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Résumé 

La Génie Chimique est un sujet riche et passionnant. Que ce soit pour nos vêtements ou 

nos repas, presque tout autour de nous passe par les mains de l’industrie chimique. Au 

cours des années, cette discipline a contribué à des découvertes capitales, comme le 

développement de médicaments, le dessalement de l’eau par osmose inverse, l’invention 

des colonnes de distillation réactive... Néanmoins, beaucoup de procédés d’usage étudiés 

en Génie Chimique peuvent être améliorés. En effet, ces procédés utilisent souvent 

l’hypothèse d’équilibre thermodynamique, et sont loin d’être efficaces. Mêmes les 

procédés intensifiés, qui font appel au couplage de phénomènes, n’exploitent pas 

complètement les synergies hors-équilibre en phase de conception ou de contrôle.  

Une façon de surmonter ces limitations est de développer des procédés innovants et 

efficaces en s’inspirant de la nature. Pour cela, il est indispensable de mieux comprendre 

les mécanismes fondamentaux derrière les procédés biomimétiques. Par conséquent, le 

présent travail étudie comment la thermodynamique hors-équilibre peut aider à combler 

ce manque de connaissance. Trois des concepts clés dans la littérature pour impulser la 

conception de procédés inspirés de la nature étant liés à trois notions importantes de la 

thermodynamique hors-équilibre, l’usage d’une telle approche semble donc justifiée. Une 

analogie est faite entre les réseaux de transport hiérarchique, le contrebalancement des 

forces, l’auto-organisation dynamique et l’équipartition de la production d’entropie + Loi 

Constructale, le couplage thermodynamique, les structures de dissipation. 

Ces notions de thermodynamique hors-équilibre ont motivé trois différents projets de 

recherche. Le premier porte sur l’évaluation d’un distributeur de liquide pour une colonne 

à distiller. Cet interne de colonne consiste en un plateau avec des orifices, et des structures 

filaires sortant de ces orifices comme les branches d’un arbre. Le liquide s’écoule sur la 

surface de ces fils, se divisant en plusieurs ruisselets avant de tomber sur le garnissage 

au-dessous. Le choix d’un tel dessin peut être partiellement justifié par la Loi 

Constructale, un principe censé régir l’évolution des structures d’écoulement vivantes et 

non-vivantes. Ce principe encourage l’utilisation de structures en arbre pour distribuer un 

flux d’un point vers une surface. Des calculs théoriques prévoient que cette nouvelle 

technologie peut empêcher la mauvaise répartition du liquide dans les colonnes. En plus, 
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des expériences ont montré que cet interne réduit de 40% la hauteur équivalente à un 

plateau théorique pour un garnissage conçu récemment. 

Cette thèse examine aussi deux phénomène interfaciaux liés aux couplages 

thermodynamiques : la diffusioosmose et la diffusiophorèse. Ces deux phénomènes sont 

étudiés via simulation numérique. D’abord, nous essayons de reproduire le comportement 

d’une membrane à partir de la diffusioosmose afin de déterminer l’impact de trois 

paramètres sur l’état d’équilibre d’advection-osmose : la différence de concentration de 

colloïde, les interactions surface-colloïde, et les interactions colloïde-colloïde. Le 

phénomène de diffusiophorèse est étudié, lui, à l’aide de deux modèles transitoires et un 

modèle en régime permanent dans la limite de diffusivité infinie. Cette étude s’intéresse 

à l’impact du gradient de concentration de soluté, de la diffusivité et des interactions 

interface-soluté sur la vitesse de diffusiophorèse. 

Enfin, le dernier projet de recherche conduit au cours de cette thèse met à l’épreuve la 

validité du principe de Ziegler de Maximisation de la Production d’Entropie, qui est défini 

comme une généralisation des relations de réciprocité d’Onsager aux systèmes éloignés 

de l’équilibre. Cette thématique est aussi liée aux couplages thermodynamiques dans la 

mesure où le principe de Maximisation de la Production d’Entropie se prête à 

l’explicitation de lois phénoménologiques dans le cas particulier des phénomènes 

couplés. Cependant, une révision minutieuse de la démonstration du principe proposée 

par Ziegler montre que celle-ci est erronée. De plus, un contre-exemple simple impliquant 

deux réactions chimiques éloignées de leur état d’équilibre permet de montrer que le 

principe lui-même est faux. 
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Summary 

Chemical Engineering is a vast and passionate subject. From the clothes we wear to the 

foods we eat, almost everything surrounding us has passed by the hands of the chemical 

industry. This discipline has experienced numerous breakthroughs, like advanced 

pharmaceuticals, water desalination via reverse osmosis, and reactive distillation 

columns, to name a few. However, many of the typical processes studied by Chemical 

Engineering have room for improvement. Indeed, these processes are often based on 

equilibrium hypothesis, far from being efficient. Even intensified processes, which are 

based on coupled phenomena, do not fully explore non-equilibrium synergies in 

design/control stages.  

One solution to overcome these limitations lies in developing innovative and more 

efficient processes with nature-inspired ideas. This can only be achieved through a better 

understanding of underlying fundamental mechanisms and dynamics of the biomimetic 

processes. Hence, the present work explores how non-equilibrium thermodynamic 

concepts can help fill in this gap of knowledge. Using non-equilibrium thermodynamics 

is legitimated by the fact that the three key concepts used in the literature to drive the 

design of nature-inspired processes are linked to some extent to three important concepts 

of non-equilibrium thermodynamics. Hierarchical transport networks, force balancing 

and dynamic self-organization are the concepts mentioned from literature, and 

equipartition of entropy production + Constructal Law, thermodynamic coupling and 

dissipative structures are their thermodynamic counterparts.  

These non-equilibrium thermodynamics notions prompted three different research 

projects. The first one is about the assessment of a tree-like liquid distributor for 

distillation columns. This internal consists of a regular orifice-pan distributor coupled 

with a wire structure that resembles the branches of a tree. The liquid flows on the outer 

surface of these wires, splitting into several streamlets before dripping on the packed bed 

below. Such a design can be partially justified by the Constructal Law, a principle that is 

claimed to govern the evolution of living and non-living flow structures with respect to 

time. This principle promotes the use of tree structures to realize point-to-area flow. 

Theoretical calculations predict that this new technology can help prevent maldistribution 
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in column operations. Further, experiments show that the internal reduces the height 

equivalent to a theoretical plate of a recently disclosed packing by 40%. 

This work also investigates two interface-driven phenomena related to thermodynamic 

coupling: diffusioosmosis and diffusiophoresis. Both are linked to thermodynamic 

coupling since they correspond to fluid or particle flow generated by a secondary 

thermodynamic force (solute concentration gradient). These phenomena are studied here 

via numerical simulations. First, an attempt is made to replicate membrane behaviour 

from diffusioosmosis alone. The simulations explored the impact of three parameters on 

advection-osmosis equilibrium: colloid concentration difference, colloid-interface 

interactions, and colloid-colloid interactions. Afterwards, diffusiophoresis is investigated 

using two transient models and one steady-state model, the latter in the limit of infinite 

diffusivity. This study focuses on the effect of solute concentration, diffusivity, 

concentration gradient, and solute-interface interactions on the diffusiophoretic velocity. 

Finally, the last research project conducted for this thesis checks the validity of Ziegler’s 

Maximum Entropy Production principle, which attempts to generalize Onsager’s 

reciprocal relations to far-from-equilibrium systems. This topic is also connected to 

thermodynamic coupling since the Maximum Entropy Production principle attempts to 

derive the phenomenological relations for coupled phenomena. A careful review of 

Ziegler’s attempt to prove this principle shows that his demonstration is flawed. Further, 

a simple counterexample using far-from-equilibrium chemical reactions reveals that the 

principle itself is incorrect. 
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Chapter I. Introduction 

I.1 Context and general introduction 

Chemical engineering deals with the processing of matter and energy, which requires 

processing of information as well. It also puts an emphasis on the development of 

technologies used for the large-scale chemical production and on the manufacture of 

products with desired properties through chemical processes. Interactions within and 

between processes are important, as well as dynamics. Nature also manipulates energy, 

matter and information. It does so via structures and processes whose performance, 

efficiency and resilience can and should be envied by human-made activities. And yet, 

few lessons have been taken from nature and implemented in chemical industry. One of 

the possible reasons for that was the lack of consistent frameworks that can guide 

researchers towards new nature-inspired processes. 

Fortunately, the new engineering challenges of the XXIst century, such as renewable 

energies and small-scale technologies, boosted nature-inspired chemical engineering 

(NICE) studies. And an interesting NICE framework emerged from them. In 2012, 

Coppens (Coppens, 2012) suggested that the backbone for nature-inspired reactor and 

catalysis engineering should consist of three themes: Hierarchical Transport Networks 

(T1), Force Balancing (T2) and Dynamic Self-Organization (T3). Despite being first 

proposed in the context of reactor and catalysis, this framework can actually be employed 

to NICE as a whole (UCL, 2021). It is worth noting that a fourth theme, Ecosystems, 

Networks and Modularity (T4), has been recently added to the framework (Coppens, 

2021; UCL, 2021). 

Analogies exist between the mechanisms listed by Coppens and the field of non-

equilibrium thermodynamics (NET). Indeed, T1, T2 and T3 can be associated to the 

concepts of equipartition of entropy production + Constructal Law (NET1), 

thermodynamic coupling (NET2) and dissipative structures (NET3) (Gerbaud et al., 

2020). Figure I.1 illustrates both T1-T3 and NET1 – NET3 frameworks. 
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Figure I.1 – Comparison between Coppens’ NICE framework and Gerbaud’s NET 

framework. Illustrations on T1-T3 extracted from UCL (2021). Figures on the right-

column adapted from Lloyd-Jones (2019), SUEZ (2021) and Nick Moore (2016). CL 

stands for Constructal Law. 

It is important to make these analogies because chemical engineering processes are 

mostly designed and operated on the basis of phase equilibrium hypotheses in reaction 

and separation engineering. Besides, transport phenomena, which are the core of chemical 

engineering unit operations, are usually described with linear phenomenological laws, 

and process regulation is often done via linear control theory to maintain quasi-steady 

state operation. Most of these concepts are more than 50 years old and are antipodal with 



 Chapter I. Introduction 

 

3 

 

nature’s way of life: an ever adapting, out-of-equilibrium state with nonlinear dynamics. 

These disparities between industry and nature are what makes the NET framework for 

chemical engineering promising. 

The merits of this framework are brought to the fore thanks to the three projects derived 

from it and discussed in this thesis. Each project is whole on its own, but the NET 

framework is the thread that links them. The first one concerns a nature-inspired liquid 

distributor, and it relates to NET1. Indeed, the choice of a tree-like configuration for the 

distributor that will be discussed in Chapter II can be partially justified by the Constructal 

Law, which is concerned with the evolution of flow architectures (Bejan and Lorente, 

2004). Further, the project on modelling and simulation of diffusiophoresis and 

diffusioosmosis (Chapter III) is derived from NET2. Both these phenomena are instances 

of thermodynamic coupling, in which gradient of solute concentration induces particle 

flow (diffusiophoresis) or fluid flow (diffusioosmosis). Finally, the rebuttal of Ziegler’s 

principle (Chapter IV) falls in the NET2 theme, since the principle attempts to predict the 

phenomenological laws of thermodynamic couplings. 

The versatility of these projects gives the thesis a cross-disciplinary nature, without 

making it uncoherent. Indeed, the thesis as a whole can be seen as an application of the 

NET framework described in Section I.4. Alternatively, this work may also be seen as a 

thesis on transport phenomena at different scales. The project on liquid distributor studies 

this concept on the process scale, without focusing much on the physics underling the 

liquid flow along the distributor. The impact of liquid distribution on distillation 

performance is assessed with a more heuristic and experimental approach, without using 

a rigorous model to describe the physics of the flow. In contrast, for the project on 

diffusioosmosis and diffusiophoresis a detailed description of the transport equations is 

given. These phenomena are studied via numerical simulations in a microscopic scale that 

corresponds to membrane channels (diffusioosmosis) or to micro-sized phoretic particles. 

Finally, the critical review of Ziegler’s Maximum Entropy Production Principle 

investigates the phenomenological laws of coupled transport phenomena. It is a purely 

theoretical work at the most fundamental scale of transport phenomena. 

The remainder of this chapter will bring additional context to the thesis. The next sections 

give an overview of nature-inspired engineering and non-equilibrium thermodynamics. 

The motivation and objectives of each project, as well as the organization of the 

manuscript, are given by the end of the chapter. 
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I.2 Overview of nature-inspired engineering 

Nature-inspired engineering is a relatively old research field. Back in 1948, the electrical 

engineer Georges de Mestral invented the hook-and-loop fastener, inspired by the 

microstructure of the burs of burdock (Merlin and Ménézo, 2018). Since then, 

biomimetics has boosted the design of several innovative materials. The SLIPS (self-

healing slippery liquid-infused porous surfaces) constitute an interesting example (Wong 

et al., 2011). These surfaces can be used in the handling of biomedical fluids, fuel 

transportation and self-cleaning windows. SLIPS are inspired by the slipping peristome 

of the Nepenthes pitcher, a carnivorous plant. This region has a microstructure that allows 

for water retention, and insects wandering on it often slip towards the plant’s digestive 

juices due to aquaplaning. Other applications of biomimetics to Material Science include 

surface coating, nanocomposites, adherent surfaces, and more (Merlin and Ménézo, 

2018). 

Despite the advances of biomimetics in the Material Science domain, some other subjects 

still struggle to develop nature-inspired ideas. That is the case for process engineering, as 

depicted in Figure I.2. Process engineering here will be used to refer to the branch of 

chemical engineering that accounts for works on thermodynamics, transport phenomena, 

unit operation and manufactory scale. 

  

Figure I.2 – Articles found on Scopus on March 3rd 2019, with Query (biomim* OR 

bio*inspired OR nature*inspired): 64713 documents 

The landscape of nature-inspired works on Chemical Engineering (excluding Material 

Science) is presented in Figure I.3. This mind-map was generated using the Gargantex 

website (CNRS, 2018), with data from the Scopus database. Each node corresponds to a 

Including less than 30% on processes 
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recurrent keyword from the abstracts of the papers. The edges represent common co-

occurrences of these words. We can distinguish 6 well-defined clusters: reactions, 

surface/coating, biomaterials, nano/microstructured materials, nanoparticles/enzymes 

and bone tissue engineering. Further, the unnamed bright yellow cluster assembles works 

on photocatalysis and biomimetic syntheses. Finally, the papers on Process Engineering 

are mostly scattered in the unnamed light-blue cluster on top of Figure I.3, showing that 

nature-inspired works in this area are scarce. 

 

Figure I.3 – Mind-map for the papers on NICE, using Scopus database with Query 

(((TITLE-ABS-KEY(biomim*) OR TITLE-ABS-KEY(bio-inspired) OR TITLE-ABS-

KEY(nature-inspired) OR TITLE-ABS-KEY("bio inspired") OR TITLE-ABS-

KEY("inspired by nature") OR TITLE-ABS-KEY("inspired by the nature") OR TITLE-

ABS-KEY("nature inspired") AND TITLE-ABS-KEY(process))) AND (LIMIT-TO( 

SRCTYPE,"j")) AND (LIMIT-TO(SUBJAREA,"CENG") OR EXCLUDE 

(SUBJAREA,"MATE")) AND ( LIMIT-TO ( DOCTYPE,"ar")) AND (LIMIT-TO 

(LANGUAGE,"English"))) 

Some works on nature-inspired ideas for process engineering will be reviewed in the 

following paragraphs. This short review aims to expose the reader to the concepts of 

diffusiophoresis, diffusioosmosis and Constructal Law, and to show some of their 

applications. These concepts are connected to the projects presented in Chapter II (the 

nature-inspired liquid distributor) and Chapter III (modelling and simulation of 

diffusioosmosis and diffusiophoresis). Furthermore, some papers related to the NICE 

Reactions 
Surfaces/Coating 

Bone tissue 

engineering 

Nanoparticles/

Enzymes 

Biomaterials 

Nano/micro 

structured materials 
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framework proposed by Coppens (2012) are also reviewed below. These works elucidate 

the themes T1-T3 from which the NET framework was derived (see Figure I.1). 

Synthetic microswimmers (Elgeti et al., 2015) are an interesting first example of nature-

inspired ideas for process engineering. They are self-propelled, artificial microbodies that 

can move through liquid media. In the future, such swimmers may be used to operate 

cells, to remove toxins from the human body or even as a drug-delivery system. Various 

transport mechanisms involved in the motion of microorganisms are adapted for artificial 

microswimmers, such as the propulsion mechanisms of sperm cells and artificial cilia 

(Elgeti et al., 2015). Diffusiophoresis (particle transport due to solute concentration 

gradient) is another mechanism used to drive the motion of synthetic swimmers. This 

phenomenon is also associated to various natural processes, including protein transport 

across membrane pores and viral DNA transport in living cells (Velegol et al., 2016). 

Baring similarities with diffusiophoresis, osmosis (fluid flow due to concentration 

difference across an interface) is another phenomenon that arises in nature and has 

practical applications. For example, kidneys perform very well in separating urea from 

our blood. Every day, human kidneys filter around 200L of water, and only 0.8 - 2 L are 

wasted as urine (Marbach, 2018; Mount Sinai Health System, 2021). This biological 

filtration consumes less than 1% of the energy used in commercial dialysis equipment 

(Marbach, 2018), showing the gap for improvement in human-based engineering. The 

natural dialysis task is completed in the kidneys thanks to a U-shaped structure called 

loop of Henle. Water, urea and salt flow inside this structure, which is immersed in 

interstitial fluid. The walls of the descending limb in the loop are permeable to water, 

whereas the walls of the ascending limb have micropumps that pump the salt to the 

interstitium. This salt pump increases salt concentration in the interstitial fluid, causing 

the water in the descending limb to flow out of the structure via osmosis. As a result, salt 

and most of the water are filtered out; only urea and some water are retained. From this 

idea, a kidney-inspired filtration device was recently conceived which uses classic 

permeable membranes and charged membranes to mimic the walls of the descending and 

ascending limbs, respectively (Marbach, 2018). Future applications include seawater pre-

treatment (prior to desalinization), and dialysis. 

The inventions listed in this section are objective instances of nature-inspired engineering. 

But this field has also produced general frameworks and theories of practical application, 

such as the Constructal Law (CL) (Bejan and Lorente, 2004). CL is a principle claimed 



 Chapter I. Introduction 

 

7 

 

to dictate how the architecture of living and non-living flow structures evolve in time. It 

is about survival in time by increasing efficiency, territory and compactness. Considering 

a global flow resistance R, global internal size V, and global external size L, survival is 

achieved by minimizing/maximizing one of the parameters when the other two are held 

constant. The formal statement of the principle is (Bejan and Lorente, 2004): 

For a finite-size system to persist in time (to live), it must evolve in such a way that it 

provides easier access to the imposed currents that flow through it. 

For a system with fixed global size and global performance to persist in time (to live), it 

must evolve in such a way that its flow structure occupies a smaller fraction of the 

available space. 

In order for a flow system with fixed global resistance (R) and internal size (V) to persist 

in time, the architecture must evolve in such a way that it covers a progressively larger 

territory. 

The above three-parts statement shows the importance of the CL to engineers. Indeed, the 

three features being evoked (easiest flow access, compactness or more free space, 

maximal spreading) are the drivers for the conception of transport networks. When 

designing the pipe network for a chemical plant, engineers want to minimize the pressure 

drop (i.e., the resistance to the flow) in order to lower the cost of pumping. However, 

transport of corrosive fluids requires expensive materials, such as titanium or zirconium 

alloys. In those cases, engineers may prefer to minimize the capital cost of construction 

(i.e., minimize the material used for transport) by accepting a fixed maximum pressure 

drop. This is similar to the second part of the CL statement. Finally, road networks are 

conceived to connect the different parts of a city. The optimal configuration in this case 

is the one covering the maximum territory available, following the third principle of the 

CL. 

Fractal tree structures emerge from CL, when it is necessary to connect one point with an 

infinite number of points covering a surface/volume. Fractal structures also facilitate 

scale-up. Two examples are the vascular and the respiratory networks in the human body. 

Tree-shaped networks are also found to dissipate energy uniformly (West et al., 1997) 

and to operate near optimality in terms of momentum and heat flow resistance (Bejan and 

Tondeur, 1998; Coppens, 2012). Despite providing interesting alternatives for the design 

of flow structures, CL has been criticized for its vague formulation (Smith, 2013). 
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Attempts to transform the law in a deterministic approach for optimal flow structure 

design have failed in several applications (Kuddusi and Eǧrican, 2008). 

In nature, fractals and other highly symmetric structures are often associated to 

hierarchical transport, when the flow network bridges scales in order to distribute a 

current. In chemical engineering, such structures may facilitate scaling, as the only 

characteristic length pertinent to design is that of the basic building unit (Coppens, 2005). 

This feature is the motivation for the first research theme in the NICE framework 

proposed by Coppens: Hierarchical Transport Networks (T1) (Coppens, 2005, 2012). T1 

was used in the design of a new oxygen distribution system in polymer electrolyte 

membrane fuel cell. This fractal distribution system provided better oxygen distribution 

over the cathode’s surface, decreasing catalyst consumption. Further, creating smaller-

scale transport hierarchies by introducing macroporosity in the catalyst layer improved 

the access of reactant to the active sites within (see Figure I.1). Another application of T1 

was in the design of a scalable fractal-like gas injector for a fluidized bed. This injector 

avoids the formation of large bubbles in the bed, stabilizing the gas-liquid suspension and 

therefore improving gas-solid contact. Such a device can be easily scaled-up by increasing 

the number of fractal generations (Coppens, 2005). 

The second research theme proposed by Coppens is called Force Balancing (T2) 

(Coppens, 2012). It draws inspiration from complex structures, such as enzymes and 

DNA double-helixes, that are formed and stabilized due to the action of several forces of 

different natures. This theme has often been applied to enhance the catalytic activity of 

proteins. For example, it was found that one can increase the catalytic activity of the 

lysozyme and myoglobin by confining these proteins between concave, hydrophilic walls. 

The curvature radius of these walls should be close to the protein’s characteristic length 

(Sang and Coppens, 2011). Besides, T2 inspired a new anti-fouling system for 

microfiltration membranes, which consists roughly in adding a chitosan layer on the 

membrane surface. Like the anti-fouling mechanism of cell membranes, this layer imparts 

steric hindrance and a hydration coating to the membrane, which prevents adsorption of 

E. coli bacteria and polymer formation/deposition (Coppens, 2021). 

The third theme in Coppens’ framework is Dynamic Self-Organization (T3). The term 

refers to organized natural structures that appear as a result of stimuli from their 

surroundings. The classical example is that of sand waves (see Figure I.1). Sand waves 

(the organized structure) are formed through oscillatory wind tides (an intermittent 
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stimulus). Inspired by this phenomenon, Coppens and van Ommen (2003) proposed the 

use of oscillating gas flow in fluidized beds. They found that oscillating the gas inlet 

flowrate (an intermittent stimulus) creates a regular bubble pattern (the organized 

structure) at the lower part of the bed. This helps increasing control over the otherwise 

chaotic hydrodynamics of the bed. Furthermore, it prevents channelling and clumping, 

improving processes such as combustion and drying (Coppens, 2012). 

Finally, the last theme of the NICE framework (T4 – Ecosystems, Networks, and 

Modularity) is related to the synergy created by the interaction of different living systems 

(Coppens, 2021). In animals for example, cells can assemble into tissues, and eventually 

into organs that are capable of executing complex tasks. The characteristics of such 

organs cannot be reduced to the sum of individual cell properties; instead, the synergy 

from the interactions between the constituting cells gives the final structure much richer 

features. It has been suggested that T4 could be used in the control of the hydrodynamics 

of fluidized beds. The idea behind this proposal is that the behaviour of complex 

structures presenting several nonlinear coupled interactions can be modulated between 

chaotic and ordered via the tuning of some relevant parameters. Therefore, there might 

exist an appropriate control loop capable of fine tuning the hydrodynamics of a fluidized 

bed (Coppens, 2021). 

Several nature-inspired works were briefly reviewed in this section. Because researchers 

strive for innovation, it is only natural to dwell on the thinking process behind each of the 

inventions described here. The hook-and-loop fastener mentioned in the beginning of the 

section was most likely an observation-driven invention. By observation-driven, it is 

meant that the inventor was not “trying to invent” anything when he “stumbled” upon the 

source of his inspiration. The inventor of the hook-and-loop fastener probably only 

thought of creating a new type of fastener after observing the burdock burs. Some people 

may refer to this thinking process as serendipity, but this term will be avoided here. 

Serendipity has connotations of “by chance”, “by luck”, whereas inventions require work, 

experience and conscious/unconscious thinking. 

After the hook-and-loop fastener, SLIPS (Wong et al., 2011) were mentioned. These 

slippery surfaces were likely an application-driven invention. Indeed, some of the authors 

were already working with hydrophobic and nanostructured surfaces before year 2011. It 

is likely that they were actively searching ideas for a surface with strong liquid-repelling 

properties, and the pitcher-inspired concept was a result of this brainstorming. The 
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kidney-inspired filtration described by Marbach (2018) is also likely an application-

driven invention. The author was already working with osmosis, membranes and other 

related phenomena prior to year 2018. 

The last type of thinking process involved in the inventions described here will be called 

application-driven-framework-oriented. The inventions emerging from CL and Coppens’ 

T1-T4 principles all fit in this category. The inventors certainly had a goal in mind prior 

to their inventions, but their creative process uses a pre-conceived framework. Another 

framework for chemical engineering, which led to this thesis’ projects, is the NET1 –

NET3 framework presented in Gerbaud et al. (2020) and depicted in Figure I.1. 

This concludes a brief review of the current nature-inspired engineering landscape. The 

next section gives an overview of non-equilibrium thermodynamics, focusing on entropy 

production and the definition of thermodynamic fluxes and forces. This section is 

particularly helpful for readers not familiar with thermodynamic coupling. 

I.3 Overview of non-equilibrium thermodynamics 

Many historians of science attribute the first developments in the field of thermodynamics 

to Count Rumford and Sadi Carnot. The former proved experimentally that heat could be 

indefinitely generated from friction, which casted doubts on the prevailing theory that 

heat was a substance (Count of Rumford, 1798). The latter came up with the concept of 

reversible cycles for engines, and theorized that the maximum efficiency of an engine 

depends only on the temperature of the hot and cold bodies serving as driving force for 

the heat flow (Carnot, 1824). These works laid the basis for the First and Second Law of 

Thermodynamics, whose mathematical expression would be given years later by Rudolf 

Clausius: 

 Δ𝑈 = 𝑄 +𝑊 (closed system) (I.1) 

 Δ𝑆 ≥ 0 (isolated system) (I.2)  

For a more detailed account of the historical works leading to the First and Second Law 

of Thermodynamics, refer to Appendix A. 

In eq. (I.1), U refers to the internal energy of a system, Q is the heat exchanged with the 

surroundings, and W is the work exerted on/by the surroundings. Term S in eq. (I.2) is the 

entropy, and this equation implies that an isolated system maximizes S when it reaches 
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equilibrium. Internal energy and entropy are state functions; hence, they can be defined 

with some set of state variables. For example, the state of a perfect single component gas 

at equilibrium is fully described by its temperature (T), volume (V) and number of moles 

(N). The internal energy and entropy of perfect gas at equilibrium can be written as: 

 𝑈 = �̂�𝑉𝑁𝑅𝑇 (I.3) 

 
𝑆 = 𝑁𝑅 ln [

𝑉𝑇𝑐̂𝑉

𝜔𝑁
]     (for 𝑉𝑇𝑐̂𝑉 𝜔𝑁⁄ ≫ 1)  (I.4) 

In eqs. (I.3) and (I.4), �̂�𝑉 is the dimensionless heat capacity at constant volume, and 𝜔 is 

a constant that depends upon the type of gas. For example, for a monoatomic gas 𝜔 =

1.776 × 10−44 ×𝑚−3 2⁄  (in SI units), with m being the mass of the gas particle. 

These equations can be used when temperature and gas concentration are homogeneous. 

However, systems out-of-equilibrium may present temperature and concentration 

gradients. For instance, a gas cylinder heated at one end and cooled at the other does not 

have a particular temperature describing its state. And yet, it has a certain entropy and a 

certain internal energy. How can these quantities be calculated in this case? 

A logical suggestion is to assume eqs. (I.3) and (I.4) are valid for smaller portions of the 

domain in which temperature is well-defined. The modified equations would be of 

integral form: 

 
𝑈 = ∫�̂�𝑉𝑐𝑅𝑇 𝑑𝑉

𝑉

 (I.5)  

 
S = ∫ 𝑐𝑅 ln [

𝑇𝑐̂𝑉

𝜔𝑐
] 𝑑𝑉

𝑉

 (I.6)  

where c is gas concentration (moles per volume). 

There are two key hypotheses behind eqs. (I.5) and (I.6): (i) temperature is locally well-

defined; (ii) despite the system not being at equilibrium, eqs. (I.3) and (I.4) are valid 

locally. In other words, if one looks at a very small portion of the domain, its properties 

are homogeneous and it resembles a system at equilibrium. 

These hypotheses constitute a particular application of the more general local equilibrium 

hypothesis (LEH). LEH assumes that (Jou et al., 2010): 
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(i) variables that are well-defined at equilibrium states (e.g. temperature, 

pressure) remain locally well-defined when the system is out-of-equilibrium; 

(ii) equations relating state functions and state variables at equilibrium remain 

valid (locally) when the system is out-of-equilibrium. 

LEH is a key assumption in most of the NET developments. It allows one to write the 

local form of the Gibbs equation (Jou et al., 2010): 

 
𝑑𝑠 =

𝑑𝑢

𝑇
+
𝑝𝑑𝜈

𝑇
−
1

𝑇
∑

𝜇𝑖
𝑀𝑖
𝑑𝑤𝑖

𝑖

  (I.7) 

where s, u and v are respectively specific entropy, specific internal energy and specific 

volume (in terms of mass); 𝑤𝑖 is the mass fraction of component i; 𝜇𝑖 and 𝑀𝑖 are 

respectively the chemical potential and the molecular weight of component i; and p is the 

pressure. 

The volumetric rate of entropy production 𝜎 is obtained from the entropy balance 

equation together with eq. (I.7) (Jou et al., 2010): 

 
𝜎 =∑v𝑗

𝐴𝑗

𝑇
𝑗

 + 𝐽𝑢 · ∇ (
1

𝑇
) −∑𝐽𝑖 · ∇ (

𝜇𝑖
𝑀𝑖𝑇

)

𝑖

  − 𝜏: (
∇ 𝑣

𝑇
) (I.8) 

where v𝑗  is the rate of reaction j (in moles per volume per second), 𝐽𝑢 is the internal energy 

flux, 𝐽𝑖 is the diffusive mass flux of component i, 𝐴𝑗 is the affinity of reaction j, 𝜏 is the 

deviatoric stress tensor, and 𝑣 is the velocity of the centre of mass. The single dot product 

is the scalar product between two vectors, and the double dot product is defined as 𝐴: 𝐵 =

∑ 𝐴𝑖𝑗𝐵𝑖𝑗𝑖,𝑗 . For the sake of simplicity, eq. (I.8) assumes that external body forces, if 

present, are identical to all components. 

The Second Law of Thermodynamics re-written for a continuous body out-of-equilibrium 

is: 

 𝜎 ≥ 0 (I.9) 

Note that, whereas eq. (I.8) is derived assuming LEH, eq. (I.9) does not need such an 

assumption. 
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It is suitable to decompose the stress tensor and the gradient of the velocity in eq. (I.8) 

into a mean normal tensor and a traceless deviatoric term. Using this decomposition 

yields: 

 
𝜎 =∑v𝑗

𝐴𝑗

𝑇
𝑗

 + 𝐽𝑢 · ∇ (
1

𝑇
) −∑ 𝐽𝑖 · ∇ (

𝜇𝑖
𝑀𝑖𝑇

)

𝑖

 − 𝜏0 (
1

𝑇
∇ · 𝑣) − 𝜏′:

1

𝑇
(∇ 𝑣)

𝑆
 (I.10) 

where 𝜏0 = (1 3⁄ )Tr (𝜏) is the mean normal viscous stress tensor, 𝜏′ = 𝜏 − 𝜏0𝐼 is the 

deviatoric viscous stress tensor, and (∇ 𝑣)
𝑆
=
1

2
[∇ 𝑣 + (∇ 𝑣)

𝑇
] −

1

3
(∇ · 𝑣)𝐼. 

Entropy production is generally written as a bilinear expression involving fluxes (𝐽𝑘) and 

forces (𝑋𝑘): 

 𝜎 = ∑𝑘 𝐽𝑘𝑋𝑘 (I.11) 

Looking back at eq. (I.10), one can identify reaction velocity v𝑗  as a flux, and 
𝐴𝑗

𝑇
 as its 

associated force. Further, the internal energy flux 𝐽𝑢 has a corresponding force ∇ (
1

𝑇
), and 

diffusive flux 𝐽𝑖 is associated to the force ∇ (
𝜇𝑖

𝑀𝑖𝑇
). Finally, 𝜏0 and 𝜏′ can be interpreted as 

deformation velocities in the body, (
1

𝑇
∇ · 𝑣) and 

1

𝑇
(∇ 𝑣)

𝑆
 being the respective forces. 

The identification of fluxes and forces as described above is quite intuitive. Nevertheless, 

the choice of fluxes and forces is not unique. Other definitions may be preferable 

according to the nature of the system being studied. For example, one may be interested 

in decomposing the internal energy flux 𝐽𝑢 into a diffusive part and a conductive part: 

 

𝐽𝑢 = 𝑞⏞
conduction

+∑
ℎ𝑖
𝑀𝑖
𝐽𝑖

𝑖

⏞    
diffusion

 (I.12) 

In eq. (I.12), ℎ𝑖 stands for the partial specific enthalpy (per mole) of component k. 

Inserting it into eq. (I.10) yields (de Groot and Mazur, 1984): 

 
𝜎 =∑v𝑗

𝐴𝑗

𝑇
𝑗

+ 𝑞 · ∇ (
1

𝑇
) −∑𝐽𝑖 ·

1

𝑀𝑖𝑇
∇𝑇𝜇𝑖

𝑖

  − 𝜏0 (
1

𝑇
∇ · 𝑣) − 𝜏′:

1

𝑇
(∇ 𝑣)

𝑆
 (I.13) 

There is now a new flux 𝑞 corresponding to the “purely conductive” heat flow (as in the 

case of rigid bodies), and a new force ∇𝑇𝜇𝑖 = (ℎ𝑖 𝑇⁄ )∇𝑇 + 𝑇∇(𝜇𝑖 𝑇⁄ ) that stands for the 
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chemical potential gradient in the absence of temperature gradients. Many other 

possibilities exist for redefining fluxes and forces in eq. (I.10). For example, one could 

make linear combinations of the reactions taking place in the system to derive alternative 

affinities and reaction velocities. 

Eq. (I.13) shows that thermodynamic forces can usually be calculated if the state of the 

system (temperature profile, concentration profile, …) is known. The fluxes are unknown 

quantities a priori, but they can be related to the forces via phenomenological relations. 

A classic example is that of heat conduction in a rod. Heat flow in this case is given by 

Fourier’s law of heat conduction: 

𝑞 = −𝜅𝛻𝑇 ⇒ 

 

⇒ 𝑞⏞
𝑓𝑙𝑢𝑥

= 𝜅𝑇2 ∇ (
1

𝑇
)

⏞  
𝑓𝑜𝑟𝑐𝑒

 
(I.14) 

In eq. (I.14), 𝜅 is the thermal conductivity. This equation shows that heat flux is 

proportional to its driving force, although the linear coefficient relating them depends on 

the local temperature. Linear flux-forces relationships are valid when the system is near 

equilibrium, i.e. when the forces are sufficiently small. For example, the affinity of a 

reaction becomes lower as it approaches equilibrium composition. When affinity is 

sufficiently low (𝐴 𝑅𝑇⁄ ≪ 1), one can assume that reaction velocity and affinity obey a 

linear relation (Prigogine, 1962). 

Other than temperature gradients, gradients in chemical potential could also drive heat 

flow. This is known as the Dufour effect (de Groot and Mazur, 1984), and it is an example 

of thermodynamic coupling. Near equilibrium, this contribution is also linear: 

 

𝑞 = 𝐿𝑞𝑞∇ (
1

𝑇
)

⏞      
Fourier′s law

+ 𝐿𝑞𝑗
1

𝑀1𝑇
∇𝑇𝜇

1

⏞        
Dufour effect

 
(I.15) 

In eq. (I.15) it is considered that only component 1 can generate the Dufour effect. 

Further, 𝐿𝑞𝑞 stands for the linear ratio 𝜅𝑇2 linking heat flux to the gradient of 1 𝑇⁄ , and 

𝐿𝑞𝑗 is the linear coefficient of the Dufour effect. 

Apart of driving heat flow, gradients in chemical potential can also drive diffusion flux. 

The relation between gradients in chemical potential and diffusive flow is obtained from 

Fick’s law of diffusion. In addition, diffusion can be driven by temperature gradients 
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because of the Soret effect (de Groot and Mazur, 1984). These two contributions are 

included in eq. (I.16): 

 

𝐽1 =
𝐿𝑗𝑗

𝑀1𝑇
∇𝑇𝜇

1

⏞      
Fick′s law

+ 𝐿𝑗𝑞∇ (
1

𝑇
)

⏞    
Soret effect

 
(I.16) 

The expressions that give the flux-force relationships, such as eqs. (I.14) – (I.16), are 

called phenomenological equations. Using them, one can fully describe the evolution of 

a system. One of the challenges in current research on NET is to derive a general and 

consistent principle from which these relations can be deduced. Such formalism already 

exists in classical mechanics, where the dynamics of any system can be derived from the 

Least Action Principle. 

Onsager (1931a, 1931b) proposed one of the first variational principles in NET. The main 

result from his works is the Onsager’s reciprocal relations, which are related to the linear 

coefficients of thermodynamic coupling. Assuming that flux-force relationships are 

linear, like equations (I.15) and (I.16), the phenomenological law for a flux 𝐽𝑘 is: 

 𝐽𝑘 =∑𝐿𝑘𝑗𝑋𝑗
𝑗

 (I.17) 

Onsager’s theorem states that: 

 𝐿𝑘𝑗 = 𝐿𝑗𝑘 (I.18) 

Eq. (I.18) shows that the linear coefficients for the Dufour and Soret effects are equivalent 

(i.e., 𝐿𝑞𝑗 = 𝐿𝑗𝑞, see eqs. (I.15) and (I.16)). It is valid for any pair of phenomena, provided 

they are: (i) of the same tensorial order, and (ii) of the same parity with respect to 

microscopic time-reversal (de Groot and Mazur, 1984). For example, reactions can couple 

between them because they correspond to 0th-order (scalar) fluxes and forces. Further, 

reaction extents are even under time-reversal, so eq. (I.18) holds. Nevertheless, reactions 

cannot couple with heat conduction because the latter is a 1st-order (vectorial) 

phenomenon. Besides, eq. (I.18) does not hold for the coupling between reactions and the 

scalar viscous term in eq. (I.13), since the velocity appearing in the viscous term is odd 

under time-reversal. 

A more general form of eq. (I.18) was proposed by Casimir (1945). This form accounts 

for even and odd parities under time-reversal. Let 𝜅 be the category of phenomena 
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corresponding to even variables (e.g. heat flux associated with the transport of internal 

energy), and let 𝛽 be the category of phenomena corresponding to odd variables (e.g. 

viscous dissipations associated with velocity gradients). The modified Onsager’s relations 

for thermodynamic coupling are written as (Casimir, 1945; de Groot and Mazur, 1984): 

 𝐿𝑘𝑗
𝜅𝜅 = 𝐿𝑗𝑘

𝜅𝜅 (I.19a) 

 𝐿𝑘𝑗
𝛽𝛽
= 𝐿𝑗𝑘

𝛽𝛽
 (I.19b) 

 𝐿𝑘𝑗
𝜅𝛽
= −𝐿𝑗𝑘

𝜅𝛽
 (I.19c)  

where 𝜅𝜅 represents even couplings, 𝛽𝛽 represents odd couplings, and 𝜅𝛽 represents 

couplings associated with variables of different parities. 

It was previously stated that there exist different choices of fluxes and forces 

corresponding to the same system. For example, eqs. (I.10) and (I.13) differ on the 

definitions of heat flux and forces 𝑋𝑖. However, eqs. (I.19a-c) hold for both these choices. 

A fundamental question follows from this observation: how should fluxes and forces be 

defined so that eqs. (I.19a-c) are valid? 

To answer this, one should seek the definition of forces and fluxes used by Onsager and 

Casimir. In Onsager (1931b), the fluxes are derived from the concept of fluctuations. The 

macrostate of a system at equilibrium can be defined by some set of macroscopic 

variables. For example, the macrostate of a reactive mixture at equilibrium is well-defined 

by the equilibrium concentrations of reactants/products, the pressure of the mixture and 

its temperature. However, the properties measured at equilibrium are only an average of 

the real properties of the system. The actual concentrations of reactants/products are not 

always exactly equal to the equilibrium values. Instead, they fluctuate around a mean 

value, though the fluctuations are in general several orders of magnitude smaller than this 

mean value. 

Onsager defines the fluxes as the average time derivatives of these fluctuations. 

Therefore, if reaction extent is used to measure fluctuations, reaction velocity is the 

corresponding flux. The forces are defined as conjugate variables of these fluxes with 
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respect to entropy. In summary, if a system is fully described by a set of fluctuations 𝛼, 

fluxes and forces are defined by Onsager as: 

 
𝐽𝑖 =

𝜕�̃�𝑖(𝑡)

𝜕𝑡
 (I.20a) 

 
𝑋𝑖 =

𝜕𝑆

𝜕𝛼𝑖
 (I.20b)  

In eq. (I.20a), �̃�𝑖(𝑡) refers to an average evolution of the fluctuation 𝛼𝑖. Knowing the 

initial fluctuation 𝛼0 is not sufficient to determine its evolution in time, since it also 

depends on the initial microstate. This is why an average evolution �̃�𝑖(𝑡) is used to define 

the fluxes. 

Note that eq. (I.20) assumes that the system is homogeneous (the forces can be defined 

for the whole system, instead of being locally defined). Further, eq. (I.18) was first 

derived assuming that the fluctuations 𝛼𝑖 are even functions of the velocities. Casimir 

(1945) proposed an extension of Onsager’s theory without the latter asusmption. Indeed, 

when considering odd and even fluctuations, eqs. (I.19a-c) replace eq. (I.18). He also 

attempts to prove the validity of Onsager’s reciprocal laws for continuous systems, when 

forces are defined locally, although his approach seems incomplete. 

De Groot and Mazur (1984) present a more solid approach to the demonstration of 

Onsager’s law for continuous systems. Even though they restrict the analysis to 

anisotropic heat flow and heat flow / diffusion coupling, their developments show that 

Onsager’s law remain valid for vectorial phenomena in continuous media. In this case, 𝐽𝑖 

is no longer a time derivative of a fluctuation, but instead it is the flux that appears in the 

conservation law of some state variable 𝑥𝑖. Force 𝑋𝑖 on the other hand is the gradient of 

the partial derivative of the specific entropy with respect to 𝑥𝑖. Therefore, for a continuous 

system containing n macroscopic degrees of freedom, vectorial fluxes and forces are such 

that: 

 𝑑𝑥𝑖
𝑑𝑡

= −∇ ∙ 𝐽𝑖 + 𝑟𝑖 (I.21a) 

 
𝑋𝑖 = ∇(

𝜕𝑠

𝜕𝑥𝑖
) (I.21b) 

where 𝑟𝑖 is the production rate of 𝑥𝑖. 
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Onsager’s reciprocal relations can also be written as a variational principle for continuous 

media. Consider a set of fluxes 𝐽 and their corresponding forces 𝑋 in a continuous system. 

Further, let us define a dissipation function Φ that depends only on the fluxes, and equals 

the volumetric rate of entropy production in the system. Near equilibrium, this function 

is quadratic: 

 Φ(𝐽) =∑∑𝛾𝑖𝑗𝐽𝑖𝐽𝑗
𝑗𝑖

 (I.22) 

In this case, there exists a variational principle that is equivalent to Onsager’s reciprocal 

relations. For given force profiles 𝑋∗(𝑥), the corresponding flux profiles satisfy the 

following variation problem (Onsager, 1931a): 

 
max
𝐽
∫ [𝐽 ∙ 𝑋∗ −Φ(𝐽)] 𝑑𝑉
Ω

 (I.23) 

From eqs. (I.22) and (I.23), one obtains the following relation, which is equivalent to eq. 

(I.18): 

 
𝐽∗ = (𝛾 + 𝛾𝑇)

−1

∙ 𝑋∗ (I.24) 

Later works kept looking for general extremization principles in NET. In 1961, Ziegler 

proposed a generalization of Onsager’s principle for non-linear fluxes-forces relations 

(Ziegler, 1961, 1983a). The rebuttal of Ziegler’s principle is one of the results of this 

thesis, so his work will be discussed in detail in Chapter IV. Gambar and Markus (1994) 

derived linear flux-force relationships using a field theory approach in which the 

dynamics of a continuous system is described via a variational formulation. The 

Lagrangian used by the authors depend on certain field quantities derived from partial 

derivatives of the specific entropy with respect to relevant state variables. Onsager’s 

reciprocal relations are derived assuming that entropy production is invariant under a 

gauge transformation that preserves the Lagrangian. Another formulation using Lagrange 

field theory was proposed by Glavatskiy (2015a). The Lagrangian contains two sets of 

field variables: one corresponding to the real system, and the other corresponding to a 

mirrored system. The mirrored system evolves backwards in time; its entropy production 

is always negative. The second law of thermodynamics and linear phenomenological 

relations result from this formulation. This analysis was later extended for systems with 

thermodynamic inertia, using a modified Lagrangian (Glavatskiy, 2015b). This extended 
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variational approach yields the Maxwell-Cattaneo-Vernotte equation for heat conduction 

with relaxation. Further, it provides a modified statement of the second law of 

thermodynamics: the averaged entropy production over a certain wave period (and not 

the instantaneous entropy production) is always positive. 

I.4 Non-equilibrium thermodynamic perspective of nature-inspired 

mechanisms 

From the discussion in the previous sections, it is easier to understand the relationship 

shown in Figure I.1 between Coppens’ T1-T3 framework for NICE and Gerbaud’s NET1 

– NET3 principles (Coppens, 2012; Gerbaud et al., 2020). The Hierarchical Transport 

Networks (T1) principle may give rise to fractal-like flow architectures similar those 

found from the CL theory. Further, transport networks operating near equilibrium 

minimize energy dissipation when the thermodynamic forces (e.g. temperature difference 

for a heat exchanger) are uniformly distributed (Tondeur and Kvaalen, 1987). This 

theorem, known as equipartition of entropy production, is used together with CL theory 

in the thermodynamic counterpart of T1, called NET1. 

The second theme in Coppens’ framework, Force Balancing (T2), can be adapted to the 

NET framework as the Thermodynamic Coupling (NET2) principle. In the same way 

complex structures can be stabilized in nature due to the action of different elementary 

forces, fluxes can be maintained or eliminated in systems due to the action of different 

thermodynamic forces. This phenomenon arises regardless of whether the system is near 

equilibrium or far from equilibrium. One example is the coupling between solute 

diffusion and heat explained in Section I.3. 

Finally, the Dynamic Self-Organisation theme (T3) proposed by Coppens refers to the 

emergence of organized structures in nature. In thermodynamics, organization is linked 

to Dissipative Structures (NET3). Out-of-equilibrium systems can present spatiotemporal 

organization as long as energy and/or mass is continuously provided to them. The 

formation of Bénard cells (see bottom-right image in Figure I.1) is a classic example. 

Heating a horizontal layer of fluid from below creates a vertical gradient of temperature. 

If this gradient is too low, no significant change is observed in the system. However, after 

a certain threshold of temperature gradient, the fluid forms a regular pattern of convection 

cells. 
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Note that, despite the NET framework being derived from the themes T1-T3, there is no 

bijective relation between them. In other words, each of these frameworks may give rise 

to research projects and engineering solutions that could not be derived from the other. 

For example, the confinement of enzymes in narrow channels to increase their catalytic 

activity (see Section I.2) was an idea derived from T2 that could not be conceived from 

NET2. Alternatively, countercurrent heat exchangers are more efficient as they distribute 

the thermodynamic force (temperature difference between the fluids) more evenly than 

co-current exchangers. This idea could have stemmed from NET1 (according to the 

principle of equipartition of entropy production), but not from T1. 

Figure I.4 shows the behaviours of different systems associated with each of the NET 

principles evoked above. The blue solid lined at the left side of the sketch corresponds to 

an isolated system that is initially out-of-equilibrium. The entropy of the system increases 

as it evolves towards its equilibrium state. Thermodynamic coupling may occur if there 

are multiple fluxes/forces in the system. Near equilibrium, this coupling is captured by 

the linear flux-forces relationship given in the figure. 

 

 

Figure I.4 – Behaviours of different out-of-equilibrium systems related to the NET 

framework. Adapted with permission from Gerbaud et al. (2020). 

The right side of Figure I.4 depicts three different open systems that evolve from an 

equilibrium state to an out-of-equilibrium state. The yellow dashed line represents a 

system that is only slightly perturbed from its equilibrium state. If it corresponds to a 

transport network, then Equipartition of Entropy Production and Constructal Law can be 

used to minimize energy dissipation. Next, the green solid line and the green dotted line 

portray dissipative structures. The Bénard cells mentioned earlier in this section 

correspond to the green dotted line, because this structure reaches a stationary form. 
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Nevertheless, it is also possible for dissipative structures to change with respect to time, 

as depicted by the green solid line. For example, systems exhibiting Self-Organized 

Criticality (Pruessner, 2012), such as tectonic plates, are fed with a continuous energy 

input, which is released via intermittent avalanches (earthquakes). These systems never 

reach a steady state; instead, they oscillate near a critical state. 

I.5 Motivation and objectives of the thesis 

Although being connected by the NET framework (Gerbaud et al., 2020), each of the 

three topics investigated in this thesis has its own individual motivations, in relation to 

the chemical engineering field. 

Liquid distributor is an important internal in packed distillation columns. If not chosen 

wisely, distributors can contribute to several issues during distillation operation, such as 

entrainment and foaming. But the main operational issue related to this internal is 

maldistribution. Liquid maldistribution is associated with a reduction in packing 

efficiency, which translates into HETP increasing by a factor as high as 3 in some cases 

(Kister et al., 2008). The tree-like liquid distributor discussed in Chapter II (Meyer and 

Rouzineau, 2020) addresses this issue. 

Diffusiophoresis and diffusioosmosis emerge frequently in nature and industry. 

Therefore, the modelling of these phenomena (Chapter III) is of utmost importance. 

Indeed, the more one knows about a phenomenon, the easier it gets to find new 

applications for it and optimize the existing ones. For example, it was through a diligent 

study of diffusioosmosis that Ajdari and Bocquet (2006) figured out a way to significantly 

increase osmotic flowrates in capillary tubes. 

Finally, Ziegler’s Maximum Entropy Production Principle (MaxEP) (Ziegler, 1961, 

1983a) has found wide acceptance in modern literature, and it is used by several authors 

without second thoughts. However, some clues point to the fact that Ziegler’s theory may 

have severe limitations that are often neglected by its advocates. This is a great motivation 

for revisiting this principle. 

Hence, the specific objectives of this thesis are: 

1. To study the performance of a new nature-inspired liquid distributor (Chapter II) 

2. To model a membrane via diffusioosmosis (Chapter III) 
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3. To study the (instantaneous) equilibrium states of diffusiophoresis, estimate 

diffusiophoretic velocity as a function of system parameters, and compare the 

results with limiting cases already discussed in the literature (Chapter III) 

4. To prove the existence of fully-developed, out-of-equilibrium states for 

diffusiophoretic systems (Chapter III) 

5. To show that the only stable equilibrium state in diffusiophoresis corresponds to 

null velocity (Chapter III) 

6. To study the effect of weak and strong interface – solute attraction forces on 

diffusiophoretic velocities (Chapter III) 

7. To dispute Ziegler’s MaxEP principle (Chapter IV) 

I.6 Organization of the thesis 

The rest of this thesis is organized as follows. Chapter II describes the main features of 

the nature-inspired liquid distributor. It also discusses theoretical and experimental 

performance results. Chapter III describes the case studies chosen for diffusiophoresis 

and diffusioosmosis, as well as the model adopted to describe these systems. Simulation 

results are reviewed and discussed in detail. Chapter IV contains the critics to Ziegler’s 

MaxEP principle. Finally, Chapter V summarizes the main findings of this work and 

recommends several topics for further study. 
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Chapter II. A nature-inspired liquid distributor 

In this chapter, a solution to liquid maldistribution in distillation column is assessed. Such 

a solution consists in increasing the number of initial irrigation points without increasing 

the number of holes on the distributor’s plate. This can be achieved by incorporating an 

innovative tree-like structure (Meyer and Rouzineau, 2020) that guides the liquid dripping 

from each hole and separates it into several branches. 

Section II.1 lays the groundwork for the remainder of the chapter. It discusses the theory 

behind the design of the novel liquid distributor, reviews classic distributor configurations 

and presents some performance indicators used in the following sections to assess the 

new distributor. Sections II.2 overviews the novel distributor concept, and the following 

section reviews previous works that will be useful for distributor design. Section II.3 also 

reviews design and performance of a new type of packing, called Tetra Spline (TS) 

packing (Kawas et al., 2021), which is used in the test rig described by the end of the 

section. 

Section II.4 discusses criteria for choosing distributor design and it details the three 

configurations chosen according to these criteria. In the next section, their performance 

is assessed via distillation experiments that measure separation efficiency. The results are 

later compared with Sulzer’s perforated pipe and regular orifice-pan distributors. Finally, 

Section II.6 reviews the main findings of this chapter. 

II.1 Literature review 

II.1.1 The constructal law 

Darwin’s theory of evolution states that the living species inhabiting the planet have 

evolved from older forms (and will continue to evolve), the evolution being driven by 

natural selection. The fundamental idea behind this theory is almost elementary: living 

beings strive to survive, and any inheritable modification that increases an individual’s 

capability to survive and/or to reproduce will be spread within the species through the 

individual’s offspring. 

