Après Le Cp 
  

Osteosarcoma is a primary bone tumour that occurs mainly in adolescents and young adults. The survival rate at 5 years is 70% and drops to 25% for patients with metastases or poor responders to treatment. New developments are needed to improve the specific management of patients. These tumours show strong spatial heterogeneities in bone micro-architecture, in cell populations distribution but also in the response to treatment. At the tissue scale and from a biophysical point of view, osteosarcoma can be classified as a strongly heterogeneous porous medium with mechanical stimuli potentially playing a significant role in its formation and evolution.

We propose a consistent upscaling method to characterize the mechanical properties of such a highly heterogenous porous media. It is based upon a sequential grid-block approach combined to an extend-local method. The methodology is adapted to large size binarized images and especially histological slices obtained in clinical routines. Flow and diffusive models are explored as well as elastic and poroelastic behaviors. Piece-wise constant equivalent parameters such as tissular permeabilities and stiffness coefficients are determined with reliability. Several methodological results are emphasized in this thesis such as the identification of robust equivalent parameters inequalities depending on the grid-block elements boundary conditions or the evaluation of extend-local methods use in stiffness parameters calculations.

In a preliminary clinical study, relationships between tissular mechanical properties and cellular populations are emerging. On the cohort of patients investigated, it is shown that the response to treatment can be correlated to micro-environment architecture and equivalent tissue properties. These results support the search for mechanobiological markers of chemotherapy response for osteosarcoma patients.

Résumé

L'ostéosarcome est une tumeur osseuse primitive qui survient principalement chez les adolescents et les jeunes adultes. Le taux de survie à 5 ans est de 70% et chute à 25% pour les patients présentant des métastases ou ne répondant pas aux traitements. De nouveaux développements sont nécessaires pour améliorer la prise en charge spécifique des patients. Ce type de tumeurs présente de fortes hétérogénéités spatiales dans la micro-architecture osseuse, dans la distribution des populations cellulaires mais aussi dans la réponse au traitement. A l'échelle tissulaire et du point de vue de la biophysique, l'ostéosarcome peut être considéré comme un milieu poreux fortement hétérogène et nous supposons que l'ostéosarcome est sensible aux effets mécaniques lors de sa formation et de son évolution.

Nous proposons une méthode de changement d'échelles pour caractériser les propriétés mécaniques de tels milieux poreux. La méthode s'appuie sur une approche séquentielle "gridblock" combinée à une méthode "extend-local". La méthodologie est adaptée à des images de grandes tailles et notamment aux images binaires de coupes histologiques d'ostéosarcomes obtenues en routine clinique. Des modèles d'écoulement, de diffusion, d'élasticité et de poroélasticité sont étudiés. Les paramètres équivalents, constants par morceaux, de type perméabilités tissulaires et coefficients de raideurs tissulaires sont déterminés avec fiabilité. Plusieurs résultats méthodologiques ont été obtenus tels que les inégalités portant sur les paramètres équivalents en fonction des conditions aux limites imposées sur les éléments du "grid-block" ou la caractérisation du rôle des méthodes "extend-local" dans le calcul des paramètres de raideur.

Dans une étude clinique préliminaire, des relations entre les propriétés mécaniques tissulaires et les paramètres cellulaires sont données. Une cohorte réduite de patients montre que la réponse au traitement peut être corrélée à l'architecture du micro-environnement et à ses propriétés mécaniques. Ceci pourrait soutenir la recherche de marqueurs mécanobiologiques pour le suivi de la réponse au traitement chez les patients atteints d'ostéosarcome. This thesis propose a mechanobiological approach to explore new quantitative metrics obtained from clinical histological images in the context of bone cancer study. Various questions raised by biologists and clinician are explored. This introduction chapter presents an non exhaustive literature of the current understanding of osteosarcoma from a clinical, biological and mechanical point of view. Problematics and objectives of the doctoral project are detailed in the last section.

Osteosarcoma

Osteosarcoma: clinical aspects

Primary bone tumors include osteosarcomas, chondrosarcomas, Ewing sarcomas and other types of rare tumors amongst which osteosarcomas are the most frequent [START_REF] Fletcher | WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition[END_REF]. The World Health Organization defines osteosarcoma as a primary osseous malignant neoplasm composed of mesenchymal cells producing bone tissue, even in small amount. This bone tissue can be mineralised (mineralised extra-cellular matrix ECM) along with immature bone tissue or non-mineralized ECM (osteoid). In the general population, the pathology occurrence of is 2-3/million/year. Its frequency varies according to age and follows a bi-modal distribution [START_REF] Mirabello | Osteosarcoma incidence and survival rates from 1973 to 2004 data from the surveillance, epidemiology, and end results program[END_REF] with two peaks found respectively in adolescence and young adults (15-19 years) and in the elderly (> 60 years). Men are affected 1.4 times more than women [START_REF] Ritter | Osteosarcoma[END_REF].

The tumors occur most frequently in the metaphyses of long bones, such as the femur, tibia or humerus but can also appear in other types of bones, such as the skull, jaw, ribs and pelvis. Although the etiology of the disease is still poorly understood, some risk factors have been identified such as patient-specific factors (age, genetic diseases, pre-existing bone abnormalities) or environmental factors such as exposure to ionizing radiation and alkaline agents [START_REF] Palmerini | Prognosis of radiation-induced bone sarcoma is similar to primary osteosarcoma[END_REF].

Typical symptoms of osteosarcoma are local persistent bone pain at rest (especially at night) followed by swelling and limitation of joint movement. The initial assessment of a suspected tumor comprises a full history, physical examination, and radiographs. Radiography allow a description of osseous changes but cannot always decide on the malignancy of the tumor. In that case, a magnetic resonance imaging (MRI) of the whole bone and its neighboring joints, to not miss skip lesions, has to be conducted. Finally, a biopsy and its histology examination are needed for diagnosis confirmation. Beside their use for diagnostic, biopsies are used for research purpose [START_REF] Meyers | Osteosarcoma[END_REF] and could be a possible tool for personalised patient management, provided relevant markers can be extracted. The generic term "osteosarcoma" includes subcategories of the pathology such as high-grade forms including the conventional form which accounts for 90% of osteosarcomas, well differentiated low-grade intramedullary, small cell and telangiectatic [START_REF] Bouffier | Etude des hétérogénéités de l'ostéosarcome: de l'histologie à l'identification de mécano-marqueurs[END_REF]. Within the conventional form, about fifteen different forms are characterized according to the nature of the predominant matrix created by the tumor cells (fig. 1.1). The main ones, representing 75% of the cases, are osteoblastic type osteosarcomas (fig. 1.1a) with an essentially mineralized matrix consisting of bone or osteoid. When the matrix is cartilaginous, it is called chondroblastic osteosarcoma (fig.

1.1c). Finally, conventional osteosarcoma is characterized as fibroblastic when fibroblastic cell proliferation is observed or simply when the tumor could not be effectively classified in the two previous categories (fig. 1.1b).

Figure 1.1: H&E stained histological section of the three conventional osteosarcoma categories a) osteoblastic b) fibroblastic c) chondroblastic [START_REF] Bouffier | Etude des hétérogénéités de l'ostéosarcome: de l'histologie à l'identification de mécano-marqueurs[END_REF].

While neoadjuvant chemotherapy was a innovative and efficient treatment strategy in the 70-80s, no new therapy since then has been demonstrated to be effective and no robust prognostic stratification exists. To date, the treatment still consists in a neoadjuvant chemotherapy followed by tumor surgical removal through a partial or total resection of the affected bone and a post-operation adjuvant chemotherapy. The MAP (doxorubicin/cisplatin/HD-MTX) regimen is most frequently used as the basis of treatment in children and young adult patients. Osteosarcoma is considered as a radioresistant tumor but recent studies suggest that a radiotherapy may be useful in some cases where there was a no complete resection of the tumor [START_REF] Ritter | Osteosarcoma[END_REF]. Patients are categorized according to their response to treatment and more precisely to neoadjuvant chemotherapy according to the classification of Huvos and Rosen, in "good responder" or "poor responder" as described in Table 1.1). The treatment response is assessed on histological slide (fig. 1.2). Grades are given according to the percentage of necrotic tumor cells evaluated on the territories of the tumor. Grade I corresponds to less than 10%, Grade II to a percentage between 10 and 90%, Grade III higher than 90%. Patients classified as Grade IV correspond to good responders to chemotherapy with a percentage higher than 99%. Patients with localized disease have an overall survival rate of 70 to 75% at 5 years and only 25% for patients with metastatic disease, chemo-resistance or relapsed disease [START_REF] Casali | Soft tissue and visceral sarcomas: Esmo-euracan clinical practice guidelines for diagnosis, treatment and follow-up[END_REF]. This variability in response to treatment, which can be related to patients [START_REF] Lütke | Osteosarcoma treatmentwhere do we stand? a state of the art review[END_REF] and to intratumoral heterogeneity [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF], requires new diagnostic and treatment strategies. [START_REF] Somarelli | The hallmarks of cancer as ecologically driven phenotypes[END_REF].

Cancers, including osteosarcoma, follow an evolution on spatial scales at different times of their development with generic biological hallmarks [START_REF] Hanahan | Hallmarks of cancer: The next generation[END_REF] as shown in figure 1.3. Cancers modify their environment in order to maintain a favorable terrain for the tumor to grow and spread. These phenomena induce changes on the architecture and mechanics of the tumor. For example, tumoral angiogenesis plays a crucial role in tumor pressure distribution and consequently in tumoral interstitial flows which in return plays a role on metastasis dissemination [START_REF] Evje | How tumor cells possibly can make use of interstitial fluid flow in a strategy for metastasis[END_REF]. Recently, the inflammatory character (local or chronic) of the tumor has been highlighted and can lead to [START_REF] Fletcher | WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition[END_REF] angiogenesis and (2) increasing the risk of metastasis by a mechanical degradation of the extra-cellular matrix (ECM) [START_REF] Mierke | The fundamental role of mechanical properties in the progression of cancer disease and inflammation[END_REF]. Conversely, mechanical effects are shown to be related to each of these biological effects in the literature. For example, the authors of [START_REF] Shieh | Biomechanical forces shape the tumor microenvironment[END_REF] highlight links between different biomechanical effects on the tumor microenvironment and cancer progression. Indeed, increased stress within the tumor due to cell proliferation disrupts the epithelium and leads to a biological chain reaction (fig. 1.4). Figure 1.4: "Schematic of the biomechanical forces in the tumor microenvironment. As tumor cells proliferate and disrupt the epithelium, they generate stresses as a result of tumor growth [START_REF] Fletcher | WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition[END_REF]. These stresses are transmitted to the surrounding extracellular matrix, generating radial compressive forces and circumferential tensile forces [START_REF] Mirabello | Osteosarcoma incidence and survival rates from 1973 to 2004 data from the surveillance, epidemiology, and end results program[END_REF]. The matrix is also becoming stiffer and more dense [START_REF] Ritter | Osteosarcoma[END_REF], and, at the invasive front, the matrix becomes reorganized, favoring tumor cell invasion [START_REF] Palmerini | Prognosis of radiation-induced bone sarcoma is similar to primary osteosarcoma[END_REF]. As the fluid pressure in the tumor increases due to the increase in tumor-associated angiogenesis, interstitial flow and lymphatic drainage increase [START_REF] Meyers | Osteosarcoma[END_REF]. Tumor cells can use this flow to generate autologous gradients [START_REF] Bouffier | Etude des hétérogénéités de l'ostéosarcome: de l'histologie à l'identification de mécano-marqueurs[END_REF]. At the same time, interstitial flow induces myofibroblast differentiation [START_REF] Cases | Etude de la distribution spatiale du microenvironnement immunitaire dans les ostéosarcomes et corrélations aux données de l'imagerie[END_REF] and lymphatic chemokine secretion ( 8)" [START_REF] Shieh | Biomechanical forces shape the tumor microenvironment[END_REF].

To account for the complexity of tumoral evolution, it seems crucial to point out that each of these phenomena are interconnected and act on each other in an nested way at each scale, mixing the purely biological and mechanical stages. Indeed, it is shown that the purely mechanical effects can act in a direct way on the cells of the tumor in controlled in vitro experiments [START_REF] Charelli | Engineering mechanobiology through organoids-on-chip:a strategy to boost therapeutics[END_REF] (fig. 1.5). Here, it is shown for instance that phenotype, secretome and cell differentiation can be altered by mechanical effects. Those effects include shear stress flow, compression, stretching and different types of interactions such as Cell-Cell and Cell-ECM interactions.

In the following section, these phenomena are described in more detail, focusing first on the biology of osteosarcoma and then on the mechanics. quiescence" [START_REF] Unal | Micro and nano-scale technologies for cell mechanics[END_REF].

Osteosarcoma: biological aspects

The biological study of osteosarcoma is an extremely complex problem due to the multiscale character of such tumors from a spatial and temporal point of view (fig. 1.6). Indeed, like in any biological system, studies can be performed at different spatial scales. To cite few, pathologies can be studied at the genomic scale, the proteins scale, the tissue scale or the organ scale. Each of these scales is usually studied, in a more or less thorough way, independently and without any quantitative coupling with the others. We have only recently observed the emergence of a multi-modal multi-scale approaches but their application in clinical routine is still to be done. It appears that, like the other main types of primary bone tumors, osteosarcoma constitute a very heterogeneous group of tumors at each of above mentioned scales.

