymmetric tri-training [154], Multi-task tri-training [152], which
are not described here.

1.5 . Beyond the Axes

1.5.1 . Learning at the crossroad of the three axes

Using a cube to describe the literature on Weakly Supervised Learning allows
us to use the axes but also the volume of the cube to position existing approaches.
It is now easy to position the approaches related to several axes. For example,
Partial Label Learning may be related to two supervision deficiencies: i) inexact
supervision because multiple labels are provided for each training example; ii) inac-
curate supervision because only one of the labels provided is correct. Positioning
the PLL on the plane defined by these two axes seems more relevant.

Also, this representation highlights some exciting intersections between two
axes or between an axis and a plane. One of these points of interest is the origin
of the three axes, which corresponds to the case where supervision is absolutely
inaccurate, imprecise, and incomplete, which ultimately amounts to unsupervised
learning. Similarly, the point at the opposite end of the cube corresponds to
perfectly precise, accurate, and complete supervision, which equates to supervised
learning.

Finally, this representation could provide insights into the reasons of using
proven techniques from a particular subfield of Weakly Supervised Learning can be
efficient in another. For instance, DivideMix [102] chooses to reuse the efficient
MixUp [210] approach from Semi-Supervised Learning to tackle the problem of

16

Learning with Label Noise. This approach uses Data Augmentation [160] and
Model Agreement [145] to estimate labels probabilities and then discard or keep
the provided labels.

This section is not exhaustive, and interested readers will be able to position
the literature approaches in the cube themselves.

1.5.2 . Deficiency Model
The deficiency model describes the nature of the supervision deficiency. It is

usually described as a probability measure called ȷ : (x; y) 7→ ȷ(x; y), represent-
ing the probability of a sample being corrupted. ȷ can depend on the value the
explanatory variables x ∈ X , the label value y ∈ Y or both of them (x; y).

Different types of supervision deficiencies are described in this section, namely:
Completely At Random (CAR), At Random (AR), and Not At Random (NAR).

If the probability of being corrupted is the same for all training examples,
ȷ : (x; y) 7→ ȷc , ȷc ∈ [0; 1], then the supervision deficiency model is Completely
At Random (CAR). It implies that the cause of the supervision deficiency data
is unrelated to the data. If the probability of being corrupted is the same within
classes, ȷ : (x; y) 7→ ȷy , ∀y ∈ Y, ȷy ∈ [0; 1], then the supervision deficiency model
is At Random (AR). If neither CAR nor AR holds, then we speak of Not at Random
(NAR) model. Here, the probability of being corrupted depends on the sample and
the label value, ȷ : (x; y) 7→ ȷ(x; y). These three deficiency models can be ranked
in a descendant manner, having the NAR model being the most complex one as it
depends on both the instance and label value, which requires a function to model,
to CAR model where only one constant is enough to describe it. These models may
help the practitioner to find links between supervision deficiencies. For example,
PUL is SSL with only one class labeled, which means that the missingness of the
label is linked to the label value, so PUL is an extreme case of SSL AR with
ȷ0 = 1− e and ȷ1 = e (where e is called the propensity score).

AL is another form of SSL where examples are labeled thanks to a strategy,
previously labeled instances, and the ordered iterative process leading to non-iid
labeled data. As such, AL is part of the SSL NAR family. We want to reiterate
that the deficiency model can be applied to any supervision deficiency, even if it
has been primarily featured in RLL and SSL.

1.5.3 . Transductive learning vs. Inductive Learning
As we consider the WSL framework, one may be tempted to use the test set

to guide the choice of the model. But in this case, we need to carefully decide if
in the future the need for a model to predict on another test (deployment) dataset
is required or not. Two points of view could be considered: transductive learning
vs. inductive learning, and this is why we now add a note on them.

Training a machine could take many forms: supervised, unsupervised, active,
online, etc. The number of members in the family is significant, and new members
appear regularly like “federative learning”. However, one may establish a separation

17

between two constant classes based on how the user would like to use the “learning
machine” at the deployment stage. A user does not necessarily want a predictive
model for subsequent use on new data and would rather get insights on its already
gathered data. It is, therefore, necessary to distinguish between inductive learning
and transductive learning.

On one side, the goal of inductive learning is, essentially, to learn a function
(a model) that will later be used on new data to predict classes (classification) or
numerical values (regression). The predictions may be seen as “by-products” of the
model. Induction is reasoning from observed training cases to general rules, which
are then applied to the test cases. On the other side, the goal of transductive
learning is not to obtain a function or a model but only to make predictions on a
given test database and only on this set of instances. Transduction was introduced
by Vladimir Vapnik in the 1990s, motivated by the intuition that transduction
is preferable to induction since, induction requires solving a more general problem
(inferring a function) before solving a more specific problem (computing outputs for
new cases). However, the distinction between inductive and transductive learning
could be hazy, for example, in the case of semi-supervised learning. Knowing this,
the view of Zhou in [224] about “pure semi-supervised learning” and transductive
learning is engaging. The distinction between Transductive and Inductive Learning
concerned most of the learning forms in Figure 1.3.

1.6 . Measurable quantities of WSL

Until now, we have seen many forms of learning and weaknesses intertwine. A
way to resume their aspect was given in Figure 1.3. From this point of view, one
may identify three common concepts that are described now.

1.6.1 . Quantity |L|
An insufficient quantity of labels or training examples occurs when many train-

ing examples are available, but only a tiny portion is labeled, e.g., due to the cost
of labeling. For instance, this occurs in cyber security, where human forensics
is needed to tag attacks. Usually, this issue is addressed by Few Shot Learning
(FSL), active learning (AL) [157] semi-supervised learning (SSL) [21], Self Train-
ing, or Co-Training or active learning (AL), which have been described briefly above
in this Chapter. Another way to see the "quantity" could be the ratio between the
number of examples labeled and unlabeled (p).

1.6.2 . Quality q
In this case, all training examples are labeled, but the labels may be corrupted.

This usually happens when outsourcing labeling to crowds [175]. The Robust
Learning to Label Noise (RLL) approaches tackle this problem [56], with three
types of label noise identified: i) the completely at random noise corresponds to a
uniform probability of label change; ii) the class dependent label noise when the

18

probability of label change depends upon each class, with uniform label changes
within each class; iii) the instance dependent label noise is when the probability
of label change varies over the input space of the classifier. This last type of label
noise is the most difficult to deal with and typically requires making sometimes
strong assumptions about the data.

1.6.3 . Adaptability a [144]

This is the case, for instance, in Multi Instance Learning (MIL) [200, 223, 53,
18], in which there is one label for each bag of training examples, and each example
has an uncertain label.

Some scenarios in Transfer Learning (TL) [190] imply that only the labels in the
source domain are provided while the target domain labels are not. Often, these
non-adapted labels are associated with the existence of slightly different learning
tasks (e.g., more precise and numerous classes are dividing the original categories).

Alternatively, non-adapted labels may characterize a differing statistical indi-
vidual [31] (e.g., a subpart of an image instead of the entire image).

1.7 . From Weakly Supervised Learning to Biquality Learning
(a = 1)

All the types of supervision deficiencies presented above are addressed sepa-
rately in the literature, leading to highly specialized approaches. In practice, it is
tough to identify the type(s) of deficiencies with which a real dataset is associated.

For this reason, it would be beneficial to suggest another point of view as a
tentative of a unified framework for (a part of the) Weakly Supervised Learning to
design generic approaches capable of dealing with not a single type of supervision
deficiency. This section’s purpose is mainly given for cases where data are adapted
to the task to learn (a = 1).

Learning using biquality data has recently been put forward in [23, 79, 76] and
consists in learning a classifier from two distinct training sets, one trusted and the
other not. The initial motivation was to unify semi-supervised and robust learning
through a combination of the two. This chapter shows that this scenario is not
limited to this unification and can cover a more extensive range of supervision
deficiencies, as demonstrated by the algorithms we suggest and their results.

The two datasets contain the same set of features X and the same set of
labels Y. The trusted dataset DT consists of pairs of labeled examples (xi ; yi)
where all labels yi ∈ Y are supposed to be correct according to the true underlying
conditional distribution PT (Y |X). In the untrusted datasetDU , examples xi may be
associated with incorrect labels. We note PU(Y |X) the corresponding conditional
distribution.

At this stage, no assumption is made about the nature of the supervision
deficiencies, which could be of any type, including label noise, missing labels,

19

concept drift, non-adapted labels, ..., more generally, a mixture of these supervision
deficiencies.

The difficulty of a learning task performed on biquality data can be character-
ized by two quantities. First, the ratio of trusted data over the whole data set,
denoted by p:

p =
|DT |

|DT |+ |DU |
(1.1)

Second, a measure of the quality, denoted by q, which evaluates the useful-
ness of the untrusted data DU to learn the trusted concept. For example in [76]
q is defined using a ratio of Kullback-Leibler divergence between PT (Y |X) and
PU(Y |X).

p

q
0 1

1
Supervised

b bRLL

b

AL

SSL New range of problems

b Unsupervised

Figure 1.4: The different learning tasks covered by the biquality setting, representedon a 2D representation.
The biquality setting covers a wide range of learning tasks by varying the

quantities q and p, as represented in Figure 1.4.

• When (p = 1 OR q = 1)3 all examples can be trusted. This setting
corresponds to a standard supervised learning (SL) task.

• When (p = 0 AND q = 0), there is no trusted examples and the untrusted
labels are not informative. We are left with only the inputs {xi}1≤i≤m as in
unsupervised learning (UL).

• On the vertical axis defined by q = 0, except for the two points (p; q) =

(0; 0) and (p; q) = (1; 0), the untrusted labels are not informative, and
trusted examples are available. The learning task becomes semi-supervised
learning (SSL) with the untrusted examples as unlabeled, and the trusted
as labeled.

3 p = 1 =⇒ DU = ∅ =⇒ q = 1

20

• An upward move on this vertical axis, from a point (p; q) = (›; 0) charac-
terized by a low proportion of labeled examples p = ›, to a point (p′; 0),
with p′ > p, corresponds to Active Learning if an oracle can be called on
unlabeled examples. The same upward move can also be realized in Self-
training and Co-training, where unlabeled training examples are labeled
using the predictions of the current classifier(s).

• On the horizontal axis defined by p = 0, except for the points (p; q) = (0; 0)

and (p; q) = (0; 1), only untrusted examples are provided, which corresponds
to the range of learning tasks typically addressed by Robust Learning to
Label noise (RLL) approaches.

Only the edges of Figure 1.4 have been envisioned in previous works – i.e. the
points mentioned above – and a whole new range of problems corresponding to
the entire plan of the figure remains to be explored.

Biquality Learning may also be used to tackle particular tasks belonging to
WSL, for instance:

• Positive Unlabeled Learning (PUL) [7] where the trusted examples are only
positive and untrusted examples from the unknown class.

• Self Training and Co-training [12, 39, 215] could be addressed at the end of
their self-labeled process: the initial training set is the trusted dataset, all
examples labeled after (during the self-labeling process) are the untrusted
examples.

• Concept drift [61]: when concept drift occurs, all the examples used before
a drift detection may be considered untrusted examples, while the examples
available after it is viewed as the trusted ones, assuming a perfect labeling
process.

• Self Supervised Learning system as Snorkel [147]: the small initial training
set is the trusted dataset, and all examples automatically labeled using the
labeling functions correspond to the untrusted examples.

As seen from the above list, the Biquality framework is quite general, and
its investigation seems a promising avenue to unify different aspects of Weakly
Supervised Learning.

21

1.8 . Conclusion

In this Chapter, we propose a unified view of Weak Supervised Learning to
cope with the shortcomings of supervision in the field of Machine Learning. We
discussed these shortcomings through a cube along with three axes corresponding
to the characteristics of training labels (inaccurate, inexact, and incomplete). The
detailed presentation of these axes gives an insight into the different existing learn-
ing approaches, which can be more subtly positioned on the cube. In this way,
the links between some subfields of WSL with Biquality Learning are highlighted,
showing how the algorithms of the latter field can be used within the framework
of WSL.

In Chapter 2 of this thesis, we will propose a theoretical Biquality Learning
framework to ground and regroup existing works in this field. Then, an exhaustive
State-of-the-Art will be compiled and organized around the originating story of the
field. Lastly, we will propose an experimental protocol to fairly evaluate Biquality
Learning algorithm with either synthetic or real-world Biquality datasets, statistical
tests, and visualizations.

22

2 - Biquality Learning

Contents
2.1 Introduction . 25

2.2 Biquality Learning Framework 26

2.3 Related Domains 27

2.3.1 Inductive Transfer Learning 27

2.3.2 Supervised Domain Adaptation 28

2.3.3 Multi-Source Learning 30

2.3.4 Concept Drift 30

2.3.5 Table of Domains 31

2.4 State of the Art 31

2.4.1 Transition Matrices 32

2.4.2 Radon-Nikodym Derivative 33

2.4.3 Auxiliary Data Sources 34

2.4.4 Small Loss Samples 35

2.4.5 Meta Learning 36

2.4.6 Table of methods 37

2.5 Biquality Datasets 38

2.6 Simulated Deficiencies 39

2.6.1 Label Noise 39

2.6.2 Weak Labels 40

2.6.3 Data Poisoning 41

2.7 Evaluation of Biquality Learning Algorithms . . . 41

2.7.1 Baselines . 41

2.7.2 What Makes an Efficient Biquality Learning Al-
gorithm ? . 41

2.8 SotA Limits for Orange 43

2.9 Conclusion . 43

23

2.1 . Introduction

Weakly Supervised Learning (WSL) is the field of Machine Learning related
to Learning with imperfect labels. The imperfections happen in the real world
when labeled samples are hard to get or when manually crafted. When labels are
complex to get, Machine Learning practitioners have been quite ingenious in how
to reuse previously gathered labels, use knowledge from a different task to solve a
target supervision task in Transfer Learning (TL), or design strategies to optimize
the labeling process in Active Learning (AL). When labels are manually crafted,
errors can occur due to experts who need to satisfy the constraints of the labeling
process, as in Learning with Label Noise (RLL) or Covariate Shift (CS). These
edge cases, among others, have been poured into the WSL field, leading to many
different algorithm families and recent WSL taxonomy having difficulty reconciling
and organizing them in a fluid and continuous manner.

In Chapter 1, we revisited the usual WSL taxonomy by defining three axes.
These axes represent supervision deficiencies, namely inaccurate supervision, in-
exact supervision, and incomplete supervision. Inaccurate supervision represents
cases where samples are not labeled correctly, corresponding to a targeted supervi-
sion task. Inexact supervision corresponds to cases where labels are not at the right
proxy, meaning that not every sample has an associated label, for example. These
axes define a continuous cube where sub-fields fluidly lie in a unified framework.
We highlighted the benefits of such a vision and proceeded to detail one particular
plan of this cube named Biquality Learning.

Biquality Learning is a hot topic at the Orange company because it fits the
main Machine Learning use cases such as fraud detection, scammer detection, or
cyber-security attacks detection. Usually, a small, trusted dataset can be crafted by
domain experts but requires lengthy forensic procedures. In contrast, a substantial
untrusted dataset can be crafted by reusing simple rule systems designed by these
experts. Effectively using both datasets and their different natures is essential for
Orange and pushing the Biquality Learning literature is one way to do so.

In Chapter 2, we will provide a theoretical framework for Biquality Learning
algorithms to describe our subject study precisely. Then we will talk about related
domains of Biquality Learning to put into perspective this new domain within the
existing literature. Then, an exhaustive State-of-the-Art will be compiled and orga-
nized around the intuitions used by the author to design their proposed algorithm.
Lastly, we will propose an experimental protocol to fairly evaluate Biquality Learn-
ing algorithm with either synthetic or real-world Biquality datasets, statistical tests,
and visualizations.

25

2.2 . Biquality Learning Framework

Biquality Learning algorithms aim to learn a decision function f : X → Y
that classifies samples X ∈ X by assigning them to a label Y ∈ Y. This decision
function f is learned using two datasets, a trusted one DT and an untrusted one
DU . The two datasets contain the same set of features X and the same set of
labels Y. The decision function f corresponds to the trusted concept PT (Y |X) from
which samples from the trusted dataset are labeled. With biquality learning, no
assumption is made about the difference between the trusted distribution PT (Y |X)

and the untrusted one PU(Y |X).
Learning the true concept1 PT (Y |X) on D = DT ∪DU means minimizing the

risk R on D with a loss L for a probabilistic classifier f :

RD;L(f) = ED;(X;Y)∼T [L(f (X); Y)]

= P(X ∈ DT)EDT ;(X;Y)∼T [L(f (X); Y)]

+ P(X ∈ DU)EDU ;(X;Y)∼T [L(f (X); Y)]

(2.1)

where L(·; ·) is a loss function, from R|Y| × Y to R since f (X) is a vector of
probability over the classes. Since the true concept PT (Y |X) cannot be learned
from DU , the last line of Equation 2.1 is not tractable as it stands. That is why we
propose a generic formalization based on a mapping function g that enables us
to learn the true concept from the modified untrusted examples of DU . Equation
2.1 becomes:

RD;L(f) = P(X ∈ DT)EDT ;(X;Y)∼T [L(f (X); Y)]

+ –P(X ∈ DU)EDU ;(X;Y)∼U [g(L(f (X); Y))]
(2.2)

In Equation 2.2, the parameter – ∈ [0; 1] reflects the quality of the untrusted
examples of DU modified by the function g . This time, the last line is tractable
since it consists of a risk expectancy estimated over the training examples of DU ,
which follows the untrusted concept PU(Y |X), modified by the function g .

To estimate the expected risk, this formalization requires learning three items:
g , –, and then f . Both DT and DU are used to learn a mapping function, g ,
between the two datasets. Then, either – is considered a hyperparameter to be
learned using DT or – is provided by an appropriate quality measure and is con-
sidered an input of the learning algorithm. Finally, f is learned by minimizing the
risk R on D using the mapping g .

In this formalization, the mapping function g plays a central role. Not exhaus-
tively, we identify three different ways of designing the mapping function. For each
of these, a different function g ′ enters the definition of function g :

• The first option consists in correcting the label for each untrusted exam-
ples of DU . The mapping function thus takes the form g(L(f (X); Y)) =

1For reasons of readiness, we denote PT (Y |X) by T and PU(Y |X) by U.
26

L(f (X); g ′(Y;X)), with g ′(Y;X) denote the new corrected labels and f (X)

the predictions of the classifier.

• In the second option, the untrusted labels are used unchanged. The un-
trusted examples X are moved in the input space where the untrusted
labels become correct with respect to the true underlying concept. The
mapping function becomes g(L(f (X); Y)) = L(f (g ′(X)); Y), where g ′(X)

is the “moved” input vector of the modified untrusted examples.

• In the last option, g ′ weights the contribution of the untrusted examples in
the risk estimate. Accordingly, we have g(L(f (X); Y)) = g ′(Y;X)L(f (X); Y).
In this case, the parameter – may disappear from Equation 2.2 since it can
be considered as included in the function g ′.

Biquality Learning algorithms, designed with such mapping functions g , helps
leverage the knowledge from untrusted data to improve the classifier’s efficiency
on the trusted task. However, using additional information from other sources
or correcting past data to improve the performance of a classifier is not new to
Biquality Learning and has been explored in other machine learning domains.

2.3 . Related Domains

Various areas within the field of Machine Learning focus on utilizing additional
information in addition to the primary training dataset to enhance the training
of models. However, the motivations behind these efforts can vary greatly and
have resulted in different fields with their own specific goals. The upcoming Sec-
tion will examine the relationship between these Machine Learning domains and
Biquality Learning, explore how they can be utilized to develop more effective Bi-
quality Learning algorithms, and investigate the limitations of their approaches
when applied to Biquality Data.

2.3.1 . Inductive Transfer Learning
Transfer Learning focuses on storing knowledge gained while solving one prob-

lem and applying it to a different but related problem. Two datasets are at our
disposal, a source dataset DS and a target dataset DT . They are related to a source
domain XS with source labels YS and a target domain XT with target labels YT
to solve the target task P(YT |XT) with the help of the source task P(YS|XS).
Transfer learning aims to leverage the knowledge gained from solving the source
problem to solve the target problem more efficiently.

Briefly, we can draw a parallel between Biquality Learning notations and Trans-
fer Learning notations primarily by substituting (source, S) by (untrusted, U) and
(target, T) by (trusted, T).

Formally, this description of Transfer Learning is the most general setup that
would incorporate Biquality Learning and other well-known setups such as Domain

27

Adaptation, Transductive Transfer Learning, or Covariate Shift. Most specifically
for Biquality Learning, the Transfer Learning setup that best fit is the Inductive
Transfer Learning [135] where:

• XT = XU

• YT = YU

• P(XT) = P(XU)

• P(YT |XT) ̸= P(YU |XU)

From these analogies, any Transfer Learning algorithm that requires, at most,
the Inductive Transfer Learning assumptions could be applied to the Biquality Data
setup with success.

One main assumption of Transfer Learning that has yet to be highlighted
in this Section is the usefulness of the source task to train or improve machine
learning models on the target task. However, in the Biquality Data setup, we can
have untrusted datasets that bring no information to the trusted task when labels
are assigned randomly or even adversarial information when data poisoning have
corrupted the dataset. The impact of this assumption can be directly observed
when using TrAdaBoost [36] on Biquality Data which is a well-known Inductive
Transfer Learning algorithm.

In TrAdaBoost, the first step implies learning a classifier on all trusted and
untrusted data combined. When the untrusted dataset is so corrupted that it
makes learning a classifier impossible in the first iterations when samples are not
corrected, the condition of beating random guessing will not be met, and the
algorithm will stop. Even without this condition, the learned classifier will be close
to random guessing, and no correction provided by TrAdaBoost will be useful to
train a new base learner. The only alternative is to use a highly robust classifier,
but no classifier is robust to data poisoning.

These problems come in all Transfer Learning algorithms such as Multi-Task
Learning [19] or Fine-Tuning [206]. Thus having Inductive Transfer Learning al-
gorithms leads to bad predictive performances when used on Biquality Data with
strongly corrupted data.

2.3.2 . Supervised Domain Adaptation

Another closely related domain to Transfer Learning is Domain Adaptation.
Domain adaptation refers to the process of adapting a model trained on one dis-
tribution of data to work well on a different distribution of data. This is often
necessary because it is impractical or impossible to collect a large enough dataset
to train a model that can generalize well for all possible inputs it may encounter
in practice. The setup is the same as in Transfer Learning with source and target
datasets with their respective domain and labels.

28

The parallel between Domain Adaptation and Biquality Learning is more or
less the same as the one between Transfer Learning and Biquality Learning. Nev-
ertheless, more specifically, if Inductive Transfer Learning was the closest setup of
Transfer Learning to Biquality Learning, for Domain Adaptation it is Supervised
Domain Adaptation, which follows these assumptions:

• XT = XU

• YT = YU

• P(XT) ̸= P(XU)

• P(YT |XT) = P(YU |XU)

When looking at these assumptions, especially with P(YT |XT) = P(YU |XU)
there is no clear evidence on how Domain Adaptation could be helpful to Biquality
Learning. Indeed, adapting features of untrusted samples would have no correction
effect on these data as one of the assumptions of Biquality Learning made in this
Chapter was the absence of covariate shift between the trusted and untrusted
dataset: P(XT) = P(XU).

Remark. The impact of Covariate Shift on Biquality Learning will be studied in
Chapter 4.

However, when looking at the distribution of features in Biquality Data given
the same class P(X|Y), we can observe a change in distribution between the two
datasets. Indeed, given the Bayes Formula P(X|Y) = P(Y |X)P(X)

P(Y) , and at P(X)

and P(Y) constant, corrupting P(Y |X) is equivalent to corrupting P(X|Y). We
illustrate this behavior with the following toy dataset where untrusted samples have
been corrupted with Completly at Random label noise:

Trusted Dataset Untrusted Dataset
Combined Dataset

of samples of class 0
Combined Dataset

of samples of class 1

Figure 2.1: Illustration of the equivalence of Conditional Covariate Shift and ConceptDrift on a toy dataset.
In Figure 2.1, we observe that some untrusted samples of class 0 (in purple)

seem to be out of the normal distribution for trusted samples of class 0 (in red).
The same behavior can be observed for samples of class 1 (respectively in green
and blue).

29

Then, one approach that could be taken to use Domain Adaptation methods
to Biquality Learning would be to train a classifier with K-Domain Adaptations
(with K being the number of classes). This approach can be summarized in an
algorithm we chose to name KDA and will be explored in Chapter 4:

Algorithm 1: K-Domain Adaptation (KDA)
Input: Trusted Dataset DT , Untrusted Dataset DU , ProbabilisticClassifier Family F , Domain Adaptation Algorithm Family

A
1 for k ∈ [[1; K]] do
2 Let DkT = {∀(x; y) ∈ DT | y = k}
3 Let DkU = {∀(x; y) ∈ DU | y = k}
4 Correct DkU feature distribution in respect to DkT with a ∈ A to

a corrected dataset DkC .
5 Let DC = ∪Kk=1D

k
C

6 Learn f ∈ F on DT ∪DC
Output: f

2.3.3 . Multi-Source Learning

In the context of machine learning, multi-source learning refers to the process
of training a model using data from multiple different sources [35]. This can be
useful when trying to improve the model’s performance on a specific task, as it
can help introduce a greater diversity of data and potentially reduce over-fitting.
It can even be used to mitigate the unreliability of multiple sources to aggregate
knowledge and recover the target distribution.

In Multi-Source Learning, all sources are treated equally as being reliable to
the target task, without one specific source considered trusted. Nonetheless, Bi-
quality Learning can be generalized to a Multi-Quality Learning setup with multiple
datasets of different untrustedness and one trusted dataset. Then multiple mapping
functions can be designed to correct all these untrusted datasets to fit the trusted
data distribution. Multi-Quality Learning could be an open research question as
no literature has been found on this subject.

2.3.4 . Concept Drift

In machine learning, concept drift refers to the phenomenon where the statis-
tical properties of the target variable change between training and prediction time,
leading to a degradation in the performance of a model that was trained on past
data. This can occur when the data distribution changes or the relationships be-
tween the features and the target variable change. Concept drift can be a challenge
in machine learning because models must be continuously retrained or updated to
maintain their accuracy and effectiveness.

30

The most significant difference between Biquality Learning and Concept Drift
in practice relates to data availability in the training and prediction phases. In
Biquality Learning, both concepts and data are available at training time, and only
the trusted concept will be needed at prediction time. For Concept Drift, however,
only the untrusted concept will be available at training, and the trusted concept
will be available at prediction time in an online fashion as the untrusted concept
fades away.

This difference in data availability makes Concept Drift literature unusable for
Biquality Learning. Nonetheless, practical or theoretical ideas could be reused with
some significant reworking, especially in evaluating machine learning models under
concept drift. It could inspire ideas of new ways to synthetically corrupt datasets
or formally verify the expected accuracy of Biquality Learning algorithms under
various corruptions.

2.3.5 . Table of Domains
We propose to summarize the previous Section in the form of a table stating

why each related domain are different from the Biquality Learning setup:

Related Domain Differences with Biquality LearningTransfer Learning Assumes the usefulness of the untrusted taskDomain Adaptation Different assumptions on the distribution shiftMulti-source Learning Lack of knowledge of which source is trustedConcept Drift Trusted Data not available at training time
Table 2.1: Table of Related Domains of state-of-the-art

2.4 . State of the Art

Machine learning algorithms on biquality data have been developed in many
weakly supervised learning domains. Some of these sub-domains are robust learning
to label noise, learning under covariate shift, or transfer learning. Because of this
diversity and sometimes different assumptions about the data available, there is
no pre-existing state-of-the-art of Biquality Learning. Thus we propose a state-of-
the-art of Biquality Learning, which is a novel word for a fragmented field which
had no previously agreed conventions. It is organized by the intuitions used by
the author to design their proposed algorithm. At the end of this state-of-the-art,
we will propose another organization based on the formalization introduced at the
beginning of this Chapter (see Section 2.2) and the corruption model that the
algorithm can handle in the form of a table.