Bejan proposed that a similar reasoning could be applied to flow structures (Bejan and 

Lorente, 2004). For example, it seems reasonable to assume that the lungs, responsible 
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for oxygen transport from the air to the alveoli, have evolved through time so that the 

current configuration needs less energy to function. The theory that emerged from this 

assumption is called the Construcal Law (CL). Its full statement (Bejan and Lorente, 

2004) has already been cited in Chapter I, but it will be restated below for completeness: 

For a finite-size system to persist in time (to live), it must evolve in such a way that it 

provides easier access to the imposed currents that flow through it. 

For a system with fixed global size and global performance to persist in time (to live), it 

must evolve in such a way that its flow structure occupies a smaller fraction of the 

available space. 

In order for a flow system with fixed global resistance (R) and internal size (V) to persist 

in time, the architecture must evolve in such a way that it covers a progressively larger 

territory. 

Tree shapes will usually arise in nature when transport is made from a single point to an 

area/volume, or vice-versa. Inspired by this, Bejan proposed a systematic procedure to 

design optimal flow structures, using building blocks called constructs (Bejan, 1996). In 

a subsequent paper (Bejan, 1997), the author used this procedure to study the problem of 

cooling a heat generating surface through a heat sink, using a fixed amount of a high 

conductivity material. This case study could be applied to the cooling of electronic 

devices. For this problem, a heat sink at temperature T is available at a point M on the 

edge of the heat generating surface with area A (Figure II.1a).  

 

 

 

 

 

 

 

 

Figure II.1 – Illustration of a randomly-shaped heat generating surface (a), the smallest 

(b) and the 2nd smallest (c) building blocks in the transport network; adapted from Bejan 

(1996) 
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The designer can embed part of the surface with a highly conductive material in order to 

facilitate heat dissipation to the sink. The goal is to minimize the temperature 𝑇𝑚𝑎𝑥 of the 

hot spot. The allocation of high conductivity material is optimized in several levels. The 

smallest levels, corresponding to the elemental constructs, are supposed to be rectangular, 

with dimensions 𝐿1 × 𝐻1 yet to be determined. Their surface area equals 𝐴1, and a single 

strip of high conductive material passes through each of them. If 𝐻1 ≪ 𝐿1, heat flow 𝑞0 

in the low conductivity material (thermal conductivity 𝑘0) can be assumed to be 

perpendicular to this high conductive path. Within the region of high conductivity 𝑘𝑃, 

heat (𝑞1) flows along this path towards the heat sink 𝑀1. Figure II.1b illustrates these 

elemental constructs. 

It is suitable to shape the element so that its hot spot temperature is minimized. The 

resulting shape is such that: 

 
𝐻1
𝐿1
= 2(

𝑘0
𝑘𝑃

𝐻1
𝐷1
)

1
2
 (II.1) 

where 𝐷1 is the width of the strip. The hypothesis 𝐻1 ≪ 𝐿1 made earlier is equivalent to 

(𝑘0 𝑘𝑃⁄ ) ≪ (𝐷1 𝐻1⁄ ). In order words, the ratio between the smaller and the larger 

conductivities must be smaller than a certain threshold for the hypothesis of vertical heat 

flow to hold outside the strip. 

The second-generation construct (surface area 𝐴2) also has a high conductivity strip 

passing through it. The exit points (heat sinks) 𝑀1 need to be connected to the second-

generation strip 𝑆2 so that the heat can easily access 𝑀2 (see Figure II.1c). Now, one can 

minimize the temperature of the hot spot in this second element. The optimal aspect ratio 

for the second-generation neighbourhood is: 

 𝐻2
𝐿2
= 2 (II.2) 

Following a similar reasoning, it is possible to generalize the aspect ratio of the nth-

generation neighbourhood (𝑛 > 1) as follows: 

 𝐻𝑛
𝐿𝑛

= {
1,   if n is odd
2,   if n is even

 (II.3) 

Figure II.2a–c depicts the network generated by CL up to the 5th generation. 
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(a) 

More generations 

(b) (c) 

 

Figure II.2 – (a-c) Evolution of a hypothetical cooling network with respect to the number 

of generations (Bejan, 1997) 

The claim that higher order constructs decrease thermal resistance has been disputed by 

Ghodoossi (2004), who revisited the problem with a more rigorous approach. The author 

also discusses the application of CL to liquid transport from a porous surface to an outlet 

point. The problem consists in the design of a structure with high-permeability channels 

to realize liquid transport from a porous surface to an outlet M. The channels have 

different permeabilities, all of which are higher than the permeability of the porous 

surface. It is assumed that the flow follows Darcy’s law, and the goal is to minimize the 

maximum pressure difference between the surface and point M. Ghodoossi (2004) shows 

that previous CL architectures proposed for this problem only decrease flow resistance 

because the fraction of the surface occupied by the highly permeable material increases 

as the complexity increases. That is, the improvement as one goes towards high-order 

constructs comes from the fact that the volume fraction of high-permeable material 

increases, and not from the extra branching levels. 

Another attempt to apply the CL design procedure is found in an innovative configuration 

for ground coupled heat exchangers (Kobayashi et al., 2013). The authors have compared 

the classic serpentine design with Y and T-shaped tree heat exchanger configurations. 

They have modelled the ground as an insulated cube, and the heat exchanger as a pipe 

network immersed in this cube. Results show that Y-tree shapes have higher exchange 

rates compared with T-trees and serpentines. The paper also claimed that an increase in 

the number of bifurcations yields higher heat transfer rates. However, in this case the 

configurations with more bifurcations occupy larger volume fractions of the cube. Hence, 
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it is not clear whether the increase in exchange rate comes from a more homogeneous 

distribution, or simply from the added heat transfer area due to the incorporation of extra 

pipe branches. 

Other cases where constructal design fails to decrease flow resistance are discussed in 

Kuddusi and Eǧrican (2008). These examples show that constructal theory fails in its 

attempt to propose a deterministic method for the design of optimal flow structures. 

Nevertheless, the CL statement as given by Bejan and Lorente (2004) is still quite relevant 

for engineers. It should not be extrapolated to a “magical” design method, but rather 

interpreted as a motivation to use nature-inspiration in the creation of artificial flow 

structures. Natural flow architectures have likely evolved through the years, towards more 

resilient and efficient structures. Therefore, it is reasonable to get inspiration from nature 

when developing artificial flow networks. 

II.1.2 Liquid distributor designs for distillation columns 

Liquid distributors and redistributors are critical components in packed distillation 

columns. They are used to ensure an even distribution of liquid throughout the cross-

section of the column. Ideally, such equipment should provide a large number of evenly 

distributed irrigation points and a large area for upward countercurrent vapor flow. 

Further, their design should aim for large turndown ratios to give room for operational 

fluctuations and changes in nominal flow rates (due to increase/decrease in demand, for 

example). However, these requirements are often conflicting in practice, and different 

types of distributors are available in market according to the designer priority. 

Distributors are usually divided in two categories, according to the driving force for the 

liquid flow within: pressure or gravity. The most classic example of pressure distributors 

is the perforated pipe (Kister, 1990; Kister et al., 2008). It consists of several perforated 

pipes branching out from a main tube. The liquid stream is pumped through the main 

tube, where it splits into different streams as the liquid flows along the branches. 

Discharge takes place through the holes on the underside of the branching pipes. This 

device provides a large area for upward vapor flow. However, the high liquid pressure 

drop induces either smaller number of holes or smaller size of holes, decreasing quality 

of distribution or making it prone to fouling. 

Gravity distributors allow for smaller liquid pressure drops, though they generally provide 

smaller areas for the upward vapor flow. The driving force for liquid discharge is the 
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weight of the liquid head built up on the distributor. Some gravity distributors, such as 

orifice pan and orifice tunnel types (Kister, 1990; Kister et al., 2008), can be used as self-

collecting redistributors. For this application, a hat needs to be installed on the top of the 

vapor risers to prevent the liquid from flowing through them. Both types are prone to 

plugging when hole diameter is small (<12mm). Orifice pan distributors usually have 

higher turndown ratio (~4:1) compared with orifice tunnel types (~2.5:1). The gravity 

distributors aforementioned direct the vapor flow through risers and discharge the liquid 

through holes on the base plate. As an alternative, instead of directing the vapor stream, 

trough distributors (Kister, 1990; Kister et al., 2008) direct the liquid stream to troughs in 

which the liquid heads are built up. Vapor flows through the gaps between the troughs, 

and the area available for this flow is generally higher compared to orifice pan and orifice 

tunnel distributors. Figure II.3 illustrates the industrial distributors aforementioned. 

 

Figure II.3 – Common industrial distributors: (a) perforated pipe; (b) orifice pan; (c) 

orifice tunnel; and (d) trough. Courtesy of Koch-Glitsch. 

The distributors shown in Figure II.3 are well-established in the chemical industry and 

have been operated for decades. Recently, Eck and Kirsten (2019) proposed a new design 

for self-collecting liquid redistributors, with the addition of a droplet dumping tray just 

above the distributor tray. Usually, when droplets fall from the bottom of a packed bed 

(a) (b) 

(c) (d) 
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directly onto the liquid layer formed on the distributor tray below, foam can be formed. 

The inventors claim that adding the so-called droplet dumping tray just above this liquid 

layer helps prevent foam formation. In addition, Franz and Geipel (2019) improved on 

classic nozzle distributors by using flat-jet nozzles and adding a drain element to them. 

In one of the configurations listed by the inventors, guide plates intercept liquid from the 

end of the flat jets at small angles. The liquid then drops from the edge of the plate. Such 

drain element also protects the liquid against the rising vapor flow, and a significant 

reduction in entrainment can be achieved. 

The inventions above approach relevant issues in distillation operation, namely 

entrainment and foaming. Yet another issue that can cause malfunction in packed columns 

is maldistribution. The liquid maldistribution is associated with a reduction in packing 

efficiency, which translates into HETP increasing by a factor as high as 3 in some cases 

(Kister et al., 2008). This issue may be caused by uneven liquid distribution over the 

different distributor outlets. For this reason, Zhang and Lv (2012) proposed a constructal 

distributor design capable of distributing the fluid evenly among 128 outlet points. The 

proposed configuration has a tree shape, with cylindrical tubes conducting the flow. Each 

channel splits into two in the subsequent layer, forming the structure shown in Figure II.4. 

The angle between the tubes and the vertical axis, as well as diameter and length ratios 

between tubes in adjacent layers, are optimized to minimize pressure drop. 

 

Figure II.4 – Constructal distributor. Reprinted from Zhang and Lv (2012), with 

permission from Elsevier. 

Other authors have proposed and optimized similar constructal-based designs for liquid 

distributors, always minimizing energy dissipation but using different design variables 

and constraints (Fan et al., 2009; Tondeur et al., 2009). The downside common to all these 
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devices is the high energy dissipation from friction with the walls of the tubes, which 

makes them not suitable for distillation applications. 

II.1.3 Performance indicators for liquid distributors 

In the previous section it was stated that maldistribution is a major issue in packed 

distillation columns, and that this issue may be caused by underperformance of the liquid 

distributor. Therefore, the quality of the liquid distribution should be one of the most 

relevant criteria to assess distributors. Here three assessment methods will be discussed: 

the distribution quality rating index (Moore and Rukovena, 1987; Kister, 1990), the 

maldistribution factor (Hoek et al., 1986; Lämmermann et al., 2016) and the height 

equivalent of a theoretical plate (HETP). The two first methods evaluate the quality of 

the distribution itself, whereas the third one is an indirect method that evaluates the effect 

of the distribution on the separation efficiency. 

The distribution quality rating index (𝐷𝑄) was proposed by Moore and Rukovena in 1987, 

and is defined as follows (Moore and Rukovena, 1987; Kister, 1990): 

 𝐷𝑄 = 0.4(1 − 𝐴) + 0.6𝐵 − 0.33(𝐶 − 0.075) (II.4) 

This approach considers the irrigation points as drip circles whose areas are proportional 

to the liquid flowrate through them. Further, the sum of circle areas equals the cross-

sectional area of the column. Parameter A is the fraction of the cross-section that is not 

covered by drip circles. To evaluate B, one needs to partition the cross-section of the 

column in 12 sectors with the same area. Sectors can be ring-like or trapezoid-like 

(Hanusch et al., 2019). The smallest ratio of total circle area in a sector to the sector area 

(𝐵1) and the smallest ratio of a sector area to its total circle area (𝐵2) are calculated. B is 

defined as the minimum between 𝐵1 and 𝐵2. Finally, C is the total overlap area of the 

circles divided by the cross-sectional area of the column. 

Typical values of index 𝐷𝑄 are 0.1 to 0.7 (Kister et al., 2008). The geometric 

representation of parameters A, B and C is illustrated in Figure II.5. In this figure, the 

black dots correspond to the irrigation points. The white area inside the larger circle 

contour and not covered by the smaller blue circles is used to calculate A. The grey surface 

on the top of the figure represents the sector used to estimate B, and dark blue regions are 

the intersections that give C. 
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Figure II.5 – Areas taken into account for calculating the distribution quality rating index 

(A is the cross-section fraction not covered by blue circles; B is the grey sector fraction 

covered by circles; C is the cross-section fraction covered by dark-blue intersections) 

Despite being a common criterion to assess liquid distribution, 𝐷𝑄 presents several 

inconsistencies. Firstly, it does not account for drip point density. According to this 

criterion, the distributor with 19 outlets in Figure II.5 is equally good regardless of 

whether the distillation tower has 0.15m or 12m diameter. Another problem with 𝐷𝑄 is 

that it reaches a maximum value of 1.02 for a single outlet at the centre of the cross-

section. Further, if instead of a single outlet there were two even outlet flows placed very 

close to each other and almost coincident with the centre of the cross-section, the quality 

of the distribution should not change. Nevertheless, this new 2-outlets configuration 

changes 𝐷𝑄 to 0.06. If 3 outlets are arranged with uniform flow and close to the centre of 

the cross-section, 𝐷𝑄 further decreases to -0.06. This incongruence takes place when 

outlet points are very close to each other, which is why the index behaves inconsistently 

for high drip point numbers (Bozzano et al., 2014). 

The maldistribution factor (𝑀𝑓) is a more consistent alternative to 𝐷𝑄. This index is 

similar to a coefficient of variation, measuring the deviation from a perfectly 

homogeneous distribution. It is usually employed to assess liquid distribution in a packed 

bed, although it can also be used for liquid distributors (Hanusch et al., 2019). To calculate 

it, one needs a liquid collector divided in N cells of equal area. The collector should be 

placed below the bed/distributor, and 𝑀𝑓 is calculated by measuring the liquid flow 

collected by each of these N cells (Hoek et al., 1986; Marcandelli et al., 2000). 
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Let 𝑄𝑖 be the liquid flowrate captured by cell i, and 𝑄𝑚𝑒𝑎𝑛 the average flowrate over the 

N cells. In this case: 

 

𝑀𝑓 = √
1

𝑁(𝑁 − 1)
∑(

𝑄𝑖 − 𝑄mean
𝑄mean

)
2

𝑖

 (II.5) 

𝑀𝑓 varies between 0 and 1. A zero value indicates a perfectly homogeneous distribution, 

whereas 1 corresponds to the case where all the liquid flows through only one region. 

Although eq. (II.5) does not depend explicitly on the drip point density, this factor is 

accounted for if the number of cells N is chosen according to the cross-section area of the 

column. For example, let us consider two columns of diameter 0.15 m and 12 m, both 

using distributors with 19 drip points placed according to Figure II.5. For the small 

column, N should be small (say 21), whereas for the large column it should be higher 

(134 400 if it is proportional to the cross-sectional area of the column, i.e. if keeping the 

same cell area). With these values, 𝑀𝑓 ≈ 0.073 for the smaller distributor, whereas 𝑀𝑓 ≈

0.23 for the larger one. 

Hoek et al. (1986) used the criterion in eq. (II.5) to assess liquid distribution in various 

types of packing. They employed a collector with 681 cells of 2.56 cm2 in order to 

capture the distribution on the scale of the packing elements. All the experiments were 

conducted without upward vapor flow. Average 𝑀𝑓 was 0.7 for random packing, and 0.4 

for structured packing. For random packings, the authors found that 𝑀𝑓 remains 

approximately the same for bed heights between 0.4 m and 2 m. Further, 𝑀𝑓 is smaller 

(i.e., distribution is better) when packing elements are smaller in size, and the index does 

not depend on the wettability of the material. For structured packings, 𝑀𝑓 decreases 

significantly with respect to the depth of the bed, showing that these structures are capable 

of distributing the flow quite well after a certain number of layers. The authors also 

compared two beds of the same height, made of Plastic BX and Mellapak 500-Y. They 

showed that the former packing distributes the liquid better, although this could be due to 

the difference in the number of layers present in each bed. Plastic BX has a smaller layer 

height, so one can fit more layers using this packing. Finally, 𝑀𝑓 in both structured and 

random packings significantly decreases when liquid flowrate is increased. 

Later experiments made by Marcandelli et al. (2000) in a column of 0.3m diameter 

confirm the conclusions in the previous paragraph. The experiments were conducted 
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using a collector with 9 cells of 78.5 cm2, so fluctuations in the scale of the packing 

elements were not captured by their assessment. Overall, 𝑀𝑓 values in experiments 

without countercurrent gas flow remained in the range 0.4 – 0.7. In addition, the authors 

remarked that even small upward vapor flowrates can significantly improve liquid 

distribution, with 𝑀𝑓 ranging between 0.005 and 0.4 in these cases. This study also 

investigated the influence of the initial distribution on the maldistribution factor for a bed 

height of 1.3 m. It was found that an increase in the number of irrigation points on the 

distributor is associated with a decrease in 𝑀𝑓. 

The last performance indicator covered in this section is the HETP. It is the height over 

which a change in composition corresponding to one ideal separation stage is observed. 

This criterion corresponds to the efficiency of the column, being the most practical among 

the 3 discussed in this section. To measure HETP of a packed distillation column, one 

can operate it at total reflux to separate a binary mixture, and measure the compositions 

at the top and bottom of the packed bed. Knowing these compositions, the McCabe-Thiele 

method can be used to estimate the number of theoretical stages in the column. Finally, 

HETP is obtained by dividing the height of the packed bed by the number of theoretical 

stages. More details on HETP measurements are given in Section II.3.4. Note that an 

improvement of initial liquid distribution does not necessarily yield a decrease in HETP. 

Indeed, it has been observed that irrigation densities beyond 100 pts m2⁄  do not bring 

significant improvement to industrial packing efficiency (Kister, 1990; Kister et al., 

2008). 

II.2 General description of the liquid distributor 

As mentioned in Section II.1.2 and II.1.3, the performance of a liquid distributor generally 

increases with respect to the number of irrigation points. However, designing a liquid 

distributor with a high number of holes could make it prone to fouling, as the diameter of 

the holes would have to be smaller. The solution proposed by Meyer and Rouzineau 

(2020) and discussed here is to increase the number of irrigation points without increasing 

the number of holes on the distributor’s plate. This can be achieved by incorporating a 

tree-like structure that guides the liquid dripping from each hole and separates it into 

several branches. 

Similar tree-like structures for liquid distributors had been conceived before with the help 

of the Constructal theory, such as the one developed by Zhang and Lv (2012) and 
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illustrated in Figure II.4. However, this and the other constructal designs mentioned in 

Section II.1.2 are unsuitable for distillation applications because they would result in large 

liquid heads, due to the friction inside the tubes. The workaround is to conceive a tree 

distributor with the liquid flowing outside the branches. This is the key innovation in the 

invention disclosed by Meyer and Rouzineau (2020). 

In the arrangement proposed by them, the liquid does not drip directly from the distributor 

plate holes to the packed bed below. Instead, it flows along the outer surface of wires, 

driven by gravity. Each wire later splits into 3 different branches, spreading the irrigation 

along the cross-section of the column. Wires are shaped as splines instead of a straight 

form, to ensure a smooth transition between different branching levels (Dejean et al., 

2020) that prevents exaggerated liquid bead formation at level junctions. Further, wire 

diameter is allowed to vary along the tree-structure levels. Figure II.6 shows an example 

of a liquid distributor that was designed according to such criteria. The distributor 

displayed in Figure II.6 and the others used in this work were designed using Autodesk 

Inventor software (Autodesk, 2019). 

 

Figure II.6 – (a) isometric, (b) top and (c) bottom views of a tree-structured liquid 

distributor; (d) pyramid distributing liquid from a single hole on the distributor plate 

The distributor depicted in Figure II.6 distributes the liquid from 13 primary irrigation 

points. The plate above the wire network is an orifice-pan structure, similar to the one in 
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Figure II.3b. Figure II.6b shows the 12 chimneys for the upward vapor flow in this orifice-

pan portion. Only the 3 at the centre are covered by a hat, as in the experiments discussed 

in the next sections the liquid falling from above is mostly concentrated in the centre of 

the column. However, hats can be added to the top of the other chimneys if necessary. A 

liquid head is formed on the orifice-pan structure, as the liquid does not pass through the 

chimneys. This head is discharged through small gaps on the underside of the plate, 

between the holes and the vertical wires (see Figure II.6a). The liquid discharged from 

the plate then splits into several branches as it flows down the wire structure. Figure II.6c 

depicts the bottom view of the distributor. There are 262 potential irrigation points, which 

can be divided in 13 triangular sectors (one per plate hole). These triangles are actually 

the bases of pyramid-like structures similar to the one shown in Figure II.6d. 

The pyramid in Figure II.6d exhibits 6 branching levels. The top wire captures the liquid 

falling from the plate, and the following branches distribute it over a larger area. In this 

structure, each wire splits into 3 branches. A regular tetrahedron is obtained because all 

the wires have the same length and form the same angle with respect to the vertical axis. 

Another regular arrangement can be conceived with 4 branches instead of 3 in the 

offspring of each wire. This structure is show in Figure II.7. 

 

 

 

 

 

 

 
 

Figure II.7 – Square pyramid resulting from the pattern where each wire splits into 4 

It would be naive to assume that all the wires in the arrangements shown in Figure II.6d 

or in Figure II.7 are wet during column operation. Indeed, experimental results for liquid 

flow down a tetraspline structure (i.e., a straight wire with 3 ramifications) suggest that 

the stream sometimes splits over 2 out of the 3 offspring branches (Dejean et al., 2020). 

However, the number of redundancies over the different branching levels helps 

preventing large dry areas. Redundancies refer to the reconnections happening along the 
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several branching levels (see Figure II.8). They ensure that the offspring (children, 

grandchildren, …) of a dry wire can still be wet, as there are other paths for the liquid to 

reach these wires. 

 
Dry wire 

Wet wire 

Incoming flow 

redundancy 

 

Figure II.8 – 2D representation of liquid flow on a wire structure 

II.3 Materials and methods 

II.3.1 Characterization of flow on a wire 

In order to assess the suitability of a liquid distributor such as the one shown in Figure 

II.6, one must first study the characteristics of liquid flow on wires. Dejean et al. (2020) 

made several experiments on the flow of liquid films along the surface of vertical wires 

and against an uprising gas flow. In their experimental setup, liquid inlet flow is 

controlled by a syringe pump. A connector controls the injection diameter, and the liquid 

film thickness on the wire is measured using a high velocity camera. Wire length is kept 

below 20 mm to avoid instabilities, and the upward gas flow is controlled using a needle 

valve and a flowmeter. Gas (air) is first humidified in a different chamber, in order to 

avoid evaporation of the liquid on the wire. Moreover, gas flowrates are set so that the 

corresponding F-factors in the wire chamber do not exceed 3 Pa1 2⁄ . As a reminder, F-

factor is defined as the product between the superficial gas velocity and the square root 

of the vapor density. 

Dejean’s work shows that gas flowrate and injection diameter have little effect on film 

thickness (𝛿). Further, it reveals an increase in 𝛿 (from 0.47 mm to 0.78 mm for a 

150 mL min⁄  water flow) as wire diameter decreases from 2 mm to 0.5 mm. The wire 

material also impacts 𝛿, with polyamide (PA12) wires providing much thinner films than 
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aluminium and stainless-steel wires. Finally, the type of liquid being used in the 

experiments affects film thickness and flow regime at small flowrates. For water, flow 

regime shifts from partial wetting (with the presence of liquid beads) to full wetting 

(without beads) for liquid flowrates above around 20 mL/min. For ethanol, full wetting 

regime is obtained even for liquid flowrates as low as 5 mL/min. Above 40 mL/min, film 

thickness is approximately the same for both liquids. 

The value of δ can be estimated from Nusselt’s solution for a flow with uniform film 

thickness down a cylindrical wire (Duprat, 2009; Dejean et al., 2020). This solution is 

obtained by solving the Navier-Stokes equation with no-slip boundary condition at the 

surface of the wire, and assuming zero tangential stress on the liquid-air interface. 

Integration of the resulting velocity profile over the film width yields eq. (II.6), which 

can be used to calculate 𝛿: 

 𝜌𝑔

3𝜂𝑓
𝛿3𝜓(𝛿 𝑅⁄ ) = 𝑞𝑙 (II.6) 

Here, 𝑞𝑙 is the volumetric flow divided by the perimeter of the cross-section of the wire, 

𝜌 and 𝜂𝑓 are the density and viscosity of the liquid, and g is the standard gravity. Function 

𝜓 is given by: 

 
𝜓(𝑥) =

3(4(𝑥 + 1)4 ln(𝑥 + 1) − 𝑥(𝑥 + 2)(3𝑥(𝑥 + 2) + 2))

16𝑥3
 (II.7) 

For silicone oil film with a viscosity of 48 mPa.s on a wire of diameter 3 mm, the thickness 

calculated with eqs. (II.6) and (II.7) agrees quantitatively with experimental measures in 

a volumetric flow range of 0 – 120 mL min⁄  (Duprat, 2009). For higher viscosities (up to 

485 mPa.s) and thinner wires (between 0.4 and 0.64 mm diameter), this agreement is only 

shown for very small flowrates (≤ 1.2 mL min⁄ ). Dejean et al. (2020) performed a 

similar study using water instead of silicone oils. Their study used volumetric flowrates 

between 0 and 160 mL min⁄ , and wire diameters between 0.5 mm and 2 mm. The only 

experiments that agreed quantitatively with eqs. (II.6) and (II.7) were the ones performed 

with large wire diameter (= 2 mm). The experiments performed using smaller diameters 

(1 mm and 0.5 mm) showed significant deviations from the predicted thickness. However, 

qualitative agreements are still observed, as both experiments and model show an increase 

in film thickness when wire diameter is decreased. 



 Chapter II. A nature-inspired liquid distributor 

 

38 

 

II.3.2 Characterization of flow along tetrahedron edges 

Dejean et al. (2020) also studied liquid flow along a tetrahedron structure made of wires. 

This tetrahedron, depicted in Figure II.9, resembles the repeating pattern of the Tetra 

Spline (TS) structured packing described in Kawas et al. (2021). In this figure, 𝑑𝑤 is the 

wire diameter, 𝑙𝑤 is wire length and 𝜃 is the angle of the tetrahedron edges with respect 

to the vertical axis. 

Three different liquids were used for experiments: demineralized water, ethanol and a 50-

50 ethanol-water mixture. The setup for experiments is similar to the one described in 

Section II.3.1, where the single wire is replaced by the tetrahedron element. However, 

instead of investigating film thickness, authors were more interested in the different flow 

regimes taking place when studying the structure. Three main regimes were observed: 

capillary, inertial and wetting. Capillary flow takes place when surface tension dominates 

over other forces. This regime is characterized by the formation of droplet streams, and 

liquid flows only on 1 of the 3 edges. Inertial flow is observed when inertia controls the 

flow, rendering surface tension negligeable. In this state, the wires are not capable of 

changing flow direction. Finally, wetting is achieved when inertia and surface tension are 

of the same order of magnitude. In this case, the flow is smoothly repartitioned over 2 or 

3 edges. 

 

Figure II.9 – Illustration of the tetrahedron structure used in experiments. Adapted with 

permission from Dejean et al. (2020). 

Generally, high flowrates and low wire diameters favour inertial regime, whereas low 

flowrates and low wire diameters favour capillary flow. Wire length does not play a 

𝑑𝑤 

𝑙𝑤 

𝜃 
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significant role in the flow regime, although it was observed that for 𝑙𝑤 < 10mm the 

liquid flow englobes the entire structure instead of splitting over the edges. Similarly, for 

𝜃 < 30° separation of the liquid stream cannot be achieved. Further, for 𝜃 > 40° the 

liquid stream detaches from the wires. 

The remaining parameters studied by the authors were gas countercurrent flowrate and 

liquid type. It was found that gas countercurrent does not affect flow regime along the 

tetrahedron for F-factors smaller than 3 Pa1 2⁄ . Liquid type however has a major impact 

on the flow. Wetting flow can be obtained for some ethanol flowrates at relatively small 

wire diameters. The minimum wire diameter required to achieve the wetting regime is 

higher for the 50-50 ethanol-water mixture. Finally, wetting could not be observed for the 

experiments using pure water, probably because wire diameters were not large enough. 

A cartography of the flow regimes is shown in Figure II.10. 

 

Figure II.10 – Cartography of the different flow regimes as a function of We and 𝑑∗, 
reproduced with permission from Dejean et al. (2020). Blue, green and red regions are 

respectively the capillary, inertial and wetting flow zones. Purple and orange represent 

intermediate zones. 

We 

50/50 ethanol water 
capillarity 

inertia  
surface tension > inertia  

inertia > surface tension 
wetting 

𝒅∗ 
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This figure summarizes experimental observations for 3 different liquids (ethanol, water 

and 50-50 ethanol-water mixture) at various flowrates and wire diameters.  

 
𝑊𝑒 =

𝜌𝑉𝑙
𝛾𝑑𝑤

3
;   𝑑∗ =

𝑑𝑤
𝑙𝑐

 (II.8) 

In eq. (II.8), 𝜌 is the liquid density, 𝑉𝑙 is the volumetric flowrate, 𝛾 is the surface tension 

and 𝑙𝑐 is the capillarity length, defined as follows: 

 

𝑙𝑐 = √
𝛾

𝜌𝑔
 (II.9) 

The wetting region in Figure II.10 corresponds to 𝑑∗ and We in the following range: 

 𝑑∗ ≥ 1.3 (II.10) 

 10−0.815(𝑑
∗−1.3) ≤ 𝑊𝑒 ≤ 101.429(𝑑

∗−1.3) (II.11) 

II.3.3 Tetra Spline packing 

One of the packings used in the experiments to evaluate the performance of the novel 

liquid distributor was the Tetra Spline (TS) packing (Kawas et al., 2021), depicted in 

Figure II.11. This packing consists of a wire structure replicating the pattern in the left 

sketch in Figure II.11, with the mixture flowing outside the wires. The liquid is expected 

to flow along the surface of these wires, improving distribution and providing a large 

contact area for mass and heat exchange. Different from the tetrahedron unit depicted in 

Figure II.9, in this packing the wires are shaped as splines to improve the liquid 

repartition. Further, the layers alternate between regular and unregular tetrahedrons in 

order to prevent gas chimneys in the packing. 

 

Figure II.11 – The TS packing, reproduced with permission from Kawas et al. (2021) 
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The packed bed was fabricated via 3D-printing, using either polyamide or stainless steel 

as material. HETP experiments with this new packing were conducted by Kawas et al. 

(2021) using wire diameters (𝑑𝑤) in the range 0.5 mm – 2.75 mm, and specific surface 

area (𝐴𝑔) in the range 139 m2 m3⁄ − 387 m2 m3⁄ . Mellapack 250Y was used as 

reference packing for comparison. 

Packing material was found to influence the efficiency of the column only for smaller 

wire diameters. At 𝑑𝑤 = 1.5 mm, the stainless-steel packing showed ~10% decrease in 

HETP compared to the polyamide packing. At 𝑑𝑤 = 2.25 mm, no significant difference 

was observed. Further, Kawas et al. (2021) found that larger wire diameters and specific 

surface areas result in lower HETP. The former is consistent with the results in Figure 

II.10 showing an improvement in liquid distribution over the tetrahedron structure when 

wire diameter is increased. The low HETP values obtained for high specific surface area 

are clearly due to the increase in mass/heat exchange area. 

Overall, the packing efficiency of TS was found comparable to that of Mellapack 250Y. 

Many of the TS configurations performed better than the reference packing at low vapor 

flowrates (Ffactor < 1 Pa1 2⁄ ). Three of them outperformed Mellapack 250Y for all the 

vapor flowrates used in experiments, which correspond to F-factors between 0 and 

2.5 Pa1 2⁄ . The values of 𝑑𝑤 (mm), void fraction (𝜖) and 𝐴𝑔 (m2 m3⁄ ) for these best 

configurations were: (1.5, 0.89, 281); (2.25, 0.89, 182); (1.5; 0.92, 205). The two first 

configurations were printed using polyamide, whereas the third was printed using 

stainless steel. 

For the evaluation of the nature-inspired liquid distributor in the next sections, some of 

the HETP experiments were done with a TS packed bed made of polyamide. Its 

configuration is characterized by 𝑑𝑤 = 1.5 mm, void fraction of 0.92 and a specific area 

of 205 m2 m3⁄ . The geometric features of this TS bed are summarized in Table II.1. The 

wire lengths and angles given in this table correspond to the features depicted on the left 

sketch in Figure II.11. 

Table II.1 - Geometric characteristics of the TS packing used for HETP experiments 

with the tree-shaped liquid distributors 

𝒍𝟏 (mm) 𝒍𝟐 (mm) 𝜽𝟏 (°) 𝜽𝟐 (°) 𝒅𝒘 (mm) 𝝐 𝑨𝒈 (𝐦𝟐 𝐦𝟑⁄ ) 

12 12 30 40 1.5 0.92 205 
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II.3.4 Characterization of liquid distributor performance via HETP 

Liquid distributor performance can be evaluated through its impact on the HEPT value of 

a standard distillation column. Fractionation Research, Inc. suggests standardized 

methods to measure the HETP in packed columns. Measurements are preferably made 

when operating a column at total reflux to separate a binary mixture. Samples from the 

top and bottom liquid streams are taken, and their composition is used to calculate the 

number of theoretical plates. This calculation uses an iterative procedure where 

theoretical liquid composition for each stage (from top to bottom) is calculated via vapor-

liquid equilibrium equations. Corresponding theoretical vapor compositions are 

determined by mass balance. The method uses the stream composition measured at the 

top of the column as the starting point. It then iterates from the top to the bottom until 

light key theoretical molar fraction becomes smaller than the molar fraction measured at 

the bottom. More details are available in Bessou et al. (2010). 

In this work, experiments with different liquid distributors were conducted, using a 

packed distillation column to separate 35 kg of a mixture of cyclohexane (25 wt%) + 

heptane. This binary mixture is recommended by Fractionation Research Inc., and it has 

been previously used in the literature (Subawalla et al., 1997; Olujić et al., 2000). The 

setup is shown in Figure II.12. The column shell is made of glass, with inner diameter of 

150 mm. A packed bed of 1 m height is placed in the column, just below the liquid 

distributor. Three different packings were used in the experiments: Mellapak 250Y, Pall 

Rings and the TS packing described in Section II.3.3. 

This column operates at total reflux. Initially, a mixture of cyclohexane and heptane is 

placed in the thermosyphon reboiler. Reboiler duty (1 – 23 kW) is set by adjusting steam 

flowrate. As shown in Figure II.12, pressure drop is measured between the top and the 

bottom of the packings in order to manage the control valve (heat duty) via a pressure 

feedback and achieve a steady state. At the top, the condenser chosen for the experiment 

was a coil glass condenser, using cooling water at room temperature. 
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Figure II.12 – Experimental setup measuring separation efficiency for different 

distributors. Reproduced with permission from Kawas et al. (2021). 

Liquid samples are taken from the top (STL) and the bottom (SBL) of the column every 20 

minutes. A capillary tube is placed on the bottom of the liquid distributor to ensure that 

only liquid is taken for the STL (without any traces of gas). For the SBL liquid sample, a 

flange-gutter system is installed just below the packed bed. Steady state is considered to 

be achieved when three consecutive liquid samples have identical compositions. These 

compositions are measured via densitometry analysis, and they are later used to calculate 

HETP using the method described in Bessou et al. (2010). 

For Pall Rings packing, 5 different distributors were tested using the setup described 

above: a perforated pipe distributor provided by Sulzer with 5 drip points, an orifice-pan 

distributor with 13 holes, and 3 different tree-like configurations (D1, D2, D3). The 

Mellapack 250Y and TS packings were used with only 3 distributors: Sulzer’s perforated 

pipe distributor, the orifice-pan distributor, and tree-like distributor configuration D1. 

The hole diameter is 2.7 mm for the orifice-pan distributor, and its design is very similar 

to the top plate in Figure II.6a. This orifice-pan distributor was designed using Inventor 

(Autodesk, 2019) and fabricated in the laboratory. For Sulzer’s perforated pipe 

distributor, diameter is 3.2 mm for the central hole and 5.2 mm for the remaining 4 holes. 

The tree-like distributors were designed using Autodesk Inventor software (Autodesk, 
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2019), and fabricated using a 3D printer and polyamide (PA12) as material. Details for 

the configurations D1-D3 are shown later in Section II.4. 

II.4 Theoretical considerations for distributor design 

Designing a distributor with a tree-like structure like the one shown in Figure II.6 requires 

careful analysis. The first step in this analysis is to define whether a new distributor will 

be designed from scratch, or if the tree-like structure will be used to retrofit an existing 

orifice distributor. In the former scenario, specifications for the top-plate depicted in 

Figure II.6a (such as hole diameter, number of holes and chimneys, etc.) can be chosen 

by the designer. In the latter scenario, the existing distributor is reused, and only the wire 

structures in Figure II.6d or Figure II.7 need to be fabricated. 

The key design variables are: number of layers (𝑁𝑙), 𝑑𝑤 (for each layer), 𝑙𝑤, 𝜃 and the 

number of ramifications at the end of each wire (𝑁𝑟, 3 or 4). Note that, while the designer 

has the freedom to vary 𝑑𝑤 with respect to the layer level, 𝑙𝑤, 𝜃 and 𝑁𝑟 need to be kept 

constant. Indeed, if one of these 3 parameters is changed between consecutive layers, 

neighbour wires will no longer reconnect together to form the redundancies shown in 

Figure II.8. In the remaining of this section, configurations with 𝑁𝑟 = 4 are excluded. 

This design choice is made beforehand and justified by the experiments made by Dejean 

et al. (2020). Their results show that the tetrahedron with 3 ramifications in Figure II.9 

sometimes can only split the upstream fluid into 2 streams, suggesting that a fourth child 

branch is probably superfluous. 

Several constraints need to be accounted for in the design of a tree-shaped distributor. 

The first, most intuitive one is that the distributor should fit in the column. This constraint 

is easily incorporated in the design of orifice-pan distributors: it suffices to set a plate 

diameter inferior to the inner diameter of the column. However, it becomes a more 

complicated issue when designing a tree-shaped distributor. For example: can a 

distributor with 13 plate holes, 6 layers, 𝑑𝑤 = 4 mm, 𝑙𝑤 = 10 mm, 𝜃 = 30° and 𝑁𝑟 = 3 

fit in a column with inner diameter of 150 mm? The answer depends on how the holes 

are arranged over the top plate. 

As discussed in Section II.2, for 𝑁𝑟 = 3 each hole is followed by a tetrahedron such as 

the one depicted in Figure II.6d. The base of this pyramid is an equilateral triangle (see 

Figure II.6c and Figure II.14) whose length can be calculated as a function of 𝑁𝑙, 𝑙𝑤, 𝜃 
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and 𝑑𝑤 of the last layer. This relation can be obtained through simple geometric 

considerations. First, one needs to calculate the length projected by a spline (𝑙𝑤
𝑝𝑟𝑜𝑗

) on the 

cross-section of the column. This quantity is shown in Figure II.13, and it is given by: 

 𝑙𝑤
𝑝𝑟𝑜𝑗

= 𝑙𝑤 sin(𝛼) (II.12) 

 

 

 

 

 

 

 

 

  

𝒍𝒘
    

 

𝒍𝒘
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Figure II.13 – The length of a spline projected on the cross-section (𝑙𝑤
𝑝𝑟𝑜𝑗

) and the 

distance d between two neighbour outlets 

Knowing 𝑙𝑤
𝑝𝑟𝑜𝑗

, the distance d between two consecutive outlets (see right sketch in Figure 

II.13) can be calculated: 

 𝑑 = 𝑙𝑤
𝑝𝑟𝑜𝑗

√3 (II.13) 

Figure II.14 depicts the triangles formed by the base of pyramids with different number 

of layers. The length of these solid blue edges is proportional to 𝑁𝑙, and given by: 

 𝐿Δ = 𝑁𝑙𝑑 (II.14) 

Lastly, one can correct eq. (II.14) and account for the extra space occupied by the outlets 

on the edges (the dashed blue segments in Figure II.14). The length of these dashed edges 

is given by: 

 𝐿Δ
′ = 𝐿Δ + 𝑑𝑤√3 (II.15) 

Putting eqs. (II.12)-(II.14) into eq. (II.15) yields: 

 𝐿Δ
′ = √3(𝑁𝑙𝑙𝑤 sin(𝛼) + 𝑑𝑤) (II.16) 
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Figure II.14 – Triangles projected by a pyramid on the cross-section as the number of 

layers (𝑁𝑙) increases 

Here it is important to point out that the angle 𝛼 depicted in Figure II.13 is not equivalent 

to the spline angle 𝜃 shown in Figure II.11 and Figure II.13. Indeed, 𝛼 is the angle 

between the vertical axis and the segment connecting both ends of the spline, whereas 𝜃 

is the inclination of the spline (with respect to the vertical) on its middle point. The 

relation between 𝛼 and 𝜃 can be obtained using the law of sines: 
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𝛼 = 𝜃 − arcsin [

𝑠𝑖𝑛(𝜃)

4
] (II.17) 

Eqs. (II.16) and (II.17) together give the length of the triangle occupied by the base of the 

pyramid as a function of the design variables 𝑁𝑙, 𝑙𝑤, 𝜃 and 𝑑𝑤. Recalling the problem 

mentioned earlier in this section, we wish to know if a distributor with 13 plate holes, 6 

layers, 𝑑𝑤 = 4 mm, 𝑙𝑤 = 10 mm, 𝜃 = 30° and 𝑁𝑟 = 3 can fit in a column with inner 

diameter of 150 mm. Using eqs. (II.16) and (II.17), the length of the triangles each 

pyramid projects on the cross-section is 𝐿Δ
′ = 47.2 mm. The question now comes down 

to whether 13 of such triangles can fit in a circle of diameter 150 mm without overlapping. 

This question is a particular case of a larger class of optimization problems known as the 

packing problems. Much of the densest known packings of equilateral triangles inside a 

circle can be found in the website WolframAlpha (Wolfram|Alpha, 2020), as well as in a 

private webpage on Github (Friedman, 2021). Some of these packings are regular and 

some are unregular, depending on how many triangles one tries to fit inside the circle. 

Figure II.15 shows 2 regular (with 6 and 13 triangles), and 2 unregular packings (with 3 

and 10 triangles). Configurations with regular packings are more suitable for liquid 

distribution for many reasons. First, the distribution of plate holes, which coincides with 

the barycentres of the triangles, is easier to implement for regular geometries. Second, 

liquid distribution is more homogeneous. Finally, when the number of triangles is large 

(≥ 13), many of the edges in the packing are coincident (see the packing with 13 triangles 

in Figure II.15). That enables the outlets from different pyramids to reconnect, which can 

save some space in the column. Table II.2 summarizes the length of the triangles for 8 

known regular packings, using units of circle radius. From this table, the maximum side 

length of 13 triangles in a circle of diameter 150 mm is 49.1 mm. And since 𝐿Δ
′ =

47.2 mm < 49.1 mm, the distributor mentioned in the previous paragraph can fit in the 

column. 
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Figure II.15 – Densest known packings for 3, 6, 10 and 13 equilateral triangles in a circle 

( Wolfram|Alpha, 2020; Friedman, 2021) 

Table II.2 – Side of the equilateral triangles for 8 regular packings (Friedman, 2021; 

Wolfram|Alpha, 2020) 

triangles 1 2 6 7 13 18 20 24 

side (× 𝑹) √3 2 √3⁄  1 2 sin (
𝜋

7
) √3 7⁄  √2 13⁄  0.533 0.5 

 

Until this point in the section, most of the discussion was focused on the constraint the 

distributor has to fit in the column. A second noteworthy geometric constraint is on the 

maximum wire diameter. If wire diameter is too large, the outlets of the 3 ramifications 

in Figure II.13 may overlap. To avoid this, the following constraint must be considered: 

 𝑑𝑤 < 𝑑 (II.18) 

Here the term d corresponds to the distance shown in Figure II.13, and it can be calculated 

in terms of 𝑙𝑤 and 𝜃 with the help of eqs. (II.12), (II.13) and (II.17). 

One can write another constraint for the maximum wire diameter involving 𝑙𝑤 and 𝜃. The 

wires are conceived extruding a circular shape along a spline. Therefore, the radius of the 
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wire cannot exceed the minimum radius of curvature (𝑟𝑐) of the spline. Figure II.16 shows 

this constraint. The dimensions on the bottom image are shown in mm. 

 

Extrusion 

Wire radius smaller than the 
radius of curvature of the spline 

Wire radius larger than the 
radius of curvature of the spline 

Wire shape when 𝒅𝒘 𝟐⁄ ≈  𝒄 

 

Figure II.16 – Constraint on the wire diameter (𝑑𝑤 2⁄ < 𝑟𝑐) 

The splines used to generate a wire are curves interpolated from the end points and 

controlled by 2 vertexes, shown as blue squares in the bottom image of Figure II.16. 

Inventor software does not disclose the exact interpolation equation it uses for the spline, 

so 𝑟𝑐 cannot be derived analytically from the equation of the curve. However, the software 

provides the radius of curvature of the spline at any given position. This radius of 

curvature is minimal at the end points, and fitting by trial-and-error lead to the following 

relation: 

 
𝑟𝑐 =

3𝑙𝑤
32 sin(𝛼)

 (II.19) 
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The fourth and final geometric constraint regards the height of the distributor, defined as 

the distance between the base of the tree-structure and the bottom of the plate above. Its 

maximum height depends on the allowance in the column, so the designer is free to set 

this constraint accordingly. In the design of D1 – D3, the distributors that were printed 

and used in the experiments, it was imposed that their heights should not exceed 200 mm. 

In addition to constraints imposed by the geometry of the equipment, some constraints 

are imposed to ensure reasonable liquid distribution over the wires. Wire length is 

restricted to the interval 10 mm ≤ 𝑙𝑤 ≤ 20 mm. The lower wire length limit prevents the 

formation of a membrane englobing multiple wires, as mentioned in Section II.3.2, 

whereas the upper limit prevents the appearance of the instabilities mentioned in Section 

II.3.1. Further, spline angle is constrained to 30° ≤ 𝜃 ≤ 40°. Here again, the lower limit 

prevents formation of liquid membranes englobing multiple wires, whereas the upper 

limit prevents liquid detachment from the wires (see Section II.3.2). 

Finally, a third performance constraint relates to the position of each layer with respect 

to the mapping shown in Figure II.10. The average flow per wire in a certain level can be 

calculated dividing the downwards liquid flow by the number of wires in this layer. This 

number is not the same as the number of outlets; some outlets are common to 2 or 3 wires, 

as shown in Figure II.14. Instead, for 𝑁𝑟 = 3, the number of wires in a level is equal to 3 

times the number of outlets from the previous level, since every outlet splits into 3 

children in the subsequent layer. 

Knowing the number of wires and the wire diameter per layer, one can assign a certain 

position on the mapping shown in Figure II.10 to each level of the distributor. Preferably, 

the distributor should be designed so that all these positions are within wetting flow 

regime. Table II.3 summarizes the main constraints to be considered during the design of 

a tree-like liquid distributor. 
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Table II.3 – Summary of constraints considered for liquid distributor design 

Type of constraint Constraint Variables implied 

Geometric 

Distributor has to fit in the column 𝑁𝑙, 𝑙𝑤, 𝜃, 𝑑𝑤 

Outlets of ramifications cannot overlap 𝑙𝑤, 𝜃, 𝑑𝑤 

Wire radius < spline’s radius of curvature 𝑙𝑤, 𝜃, 𝑑𝑤 

Distributor height < allowance 𝑁𝑙, 𝑙𝑤, 𝜃 

Performance 

10mm ≤ 𝑙𝑤 ≤ 20mm 𝑙𝑤 

30° ≤ 𝜃 ≤ 40° 𝜃 

Flow regime is preferably wetting 𝑁𝑙, 𝑑𝑤 

 

All the aforementioned design considerations were implemented in an Excel file, whose 

goal is to facilitate the design and screening of performant configurations. The logic steps 

for the Excel calculations are illustrated in the diagram chart in Figure II.17. 

 

1 

2 

n 

Geometry and flow 

characteristics per layer Output 

 

Figure II.17 – Diagram chart illustrating how the Excel auxiliary tool works 

Column diameter, number of initial irrigation points, total liquid flow and mixture 

parameters are given by the user. Further, the user chooses to provide either the exact 

values of the design variables (𝑑𝑤, 𝑙𝑤, 𝜃, 𝑁𝑙) or their range. In the latter case, the 

spreadsheet performs a feasibility analysis to find combinations of values yielding proper 

configurations. For a given combination of decision variable values, the design tool 

calculates the geometric features (number of wires, height, 𝐿Δ
′ ) and flow characteristics 

(𝛿, average flowrate and We per wire) on each layer. 
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The results are used to check which constraints (according to Table II.3) are 

satisfied/violated. The remaining outputs are the final number of outlet points and the 

volume fraction occupied by the wire structures. The former is calculated according to 

the formula in Figure II.14, whereas the occupancy is estimated using the total number of 

wires in the structure and eq. (II.20) for the volume of a single wire. This volume, 𝑉𝑤, is 

the product of the cross-section of the wire and the length of the spline, whose formula 

was obtained via a linear fit. 

 
𝑉𝑤 =

𝜋𝑑𝑤
2

4
(

.
1.073 − 0.073 cos(𝜃)

.
) 𝑙𝑤 (II.20) 

Note that this procedure overestimates the volume fraction occupied by the distributor in 

the column, since it neglects wire intersections such as the one on the top of the structure 

in Figure II.13. Finally, screenshots of the Excel design tool developed in this study are 

shown in Appendix B, along with more details regarding its mode of operation. 

Considering the design aspects discussed so far, and with the help of the design tool 

mentioned above, 3 distributor configurations (D1 – D3) were selected for experimental 

investigation. Figure II.18 illustrates these configurations, and their geometric features 

are given in Table II.4. 

Table II.4 – Characteristics of the tree-like distributors used in experiments 

 D1 D2 D3 

No. of holes 13 13 13 

Hole diameter 

(mm) 
6.0 6.0 6.8 

𝑁𝑙 6 6 6 

𝑑𝑤 (mm) 
[2.5, 2.5, 2.5, 2.25, 

2.0, 1.75, 1.5] 

[2.5, 2.5, 2.5, 2.25, 

2.0, 1.75, 1.5] 

[4.0, 4.0, 4.0, 4.0, 

4.0, 4.0, 4.0] 

𝑙𝑤 (mm) 12 10 10 

𝜃 (°) 30 36.2 36.2 

Distributor 

height (mm) 
71.4 64.7 64.7 
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Figure II.18 – Different designs of liquid distributors used in experiments 

In Table II.4, the number of holes correspond to the number of plate holes from which 

the pyramid structures stem. The branching levels 𝑁𝑙 correspond to the number of times 

the distributor splits. Each level is located at a certain height, and they are numerated in 

Figure II.18 for D1. The 0th level just below the plate is the part of the distributor 

containing only vertical wires. Values for 𝑑𝑤 in Table II.4 are the wire diameters in order 

from the 0th to the 6th branching level. Terms 𝑙𝑤 and 𝜃 are the length and inclination of 

the wires. Further, the distributor height is measured from the bottom part of the plate 

until the base of the last branching level. Note that the pyramids stemming from the plate 

holes are not completely separate from one another. Instead, D1 – D3 were designed so 

that the outlets of neighbour pyramids reconnect on the base of the structure. This can be 

achieved by placing the plate holes on the barycentres of the triangles shown in Figure 

II.15d, and carefully choosing a combination of 𝜃 and 𝑙𝑤. If the distributor is designed in 

this way, the overlapping edges of the triangles in Figure II.15d will correspond to the 

positions where the outlets from different pyramids reconnect. 

The configuration D1 was conceived at an early stage of this work, and its design does 

not cope with the last constraint given in Table II.3 (the wetting regime constraint). 

Configuration D2 replicates the wire diameters and the number of layers in D1, but with 

smaller 𝑙𝑤 and larger 𝜃. It was conceived to have a minimum height while performing 

similarly to D1. Finally, configuration D3 is conceived with the same height as D2, but 

with different wire diameter in order to improve performance. Figure II.19 maps the flow 

regime on the layers of D1, D2 and D3. The data shown is in this figure are theoretical 

predictions obtained when replacing 𝑉𝑙 in eq. (II.8) by the average flow per wire on each 

layer. Further, the fluid considered in this mapping is a mixture of n-cyclohexane + 

heptane, which is used later for experiments. 
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Figure II.19 – Predicted flow regime in each layer for D1, D2 (yellow diamonds with 

black contour) and D3 (black circles), considering the binary mixture n-cyclohexane + 

heptane; Weber number decreases as layer levels increase 

The remaining design considerations are the drip point density and the indexes 𝐷𝑄 and 

𝑀𝑓 mentioned in Section II.1.3. Distributors D1 – D3 have a theoretical drip point density 

of ~14800 pts m2⁄ . This density is considerably larger than the 736 pts m2⁄  provided 

by the 13 primary irrigation holes on the top-plate. However, whereas the top plate 

distributes the flow evenly among its 13 holes, distribution over the 262 outlets at the 

base of the distributor (Figure II.6c) is uneven. 

To see how liquid is distributed at the base of a tree-like distributor, let us first focus on 

how a single pyramid (Figure II.6d) splits the flow coming from one of the 13 holes. At 

the base of a 6-layer pyramid, there are in total 28 outlets (see the formula in Figure II.14). 

If we assume that flow is evenly partitioned over the 3 children branches of every wire, a 

total flow of 36 = 729 would be distributed over the 28 outlets according to Figure II.20. 