Only recent researches consider the question of heterogeneity at the genome scale (literature review of [START_REF] Cases | Etude de la distribution spatiale du microenvironnement immunitaire dans les ostéosarcomes et corrélations aux données de l'imagerie[END_REF]). Indeed, the inter-and intratumoral heterogeneity has been found to be due to a large chromosomal instability [START_REF] Gianferante | Germline and somatic genetics of osteosarcoma -connecting aetiology, biology and therapy[END_REF] and an identification of many affected genes has been made. Some mutations, more or less recurrent, such as on TP53, RB1, MDM2, ATRX and NF2, may play a role in the initial development of osteosarcoma [START_REF] Chen | Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma[END_REF], resulting in copy defects. There are also genetic deletions and genomic alterations characterized by sudden and severe fragmentation of some or all chromosomes, followed by aberrant reassembly. In essence, the problem at this scale seems to be too complicated to appreciate as a whole and remains an open problem to date. New technologies, quite difficult to implement, will probably allow in the future to explore this problem in an efficient way. Figure 1.6: Illustration of hierarchical biological system [START_REF] Barbulescu | Multi-scale and reduced modelling of biological systems[END_REF].

At the protein scale, it is determined that a deregulation of bone remodeling and resorption takes place in osteosarcoma. These phenomena originate at the protein level, through a disturbance of the RANKL/OPG balance (activating osteoclasts and promoting bone formation respectively). Subsequently, growth factors, such as transforming growth factor-β (TGF-β), are released. They have the direct effect of stimulating tumor growth and metastatic progression [START_REF] Verrecchia | Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment[END_REF].

At the macroscopic level, various imaging techniques help to characterize the heterogeneity of osteosarcomas and their tissues. For example, a classification of osteosarcoma can be made through their radiological representation according to the degree of mineralization (via osteocondensation). An MRI can be used to assess the amount of necrosis and peritumoral enhancement which are independent predictors of tumor grade, and were associated with high grade tumors [START_REF] Cases | Etude de la distribution spatiale du microenvironnement immunitaire dans les ostéosarcomes et corrélations aux données de l'imagerie[END_REF]. Diffusion-weighted imaging (DWI-MRI) provides information on the vascular properties of the tissue. DWI-MRI allows characterization of the microscopic structure of the tissue and can differentiate benign and malignant lesions [START_REF] Padhani | Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations[END_REF].

The microenvironment is the scale of interest in this thesis. Indeed, this scale is the diagnostic one by the anatomo-pathologist and can account for both short-range interactions such as cell/ECM, cell/cell interactions and long-range interactions via soluble species transport from the mechanical point of view. The microenvironment is found in the literature to play a major role in cancers and in osteosarcoma, progression, invasion, metastasis and resistance to treatment of tumor cells [START_REF] Cases | Etude de la distribution spatiale du microenvironnement immunitaire dans les ostéosarcomes et corrélations aux données de l'imagerie[END_REF]. At this scale, the complexity emanates directly from the geometry and the different phases composing the biological object as well as the diversity of cell populations. The biology of the mineralized, non-mineralized and fibrous extracellular matrix, the vessels, the cells population (tumoral, immune and other) and the soluble species, i.e. protein, growth factors and oxygen) intermingle and become even more complex with their respective couplings as shown in figure 1.7a and b. Each element of the microenvironment has been studied quite separately. In the following, we focus on the macroscopic components of the microenvironment, namely the ECM, the vascular network and the cell populations.

The osseous ECM composed of the mineralised and non mineralised neoformed bone phases (fig. 1.7b) is of major interest in the study of osteosarcoma. Indeed, ECM is of interest in the study of cancers in general [START_REF] Lu | The extracellular matrix: A dynamic niche in cancer progression[END_REF]. Indeed, it plays a significant part in the in tumor microenvironment spatio-temporal evolution as it can modulate cancer hallmarks [START_REF] Pickup | The extracellular matrix modulates the hallmarks of cancer[END_REF] and can be a barrier to treatments [START_REF] Netti | Netti pa, berk da, swartz ma, grodzinsky aj, jain rkrole of extracellular matrix assembly in interstitial transport in solid tumors[END_REF][START_REF] Henke | Extracellular matrix in the tumor microenvironment and its impact on cancer therapy[END_REF]. Also, by influencing the cell populations via their communication or adhesion, it contributes to the metastatic dissemination of osteosarcomatous cells [START_REF] Lin | Conditioned medium of the osteosarcoma cell line u2os induces hbmscs to exhibit characteristics of carcinoma-associated fibroblasts via activation of il-6/stat3 signaling[END_REF].

Concerning the vascular network, angiogenesis is a major contributor to tumor growth and metastatic dissemination through nutrient and oxygen delivery but also intra-/extravasation of cancer cells [START_REF]Angiogenesis process in osteosarcoma: An updated perspective of pathophysiology and therapeutics[END_REF]. Some works focus for instance on the effect of a reduced oxygen supply and explore potential use of therapies targeting hypoxia pathways [START_REF] Pierrevelcin | Focus on hypoxia-related pathways in pediatric osteosarcomas and their druggability[END_REF] or on metabolic pathways in osteosarcoma development [START_REF] Zhang | Hypoxia promotes osteosarcoma cell proliferation and migration through enhancing platelet-derived growth factor-bb/platelet-derived growth factor receptor-β axis[END_REF].

Regarding the cellular phase of the microenvironement, different cell populations are studied. This is the case for example of the mesenchymal stem cells. They represent a key element in the oncogenesis process of osteosarcoma since they are able to differentiate into osteoblasts or chondroblasts. Because of their ambivalent role, they are at the origin of controversies, still unresolved to this date, on the nature of the cell responsible for osteosarcoma. These cells have different properties including the ability to indirectly influence the composition of the microenvironment and the ECM.

The immune microenvironment is also very heterogeneous since involving tumor-associated macrophages, dendritic cells, myeloid cells, osteoclast and lymphocytes [START_REF] Iseulys | The immune environment of bone sarcomas[END_REF]. The roles of the immune cells are directly modulated by the tumor cells (recruitment, proliferation, differentiation) in order to set up a favorable environment for tumor growth via a breakdown of the immune balance and a local immunosuppression [START_REF] Marie-Françoise | The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma[END_REF]. Some cells such as CD8 seem to be suppressed on bad prognostic and do not seem to have much effect on the response to treatment while CD163 is synonymous with good prognostic and seems to help chemotherapy [START_REF] Gomez-Brouchet | Cd163-positive tumor-associated macrophages and cd8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies from the french os2006 phase 3 trial[END_REF]. Among these immune cells, the osteoclast are very specific immunitary cells (fig. 1.8). Indeed, these are cells of the immune system but they also have an important role in bone remodeling and are therefore, in a way, at the center of the problem. In its immunitary role, the osteoclast population appears to be an indicator of poor prognosis and poor response to treatment. Yet, a clinical trial trying to eradicate the osteoclast population was unsuccessful [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF][START_REF] Piperno-Neumann | Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (os2006): a randomised, multicentre, open-label, phase 3 trial[END_REF]. The resulting hypothesis is the potential role of bipotent cells, stained both with CD163 (marker of macrophages) and CD68 (marker of osteoclasts) in the response to treatment [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF]. A deregulation of bone remodeling and resorption, expressed by osteoclast, is observed. The cancer cells hack [START_REF] Cases | Etude de la distribution spatiale du microenvironnement immunitaire dans les ostéosarcomes et corrélations aux données de l'imagerie[END_REF] the tumor microenvironment for increased bone resorption mediated by osteoclasts, allowing a favorable environment for their development via osteoblast activation and release of growth factors trapped in the bone matrix. As a consequence, a vicious circle appears between bone resorption and tumor cell proliferation, inducing a more rapid development of the tumor (see fig. 1.9). Figure 1.9: Osteosarcoma vicious circle between bone remodeling cells and tumor cells [START_REF] Verrecchia | Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment[END_REF].

From the patient management perspective, many therapeutic trials are underway aiming at targeting the above sub-problems but none of them are getting convincing results for now and new metabolic pathways are under study [START_REF] Kansara | Infiltrating myeloid cells drive osteosarcoma progression via grm4 regulation of il23[END_REF]. Some therapeutic approach using anti-angiogenic agents [START_REF]Angiogenesis process in osteosarcoma: An updated perspective of pathophysiology and therapeutics[END_REF] have shown an increase in survival for relapsed patients. Other therapeutic avenues have been explored through the role of osteoclasts in the development of osteosarcoma without much success to date. Finally, the ECM is recently seen as a new therapeutic target, not yet explored [START_REF] Cai | Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells[END_REF].

Thus, intra-and inter-tumor heterogeneity is still poorly understood by physicians and biologists, although some hypotheses have been raised. None of them is really agreed upon and does not stand out in a flagrant way. This may be related to the fact that this research is done on a targeted character of osteosarcoma microenvironment. An attempt was made in [START_REF] Cases | Etude de la distribution spatiale du microenvironnement immunitaire dans les ostéosarcomes et corrélations aux données de l'imagerie[END_REF] to characterize the relationship between the microenvironment characteristics (histology and immunohistology study) and tumor scales characteristics (MRI, scanner) but unfortunately it was still difficult to identify obvious correlations between these two scales; most probably due to the bias of biopsy performed in osteolytic regions of the tumor. Therefore, a complex multi-scale (spatial and temporal) model of the multi-phase problem could bring new insight in the study of osteosarcoma.

Osteosarcoma: mechanical aspects

The study of the osteosarcoma mechanics may represent a viable complement to the existing studies as it can be seen as a macroscopic trace of the complexity of biological events at cellular and lower scales, such as metabolic or genetic changes.

The bone is a mechano-sensible organ [START_REF] Stephen | Bone poroelasticity[END_REF] and its cycle is strongly influenced by mechanical effects. Numerous studies have demonstrated an important role of biomechanical effects in remodeling. Bones are constantly adapting to maintain their strength [START_REF] Hadjidakis | Bone remodeling[END_REF][START_REF] Isabel F Tresguerres | Physiological bases of bone regeneration ii. the remodeling process[END_REF], to grow [START_REF] Turner | Three rules for bone adaptation to mechanical stimuli[END_REF] and to heal [START_REF] Kalfas | Principles of bone healing[END_REF]. The mechano transduction has been highlighted [START_REF] Burger | Mechanotransduction in bone[END_REF] as a direct link between cellular behavior and mechanics in bone [43,[START_REF] Qin | Molecular mechanosensors in osteocytes[END_REF]. The interstitial fluid seems to play a significant role, along with other biophysical stimuli such as strain [START_REF] Qin | Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology[END_REF] and osmotic pressure shear [START_REF] Wittkowske | In vitro bone cell models: Impact of fluid shear stress on bone formation[END_REF], in osteocyte mechano-sensitivity. More precisely, an interaction between osteoblasts and osteoclasts, responsible for bone formation and resorption, is stimulated under mechanical effects. The piezo-electric effect of collagen has been recently studied and could limit the interstitial flow and thus increase the mass transport and stiffness in the bone [START_REF] Ahn | Relevance of collagen piezoelectricity to "wolff's law": A critical review[END_REF]. ). At the local scale, identified mechanical effects include, for instance, compressive stresses in response to cells proliferation or fluid transport changes related to tumor angiogenesis [START_REF] Jain | The role of mechanical forces in tumor growth and therapy[END_REF]. When a primary bone tumor is growing, it deregulates the homeostasis of the bone, inducing a "vicious cycle" in the micro-environment [START_REF] Gomez-Brouchet | Cd163-positive tumor-associated macrophages and cd8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies from the french os2006 phase 3 trial[END_REF] between osteoclasts, stromal cells, osteoblasts , immunological cell populations and cancer cells. This balance disruption at the cell population spatial scale is thus exhibited at the tissue scale by the emergence of osteocondensation or osteolytic lesions in the affected area [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF]. Primary bone tumors such as osteosarcoma, by the nature of the affected cells populations, shows a high sensitivity to local and global mechanical effects [START_REF] Shieh | Biomechanical forces shape the tumor microenvironment[END_REF], [START_REF] Wittkowske | In vitro bone cell models: Impact of fluid shear stress on bone formation[END_REF]). In addition treatment efficiency in solid tumor depends on stresses and microarchitecture of the media [START_REF] Rakesh | Barriers to drug delivery in solid tumors[END_REF]. Thus, a mechanical approach can represent a first step in the construction of an overall view of the problem. Indeed, by this approach, it becomes possible to explore couplings between complex multiphysics and biological process. To start, the ECM/cell interaction is of interest since it has never been really studied in osteosarcoma or in any type of tumor from real data at this scale. This biological-mechanical approach and the similtaneous study of two scales is highly motivated by results from past clinical trial mentioned, such as [START_REF] Gomez-Brouchet | Cd163-positive tumor-associated macrophages and cd8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies from the french os2006 phase 3 trial[END_REF], as a link between the two scales can be felt.

Thesis problematics and objectives

The study of osteosarcoma remains to this day a multi-scale problem of great complexity. From its phenotype to the microarchitecture of its microenvironment, heterogeneities within the pathology itself are observed, making the development of a generic follow-up protocol very challenging. Heterogeneity in response to treatment is an open question, both from a biological and clinical point of view.