31

2.4.1 . Transition Matrices
In the Robust Learning to Label Noise literature, label noise models can be

represented thanks to their transition matrices T, which represents the probability
of seeing a noisy label Ỹ given the true label Y and the features X:

∀(i ; j) ∈ [[1; K]]2; ∀x ∈ X ;Ti ;j(x) = P(Ỹ = j |Y = i ; X = x)

Thus, an essential part of the literature has sought to estimate these transition
matrices to correct the classifier’s training procedure from noisy data.

One way to use these transition matrices is to correct the prediction of classifiers
learned on noisy data. Given the law of total probability:

P(Ỹ |X) =
KX
k=1

P(Ỹ |X; Y = k)P(Y = k |X)

We can recognize a dot product between one row of the transition matrix and
the output of a classifier learned on clean data: ∀x ∈ X ; f̃ (x) = Tt(x) · f (x). If T
is invertible, we can recover the clean distribution thanks to a noisy classifier with
the following formula: ∀x ∈ X ; f (x) = T−1(x) · f̃ (x), which has been proposed in
[213].

This formula provides many other ways to train clean classifiers with noisy
data and a transition matrix. Noisy data can be reweighted [111, 186], noisy
labels transformed to pseudo-clean labels [139], or the minimzed objective can be
corrected when training against noisy labels [124, 178, 139].

Unfortunately, a considerable part of the estimators proposed to estimate these
transition matrices have restrained themselves to estimate transition matrices for
instance independent noise, with ∀x ∈ X ;T(x) = T.

To our knowledge, only one estimator using trusted data [79] improves the
quality of the estimation over the numerous estimators based on untrusted data
(noisy data) only [139, 203, 213, 228]. This estimator is based on a soft version
of the usual confusion matrix used to estimate classifiers’ accuracy:

∀i ∈ [[1; K]]; T̂(i ;∗) =
1

|DiT |
X
x∈Di

T

fU(x)

where DiT = {(x; y) ∈ DT |y = i} and fU is a classifier learned on untrusted
data.

This estimator compares the true label on the trusted data against the predicted
probabilities by fU for each class for a given sample. Then, these predictions are
averaged per class. It is a soft version of the confusion matrix because the predicted
probabilities are used instead of the predicted class.

Thanks to transition matrix estimators based on Biquality Data, it makes all
this sub-literature of Robust Learning to Noisy Labels relevant for the Biquality
Learning framework.

32

This class of algorithms is particularly efficient in correcting untrusted datasets
with complex class-dependent noise. However, there is room for more efficient
transition matrix estimators with instance-dependent label noise [201, 27] to make
Biquality Learning algorithms that are truly uninformed of the corruption model.

2.4.2 . Radon-Nikodym Derivative

In the Empirical Risk Minimization (ERM) framework, when learning a classifier
f : X 7→ Y, we seek to minimize its risk R(f) given a loss function L : Y2 7→ R:

R(f) = E[L(f (X); Y)] =

Z
L(f (X); Y) dP(X; Y)

However, when the true labels Y cannot be observed because of weaknesses of
supervision, we can rewrite given the observed labels Ỹ :

R(f) =

Z
dP(X; Y)
dP(X; Ỹ)

L(f (X); Ỹ) dP(X; Ỹ)

Thus, in order to minimize the true risk of the classifier on true but unob-
served labels, we need to reweight the loss function on the observed labels by
P(X; Y)=P(X; Ỹ). This measure is called the Radon-Nikodym Derivative (RND)
[131] of P(X; Y) with respect to P(X; Ỹ).

This reweighting scheme has particularly inspired the literature of covariate
shift [65, 167], and many algorithms have been implemented to estimate the RND,
regrouped in an umbrella named Density Ratio Estimators [169].

Nevertheless, the assumptions about the distribution difference between the ob-
served and the unobserved data are different in the two fields, as cited in the previ-
ous Section. Indeed, in covariate shift, the ratio we seek to estimate is P(X)=P(X̃)

meanwhile, in Biquality Learning it is P(Y |X)=P(Ỹ |X).
One solution is to rewrite the ratio using the Bayes Formula to highlight a ratio

between the distribution of features :

P(Y |X)

P(Ỹ |X)
=

P(X|Y)P(Y)
P(X|Ỹ)P(Ỹ)

This approach has been followed in [49], where they proposed an algorithm we
called K-DensityRatio (KDR), which is a particular instance of the KDA algorithm
we proposed in subsection 2.3.2. Especially, they correct the feature distribution
by reweighting samples by ˛ thanks to a density ratio estimator e ∈ E.

In [49] Kernel Mean Matching (KMM) [83, 65] has been used as the Density
Ratio algorithm, e, to handle covariate shift.

Another solution to estimate the RND is to use Transition Matrices T [111,
186]:

P(Y |X)

P(Ỹ |X)
=

P(Y |X)

Tt(X) · P(Y |X)
≈ T−1(X) · P(Ỹ |X)

P(Ỹ |X)

33

Algorithm 2: K-DensityRatio (KDR)
Input: Trusted Dataset DT , Untrusted Dataset DU , Density RatioEstimator Family E , Probabilistic Classifier Family F

1 for k ∈ [[1; K]] do
2 Let DkT = {∀(x; y) ∈ DT | y = k}
3 Let DkU = {∀(x; y) ∈ DU | y = k}
4 Learn ek ∈ E on DkT and DkU
5 for (xi ; yi) ∈ DU do
6 ˆ̨(xi ; yi) = eyi (xi)

|Dyi
T |

|Dyi
U |

7 for (xi ; yi) ∈ DT do
8 ˆ̨(xi ; yi) = 1

9 Learn f ∈ F on DT ∪DU with weights ˆ̨

Output: f

However, this solution requires inverting the estimated Transition Matrix, which
has yet to be investigated to the scope of instance-dependent corruptions and has
shown to have subpar performances compared to an algorithm that does not require
to invert it [139].

As with other reweighting algorithms, this class of approaches can be pretty
efficient on instance-dependent corruptions. Nonetheless, reweighting samples is
the less flexible approach to deal with corrupted samples, as the only two outcomes
are keeping or amplifying the sample (affecting a weight of 1, or amplifying it with
a weight > 1) and discarding (affecting a weight of 0). It is fundamentally unable
to correct the sample and can struggle with label noise that flips class label.

In Chapter 4, we will expand the scope of this class of algorithms to distribution
shifts when the ratio of interest is P(X; Y)=P(X; Ỹ).

2.4.3 . Auxiliary Data Sources

Learning with Auxiliary Data Sources has been introduced in [194] to train
machine learning models with a second auxiliary source of data drawn from a
different distribution than the primary data source. It combines the training on the
two sources by minimizing an objective function J, which combines the expected
loss on the two sources D1 and D2 with a parameter ‚:

J(f) = ED1 [L(f (X); Y)] + ‚ED2 [L(f (X); Y)]

Typically, the ‚ parameter is optimized with cross-validation to maximize the
risk of f , R(f), on the primary source.

In the case of Biquality Learning, the untrusted dataset or auxiliary source,
could be detrimental to the optimization procedure of the objective function. It has
been proposed to change the loss used on the untrusted dataset to a combination

34

of a robust loss to label noise and a semi-supervised loss [76]. The drawback of
the proposed approach is that it introduces another hyperparameter to balance the
Robust Learning to Label noise loss and the Semi-Supervised loss.

2.4.4 . Small Loss Samples

When training loss-based models, such as neural networks, on label noise, it
can be helpful to use the loss value of a training example to determine whether its
label is noisy. Research has shown that deep neural networks can learn general and
high-level patterns from the data before being affected by overfitting, mainly when
label noise is present [5, 103]. However, when noisy examples are encountered later
on in the training process, they are often associated with a high loss value and can
have a significant impact on the training procedure [209]. To address this, one
approach is to prioritize small loss and easy examples in the early stages of training
and save high loss and difficult examples for later. This approach is known as
Curriculum Learning and is achieved by using heuristic-based schemes [9]. Theses
schemes are based on sample reweighting with a factor ˛ which usually depends
on the loss value of the sample and the fraction of the training procedure.

Self Paced Learning (SPL) [98] is an example of such algorithm, where all
samples with a model f loss L below a given threshold – are defined as easy. This
threshold grows linearly with the number of iterations t of the learning procedure
by a factor —.

˛SPL(xi ; yi ; t) = 1(L(yi ; f (xi)) < –t)

–t+1 = –t ∗ —
(2.3)

Other approaches such as Hard Negative Mining (HNM) [50] have taken the
complete opposite direction and have been found to be empirically efficient.

˛HNM(xi ; yi ; t) = 1(L(yi ; f (xi)) > –t)

–t+1 =
–t
—

(2.4)

Many more algorithms exist with hand-designed curricula, such as Focal Loss
[106] or Linear Weighting [87]. The main issue with these methods is that the
curriculum is hand designed. Sometimes the prior and bias of designers do not
apply well to a given dataset, and practitioners need to try many schemes before
finding the right fitting one.

Designing an algorithm that learns a curriculum from the data would be much
more versatile and efficient. MentorNet [88] proposes a modern take on curriculum
learning and design such an algorithm that learns a curriculum from Biquality
Data instead of hand designing it. MentorNet is composed of a student and a
teacher model. The student learns from the examples chosen by the teacher. The
teacher learns to pick an example from the data, the label, and the loss of the
student. Both learn iteratively, one after the other. The teacher network is trained

35

by learning to predict which samples are trusted or untrusted from the features
described previously. Then the student learns from the untrusted data thanks to
the curriculum provided by the teacher.

...

forward pass

Pretrain
(Experience Replay)

loss

MentorNet

MentorNet

LSTM

LSTM LSTM

fc

em
b

tr
an

s

loss

StudentNet

MentorNet

input from clean
validation set

Finetune

MentorNet Architecture

StudentNet

DummyNet

loss

MentorNet

DummyNet

MentorNet

 StudentNet

backward pass

mini-batch

a) No Regularization c) Data Regularizationb) Model Regularization

others

latent weight

fc
1

predictions

backward pass

...
loss

fc
1

weights

LSTM LSTM

fc
1

(t
an

h
)

fc
2

(s
ig

m
o

id
)

p
ro

b
 s

am
p

lin
g

weights

...

mini-batch data

em
b

forward pass

backward pass

Figure 2.2: Mentor Net Architecture from [88]

2.4.5 . Meta Learning
Meta-Learning is the learning to learn field of Machine Learning [81]. It consists

of an inner or base learning algorithm that seeks to solve a given task and an outer
or meta-learning algorithm that updates the inner learning algorithm such that the
model it learns improves an outer objective. Meta-Learning can be viewed as a
Bi-Level Optimization [165] where one optimization contains another optimization
as a constraint [54, 163]:

!∗ = argmin
!

Louter („∗(!); !;Douter) (2.5)
s.t. „∗(!) = argmin

„
Linner („; !;Dinner) (2.6)

where „ represents the parameters of the inner model and ! represents the
meta-knowledge.

Meta-Learning approaches, especially from the view of Bi-Level Optimization,
particularly fit the needs of Biquality Learning, especially through the framework
of Section 2.2. In the Biquality Learning framework, we seek to learn a mapping
function g which optimizes the outer performance of our model f learned on the
inner mapped untrusted dataset.

Thanks to this observation, a myriad of Meta-Learning approaches for Biquality
Learning has been designed. Most notably, approaches that seek to learn what we
described in the previous Sections of this state-of-the-art instead of hand-designing
estimators.

For example, approaches have been designed to learn Transition Matrices as
if they were model parameters thanks to a Bi-Level optimization [162], sample

36

weights have been learned as embeddings of size 1 with Meta-Learning [149, 107],
or curriculums have been learned from the data instead of hand designing them
[161]. More specifically, people have learned such mapping function g that are
able to correct labels of untrusted samples, such that the performance of f on
the trusted task is optimized. For example, Meta Label Correction (MLC) [218]
proposed to model g as a neural network that takes the input features or embed-
dings of samples and their untrusted labels and output a corrected label. Other
approaches have tried to reuse efficient ideas from the Robust Learning to La-
bel noise literature and modified the hand-crafted solutions to learned algorithms
thanks to Meta-Learning with great success [195, 222, 171]

A considerable drawback of such approaches is the complexity of training
them. Usually, these algorithms are trained with the Model Agnostic Meta Learn-
ing (MAML) framework [51], which is known to be computationally and memory
intensive as it requires storing multiple iterations of the base models and going
through it multiple times for each training iteration. Moreover, the MAML frame-
work only works on base model and meta knowledge that are differentiable, which
does not allow the use of the most famous shallow classifiers.

Though they are not trained precisely in the same manner as the previously cited
algorithms, MentorNet [89] can also be considered a Meta-Learning algorithm, as
it uses alternative optimizations.

2.4.6 . Table of methods

The Table 2.2 summarizes this State-of-the-Art Section that lists all known
Biquality Learning algorithms with some additional details. The column Fam-
ily corresponds to what kind of correction the algorithm makes to the untrusted
dataset by referring to the three proposed methods earlier in the Chapter (Section
2.2). The CAR (Completely at Random), AR (At Random), and NAR (Not at
Random) tell which corruption model the algorithm is capable of handling. Finally
the Table is split into three parts, the first part list classifier-agnostic approaches,
the second part is dedicated to Neural Networks only algorithms and the third part
is for Meta-Learning approaches using the Bi-Level Optimization Framework.

From this Table 2.2, we can observe that, lately, the community has been
focused on designing more clever and complex algorithms based on Meta-Learning
and the Bi-Optimization Framework. The resulting algorithms are quite efficient on
a vast number of tasks but are restrained to a class of machine learning algorithms
that is capable of being trained with Meta-Learning (based on TensorFlow [1] or
Pytorch [138]).

Moreover, we can observe that we did not find approaches that tried to model
the mapping function g to move samples to the correct feature point. Making
more connections between the Domain Adaptation and Biquality Learning literature
could be an interesting new research path.

37

Algorithms Family CAR AR NAR
Agn

ost
ic Backward [124, 139] (with GLC [79]) Reweighting (3) X X ×Plugin [213] (with GLC [79]) Correction at Prediction (?) X X ×IR [111, 186] (with GLC [79]) Reweighting (3) X X ×DIW [49] Reweighting (3) X X X

DN
N Forward [139] (with GLC [79]) Loss Correction (?) X X ×Mixmixup [76] Robust Loss (?) X × ×MentorNet [88] Reweighting (3) X X X

Me
ta-L

ear
nin

g MW-Net [161] Reweighting (3) X X ×L2RW [149] (SOSELETO [107]) Reweighting (3) X × XMLC [218] Correcting (1) X X ×MSLC [195] Correcting (1) X X ×L2B [222] Correcting (1) X X XWarPI [171] Correcting (1) X X X

Table 2.2: Table of Biquality Learning State-of-the-Art.

2.5 . Biquality Datasets

A Natural Biquality Dataset consists of two datasets, one with correctly la-
beled samples for a supervised classification task that can be the trusted dataset
and another with corrupted labels that can be the untrusted dataset. There are
three well-known Biquality Datasets up to this date that are publicly available to
benchmark Biquality Learning algorithms. They are all datasets for Image Classifi-
cation with web-scrapped images. As these datasets are huge, containing up to a
million images, it was impossible to label all of them correctly. The labels assigned
to each image correspond to the query made to the search engine. Yet, for all three
datasets, a small part of the dataset has been cleanly annotated, constituting a
trusted dataset.

The most widely known of them is called Clothing1M [199]. This dataset of
web-crawled clothing images from several online shopping websites comprises 1M
untrusted samples, and 14K trusted samples with an approximate noise rate of
38:5%.

The WebVision [104] dataset is another dataset that contains 2.4M untrusted
images crawled from Flickr and Google with 50K trusted images classified in 1000
classes and an approximate noise rate of 18%.

Food-101N [101] is an image dataset containing about 310K untrusted images
of food recipes classified in 101 classes along 5K trusted labels with a noise rate
of 20%. It is a bigger version of the Food-101 [13] dataset with way more noisy
images and a trusted dataset.

In addition to these three datasets, two datasets have been recently published,
CIFAR-10N and CIFAR-100N [189] which are noisy versions of the same usual
CIFAR-10 and CIFAR-100 datasets. For these two datasets, the usual clean version
of the label is available in addition to a label annotated by a human using Amazon

38

Dataset |DT | |DU | q̂ |Y|Clothing1M [199] 14K 1M 0.6 14Food-101N [101] 5K 310K 0.8 101WebVision [104] 50K 2.4M 0.8 1000
Table 2.3: Natural Biquality Datasets used for the evaluation. Columns: numberof trusted examples (|DT |), number of untrusted examples (|DU |), estimation of un-trusted quality (q̂), and number of classes (|Y|).

Mechanical Turk. Thus these datasets can be randomly split into a trusted and
untrusted dataset, with the trusted dataset getting labels from the clean CIFAR-10
and CIFAR-100 datasets and the untrusted dataset getting the label from CIFAR-
10N and CIFAR-100N.

2.6 . Simulated Deficiencies

If natural Biquality datasets are a good way to benchmark Biquality Learning
algorithms’ efficiency in the real world, they are limited for two reasons. First,
there is yet to be a sufficient amount of Biquality datasets to significantly compare
two algorithms to decide which one performs statically better thanks to statistical
tests. Second, the quality and ratio of trusted data are set in advance because of
their nature, and it is harder to understand when a Biquality Learning algorithm
performs better than another. That is why simulating artificial deficiencies in usual
classification datasets is useful when evaluating Biquality Learning algorithms.

To create a Biquality dataset from a public classification dataset supposedly
clean, the first part consist in splitting the dataset into two parts using a strat-
ified random draw, where p is the percentage for the trusted part. Then, the
trusted dataset is left untouched, whereas corrupted labels are simulated in the
untrusted dataset using different techniques. Usually, these various corruptions
will be parametrized by a corruption strength.

2.6.1 . Label Noise
Label noise is a great way to corrupt samples in a practical, easy-to-understand,

and reproducible manner.
As stated earlier in this Section, label noise models can be represented thanks

to their transition matrices T, which represents the probability of seeing a noisy
label Ỹ given the true label Y and the features X:

∀(i ; j) ∈ [[1; K]]2; ∀x ∈ X ;Ti ;j(x) = P(Ỹ = j |Y = i ; X = x)

In order to more easily define label noise patterns with a measurable strength,
the transition matrix is usually split into a convex combination of two matrices:
the identity matrix I and a corruption matrix C which is row stochastic, with a
factor ȷ : X 7→ [0; 1]:

∀x ∈ X ;T(x) = (1− ȷ(x)) IK + ȷ(x)C

39

The factor ȷ defines the overall corruption strength of the synthetic label noise,
which locally can depend on the feature values. In particular if ȷ(x) = 0, then
T(x) = IK and no noise is generated, whereas if ȷ(x) = 1, then T(x) = C and
generated labels are completely noisy. The overall corruption strength is defined
by q = 1−

R
X ȷ.

One of the commonly used corruption matrices is the uniform matrix:

C =
1

K
JK

The uniform matrix is the matrix of ones normalized by the number of classes K
[111, 139]. When a sample is corrupted, it gets assigned a value sampled randomly
from the set of all possible labels. At ȷ constant, the uniform matrix leads to a
Completely At Random corruption as the noisy label is independent of the class
value (C is column stochastic).

Another widely used corruption matrix is the background matrix:

C = E∗J

The background matrix is a matrix of zeros with a column J ∈ [[1; K]] filled with
ones [149]. When a sample is corrupted, the label J is automatically assigned. At
ȷ constant, the background matrix leads to a At Random corruption as samples
already labeled J cannot be corrupted (C is not column stochastic).

Finally, another used corruption matrix is the flip matrix:

C = PK

The flip matrix is a permutation matrix with exactly one entry of 1 in each row and
each column and 0s elsewhere [161]. When a sample is corrupted, it gets assigned
automatically to the associated noisy label of its clean class. The flip matrix
obviously leads to a class-dependent or At Random corruption at ȷ constant.

The factor ȷ : X 7→ [0; 1] will tell if the generated label noise is instance-
dependant. If not constant, it could be designed using classifier uncertainty or
even the density of the feature distribution [197].

2.6.2 . Weak Labels
Using weak labels to corrupt a dataset can be useful for simulating the scenario

of label noise that may arise from using a less accurate classification system. In
real-world applications, it is common for labels to be provided by sources that
are not 100% accurate, for example, scraping image labels from surrounding text
on web pages. These labels may still provide valuable information but may also
introduce noise into the dataset if not corrected.

In practice, weak labels can be generated by training a classifier on the un-
trusted dataset and using its predictions to relabel untrusted samples. To vary
the corruption strength, the classifier can be trained on a restricted train dataset

40

instead of the entire untrusted dataset. Finally, instead of assigning to untrusted
samples the predicted label by the classifier, one can sample a label from the
distribution of the predicted probabilities of the classifier [79].

2.6.3 . Data Poisoning
Data Poisoning are inputs to a machine learning model that have been specifi-

cally crafted to cause the model to make a mistake. These inputs are typically very
similar to valid inputs but have small, carefully chosen perturbations that cause
the model to misclassify them. Data Poisoning would be the most potent way to
corrupt the untrusted dataset synthetically [216, 198].

2.7 . Evaluation of Biquality Learning Algorithms

In order to assess the efficiency of Biquality Learning algorithms, we have to
be careful on two points. First, we need to check that the proposed methods verify
some required behaviors that are listed under the form of baselines in the following
Subsection. Then we will need to define what makes a Biquality Learning better
than another.

2.7.1 . Baselines
We propose the three following baselines that Biquality Learning algorithms

need to beat:

• Trusted Only : The final classifier f obtained with our algorithm should be
better than a classifier fT that learned only from the trusted dataset, insofar
as untrusted data bring useful information about the trusted concept. At
least, f should not be worse than using only trusted data.

• No Correction: The final classifier f should be better than a classifier fNC
learned from both trusted and untrusted datasets without correction. A bi-
quality learning algorithm should leverage the information provided by having
two distinct datasets. Meaning the ability to efficiently correct low-quality
untrusted datasets and not get degraded by high-quality untrusted datasets
(negative transfer) [105].

• Semi-Supervised : The final classifier f should be better than a classifier fST
learned from both trusted and untrusted datasets, using a semi-supervised
approach by discarding untrusted labels. A biquality learning algorithm
should leverage the information provided by the untrusted labels.

2.7.2 . What Makes an Efficient Biquality Learning Algorithm ?
Telling if a Biquality Learning algorithm is efficient is not a straightforward

task. Indeed, in usual supervised learning, we can compare the test accuracy of
two models coming from different training algorithms and test which accuracy is the

41

highest. However, if we do that we could get only a partial response for Biquality
Learning algorithms. For example, when willing to compare the Untrusted Only
and Trusted Only on a biquality dataset, if the quality of the untrusted dataset
is high, the Untrusted Only baseline will win because of the number of untrusted
samples, and if the quality is low, the Trusted Only baseline will win. We thus
need to look at two metrics:

• The average accuracy over all tested qualities to assess the bias of the
algorithm, meaning the intrinsic efficiency to leverage biquality data.

• The standard deviation of the accuracy over all tested qualities to asses the
variance of the algorithm, meaning its robustness to different qualities.

The same reasoning can be applied to the ratio of trusted data.
That is why using synthetic corruptions is important for assessing the efficiency

of Biquality Learning algorithms, as they allow the complete control of both the
ratio of trusted data and the quality of untrusted labels. It is thus important to
report each metrics for every tested p and q when comparing two competitors.
Yet, it is still important to report the global metric for the sake of ranking multiple
approaches.

To do so, the literature usually uses the error curve where the accuracy of the
classifier is plotted against different corruption strength.

Noise level0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Meta-WN GLC MLC (K=1) MLC (K=5) MLC (K=10)

Figure 2.3: Example of on Error Curve plotting the accuracy w.r.t to noise level onuniform label noise on CIFAR10 from [218]
This plot allows us to see both the mean performance of the algorithm and

it’s variation when the corruption strength grow. Then, the curve is summarized
thanks to the area under the curve to have an overall performance of the Biquality
Learning algorithm. Finally, these experiments are conducted multiple times with
different ratio of trusted data and are aggregated in a table. Still, this way to
compare two competitors seems to lack statistical significance and does not tell
on which configurations of p and q one competitor is beating another. It seems
that the literature is lacking a true statistical testing approach to compare two

42

Biquality Learning Algorithms. We will propose in Chapter 3 and 4 a rigorous
approach based on the Wilcoxon signed-rank test [191] for this problem.

2.8 . SotA Limits for Orange

From what has been presented in this Chapter, we can see some of the limits
of the actual state-of-the-art of Biquality Learning for Orange.

Most notably, the community has been focused on designing more clever and
complex algorithms based on Deep Neural Networks. Yet, classic shallow machine
learning models (such as those implemented in Scikit-Learn [140]) are still the
better approach for tabular classification tasks [67], which are of interest to Orange,
a company disposing of many of such datasets. The field needs algorithms that
are genuinely classifier agnostic.

Moreover, all existing Biquality Datasets are restricted to image classification.
Yet again, one of the problems of datasets for image classification is to encourage
the use of Deep Neural Networks as shallow classifiers under-performs on this task.
Additionally, the low number of existing Biquality Datasets could produce noisy
outcomes when using statistical tests to compare to competitors. Thus, it would
be preferable to resort to synthetic corruptions on tabular classification datasets to
improve the number of comparisons between algorithms and to feed the need for
Orange better.

2.9 . Conclusion

In this Chapter, we proposed a generic formalization for the problem of Bi-
quality Learning based on a mapping function that enables us to learn the true
concept from the modified untrusted examples. We identified three ways of de-
signing the mapping function: correcting the label of untrusted examples, moving
untrusted samples in the input space, or reweighting untrusted samples. We ex-
amined the relationship between other fields of Machine Learning that focus on
utilizing additional information and Biquality Learning. We proposed a state-of-
the-art of Biquality Learning approaches organized by the intuitions used by their
authors. We then reviewed the existing Biquality Datasets in the wild and ways
to craft them synthetically. Finally, we exposed how to properly benchmark them
and understand their strength and weakness.

In Chapter 3, we will propose an algorithm for Importance Reweighting for
Biquality Learning (IRBL) and do an extensive benchmark on a vast number of
datasets and synthetic corruptions to prove the efficiency of the proposed ap-
proach.

43

3 - Importance Reweighting for Biquality Learn-
ing

Contents
3.1 Introduction . 47

3.2 A new Importance Reweighting approach for Bi-
quality Learning 48

3.3 Simulating Supervision Deficiencies 50

3.3.1 Datasets . 50

3.3.2 Simulated Supervision Deficiencies 51

3.4 Experiments . 52

3.4.1 Quality of the Reweighting Scheme 53

3.4.2 Benchmark against State-of-the-art-competitors 54

3.4.3 Results . 56

3.5 On the Calibration of Classifiers 59

3.5.1 Under-Confidence and Over-Confidence 59

3.5.2 Calibrating non-calibrated Classifiers 60

3.5.3 Simulating Poorly Calibrated Classifiers 60

3.5.4 Results . 61

3.6 On the Specification of Classifiers 64

3.6.1 Suitability and Expressiveness of Classifiers . . . 65

3.6.2 Wrongly Specified Classifiers 67

3.6.3 Effects on IRBL 67

3.6.4 Results . 68

3.7 IRBL and Multiclass Classification 69

3.8 Conclusion . 72

This Chapter is an extension of a publication of the authors: Pierre Nodet,
Vincent Lemaire, Alexis Bondu, Antoine Cornuejols, and Adam Ouorou. Importance
reweighting for biquality learning. In International Joint Conference on Neural
Networks (IJCNN). IEEE, 2021.