      1       

     6  6      

    15  30  15     

   20  60  60  20    

  15  60  90  60  15   

 6  30  60  60  30  6  

1  6  15  20  15  6  1 

             

Figure II.20 – Total liquid flow of 729 distributed over the 28 outlets of a 6-layer pyramid 
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Readers familiar with combinatorics will quickly recognize the values on the edges of the 

triangle shown in Figure II.20 as the binomial coefficients of the 6th power. A more 

careful analysis shows that the Pascal’s triangle is retrieved if we divide each row by its 

lead coefficient (i.e., divide first row by 1, second row by 6, third row by 15, and so on). 

This pattern can be generalized for a pyramid with n layers and a flow of 3𝑛 by induction. 

Theorem. If liquid is split into 3 identical parts over all junctions of a pyramid with N 

layers, then for a total inlet flow of 𝑉𝑙 the flow on each of the outlets obeys the following 

relation: 

 𝑉𝑙
𝑖,𝑗

𝑉𝑙
=
𝐶𝑖
𝑁 × 𝐶𝑗

𝑖

3𝑁
 (II.21) 

where 𝑉𝑙 is the total liquid flowrate through the pyramid, 0 ≤ 𝑖 ≤ 𝑁 is row index of the 

outlet, 0 ≤ 𝑗 ≤ 𝑖 is the column index of the outlet, and 𝐶𝑎
𝑏 are binomial coefficients: 𝐶𝑎

𝑏 =

(𝑏
𝑎
) =

𝑏!

𝑎!(𝑏−𝑎)!
. 

Remark. Before proving this theorem, let us clarify its statement. In eq. (II.21), i refers to 

the position of the outlet along the rows (from top to bottom), and j is its position along 

the columns (from left to right). Outlets are depicted in Figure II.20 for 𝑁 = 6. The 

position (𝑖, 𝑗) = (0,0) corresponds to the top outlet with a flow 𝑉𝑙
0,0 = 1. The position 

(4,1) corresponds to the fifth row and second column, for which 𝑉𝑙
4,1 = 60. The reader 

can obtain the results shown in Figure II.20 for any position (i,j) with the help of eq. 

(II.21), after setting 𝑉𝑙 = 729 and 𝑁 = 6. 

Proof. The first step is to show that the theorem is valid for 𝑁 = 1. That is indeed the 

case; for 1 layer, there are only 3 outlets as depicted by the left structure in Figure II.14. 

If the liquid is identically partitioned between the 3 ramifications, then the flow on each 

outlet is 𝑉𝑙
𝑖,𝑗
= 𝑉𝑙 3⁄ . This is in agreement with eq. (II.21), since 𝐶0

0 = 𝐶0
1 = 𝐶1

1 = 1. 

Now, let us assume that eq. (II.21) is valid for an arbitrary number of layers N, and attempt 

to demonstrate its validity for 𝑁 + 1 layers. Without loss of generality, we shall assume 

the total flow to be 𝑉𝑙 = 3𝑁+1. The flowrates on the outlets of the N-layers pyramid would 

then be given by 𝑉𝑙,𝑁
𝑖,𝑗
= 3𝐶𝑖

𝑁 × 𝐶𝑗
𝑖, where the second subscript in the left-hand side 

indicates the number of layers. If an extra layer is added to this pyramid, the flow will be 

further partitioned according to the illustration in Figure II.21. 
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Figure II.21 – Flow partition from the outlets of a N-layer pyramid (dashed circles) after addition of an extra layer (solid circles) 
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The outflow on the vertexes (0,0), (N+1,0), (N+1,N+1) are given by: 

𝑉𝑙,𝑁+1
0,0 = 𝐶0

𝑁 × 𝐶0
0 = 1 ⇒ 𝑉𝑙,𝑁+1

0,0 = 𝐶0
𝑁+1 × 𝐶0

0 (T1) 

    𝑉𝑙,𝑁+1
𝑁+1,0 = 𝐶𝑁

𝑁 × 𝐶0
𝑁 = 1 ⇒ 𝑉𝑙,𝑁+1

𝑁+1,0 = 𝐶𝑁+1
𝑁+1 × 𝐶0

𝑁+1 (T2) 

    Vl,N+1
N+1,N+1 = CN

N × CN
N = 1 ⇒ Vl,N+1

N+1,N+1 = 𝐶𝑁+1
𝑁+1 × 𝐶𝑁+1

𝑁+1 (T3) 

The three equations above are in agreement with eq. (II.21) for 𝑁 + 1 layers and 𝑉𝑙 =

3𝑁+1. Now, for an arbitrary outlet on one of the 3 edges: 

𝑉𝑙,𝑁+1
𝑖,0 = 𝐶𝑖−1

𝑁 × 𝐶0
𝑖−1 + 𝐶𝑖

𝑁 × 𝐶0
𝑖 = 𝐶𝑖−1

𝑁 + 𝐶𝑖
𝑁 =

𝑁!

(𝑖 − 1)! (𝑁 − 𝑖 + 1)!
+

𝑁!

𝑖! (𝑁 − 𝑖)!
⇒ 

⇒ 𝑉𝑙,𝑁+1
𝑖,0 =

𝑁! 𝑖

𝑖! (𝑁 − 𝑖 + 1)!
+
𝑁! (𝑁 − 𝑖 + 1)

𝑖! (𝑁 − 𝑖 + 1)!
=

(𝑁 + 1)!

𝑖! (𝑁 + 1 − 𝑖)!
× 1 ⇒ 

⇒ 𝑉𝑙,𝑁+1
𝑖,0 = 𝐶𝑖

𝑁+1 × 𝐶0
𝑖  (T4) 

𝑉𝑙,𝑁+1
𝑖,𝑖 = 𝐶𝑖−1

𝑁 × 𝐶𝑖−1
𝑖−1 + 𝐶𝑖

𝑁 × 𝐶𝑖
𝑖 = 𝐶𝑖−1

𝑁 + 𝐶𝑖
𝑁 =

(𝑁 + 1)!

𝑖! (𝑁 + 1 − 𝑖)!
× 1 ⇒ 

⇒ 𝑉𝑙,𝑁+1
𝑖,𝑖 = 𝐶𝑖

𝑁+1 × 𝐶𝑖
𝑖  (T5) 

𝑉𝑙,𝑁+1
𝑁+1,𝑗

= 𝐶𝑁
𝑁 × 𝐶𝑗−1

𝑁 + 𝐶𝑁
𝑁 × 𝐶𝑗

𝑁 = 𝐶𝑗−1
𝑁 + 𝐶𝑗

𝑁 = 1 ×
(𝑁 + 1)!

𝑗! (𝑁 + 1 − 𝑗)!
⇒ 

⇒ 𝑉𝑙,𝑁+1
𝑁+1,𝑗

= 𝐶𝑁+1
𝑁+1 × 𝐶𝑗

𝑁+1 (T6) 

Eqs. (T4)–(T6) are also in agreement with eq. (II.21) for 𝑁 + 1 layers and 𝑉𝑙 = 3𝑁+1. 

The remaining step to complete this proof is to show that an arbitrary interior outlet (𝑖, 𝑗) 

also obeys eq. (II.21). According to Figure II.21, the flow on this outlet is given by: 

𝑉𝑙,𝑁+1
𝑖,𝑗

= 𝐶𝑖−1
𝑁 × 𝐶𝑗−1

𝑖−1 + 𝐶𝑖−1
𝑁 × 𝐶𝑗

𝑖−1 + 𝐶𝑖
𝑁 × 𝐶𝑗

𝑖 = 

=
𝑁!

(𝑖 − 1)! (𝑁 − 𝑖 + 1)!
 

(𝑖 − 1)!

(𝑗 − 1)! (𝑖 − 𝑗)!
+

𝑁!

(𝑖 − 1)! (𝑁 − 𝑖 + 1)!
 

(𝑖 − 1)!

𝑗! (𝑖 − 1 − 𝑗)!
+

𝑁!

𝑖! (𝑁 − 𝑖)!
 

𝑖!

𝑗! (𝑖 − 𝑗)!
= 

=
𝑁!

(𝑁 − 𝑖 + 1)!
 

1

(𝑗 − 1)! (𝑖 − 𝑗)!
+

𝑁!

(𝑁 − 𝑖 + 1)!
 

1

𝑗! (𝑖 − 1 − 𝑗)!
+

𝑁!

(𝑁 − 𝑖)!
 

1

𝑗! (𝑖 − 𝑗)!
= 

=
𝑁!

(𝑁 − 𝑖 + 1)!
 

𝑗

𝑗! (𝑖 − 𝑗)!
+

𝑁!

(𝑁 − 𝑖 + 1)!
 
(𝑖 − 𝑗)

𝑗! (𝑖 − 𝑗)!
+

𝑁!

(𝑁 − 𝑖 + 1)!
 
(𝑁 − 𝑖 + 1)

𝑗! (𝑖 − 𝑗)!
 

  



 Chapter II. A nature-inspired liquid distributor 

 

58 

 

Simplifying the above expression yields: 

𝑉𝑙,𝑁+1
𝑖,𝑗

=
𝑁!

(𝑁 − 𝑖 + 1)!
 
(𝑁 + 1)

𝑗! (𝑖 − 𝑗)!
=

(𝑁 + 1)!

(𝑁 + 1 − 𝑖)!
 

1

𝑗! (𝑖 − 𝑗)!
=

(𝑁 + 1)!

𝑖! (𝑁 + 1 − 𝑖)!
 

𝑖!

𝑗! (𝑖 − 𝑗)!
 

Hence: 

𝑉𝑙,𝑁+1
𝑖,𝑗

= 𝐶𝑖
𝑁+1 × 𝐶𝑗

𝑖  (T7) 

Q.E.D. 

Qualitatively, Figure II.20 and eq. (II.21) show that irrigation is lower near the edges and 

vertices of the triangles depicted in Figure II.14, growing near their barycenters. Visual 

observations corroborate this conclusion. However, despite this non-uniform distribution, 

one should still expect the quality of liquid distribution to be improved when the wire 

structure is added to the orifice-pan distributor. This can be verified by calculating the 

distribution quality indicators 𝐷𝑄 and 𝑀𝑓 discussed in Section II.1.3. 

Theoretical 𝑀𝑓 is obtained from eq. (II.5), dividing the cross-section in 21 imaginary 

collection zones identical to the ones shown in Lämmermann et al. (2016) (see Figure 

II.22). Instead of using experiments to measure the flowrate trough each zone, these are 

calculated by analysing how the outlets are distributed over the different zones. For the 

simpler orifice-pan configuration with 13 holes, it is assumed that flow is evenly 

partitioned among the outlets. For the more complex tree-like structure, Figure II.20 is 

used to estimate the outlet flow on each of the 262 dripping points. Further, because the 

orientation of the imaginary collector affects the distribution of the outlet points over the 

zones, 𝑀𝑓 values are averaged using 5 random collector orientations. 

 

Figure II.22 – D3 outlets and imaginary collection zones used to calculate 𝑀𝑓 
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Because D1, D2 and D3 have the same number of layers and a similar outlet structure, 

the theoretical 𝑀𝑓 value is the same for all of them. It varies between 0.135 and 0.137 

according to the orientation of the collector, with an average 𝑀𝑓 = 0.136. This is a 

significant improvement compared to 𝑀𝑓 = 0.236 for the orifice-pan distributor. For 

comparison, Sulzer’s perforated pipe distributor with 5 irrigation points has a theoretical 

maldistribution factor 𝑀𝑓 = 0.421. 

Analogously, one should expect an increase in the distribution quality index 𝐷𝑄 when the 

number of outlets is increased from 13 to 262. Nevertheless, the opposite happens: 𝐷𝑄 

decreases from 0.40 (orifice-pan) to 0.27 (D1 – D3). This is likely due to the 

inconsistencies in the index that appear when the outlet points are very close to each other, 

as explained in Section II.1.3. 

A last theoretical aspect important for this nature-inspired distributor is scalability. As 

mentioned in Section I.2, tree structures generally facilitate scaling, which is remarkably 

useful in chemical engineering. However, scaling up the distributor described in Section 

II.2 is not straightforward. Let us assume a fixed liquid flux (flow per column cross-

section area) for two columns with different sizes. The larger column experiences a larger 

liquid flow, as the fluxes are equal for these two columns. If the number of initial 

irrigation points is the same, maintaining the same quality of distribution would imply 

increasing the number of branching generations 𝑁𝑙 in the larger column. However, this 

could result in a distributor whose height is larger than the maximum allowance (see 

Table II.3). Further, the wires in the last layers of the distributor, which experience the 

smallest flows, are more likely to be in the capillarity flow zone (Figure II.10). This could 

affect the quality of the distribution in the larger column. That does not mean the 

distributor presented in this Chapter is not scalable; rather, it means scaling up should be 

done carefully, considering all the constraints in Table II.3. One alternative to facilitate 

the scaling up is to increase the number of initial irrigation points. Doing so would 

decrease the number of branching levels necessary for the larger column, avoiding the 

allowance and the flow regime issues. 
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II.5 Experimental results and discussion 

II.5.1 Industrial packings 

Experiments to measure HETP and pressure drop were performed according to the 

procedure described in Section II.3.4. Five different types of distributors (D1 – D3, 

orifice-pan with 13 irrigation points, and Sulzer’s distributor with 5 irrigation points) 

were compared in a column packed with Pall rings. Figure II.23 shows the results 

obtained from these tests. 

 

Figure II.23 – HETP (a) and pressure drop (b) vs F-factor for 5 different distributors, 

using Pall rings packing and the test rig described in Section II.3.4 

The relative error for all HETP measures is estimated around 6%. One source of error is 

the densitometry accuracy of ±0.001 g cm3⁄ . The second one are deviations in molar 

fraction in the Wilson activity coefficient model (mean deviation of ±0.0008; maximum 

deviation of ±0.0025) used for vapor-liquid equilibrium computations in the HETP 

calculation procedure described in the beginning of Section II.3.4. Figure II.23a shows 

that column efficiency is approximately the same for all liquid distributors. The reason is 

that the lowest drip point density (283 pts m2⁄  for Sulzer’s distributor) is already too 

high. Indeed, it has been shown that densities beyond 100 pts m2⁄  do not bring 

significant improvement in industrial packing efficiency (Kister, 1990; Kister et al., 

2008). 

Differences in pressure drop are negligeable comparing the 5 distributors, as depicted in 

Figure II.23b. This is because the main source of energy loss is friction against the 

packing. Although some distributors are bulkier than others (see for example D3 in Figure 
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II.18), their height is only 7% the length of the packed bed. Besides, the pressure above 

the packed bed is measured just below the distributor plate, so the only parts of the 

distributors that are considered in pressure drop measurements are the tree-like wire 

structures. 

Experiments using Mellapack 250Y bed confirm that the tree-like distributors do not 

decrease HETP of industrial packings (see Figure II.24). This result does not imply that 

distribution itself is not improved: as shown in Section II.4, theoretical maldistribution 

factor is decreased from 0.236 to 0.136 with the addition of the trees to an orifice-pan 

distributor with 13 points. However, such an improvement is not reflected in a better 

distillation performance when Pall rings or Mellapack 250Y are employed. 

 

Figure II.24 – HETP (a) and pressure drop (b) vs F-factor for 3 different distributors, 

using Mellapack 250Y packing and the test rig described in Section II.3.4 

Other applications possibly more sensitive to liquid maldistribution, such as multiphase 

reactions and chemical absorption, could benefit from this improvement. In addition, the 

next section shows that the tree distributors are capable of reducing HETP when coupled 

with the TS structured packing (Kawas et al., 2021). 

II.5.2 Tetra Spline packing 

Distillation performance was also assessed for different liquid distributors using the Tetra 

Spline (TS) packing described in Section II.3.3. Three different liquid distributors were 

used for experiments: the orifice-pan type with 13 irrigation points, Sulzer’s distributor 

with 5 irrigation points, and the tree-shaped distributor D1 with 262 irrigation points. The 

latter was printed together with the packing itself. The results are shown in Figure II.25. 
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Figure II.25 – HETP (a) and pressure drop (b) vs F-factor for 3 different distributors, 

using TS packing and the test rig described in Section II.3.4 

The errors for HETP measurements in Figure II.25 lie within ±6%. The vertical error bars 

were omitted from the figure because these errors are small compared to the range of 

HETP values obtained. A comparison of the HETP plots in Figures Figure II.23a – Figure 

II.25a shows that the TS structured packing is much more sensitive to the initial 

distribution than the industrial packings. It greatly benefits from the tree-shaped 

distributor, which reduces HETP by up to 50% at low F-factors. 

Further, the pressure drops measured using the TS packing are significantly smaller than 

those measured using Pall Rings, and comparable to those obtained for Mellapack 250Y. 

For the range of pressure drops in Figure II.25b, small variations are observed according 

to the type of liquid distributor used. The Sulzer distributor increases the pressure drop 

slightly. Vapor flow obstruction due to the wire structure in D1 is probably the reason for 

it causing slightly larger pressure drops than the orifice-pan distributor. 

II.6 Summary 

This chapter presented the new liquid distributor invented by Meyer and Rouzineau 

(2020) and evaluated its performance. A general description of this invention is given in 

Section II.2. In brief, the top of this distributor is similar to a regular orifice-pan type, but 

wires are added below. These wires form a tree structure that guides the liquid dripping 

from the holes and distributes it over the cross-section of the column. After the 

description, some studies on liquid flow regimes along wire structures were reviewed, 

and the test rig for HETP measurements was described. 
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Section II.4 presented the three different tree-like configurations that were selected for 

experiments. The design stage involved careful consideration of various geometric and 

performance constraints. A 4th distributor was printed, which served as benchmark for 

comparison with the previous ones. It consisted in an orifice-pan distributor with 13 holes. 

Theoretical liquid distribution was assessed by using the maldistribution factor 𝑀𝑓. The 

tree-like distributor invention improved liquid distribution over the cross-section of the 

column. For a 13-holes orifice-pan distributor with 𝑀𝑓 = 0.236, adding the tree structure 

with 6 layers can in theory decreases the maldistribution factor up to 𝑀𝑓 = 0.136. At the 

end of the section, scalability of the liquid distributor was discussed. The scale-up of tree 

structures is generally straightforward; most of the times, it is done simply via an increase 

in the number of branching generations. However, some of the constraints summarized 

in Table II.3 make this task considerably harder for the tree-shaped distributor discussed 

in this chapter. 

Finally, Section II.5 provided experimental results for separation performance with 

different types of packings and distributors. For the industrial packings Pall Rings and 

Mellapack 250Y, the improvement in initial liquid distribution does not result in better 

separation efficiency. This is not completely unexpected, as for most industrial packings 

increasing the number of initial irrigation points above 100pts m2⁄  does not improve 

packing efficiency (Kister, 1990; Kister et al., 2008). Nevertheless, significant 

improvement in packing efficiency is obtained when tree-like distributors are used along 

with the TS structured packing disclosed in Kawas et al. (2021). The efficiency of such 

packing is highly dependent on initial liquid distribution, and the wire structure in the 

new distributor configuration can decrease HETP by 0.18 m.
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Chapter III. Numerical study of diffusioosmosis and 

diffusiophoresis 

In this chapter, diffusioosmosis and diffusiophoresis are studied via numerical 

simulations. Both case studies consider an aqueous mixture flowing near an interface. 

The mixture is a colloidal suspension (heterogeneous mixture, particle size larger than 

1nm) in the diffusioosmosis case study, and a solution of small solute molecules 

(homogeneous mixture, particle size smaller than 1nm) in the diffusiophoresis case study. 

Further, the interface corresponds to the surface of a (static) membrane in the 

diffusioosmosis work, whereas in the diffusiophoresis study it represents a (moving) solid 

particle. Solute – interface and colloid – interface interactions are described as an 

attraction-repulsion potential (Π𝑖𝑐), and colloid – colloid interactions (Π𝑐𝑐) consist of two 

contributions: hard-sphere repulsion and van der Waals (VDW) attraction. 

This chapter investigates, among other things, the influence of concentration difference, 

Π𝑖𝑐 and Π𝑐𝑐 on the diffusioosmosis of a colloidal suspension that flows through a 

membrane. Besides, it answers the question of whether diffusiophoretic systems depend 

on their initial states after long periods of time. The chapter also presents simulation 

results that illustrate the potential application of diffusiophoresis for particle separation. 

Finally, it evaluates the influence of solute concentration, diffusivity, concentration 

gradient and Π𝑖𝑐 on phoretic velocities. 

The remainder of the chapter is organized as follows. Section III.1 introduces the 

equations used later for the modelling of mixture flow in the presence of a solid interface. 

Further, this section reviews relevant works on diffusioosmosis and diffusiophoresis, 

whose results will be reused for a comparative analysis later in the chapter. Section III.2 

describes the case studies that are simulated, as well as the goals of these studies. The 

numerical models used for simulations are presented in Sections III.4 and III.3, 

respectively for diffusiophoresis and diffusioosmosis. In the next section, boundary 

conditions and technical aspects of the simulations, such as mesh type and solvers, will 

be detailed. Sections III.6 and III.7 present simulation results and discussion for 

diffusioosmosis and diffusiophoresis, respectively. Finally, Section Error! Reference 

source not found. summarizes the main results of this chapter. 
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III.1 Literature review 

III.1.1 Modelling and simulation 

III.1.1a Modelling 

Suspension flow modelling is a long-time challenge, and a number of approaches have 

been proposed in the literature. The most intuitive one is the Euler-Lagrangian approach. 

In its simplest form, the Navier-Stokes equations are solved for the fluid phase in an 

Eulerian grid, whereas Newton’s law is used in each of the particles to predict their 

motion. Position, velocity and volume of the particles are tracked and updated at every 

time iteration. Other than the Euler-Lagrangian, another common approach to study 2-

phase flows is the Euler-Euler. In this approach, one does not keep track of individual 

particles. Instead, the properties of these particles (e.g. velocity) are considered 

continuous. Because of this assumption, it is possible to derive differential equations for 

the particle phase that are similar to the ones describing the fluid phase. Euler-Euler 

approach can be subdivided into two categories: two-fluid models and mixture models 

(Loth, 2000; Van Der Sman, 2009). The modelling in this dissertation falls in the latter 

category, so the following discussion will be restricted to mixture models. 

Such models can be obtained by averaging momentum and mass balance equations for 

the fluid and particle phases. Nott et al. (2011) used a rigorous averaging procedure to 

derive the suspension balance model (SBM), assuming that fluid and particles are 

incompressible. SBM is summarized by the following equations: 

 ∇. 〈𝑢〉 = 0 (III.1) 

 
〈𝑏〉 − ∇ (

:
(1 − 𝜙)〈𝑝〉𝑓

.
) + 2𝜂𝑓∇. 〈𝑒〉 + ∇.𝜙 〈𝜎〉

𝑠 = 0 (III.2) 

 𝜕𝑛

𝜕𝑡
= −∇. (𝑛〈𝑢〉𝑝) (III.3) 

Eq. (III.1) represents the mass balance of the mixture. Term 𝑢 stands for velocity, and the 

brackets 〈 〉 indicate that this quantity is averaged over a small volume containing particles 

and fluid. Eq. (III.2) is the momentum balance for the mixture. The superscripts f and s 

next to the brackets indicate whether the average is taken over the fluid or the solid phase, 

respectively. No superscripts indicates that the average is taken over both phases (fluid + 

solid). In eq. (III.2), 𝜙 is the volume fraction of particles at a given position, and it can be 
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defined as the average of a particle phase indicator function over a small volume around 

that position. Term 𝑏 refers to the body force, p is the pressure, and 𝜂𝑓 represents the 

viscosity of the fluid. Finally, 𝜎 is the total stress tensor and 𝑒 is the strain rate tensor. Eq. 

(III.3) is an averaged conservation equation for the solid phase, and n stands for the 

number of particles per volume of solution. Both superscripts s and p indicate average 

over the solid phase; the difference between them is that the former indicates an integral 

average, whereas the latter corresponds to a discrete average, i.e. a weighted sum of the 

property taken over the nearby particles. 

To use the SBM equations as a model to simulate suspension flow, one needs to formulate 

closure relations for 〈𝑢〉𝑝 and for the particle contribution to the suspension stress 𝜙 〈𝜎〉𝑠. 

The particle average velocity 〈𝑢〉𝑝 can be estimated using relations for the drag force 

acting on a colloidal particle. This force (𝐹𝑑𝑟𝑎𝑔) is proportional to the relative velocity 

between the particle and the mixture: 𝐹𝑑𝑟𝑎𝑔 = −(〈𝑢〉
𝑝 − 〈𝑢〉)/𝑚(𝜙), where 𝑚(𝜙) is the 

mobility of the colloids in solution. For interface-driven flows, if one assumes that the 

sum of forces acting on each particle is 0, then drag force is balanced by the gradient of 

the so-called particle pressure and by the external force exerted by the interface on the 

colloid particles: 𝐹1 = −
𝑉𝑝

𝜙
∇Π𝑐𝑐 − 𝑘𝐵𝑇∇Π𝑖𝑐. Therefore the particle average velocity 

writes (Bacchin et al., 2019): 

 
〈𝑢〉𝑝 = 〈𝑢〉 − 𝑚(𝜙) (

𝑉𝑝

𝜙
∇Π𝑐𝑐 + 𝑘𝐵𝑇∇Π𝑖𝑐) (III.4) 

In Eq. (III.4), 𝑉𝑝 is the volume of the colloid particles, Π𝑐𝑐 is known as the particle 

pressure, 𝑘𝐵 is Boltzmann’s constant, T is the temperature and Π𝑖𝑐 corresponds to the 

interface – particles (or interface – colloid) interaction potential. 

The closure relation for the particle stress term in Eq. (III.2) assumes that such a term can 

be decomposed in shear stress and normal stress terms (Clausen, 2013): 

 𝜙 〈𝜎〉𝑠 = 2𝜂
𝑓
𝜂
𝑝
(𝜙) 〈𝑒〉−Π𝑐𝑐,𝑚𝑐𝐼 (III.5) 

Eq. (III.5) considers that the shear stress contribution is proportional to the strain rate 

tensor of the mixture, and the normal stress term is isotropic and equal to the mechanical 

contribution to the particle pressure. The divergence of this isotropic stress can be lumped 

together with the term  ∇ ((1 − 𝜙)〈𝑝〉𝑓) in Eq. (III.2) in an overall bulk pressure p' 
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(Miller et al., 2009). Further, it is assumed that the only external body force acting on the 

mixture comes from the interface – colloid interactions. Eq. (III.2) can therefore be re-

written as follows: 

 
−
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 − ∇𝑝´ + 2𝜂𝑓 (1 − 𝜂𝑝(𝜙)) ∇. 〈𝑒〉 = 0 (III.6) 

From Eq. (III.6) one can observe that the model captures the effect of the colloids in the 

suspension flow as a variation in the effective viscosity of the mixture. Substituting 〈𝑢〉𝑝 

in eq. (III.3) by its expression in eq. (III.4), and using 𝑛 = 𝜙 𝑉𝑝⁄ , yields: 

 𝜕𝜙

𝜕𝑡
= −∇. [𝜙〈𝑢〉 − 𝑚(𝜙)(𝑉𝑝∇Π𝑐𝑐 + 𝑘𝐵𝑇𝜙∇Π𝑖𝑐)] (III.7) 

Eq. (III.7) models the flux of colloids in the solution. It comprises two convective terms, 

associated with the velocity field and the interface – colloid interactions. It also contains 

an extra term proportional to the gradient of the particle pressure, which captures a 

thermodynamic (Brownian) contribution as well as a mechanical contribution to the flux 

of colloids. 

With a suitable definition of colloid diffusion coefficient D, the final set of balance 

equations is equivalent to the one used in Bacchin et al. (2019): 

 ∇. 𝑢 = 0 (III.8) 

 
𝜂𝑓∇

2𝑢 − ∇𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 = 0 (III.9) 

 
𝜕𝜙

𝜕𝑡
= −∇. (𝐽𝜙) = −∇.(

:

−𝐷∇𝜙 −
𝑘𝐵𝑇

6𝜋𝜂𝑓𝑎
𝜙∇Π𝑖𝑐 + 𝜙𝑢

.

) (III.10) 

In eqs. (III.8)–(III.10), the average brackets were dropped for simplicity. Eq. (III.8) is 

equivalent to eq. (III.1). Eq. (III.9) is derived from eq. (III.6) after the following 

considerations: (i) 𝜂𝑝(𝜙) ≈ 0 (low concentrations); (ii) using the relation ∇. 〈𝑒〉 =

∇2𝑢 2⁄ . Further, the term 𝐽𝜙 in eq. (III.10) is the volume flux of colloids in m3/(m2. s) . 

This equation can be derived from eq. (III.7): 

(i) assuming constant mobility 𝑚(𝜙) = 1 6𝜋𝜂𝑓𝑎⁄ , where a is the particle size; 
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(ii) neglecting the mechanical contribution Π𝑐𝑐,𝑚𝑐 to the particle pressure, which 

is reasonable at low concentrations and/or low shear rates; 

(iii) using the Van 't Hoff (VH) law to compute the particle pressure, as given in 

eq. (III.11); 

(iv) defining a diffusion coefficient D according to the Stokes-Einstein equation 

(III.12). 

 
                                   Π𝑐𝑐 =

𝜙𝑘𝐵𝑇

𝑉𝑝
            (van ′t Hoff) (III.11) 

 
𝐷 = 𝑚𝑘𝐵𝑇 =

𝑘𝐵𝑇

6𝜋𝜂𝑓𝑎
 (III.12) 

The sum ∇𝑝 + (𝑘𝐵𝑇 𝑉𝑝⁄ )𝜙∇Π𝑖𝑐 in eq. (III.9) is the divergence of the “thermodynamic 

pressure tensor” defined in Bacchin et al. (2019). The viscous term in the same equation 

is an irreversible contribution to the momentum balance of the mixture, due to internal 

friction. The irreversible processes responsible for particle transport are lumped together 

in eq. (III.10). 

Eqs. (III.8)–(III.10) are commonly used by other authors to study diffusiophoresis and 

diffusioosmosis when the particles in solution consist of small solute molecules (Michelin 

and Lauga, 2014; Popescu et al., 2016; Marbach et al., 2020). The difference is that D 

replaces the coefficient 𝑘𝐵𝑇 6𝜋𝜂𝑓𝑎⁄  multiplying the interface contribution to the solute 

flux in eq. (III.10). Further, the diffusion coefficient D of small molecules does not follow 

eq. (III.12). Finally, these authors work with solute concentration in number of molecules 

per volume (i.e., replacing 𝜙 by 𝑉𝑝 × 𝑛). These modifications eliminate the dependency 

of eqs. (III.8)–(III.10) on the solute particle size. The mixture velocity 𝑢 in this case 

corresponds to the velocity of the fluid, as the volume occupied by solute molecules is 

negligeable. In this chapter, the model for diffusioosmosis (Section III.3) represents a 

colloidal suspension flow, whereas the diffusiophoresis models in Section III.4 consider 

infinitely small solute particles. However, for convenience the equations for 

diffusiophoresis keep the volume fraction notation 𝜙 instead of using n. 

Other differences between suspensions and mixtures with small solute molecules may 

arise depending on the equation of state (EoS) used to model suspension particle pressure. 

The VH EoS in eq. (III.11) is a 1st-order approximation of the particle pressure Π𝑐𝑐. A 

more accurate equation for repulsive interactions was proposed by Carnahan and Starling 
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(1969), which agrees well with the 7 first virial coefficients for hard spheres (Russel et 

al., 1989). This EoS, given in eq. (III.13), does not change the form of the mass balance 

equation (III.10). However, it impacts the colloid diffusion coefficient, which now 

depends on the colloid volume fraction. This modified diffusion coefficient is given by 

eq. (III.14). 

 

                              Π𝑐𝑐 =
𝑘𝐵𝑇

𝑉𝑝
𝜙 
1 + 𝜙 + 𝜙2 −𝜙3

(1 − 𝜙)3

⏞            
𝑓𝑐𝑠(𝜙)

   (Carnahan Starling) 
(III.13) 

 
𝐷 =

𝑘𝐵𝑇

6𝜋𝜂𝑓𝑎
𝑓𝑐𝑠
′ (𝜙) (III.14) 

In eq. (III.14), 𝑓𝑐𝑠
′  is the derivative with respect to 𝜙 of the function 𝑓𝑐𝑠 given in eq. 

(III.13). 

Van der Waals (VDW) attractive interactions can also impact colloid distribution at high 

concentrations. The attractive part of the VDW interaction potential (Jönsson and 

Jönsson, 1996; Bacchin et al., 2002) can be combined with eq. (III.13), resulting in a more 

realistic particle pressure EoS with both repulsive and attractive contributions: 

 

  Π𝑐𝑐 =
𝑘𝐵𝑇

𝑉𝑝
(𝜙

1+𝜙+𝜙2−𝜙3

(1−𝜙)3

⏞        
𝑓𝑐𝑠(𝜙)

−
𝑧𝑛𝐴𝐻

36𝑘𝐵𝑇

𝜙3

(𝜙𝑐𝑝−𝜙𝑐𝑝
1 3⁄
𝜙2 3⁄ )

2

⏞              
𝑓𝑣𝑑𝑤(𝜙)

)  (Carnahan + VDW) (III.15) 

 
𝐷 =

𝑘𝐵𝑇

6𝜋𝜂𝑓𝑎
(

:
𝑓𝑐𝑠
′ (𝜙) + 𝑓𝑣𝑑𝑤

′ (𝜙)
.

) (III.16) 

The VDW contribution in eq. (III.15) assumes that, at high concentrations, the colloids 

are arranged in a regular lattice. Term 𝑧𝑛 is the number of neighbouring particles in a cell 

lattice, 𝐴𝐻 is the Hamaker constant and 𝜙𝑐𝑝 is the closed-packing concentration. 

III.1.1b Numerical simulation using FiPy and ANSYS Fluent 

There are many fluid dynamics software that can solve the partial differential equation 

(PDE) system (III.8)–(III.10). The simulations may be more or less complicated 

depending on the set of boundary conditions, the flow regime (transient vs stationary) and 

the EoS used to model Π𝑐𝑐. As it will be shown in Section III.1.2, interface-driven flows 

with static interface, such as suspension flow thorough a capillary tube, generally have 

fixed boundary conditions (e.g. colloid concentration at both ends of the tube). 
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These simpler cases can be solved with open-source PDE solvers, such as FiPy (Guyer et 

al., 2009). FiPy is a library implemented in Python, and it uses a more abstract and user-

friendly syntax than many popular PDE solvers, such as Matlab’s PDE Toolbox. For 

example, the colloid balance equation in eq. (III.10) can be written in one line with the 

help of abstract terms defined in the library: 

eq0 = TransientTerm() + ConvectionTerm(velocity-pi_ci.faceGrad) == 

DiffusionTerm(coeff=diffusioncoeff2)  

The arguments for the convection and diffusion terms are FiPy variables whose values 

are initialized or assigned elsewhere by the user. These terms are discretized according to 

the finite volume method. 

One of the main drawbacks of choosing FiPy rather than a fluid dynamics software is that 

it does not have built-in subroutines to solve systems of PDEs automatically. I.e., even 

though one can easily use it to solve eq. (III.10) for a given velocity field, solving the 

system (III.8)–(III.10) simultaneously requires the user to write a code according to an 

algorithm of his choice. For example, the Navier-Stokes equations (III.8), (III.9) can be 

solved for a given concentration profile via the SIMPLE algorithm (Caretto et al., 1973), 

which consists in a compute-and-correct procedure summarized in Figure III.1. 
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Figure III.1 – The SIMPLE procedure 
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In this procedure, the pressure profile of current iteration (𝑝 ) is replaced in the discrete 

version of eq. (III.9) and intermediate velocities 𝑢  are calculated by solving the 

momentum balance equation. These intermediate velocities 𝑢  do not necessarily satisfy 

the continuity equation (III.8); correction terms 𝑢´ and 𝑝′ are considered so that 𝑢 = 𝑢 +

𝑢´ satisfies eq. (III.8) in its discrete form. To calculate these terms, one must first replace 

𝑢 = 𝑢 + 𝑢´ and 𝑝 = 𝑝 + 𝑝′ in the discrete momentum balance equations. For each 

control volume, the velocities 𝑢𝑛 of its neighbours are approximated by 𝑢𝑛
 . By doing so, 

one obtains a system of linear equations relating the corrections 𝑢𝑃´ on each control 

volume to the pressure correction profile 𝑝′. The equation that gives 𝑢´ as a function of 

𝑝′ will be hereafter called the velocity-correction equation. 

Finally, writing ∇. (𝑢 + 𝑢´) = 0 in its discrete form, replacing 𝑢  by the intermediate 

profile already calculated, and writing 𝑢′ in terms of 𝑝′, one can calculate the pressure 

correction profile. The final equation that gives 𝑝′ as a function of the already calculated 

𝑢  will be called the pressure-correction equation. Once 𝑝′ has been calculated, it can be 

replaced into the velocity-correction equation in order to compute 𝑢′. The continuous 

equations counterpart to the discrete velocity and pressure-corrections are given in eqs. 

(III.17) and (III.18). In these equations, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 are the components of the velocity 

field, and Τ,𝐻𝑥, 𝐻𝑦, 𝐻𝑧 are scalar fields that depend on the viscosity and on local mesh 

characteristics. 

 ∇. Τ∇𝑝′ − ∇. 𝑢 = 0 (III.17) 

 
𝑢𝑥 = −Η𝑥

𝜕𝑝′

𝜕𝑥
 

𝑢𝑦 = −Η𝑦
𝜕𝑝′

𝜕𝑦
 

𝑢𝑧 = −Η𝑧
𝜕𝑝′

𝜕𝑧
 

(III.18) 

This algorithm can be implemented in Python using FiPy equation terms and variables. 

However, this library only handles collocated grids. This means that the control volumes 

for all conservation equations are the same, with the variables defined at their centres. 

Therefore, special interpolation procedures are necessary so that the velocities 

interpolated on the cell faces satisfy the continuity equation and avoid pressure 

checkerboarding (Pascau, 2011; Ansys Inc., 2021). 
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One of the issues with FiPy is that the linear solvers compatible with the library are slow 

compared to commercial software. Besides, the mesh module provided by the library is 

limited, and does not allow curved boundaries. Commercial software such as ANSYS 

(Ansys Inc., 2020) do not have these limitations. 

ANSYS provides complete geometry and meshing modules that allow the user to create 

complex domains and manage most aspects of the meshing, according to the 

particularities of the problem. Further, its fluid simulation software (Fluent) already has 

built-in algorithms (including SIMPLE) to solve the Navier-Stokes equation. But the 

main advantage of using Fluent over FiPy is the significant decrease in time required for 

simulation. Another key feature in Fluent is the dynamic mesh option, which allows the 

user to simulate a flow with moving boundaries, such as the falling of a solid sphere 

immersed in a fluid. 

III.1.2 Diffusioosmosis: physical mechanism and state of the art 

Diffusioosmosis is an interface-driven phenomenon upon which a solute concentration 

gradient generates fluid flow relative to the fixed interface. Capillary osmosis was one of 

the first instances of diffusioosmosis studied in the literature. Derjaguin et al. (1947) 

observed that solutions in a capillary tube can flow through it if a gradient in solute 

concentration is applied. The flow arises from repulsion/attraction forces exerted on the 

solute by the tube’s wall. To better understand the mechanism behind the flow, let us 

imagine a mixture of fluid and solute in a capillary tube of radius R. Interactions between 

the solute and the wall (e.g. adsorption) can create a solute concentration distribution 

normal to the wall. These interactions however are limited to a thin layer (thickness 𝛿 ≪

𝑅), and outside it one should expect solute concentration to be constant in the direction 

normal to the wall. Because the length of the thin layer (hereafter called diffusive layer) 

is much smaller than R, at the scale of this layer the wall can be considered flat. Figure 

III.2 illustrates the system under this approximation. 
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Figure III.2 – Capillary tube connected to two reservoirs; the red curve represents the 

variation of solute concentration along the y-direction 

The concentration profile in the bulk 𝜙0(𝑥) can be set by connecting the openings of the 

capillary to reservoirs with different concentrations 𝜙𝑙 and 𝜙𝑟. As mentioned before, the 

wall interacts with solute particles via attractive/repulsive forces along the y-direction. 

These forces are transmitted to the fluid, for example via viscous drag (Oster and Peskin, 

1992). The resultant force on the solvent is commonly written as the gradient of an 

interaction potential, times the solute concentration. In eq. (III.9), the term 

(𝑘𝐵𝑇 𝑉𝑝⁄ )𝜙∇Π𝑖𝑐 corresponds to such a force. It will follow the y-direction if the interface 

is the wall of the capillary tube in Figure III.2. 

Momentum balance in the diffusive layer then reveals the appearance of a pressure profile 

along the y-direction, which counters this force. The pressure profile changes with respect 

to the x-direction as well, since the solute concentration in the bulk (and therefore the 

magnitude of the solute – interface interaction forces) depends on x. In other words, the 

force applied on the solute by the walls of the capillary ends up creating a hydrostatic 

pressure gradient along the x-direction. This gradient is the driving force for the flow in 

the diffusive layer, which entrains the fluid in the bulk (Anderson, 1989). 

Diffusioosmosis is now gaining attention of researchers in the micro/nanofluidics field. 

Fluid flow through confined system has many applications, including lab-on-a-chip 

analyses and microelectronics cooling (Laser and Santiago, 2004). Electroosmosis is 

commonly used to drive the flow, and it is preferred over diffusioosmosis because it is 

capable of generating larger flowrates. Nevertheless, solvophobic channel surfaces could 

induce hydrodynamic slip at the solid-fluid interface, which in turn amplifies significantly 

the diffusioosmotic flowrates in narrow channels (Ajdari and Bocquet, 2006). In addition, 
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biological systems may employ several processes in which diffusioosmosis plays a major 

role. Bonthuis and Golestanian (2014) modelled the flow of a solution across a funnel-

shaped membrane protein channel. Including diffusioosmotic effects and calculating the 

forces exerted on the channel’s walls, they were able to predict the two conformational 

states (closed and opened) that the channel can adopt. 

Diffusioosmosis can also be seen as the mechanism driving the flow through membranes. 

Traditionally, membranes are modelled as a boundary of 0 thickness separating two 

homogeneous mixtures with different solute concentrations. The difference in 

concentration generates a difference in the so-called osmotic pressure, which drives 

solvent flow across the membrane. If instead one is interested in describing the flow at 

the membrane scale, interface-solute interactions have to be included in the momentum 

balance equations, which drive diffusioosmosis near the membrane wall. 

Anderson and Malone (1974) showed that the osmotic flow through porous membranes 

can be partially predicted with the diffusioosmosis theory. Assuming long, cylindrical 

pores, the authors derived an expression for the osmotic reflection coefficient 𝜎0 as a 

function of solute characteristics. The definition of osmotic reflection coefficient and its 

expression are given in eqs. (III.19) and (III.20): 

 
𝐽𝑣 = 𝐿𝑝 [Δ𝑝∞ − 𝜎0

𝑘𝐵𝑇

𝑉𝑝
Δ𝜙∞] (III.19) 

 
𝜎0 = 1 −

8

𝑅4
∫ 2𝑦𝑑𝑦
𝑅

0

∫
𝑑𝜉

𝜉
∫ 𝛾𝑒−Πic(𝛾)𝑑𝛾
𝜉

0

𝑅

𝑦

 (III.20) 

Eq. (III.19) is a classical expression in membrane science that defines the osmotic 

reflection coefficient for an ideal solution. In this equation, 𝐽𝑣 is the volumetric flow of 

solvent across the membrane, Δ𝑝∞ is pressure difference and Δ𝜙∞ is volume fraction 

difference between the reservoirs. This definition is valid regardless of membrane 

geometry. When 𝜎0 = 1, the flow is proportional to the difference between hydrostatic 

pressure drop and osmotic pressure drop; this case represents an ideal semipermeable 

membrane. The cases where 0 < 𝜎0 < 1 correspond to leaky membranes, and 𝜎𝑜 = 0 

indicates that the membrane interacts in the same way with solute and solvent molecules 

(i.e. a non-selective membrane). Reflection coefficients lower than 0 (𝜎0 < 0) are rare, 

but have been reported in the literature for electrolyte solutions flowing through a charged 

membrane (Sasidhar and Ruckenstein, 1982). They indicate that the tendency for osmotic 
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flow is inverted, i.e. the solvent tends to move towards the region of lower solute 

concentration (anomalous osmosis). 

Eq. (III.20) gives osmotic reflection coefficient for a membrane made of long and 

cylindrical pores. The development leading to this equation mixes concepts from 

thermodynamics and fluid mechanics. The resulting expression is a function of the pore 

radius R and the dimensionless interface – solute interaction potential Π𝑖𝑐 (see Section 

III.1.1). The integrals in this equation are taken along the radial direction, with 0 

corresponding to the centre of the pore and R corresponding to its wall. 

To obtain eq. (III.20), Anderson and Malone (1974) neglected inertial terms in the Navier 

Stokes equations, which is reasonable since the Reynolds number for a flow in a capillary 

tube tends to be much lower than 1. They also neglected the gradient of the radial velocity 

in the momentum balance of the fluid along the radial direction (long pores), as well as 

axial variations of the axial velocity in the momentum balance of the fluid along the axial 

direction. Finally, the authors assumed that the solute concentration follows a Boltzmann 

distribution along the radial direction, and between the bulk and the pore ends. This last 

assumption is valid if the activity coefficient of the solute and the molar volume of the 

mixture remain approximately constant. 

Assuming that the solute particles are perfect spheres of radius a, and that their 

interactions with the channel walls are restricted to steric exclusion, it can be shown 

(Anderson and Malone, 1974) that the expression in eq. (III.20) results in: 

 
𝜎0 = (1 − (1 −

𝑎

𝑅
)
2

)
2

 (III.21) 

In the limit 𝑎 → 0, the membrane is uncapable of retaining the solute, and the reflection 

coefficient equals 0. But as 𝑎 → 𝑅, the solute particles cannot enter the pores, and the 

membrane is now perfectly semipermeable. Further, when considering an adsorptive 

potential outside of the exclusion zone, their model predicts negative reflection 

coefficients (anomalous osmosis) for small solute particles. 

Following the steps of Anderson and Malone (1974), Marbach et al. (2017) also tried a 

mechanical approach to model osmotic flow. They modelled the system in a 1D geometry 

where the membrane is depicted by a potential acting on the solute, along the same 

direction as the flow. One of the key results in this work is the generalization of eq. (III.19) 
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for non-ideal mixtures at high solute concentrations. In this regime, the diffusive term in 

the solute transport equation is modified, and eqs. (III.19) and (III.20) are re-derived using 

perturbation theory: 

 
𝐽𝑣 = 𝐿𝑝 (

:
Δ𝑃∞ − 𝜎0ΔΠ∞

o

.
) (III.22) 

 

𝜎0 = 1 −

∫   
1

𝜆(𝜙0)
𝑑𝑥

𝐿
2

−
𝐿
2

∫   
𝜙𝑙

𝜙0 𝜆(𝜙0)
𝑑𝑥

𝐿
2

−
𝐿
2

 (III.23) 

Πo in eq. (III.22) is an osmotic pressure defined with respect to the Helmholtz free energy 

density f: 

 
Π0(𝑇, 𝜙) = 𝜙

𝜕𝑓

𝜕𝜙
− 𝑓(𝑇, 𝜙) + 𝑓(𝑇, 0) (III.24) 

In eq. (III.23), 𝜙0 is the solute concentration profile that would arise if solute 

concentration at the right-end of the pore was equal to the solute concentration at the left-

end of the pore (i.e., the 0th-order approximation of the actual solute concentration 

profile). Term 𝜆 represents the solute mobility, which may depend on solute 

concentration. Finally, 𝜙𝑙 is the solute concentration at the left-end of the pore. The limit 

case 𝜙0 ≪ 𝜙𝑙 corresponds to a highly selective pore that prevents solute entrance. In this 

case, 𝜎0 ≈ 1 and the membrane is perfectly semipermeable. 

Despite providing interesting qualitative insights to the osmosis phenomenon, there are 

some limitations to the approach proposed by Marbach et al. (2017). The first is that 

osmosis is modelled using 1D analysis, which can result in errors. For example, 1D 

treatment of osmosis across a pore wrongly predicts that the solvent velocity inside the 

pore is 0 everywhere when osmotic pressure drop is equal to the hydrostatic pressure drop 

(Anderson and Malone, 1974). Further, 1D models may violate the 2nd law of 

thermodynamics by predicting a spontaneous flow through a pore with similar bulk 

concentrations in both ends, when the pore ends have different diameters (Anderson and 

Malone, 1974). The second limitation of the approach proposed by Marbach et al. (2017) 

is that it treats osmosis and diffusioosmosis as separate phenomena. In other words, in 

their approach the osmotic flow does not stem directly from diffusioosmotic transport. 
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Bacchin et al. (2019) attempted to overcome the former limitations by using a 2D 

approach where the membrane is modelled as an array of cylinders, according to Figure 

III.3. In this figure, the blue arrows represent the net flow across the membrane, and the 

small circles are the solute/colloid particles. 

 

 

Figure III.3 – Membrane geometry consisting of an array of cylindrical obstacles and 

used by Bacchin et al. (2019) 

The transport equations used for numerical calculations in their work are the ones shown 

in eqs. (III.8)–(III.10), and the solute-interface interaction potential Π𝑖𝑐 is given by: 

 

Π𝑖𝑐 = 𝑘𝑖𝑐 ×

[
 
 
 

(1 + 𝑎𝑡𝑡)𝑒
−
𝑑
𝑙𝑖𝑐

⏞        
𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛

− 𝑎𝑡𝑡𝑒
−
𝑑
2𝑙𝑖𝑐

⏞    
𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

]
 
 
 

 (III.25) 

Eq. (III.25) models Π𝑖𝑐 as the sum of a repulsive and an attractive term. In this equation, 

𝑘𝑖𝑐 represents the magnitude of interface-solute interactions, 𝑎𝑡𝑡 is an attraction 

parameter, d is the distance between the cylindrical obstacle and a point in the domain, 

and 𝑙𝑖𝑐 is the interaction range. This potential is illustrated in Figure III.4 for 𝑘𝑖𝑐 = 1. The 

repulsion term in the Π𝑖𝑐 is similar to the negative exponential function used in DLVO 

theory to model repulsion between electric double layers (Bhattacharjee et al., 1998). 

Because an exponential decay is a stiff function, this repulsion term may also model steric 

exclusion if 𝑙𝑖𝑐 is of the same order of magnitude as the solute particles size. Further, the 

attraction term may account for solute adsorption near the solid walls (Bacchin et al., 

2019). 
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Figure III.4 – Interface-solute interaction for different attraction parameters and 𝑘𝑖𝑐 =
1, as a function of the distance from the interface 

The main result in the work by Bacchin et al. (2019) is a unified mechanical description 

for regular and anomalous osmosis. Indeed, when no attraction forces are considered 

(𝑎𝑡𝑡 = 0 in eq. (III.25)), numerical results show the tendency for mixture flow towards 

higher solute concentrations. However, large attraction parameters can invert this 

tendency, similar to the predictions made by Anderson and Malone (1974) when 

accounting for solute adsorption in a pore geometry. Both these cases are depicted in 

Figure III.5, reproduced from Bacchin et al. (2019). 

In this figure, the top plot shows how the flux across the membrane changes as pressure 

drop or 𝑎𝑡𝑡 are varied. The blue dashed line represents the reference case, where solute 

concentration is zero (pure water). For the other two curves, positive fluxes correspond 

to flow towards lower solute concentrations. In the absence of hydrostatic pressure drop, 

regular osmosis is observed when 𝑎𝑡𝑡 = 0 (pRO), and anomalous osmosis takes place 

when 𝑎𝑡𝑡 = 0.2 (pAO). The colour maps below this plot depict the dimensionless x-

velocity and solute concentration profiles for these two points. In these colour maps, the 

white circles correspond to the cylindrical obstacles depicted in Figure III.3, and the 

domain coordinates are given in dimensionless units. The characteristic length used for 

normalization is the space 𝛿 between two cylindrical obstacles (2 μm), and dimensionless 

pressures are obtained using the normalizing term 𝑘𝐵𝑇 𝑉𝑝⁄  (982 Pa). Finally, velocities 

are normalized with respect to the ratio 𝑘𝐵𝑇 6𝜋𝜂𝑓𝑎𝛿⁄  (10.9 μm s⁄ ). 
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Figure III.5 – (top) Flux across a membrane as a function of the pressure drop and the 

attraction parameter in eq. (III.25); (bottom) solute concentration and x-velocity profiles 

corresponding to regular (pRO) and anomalous (pAO) osmosis. Extracted with 

permission from Bacchin et al. (2019). 

III.1.3 Diffusiophoresis: physical mechanism and state of the art 

Like diffusioosmosis, diffusiophoresis is another interface-driven phenomenon upon 

which a solute concentration gradient drives a flux. The key difference is that the term 

diffusioosmosis describes a system with a fixed interface around which the fluid flows, 

whereas diffusiophoresis refers to the movement of the interface itself, driven by solute-

interface forces. 

Diffusiophoresis was first described by Derjaguin and co-authors in 1947. They studied 

the displacement of wax beads in a water/methanol/glucose solution contained in a 

cylinder connected to two reservoirs of different glucose concentration, 0 at the top and 

positive at the bottom (Derjaguin et al., 1947, 1993; Churaev et al., 1987). The glucose 

gradient creates a linear density distribution, and one should expect all the beads to remain 
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at a level in the cylinder corresponding to 0 buoyancy. However, glucose molecules 

interact repulsively with the wax beads, and because of the glucose concentration 

gradient, the resultant force of the glucose-bead interaction points towards the top. Hence 

the beads will move up until an equilibrium is reached between this force and the 

buoyancy of the particles. 

More recently, Popescu et al. (2016) made a concise review of self-diffusiophoresis, the 

phenomenon upon which an immersed particle creates itself the gradient of solute serving 

as the driving force for its motion. One of the mechanisms through which the particle can 

create this gradient is if its surface catalyses the formation/degradation of solute. A degree 

of asymmetry (e.g. anisotropic chemical activity over the surface) is necessary for motion 

to take place. Still in the context of self-diffusiophoresis, Michelin and Lauga (2014) 

proposed a framework for finding the phoretic velocity of Janus particles, i.e. particles 

having two or more distinct physical properties. Using this framework, the authors found 

that advection (convection) affects self-phoresis in a non-monotonic way: a maximum in 

phoretic velocity was found in their study for Péclet numbers of O(1). 