As in all types of solid tumors, the coupling between mechanics and biology plays an important role in the evolution of osteosarcoma. While numerous clinical questions on osteosarcoma remain opened and could be explored by a mechanobiological approach, two problematics are highlighted in this thesis: 1) Can interstitial flows due to high pressure at the osteosarcoma core [START_REF] Helmlinger | Solid stress inhibits the growth of multicellular tumor spheroids[END_REF][START_REF] Nathan | Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma[END_REF] and osseous ECM spatial distribution be related to chemotherapy response heterogeneity ? In other words, can the neoformed bone tissue become a barrier to treatments which are transported by interstitial flows? 2) Can elastic response of osteosarcoma to structural stimuli play a role in chemotherapy response heterogeneity ? This question is raised due to the role of mechanical loading on bone ECM structure and in particular through the osteoblast/osteoclast balance which itself seems correlated with immune response [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF].

To explore those questions, we hypothesize the existence of a link between the spatiotemporal evolution of osteosarcoma and the mechanics of the tumor microenvironment. Osseous ECM mechanical investigation can be seen as a first step in the global appreciation of the osteosarcoma multi-scale understanding. In particular, the examination of correlations between cell population spatial distribution and ECM physical properties could bring new insight in the understanding of the pathology, of the response to treatment heterogeneity and eventually in the search of immuno-therapy targets.

In order to evaluate quantitatively those correlations, a biomechanical approach is adopted using histological data. We target the emergence of new mechano-biomarkers by this strategy. To achieve this objective, a coherent mechanical modelling of the microenvironment at the tissue scale is needed. Because osteosarcoma at this scale is a porous media, mechanical modeling is challenging. To our knowledge, there is no generic method available in the literature to investigate osteosarcoma (or other biological tissues) mechanical properties using non-idealised data (images from patient follow-up).

The methodological aim of this thesis is to develop such mathematical and mechanistic consistent tool. Because it is unknown which mechanism drives the evolution of osteosarcoma or patient response to therapy, the strategy, initiated by clinical problematics, must relied on a perpetual exchange between models and clinical context.

In the following chapter 2, mechanical models of osteosarcoma of increasing complexity are presented, some definitions and the state of art of the modelling methodology in complex porous media are reported. The chosen workflow is also detailed in this chapter. In chapter 3, the mathematical and numerical study of the transport phenomena in osteosarcoma, such as interstitial flow or diffusion, at the tissue scale are discussed. A validation of the numerical methods is detailled. The chapter 4 will be dedicated to the study of the structural mechanics and poromechanics of osteosarcoma. In the last part (chapter 5), a coherent mechanical/biological approach is presented. Results exploring correlations between patients response to treatments and osteosarcoma mechanical properties are given for a small cohort. Finally, a general conclusion is proposed followed by research perspectives. In this chapter, the mathematical model of osteosarcoma complex mechanics is described. The model is built on the appropriate literature relative to porous media. A dedicated methodology is developed to evaluate mechanical properties using histological exams from clinical routine. This chapter also describes the overall study workflow from biological, mathematical or numerical perspectives.

Chapter 2

Model and methodology

Osteosarcoma: a porous media point of view

In this section, osteosarcoma is described at the tissue level, i.e. from histological sections, and we detail mechanical and biological assumptions made to solve the problem in the framework of porous media. Then, generic methods to study some aspects of porous media mechanics are presented. Finally, an upscaling method designed for osteosarcoma modelling is proposed.

Models of osteosarcoma at the tissue scale

To achieve a consistent mechanical characterization of the osteosarcoma, several assumptions must be made about the physical and geometrical character of the problem as shown in figure 2.1. Indeed, it is challenging to model complex biology of tissues, so biological and physical conjectures are necessary in order to target relevant parameters of the problem. Thus, choosing a modeling approach comes down to making the relevant choices that approximate the original problem while keeping the complexity adequate to answer the clinical or biological questions.

In a first step, we consider stationary mathematical problems. This restriction is trivially motivated by the biological material available. Indeed, histological slides represent a 2D snapshot of the tumor at a given time.

The tumor shows apparent structure changes according to the observation scale featuring strong spatial heterogeneities. As a consequence, a multiscale approach is required.

We will consider the tumor as a strongly heterogeneous porous medium exhibiting three phases that are the fluid phase formed by blood, plasma and marrow, the solid phase formed by the fibrous and osseous ECM which main components are non-mineralized and mineralized tissues, and the cell population mainly constituted by osteoblasts, osteoclasts, and macrophages. The present work focuses on the microenvironment study as detailed in chapter 1.

When observing histological slides, one can see profound changes in its microarchitecture such as calcified and osteolytic regions and in the cell populations compared to healthy tissues. Therefore, abnormal structural mechanics and flows in the tumor and its microenvironment are expected. These variations will induce imbalances in the healthy tissues leading to tumor progression [START_REF] Shieh | Biomechanical forces shape the tumor microenvironment[END_REF]. Thus, different physics and their coupling must be highlighted to obtain a coherent characterization of the osteosarcoma.

To achieve this objective, a consistent and adaptive methodology is necessary to handle the multiscale tissue microarchitecture and its physical behavior in order to propose a relevant mechano-biological exploration of osteosarcoma. Through this process, we consider, in the following, mechanical problems in porous media of increasing complexity, all associated with clinical and biological problematics. As illustrated in figure 2.1, the study of transport phenomena, i.e. interstitial fluid flow and species diffusion in tissues, explores the coupled role of surpressure within the tumor and osseous ECM structure on the response to chemotherapy. In this study, the pink region in figure 2.1 is considered as a fluid phase whereas the white region corresponds to fixed rigid obstacles. The fluid phase description is a strong assumption as in reality, this phase is a fibrous ECM porous medium saturated by a fluid.

Because of the dependence of bone remodelling to mechanical effects, elasticity study investigates the role of osseous ECM deformation on chemotherapy response. In this study both pink and purple region are considered to be structures with different elastic properties. Furthermore, poromechanics can bring answers to transport and elasticity problematics simultaneously. In this exploration, both purple and pink regions become porous materials with various elastic and permeability properties. In this model the nanoscopic lacunar-canalicular network in the purple phase is considered while fibous ECM is also taken into consideration.

Transport in vasculature and surrounding tissue is of interest to study the role of angiogenesis on tumor development and chemotherapy response however it corresponds to the highly complex question of transport in a network (vasculature) combined to the transport in a surrounding heterogeneous porous media (fibrous and bone phase). This question is out of the scope of this thesis.

Definitions and modeling of porous media

In this section, the fundamental notions and formalism of porous media, useful for the good understanding of this work, are introduced. The concept of porous medium allows the study of a significant number of applications from energy and geosciences to climate issues. However, the literature on porous media mechanical models in biological and clinical applications is scarce to non-existent when dealing with non-idealised media.

A porous medium is a geometrical object consisting of a solid matrix or porous skeleton and its complementary called pores. Constitutive materials of the porous skeleton can be continuous and consolidated such as crystals or rocks or discrete and granular such as sand. Pores, interconnected or not, are subcategorized according to their discrete or continuous nature as described in figure 2.2. The distinction between the continuous and discrete terminologies is made according to the pore codimension (0 or 1) and dedicated methods are usually used to solve mechanical problems in each case. Osteosarcoma, as described in fig. 2.1, correspond to a porous medium with continuous pore (codimension 0). The medium porosity, describing the ratio between the pore void volume and the total volume of the object, ranges from 0 to 1. Furthermore, the porosity nature often drive model classification such as one-porosity or double-porosity models and some are more complex are multi-porosity models (fig. 2.2). The connectivity and the tortuosity, which describe the sinuosity of the microarchitecture, can be associated with the geometrical description of the porous media but may also play a role in the physical behavior [START_REF] Ghanbarian | Tortuosity in porous media: A critical review[END_REF]. The solid matrix is generally completed by a fluid material, fully or partially saturating the porous medium. To distinguish between constitutive materials, the keyword phase, i.e solid or fluid, is generally proposed. From then on, different physics can be explored such as transport, transfers or poromechanics.

A porous medium phase is spatially homogeneous, at a given scale, if it is similar in each point of space. As a consequence, phase heterogeneity can be taken as the antinomic situation where significant variations into the solid and fluid phases can be observed. Note that in the porous media framework, homogeneity and heterogeneity will be given a slightly different definition (see below section 2.2.1). The isotropic behavior reflects the invariance of physical responses according to the orientation of architecture and physical boundary conditions. On the contrary, the anisotropy accounts for the dependence on the system orientation. Finally, a physical system is defined as a system comprising the geometry, i.e the porous medium, and physics under study.

Another important point in the modelling of porous media, is the attention paid to the different scales of observation [START_REF] Cushman | A primer on upscaling tools for porous media[END_REF]. To remind the problematic of the osteosarcoma, figure 2.3 illustrates the different scales which are considered by clinicians. The first one is the macroscopic X-ray imaging used for clinical diagnosis, then the tissue scale observed on histological slices used to confirm diagnosis, to guide surgery and to establish chemotherapy response. The cell scale, which is not yet available in clinical routine, is currently explored in research for targeted therapy. The thesis is built around two main scales from the pore scale (close to the cell scale) to the tissue scales (see fig. A significant number of theoretical and numerical methods are available to describe the physical response of porous media. Some focus on an exact description of the physical phenomena while others are targeting approximations. Finally, there is not an unified approach but rather methods adapted to the scientific objectives.

First, problems can be modeled at the pore scale. This approach allows to describe the behavioral equations in time and space without any simplifying hypothesis provided the porous medium architecture is well known. Numerically, they are solved by Direct Numerical Simulation (DNS), i.e methods for which the whole range of spatial scales is resolved. Their resolution induces limited errors inherent to the numerical algorithm. Pore-scale physical information are accessible with a significant computational cost which is prohibitive in case of complex geometries and/or large domains (illustration 2.4 top images).

Multiscale methods are based on the study of physics at different scales of observation. The first step is to determine the characteristic scales of each physical phenomenon by ascendant and descendant approaches. Once the relevant physical systems have been identified, the couplings and relationships related to the different scales are modeled. Then, the global simulation such as DNS is replaced by a series simulations associated each with different scales. Thus, this method shows a reduction of numerical cost compared with DNS, but it induces a loss of information and accuracy in return.

Pore Network models may be used when complex physics occurs at the pore scale such as phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport ... (illustration 2.4 bottom images). This approach links single pore processes and permits understanding and the prediction of porous media mechanical behaviors at a larger scale, usually however on volumes smaller than sample size [START_REF] Xiong | Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport[END_REF]. In this methods porous media geometry is simplified but solid and fluid phases are still considered and the balance equations are also approximated (e.g. Navier-Stokes to a pressure drop relationship for instance). The last method presented in this paragraph is upscaling method. The most general objective of upscaling methods is to replace a physical system, including a spatially heterogeneous porous medium and a physics with fast spatial variations, by a new physical system constituted by a smoother domain and a physics with slower variations (fig. 2.5). The physical coefficients at the macroscopic scale scale are calculated from the pore scale and are called the effective or equivalent properties of the system. Thus, through the pore scale behavior of the system, it is possible to obtain a model of behavior at a higher scale. This approach implies the use of averaging of the pore-scale equations and leads to a loss of some details. It must be emphasized that the goal to replace lower-scale models by upper-scale smoothed model cannot be always achieved and that hybrid model coupling transport equations at different scales may be needed. This important issue will not be considered in this work. Figure 2.5: An upscaling method allows to substitute to a complex physical system a new physical system much simpler to study.

Mechanical effects acting on the tumor are internal as well as external in nature as illustrated in figure 1.10. Therefore, the link between pore and macroscopic scales has to be elucidated. In this thesis, the DNS approach had to be discarded (except for methodology validation purposes) because of its computational cost due to the complexity and heterogeneity of the osseous ECM structure and the large dimension of histological slices where cell scale information (smaller than pore scale) are clinically relevant. Pore network model would be difficult to implement in osteosarcoma because of the complexity of the micro-architecture and the limited ability to generate the network itself. However, an upscaling method is well-adapted to study mechanical effects at the tumor scale or at least at the scale of a whole histological section and their influence on cellular responses.

State of the art on upscaling methods

This section provides a description of the main concepts associated with uspcaling methods. The main methods of deterministic homogenization are then given. These theoretical methods are essential since they provide a rigorous framework for the determination of physical systems at the higher scale and their associated parameters. The homogenization methods are classified according to the spectrum of the physical system they deal with and the restrictive assumptions they consider.

Upscaling methods: concept and definitions

The upscaling process gives a representation of a physical system by describing the average behavior and accounts for global effects by removing the fluctuating effects at the pore scale (fig. 2.6a). These methods permits the modelling of complex systems including several physics and couplings while involving various spatial scales with partial differential equations (PDEs) simplification. The first models were obtained empirically and experimentally such as the Darcy's law (1856), the Brinkman's equations (1949), the dispersion equation (1979). These empirical transport models often used some empirical correlations for their effective properties, such as the Kozeny-Carman law (1927, 1937 and 1956). The analytical results of the latter can only be applied to limited geometries such as packed bed of solid with a limited choice of physics such as flow and diffusion.