45

3.1 . Introduction

When training supervised machine learning models in real world, trusted labeled
samples might not be available in sufficient quantity. One solution is to obtain
labeled samples from worse quality and untrusted sources. Nevertheless, these
samples could have been badly corrupted and must be corrected before being used
to train a machine learning model.

In Chapter 2, we proposed the Biquality Learning framework to correct un-
trusted samples via a mapping function g from the untrusted dataset DU to the
trusted dataset DT . g should modifies the empirical risk R of a given loss function
L such that minimizing R on DU with the new objective g ◦L should be equivalent
to minimize R with the objective L on DT . This function can take several partic-
ular forms, notably the following: g(L(f (X); Y)) = g ′(Y;X)L(f (X); Y) defined in
Equation 2.2.

In this case, the mapping function g ′ defines a reweighting scheme for the
untrusted samples such that the untrusted distribution they are sampled from is
empirically corrected to the trusted distribution. From measure theory, we know
that such a reweighting scheme always exists and is unique and is called the Radon-
Nikodym derivative (RND) [131] of PT (X; Y) with respect to PU(X; Y):

Theorem 3.1.1 (Radon-Nikdoym-Lebesgue theorem [153]). Let — and two
positive ff-finite measures defined on a measurable space (X;A) with being ab-
solutely continuous with respect to —. Then there exists a unique positive measur-
able function f defined on X such that:

∀A ∈ A; (A) =
Z
A
f d— (3.1)

Typically, machine learning datasets form measurable spaces, and probability
densities are positive finite measures on these measurable spaces. Thus the map-
ping function g ′ exists, is unique, and is the RND of PT (X; Y) with respect to
PU(X; Y).

As such, in this Chapter, we propose a new algorithm, IRBL, to estimate the
Radon-Nikodym derivative between the two datasets in the context of Biquality
Learning.

Section 3.2 introduces our proposed algorithm for Importance Reweighting
for Biquality Learning (IRBL). Section 3.3 describes our experimental protocol to
evaluate Biquality Learning algorithms. Section 3.4 is dedicated to an extensive
benchmark of the proposed algorithm against state-of-the-art biquality learning al-
gorithms. Experiments are conducted on a vast number of datasets under different
and complex corruptions models, such as instance dependent label noise. Then,
Sections 3.5 and 3.6.1 will open two discussions about the methodology and the
efficiency of the proposed algorithm IRBL. Section 3.5 will study the impact of the
calibration of the classifiers used for IRBL (readers will understand why in Section

47

3.2). Next, Section 3.6 studies the impact of the expressiveness (i.e VC dimen-
sion [180]) of classifiers and its capacity to improve with a growing training set
on IRBL. Finally, Section 3.7 will extend experiments of Section 3.4 to multi-class
classification datasets with class-dependent label noise.

3.2 . A new Importance Reweighting approach for Biquality
Learning

Inspired by the importance reweighting trick from the covariate shift literature
[112], we use the Radon-Nikodym Derivative (RND) [131] of PT (X; Y) with respect
to PU(X; Y) which is dPT (X;Y)

dPU(X;Y)
as a reweighting scheme for the untrusted dataset.

Equation 3.2 shows that minimizing the reweighted empirical risk by the RND on
the untrusted data is equivalent to minimizing the empirical risk on trusted data.

R(X;Y)∼T;L(f) = E(X;Y)∼T [L(f (X); Y)]

=

Z
L(f (X); Y) dPT (X; Y)

=

Z
dPT (X; Y)
dPU(X; Y)

L(f (X); Y) dPU(X; Y)

= E(X;Y)∼U [
PT (X; Y)
PU(X; Y)

L(f (X); Y)]

= E(X;Y)∼U [˛ L(f (X); Y)]

= R(X;Y)∼U;˛L(f)

(3.2)

By using Biquality Learning hypothesis, we can simplify ˛ using the Bayes
Formula. Indeed, it assumes that the distribution of the features P(X) between
the two datasets is the same (the impact of such a difference will be studied in
Chapter 4). However, the two underlying concepts PT (Y |X) and PU(Y |X) are
possibly different due to a supervision deficiency.

˛(X; Y) =
PT (X; Y)
PU(X; Y)

=
PT (Y |X)P(X)

PU(Y |X)P(X)
=

PT (Y |X)

PU(Y |X)
(3.3)

Finally, we propose Algorithm 3 to estimate ˛:
The proposed algorithm, Importance Reweighting for Biquality Learning (IRBL),

aims to estimate ˛ from DT and DU , whatever the unknown supervision deficiency.
It consists of two successive steps. First, the vector of ratios between PT (Y |X) and
PU(Y |X) is estimated by the term

D
fT (xi)
fU(xi)

E
, using the models fT and fU , whose size

K corresponds to the number of classes. For each untrusted example, the weight
ˆ̨ is the yi -th element of this vector1 (see line 4); while ˆ̨ is fixed to 1 for the
trusted examples (see line 6). Then, the final classifier is learned from DT ∪ DU
with examples reweighted by ˆ̨.

1If fU(:) = 0, then ˆ̨ = 0 as in [112].
48

Algorithm 3: Importance Reweighting for Biquality Learning(IRBL)
Input: Trusted Dataset DT , Untrusted Dataset DU , ProbabilisticClassifier Familiy F

1 Learn fU ∈ F on DU
2 Learn fT ∈ F on DT
3 for (xi ; yi) ∈ DU do
4 ˆ̨(xi ; yi) =

D
fT (xi)
fU(xi)

E
yi

5 for (xi ; yi) ∈ DT do
6 ˆ̨(xi ; yi) = 1

7 Learn f ∈ F on DT ∪DU with weights ˆ̨

Output: f

It is noted that the proposed algorithm IRBL does not require assumptions on
the nature of the untrusted dataset’s corruption nor on its level which makes the
approach truly uninformed.

Our algorithm is theoretically grounded since it is asymptotically equivalent to
minimizing the risk on the true concept using the entire data set (see proof in
Equation 3.4).

R̂D; ˆ̨L(f) =
1

|D|
X

(xi ;yi)∈D

“
1(xi ;yi)∈DT

L(f (xi); yi) + 1(xi ;yi)∈DU
ˆ̨(xi ; yi)L(f (xi); yi)

”
=

1

|D|
X

(xi ;yi)∈DT

L(f (xi); yi) +
1

|D|
X

(xi ;yi)∈DU

ˆ̨(xi ; yi)L(f (xi); yi)

=
p

|DT |
X

(xi ;yi)∈DT

L(f (xi); yi) +
1− p
|DU |

X
(xi ;yi)∈DU

ˆ̨(xi ; yi)L(f (xi); yi)

= pR̂DT ;L(f) + (1− p)R̂DU ; ˆ̨L
(f)

≈ pR̂DT ;L(f) + (1− p)R̂DT ;L(f)

≈ R̂DT ;L(f) (3.4)
Proof in Equation 3.4 is an asymptotic result: in practice, our algorithm relies

on the quality of the estimation of PT (Y |X) and PU(Y |X) in order to be efficient.
In the biquality setting, they both could be hard to estimate because of the small
size of DT and the poor quality of DU . Furthermore choosing the right family of
classifier in terms of calibration and specification matters and is studied in Section
3.5 and Section 3.6.

49

3.3 . Simulating Supervision Deficiencies

In order to evaluate and benchmark the proposed IRBL algorithm against state-
of-the-art competitors, we need to have fine-grained control over the size ratio
between the trusted and untrusted dataset and the strength of the corruption of
the untrusted dataset.

3.3.1 . Datasets
To do so, we selected a list of public datasets for classification. In Section

3.4, these datasets will be restricted to binary classification and will be extended
to multi-class classification in Section 3.7.

Moreover, in this chapter, we decided to restrict our experiments to tabular
datasets, in opposition to images or text datasets. Indeed, in industrial applications
familiar to us, such as fraud detection, Customer Relationship Management (CRM),
and churn prediction, we are mainly faced with binary classification problems. The
available data is of average size regarding the number of explanatory variables and
involves mixed variables (numerical and categorical).

The tabular datasets for binary classification are listed in Table 3.1.

Table 3.1: Binary classification datasets used for the evaluation. Columns: numberof examples (|D|), number of features (|X|), number of classes (|Y|), and ratio ofexamples from the minority class (min).
Datasets |D| |X| |Y| min

ad 3K 1558 2 0.14eeg 15K 14 2 0.45ibn_sina 21K 92 2 0.38zebra 61K 154 2 0.05musk 6K 167 2 0.15phishing 11K 30 2 0.44spam 5K 57 2 0.39ijcnn1 191K 22 2 0.10diabetes 768 8 2 0.35credit-g 1K 20 2 0.30hiva 43K 1617 2 0.04

Datasets |D| |X| |Y| min

svmguide3 1K 22 2 0.24web 37K 123 2 0.24mushroom 8K 22 2 0.48skin-segmentation 245K 3 2 0.21mozilla4 16K 5 2 0.33electricity 45K 8 2 0.42bank-marketing 45K 16 2 0.12magic-telescope 19K 10 2 0.35phoeneme 5K 5 2 0.29poker 1M 10 2 0.50

The datasets in Table 3.1 come from different sources: UCI [42], libsvm [20],
and active learning challenge [70]. A part of these datasets comes from past chal-
lenges on active learning, where high performances with a low number of labeled
examples have proved challenging to obtain. With this choice of datasets, a large
range of the class ratio is covered with different levels of imbalance. Also, the
number of rows and columns varies significantly, with a corresponding impact on
the difficulty of the learning tasks.

50

3.3.2 . Simulated Supervision Deficiencies
To obtain a trusted dataset DT and an untrusted one DU , each dataset is split

into two parts using a stratified random draw, where p is the percentage for the
trusted part. The trusted datasets are left untouched, whereas corrupted labels
are simulated in the untrusted datasets using different techniques.

This chapter will focus on label noise, although other corruptions could have
been tested such as concept drift [115] or data poisoning [155]. Label noise models
can be represented thanks to their transition matrices T , with ∀(i ; j) ∈ [[1; K]]; ∀x ∈
X ;Ti ;j(x) = P(Ỹ = j |Y = i ; X = x). The two label noise models we are going to
focus on are:

• Noisy Completely At Random (NCAR): Corrupted untrusted examples are
uniformly drawn from DU with a probability ȷ ∈ [0; 1] and are assigned
a random label that is also uniformly drawn from Y. The corresponding
transition matrix is : T = (1−ȷ)IK+ ȷ

KJK , where IK is the identity matrix,
JK is the unit matrix, and ȷ is the noise ratio. Label noise completely at
random is both instance independent, as T does not depend on x , and class
independent, as T is column stochastic.

• Noisy Not At Random (NNAR): Corrupted untrusted examples are drawn
from DU with a probability measure ȷ : X 7→ [0; 1] that depends on the
instance value and are assigned a random label that is also uniformly drawn
from Y. The corresponding transition matrix is : ∀x ∈ X ;T(x) = (1 −
ȷ(x))IK + ȷ(x)

K JK , where IK is the identity matrix, JK is the unit matrix,
and ȷ is the noise probability function. This model of label noise not at
random is still class independent but not instance independent anymore.

As an instance of the ȷ function for NNAR, we propose to use the uncertainty
function from the Active Learning literature [158]. Uncertainty functions are used
in sampling processes to get annotations from a human for samples in which the
trained model has the least confidence. Several examples of such functions are the
uncertainty, margin, or the entropy function.

We propose to use such functions as our noise probability function because we
want to model label noise from human error, where annotators would be more likely
to make an error when annotating a sample for which they are uncertain of their true
label. As such, we will use the uncertainty function in the following experiments:
ȷ(x) = 1 − maxy∈Y P(Y = y |X = x). To model the human annotator, or the
distribution P(Y |X), we will preemptively learn a model f on the whole dataset D
unmodified.

However, by using directly the noise probability function ȷ(x), we cannot con-
trol the average noise probability or noise ratio of the untrusted dataset. Thus in
these experiments, we are going to use ȷ(x)„ as the probability function with „
being optimized such that E[ȷ(X)„] = 1 − q. Similarly in the NCAR case with
ȷ(x) = ȷ, we have ȷ = 1− q.

51

un
ifo

rm
quality (q) = 1.0 quality (q) = 0.8 quality (q) = 0.5 quality (q) = 0.2

un
ce

rta
in

ty

Figure 3.1: Artificial dataset perturbed by different label noises, NCAR (uniform), andNNAR (uncertainty) with decreasing quality (1 to 0:2).

Figure 3.1 illustrates the proposed noise model. This figure represents an arti-
ficial dataset composed of three blobs, each corresponding to one of three classes
illustrated with different colors. Each column corresponds to a different quality q,
and each row corresponds to a different noise model: the first line is NCAR, and
the second line is NNAR. On the second line were added decision boundaries of
One Versus Rest linear classifiers denoted by colored lines (corresponding to the
"one" class).

From Figure 3.1, we can see the effect of using ȷ(x) instead of a constant ȷ by
looking at the differences between the first and the second line. In the second line,
samples closest to the decision boundaries have a way higher chance of getting
corrupted, making the center of each Figure noisier.

3.4 . Experiments

The experiments aim to answer the two following questions:

1. Is our algorithm properly designed?

2. Does it perform well?

We will answer these two questions by empirically evaluating the quality of our
reweighting scheme and then comparing the proposed algorithm IRBL against the
state-of-the-art.

52

3.4.1 . Quality of the Reweighting Scheme

At first, an example dataset is used as cherry-picking to graphically showcase
the proposed algorithm’s performances and properties. The ad dataset from Table
3.1 is used with a ratio of trusted data p = 0:1 corresponding to 10% of trusted
data.

To see if the proposed reweighing scheme works properly, Figure 3.2 shows the
histogram of the weights assigned to each untrusted example, either corrupted or
not, when quality q = 0:5 with NCAR.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

100

200

300

400

500

600

700

800 clean
corrupted

Figure 3.2: Histogram of the ˛ values on AD for p = 0:1 and q = 0:5 for NCAR for theclean and corrupted untrusted examples.

Two densities are displayed in Figure 3.2 in the form of histograms. The first
one is the distribution of the estimated ˆ̨ of clean untrusted samples (samples with
label unmodified by NCAR), and the second one is the distribution of the estimated
ˆ̨ of corrupted untrusted samples (samples with label modified by NCAR).

The density of ˆ̨ for the corrupted samples is nearly unimodal and close to 0.
On the other hand, the ˆ̨ distribution stays around 1 as the assigned weights for
the trusted samples.

It is clear from Figure 3.2 that our method can detect corrupted and non-
corrupted labels from the untrusted dataset.

To get a broader picture, we can extend the previous Figure 3.2 by plotting
the distribution of weights thanks to boxplots when the quality q decreases.

Figure 3.3 shows that the weight ˛ estimated for corrupted samples follows
the proper behavior, having all weights close to 0 for these samples for all qualities.
If the used classifier can adequately use these weights, the corrupted samples will
not perturb the training procedure.

On the other hand, the weight of clean samples tends to have a higher variance
when the quality decrease. This behavior could lead to clean samples being wrongly

53

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.0

0.5

1.0

1.5

2.0

2.5

3.0
clean
corrupted

Figure 3.3: Boxplot the ˛ values on AD for p = 0:1 versus the quality, from q = 0 to
q = 1 for NCAR for the clean and corrupted untrusted examples..

removed from the training procedure, or could make clean untrusted samples have
more importance than trusted samples during classifier learning.

3.4.2 . Benchmark against State-of-the-art-competitors
An extensive Biquality Learning state-of-the-art have been presented already in

Chapter 2. From these extensive state-of-the art we decided to pick one uniformed
algorithm that works on Biquality Data with label noise like corruptions named the
Noise Corrected Plugin approach [213]. The specificity of this method is that it
does not imply any property of the base learner as IRBL, which makes it suited to
learn tabular classifiers on the datasets from Table 3.1. Moreover, as the following
experiments are particularly conducted on label noise corruptions, we decided to
pick an additional uniformed method from the Robust Learning to Label noise, the
Unhinged Classifier[177, 24].

• Unhinged : In recent literature, a new emphasis is put on the research of new
loss functions that are conducive to better risk minimization in the presence
of noisy labels. For example, [177, 24] show theoretically and experimentally
that when the loss function satisfies a symmetry condition, described below,
this contributes to the robustness of the classifier on label NCAR. A loss
function L is said symmetrical if

P
y∈{−1;1} L(f (x); y) = c , where c is a

constant and f (x) is the score on the class y . This loss function is used on
DT ∪DU .

• Noise Corrected Plugin Classifier : To the best of our knowledge, Noise
Corrected Plugin classifier [213] is among the best performing algorithm on
biquality data. It learns a classifier fU from the untrusted data and corrects
the predictions made by the classifier with an estimated transition matrix of

54

the noise f (x) = fU(x)T−1.

In the original version, the authors used an algorithm to estimate a transition
matrix from untrusted samples only. In this benchmark, we propose to use
an algorithm from the Biquality Learning literature to find a better estimate
of the transition matrix: GLC [79]. GLC compares the predictions of the
untrusted classifier fU on the trusted dataset against the trusted labels thanks
to a soft confusion matrix to estimate the noise transition matrix.

Additionally, we added three baselines in the benchmark as a sanity check:

• Trusted Only : The final classifier f obtained with our algorithm should be
better than a classifier fT that learned only from the trusted dataset, insofar
as untrusted data bring useful information about the trusted concept. At
least, f should not be worse than using only trusted data.

• No Correction: The final classifier f should be better than a classifier fNC
learned from both trusted and untrusted datasets without correction. A bi-
quality learning algorithm should leverage the information provided by having
two distinct datasets.

• Self Training : The final classifier f should be better than a classifier fST
learned from both trusted and untrusted datasets, using a semi-supervised
approach by discarding untrusted labels. A biquality learning algorithm
should leverage the information provided by the untrusted labels.

The Self-Training semi-supervised classifier works by iteratively learning a
classifier on available labeled data and labeling unlabeled data with the
predictions of the learned classifier. In practice, only the high-confidence
predictions are kept, and a new iteration is made on the newly labeled
samples until it reaches convergence.

To evaluate the competitors’ performance, we use the same probabilistic classi-
fier family, Logistic Regression from Scikit-Learn [140] optimized with the L-BFGS
optimizer [110] and L2 Regularization.

First of all, the choice of classifiers was guided by the idea of comparing al-
gorithms for biquality learning rather than searching for the best classifiers. This
choice was also guided by the nature of the datasets used in the experiments (see
section 3.1).

LR is known to be limited, in the sense of the Vapnik-Chervonenkis (VC)
dimension [180] since it can only learn linear separations of the input space X ,
which could underfit the conditional probabilities P(Y |X) on DT and DU and lead
to bad ˛ estimations. Nevertheless, if met, this impediment will equally affect
all the compared algorithms. Section 3.6.1 will test classifiers with varying VC
dimensions.

55

To obtain reliable estimations of conditional probabilities P(Y |X), the outputs
of all classifiers have been calibrated thanks to Isotonic Regression provided by
scikit-learn [140].

Finally, accuracy is the metric used to quantify their efficiency on the classifi-
cation tasks.

3.4.3 . Results

For a first global comparison, two critical diagrams are presented in Figures 3.4
and 3.5, which rank the different methods for the NCAR and NNAR label noise.
The Nemenyi test [125] is used to rank the different approaches in terms of mean
accuracy, calculated for all values of p and q and over all the 20 datasets described
in Section 3.1 and is used at 95 % level of confidence. The Nemenyi test consists
of two successive steps. First, the Friedman test is applied to the mean accuracy of
competing approaches to determining whether their overall performance is similar.
Second, if not, the post-hoc test is applied to determine groups of approaches
whose overall performance is significantly different from that of the other groups.

1 2 3 4 5 6

irbl
st

trusted_only no_correction
plugin
unhinged

CD

Figure 3.4: Nemenyi test for the 20 binary classification datasets ∀p; q for NCAR.

1 2 3 4 5 6

irbl
st

trusted_only no_correction
plugin
unhinged

CD

Figure 3.5: Nemenyi test for the 20 binary classification datasets ∀p; q for NNAR.

The figures 3.4 and 3.5 show that the IRBL method is ranked first for the two
kinds of label noise and performs better than the other competitors. Table 3.2

56

gives a more detailed perspective by reporting the mean accuracy for each trusted
ratio p and corruptions.

The standard deviation reported in the table is the standard deviation of the
accuracy of the competitor over all the quality values q. A lower standard deviation
means that the competitor will always have the same performance, whatever the
quality of the untrusted dataset.

p IRBL No Correction Plugin Self Training Trusted Only Unhinged
(2)

0.02 82.96 ± 0.54 80.36 ± 7.75 77.51 ± 8.53 82.58 ± 0.0 82.71 ± 0.0 70.12 ± 3.720.05 83.24 ± 0.44 81.59 ± 4.96 77.36 ± 8.64 83.00 ± 0.0 83.16 ± 0.0 70.99 ± 2.560.10 83.67 ± 0.35 82.28 ± 3.26 76.89 ± 9.38 83.32 ± 0.0 83.41 ± 0.0 70.80 ± 1.940.25 84.08 ± 0.21 83.46 ± 1.44 77.07 ± 8.42 83.74 ± 0.0 83.95 ± 0.0 71.09 ± 0.80
(1)

0.02 82.93 ± 0.52 80.01 ± 7.77 77.36 ± 8.80 82.58 ± 0.0 82.71 ± 0.0 70.58 ± 3.460.05 83.39 ± 0.48 81.28 ± 4.85 77.16 ± 8.80 83.00 ± 0.0 83.16 ± 0.0 71.18 ± 2.120.10 83.71 ± 0.39 81.95 ± 3.32 76.77 ± 9.80 83.32 ± 0.0 83.41 ± 0.0 71.12 ± 1.590.25 84.16 ± 0.23 83.23 ± 1.45 76.97 ± 8.59 83.74 ± 0.0 83.95 ± 0.0 71.43 ± 0.47Mean 83.56 ± 0.46 78.85 ± 6.27 78.47 ± 6.85 83.16 ± 0.0 83.31 ± 0.0 69.55 ± 2.89
Table 3.2:Mean Accuracy (rescaled score to be from0 to 100) and standard deviationcomputed on the 20 binary classification datasets ∀q for (1) NCAR and (2) NNAR.

These values are computed for different values of p over all qualities q and all
datasets. This table also helps to see how far the methods are compared to perfect
total training data. Overall, IRBL obtains the best results with lower variability.

To have more refined results, the Wilcoxon signed-rank test [191] is used with
a confidence level at 95 % to find out under which conditions – i.e., by varying the
values of p and q – IRBL performs better or worse than the competitors.

Figure 3.6 presents eight graphics where each one represents the Wilcoxon test
evaluating our approach against a competitor, based on the mean accuracy over
the 20 datasets. The two types of label noise (see Section 2.6) correspond to the
columns in Figure 3.6, and a wide range of q and p values are considered.

Thanks to these graphs, we can compare our method (IRBL) in more detail
with the competitors. Concerning the No Correction method, Figures 3.6a and
3.6b indicate progressive results versus the couple value of (p; q). For low-quality
values, whatever the value of p, IRBL is significantly better. For intermediate
values of quality, there is no winner. For high-quality values and low values of p,
the No Correction method is significantly better (this result seems to be observed
in [79] as well). This result is not surprising since the No Correction baseline is
equivalent to learning with perfect labels at high-quality value.

Regarding the competitors Unhinged and Plugin, Figures 3.6c, 3.6e, 3.6d and
3.6f show that IRBL is always better or indistinguishable to them. IRBL performs
well regardless of the type of noise. This significant result allows us to deal not only
with NCAR noise but also with instance dependent label noise (NNAR). Plugin has
ties with IRBL when the quality is high, whatever the label noise, which is also an
interesting result. The proposed method has been tested on a large variety and
strength of label corruption. In each case, IRBL exhibits competitive results, and
thus IRBL can be safely used in applications where biquality learning is needed.

57

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(a) IRBL vs NoCorrection for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(b) IRBL vs NoCorrection for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(c) IRBL vs Unhinged for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p
(d) IRBL vs Unhinged for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(e) IRBL vs Plugin for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(f) IRBL vs Plugin for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(g) IRBL vs Trusted Only for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(h) IRBL vs Trusted Only for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(i) IRBL vs Self Training for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(j) IRBL vs Self Training for NNAR
Figure 3.6: Results of the Wilcoxon signed rank test computed on the 20 datasets.Each Figure compares IRBL versus one of the competitors. In each figure “◦”, “·” and“•” indicate respectively a win, a tie or a loss of the first competitor compared to thesecond competitor. The vertical axis is p and the horizontal axis is q.

3.5 . On the Calibration of Classifiers

58

The proposed Algorithm 3, IRBL, estimates the Radon-Nikodym derivative
(RND) between the trusted and the untrusted concepts by relying on classifiers
(see line 4 of Algorithm 3). The capacity of a classifier to estimate the posterior
probability of a sample belonging to a given class refers to the calibration of the
classifier. Intuitively, the classifier is said to be well-calibrated if the number of
samples attributed to the positive class with a predicted probability p to be is
equal to a fraction p of the members of the positive class [40].

In particular, most classifiers have the option to have as output a probability
estimate of a given target class y conditional on the feature vector x denoted
P̃(Y |X). Then, a more precise definition of being well-calibrated is given by the
estimated probability P̃ respecting the following equation:

P
“
Y = y |P̃(Y = y |X) = p

”
= p (3.5)

In other words, in a calibrated classifier, the estimated conditional probabil-
ity P̃(Y |X) is close to the one obtained with the underlying probability measure
P(Y |X). Note that a classifier can be efficient without necessarily being calibrated.

In the case of IRBL, the calibration of the two classifiers fT and fU may impact
the efficiency of the estimation of the RND, ˆ̨. In this Section, we will look at the
impact of the calibration of fT and fU on ˆ̨.

3.5.1 . Under-Confidence and Over-Confidence
If a classifier is not well-calibrated, two situations may arise:

• The classifier can be under-confident in its classification, meaning that a
predicted probability p corresponds to a smaller fraction f < p of the positive
class.

• The classifier can produce over-confident predicted probability, meaning that
a predicted probability p corresponds to a more considerable fraction f > p

of the positive class.

Having under-confident predictions means that the predicted probabilities of the
classifier tend to be centered around 0:5. This situation arises most notably with
Support Vector Machines [143]. On the other hand, over-confident predictions
mean that the classifier’s predicted probabilities will be pushed to 0 and 1. This
situation arises in many modern machine learning classifiers, especially Neural Net-
works and Gradient Boosted Trees learned with cross-entropy loss [69]. Indeed the
cross-entropy loss naturally pushes the log odds to infinity, squishing the predicted
probability distribution.

For IRBL, using under-confident or over-confident classifiers would lead to
different errors in the estimated weights:

• If fU is under-confident, the sole variability of ˆ̨ would come from fT . Indeed,
all fU predictions would be close to each other around the decision boundary.