Neglecting the convection and transient terms in the solute transport equation (III.26), 

Marbach et al. (2020) found semi-analytical solutions for the diffusiophoresis velocity, 

corresponding to a null resulting force acting on the surface. The simplest system 

considered in their work consists of a solid sphere immersed in a mixture with neutral 

solute. Assuming an interface-solute potential Π𝑖𝑐 that depends only on the distance to 

the particle’s surface, as well as a constant solute gradient ∇𝜙∞ far from the particle, the 

solution of eq.(III.26) in spherical coordinates is given by eq. (III.27). Finally, the 

diffusiophoretic velocity of the particle under these assumptions is given in eq. (III.28). 

 
∇. (𝐽𝜙) = ∇. (

:
−𝐷∇𝜙 − 𝐷𝜙∇Π𝑖𝑐

.
) = 0 (III.26) 

 𝜙 = 𝜙0(𝑟) + 𝑅∇𝜙
∞ cos(𝜃) 𝑓(𝑟) (III.27) 

 
𝑣𝐷𝑃 =

𝑅2

3𝜂𝑓
∇𝜙∞ ×

𝑘𝐵𝑇

𝑉𝑝
∫ 𝑓(𝑟)(−Π𝑖𝑐

′ ) (
𝑟

𝑅
−
𝑅

3𝑟
−
2𝑟2

3𝑅2
)𝑑𝑟

∞

𝑅

 (III.28) 

In eq. (III.27), 𝜃 is the polar angle, R is the radius of the particle, r is the radial distance, 

𝜙𝑚 = lim
𝑟→∞

𝜙(𝑟, 𝜃 = 𝜋 2⁄ ), and we consider that the solute concentration gradient far 
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from the sphere is parallel to the azimuthal direction 𝜃 = 0. Further, Π𝑖𝑐
′  in eq. (III.28) 

corresponds to the derivative of Π𝑖𝑐 with respect to r. 

The authors have also derived semi-analytical solutions for local surface forces acting on 

spherical particles in various systems (neutral solute and porous/impermeable particle, 

electrophoresis, and others). One of the main results presented shows that, despite the 

resultant force acting on the particle’s gravity centre being 0 at diffusiophoresis and 

electrophoresis, local stresses along the particle’s surface are zero only in electrophoresis. 

Finally, Ramírez-Hinestrosa et al. (2020) studied the diffusiophoresis of a polymer in a 

mixture via molecular dynamic simulations. The interactions between the various 

particles in the system (monomers, solute and solvent molecules) were modelled with the 

12-6 Lennard-Jones potential, except for monomer – monomer interactions. The authors 

assumed that the solvent + solute mixture behaves ideally, setting solute – solute, solute 

– solvent and solvent – solvent dispersion energy to 1. Solvent – monomer dispersion 

energy was set to 1 as well. Under these assumptions, Ramírez-Hinestrosa et al. (2020) 

assessed how polymer size and solute – monomer interactions affect polymer mobility. 

They found that the corresponding diffusiophoresis velocity depends weakly on the size 

of the polymer. 

Besides, it was shown that the effect of solute – monomer dispersion energy (𝜖𝑚𝑠) on the 

mobility of the particle is non-monotonic. Mobility, defined by the ratio between 

diffusiophoretic velocity and the solute chemical potential gradient, is negative when 

monomers have more affinity with solvent molecules than solute molecules (i.e., 𝜖𝑚𝑠 <

1). In other words, the polymer moves towards lower solute concentration regions when 

it has lower affinity to solute particles. When 𝜖𝑚𝑠 > 1, the solute molecules are adsorbed 

around the polymer, and the direction of particle displacement is inverted. The mobility 

of the polymer continues to increase with respect to 𝜖𝑚𝑠 until a certain threshold, after 

which it starts decreasing, possibly due to the immobilization of the diffusive layer 

surrounding the polymer. Figure III.6 illustrates this finding. In this figure, 𝜏 and m are 

units for time and mass, LJ stands for Lennard-Jones and SRLJ stands for short-ranged 

Lennard-Jones. 
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Figure III.6 – Variation of a polymer’s mobility (vertical axis) with respect to the solute-

monomer dispersion energy. From Ramírez-Hinestrosa et al. (2020), reproduced with 

permission from AIP. 

III.2 Description of the case studies 

III.2.1 Diffusioosmosis case study 

As reviewed in Section III.1, diffusioosmosis is the flow of fluid with respect to a fixed 

interface (for example the walls of a capillary tube), driven by solute concentration 

gradient. In this chapter, the system used to study diffusioosmosis is the same as the one 

considered by Bacchin et al. (2019) and briefly discussed in Section III.1.2: it consists of 

a mixture of colloids and water flowing through an array of cylinders that mimics a 

membrane. Colloid concentration is fixed on the inlet and outlet, replicating a channel 

that connects two large reservoirs with certain colloid volume fractions (𝜙𝑙 and 𝜙𝑟). It is 

assumed that the cylinders are impermeable to both colloids and solvent, and no-slip 

condition is imposed for the mixture at the cylinder’s wall (Figure III.7). 
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Figure III.7 – Sketch of the case study (left) and geometry/domain (right) used in 

diffusioosmosis simulations 

The array of obstacles is simulated using a single cylinder, together with symmetry 

conditions on the top and bottom boundaries of the domain. The coordinate system origin 

is set at the centre of the cylinder. The blue rectangle in Figure III.7 corresponds to the 

simulation domain, and its size can be arbitrarily chosen as long as 𝐿 ≫ 𝑅. 

The study of diffusioosmosis focuses on the advection-osmosis equilibrium, when the 

pressure difference prevents flow between the left and the right reservoirs. The first goal 

of this work is to determine whether diffusioosmosis predicts an increase in equilibrium 

pressure drop when the difference in colloid concentration Δ𝜙 accross the membrane is 

increased. Further, the influence of interface – colloid and colloid – colloid interactions 

(see Π𝑖𝑐 and Π𝑐𝑐 in Section III.1.1) on the suspension flow is investigated. Among other 

things, the study intends to simulate moderate colloid adsorption near the membrane 

through modulation of interface – colloid interactions, and to assess the drawback from 

using simplistic models in the description of colloid – colloid interactions. 

The range of parameters used in diffusioosmosis simulations is given in Table III.1: 

Table III.1 – Range of dimensions and parameters used in diffusioosmosis simulations 

𝜙𝑙 [0.01, 0.1] 𝐿(μm) 4 𝑘𝑖𝑐 100 

𝜙𝑟 0 𝐻(μm) 2 𝑙𝑖𝑐(μm) 0.1 

𝑘𝐵𝑇

6𝜋𝜂𝑓𝑎
(μm2 s⁄ ) 21.8 𝑅(μm) 0.2 𝑎𝑡𝑡 [0, 0.2] 

𝜂𝑓(Pa. s) 10−3 𝑘𝐵𝑇 𝑉𝑝⁄ (Pa) 999   

 

In Table III.1, 𝜂𝑓 is the viscosity of the fluid (water viscosity), and 𝑘𝐵𝑇 6𝜋𝜂𝑓𝑎⁄  

corresponds to the diffusion coefficient of colloid particles obtained via the Stokes-
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Einstein equation (III.12). The parameter 𝑘𝐵𝑇 𝑉𝑝⁄  (Boltzmann constant multiplied by 

temperature and divided by the volume of a solute particle) appears in the momentum 

balance equation, see eq. (III.9). The value for this parameter is retrieved assuming a 

temperature of 303 K and a spherical solute particle of radius 𝑎 = 0.01 μm. Finally, 𝑘𝑖𝑐, 

𝑙𝑖𝑐 and 𝑎𝑡𝑡 are the parameters of the solute – interface interaction potential in eq. (III.25), 

which can model both repulsion and attraction behaviours. This interaction potential will 

be adopted throughout the simulations in both diffusiophoresis and diffusioosmosis case 

studies, unless stated otherwise. The range of 𝑎𝑡𝑡 values, as well as the values of 

parameters 𝑘𝑖𝑐 and 𝑙𝑖𝑐, correspond to those used in the diffusioosmosis study by Bacchin 

et al. (2019). 

III.2.2 Diffusiophoresis case study 

Differently from diffusioosmosis, diffusiophoresis refers to the motion of a solid interface 

in a solution, driven again by solute concentration gradient. The system used to study 

diffusiophoresis is depicted in Figure III.8. It consists of a spherical particle (black sphere) 

immersed in a mixture of solute (red circles) and water. Solute concentration gradient is 

kept constant very far from the sphere. The particle is assumed to be impermeable to 

solute and solvent alike, and a no-slip condition is imposed for the fluid at the particle’s 

surface. 
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2R 
z 
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𝜙𝑙  𝜙𝑟  

𝐹𝑐𝑖  𝐹𝑑𝑟𝑎𝑔  

 

Figure III.8 – Sketch of the case study (left) and geometry/domain (right) used in 

diffusiophoresis simulations 

This setup is axisymmetric with respect to the z-axis passing through the centre of the 

sphere and parallel to the solute gradient. Therefore, a rectangular simulation domain on 

the y-z plane translates into to a cylindrical 3D domain. The origin of the coordinate 

system is set at the centre of the cylinder, and as an initial condition, we place the centre 

of the sphere at the origin. The sphere may or may not move away from the centre of the 

cylinder, depending on the model used for simulation. The cylinder in this figure 
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corresponds to the simulation domain, and its size can be arbitrarily chosen as long as 

𝐻, 𝐿 ≫ 𝑅. A solute gradient ∇𝜙∞ = (𝜙𝑟 − 𝜙𝑙) 𝐿⁄  is imposed by fixing solute volume 

fraction at 𝑧 = −𝐿 2⁄  (𝜙 = 𝜙𝑙) and at 𝑧 = 𝐿 2⁄  (𝜙 = 𝜙𝑟). Values of parameters used 

for simulations are given in Table III.2. 

Table III.2 – Range of dimensions and parameters used in diffusiophoresis simulations 

∇𝜙∞(m−1) [-625, -200] 𝐿(μm) 16 𝑘𝑖𝑐 [10, 100] 

𝜙𝑚 [0, 0.05] 𝐻(μm) 16 𝑙𝑖𝑐(μm) [0.01, 0.1] 

𝐷(μm2 s⁄ ) [21.8, ∞) 𝑅(μm) 0.2 𝑎𝑡𝑡 [0, 0.2] 

𝜂𝑓(Pa. s) 10−3 𝑘𝐵𝑇 𝑉𝑝⁄ (𝑃𝑎) 984   

 

The particle is subjected to the force applied by the solute on its interface (𝐹𝑐𝑖), and to the 

viscous drag force 𝐹𝑑𝑟𝑎𝑔 opposing particle motion. The direction of these forces depends 

on the nature of solute – interface interactions. If repulsive interactions dominate, the left 

side of the domain (richer in solute) “pushes harder” than the right side, so 𝐹𝑐𝑖 is positive 

and the drag force is negative, as depicted in Figure III.8. Alternatively, if attractive 

interactions dominate, the left part of the mixture “pulls harder” than the right part, and 

the forces will be oriented oppositely. 

In Table III.2, D is the diffusion coefficient of the solute particles, and 𝜙𝑚 is the mean 

value of the far-field profile, given by 𝜙𝑚 = (𝜙𝑙 + 𝜙𝑟) 2⁄ . Here, it is important to recall 

that the diffusiophoresis case study considers infinitely small solute molecules. That is 

the reason why D can take any value in the range shown in Table III.2, but only one value 

(given by eq. (III.12)) in Table III.1 corresponding to diffusioosmosis. Still, 

concentrations are given in volume fraction for the sake of simplicity. A volume fraction 

𝜙 = 0.01 actually corresponds to a solute concentration of 0.0040 mol m3⁄ . 

The case study depicted in Figure III.8 will be used to meet some of the objectives listed 

in Section I.5 (and recalled in this paragraph). Diffusiophoretic velocities 𝑣𝐷𝑃 will be 

calculated for several combinations of the parameters listed in Table III.2. The goal of 

these simulations is to regress an expression for 𝑣𝐷𝑃 as a function of these parameters. 

Further, dynamic simulations will show whether there exist fully-developed, out-of-

equilibrium states for which velocity and concentration profiles change with respect to 

time, but no longer depend on the initial conditions of the system. The last goal to be 

achieved through this case study is to show that there is only one possible stable 
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equilibrium state in diffusiophoresis, which corresponds to an equilibrium of forces at 

null velocity. 

III.3 Model for diffusioosmosis 

This section presents the model used to solve the suspension flow near a membrane made 

of cylindrical obstacles, as depicted in Figure III.7. In diffusiophoresis, the interface is 

free to move, and it experiences different far-field solute concentrations as it travels 

through the mixture. This inherent transient feature is not present in diffusioosmosis, 

where the interface is fixed. In this phenomenon, the flow around the interface will 

eventually reach a steady state if the boundary conditions are stationary. The set of 

equations describing steady state diffusioosmotic flow is: 

 ∇. 𝑢 = 0 (III.29) 

 
𝜂𝑓∇

2𝑢 − ∇𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 = 0 (III.30) 

 
∇. [−𝐷∇𝜙 −

𝑘𝐵𝑇

6𝜋𝜂𝑓𝑎
𝜙∇Π𝑖𝑐 +𝜙𝑢] = 0 (III.31) 

 𝑢|
interface

= 0 ;  𝐽𝜙 ∙ 𝑛|
interface

= 0 (III.32) 

Here, 𝑢 is the velocity of the mixture, 𝜂𝑓 is the viscosity of the fluid, p is pressure, Π𝑖𝑐 is 

the solute-particle interaction potential, and 𝐽𝜙 is the colloid volume flux. 

The conditions imposed to the other boundaries depend mostly on the geometry of the 

problem being studied, and therefore were omitted from the set of equations above. For 

the cylindrical channels of capillary tubes (see Figure III.2) and also for flat walls, it is 

common to assume fully-developed flow on the outlet and zero shear stress far from the 

surface ( Churaev et al., 1987; Ajdari and Bocquet, 2006). The former boundary condition 

can no longer be used if there is not a well-defined direction for the flow, for instance if 

the osmotic flow happens around a small spherical surface (McDermott et al., 2012). 

Further, the condition of no stress far from the surface becomes meaningless when the 

flow is confined in very narrow channels whose width is comparable to the range of 

surface-solute interactions (Keh and Ma, 2007; Rasmussen et al., 2020). 
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III.4 Models for diffusiophoresis 

There are several alternatives to model the diffusiophoretic system depicted in Figure 

III.8. The ones presented in the following sections are derived from the mixture model 

discussed in Section III.1.1. Simulation results from these models are shown later in 

Section III.7, along with the main conclusions drawn from them. 

III.4.1 Transient Exact Formulation (TEF) 

It was stated in Section III.1.1 that the set of equations commonly used to study 

diffusiophoresis when solute particles consist of small molecules is ( Michelin and Lauga, 

2014; Popescu et al., 2016; Marbach et al., 2020): 

 ∇. 𝑢 = 0 (III.33) 

 
𝜂𝑓∇

2𝑢 − ∇𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 = 0 (III.34) 

 
−∇. [𝐽𝜙] = −∇. [−𝐷∇𝜙 − 𝐷𝜙∇Π𝑖𝑐 +𝜙𝑢] =

𝜕𝜙

𝜕𝑡
 (III.35) 

Here, 𝑢 is the velocity of the fluid, and solute concentration (in no. of molecules per 

volume) equals 𝜙 𝑉𝑝⁄ . Note that D replaces 𝑘𝐵𝑇 6𝜋𝜂𝑓𝑎⁄  in eq. (III.10). 

The fundamental difference between diffusiophoresis and diffusioosmosis lies in the 

boundary conditions for each phenomenon. Diffusiophoresis refers to the displacement 

of a particle in a solution due to the interactions between its surface and the solute 

molecules. It is common to assume that the solute profile is well-established far from the 

particle and that the latter moves under the influence of a distant solute gradient ∇𝜙∞ 

(Anderson and Prieve, 1984, 1991; Churaev et al., 1987; Anderson, 1989; Khair, 2013; 

Marbach et al., 2020; Ramírez-Hinestrosa et al., 2020; Rasmussen et al., 2020). The 

boundary conditions (BCs) for eqs. (III.33)–(III.35) are then listed as six equalities: 

 
𝑢|
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑡)

= 𝑣0;      𝑢|∞ = 0;     
𝑑𝑣0
𝑑𝑡

=
𝐹

𝑀
 

(𝐽𝜙 − 𝑣0𝜙) ∙ 𝑛|𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑡) = 0 

𝜙|𝑡=0 = 𝜙0(𝑥) 

𝜙|𝑟→∞ = 𝜙
∞(𝑥) 

(III.36) 
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The first equality in eq. (III.36) corresponds to the no-slip condition; subscript 

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒(𝑡) refers to the moving (time-dependent) surface of the particle, and 𝑣0 refers 

to its velocity. The next BC means that the fluid is at rest far from the particle. Third 

equality is Newton’s second law applied to the particle of mass M. 

 

𝐹 = ∫
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 𝑑𝑉

Ω

+ ∫ 𝜂𝑓(∇ 𝑢 + ∇ 𝑢
𝑇) ∙ 𝑛 𝑑𝑆

𝛿Ω

− ∫ 𝑝𝑛 𝑑𝑆

𝛿Ω

 (III.37) 

The fourth BC in eq. (III.36) guarantees that solute molecules cannot enter the particle (𝑛 

is the unit vector normal to the particle’s surface). The BC 𝜙|𝑡=0 = 𝜙0(𝑥) represents the 

initial condition of the colloid concentration profile. Finally, the last BC stresses that the 

solute concentration profile is not perturbed far from the particle. The distance r at the 

left-hand side is the distance from the centre of the spherical particle. Because the gradient 

of solute far from the particle is considered constant, 𝜙∞ depends on the position 𝑥. It is 

a linear concentration profile, and not a constant. 

Eqs. (III.33)–(III.36) define the dynamics of diffusiophoresis, and one is often interested 

in the equilibrium state, for which 𝐹 = 0. According to eq. (III.37), the particle is 

subjected to the action of 3 forces: colloid – interface interaction force (1st term) and 

hydrodynamic forces due to viscous stress (2nd term) and due to pressure (3rd term). The 

volumetric integral is taken over the entire domain, whereas the surface integrals are taken 

over the particle’s surface 𝜕Ω. 

Several questions arise from the transient formulation presented above. For given initial 

conditions (position and velocity of the particle; solute concentration profile), is it 

possible for the particle to reach an equilibrium state where the sum of forces equals zero? 

If such a state can be reached, does it persist during a long time or is it a momentary state? 

These and other questions will be addressed later via numerical simulation. 

III.4.2 Transient Formulation at Constant Velocity (TFCV) 

Eqs. (III.33)–(III.37) are the exact description of the case study. However, such a model 

has a high computation cost, since the problem is transient and the domain needs to be 

remeshed at every time step. To avoid remeshing, one can assume that the velocity 𝑣0 of 

the particle is constant. The origin can then be set at the centre of the particle by defining 
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new coordinates 𝑥 = 𝑥 − 𝑣0𝑡. For this new moving frame, eqs. (III.33)–(III.36) can be 

re-written as follows: 

 ∇ . 𝑢 = 0 (III.38) 

 
𝜂𝑓∇

 2𝑢 − ∇ 𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙 ∇ Π𝑖𝑐

 = 0 (III.39) 

 
−∇ . [−𝐷∇ 𝜙 − 𝐷𝜙 ∇ Π𝑖𝑐

 + 𝜙 𝑢 ] =
𝜕𝜙 

𝜕𝑡
− ∇ 𝜙 ∙ 𝑣0 (III.40) 

 𝑢 |
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 𝑣0;  𝑢
 |
∞
= 0 

𝐽𝜙′ ∙ 𝑛|
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 0 

𝜙|𝑡=0 = 𝜙0(𝑥
 ) 

𝜙 |𝑟→∞ = 𝜙
∞(𝑥 ) + 𝛻 𝜙 |

∞
. 𝑣0 × 𝑡 

(III.41) 

In eqs (III.38)–(III.41), the starred operator ∇  indicates that the derivatives are taken with 

respect to the new coordinates, relative to the moving frame. Further, the far-field 

boundary condition assumes constant solute concentration gradient (∇ 𝜙 |
∞

) far from the 

sphere. Starred scalar/vector fields 𝑓  are defined according to eq. (III.42), and the right-

hand side of eq. (III.40) results from eq. (III.43). 

 𝑓 (𝑥 , 𝑡) ≡ 𝑓(𝑥 + 𝑣0𝑡, 𝑡) (III.42) 

 
[
𝜕𝜙

𝜕𝑡
]
 

=
𝜕𝜙 

𝜕𝑡 
− ∇ 𝜙 ∙ 𝑣0 (III.43) 

The vector field 𝑢  does not correspond to the velocity of the fluid with respect to the 

sphere. Indeed, the first boundary condition shows that 𝑢  does not go to 0 at the particle’s 

surface. Therefore, one may find it useful to define a new variable 𝑤, corresponding to 

the velocity of the fluid with respect to the sphere, as follows: 

 𝑤 = 𝑢 − 𝑣0 (III.44) 
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Inserting eq. (III.44) into eqs. (III.38)–(III.41) yields the final set of equations: 

 ∇ . 𝑤 = 0 (III.45) 

 
𝜂𝑓∇

 2𝑤 − ∇ 𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙 ∇ Π𝑖𝑐

 = 0 (III.46) 

 
−∇. [𝐽𝜙′] = −∇

 . [−𝐷∇ 𝜙 − 𝐷𝜙 ∇ Π𝑖𝑐
 + 𝜙 𝑤] =

𝜕𝜙 

𝜕𝑡
 (III.47) 

 𝑤|
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 0;     𝑤|
∞
= −𝑣0 

𝐽𝜙′ ∙ 𝑛|
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 0 

𝜙|𝑡=0 = 𝜙0(𝑥
 ) 

𝜙 |𝑟→∞ = 𝜙
∞(𝑥 ) + ∇ 𝜙 |

∞
. 𝑣0𝑡 

(III.48) 

The term 𝐽𝜙′ corresponds to the solute flux perceived by the particle. Eqs. (III.45)–(III.48) 

can be simulated using a fixed mesh. The translation of the particle is captured by the 

transient BC given in the fourth equality of eq. (III.48). However, this set of equations is 

not equivalent to the dynamic formulation described previously, because here we assume 

constant particle velocity. Despite that, this formulation can capture instantaneous 

equilibrium states. That is, for a given 𝑣0, one can run a simulation with eqs. (III.45)–

(III.48) and check if 𝐹 = 0 at some time t. It is also possible to distinguish whether a 

certain equilibrium state is instantaneous or lasting. Indeed, if a simulation using this 

formulation shows that the force acting on the surface remains very close to 0 during a 

large time interval, that means the actual dynamic system will also sustain an equilibrium 

state during the same interval. 

Comparing eqs. (III.45)–(III.47) and (III.29)–(III.31), one can notice that the formulations 

for diffusioosmosis and diffusiophoresis are very similar. However, because of the last 

BC in eq. (III.48) it is impossible for the diffusiophoretic model described in this section 

to reach a true steady state. Besides, in the diffusioosmotic case study the solute consists 

of colloid particles, so the diffusion coefficient D depends on the equation of state for 

colloid-colloid interactions, as discussed in Section III.1.1. 
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III.4.3 High Diffusion Limit (HDL) 

In the limit of very high diffusion coefficients (𝐷 → ∞), convective solute transport and 

the transient term 𝜕𝜙 𝜕𝑡⁄  in the solute transport equation can be neglected. The equations 

describing this formulation are: 

 ∇.𝑤 = 0 (III.49) 

 
𝜂𝑓∇

2𝑤 − ∇𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 = 0 (III.50) 

 ∇. [𝐽𝜙] = ∇. [−𝐷∇𝜙 − 𝐷𝜙∇Π𝑖𝑐] = 0 (III.51) 

 𝑤|
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 0;     𝑤|
∞
= −𝑣0 

𝐽𝜙 ∙ 𝑛|
𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

= 0 

𝜙|𝑟→∞ = 𝜙
∞(𝑥) 

(III.52) 

These equations are written with respect to the moving frame centred in the particle, 

which is why the velocity is set to zero on the particle’s surface. However, the starred 

fields and operators that appeared in the TFCV model are no longer necessary in HDL. 

This happens because HDL is a steady-state formulation, and hence the substitution 𝑥 =

𝑥 − 𝑣0𝑡 is meaningless. In other words, one can assume (without loss of generality) that 

the set of equations (III.49) – (III.52) is being solved for 𝑡 = 0, so that 𝑥 = 𝑥. 

The HDL formulation is commonly used in the literature (Sharifi-Mood et al., 2013; 

Popescu et al., 2016; Marbach et al., 2020), mainly because it decouples the solute 

transport equation from the momentum balance of the mixture. In other words, one can 

solve eq. (III.51) to find the solute concentration profile before computing the velocity 

and pressure fields. Besides, HDL does not require time iterations: the velocity and solute 

concentration profiles are established instantaneously for any given far-field BC 𝜙∞(𝑥). 

Considering a potential Π𝑖𝑐 that depends only on the distance to the particle’s surface, 

and also considering a constant solute gradient ∇𝜙∞ far from the particle, the solution of 

eq. (III.51) in spherical coordinates is (Marbach et al., 2020): 

 𝜙 = 𝜙0(𝑟) + 𝑅∇𝜙
∞ cos(𝜃) 𝑓(𝑟) (III.53) 

 𝜙0(𝑟) = 𝜙𝑚𝑒
−Π𝑖𝑐 (III.54) 
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for 𝑓(𝑟) such that: 

 2𝑟𝑓′ + 𝑟2𝑓′′ − 2𝑓 + 2𝑟Π𝑖𝑐
′ 𝑓 + 𝑟2𝑓′Π𝑖𝑐

′ + 𝑟2𝑓Π𝑖𝑐
′′ = 0 (III.55) 

In eq. (III.53), 𝜃 is the polar angle, R is the radius of the particle, r is the radial distance, 

𝜙𝑚 = lim
𝑟→∞

𝜙(𝑟, 𝜃 = 𝜋 2⁄ ), and we consider that the solute concentration gradient far 

from the sphere is parallel to the azimuthal direction (𝜃 = 0). The function 𝑓(𝑟) in eq. 

(III.53) is defined by eq. (III.55), where the superscript (′) indicates derivative with 

respect to r. Note that there is no general solution for this differential equation. 

Nevertheless, one can still derive an expression for the diffusiophoresis velocity of the 

particle in terms of f, setting 𝐹 = 0 in eq. (III.37) (Marbach et al., 2020): 

 
𝑣𝐷𝑃 =

𝑅2

3𝜂𝑓
∇𝜙∞

𝑘𝐵𝑇

𝑉𝑝
∫ 𝑓(𝑟)(−Π𝑖𝑐

′ ) (
𝑟

𝑅
−
𝑅

3𝑟
−
2𝑟2

3𝑅2
)𝑑𝑟

∞

𝑅

 (III.56) 

Eq. (III.53) corresponds to an unnumbered equation in the first paragraph of Section 3 in 

Marbach et al. (2020). Eqs. (III.54) and (III.55) are not given in Marbach’s paper, but it 

can be found by inserting eq. (III.53) into eq. (III.51) and later using the BCs to get rid of 

unknown constants. Finally, eq. (III.56) is eq. (3.23) in Marbach et al. (2020). 

III.5 Numerical method and solving strategy 

Previous works (Bacchin, 2017; Bacchin et al., 2019) have used the open-source FiPy 

library for Python (see Section III.1.1) to simulate a suspension flowing under the 

influence of some interface – colloid interaction potential. In these works, the inside of 

the cylindrical obstacle in Figure III.7 was meshed together with the rest of the domain, 

and a penalization method was used to account for the no-slip boundary condition on the 

particle’s surface. Here, the same approach was used to simulate diffusioosmosis, but 

ANSYS Fluent® software (Ansys Inc., 2020) was chosen to perform diffusiophoresis 

simulations. As explained in Section III.1.1, Fluent supports dynamic meshing, which is 

a required feature to implement the TEF model described in Section III.4.1. Further, 

transient models such as TEF and TFCV described in Sections III.4.1 and III.4.2 

sometimes require a significant amount of time to depart from the initial condition, 

especially when solute diffusion coefficient is small. By using Fluent, computation time 

is significantly reduced, and transient simulations can be run within less than 24h for a 

large number of time steps (up to 400) and refined mesh (up to 1.3 × 106 elements). 
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The python code written to simulate the diffusioosmosis case study is annexed in 

Appendix C. It uses various classes from the FiPy library to declare the differential 

equations (III.29)–(III.32), together with an adaptation of the SIMPLE algorithm (Figure 

III.1) to solve them. The range of colloid concentrations used as boundary conditions was 

shown in Table III.1. The velocity at the left boundary is imposed, and normal velocity 

gradients are set to 0 at the right boundary. Finally, symmetry BC is imposed at the top 

and bottom boundaries (see Figure III.7). Further, because FiPy mesh module cannot 

create interior walls, the cylindrical obstacle has to be meshed along with the rest of the 

domain in Figure III.7, and BCs cannot be imposed to the cylinder’s wall. To solve this 

issue, a penalization method is implemented according to eq. (III.57), which adds a large 

source term to the momentum balance equation in the region occupied by the cylinder 

(Guyer et al., 2012). 

 
𝜂𝑓∇

2𝑢 − ∇𝑝 −
𝑘𝐵𝑇

𝑉𝑝
𝜙∇Π𝑖𝑐 + Χ‖𝑥‖≤𝑅 × 𝐿𝑉 𝑢  = 0 (III.57) 

In this equation, LV is a large value, and Χ‖𝑥‖≤𝑅 is the indicator function, which is 1 for 

mesh elements whose centres are inside the cylinder, and 0 otherwise. This penalization 

brings the velocity of the mixture down to 0 in the cylinder and on the cylinder’s wall. 

It was mentioned in Section III.1.1 that FiPy uses the finite volume method to discretize 

the differential equations. The spatial discretization scheme used to interpolate colloid 

concentration at the cell faces, for the purpose of calculating convective fluxes, is the 

first-order power law scheme (Guyer et al., 2012). Besides, the interpolation of the 

pressure at cell faces, required to compute the discrete pressure term in the momentum 

balance equation, follows a second-order linear scheme. 

The mesh used in all diffusioosmosis simulations was a structured mesh with 2 × 104 

squared elements. This mesh was validated by comparing simulation results with the 

results from another structured mesh with 8 × 104 elements. Figure III.9 shows the 

comparison of the colloid concentration profiles using both meshes, for 𝜙𝑙 = 0.01 and a 

velocity of 10.9 μm s⁄ . The maximum deviation between both profiles is 1.5 × 10−4 , 

which is insignificant compared to the absolute range of variation in colloid concentration 

(𝜙𝑙 − 𝜙𝑟 = 0.01). 
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Figure III.9 – Comparison of colloid concentration profiles in the diffusioosmosis case 

study, using meshes with 20,000 elements (a) and 80,000 elements (b) 

Whereas the python implementation requires the user to code his model, Fluent comes 

with a series of built-in models for fluid and mixture flow. For diffusiophoresis 

simulations, the laminar model was chosen to simulate fluid flow, and a user-defined 

scalar was defined to describe solute transport (Ansys Inc., 2021). The extra term 

−(𝑘𝐵𝑇 𝑉𝑝⁄ )𝜙∇Π𝑖𝑐 appearing in the momentum balance equation for the mixture, which 

corresponds to the force exerted by the interface on the solute, is captured via a source 

term. Further, the additional term −𝐷𝜙∇Π𝑖𝑐 in the solute transport equation, which 

represents the transport due to interface – solute forces, is captured via a user-defined 

function (UDF). UDFs are also necessary to prescribe the motion of the sphere in the TEF 

model. More details on these UDFs are given in Appendix C. 

Once the model is correctly implemented in Fluent, the user can choose the solver. Unlike 

the diffusioosmosis simulations that focused on the steady-state regime, the 

diffusiophoresis case (Figure III.8) is fundamentally transient since the sphere 

experiences different solute concentrations as it moves. Due to this difference, the 

Coupled algorithm (Ansys Inc., 2021) was used to solve the diffusiophoretic transport 

equations. Differently from the SIMPLE algorithm, this method solves the momentum 

and continuity equations simultaneously. Therefore, it can converge faster, reducing 

significantly the number of iterations necessary at any given time step. 

The ranges of solute concentration 𝜙𝑚 and far-field solute concentration gradient ∇𝜙∞ 

used to define the far-field solute concentration profile were shown in Table III.2. For the 

TEF model, the velocity at the left and right boundaries is set to 0 as the fluid far from 

the sphere is considered at rest. Further, no-slip BC is imposed at the wall, whose velocity 

is updated based on the forces exerted on the sphere. The colloid concentration values at 

the left and right boundaries are calculated from 𝜙𝑚 and ∇𝜙∞. On the other hand, both 
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TFCV and HDL models place the sphere at the origin of the reference frame. Therefore, 

null velocity is imposed for the fluid on the surface of the sphere. The velocity at the left 

and right boundaries is imposed, and it is kept the same throughout the simulation. The 

initial concentrations at the left and right boundaries are calculated from 𝜙𝑚 and ∇𝜙∞, 

but they are updated for the TFCV model according to the last equality in eq. (III.48). 

Finally, in the 3 diffusiophoretic models, axis-symmetry BC is imposed on the axial axis 

passing through the centre of the sphere, symmetry BC is imposed on the shell of the 

cylindrical domain in Figure III.8, and zero solute flux is imposed on the walls of the 

sphere. 

The mesh used in all diffusiophoresis simulations is shown in Figure III.10. It consists of 

a structured zone with regular squared elements far from the sphere, an inflation layer 

around the sphere, and an unstructured mesh region between these zones. The total 

number of elements is 1 317 824, and maximum element size was set to 0.01 μm (5% of 

the radius of the sphere). The different mesh zones are clearer in the right extract of Figure 

III.10, which zooms in a small portion of the domain around the sphere. When the entire 

domain is displayed (left image), the elements are not visible and the entire mesh has a 

solid dark aspect, due to the limited pixel resolution. 

 

0.4 μm  

Figure III.10 – Mesh used for the diffusiophoresis case study 

This mesh was validated by comparing simulation results with the results from a similar 

mesh with maximum element size of 0.016 μm. Figure III.11 shows the comparison of 

the axial velocity profiles for both meshes, using the TFCV model with ∇𝜙∞ =

−6.25 × 10−4μm−1, 𝜙𝑚 = 0.005, 𝐷 = 218 μm2 s⁄  and setting the velocity at the inlet 

and outlet to zero. Note that the deviation between these profiles is negligible compared 

to the absolute range of variation in velocity (≈ 47.3 μm/s). A second type of validation 

was performed by slightly displacing the sphere from the centre of the domain, while 



 Chapter III. Numerical study of diffusioosmosis and diffusiophoresis 

 

97 

 

keeping the same 𝜙𝑚. It was found that this modification could change the calculated 

diffusiophoretic velocities significantly, especially when drag and solute-sphere 

interaction forces are in the order of 10−14 N or lower. However, this discrepancy 

vanishes if the inflation layer is at least 4 times thicker than the radius of the sphere. This 

condition was taken into account in the mesh shown in Figure III.10. 
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z z 
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Figure III.11 – Comparison of axial velocity profiles in the diffusiophoresis case study, 

using meshes with maximum element size of 0.01  𝑚 (a) and 0.016  𝑚 (b) 

A third kind of mesh validation can be performed by comparing simulation results with 

analytical results. Marbach et al. (2020) have derived a semi-analytical expression for the 

diffusiophoretic velocity in the HDL model, given by eqs. (III.55) and (III.56). Note that 

the differential equation (III.55) does not have a general explicit solution. However, a 

careful study of these equations led to the finding of a specific interface – solute 

interaction potential Π𝑖𝑐 that results in a fully analytical expression for diffusiophoretic 

velocity. Such a convenient Π𝑖𝑐 is given by eq. (III.58), and the corresponding analytical 

solutions for eqs. (III.55) and (III.56) are given in eqs. (III.59) and (III.60): 

 
Π𝑖𝑐 =

1

2
ln [

𝑟4

𝑟4 + 𝑅4
] (III.58) 

 
𝑓(𝑟) =

𝑟

𝑅
+
𝑅3

𝑟3
 (III.59) 

 
𝑣𝐷𝑃 =

𝑅2

6𝜂𝑓
∇𝜙∞ ×

𝑘𝐵𝑇

𝑉𝑝
 (III.60) 

The potential in eq. (III.58) together with eq. (III.60) can be used to quickly assess 

numerical implementations of the HDL model presented in Section III.4.3. This has 

significant importance due to the relative popularity of the model in the literature (Sharifi-

Mood et al., 2013; Popescu et al., 2016; Marbach et al., 2020). 
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For values of R, 𝜂𝑓 and 𝑘𝐵𝑇 𝑉𝑝⁄  given in Table III.2, and for ∇𝜙∞ = −6.25 ×

10−4 μm−1, one obtains a theoretical diffusiophoresis velocity 𝑣𝐷𝑃 = −4.09 μm s⁄ . 

From numerical simulation, the value obtained is 𝑣𝐷𝑃 = −3.86μm s⁄ , corresponding to 

a relative error of -5.6%. The source of the error is not the meshing itself, but rather the 

size of the simulation domain, which is too small for a logarithmic potential. Indeed, 

doubling H and L given in Table III.2 (without changing mesh element size) results in a 

new simulated velocity of -3.97 μm s⁄ , and error is reduced to -2.9%. This variation of 

𝑣𝐷𝑃 is much smaller when an exponential potential such as the one in eq. (III.25) is used. 

The reason for this difference is that the logarithmic potential in eq. (III.58) decays in 

1 𝑟4⁄ , which makes it act over longer distances compared to a potential that decays 

exponentially. Table III.3 summarizes the changes in 𝑣𝐷𝑃 considering different domain 

sizes and interface – solute interaction potential. The results for the exponential potential 

considered ∇𝜙∞ = −6.25 × 10−4 μm−1, 𝜙𝑚 = 0.02 and 𝑙𝑖𝑐 = 0.1μm. 

Table III.3 – Comparison between 𝑣𝐷𝑃 calculated using different domain sizes 

 𝑣𝐷𝑃(μm 𝑠⁄ ) 

 𝐻 = 16 μm, 𝐿 = 16 μm 𝐻 = 32 μm, 𝐿 = 32 μm 

Π𝑖𝑐 =
1

2
ln [

𝑟4

𝑟4 + 𝑅4
] -3.86 -3.97 

Π𝑖𝑐 = 100 × 𝑒
−
𝑑
𝑙𝑖𝑐 29.1 29.5 

 

III.6 Diffusioosmosis results and discussion 

In this section, simulation results are presented for the diffusioosmotic case study 

discussed in Section III.2.1, using the model described in Section III.3. Mixture velocity 

and colloid concentration profiles corresponding to advection–osmosis equilibrium are 

displayed in rows in Figure III.12. Only two different colloid concentration values were 

imposed at the left boundary: 𝜙𝑙 = 0.01 in the first line and 𝜙𝑙 = 0.1 in the subsequent 

lines. At the right boundary, 𝜙𝑟 was kept at 0 in all simulations, as indicated in Table 

III.1. Besides, the first three rows of results in this figure were obtained assuming eq. 

(III.12) (a diffusion coefficient from van 't Hoff equation of state), whereas the results in 

the last row assumed eq. (III.16) (a diffusion coefficient from Carnahan-Starling + van 

der Waals equations of state). Finally, the simulations corresponding to the first two lines 
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in Figure III.12 considered 𝑎𝑡𝑡 = 0 in eq. (III.25), whereas in the remaining ones 𝑎𝑡𝑡 =

0.2 was used. 

Comparing the first and second lines in Figure III.12, one observes that an increase in Δ𝜙 

between the reservoirs increases the velocity of the mixture. This phenomenon is expected 

since the body force on the mixture (𝜙∇Π𝑖𝑐, see eq. (III.30)) is proportional to the colloid 

concentration. Interestingly, the appearance of the velocity and colloid concentration 

profiles does not change significantly upon an increase in colloid concentration. But a 

shift in the absolute values of velocities and concentration is observed. Finally, the 

pressure drop along the x-axis for the case 𝜙𝑙 = 0.01 (first line) is of +1.26 Pa. The 

positive value indicates that the left boundary has a higher pressure than the right one. 

This pressure difference is what equilibrates the osmotic tendency for the mixture to flow 

towards higher solute concentrations. When concentration at the left boundary is 

increased (line 2), this tendency is enhanced, and a higher pressure drop (+4.07 Pa) is 

required to attain the advection–osmosis equilibrium. 

The osmotic reflection coefficient 𝜎0 of the membrane can be calculated for both 

simulations using eq. (III.19): it equals 0.128 when 𝜙𝑙 = 0.01 and 0.0414 when 𝜙𝑙 =

0.1. This dependency of 𝜎0 on solute concentration has been reported by previous 

experiments. Its theoretical interpretation in literature is usually associated with solute-

solute interactions that affect solute mobility and/or the stress tensor of the mixture 

(Adamski and Anderson, 1983; Marbach et al., 2017). However, these interactions were 

not accounted for in the first two simulations of Figure III.12. 

The two simulations discussed above considered purely repulsive interface – colloid 

interactions, using the Π𝑖𝑐 potential in eq. (III.25) with 𝑎𝑡𝑡 = 0. When long-range 

attraction is included (𝑎𝑡𝑡 = 0.2 in Figure III.12, line 3), colloids concentrate around the 

cylinder, forming the red ring. The velocity profiles are more complex in this case, with 

the appearance of extra vortices. Furthermore, the flow is partially inverted after 

increasing the attraction parameter 𝑎𝑡𝑡 (line 3 vs line 2). Blue areas in the velocity profiles 

on the second row become red on the third row, and vice-versa. The pressure drop 

corresponding to the third line of results is -13.85 Pa. It is negative because the flow tends 

to move towards low colloid concentrations (from left to right) when 𝑎𝑡𝑡 = 0.2, so a 

higher pressure at the right boundary is necessary to attain equilibrium. 
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Figure III.12 – Colloid and velocity profiles at advection – osmosis equilibrium. Simulations are performed for different concentration differences, 

different colloid-cylinder interactions (by changing the parameter 𝑎𝑡𝑡) and for different EoS for colloids, which include a van 't Hoff (VH) or 

Carnahan repulsion term and a Van der Waals (VDW) attraction term. 

 

𝝓𝒍 = 𝟎. 𝟎𝟏 

𝝓𝒍 = 𝟎.𝟏 

𝝓𝒍 = 𝟎.𝟏 

𝝓𝒍 = 𝟎.𝟏 
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Finally, the last line of Figure III.12 displays results when using the Carnahan-Starling + 

VDW EoS (III.15). It shows that the profiles change significantly according to how the 

colloids interact with each other. When the van 't Hoff EoS is used to describe the 

colligative properties of colloids (lines 1-3), one neglects the impact of colloid – colloid 

interactions on the effective diffusion coefficient. Indeed, van 't Hoff law implies a 

constant diffusion coefficient (eq. (III.12)). When Carnahan-Starling + VDW EoS are 

used (line 4), colloid interactions are described with a more complex repulsive term. In 

this case, the effect of the colloid – colloid interactions on the diffusivity is captured by 

the derivative of the particle pressure with respect to 𝜙 (eq. (III.16)). 

In particular, the diffusivity close to the left boundary of the domain (𝜙 = 0.1) is higher 

than the diffusivity at the right boundary (𝜙 = 0). This difference generates some colloid 

accumulation in the domain. Indeed, we observe that the average colloid concentration 𝜙 

in the channel increases from 0.0576 (line 3) to 0.0638 (line 4). As a result, the colloid 

ring formed around the cylinder becomes much more pronounced. Colloid concentration 

peaks at 𝜙𝑚𝑎𝑥 ≈ 0.16 in that area, which corresponds to a 60 % increase with respect to 

the concentration at the left boundary. At higher volume fractions, that could result in the 

formation of cakes around the cylinder. 

The velocity profiles reflect this change in colloid distribution. When Carnahan + VDW 

EoS are used to model the particle interactions, the colloid distribution around the 

cylinder is nearly symmetric. In other words, colloid concentration can be approximated 

as a function of the distance to the cylinder (𝜙 ≈ 𝜙(𝑑)) in the region 𝑑 < 3.5𝑅, with R 

being the radius of the cylinder. Furthermore, eq. (III.25) shows that Π𝑖𝑐 depends only on 

the distance d. Therefore, the body force term 𝜙∇Π𝑖𝑐 in eq. (III.30) is almost radial close 

to the cylinder. This means that it can be approximated as a gradient of some function in 

the range 𝑑 <  3.5𝑅. Hence, this force can be balanced by the pressure profile, in the 

same way that pressure balances the gravitational force in a water bottle. This explains 

why the absolute velocity values decrease from the third to the fourth lines. Pressure drop 

changes as well, from -13.85 Pa with van 't Hoff EoS to -11.40 Pa using Carnahan + VDW 

EoS. 

III.7 Diffusiophoresis results and discussion 

This section discusses simulation results for the diffusiophoretic case study in Section 

III.2.2, obtained according to the models described in Section III.4. 
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III.7.1 Influence of initial conditions on long-time behaviour of the system 

The transient formulations TEF (Section III.4.1) and TFCV (Section III.4.2) correspond 

to slightly different physical systems. TEF corresponds to a particle set free in a stagnant 

suspension. Its velocity changes according to the forces exerted on its surface, as indicated 

by the third equality in eq. (III.36). And as the name suggests, transient formulation at 

constant velocity (TFCV) assumes that particle velocity remains the same. 

A question that arises when studying the motion of a particle in a mixture is whether the 

system “forgets” its initial state after a large enough time. This statement translates to 

both transient formulations as follows. Imagine two systems A and B under the same 

imposed far-field solute concentration gradient. Each of them contains a spherical particle 

of radius R, and at time 𝑡 = 0 these particles may be in different positions. The position 

of the spheres can be tracked by the far-field solute concentration 𝜙𝑚, so the initial 

positions will be named 𝜙𝑚
𝐴,0

 and 𝜙𝑚
𝐵,0

. Without loss of generality, let us say these 

particles are moving right, and the sphere in system B starts ahead of the sphere in A. 

Eventually, these particles will reach a position 𝜙𝑚
𝑓𝑖𝑛𝑎𝑙

, though they will not reach this 

position at the same time. Still, is it possible to distinguish one system from another when 

they are at position 𝜙𝑚
𝑓𝑖𝑛𝑎𝑙

? Figure III.13 illustrates the above discussion. 

 Systems have different initial states 

𝜙𝑚
𝐴,0 

𝜙𝑚
𝐵,0 

𝜙𝑚
𝑓𝑖𝑛𝑎𝑙

 

Are the final states different? 

𝚫𝒕𝑨 

𝚫𝒕𝑩 

𝜙𝑚
𝑓𝑖𝑛𝑎𝑙

 

 

Figure III.13 – 2 particles that move under the same far-field solute concentration profile, 

but start at different positions. When the particles reach the position 𝜙𝑚
𝑓𝑖𝑛𝑎𝑙

 far from their 

initial positions, will the solute concentration and velocity profiles look the same? In 

other words: does the state of a diffusiophoretic system depend on the initial conditions? 
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The formal mathematical statement for the question depicted in Figure III.13 is given as 

follows. If the profiles 𝜙𝐴(𝑥, 𝑡), 𝑢𝐴(𝑥, 𝑡) and 𝜙𝐵(𝑥, 𝑡), 𝑢𝐵(𝑥, 𝑡) are solutions of eqs. 

(III.33)–(III.36), or eqs. (III.45)–(III.48), with same boundary conditions but with 

different initial conditions, then: 

 lim
𝑡→∞

[𝜙𝐴(𝑥, 𝑡 + 𝑡′) − 𝜙𝐵(𝑥, 𝑡)] =
?
0 

lim
𝑡→∞

[𝑢𝐴(𝑥, 𝑡 + 𝑡′) − 𝑢𝐵(𝑥, 𝑡)] =
?
0 

(III.61) 

where 𝑡′ is such that: 

 𝜙𝑚
𝐴 (𝑡 + 𝑡′) = 𝜙𝑚

𝐵 (𝑡) (III.62) 

If eq. (III.61) is true, we can say that the system reaches a fully-developed state. That does 

not mean its properties will not change with respect to time, but rather that they become 

independent of the initial state. 

The complexity and non-linearity of the PDE system describing diffusiophoresis make it 

extremely difficult to find a rigorous mathematical proof of eq. (III.61). However, 

numerical simulations can shed light on the validity of this equation. At first, one can 

investigate the evolutions of two systems A and B using the TFCV formulation described 

in Section III.4.2. Velocity 𝑣0 in eq. (III.48) is set to 14.6 μm/s. Besides, a diffusion 

coefficient of 21.8 μm2 s⁄  is considered. Both systems are under a linear far-field solute 

concentration profile with ∇𝜙∞ = −6.25 × 10−4 μm−1. Further, 𝜙𝑚
𝐴,0 = 0.0065 and 

𝜙𝑚
𝐵,0 = 0.0059 (i.e., particles start at different positions). The initial concentration profile 

𝜙0(𝑥) is linear in both systems, with ∇𝜙𝐴(𝑥, 0) = ∇𝜙𝐵(𝑥, 0) = ∇𝜙∞𝑒𝑧. Figure III.14a 

shows how the forces in each system change with respect to the position 𝜙𝑚 of the 

particle. Figure III.14b and Figure III.14c show two other pairs A, B with different 

diffusion coefficients (respectively 218 and 2180 μm2 𝑠⁄ ) and particle velocities (81.5 

and 203 μm s⁄  respectively). All simulations considered 𝑘𝑖𝑐 = 100, 𝑙𝑖𝑐 = 0.1μm and 

𝑎𝑡𝑡 = 0. 
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Figure III.14 – Colloid – interface force (triangles) and drag force (circles) acting on the 

particle in different pairs of systems A and B, in transition to fully-developed state 

according to TFCV predictions 

The time arrow shows the direction of the particle movement (towards lower colloid 

concentrations). Note that in the range 𝜙𝑚 ∈ (0.0059, 0.0065), the plot in Figure III.14a 

only shows data for system A. That is because the particle in B starts at 𝜙𝑚
𝐵,0 = 0.0059 

and moves towards smaller values of 𝜙𝑚. All the systems included in Figure III.14 reach 

an equilibrium of forces (|𝐹𝑑𝑟𝑎𝑔| = |𝐹𝑖𝑐|) when 𝜙𝑚 = 0.005. Further, forces in each pair 

A,B tend to the same values as 𝜙𝑚 gets smaller (i.e., as 𝑡 → ∞). Such result suggests that 

eq. (III.61) is true, at least for the set of parameters used in these simulations. This 

conclusion is confirmed when comparing the concentration and velocity profiles for 

systems A and B in Figure III.14. For each pair, when 𝜙𝑚 = 0.005, concentration and 

velocity profiles (not shown here for brevity) are identical everywhere, within the 

numerical accuracy. 

Results for TEF modelling in Section III.4.1 show a similar behaviour. Let us consider 

two systems A and B with the same boundary conditions and initial velocity 0, but starting 

time 
time 

time 
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at different positions (𝜙𝑚
𝐴,0 ≠ 𝜙𝑚

𝐵,0
). As the particles move away from their initial 

positions, we observe that the velocities and forces on each particle tend to the same 

values. Further, colloid concentration and velocity profiles converge to the same values, 

indicating that eq. (III.61) is valid in the transient exact formulation. Figure III.15 

illustrates this behaviour for one particular pair of systems, with 𝐷 = 2180 μm2 s⁄ , 

∇𝜙∞ = −625m−1, 𝑘𝑖𝑐 = 100, 𝑙𝑖𝑐 = 0.1 μm, and 𝑎𝑡𝑡 = 0. The initial positions for A and 

B are 𝜙𝑚
𝐴,0 = 0.0065 and 𝜙𝑚

𝐵,0 = 0.0061. 

 

time time 

 

Figure III.15 – Resultant force (a) and particle velocity (b) for a pair of systems A,B in 

transition to fully-developed state according to TEF predictions; the dashed line 

corresponds to the diffusiophoretic velocity predicted by TFCV for 𝜙𝑚 = 0.005 

III.7.2 Separation of particles via diffusiophoresis 

Apart from showing the existence of fully-developed out-of-equilibrium states, TEF 

simulations also highlighted an interesting application of diffusiophoresis in particle 

separation (Velegol et al., 2016). Eq. (III.56), obtained in the high diffusion limit, 

suggests that particles immersed in the same mixture will have different 𝑣𝐷𝑃 according 

to their size and to the interface-solute interactions each of them generates. Therefore, 

particles with different size or with different surface properties may be separated via 

diffusiophoresis. Figure III.16 illustrates this phenomenon for two particles with the same 

size 𝑅 = 0.2 μm, but different interaction potentials Π𝑖𝑐 (both given by eq. (III.25); 𝑎𝑡𝑡 =

0.1 for the particle at the left and 𝑎𝑡𝑡 = 0 for the particle at the right). The particle at the 

left moves towards the region with higher solute concentration, whereas the particle at 

the right moves towards the region with lower solute concentration. 
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1  𝑚 1  𝑚 

1  𝑚 1  𝑚 

𝝓 

𝝓 

𝒕 = 𝟎 𝐬 𝒕 = 𝟎.𝟎𝟎𝟑 𝐬 

𝒕 = 𝟎.𝟎𝟎𝟓 𝐬 𝒕 = 𝟎.𝟎𝟎𝟖 𝐬 

 

Figure III.16 – Evolution of solute concentration profile and particle position, illustrating 

particle separation via diffusiophoresis 

III.7.3 Influence of solute concentration, diffusivity and concentration 

gradient on diffusiophoretic velocities 

Note that none of the systems discussed so far is permanently at equilibrium. Indeed, the 

drag forces and solute-interface forces in Figure III.14 equilibrate each other at 𝜙𝑚 =

0.005 only. Furthermore, the velocities of the diffusiophoretic particles in Figure III.15 

never reach a plateau: they increase at a low rate even by the end of the simulation. This 

happens because the equilibrium velocity (i.e., the velocity for which drag and solute-

interface forces equilibrate each other) generally depends on 𝜙𝑚. 

There are a few limit cases for which the equilibrium velocity does not depend on the far-

field solute concentration 𝜙𝑚. This is true for the high diffusion limit (see eq. (III.56)), 

for steric repulsion when interaction range is much smaller than particle radius (Khair, 

2013), and for adsorptive interactions when the range of solute – particle interactions and 

the adsorption length are much smaller than the particle radius (Anderson and Prieve, 

1984, 1991). However, other systems have been described for which equilibrium 

diffusiophoresis velocity depends on the position of the particle with respect to the far-

field solute concentration. For example, the equilibrium velocity 𝑣𝐷𝑃 of a charged particle 
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in an electrolyte solution is proportional to ∇𝜙∞ 𝜙𝑚⁄  (Anderson, 1989). This velocity 

depends not only on the imposed far-field electrolyte concentration gradient ∇𝜙∞, but 

also on the position of the particle with respect to this far-field (𝜙𝑚). We expect 𝑣𝐷𝑃 to 

change as the particle moves through the solution, since 𝜙𝑚 does not remain constant. 