To implement the upscaling of generic physical systems, some methods rely on rigorous mathematical and physical tools to derive macroscopic physical systems from the pore scale modelling. This is the case of homogenization methods. They were originally developed for elliptic equations in periodic media such as asymptotic expansion [START_REF] Sanchez-Palencia | Solutions périodiques par rapport aux variables d'espaces et applications[END_REF] or in the formal derivation of laws that were empirical such as the Darcy's law in volume averaging [START_REF] Whitaker | The Method of Volume Averaging[END_REF]. They have since been extended to other steady or unsteady physics such as convection, flow and elasticity.

These methods rely on two fundamental elements which are the "representativity" of the physical system and an averaging operator. These two points allow a macroscopic modelling to be proposed using the average of pore scale physical quantities [START_REF] Cushman | A primer on upscaling tools for porous media[END_REF]. Characterizing the physical system representativity is an essential step. The aim is to search for a sub-volume of the entire domain to account for its macroscopic properties. Such a subvolume is called a representative elementary volume (REV) of the physical system. The REV is dependent upon the intrinsic characteristics of the porous medium, i.e. porosity, but also upon the physics involved. A region of interest for which a macroscopic property is constant (resp. variable) through the process of upscaling and also independent from boundary conditions is considered as homogeneous (resp. heterogeneous), as illustrated in figure 2.6b. Therefore, the REV induces macroscopic properties independent from the domain size as well as boundary conditions. Properties are then defined as effective properties. Some REV representation are intended to be deterministic, others statistical depending on the choice of homogenization method. According to De Marsily [START_REF] Marsily | Quantitative hydrogeology: Groundwater hydrology for engineers[END_REF], "the size of the REV is defined as a volume (1) sufficiently large to contain a great number of pores so as to allow us to define a mean global property, while ensuring that the effects of the fluctuations from one pore to another are negligible (2) sufficiently small so that the parameter variations from one domain to the next may be approximated by continuous functions, in order that we may use infinitesimal calculus". Bear [START_REF] Bear | Dynamics of fluids in porous media[END_REF] defines a REV as a volume capable of capturing a quantity representative of its heterogeneity. Drugan and Willis [START_REF] Drugan | A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites[END_REF] define it as "the smallest material volume element of the composite for which the usual spatially constant (overall modulus) macroscopic constitutive representation is a sufficiently accurate model to represent mean constitutive response". Hill [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF] describes it as a heterogeneous region that :"is entirely typical of the whole mixture on average"and "contains a sufficient number of inclusions for the apparent properties to be independent of the surface values of traction and displacement, so long as these values are macroscopically uniform." When using stochastic volume elements, the REV accounts the variability in the microstructure over different statistical realisations [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF].

The scale separation is then defined. As shown in figure 2.6a, mechanical phenomena are analysed according to their oscillation frequency and the mathematical methodology is based upon the uncoupling between pore scale and macroscopic fields. The REV concerns intrinsic material properties such as porosity whereas the scale separation concerns fields of mechanical responses such as fluid velocity and pressure, displacements, etc. From a purely physical point of view, scale separation describes, in any continuous approach, the difference in spatial oscillations of pore-scale properties with respect to the spatial variable of the macroscopic domain. It is this consideration that is exploited in the upscaling methods. Indeed, this characteristic of continuous systems can be analytically described and allows the physical and mathematical simplification of the equations for a description of the physics through a macroscopic point of view. Thus, the presence of REV always underlies the existence of scale separation in the upscaling sense. Generally, the ratio of the characteristic length at the pore scale and the characteristic length at the macro scale is much lower than unity. The region I corresponds to the micro-heterogeneity effect at the characteristic l-scale, the region II where an REV defined as the property is seen as homogeneous (quasi-constant) and the region III where the medium can be heterogeneous again at the characteristic L-scale. In the porosity gradient case (right), a REV cannot be defined as the porosity evolves continuously in respect to the scale. Illustration from [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF].

In the context of this thesis, statistical methodology could have been envisaged. However, stochastic models face difficulties to determine an homogeneous medium corresponding to the stochastic microstructure. As a consequence it is often prohibitive in term of computational costs [START_REF] Yalchin Efendiev | Modeling of subgrid effects in coarse-scale simulations of transport in heterogeneous porous media[END_REF][START_REF] Cottereau | A stochastic-deterministic coupling method for multiscale problems. application to numerical homogenization of random materials[END_REF]. Moreover, it is often challenging to provide the elucidation of mechanisms involved. In our work the aim is to explore the mechano-biological events involved into the pediatric tumor, thus we consider deterministic methods in our strategy.

Deterministic homogenization methods

In this paragraph, a review of the main deterministic homogenization methods is proposed. Methods based upon restrictive assumptions are described. Then, methods bypassing some of these limitations are detailed.

The two main methods of deterministic homogenization build the bridge from the pore scale, characterized by the length l, to the macroscopic scale, characterized by the length L. They are described as the asymptotic expansion (AE) [START_REF] Sanchez-Palencia | Solutions périodiques par rapport aux variables d'espaces et applications[END_REF] and the volume averaging (VA) [START_REF] Whitaker | The Method of Volume Averaging[END_REF]. A comparative study showing their similarity is proposed in [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF]. A review of the main results of the asymptotic expansion is proposed in [START_REF] Auriault | Homogénéisation de phénomènes couplés en milieux hétérogènes[END_REF][START_REF] Royer | Homogénéisation de phénomènes de transport en milieux poreux et milieux composites Comportements macroscopiques et domaines de validité[END_REF]. As an illustration, we consider, at the pore scale, their respective historical physical system.

In the AE case, we consider the elliptic equation (2.1) on a periodic domain Ω (of boundary ∂Ω), where a periodic tensor A exhibit strong spatial oscillation. This can describe a diffusion problem.

-∇

• (A • ∇c) = f in Ω c = 0 on ∂Ω (2.1)
Here c represents a concentration field and f is a source term.

The AE method put the original pore scale problem (2.1) into a sequence of similar problems (2.2) indexed by a parameter η. This η describes the spatial periodicity of each periodic cell of the domain and the non-dimensional number characterizing the scale separation with x and y = x η being the macroscopic scale and the pore scale respectively. Thus, the real physical problem is matched to a single parameter η.

-∇ • (A( x η ) • ∇c η ) = f in Ω c η = 0 on ∂Ω (2.2)
Here c η correspond to solution of the problem associated with the η parameter.

The limit solution of the asymptotic problem is searched in the form of an integer series (2.3), periodical in y, on a unit cell of the domain.

c η (x) = ∞ i=0 η i c i (x, x η ) (2.
3)

The effective or homogenized limit problem (2.4) is obtained when η tends formally to 0 and gives the macroscopic behavior. The asymptotic solution is given by the first term of (2.3). The effective property A , which is constant, is obtained from solving the so-called cell problems (encapsulating information from the pore scale).

-∇ x .(A • ∇ x c) = f in Ω c = 0 on ∂Ω (2.4)
For a true physical problem corresponding to a finite parameter η, the solution found is an asymptotic approximation. A noticeable advantage is that the approximate effective property can be complemented by the error calculation.

An illustrative example is proposed in figure 2.7. An elliptical equation 2.1 is solved on a unitary geometry composed of a packed bed formed by square obstacles. Boundary conditions are a given by a non-homogeneous Dirichlet condition at the external border (c = 1) and an homogeneous Neumann condition at the fluid-solid interface (∂ n c = 0). Finally, a unity source term is imposed in the domain (f = 1). Effective behavior through AE is calculated by using the same outer boundary condition and source term. Comparison of the AE model with the DNS, used as control, is proposed (fig. 2.7a and b). The concentration profile along a horizontal path is given in figure 2.7c and results are in very good agreement. To correct the behavior of the homogenized model (fig. 2.7c), one can consider the theory of effective boundary conditions [START_REF] Veran | Effective boundary conditions for rough reactive walls in laminar boundary layers[END_REF] which will not be discussed in this work. The VA method is based upon the direct spatial averaging of the pore scale physics. Here, it will be illustrated on the derivation of the incompressible Darcy equation from a incompressible Stokes equation which model the fluid flow in a porous skeleton. Key points are the choice of the integration domain of governing equations and the averaging operator [START_REF] Davit | Technical notes on volume averaging in porous media i: How to choose a spatial averaging operator for periodic and quasiperiodic structures[END_REF]. The averaging process is achieved by using convolution according to the REV. The separation of scales is associated with the hierarchy of physical problems and it is expressed by equation (2.5) where the velocity field u can be decomposed in a sum of u , the average, and ũ the perturbation, respectively, as previously illustrated in figure 2.6a.

u = u + ũ (2.5)
This decomposition is inserted in the Stokes pore scale equation (fig. 2.8 left model). By doing so, the average system equation is not closed. To solve this, approximation of the perturbation is obtained on a unit cell of the REV, it is the closure problem (fig. 2.8 middle model). This unit cell is a representative domain of the REV where the invariance of the solution of the pore scale physical problem is verified with periodicity on cell frontiers1 . Finally, governing equations at the macroscopic scale (the Darcy equation fig. 2.8 right model) are found and completed by determining the effective properties from the closure problem on the unit cell. In those equations u is the velocity and p the pressure while κ ef f is the effective permeability. Other notations are explicited in [START_REF] Whitaker | Flow in porous media i: A theoretical derivation of darcy's law[END_REF].

The AE and VA methods are two methodologies designed to predict macroscopic fields and physical properties. AE is based upon more initial mathematical aspects such as the scaling equations while VA is built upon initial physical considerations. Indeed, the VA method does not require a priori periodicity assumption since it is only used when solving the closure problem at the unit cell by the BCs choice. On the contrary, the AE method needs this initial assumption. Also, the scale separation with VA, i.e η = l L is constant and strictly positive, in opposition from the one arising in AE. The VA method seems to be more flexible to deal with real porous media in the sense that it admits a priori a larger spectrum of admissible geometry than the AE; where the scaling of the pore scale problem into a succession of periodic unitary problems can be limiting. This last argument is subject to debate in the scientific community and some authors supporting the AE [START_REF] Auriault | Heterogeneous periodic and random media. are the equivalent macroscopic descriptions similar?[END_REF] indicate, that under certain assumptions, a random structure leads to the same macroscopic description as a periodic structure. The necessary and sufficient hypotheses for the good conduct of the classical AE method are in fact the spatial local stationarity (i.e. no porosity gradient) and the scale separation.

Other homogenization methods have been proposed in the literature such as the mixture theory [START_REF] Ray | Porous Media Model Formulations by the Theory of Mixtures[END_REF], the effective medium theory [START_REF] Stroud | Generalized effective-medium approach to the conductivity of an inhomogeneous material[END_REF] or the two-scale convergence method [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. The Mixture theory [START_REF] Ray | Porous Media Model Formulations by the Theory of Mixtures[END_REF] or hybrid mixture theory [START_REF] Hassanizadeh | General conservation equations for multi-phase systems: 1. averaging procedure[END_REF] are phenomenological methods based upon restricted forms of macroscopic governing equations. They are dedicated to multiphasic fluid flows. In the effective medium theory [START_REF] Stroud | Generalized effective-medium approach to the conductivity of an inhomogeneous material[END_REF], the unit cell is immersed into a medium corresponding to the effective behavior. The solution is multiple since associated with a significant number of available approximations such as the Green's function or the Maxwell-Garnett, Clausius-Mossotti and Bruggeman formulas. The two-scale convergence method is based upon robust mathematical developments [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. It is similar to the AE method while explicitly stating the topologies (limit meaning) and the functional distributional spaces. Those methods have been discarded in this work as they are not well adapted to the problem of interest. Some extensions have been proposed to overcome the restrictive assumption of strict periodicity by introducing a gradient of porosity. Developments in [START_REF] Bruna | Diffusion in spatially varying porous media[END_REF] and [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF] are associated to AE. An example on the processing of porosity gradients by AE is given in figure 2.9 where a DNS and the AE model simulation are compared.

Here, the effective property A (x) is not constant but depends on the diameter of the obstacle considered. Indeed, multiple unit cell problem need to be solved as the diameter of the obstacle is not constant; a constant effective property is associated with each unit cell. For the VA method, the concept of evolving heterogeneities is proposed [START_REF] Valdes | A volume averaging approach for asymmetric diffusion in porous media[END_REF]. These extended methodologies (coming from AE or VA) give similar effective properties. Indeed, when calculating the effective coefficients A on each cell as a function of scaled obstacle diameters, similar results are obtained with non-local stationary heterogeneity, as shown in figure 2.10. Other approaches could avoid constraints of periodicity and REV such as the Σ-convergence [START_REF] Gabriel | Sigma-convergence of stationary navier-stokes type equations[END_REF]. They are generally based on two-scale convergence but, unfortunately, are still distant from potential physical applications because of their fundamental concept such as the so-called homogenization algebras.

Upscaling and biological tissues

When biological tissues are considered, most of studies concern bone mechanics and are solved using deterministic homogenization. Considered physics are elasticity, poroelasticity coupled with diffusion [START_REF] Griso | On the homogenization of a diffusion-deformation problem in strongly heterogeneous media[END_REF], piezoelectricity [START_REF] Rohan | Homogenization of the fluid-saturated piezoelectric porous media[END_REF]. Some studies account for specific geometry such as double porosity [START_REF] Rohan | Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone[END_REF] or porosity gradient [START_REF] Rohan | Double porosity in fluid-saturated elastic media: deriving effective parameters by hierarchical homogenization of static problem[END_REF]. Additional applications concern vascularized tumors [START_REF] Shipley | Multiscale modelling of fluid and drug transport in vascular tumours[END_REF][START_REF] Ramírez-Torres | Three scales asymptotic homogenization and its application to layered hierarchical hard tissues[END_REF][START_REF] Raimondo Penta | Effective governing equations for poroelastic growing media[END_REF]. All methodologies consider cases of idealized microstructures.