59

Thus, only fT would be decisive on ˆ̨ being able to separate noisy and clean
untrusted samples. So, the final classifier would only gain knowledge from
DT through fT missing on a lot of additional knowledge.

• If fU is over-confident, the variance of ˆ̨ would be very high, leading to
numerical instability, especially for samples where fU predictions would be
close to 0. This numerical instability could worsen the efficiency of the final
classifier.

3.5.2 . Calibrating non-calibrated Classifiers
Calibrating classifiers is a well-studied field of machine learning [129] with

many different algorithms and metrics to correct and measure the calibration of
classifiers. It usually involves learning a monotonic function that does not modify
the outputted probability of the classifier P̃ but rectify it to better fit the underlying
probability measure P.

In this Section, we chose to use the Isotonic Regression (IR) algorithm to
calibrate classifiers [208], which is a non-parametric approach using regression with
monotonic constraints.

Naturally, practitioners would use well-calibrated classifiers when using IRBL,
the following study is akin to an ablation study of IRBL when used classifiers are
over-confident or under-confident.

3.5.3 . Simulating Poorly Calibrated Classifiers
To evaluate the impact of under-confident, over-confident, and well-calibrated

classifiers, we chose to reiterate the experiments from Section 3.4 with the same
Logistic Regression (LR) from Scikit-Learn, which is known to be well-calibrated
[46], and with two variants of this Logistic Regression.

The first variant will be called UnderConfident (UC) Logistic Regression, and
the second one OverConfident (OC) Logistic Regression. To modify the confidence
of the base Logistic Regression, we scale the predicted log odds „X by a factor
¸, with ¸ < 1 for the UC Logistic Regression and ¸ > 1 for the OC Logistic
Regression. The training procedure is unchanged.

The following calibration plots show the impact of the factor ¸ on the cali-
bration quality of the Logistic Regression and show the efficiency of the Isotonic
Regression to re-calibrate these perturbed Logistic regressions:

Figure 3.7 shows that UC Logistic Regression and OC Logistic Regression are
not well-calibrated, whereas Logistic Regression is, as the calibrated UC Logistic
Regression with Isotonic Regression.

60

0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted probability (Positive class: 1)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 p

os
iti

ve
s (

Po
sit

iv
e

cla
ss

: 1
)

Calibration plots

Perfectly calibrated
Logistic
UC Logistic
UC Logistic + Isotonic
OC Logistic

Figure 3.7: Calibration plots of poorly calibrated Logistic Regressions on an artificialdataset.

3.5.4 . Results
First, we can see the impact of weight estimation on a cherry-picked example:

0.0 0.5 1.0 1.5
0

2

4

6

8

De
ns

ity

Logistic
UC Logistic
OC Logistic

Figure 3.8: Normalized histograms of ˛ estimated by IRBL with differently calibratedclassifiers on ad dataset with NCAR label noise and q = 0:5

Figure 3.8 shows the density distribution of ˛ estimated by IRBL with differently

61

calibrated classifiers on ad dataset with NCAR label noise and q = 0:5. We can
observe what was described in Subsection 3.5.1 where the under-confident classifier
fails to assign low weights to corrupted samples. Even though Figure 3.8 is clipped,
the over-confident classifier suffers from a heavy-tailed distribution with estimated
weights going as high as 108.

Remark. Estimating a ratio of densities is a well-known and studied problem
[167] that notably solves the issue of dividing by a probability distributionwith
values close to 0. The impact of these techniques is studied in Chapter 4.

We conducted experiments as described in Section 3.4 with three variations of
IRBL:

1. IRBL with LR (with and without calibration)

2. IRBL with UCLR (with and without calibration)

3. IRBL with OCLR (with and without calibration)

All these variations only affect the classifiers used to estimate fT and fU , the final
classifier is not modified.

We added the Trusted Only baseline with LR as the difference in calibration of
LR, UCLR and OCLR makes no impact on the prediction itself.

The results are synthesized in the following Nemenyi plot:

1 2 3 4 5 6 7

uc_irbl
irbl

oc_irbl
irbl_no_calibration

uc_irbl_no_calibration
trusted_only
oc_irbl_no_calibration

CD

Figure 3.9: Nemenyi test with variations of poorly calibrated Logistic Regressions forthe 20 datasets, ∀p; q, and for NCAR and NNAR combined.
The first result that stands out in Figure 3.9 is the difference between the

performance of IRBL with LR and with OCLR, and UCLR being as good as LR.
The over-confident classifier rank last, far from the baselines; meanwhile, the un-
modified Logistic Regression ranks first. The quality of the calibration of the
classifiers significantly impacts the performance of IRBL. Especially if the classifier
is over-confident, the estimated weights’ spread significantly deteriorates the final
classifier’s learning procedure. Nonetheless, the under-confidence of the classifier
is less impactful on the overall performance of IRBL.

Secondly, we can notice that when calibrated with Isotonic Regression, UCLR
and OCLR are close to the performance of LR for IRBL, ranking very close to

62

each other. Thus IRBL can be used with poorly calibrated classifiers after proper
calibration.

In order to better understand where wrongly calibrated classifiers fail, we gen-
erated the following Wilcoxon plots:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(a) IRBL vs UC IRBL (No Calibration) for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(b) IRBL vs UC IRBL (No Calibration) for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(c) IRBL vs OC IRBL (No Calibration) for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(d) IRBL vs OC IRBL (No Calibration) for NNAR
Figure 3.10: Results of the Wilcoxon signed rank test computed on the 20 datasets.Each Figure compares IRBL versus one of the poorly calibrated IRBLs. In each figure“◦”, “·” and “•” indicate respectively a win, a tie or a loss of the first competitor com-pared to the second competitor. The vertical axis is p and the horizontal axis is q.

Thanks to the Wilcoxon plots from Figure 3.10, we can better understand how
UC IRBL (No Correction) performs against IRBL. The under-confidence of the
classifier leads to an IRBL performing better on high-quality datasets and worse
on low-quality datasets. UC IRBL weights cannot correctly distinguish corrupted
and clean samples from the untrusted dataset.

Several key messages can be resumed thanks to these experimental results.
First, when using non-calibrated classifiers, regular calibration algorithms lead
to on-par performances with well-calibrated classifiers with IRBL. Then, over-
confident classifiers generate weights with high numerical values, destabilizing the
final classifier’s training procedure. This hypothesis has been confirmed in addi-
tional experiments where clipping such weights would stabilize the training proce-
dure. Finally, using under-confident weights leads to a final classifier being close
to the No Correction baseline, getting good results at high quality but crushingly
bad at low quality.

63

3.6 . On the Specification of Classifiers

The reader may have noticed that the benchmark results have been aggregated
by averaging results over multiple datasets to draw significant conclusions between
multiple Biquality Learning algorithms, especially between Biquality Learning algo-
rithms and some baselines.

Indeed Biquality Learning algorithm should have some good and even necessary
properties such as :

• Being better than the Trusted Only classifier, meaning the ability to leverage
knowledge from the untrusted dataset

• Being better than the No Correction classifier, meaning the ability to ef-
ficiently correct low-quality untrusted datasets and not get degraded by
high-quality untrusted datasets (negative transfer).

• Being better than Semi-Supervised classifiers, meaning the ability to leverage
untrusted labels.

If IRBL has verified these properties in our benchmarks on average on all tested
datasets, it does not mean that it would work for all datasets.

Indeed these properties are all originating from the same underlying assump-
tions about the dataset and the classifier: adding more samples to the training
dataset will benefit the classifier in better estimating the decision boundary of the
classification task. However, this assumption might not hold in practice for some
datasets.

For example, if the classification task is too simple to the point where a clas-
sifier can learn the decision boundary with very few samples perfectly, or if the
classification task is too hard, and the classifier does not have the expressiveness
to learn the decision boundary, adding more samples (corrected untrusted samples)
will not benefit the classifier.

Thus, we will introduce two critical notions for defining such capacities. The
first notion is the suitability of the model family with the classification task (bound
to the dataset). Such notion can be empirically measure by the learning curve of a
classifier on a given dataset reflecting the capacity to improve its performance with
a growing training set. The second notion is the expressiveness of the classifier,
meaning its ability to learn complex decision boundaries and patterns. Theoret-
ically, multiple complexity measures exists to quantify the expressiveness such as
the VC dimension [180]. Empirically the number of learnable parameters is used
as a proxy, such as the number of connections in a Neural Network or the number
of iterations of a Gradient Boosting Machine.

Then we will experimentally observe how Biquality Learning algorithms, par-
ticularly IRBL, perform when the learning curve and the number of parameters
change through different datasets.

64

3.6.1 . Suitability and Expressiveness of Classifiers
The learning curve is a graphical representation of how well a classifier performs

for a given classification task when increasing the number of samples available dur-
ing training. It is one measure of the suitability of the classifier to the classification
task. A flat or constant learning curve (no matter the level) is a synonym for inde-
pendence between the classifier performance and the size of the training dataset.
In practice, this is a synonym for the classification task being too easy, too hard,
or ill-defined.

Figure 3.11 represents learning curves of a Gradient Boosting Machine (GBM)
[58] learned with an increasing number of Decision Stumps [146] on the same
dataset of i :i :d: samples from a 10-dimensional Gaussian distribution, with different
labeling processes:

1. The original labeling process described in [74], where:

y =

ȷ
1 if; x · x ≥ 9:34
0 else

2. A labeling process where labels are assigned at random among the set of
classes,

3. An over-complex labeling process, where the feature space is subdivided in
multiple n-dimensional cubes, and labels are assigned at random in each
cubes with different class ratios.

The learning curves from Figure 3.11 reveal different behaviours for classifiers
belonging from the same classifier family on increasingly hard labelling processes.

The first row correspond to tasks where the classifier was able to learn the
decision boundary. Indeed the two learning curves are curved enough to see that
adding more samples to train on is beneficial to the classifier. However, they were
not beneficial on the same level in the three cases, as the difference in accuracy
between a low number and a high number of Decision Stumps is significant.

The second and third rows correspond to tasks where the classifier is unable
to learn the decision boundary, but it is for two distinct reasons. The first case
corresponds to a classification task too hard to be learned (random labels) even
by an expressive classifier (GBM with hundreds of decision stumps). However, the
second case is a learnable classification task, but the used classifier family needed
to be more expressive (single decision stump) to learn the classification task.

Hence more than the curvature of the learning curve is needed to assess if
Biquality Learning algorithms will improve the performance of a given classifier
against the previously cited baselines. We need a measurable quantity that defines
the expressiveness of the classifier.

Multiple measures exist to quantify the expressiveness of a classifier such as
the Vapnik-Chevonenkis (VC) dimension. However, such measures are often not

65

0 5 k 10 k 15 k
0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
GBM with 1 Decision Stumps

0 5 k 10 k 15 k
0.0

0.2

0.4

0.6

0.8

1.0 GBM with 20 Decision Stumps

0 5 k 10 k 15 k
0.0

0.2

0.4

0.6

0.8

1.0 GBM with 100 Decision Stumps

0 5 k 10 k 15 k
0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

0 5 k 10 k 15 k
0.0

0.2

0.4

0.6

0.8

1.0

0 5 k 10 k 15 k
0.0

0.2

0.4

0.6

0.8

1.0

0 5 k 10 k 15 k
training size

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

0 5 k 10 k 15 k
training size

0.0

0.2

0.4

0.6

0.8

1.0

0 5 k 10 k 15 k
training size

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.11: Learning curves of a Gradient Boosting Machine with Decision Stumpson an artificial dataset for binary classification [74].

computable in practice and the number of learnable parameters can be a good
proxy for these measures such as the number of iterations of Gradient Boosted
Trees.

Reusing the same toy examples, we train a GBM Classifier with Decision
Stumps with a varying training size and number of iterations.

training size

0
5 k

10 k
15 k nu

mbe
r o

f it
era

tio
ns

0
200

400
600

800
1 k

ac
cu

ra
cy

0.0
0.2
0.4
0.6
0.8
1.0

training size

0
5 k

10 k
15 k nu

mbe
r o

f it
era

tio
ns

0
200

400
600

800
1 k

ac
cu

ra
cy

0.0
0.2
0.4
0.6
0.8
1.0

training size

0
5 k

10 k
15 k nu

mbe
r o

f it
era

tio
ns

0
200

400
600

800
1 k

ac
cu

ra
cy

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3.12: Learning curves of GBM Classifiers with Decision Stumps on an artificialdataset for binary classification [74].

66

Figure 3.12 shows two surface plots that behave fundamentally differently.
The first one is curved with higher values of accuracy when the VC dimension
and the training size increase. It represents the behavior of a well-suited classifier
family which benefits from more training samples. However, the second plot is flat,
meaning that the classification task is too hard for the classifier family. Combining
the Learning curve and the VC curve is mandatory to fully interpret how the
classifier family behaves on a given classification task.

3.6.2 . Wrongly Specified Classifiers

Specification, or the process of selecting the appropriate model and param-
eters for a machine learning problem, is a crucial step in the machine learning
process. Incorrect specification can result in the model being under-specified or
over-specified, leading to sub-optimal performance.

Under-specification, also known as bias, occurs when the model is not expres-
sive enough and unable to accurately capture the underlying relationships in the
data. This can lead to poor performance on both the training and testing data. To
avoid under-specification, it is important to select a model with enough complexity
to capture the patterns in the data, such as adding more layers to a neural network
or increasing the number of decision trees in a random forest model.

On the other hand, over-specification, also known as variance, occurs when
the model is too expressive and fits the noise in the data rather than the under-
lying patterns. This can lead to good performance on the training data but poor
performance on the testing data. To avoid over-specification, it is important to
use regularization techniques, such as adding a penalty term to the loss function or
using dropout in a neural network, to prevent the model from becoming over-fitted.

3.6.3 . Effects on IRBL

Picking a wrongly specified classifier for IRBL can be detrimental to the overall
training process, with different impacts when the model is under-specified or over-
specified: on the weight estimation, and on the final classifier.

The effect of using a sub-specified classifier family for IRBL could be two-fold.
The first big impact would be on the weight estimation. If the classifier is not
capable of learning the trusted and the untrusted decision boundary, the weights
of untrusted samples would be imprecise and the untrusted dataset will not be
corrected well enough to learn the true concept. Moreover an under-specified
classifier will not be able to leverage the additional information contained in the
reweighted untrusted samples.

To evaluate such impact, we are going to conduct the same experiments from
Section 3.4 with four alternatives tested, using all combinations of an under-
specified and over-specified classifier. The under-specified classifier will be the
Logistic Regression (linear model) described in Section 3.4, whereas the over-
specified classifier will be a GBM classifier with a thousand Decision Stumps from
Scikit-Learn [140]. It is worth mentioning calibrating the classifiers did not modify

67

the results significantly and has been left out of the reported results.

3.6.4 . Results
The results of this new set of experiments is resumed in the following Figure

thanks to a critical diagram computed with the four alternatives described in the
previous Subsection.

1 2 3 4

irbl_gbm_gbm (85.6)
irbl_log_gbm (85.62) irbl_log_log (83.53)

irbl_gbm_log (83.26)

CD

Figure 3.13: Nemenyi test for the 20 binary classification datasets ∀p; q for NCARand NNAR combined. The average accuracy over all datasets, p, and q is reportedbetween parenthesis next to each methods. The methods’ name is composed ofthe name of the classifier used for weight estimation and then the name of the finalclassifier.
Figure 3.13 highlights two groups of methods where a first group of method

used the GBM classifier for the final classifier and a second group used the Logistic
Regression. This Figure reveals that the expressiveness of the classifier for the
weight estimation does not significantly change the performance of the overall
algorithm. It may showcase the robustness of IRBL to an imprecise estimation of
the weight, or a incapacity of GBM to leverage more precise weights to improve
its accuracy. However GBM is way more capable than the Logistic Regression to
leverage all the re-weighted untrusted samples to improve its performance.

Then we decided to plot the average accuracy of IRBL when the number of
GBM iterations increases. The IRBL weight estimations has been done with the
maximum number of iterations (even if it does not matter for the final accuracy).

Figure 3.14 shows that IRBL highly benefits of an increase of expressiveness
for the final classifier. Even with a thousand iterations, we were not able to
consistently make IRBL over-fit on training data as we did not observe a decrease
in test accuracy.

Finally, a more expressive classifier can leverage the additional information
contained in the newly re-weighted untrusted samples to improve the performance
of the final classifier.

68

0 200 400 600 800 1000
number of iterations

0.74

0.76

0.78

0.80

0.82

0.84

0.86

ac
cu

ra
cy

Figure 3.14: Accuracy of IRBL in function of the expressiveness of the base classifier(number of iterations of a GBM) for the 20 binary classification datasets ∀p; q forNCAR and NNAR combined.

3.7 . IRBL and Multiclass Classification

In this section, we propose to extend the experiments conducted in Section 3.4
to multi-class classification datasets.

Actually, IRBL is already capable of learning multi-class classification tasks on
Biquality Data, as the Trusted Only and No Correction baseline, and the Corrected
Plugin classifier. However, the Unhinged classifier is only capable of learning binary
classification tasks. As such, in the following section, we will refer to the Unhinged
classifier, the One versus Rest classifier [11] using Unhinged classifiers for each
binary classification task.

We decided to use the multi-class classification datasets from the same sources
as the binary ones. These datasets are listed in Table 3.3.

Table 3.3: Multi-class classification datasets used for the evaluation. Columns: num-ber of examples (|D|), number of features (|X|), number of classes (|Y|), and ratio ofexamples from the minority class (min).
Datasets |D| |X| |Y| min

ldpa 165K 7 11 0.01letter 20K 16 26 0.04pendigits 11K 16 10 0.10har 10K 561 6 0.14japanese-vowels 10K 14 9 0.08gas-drift 14K 128 6 0.12walking-activity 150K 4 22 0.01satimage 6K4 36 6 0.10shuttle 58K 9 7 0.00usps 9K2 256 10 0.08

Datasets |D| |X| |Y| min

first-ord-theorem 6K1 51 6 0.08artificial-chars 10K 7 10 0.06spoken-arabic-digit 263K 14 10 0.10isolet 7K8 617 26 0.04covertype 581K 54 7 0.00connect-4 68K 42 3 0.10dna 3K2 180 3 0.24splice 3K2 60 3 0.24mnist 70K 784 10 0.09

69

We then ran the same experiments described in Section 3.4 to these multi-class
classification datasets and constructed the exact respective figures.

1 2 3 4 5 6

irbl
st

trusted_only no_correction
plugin
unhinged

CD

Figure 3.15: Nemenyi test for the 20multi-class classification datasets ∀p; q for NCAR.

1 2 3 4 5 6

irbl
st

trusted_only no_correction
plugin
unhinged

CD

Figure 3.16: Nemenyi test for the 20 multi-class classification datasets ∀p; q forNNAR.
From Figure 3.15 and Figure 3.16, IRBL is still the best performing approach

on multi-class classification tasks.

p IRBL No Correction Plugin Self Training Trusted Only Unhinged
(1)

0.02 67.31 ± 3.09 61.58 ± 14.49 52.46 ± 17.25 65.44 ± 0.0 66.28 ± 0.0 44.78 ± 6.150.05 70.45 ± 1.80 63.30 ± 10.89 53.41 ± 17.15 69.91 ± 0.0 69.99 ± 0.0 46.18 ± 3.450.10 71.60 ± 1.29 65.03 ± 7.84 53.73 ± 17.01 71.82 ± 0.0 71.20 ± 0.0 46.82 ± 2.200.25 72.99 ± 0.71 67.72 ± 4.32 52.25 ± 18.20 73.00 ± 0.0 72.65 ± 0.0 47.52 ± 1.40
(2)

0.02 67.76 ± 2.99 61.98 ± 14.57 53.10 ± 16.89 65.44 ± 0.0 66.28 ± 0.0 45.76 ± 6.210.05 70.81 ± 1.86 63.66 ± 10.90 53.28 ± 16.99 69.91 ± 0.0 69.99 ± 0.0 47.23 ± 3.600.10 71.91 ± 1.31 65.18 ± 7.80 53.63 ± 17.01 71.82 ± 0.0 71.20 ± 0.0 48.04 ± 2.090.25 73.17 ± 0.71 67.84 ± 4.33 52.96 ± 17.27 73.00 ± 0.0 72.65 ± 0.0 48.59 ± 0.99Mean 70.87 ± 1.74 57.90 ± 13.65 54.42 ± 14.50 70.04 ± 0.0 70.03 ± 0.0 46.26 ± 3.34
Table 3.4:Mean Accuracy (rescaled score to be from0 to 100) and standard deviationcomputed on the 20 multi-class classification datasets ∀q for (1) NCAR and (2) NNAR.

Table 3.4 confirms the results from the two previous critical diagrams.
The Wilcoxon tests from Figure 3.17 exhibit the same behavior as in the binary

case.

70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(a) IRBL vs NoCorrection for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(b) IRBL vs NoCorrection for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(c) IRBL vs Unhinged for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p
(d) IRBL vs Unhinged for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(e) IRBL vs Plugin for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(f) IRBL vs Plugin for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(g) IRBL vs Trusted Only for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(h) IRBL vs Trusted Only for NNAR

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
q

0.02

0.05

0.1

0.25

p

(i) IRBL vs Self Training for NCAR
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

q

0.02

0.05

0.1

0.25

p

(j) IRBL vs Self Training for NNAR
Figure 3.17: Results of the Wilcoxon signed rank test computed on the 20 datasets.Each Figure compares IRBL versus one of the competitors. In each figure “◦”, “·” and“•” indicate respectively a win, a tie or a loss of the first competitor compared to thesecond competitor. The vertical axis is p and the horizontal axis is q.

3.8 . Conclusion

71

In this chapter, we implemented a new Importance Reweighting approach for
Biquality Learning (IRBL). Extensive experiments have shown that IRBL signifi-
cantly outperforms state-of-the-art approaches by simulating completely-at-random
and not-at-random label noise over a wide range of quality and quantity values of
untrusted data and base learners. Moreover, we studied the impact on the calibra-
tion of the classifiers and showed that using well-calibrated classifiers was key to
the efficiency of IRBL. Furthermore, we showed that the more the final classifier
is expressive and capable of learning complex decision boundaries, the more it can
benefit from the biquality learning framework and IRBL in particular. Finally, we
showed that IRBL generalizes naturally to multi-class classification tasks.

In Chapter 4, we will extend the Biquality Learning framework to more com-
plexes corruptions of the untrusted dataset introduction Distributions Shifts. In-
stead of having in difference in concept only P(Y |X), the joint distribution P(X; Y)
will differ between the two datasets.

72

4 - Reboot Biquality Learning with Distribu-
tion Shifts

Contents
4.1 Introduction . 75

4.2 Related work . 77

4.3 Reweighting for distribution shift 78

4.4 First proposed approach: IRBLV2 80

4.5 Second proposed approach: K-PDR 81

4.6 Experiments . 83

4.6.1 Concept Drift 84

4.6.2 Covariate Shift 84

4.6.3 Class-Conditional Shift 84

4.6.4 Prior Shift . 84

4.6.5 Datasets . 84

4.6.6 Competitors 85

4.7 Results . 86

4.7.1 First part: Concept Drift and Covariate Shift . . 86

4.7.2 Second part: Class-Conditional Shift and Prior
Shift . 89

4.8 Conclusion . 90

This chapter has been submitted to an international machine learning journal
and is under review.

73

4.1 . Introduction

Supervised machine learning has been studied and explored extensively during
the last decades, and both theoretical and experimental solutions exist to accom-
plish this task [75]. Weakly supervised machine learning (WSL) has not reached
this state yet. WSL is the machine learning field where algorithms learn a model
from data with weak supervision instead of strong supervision. Multiple weak su-
pervisions have been identified in [224] such as inaccurate supervision when samples
are mislabeled, inexact supervision when labels are not adapted to the classification
task, or incomplete supervision when labels are missing which reflects the inade-
quacy of the available labels in the real world. For every kind of weak supervision,
assumptions are needed to design sound algorithms, especially on the corruption
model, the generative process behind the weakness of supervision.

Weaknesses in supervision are one facet of weakly supervised learning, and
dataset shifts are another. Dataset shifts happen when the data distribution ob-
served at training time is different from what is expected from the data distribution
at testing time [122]. This distribution change can take multiple forms, such as
a change in the distribution of a single feature, a combination of features, or the
concept to be learned. Thus, the common assumption that the training and test-
ing data follow the same distributions is often violated in real-world applications.
Again, designing algorithms to handle dataset shifts usually requires assumptions
on the nature of the shift [38].

We believe that the biquality data setup proposed in [134] is a suitable frame-
work to design algorithms capable of handling both dataset shifts and weaknesses
of supervision simultaneously.

Biquality Learning assumes that two datasets are available at training time: a
trusted dataset DT and an untrusted dataset DU both composed of labeled samples
(xi ; yi) ∈ X ×Y. These datasets share the same features XT = XU and the same
set of labels YT = YU , having a closed-set of features X and labels Y. However,
the two datasets differ in terms of the joint distribution PT (X; Y) ̸= PU(X; Y)
where the trusted distribution is the distribution of interest.

In practice, it is often the case that the trusted dataset is not large enough
to learn an efficient model to estimate PT (X; Y). By contrast, it is generally
easy to get a large enough untrusted dataset that enables to correctly estimate
PU(X; Y). However, this data distribution could be completely different from the
one of interest, PT (X; Y). In the biquality data setup, there is no assumption on
the difference in joint distribution between the two datasets, and it can cover a
wide range of known problems. From the Bayes Formula:

P(X; Y) = P(X | Y)P(Y) = P(Y | X)P(X) (4.1)
distribution shift covers covariate shift PT (X) ̸= PU(X), concept drift PT (Y |
X) ̸= PU(Y | X), class-conditional shift PT (X | Y) ̸= PU(X | Y) and prior shift

75

PT (Y) ̸= PU(Y).

The Biquality Data setup typically occurs in three scenarios in practice.

1. The first scenario corresponds to the case where annotating samples is ex-
pansive to the point of being prohibitive to label an entire dataset, but
labeling a small part of the dataset is doable. It’s typically the case in Fraud
Detection and in Cyber Security where labeling samples require complex
forensics from domain experts. There, the rest of the dataset is usually
labeled by hand-engineered rules which might not perfectly fit the classifi-
cation task and the labels can’t properly be trusted [147].

2. The second scenario happens when there are data shifts during the labeling
process over the course of time. For example in MLOps [97], when a model
is first learned on clean data and then deployed in production, predictions
can be used to learn an updated model [182]; these predictions may be faulty
and need to be dealt with. A second example in MLOps occurs when newly
clean data is acquired to retrain a deployed model; the most recent clean
data is considered trusted and the old clean data is considered untrusted
when dataset shifts occurred [62].

3. The third scenario occurs when multiple annotators are responsible for dataset
labeling. In natural language processing (NLP) products, for example, mul-
tiple annotators follow labeling guidelines to annotate verbatims. The effi-
ciency of annotators to follow these guidelines may vary and might not be
trusted. However, if one annotator can be trusted, all the other annotators
can be set as untrusted and the biquality data setup may apply. Especially,
considering each untrusted annotator against the trusted annotator can be
viewed as a biquality learning task [207].

Having the trusted and untrusted datasets available at training time makes
it possible to design algorithms dealing with closed-set distribution shifts. If al-
gorithms designed for biquality data with concept drift only have been explored
recently [133], algorithms that deal with distribution shift are still behind. In this
paper, we propose two biquality approaches that adapt methods from either the
covariate shift literature or the concept drift literature in order to deal with both
corruptions simultaneously.