Diffusiophoresis velocity also depends on the position of the particle if adsorption lengths 

are not negligible compared to the particle radius. Anderson and Prieve (1984, 1991) 

derived an expression for the diffusiophoresis velocity in this case, assuming that the 

range of solute-particle interaction (not to be confused with the adsorption length) is much 

smaller than the particle radius. Their results showed that 𝑣𝐷𝑃 is proportional to 

[1 + (1 + 𝑙1𝜙𝑚 𝐷⁄ )𝐾 𝑅⁄ ]−1∇𝜙∞, where K is the adsorption length and 𝑙1 depends on 

the interaction potential, temperature, and viscosity. 

Simulation results in Table III.4 show that the TFCV model presented in Section III.4.2 

accounts for the velocity dependency on the position featured by 𝜙𝑚. All these 

simulations were performed according to the solute – interface interaction potential in eq. 

(III.25). The first row in this table gives the equilibrium velocity for a reference set of 

parameters (𝑎𝑡𝑡 = 0, 𝑙𝑖𝑐 = 0.1 μm, 𝑘𝑖𝑐 = 100, 𝜙𝑚 = 0.005, 𝐷 = 218 μm2 𝑠⁄  and 

∇𝜙∞ = −625m−1). Simulations 9 – 29 prove that velocity is a function of 𝜙𝑚. Further, 

results for 𝑙𝑖𝑐 = 0.01 μm or 𝑘𝑖𝑐 = 10 (see eq. (III.25)) show how this dependency is 

affected by the solute – interface interaction potential. As the interaction width 𝑙𝑖𝑐 

decreases from 0.1 to 0.01 μm (simulations 23 – 29 in Table III.4), the relative change in 

velocity with respect to 𝜙𝑚 is less significant. This is in agreement with previous results 

obtained for short-range steric repulsions (Khair, 2013). Besides, velocity variation with 

respect to 𝜙𝑚 decreases when the potential magnitude 𝑘𝑖𝑐 decreases from 100 to 10 

(simulations 17 – 22). 

Another important feature, shown by simulations 4 – 7, is that as 𝐷 → ∞ the equilibrium 

velocity approaches the value of 242 μm s⁄  obtained assuming HDL (simulation 8). 

Further, simulations 1 – 3 show that velocity is a linear function of ∇𝜙∞. This result is in 

agreement with the various studies on diffusiophoresis cited in this chapter (Anderson 

and Prieve, 1984, 1991; Churaev et al., 1987; Anderson, 1989; Marbach et al., 2020; 

Ramírez-Hinestrosa et al., 2020; Rasmussen et al., 2020). Finally, simulations 9 – 16 

suggest that the velocity depends on the factor 𝐷 𝜙𝑚⁄ , as predicted by Anderson and 

Prieve (1984, 1991) in the limit of small solute – particle interaction range.  
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Table III.4 – Equilibrium velocities obtained with TFCV for different sets of parameters 

Number 𝑣𝐷𝑃(μm s⁄ ) 𝑎𝑡𝑡 𝑙𝑖𝑐(μm) 𝑘𝑖𝑐 𝜙𝑚 𝐷(μm2 s⁄ ) ∇𝜙∞(m−1) 

1 80.9 0 0.1 100 0.005 218 -625 

2 51.8 0 0.1 100 0.005 218 -400 

3 26.0 0 0.1 100 0.005 218 -200 

4 14.5 0 0.1 100 0.005 21.8 -625 

5 80.9 0 0.1 100 0.005 218 -625 

6 200 0 0.1 100 0.005 2180 -625 

7 238 0 0.1 100 0.005 21800 -625 

8† 242 0 0.1 100 0.005 ∞ -625 

9 80.9 0 0.1 100 0.005 218 -625 

10 82.3 0 0.1 100 0.05 2180 -625 

11 14.5 0 0.1 100 0.005 21.8 -625 

12 14.6 0 0.1 100 0.05 218 -625 

13 238 0 0.1 100 0.005 21800 -625 

14 237 0 0.1 100 0.0005 2180 -625 

15† 242 0 0.1 100 0.005 ∞ -625 

16‡ 231 0 0.1 100 0 218 -625 

17 80.9 0 0.1 100 0.005 218 -625 

18 29.1 0 0.1 100 0.02 218 -625 

19 14.6 0 0.1 100 0.05 218 -625 

20 46.5 0 0.1 10 0.005 218 -625 

21 27.9 0 0.1 10 0.02 218 -625 

22 16.5 0 0.1 10 0.05 218 -625 

23‡ 231 0 0.1 100 0 218 -625 

24 80.9 0 0.1 100 0.005 218 -625 

25 29.1 0 0.1 100 0.02 218 -625 

26 14.6 0 0.1 100 0.05 218 -625 

27 1.07 0 0.01 100 0.005 218 -625 

28 1.06 0 0.01 100 0.02 218 -625 

29 1.03 0 0.01 100 0.05 218 -625 

† Use of HDL model instead of TFCV model 

‡ This result is purely mathematical and has no physical significance, since 𝜙𝑚 = 0 and 

∇𝜙∞ ≠ 0 implies negative solute concentrations in the simulation domain 
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Table III.4 – Equilibrium velocities obtained with TFCV for different sets of parameters 

(cont.) 

Number 𝑣𝐷𝑃(μm s⁄ ) 𝑎𝑡𝑡 𝑙𝑖𝑐(μm) 𝑘𝑖𝑐 𝜙𝑚 𝐷(μm2 s⁄ ) ∇𝜙∞(m−1) 

30 200 0 0.1 100 0.005 2180 -625 

31 62.8 0.061 0.1 100 0.005 2180 -625 

32 -3.66 0.086 0.1 100 0.005 2180 -625 

33 -237 0.4 0.1 100 0.005 2180 -625 

34 -143 0.7 0.1 100 0.005 2180 -625 

35 -252 0.9 0.1 100 0.005 2180 -625 

36 -390 1.1 0.1 100 0.005 2180 -625 

 

With these observations, a suitable fitting function could be derived, which approximates 

the diffusiophoretic velocity in the range of values 𝜙𝑚, D and ∇𝜙∞ shown in Table III.4. 

This function is given by eq. (III.63), and the comparison between fitted and simulated 

velocity values is shown in Figure III.17. All numerical values (385298, 69708 and 

20509) in eq. (III.63) have units of μm2 s⁄ . Note that this regression was made 

considering only the simulations with 𝑘𝑖𝑐 = 100, 𝑙𝑖𝑐 = 0.1 μm and 𝑎𝑡𝑡 = 0. In general, 

these numerical values will change with respect to these parameters. 

 
𝑣𝐷𝑃 = −385298 ∇𝜙

∞ exp (−
69708

𝐷 𝜙𝑚⁄ + 20509
) (III.63) 

 

 

Figure III.17 – Comparison between diffusiophoretic velocities obtained via simulation 

(x-axis) and via the fitting equation (III.63) (y-axis) for 𝑘𝑖𝑐 = 100, 𝑙𝑖𝑐 = 0.1  𝑚 and 

𝑎𝑡𝑡 = 0 



 Chapter III. Numerical study of diffusioosmosis and diffusiophoresis 

 

110 

 

To confirm the validity of eq. (III.63), a random set of values within the ranges shown in 

Table III.2 were assigned for ∇𝜙∞ (−504m−1), 𝜙𝑚 (0.0054) and D (186 μm2 s⁄ ). The 

velocity calculated according to eq. (III.63) is 54.6 μm s⁄ , corresponding to a relative 

error of only -2.0% when compared to the velocity obtained from simulations 

(55.7 μm s⁄ ). Hence, this equation successfully concludes one of the objectives listed in 

Section III.2: to derive an expression for the diffusiophoretic velocity as a function of the 

problem parameters. Despite being limited to one specific solute – solvent interaction 

potential, it gives a great insight into how the other physical quantities affect 

diffusiophoresis. Besides, this equation is derived without assuming infinite diffusivity, 

thin interaction layer or weak interaction strength. To the best of the author’s knowledge, 

no explicit relation for diffusiophoretic velocities has been derived before without at least 

one of these assumptions. 

At this point, it is important to recall that the diffusiophoretic velocities in Table III.4 and 

eq. (III.63) correspond to null-force equilibrium states obtained using the TFCV model. 

However, it was shown in Figure III.14 that such states are instantaneous: as soon as the 

particle moves away from the 𝜙𝑚 position corresponding to equilibrium, the sum of 

forces acting on the particle becomes non-zero. This suggests that in the actual 

diffusiophoretic system, described by TEF, the only possible stable equilibrium state 

corresponds to 𝑣𝐷𝑃 = 0. That is because the equilibrium velocities generally change with 

respect to 𝜙𝑚, but stable equilibrium states imply constant velocity. The only constant 

velocity that ensures constant 𝜙𝑚 value is 𝑣𝐷𝑃 = 0. 

Such a configuration could evolve as follows: the particle placed at 𝜙𝑚 accelerates 

towards its equilibrium location. As it approaches such a location, it eventually starts to 

slow down until it stops right on the equilibrium position. Another hypothesis is that it 

would oscillate around its equilibrium location with decreasing oscillation amplitudes at 

each passage, until it eventually stops. Unfortunately, neither of these phenomena could 

be observed from the several simulations that were carried out. Even though there are 

suitable choices of 𝑎𝑡𝑡
 , 𝜙𝑚

  and other parameters for which 𝑣𝐷𝑃 = 0, the equilibrium in 

these cases is unstable: if the particle is placed slightly off the position 𝜙𝑚
 , it starts 

moving away from it. Perhaps with other types of solute-interface interaction potentials, 

stable equilibrium could be reached. 
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III.7.4 Influence of solute – interface interactions on diffusiophoretic 

velocity 

The last set of simulations in Table III.4 (30-36) shows the variation of 𝑣𝐷𝑃 with respect 

to the attraction parameter 𝑎𝑡𝑡 modulating the solute-interface interactions. For purely 

repulsive interactions, the sphere moves against solute concentration gradient. However, 

as 𝑎𝑡𝑡 increases this tendency is inverted. Note that the effect of this parameter on the 

diffusiophoretic velocity is non-monotonic: 𝑣𝐷𝑃 decreases from 𝑎𝑡𝑡 = 0 to 𝑎𝑡𝑡 = 0.4, 

increases from 𝑎𝑡𝑡 = 0.4 to 𝑎𝑡𝑡 = 0.7, and decreases again for 𝑎𝑡𝑡 > 0.7. A similar 

behaviour is mentioned in Section III.1.3, when the paper by Ramírez-Hinestrosa et al. 

(2020) is discussed. Figure III.18 compares the variations in particle mobility as a 

function of 𝑎𝑡𝑡 (present study) and as a function of the solute–monomer dispersion energy 

𝜖𝑚𝑠 (Ramírez-Hinestrosa et al., 2020). 

 
(a) (b) 

 

Figure III.18 – (a) Particle mobility vs attraction parameter, according to fluid 

simulation results in Table III.4; (b) particle mobility vs solute – monomer dispersion 

energy 𝜖𝑚𝑠, according to molecular simulations (extracted from Ramírez-Hinestrosa et 

al. (2020) with permission from AIP) 

The definition of mobility changes slightly between both works: whereas the present 

manuscript defines mobility as Γ = 𝑣𝐷𝑃 ∇𝜙∞⁄ , Ramírez-Hinestrosa et al. (2020) sets Γ =

𝑣𝐷𝑃/𝐹𝑠, where 𝐹𝑠 is an external force acting on the solute particles. However, this 

difference does not prevent a comparison between the results, as the external force 

considered in the molecular simulations mimics the effect of explicit concentration 

gradients. 
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Both plots in Figure III.18 show an initial increase in mobility as the solute-interface 

attraction becomes stronger. When repulsion dominates over attraction (small 𝑎𝑡𝑡 and 𝜖𝑚𝑠 

values), the particle moves towards lower solute concentrations, and Γ < 0. Zero mobility 

is attained for 𝑎𝑡𝑡 = 0.086 (Figure III.18a) and for 𝜖𝑚𝑠 = 1𝜖0 (Figure III.18b), where 𝜖0 

is a reference energy. The latter result is almost trivial after a closer look into the paper 

by Ramírez-Hinestrosa et al. (2020). In this paper, the authors simulate solute-solute, 

solute-solvent, solvent-solvent, solvent-monomer and solute-monomer interactions via a 

12-6 Lennard-Jones potential, setting all the binary interaction lengths to 𝜎0. Further, all 

dispersion energies are set to 1𝜖0, except possibly for solute-monomer interactions 𝜖𝑚𝑠. 

When 𝜖𝑚𝑠 = 1𝜖0, the monomers are indistinguishable from solute and solvent molecules, 

and diffusiophoresis no longer takes place. The same is not true for the macroscopic 

approach that generated Figure III.18a. Indeed, even when 𝑣𝐷𝑃, and thus mobility, 

approaches 0 (simulation 32 in Table III.4), the effect of the interface on the mixture was 

very pronounced. It changes solute distribution significantly near the sphere and drives 

diffusioosmotic flow (profiles not shown for brevity). 

When attraction dominates over repulsion, the interface tends to move towards higher 

solute concentrations, and Γ > 0. Particle mobility continues to increase with respect to 

𝑎𝑡𝑡 and 𝜖𝑚𝑠 until it reaches a maximum value at 𝑎𝑡𝑡 = 0.4 and 𝜖𝑚𝑠 ≈ 2.5𝜖0. A possible 

reason for this local maximum is given by Ramírez-Hinestrosa et al. (2020): as the 

adsorption interactions get stronger, the solute particles surrounding the sphere become 

immobilized, hindering diffusiophoresis. Reasoning in mathematical terms for the case 

study in Figure III.8, the solute distribution around the interface becomes more symmetric 

as the attraction parameter increases, decreasing the resultant force exerted by the solute 

on the sphere. 

The systems start to behave differently for large attraction parameters: whereas Ramírez-

Hinestrosa et al. (2020) predict an asymptotic decay for the mobility, this work has found 

that the mobility reaches a minimum (for 𝑎𝑡𝑡 = 0.7) and then increases indefinitely. Some 

possible explanations for this discrepancy are listed below: 

i) Ramírez-Hinestrosa et al. (2020) considers a truncated potential, whereas in 

this work the interface can interact with the solute everywhere in the domain. 

To understand how this may affect the behaviour of the curves in Figure III.18, 

let us briefly summarize the discussion from the previous paragraphs. As the 
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adsorption strength increases, the strength of solute-interface attraction 

increases, and the interface tends to move faster and faster towards higher 

solute concentrations. However, after a certain threshold this increment in the 

individual interaction forces is offset by the increasing symmetry of the solute 

concentration profile, and mobility starts decreasing. This explains the local 

maximum at 𝑎𝑡𝑡 = 0.4 and 𝜖𝑚𝑠 ≈ 2.5𝜖0. In the paper by Ramírez-Hinestrosa 

et al. (2020), the monomer-solute interaction potential is truncated at a certain 

distance 𝜎. If 𝜖𝑚𝑠 is large enough, the entire range of interaction 𝜎 may be 

immobilized, and Γ will decrease asymptotically according to Figure III.18b. 

On the other hand, Π𝑖𝑐 used in this work is not truncated, and an increase in 

𝑎𝑡𝑡 will also increase the range of interaction between the sphere and the 

solute. For 𝑎𝑡𝑡 > 0.7, this effect probably overcomes the increasing symmetry 

of the solute distribution, and the mobility starts increasing again with respect 

to 𝑎𝑡𝑡. 

ii) In the models described in Section III.4, even though solute concentration is 

given in terms of volume fraction, solute – solute interactions are neglected. 

However, the size of the solute particles in the mixture is accounted for in 

molecular simulations via the solute – solute Lennard-Jones potential, which 

limits solute accumulation around the polymer. These solute – solute 

interactions surely play an important role in Ramírez-Hinestrosa et al. (2020), 

since solute molar fraction in the bulk was set to 0.5 in their work. Other 

simplifying assumptions in the models described in this work, such as 

incompressible fluid and constant viscosity (i.e., viscosity independent of 

solute concentration) may also contribute to the discrepancies seen in Figure 

III.18. 

iii) The small size of the polymer in the molecular simulations by Ramírez-

Hinestrosa et al. (2020) makes the problem fundamentally different from the 

case study investigated here (Figure III.8). For large ratios between molecular 

mean free path and characteristic length of the system, molecular simulations 

are generally in agreement with the governing (continuum) equations for fluid 

dynamics and solute transport (Zhang and Ma, 2020). However, in the work 

by Ramírez-Hinestrosa et al. (2020) the representative physical length scale 

for the phenomenon is the size of the polymer, which is close to the mean free 

path of the solvent molecules. Indeed, Figure III.18b considers a polymer 
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made of 30 monomers; when 𝜖𝑚𝑠 = 8𝜖0, the equivalent hydrodynamic radius 

of the polymer is 𝑅𝑝 ≈ 2.4𝜎0, comparable to the mean free path 𝑙𝑓𝑟𝑒𝑒 ≈ 𝜎0 of 

solvent molecules (the length parameter in the Lennard-Jones potential). It is 

recalled that the representative physical length scale in the case study shown 

in Figure III.8 (and used to obtain the points in Figure III.18a) is 𝑅 = 0.2 m. 

This length scale is several orders of magnitude higher than the molecular 

spacing in liquid water. It is possible that this difference in the orders of 

magnitude makes the works incomparable. Still, it is interesting to notice that, 

as 𝜖𝑚𝑠 decreases, the hydraulic radius of the polymer increases (e.g., 𝑅𝑝 ≈

4.8𝜎0 when 𝜖𝑚𝑠 = 1.5𝜖0). And it is precisely in the region of low 𝜖𝑚𝑠 (and 

low 𝑎𝑡𝑡) that qualitative agreement exists between the curves in Figure III.18. 

This could be because the higher hydraulic radius at low 𝜖𝑚𝑠 makes the 

polymer diffusiophoresis phenomenon more “continuum-like”. 

III.8 Summary 

This chapter has covered various aspects of diffusioosmosis and diffusiophoresis through 

numerical simulations. First, the effect of colloid concentration difference Δ𝜙, colloid-

interface interactions and equations of state for colloid – colloid interactions were 

investigated in the context of suspension flow through a membrane. The membrane was 

modelled as an array of cylindrical obstacles in a channel connecting two reservoirs, and 

the advection-osmosis equilibrium (when there is no net flow between the reservoirs) was 

the target of this study. Membrane selectivity is modelled via the energy map Π𝑖𝑐 in eq. 

(III.25) that describes colloid-interface interactions. 

Numerical results show that higher concentration differences increase velocity in the 

channel. Further, these higher concentration differences require higher pressure drops to 

prevent the mixture from flowing between the reservoirs. This agrees qualitatively with 

classic results for membranes. However, the reflection coefficients 𝜎0 calculated from 

numerical simulations differ from those reported in the literature. More specifically, the 

simulations performed in Section III.6 show a dependency of 𝜎0 on colloid concentration 

difference Δ𝜙 between the reservoirs, despite many theoretical works on membrane 

separation claiming the opposite. Presumable reasons for this discrepancy are the 

difference in the geometry of the membranes and a number of simplifying assumptions 

in the literature that are not accounted for in the present simulations. For example, 
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(Marbach et al., 2017) modelled a membrane with a 1D geometry to derive eq. (III.23). 

Further, to derive eq. (III.20), Anderson and Malone (1974) assume a cylindrical pore 

geometry, neglect the gradient of the radial velocity in the momentum balance of the fluid 

along the radial direction, and neglect axial variations of the axial velocity in the 

momentum balance of the fluid along the axial direction. The authors also assume that 

solute concentration follows a Boltzmann distribution along the radial direction. 

This result could have an impact in membrane separation processes. For example, let us 

assume a hypothetical membrane filtration whose efficiency is lower when particle 

concentration in the retentate side higher. Engineers may attribute this behaviour to 

particle – particle interactions, which is the common explanation for reflection 

coefficients depending on concentration differences (Adamski and Anderson, 1983; 

Marbach et al., 2017). And since these forces cannot be tunned or controlled, engineering 

solutions would likely focus on additional separation steps to separate the mixture. 

However, the simulations performed in this thesis suggest that reflection coefficients 

might depend on particle concentration even in the absence of particle – particle 

interactions (when VH EoS holds). As discussed previously, this could be due to the 

geometry of the membrane. Hence, alternative solutions using different membrane 

structures may be viable and even preferred over the inclusion of additional separation 

steps. 

After Δ𝜙, the next aspect of the system to be investigated was the energy map Π𝑖𝑐. The 

inclusion of long-range attraction (by setting 𝑎𝑡𝑡 = 0.2 in eq. (III.25)) creates an 

adsorption zone around the cylinder. This result, also reported in Bacchin et al. (2019), 

suggests that long-range colloid – interface attraction could accelerate cake formation by 

increasing solute concentration near the membrane. Overall, the flow becomes more 

complex, with several vortices forming in the domain, and the pressure drop can be 

inverted if the attraction is sufficiently strong. This inversion characterizes the anomalous 

osmosis that was described earlier in Section III.1.2. 

Finally, it was found that using the van 't Hoff model in eq. (III.11) for colloid-colloid 

interactions underestimates the increase in colloid concentration around the cylinder. This 

is because colloid diffusivity in such a model does not depend on absolute colloid 

concentration, whereas in reality this diffusivity increases with respect to colloid 

concentration in the low 𝜙 range (𝜙 < 0.35 considering Carnahan + VDW EoS). Because 
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of this dependency, the boundary richer in colloid has higher colloid diffusivity, resulting 

in an average colloid concentration higher than the one predicted with the van 't Hoff 

model. This larger average concentration is the reason for the higher concentration peak 

(𝜙𝑚𝑎𝑥 ≈ 0.16) in the last row of Figure III.12, which considers Carnahan-Starling + 

VDW EoS. For larger concentration differences and/or stronger attraction interactions, 

van 't Hoff model will underestimate the potential for cake formation due to these 

concentration peaks. Hence, modelling of membrane processes prone to fouling should 

use appropriate equations of state for particle – particle interactions. That concludes the 

summary of the numerical work on diffusioosmosis. 

For the diffusiophoretic case study, a different geometry was adopted. It consists of a 

spherical obstacle placed under a gradient of solute concentration. Three different models 

were used to achieve different goals. The Transient Exact Formulation (TEF) was used 

to assess the actual dynamics of a diffusiophoretic system. From this model it was found 

that diffusiophoresis is a valid mechanism for particle separation, as depicted in Figure 

III.16. The Transient Formulation at Constant Velocity (TFCV) was used in combination 

with TEF to demonstrate that diffusiophoretic systems “forget” their initial state after a 

certain amount of time (see Figure III.14 and Figure III.15). Further, they were used 

together to retrieve unstable equilibrium states as follows. Fine tuning of 𝜙𝑚 and 𝑎𝑡𝑡 was 

performed to retrieve 𝑣𝐷𝑃 = 0 from TFCV simulations. After that, TEF simulations were 

run to show that if the particle is placed at 𝜙𝑚 + 𝜖 it moves away from equilibrium 

towards higher solute concentrations, and if it is placed at 𝜙𝑚 − 𝜖 it moves away from 

equilibrium towards lower solute concentrations. 

TFCV alone was employed to regress the mathematical expression (III.63) that relates 

the diffusiophoretic velocity to 𝜙𝑚, D and ∇𝜙∞. The equation shows that velocity is 

proportional to ∇𝜙∞, as predicted by various authors cited in this chapter. Further, it 

suggests that the dependency of 𝑣𝐷𝑃 on D and 𝜙𝑚 is captured by the joint term 𝐷 𝜙𝑚⁄ . 

The dependency of 𝑣𝐷𝑃 on this term was found before by Anderson and Prieve (1984, 

1991), but in the limit of infinitely thin solute-interface interaction layers. In fact, all the 

explicit equations for 𝑣𝐷𝑃 provided in the literature reviewed for this thesis were derived 

assuming infinite diffusivity, thin interaction layer or weak interaction strength. 

TFCV was also used to investigate the effect of long-range solute-interface attraction on 

the particle mobility. This study was performed by varying the parameter 𝑎𝑡𝑡 in eq. 
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(III.25). It was found that the mobility changes with respect to 𝑎𝑡𝑡 in a non-monotonic 

way, as illustrated by Figure III.18a. The results were compared with those from a 

benchmark work on molecular simulations applied to diffusiophoresis (Ramírez-

Hinestrosa et al., 2020). Both studies agree in the range of small attraction forces, showing 

an inversion of particle mobility after a certain attraction threshold, followed by a peak 

of maximum phoretic mobility and a subsequent decrease (Figure III.18). However, 

discrepancies arise as attraction forces are further increased. Ramírez-Hinestrosa et al. 

(2020) predict that mobility decreases asymptotically in the limit of strong attraction 

interactions, whereas the present study predicts that mobility reaches a local minimum 

and then increases indefinitely as 𝑎𝑡𝑡 → ∞. Probable reasons for this discrepancy are 

listed by the end of Section III.7.4. 

Finally, the High Diffusion Limit (HDL) was used first to validate the mesh used for 

simulations. This was done by setting Π𝑖𝑐 according to eq. (III.58). Such a suitable choice 

results in the fully analytic expression (III.60) for diffusiophoretic velocity, which can be 

compared to 𝑣𝐷𝑃 obtained via numerical simulations. Besides, HDL can be used to verify 

whether the TFCV implementation behaves properly at high D values, according to 

simulations 4-8 in Table III.4. 

The discussion presented here regarding diffusiophoresis clarifies various aspects of this 

phenomenon, benefitting its modelling and global understanding. This may be 

particularly useful in microfluidics, where particle separation via diffusiophoresis is a 

topic of great interest (Shin, 2020). 
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Chapter IV. Rebuttal of Ziegler’s MaxEP principle 

The Maximum Entropy Production (MaxEP) was proposed by Ziegler (1961, 1983a) as 

an attempt to generalize the Onsager’s reciprocal relations for far-from-equilibrium 

systems. MaxEP has found wide acceptance in the literature, with many authors 

advocating for it. However, there are some flaws and severe limitations to this principle, 

which are raised here. More specifically, this chapter aims to refute the MaxEP 

demonstration as proposed by Ziegler (1970), and to show a simple example for which 

the principle fails to predict the thermodynamic fluxes of the system. Section IV.1 gives 

the concepts and principles in thermodynamics that will assist in the understanding and 

rebuttal of Ziegler’s principle. Three different nonequilibrium thermodynamic theories 

are discussed in this section: Onsager’s reciprocal relations, Progogine’s Minimum 

Entropy Production (minEP) principle and Ziegler’s MaxEP principle. Section IV.2 

reproduces in detail the derivation of the orthogonality principle, from which the MaxEP 

principle stems. It also highlights the main flaws and limitation in this derivation. The 

next section discusses a reactive system that violates MaxEP. Section IV.4 brings other 

criticisms of MaxEP, and attempts to refute some of the counterarguments of those who 

advocate for it. Finally, Section IV.5 summarizes the main findings of this chapter. 

IV.1 Literature review 

IV.1.1 Onsager’s reciprocal relations 

Onsager’s reciprocal relations were briefly discussed in Section I.3. These relations are 

applied to linear non-equilibrium thermodynamics, and they state that, under certain 

assumptions, the matrix of phenomenological coefficients relating fluxes and forces is 

symmetric. For example, one may recall the coupling described in Section I.3 between 

heat conduction and diffusive flux in a continuous system when only one solute species 

is present in solution: 

 

𝑞 = 𝐿𝑞𝑞∇(
1

𝑇
)

⏞      
Fourier′s law

+ 𝐿𝑞𝑗
1

𝑀1𝑇
∇𝑇𝜇1

⏞        
Dufour effect

 
(IV.1) 

 

𝐽1 =
𝐿𝑗𝑗

𝑀1𝑇
∇𝑇𝜇1

⏞      
Fick′s law

+ 𝐿𝑗𝑞∇ (
1

𝑇
)

⏞    
Soret effect

 
(IV.2) 
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In eqs. (IV.1) and (IV.2), 𝑞 and 𝐽1 are respectively the heat and diffusive flux, 𝐿𝑞𝑞 is the 

linear ratio linking the heat flux to the gradient of 1/𝑇, and 𝐿𝑗𝑗  is the ratio linking the 

diffusive flux to the gradient of chemical potential (in the absence of temperature 

gradients). Further,  𝐿𝑞𝑗 and 𝐿𝑗𝑞 are the coupling coefficients linking both phenomena. In 

this simple case, Onsager’s theorem states that 𝐿𝑗𝑞 = 𝐿𝑞𝑗. For a general thermodynamic 

coupling between processes k and l: 

 𝐿𝑘𝑙 = 𝐿𝑙𝑘 (IV.3) 

Eq. (IV.3) holds for phenomena with the same parity under time-reversal. The 

generalization of this equation to phenomena with different parities was given in eq. 

(I.19c). 

In this section, Onsager’s relations are rigorously derived following an approach similar 

to the developments of de Groot and Mazur (1984). Let us consider an isolated system 

with well-defined number of molecules (N), volume (V) and energy (E). We denote Ω the 

number of microstates compatible with the macrostate (N,V,E). In other words, Ω is the 

degeneracy of the energy level E. Other properties of the system, such as pressure, may 

vary according to the microstate. 

Let us then focus on a set 𝐴 of n mechanical variables of interest, where mechanical 

variables are functions of the microstate of the system. The ergodic hypothesis states that 

an isolated system will spend equal amounts of time in each of the available microstates 

(Hill, 1986). Therefore, the probability of finding the system in a certain macrostate 𝐴∗ is 

given by: 

 
𝑝(𝐴 = 𝐴∗) =

Ω(𝐴∗)

Ω
 (IV.4) 

where Ω(𝐴∗) is the total number of microstates corresponding to the macrostate 𝐴∗. 

Analogously, one can write the expression for the probability of finding the system 

(N,V,E) at a certain state within 𝐴∗ and 𝐴∗ + 𝑑𝐴: 

 
𝑝(𝐴 ∈ [𝐴∗,   𝐴∗ + 𝑑𝐴]) = ∑

Ω(𝐴𝑖)

Ω
𝑖 ∶ 𝐴𝑖∈[𝐴∗,   𝐴∗+𝑑𝐴]

 (IV.5) 
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In eq. (IV.5), [𝐴∗, 𝐴∗ + 𝑑𝐴] corresponds to a hyperrectangle in the macrostate space, and 

the sum in the right-hand side is taken over all the states 𝐴𝑖 within this hyperrectangle. In 

what follows, it shall be assumed that the sum in the right-hand side is proportional to the 

volume of the hyperrectangle. This is equivalent to assuming that, in the limit of small 

volumes 𝑑𝐴1𝑑𝐴2…𝑑𝐴𝑛, the possible microstates are evenly distributed in the 

hyperrectangle (see Figure IV.1). Such an assumption is true if the number of molecules 

in the system is sufficiently high so that the mechanical variables are practically 

continuous, even at this small scale. Figure IV.1 is only an illustration of the assumption, 

and it depicts each macrostate as a single point in the state space. In reality, there are 

Ω(𝐴𝑖) coincident points at any feasible state 𝐴𝑖, since multiple microstates may 

correspond to the same macrostate 𝐴𝑖. 

 

 

 

 

 

Figure IV.1 – Hypothesis of homogeneous distribution of microstates over two cuboids 

originating from 𝐴∗. The density of points (accounting for the multiple coincident points 

due to degeneracy) is the same in both cases. 

Assuming the mechanical variables take continuous values, eq. (IV.5) is rewritten as: 

 𝑝(𝐴 ∈ [𝐴∗, 𝐴∗ + 𝑑𝐴]) = 𝑓(𝐴∗)𝑑𝐴1𝑑𝐴2…𝑑𝐴𝑛 (IV.6) 

where 𝑓(𝐴𝑖) is a probability density function. 

As an extra assumption, one shall write this function as Gaussian distribution, given by 

eq. (IV.7): 

 

𝑓(𝐴) = √
det (𝐾)

(2𝜋𝑘𝐵)𝑛
× exp [−

1

2𝑘𝐵
(𝐴 − 𝐴𝑒𝑞) ∙ 𝐾 ∙ (𝐴 − 𝐴𝑒𝑞)] (IV.7) 
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Here, 𝐴𝑒𝑞 corresponds to the equilibrium values for the mechanical variables under 

consideration, and the covariance matrix 𝐾 is symmetric and positive definite. The 

validity of eq. (IV.7) will be discussed later in this section. 

The macrostate fluctuations 𝛼 mentioned in Section I.3 are defined as the differences 

between the instantaneous values of the mechanical variables 𝐴 and their equilibrium (or 

mean) values: 

 𝛼 = 𝐴 − 𝐴𝑒𝑞 (IV.8) 

Replacing eq. (IV.8) into eq. (IV.7) yields: 

 

𝑓(𝛼) = √
det (𝐾)

(2𝜋𝑘𝐵)𝑛
× exp [−

1

2𝑘𝐵
𝛼 ∙ 𝐾 ∙ 𝛼] (IV.9) 

Eq. (IV.9) is the probability distribution of the fluctuations 𝛼. The fact that it is a Gaussian 

centred at 0 indicates that the mean fluctuation, as well as the most likely fluctuation, is 

0. In order to complete the demonstration of Onsager’s reciprocal relations, one needs to 

establish a relationship between 𝑓(𝛼) and 𝑆(𝛼), the entropy at the macrostate 𝛼. 

For a system (N, V, E) at equilibrium, the entropy S can be defined as a quantity 

proportional to the logarithm of the number of microstates compatible with the 

macroscopic quantities N, V and E, according to the Boltzmann entropy postulate: 

 𝑆𝑒𝑞 = 𝑘𝐵 ln(𝛺) (IV.10) 

This definition applies to the microcanonical statistical ensemble (N, V and E constant) at 

equilibrium. However, an out-of-equilibrium entropy may be defined in statistical 

mechanics in a similar way. For example, for the system at a macrostate (𝑁, 𝑉, 𝐸, 𝛼), this 

quantity may be written as: 

 𝑆(𝛼) = 𝑘𝐵 ln[Ω(𝛼)] (IV.11) 

Note that, in general, 𝑆(𝛼 = 0) < 𝑆𝑒𝑞. The inequality arises because the degeneracy Ω 

in eq. (IV.10) accounts for all microstates compatible with 𝑁, 𝑉, 𝐸, including those states 

where 𝛼 ≠ 0. However, in fluctuation theory one usually assumes that the probability of 

observing an equilibrium system at 𝛼 ≈ 0 is much higher than the probability of 

observing it at some other state 𝛼∗ far from 0. This approximation can be proven 
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rigorously for energy fluctuations in the closed isothermal (N, V, T) canonical system 

(Hill, 1986). In this case, if N is large then the energy probability distribution resembles 

a sharp gaussian around the mean value 𝐸, and the ratio between the standard deviation 

𝜎𝐸  and 𝐸 is of order 𝑁−1 2⁄  (7.76 × 10−11 if the system contains 1 mol of molecules). If 

one assumes that the fluctuations of any mechanical variable resemble a very sharp 

gaussian, then: 

 𝑆(0) ≈ 𝑆𝑒𝑞 (IV.12) 

To relate 𝑓(𝛼)  in eq. (IV.9) to the entropy 𝑆(𝛼), one can recalculate the probability of 

finding the system (N, V, E) at some macrostate 𝛼∗ using eq. (IV.11): 

𝑝(𝛼 = 𝛼∗) =
𝛺(𝛼∗)

𝛺
⇒

(𝐼𝑉.11)

 

 
⇒ 𝑝(𝛼 = 𝛼∗) =

1

𝛺
𝑒𝑆(𝛼

∗) 𝑘𝐵⁄  (IV.13) 

According to eq. (IV.13), the most likely macrostate is the one corresponding to the 

highest entropy. This equation is obtained assuming a discrete number of microstates 

Ω(𝛼). In the limit of large number of molecules, one may again assume that the 

mechanical fluctuations 𝛼 take continuous values. The continuous form of eq. (IV.13) is: 

 𝑓(𝛼) ~ 𝑒𝑆(𝛼) 𝑘𝐵⁄  (IV.14) 

Defining Δ𝑆 = 𝑆(𝛼) − 𝑆(0), eq. (IV.14) implies: 

 𝑓(𝛼) = 𝑓(0) × eΔ𝑆 𝑘𝐵⁄  (IV.15) 

Eq. (IV.15) is the relation between the probability distribution of the macrostates and the 

entropy of the system. Because the most likely macrostate is the one where fluctuations 

are 0, Δ𝑆 ≤ 0 and eq. (IV.15) shows that the only appreciable fluctuations are those for 

which |Δ𝑆| = 𝑂(𝑘𝐵). 
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Comparing eqs. (IV.9) and (IV.15) yields: 

 

𝑓(0) = √
det (𝐾)

(2𝜋𝑘𝐵)𝑛
 

(IV.16) 

 
ΔS = −

1

2
𝛼 ∙ 𝐾 ∙ 𝛼 (IV.17) 

The entropy is a quadratic function of the fluctuations with a negative sign. Hence, it is 

concave everywhere. This relation was derived assuming that the mechanical variables 

follow a Gaussian distribution, as in eq. (IV.7). Alternatively, one could assume that the 

second-order Taylor expansion of the entropy around 𝐴 = 𝐴𝑒𝑞 is a satisfactory 

approximation, and use eqs. (IV.15) and (IV.17) to derive eq. (IV.7) (Prigogine, 1962). 

The next steps in the derivation of Onsager’s law involve defining a new joint distribution 

𝑓𝑈(𝛼, 𝛼′; 𝜏). This distribution is related to the probability of observing the system in the 

range [𝛼, 𝛼 + 𝑑𝛼] at time 0, and later observing this system within the range 

[𝛼′, 𝛼′ + 𝑑𝛼′] at time 𝜏. Some relations between 𝑓𝑈 and f can be promptly derived. First, 

the probability of finding a system in the range [𝛼∗, 𝛼∗ + 𝑑𝛼] at time 0, and later 

observing this system at any possible fluctuation is: 

 𝑃{𝛼(𝑡 = 0) ∈ [𝛼∗,   𝛼∗ + 𝑑𝛼] ∧  𝛼(𝑡 = 𝜏) 𝑖𝑠 𝑓𝑟𝑒𝑒} = 𝐷𝛼∫𝑓
𝑈(𝛼∗, 𝛼′; 𝜏)𝐷𝛼′ (IV.18) 

In eq. (IV.18), the integration in the right-hand side is taken over all possible microstates 

𝛼′. The terms 𝐷𝛼 and 𝐷𝛼′ are the volume forms in the state space, given by: 

 𝐷𝛼 = 𝑑𝛼1𝑑𝛼2…𝑑𝛼𝑛  ;   𝐷𝛼′ = 𝑑𝛼1
′𝑑𝛼2

′ …𝑑𝛼𝑛
′  (IV.19) 

The probability in eq. (IV.18) (observe the system in the range [𝛼∗, 𝛼∗ + 𝑑𝛼] at time 0, 

and later observe it at any possible fluctuation) is obviously equivalent to the probability 

of observing the system in the range [𝛼∗, 𝛼∗ + 𝑑𝛼]. Therefore, the probability in eq. 

(IV.18) can be written by means of 𝑓(𝛼∗): 

𝑃{𝛼(𝑡 = 0) ∈ [𝛼∗,   𝛼∗ + 𝑑𝛼]  ∧  𝛼(𝑡 = 𝜏) 𝑖𝑠 𝑓𝑟𝑒𝑒} = 𝑃{𝛼 ∈ [𝛼∗,   𝛼∗ + 𝑑𝛼]} ⇒
(𝐼𝑉.6),(𝐼𝑉.18)

 

 ⇒ 𝑓(𝛼∗) =  ∫ 𝑓𝑈(𝛼∗, 𝛼′; 𝜏)𝐷𝛼′ (IV.20) 
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Similarly: 

 𝑓(𝛼′) = ∫ 𝑓𝑈(𝛼, 𝛼′; 𝜏)𝐷𝛼 (IV.21) 

The principle of microscopic reversibility states that, for a system at equilibrium, and for 

some Hamiltonian dynamics describing its evolution, the probability of observing a 

change from microstate A to microstate B after a time interval 𝜏 is the same as the 

probability of observing a change from the microstate B to the microstate A after time 𝜏 

in a system under time-reversed dynamics. It results that, if the mechanical variables 𝛼 

are invariant under time-reversal: 

 𝑓𝑈(𝛼, 𝛼′; 𝜏) = 𝑓𝑈(𝛼′, 𝛼; 𝜏) (IV.22) 

In classic mechanics, the time-reversal transformation consists in inverting (i.e., 

multiplying by -1) the time variable and the momenta of all the particles in the system. 

Derivation of eq. (IV.22) using this classical approach can be found in de Groot and 

Mazur (1984). 

Let us study the evolution of a system at an initial macrostate 𝛼0 with the help of the 

previous results. The exact state of the system at time t is unknown, but one can calculate 

its average macrostate �̃�(𝑡; 𝛼0) according to the following equation: 

 
�̃�(𝑡; 𝛼0) = ∫𝛼 × 𝑓

𝑐(𝛼|𝛼0; 𝑡)𝐷𝛼 (IV.23) 

In eq. (IV.23), 𝑓𝑐(𝛼|𝛼0; 𝑡) is the conditional probability density associated with the 

probability of observing the system at macrostate 𝛼 at time t, given that its initial 

macrostate was 𝛼0. To write 𝑓𝑐(𝛼|𝛼0; 𝑡) in terms of the previously enounced 

distributions, let us consider the probability of observing a system at 𝛼 ∈ [𝛼∗, 𝛼∗ + 𝑑𝛼] 

after time t, given that the system was in some state 𝛼0 ∈ [𝛼0
∗, 𝛼0

∗ + 𝑑𝛼0]: 

𝑃(𝛼 ∈ [𝛼∗, 𝛼∗ + 𝑑𝛼] | 𝛼0 ∈ [𝛼0
∗, 𝛼0

∗ + 𝑑𝛼0]; 𝑡) =
𝑃{𝛼(𝑡) ∈ [𝛼∗, 𝛼∗ + 𝑑𝛼] ∧  𝛼(0) ∈ [𝛼0

∗, 𝛼0
∗ + 𝑑𝛼0]}

𝑃 {𝛼(0) ∈ [𝛼0
∗, 𝛼0

∗ + 𝑑𝛼0]}
⇒ 

⇒ 𝑃(𝛼 ∈ [𝛼∗, 𝛼∗ + 𝑑𝛼] | 𝛼0 ∈ [𝛼0
∗, 𝛼0

∗ + 𝑑𝛼0]; 𝑡) =
𝑓𝑈(𝛼0

∗ , 𝛼∗; 𝑡)𝐷𝛼0𝐷𝛼

𝑓(𝛼0
∗)𝐷𝛼0

=
𝑓𝑈(𝛼0

∗, 𝛼∗; 𝑡)𝐷𝛼
𝑓(𝛼0

∗)
⇒ 

 
⇒ 𝑓𝑐(𝛼∗|𝛼0

∗; 𝑡) =
𝑓𝑈(𝛼0

∗, 𝛼∗; 𝑡)

𝑓(𝛼0
∗)

 (IV.24) 
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The fluxes of the mechanical variables 𝛼 are defined in eq. (I.20a) as the time derivatives 

of their average fluctuations: 

 
𝐽𝑖 =

𝜕�̃�𝑖
𝜕𝑡

 (IV.25) 

Near equilibrium, experiments show that these fluxes are usually linear functions of the 

average fluctuations: 

 𝜕�̃�(𝑡; 𝛼0)

𝜕𝑡
= −𝑀 ∙ �̃�(𝑡; 𝛼0) (IV.26) 

where 𝑀 is a matrix of coefficients. In eq. (IV.26) it is implied that the flux of a given 

variable 𝛼𝑖 may be coupled to other fluctuations 𝛼𝑗≠𝑖. Further, the linear differential 

equation with negative sign at the right-hand side indicates that fluctuations are damped 

exponentially. Indeed, the solution for eq. (IV.26) is: 

 �̃�(𝑡; 𝛼0) = 𝑒
−𝑀𝑡

∙ 𝛼0 (IV.27) 

Taking the left dyadic product by 𝑓(𝛼0)𝛼0 on both sides of eq. (IV.27) and integrating 

the equation over 𝛼0 yields: 

∫𝑓(𝛼0)𝛼0 �̃�(𝑡; 𝛼0)𝐷𝛼0 = ∫𝑓(𝛼0)𝛼0 𝑒
−𝑀𝑡

∙ 𝛼0 𝐷𝛼0 ⇒
(𝐼𝑉.23)

 

⇒ ∫𝑓(𝛼0)𝛼0  (

:
∫ 𝛼 × 𝑓𝑐(𝛼|𝛼0; 𝑡)𝐷𝛼

.
) 𝐷𝛼0 = ∫𝑓(𝛼0)𝛼0 𝑒

−𝑀𝑡
∙ 𝛼0𝐷𝛼0 ⇒ 

⇒ ∫∫𝑓(𝛼0)𝛼0 𝛼 × 𝑓
𝑐(𝛼|𝛼0; 𝑡)𝐷𝛼𝐷𝛼0 = ∫𝑓(𝛼0)𝛼0 𝑒

−𝑀𝑡
∙ 𝛼0 𝐷𝛼0  

Replacing 𝑓(𝛼0)𝑓
𝑐(𝛼|𝛼0; 𝑡) by its expression from eq. (IV.24) yields: 

∫∫𝑓𝑈(𝛼0, 𝛼; 𝑡) 𝛼0 𝛼 𝐷𝛼𝐷𝛼0 = ∫𝑓(𝛼0)𝛼0 𝑒
−𝑀𝑡

∙ 𝛼0 𝐷𝛼0 ⇒ 

⇒ ∫∫𝑓𝑈(𝛼, 𝛼0; 𝑡) 𝛼 𝛼0 𝐷𝛼0𝐷𝛼 = ∫𝑓(𝛼0)𝛼0 𝑒
−𝑀𝑡

∙ 𝛼0𝐷𝛼0 ⇒
(𝐼𝑉.22)

 

⇒ ∫∫𝑓𝑈(𝛼0, 𝛼; 𝑡) 𝛼 𝛼0 𝐷𝛼0𝐷𝛼 = ∫𝑓(𝛼0)𝛼0 𝑒
−𝑀𝑡

∙ 𝛼0 𝐷𝛼0 ⇒
(𝐼𝑉.24)

 

⇒ ∫∫𝑓(𝛼0)𝑓
𝑐(𝛼|𝛼0; 𝑡) 𝛼 𝛼0 𝐷𝛼0𝐷𝛼 = ∫𝑓(𝛼0)𝛼0 𝑒

−𝑀𝑡
∙ 𝛼0 𝐷𝛼0  
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With the help of eq. (IV.23), the left-hand side integrand can be written as a function of 

the average macrostate �̃�(𝑡; 𝛼0): 

∫𝑓(𝛼0)�̃�(𝑡; 𝛼0) 𝛼0 𝐷𝛼0 = ∫𝑓(𝛼0)𝛼0 𝑒
−𝑀𝑡

∙ 𝛼0 𝐷𝛼0 ⇒
(𝐼𝑉.27)

 

⇒ ∫𝑓(𝛼0) (

:

𝑒
−𝑀𝑡

∙ 𝛼0
.

) 𝛼0 𝐷𝛼0 = ∫𝑓(𝛼0) 𝛼0 (

:

𝑒
−𝑀𝑡

∙ 𝛼0
.

) 𝐷𝛼0 ⇒ 

 
⇒ 𝑒

−𝑀𝑡
∙ {∫𝑓(𝛼0)𝛼0 𝛼0 𝐷𝛼0} = {∫𝑓(𝛼0) 𝛼0𝛼0 𝐷𝛼0} ∙ 𝑒

−𝑀𝑇𝑡
 (IV.28) 

In eq. (IV.28), 𝑀𝑇 is the transpose of matrix 𝑀. The integral appearing in both sides of 

this equation is the expected value of the dyadic 𝛼0 𝛼0. Because the probability density 

𝑓(𝛼) is given by the Gaussian function in (IV.9), the expected value of the dyadic product 

is (Gut, 2009): 

 E(𝛼 𝛼) = 𝑘𝐵𝐾
−1 (IV.29) 

where 𝐾−1 is the inverse of matrix 𝐾. Inserting eq. (IV.29) into eq. (IV.28) yields: 

 𝑒
−𝑀𝑡

∙ 𝐾−1 = 𝐾−1 ∙ 𝑒
−𝑀𝑇𝑡

 (IV.30) 

Eq. (IV.30) is true for any time t. Therefore, the following relation must hold: 

 
𝑀𝑘 ∙ 𝐾−1 = 𝐾−1 ∙ (𝑀𝑇)

𝑘

∀ 𝑘 ∈ ℕ (IV.31) 

It can be shown via induction that eq. (IV.31) is equivalent to: 

 𝑀 ∙ 𝐾−1 = 𝐾−1 ∙ 𝑀𝑇 (IV.32) 

For later convenience, let us define 𝐿 ≡ 𝑀 ∙ 𝐾−1. Because 𝐾 is symmetric, eq. (IV.32) 

can be re-written in terms of 𝐿 as: 

 𝑀 ∙ 𝐾−1 ≡ 𝐿 = 𝐿𝑇 (IV.33) 
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Now it shall be shown that the matrix 𝐿 defined in eq. (IV.33) is the matrix of linear 

coefficients relating fluxes and forces, according to eq. (I.17): 𝐽 = 𝐿 ∙ 𝑋. First, let us re-

write here the definition of the thermodynamic forces, according to eq. (I.20b): 

 
𝑋𝑖 =

𝜕Δ𝑆

𝜕𝛼𝑖
 (IV.34) 

For convenience, the derivative of the entropy S in eq. (I.20b) has been replaced by the 

derivative of the entropy variation Δ𝑆 from equilibrium. Inserting eq. (IV.17) into eq. 

(IV.34) yields: 

 𝑋 = −𝐾 ∙ 𝛼 (IV.35) 

Now, inserting eq. (IV.33) into eq. (IV.26): 

𝜕�̃�(𝑡; 𝛼0)

𝜕𝑡
= −𝐿 ∙ 𝐾 ∙ �̃�(𝑡; 𝛼0) ⇒

(𝐼𝑉.23)

 

⇒
𝜕�̃�(𝑡; 𝛼0)

𝜕𝑡
= −𝐿 ∙ ∫𝐾 ∙ 𝛼 𝑓𝑐(𝛼|𝛼0; 𝑡)𝐷𝛼  

Replacing 𝐾 ∙ 𝛼 according to its expression in eq. (IV.35): 

𝜕�̃�(𝑡; 𝛼0)

𝜕𝑡
= 𝐿 ∙ ∫𝑋 𝑓𝑐(𝛼|𝛼0; 𝑡)𝐷𝛼 ⇒ 

 
⇒
𝜕�̃�(𝑡; 𝛼0)

𝜕𝑡
≡

(IV.25)

𝐽 = 𝐿 ∙ �̃�(𝑡; 𝛼0) (IV.36) 

In eq. (IV.36), �̃�(𝑡; 𝛼0) is the average evolution of the forces for a system that was 

initially in the macrostate 𝛼0. This equation shows that matrix 𝐿 is indeed the matrix of 

phenomenological coefficients describing the average behaviour of the system. Hence, 

eq. (IV.33) is indeed Onsager’s reciprocal relations. Instead of assuming linear flux-

fluctuation relations (IV.26) and later retrieving the linear flux-forces relations in eq. 

(IV.36) along with Onsager’s reciprocal relations, one could assume (IV.36) to be true 

and derive the reciprocal relations from it (Onsager, 1931b; Prigogine, 1962). 

The derivation of Onsager’s reciprocal relations in this section followed the developments 

shown in de Groot and Mazur (1984). It was important to reproduce it here because there 

are some similarities between this demonstration and Ziegler’s developments leading to 

the Orthogonality Principle (Ziegler, 1958), which will be discussed in Section IV.2. Two 
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important corollaries regarding Onsager’s reciprocal relations are listed next. The first 

one is the extension of Onsager’s reciprocal relations when some of the fluctuations are 

anti-symmetric under time-reversal, as shown in eqs. (I.19b) and (I.19c). The second 

corollary is the validity of Onsager’s reciprocal relations for continuous systems, where 

fluxes and forces are defined according to eqs. (I.21a) and (I.21b). De Groot and Mazur 

(1984) derive eqs. (I.19b) and (I.19c) rigorously, and they prove the validity of the 

reciprocal relations for two continuous cases: anisotropic heat conduction in a crystal and 

heat conduction coupled with diffusion in an isotropic fluid. 

Finally, several assumptions had to be made in order to derive the Onsager’s reciprocal 

relations shown in eq. (IV.33). These assumptions are listed and briefly discussed below: 

1. The fluctuations associated to the fluxes are mechanical variables, i.e. quantities 

defined for any given microstate. For example, heat and diffusive fluxes are 

associated respectively to internal energy and concentration; both these quantities 

are well-defined for any given microstate. 

2. The number of molecules in the system is sufficiently large so that the fluctuations 

are continuous-like. As a hypothetical example of a closed system violating this 

rule, imagine a mixture of 3 molecules of water and 3 molecules of some acid HA. 

The system undergoes ionization according to the following reaction: HA +

H2O ⇌ A− + H3O
+. The fluctuations here are associated to the reaction extent, 

which can only take 4 discrete values. 

3. At equilibrium, fluctuating mechanical variables follow a Gaussian distribution, 

according to eq. (IV.7). Hill (1986) and de Groot and Mazur (1984) prove it for 

the energy fluctuations in an isothermal closed system. More generally, de Groot 

and Mazur (1984) give a sufficient condition for this assumption to hold: if the 

mechanical variable corresponds to the sum of some property of the individual 

molecules, and if these individual properties are mutually independent and follow 

the same probability distribution, then the mechanical variable will follow a 

Gaussian distribution in the neighbourhood of its mean value. An alternative 

assumption is: the second-order Taylor expansion of the entropy around 𝛼 = 0 is 

a satisfactory approximation. In this case, eq. (IV.17) replaces eq. (IV.7) as the 

assumption. 
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4. Microscopic reversibility holds. In classic mechanics, this is equivalent to saying 

that the equations of motion for the particles composing the system are invariant 

under time-reversal. Any conservative system obeys this principle. 