Unfortunately, when REV is missing, the scale separation is not verified and above methodologies cannot be applied. This is precisely the case of osteosarcoma which is a strongly heterogeneous medium at the tissue scale. Approaches previously described find redhibitory limitations and dedicated strategies have to be implemented. Indeed, in osteosarcoma, the presence of a REV is not verified. The heterogeneity of the phase distributions (with respect to the osseous ECM) varies continuously by increasing window method (fig. 2.6b). By plotting the evolution of the porosity for these increasing windows, we find only very locally and for very specific areas of the osteosarcoma REV sizes of 800 px×800 px (neo-formed bone). It is important to note that the determination of a local REV, which is very rare and exceptional, does not allow for a systematic study of the osteosarcoma by homogenization approach, since strong geometrical variations are observed on all the histological sections. As a consequence, a single effective value cannot correctly reflect this heterogeneity.

Upscaling methods adapted to osteosarcoma study

This section describes the main methods of upscaling that are compatible with the processing of clinical material, i.e. histology sections. Upscaling methods applied to complex porous media have to deal with two main difficulties: the heterogeneity of the physical responses as well as the anisotropic characteristics of variables and parameters. Here, we discuss upscaling methods applicable to heterogeneous porous media. They are based on periodic homogenization of the physical models of interest. Macroscopic properties are obtained by using the direct averaging of physical quantities such as fluid velocity, pressure etc. Some analytical methods are available such as bounds-based approaches [START_REF] Ph | Calculating equivalent permeability: a review[END_REF], power-averaging [START_REF] Deutsch | Calculating effective absolute permeability in sandstone/shale sequences[END_REF] and renormalization [START_REF] King | The use of renormalization for calculating effective permeability[END_REF]. Unfortunately, those techniques are less generic compared to homogenization. For example, in the power-averaging case, only the diagonal equivalent property can be predicted and anisotropy is lost. Nevertheless, an extension of the renormalization to non-diagonal equivalent properties is proposed in [START_REF] Gautier | Preferential flow-paths detection for heterogeneous reservoirs using a new renormalization technique[END_REF] but this method is discarded in this thesis since we are looking for a generic method allowing the treatment of multiple physics.

Grid-block methods

One of the most flexible and accurate upscaling methods, saving most of pore-scale information, considers the numerical pore scale solutions over the whole domain of interest according to different directions of space, which has the advantage of accounting for the complete anisotropy. The upper scale model is then obtained by direct spatial averaging of pore scale physical quantities, thus the macroscopic property is constant over the domain (left image on figure 2.11). This technique allows to replace the heterogeneous behavior of domain by a so-called equivalent behavior without any restrictive assumption about geometry and microarchitecture. In the following, we consider the terminology equivalent properties, mostly used in fluid mechanics when macroscopic properties are obtained without REV. Apparent properties terminology is also found in the literature but is more dedicated to structural mechanics. The equivalent properties are not intrinsic or effective and they may vary according to boundary conditions and size of the calculation domain. Convergence is eventually achieved by increasing the domain size and effective properties are found if a REV size is reached. This approach has a high numerical cost and may induce a significant loss of microscopic information if the domain size is large. Grid-Block upscaling methods [START_REF] Ph | Calculating equivalent permeability: a review[END_REF] implement this process in a sub-division of the macroscopic domain as described in figure 2.11 (right image). The methodology consists of direct averaging of the pore scale physics over each sub-domain of the grid. This technique of low numerical cost, gives piecewise constant equivalent macroscopic properties at the scale of the whole domain of interest, thus saving heterogeneous and anisotropic properties of the porous medium. The grid-block method is a kind of approximate numerical upscaling method in the sense that without REV, it is necessary and essential to obtain a macroscopic description representative of the heterogeneity of the phase distribution at the pore scale.

Figure 2.11: Grid-block upscaling process from pore-scale giving either global (whole geometry) or block precision equivalent properties.

Piece-wise equivalent properties on the grid are dependent upon boundary conditions on sub-blocks of the subdivision of the original domain. Boundary conditions are specified according to the pore scale physical model to determine the equivalent property on each sub-block. Sub-methods of averaging are developed according to the management of boundary conditions. We can find the local method, the extend-local method and the quasi-global also called local-global method. The local method is a standard grid-block process. Each sub-domain of the grid is independent from its neighbors and boundary conditions on sub-blocks are dictated by the explored physics and they are fixed arbitrarily since they are inaccessible in natural conditions. The influence of boundary conditions on the output measures, i.e equivalent properties and averaged fields, can be attenuated using the extend-local procedure [START_REF] Holden | A tensor estimator for the homogenization of absolute permeability[END_REF] as described in figure 2.12. Each local sub-domain is immersed into a close neighborhood of characteristic size δ, then computation of pore scale physics is achieved in a region larger than the original sub-block (blue region fig. 2.12a). The upscaling is then performed on the target local sub-block2 (yellow region fig. 2.12b). Figure 2.12: Comparison of purely local vs extend-local upscaling on a sub-block. a) In the local averaging approach, the computational and upscaling domains merge. b) In the extend-local averaging approach, the upscaling domain is a strict subset of the computational domain where an extend neighboring of size δ is considered.

In the local-global method [START_REF] Wen | Efficient 3d implementation of local-global upscaling for reservoir simulation[END_REF], an initial computation at the macroscopic scale can guide the choice of sub-domain boundary conditions; only if the pore scale physics is not too complex. The coarse simulation built on a coarse mesh, gives a first estimation of boundary conditions to be applied in an iteration of the local or extend-local grid-block methods on each sub-block. In the fluid flow case, an harmonic interpolation can be used. Then, the equivalent response of a sub-block only depends on the interpolated boundary conditions. An iterative process can be implemented to improve accuracy.

In the context of osteosarcoma, the local and extend-local methods seem well adapted because of the complexity of the problem and the size of clinical data, i.e. digitalized histological slices. Indeed, a local-global scheme requires an iteration of the grid-block process as well as global simulations with a significant computational cost.

Sequential upscaling process

A porous medium generally shows a continuum of observation scales. However, in classical upscaling methods only two scales are considered but subsidiaries scales may give relevant information. Indeed, these subsidiaries scales allow a better prediction of the physical properties as described schematically on figure 2.13. Therefore, it is possible to go from the pore scale to the macroscopic scale by considering a cascade of upscaling through a succession of intermediary scales. Some works study this sequential process from classical method of homogenization like volume averaging [START_REF] Kfoury | Upscaling fractured heterogeneous media: Permeability and mass exchange coefficient[END_REF][START_REF] Béchaud | Modelisation numerique de l'adsorption et de la dispersion d'un gaz binaire en milieu poreux[END_REF], as illustrated in figure 2.14, or by asymptotic expansion [START_REF] Korneev | Sequential homogenization of reactive transport in polydisperse porous media[END_REF]. This method allows a better understanding and analysis of the object of study by providing geometric or physical characteristics at different scales of observations, which is not the case with a classical upscaling method. Compared to a one-step grid-block upscaling scheme, the sequential grid-block method allows to process numerically large geometries, as it limits drastically the required computer memory by splitting finite element matrices [START_REF] Horgue | Efficiency of a two-step upscaling method for permeability evaluation at darcy and pore scales[END_REF], while providing fast prediction of equivalent properties. Note that changes in the nature of the PDEs at each scale can occur and may also allow a reduction in numerical costs. Figure 2.14: A sequential upscaling approach, for an arbitrary porous medium, using volume averaging and two intermediary scale [START_REF] Béchaud | Modelisation numerique de l'adsorption et de la dispersion d'un gaz binaire en milieu poreux[END_REF].

In the following, we consider a two-steps sequential method, as illustrated in figure 2.15, with the addition of a single scale subsidiary compared to the classical grid-block. Thus, the characterization of the object will be done at three scales: at the pore scale (which we will call L 1 ) and through mechanical descriptions equivalent to the L 2 and L 3 scales. Figure 2.15: A 2-steps sequential upscaling approach by grid block, applied to osteosarcoma.

Workflow developed in the thesis

In this section, we develop the overall work flow of the thesis. First, we describe how the clinical material was obtained. Then, the numerical methods are explained; from the image processing of histological slides to the actual calculation of the equivalent properties. Finally, a summary of the global workflow is proposed.

Clinical data post-processing

Histological slides were obtained at the IUCT by the team of Pr A. Gomez-Brouchet. They correspond to a group of patients with high-grade conventional osteosarcoma and are obtained on surgically removed tumors after a neoadjuvant chemotherapy. After a 4mm thickness cutting of the tumor, it is decalcifed, fixed and placed into parrafin. Using a microtome (Thermo scientific; HM 340 E), the paraffin blocks were cut with a thickness of 4µm. Sections are placed on white slides (Thermo scientific; SuperFrost Plus) and stored at 4 • C. A H&E staining is performed corresponding to a successive application of hematin (basic nuclear stain) and eosin (acid cytoplasmic stain). Then, the cells are marked according to their nuclei (purple/black) and their cytoplasm (pink). The osseous ECM shows a gradient of color from orange-pink to dark purple depending on the degree of calcification of the tissue. Slices are scanned using a digital slide scanner (NanoZoomer-XR Hamamatsu).

Image Segmentation (fig. 2.16a) was performed, according to the work of Anthony Mancini (PhD student at IMFT), using Matlab c with a machine learning k-nearest neighbors algorithm (KNN) to label different elements of the slice such as the bone phase, the cells and the interstitial phase [START_REF] Cover | Nearest neighbor pattern classification[END_REF]. The KNN method is a supervised pattern recognition algorithm. A new observation is classified according to the k nearest neighbors and its given label will be the majority label of these k neighbors. This method is applied to label different elements from color distributions. Two labels are of particular interest: the bone and the cell phase. From the bone label (mineralized and non-mineralized ECM), a binary image is extracted (fig. 2

.16b).

A post-processing is performed in which we remove all connected parts that have less than 10 pixels (corresponding to noise) followed by a smoothing of segmented bone borders. The cell phase is also binarized. Because of the size of the histological sections, segmentation is performed on a mosaic of images. The number of cells on a sub-image corresponds to the number of connected parts of pixels classified as "cell". If a cell is between two or more sub-images, it will not be counted more than once since the cell will be associated with the block in which its barycenter is located. Note that red blood cells are not counted as cells, but have their own label. The cell density is obtained by dividing this number by the number of pixels that are not labeled as "bone". As a result, the cell density is obtained only in the pores (unit given by number of cells per "fluid" mm 2 ), avoiding biased correlations. Thus, a sub-image with a large bone phase does not necessarily correspond to a region with low cell density. 

Numerical workflow

To represent the physical models numerically, different discretization methods are possible and they can be separated into two main families according to their integrals or differentials nature. When dealing with integral scheme, i.e. finite element (FEM) and finite volume (FVM) methods, complex geometries can be considered using irregular meshes and explicit error approximations. For differential method, i.e. finite difference method, the error can also be minimized by considering regular grids.

In this work, we decided to use integral scheme and the finite element method since it permits to handle multi-physical analysis with mixed formulation and explore complex geometrical architecture. The FEM provides an effective numerical resolution of PDEs. The discrete form of the weak solutions, i.e. resulting from the distribution representation of the governing equations, is expected to give an approximation of the strong solution of the problem. The solution is found in specific integration points of the mesh and then interpolated. The process conducts to the resolution of a linear system in the form AU = B. Drawback can be find in the FEM compared to the FVM such as the non-control of local fluxes but adaptation can be available.

Many FEM software are available, either free (FEniCS, FreeFem++) or commercial packages (ANSYS, NASTRAN, COMSOL, Abaqus). In the following, FEniCS [START_REF] Alnaes | The fenics project version 1.5[END_REF] is chosen for its adaptive and intuitive design. This tool is requiring an understanding of the mathematics underlying FEM, but it permits to solve a large spectrum of PDEs and their couplings through an intuitive writing of weak formulations. Components of FEniCS are also designed for parallel processing.

To generate complex meshes and manage results post-processing, GMSH [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF], an opensource 3D mesh generator software, is used3 . Scripting language (C++, C, Pyhton etc) are available.

Matlab is used to pre-condition binarized osteosarcoma histological slides 4 . The overall numerical workflow is shown in figure 2.17. 

Summary of the workflow

In case of heterogeneous porous media, the classical homogenization methods are not directly applicable because the upper scale physics depends strongly on the microstructure of the object. To overcome this limitation, the grid-block computational homogenization method is used to determine the upper scale properties. With the improvement of image processing techniques, it is possible to work at scales with increasingly fine and complex microstructures. Obviously, such precision has a drawback: simulations on very large volumes involve a significant computation cost, sometimes inaccessible. To solve this problem, we decide to add a two-step sequential functionality to the grid-block method. It is characterized by a process iteration at a subsidiary scale. The sequential approach reduces the cost in memory and computation time while providing an accurate prediction of physical equivalent properties at different scales while preserving anisotropy, a point that will validated in the following chapters of the thesis. 3) Image processing of the histological sections is done to obtain binary images of the bone and cell phases. (4) A sequential Grid-Block upscaling process is applied on bone phase image which decreases the cost of computations regarding CPU time: here with two iterations admitting three lengths L 1 , L 2 and L 3 . ( 5) Search of correlation between cell density and equivalent mechanical properties at the L 4 tumor scale. Potential identification of mechano-biomarkers.