Multiple biquality learning algorithm designs have been identified in [134]. They
have been divided into three main families based on how they modify instances to
correct the global learning procedure. Untrusted instances can be (i) relabeled cor-
rectly, (ii) modified in the feature space, or (iii) reweighted such that the untrusted
dataset seems sampled from the trusted distribution PT (X; Y). We propose here
two corresponding algorithms for the third case of importance reweighting.

In Section 4.2, a brief state-of-the-art relates what has been already achieved
on biquality learning. Then, Section 4.3 further focuses on the state-of-the-art of

76

importance reweighting on biquality learning. Section 4.4 and Section 4.5 introduce
our proposals to use classifiers to reweight untrusted instances for biquality learning
with distribution shifts. Then, Section 4.6 describes the experiments that evaluate
the efficiency of our proposed approaches on real datasets and corruptions. Finally,
Section 4.7 presents the results of the proposed experiments before concluding.

4.2 . Related work

Machine learning algorithms on biquality data have been developed in many
different sub-domains of weakly supervised learning. Some of these sub-domains
are robust learning to label noise, learning under covariate shift, or transfer learning.
Because these subdomains expect different corruptions, not all algorithms designed
for some subcases of biquality learning will work in a more general setting with
distribution shifts.

For example, Gold Loss Correction (GLC) [79] and Importance Reweighting
for Biquality Learning (IRBL) [134] are algorithms designed to specifically deal
with a concept drift between the trusted and the untrusted datasets. GLC, on
the one hand, corrects the learning procedure on the untrusted dataset using a
noise transition matrix between the trusted and untrusted concept. IRBL, on the
other hand, reweight untrusted instances using an estimation of the ratio of both
concepts. These algorithms are not theoretically designed to handle covariate
shift; nevertheless, they could be empirically efficient on this task and serve as a
reference.

Another group of algorithms, such as Kernel Mean Matching (KMM) [65], and
Probabilistic Density Ratio Estimation (PDR) [10], only deals with covariate shift
between the two datasets. These algorithms seek to reweight untrusted instances
such that the distribution of features between the two datasets is equivalent. KMM
minimizes the difference of the features mean in a reproducing kernel Hilbert space.
PDR learns the classification task of predicting if an instance is untrusted or not and
uses the predicted probability of being an untrusted instance as the weight. These
algorithms are not designed to handle concept drift and will serve as references
too.

However, a recent proposal aims to adapt these algorithms to the biquality
framework with distribution shift [49]. They proposed to use one density ratio
estimation algorithm per class, which, when combined, corrects the distribution
shift. They also proposed to transform the joint density ratio estimation problem
by combining the features and labels of the data into a new feature space that
allows for a single density ratio estimation algorithm. These adapted algorithms
will also serve as competitors.

Finally, recent approaches such as Learning to Reweight (L2RW) [149], or
Meta-Weight-Net (MWNet) [161] based on deep learning and meta-learning have
not been tested in this paper. Indeed, they require a class of algorithms with a

77

differentiable and incremental learning procedure that does not fit most popular
families of classifiers, such as gradient boosting trees. They are left to be tested
in future works.

Biquality Data is not a new setup per see, as previous work exists on this
setup going back to [89] to the best of our knowledge. Each previous work was
carried out in different sub-domains of weakly supervised learning and thus achieved
different goals based on different setups [79, 161, 149, 218, 89]. These setups used
different terms, definitions, hypotheses, and requirements but still sought to solve
the same fundamental problem of biquality learning. Only recently, some efforts
have been done to provide clear and concise definitions of the biquality learning
framework [134]. We propose in this paper to extend it to include dataset shifts.
This extension is, to the best of our knowledge, a new problem to tackle that few
tried already [49], limiting existing prior literature.

4.3 . Reweighting for distribution shift

The previous Section introduced the most common algorithms used in machine
learning for biquality data. Most of them were based on instance reweighting, and
specifically, on estimating the Radon-Nikodym Derivative (RND) [131] of PT (X; Y)
with respect to PU(X; Y) which is dPT (X;Y)

dPU(X;Y)
. This comes from the fact that mini-

mizing the reweighted empirical risk by the RND on the untrusted data is equivalent
to minimizing the empirical risk on trusted data:

R(X;Y)∼T;L(f) = E(X;Y)∼T [L(f (X); Y)]

=

Z
L(f (X); Y) dPT (X; Y)

=

Z
dPT (X; Y)
dPU(X; Y)

L(f (X); Y) dPU(X; Y)

= E(X;Y)∼U [
PT (X; Y)
PU(X; Y)

L(f (X); Y)]

= E(X;Y)∼U [˛L(f (X); Y)]

= R(X;Y)∼U;˛L(f)

(4.2)

However, estimating the RND can be a difficult task, especially in the case
of distribution shift where the joint distribution ratio ˛ needs to be estimated.
Proposals have been made to ease this estimation.

A first proposal has been made in IRBL [134] which focused first on the concept
drift between datasets using the Bayes Formula:

˛(X; Y) =
PT (X; Y)
PU(X; Y)

=
PT (Y | X)PT (X)

PU(Y | X)PU(X)
(4.3)

Their proposed algorithm is based on the decomposition of the joint density
ratio estimation task into three sub-tasks. The first one is to estimate the trusted

78

concept PT (Y | X), and is done by learning a classifier on the trusted dataset.
The second task is to estimate the untrusted concept PU(Y | X), which is done
by learning a classifier on the untrusted dataset. And the third task about density
ratio estimation PT (X)

PU(X) was skipped as no covariate shift was introduced in their
benchmark, but it is a well known and solved machine learning task [169].

A second proposal has been made in [49] which focused on the covariate shift
between datasets using the Bayes Formula differently:

˛(X; Y) =
PT (X; Y)
PU(X; Y)

=
PT (X | Y)PT (Y)
PU(X | Y)PU(Y)

(4.4)
In their proposed algorithm, the joint density ratio estimation task has been

decomposed into K-tasks where K is the number of classes to predict. For each
class, only examples of the given class are selected on both datasets, such that
the samples are drawn from the P(X | Y) distribution. Then, a density ratio
estimation procedure usually employed to estimate PT (X)

PU(X) is learned on these sub-

datasets to estimate PT (X|Y)
PU(X|Y) , effectively handling distribution shift from Equation

4.4. As it uses K density ratio algorithms, this generic approach will be named
K-DensityRatio (KDR) in the rest of the paper.

Finally, a last approach is to focus on the density ratio estimation task by
finding a deterministic and invertible transformation f as proposed in [49]:

˛(X; Y) =
PT (X; Y)
PU(X; Y)

=
PT (Z)
PU(Z)

; Z = f (X; Y) (4.5)
An example of such transformation [49] is the classification loss of a model learned
on the biquality data. One density ratio estimation procedure is done on these new
features Z to directly estimate PT (Z)

PU(Z)
.

IRBL has experimentally proved to efficiently solve the biquality learning task on
tabular data [134]. However, the experiments were conducted on corruptions only
affecting the untrusted concept P(Y | X) and not the joint distribution P(X; Y).
We propose here to adapt IRBL to handle distribution shifts by solving the third
task of density ratio estimation with a probabilistic classifier. Moreover, we propose
a new version of KDR using probabilistic classifiers to solve the K density ratio
estimation tasks. This proposition is driven by the desire to reuse efficient tricks
from IRBL and to rely on a non parametric approach by contrast to the original
proposal [49].

79

4.4 . First proposed approach: IRBLV2

Importance Reweighting for Biquality Learning (IRBL) [134] is a biquality learn-
ing algorithm designed to handle closed-set concept-drift. The algorithm is based
on using two probabilistic classifiers: first, to estimate both concepts PT (Y | X)

and PU(Y | X) and, second, using these classifiers’ outputs to estimate the RND
between both data distributions. In the particular case of label noise, especially
instance dependent label noise, it has been shown to be the best approach experi-
mentally on a wide variety of datasets.

We propose to adapt it to handle covariate shift by estimating the ratio PT (X)
PU(X)

by using a third probabilistic classifier as in [10]. This algorithm works by defining
a new supervised classification task by learning to predict if a sample is trusted
or untrusted by only using its features. If there exists covariate shift between the
datasets, the classifier should be able to discriminate between the two datasets.

Let’s introduce S as the new target:

si (xi) =

(
0; if xi ∈ DU
1; if xi ∈ DT

(4.6)

Estimating P(S | X) allows us to estimate PT (X)
PU(X) directly without estimating

both distributions:

PT (X)

PU(X)
=

P(X | S = 1)

P(X | S = 0)
=

P(S = 1 | X)P(X)

P(S = 1)
× P(S = 0)

P(S = 0 | X)P(X)
(4.7)

Combining equation 4.3 and 4.7 :

PT (Y | X)PT (X)

PU(Y | X)PU(X)
=

PT (Y | X)

PU(Y | X)
× P(S = 1 | X)

P(S = 1)
× P(S = 0)

P(S = 0 | X)
(4.8)

We propose to estimate equation 4.8 by learning probabilistic classifiers f ∈ F
to estimate each of its terms. A probabilistic classifier fT is learned on DT to
estimate PT (Y | X), fU is learned on DU to estimate PU(Y | X), and fS is learned
on {(x; s(x)) | ∀x ∈ DT ∪ DU} to estimate PU(S | X), leading to the following
Algorithm 4.

80

Algorithm 4: Importance Reweighting for Biquality LearningV2 (IRBLV2)
Input: Trusted Dataset DT , Untrusted Dataset DU , ProbabilisticClassifier Family F

1 Learn fU ∈ F on DU
2 Learn fT ∈ F on DT
3 Learn fS ∈ F on {(x; s(x)) | ∀x ∈ DT ∪DU}
4 for (xi ; yi) ∈ DU do
5 ˆ̨(xi ; yi) =

fT (xi)yi
fU(xi)yi

fS(xi)1
|DT |

|DU |
fS(xi)0

6 for (xi ; yi) ∈ DT do
7 ˆ̨(xi ; yi) = 1

8 Learn f ∈ F on DT ∪DU with weights ˆ̨

Output: f

4.5 . Second proposed approach: K-PDR

K-DensityRatio (KDR) [49] is an alternative approach to design a biquality
learning algorithm able to handle distribution shift. The focus is made on the
covariate shift between the two datasets. It handles the covariate shift in a class
conditional fashion to deal with distribution shifts by using covariate shift correction
once per class.

From Equation 4.4, KDR evaluates the ratio PT (X|Y)
PU(X|Y) with density ratio esti-

mation algorithms. To do so, it first samples data from the X | Y distribution by
selecting only samples from a given class k ∈ [[1; K]] in both datasets DT and DU .
Then, it uses density ratio estimation algorithms e ∈ E on these sub-datasets to
estimate PT (X|Y=k)

PU(X|Y=k) independently k times. The class priors PT (Y) and PU(Y) are
estimated empirically from both training sets. See Algorithm 5.

In [49], Kernel Mean Matching (KMM) [83, 65] has been used as the Density
Ratio algorithm e to handle covariate shift. Empirically, KMM is an algorithm that
matches with quadratic programming [193] the mean of both datasets in a feature
space induced by a kernel k on the domain X × X :

min
˛i

‚‚‚‚‚‚ 1

|DU |

|DU |X
i=0

˛iΦ(xi)−
1

|DT |

|DT |X
i=0

Φ(xi)

‚‚‚‚‚‚
H

s.t. 0 ≤ ˛i ≤ B˛̨̨̨
˛̨ 1

|DU |

|DU |X
i=0

˛i − 1

˛̨̨̨
˛̨ < ›

(4.9)

where ffi : X → H denotes the canonical feature map, H is the reproducing kernel
Hilbert space induced by the kernel k , | · |H is the norm on H and B and › are
regularization and normalization constraints.

81

Algorithm 5: K-DensityRatio (KDR)
Input: Trusted Dataset DT , Untrusted Dataset DU , Density RatioEstimator Family E , Probabilistic Classifier Familiy F

1 for k ∈ [[1; K]] do
2 Let DkT = {∀(x; y) ∈ DT | y = k}
3 Let DkU = {∀(x; y) ∈ DU | y = k}
4 Learn ek ∈ E on DkT and DkU
5 for (xi ; yi) ∈ DU do
6 ˆ̨(xi ; yi) = eyi (xi)

|Dyi
T |

|DT |
|DU |
|Dyi

U |

7 for (xi ; yi) ∈ DT do
8 ˆ̨(xi ; yi) = 1

9 Learn f ∈ F on DT ∪DU with weights ˆ̨

Output: f

As such, KMM is a parametric algorithm based on kernels. We propose to use
instead a probabilistic classifier to handle covariate shift, in the same fashion as
in Equations 4.6 and 4.7 to make a non-parametric version of KDR as shown in
Equation 4.8.b.

PT (X | Y)PT (Y)
PU(X | Y)PU(Y)

=
P(X | Y; S = 1)P(Y | S = 1)

P(X | Y; S = 0)P(Y | S = 0)

=
P(S = 1 | X; Y)P(X; Y)
P(Y | S = 1)P(S = 1)

× P(Y | S = 0)P(S = 0)

P(S = 0 | X; Y)P(X; Y) ×
P(Y | S = 1)

P(Y | S = 0)

=
P(S = 1 | X; Y)
P(S = 0 | X; Y) ×

P(S = 0)

P(S = 1) (4.8.b)
The main advantage of the non-parametric approach is that it does not require

assumptions about the data distribution, which may not be satisfied in many real-
world datasets and could lead to poor performances. Moreover, the scalability of
K-PDR is better than the scalability of K-KMM both in space and time complex-
ity. K-PDR has K times the same complexity as the complexity of learning the
chosen probabilistic classifier, which is O(K × |X| × |Dku | log(|Dku |)) for Decisions
Trees [32]. Meanwhile, K-KMM memory complexity is O(|Dku |2 + |Dku | × |Dkt |) to
sequentially build matrices necessary for the quadratic program, and a worst-case
time complexity of O(K × |Dku |3) to solve the quadratic program [205]. Finally,
the proposed approach is even more flexible than the previous one, as any fam-
ily of machine learning classifiers could be used instead of kernels. This leads to
Algorithm 6.

82

Algorithm 6: K-Probabilistic Density Ratio (K-PDR)
Input: Trusted Dataset DT , Untrusted Dataset DU , ProbabilisticClassifier Familiy F

1 for k ∈ [[1; K]] do
2 Let DkT = {∀(x; y) ∈ DT | y = k}
3 Let DkU = {∀(x; y) ∈ DU | y = k}
4 Learn f kS ∈ F on {(x; s(x)) | ∀x ∈ DkT ∪DkU}
5 for (xi ; yi) ∈ DU do
6 ˆ̨(xi ; yi) =

f
yi
S (xi)1

f
yi
S (xi)0

|DU |
|DT |

7 for (xi ; yi) ∈ DT do
8 ˆ̨(xi ; yi) = 1

9 Learn f ∈ F on DT ∪DU with weights ˆ̨

Output: f

4.6 . Experiments

Benchmarking biquality learning algorithms means evaluating their efficiency
and resilience on both dataset shifts and weaknesses of supervision in a joint man-
ner. Introducing these corruptions synthetically in usual public multi-class classifi-
cation datasets allows a fined grained and controlled evaluation of these algorithms.

From Equation 4.1, introducing distribution shift can be done in four ways:
by introducing covariate shift, concept drift, class-conditional shift, or prior shift.
Especially modifying both concept drift and covariate shift or class-conditional shift
and prior shift at the same time leads to particularly complex distribution shifts.
Table 4.1 sums up the hierarchy of distribution shift sources.

Table 4.1: Hierarchy of Distribution Shift sources
Distribution Shift

P(X; Y)

P(Y | X)P(X) P(X | Y)P(Y)

Concept Drift Covariate Shift Class-Conditional Shift Prior Shift
P(Y | X) P(X) P(X | Y) P(Y)

We chose one method to synthetically generate each distribution shift source
in our experiments, all of them described in the following subsections. We reused
proven methods from the state-of-the-art [177, 49, 17]. Note that generating class-
conditional shift has not been done yet to our knowledge. This paper, therefore,
proposes a new experimental protocol to synthetically create a class-conditional
shift in real-world datasets (see Subsection 4.6.3).

4.6.1 . Concept Drift

83

We introduce concept drift by corrupting the untrusted dataset with label noise
to modify P(Y | X). We pick a symmetric noise [177] where noisy samples are
given a random class with equal probability r from the whole set of labels Y.

4.6.2 . Covariate Shift
We introduce covariate shift by adding class imbalance. Modifying class prior

P(Y) to introduce class imbalance is going to affect P(X) as different features
sub-spaces are associated with different classes if a classification model can be
learned. Indeed by rewriting Equation 4.1:

P(X) =
P(X | Y)P(Y)

P(Y | X)

We follow the same experimental protocol as in [49, 17]. First, we sort all
classes in descending order by their number of samples, then we select at least
a fraction — = 0:5 of all classes as the “majority" class group. The rest are
considered the “minority" class group. Finally, we sub-sample all the classes in the
“majority" group evenly to obtain a ratio of samples between the “majority" group
and “minority" group of ȷ.

4.6.3 . Class-Conditional Shift
We propose a new experimental protocol to synthetically modify the class-

conditional distribution P(X | Y). To do so, we first split the original dataset
by selecting samples from the same class k out of the K classes to create Dk .
Then we train a K-Means [113] algorithm on these sub-datasets in order to learn
a division of the feature space X , the number of clusters is selected to maximize
the average silhouette score [151]. Finally, we sub-sample some of these clusters
to modify the class-conditional distribution P(X | Y) with the same methodology
as the class imbalance from Subsection 4.6.2 on the labels cluster.

4.6.4 . Prior Shift
We introduced prior shift PU(Y) by introducing class imbalance with the same

methodology from Subsection 4.6.2. Thus the prior shift and covariate shift ex-
periments will be equivalent.

4.6.5 . Datasets
We randomly picked supervised classification datasets, see Table 4.2, from

different sources: UCI [42], libsvm1, active learning challenge [70] and openML
[179]. A part of these datasets comes from past challenges in active learning,
where high performances with a low number of labeled examples have proved
challenging to obtain, which makes leveraging the untrusted dataset necessary.
For each dataset, 80% of samples were used for training, and 20% were used for
the test. With this choice of datasets, an extensive range of class ratios, number
of classes, number of features, and dataset sizes are covered.

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

84

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 4.2: Multi-class classification datasets used for the evaluation. Columns: num-ber of examples (|D|), number of features (|X|), number of classes (|Y|), and ratio ofexamples from the minority class (min).
Datasets |D| |X| |Y| min

ad 3K 1558 2 0.14eeg 15K 14 2 0.45ibn_sina 21K 92 2 0.38zebra 61K 154 2 0.05musk 6K 167 2 0.15phishing 11K 30 2 0.44spam 5K 57 2 0.39ijcnn1 191K 22 2 0.10diabetes 768 8 2 0.35credit-g 1K 20 2 0.30hiva 43K 1617 2 0.04svmguide3 1K 22 2 0.24web 37K 123 2 0.24mushroom 8K 22 2 0.48skin-segmentation 245K 3 2 0.21mozilla4 16K 5 2 0.33electricity 45K 8 2 0.42bank-marketing 45K 16 2 0.12magic-telescope 19K 10 2 0.35phoeneme 5K 5 2 0.29

Datasets |D| |X| |Y| min

poker 1M 10 2 0.50ldpa 165K 7 11 0.01letter 20K 16 26 0.04pendigits 11K 16 10 0.10har 10K 561 6 0.14japanese-vowels 10K 14 9 0.08gas-drift 14K 128 6 0.12walking-activity 150K 4 22 0.01satimage 6K4 36 6 0.10shuttle 58K 9 7 0.00usps 9K2 256 10 0.08first-ord-theorem 6K1 51 6 0.08artificial-chars 10K 7 10 0.06spoken-arabic-digit 263K 14 10 0.10isolet 7K8 617 26 0.04covertype 581K 54 7 0.00connect-4 68K 42 3 0.10dna 3K2 180 3 0.24splice 3K2 60 3 0.24mnist 70K 784 10 0.09

We first split each of these datasets into trusted and untrusted datasets com-
pletely at random with a ratio of trusted data p of 1%, 2%, and 5%. These values
aim to replicate actual use cases where getting trusted samples is a costly process,
either time-consuming or expensive. Then we synthetically corrupt the untrusted
dataset with the methods described earlier in this Section.

4.6.6 . Competitors
We compare IRBL2 and K-PDR against multiple state-of-the-art competitors

and baselines :

• K-KMM, the original version of KDR using KMM as proposed in [49];

• IRBL [134], which is IRBL2 without covariate shift correction;

• PDR [10] the covariate-shift only baseline;

• Trusted-Only baseline, when the model is learned using only the trusted
dataset;

• No-Correction baseline, when the model is learned on both datasets without
correction applied.

To evaluate the competitors’ performance, we use the same probabilistic clas-
sifier family, histogram-based gradient boosting trees [91] from Scikit-Learn [140]

85

with their default hyperparameters, every time an algorithm required a base clas-
sifier.

For KMM and K-KMM we use the Radial Basis Function (RBF) kernel [183]
with the default ‚ = 1

|X | value from Scikit-Learn. In order to scale KMM to
the bigger datasets, we used an ensembling version [119] of the original KMM
algorithm with a batch size of 200.

Finally, accuracy is the metric used to quantify their efficiency on the classifi-
cation tasks.

4.7 . Results

The experiments were divided into two parts corresponding to the distribu-
tional shift hierarchy described in Table 4.1 in Section 5.3. The first part of the
experiments corresponds to the left side of the table, P(Y | X)P(X), mixing con-
cept drift and covariate lag. The concept drift is simulated thanks to a labeling
noise as described in Section 4.6.1 and the covariate shift is introduced thanks to
a class imbalance. The second part of the experiments corresponds to the table’s
right part, P(X | Y)P(Y), mixing class-conditional and prior shifts. The class-
conditional shift is simulated using our method proposed in Section 4.6.3, and the
prior shift is simulated thanks to an artificial class imbalance. Each of these parts
is thus composed of two axes of analysis. First, we will analyze each of these axes
independently and then study their combined and crossed effects.

4.7.1 . First part: Concept Drift and Covariate Shift
To study one axis independently, we set the value of the other axis to a value

that does not alter the training data set. Here, if the first axis of analysis is label
noise dictated by r , we set the sub-sampling ratio ȷ to 1. Then we compute a
critical diagram presented in Figure 4.1 which ranks the competitors on this axis.

The Nemenyi test [125] is used to rank the approaches in terms of mean
accuracy. The Nemenyi test consists of two successive steps. First, the Friedman
test is applied to the mean accuracy of competing approaches to determine whether
their overall performance is similar. Second, if not, the post-hoc test is applied to
determine groups of approaches whose overall performance is significantly different
from that of the other groups.

Figure 4.1 confirms the results from [134] as IRBL is the best competitor on
label noise. IRBL2 follows closely, and the covariate shift adaptation seems not to
impact the method’s efficiency on label noise.

The second axis of analysis is covariate shift, so we set the label noise r to 0

and compute a new critical diagram in Figure 4.2.
Figure 4.2 shows that K-PDR is the best approach to combat covariate shift

and, more generally, KDR as K-KMM is an efficient competitor. However, on
covariate shift, IRBL2 does not beat the TrustedOnly baseline and struggles on
the task.

86

1 2 3 4 5 6 7

irbl
irbl2
kpdr

kkmm
trusted_only
no_correction
pdr

CD

Figure 4.1: Nemenyi test for all datasets ∀p; r with ȷ = 1.

1 2 3 4 5 6 7

kpdr
kkmm

trusted_only
irbl2

irbl
pdr
no_correction

CD

Figure 4.2: Nemenyi test for all datasets ∀p; ȷ with r = 0.

To study the combined effect of both axes, we extend the experiments on a
grid with varying strength of label noise r and sub-sampling ȷ. Furthermore, as the
Nemenyi test between all competitors gives the main trends, we use a Wilcoxon
signed-rank test [192] to perform a pairwise analysis between competitors.

Figure 4.3 presents six graphics, each reporting the Wilcoxon test that evaluates
one competitor against another, based on the accuracy over all datasets. These
graphics form a grid with the horizontal axis representing the label noise strength
r and the vertical axis representing the sub-sampling ratio ȷ. On each point of
a grid (r; ȷ), a Wilcoxon rank-signed test [192] is conducted on two competitors
for all datasets to determine if there is a significant difference in accuracy between
them. If the first competitor wins, “◦” is placed on the grid at this location, “·”
and “•” indicate a tie or a loss respectively.

From Figure 4.3 and these pairwise comparisons, we can see interesting patterns
emerging. First, on the comparison between IRBL and IRBL2, we can see that
IRBL2 is indeed performing significantly better than IRBL when covariate shift
is present (ȷ ≥ 100) and significantly worse when there is no covariate shift.
The label noise strength does not seem to impact this observation. The classifier
used to estimate the density ratio should be close to random guessing as there

87

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

(a) IRBL2 vs IRBL (b) IRBL2 vs IRBL (c) IRBL2 vs IRBL
p = 0:01 p = 0:02 p = 0:05

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

(a) K-PDR vs K-KMM (b) K-PDR vs K-KMM (c) K-PDR vs K-KMM
p = 0:01 p = 0:02 p = 0:05

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

0.0 0.2 0.4 0.6 0.8 0.9 1.0
r

1

10

20

50

100

200

(a) IRBL2 vs K-PDR (b) IRBL2 vs K-PDR (c) IRBL2 vs K-PDR
p = 0:01 p = 0:02 p = 0:05

Figure 4.3: Results of the Wilcoxon signed rank test computed on all datasets. Eachfigure compares one competitor versus another for a given trusted data ratio. Figuresin the same row are the same competitors against different case of trusted data ratio:
p = 0:01, p = 0:02, p = 0:05. In each figure “◦”, “·” and “•” indicate respectively a win,a tie or a loss of the first competitor compared to the second competitor, the verticalaxis is ȷ and the horizontal axis is r .

is no way to differentiate between a trusted and an untrusted sample from the
features only. Checking the quality of this classifier before using it to modify
untrusted weights might solve the issue and should be explored. K-PDR is always
better or equal to K-KMM, showing solid improvements across the board, especially
with a bigger trusted dataset (p ≥ 0:02). Using a classifier instead of kernels
significantly improved the accuracy of KDR across the board. Indeed classifiers
are more powerful tools than kernels as they require fewer assumptions about the
data distribution. Finally, IRBL2 seems to be significantly better than K-PDR
but struggles when there is no label noise (r = 0). Seeing such a difference in the
performance of K-PDR with label noise is surprising. Indeed when learned per class
to estimate the density ratio, classifiers might overfit noisy samples and wrongly
estimate the reweighting scheme.

88

Note that the critical diagrams in Figures 4.1 and 4.2 are an aggregated view
of one row or column of graphics from Figure 4.3.

4.7.2 . Second part: Class-Conditional Shift and Prior Shift
The first axis of analysis is the class-conditional shift, driven by the per-class

cluster subsampling proposed in Section 4.6.3 of strength ȷC . The critical diagram
presented in Figure 4.4 ranks the competitors on this axis. Figure 4.4 shows that
K-PDR is the best approach on class-conditional shifts, followed closely by IRBL,
PDR, and the NoCorrection baseline.