5. The dynamics of the average fluctuations are given by the linear differential 

equations in eq. (IV.26). This linear flux-fluctuation relationship is observed 

experimentally for various systems, including reactions near equilibrium and pairs 

of subsystems exchanging heat and mass. However, these experimental measures 

are taken for systems out of equilibrium, since the small fluctuations of a system 

at equilibrium are hard to capture. One has to assume that the same dynamics 

observed experimentally for large fluctuations holds in the limit 𝛼 𝛼 =

𝑂 (𝑘𝐵𝐾
−1). Alternatively, one could assume eq. (IV.36) instead of eq. (IV.26). 

IV.1.2 Prigogine’s Minimum Entropy Production Principle 

The principle of Minimum Entropy Production (minEP) concerns systems with n distinct 

fluctuations, in which m forces (𝑋1, 𝑋2, … , 𝑋𝑚) are held constant, and 𝑛 −𝑚 forces 

(𝑋𝑚+1, … , 𝑋𝑛) are free to change. For example, two reservoirs separated by a membrane 

can exchange heat and mass (𝑛 = 2). If the reservoirs are jacketed vessels, then their 

temperature (and therefore the temperature difference between them) can be held fixed 

(𝑚 = 1). Prigogine shows that, if the Onsager’s reciprocal relations hold for such 

systems, then they evolve in such a way that they reach a minimum of entropy production 

at steady state (Prigogine, 1962). This statement is illustrated in Figure IV.2 for 𝑋1 

(temperature difference) fixed and 𝑋2 (concentration difference) free, with associated 

fluxes 𝐽1 and 𝐽2. Note that here steady state does not mean equilibrium state: if at least 

one of the m forces is fixed at a value different from 0, then the system will always be out 

of equilibrium. 

 

 

 

 

 

Figure IV.2 – Illustration of Prigogine’s minEP principle when a system is subjected to 

a fixed force 𝑋1 and a free force 𝑋2; the system reaches a minimum of entropy production 

at steady state, when 𝐽2 = 0 
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To prove his principle, Prigogine replaces the linear flux-force relationships in eq. (I.17) 

(𝐽𝑘 = ∑ 𝐿𝑘𝑗𝑋𝑗𝑗 ) into the bilinear entropy production expression in eq. (I.11) to obtain: 

 𝜎 =∑𝐿𝑖𝑗𝑋𝑖𝑋𝑗
𝑖,𝑗

 (IV.37) 

Because there are m forces being held constant, the evolution of the entropy production 

in the system depends only on the 𝑛 −𝑚 remaining forces. Differentiation of (IV.37) 

with respect to a force 𝑋𝑘 that is not held constant yields: 

𝜕𝜎

𝜕𝑋𝑘
=∑𝐿𝑖𝑘𝑋𝑖

𝑖

+∑𝐿𝑘𝑗𝑋𝑗
𝑗

⇒
(𝐼𝑉.3)

 

 
⇒
𝜕𝜎

𝜕𝑋𝑘
= 2∑𝐿𝑘𝑗𝑋𝑗

𝑗

 , 𝑘 = 𝑚 + 1,𝑚 + 2,… , 𝑛 (IV.38) 

At the steady state, the fluxes (𝐽𝑚+1, … , 𝐽𝑛), corresponding to the 𝑛 −𝑚 forces that are 

free to change, will disappear. Replacing eq. (I.17) into eq. (IV.38) then yields: 

𝜕𝜎

𝜕𝑋𝑘
= 2 𝐽𝑘 ⇒ 

 
⇒        𝐽𝑘 = 0 ⇔

∂𝜎

∂𝑋𝑘
= 0 ,   𝑘 = 𝑚 + 1,𝑚 + 2,… , 𝑛 (IV.39) 

Eq. (IV.39) shows that the steady state corresponds to a critical point of the surface 

𝜎(𝑋𝑚+1, 𝑋𝑚+2, … , 𝑋𝑛). Further, eq. (IV.37) shows that 𝜎 is quadratic and positive definite 

with respect to the forces. Therefore, the unique critical point in eq. (IV.39) corresponds 

to a minimum of entropy production, and that establishes the minEP principle. 

IV.1.3 Ziegler’s Maximum Entropy Production Principle 

One of the key benefits from the Onsager’s reciprocal relations is allowing the prediction 

of the system evolution based solely on the entropy production function 𝜎(𝑋). Close to 

equilibrium, 𝜎(𝑋) is expected to be a quadratic function of the forces: 

 
𝜎 =∑∑𝑃𝑖𝑗𝑋𝑖𝑋𝑗

𝑛

𝑗=𝑖

𝑛

𝑖=1

 (IV.40) 

Note that eq. (IV.40) is slightly different from eq. (IV.37), the difference being that in eq. 

(IV.40) the sum over the second index (j) starts at i, so that each product 𝑋𝑎𝑋𝑏 only 
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appears once in the expression for the entropy production. Comparing equations (IV.40) 

and (IV.37) for an initial set of forces 𝑋 yields: 

𝜎 =∑∑𝑃𝑖𝑗𝑋𝑖𝑋𝑗

𝑛

𝑗=𝑖

𝑛

𝑖=1

=∑∑𝐿𝑖𝑗𝑋𝑖𝑋𝑗
𝑗𝑖

⇒
(𝐼𝑉.33)

 

 
⇒ {

𝐿𝑖𝑖 = 𝑃𝑖𝑖
𝐿𝑖𝑗 = 𝐿𝑗𝑖 = 𝑃𝑖𝑗 2⁄ , ∀ 𝑖, 𝑗 > 𝑖

 (IV.41) 

Eq. (IV.41) shows that the phenomenological matrix 𝐿 relating the fluxes to the forces is 

entirely determined by the quadratic expression of 𝜎(𝑋). I.e., the fluxes 𝐽𝑘 = ∑ 𝐿𝑘𝑗𝑋𝑗𝑗  

(c.f. eqs. (I.17) and(IV.36)) at any given instant can be calculated as a function of the 

forces. As explained in Section I.3, these fluxes are either the time derivatives of state 

variables x, or the actual fluxes appearing in the transport equations for these variables. 

Knowing these fluxes at some time t means being capable of predicting the state of the 

system at time 𝑡 + 𝑑𝑡. And because the thermodynamic forces can generally be calculated 

from the state of the system, this suffices to predict the evolution of the system. 

Note that Onsager’s reciprocal relations are only meaningful when linear flux-force 

relationships can be assumed (c.f. eq. (I.17) or eq. (IV.36)). This is generally true close 

to equilibrium, but far-from-equilibrium systems may present more complex behaviours. 

One example is the large deformation of a non-Newtonian body (Ziegler, 1958). Another 

example is the deviation from the Fourier law of heat conduction under very large 

temperature gradients, as observed in the context of laser-driven plasmas (Jou et al., 

2010). 

Ziegler (1958, 1968) proposed a generalization of Onsager’s reciprocal relations for these 

far-from-equilibrium systems. It was first introduced as an orthogonality principle 

(Ziegler, 1958), and later reformulated as a variational principle (Ziegler, 1961, 1968). In 

Ziegler’s generalization of Onsager’s law, the assumptions (3) and (5) given by the end 

of Section IV.1.1 are relaxed, as both these assumptions were linked to the near-

equilibrium hypothesis. Indeed, assumption (3) states that fluctuating mechanical 

variables follow a Gaussian distribution, which is only true for small fluctuations (i.e., 

near equilibrium). Further, assumption (5) regarding linear flux-fluctuation relationships 

(eq. (IV.26)) is only true near equilibrium. 
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The new assumptions that replace (3) and (5) for Ziegler’s MaxEP principle are: 

3’. The entropy production can be expressed as a function of the fluxes alone, 

or as a function of the fluxes and the instantaneous values of some state variables. 

5’. There is a one-to-one correspondence between fluxes and forces. I.e., a 

system can neither have two different sets of forces (𝑋, 𝑋′) compatible with the 

same set of fluxes 𝐽, nor have two different sets of fluxes (𝐽, 𝐽′) compatible with 

the same set of forces 𝑋. 

If these hypotheses, along with hypotheses (1), (2) and (4) by the end of Section IV.1.1, 

are satisfied, then the Orthogonality Principle states that the thermodynamic fluxes 

represented on the flux space are perpendicular to the isosurfaces of the entropy 

production. A more detailed statement of the Orthogonality Principle is given in the 

beginning of Section IV.2. 

Its variational counterpart, the Maximum Entropy Production (maxEP) principle, states 

that, for some prescribed forces 𝑋∗, the fluxes are “chosen” by the system so as to 

maximize the entropy production. Mathematically, if the surface 𝜎 (𝐽) is known, and if 

the thermodynamic forces at some time t are known and equal to 𝑋∗, then the fluxes 𝐽∗ 

can be calculated by the following variational procedure (Ziegler, 1968): 

 𝐽∗ = max
𝐽
{𝜎 (𝐽)}

                      𝑠. 𝑡.  𝜎 (𝐽) = 𝑋∗ ∙ 𝐽
 (IV.42) 

The constraint shown in eq. (IV.42) comes from eq. (I.11), which gives the entropy 

production as a bilinear expression involving the fluxes and the forces. Solving eq. 

(IV.42) via Lagrange multipliers yields the following system of equations that can be 

solved for 𝐽 (Ziegler, 1968): 

 
𝑋𝑖
∗
1

𝜎
∑

𝜕𝜎

𝜕𝐽𝑘
𝐽𝑘

𝑘

=
𝜕𝜎

𝜕𝐽𝑖
 (IV.43) 

This principle is a direct consequence of the Orthogonality Principle (Ziegler, 1961), 

whose derivation is reviewed later in Section IV.2. The discussion hereafter is limited to 

some key consequences of Ziegler’s MaxEP principle. Firstly, it is important to highlight 
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that, when the function 𝜎 (𝐽) is quadratic, Onsager’s reciprocal relations can be derived 

from Ziegler’s maxEP principle. Indeed, assuming a quadratic 𝜎 (𝐽): 

𝜎 (𝐽) =∑∑𝑄𝑗𝑙𝐽𝑗𝐽𝑙

𝑛

𝑙=𝑗

𝑛

𝑗=1

⇒
(𝐼𝑉.43)

 

 

⇒
𝑋𝑖
∗

∑ ∑ 𝑄𝑗𝑙𝐽𝑗𝐽𝑙
𝑛
𝑙=𝑗

𝑛
𝑗=1

[∑ 𝐽𝑘 (∑𝑄𝑘𝑙𝐽𝑙

𝑛

𝑙=𝑘

+∑𝑄𝑗𝑘𝐽𝑗

𝑘

𝑗=1

)

𝑛

𝑘=1

] =∑𝑄𝑖𝑙𝐽𝑙

𝑛

𝑙=𝑖

+∑𝑄𝑗𝑖𝐽𝑗

𝑖

𝑗=1

  (IV.44) 

Eq. (IV.44) can be greatly simplified by defining the symmetric matrix 𝑄′ such that: 

 𝑄𝑗𝑙
′ = 𝑄𝑙𝑗

′ =
1
2𝑄𝑗𝑙  ∀  𝑙 > 𝑗

𝑄𝑗𝑗
′ = 𝑄𝑗𝑗

 (IV.45) 

Replacing eq. (IV.45) into eq. (IV.44): 

𝑋𝑖
∗

1

∑ ∑ 𝑄𝑗𝑙
′ 𝐽𝑗𝐽𝑙

𝑛
𝑙=1

𝑛
𝑗=1

[∑(𝐽𝑘 × 2∑𝑄𝑗𝑘
′ 𝐽𝑗

𝑛

𝑗=1

)

𝑛

𝑘=1

] = 2∑𝑄𝑖𝑗
′ 𝐽𝑗

𝑛

𝑗=1

⇒ 

 
⇒ 𝑋𝑖

∗ =∑𝑄𝑖𝑗
′ 𝐽𝑗

𝑛

𝑗=1

 (IV.46) 

Because the function 𝜎 (𝐽) must be positive definite, the matrix 𝑄′ must be invertible. 

Hence, one can write the fluxes as a function of the forces according to eq. (IV.47): 

 𝐽∗ = 𝑄′
−1
∙ 𝑋∗ (IV.47) 

Note that 𝑄′
−1

 is the phenomenological matrix 𝐿 that gives the fluxes as a function of the 

forces in the linear regime. And because 𝑄′ is symmetric (see eq. (IV.45)), its inverse 

𝑄′
−1

 must also be symmetric. Hence, we derive Onsager’s reciprocal relations (eq. 

(IV.33)) from Ziegler’s MaxEP principle. 

It is not surprising that Onsager’s relations are a consequence of the MaxEP principle. As 

a matter of fact, Ziegler’s principle is an attempt to generalize Onsager’s law. So it is only 

natural that the former must stem from the latter near equilibrium. 
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Finally, some confusion may arise regarding the compatibility of MaxEP and minEP. 

These principles are actually not contradictory: the system maximizes entropy production 

at every instant (MaxEP), but its evolution in time decreases entropy production (minEP) 

(Martyushev and Seleznev, 2006). Figure IV.3 illustrates this statement for an out-of-

equilibrium system with only two fluxes, 𝐽1 and 𝐽2. The orange surface in this figure 

corresponds to the surface 𝜎 = 𝜎(𝐽1, 𝐽2), and the blue plane corresponds to the plane 𝜎 =

𝑋1
∗𝐽1 + 𝑋2

∗𝐽2. 

 (a) (b) (c) 

 

Figure IV.3 – Prigogine’s minEP principle as a consequence of Ziegler’s maxEP 

principle 

The red contour is the intersection between these surfaces, and it corresponds to the set 

of points satisfying the constraint in eq. (IV.42). The values of 𝐽1
∗ and 𝐽2

∗ corresponding to 

the maximum of 𝜎 along this red curve give the state of the system according to Ziegler’s 

principle. Assuming that the force 𝑋1
∗ is fixed, whereas 𝑋2

∗ is free to change, the evolution 

of the system is tracked by rotating the plane. Each value that 𝑋2
∗ takes will correspond to 

some inclination of the blue plane. At any time, Ziegler’s principle can be applied to find 

the instantaneous state of the system. Finally, when the system reaches steady state 

(𝐽2 = 0), the entropy production reaches a minimum in the trajectory of states. This 

minimum is depicted by the red dot in Figure IV.3c. 

IV.2 Derivation of the Orthogonality Principle 

The MaxEP principle discussed in Section IV.1.3 is a direct consequence of the so-called 

Orthogonality Principle (OP) (Ziegler, 1961). The proof of the equivalence between OP 

and MaxEP is straightforward, and it was already covered in Ziegler (1961). Therefore, 

it is omitted from this section. A rigorous statement of OP is given next. 
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Orthogonality Principle (OP): Let us assume a thermodynamic system satisfying the 

following restrictions, discussed by the end of Sections IV.1.1 (H1, H2, H4) and IV.1.3 

(H3, H5): 

H1. The fluctuations associated to the fluxes are mechanical variables, i.e. quantities 

defined for any given microstate. 

H2. The number of molecules in the system is sufficiently large so that the fluctuations 

are continuous-like. 

H3. The entropy production can be expressed as a function of the fluxes alone, or as a 

function of the fluxes and the instantaneous values of some state variables. 

H4. Microscopic reversibility holds. 

H5. There is a one-to-one correspondence between fluxes and forces. 

For such a system, if the entropy production surface is represented by 𝜎 (𝐽, 𝑥), where 𝐽 

are the fluxes and 𝑥 are the state variables, then the forces are perpendicular (orthogonal) 

to the level sets of 𝜎 (𝐽, 𝑥) in the velocity state. In other words (c.f. eq. (IV.43)): 

 𝑋 = 𝑓 (𝐽, 𝑥) ∇𝐽𝜎 (IV.48) 

where ∇𝐽 indicates that the gradient is taken with respect to the flux space. 

Eq. (IV.48) can be better understood with geometrical reasoning. Imagine there are only 

two fluxes 𝐽1 and 𝐽2 in the system. For any given set of state variables 𝑥∗, one can draw 

the surface 𝜎 (𝐽, 𝑥∗) in the flux space. The forces 𝑋, if drawn in the same flux space, will 

be perpendicular to the level sets of the surface. Figure IV.4 illustrates this geometrical 

reasoning. In this figure, the force vectors are depicted for three arbitrary pairs of fluxes 

corresponding to the same level set 𝜎 = 𝜎𝑙. 
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 𝜎 

𝐽1 

𝐽2 

𝜎 = 𝜎𝑙  

𝑋1 

𝑋2 

𝑋3 

 

Figure IV.4 – Illustration of the OP, with vectors 𝑋1, 𝑋2, 𝑋3 perpendicular to the level 

set 𝜎 = 𝜎𝑙 

Ziegler has attempted a few times to prove the OP (Ziegler, 1958, 1970, 1983b). These 

demonstrations share some common ideas and arguments. However, the developments in 

the 1958 work focused on the rheological problem, which restricts the proof to a specific 

case study. Further, Ziegler himself stated that his 1958 work was a rudimentary version 

of the more formal proof given in 1970 (Ziegler, 1970). Between the two remaining 

proofs (Ziegler, 1970, 1983), the latter is much more detailed. Besides, the 1983 

demonstration was published in a subsection of a book chapter, whereas the one from 

1970 is in an article whose purpose was to prove OP. For these reasons, only the 1970 

paper will be discussed in the remaining of the section. 

For his analysis, Ziegler assumes a thermodynamic system with a large number of degrees 

of freedom (H2). Further, he assumes that the evolution of the system (in a microscopic 

sense) can be described by a Hamiltonian. The microscopic coordinates 𝑞 in this case can 

be defined as either the quantum states of the several molecules in the system (the 

quantum approach), or the positions of these molecules (the classical approach). Ziegler 

uses the latter approach in his derivation. 

He later claims that the Hamiltonian depends on 𝑞, 𝑝 (the momenta corresponding to 𝑞) 

and on the state variables 𝑥 used to describe the macroscopic state of the system (a priori, 

it could be the temperature, pressure, and so on). I.e.: 

 ℋ = ℋ (𝑞, 𝑝, 𝑥) (IV.49) 
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Eq. (IV.49) is the first questionable step in Ziegler’s derivation. The dynamics of the 

microsystem do not necessarily depend on the state variables 𝑥. For example, the 

mechanical variables mentioned in Section IV.1.1 (during the derivation of Onsager’s 

relations) are a category of state variables that are entirely determined by the microstate 

of the system (𝑞, �̇�). Therefore, the evolution of the mechanical variables is a property 

that stems from the Hamiltonian of the system, and not the opposite. Still, there is merit 

to eq. (IV.49) since temperature, chemical potentials and other non-mechanical variables 

may influence the dynamics of the microsystem without being entirely defined at specific 

microstates. Further, external coordinates (e.g. strain components in a plastic body 

generated by external forces) may also affect the dynamics of the system. In both cases 

(𝑥 being nonmechanical state variables and/or external coordinates), it will be assumed 

that their dynamics 𝑥(𝑡) are known. Otherwise, if the trajectories 𝑥(𝑡) were to be 

determined, conjugate variables of 𝑥 would have to be included in the Hamiltonian, and 

that would undermine the rest of Ziegler’s proof. 

To avoid confusion, eq. (IV.49) is re-written as: 

 ℋ = ℋ(𝑞, 𝑝, 𝑎(𝑡)) (IV.50) 

where 𝑎 are nonmechanical state variables and/or external coordinates. 

For conservative systems, the Hamiltonian in eq. (IV.50) equals the energy of the 

microsystem. The average of this energy over small time scales corresponds to a 

macroscopic property called internal energy U. In other words: 

                                               𝑈 = ℋ    (conservative systems) (IV.51) 

The small time scale mentioned above makes it possible to average over several 

microstates while holding 𝑎 constant. 

The internal energy in eq. (IV.51) can be written as a function of Helmholtz free energy 

F, temperature, and entropy according to the following well-known relation: 

 𝑈 = 𝐹 + 𝑇𝑆 (IV.52) 

The time derivative of (IV.52) yields: 

 �̇� = �̇� + �̇�𝑆 + 𝑇�̇� (IV.53) 
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The derivative of the entropy with respect to time is usually written as the sum of two 

terms: the variation due to exchanges with the surroundings (�̇�𝑒) and the so-called entropy 

production (�̇�𝑖). For adiabatic closed systems, �̇�𝑒 = 0 and �̇� = �̇�𝑖. Note that adiabatic 

closed systems are not necessarily isolated. For example, an insulated closed piston can 

exchange energy with its surroundings through work. Further, the entropy production in 

an adiabatic closed system is not necessarily zero. For example, an isolated reactive 

system that is out-of-equilibrium will have �̇� > 0 until equilibrium is reached. 

As mentioned in Section IV.1.3, the MaxEP principle (and also the OP) establishes flux-

forces relationships from the entropy production written as a function of the fluxes. 

Therefore, it is suitable to further develop eq. (IV.53), which contains the entropy 

production term �̇�. 

To do this, let us first write the statistical definition of entropy (Hill, 1986): 

 𝑆 = −𝑘𝐵∑𝑃𝑗 ln(𝑃𝑗)

𝑗

 (IV.54) 

where 𝑃𝑗 is the probability of observing the system at a certain microstate j. Eq. (IV.54) 

shows that entropy is not defined for a single microstate. Instead, it is an averaged 

quantity. Further, note that this definition is different from the definition in eq. (IV.11). 

However, they are not contradictory. Rather, eq. (IV.54) implies eq. (IV.11) for (N, V, E) 

systems, since all the Ω possible microstates in those systems have the exact same 

probability 𝑃𝑗 = 1 Ω⁄ . 

The careful reader will notice a disagreement between eq. (IV.54) and the classical 

approach for statistical mechanics. Indeed, the microstates j in eq. (IV.54) are discrete, 

whereas classical statistical mechanics assumes the microscopic coordinates 𝑞 are 

continuous. Despite this difference, both approaches yield the same results. The discrete  

approach is used here for the sake of simplicity, and because this approach was used 

earlier in Section IV.1.1. 

The probabilities in eq. (IV.54) depend on the energy 𝐸𝑗 of the microstate j and on the 

temperature of the system according to the following relation (Gibbs, 1948; Hill, 1986): 

 
𝑃𝑗 = 𝑒

𝐹−𝐸𝑗
𝑘𝐵𝑇  (IV.55) 
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where F is the Helmholtz free energy, not defined for a specific microstate. Even though 

eq. (IV.55) is derived for the canonical (N, V, T) ensemble, it also applies to other closed 

systems. For example, a (N, V, E) system has 𝑃𝑗 = 1 Ω⁄ . Further, its entropy is given by 

𝑆 = 𝑘𝐵 ln(𝛺) according to eq. (IV.10). These two equations, along with eq. (IV.55), show 

that F appearing in eq. (IV.55) is the same quantity as the free energy that appears in eq. 

(IV.52) even for a (N, V, E) system. 

For later convenience, a quantity 𝜓 shall be defined for each microstate as follows: 

 
𝜓𝑗 ≡ 𝑘𝐵 ln(𝑃𝑗) =

𝐹 − 𝐸𝑗

𝑇
 (IV.56) 

Isolating 𝐸𝑗 in eq. (IV.56) and taking its time derivative yields: 

 �̇�𝑗 = �̇� − �̇�𝜓𝑗 − 𝑇�̇�𝑗 (IV.57) 

As mentioned in the beginning of this section, the Hamiltonian of the system gives the 

energy of its microstate. Hence: 

 ℋ̇ = �̇� − �̇�𝜓 − 𝑇�̇� (IV.58) 

The subscript j was omitted in eq. (IV.58) because the Hamiltonian is assumed to take 

continuous values, as the microscopic coordinates also take continuous values in the 

phase space. Hence, the above derivation of eq. (IV.58) is not completely rigorous. Still, 

the discrete approach is simpler as it avoids integrals to calculate averages, and is similar 

to the one used in Section IV.1.1. For another derivation of eq. (IV.58) using classical 

statistical mechanics, the reader can refer to Ziegler (1970). 

The average of the time derivative in eq. (IV.58) over short periods of time is given by: 

 ℋ̇ = �̇� − �̇�𝜓 − 𝑇�̇� (IV.59) 

The short period of time captures microscopic fluctuations while guarding �̇�, �̇� and T 

constant. 

Eq. (IV.59) is not yet in a suitable form, as it contains the unknown terms 𝜓 and �̇�. The 

term 𝜓 can be written as a function of the entropy in the system. Indeed, replacing ln(𝑃𝑗) 

in eq. (IV.54) by its expression in eq. (IV.56) yields: 
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𝑆 = −∑𝑃𝑗𝜓𝑗
𝑗

⇒ 

 ⇒ 𝜓 = −𝑆 (IV.60) 

Finally, the average of the time derivative of 𝜓 can be found using its definition from eq. 

(IV.56): 

𝜓𝑗̇ =
𝑘𝐵
𝑃𝑗
�̇�𝑗 ⇒ �̇�

𝑗
=∑𝑘𝐵�̇�𝑗

𝑗

= 𝑘𝐵
𝑑

𝑑𝑡
∑𝑃𝑗
𝑗

⇒ 

 ⇒ �̇� = 0 (IV.61) 

Inserting eqs. (IV.60) and (IV.61) into eq. (IV.59) yields: 

 ℋ̇ = �̇� + �̇�𝑆 (IV.62) 

From eq. (IV.62) and (IV.53): 

 �̇� = ℋ̇ + 𝑇�̇� (IV.63) 

Eq. (IV.63) is a simplified formula relating the time derivative of the internal energy (a 

macroscopic quantity) to the Hamiltonian describing the dynamics of the system and to 

two other macroscopic quantities: the temperature and the entropy production. The total 

time derivative of the Hamiltonian in eq. (IV.50) for trajectories 𝑞(𝑡), 𝑝(𝑡) is given by: 

 
ℋ̇ =∑(

𝜕ℋ

𝜕𝑞𝑖
�̇�𝑖 +

𝜕ℋ

𝜕𝑝𝑖
�̇�𝑖)

𝑖

+∑
𝜕ℋ

𝜕𝑎𝑘
�̇�𝑘

𝑘

 (IV.64) 

Physical trajectories satisfy Hamilton’s equations: 

 
�̇�𝑖 =

𝜕ℋ

𝜕𝑝𝑖
;     �̇�𝑖 = −

𝜕ℋ

𝜕𝑞𝑖
 (IV.65) 

Inserting eq. (IV.65) into eq. (IV.64) yields: 

 
ℋ̇ =∑

𝜕ℋ

𝜕𝑎𝑘
�̇�𝑘

𝑘

 (IV.66) 

The average of eq. (IV.66) over short periods of time yields: 

 
ℋ̇ =∑

𝜕ℋ

𝜕𝑎𝑘
�̇�𝑘

𝑘

 (IV.67) 
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The quantities 𝑎𝑘 (and their time derivatives) are macroscopic properties which can be 

held constant in the time scale of microscopic variations. 

Finally, ℋ̇ in eq. (IV.63) can be replaced by its expression in eq. (IV.67), resulting in the 

following expression for the time derivative of internal energy: 

 
�̇� = ∑

𝜕ℋ

𝜕𝑎𝑘
�̇�𝑘

𝑘

+ 𝑇�̇� (IV.68) 

The rate of change in internal energy according to eq. (IV.68) has two contributions: a 

reversible contribution from the averaged partial derivatives of the Hamiltonian with 

respect to the external coordinates, and an irreversible contribution from 𝑇�̇�. For the sake 

of simplicity, let us define forces Υ𝑘
𝑟 such that: 

 
Υ𝑘
𝑟 ≡

𝜕ℋ

𝜕𝑎𝑘
 (IV.69) 

The physical meaning of this force will be discussed later in the section. For now, note 

that this force is not necessarily equal to the one defined in eq. (IV.34). 

An alternative expression for �̇� can be obtained if one recalls that the systems under study 

are adiabatic and closed. Hence, any change in internal energy comes from the external 

forces applied to the system. In other words: 

 
�̇� =∑

𝜕𝑈

𝜕𝑎𝑘
�̇�𝑘

𝑘

 (IV.70) 

Here, new forces Υ𝑘 shall be defined such that: 

 
Υ𝑘 =

𝜕𝑈

𝜕𝑎𝑘
 (IV.71) 

From this definition, eq. (IV.70) takes a simpler form: 

 �̇� =∑Υ𝑘�̇�𝑘
𝑘

 (IV.72) 

The meaning of the external coordinates becomes clearer with the above expression. If 

the system consists of gas and a piston moving along the x-direction under the influence 

of an external force, Υ is the force, a is the position of the piston (along the x-direction) 

and (IV.72) is simply the expression of the First Law of Thermodynamics. The same 
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applies to a rubber band being stretched: Υ is again the external force, a is the deformation 

of the rubber band, and eq. (IV.72) represents the First Law of Thermodynamics. 

Inserting eqs. (IV.72) and (IV.69) into eq. (IV.68) yields: 

∑𝛶𝑘�̇�𝑘
𝑘

=∑𝛶𝑘
𝑟�̇�𝑘

𝑘

+ 𝑇�̇� ⇒ 

 ⇒∑(Υ𝑘 − Υ𝑘
𝑟)�̇�𝑘

𝑘

= 𝑇�̇� (IV.73) 

The difference Υ𝑘 − Υ𝑘
𝑟 can be seen as the irreversible contribution of the force Υ𝑘, 

responsible for the entropy production in the system. To clarify this statement, let us 

reconsider the system consisting of gas in a cylinder with cross-sectional area A. The gas 

can be compressed/expanded by applying a force Υ on a piston. Assuming that at any 

moment the pressure p inside the cylinder is homogeneous, the reversible work exerted 

on the system is −𝑝𝐴𝑑𝑥, so that Υ𝑟 = −𝑝𝐴. The difference Υ𝑘 − Υ𝑘
𝑟 therefore denotes an 

excess force, which is responsible for the entropy production in the system. This force 

shall be named Υ𝑘
𝑖 : 

 Υ𝑘
𝑖 ≡ Υ𝑘 − Υ𝑘

𝑟 (IV.74) 

Hence, an expression is derived for the product 𝑇�̇� as a function of �̇�𝑘 and Υ𝑘
𝑖 , which 

Ziegler considers to be respectively the thermodynamic fluxes and forces of the system: 

 𝑇�̇� ≡ 𝐷 =∑Υ𝑘
𝑖 �̇�𝑘

𝑘

 (IV.75) 

The quantity D defined above is called the dissipation function. Note that eq. (IV.69) 

gives the reversible contribution Υ𝑘
𝑟 as a function of the average of the partial derivative 

of the Hamiltonian. However, such expression is not suitable for practical calculations 

since a macroscopic observer does not know the Hamiltonian of the microscopic system. 

In other words, he does not know the exact expression of eq. (IV.50). 

To obtain Υ𝑘
𝑟 as a function of macroscopic quantities, one can look again at eq. (IV.68). 

This equation relates the rate of change in internal energy to the rate of change in 𝑎 and 

to the rate of change in S. Note that knowing 𝑎 alone is not enough to determine the state 

of the system. Indeed, looking back at the gas-in-a-cylinder example, knowing the 

position of the piston is not enough to determine its state. If the gas is compressed by Δ𝑥 
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through the action of a reversible force, its final internal energy will be lower than the one 

obtained if the force is irreversible. However, knowing both Δ𝑥 and the entropy suffices 

to determine the state of this system. For example, the internal energy of a monoatomic 

gas is related to its entropy, volume and number of molecules via the Sackur-Tetrode 

equation (Schroeder, 2000). 

The above discussion can be generalized to a higher number of forces. For instance, the 

state of an insulated elastic body being stretched on the x and y-directions is determined 

from Δ𝑥, Δ𝑦 and the entropy of the system, despite how much each force (individually) 

contributed to entropy variation. Therefore, the following equation holds: 

 𝑈 = 𝑈(𝑎, 𝑆) (IV.76) 

Finally, eqs. (IV.76) and (IV.68) together yield: 

 𝜕ℋ

𝜕𝑎𝑘
≡ Υ𝑘

𝑟 =
𝜕

𝜕𝑎𝑘
𝑈(𝑎, 𝑆) (IV.77) 

 
𝑇 =

𝜕

𝜕𝑆
𝑈(𝑎, 𝑆) (IV.78) 

Eq. (IV.77) is one possible way to write the reversible contributions in terms of the state 

variables. Alternatively, one could compare eqs. (IV.68) and (IV.53) to obtain: 

∑
𝜕ℋ

𝜕𝑎𝑘
�̇�𝑘

𝑘

+ 𝑇�̇� = �̇� + �̇�𝑆 + 𝑇�̇� ⇒ 

 
⇒ �̇� =∑

𝜕ℋ

𝜕𝑎𝑘
�̇�𝑘

𝑘

− 𝑆�̇� (IV.79) 

The above equation suggests that the reversible contributions to the forces can be obtained 

from Helmholtz free energy if the state variables chosen to represent the system are 𝑎 and 

T. In this case: 

 𝜕ℋ

𝜕𝑎𝑘
≡ Υ𝑘

𝑟 =
𝜕

𝜕𝑎𝑘
𝐹(𝑎, 𝑇) (IV.80) 

 
𝑆 = −

𝜕

𝜕𝑇
𝐹(𝑎, 𝑇) (IV.81) 

Note that the additional state variables (S or T) needed to determine the reversible 

contribution to the forces do not undermine the form of the Hamiltonian written in eq. 
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(IV.50). These quantities will appear “naturally” during the averaging of 𝜕ℋ 𝜕𝛼𝑘⁄ , since 

the probability distribution of the microstates depends on T (see eq. (IV.55)) and is related 

to S via eq. (IV.54). 

The developments so far were essentially the preliminary steps in the derivation of OP. 

The remaining development, which is the cornerstone of the OP proof, is done in 20 lines 

of convoluted text in Ziegler (1970). These are replicated ipsis litteris below, except for 

notations and references to equations, which were updated according to the conventions 

used in this chapter. From Ziegler (1970), p. 859: 

Let the state of a macrosystem, together with the macro-force 𝛶𝑚, be given at time t, and 

let us ask for the corresponding velocity �̇�. According to the equation (IV.77), 𝛶𝑚
𝑟  is a 

state variable. Thus, 𝛶𝑚
𝑟  is given and it follows from (IV.74) that also the vector 𝛶𝑚

𝑖  is 

known. This is essential for what follows. 

According to (IV.65) and (IV.50), �̇�𝑚 does not enter the differential equations of the 

motion of the microsystem. If, therefore, �̇�𝑚 is varied at time t by the amount 𝛿�̇�𝑚, this 

variation is of arbitrarily small influence on the motion, during a sufficiently short time 

interval 𝑡 … 𝑡 + 𝛿𝑡, of the various microsystems corresponding to the given macrosystem. 

In the irreversible case, though, there is also a flux in phase space, and the corresponding 

change of 𝜓 in the layers bounded by H-surfaces may be different for the velocities �̇�𝑚 

and �̇�𝑚 + 𝛿�̇�𝑚. However, for variations 𝛿�̇�𝑚 which do not affect the two sides of the last 

equality in (IV.75), the first equality in (IV.75) and equation (IV.60) show that �̇� = −�̇� 

is the same. It follows that not only a single velocity �̇�𝑚 is compatible with the force 𝛶𝑚 

or - equivalently - with its irreversible part 𝛶𝑚
𝑖  but also all those varied velocities �̇�𝑚 +

𝛿�̇�𝑚 for which the dissipation function and hence also the scalar product with 𝛶𝑚
𝑖  remain 

unchanged. However, this is possible only if 𝛶𝑚
𝑖  is orthogonal to the tangential plane of 

the dissipation surface passing through the end point of �̇�𝑚. 

We have thus proved that, for systems with conservative microforces, whether 

nongyroscopic or with gyroscopic forces of the type (2.4)†, (2.5)†, the irreversible force 

𝛶𝑚
𝑖  corresponding to the velocity �̇�𝑚 is orthogonal to the dissipation surface in the end 

point of �̇�𝑚. 

†These equations describe the specific type of gyroscopic forces for which Hamilton’s approach still holds 
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In what follows, the above final steps will be discussed in full detail, and the mistake 

made in the demonstration will be put in evidence. 

First, let us take another look at eq. (IV.75). The product 𝑇�̇�, and hence the dissipation 

function D, cannot be entirely determined based on the state of the system (𝑎 and T). Even 

if 𝑎 and T are known, that is not enough to determine how the system will evolve after an 

infinitesimal interval 𝛿𝑡. However, if the state and the instantaneous velocities �̇� are 

known, then the instantaneous 𝑇�̇�, and hence the instantaneous value D is entirely 

determined. Therefore, one can write: 

 𝐷 = 𝐷(𝑇, 𝑎, �̇�) (IV.82) 

For a given state (𝑇∗, 𝑎∗), the dissipation function defines a surface in the velocity space: 

 𝐷∗(�̇�) = 𝐷(𝑇∗, 𝑎∗, �̇�) (IV.83) 

If the state of the macrosystem and the forces Υ are known, then Υ𝑟 is known, since it is 

a state function according to eqs. (IV.77) and (IV.80). Therefore,  Υ𝑖 can be determined 

from eq. (IV.74). 

However, the state and the forces alone do not suffice to determine the dynamics of the 

system. Indeed, note that the velocities cannot be determined from eq. (IV.75) alone, since 

there are multiple variables �̇� and only one equation. Phenomenological laws are hence 

necessary to find �̇� and fully describe the dynamics of the macrosystem. 

Let us assume that the velocities �̇�∗ corresponding to the state (𝑇∗, 𝑎∗) and to the forces 

Υ∗𝑖 were somehow calculated. The dissipation of the microsystem in this case is denoted 

𝐷 = 𝐷(𝑇∗, 𝑎∗, �̇�∗) = 𝐷0. The cornerstone for the proof of OP is essentially the following 

question: 

Q1: Assume a system defined by the state (𝑇∗, 𝑎∗) and by the forces Υ∗𝑖. Assume there 

exist velocities �̇�∗ corresponding to this system, and let 𝛿𝐷0�̇� be an incremental 

displacement along the isosurface 𝐷∗(�̇�) = 𝐷0 (c.f. Figure IV.5). In this case, are the 

velocities �̇�∗ + 𝛿𝐷0�̇�∗ also compatible with the same system? 
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�̇�1 

�̇�2 

Isosurface 

𝐷∗(�̇�) = 𝐷0 

New isosurface 

�̇�∗ 

�̇�∗ is compatible with the forces 

Υ∗𝑖  and the state (𝑇,𝑎∗) 

𝛿𝐷0 �̇�∗ 

�̇�∗ 

 

Figure IV.5 – Change in velocities following the isosurface 𝐷∗(�̇�) = 𝐷0, for a system 

with only two forces 

In Q1, two velocities �̇�1
∗ and �̇�2

∗  are said to be compatible with the same system if, for its 

given macrostate and forces, the corresponding fluxes can be equal to �̇�1
∗ or �̇�2

∗ . According 

to Ziegler, given that �̇�∗ is compatible with the state (𝑇∗, 𝑎∗) and the forces Υ∗𝑖, �̇�∗ +

𝛿𝐷0�̇�∗ will also be compatible with these conditions if and only if (Ziegler, 1970, p. 859): 

(a) the increment 𝛿𝐷0�̇�∗ is of arbitrarily small influence on the motion during a short 

interval 𝛿𝑡; 

and 

(b) the probability distribution of the microstates is not affected by this increment. 

Proving that the answer to Q1 is yes would also prove OP. However, Ziegler does not 

answer the above question. Instead, he finds a necessary and sufficient condition for a 

positive answer. This is the crucial mistake in Ziegler’s derivation: he claims that finding 

a condition equivalent to Q1 is the proof that Q1 is true. This logical flaw shall be clarified 

in the following paragraphs. 

To prove (a), one can use the Taylor expansion of the Hamiltonian in eq. (IV.50) to 

evaluate the difference in the motion of a microsystem whose external velocities �̇�∗ 

fluctuate by 𝛿𝐷0�̇�∗: 

ℋ1 (𝑞, 𝑝, 𝑎
∗ + 𝑡�̇�∗) = ℋ (𝑞, 𝑝, 𝑎∗) +∑

𝜕

𝜕𝑎𝑘
ℋ(𝑞, 𝑝, 𝑎)|

𝑎∗
× 𝑡�̇�𝑘

∗

𝑘

 

ℋ2 (𝑞, 𝑝, 𝑎
∗ + 𝑡(�̇�∗ + 𝛿𝐷0�̇�∗)) = ℋ (𝑞, 𝑝, 𝑎∗) +∑

𝜕

𝜕𝑎𝑘
ℋ(𝑞, 𝑝, 𝑎)|

𝑎∗
× 𝑡(�̇�𝑘

∗ + 𝛿𝐷0�̇�𝑘
∗ )

𝑘
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Hence: 

 
ℋ2 −ℋ1 =∑

𝜕

𝜕𝑎𝑘
ℋ(𝑞, 𝑝, 𝑎)|

𝑎∗
× 𝑡 × 𝛿𝐷0�̇�𝑘

∗

𝑘

= 𝑂(𝛿𝑡‖𝛿𝐷0�̇�∗‖) (IV.84) 

Eq. (IV.84) shows that small fluctuations in the external velocities do not affect the 

motion of the microsystem during short time intervals. This concludes the proof of (a). 

Statement (b) cannot be discussed using the discrete probability distribution given in eq. 

(IV.55). Indeed, the phase space (𝑞, 𝑝) used to describe the motion of the microsystems 

takes continuous values. Hence, the probability of finding a system within a certain range 

[𝑞0, 𝑞0 + 𝑑𝑞] and [𝑝0, 𝑝0 + 𝑑𝑝] is written by means of a probability density function g: 

 𝑃 (𝑝 ∈ [𝑝0, 𝑝0 + 𝑑𝑝] ∧ 𝑞 ∈ [𝑞0, 𝑞0 + 𝑑𝑞])  = 𝑔𝐷𝑞𝐷𝑝 (IV.85) 

In eq. (IV.85), 𝐷𝑞 = 𝑑𝑞1𝑑𝑞2 …𝑑𝑞𝑛 and 𝐷𝑝 = 𝑑𝑝1𝑑𝑝2 …𝑑𝑝𝑛. Besides, the continuous 

version of eq. (IV.55) is (Gibbs, 1948): 

 

𝑃 (𝑝 ∈ [𝑝0, 𝑝0 + 𝑑𝑝] ∧ 𝑞 ∈ [𝑞0, 𝑞0 + 𝑑𝑞]) = 𝐶 × 𝑒
𝐹−ℋ(𝑞0,𝑝0,𝑎)

𝑘𝐵𝑇 𝐷𝑞𝐷𝑝 (IV.86) 

where C is a constant. From eqs. (IV.85) and (IV.86), the continuous probability 

distribution can be written as a function of 𝑞, 𝑝,  𝑎 and T: 

 

𝑔 = 𝐶 × 𝑒

𝐹(𝑎,𝑇)−ℋ(𝑞,𝑝,𝑎)

𝑘𝐵𝑇  
(IV.87) 

Eq. (IV.87) should be used to evaluate the probability distribution over the phase space 

of a system with given 𝑎 and T. The quantity 𝜓 defined in eq. (IV.56) for the discrete 

microstates can be redefined for the probability density in eq. (IV.87) as follows: 

 
𝜓 ≡ 𝑘𝐵 ln(𝑔 𝐶⁄ ) =

𝐹 −ℋ

𝑇
 (IV.88) 

With this definition, eq. (IV.60) still holds (Gibbs, 1948). Eqs. (IV.60) and (IV.75) 

together yield the following result with and without velocity fluctuations: 

 
𝜓
1
̇ = −

1

𝑇
∑Υ𝑘

𝑖 �̇�𝑘
∗

𝑘

 

𝜓
2
̇ = −

1

𝑇
∑Υ𝑘

𝑖(�̇�𝑘
∗ + 𝛿𝐷0�̇�𝑘

∗ )

𝑘

 

(IV.89) 
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Ziegler then argues that 𝜓
1
̇ = 𝜓

2
̇
 if and only if ∑ Υ𝑘

𝑖𝛿𝐷0�̇�𝑘
∗

𝑘 = 0, which is true. However, 

he claims that 𝜓
1
̇ = 𝜓

2
̇
 is equivalent to stating that the probability distribution is 

unaffected by the velocity fluctuation, and this is the first flaw in his proof. This flaw is 

summarized in equation (IV.90). 

 

∑Υ𝑘
𝑖𝛿𝐷0�̇�𝑘

∗

𝑘

= 0
⏞          

OP

  ⇔
True

  𝜓
1
̇ = 𝜓

2
̇   ⇔

False
  (b) (IV.90) 

The first equality in eq. (IV.90) is OP itself, as shown in Figure IV.4. Recall that this is 

the very property Ziegler wishes to prove. The second equality in this equation, 𝜓
1
̇
= 𝜓

2
̇
 

indicates that the average value of the quantity 𝜓 will remain invariant over a short period 

of time 𝛿𝑡. However, that does not mean that distribution itself will remain invariant. 

Indeed, if 𝜓
1
= 𝜓

2
 during the interval [0, 𝛿𝑡], eqs. (IV.88) and (IV.85) yield: 

∫𝑘𝐵 𝑙𝑛 (
1

𝐶
𝑔1)𝑔1𝐷𝑞𝐷𝑝 = ∫𝑘𝐵 𝑙𝑛 (

1

𝐶
𝑔2) 𝑔2𝐷𝑞𝐷𝑝 ⇒ 

 
⇒ ∫ln (

1

𝐶
𝑔1) 𝑔1𝐷𝑞𝐷𝑝 = ∫ ln (

1

𝐶
𝑔2) 𝑔2𝐷𝑞𝐷𝑝 (IV.91) 

But the equality (IV.91) does not imply that the functions 𝑔1 and 𝑔2 are identical over 

time. 

The second flaw in Ziegler’s demonstration is that he concludes his proof with (IV.90). 

However, eq. (IV.90) is simply a re-statement of (b). Even if OP statement was equivalent 

to statement (b), neither of them is proved. 

IV.2.1 Summary of the main flaws and limitations 

The development by Ziegler (1970) has two main logical flaws, and is severely limited. 

Its limitation comes from the fact that the system under consideration is assumed to be 

closed and insulated. Therefore, any variation in its internal energy comes necessarily 

from mechanical work exerted on/by the system. This means that the external variables 

𝑎 in the above development can only be strain components or deformations, so 

phenomena such as heat flow, diffusion and reaction are all a priori excluded from OP. It 

is very important to highlight this limitation, as it invalidates the widespread idea that OP 

(and hence MaxEP) is a generalization of Onsager’s reciprocal relations (Ziegler, 1968; 

Martyushev and Seleznev, 2006; Yang et al., 2013; Seleznev and Martyushev, 2014). 
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Apart from the above restriction, two logical flaws in Ziegler’s demonstration undermine 

his principle. These are: 

1) The second equivalence in eq. (IV.90), which he establishes during his 

demonstration, is false. Indeed, the fact that 𝜓
1
= 𝜓

2
 for a certain interval of time 

does not imply that 𝜓1 = 𝜓2 during this interval. In general, there exist 

distribution probabilities 𝑔1 and 𝑔2 ≠ 𝑔1 for which eq. (IV.91) is true. 

2) Even if that equivalence was true, it does not prove Ziegler’s Orthogonality 

Principle. It only shows that OP is equivalent to statement (b), but one would still 

need to prove that the phenomenological laws of nature work in such a way that 

(b) is always true. 

IV.3 A counterexample: coupled reactions far from equilibrium 

Section IV.2 does not disprove Ziegler’s MaxEP principle. It only invalidates its 

demonstration. Still, its simple formulation and practicality are very appealing, especially 

in the field of far-from-equilibrium thermodynamics, where concepts and theories are still 

being developed. Hence, other researchers could be inclined to accept Ziegler’s MaxEP 

principle as a conjecture. This section will show that Ziegler’s principle fails to predict 

the kinetics of coupled reactions, and therefore cannot be used neither as a theorem nor 

as a conjecture. 

An important disclaimer before proceeding: Bataille et al. (1978) have also used a 

reactional system to disprove the MaxEP principle. However, the argument that will be 

presented below was made without knowledge of said article. Bataille et al. (1978) 

considered a general reactional system with r reactions and n chemicals, which is more 

general than the system that will be considered here (with 2 reactions and 3 chemicals). 

Still, one counterexample suffices to disprove a theorem, regardless of how specific the 

example is, as long as it satisfies the conditions for which said theorem can be applied. 

Further, choosing a specific case study with a defined number of chemicals and reactions 

helps with the calculations and representation of the results. 
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IV.3.1 Preliminary study – assessing the applicability of Onsager’s 

reciprocal relations to a reaction system 

Since Ziegler’s MaxEP principle is supposedly an extension of Onsager’s reciprocal 

relations to far-from-equilibrium systems, one may be inclined to examine the 

applicability of Onsager’s reciprocal relations first. This is the objective of the present 

section. 

Let us consider an isolated system of two types of molecules A and B, which undergo 

isomerization according to the following reaction: 

 𝐴 ⇌ 𝐵 (IV.92) 

For convenience, the above reactions (forward and backward) are considered first-order 

with respect to A and B respectively; see Yuan and Chen (2001) for examples of first-

order reversible isomerization. 

Because the reactions in eq. (IV.92) are first-order, one may assume that the rate-

determining steps of the mechanisms involve only one molecule. That is, even if the 

mechanism of 𝐴 → 𝐵 takes several steps, the slowest one is a transformation that a 

molecule A undergoes without the interference of other molecules A or B. The same can 

be said for the 𝐵 → 𝐴 reaction: its rate-determining step involves one molecule of B alone. 

This system has a well-defined equilibrium state (when forward and backward reaction 

velocities are the same). Further, its fluctuations (i.e., deviations from the mean 

equilibrium state) are captured by the reaction extent 𝜉. This means that, according to eqs. 

(IV.25) and (IV.34), the thermodynamic flux of the process is the reaction rate �̇�, and the 

corresponding force is 𝑋 = 𝐴1 𝑇⁄ , where 𝐴1 = 𝜇𝐴 − 𝜇𝐵 (difference in chemical potential 

of the species) is the chemical affinity of eq. (IV.92). Hence, one could ask whether 

reaction systems with multiple reactions will follow the Onsager’s reciprocal relations 

discussed in Sections I.3 and IV.1.1. 

The answer to this question is affirmative if the system satisfies the 5 conditions listed at 

the end of Section IV.1.1. Here they shall be re-stated again, each condition followed by 

a discussion on whether or not it is satisfied. 

1. The fluctuations associated to the fluxes are mechanical variables, i.e. quantities 

defined for any given microstate. For example, heat and diffusive fluxes are 
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associated respectively to internal energy and concentration; both these 

quantities are well-defined for any given microstate. 

This is indeed true. The reaction extent can be measured for any given microstate as 𝜉 =

𝑁𝐴
𝑒𝑞 − 𝑁𝐴, where 𝑁𝐴 is the number of moles of molecule A, and 𝑁𝐴

𝑒𝑞
 is the expected value 

of 𝑁𝐴 at equilibrium. 

2. The number of molecules in the system is sufficiently large so that the fluctuations 

are continuous-like. As a hypothetical example of a closed system violating this 

rule, imagine a mixture of 3 molecules of water and 3 molecules of some acid HA. 

The system undergoes ionization according to the following reaction: 𝐻𝐴 +

𝐻2𝑂 ⇌ 𝐴− + 𝐻3𝑂
+. The fluctuations here are associated to the reaction extent, 

which can only take 4 discrete values. 

Because this case study is hypothetical, one can simply assume that the number of 

molecules in the system is in the order of 1 mol, so that condition (2) is true. 

3. At equilibrium, fluctuating mechanical variables follow a Gaussian distribution, 

according to eq. (IV.7). Hill (1986) and de Groot and Mazur (1984) prove it for 

the energy fluctuations in an isothermal closed system. More generally, de Groot 

and Mazur (1984) give a sufficient condition for this assumption to hold: if the 

mechanical variable corresponds to the sum of some property of the individual 

molecules, and if these individual properties are mutually independent and follow 

the same probability distribution, then the mechanical variable will follow a 

Gaussian distribution in the neighbourhood of its mean value. An alternative 

assumption is: the second-order Taylor expansion of the entropy around 𝛼 = 0 is 

a satisfactory approximation. In this case, eq. (IV.17) replaces eq. (IV.7) as the 

assumption. 

This is a delicate condition that will be discussed in detail here. Imagine the total number 

of molecules in the reaction system (IV.92) is N. Each molecule can be at the state A or 

B. Let us assume that the probability of a molecule being at state A is p, so the probability 

of it being at state B is (1 − 𝑝). One can define a random variable 𝜒 such that: 

 𝜒 = {
1 if molecule is at state 𝐴
0 if molecule is at state 𝐵

 (IV.93) 
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This variable is the individual property of the molecules mentioned in condition (3). The 

probability distribution for this variable is: 

 𝑃(𝜒 = 1) = 𝑝 

𝑃(𝜒 = 0) = 1 − 𝑝 

(IV.94) 

The random variables associated to the various particles in the system are independent, 

and their sum 𝑁𝐴 = ∑𝜒 corresponds to the number of molecules A in the system. This 

sum follows a binomial distribution: 

 𝑃(𝑁𝐴 = 𝑛) = 𝐶𝑛
𝑁𝑝𝑛(1 − 𝑝)𝑁−𝑛 (IV.95) 

Note that 𝑁𝐴, the sum of the individual properties 𝜒, is the mechanical variable mentioned 

in condition (3). The expected value of the sum, 𝐸[𝑁𝐴], is equal to the sum of the expected 

values for each variable 𝜒, so that: 

 𝐸(𝑁𝐴) = 𝑁𝑝 (IV.96) 

Hence, the equilibrium constant of this reaction, 𝐾𝑒𝑞 = 𝐸(𝑁𝐵) 𝐸(𝑁𝐴)⁄ , takes the form: 

 
𝐾𝑒𝑞 =

(1 − 𝑝)

𝑝
 (IV.97) 

According to the third assumption in Onsager’s reciprocal relations, the random variable 

𝑁𝐴 should follow a Gaussian (or normal) distribution. And indeed, the de Moivre – 

Laplace theorem, a special case of the central limit theorem, states that the distribution of 

the random variable 𝑆𝑁 = (𝑁𝐴 − 𝑁𝑝) √𝑁𝑝(1 − 𝑝)⁄  approaches the standard normal 

distribution as 𝑁 → ∞ (Nascimento Magalhães, 2006). Although the distribution 𝑆𝑁 does 

converge to the standard normal distribution, the argument is slightly more complicated 

for 𝑁𝐴. That is because 𝑁𝐴 converges to a normal distribution with mean 𝑁𝑝 and standard 

deviation √𝑁𝑝(1 − 𝑝) only around its mean value 𝑁𝑝 (Thamattoor, 2018). When one 

approaches the tail of the binomial distribution, it no longer resembles a Gaussian. But 

how far from the mean 𝑁𝑝 the approximation is still valid? Thamattoor (2018) proves 

that the distribution of 𝑁𝐴 in eq. (IV.95) converges to a Gaussian for 𝑛 ∈

[𝑁𝑝 − 𝑐√𝑁𝑝(1 − 𝑝),𝑁𝑝 + 𝑐√𝑁𝑝(1 − 𝑝)], with c being a finite and arbitrary real 

number. However, his demonstration would remain valid for 𝑛 ∈ [𝑁𝑝 − 𝑜(𝑁), 𝑁𝑝 +
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𝑜(𝑁)]. In other words, in the limit 𝑁 → ∞, the distribution of the random variable 𝑁𝐴 

approaches a normal distribution in any interval centred at 𝑁𝑝 and with length of 𝑜(𝑁). 