In conclusion, our aim is to provide a consistent computational homogenization method to estimate, from a deterministic point of view, the 2D equivalent physical properties of osteosarcoma considered as a biological porous media strongly heterogeneous. The grid-block method is implemented and an extend-local method is used to limit biases of boundary conditions. A sequential approach is used to limit computational cost. Mechanical equivalent parameters correlated to cellular densities obtained from the segmentation will allow the response to chemotherapy to be explored by implementing a mechanobiology approach. The overall methodology is described in figure 2.18. Although some methodological bricks of this workflow are available in the literature their association, adaptation and further development is innovative. It is also for the first time applied on biological tissue and patient follow-up images. This thesis work describes and validates, for the first time to our knowledge, this workflow in a complete way.

The following chapter will focus on the development and validation of this workflow in the case of transport phenomena. The aim of this chapter is to describe flow and diffusive transport into the tumoral tissue through a consistent mechanistic approach by upscaling. The extend-local and the 2steps grid-block methods are explored for flow and diffusive transport. An important part of the study is the determination of the mathematical models at higher scales which can be different, according to the deterministic homogenization theory, from those to be considered at the pore scale models. The first step concern the study of interstitial flow in osteosarcoma where we consider a Stokes equation at the pore scale. This choice not only allows us to propose an original use of the extend-local method but also to better take into account small scale phenomena at the large scale. In a second part, an application of the same methodology to mass transport is considered. In both cases the resolution of continuous equations by the finite element method is described.

Chapter 3

Transport in osteosarcoma

Context and model

The grid-block method has been frequently used to study flow and diffusive transports [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF][START_REF] Durlofsky | Numerical calculation of equivalent gridblock permeability tensors for heterogeneous porous media[END_REF] (see section 2.4.1). Initially, the extend-local methodology was implemented to solve elliptic equations, such as diffusive transport or to some extend incompressible Darcy flow [START_REF] Holden | A tensor estimator for the homogenization of absolute permeability[END_REF]. Concerning the sequential method (section 2.4.2), very few works have been done on it. Most of the studies of the literature assume scale separation of the treated problem and the resulting upscaled properties are effective [START_REF] Kfoury | Upscaling fractured heterogeneous media: Permeability and mass exchange coefficient[END_REF][START_REF] Korneev | Sequential homogenization of reactive transport in polydisperse porous media[END_REF]. To our knowledge, the coupling between the extend-local method and the sequential method to describe flow and mass transport in strongly heterogeneous media has never been studied. This is the challenge dealt with in this chapter.

As described in chapter 2, several assumptions must be made about the geometric character of the physical system to achieve a consistent mechanical characterization of flow and mass transport in osteosarcoma. The chosen model, at the pore scale, is illustrated on figure 3.1.

Here, the tumor is assumed to be avascular in order to focus on the interstitial flow. This assumption is legitimized from a biological point of view by the high pressure in the core of the tumor due to 1) cell proliferation in a confined environment and 2) vessel leakage. The tumor tissue is considered as a 2D biphasic structure, i.e. a fluid phase and a solid phase with interconnected pores. The solid phase is representing the osseous ECM. The fluid phase, saturating the porous matrix, includes the fibrous ECM and the interstitial fluid1 . Essentially, a 1-porosity model is chosen, i.e. there is no sub-porosity at a lower scale, and the geometries is like a two-dimensional perforated media. The presence of cell populations is not considered in this mechanistic approach and cell distribution will be identified separately (see chapter 5). 

Interstitial flow

In this section, we thoroughly present the mathematics of the chosen upscaling method through its application to interstitial fluid flow in osteosarcoma. The concept of the upscaling process outlined in this section will be used in the rest of the thesis. In a second section, we look at the numerical parameters of the developed methodology and their effect on the upscaling scheme. Finally, a comprehensive study of the upscaling method will be conducted according to its various intrinsic parameters (grid-block dimensions and boundary condition choices for example). The resulting equivalent permeability tensors behavior will be studied through their: diagonal terms expressing the flow dependence to pressure gradient, extra-diagonal terms expressing the flow dependence on a orthogonal direction to the pressure gradient (also representative of anisotropy), spectral radius or main permeability (highest eigenvalue) associated with the strength of the main flow and eigenvectors representing intrinsic principal directions of permeabilities and flow, not oriented by the pressure difference.

Development of the grid-block method

At the pore scale, the model considered is a 1-porosity model, described in figure 3.1. In the following, Ω and ∂Ω are representing domains and boundaries, respectively, such as ( 1) Ω = Ω f ∪ Ω s where Ω f and Ω s correspond respectively to the fluid and solid parts of the domain (2) ∂Ω = ∂ int Ω ∪ ∂ ext Ω, where ∂ int Ω and ∂ ext Ω are the internal, which correspond to fluid/solid boundaries and external boundaries, ie boundaries on the L 1 grid and external boundaries of the studied domain.

A sequential grid-block method (section 2.4) in two steps, as described in figure 2.13, is developed to predict the interstitial flow in 2D histological sections of osteosarcoma. In this case, the overall 2-steps workflow is described in figure 3.2. Three scales L 1 , L 2 and L 3 are used, ordered such as L 1 < L 2 < L 3 . Since no assumptions are made about scale separation or REV, lengths are not characteristic and they can be chosen arbitrarily. Two successive upscalings are performed, from the L 1 -scale to the L 2 -scale then from the L 2 -scale to the L 3 -scale. At the pore scale L 1 , where the micro-architecture is strongly heterogeneous, the fluid flow is characterized by predominant viscous effects corresponding to flow with a low Reynolds number. It is assumed to be Newtonian and incompressible. Therefore, the flow driven by a pressure gradient ∇p L 1 is modeled by the governing equations in Ω which correspond to the following Stokes problem2 :

           µ∇ 2 u L 1 -∇p L 1 = -ρg, on Ω f (L 1 -scale) ∇.u L 1 = 0, on Ω f u L 1 = 0, on ∂ int Ω Boundary conditions (BCs) on ∂ ext Ω (3.1)
where µ and ρ are fluid viscosity and density, respectively, and u L 1 and g are fluid velocity and gravity, respectively. In the following, the gravity term is not considered because of its supposed negligible role on interstitial flow in osteosarcoma.

Thus, for a given model at the pore scale, the developed 2-steps grid block method differs by the boundary conditions (BCs) applied on the edges of the domains, at L 1 -scale but also, as we will see later, at L 2 -scale. A comparison of the results obtained by the totality of the boundary conditions discussed below is conducted in section 3.2.4.2.

The first uspcaling, from the L 1 -scale to the L 2 -scale, is based upon the splitting of the initial domain into

N x × N y sub-domains, named A i with i ∈ [[1, N x × N y ]], having the same size D x ×D y = L 2
1 . L 2 -scale equivalent permeability tensors K i are computed on each subdomain A i . In order to construct a complete tensor, i.e. relating the complete anisotropy of a subdomain, it is necessary to consider two Stokes flows driven by the pressure gradient δP (pressure difference between the inlet and outlet boundaries), one in each direction of space. Moreover, to determine explicitly the extra-diagonal coefficients of the equivalent tensor, it is not possible to simply consider an integration on the boundaries, i.e to consider total flow rates. Indeed, for a wall condition, the extra-diagonal terms could not be deduced from this method. Instead, we rather consider the averaged velocities (3.2), provided here on a sub-block named A for convenience.

u L 1 A = 1 |A| A f u L 1 dS (3.2)
where |A| corresponds to the total surface area, also taking into account the obstacles areas A s . At this scale, A f represents in fact only the pore space where fluid flow is considered.

Then, the equivalent permeability tensor at the L 2 -scale, for a given subblock A is given under the matrix equation (3.3) following [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF].

(K) lk = -µ u L 1 ,k l A L 1 (δP ) l 1≤l,k≤2 (3.3) 
where superscripts l correspond to the flow test direction namely 1 for horizontal direction and 2 for vertical direction as illustrated on figure 3.2b, and subscripts k correspond to space variable components.

From now, the flow is described at the intermediate scale L 2 , on a piecewise smoothed geometry Ω, by the incompressible Darcy equation (3.4). The permeability tensor K(s) is piecewise constant (s is the L 2 -space variable) and takes its values on the splitting among the K i . Velocity U L 2 is the Darcy velocity or filtration rate3 and p L 2 is the pressure gradient at the L 2 -scale.

           U L 2 = - K(s) µ .∇p L 2 , on Ω (L 2 -scale) ∇.U L 2 = 0, on Ω BCs on ∂ Ω (3.4)
This result is motivated by the classical homogenization results [START_REF] Auriault | Homogénéisation de phénomènes couplés en milieux hétérogènes[END_REF] on a periodic geometry with a single porosity and a consolidated solid matrix.

For the second upscaling, the smaller scale physical system is now made up of the Ω geometry and the flow is described by equations (3.4). Because of the elliptic nature of the problem to be solved, it is acceptable to consider a splitting of Ω coarser than the one operated on Ω previously. It is made of M x × M y subdomains Ãj overlapping the previous one with N x ≥ M x and N y ≥ M y . Then, a new set of permeability tensors Ki , constant on Ãi , is obtained after the upscaling of equation (3.4) and using a specific post-processing.

The post-processing to consider L 3 -scale full equivalent permeability tensor can only relies on calculation of the averaged velocities and pressure gradients over the whole domain [START_REF] Wu | Discrete and Continuous Dynamical Systems-series B -DISCRETE CONTIN[END_REF]. Indeed, some approach consider only integration over boundary but this does not permit the calculation of anisotropic terms for all boundary conditions, especially the impervious one. In the same way as in the first upscaling, at least two flow tests solving (3.4) are needed in the two space directions to account for the complete anisotropy of the domain. For each test i ∈ [ [START_REF] Fletcher | WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition[END_REF][START_REF] Mirabello | Osteosarcoma incidence and survival rates from 1973 to 2004 data from the surveillance, epidemiology, and end results program[END_REF]],

where 1 corresponds to the horizontal direction and 2 to the vertical direction, we consider for a given piecewise smooth sub-block named Ã, the following averaging

U L 2 Ã = 1 | Ã| Ã U L 2 dS (3.5) ∇p L 2 Ã = 1 | Ã| Ã ∇p L 2 dS (3.6)
Note that using the interstitial velocity may induce continuity problems at interfaces. By using specific hypothesis in homogenization theories (such as VA) some terms depending upon pressure gradients are of higher order and can be neglected. Then, the average flux vector can be used.

As we solve two Darcy flow tests, we obtain a total of four equations with

µ U L 2 ,s 1 j Ω = -( K11 ∂ s 1 p L 2 j Ω + K12 ∂ s 2 p L 2 j Ω) (3.7) µ U L 2 ,s 2 j Ω = -( K21 ∂ s 1 p L 2 j Ω + K22 ∂ s 2 p L 2 j Ω) (3.8)
where the superscript j correspond to a given test flow, the L 2 -space variable is noted s = (s 1 , s 2 ) and K is the equivalent tensor at the L 3 -scale for the sub-block Ã. Finally, the above equations can be synthesized in matrix form, expressed by (3.9).

     ∂ s 1 p L 2 1 Ã ∂ s 2 p L 2 1 Ã 0 0 0 0 ∂ s 1 p L 2 1 Ã ∂ s 2 p L 2 1 Ã ∂ s 1 p L 2 2 Ã ∂ s 2 p L 2 2 Ã 0 0 0 0 ∂ s 1 p L 2 2 Ã ∂ s 2 p L 2 2 Ã          K11 K12 K21 K22      = -µ      U L 2 ,s 1 1 Ã U L 2 ,s 2 1 Ã U L 2 ,s 1 2 Ã U L 2 ,s 2 2 Ã     (3.9) 
A new Darcy equation (3.10), on a new domain Ω, is obtained with a piecewise constant permeability tensor K(s), where s is the L 3 -space variable, U L 3 and ∇p L 3 are the Darcy velocity and pressure gradient at L 3 -scale, respectively. Here, the 2-step process is stopped for illustration purposes, while the sequential approach could involved further steps 4 .

             U L 3 = - K(s) µ .∇p L 3 , on Ω (L 3 -scale) ∇.U L 3 = 0, on Ω BCs on ∂ Ω (3.10)
In appearance, the nature of the physical system (3.10) is similar to (3.4). On the other hand, this new system, encapsulating information from lower scales, smooths the spatial oscillations of the field variables through a smoother domain and thus allows an important numerical simplification.