1 2 3 4 5 6 7

kpdr
irbl
pdr

no_correction
irbl2
kkmm
trusted_only

CD

Figure 4.4: Nemenyi test for all datasets ∀p; ȷC with ȷ = 0.
The second axis of analysis, about prior shift, is equivalent to the second axis

of Section 4.7.1, as explained in Section 4.6.4 (see Figure 4.2 and its analysis).
Figure 4.5 presents six graphics constructed with the same methodology that

Figure 4.3.
The conclusions drawn from Figure 4.5 are much more precise than the first part

of the experiments. On class-conditional shifts, IRBL2 improves IRBL performances
when a prior shift is present (ȷ = 50) but degrades the performance without a
prior shift (ȷ = 0). The conclusion about the classifier estimating the density ratio
being close to random guessing is still meaningful in this case. Again K-PDR is
significantly better than K-KMM in all cases of class-conditional and prior shift
pairs, experimentally proving the advantage of using classifiers instead of kernels.
Finally, IRBL2 is strictly worse than K-PDR in all experiments in class-conditional
shifts. Indeed K-PDR is designed to estimate class-conditional shifts. Meanwhile,
IRBL only estimates covariate shifts. Thus, K-PDR is designed to solve this task,
which is confirmed experimentally.

89

1 50 100 200 500
C

1

10

20

50

1 50 100 200 500
C

1

10

20

50

1 50 100 200 500
C

1

10

20

50

(a) IRBL2 vs IRBL (b) IRBL2 vs IRBL (c) IRBL2 vs IRBL
p = 0:01 p = 0:02 p = 0:05

1 50 100 200 500
C

1

10

20

50

1 50 100 200 500
C

1

10

20

50

1 50 100 200 500
C

1

10

20

50

(a) K-PDR vs K-KMM (b) K-PDR vs K-KMM (c) K-PDR vs K-KMM
p = 0:01 p = 0:02 p = 0:05

1 50 100 200 500
C

1

10

20

50

1 50 100 200 500
C

1

10

20

50

1 50 100 200 500
C

1

10

20

50

(a) IRBL2 vs K-PDR (b) IRBL2 vs K-PDR (c) IRBL2 vs K-PDR
p = 0:01 p = 0:02 p = 0:05

Figure 4.5: Results of the Wilcoxon signed rank test computed on all datasets. Eachfigure compares one competitor versus another for a given trusted data ratio. Figuresin the same row are the same competitors against different case of trusted data ratio:
p = 0:01, p = 0:02, p = 0:05. In each figure “◦”, “·” and “•” indicate respectively a win,a tie or a loss of the first competitor compared to the second competitor, the verticalaxis is ȷ and the horizontal axis is ȷC .

4.8 . Conclusion

In this Chapter, we have shown the capabilities of the biquality learning frame-
work to design algorithms able to handle closed-set distribution shifts by having
access to a trusted and untrusted dataset at training time. We proposed two bi-
quality learning algorithms, IRBL2 and K-PDR, inspired respectively by the label
noise and the covariate shift literature. We reviewed distribution shift sources and
their hierarchy and proposed a novel method to create class-conditional shifts in
real-world datasets synthetically. Throughout extensive experiments, with numer-
ous simulated distribution shifts and competitors, we demonstrated that K-PDR is
the most robust algorithm capable of handling closed-set distribution shifts.

90

5 - Learning Deep Representations from Weak
Supervision

Contents
5.1 Introduction . 93

5.2 Representation Preserving with Noisy Labels . . . 94

5.2.1 Preserving by Recovering 94

5.2.2 Preserving by Collaboration 95

5.2.3 Preserving by Correcting 95

5.2.4 Preserving by Robustness 96

5.3 Experimental Protocol 97

5.3.1 The tested Algorithms 97

5.3.2 Datasets . 100

5.3.3 Simulated Noise 100

5.3.4 Implementation Details 100

5.4 Results . 101

5.5 Conclusion . 104

This Chapter has been published in a workshop of an international conference
by the author: Pierre Nodet, Vincent Lemaire, Alexis Bondu, and Antoine Cor-
nuéjols. Contrastive representations for label noise require fine-tuning. In Georg
Krempl, Vincent Lemaire, Daniel Kottke, Andreas Holzinger, and Barbara Ham-
mer, editors, Proceedings of the ECML Workshop on Interactive Adaptive Learning
(IAL@ECML PKDD 2021), number 3079 in CEUR Workshop Proceedings, pages
89–104, Aachen, 2021.

91

5.1 . Introduction

The Deep Learning (DL) paradigm has proved very powerful in many tasks.
However, recent papers [116, 209] have shown that “noisy labels" are a real
challenge for end-to-end deep learning architectures. Their test performance is
found to deteriorate significantly even if they are able to learn perfectly the train
examples. This problem has attracted a lot of suggestions in many recent papers.

Zhang et al. [211] conducted experiments to analyze the impact of label
noise on deep architectures, and they found that the performance degradation
mainly comes from the representation learning rather than the classification part.
It therefore appears very difficult to learn a relevant representation in the presence
of label noise, in an end-to-end manner.

To tackle this problem, one option is to exploit an already existing representa-
tion which has been learned in an unsupervised way. In particular, Self Supervised
Learning [90] (SSL) gathers an ensemble of algorithms which automatically gen-
erate supervised tasks from unlabeled data, and, therefore to learn representations
from examples that are not affected by label noise. An example of SSL algorithm
is Contrastive Learning [86], where a representation of the data is learned by mak-
ing feature vectors from similar pictures (i.e. generated from the same original
picture by using two different transformer functions) to be close in the feature
space whereas feature vectors from dissimilar pictures are to be far apart. In [64],
the authors propose to initialize the representation with a pre-trained Contrastive
Learning one, and then, to use the noisy labels to learn the classification part and
fine-tune the representation. It appears that this approach clearly outperforms the
end-to-end architecture, where the representation is learned from noisy labels.

But questions remain: is this performance improvement only attributable to
the quality of the Contrastive Representation used (i.e. the starting point of fine-
tuning)? Or is the fine-tuning step able to promote a better representation? To
answer these questions this paper examines the different possibilities to learn a DL
architecture in presence of label noise: (i) end-to-end learning (ii) learning only the
head part when freezing a contrastive representation and (iii) fine tuning the later
representation.

The rest of this paper is organized as follows. The section 2 provides a brief
overview of the main families of algorithms dedicated to fight the label noise
underlying the issue of preserving a good representation in spite of label noise.
Section 3 then describes the experimental protocol. The section 4 will present
the results and a deep analysis which will allow us to answer the questions above.
The last section raises an interesting conclusion and provides some perspectives
for future work.

93

5.2 . Representation Preserving with Noisy Labels

This section presents a brief overview of the state of the art on learning deep
architecture with noisy labels emphasizing how these methods preserve, to some
extent, the learned representation in the presence of label noise. For an extended
overview, the reader may look [164].

5.2.1 . Preserving by Recovering
The dominant approach to preserve the learned representation is to recover a

clean distribution of the data from the noisy dataset. It mostly consists in finding
a mapping function from the noisy to the clean distribution thanks to heuristics,
algorithms or machine learning models. Three different ways of recovering the
clean distribution are usually put forward [134]: (i) sample reweighting; (ii) label
correction and (iii) instance moving.

Recovering by Reweighting - The sample reweighting methodology aims at as-
signing a weight to every samples such that the reweighted population behaves as
being sampled from the clean distribution. The Radon-Nikodym derivative (RND)
[131] of the clean concept with respect to the noisy concept is the function that
defines the perfect reweighting scheme. Many algorithms therefore rely on provid-
ing a good estimation of the RND by learning it from the data using Meta Learning
[150] or minimizing the Maximum Mean Discrepancy of both distributions in a Re-
producing kernel Hilbert space [112, 49]. Many of these methods are inspired by
the covariate shift problem [83, 65]. Other algorithms rely on different reweight-
ing schemes that do not involve the RND as done, for instance, in Curriculum
Learning [9]. They are described in details later in this section. By doing sample
reweighting, algorithms evaluate whether or not a sample is deemed to have been
corrupted and assign a lower weight to a suspect sample so that its influence on
the training procedure is lowered. The hope is that clean samples are sufficient to
learn high-quality representations

Recovering by Relabelling - Another way to recover the clean distribution from
the noisy data is to correct the noisy labels. One great advantage over sample
reweighting is that corrected samples can be fully used during the training proce-
dure. Indeed, when a sample is corrected, it will count as one entire sample in
the training procedure (gradient descent for example), whereas a reweighted noisy
sample would get a low weight and would not be used significantly in the training
procedure. Thus, when done effectively, label correcting might get better perfor-
mance. Meta Label Correction (MLC) [162] is an example of this approach where
the label correction is done thanks to a model learned using meta learning. One
downside of label correction, however, is that the label of a clean sample can get
“corrected” or the label of a noisy sample can get changed to a wrong label. Label
correcting algorithm assign the same weight to all training examples, even though
they might have “corrected” a label based on shaky assumptions. By contrast,
Sample reweighting will assign a low weight if the algorithm is not confident in

94

whether the sample is clean or noisy.

Recovering by Modifying - A third way to recover the clean distribution is by
modifying the sample itself so that its position in the feature space gets closer or
is moved within an area for its label that seems more appropriate (i.e. obeying
regularisation criteria). Finding a transformation in the latent space itself has the
advantage to require less labelled samples, or even none at all, as the work is
performed on distance between samples themselves, like for example in [159].

5.2.2 . Preserving by Collaboration
Multiple algorithms and agreements measures have been used in many sub-

fields of machine learning such as ensembling [16, 57, 59] or semi supervised learn-
ing [204, 12]. They can be adapted to learn with noisy labels by relying on a
disagreement method between models in order to detect noisy samples. When the
learned models disagree on predictions for the label of a sample, this is considered
as a sign that the label of this sample may be noisy. When the models used are
diverse enough, these methods are often found to be quite efficient [71, 188].

However these algorithms suffer from learning their own biases and diversity
needs to be introduced in the learning procedure. Using algorithms from different
classes of models and different origins can increase the diversity among them by
introducing more source of biases [100]. Alternating between learning from the
data and from the other models is another way to combat the reinforcement of
the models’ biases [188]. These algorithms rely on carefully made heuristics to be
efficient.

5.2.3 . Preserving by Correcting
When learning loss base models, such as neural networks, on label noise, the

loss value of a training example can be a discriminative feature to decide if its
label is noisy. Deep neural networks seem to have the property that they first learn
general and high level patterns from the data before falling prey to overfitting the
training samples, especially in the presence of noisy labels [5, 103]. As they are
“learned” at a later stage, these noisy examples are often associated with a high loss
value [68] which may then highly influences the training procedure and perturb the
learned representation [209]. A way to combat label noise is accordingly to focus
first on small loss and easy examples and keep the high loss and hard examples
for the end of the training procedure. Curriculum Learning [9] is a way to employ
this training schema with heuristic based schemes [98, 50, 87, 106] or schemes
learned from data [88, 161]. This class of algorithm has the same properties as
the ones relying on importance reweighting, but maybe more adapted to training
with iterative loss based algorithms such as neural networks or linear models.

Instead of filtering or reweighting samples based on their loss values, one could
try to correct the loss for these samples using the underlying noise pattern. Nu-
merous method have been doing so by estimating the noise transition matrix for
Completely at Random (i.e uniform) and At Random (i.e class dependent) noise

95

[139, 79, 162]. This category of algorithms are still to be tested on more complex
noises scenarios such as Not at Random (i.e instance and class dependent) noise.

5.2.4 . Preserving by Robustness
The last identified way to preserve the learned representation of a deep neu-

ral network in presence of label noise is by using a robust or regularized training
procedure. This can take multiple forms from losses to architectures or even op-
timizers. One of them are Symmetric Losses [177, 63, 24]. A symmetric loss has
the property that: ∀x ∈ X ,

P
y∈Y L(f (x); y) = c where c ∈ R. These losses have

been proven to be theoretically insensitive to Completely at Random (CAR) label
noise. Recently, modified versions of the well-known Categorical Cross Entropy
(CCE) loss have been designed in order to be more robust and thus more resistant
to CAR label noise as is the case for the Symmetric Cross Entropy (SCE) loss [187]
or the Generalized Cross Entropy Loss (GCE) [214]. Both of these rely on using
the CCE loss combined with a known more robust loss such as the Mean Absolute
Error (MAE). However, the resulting algorithms often underfit in presence of too
few label noise while they are unable to learn a correct classifier with too much
label noise.

All these approaches still adopt the end-to-end learning framework, aiming at
fighting the effects of label noise by preserving the learned representation. However,
they fail to do so in practice: decoupling the learning of the representation, using
Self Supervised (SSL) learning, from the classification learning stage itself and
then fine tuning the representation with robust algorithms is beneficial for the
model performance [211, 64]. A natural question arises about the origin of the
performance improvements, and the ability of these algorithms to learn or promote
a good representation in presence of label noise. If robust algorithms are unable
to learn a representation it should be even better to freeze the SSL representation
instead of fine tuning it.

In order to assess the origin of the improvements for different classes of algo-
rithms and different noise levels, we compare the above-mentioned end-to-end ap-
proaches against each other when the representation is learned in a self-supervised
fashion by either fine tuning or freezing the representation when the classification
head is learned. Thus, any difference in the performance would be attributable to
the difference in the representation learnt.

96

5.3 . Experimental Protocol

In [211], the authors showed that when using end-to-end learning, fine tuning
the representation on noisy labels harms a lot the final performance, while learning a
classifier on frozen embeddings is quite robust to label noise and leads to significant
performance improvements over state-of-the-art algorithms if the representation
is learned using trustful examples. The latter can be found for instance using
confidence and loss value. Nonetheless it is arguable whether these improvements
were brought by an efficient self-supervised pretraining (SSL) with SimCLR [25], a
contrastive learning method, or by the classification stage of the REED algorithm
[211].

The goal of the following experimental protocol is to assess and isolate the
role of the contrastive learning stage, in the performance that can be achieved
by representative methods as presented in Section 5.2 about state of the art ap-
proaches. Specifically, several RLL algorithms have been chosen, one from each of
the highlighted families (see Section 5.2 and Table 5.1). For each, the difference in
performance between using contrastive learning to learn the representation and the
performance reported with the original end-to-end algorithms is measured. These
experiments seek to highlight the impact of each RLL algorithms and assess if
these are able to promote a better representation than the pretrained contrastive
representation through fine-tuning.

The rest of this section describes the experimental protocol used to conduct
this set of experiments.

5.3.1 . The tested Algorithms
Section 5.2 presented an overview of the state of the art for learning with

label noise organized around families of approaches that we highlighted. Since
our experiments aim at studying the properties of each of these approaches, we
selected one representative technique from each of these families as indicated in
the following.

• In the first family of techniques (recover the clean distribution), the algo-
rithms re-weight the noisy examples or attempt to correct their label. One
of these algorithm uses what is called Dynamic Importance Reweigthting
(DIW). It reweights samples using Kernel Mean Matching (KMM) [83, 65]
as is done in covariate shift with Density Ratio Estimators [168]. Because
this algorithm adapts well-grounded principles to end-to-end deep learning,
it is a particularly relevant algorithm for our experiments.

• CoLearning (CoL) [188] is a good representative of the family of collaborative
learning algorithms. It uses disagreements criteria to detect noisy labels and
is tailored for end-to-end deep learning where the two models are branches
of a larger neural networks. It appears to be one of the best performing

97

Algorithms (Date) Noise Ratio Clean Validation Family (Section)

DIW (2020) × X Reweighting (5.2.1)CoLearning (2020) X × Collaborative Learning (5.2.2)MWNet (2019) × X Curriculum Learning (5.2.3)F-Correction (2017) × × Loss Correction (5.2.3)GLC (2018) × X Loss Correction (5.2.3)GCE (2018) × × Robust Loss (5.2.4)
Table 5.1: Taxonomy of robust deep learning algorithms studied in this paper. The
Noise Ratio column corresponds to whether the algorithm needs the noise rate (X)to learn from noisy data or not (×). The Clean Validation column corresponds towhether the algorithm needs an additional clean validation dataset (X) to learn fromnoisy data or not (×).

collaborative algorithm while not resorting to complex methods such as data
augmentation or probabilistic modelling like the better known DivideMix
[102].

• The third identified way to combat label noise is by mitigating the effect
of high loss samples [68] by either ditching them or using a loss correction
approach. Curriculum learning is often used to remove the examples that
are associated with high loss from the training set. (MWNet) [161] is one
the most recent approach using this technique, which learns the curriculum
from the data with meta learning. Besides, Forward Loss Correction (F-
Correction) [139] and Gold Loss Correction (GLC) [79] are two of the most
popular approaches to combat label noise by correcting the loss function.
Both seek to estimate the transition matrix between the noisy labels to the
clean labels, the first technique using a supervised approach thanks to a
clean validation set, and the second one in an unsupervised manner. Even
though many extensions of these algorithm have been developed since then
[196, 162], in these experiments, we use F-Correction and GLC since they
are way simpler and almost as effective.

• Lastly, in recent literature, a new emphasis is put on the research of new loss
functions that are conducive to better risk minimization in presence of noisy
labels for robustness purpose. For example, [177, 24] show theoretically and
experimentally that when the loss function satisfies a symmetry condition,
described below, this contributes to the robustness of the classifier. The
Generalized Cross Entropy (GCE) [214] is the robust loss chosen in this
benchmark as it appears to be very effective.

A note about additional requirements: These algorithms may have additional
requirements, mostly some knowledge about the noise properties. These are de-
scribed in table 5.1. In the experiments presented below, the clean validation

98

←−Representation−→

x

x̃i x̃j

hi hj

zi zj

t ∼ T t
′ ∼ T

f (·) f (·)

g(·) g(·)

Maximize agreement

Figure 5.1: Figure from [25]: “A simple framework for contrastive learning of visualrepresentations. Two separate data augmentation operators are sampled from thesame family of augmentations (t ∼ T and t ′ ∼ T) and applied to each data exam-ple to obtain two correlated views. A base encoder network f (·) and a projectionhead g(·) are trained to maximize agreement using a contrastive loss. After trainingis completed, we throw away the projection head g(·) and use encoder f (·) and rep-resentation h for downstream tasks.”

dataset is set to be 2 percent of the total training data, like in [161, 218], and the
noise probability is provided to the algorithms that need it.

A note about the choice of the pretrained architecture: We chose to use
SimCLR for Self-Supervised Learning (SSL) as done in [211].

SimCLR is a contrastive learning algorithm that is composed of three main
components (See Figure 5.1): a family of data augmentation T , an encoder net-
work f (·) and a projection head g(·). Data augmentation is used as a mean to
generate positive pairs of samples: a single image x is transformed into two similar
images x̃i and x̃j by using a data augmentation module T with different seeds t
and t ′. Then the two images go through an encoder network f (·) to extract an
image representation h, such as hi = f (x̃i) and hj = f (x̃j). Finally a projection
head g(.) is used to train the contrastive objective in a smaller sample space z,
with zi = g(h̃i) and zj = g(h̃j). The contrastive loss used is called the NT-Xent,
the normalized temperature-scaled cross entropy loss, and defined by the following
formula:

‘(zi ; zj) = − log
exp(sim(zi ; zj)=fi)P2N
k=1 exp(sim(zi ; zk)=fi)

(5.1)
where fi is the temperature scaling and sim is the cosine similarity. The final loss
is computed across all positive pairs, both (i ; j) and (j; i), in a mini-batch. When
the training of SimCLR is complete, the projection head g(.) is dropped and the
embeddings h are used as an image representation in downstream tasks.

Other SSL algorithms could have been used as well, such as Moco [77, 26] or
Bootstrap Your Own Latent (BYOL) [66]. However, we do not expect that the
main conclusions of the study would be much changed.

99

5.3.2 . Datasets

The datasets chosen in this benchmark are two image classification datasets
namely CIFAR10, CIFAR100. They are two famous image classification datasets,
containing only clean examples and as such, we will simulate symmetric (Completly
at Random) and asymmetric (At Random) noise as defined later in section 5.3.3.
These benchmarks should be extended to other image classification datasets such as
FashionMNIST, Food-101N, Clothing1M and Webvision and to other classification
tasks such as text classification or time series classification.

5.3.3 . Simulated Noise

As datasets chosen in Section 5.3.2 contains clean labels, label noise will be
introduced synthetically on the training samples. Two artificial noise models will be
used, a symmetric (Completely at Random) and asymmetric (At Random) noise.
Symmetric noise corrupts a label from one class to any other classes with the
same probability, meanwhile the asymmetric corrupts a label to a similar class
only. Similar classes are defined through class mappings. For CIFAR-10, the class
mappings are TRUCK→ AUTOMOBILE, BIRD→ AIRPLANE, DEER→ HORSE,
CAT ↔ DOG. For CIFAR-100, the class mappings are generated from the next
class in that group (where 100 classes are categorized into 20 super-classes of 5
classes). These class mappings are the ones introduced in [139, 214].

5.3.4 . Implementation Details

We give some implementation details for reproducibility and / or a better
understanding of the freezing process in the experiments:

• On CIFAR10 and CIFAR100 the SGD optimizer will be used to train the
final Multinomial Logistic Regression with an initial learning rate of 0:01, a
weight decay of 1e−4 and a non-Nesterov momentum of 0:9. The learning
rate will be modified during training with cosine annealing [114]. The batch
size is 128.

• When doing the "Freeze" experiments, the weights of SimCLR from [64]
will be used and will not be modified during the training procedure. All
the weights up to before the projection head of SimCLR are used, then the
dimension output of the feature encoder is 2048 for CIFAR10 and CIFAR100.
The classification architecture is composed of a single linear layer with an
output dimension of 10 (or 100), corresponding to the number of classes.
Thus, when trained with the Categorical Cross Entropy it corresponds to a
usual logistic regression. This classifier is going to be learned with multiple
algorithms robust to label noise. These algorithms are not modified from
their original formulation.

100

• The "Fine Tuning" experiments follow the same implementation as the
"Freeze" experiments. However, the weights of the same pretrained SimCLR
encoder are allowed to be modified by backpropagation.

• Based on their public implementation and / or article we re-implemented
all the algorithm tested (DIW [49], CoL [188], MWNet [161], F-Correction
[139], GLC [79] and GCE [214]). All these re-implemented algorithms will
soon be available as an open source library easily usable by researchers and
practitioners. These custom implementations have been verified to produce,
under the same condition stated in the corresponding original papers (noise
models, network architectures, optimizers, ...), the same results or results
in the interval of confidence (for clean or noisy labels). We may thus be
confident that results in the different parts of the Tables 5.2 and 5.3 are
comparable.

• The experiments have been run multiple times for all algorithms, some
datasets, some noise models and some noise ratios with different seeds to see
the seed impact on the final performance of the classifier. For all algorithms,
the standard deviation of the accuracy was less than 0.1 percent.

5.4 . Results

This section reports the results obtained using the protocol described in section
5.3. They are presented in the tables 5.2 and 5.3 corresponding to the two tested
datasets CIFAR10 and CIFAR100. Each table is composed of three row subsections
corresponding to the different types of representation used, which can be learned
in a End-to-End manner (A), be taken from an already existing SSL model, either
Frozen (B) or Fine tuned (C). Moreover they are composed of two columns sub-
sections corresponding to the noise model used to corrupt samples (symmetric or
asymmetric).

These tables present the results from different studies: (A) The first part of
these tables about “End-to-End learning” are results reported in the respective
papers [49, 188, 161, 139, 79, 214] or reported in [64]; (B) The second part about
“Freeze” experiments conducted in this paper, are made by re-implementing the
referred algorithms from scratch; (C) The “Fine Tuning” experiments are results
reported in [64].

The interpretation of the Table 5.2 and 5.3 will be done in two times, first a
comparison between whole blocks (as (A) against (B)) will give insights on how
deep neural networks learn representations on noisy data and how robust algorithms
helps to improve the learning process or helps to preserve a given representation.
Then in a second time comparisons in a given block will be made against multiple
algorithms to see how well these conclusions works on different preservation families
given in Section 5.2.

101

Algorithms CIFAR10Clean Symmetric Asymmetric0 20 40 60 80 90 95 20 40
DIW [49]

End-to-End (A)
80.4 76.3 84.4CoL [188] 93.3 91.2 49.2 88.2 82.9MWNet [161] 95.6 92.4 89.3 84.1 69.6 25.8 18.5 93.1 89.7F-Correction [139] 90.5 87.9 63.3 42.9 90.1GLC [79] 95.0 95.0 95.0 95.0 90.0 80.0 76.0GCE [214] 93.3 89.8 87.1 82.5 64.1 89.3 76.7

DIW
Freeze (B)

91.3 91.2 90.8 90.5 89.8 89.2 88.1 91.0 90.6CoL 91.1 91.1 90.9 90.6 89.9 89.4 88.8 90.8 89.9MWNet 91.3 91.2 90.8 90.6 89.8 88.2 82.4 90.9 86.4F-Correction 90.8 90.5 90.1 89.6 88.4 88.0 88.1 88.9 88.4GLC 90.7 89.7 90.0 89.5 89.0 88.5 88.3 88.7 88.2GCE 91.1 90.8 90.7 90.5 90.4 90.0 89.1 90.9 89.0
DIW

Fine Tuning (C)
94.5 94.5 94.5 94.5 94.0 92.0 89.1 94.2 93.6CoL 93.9 94.6 94.6 94.2 93.6 92.7 91.7 94.0 93.7MWNet [64] 94.6 93.9 92.9 91.5 90.2 87.2 93.7 92.6F-Correction 94.0 93.4 93.1 92.9 92.3 91.4 90.0 93.6 92.8GLC 93.5 93.4 93.5 93.1 92.0 91.2 88.3 93.2 92.1GCE [64] 94.6 94.0 92.9 90.8 88.4 83.8 93.5 90.3

Table 5.2: Final accuracy for the different models on CIFAR10 under symmetric andasymmetric noises and multiple noise rates.

First, we observe when comparing section (A) and (B) from both tables that
"Freeze" experiments consistently outperforms "End-to-End" experiments as soon
as the data stop being perfectly clean. Using a pretrained self-supervised repre-
sentation such as SimCLR improves significantly the performances of the final
classifier. Outside of well controlled and perfectly clean datasets all selected al-
gorithms are not able to learn a good enough representation from the noisy data
and are beaten by a representation learned without resorting to using given labels.
Robust Learning to Label noise algorithms, especially designed for deep learning,
can preserve an already good representation from noisy labels but are unable to
learn a good representation from scratch.

Then, we observe when comparing section (B) and (C) from both tables that
"Fine Tuning" experiments consistently outperforms "Freeze" at noise rates less
than 80 for the symmetric case and less than 40 for the asymmetric case. The
nature of the final classifier used after the learned representation partially explains
these results; we used a single dense layer (see Section 5.3.4). This classifier
may under-fit as the number of learnable parameters might be too low to actually
fit complex datasets such as CIFAR10 and CIFAR100 even with a good given
representation. Using more complex classifiers such as Multi-Layer Perceptron
could have led to comparable performances than fine tuning even for low noise
rates. This point leaves room for further investigation. Having the possibility to
fine tune the representation to better fit the classification task induces the risk to
actually degrade it.