In a reaction system however, the difference 𝑁𝐴 − 𝑁𝑝 can take values of order 𝑂(𝑁). In 

a hypothetical example, the reaction (IV.92) could be driven towards the left at very low 

temperatures. The system could then be quickly brought to a higher temperature, so that 

at the beginning of the equilibration process the number of molecules A is 𝑁𝐴 ≈ 𝑁, at a 

distance 𝑁(1 − 𝑝) from the mean value 𝐸(𝑁𝐴). The distribution does not follow a 

Gaussian in this case, so one can say that condition (3) only holds if the reaction system 

is close to equilibrium. 

To verify this statement, one can look at the expression of the reaction velocity as a 

function of its affinity, given below (Prigogine, 1962): 

 
v = v𝑓 (1 − 𝑒−

𝐴1
𝑅𝑇) (IV.98) 

where v𝑓 is the velocity of the forward reaction 𝐴 → 𝐵. The traditional near-equilibrium 

condition for a reaction system is written as: 

 |𝐴1 𝑅𝑇⁄ | ≪ 1 (IV.99) 

Hence, a near-equilibrium reaction obeys the following kinetics (Prigogine, 1962): 

 
v = v𝑒𝑞

𝑓 (
𝐴1
𝑅𝑇
) (IV.100) 

Note that in eq. (IV.100) the flux (reaction velocity v) is proportional to the force 𝐴1 𝑇⁄ . 

The condition for linear flux-force relationship is therefore given by eq. (IV.99). Affinity 

𝐴1 can be rewritten in terms of 𝑁𝐴 and 𝐾𝑒𝑞, so that eq. (IV.99) takes the following form: 

 
|ln (

.

.

.
𝐾𝑒𝑞

𝑁𝐴
𝑁 − 𝑁𝐴

.

.

.
)| ≪ 1 (IV.101) 

Replacing 𝐾𝑒𝑞 in eq. (IV.101) by its expression in eq. (IV.97) and setting 𝑁𝐴 = 𝑛 yields: 

 
|ln (

.

.

.

(1 − 𝑝)

𝑝

𝑛

𝑁 − 𝑛

.

.

.
)| ≪ 1 (IV.102) 
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If 𝑛 = 𝑁𝑝 + 𝑜(𝑁) and 𝑁 → ∞: 

𝑙𝑖𝑚
𝑁→∞

|𝑙𝑛 (
:
:
:

(1 − 𝑝)

𝑝

𝑁𝑝

𝑁 − 𝑁𝑝 − 𝑜(𝑁)

:
:
:
)| = 𝑙𝑖𝑚

𝑁→∞
|𝑙𝑛 (

:
:
:

𝑁

𝑁 − 𝑜(𝑁) (1 − 𝑝)⁄

:
:
:
)| =

= 𝑙𝑖𝑚
𝑁→∞

|𝑙𝑛 (
:
:
:

1

1 − [𝑜(𝑁) 𝑁⁄ ] (1 − 𝑝)⁄

:
:
:
)| ⇒ 

 
⇒ lim

𝑁→∞
|ln (

:
:
:

(1 − 𝑝)

𝑝

𝑁𝑝

𝑁 − 𝑁𝑝 − 𝑜(𝑁)

:
:
:
)| = 0 (IV.103) 

However, when 𝑛 = 𝑁𝑝 + 𝑂(𝑁) (say 𝑛 = 𝑘𝑁): 

 
lim
𝑁→∞

|ln (
:
:
:

(1 − 𝑝)

𝑝

𝑘𝑁

𝑁 − 𝑘𝑁

:
:
:
)| = ln (

:
:
:

1 − 𝑝

𝑝

𝑘

1 − 𝑘
 
:
:
:
) ≠ 0 (IV.104) 

The above developments show the connection between condition (3) and the well-known 

condition for linear flux-force relationships given by eq. (IV.99). The conclusion is that 

Onsager’s reciprocal relations are not applicable for reactions very far from equilibrium, 

because condition (3) is violated. Near equilibrium, the reciprocal relations hold 

(Prigogine, 1962). 

4. Microscopic reversibility holds. In classic mechanics, this is equivalent to saying 

that the equations of motion for the particles composing the system are invariant 

under time-reversal. Any conservative system obeys this principle. 

This is true as well. In theory, all isolated systems have time symmetry. See (Onsager, 

1931a) for an interesting application of microscopic reversibility in the kinetics of 

coupled reactions. 

5. The dynamics of the average fluctuations are given by the linear differential 

equations in eq. (IV.26). This linear flux-fluctuation relationship is observed 

experimentally for various systems, including reactions near equilibrium and 

pairs of subsystems exchanging heat and mass. However, these experimental 

measures are taken for systems out of equilibrium, since the small fluctuations of 

a system at equilibrium are hard to capture. One has to assume that the same 

dynamics observed experimentally for large fluctuations holds in the limit 𝛼 𝛼 =

𝑂 (𝐾𝐵𝐾
−1). Alternatively, one could assume eq. (IV.36) instead of eq. (IV.26). 
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This condition (5) is virtually impossible to confirm, as the dynamics of a system at 

equilibrium will look steady for a macroscopic observer. Regardless, condition (3) is 

violated for a reaction system far from equilibrium, which is enough to reject the 

reciprocal relations for such a system. 

But Ziegler’s MaxEP principle does rely upon conditions (3) and (5), which are replaced 

by conditions (3’) and (5’). So the question now is of whether this principle can be applied 

to a reaction system. The necessary conditions for using such a principle are (1), (2), (4) 

listed above (which were shown to be satisfied), as well as (3’) and (5’) in Section IV.1.3. 

The following section will show that, even though (3’) and (5’) are satisfied, MaxEP fails 

to predict the kinetics of a coupled reaction system. 

IV.3.2 Attesting the inadequacy of Ziegler’s MaxEP for coupled reactions 

Let us consider an isolated system with three components A, B and C. Two reversible 

reactions happen in this system, according to the equation below: 

 𝐴 ⇌ 𝐵 

𝐵 ⇌ 𝐶 

(IV.105) 

For simplification purposes, it shall be assumed that the heat of reaction is negligible in 

both reactions. Alternatively, one could assume that reactive concentrations are negligible 

compared to the amount of solvent in solution, so that the temperature of the system 

remains the same. Further, all reactions are of first order. Their affinities are therefore 

given by the following expressions (Prigogine, 1962): 

 
𝐴1 = 𝑅𝑇 ln (

.

.

.
𝐾𝑒𝑞
1 (𝑇)

𝐶𝐴
𝐶𝐵

.

.

.
) 

𝐴2 = 𝑅𝑇 ln(

.

.

.
𝐾𝑒𝑞
2 (𝑇)

𝐶𝐵
𝐶𝐶

.

.

.
) 

(IV.106) 

where 𝐶𝐴 and 𝐶𝐵 are respectively the molar concentrations of A and B, and where the 

equilibrium constants 𝐾𝑒𝑞
1  and 𝐾𝑒𝑞

2  can depend on the temperature. 

Because the system is isolated, its mass is conserved: 

 𝐶𝐴 + 𝐶𝐵 + 𝐶𝐶 = 𝐶0 (IV.107) 
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From eqs. (IV.106) and (IV.107), it is possible to write 𝐶𝐴 and 𝐶𝐵 as a function of 𝐴1 and 

𝐴2: 

 

𝐶𝐴 = 𝐶0
𝑒
𝐴1+𝐴2
𝑅𝑇

𝐾𝑒𝑞1 (𝐾𝑒𝑞2 + 𝑒
𝐴2
𝑅𝑇) + 𝑒

𝐴1+𝐴2
𝑅𝑇

 

𝐶𝐵 = 𝐶0
1

[(𝐾𝑒𝑞2 𝑒
−
𝐴2
𝑅𝑇 + 1) +

𝑒
𝐴1
𝑅𝑇

𝐾𝑒𝑞1
]

 

(IV.108) 

The kinetics of first-order reactions can be written as a function of concentrations and 

affinities: 

 
v1 = 𝑘1

𝑓
𝐶𝐴 (1 − 𝑒

−
𝐴1
𝑅𝑇) 

v2 = 𝑘2
𝑓
𝐶𝐵 (1 − 𝑒

−
𝐴2
𝑅𝑇) 

(IV.109) 

where v1 and v2 are the velocities (in moles per volume) of the first and second reactions, 

and 𝑘1
𝑓
 and 𝑘2

𝑓
 are the forward rate constants. Inserting eq. (IV.108) into eq. (IV.109) 

yields the velocities as a function of the affinities: 

 

v1 = 𝑘1
𝑓
𝐶0

𝑒
𝐴1+𝐴2
𝑅𝑇 (1 − 𝑒−

𝐴1
𝑅𝑇)

𝐾𝑒𝑞1 (𝐾𝑒𝑞2 + 𝑒
𝐴2
𝑅𝑇) + 𝑒

𝐴1+𝐴2
𝑅𝑇

 

v2 = 𝑘2
𝑓
𝐶0

1 − 𝑒−
𝐴2
𝑅𝑇

[(𝐾𝑒𝑞2 𝑒
−
𝐴2
𝑅𝑇 + 1) +

𝑒
𝐴1
𝑅𝑇

𝐾𝑒𝑞1
]

 

(IV.110) 

Eq. (IV.110) can be inverted to give the affinities as functions of the velocities: 

 

𝐴1
𝑇
= −𝑅 ln

[
 
 
 
 −

𝑘1
𝑏

𝑘1
𝑓 v1 +

𝑘1
𝑏

𝑘2
𝑏 v2 + 𝐶0𝑘1

𝑏

(1 +
𝑘2
𝑓

𝑘2
𝑏)v1 +

𝑘1
𝑏

𝑘2
𝑏 v2 + 𝐶0𝑘1

𝑏

]
 
 
 
 

 

𝐴2
𝑇
= −𝑅 ln [

−𝑘2
𝑓
v1 − (𝑘1

𝑓
+ 𝑘1

𝑏)v2 + 𝐶0𝑘1
𝑓
𝑘2
𝑓

−𝑘2
𝑓
v1 + 𝑘1

𝑓
𝑘2
𝑓
𝑘2
𝑏⁄ × v2 + 𝐶0𝑘1

𝑓
𝑘2
𝑓
] 

(IV.111) 

where all the equilibrium constants are replaced by the ratio between forward and 

backward reactions. Note that eqs. (IV.110) and (IV.111) together guarantee a one-to-one 
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correspondence between fluxes v𝑗  and forces 𝐴𝑗 𝑇⁄ . Therefore, the necessary condition 

(5’) to apply MaxEP is met. 

Now, since the forces 
𝐴1

𝑇
, 
𝐴2

𝑇
 are known functions of the fluxes 𝑣1 and 𝑣2, the entropy 

production itself can be written as a function of v1 and v2 by means of the bilinear 

expression 𝜎 = ∑𝑋𝑘 𝐽𝑘   in eqs. (I.11): 

 

𝜎 = −𝑅v1 ln

[
 
 
 
 −

𝑘1
𝑏

𝑘1
𝑓 v1 +

𝑘1
𝑏

𝑘2
𝑏 v2 + 𝐶0𝑘1

𝑏

(1 +
𝑘2
𝑓

𝑘2
𝑏) v1 +

𝑘1
𝑏

𝑘2
𝑏 v2 + 𝐶0𝑘1

𝑏

]
 
 
 
 

− 𝑅𝑣2 ln [
−𝑘2

𝑓
v1 − (𝑘1

𝑓
+ 𝑘1

𝑏)v2 + 𝐶0𝑘1
𝑓
𝑘2
𝑓

−𝑘2
𝑓
v1 + 𝑘1

𝑓
𝑘2
𝑓
𝑘2
𝑏⁄ × v2 + 𝐶0𝑘1

𝑓
𝑘2
𝑓
] (IV.112) 

Eq. (IV.112) shows that the entropy production can be expressed as a function of the 

fluxes, so that condition (3’) in Section IV.1.3 is satisfied. Hence, one could use the 

MaxEP in eq. (IV.42) to find the velocities 𝑣1
𝑍, 𝑣2

𝑍 corresponding to certain forces 𝐴1
∗ 𝑇⁄  

and 𝐴2
∗ 𝑇⁄ . If the MaxEP is correct, the result must be in agreement with the one obtained 

via eq. (IV.110). Figure IV.6 shows that this is not the case. 

 

𝜎 

100 

𝜎 

100 

(a) (b) 
 

Figure IV.6 – (a) Far from equilibrium, and (b) near equilibrium comparison between 

the reaction velocities found from reaction kinetics theory (black dot) and from Ziegler’s 

MaxEP principle (red dot) 

In this figure, the blue plane corresponds to the constraint 𝜎 = v1 𝐴1
∗ 𝑇⁄ + v2 𝐴2

∗ 𝑇⁄ , while 

the orange surface is the graph of function 𝜎(v1, v2) given by eq. (IV.112). Further, the 

black dot corresponds to the point (v1
∗, v2

∗) found using eq. (IV.110), whereas the red dot 

is the solution (v1
𝑍 , v2

𝑍) found using the MaxEP principle in eq. (IV.42). For convenience, 
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the dimensions are defined so that 𝑅 = 1 and 𝑇 = 1. The values of the reaction constants 

in the two scenarios are the same: 𝑘1
𝑓
= 1, 𝑘1

𝑏 = 2, 𝑘2
𝑓
= 1.5, 𝑘2

𝑏 = 0.9. Table IV.1 gives 

the velocities and forces for (a) and (b), as well as for an extra case (c) even closer to 

equilibrium. The units are omitted on purpose, as the convention 𝑅 = 1 (corresponding 

to 8.314 𝐽 𝐾.mol⁄ ) and 𝑇 = 1 (corresponding to 298 K) do not match any known set of 

units. 

Table IV.1 – Reaction velocities from MaxEP principle and from kinetics theory for three 

different pairs of forces 

 𝐴1
∗ 𝑇⁄  𝐴2

∗ 𝑇⁄  v1
∗ v1

𝑍 v2
∗ v2

𝑍 𝜎∗ 𝜎𝑍 

(a) -2.1401 0.6360 -2.500 -2.707 1.000 1.756 5.9862 6.9101 

(b) -0.7444 0.3285 -1.000 -0.976 0.400 0.498 0.8754 0.8901 

(c) -0.0771 0.0404 -0.100 -0.099 0.040 0.041 0.0093 0.0093 

 

Figure IV.6 and Table IV.1 show that Ziegler’s MaxEP principle fails to predict the 

phenomenological flux-force relations for a reaction system far from equilibrium. 

However, as the system approaches equilibrium (i.e., as 𝐴1
∗ 𝑇⁄  and 𝐴2

∗ 𝑇⁄  decrease), 

MaxEP predictions approach the actual reaction velocities. This is not surprising: near-

equilibrium, the MaxEP principle converges to Onsager’s reciprocal relations, as 

mentioned in Section IV.1.3. And the reaction system described above respects these 

reciprocal relations near equilibrium. Indeed, if 𝐴1 𝑅𝑇⁄ ≪ 1 and 𝐴2 𝑅𝑇⁄ ≪ 1, the first-

order expansion of eqs. (IV.109) or (IV.110) yields a relation where both coupling 

coefficients are 0 (i.e., where v𝑖 depends on 𝐴𝑖 alone, and not on 𝐴𝑗): 

 
v1 = 𝑘1

𝑓
𝐶𝐴
𝑒𝑞 𝐴1
𝑅𝑇

 

v2 = 𝑘2
𝑓
𝐶𝐵
𝑒𝑞 𝐴2
𝑅𝑇

 

(IV.113) 

IV.4 Other criticisms 

Other researchers, such as Bataille et al. (1978) and Polettini (2013), have made pertinent 

critics to the MaxEP principle. These pertinent critics were often met with vague replies, 

which either do not have enough evidence to debunk the critic, use some type of circular 

reasoning to conclude against the criticism, or make wrong use of terms and concepts. 
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For example, it has been recognized that MaxEP sometimes yields fluxes and forces 

different from the ones originally defined and used to calculate 𝜎 in eq. (I.11). For 

example, for given fluxes 𝐽1 and 𝐽2, the forces found using Ziegler’s MaxEP principle and 

those originally defined for the system are the same if and only if (Martyushev and 

Seleznev, 2006): 

 
𝑋2(𝐽1, 𝐽2)

𝜕𝜎(𝐽1, 𝐽2)

𝜕𝐽1
= 𝑋1(𝐽1, 𝐽2)

𝜕𝜎(𝐽1, 𝐽2)

𝜕𝐽2
 (IV.114) 

Eq. (IV.114) is true for instance when 𝜎(𝐽1, 𝐽2) is quadratic and the reciprocal relations 

hold. However, we have seen in Section IV.3.2 that MaxEP does not yield the same fluxes 

and forces as the ones originally defined for a reaction system far from equilibrium. 

This discrepancy is related to the so-called non-uniqueness of the choice of fluxes and 

forces ( Martyushev and Seleznev, 2006; Janečka and Pavelka, 2017). To circumvent this 

issue, some authors advocating for MaxEP assume the principle as a postulate, and define 

the forces according to the 𝑋 − 𝐽 orthogonality equation (IV.43). This could for example 

justify the values v1
𝑍 and v2

𝑍 in Table IV.1: they are different from v1
∗ and v2

∗  because the 

forces 𝐴1
∗ 𝑇⁄  and 𝐴2

∗ 𝑇⁄  have a different meaning (other than affinity divided by 

temperature) in MaxEP. However, note that this re-interpretation of fluxes and forces 

goes against the definitions of J and X given respectively by eqs. (IV.25) and (IV.34). 

Further, using Ziegler’s theory to redefine thermodynamic forces renders the theory itself 

hollow. 

To illustrate this hollowness, let us imagine an arbitrary variational principle, the 

Maximization of Something (MaxSmth), which yields the phenomenological relations 

between fluxes and forces according to the following maximization: 

 max
𝑋
{‖𝑋‖

2
𝜉(𝑋)} 

s. t.   𝜉(𝑋) − 𝐽 ∙ 𝑋 = 0  

(IV.115) 

where 𝜉(𝑋) is the entropy production given as a function of the forces. 
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Solving the above problem allows one to find the fluxes as a function of the forces (i.e., 

some phenomenological relations): 

 
𝐽 =

2(𝜉 − 𝑋 ∙ ξX)𝜉

(𝑋 ∙ 𝑋)(2𝜉 + 𝑋 ∙ 𝜉𝑋)
𝑋 +

3(𝑋 ∙ 𝑋)𝜉

(𝑋 ∙ 𝑋)(2𝜉 + 𝑋 ∙ 𝜉𝑋)
𝜉𝑋  (IV.116) 

where 𝜉𝑋 = [𝜕𝜉 𝜕𝑋1⁄ , 𝜕𝜉 𝜕𝑋2⁄ ,… ]. 

To overcome the non-uniqueness paradox, one could postulate that the fluxes shall always 

be defined according to MaxSmth. However, the quantities 𝐽 found using eq. (IV.116) 

have no physical meaning. And this is precisely why Ziegler’s theory becomes hollow 

once it is postulated and used to redefine thermodynamic forces. Instead of using 

variational principles that may result in meaningless fluxes or forces, one should use 

respectively eqs. (IV.25) and (IV.34) to define these quantities. 

Another argument against the MaxEP is made in Polettini (2013). The author considers 

the fluid flow in two different pipes; in one of them, the flow is laminar, whereas turbulent 

flow takes place in the other. In such a system, the thermodynamic forces are proportional 

to the pressure drops. In laminar flow, the pressure drop is proportional to the fluid 

flowrate 𝐽𝑙, whereas in turbulent flow the pressure drop is proportional to 𝐽𝑡|𝐽𝑡|, with 𝐽𝑡 

being the flowrate in the turbulent pipe. Therefore, one can write separate entropy 

production rates for each pipe following eq. (I.11): 𝜎𝑙 = 𝑀𝑙𝐽𝑙
2 and 𝜎𝑡 = 𝑀𝑡𝐽𝑡

3 (only 

positive values of 𝐽𝑡 are considered for convenience. The entropy production of the global 

system containing the two pipes is (Polettini, 2013): 

 𝜎 = 𝑀𝑙𝐽𝑙
2 +𝑀𝑡𝐽𝑡

3 (IV.117) 

Polettini (2013) shows that the MaxEP applied to eq. (IV.117) does not yield the correct 

flux-forces relationship, which a priori could be another evidence against Ziegler’s 

theory. However, Ziegler (1983b) restricts MaxEP to systems whose entropy production 

𝜎(𝐽) cannot be separated as a sum of independent contributions (the so-called non-

compound systems). For example, a system whose entropy production function has a 

cross-term 𝑀𝑙𝑡𝐽𝑙𝐽𝑡 (𝑀𝑙𝑡 ≠ 0) is non-compound. Because the system described by Polettini 

(2013) is compound, his argument against Ziegler’s theory is not entirely valid 

(Martyushev and Seleznev, 2014). 
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A variation of Polettini’s argument can be conceived if one considers an arbitrarily small 

coupling between the two flows. One can of course argue that such a coupling is 

impossible if the flows take place in different pipes. However, the exact nature of the 

phenomena, and how the coupling actually happens, is superficial in the next steps. One 

can assume two hypothetical phenomena l and t. If only l takes place in the system, 𝑋𝑙 =

𝑀𝑙𝐽𝑙 and 𝜎𝑙 = 𝑀𝑙𝐽𝑙
2. On the other hand, if only t takes place, then 𝑋𝑡 = 𝑀𝑡𝐽𝑡

2 and 𝜎𝑡 =

𝑀𝑡𝐽𝑡
3 (assuming only positive 𝐽𝑡 values). If both phenomena take place at the same time, 

it shall be assumed that an infinitesimal coupling takes place. The most general way of 

representing such system is: 

 𝑋𝑙 = 𝑀𝑙𝐽𝑙 + 𝜖1𝑓1 (𝐽) 

𝑋𝑡 = 𝑀𝑡𝐽𝑡
2 + 𝜖2𝑓2 (𝐽) 

𝜎 = 𝑀𝑙𝐽𝑙
2 + 𝜖1𝐽𝑙𝑓1 (𝐽) + 𝜖2𝐽𝑡𝑓2 (𝐽) + 𝑀𝑡𝐽𝑡

3 

(IV.118) 

where 𝜖1 and 𝜖2 are arbitrarily small, 𝑓1|𝐽𝑡=0 = 0 and 𝑓2|𝐽𝑙=0 = 0. For the entropy 

production in eq. (IV.118), MaxEP yields the following relations: 

 
𝑋𝑙 = 𝜆 (𝐽) [2𝑀𝑙𝐽𝑙 + 𝜖1 (𝑓1 + 𝐽𝑙

𝜕𝑓1
𝜕𝐽𝑙
) + 𝜖2𝐽𝑡

𝜕𝑓2
𝜕𝐽𝑙
] 

𝑋𝑡 = 𝜆 (𝐽) [3𝑀𝑡𝐽𝑡
2 + 𝜖2 (𝑓2 + 𝐽𝑡

𝜕𝑓2
𝜕𝐽𝑡
) + 𝜖1𝐽𝑙

𝜕𝑓1
𝜕𝐽𝑡
] 

(IV.119) 

where 𝜆 appears from the Lagrange multipliers method, and can be determined from the 

constraint in eq. (I.11): 

 
𝜆 (𝐽) =

𝑀𝑙𝐽𝑙
2 + 𝜖1𝐽𝑙𝑓1 (𝐽) + 𝜖2𝐽𝑡𝑓2 (𝐽) + 𝑀𝑡𝐽𝑡

3

[2𝑀𝑙𝐽𝑙 + 𝜖1 (𝑓1 + 𝐽𝑙
𝜕𝑓1
𝜕𝐽𝑙
) + 𝜖2𝐽𝑡

𝜕𝑓2
𝜕𝐽𝑙
] 𝐽𝑙 + [3𝑀𝑡𝐽𝑡

2 + 𝜖2 (𝑓2 + 𝐽𝑡
𝜕𝑓2
𝜕𝐽𝑡
) + 𝜖1𝐽𝑙

𝜕𝑓1
𝜕𝐽𝑡
] 𝐽𝑡

 (IV.120) 

Now the idea of arbitrarily small coupling will prove itself useful. Such weak couplings 

can be obtained by a careful choice of system. For example, weak heat-diffusion coupling 

occurs for a solution of toluene in chlorobenzene (Demirel and Gerbaud, 2019). There 

surely are a large number of other solute-solvent combinations with even weaker coupling 

strengths. So weak in fact that the coupling might go unnoticed, and the system might be 

treated as compound. 
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These hypothetical systems are not listed as an exception to MaxEP (Ziegler, 1983b ; 

Martyushev and Seleznev, 2014). Nevertheless, eqs. (IV.119) and (IV.120) are not in 

agreement with eq. (IV.118). Indeed, the 0-th approximations of 𝑋𝑙 and 𝑋𝑡 in eq. (IV.120) 

are: 

 
𝑋𝑙 ≈ 2𝑀𝑙𝐽𝑙

𝑀𝑙𝐽𝑙
2 +𝑀𝑡𝐽𝑡

3

2𝑀𝑙𝐽𝑙
2 + 3𝑀𝑡𝐽𝑡

3 

𝑋𝑡 ≈ 3𝑀𝑡𝐽𝑡
2
𝑀𝑙𝐽𝑙

2 +𝑀𝑡𝐽𝑡
3

2𝑀𝑙𝐽𝑙
2 + 3𝑀𝑡𝐽𝑡

3 

(IV.121) 

This result is clearly different from the 0th-order approximation of the forces in eq. 

(IV.118). The reasoning shown above can be extended to any phenomena l and t, as long 

as the driving force for one phenomenon is analytic on the flux when the other 

phenomenon does not take place. The conclusion is either: (i) MaxEP is inaccurate; or 

(ii) infinitely weak coupling between two phenomena whose forces are represented by 

polynomial series of different orders cannot exist in nature. The second proposal implies 

the existence of some minimum coupling strengths 𝜖𝑖 ≠ 0 for these phenomena, which 

seems unlikely. 

Another work that deserves attention is Ziegler’s reply to the article that shows the 

inadequacy of MaxEP for chemical reactions (Bataille et al., 1978; Ziegler, 1983a). 

Ziegler makes several flaws in his attempt to discredit Bataille’s counterexample. But the 

most important one is assuming that the entropy production is a quadratic function of the 

velocities (see eqs. (4.14) and (4.20) in Ziegler (1983a)). This assumption is false even if 

there is only one reaction taking place, rendering all of the arguments in the paper 

groundless. For example, an extract in page 842 reads: 

We have stressed that maximal rate of entropy production has not been used in the 

derivation of (4.13). This equation and hence also (6.3) are based on nothing else than 

classical Thermodynamics. Since (6.5), obtained from the standard equation, cannot be 

reconciled with (6.3), the standard equation violates the laws of Thermodynamics and 

hence must be rejected. 

But eq. (6.3) in Ziegler (1983a) uses the assumption that the entropy production is 

quadratic on the velocities, and hence is not based on classical thermodynamics alone. 

Further, the standard equation (better known as the law of mass action) was discovered 
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more than 150 years ago (Ferner and Aronson, 2015), and it has been widely validated 

ever since. Differently from what was stated by Ziegler, the law of mass action is in 

agreement with thermodynamics, and the first-order rate equation can be derived for gases 

from statistical thermodynamics (Hill, 1986). 

Finally, the end of this section will discuss an undeserved praise for MaxEP. Many 

authors seem to commend MaxEP due to the fact that it yields Onsager’s reciprocal 

relations near equilibrium (Ziegler, 1983b; Martyushev and Seleznev, 2006; Bordel, 

2010; Herbert et al., 2013; Seleznev and Martyushev, 2014). However, the principle of 

MaxEP came as an attempt to generalize Onsager’s reciprocal relations to nonlinear 

thermodynamics (Ziegler, 1958). Praising MaxEP because it yields Onsager’s reciprocal 

relations is unreasonable, since MaxEP was itself conceived so that it would agree with 

the reciprocal relations near equilibrium. Any other attempt to generalize Onsager’s 

principle, regardless of how baseless and incorrect, would of course yield the reciprocal 

relations as well. 

IV.5 Summary 

This chapter shows the inadequacy of the Maximum Entropy Production principle 

proposed by Ziegler (1958, 1961, 1968, 1970, 1983a) as a generalization of Onsager’s 

reciprocal relations far from equilibrium. First, the derivation of the Orthogonality 

Principle (precursor of MaxEP) as given in Ziegler (1970) was reproduced with more 

details, so that its flaws could be seen more clearly. There were two main mistakes in this 

demonstration: concluding that two functions are equal because their integrals over a 

certain range have equal values, and using circular reasoning (i.e., assuming the principle 

is true in order to prove it). 

Once these flaws were highlighted, Section IV.3 discussed a simple reaction system that 

does not obey MaxEP. Although the counterexample was found independently in the 

course of this thesis, a very similar one had already been discussed more than 40 years 

ago (Bataille et al., 1978). The advantage of the instance presented here is that the 

calculations are simpler, and the results can be easily represented in a 3D plot. Finally, 

Section IV.4 criticizes some of the classic arguments in favour of MaxEP. 

Nevertheless, it remains that MaxEP can be seen an elegant formulation of Onsager’s 

reciprocal relations. Further, it provides physical insight on the phenomenological laws 
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of coupling: near equilibrium, given the thermodynamic forces at any instant, the system 

“chooses” the fluxes so that the rate of dissipation (entropy production) is maximized. 
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Chapter V. Conclusion and recommendations for 

future work 

V.1 Conclusions 

To elucidate the mechanisms behind nature’s efficiency and resiliency, Gerbaud et al. 

(2020) proposed a non-equilibrium thermodynamics (NET) framework. This framework 

was conceived as an analogue of a nature-inspired chemical engineering framework 

introduced by Coppens (2012). It contemplates three NET concepts for innovation in 

chemical engineering, as illustrated in Figures I.1 and I.4. NET1 (equipartition of entropy 

production + Constructal Law) is suitable to improve energy efficiency of processes and 

to optimize flow structures in general. NET2 (thermodynamic coupling) provides 

alternative mechanisms for unit operations, such as performing mass transfer via 

temperature gradients. Finally, NET3 (dissipative structures) exploits the concept of 

bifurcation in the presence of large thermodynamic forces, such as the emergence of 

Bénard convection cells in a liquid subjected to high temperature gradients. For instance, 

bifurcation in the form of switch to different production lines was used to improve the 

resilience of biorefineries that must cope with variability of feed, demand, and operating 

conditions (Houngbé et al., 2019). 

The first research project derived from this framework is presented in Chapter II, and it 

concerns the modelling and assessment of a new liquid distributor (Meyer and Rouzineau, 

2020) whose design is justified by NET1. The second and third projects are on interface-

driven phenomena (Chapter III) and on the rebuttal of Ziegler’s Maximum Entropy 

Production (MaxEP) principle (Ziegler, 1968) (Chapter IV). Both these projects stemmed 

from NET2. Indeed, in diffusiophoresis and diffusioosmosis phenomena, a gradient in 

solute concentration drives the flux of another substance. Besides, thermodynamic 

coupling is at the heart of Ziegler’s theory, since it attempts to generalize Onsager’s 

reciprocal relations for coupled phenomena. 

The tree-like distributor, illustrated in Figure II.6, improves on the classic orifice-pan 

internal by adding wire layers that branch and split the liquid coming from the holes on 

the distributor plate. The configuration with 6 layers and 13 initial irrigation points was 
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found to decrease the theoretical maldistribution factor 𝑀𝑓 significantly. Indeed, for the 

collection zones shown in Figure II.22, 𝑀𝑓 decreases from 0.236 (with the classic orifice-

pan distributor) to 0.136 (with the retrofitted design). This improvement reflects in the 

performance of packed distillation columns when the packing is more sensitive to initial 

liquid distribution. For example, the HETP of the Tetra Spline structured packing (Kawas 

et al., 2021) discussed in Section II.3.3 decreases from 0.45m to 0.27m when the new 

distributor is employed. 

Such a decrease in HETP also decreases capital cost per theoretical stage for packed 

columns. Besides, given that distillation is responsible for a great part of the energy 

consumption in chemical industry, any progress towards increasing distillation efficiency 

is also progress towards sustainability. Finally, the original and creative design of the 

liquid distributor depicted in Figure II.6 may motivate other researchers to continue 

innovating on well-established transport architectures, such as classic heat exchangers 

and mass transfer devices. For an example of innovative mass transfer device, see the gas 

supply system proposed by Kjelstrup et al. (2010) for a membrane fuel cell. 

After the assessment of the tree-like liquid distributor, diffusioosmosis and 

diffusiophoresis were studied via numerical simulations in Chapter III. This chapter 

featured an attempt to model membrane filtration through interface forces alone, i.e. 

without an external potential acting on the solute along the direction of the flow. The 

geometry used to simulate the membrane is similar to the one adopted by Bacchin et al. 

(2019), and it consists of an array of cylindrical obstacles equally spaced, as depicted in 

Figure III.7. Further, the model used for simulations is a Euler-Euler mixture model, 

which uses averaged equations to avoid tracking every colloidal particle in the mixture. 

Such a model, shown in eqs. (III.29)–(III.32), accounts for colloid – colloid interactions 

via the particle pressure term Π𝑐𝑐. It also takes interface – colloid interactions into account 

via the interaction potential Π𝑖𝑐 shown in eq. (III.25). 

Results showed that a membrane modelled in this way is leaky, with reflection 

coefficients 𝜎0 varying between 0.128 and 0.0414 for colloid concentration differences 

(in terms of volume fraction) between 0.01 and 0.1. The coefficient 𝜎0, defined in eq. 

(III.19), represents the ratio between hydrostatic pressure drop and osmotic pressure drop 

across a membrane in the advection-osmosis equilibrium state. It equals 1 for ideal 

semipermeable membranes, but can vary significantly for real membranes. For example, 
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reflection coefficients between 0.1 and 1 have been measured for membrane separation 

of organic pollutants (Agenson et al., 2003). 

Apart from showing the change in 𝜎0 with respect to colloid concentration difference, the 

results for the diffusioosmosis case study stressed the tendency for cake formation and 

anomalous osmosis when colloid – interface attraction is strong. As a reminder, 

anomalous osmosis refers to the situations in which the solvent tends to flow from the 

high solute concentration side to the low solute concentration side. 

Finally, comparison between simulations using different equations of state (EoS) for Π𝑐𝑐 

highlighted the importance of an adequate model for colloid – colloid interactions. Two 

EoS were compared via simulations: van 't Hoff (VH) and Carnahan-Starling + van der 

Walls, given by eqs. (III.11) and (III.15) respectively. The former EoS neglects colloid – 

colloid interactions, whereas the latter combines a hard-sphere repulsion term and a van 

der Walls attraction term. It was shown that VH may underestimate the potential for 

fouling and cake formation in the system. Indeed, for an array of cylinders separating two 

reservoirs of concentrations 𝜙𝑙 = 0.1 (left) and 𝜙𝑟 = 0 (right), and for an attraction 

parameter 𝑎𝑡𝑡 of 0.2 (c.f. eq. (III.25)), VH predicts a concentration peak of 𝜙𝑚𝑎𝑥 ≈ 0.1 

near the interface. This peak increases to 𝜙𝑚𝑎𝑥 = 0.16 when Carnahan-Starling + van 

der Waals EoS is used. 

The conclusions drawn from this project could be of use in the membrane research field. 

For example, this thesis brings up the possibility that osmotic reflection coefficients could 

depend on colloid concentration difference Δ𝜙 across the membrane, even at low 

concentrations, as long as membrane geometry does not resemble that of capillary pores. 

Further numerical and experimental investigation that could confirm this possibility are 

given in the next section. Apart from that, the Python routine for diffusioosmosis 

simulations given in Appendix C will hopefully assist other researchers willing to study 

diffusioosmosis via numerical simulations. Finally, the qualitative agreements between 

experiments and numerical results may instigate others to adopt the model described in 

Section III.3 for a better description of particle accumulation and mixture flow near the 

membrane surface. This model accounts for colloid – colloid and colloid – interface 

interactions. Further, it is a compromise between oversimplistic models that consider 

membrane as a barrier of 0 thickness, and overcomplex Lagrangian models that account 

for the membrane structure but keep track of every colloidal particle in the system. 
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Still in Chapter III, the diffusiophoresis numerical simulations with two moving particles, 

as depicted in Figure III.16, showed that particles with different solute – interface 

interaction potentials may move away from each other. This phenomenon could be 

applied to separation processes. For example, if the mixture is forced to flow in a channel 

with solute gradient perpendicular to the direction of the flow, continuous particle 

separation could be achieved by splitting the end of the channel in two parts. The 

applicability of diffusiophoretic separation in microfluidics is indeed a trending topic in 

fluid physics, with many recent theoretical and experimental investigations bringing 

positive results (Shin, 2020). 

The results presented in this thesis clarify various aspects of this phenomenon, benefitting 

its global understanding and consequently its modelling. One such aspect is the 

realization that a diffusiophoretic system with a fixed far-field solute concentration 

gradient “forgets” its initial state as it moves towards/against this gradient. Another aspect 

investigated here is the effect of solute-interface attraction on diffusiophoretic velocities. 

This study was conducted by varying the attraction parameter 𝑎𝑡𝑡 of the solute-interface 

interaction potential given in eq. (III.25). The results from macroscopic simulations 

presented in this thesis confirm the claim by Ramírez-Hinestrosa et al. (2020) that particle 

mobility is nonmonotonic with respect to the attraction strength of solute-interface 

interactions (Figure III.18). However, differences between these works arise in the limit 

of high attraction strengths. Whereas Ramírez-Hinestrosa et al. (2020) predict an 

asymptotic decay in mobility, macroscopic simulations predict an unbounded increase in 

mobility as the attraction forces increase. Most likely, this discrepancy appears because 

the former study considers solute molar fractions of 0.5. Hence, the solute-solute 

interactions, neglected here under the assumption of small concentrations, probably have 

a strong impact on the molecular simulation results. Other possible reasons for the 

differences in the behaviour of particle mobility are given in Section III.7.4. 

Still in the context of diffusiophoresis, an expression was regressed that relates 

diffusiophoretic velocity 𝑣𝐷𝑃 to the gradient in solute concentration, absolute solute 

concentration, and diffusion coefficient (eq. (III.63)). Understanding how all these 

parameters affect the diffusiophoretic velocity is of particular interest in the research for 

synthetic microswimmers. As mentioned in Section I.2, these nature-inspired 

microbodies have several potential applications in biomedicine, including drug delivery 

and the removal of toxins from the human body (Elgeti et al., 2015). 
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The equation regressed generalizes a result previously obtained in the limit of short 

solute-particle interaction range (Anderson and Prieve, 1984, 1991), namely the 

dependency of diffusiophoretic velocities on the factor 𝐷 𝜙𝑚⁄ . However, note that the 

velocity given by eq. (III.63) is an equilibrium velocity, which is close but not equal to 

the actual velocity of the particle in a diffusiophoretic system. Indeed, particle velocity in 

such systems does not remain constant (c.f. Figure III.15), which means that the particle 

is not at mechanical equilibrium. 

Finally, in Chapter IV the research project on Ziegler’s MaxEP principle has led to its 

rejection in the context of far-from-equilibrium systems. The mistakes and questionable 

assumptions made by Ziegler (1970) in his attempt to prove the MaxEP principle were 

highlighted in this chapter. A detailed look into Ziegler’s 1970 paper revealed that he has 

only found an equivalent condition for MaxEP, and then concluded that MaxEP was true 

without actually proving that the equivalent condition was true. Of course, debunking the 

demonstration of Ziegler’s principle is not the same as proving the principle false. The 

proof that MaxEP is incorrect comes from a counterexample that considers a pair of 

reactions far from equilibrium. Applying Ziegler’s principle to this system leads to 

kinetics different from the ones obtained via the law of mass action, as depicted in Figure 

IV.6 and Table IV.1. Once again, it is recalled that a similar system was used by Bataille 

et al. (1978) in a previous dispute about the validity of MaxEP. 

The refutation of MaxEP presented in Chapter IV should lead researchers to acknowledge 

the limitations of this theory. This is of utmost importance, given the attention and the 

acceptance it has acquired through recent years (Martyushev and Seleznev, 2006; 

Houlsby, 2014; Janečka and Pavelka, 2017). Ziegler’s theory is, in fact, valid in the limit 

of linear NET, where it is equivalent to Onsager’s reciprocal relations. In other words, 

MaxEP is a more sophisticated statement of the reciprocal relations. 

In a broader context, this thesis attests the validity of the two first concepts in the NET 

framework for chemical engineering. Such a framework can guide innovation in the field, 

exploiting concepts in NET often neglected by engineers, such as thermodynamic 

coupling and non-linear dynamics. 
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V.2 Future work 

Based on the research for this thesis, the following studies are recommended for further 

investigation: 

• Experimental assessment of the maldistribution factor 𝑀𝑓 for the tree-like liquid 

distributor: The performance of the distributor discussed in Chapter II was 

evaluated experimentally via its impact on the HETP of distillation columns. 

Another suitable experiment is the measure of the liquid distribution over the 

different zones of the cross-section. To do that, one must fabricate a liquid 

collector divided in 21 zones similar to the ones depicted in Figure II.22, and with 

outlet tubes leaving from the underside of each zone. Flow measures can then be 

taken by placing flow sensors inside each of these tubes, as indicated by 

Lämmermann et al. (2016). With these data, it will be possible to compare the 

theoretical 𝑀𝑓 values obtained in Section II.4 with the experimental ones. This 

work is under progress. 

• Additional experiments using the tree-like liquid distributor with other types of 

industrial packing: Section II.5.1 has shown that the new liquid distributor does 

not have a significant impact on HETP of the industrial packings Pall rings and 

Mellapack 250Y. However, it might be possible to observe a decrease in HETP 

for industrial packings that are more sensitive to initial liquid distribution, such as 

structured packings with large specific surfaces (Olujić and de Graauw, 1990). 

• Validation of the membrane geometry and the diffusioosmosis model given in 

Chapter III in the limit of semi-permeability: The osmotic reflection coefficients 

derived from numerical simulations are all quite low, peaking at 𝜎0 = 0.128. 

Hence, it would be worth showing that the geometry presented in Section III.2.1, 

along with the model given in Section III.3, can also replicate the behaviour of 

semipermeable membranes (𝜎0 = 1). This may be achieved by decreasing the 

distance between the centres of adjacent cylinders (i.e., decreasing H in Figure 

III.7). Other possibilities are increasing the radius of these cylindrical obstacles, 

increasing the magnitude 𝑘𝑖𝑐 of the interface-colloid interaction potential in eq. 

(III.25), and increasing the interaction range 𝑙𝑖𝑐 of this potential. 

• Inclusion of entropy and energy balance equations to study adsorption – bulk 

viscosity coupling near a membrane: Colloid adsorption on a surface can be seen 
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as a chemical reaction. Therefore, this phenomenon might be coupled with other 

scalar contributions to entropy production. One such contribution exists when the 

mixture is compressible. In this case, mixture velocity is not divergence-free, and 

a bulk viscosity term 𝜏0 𝑇⁄ (∇ · 𝑣) (see eq. (I.10)) contributes to energy 

dissipation. Note that reaction and bulk velocity coupling have already been 

mentioned in the literature for reacting compressible flows and for relativistic 

reactive gas systems (Hermens et al., 1972; Kustova and Giordano, 2011). 

• Experiments to determine the dependency of reflection coefficient on 

solute/colloid concentration differences at small concentrations: Previous 

experimental and theoretical evidence suggest that 𝜎0 does not depend on 

solute/colloid concentration difference across the membrane if concentration is 

low. However, the numerical results in Chapter III show the opposite. To confirm 

this prediction, it would be suitable to perform experiments in the limit of low 

solute/colloid concentrations, using a leaky membrane whose morphology 

resembles an array of cylinders. Membranes with finger-like structure (Kingsbury 

and Li, 2009) may be appropriate for this. 

• Further numerical simulations to regress a more general expression for the 

diffusiophoretic velocity: One of the key results from the diffusiophoretic case 

study is eq. (III.63), which relates diffusiophoretic velocity to gradient in solute 

concentration, absolute solute concentration, and diffusion coefficient. However, 

this expression is only valid for the interaction potential shown in eq. (III.25), 

having attraction strength 𝑘𝑖𝑐 = 100, interaction length 𝑙𝑖𝑐 = 0.1, and attraction 

parameter 𝑎𝑡𝑡 = 0. An expression valid for any set of interface-solute interaction 

parameters would be even more useful, as it would enable predictions for various 

types of interface – solute interactions. 

• Review of other attempts to prove Ziegler’s Maximum Entropy Production 

principle: Convincing the scientific community that MaxEP is inaccurate might 

be a challenging task, as many researchers have already accepted and used it in 

their own works. One possible way of doing that is pointing out the mistakes in 

other works that attempted to prove the principle (Ziegler, 1958, 1983b). 

• Review of alleged successful applications of the Maximum Entropy Production 

principle: Ziegler’s theory would not persist for so long if it had not found 

successful applications. Indeed, from kinetic theory of gases to the distribution of 
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temperature and longwave radiation on the atmosphere of planets, there are many 

instances where MaxEP seems to give accurate predictions (Fukumura and 

Ozawa, 2014; Seleznev and Martyushev, 2014). A critical review of the main 

works among these instances may elucidate the reasons behind these successes. 
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Appendix A. Brief history of thermodynamics 

Undergraduate and graduate students commonly give negative feedback on their learning 

experience with thermodynamics. This problem motivated several researchers to look for 

alternative methods for teaching the subject (Mulop et al., 2012). Overall, these methods 

were found to improve the learning experience, with students performing better at exams 

and giving more positive feedback by the end of the semester. Nevertheless, many of the 

articles cited by Mulop et al. (2012) focused on “how can we make students understand 

the contents we wish to pass to them”. Only a few of them questioned the contents 

themselves. 

Cotignola et al. (2002) recognized that many introductory textbooks on thermodynamics 

reproduce some types of misconceptions. For example, out of the 7 books reviewed by 

the authors, 5 refer to heat as a “form of energy” at some point, and only 2 describe Joule’s 

experiments correctly. This suggests that the confusion and misunderstanding the 

students experience may not be related exclusively to their capacity to learn. Even the 

most genius, fast-learner student would be uncapable of comprehending a subject if its 

contents are not logically structured (e.g. if they carry contradictory information). The 

same student would also be unable to assimilate a subject if its contents are not self-

sufficient (e.g., if they make use of quantities which are not defined). 

In order to avoid perpetuating misconceptions and improve the quality of thermodynamic 

classes, Cotignola et al. (2002) propose a historical approach to thermodynamics. 

Regarding the concept of internal energy, the authors say: learning about its origin and 

evolution, as well as the ways it is presented and treated by different textbooks, mainly 

during the last years, would help us uncover hidden conceptual schemes not only in our 

students but also in scientists and teachers. 

This historical approach, although time-consuming, seems indeed to be the answer to 

many problems faced by the students. If concepts in thermodynamics are taken for 

granted, full learning is never achieved. The best way for students and professors to get 

rid of misconceptions and preconceptions is to position themselves in a time prior to said 

conceptions. For example, the idea of temperature is something internalized in people’s 

minds since they are young. Children playing outside can see the current temperature on 
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street thermometers. When they come back home to watch TV, the forecast is announcing 

what tomorrow’s temperature will be. But there was a time when thermometers did not 

exist, and temperature was a much more abstract concept. 

Much longer before the concept of temperature was solidified, humans already knew 

about hot and cold. Hot is the sensation one has when getting close to a fire, or when 

stepping on a stone that stayed under the sun for too long. Object 1 is hotter than object 2 

if that sensation is stronger upon touching object 1. Cold is what people experience when 

it is snowing, or when they jump into a river. Object 2 is colder than object 1 if that 

sensation is stronger upon touching object 2. The temperature is just an entity associated 

with these sensations of hot and cold. If object 1 is hotter than object 2, its temperature 

should be higher. If they are both equally hot/cold, their temperature should be the same. 

The association described above between temperature and physical sensation has its 

limitations. If an individual touches a metal spoon and a wood spoon, both at room 

temperature, the metal spoon will feel colder than the wood one. Putting these spoons in 

contact with each other for a long time will not change the sensation they produce: the 

metal spoon will feel as cold as it was before. In other words, some materials seem 

colder/hotter than others even at the same temperature (nowadays it is known that this is 

due to a difference in their thermal conductivities). Further, sensations are subjective, and 

individuals will experience hot and cold in different ways. Clearly, the human “sensation” 

of hot and cold is not enough to consistently evaluate temperatures. 

The first people to find a consistent way of measuring said entity linked the idea of 

temperature to the idea of mercury dilatation. When a mercury-in-glass device is 

immersed in a certain system (say cold water), the mercury level in this device will reach 

a certain level and then remain at this level. If we move the device to hotter water (hotter 

in the sense described in the previous paragraphs), the mercury level increases and 

eventually settles. The volume occupied by the mercury in the glass is related to the 

physical sensations of hot and cold. If two systems made of the same material are equally 

hot/cold upon touch, the corresponding level of mercury in the mercury-in-glass device 

will also be the same. Around the year 1724, Daniel Gabriel Fahrenheit devised a scale 

for temperature by assigning 2 reference values in this device (0 °F for the eutectic 

equilibrated mixture of ice, water and ammonium chloride; 30 °F for the equilibrated 

mixture of ice and water). He then graduated his device linearly, so that equal amounts of 

mercury dilatation correspond to equal increments in the Fahrenheit scale. After seeing 
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that the quantity now called temperature is linked to dilatation, Jacques Charles discovery 

(years later) that temperature and volume of an ideal gas obey a linear relation sounds 

much more reasonable. 

In the second half of the 18th century, chemist Antoine Lavoisier debunked the phlogiston 

theory of combustion, an old theory defending that all flammable substances contained 

an element called phlogiston. He suggested that combustion was the combination of 

substances with an active gas (oxygen) in the air. He also advocated for the caloric heat 

theory, stating that heat was a substance that migrates from warmer to colder bodies. 

Lavoisier died in the French Revolution, and his widow married Benjamin Thompson. 

Thompson, also known as Count Rumford, is famous for his paper entitled An Enquiry 

Concerning the Source of the Heat which is Excited by Friction (Count of Rumford, 

1798). In this paper, he describes an experiment in which water is heated by the friction 

of a blunt borer forced against a rotating metallic object. Heat could be “generated” 

indefinitely in this insulated experimental device, proving that it could not be a material 

substance. 

It took some time for the scientific community around the world to accept that the caloric 

heat theory was wrong. In the meanwhile, mechanical engineer Nicolas Carnot used this 

theory in his study of steam engines. He created a much more abstract model for engines, 

describing it as a system in contact with a hot source and a cold sink, and from which 

mechanical work can be extracted. Carnot also introduced the idea of cycle for engines. 

According to this idea, the working fluid (steam in the case of steam engines) could be 

brought to the same state after successive operations, such as heating/ expansion/ cooling/ 

compression. Through his abstract model, Carnot neglected any type of friction that 

appears in real engines, as well as heat conduction between different parts of the engine. 

He theorized that, in this case, engine’s efficiency was maximum, and it depended only 

on the temperatures of the hot and cold bodies in contact with the system. 

This postulate was the precursor for the Second Law of Thermodynamics. If it was to be 

violated, then the Second Law as we know today would be violated as well. To see this, 

it is important to note that the idealized model for engines proposed by Carnot is 

nowadays know as a reversible engine. A fictitious system can be conceived by coupling 

an engine more efficient than Carnot’s with a reverse Carnot engine. Both engines share 

the same hot source and cold sink, and the work produced by the first engine is all used 
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by Carnot’s reverse engine. The result from this mental construction is a closed system, 

consisting of the hot and cold bodies, the engine and the reversible Carnot engine, in 

which heat goes from the cold body to the hot body. That is a violation of the Second Law 

as we know today. 

Seeing that the embryo of the Second Law of Thermodynamics appeared before the First 

Law can help debunk the misconception that the latter is more “fundamental”, or more 

“intuitive”, than the former. In fact, the balance equations Carnot used to model an engine 

cycle violated the First Law! He thought (not to his discredit) that, after one cycle, the 

sum of the heat gained and lost by the engine was 0. This comes from the caloric theory 

view of heat as matter associated to the state of the system. 

The First Law of Thermodynamics cannot coexist with the caloric theory. Thus, it is only 

natural that the early formulations of the First Law would be treated with reluctance and 

scepticism by scientists in the past. Julius von Mayer is the proof of that. This German 

physician noted that the venous blood from patients in Java (a tropical island) was brighter 

red than the venous blood from his patients in Germany. Being acquitted with the works 

of Lavoisier in chemistry, he concluded that less combustion (oxidation) was required for 

patients in Java to keep their body temperature. The brighter colour can then be explained 

by an excess of oxygen in the veins. 

He later extrapolated his conclusions, saying that the “heat” (chemical energy) produced 

by the body should be equal to the heat we lose to the surroundings plus the mechanical 

work our body exerts on its surroundings. He gave a more general statement to his theory: 

A force once in existence cannot be annihilated. Mayer used the word force to describe 

the quantity now known as energy. His theory was dismissed by journals and newspapers 

at the time, so he looked for ways to prove it experimentally. 