The transition from equation (3.4) to equation (3.10) is not trivial in the sense that the nature of the mathematical models are not necessarily identical, even in the case of elliptic equations. We give here some elements allowing to justify the nature of the model chosen at the L 3 -scale and more precisely of equation (3.10) in the osteosarcoma case. We distinguish two main possible extensions of the traditional Darcy flow which are the Darcy-Brinkman and Darcy-Forcheimer equations. The Darcy-Forcheimer model [START_REF] Ward | Turbulent flow in porous media[END_REF] expresses the non-linear effects of the flow. Through the addition of a correction term directly depending on the Reynolds number, the inertial effects of the flow are taken into account. In osteosarcoma and more precisely in the fibrous ECM, this Reynolds number is sufficiently low as mentioned above to not consider this correction. The Darcy-Brikman equation, on the other hand, describes a flow in a medium with high porosity (> 95%, [START_REF] Durlofsky | Analysis of the brinkman equation as a model for flow in porous media[END_REF]) and allows to consider interface phenomena between the fluid and pores boundary (inducing a shear stress). This equation represents the transient regime between the Darcy equations and a free viscous flow. In the case of osteosarcoma, the overall porosity is way lower (important production of bone) and the geometry Ω considered at L 3 -scale is piece-wise smooth making the Darcy-Brikman model irrelevant.

As expressed previously, boundary conditions are required to solve the sets of equations (3.1) and (3.4). They are imposed at L 1 -scale and L 2 -scale, respectively as shown in figure 3.2 for the Stokes equation. We recall that the permeability tensors resulting from the grid-block process are dependent on the boundary conditions without REV assumptions.

At the L 1 -scale, a no-slip condition of fluid is imposed on the internal boundaries ∂ int Ω. Three type of possible boundary conditions on the external border ∂ ext Ω are then described by equations (3.11), (3.12) and (3.13), associated with wall, symmetry and open boundary conditions, respectively.

• Wall condition (W)

This first condition is the most intuitive since it represents numerically the experimental permeameter measurements [START_REF] Renard | Laboratory determination of the full permeability tensor[END_REF]. We impose a pressure difference in the domain (inlet and outlet). On the other edges, those parallel to the direction of the flow, a no-slip condition is imposed, leading to an interdiction of transverse flow, as illustrated in figure 3.3a.

           p L 1 = 1 and ∂ n u L 1 = 0, at the inlet p L 1 = 0 and ∂ n u L 1 = 0, at the outlet u L 1 = 0,
on external edges parallel to the pressure difference direction (3.11)

•

Symmetry condition (S)

This second condition is the symmetric condition and corresponds in some way to a relaxation of the wall condition [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF]. Here, we still impose a pressure difference in the domain to drive the flow but the no-slip condition of (3.11) is replaced by a condition of nullity of the normal components, as illustrated in figure 3.3b. This weakening of the wall condition still leads to a prohibition of transverse flow but allows some sliding in the direction of the flow (tangent velocity may be non zero).

           p L 1 = 1 and ∂ n u L 1 = 0, at the inlet p L 1 = 0 and ∂ n u L 1 = 0, at the outlet u L 1 • n = 0 and [-p L 1 Id + µ∇u L 1 ]
• n = 0, on external edges parallel to the pressure difference direction (3.12)

• Open boundary condition (PL)

This third condition allows the consideration of transverse flow and is a direct adaptation to the Stokes regime of a boundary condition coming in fact from a Darcy model. It was proposed by Bamberger [START_REF] Bamberger | Approximation des coefficients d'opérateurs elliptiques, stable pour la G-convergence[END_REF][START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF]. A pressure difference is still imposed in the inlet and outlet but the other boundaries are no longer closed, as illustrated in figure 3.3c.

               p L 1 = 1 and ∂ n u L 1 = 0, at the inlet p L 1 = 0 and ∂ n u L 1 = 0, at the outlet [-p L 1 Id + µ∇u L 1 ] • n = -(1 - x L 1 L 1 ) • n,
on external edges parallel to the pressure difference direction (3.13) where x L 1 can be the vertical or horizontal spatial variable depending on the direction of the pressure difference and L 1 the sub-cell length, n the normal and Id the identity matrix.

Note that boundary conditions at flow inlet and outlet consider velocity and pressure. Imposing a pressure and a normal velocity favors flow preferential paths (experimentally verified phenomenon). In opposition, imposing only a constant velocity would generates artificial pressure gradients and can induce a high velocity in places with low permeability. 

• Impervious

This first condition of the Darcy model corresponds in fact to permeameters. We impose a pressure difference in the inlet and outlet domain with both edges remaining impermeable. This method kills transverse flows and was initially used to determine diagonal tensors reflecting a limitation of the method to isotopic geometry. Since then, this method has been adapted for the construction of total equivalent tensors, i.e. also considering extradiagonal terms which include the anisotropy [START_REF] Kfoury | Upscaling fractured heterogeneous media: Permeability and mass exchange coefficient[END_REF][START_REF] Durlofsky | Upscaling of geocellular models for reservoir flow simulation: A review of recent progress[END_REF].

           p L 2 = 1, at the inlet p L 2 = 0, at the outlet U L 2 • n = 0,
on edges parallel to the pressure difference direction (3.14)

•

Open boundary

The second boundary condition to be imposed on the Darcy model is the open boundary condition. This is exactly the Bamberger configuration. Again, pressure difference is imposed in inlet and outlet and a linear pressure gradient is imposed on the other boundaries, following a decrease along the pressure difference. Authors of [START_REF] Tawfik | Fast upscaling of the hydraulic conductivity of three-dimensional fractured porous rock for reservoir modeling[END_REF] called this boundary condition the "Immersion" boundary conditions as the "sample appears to be "immersed" in an infinite domain with a "far field" hydraulic gradient imposed everywhere outside" the sub-block. This is illustrated in figure 3.4b.

               p L 2 = 1, at the inlet p L 2 = 0, at the outlet p L 2 = 1 - s L 2 ,
on edges parallel to the pressure difference direction In further development and validation of our strategy, periodic geometrical patterns of porous media are used as control to evaluate the accuracy of this sequential grid-block approach. In that case, homogenization theory can be directly applied [START_REF] Quintard | Transport in ordered and disordered porous media i: The cellular average and the use of weighting functions[END_REF][START_REF] Quintard | Transport in ordered and disordered porous media ii: Generalized volume averaging[END_REF][START_REF] Quintard | Transport in ordered and disordered porous media iii: Closure and comparison between theory and experiment[END_REF]. A periodic condition (see fig. 3.3d), is considered through the classical AE method by the resolution of Stokes-like cells problem. At the L 1 -scale, they take the form on the unit cell named Y :

         ∇p i -∇ 2 w i = e i in Y f ∇.w i = 0 in Y f w i = 0 on ∂ int Y y → w i , p i Y -periodic (3.16)
where (e i ) 1≤i≤2 is the canonical basis of R 2 driving the flow, w i the local periodic velocity and p i the local periodic pressure. At the L 2 -scale, one has to resolve Darcy like cell problems on Ỹ :

-∇ • (K(y) • (e i + ∇p i )) = 0 in Ỹ y → p i Ỹ -periodic (3.17)
where p i (y) is the local periodic variation solved for an averaged gradient e i .

The periodic conditions considered here come from the theory of deterministic homogenization. As the osteosarcoma does not present any REV or separation of scales, all the conditions are obviously not met for a strict application of this method. We consider here, after periodization of the object to artificially generate the periodicity, that each sub-block of the splitting is representative of its own REV. These conditions are seen here as a boundary condition allowing to obtain an equivalent (and not effective!) property of each sub-block of the section. For heterogeneous and anisotropic porous media, the use of periodic condition at the pore scale L 1 would affect the spatial statistical characteristics of the medium [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF] since they require a spatial periodization causing percolating and anisotropy problems while requesting a larger computational domain (fig. 3.5). In the following, we use the symmetry periodization method, illustrated in figure 3.5b, as it has the advantage of not causing artificial percolation problems. Finally, all boundary conditions will be applied consistently across both upscalings in the sense that no crossover between BCs is considered.

To finish, at each step of the sequential method, the tensors must be represented by definitepositive matrices [START_REF] Farmer | Upscaling: A review[END_REF] in order to guarantee that the energy is always dissipated by the flow. The symmetry of these matrices is generally required but not necessary and in some cases not desirable 5 . Indeed, symmetry allows to compute real (non complex) principal permeabilities of any configuration through the computation of the eigenvectors. On the other hand, this symmetrization causes the loss of anisotropy information contained in the extra-diagonal terms of the matrix representation6 .

Weak formulation (FEM)

This section describes the methodology of stable discretization of incompressible Stokes equation and Darcy-type equations expressed at L 1 -scale and L 2 -L 3 scales, respectively. The finite element method is preferred for its ergonomy facing the complexity of tissue microarchitecture and mechanical responses. Despite this, FEM does not deal straightforwardly with weak solutions in a space of divergence-free functions (H 1 (div)) 2 [START_REF] Bathe | Finite Element Procedures[END_REF] and methods to enforce incompressibility are needed.

A mixed formulation of the 2D incompressible Stokes equations is used: the velocity and the pressure will be approximated simultaneously. By doing so, we consider the weak formulation (3.18) through mixed element method with (H 1 (div)

) 2 = u ∈ (H 1 ) 2 (Ω), -Ω ∇.uq dx = 0 with q ∈ L 2 (Ω) .
Here, the pressure is like a Lagrange multiplier to enforce incompressibility [START_REF] Ożański | The lagrange multiplier and the stationary stokes equations[END_REF].

find (u, p) ∈ (H 1 ) 2 × L 2 (Ω) such that for all (v, q) ∈ (H 1 ) 2 × L 2 (Ω)        µ Ω ∇u • ∇v dx - Ω ∇ • vp dx = Ω f • v dx + µ ∂Ω ∂ n u • v dσ - ∂Ω pv • n dσ - Ω ∇ • uq dx = 0 (3.18)
where, for the sake of simplicity, we decide to drop in (3.18) the different indices present in (3.1) and adopt a generic notation. Note that we add a source term f (taken as zero in our applications). For some physical system, pressure need to be in a subspace of L 2 (Ω), consisting of L 2 -functions with zero mean value on Ω (enforced with Lagrange multiplier), for the problem to be well-posed as the pressure is determined up to a constant. This the case for periodic cell problems (3.16) 7 . In opposition, a Neumann condition on velocity over the whole boundary will result in a velocity up to a rigid body velocity and a unique pressure [START_REF] Fabricius | Homogenization of the stokes equation with mixed boundary condition in a porous medium[END_REF].

At the L 1 -scale, the so-called discrete inf-sup condition is needed to solve the incompressible Stokes equation. It is shown that the Taylor-Hood elements pair (P k , P k-1 ) satisfies this condition with k ≥ 2 [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF]. In the following, we consider the Lagrange pairing (P 2 , P 1 ). Physically, it means that the velocity approximation is quadratic whereas that of pressure is linear.

Through the dual discretization, we obtain a discrete formulation of the problem described by the matrix system (3.19). Variables u, p, are nodal variables, i.e. velocity and pressure, f is a source term. B and B t are the divergence and gradient matrices, respectively. A is a Laplacian-type matrix. That block matrix is symmetric but indefinite.

A B B t 0 u p = f 0 (3.19)
A dedicated solver and preconditioner are requiered to resolve the saddle point problem (3.19). Indeed, standard iterative linear solvers fail to converge for symmetric positive indefinite system and the difficulties are increased for large system. To overcome this problem, a minimal residual method (MINRES) [START_REF] Rusten | A preconditioned iterative method for saddlepoint problems[END_REF] and an algebric multigrid preconditioner (AMG) [START_REF] Stüben | A review of algebraic multigrid[END_REF] are chosen.

At L 2 -scale of the upscaling sequential method, an incompressible Darcy flow has to be solved. As previously, the discretization method based upon mixed finite elements is implemented and the weak problem is expressed by equations (3.20) 8 .

find (U, P ) ∈ (H 1 ) 2 × L 2 (Ω) such that for all (V, Q) ∈ (H 1 ) 2 × L 2 (Ω)        µ Ω K -1 • U • V dx - Ω ∇ • VP dx = - Ω P V • n dσ - Ω ∇ • UQ dx = 0 (3.20)
To fulfill the discrete inf-sup condition, the Brezzi-Douglas-Marini finite elements (BDM) for the velocity and piecewise constant elements for the pressure are considered [START_REF] Bergamaschi | Mixed finite element approximation of darcy's law in porous media[END_REF]. Another function space could also be chosen to approximate the H 1 (div) space for the velocities in the lowest-order Raviart-Thomas elements (RT) [START_REF] Gatica | A mixed finite element method for darcy's equations with pressure dependent porosity[END_REF] 9 . Moreover, pressure partial derivatives are required to obtain a non-trivial L 3 -scale permeability tensor using equation (3.9). On a discontinuous Lagrange function space, pressure is piecewise constant, i.e. element by element, which implies nil derivatives. The solution is to project the discontinuous pressure on the continuous Lagrange space at higher approximation order, i.e. an order 2 or 3.

Numerical convergence study

In this sub-section, we deal with specific numerical problems of the proposed upscaling approach. After discussing mesh generation at each scale and their impacts on the convergence process of physical outcomes, we examine the effect of the osseous boundaries smoothing. Then, a mesh dedicated to extend-local method at the L 1 -scale is proposed and finally, the smoothing procedure of fluid-solid interface in binarized histological images is discussed.

Meshes convergence

Gmsh R , an open source finite element mesh generator10 , and Matlab R11 especially the "bwboundary" function for the numerical tracking of boundary ∂ int Ω, are used to generate the meshes at both scales.