Outside of well controlled and perfectly clean datasets, practitioners should

102

Algorithms CIFAR100Clean Symmetric Asymmetric0 20 40 60 80 90 95 20 40
DIW [49]

End-to-End (A)
53.7 49.1 54.0CoL [188] 75.8 73.0 32.8MWNet [161] 79.9 74.0 67.7 58.7 30.5 5.2 3.0 71.5 56.0F-Correction [139] 68.1 58.6 19.9 10.2 64.2GLC [79] 75.0 75.0 75.0 62.0 44.0 24.0 12.0 75.0 75.0GCE [214] 76.8 66.8 61.8 53.2 29.2 66.6 47.2

DIW
Freeze (B)

65.6 65.1 64.0 62.9 59.0 53.3 42.5 61.7 49.0CoL 65.8 65.0 64.0 63.4 62.3 60.0 57.0 64.1 58.6MWNet 66.6 66.6 66.2 65.4 63.7 59.8 49.5 64.8 54.5F-Correction 66.5 64.7 61.8 58.8 54.5 51.7 50.8 58.4 56.5GLC 58.5 57.8 52.3 51.1 41.6 40.1 35.3 51.4 50.3GCE 63.5 62.9 61.5 60.0 55.7 51.0 49.9 51.2 48.3
DIW

Fine Tuning (C)
73.8 74.9 74.9 74.5 70.2 62.3 50.4 71.8 62.8CoL 73.7 74.8 74.8 75.0 73.2 67.3 62.0 72.6 70.3MWNet [64] 75.4 73.2 69.9 64.0 57.6 44.9 72.2 64.9F-Correction 69.8 70.1 69.1 69.5 66.9 62.1 57.0 70.3 66.2GLC 69.7 69.4 68.6 62.5 50.4 32.1 18.7 68.2 62.3GCE [64] 75.4 73.3 70.1 63.3 55.9 45.7 71.3 59.3

Table 5.3: Final accuracy for the different models on CIFAR100 under symmetric andasymmetric noises and multiple noise rates.
first consider to learn a self-supervised representation and then either fine tune it
or freeze it with classifier learned with robust algorithms. Self-Supervised Learning
(SSL) algorithm such as SimCLR seems to perfectly fit this task, but other SSL
algorithms could be used and explored.

Another observation from this benchmark is about the difference in perfor-
mance between all the tested algorithms. Indeed, if we consider part (B) of Table
5.2, for both noise models and all noise rates, the performances between the algo-
rithms are close, around 0.1 point in accuracy with some exceptional data points.
It shows that even complex algorithms have a hard time beating simpler approaches
when they are compared with an already learned representation.

The same observation can be done for the part (B) of Table 5.3 (for CIFAR
100), especially for the symmetric noise. However the differences between algo-
rithms are better put in perspective with this more complex dataset which contains
10 time more classes and 10 time less samples per classes. We notice that some
algorithms start to struggle at high symmetric noise rate or for the more complex
asymmetric noise model. For example, GLC is under-performing against competi-
tors for all cases and is under-performing against its end-to-end version. One reason
could be the small size used for the validation dataset as the transition matrix is
evaluated on it in a supervised manner. The small number of samples may impact
the performance of the transition matrix estimator. Much less so than the esti-
mator proposed by F-Correction which seems to perform fine even on CIFAR100
for all symmetric noises, yet only above average on asymmetric noises. Seeing
F-Correction and GLC not performing well on asymmetric noise for both dataset
is surprising as these algorithms were both particularly designed for this case.

103

Lastly, we observe on both Tables 5.2 and 5.3 that algorithms with additional
knowledge on the noise model (see Table 5.1) have an edge over algorithms that
do not, especially on the hardest cases with more classes, higher noise ratio or
more complex noise model. CoL requires the noise ratio as its efficiency relies on
the hyper parameters value corresponding to the injection of pseudo labels and
confidence in model prediction that are dependent of the noise ratio. CoL emerges
among the most well rounded and most efficient algorithm for all noise models,
noise rates and datasets thanks partially to this additional knowledge. On the other
hand, GLC, DIW and MWNet require an additional clean validation dataset in order
to estimate the noise model or a proxy of it to correct the learning procedure on
the noisy dataset. We could expect these algorithms to perform better than CoL
as they would be able to deal with more complex noise models and have a fine-
grained policy for correcting noisy samples. Still these algorithms are not able in
these experiments to get a better accuracy than CoL and perform on par with it.

Finally we need to emphasize that only two datasets have been used in this
study, specially two datasets about image classification. In order to stronger our
claims, more experiments should be conducted.

5.5 . Conclusion

In this paper our contribution was to suggest new insights about decoupling
against end-to-end deep learning architectures to learn, preserve or promote a
good representation in case of label noise. We presented (i) a new view on a
part of the state of the art: the ways to preserve the representation (ii) and an
empirical study which completes the results and the conclusions of other recent
papers [217, 64, 211]. Experiments conducted draw a comprehensive picture of
performances by featuring six methods and nine noise instances of three different
kinds (none, symmetric, and asymmetric). Our added value for the empirical study
is the comparison between the "freeze" and the "fine tuning" results.

One conclusion we are able to draw is that designing algorithms that preserve
or promote good representation under label noise is not the same as designing
algorithms capable of learning from scratch a good representation under label
noise. To make end-to-end learning succeed in this setup researchers should take
a better approach when designing such algorithms.

Another element that emerged from the experiments was the efficiency of
both freeze and fine tuning approaches in comparison to the end-to-end learning
approach. Even the most complex algorithms such as DIW when trained in an end-
to-end manner are not able to beat simple robust loss as GCE when trained with
fine tuning. It questions usual experimental protocols of Robust Learning to Label
(RLL) noise papers and questions the recent advances in the field. Evaluating RLL
algorithms with pretrained architectures should be the norm as it is easy to do so
and the most efficient way for practitioners to train model on noisy data.

104

One more strong point in this conclusion is that in presence of noise the exper-
iments show that fine tuning of Contrastive representation allows the six methods
to achieve better results than their end-to-end learning version and represent a new
reference compare to the recent state of art. Results are also remarkable stable
versus the noise level.

Since fine-tuned representations are shown to outperform frozen ones, one
can conclude that noise-robust classification heads are indeed able to promote
meaningful representations if provided with a suitable starting point (contrastingly
to readers of [217, 64] who might prematurely jump to the inverse conclusion).

However these experiments could be extended to be more exhaustive in two
ways: (i) SimCLR is not the only recent and efficient contrastive learning algo-
rithms, MOCO [77, 26] or Bootstrap Your Own Latent (BYOL) [66] could have
been used as said earlier in the paper, but other self-supervised or unsupervised
algorithms could have been used such as Auto-Encoder [96] or Flow [93]; (ii) exper-
iments could be extended to datasets from other domains such as text classification
or time series classification.

105

6 - Biquality Learning at Orange

Weakly Supervised Learning at Orange is ubiquitous. First of all because Fraud
Detection is one of the most important use case of Machine Learning at Orange.
Fraud in Telecommunications is a huge topic and a huge market, it is reported than
around 32.7 billion dollars are lost every year in fraud in the telecommunication
sector (note that fraud amount is usually under estimated). Orange is a victim of
these fraud and combats it. Second, because Cyber-Security is another important
topic at Orange for multiple reasons. Since historically Orange has been gathering
and storing very sensitive data of their users and had to protect itself against cyber-
attacks, and more recently because Orange tried to propose its grown expertise
in the domain to others thanks to the consulting services offer by Orange Cyber-
Defense. Finally because Orange has more or less always been applying principle
from data mining and machine learning, it has long term deployment of machine
learning models and experience in MLOps [97], a domain where managing model
life cycle is synonym of dealing with various of weak signals corresponding to
predictions of past model versions. Thus, it is an important research topic and
gaining knowledge on how to develop better algorithm is a key goal.

In practice, when Data Scientists are assigned tasks about attack or fraud
detection, they are given an untrusted data where they absolutely cannot trust the
quality of the labeling process. Historically, Robust Machine Learning algorithms
and methodologies have been deployed to combat this issue, but most importantly
experts have been required to help cleanly label the available datasets. Yet, a
common pattern was the lack of time and number of such experts to completely
label the datasets. That is where we felt the need to review algorithms that
were able to leverage such datasets. In practice, we found few alternatives that
worked with Orange own machine learning processes, especially the ones revolving
about our in-house AutoML platform [14, 15] and Orange use cases centered about
tabular classification tasks.

That is why we proposed to study the field of Biquality Learning, in the lenses
of tabular classification with agnostic classifiers. In addition to the knowledge
provided in this manuscript, we propose a Python library to gather the empirical
knowledge gathered during this PhD; a shared knowldege to Orange.

107

biquality-learn : a Python library for Biquality Learning

We designed a biquality-learn library which follows the scikit-learn API,
meaning that it provides a consistent interface for training and using biquality
learning algorithms. It includes a variety of reweighting algorithms, plugin correc-
tors, as well as functions for simulating label noise and generating sample data.

To install biquality-learn, a simple command pip install biquality-learn is
enough and will install all necessaries dependencies.

Overall, the goal of biquality-learn is to make well-known and proven bi-
quality learning algorithms accessible and easy to use for everyone, and to enable
researchers to experiment in a reproducible way on biquality data.

• Source Code : https://github.com/pierrenodet/biquality-learn/

• Documentation : https://biquality-learn.readthedocs.io/en/stable/

6.0.1 . Design of the API
Scikit-learn [140] is a machine learning library for Python with a design philoso-

phy that emphasizes consistency, simplicity, and performance. The library provides
a consistent interface for various algorithms, making it easy for users to switch
between models. It also aims to make machine learning easy to get started with
through user-friendly API and clear documentation. Additionally, it is built on top
of efficient numerical libraries (numpy [72], and SciPy [184]) to ensure that models
can be trained and used on large datasets in a reasonable amount of time.

In biquality-learn, we followed the same principle, implementing a similar
API with fit and predict functions. In addition to passing the input features and
the labels as in scikit-learn, in biquality-learn, the sample_quality property is
provided to specify from which dataset the sample is originating from. Especially,
values of 0 indicate an untrusted sample and values of 1 indicate a trusted sample.

6.0.2 . Training Biquality Learning Classifiers
To train a biquality learning algorithm using biquality-learn, you will need to

have a dataset with a trusted and untrusted portion. If you don’t have one and
want to experiments on synthetic data, you can generate such a dataset using
functions from scikit-learn, or you can obtain it from external sources.

108

https://github.com/pierrenodet/biquality-learn/
https://biquality-learn.readthedocs.io/en/stable/

Here is an example of how to train a biquality classifier using the KPDR (K-
Probabilistic Density Ratio) algorithm from biquality-learn:

1 # Generate a dataset with a trusted and untrusted portion
2 from sklearn.datasets import make_classification
3 from sklearn.model_selection import StratifiedShuffleSplit
4

5 X, y = make_classification()
6

7 trusted, untrusted =
next(StratifiedShuffleSplit(train_size=0.1).split(X, y)),→

8

9 # Train a biquality classifier using KPDR
10 from sklearn.linear_models import LogisticRegression
11 from bqlearn.kdr import KPDR
12

13 bqclf = KPDR(LogisticRegression(), LogisticRegression())
14

15 # Specify the sample quality for each sample in the dataset
16 n_samples = X.shape[0]
17 sample_quality = np.ones(n_samples)
18 sample_quality[untrusted] = 0
19

20 # Fit the classifier to the data
21 bqclf.fit(X, y, sample_quality=sample_quality)
22

23 # Use the classifier to make predictions on the same data
24 predictions = bqclf.predict(X)

6.0.3 . Criteria of Inclusion in biquality-learn

In Chapter 2 we did an extensive review about Biquality Learning and did a
state-of-the-art in Section 2.4. At the end of Chapter in Section 2.8 we stated
which subparts of this state-of-the-art was useful for Orange and their particular
use cases. That’s why we designed a library centered about approaches for tabular
data and tabular classifiers. Thus restricting approaches that are truly classifier
agnostic or implementable within scikit-learn’s API.

We summarized all implemented algorithms and what kind of corruptions they
are able to handle in a Table.

6.0.4 . scikit-learn’s metadata routing

scikit-learn’s metadata routing system can be used to seamlessly incorporate
the sample_quality property into the training and prediction process of biquality
learning algorithms. This allows you to use biquality-learn’s algorithms in a similar
way to scikit-learn’s algorithms, by passing the sample_quality property as an

109

Algorithms Dataset Shifts Weaknesses of Supervision

EasyAdapt [37] X ×TrAdaBoost [36] X ×Unhinged (Linear/Kernel) [177] × XBackward [123, 139] (with GLC [79]) × XIRLNL [111, 186] (with GLC [79]) × XPlugin [213] (with GLC [79]) × XKKMM [49] X XIRBL [134] × XIRBL2 X XKPDR X X

Table 6.1: Implemented Algorithms in Biquality Learn

additional argument to the fit, predict, and other methods.
For example, when https://github.com/scikit-learn/scikit-learn/pull/

24250 will be merged, it will be possible to make a bagging ensemble of biqual-
ity classifiers thanks to the BaggingClassifier implemented in scikit-learn without
overriding its behaviour on biquality data.

1 from sklearn.ensemble import BaggingClassifier
2

3 biquality_bagging = BaggingClassifier(bqclf).fit(X, y,
sample_quality=sample_quality),→

4 print(biquality_bagging.score(X_test, y_test))

6.0.5 . Cross-Validating Biquality Classifiers

Any cross-validators working for usual Supervised Learning can work in the
case of Biquality Learning. However, when splitting the data into a train and test
set, untrusted samples need to be removed from the test set to avoid computing
supervised metrics on corrupted labels. That’s why make_biquality_cv is provided
by biquality-learn to post-process any scikit-learn compatible cross-validators.

Here is an example of how to use scikit-learn’s RandomizedSearchCV func-
tion to perform hyperparameter validation for a biquality learning algorithm in
biquality-learn:

1 from sklearn.model_selection import RandomizedSearchCV
2 from sklearn.utils.fixes import loguniform
3 from bqlearn.model_selection import make_biquality_cv
4

5 # Specify parameters and distributions to sample from
6 param_dist = {"final_estimator__C": loguniform(1e3, 1e5)}
7

8 # Run randomized search

110

https://github.com/scikit-learn/scikit-learn/pull/24250
https://github.com/scikit-learn/scikit-learn/pull/24250

9 n_iter_search = 20
10 random_search = RandomizedSearchCV(
11 bq_clf,
12 param_distributions=param_dist,
13 n_iter=n_iter_search,
14 cv=make_biquality_cv(X, sample_quality, cv=3)
15)
16 random_search.fit(X, y, sample_quality=sample_quality)

6.0.6 . Quality Implementations of Biquality Learning Algorithms
For this library we dedicated a important part of the work to the quality of

implementations. An example of such an algorithm is TrAdaBoost. TrAdaBoost
[36] is an extension of boosting to transfer learning. TrAdaBoost learns on both
trusted and untrusted data and reweights samples at every iteration depending
on their trustiness and the error made by the stagging model. On trusted data,
samples are exactly reweighted as in AdaBoost [57], where difficult samples get
more attention. On untrusted data, the Weighted Majority Algorithm [108] is used,
where misclassified samples are deemed useless for the task.

As there is no reference of an actual version of the TrAdaBoost algorithm fitting
all these features, we propose a modified version of TrAdaBoost for multi-class
classification inspired by SAMME [73] that handles a learning rate hyper-parameter
and correct the natural weight drift of TrAdaBoost using Dynamic TrAdaBoost [4]
in Algorithm 7).

This novel and improved version of TrAdaBoost is available in biquality-learn.

111

Algorithm 7: Dynamic Multi-class TrAdaBoost
Input: Trusted Dataset DT , Untrusted Dataset DU
Parameter: Classifier Familiy F , N number of iterations, – learningrate

1 Let T = |DT | and U = |DU |
2 ∀i ∈ [[1; T + U]]; w0

i = 1
3 for t ∈ [[1; N]] do
4 ∀i ∈ [[1; T + U]]; pti = w t−1

i =
PT+U

k=1 w
t−1
i

5 Learn f t ∈ F on DT ∪DU with distribution pt
6 Let ›t = PT+U

k=1 w
t−1
i |f t(xi)−yi |PT+U
k=1 w

t−1
i

7 if ›t ≥ 1− 1
K then

8 break

9 Let ˛t = ›t

1−›t
1

K−1 and ˛c = 1

1+
√

2 lnU=N

10 Let Ct = (1− ›t)(1 + ›t˛t (−–))
11 for i ∈ [[1; T]] do
12 w ti = w t−1

i ˛t (−–|f
t(xi)−yi |)

13 for i ∈ [[T + 1; U]] do
14 w ti = w t−1

i Ct˛c
–|f t(xi)−yi |

Output: f = argmaxk
PN

t=1−– ln(˛t)1(f t = k)

6.0.7 . Simulating Corruptions with the Corruption API

The corruption module in biquality-learn provides several functions to artifi-
cially create biquality datasets by introducing synthetic corruption. These functions
can be used to simulate various types of label noise or imbalances in the dataset,
which can be useful for testing and evaluating biquality learning algorithms.

Here is a brief overview of the functions available in the corruption module:

• make_weak_labels: This function adds weak labels to the dataset by learn-
ing a classifier on a subset of the dataset and using its predicitons as a new
label.

• make_label_noise: This function adds label noise to the dataset by ran-
domly flipping a specified fraction of the labels.

• make_instance_dependent_label_noise: This function adds instance-dependent
label noise to the dataset by flipping labels with a probability that is depen-
dent on the instance features.

• uncertainty_noise_probability : This function computes the probability of
corrupting a label based on the predicted class probabilities.

112

• make_imbalance: This function creates an imbalanced dataset by oversam-
pling or undersampling the minority class.

• make_cluster_imbalance: This function creates an imbalanced dataset by
sampling more or fewer instances from certain clusters.

These functions can be used to artificially create biquality datasets for testing
and evaluating biquality learning algorithms.

113

Conclusion

In conclusion, this manuscript aimed to determine the feasibility of designing
a training algorithm that could automatically adapt to various weak supervision
scenarios. Through the proposal of a novel taxonomy of Weakly Supervised Learn-
ing, named the Weak Supervision Cube, and the definition of a generic learning
framework named Biquality Learning, we were able to review the state-of-the-art
algorithms that suppose the availability of a small trusted dataset. Under this
framework, we proposed an algorithm based on Importance Reweighting for Bi-
quality Learning (IRBL) that is classifier-agnostic, and is based on the empirical
estimation of the Radon-Nikodym derivative (RND), which is the sample reweight-
ing scheme to build a risk-consistent estimator on untrusted data. Our results
demonstrate that IRBL can improve the performance of various classifiers on bi-
quality datasets. In addition to addressing the issue of weak supervision, this thesis
also deals with the problem of dataset shifts. To solve it, we proposed a variant
of IRBL called IRBL2, and its covariate-shift version named KPDR both based
on the RND estimation. This approach allows the algorithm to better handle the
problem of corrupted and untrusted labels in the presence of dataset shifts. We
also developed a library called bq-learn that implements the proposed methods and
algorithms. This library is designed to make it easy for practitioners to use and
apply the proposed solutions to their own datasets and use-cases. It provides a
user-friendly interface and a set of pre-built functions that can be easily integrated
into existing machine learning pipelines. The biquality-learn library can be used to
handle weak supervision and dataset shifts in a unified way. It provides a powerful
tool for practitioners to improve the performance of supervised learning algorithms
on weakly labeled and corrupted datasets.

115

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[2] Steven P. Abney. Bootstrapping. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics, July 6-12, 2002, Philadel-
phia, PA, USA, pages 360–367. ACL, 2002.

[3] Charu C. Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and Philip S.
Yu. Active Learning: A Survey. In Charu C. Aggarwal, editor, Data Clas-
sification: Algorithms and Applications, chapter 22, pages 571–605. CRC
Press, 2014.

[4] Samir Al-Stouhi and Chandan K Reddy. Adaptive boosting for transfer learn-
ing using dynamic updates. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 60–75. Springer, 2011.

[5] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Em-
manuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron
Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look at memo-
rization in deep networks. In International Conference on Machine Learning,
pages 233–242, 2017.

[6] Yoram Baram, Ran El-Yaniv, and Kobi Luz. Online Choice of Active Learning
Algorithms. Journal of Machine Learning Research, 5:255–291, 2004.

[7] Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: a
survey. Machine Learning, 109:719–760, 2020.

[8] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jennifer Wortman Vaughan. A theory of learning from different
domains. Machine learning, 79(1-2):151–175, 2010.

117

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In International Conference on Machine Learning, pages
41–48, 2009.

[10] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learn-
ing for differing training and test distributions. In Proceedings of the 24th
international conference on Machine learning, pages 81–88, 2007.

[11] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[12] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on Computa-
tional learning theory, pages 92–100, 1998.

[13] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining
discriminative components with random forests. In European Conference on
Computer Vision, 2014.

[14] Marc Boullé. Modl: a bayes optimal discretization method for continuous
attributes. Machine learning, 65(1):131–165, 2006.

[15] Marc Boullé. Compression-based averaging of selective naive bayes classi-
fiers. The Journal of Machine Learning Research, 8:1659–1685, 2007.

[16] Leo Breiman. Bagging predictors. Machine Language, 24(2):123–140, Au-
gust 1996.

[17] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study
of the class imbalance problem in convolutional neural networks. Neural
Networks, 106:249–259, 2018.

[18] Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain
Gagnon. Multiple instance learning: A survey of problem characteristics and
applications. Pattern Recognition, 77:329–353, May 2018.

[19] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[20] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM transactions on intelligent systems and technology (TIST),
2(3):1–27, 2011.

[21] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised
learning. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

118

[22] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, editors. Semi-
supervised learning. Adaptive computation and machine learning. MIT Press,
Cambridge, Mass, 2006. OCLC: ocm64898359.

[23] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from un-
trusted data. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, page 47–60, 2017.

[24] Nontawat Charoenphakdee, Jongyeong Lee, and Masashi Sugiyama. On
symmetric losses for learning from corrupted labels. In International Confer-
ence on Machine Learning, volume 97, pages 961–970, 2019.

[25] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
A simple framework for contrastive learning of visual representations. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 1597–1607. PMLR, 13–18 Jul 2020.

[26] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines
with momentum contrastive learning. arXiv:2003.04297, 2020.

[27] De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu,
Xinbo Gao, and Masashi Sugiyama. Instance-dependent label-noise learning
with manifold-regularized transition matrix estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16630–16639, 2022.

[28] Hong-Min Chu and Hsuan-Tien Lin. Can Active Learning Experience Be
Transferred? 2016 IEEE 16th International Conference on Data Mining,
pages 841–846, 2016.

[29] Stephen Clark, James R. Curran, and Miles Osborne. Bootstrapping pos-
taggers using unlabelled data. In Proceedings of the Seventh Conference on
Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-
NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, pages 49–55.
ACL, 2003.

[30] Timothé Collet. Optimistic Methods in Active Learning for Classification.
PhD thesis, Université de Lorraine, 2018.

[31] D. Conte, P. Foggia, G. Percannella, F. Tufano, and M. Vento. A method
for counting people in crowded scenes. In 2010 7th IEEE International Con-
ference on Advanced Video and Signal Based Surveillance, pages 225–232,
2010.

119

[32] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2022.

[33] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels.
The Journal of Machine Learning Research, 12:1501–1536, 2011.

[34] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels.
Journal of Machine Learning Research, 12(42):1501–1536, 2011.

[35] Koby Crammer, Michael Kearns, and Jennifer Wortman. Learning from
multiple sources. Journal of Machine Learning Research, 9(8), 2008.

[36] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for
transfer learning. In International Conference on Machine Learning, pages
193–200, 2007.

[37] Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint
arXiv:0907.1815, 2009.

[38] Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theo-
rems for domain adaptation. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 129–136. JMLR
Workshop and Conference Proceedings, 2010.

[39] Michael Davy. A review of active learning and co-training in text classifi-
cation. Technical report, Trinity College Dublin, Department of Computer
Science, 2005.

[40] A Philip Dawid. The well-calibrated bayesian. Journal of the American
Statistical Association, 77(379):605–610, 1982.

[41] Louis Desreumaux and Vincent Lemaire. Learning active learning at the
crossroads? evaluation and discussion. In Georg Krempl, Vincent Lemaire,
Daniel Kottke, Andreas Holzinger, and Adrian Calma, editors, Proceedings of
the ECML Workshop on Interactive Adaptive Learning (IAL@ECML PKDD
2020), number 2660 in CEUR Workshop Proceedings, pages 38–54, Aachen,
2020.

[42] Dheeru Dua and Casey Graff. Uci machine learning repository, 2017.

[43] Lixin Duan, Ivor W Tsang, and Dong Xu. Domain transfer multiple kernel
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(3):465–479, 2012.

[44] Sandra Ebert, Mario Fritz, and Bernt Schiele. Ralf: A reinforced active
learning formulation for object class recognition. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 3626–3633, 2012.

120

[45] Charles Elkan. The foundations of cost-sensitive learning. In Interna-
tional joint conference on artificial intelligence, volume 17, pages 973–978.
Lawrence Erlbaum Associates Ltd, 2001.

[46] Charles Elkan. Log-linear models and conditional random fields. Tutorial
notes at CIKM, 8:1–12, 2008.

[47] Charles Elkan and Keith Noto. Learning classifiers from only positive and
unlabeled data. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 213–220, 2008.

[48] Abdelatif Ennaji, Driss Mammass, Mostafa El Yassa, et al. Self-training
using a k-nearest neighbor as a base classifier reinforced by support vector
machines. International Journal of Computer Applications, 975:8887, 2012.

[49] Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking
importance weighting for deep learning under distribution shift. In Neural
Information Processing Systems, volume 33, pages 11996–12007, 2020.

[50] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discrimina-
tively trained, multiscale, deformable part model. In 2008 IEEE conference
on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[51] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning, pages 1126–1135. PMLR, 2017.

[52] Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, and Lofton
Bullard. Identifying learners robust to low quality data. In 2008 IEEE Inter-
national Conference on Information Reuse and Integration, pages 190–195,
2008.

[53] James Richard Foulds and Eibe Frank. A review of multi-instance learning
assumptions. The Knowledge Engineering Review, 2010.

[54] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massi-
miliano Pontil. Bilevel programming for hyperparameter optimization and
meta-learning. In International Conference on Machine Learning, pages
1568–1577. PMLR, 2018.

[55] Benoit Frenay and Michel Verleysen. Classification in the Presence of La-
bel Noise: A Survey. IEEE Transactions on Neural Networks and Learning
Systems, 25(5):845–869, 1994.

[56] Benoît Frénay and Michel Verleysen. Classification in the presence of label
noise: a survey. IEEE transactions on neural networks and learning systems,
25(5):845–869, 2013.

121

[57] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

[58] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[59] Jerome H. Friedman. Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29:1189–1232, 2001.

[60] Gabriel Pui Cheong Fung, Jeffrey X. Yu, Hongjun Lu, and Philip S. Yu. Text
classification without negative examples revisit. IEEE Trans. on Knowl. and
Data Eng., 18(1):6–20, 2006.

[61] Joao Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. A survey on concept drift adaptation. ACM Computing
Surveys, 46(4), 2014.

[62] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. A survey on concept drift adaptation. ACM computing
surveys (CSUR), 46(4):1–37, 2014.

[63] Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust loss functions
under label noise for deep neural networks. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1), 2017.

[64] Aritra Ghosh and Andrew Lan. Contrastive learning improves model robust-
ness under label noise. arXiv:2104.08984 [cs.LG], 2021.

[65] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten
Borgwardt, and Bernhard Schölkopf. Covariate shift by kernel mean match-
ing. Dataset shift in machine learning, 3(4):5, 2009.

[66] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi
Munos, and Michal Valko. Bootstrap your own latent - a new approach
to self-supervised learning. In Advances in Neural Information Processing
Systems, volume 33, pages 21271–21284, 2020.

[67] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based
models still outperform deep learning on tabular data? arXiv preprint
arXiv:2207.08815, 2022.

[68] Xian-Jin Gui, Wei Wang, and Zhang-Hao Tian. Towards understanding
deep learning from noisy labels with small-loss criterion. In International
Joint Conference on Artificial Intelligence, 2021.

122

[69] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration
of modern neural networks. In International conference on machine learning,
pages 1321–1330. PMLR, 2017.