It so happens that the experiments supporting his theory had been made around 30 years 

before, by Gay-Lussac. Gay-Lussac’s experiment consisted of two reservoirs, one 

containing air and the other at vacuum. They were connected by a channel, which was 

closed by a valve. The entire system was insulated, and thermometers were used to 

measure the temperature in each reservoir. The valve was then opened, so the air could 

pass from one reservoir to another, and Gay-Lussac recorded the new temperatures after 

equilibration. Adepts of the caloric theory would predict a temperature drop, since the 

caloric substance would spread out from one reservoir to two reservoirs. This was the 
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same explanation given at the time for the decrease in temperature observed in gas 

expansion against a piston. Astonishingly for them, the final equilibrium temperature 

observed by Gay-Lussac was the same as the system’s initial temperature. 

Mayer could explain this phenomenon with his new theory: in the piston experiment, 

force (energy) is converted into work exerted on the piston. As a result, the force (energy) 

of the gas decreases, and so does its temperature. However, in Gay-Lussac’s experiment, 

gas expansion takes place without work being exerted on the surroundings. Therefore, the 

system’s force (energy) is conserved, and so is the temperature. Mayer used the same 

reasoning to explain why the specific heat of gas at constant pressure was always higher 

than the specific heat measured at constant volume. According to him, it was simply 

because part of the heat provided to a system at constant pressure is converted to work 

during gas’ expansion. 

It took years for people to give credit to Mayer for his findings. Another researcher, James 

Joule, was luckier in his endeavours. Joule first observed that forcing a perforated piston 

through a cylinder containing water would increase the water’s temperature. Using this 

arrangement, he observed that a work of ~770 ft-lb was necessary to increase the 

temperature of the water by 1 °F (Joule, 1843). In another series of experiments, Joule 

used a dynamo to create a current. His dynamo was man-powered, but he was able to 

measure the work put into the system afterwards by repeating a few cycles using weights 

as the driving force. The circuit itself was immersed in water, and its ends were connected 

to a galvanometer to measure the current. Joule had already proposed the law of heating 

for circuits prior to these experiments, so he expected the water’s temperature to increase 

due to the electrical current. He observed that it was necessary to put ~838 ft-lb of 

mechanical work to the dynamo in order to increase the temperature of 1 pound of water 

by 1 °F (Joule, 1843). The way he stated this result was quite revolutionary at the time. 

He said (bold for emphasis): 

The quantity of heat capable of increasing the temperature of a pound of water by one 

degree of Fahrenheit’s scale is equal to, and may be converted to, a mechanical force 

capable of raising 838lbs. to the perpendicular height of one foot. 

Perhaps to some people living in the 1840’s, this statement would sound as unsettling as 

someone claiming that 1 meter was equal to 1 second. What Joule was proposing is that 
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heat is, in essence, equivalent to mechanical work, and hence they could be measured 

using the same units. 

The physicist needed more to prove his bold claims to the scientific community. This led 

him to devise what is perhaps his most known experiment on the mechanical equivalence 

of heat. He used a paddle wheel to stir a reservoir full of water, and made use of weights 

to calculate the work being put to the system. He found that ~772.7 ft-lb of mechanical 

work was necessary to increase the temperature of 1 pound of water by 1 °F (Joule, 1850). 

With various types of experiments all giving very close results for the mechanical 

equivalent of heat, this new thesis would replace the caloric theory once and for all. 

Joule figured out that same changes in water state could be obtained via mechanical work 

or via heat. The First Law of Thermodynamics was within reach, and Hermann von 

Helmholtz was the first to state it (von Helmholtz, 2003). The German physicist was a 

mind ahead of his time. By postulating that the universe is deterministic and that 

perpetuum machines cannot exist, he shows that all phenomena can be reduced to 

attraction/repulsion, distance-dependant forces between pairs of particles. And he proves 

that, for any system with only these distance-dependant forces, a quantity corresponding 

to the sum of vires vivae (kinetic energy) and tensions (potential) should remain the same. 

For systems that seem to lose vis viva without gaining tension (e.g. the collision of 

inelastic bodies, or frictional systems), Helmholtz argues that heat is released to the 

surroundings. And following Joule’s theory on the mechanical equivalent of heat, the 

physician concludes that, in these “non-conservative” systems, heat is simply the transfer 

of vis viva to the surroundings. The overall energy (system + surroundings) remains the 

same. 

Another German physicist, named Rudolf Clausius, pinned the First Law of 

Thermodynamics in the 1850’s with a simple statement and a simple equation. His 

statement: 

The energy of the universe is constant. 

The corresponding equation: 

Δ𝑈 = 𝑄 + 𝑊 A1 

In eq. A1, Δ𝑈 refers to the variation of internal energy in a system, Q is the heat provided 

to the system, and W is the work exerted on it. 
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Clausius also formulated the Second Law of Thermodynamics as we know today, and 

wrote the equation that corresponds to it. All the development leading to this law 

(Clausius, 1856) was based upon an axiom: Heat can never pass from a colder to a 

warmer body without some other change, connected therewith, occurring at the same 

time. It is a common misconception to believe that the Second Law is purely axiomatic, 

and that heat flowing from hot to cold is a consequence of this axiom. In truth however, 

the Second Law itself is derived from the axiom that heat cannot pass from a cold body 

to a hot body. 

Clausius imagined a reversible cycle in which ideal gas enclosed in a cylinder interacts 

with 3 bodies, K1 (at temperature 𝑡1 < 𝑡), K2 (at temperature 𝑡2 < 𝑡1), and K (at 

temperature t). The gas starts at a temperature t, and it expands adiabatically until it cools 

to a temperature of 𝑡1. The cylinder is then put in contact with body K1, and it expands 

isothermally. In this isothermal expansion, the cylinder gains some heat Q1 to the body 

K1, to compensate the energy that would be lost during its expansion. We assume the 

bodies K, K1 and K2 to be of great volume, so that their temperatures remain constant 

during the process. 

In the third step of this cycle, the cylinder is insulated and allowed to expand until it 

reaches temperature 𝑡2. Afterwards, it is put in contact with K2 and compressed 

isothermally. The compression continues until the amount of heat imparted to K2 equals 

Q1. The following fifth step is an adiabatic compression of the gas until it reaches 

temperature t. It can be shown that the volume of the cylinder at this point is smaller than 

its original volume, so the cylinder needs to be put in contact with body K and expand 

isothermally until it restores its volume. In this last isothermal expansion, an amount of 

heat Q flows from K to the cylinder. 

Overall, the amount of heat the cylinder receives in this cycle is Q. According to eq. A1, 

one concludes that the resulting work exerted by the cylinder on its surroundings is equal 

to Q (i.e., 𝑊 = −𝑄). The amount of heat transferred from K1 to K2 is equal to Q1. 

Clausius states that any other reversible cycle operating through heat transfer between the 

engine and bodies K, K1, K2, and transforming heat Q from K into work, would have the 

same overall heat Q1 being transferred from K1 to K2. If that was not the case, one could 

simply perform the cycle for which Q1 is lower, and then perform the reverse of the cycle 
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for which Q1 is higher. The result from this 2-cycle operation would be a net heat transfer 

from the colder body K2 to the hotter body K1 without any type of “compensation”. 

The physician then introduces the concept of equivalent transformations. In a reversible 

cycle, some operations will change the engine’s state from a to b, and other operations 

will restore the engine back to state a. If done in reverse, this second set of operations 

could actually bring the engine from state a to state b. Therefore, the first part of the cycle 

is said to be equivalent to the reverse of the second part. More generally, reversible 

transformations using the same heat sources/sinks (K, K1 and K2), and capable of 

bringing the engine from state a to state b, are equivalent. 

Clausius postulates that there must be a mathematical quantity to be assigned to these 

transformations such that, when the transformations are equivalent, the corresponding 

quantities are equal. Looking back at the 6-steps cycle described above, it can be 

simplified into two types of transformation: heat Q taken from K and converted into work; 

heat Q1 flowing from K1 to K2. The mathematical quantity associated to the first type of 

transformation should depend on the temperature t of body K, and be proportional to the 

heat flow Q. Indeed, taking Q/2 from K and transforming it into work, and later taking 

another Q/2 from K and also transforming it into work, should be equivalent to taking Q 

from K in one shot and transforming it into work. So the transformation “engine takes 

heat Q from K and transforms it into work” has an equivalence value of Δ = −𝑄 × 𝑓(𝑡). 

The negative sign is used to follow Clausius’ convention. Similarly, the transformation 

“heat Q1 flows from K1 to K2” has an equivalence value of Δ = 𝑄1 × 𝐹(𝑡1, 𝑡2). Of 

course, if Q1 is transferred from K2 to K1, it is suitable that Δ inverts its sign. Therefore, 

𝐹(𝑡1, 𝑡2) = −𝐹(𝑡2, 𝑡1). When a cycle is complete, the engine returns to its initial state. 

So it is reasonable to assume that the sum of the mathematical quantities Δ in a cycle will 

be equal to zero. Hence, for the cycle studied here: 𝑄1 × 𝐹(𝑡1, 𝑡2) − 𝑄𝑓(𝑡) = 0. 

Imagine now a similar cycle that uses a body K’ at temperature 𝑡′ to replace body K at 

temperature t. The steps that would be changed are: (i) adiabatic compression from 

temperature 𝑡2 to temperature t replaced by adiabatic compression from temperature 𝑡2 

to temperature 𝑡′; (ii) isothermal expansion restoring the engine’s initial volume would 

be performed at temperature 𝑡′, with some amount of heat Q’ being taken from K’. The 

sum of the quantities Δ in this second cycle should also be equal to 0: 𝑄1 × 𝐹(𝑡1, 𝑡2) −



 Appendix A. Brief history of thermodynamics 

 

197 

 

𝑄′𝑓(𝑡′) = 0. If we subtract this equation from the one written in the previous paragraph, 

we have: 𝑄𝑓(𝑡) = 𝑄′𝑓(𝑡′). 

Now if the cycle with the body K (at temperature t) is followed by the inverse of the cycle 

with the body K’ (at temperature 𝑡′ < 𝑡), the result is a process in which the engine takes 

heat Q from K and transforms it into work, and then converts some external work Q’ into 

heat to the body K’. With a few extra steps, one can write the balance equation for the 

equivalence value in this double cycle as: Δ = −(𝑄 − 𝑄′)𝑓(𝑡) + 𝑄′𝐹(𝑡, 𝑡′) = 0. 

Replacing the equality 𝑄𝑓(𝑡) = 𝑄′𝑓(𝑡′) found previously finally yields: 𝐹(𝑡, 𝑡′) =

𝑓(𝑡′) − 𝑓(𝑡). 

We have found that the balance equation for the equivalence values of a reversible engine 

cycle using two bodies at temperatures t and 𝑡′ is: Δ = 𝑄𝑓(𝑡) − 𝑄′𝑓(𝑡′) = 0. If, instead 

of only two bodies, the reversible cycle had made use of N bodies, then: ∑ 𝑄𝑖𝑓(𝑡𝑖)𝑖 = 0. 

Here 𝑄𝑖 is positive when body 𝐾𝑖 receives heat, and negative when it releases heat. Note 

that the bodies themselves could change their temperature in the process. For example, if 

𝐾𝑖 is a small body, giving heat to the engine should decrease its temperature 𝑡𝑖. For this 

step of the cycle to be reversible, the temperature of the engine should follow 𝑡𝑖. 

Therefore, the engine must expand fast enough so that, despite the gain of heat, its 

temperature decreases as fast as 𝑡𝑖. For reversible cycles having such temperature-

changing bodies, the balance equation for Δ is: ∑ ∫ 𝑓(𝑡𝑖) 𝛿𝑄𝑖𝑖 = 0. This equation can be 

rewritten in terms of the engine’s temperature: ∫ 𝑓(𝑡) 𝛿𝑄 = 0. 

The value ∑ ∫ 𝑓(𝑡𝑖) 𝛿𝑄𝑖𝑖  cannot be less than 0 for an irreversible cycle, because then it 

would be possible to combine it with a reversed cycle in such a way that, after both cycles 

were performed, net heat would be flowing from smaller temperatures to higher 

temperatures without any type of compensation. Therefore, ∑ ∫ 𝑓(𝑡𝑖) 𝛿𝑄𝑖𝑖 ≥ 0 for any 

cycle, the equality being achieved when the cycle is reversible. However, for the engine 

we have ∫ 𝑓(𝑡) 𝛿𝑄 = 0 even for irreversible cycles, just as long as the temperature and 

pressure inside the engine remain homogeneous throughout the process. Indeed, the 

evolution of an engine in any irreversible cycle could be replicated by a reversible cycle 

with infinite bodies 𝐾𝑖 through an infinite amount of successive isothermal and adiabatic 

expansions/compressions. 

The function 𝑓(𝑡) appearing in the expressions above has yet to be found. By assuming 

that in an isothermal expansion the total heat imparted to the engine is equal to the work 
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it produces, Clausius proves that 𝑓(𝑡) = 1 𝑡⁄  (as long as t is given in an absolute scale). 

The physician noted that his theory could be generalize for any process (not only cycles) 

in an isolated compound system, just as long as the subsystems (bodies and engines) were 

always at thermodynamic equilibrium. The mathematical formulation for the Second Law 

of Thermodynamics was then written as: 

Δ𝑆 = ∫ 1 𝑇⁄ 𝛿𝑄 ≥ 0 𝐴2 

where the integral is extended to all bodies and engines in the isolated system. 

Clausius called the quantity Δ𝑆 entropy variation. He summarized the Second Law with 

a short sentence: 

The entropy of the universe tends to a maximum. 

The history of thermodynamics does not end here. Many more interesting discoveries 

were made in the field since after Clausius’ work, specially with the development of 

statistical mechanics and the progress in nonequilibrium thermodynamics. Nevertheless, 

most of these remaining developments are taught to a satisfactory degree, and not much 

would be gained from approaching them in a historical fashion. 

For those interested in a more thorough analysis, Angrist and Hepler (1967) is a great 

recommendation. This book, as well as the videos by CrashCourse (2018) and Balistreri 

(2019) were the key sources for this Appendix. 
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Appendix B. The auxiliary tool for distributor design 

An Excel spreadsheet was developed to assist with the design of tree-shaped liquid 

distributors. Indeed, as discussed in Section II.4 there are several constraints and variables 

that need to be taken into account in the design stage. These are not always trivial 

considerations, hence an automated application that can systematically assess distributor 

configurations is a valuable tool. A diagram chart illustrating the operating mode of this 

toll was shown in Figure II.17. Here, the specifics of this Excel spreadsheet will be 

discussed in detail. 

First, let us recall the design variables that determine distributor configuration. These are: 

the number of layers (𝑁𝑙), the length of the wires (𝑙𝑤), the inclination with respect to the 

vertical axis (𝜃), and the diameter of the wires (𝑑𝑤). The user can input these values in 

the Setup tab of the spreadsheet (Figure B1). Alternatively, he/she can set a range for 

these variables, choose a variation step (“Delta”) for each, and run the “Feasibility 

analysis”. This macro tries all possible configurations within the given range, and returns 

which are feasible (i.e., obey all constraints) and which are unfeasible. Note that, if “Wire 

diameter input” (cell B27) is set to “Automatic”, the diameter of the first layer is 

calculated via a macro, and the subsequent diameters are obtained according to the 

“Diameter ratio” specified in cell C9. For example, if the diameter ratio is set to 0.9, then 

the diameter for layer n is 0.9 times the diameter from the previous layer. Alternatively, 

if “Wire diameter input” is set to “Manual”, the user will have to specify wire diameters 

for all layers in row 32. 

Other than the design variables, total liquid flow and column/mixture parameters are also 

defined in the Setup tab. Further, this tab contains the different constraints summarized 

in Table II.3. The constraint “Side of the proj triangle (m)” in cell F15 is related to the 

quantity 𝐿Δ
′  defined by eq. (II.15). If its value (cell F16) is higher than the upper limit in 

cell F18, then the distributor will not fit in the column. Further, constraint “Weber number 

check” in cell G15 checks whether all the layers of the distributor are in the wetting 

regime. If that is true, its value is 0.5; otherwise, it is set to 1000. For example, the 

configurations D1-D3 mentioned Chapter II will all have a “Weber number check” value 

of 1000, since there are some layers in Figure II.19 placed out of the wetting zone. 
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Setup 

Distributor configuration 

Results 

Feasibility 
 

Figure B1 – Screenshots of the different tabs in the Excel auxiliary tool for distributor 

design 

For a given combination of decision variables and parameter values, the design tool 

calculates the geometric features (number of wires, height, …) and flow characteristics 

(film thickness, average flowrate and Weber number) on each layer. These are presented 

in the tab Distributor configuration (Figure B1). The fields in bold correspond to the 

layers that actually exist in a given configuration; for example, if the user specifies a total 

of 3 layers in the Setup tab, only the columns C to F will be in bold in the Distributor 

configuration tab. The number of outlets per layer is calculated according to the equation 

in Figure II.14, and the number of wires in a given layer is equal to 3 times the number 

of outlets from the previous layer. The field “Side of the proj triangle (m)” corresponds 
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to the term 𝐿Δ
′  defined in eq. II.15, and the wire volume per layer is calculated according 

to eq. II.20. 

Furthermore, the macro “Film thickness (m)” shown in the figure calculates the film 

thickness according to eq. (II.6). The subsequent rows give 𝑑∗ and We in each layer, 

according to eq. (II.8). The fields “Weber number min” and “Weber number max” take 

the value 𝑑∗ and calculate the minimum and maximum Weber numbers for which the 

layer will experiment wetting flow. If the actual Weber number for that layer is within 

this wetting range, the next row (row 34) returns 1; otherwise, it returns 0. Finally, the 

macro “Diameter 1st wire (m)” suggests a value for the diameter of the wires in the first 

layer. This value is calculated so that the first layer will be close to the upper limit of the 

wetting regime. This way, the subsequent layers (with smaller Weber numbers, since the 

flowrate per wire decreases) are more likely to remain in the wetting regime. The 

distributor D3 in Figure II.19 illustrates this statement; its first layer is on the upper limit 

of the wetting regime, and consequently the second and third ones fall in this same zone. 

The Results tab (Figure B1) summarizes the key results for distributor analysis. First, it 

tells whether all constraints in Table II.3 are satisfied in the current configuration. Second, 

it gives the turndown throughput interval (i.e., the minimum and maximum flowrates for 

which all layers remain in the wetting regime). Third, it gives the total number of outlets 

and the volume fraction of the distributor zone that is occupied by the wires. Finally, the 

last tab in the spreadsheet is called Feasibility. It assembles the results from the feasibility 

analysis, telling the user which configurations are feasible and which are not. 
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Appendix C. Python and C routines for numerical 

simulations of mixture flow 

In Chapter III, diffusioosmosis and diffusiophoresis were investigated via numerical 

simulations. Section III.5 mentioned that it was necessary to do some programming 

during the numerical implementation of these case studies, as the available models in 

existing software could not cope with the specificities of these phenomena. The 

diffusioosmotic case study in Figure III.7 was implemented in Python with the help of 

the FiPy library (Guyer et al., 2009). The source code used for diffusioosmosis 

simulations is given below. 

Listing C1 – Python code used to simulate diffusioosmosis 

import matplotlib 1 
matplotlib.use('Agg') 2 
from pylab import * 3 
import sys 4 
import threading, os 5 
from fipy import * 6 
from fipy.tools import numerix 7 
from fipy.tools import serial 8 
from scipy import misc 9 
import osmotic_pressure_functions as opf 10 
import numpy as np 11 
import time 12 
 13 
start_time = time.time() 14 
 15 
plt.close("all") 16 
#S: plt is an acronym for pyplot, defined in pylab 17 
 18 
fp=open("addresses.txt", "r") 19 
lines=fp.readlines() 20 
address=lines[1].strip() 21 
fp.close() 22 
try: 23 
    os.mkdir(address) 24 
except OSError: 25 
    pass 26 
#Creates a folder with address input in addresses.txt 27 
#Does nothing if folder already exists 28 
 29 
#DATA 30 
viscosity = 5.55555555556e-06  31 
T=303. #Temperature (K) 32 
kB=1.381e-23 #Boltzmann constant (m2.kg.s-2.K-1) 33 
AH=1.e-20 #Hamaker constant (J) 34 
NA=6.022e23 #Avogadro number 35 
ele_charge=1.602e-19 #charge of one electron (C) 36 
eps0=8.854e-12 #vacuum permittivity 37 
 38 
fp2=open("parameters.txt", "r") 39 
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 40 
lines2=fp2.readlines() 41 
kic=float(lines2[2].strip()) 42 
lic=float(lines2[4].strip()) 43 
attrac=float(lines2[6].strip()) 44 
 45 
pfi = float(lines2[10].strip()) * 100. 46 
lfi=float(lines2[12].strip()) 47 
 48 
phi_c=float(lines2[16].strip()) 49 
 50 
Pe=float(lines2[20].strip()) 51 
 52 
a=float(lines2[24].strip()) #particle radius 53 
zn=float(lines2[26].strip()) #nb of neighbours 54 
c0=float(lines2[28].strip()) #bulk ion concentration 55 
epsilon=float(lines2[30].strip()) #geometric factor 56 
phi_cp=float(lines2[32].strip()) #phi for closed packing 57 
zeta=float(lines2[34].strip()) #zeta potential 58 
Zion=float(lines2[36].strip()) #ion valence 59 
epsr=float(lines2[38].strip()) #water permittivity 60 
 61 
entr_model=int(lines2[42].strip()) #model for entropic pressure 62 
vdw_model=int(lines2[46].strip()) #model for van der waals pressure 63 
electr_model=int(lines2[50].strip()) #model for electrostatic pressure 64 
 65 
dt=float(lines2[53].strip()) #time step 66 
steps=int(lines2[56].strip()) #no of steps 67 
storage=int(lines2[59].strip()) #no of steps for storage 68 
 69 
fp2.close() 70 
 71 
 72 
 73 
entr_cte=3.*kB*T / (4.*numerix.pi*a**3) 74 
vdw_cte=-1.*zn*AH / (48.*numerix.pi*a**3) 75 
electr_cte=epsilon*NA*kB*T*c0 / zn 76 
 77 
 78 
#tolerance for momentum and mass balance 79 
tol=1.e-6 80 
x_tol = tol 81 
y_tol = tol 82 
resphi_tol = tol 83 
pres_tol=tol 84 
continuity_tol=tol 85 
 86 
Ly=1. 87 
Ny=100 88 
Nx=200 89 
Lx=2. 90 
dL=Ly/Ny 91 
 92 
mesh = Grid2D(nx=Nx, ny=Ny, dx=dL, dy=dL) 93 
mesh_for_plot = Grid2D(nx=Nx, ny=Ny, dx=dL, dy=dL, communicator=serial) 94 
 95 
X, Y = mesh.faceCenters 96 
x, y = mesh.cellCenters 97 
 98 
#0.8 for pressure and 0.5 for velocity are typical relaxation values for SIMPLE 99 
pressureRelaxation = 0.8 100 
velocityRelaxation = 0.5 101 
#Relaxation is used to solve sparse linear systems 102 
#(coming from discretization of pdes) 103 
 104 
rad=0.1 105 
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#radius 106 
 107 
#level set function to define the distance to the wall 108 
var1 = DistanceVariable(name='distance to center', mesh=mesh, \ 109 
                        value=numerix.sqrt((x-Nx*dL/2.)**2+(y-Ny*dL/2.)**2)) 110 
 111 
phi_init=0. 112 
 113 
pressure = CellVariable(mesh=mesh, value = 0., hasOld=True, name='press') 114 
pressure_for_plot = CellVariable(mesh=mesh_for_plot, name='pressure') 115 
 116 
pressureCorrection = CellVariable(mesh=mesh, value = 0., hasOld=True) 117 
 118 
xVelocity = CellVariable(mesh=mesh, hasOld=True,  name='X vel') 119 
xVelocity_for_plot = CellVariable(mesh=mesh_for_plot, name='X velocity') 120 
 121 
yVelocity = CellVariable(mesh=mesh,hasOld=True,  name='Y vel') 122 
yVelocity_for_plot = CellVariable(mesh=mesh_for_plot, name='Y velocity') 123 
 124 
velocity = FaceVariable(mesh=mesh, rank=1) 125 
velocityold = FaceVariable(mesh=mesh,rank=1) 126 
 127 
#Volume fraction of colloids 128 
phi = CellVariable(mesh=mesh, hasOld=True, value=phi_init, name='Volume frac') 129 
phi_for_plot = CellVariable(mesh = mesh_for_plot, value = phi_init, \ 130 
                            name = 'Volume fraction') 131 
 132 
#BOUNDARY CONDITIONS (no-flux by default) 133 
xVelocity.constrain(Pe, mesh.facesLeft | mesh.facesRight) 134 
xVelocity_for_plot.constrain(Pe, mesh_for_plot.facesLeft | \ 135 
                             mesh_for_plot.facesRight) 136 
 137 
yVelocity.constrain(0., mesh.facesRight | mesh.facesLeft) 138 
yVelocity.constrain(0., mesh.facesTop | mesh.facesBottom) 139 
yVelocity_for_plot.constrain(0., mesh_for_plot.facesRight | \ 140 
                             mesh_for_plot.facesLeft) 141 
yVelocity_for_plot.constrain(0., mesh_for_plot.facesTop | \ 142 
                             mesh_for_plot.facesBottom) 143 
 144 
pressureCorrection.constrain(0., mesh.facesBottom & (X < dL)) 145 
 146 
#mass (no-flux by default) 147 
phi.constrain(phi_c, mesh.facesLeft) 148 
phi.constrain(0., mesh.facesRight) 149 
 150 
phi_for_plot.constrain(phi_c, mesh_for_plot.facesLeft) 151 
phi_for_plot.constrain(0., mesh_for_plot.facesRight) 152 
 153 
#Building the colloid-interface energy map 154 
pi_ci = CellVariable(mesh = mesh, value = 0.,name = 'Colloid-interface e map') 155 
pi_ci.setValue(-attrac * kic * exp(-1. * (var1 - rad)/(2 * lic)) + \ 156 
               (1. + attrac) * kic * exp(-1. * (var1 - rad)/(1. * lic)), \ 157 
               where = (var1 > rad)) 158 
pi_ci.setValue(kic, where = (var1 <= rad)) 159 
pi_ci_for_plot = CellVariable(mesh = mesh_for_plot, value = pi_ci.globalValue, \ 160 
                              name='Colloid-interface energy map') 161 
 162 
#Building the fluid-interface energy map 163 
pi_fi= CellVariable(mesh=mesh, value=0.,name='Fluid-interface e map') 164 
pi_fi.setValue(pfi, where=(var1 <= rad)) 165 
pi_fi_for_plot = CellVariable(mesh=mesh_for_plot, value = pi_fi.globalValue, \ 166 
                              name='Fluid-interface energy map') 167 
 168 
viewer_pi_ci = Viewer(vars=pi_ci_for_plot) 169 
viewer_pi_ci.plot(filename = address + '/energy_map.png') 170 
viewer_pi_fi = Viewer(vars=pi_fi_for_plot) 171 
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 172 
pre_drop=zeros(steps) 173 
osm_drop=zeros(steps) 174 
trans=zeros(steps) 175 
phi_max=zeros(steps) 176 
phi_mean=zeros(steps) 177 
flux_in=zeros(steps) 178 
 179 
xFaces=numerix.array([]) #vertical faces 180 
yFaces=numerix.array([]) #horizontal faces  181 
 182 
Nx_in_proc = mesh.nx 183 
Ny_in_proc = mesh.ny 184 
 185 
for yfcount in range(Nx_in_proc*(1+Ny_in_proc)) : 186 
    xFaces=numerix.append(xFaces,[False]) 187 
    yFaces=numerix.append(yFaces,[True]) 188 
 189 
for xfcount in range(Ny_in_proc*(1+Nx_in_proc)) : 190 
    xFaces=numerix.append(xFaces,[True]) 191 
    yFaces=numerix.append(yFaces,[False]) 192 
 193 
#EQUATIONS 194 
xVelocityEq = DiffusionTerm(coeff=viscosity) - pressure.grad.dot([1.,0.]) - \ 195 
                ImplicitSourceTerm(pi_fi) - (phi)*(pi_ci.grad.dot([1.,0.])) 196 
yVelocityEq = DiffusionTerm(coeff=viscosity) - pressure.grad.dot([0.,1.]) - \ 197 
                ImplicitSourceTerm(pi_fi) - (phi)*(pi_ci.grad.dot([0.,1.])) 198 
 199 
def pi_cc_entr(x): 200 
    return { 201 
            1: opf.vantHoff(x), 202 
            2: opf.carnahan_starling(x), 203 
            3: opf.hall_fluid(x), 204 
            4: opf.hall_solid(x,phi_cp) 205 
            }[entr_model] 206 
 207 
def pi_cc_vdw(x): 208 
    return { 209 
            1: 0., 210 
            2: opf.van_der_waals(x,phi_cp,vdw_cte/entr_cte) 211 
            }[vdw_model] 212 
 213 
#Debye-Huckel parameter 214 
kappa = numerix.sqrt((2.*c0*NA*ele_charge**2) / (epsr*eps0*kB*T)) 215 
zeta_star=zeta*ele_charge*Zion / (kB*T) 216 
def pi_cc_electr(x): 217 
    return { 218 
            1: 0., 219 
            2: opf.electrost(x,electr_cte/entr_cte,kappa*a,zeta_star) 220 
            }[electr_model] 221 
 222 
def pi_cc(x): 223 
    return pi_cc_entr(x) + pi_cc_vdw(x) + pi_cc_electr(x) 224 
 225 
diffusioncoeff = misc.derivative(pi_cc,phi.arithmeticFaceValue,dx=1.e-6) 226 
diffusioncoeff2 = FaceVariable(mesh=mesh, value=0., name='Diffusion coefficient') 227 
hydro_coeff = (6. - 9. * phi.arithmeticFaceValue**(1./3.) + 9. * \ 228 
               phi.arithmeticFaceValue**(5./3.) - 6. * \ 229 
               phi.arithmeticFaceValue**2.) / \ 230 
               (6. + 4. * phi.arithmeticFaceValue**(5./3.)) 231 
 232 
eq0 = TransientTerm() + ConvectionTerm(velocity - pi_ci.faceGrad) == \ 233 
        DiffusionTerm(coeff=diffusioncoeff2) 234 
 235 
 236 
apx = CellVariable(mesh=mesh, value=1.) 237 
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apy = CellVariable(mesh=mesh, value=1.) 238 
ap = FaceVariable(mesh=mesh, value=1.) 239 
 240 
volume = CellVariable(mesh=mesh, value=mesh.cellVolumes, name='Volume') 241 
contrvolume = volume.arithmeticFaceValue 242 
coeff = FaceVariable(mesh=mesh,value=1.) 243 
pressureCorrectionEq = DiffusionTerm(coeff=coeff) - velocity.divergence 244 
 245 
#VIEWERS 246 
step=0 247 
t=0. 248 
plt.ion() 249 
viewer_pre = Viewer(vars=(pressure_for_plot), colorbar=  True) 250 
wf, hf = plt.figaspect(1.) 251 
fig = plt.figure(figsize=(2*wf, 2*hf)) 252 
viewer_v = MultiViewer(viewers = \ 253 
                       (Viewer(vars = xVelocity_for_plot, colorbar = True ,\ 254 
                               axes=  fig.add_subplot(121)), \ 255 
                        Viewer(vars = yVelocity_for_plot, colorbar = True , \ 256 
                               axes = fig.add_subplot(122)))) 257 
viewer_vv = MatplotlibStreamViewer(vars=velocity) 258 
viewer_phi = MatplotlibViewer(vars=(phi_for_plot), datamin=0.) 259 
xlabel('$z$') 260 
 261 
from mpi4py import MPI 262 
comm = MPI.COMM_WORLD 263 
rank = comm.Get_rank() 264 
 265 
for step in range(steps):  266 
    sweep = 0. 267 
    xres = 1000. 268 
    yres = 1000. 269 
    pres = 1000. 270 
    cont = 1000. 271 
    pressure.updateOld() 272 
    pressureCorrection.updateOld() 273 
    xVelocity.updateOld() 274 
    yVelocity.updateOld() 275 
    while (xres > x_tol or yres > y_tol or pres > pres_tol or cont > \ 276 
           continuity_tol) : 277 
        sweep=sweep+1 278 
         279 
        ## solve the Stokes equations to get starred values 280 
        xVelocityEq.cacheMatrix() 281 
        xres=xVelocityEq.sweep(var=xVelocity,underRelaxation=velocityRelaxation) 282 
        xmat = xVelocityEq.matrix 283 
        yVelocityEq.cacheMatrix() 284 
        yres = yVelocityEq.sweep(var=yVelocity,underRelaxation=velocityRelaxation) 285 
        ymat = yVelocityEq.matrix 286 
         287 
        apx[:] = -xmat.takeDiagonal() 288 
        apy[:] = -ymat.takeDiagonal() 289 
        ap.setValue(apx.arithmeticFaceValue,where=xFaces) 290 
        ap.setValue(apy.arithmeticFaceValue,where=yFaces) 291 
 292 
 293 
        velocity[0] = (xVelocity.arithmeticFaceValue + \ 294 
                       (volume / apx * pressure.grad[0]).arithmeticFaceValue - \ 295 
                        contrvolume * (1. / apx).arithmeticFaceValue * \ 296 
                        pressure.faceGrad[0] + (1. - velocityRelaxation) * \ 297 
                        (velocityold[0] - xVelocity.old.arithmeticFaceValue)) 298 
         299 
        velocity[1] = (yVelocity.arithmeticFaceValue + \ 300 
                       (volume / apy * pressure.grad[1]).arithmeticFaceValue – \ 301 
                        contrvolume * (1. / apy).arithmeticFaceValue * \ 302 
                        pressure.faceGrad[1] + (1. - velocityRelaxation) * \ 303 
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                        (velocityold[1] - yVelocity.old.arithmeticFaceValue)) 304 
         305 
 306 
        velocity[1, mesh.facesRight.value] = 0. 307 
        velocity[1, mesh.facesLeft.value] = 0. 308 
        velocity[1, mesh.facesBottom.value] = 0. 309 
        velocity[1, mesh.facesTop.value] = 0. 310 
        velocity[0, mesh.facesRight.value] = Pe 311 
        velocity[0, mesh.facesLeft.value] = Pe 312 
         313 
        ## solve the pressure correction equation 314 
        coeff.setValue(contrvolume * (1. / apx).arithmeticFaceValue, where=xFaces) 315 
        coeff.setValue(contrvolume * (1. / apy).arithmeticFaceValue, where=yFaces) 316 
        pressureCorrectionEq.cacheRHSvector() 317 
        pres = pressureCorrectionEq.sweep(var=pressureCorrection) 318 
        rhs = pressureCorrectionEq.RHSvector 319 
         320 
        pressure.setValue(pressure + pressureRelaxation * pressureCorrection ) 321 
        pressure_for_plot.setValue(pressure.globalValue) 322 
 323 
        xVelocity.setValue(xVelocity - pressureCorrection.grad[0] / apx * volume) 324 
        yVelocity.setValue(yVelocity - pressureCorrection.grad[1] / apy * volume) 325 
         326 
        velocity[0] = velocity[0] - pressureCorrection.faceGrad[0] * \ 327 
                        contrvolume * (1. / apx).arithmeticFaceValue 328 
        velocity[1] = velocity[1] - pressureCorrection.faceGrad[1] * \ 329 
                        contrvolume * (1. / apy).arithmeticFaceValue  330 
         331 
        velocity[1, mesh.facesRight.value] = 0. 332 
        velocity[1, mesh.facesLeft.value] = 0. 333 
        velocity[1, mesh.facesBottom.value] = 0. 334 
        velocity[1, mesh.facesTop.value] = 0. 335 
        velocity[0, mesh.facesRight.value] = Pe 336 
        velocity[0, mesh.facesLeft.value] = Pe 337 
         338 
        velocityold[0] = velocity[0] 339 
        velocityold[1] = velocity[1] 340 
         341 
        xVelocity.updateOld() 342 
        yVelocity.updateOld() 343 
        cont=max(abs(velocity.divergence.globalValue)) 344 
         345 
        if sweep % 10 == 0 : 346 
            print ('step:', step, 'sweep:', sweep,', x residual:',xres, \ 347 
                   ', y residual',yres, ', p residual:',pres, \ 348 
                   ', continuity:',cont) 349 
 350 
    351 
     352 
    phi.updateOld() 353 
    res0 = 1e100 354 
    t=step*dt 355 
 356 
    while res0 > resphi_tol : 357 
        phi.setValue(0., where=phi<0.) 358 
        diffusioncoeff2.setValue(diffusioncoeff.value * hydro_coeff.value) 359 
        diffusioncoeff2.setValue((pi_cc(phi.arithmeticFaceValue.value+1.e-8) - \ 360 
                                  pi_cc(phi.arithmeticFaceValue.value)) / \ 361 
                                  1.e-8 * hydro_coeff.value, \ 362 
                                  where=np.isnan(diffusioncoeff.value)) 363 
        res0 = eq0.sweep(var=phi, dt=dt) 364 
 365 
    if (step % 1 == 0) : 366 
        phi_mat=reshape(phi.globalValue, (Ny,Nx)) 367 
        phi_mat=numerix.flipud(phi_mat) 368 
        pre_mat=reshape(pressure.globalValue, (Ny,Nx)) 369 
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        pre_mat=numerix.flipud(pre_mat) 370 
        xv_mat=reshape(xVelocity.globalValue, (Ny,Nx)) 371 
        xv_mat=numerix.flipud(xv_mat) 372 
 373 
        mean_gradp=mean(pressure_for_plot.grad.dot([0.,1.]).value)*(Lx*Ly) 374 
        mean_dpic = mean((phi.globalValue) * \ 375 
                         (pi_ci_for_plot.grad.dot([0.,1.])).value) * (Lx*Ly) 376 
        phi_for_plot.setValue(phi.globalValue) 377 
        phigrad_mat=reshape(phi_for_plot.grad[1].value, (Ny,Nx)) 378 
        massfluxin=xv_mat[:,0]*phi_mat[:,0]-phigrad_mat[:,0] 379 
        upin=massfluxin/phi_mat[:,0] 380 
        ufin=(xv_mat[:,0]-massfluxin)/(1-phi_mat[:,0]) 381 
        massfluxout=xv_mat[:,Nx-1]*phi_mat[:,Nx-1]-phigrad_mat[:,Nx-1] 382 
        put(pre_drop,step,mean(pre_mat[:,Nx-1])-mean(pre_mat[:,0])) 383 
        put(osm_drop,step,mean((phi)*(pi_ci.grad.dot([0.,1.])).value)*(Lx*Ly)) 384 
        put(trans,step,mean(phi_mat[:,Nx-1])/mean(phi_mat[:,0])) 385 
        put(phi_max,step,amax(phi.globalValue)) 386 
        put(phi_mean,step, mean(phi.globalValue)) 387 
         388 
        print ('step:', step, ', phi-moy:',mean(phi.globalValue),', pre_drop:', \ 389 
               mean(pre_mat[:,Nx-1]) - mean(pre_mat[:,0]),'um_in=', \ 390 
               mean(xv_mat[:,0]), 'um_out=',mean(xv_mat[:,Nx-1]), ',meangardP:', \ 391 
               mean_gradp, 'mean dpic',mean_dpic, 'perm', - \ 392 
               mean(xv_mat[:,Nx-1]) / (mean_gradp+mean_dpic), 'continuity:', \ 393 
               max(abs(velocity.divergence.globalValue))) 394 
 395 
        xVelocity_for_plot.setValue(xVelocity.globalValue) 396 
        yVelocity_for_plot.setValue(yVelocity.globalValue) 397 
 398 
    if (step % storage == 0) : 399 
        viewer_phi.plot(filename = address+'/phi2D'+str('%04d' %step)+'.png') 400 
        viewer_pre.plot(filename = address+'/pre2D'+str('%04d' %step)+'.png') 401 
        viewer_vv.plot(filename = address + '/vv2D' + str('%04d' %step) + \ 402 
                       '_proc'+str('%d' %rank)+'.png') 403 
        viewer_v.plot() 404 
        timer = fig.text(0.1, 0.9, 't={0:1.2f}'.format(t), fontsize=16, \ 405 
                         bbox={'facecolor':'white', 'alpha':1., 'pad':5.}) 406 
        fig.savefig(address+'/v2D'+str('%04d' %step)+'.png', bbox_inches='tight')  407 
 408 
run_time = time.time() - start_time 409 
 410 
from xlwt import Workbook 411 
book = Workbook() 412 
feuil1 = book.add_sheet('feuille 1') 413 
feuil1.write(0,0,'Pe') 414 
feuil1.write(0,1,Pe) 415 
feuil1.write(0,2,'Viscosity') 416 
feuil1.write(0,3,viscosity) 417 
feuil1.write(1,0,'Energy map int-col') 418 
feuil1.write(1,2,'int-fluid') 419 
feuil1.write(2,0,'time') 420 
feuil1.write(2,1,run_time) 421 
feuil1.write(3,0,'kic') 422 
feuil1.write(3,1,kic) 423 
feuil1.write(4,0,'lic') 424 
feuil1.write(4,1,lic) 425 
feuil1.write(3,2,'kfi') 426 
feuil1.write(3,3,pfi) 427 
feuil1.write(4,2,'lfi') 428 
feuil1.write(4,3,lfi) 429 
ligne9 = feuil1.row(9) 430 
ligne9.write(0,'t') 431 
ligne9.write(1,'pre_drop') 432 
ligne9.write(2,'osm_drop') 433 
ligne9.write(3,'Tr') 434 
ligne9.write(4,'phi_max') 435 
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ligne9.write(5,'phi_mean') 436 
start=10 437 
for step in range(steps) : 438 
    feuil1.write(step+start,0,step*dt) 439 
    feuil1.write(step+start,1,pre_drop[step]) 440 
    feuil1.write(step+start,2,osm_drop[step]) 441 
    feuil1.write(step+start,3,trans[step]) 442 
    feuil1.write(step+start,4,phi_max[step]) 443 
    feuil1.write(step+start,5,phi_mean[step]) 444 
book.save(address+'/result.xls') 445 
np.save(address+'/xv_mat', xv_mat) 446 
np.save(address+'/phi_mat', phi_mat) 447 
np.save(address+'/pre_mat', pre_mat) 448 
yv_mat=reshape(yVelocity.globalValue, (Ny,Nx)) 449 
yv_mat=numerix.flipud(yv_mat) 450 
np.save(address+'/yv_mat', yv_mat) 451 

 

The above code is inspired by an example provided in the FiPy manual (Guyer et al., 

2012) that solves the Stokes flow in a cavity. The key variables used in the above code 

are: xVelocity (the x-component of the velocity), yVelocity (the y-component of the 

velocity), phi (the volume fraction of colloids), and pressure (the pressure of the mixture). 

The boundary conditions for velocity and colloid concentration are found in lines 134, 

138-139 and 148-149. The momentum balance equation (III.30) is declared in lines 195-

198 (one equation for the momentum balance along the x-direction, and another for the 

momentum balance along the y-direction). The implicit source term in these equations 

corresponds to the penalization term discussed in Section III.5, which prevents the fluid 

from entering the cylinder and slipping on its surface. 

The next equation declared in the code is the colloid transport equation (III.31), which 

can be found in lines 233-234. Note that the equation in the script accounts for a transient 

term, which is not present in eq. (III.31). Indeed, the routine depicted in Listing C1 

captures the evolution of the diffusioosmotic system as it approaches steady state. 

However, only steady state results are discussed in Chapter III, which is why the model 

shown in Section III.3 does not include the transient term. Finally, the pressure correction 

equation (III.17) from the SIMPLE procedure is declared in line 244. 

Listing C1 implements the SIMPLE algorithm in Figure III.1 as follows. The pressure 

variable is initialized to 0 in line 114. Inside a while loop, the starred velocity profile is 

computed by solving the momentum balance equations (lines 281-286). Afterwards (lines 

288-304), an adaptation of the Rhie-Chow interpolation is used to compute the velocity 

on the mesh faces (Pascau, 2011). Lines 315-319 are dedicated to solving the pressure 

correction equation. With the pressure correction term, the pressure field can be updated 
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(line 321). Further, the velocity fields are updated in lines 324-330 according to eq. 

(III.18). 

Once this sweep is over, the program checks for convergence. If velocity and pressure 

profiles have not converged, the program does another iteration. Otherwise, it proceeds 

to solving the colloid transport equation (lines 357-364) and then stores some key results 

before going to the next time step. Once the calculations are over, final velocity, pressure 

and colloid concentration profiles are stored in a .npy file, whereas other results such as 

pressure drop and average colloid concentration are stored in an Excel spreadsheet. 

The key aspects of the python routine have been described above. A more detailed 

description of the listing would be tedious and unfitting in the scope of this thesis, which 

aims to discuss the results rather than the technicalities of numerical implementations. 

However, three other interesting points regarding the routine in Listing C1 are worth 

mentioning. First, all the variables in the code are in their dimensionless form, following 

the convention adopted by Bacchin et al. (2019). Second, the equations of state (EoS) for 

colloid-colloid interactions are declared in a separate file called 

osmotic_pressure_functions.py, which is imported in line 10. The user can choose which 

EoS to use in the file parameters.txt. In this file the user should also input other problem 

parameters, such as 𝑎𝑡𝑡, 𝑘𝑖𝑐 and 𝑙𝑖𝑐 for the colloid-interface interaction potential in eq. 

(III.25). All these inputs are read in lines 39-70. 

The third and last extra point worth mentioning about Listing C1 is that it models colloid 

mobility (see eq. (III.7)) via the Happel function (Bacchin et al., 2002). The mobility 

corresponds to the hydro_coeff variable, whose expression is assigned in lines 228-231. 

However, all the diffusioosmosis simulations in Chapter III assumed constant mobility 

(hydro_coeff=1), as mentioned in Section III.1.1a. This happened because the Happel 

feature was implemented later in the thesis. Future studies will assess the impact of 

concentration-dependent mobility on the diffusioosmotic flow of suspensions. 

Differently from the diffusioosmosis case study discussed above, diffusiophoresis did not 

require programming from scratch. Instead, ANSYS Fluent software was used for 

numerical simulations. The software provides several algorithms to solve the Navier-

Stokes equations along with solute transport equation. However, it can only account for 

the extra convective term −𝐷𝜙∇Π𝑖𝑐 in the solute transport equations via user-defined 

functions (UDF). UDFs are subroutines written in C that can be loaded with Fluent in 



 Appendix C. Python and C routines for numerical simulations of mixture flow 

 

212 

 

order to enhance its features (Ansys Inc, 2013). For this extra convective term, three 

UDFs are required: one to allocate memory for Π𝑖𝑐, one that assigns the values for Π𝑖𝑐 

and another that calculates the scalar product of the overall advection field 𝜓 =

−𝐷∇Π𝑖𝑐 + 𝑢 with the face normal vectors. These UDFs are given in Listing C2 and 

Listing C3 for the TFCV formulation in Section III.4.2. 

Listing C2 – Allocating memory and assigning 𝛱𝑖𝑐 values 

/********************************************************************** 1 
set_pi_ic.c contains two UDFs: an execute on loading UDF that reserves 2 
one UDM for libudf and renames the UDM to enhance postprocessing, 3 
and an on-demand UDF that sets the initial value of the UDM. 4 
**********************************************************************/ 5 
#include "udf.h" 6 
#define NUM_UDM 1 7 
#define x_center 0. 8 
#define y_center 0. 9 
#define kic 100. 10 
#define lic 1.e-7 11 
#define att 0. 12 
#define rad 2.e-7 13 
#define diff_coeff 2.18e-10 14 
/* diff_coeff in kg/m-s */ 15 
/* diff_coeff = D x rho */ 16 
static int udm_offset = UDM_UNRESERVED; /*makes sure udm_offset from loading 17 
          is the same as udm_offest from 18 
          demand*/ 19 
DEFINE_EXECUTE_ON_LOADING(allocate_udm_memory, libname) 20 
{ 21 
 if (udm_offset == UDM_UNRESERVED) 22 
  udm_offset = Reserve_User_Memory_Vars(NUM_UDM); 23 
 if (udm_offset == UDM_UNRESERVED) 24 
  Message("Undefined UDM"); 25 
 else 26 
 { 27 
  Set_User_Memory_Name(udm_offset, "pi_ci_udm"); 28 
 } 29 
 Message("\nUDM Offset for Current Loaded Library = %d", udm_offset); 30 
} 31 
DEFINE_ON_DEMAND(set_udm) 32 
{ 33 
 Domain* d; 34 
 Thread* ct; 35 
 cell_t c; 36 
 int i; 37 
 real distance_cell_center; 38 
 real xc[ND_ND]; 39 
 d = Get_Domain(1); /*Fluid domain; there's only one domain for the 40 
        simulation*/ 41 
 if (udm_offset != UDM_UNRESERVED) 42 
 { 43 
  Message("Setting UDM\n"); 44 
  for (i = 0; i < NUM_UDM; i++) 45 
  { 46 
   thread_loop_c(ct, d) 47 
   { 48 
    begin_c_loop(c, ct) 49 
    { 50 
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     C_CENTROID(xc, c, ct); 51 
     distance_cell_center = sqrt(ND_SUM(pow(xc[0] -  52 
      x_center, 2.), pow(xc[1] - y_center, 2.), 0.)); 53 
     C_UDMI(c, ct, udm_offset + i) = (1. + att) * kic *  54 
      exp(-1. * (distance_cell_center - rad) / lic) -  55 
      att * kic * exp(-1. * (distance_cell_center - rad)  56 
       / (2. * lic)); 57 
     C_UDMI(c, ct, udm_offset + i) =  58 
      C_UDMI(c, ct, udm_offset + i) * diff_coeff; 59 
    } 60 
    end_c_loop(c, ct) 61 
   } 62 
  } 63 
 } 64 
 else 65 
  Message("UDMs have not yet been reserved for current library\n"); 66 
} 67 

 

Listing C3 – Setting solute advection field 

/**********************************************************************/ 1 
/* UDF that implements a modified advective term in the */ 2 
/* scalar transport equation */ 3 
/**********************************************************************/ 4 
#include "udf.h" 5 
#include "sg.h" /*to use INTERIOR_FACE_GEOMETRY*/ 6 
DEFINE_UDS_FLUX(set_convective_flow,f,t,i) 7 
{ 8 
 real A[ND_ND], es[ND_ND], dr0[ND_ND], dr1[ND_ND], A_by_es, ds; 9 
 cell_t c0, c1 = -1; 10 
 Thread *t0, *t1 = NULL; 11 
 real NV_VEC(psi_vec); 12 
 real flux = 0.0; 13 
 c0 = F_C0(f,t); 14 
 t0 = F_C0_THREAD(f,t); 15 
 F_AREA(A, f, t); 16 
 real vx; 17 
 /* If face lies at domain boundary, use face values; */ 18 
 /* If face lies IN the domain, use average of adjacent cells. */ 19 
 if (BOUNDARY_FACE_THREAD_P(t)) /*Most face values will be available*/ 20 
 { 21 
  real dens; 22 
  /* Depending on its BC, density may not be set on face thread*/ 23 
  if (NNULLP(THREAD_STORAGE(t, SV_DENSITY))) 24 
   dens = F_R(f, t); /* Set dens to face value if available */ 25 
  else 26 
   dens = C_R(c0, t0); /* else, set dens to cell value */ 27 
  NV_DS(psi_vec, =, F_U(f, t), F_V(f, t), F_W(f, t), *, dens); 28 
  flux = NV_DOT(psi_vec, A); /* flux only comes from velocity */ 29 
  /*flux =0.;*/ 30 
 } 31 
 else 32 
 { 33 
   34 
  c1 = F_C1(f,t); /* Get cell on other side of face */ 35 
  t1 = F_C1_THREAD(f,t); 36 
  NV_DS(psi_vec, =, C_U(c0,t0), C_V(c0,t0), C_W(c0,t0), *, C_R(c0, t0)); 37 
  vx = C_U(c1, t1) - v0; 38 
  NV_DS(psi_vec, +=, vx, C_V(c1, t1), C_W(c1, t1), *, C_R(c1, t1)); 39 
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  flux = NV_DOT(psi_vec, A) / 2.0; 40 
  INTERIOR_FACE_GEOMETRY(f, t, A, ds, es, A_by_es, dr0, dr1); 41 
  flux = flux - A_by_es * (C_UDMI(c1, t1, 0) - C_UDMI(c0, t0, 0)) / ds;  42 
  /* Flux from both velocity and Pi_ic */ 43 
 } 44 
 return flux; 45 
} 46 

In Listing C2, DEFINE_EXECUTE_ON_LOADING is the UDF that allocates memory 

for the solute-interface interaction potential, and DEFINE_ON_DEMAND is the UDF 

that assigns its value. Variable C_UDMI in the second UDF corresponds to Π𝑖𝑐, and its 

value is set in lines 54-59 according to eq. (III.25). Note that the loops in the second UDF 

of Listing C2 guarantee that a value is assigned to all cells in all the cell zones of the 

domain. 

In Listing C3, the advection field is calculated differently depending on whether the face 

is part of the boundaries (lines 20-31) or not (lines 32-44). The main reason for this 

distinction is that face values of ∇Π𝑖𝑐 ∙ 𝐴 (where 𝐴 is the face area vector) are obtained 

via differencing between adjacent cells, which is not possible when the face is at a 

boundary. For boundary faces, it is simply assumed that ∇Π𝑖𝑐 = 0. Note that this 

approximation is correct for the external boundaries of the domain, which are very far 

from the interface. However, ∇Π𝑖𝑐 = 0 does not hold on the surface of the sphere. Still, 

this is not a real issue since the overall solute flux is set to 0 as a boundary condition for 

the interface. 

Apart of the above mentioned UDFs, two other macros are necessary to implement the 

TEF model discussed in Section III.4.1. The first, named DEFINE_ADJUST, updates Π𝑖𝑐 

at the beginning of every time step, since the structure of the cells change as the mesh 

deforms. Further, DEFINE_CG_MOTION is used to update the velocity of the sphere, 

according to the following expression: 𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 + 𝐹 × Δ𝑡. In this expression, 𝑣𝑛𝑒𝑤 

is the updated velocity, 𝑣𝑜𝑙𝑑 is the previous one, F is the resultant force along the axial 

direction, and Δ𝑡 is the interval between two time steps. 

The two extra UDFs used for TEF simulations are omitted from this appendix for 

conciseness. The reader can refer to the UDF manual (Ansys Inc, 2013) for more details 

regarding these UDFs and the ones used in Listing C2 and Listing C3. 
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