[70] Isabelle Guyon. Datasets of the active learning challenge. Technical report,
University of Wisconsin-Madison Department of Computer Sciences, 2010.

[71] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor
Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. page 11, 2018.

[72] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Se-
bastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime
Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature,
585:357–362, 2020.

[73] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.
Statistics and its Interface, 2(3):349–360, 2009.

[74] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of
statistical learning: data mining, inference and prediction. Springer, 2 edi-
tion, 2009.

[75] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and pre-
diction, volume 2. Springer, 2009.

[76] Ryuichiro Hataya and Hideki Nakayama. Unifying semi-supervised and ro-
bust learning by mixup. In The 2nd Learning from Limited Labeled Data
Workshop, ICLR, 2019.

[77] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-
tum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[78] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using
self-supervised learning can improve model robustness and uncertainty. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 15663–15674. Curran Associates, Inc., 2019.

123

[79] Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using
trusted data to train deep networks on labels corrupted by severe noise.
In Advances in Neural Information Processing Systems, volume 31, pages
10456–10465, 2018.

[80] Ray J. Hickey. Noise modelling and evaluating learning from examples.
Artificial Intelligence, 82(1-2):157–179, 1996.

[81] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey.
Meta-learning in neural networks: A survey. IEEE transactions on pattern
analysis and machine intelligence, 44(9):5149–5169, 2021.

[82] Wei-Ning Hsu and Hsuan-Tien Lin. Active Learning by Learning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages
2659–2665. AAAI Press, 2015.

[83] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf,
and Alex J Smola. Correcting sample selection bias by unlabeled data. In
Advances in neural information processing systems, pages 601–608, 2007.

[84] Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously labeled
examples. In A. Fazel Famili, Joost N. Kok, José M. Peña, Arno Siebes,
and Ad Feelders, editors, Advances in Intelligent Data Analysis VI, pages
168–179. Springer Berlin Heidelberg, 2005.

[85] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncer-
tainty in machine learning: An introduction to concepts and methods, 2019.

[86] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya
Banerjee, and Fillia Makedon. A survey on contrastive self-supervised learn-
ing. Technologies, 9(1):2, 2021.

[87] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Haupt-
mann. Self-paced curriculum learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 29, 2015.

[88] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Men-
torNet: Learning data-driven curriculum for very deep neural networks on
corrupted labels. In International Conference on Machine Learning, vol-
ume 80, pages 2304–2313, 2018.

[89] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Men-
tornet: Learning data-driven curriculum for very deep neural networks on
corrupted labels. In ICML, 2018.

124

[90] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with
deep neural networks: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

[91] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting
decision tree. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[92] Shehroz S Khan and Michael G Madden. One-class classification: taxonomy
of study and review of techniques. The Knowledge Engineering Review,
29(3):345–374, 2014.

[93] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normalizing flows: An
introduction and review of current methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[94] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning Active
Learning from Data. In Advances in Neural Information Processing Systems
30, pages 4225–4235. 2017.

[95] Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Discovering
General-Purpose Active Learning Strategies. arXiv:1810.04114 [cs.LG], 2019.

[96] Mark A. Kramer. Nonlinear principal component analysis using autoassocia-
tive neural networks. AIChE Journal, 37(2):233–243, February 1991.

[97] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. Machine learning
operations (mlops): Overview, definition, and architecture. arXiv preprint
arXiv:2205.02302, 2022.

[98] M. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for la-
tent variable models. In Advances in Neural Information Processing Systems,
volume 23, 2010.

[99] Hugo Le Baher, Vincent Lemaire, and Romain Trinquart. On the intrin-
sic robustness of some leading classifiers and symetric loss function - an
empiricalevaluation (under review). arXiv:2010.13570 [cs.LG], 2020.

[100] Jisoo Lee and Sae-Young Chung. Robust training with ensemble consensus.
In International Conference on Learning Representations, 2020.

[101] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang. Cleannet:
Transfer learning for scalable image classifier training with label noise. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 5447–5456, 2018.

125

[102] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with
noisy labels as semi-supervised learning. In International Conference on
Learning Representations, 2019.

[103] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent
with early stopping is provably robust to label noise for overparameterized
neural networks. In International Conference on Artificial Intelligence and
Statistics, pages 4313–4324, 2020.

[104] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. We-
bvision database: Visual learning and understanding from web data. arXiv
preprint arXiv:1708.02862, 2017.

[105] Yu-Feng Li, Lan-Zhe Guo, and Zhi-Hua Zhou. Towards safe weakly super-
vised learning. IEEE transactions on pattern analysis and machine intelli-
gence, 43(1):334–346, 2019.

[106] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo-
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

[107] Or Litany and Daniel Freedman. Soseleto: A unified approach to transfer
learning and training with noisy labels, 2018.

[108] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm.
Information and computation, 108(2):212–261, 1994.

[109] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. Building text
classifiers using positive and unlabeled examples. In Third IEEE international
conference on data mining, pages 179–186. IEEE, 2003.

[110] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for
large scale optimization. Mathematical programming, 45(1):503–528, 1989.

[111] Tongliang Liu and Dacheng Tao. Classification with noisy labels by im-
portance reweighting. IEEE Transactions on pattern analysis and machine
intelligence, 38(3):447–461, 2015.

[112] Tongliang Liu and Dacheng Tao. Classification with noisy labels by im-
portance reweighting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(3):447–461, Mar 2016.

[113] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[114] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with
warm restarts. arXiv preprint arXiv:1608.03983, 2016.

126

[115] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang.
Learning under concept drift: A review. IEEE Transactions on Knowledge
and Data Engineering, 31(12):2346–2363, 2018.

[116] Hartmut Maennel, Ibrahim M. Alabdulmohsin, Ilya O. Tolstikhin, Robert
J. N. Baldock, Olivier Bousquet, Sylvain Gelly, and Daniel Keysers. What
do neural networks learn when trained with random labels? In Neural Infor-
mation Processing Systems, 2020.

[117] Andrea Malossini, Enrico Blanzieri, and Raymond T. Ng. Detecting po-
tential labeling errors in microarrays by data perturbation. Bioinformatics,
22(17):2114–2121, 2006.

[118] N. Matic, I. Guyon, L. Bottou, J. Denker, and V. Vapnik. Computer aided
cleaning of large databases for character recognition. In Proceedings., 11th
IAPR International Conference on Pattern Recognition. Vol.II. Conference
B: Pattern Recognition Methodology and Systems, pages 330–333, August
1992.

[119] Yun-Qian Miao, Ahmed K Farahat, and Mohamed S Kamel. Ensemble kernel
mean matching. In 2015 IEEE International Conference on Data Mining,
pages 330–338. IEEE, 2015.

[120] R. Mihalcea. Co-training and self-training for word sense disambiguation. In
CoNLL, 2004.

[121] André L. B. Miranda, Luís Paulo F. Garcia, André C. P. L. F. Carvalho,
and Ana C. Lorena. Use of Classification Algorithms in Noise Detection
and Elimination. In Hybrid Artificial Intelligence Systems, Lecture Notes in
Computer Science, pages 417–424, 2009.

[122] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V
Chawla, and Francisco Herrera. A unifying view on dataset shift in clas-
sification. Pattern recognition, 45(1):521–530, 2012.

[123] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep Ravikumar, and Ambuj
Tewari. Cost-sensitive learning with noisy labels. J. Mach. Learn. Res.,
18(1):5666–5698, 2017.

[124] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj
Tewari. Learning with noisy labels. Advances in neural information processing
systems, 26, 2013.

[125] Peter Nemenyi. Distribution-free multiple comparisons. Biometrics,
18(2):263, 1962.

127

[126] David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of
the effect of different types of noise on the precision of supervised learning
techniques. Artificial Intelligence Review, 33(4):275–306, 2010.

[127] Vincent Ng and Claire Cardie. Weakly supervised natural language learning
without redundant views. In Proceedings of the 2003 Human Language
Technology Conference of the North American Chapter of the Association
for Computational Linguistics, pages 173–180, 2003.

[128] Nam Nguyen and Rich Caruana. Classification with partial labels. In Pro-
ceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 551–559, 2008.

[129] Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities
with supervised learning. In Proceedings of the 22nd international conference
on Machine learning, pages 625–632, 2005.

[130] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicabil-
ity of co-training. In Proceedings of the ninth international conference on
Information and knowledge management, pages 86–93, 2000.

[131] Otton Nikodym. Sur une généralisation des intégrales de m. j. radon. Fun-
damenta Mathematicae, 15(1):131–179, 1930.

[132] Pierre Nodet, Vincent Lemaire, Alexis Bondu, and Antoine Cornuéjols. Con-
trastive representations for label noise require fine-tuning. In Georg Krempl,
Vincent Lemaire, Daniel Kottke, Andreas Holzinger, and Barbara Hammer,
editors, Proceedings of the ECML Workshop on Interactive Adaptive Learn-
ing (IAL@ECML PKDD 2021), number 3079 in CEUR Workshop Proceed-
ings, pages 89–104, Aachen, 2021.

[133] Pierre Nodet, Vincent Lemaire, Alexis Bondu, Antoine Cornuéjols, and Adam
Ouorou. From Weakly Supervised Learning to Biquality Learning: an Intro-
duction. In International Joint Conference on Neural Networks (IJCNN).
IEEE, 2021.

[134] Pierre Nodet, Vincent Lemaire, Alexis Bondu, Antoine Cornuejols, and Adam
Ouorou. Importance reweighting for biquality learning. In International Joint
Conference on Neural Networks (IJCNN). IEEE, 2021.

[135] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

[136] Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy M. Hospedales. Dy-
namic Ensemble Active Learning: A Non-Stationary Bandit with Expert

128

Advice. In Proceedings of the 24th International Conference on Pattern
Recognition, pages 2269–2276, 2018.

[137] Kunkun Pang, Mingzhi Dong, Yang Wu, and Timothy M. Hospedales. Meta-
Learning Transferable Active Learning Policies by Deep Reinforcement Learn-
ing. arXiv:1806.04798 [cs.LG], 2018.

[138] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. 2019.

[139] Giorgio Patrini, Alessandro Rozza, Aditya Menon, Richard Nock, and Lizhen
Qu. Making deep neural networks robust to label noise: a loss correction
approach. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[140] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12:2825–2830, 2011.

[141] Davi Pereira-Santos and André C.P.L.F. de Carvalho. Comparison of Active
Learning Strategies and Proposal of a Multiclass Hypothesis Space Search.
In Proceedings of the 9th International Conference on Hybrid Artificial In-
telligence Systems – Volume 8480, pages 618–629. Springer-Verlag, 2014.

[142] Davi Pereira-Santos, Ricardo Bastos Cavalcante Prudêncio, and An-
dré C.P.L.F. de Carvalho. Empirical investigation of active learning strate-
gies. Neurocomputing, 326–327:15–27, 2019.

[143] John Platt et al. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. Advances in large margin
classifiers, 10(3):61–74, 1999.

[144] Rafael Poyiadzi, Daniel Bacaicoa-Barber, Jesus Cid-Sueiro, Miquel Perello-
Nieto, Peter Flach, and Raul Santos-Rodriguez. The weak supervision
landscape. In 2022 IEEE International Conference on Pervasive Comput-
ing and Communications Workshops and other Affiliated Events (PerCom
Workshops), pages 218–223. IEEE, 2022.

129

[145] Siyuan Qiao, Wei Shen, Zhishuai Zhang, Bo Wang, and Alan Yuille. Deep
co-training for semi-supervised image recognition. In Proceedings of the
european conference on computer vision (eccv), pages 135–152, 2018.

[146] J. R. Quinlan. Induction of decision trees. 1(1):81–106.

[147] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. Snorkel: Rapid training data creation with weak super-
vision. The VLDB Journal, 29(2):709–730, 2020.

[148] S. Reed, H. Lee, Dragomir Anguelov, Christian Szegedy, D. Erhan, and
Andrew Rabinovich. Training deep neural networks on noisy labels with
bootstrapping. CoRR, abs/1412.6596, 2015.

[149] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to
reweight examples for robust deep learning. In International conference on
machine learning, pages 4334–4343. PMLR, 2018.

[150] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to
reweight examples for robust deep learning. In International Conference on
Machine Learning, volume 80, pages 4334–4343, 2018.

[151] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied Math-
ematics, 20:53–65, 1987.

[152] Sebastian Ruder and Barbara Plank. Strong baselines for neural semi-
supervised learning under domain shift. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 1044–1054, July 2018.

[153] Walter Rudin. Analyse réelle et complexe. 1975.

[154] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-
training for unsupervised domain adaptation. In International Conference
on Machine Learning, pages 2988–2997, 2017.

[155] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and
Tom Goldstein. Just how toxic is data poisoning? a unified benchmark
for backdoor and data poisoning attacks. In International Conference on
Machine Learning, pages 9389–9398. PMLR, 2021.

[156] Matthias Seeger. Learning with labeled and unlabeled data. Technical report,
2000.

[157] Burr Settles. Active learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2009.

130

[158] Burr Settles. Active learning literature survey. Computer Sciences Technical
Report 1648, University of Wisconsin-Madison, 2009.

[159] Yuan Shi and Fei Sha. Information-theoretical learning of discriminative
clusters for unsupervised domain adaptation. In ICML, 2012.

[160] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data aug-
mentation for deep learning. Journal of Big Data, 6(1):60, 2019.

[161] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and
Deyu Meng. Meta-weight-net: Learning an explicit mapping for sample
weighting. Advances in neural information processing systems, 32, 2019.

[162] Jun Shu, Qian Zhao, Zongben Xu, and Deyu Meng. Meta transition adap-
tation for robust deep learning with noisy labels. arXiv:2006.05697, 2020.

[163] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel opti-
mization: from classical to evolutionary approaches and applications. IEEE
Transactions on Evolutionary Computation, 22(2):276–295, 2017.

[164] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil
Lee. Learning from noisy labels with deep neural networks: A survey.
arXiv:2007.08199 [cs.LG], 2021.

[165] Heinrich von Stackelberg et al. Theory of the market economy. 1952.

[166] Masashi Sugiyama. Talk: Recent advances in weakly-supervised learning and
reliable learning, 2019.

[167] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau,
and Motoaki Kawanabe. Direct importance estimation with model selection
and its application to covariate shift adaptation. In Advances in neural
information processing systems, pages 1433–1440, 2008.

[168] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio
estimation: A comprehensive review (statistical experiment and its related
topics). 2010.

[169] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio
estimation in machine learning. Cambridge University Press, 2012.

[170] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir D. Bourdev,
and R. Fergus. Training convolutional networks with noisy labels. arXiv:
Computer Vision and Pattern Recognition, 2014.

131

[171] Haoliang Sun, Chenhui Guo, Qi Wei, Zhongyi Han, and Yilong Yin. Learn-
ing to rectify for robust learning with noisy labels. Pattern Recognition,
124:108467, 2022.

[172] Jiang-wen Sun, Feng-ying Zhao, Chong-jun Wang, and Shi-fu Chen. Iden-
tifying and Correcting Mislabeled Training Instances. In Future Generation
Communication and Networking (FGCN 2007), volume 1, pages 244–250,
December 2007. ISSN: 2153-1463.

[173] Luís Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Mo-
niz, and Paula Branco. 2nd workshop on learning with imbalanced domains:
Preface. In Second International Workshop on Learning with Imbalanced
Domains: Theory and Applications, pages 1–7, 2018.

[174] Colin Troisemaine, Joachim Flocon-Cholet, Stéphane Gosselin, Sandrine Va-
ton, Alexandre Reiffers-Masson, and Vincent Lemaire. A method for discov-
ering novel classes in tabular data. In IEEE International Conference on
Knowledge Graph (ICKG), 2022.

[175] Ruth Urner, Shai Ben David, and Ohad Shamir. Learning from weak teach-
ers. In Proceedings of the Fifteenth International Conference on Artificial
Intelligence and Statistics, volume 22 of Proceedings of Machine Learning
Research, pages 1252–1260, 2012.

[176] Jason Van Hulse and Taghi Khoshgoftaar. Knowledge Discovery from Imbal-
anced and Noisy Data. Data & Knowledge Engineering, 68(12):1513–1542,
December 2009.

[177] Brendan van Rooyen, Aditya Menon, and Robert C Williamson. Learning
with symmetric label noise: The importance of being unhinged. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Neural
Information Processing Systems, pages 10–18. 2015.

[178] Brendan Van Rooyen and Robert C Williamson. A theory of learning with
corrupted labels. J. Mach. Learn. Res., 18(1):8501–8550, 2017.

[179] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
Openml: Networked science in machine learning. SIGKDD Explor. Newsl.,
15(2):49–60, jun 2014.

[180] VN Vapnik and A Ya Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its
Applications, 16(2):264, 1971.

132

[181] Paroma Varma and Christopher Ré. Snuba: Automating weak supervision to
label training data. In International Conference on Very Large Data Bases,
volume 12, 2018.

[182] Kalyan Veeramachaneni, Ignacio Arnaldo, Vamsi Korrapati, Constantinos
Bassias, and Ke Li. Ai2: Training a big data machine to defend. In 2016
IEEE 2nd International Conference on Big Data Security on Cloud (Big-
DataSecurity), pages 49–54, 2016.

[183] Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. A primer on kernel
methods. Kernel methods in computational biology, 47:35–70, 2004.

[184] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Con-
tributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272, 2020.

[185] Qian-Wei Wang, Yu-Feng Li, and Zhi-Hua Zhou. Partial label learning with
unlabeled data. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pages 3755–3761, 2019.

[186] Ruxin Wang, Tongliang Liu, and Dacheng Tao. Multiclass learning with
partially corrupted labels. IEEE transactions on neural networks and learning
systems, 29(6):2568–2580, 2017.

[187] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James
Bailey. Symmetric cross entropy for robust learning with noisy labels. In
IEEE/CVF International Conference on Computer Vision, pages 322–330,
2019.

[188] Yulin Wang, Rui Huang, Gao Huang, Shiji Song, and Cheng Wu. Collabo-
rative learning with corrupted labels. Neural Networks, 125:205–213, 2020.

[189] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang
Liu. Learning with noisy labels revisited: A study using real-world human
annotations. In International Conference on Learning Representations, 2022.

[190] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3(1):9, 2016.

133

[191] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 1945.

[192] Frank Wilcoxon. Individual comparisons by ranking methods. In Break-
throughs in statistics, pages 196–202. Springer, 1992.

[193] Stephen J Wright. Continuous optimization (nonlinear and linear program-
ming). Foundations of Computer-Aided Process Design, 1999.

[194] Pengcheng Wu and Thomas G Dietterich. Improving svm accuracy by train-
ing on auxiliary data sources. In Proceedings of the twenty-first international
conference on Machine learning, page 110, 2004.

[195] Yichen Wu, Jun Shu, Qi Xie, Qian Zhao, and Deyu Meng. Learning to
purify noisy labels via meta soft label corrector. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 10388–10396, 2021.

[196] Xiaobo Xia, T. Liu, N. Wang, B. Han, C. Gong, Gang Niu, and Masashi
Sugiyama. Are anchor points really indispensable in label-noise learning? In
NeurIPS, 2019.

[197] Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong,
Haifeng Liu, Gang Niu, Dacheng Tao, and Masashi Sugiyama. Part-
dependent label noise: Towards instance-dependent label noise. Advances
in Neural Information Processing Systems, 33:7597–7610, 2020.

[198] Chaowei Xiao, Bo Li, Jun Yan Zhu, Warren He, Mingyan Liu, and Dawn
Song. Generating adversarial examples with adversarial networks. In 27th
International Joint Conference on Artificial Intelligence, IJCAI 2018, pages
3905–3911. International Joint Conferences on Artificial Intelligence, 2018.

[199] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning
from massive noisy labeled data for image classification. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2691–2699, 2015.

[200] Jun Yang. Review of multi-instance learning and its applications. Technical
report, School of Computer Science Carnegie Mellon University, 2005.

[201] Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, and
Tongliang Liu. Estimating instance-dependent bayes-label transition ma-
trix using a deep neural network. In International Conference on Machine
Learning, pages 25302–25312. PMLR, 2022.

[202] Yazhou Yang and Marco Loog. A benchmark and comparison of active
learning for logistic regression. Pattern Recognition, 83:401–415, 2018.

134

[203] Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu,
and Masashi Sugiyama. Dual t: Reducing estimation error for transition
matrix in label-noise learning. Advances in neural information processing
systems, 33:7260–7271, 2020.

[204] David Yarowsky. Unsupervised word sense disambiguation rivaling super-
vised methods. In 33rd annual meeting of the association for computational
linguistics, pages 189–196, 1995.

[205] Yinyu Ye and Edison Tse. An extension of karmarkar’s projective algorithm
for convex quadratic programming. Mathematical programming, 44(1):157–
179, 1989.

[206] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transfer-
able are features in deep neural networks? In Advances in neural information
processing systems, pages 3320–3328, 2014.

[207] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. A survey of crowd-
sourcing systems. In 2011 IEEE third international conference on privacy,
security, risk and trust and 2011 IEEE third international conference on social
computing, pages 766–773. IEEE, 2011.

[208] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability es-
timates from decision trees and naive bayesian classifiers. In Proceedings
of the Eighteenth International Conference on Machine Learning, ICML ’01,
page 609–616, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc.

[209] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning (still) requires rethinking generaliza-
tion. Communications of the ACM, 64(3):107–115, 2021.

[210] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz.
mixup: Beyond empirical risk minimization, 2018.

[211] Hui Zhang and Quanming Yao. Decoupling representation and classifier for
noisy label learning. arXiv:2011.08145, 2020.

[212] Min-Ling Zhang and Fei Yu. Solving the partial label learning problem: An
instance-based approach. In IJCAI, pages 4048–4054, 2015.

[213] Mingyuan Zhang, Jane Lee, and Shivani Agarwal. Learning from noisy labels
with no change to the training process. In International Conference on
Machine Learning, pages 12468–12478. PMLR, 2021.

135

[214] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training
deep neural networks with noisy labels. In Neural Information Processing
Systems, volume 31, 2018.

[215] Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning
overview: Recent progress and new challenges. Information Fusion, 38:43–
54, 2017.

[216] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adver-
sarial examples. In International Conference on Learning Representations,
2018.

[217] Evgenii Zheltonozhskii, Chaim Baskin, Avi Mendelson, Alex M. Bronstein,
and Or Litany. Contrast to divide: Self-supervised pre-training for learning
with noisy labels. arXiv:2103.13646 [cs.LG], 2021.

[218] Guoqing Zheng, Ahmed Hassan Awadallah, and Susan Dumais. Meta label
correction for noisy label learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35, 2021.

[219] Zhi-Hua Zhou and Ming Li. Tri-training: exploiting unlabeled data using
three classifiers. IEEE Transactions on Knowledge and Data Engineering,
17(11):1529–1541, 2005.

[220] Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, and
Nicu Sebe. Neighborhood contrastive learning for novel class discovery. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10867–10875, 2021.

[221] Y. Zhou and S. A. Goldman. Democratic co-learning. 16th IEEE Interna-
tional Conference on Tools with Artificial Intelligence, pages 594–602, 2004.

[222] Yuyin Zhou, Xianhang Li, Fengze Liu, Xuxi Chen, Lequan Yu, Cihang Xie,
Matthew P Lungren, and Lei Xing. Learning to bootstrap for combating
label noise. arXiv preprint arXiv:2202.04291, 2022.

[223] Zhi-Hua Zhou. Multi-instance learning from supervised view. Journal of
Computer Science and Technology, 21(5):800–809, 2006.

[224] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National
Science Review, 5(1):44–53, 08 2017.

[225] Zhi-Hua Zhou and Ming Li. Semi-supervised learning by disagreement.
Knowledge and Information Systems, 24(3):415–439, 2010.

136

[226] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical
report, University of Wisconsin-Madison Department of Computer Sciences,
2005.

[227] Xingquan Zhu and Xindong Wu. Class noise vs. attribute noise: A quanti-
tative study of their impacts. Artif. Intell. Rev., 22(3):177–210, November
2004.

[228] Zhaowei Zhu, Yiwen Song, and Yang Liu. Clusterability as an alternative to
anchor points when learning with noisy labels. In International Conference
on Machine Learning, pages 12912–12923. PMLR, 2021.

137

	Introduction
	Weakly Supervised Learning
	Introduction
	The Weak Supervision Tree
	The Weak Supervision Cube
	Axis 1: Inaccurate Supervision - True Labels vs. Inaccurate Labels
	Axis 2: Inexact Supervision - Labels at the Right Proxy vs. not at the Right Proxy
	Axis 3: Incomplete Supervision - Few labels vs. Numerous

	A Lookup on Axis 3
	Active Learning (AL)
	Semi-Supervised Learning (SSL)
	Postive Unlabeled Learning (PUL)
	Self Training (ST)
	Co-Training (CT)

	Beyond the Axes
	Learning at the crossroad of the three axes
	Deficiency Model
	Transductive learning vs. Inductive Learning

	Measurable quantities of WSL
	Quantity
	Quality
	Adaptability

	From Weakly Supervised Learning to Biquality Learning
	Conclusion

	Biquality Learning
	Introduction
	Biquality Learning Framework
	Related Domains
	Inductive Transfer Learning
	Supervised Domain Adaptation
	Multi-Source Learning
	Concept Drift
	Table of Domains

	State of the Art
	Transition Matrices
	Radon-Nikodym Derivative
	Auxiliary Data Sources
	Small Loss Samples
	Meta Learning
	Table of methods

	Biquality Datasets
	Simulated Deficiencies
	Label Noise
	Weak Labels
	Data Poisoning

	Evaluation of Biquality Learning Algorithms
	Baselines
	What Makes an Efficient Biquality Learning Algorithm ?

	SotA Limits for Orange
	Conclusion

	Importance Reweighting for Biquality Learning
	Introduction
	A new Importance Reweighting approach for Biquality Learning
	Simulating Supervision Deficiencies
	Datasets
	Simulated Supervision Deficiencies

	Experiments
	Quality of the Reweighting Scheme
	Benchmark against State-of-the-art-competitors
	Results

	On the Calibration of Classifiers
	Under-Confidence and Over-Confidence
	Calibrating non-calibrated Classifiers
	Simulating Poorly Calibrated Classifiers
	Results

	On the Specification of Classifiers
	Suitability and Expressiveness of Classifiers
	Wrongly Specified Classifiers
	Effects on IRBL
	Results

	IRBL and Multiclass Classification
	Conclusion

	Reboot Biquality Learning with Distribution Shifts
	Introduction
	Related work
	Reweighting for distribution shift
	First proposed approach: IRBLV2
	Second proposed approach: K-PDR
	Experiments
	Concept Drift
	Covariate Shift
	Class-Conditional Shift
	Prior Shift
	Datasets
	Competitors

	Results
	First part: Concept Drift and Covariate Shift
	Second part: Class-Conditional Shift and Prior Shift

	Conclusion

	Learning Deep Representations from Weak Supervision
	Introduction
	Representation Preserving with Noisy Labels
	Preserving by Recovering
	Preserving by Collaboration
	Preserving by Correcting
	Preserving by Robustness

	Experimental Protocol
	The tested Algorithms
	Datasets
	Simulated Noise
	Implementation Details

	Results
	Conclusion

	Biquality Learning at Orange
	Design of the API
	Training Biquality Learning Classifiers
	Criteria of Inclusion in biquality-learn
	scikit-learn's metadata routing
	Cross-Validating Biquality Classifiers
	Quality Implementations of Biquality Learning Algorithms
	Simulating Corruptions with the Corruption API

	Conclusion