At pore scale L 1 , the mesh concerns interconnected pores saturated by fluid. The description of interface, i.e. ∂ int Ω, between the fluid phase and the solid phase (osseous ECM), requieres a specific procedure. The Delaunay frontal algorithm is used to obtain triangular and unstructured mesh, as shown in figure 3.6a. At L 2 and L 3 scales, the same mesh algorithm is used to generate an unstructured mesh with triangular constant size element. According to splitting of the grid-block procedure, element respect the discontinuities of the piecewise smooth domain Ω, as shown in figure 3.6b, here for a 2 × 2 L 1 -splitting. Remark: From a practical point of view, we were restricted in the optimization of the mesh construction since a software used by GMSH (namely OpenCascade) made impossible the use of B-spline to trace the interfaces between the two phases (especially the one intersecting the external borders). We have therefore trivially connected each point of this boundary by a segment, thus increasing the computation time. Of course, other methods could have been implemented and are currently tested.

A compromise must be found between the accuracy of physical outcomes and computational cost. Usually, mesh convergences in FEM are achieved by using the sensitivity of nodal variables to the mesh size and distance to a reference solution if such a solution is available. With upscaling scheme, it is relevant to examine both impacts on local mechanical response at the pore-scale and global response at the macro-scale. First, meshes with constant surface elements are considered. This constant is in correspondence with the mesh density. In GMSH, a characteristic length corresponds roughly to the length of elements edges 12 .

The Stokes flow at the local L 1 -scale is explored. The convergence process is studied using a 1600 px × 1600 px osteosarcoma binarized image, i.e a 740 µm × 740 µm image as shown in figure 3.7a. The mesh ranges from about 65103 elements with a GMSH size of 30 (Table 3.1) to 210103 elements with a GMSH size of 6 (Table 3.1). Fluid pressures of 0 and 1 are applied on left and right boundaries, respectively and symmetry on the top and bottom boundaries drives an horizontal flow. The denser mesh is used as control since no analytical solution can be used as reference. For local mechanical convergence, the evolution of the horizontal component of fluid velocity along the path located at 800 px vertically is targeted as shown in figure 3.7c. For global property convergence, first component velocity average behavior and its error are plotted in figure 3.7b. As shown in figure 3.7c, the convergence of local velocity is obtained with a GMSH mesh characteristic length of 16. The convergence of the average velocity is obtained for a GMSH characteristic size of 20, with a relative error of 4%. Finally, good accuracy is obtained considering element size of [START_REF] Charelli | Engineering mechanobiology through organoids-on-chip:a strategy to boost therapeutics[END_REF] In a similar way, the mesh convergence at L 2 and L 3 scales is studied using a similar method while concerning Darcy flows. Velocity component and its average are studied in case of an horizontal flow driven on a piecewise smooth geometry of size 2000 px ×2000 px with a 5 ×5 splitting and permeability imposed randomly. The convergence is obtained fora GMSH characteristic size of 20.

Boundaries smoothing effect

When a histological section is segmented, the result is always subject to the noise of the method. In our case, the resolution of the images of the original biological material can be altered by the chemical and manual treatment of the samples but also by the image acquisition. As a result, the phases can be difficult to differentiate and a subjective bias is introduced. This has a direct impact on digital methods of acquisition of binarized images. After segmentation (fig. 2.16), there is a portion of the binary image where the nature of the phase is uncertain (where cell, mineralized ECM, non-mineralized ECM and other phases are blended). This bias has been evaluated to be 5% in average (A. Mancini thesis).

In this section, we quantify the nature of the boundaries uncertainties by discussing the smoothing of internal boundaries ∂ int Ω, on the equivalent property at the L 2 scale, when a no-slip boundary condition on the Stokes velocity is imposed on the fluid/solid interface. A smoothing technique must be chosen with a capacity to minimise the construction time of the mesh associated with the domain while maintaining the main geometrical features to which the physical systems are sensitive. Thus, the study is based on the comparison of the porosity (geometric character) and the equivalent permeability (mechanical character) responses to the smoothing methods and smoothing parameters. Two methods have been studied: 1) a dilatation/erosion method with the same disc-shaped structural element (strel) 13 with an increasing radius 2) an application of an increasing window median filter. The influence of the roughness of ∂Ω int on L 2 -scale equivalent permeability tensor is only performed with symmetric BCs. In the following, the boundary smoothing methods are tested on images of increasing size, ranging from 500 px × 500 px to 2000 px × 2000 px). This method allows in particular to quantify if a smoothing method at fixed parameters plays an increasingly important role as the dimension of the studied domain decreases.

The first smoothing method consists of an application of the Matlab built-in functions "imdilate" and "imerode" with the same disc-like strel (fig. 3.8). A succession of smoothing with increasing radii is considered (between 1px and 8px). This will allow us to see if the same roughness (the smoothed one) plays an increasingly important role as the dimension decreases. For this purpose, we consider a 2000 px × 2000 px image and we truncate it into a succession of sub-images of the desired size 14 . It can be noticed on figure 3.9c that porosity show very limited variations whatever the image size. The effective permeability was almost insensitive to the process with relative error lower than 1%, as shown in figure 3.9b 15 . The impact upon CPU time user for mesh construction was negligible for the smallest images, i.e. 500 px × 500 px, whereas the benefit can rise up to 70% with the larger image, i.e. 2000 px × 2000 px px, as shown in figure 3.9c. 13 "a flat morphological structuring element is a binary valued neighborhood, either 2D or multidimensional, in which the true pixels are included in the morphological computation, and the false pixels are not." MATLAB 14 For this purpose, we considered a much larger cohort of images than shown here demonstrating the same phenomenon. 15 note that, as the strel size increase, permeability decrease for this method. Secondly, a median filter smoothing method is applied with a smoothing spectrum similar to the above dilation/erosion method. Results are shown in figure 3.10. Maximal relative error on porosity is lower than 1% and error on effective diagonal permeabilities are lower than 8%. At the same time the gain is about 1 min on CPU time user for mesh construction. Particular attention must be given to this stage of the study since any uncontrolled smooth-ing method can quickly lead to aberrant results. For example, with Gauss filter using a standard deviation σ, the topological properties are rapidly degraded, for very low standard deviation, and it may cause a continuous non-monotonous change in the geometric properties leading to an alteration of the mechanical ones (percolation loss).

In conclusion, we find that the two smoothing methods give similar results on porosity and effective permeability variations. First, it shows that the local topology of the pore is not strongly modified and this concerns the porosity determination, but it can also be noticed that the no-slip condition at the internal boundary ∂ int Ω, limit the role of interface local roughness. This can explain the limited variation of effective permeabilities. Therefore, the uncertainties related to the exact identification of the fluid/solid interface, from the biological data, have very little effect on the calculation of equivalent properties when a non-slip condition is imposed. A larger cohort of clinical images allowed these conclusions to be validated. It can be added that only results with symmetric boundary conditions at L 1 scale are presented and we checked that the other BCs previously detailed in section 3.2.1 exhibited same tendencies.

Since no real control over this smoothing is possible, we decide to smooth clinical images by using the dilatation/erosion process with a strel disc of small radius, i.e. 4px, in the following studies. The smoothing effect on the equivalent properties will then be minimal. This smoothing is also essential for the smooth running of the meshing process on GMSH 16 .

Extend-local meshes specificities

Previously in paragraph 2.4.1, we showed the relevance of the extend-local process in the overall upscaling method, especially for clinical images showing no REV. In paragraph 3.2.3.1, we discussed the mesh construction with an homogeneous mesh characteristic size along each geometrical entity. Here, we are studying the potential benefit of a semi-variable construction (S-V), for the extend-local method, based upon a constant and dense meshing for the local L 1subcell (targeted for upscaling) while the buffering zone is meshed with a density which depends on the distance to a fluid/solid boundary. The mesh shown in figure 3.11a concerns a sample size of 1600 px × 1600 px with a local cell size of 600 px × 600 px. Again, the variables of interest for convergence purpose are the porosity and equivalent permeability tensor properties.

To check the dependence of extend-local method to this choice of mesh, in figure 3.11b, we plot the variations of the largest eigenvalue of the equivalent permeability at the L 2 -scale (spectral radius) as a function of the size of the neighbouring region δ for the two types of mesh, i.e. constant (blue cross) and semi variable (blue circle). We do the same for the porosity of the complete geometry: the initial domain and with its buffer zone (the orange stars and circles correspond respectively to the constant and semi-variable porosity). It can be seen that porosity and equivalent permeability are weakly influenced by the type of mesh on which they are calculated (i.e constant or semi-variable) because the resulting entities are perfectly merged. Then, a calculation on a semi-variable mesh can be considered instead of a calculation on a homogeneous mesh, without any bias.

The main benefits of the semi-variable mesh construction are that it leads to faster calculations while accuracy of predicted results is preserved regardless of the δ buffer size. Indeed, by plotting the construction times of two meshes (in red and blue for the constant M-CST and the semi-variable M-SV) and of the FEniCS simulations (in green and purple for the constant S-CST and the semi-variable S-SV) as a function of the size of the neighbouring region (fig. 3.11c), we notice a difference in total computation time coming mainly from the equations solving. As the geometry is rather small, the mesh construction times are similar for both cases. This is not the case for larger images since the semi-variable method is found to reduce the construction time. This is of particular interest to explore complex and very large sized binarized histological images.

Figure 3.11: Comparison of the two meshing types, constant CST and semi-variable SV, in the application of the extend-local method. a) The geometry is meshed in a semi-variable way as a constant size is imposed on the 600 px × 600 px L 1 -cell while the neighboring region mesh size depend on the distance to a boundary. b) Resulting equivalent permeability tensor highest eigenvalue (spectral radius) for the two types of meshes together with the overall porosity behaviour, in function of the buffer region size δ. c) Mesh construction and solving time in function of the buffer region size δ. d) Total time (mesh and solver) for the two type of meshes in function of the buffer region zone δ. Times are given in CPU time for a PC with 3 processors and 30GB of memory.

Note that the constant mesh construction can lead to a change of porosity of the target L 1 -cell, i.e where the upscaling is done, between the purely local geometry and the one considering a 20px buffer zone, if the mesh size is not sufficiently dense. Indeed, when considering a constant mesh size and the evolution of the target L 1 -cell porosity alone Φ loc (orange dashed line in fig. 3.12), we notice a jump in value between δ = 0px and δ = 20px (i.e. the first step of the extend-local method) and this for two L 1 values (fig. 3. 12b andc). This jump is due to the variability of the mesh at the border between integration domain and buffering zone when the last is considered. Traditionally, to solve this problem, much smaller constant mesh sizes would have to be considered on the whole domain (buffer region included), resulting in heavier calculations. In opposition, for the semi-variable construction, only a denser mesh within the L 1 -cell and its direct neighboring is sufficient. This smooths the porosity jump (10 -3 difference order) between the two values of δ = 0, 20px (fig. 3.12d), while keeping a coarser mesh size in the buffer region 17 . This geometrical consideration is absolutely necessary as it can have repercussions on the mechanical equivalent response of the physical system. Indeed, a similar jump is observed on the resulting permeability tensor highest eigenvalues, according to different BCs (solid, dashed or dotted blue lines on fig. 3. 12b andc). This raises the question of whether the porosity jump has a direct effect on the equivalent permeability one. Figure 3.12d shows that this is not the case. Indeed, a semi-variable mesh construction together with denser constant mesh within the L 1 -cell is built, smoothing the porosity variation. The initial jump of the equivalent spectral radii remains and one only highlights the expression of the intrinsic effects of the BCs choice alone (without artefacts from the geometric discretization).

In the incoming work, a semi-variable mesh will be considered at the L 1 -scale for the extendlocal method. Figure 3.12: Application of the extend-local method with δ for two different L 1 lengths. a) Two L 1 -cell size are considered with 500 px × 500 px and 1000 px × 1000 px. b) Computations of equivalent mechanical property (highest eigenvalue) and geometrical (porosity) through the extend-local method for a constant meshing of the 1000 px ×1000 px L 1 -cell and δ values ranging from 0px to 500px. Φ loc represents the calculation of the porosity on the integration domain when a buffer region is added, Φ ext is the porosity of the integration domain plus the buffer region. The amplitude ρ wall , ρ sym and ρ pl corresponds to the equivalent permeability spectral radii at the L 2 scale. c) Similar computations for the500 px × 500 px L 1 -cell. d) Effect of a mesh refinement on the L 1 -cell on the same computations for a semi-variable meshing of the two first steps of the extend-local method.

Influence of the sequential and extend-local methods parameters

In this section, we are applying the upscaling methods previously described. We start with the extend-local scheme and its dependence on its intrinsic parameters such as the L 1 length, the size δ of the buffer zone or the choice of the boundary conditions. Then we are investigating the impact of splitting and boundary conditions on the sequential grid-block method. Applications concern periodic model porous media and tumor tissue.

Extend-local method study

In the following, the extend-local method will be studied. The incompressible steady Stokes problem is described by equation (3.1) at the L 1 -scale. To obtain the permeability tensors of the Darcy equation (3.4) at the L 2 -scale, arbitrary boundary conditions are associated to equation (3.1). Four boundary conditions are considered: wall BC expressed by equation (3.11), symmetry BC expressed by equation (3.12), linear pressure BC expressed by equation (3.13) and periodicity (3.16). The aim is to evaluate the impact of these choices upon the computation outcomes, i.e. effective permeability tensors. The roles of parameter δ defining the buffer region size and L 1 corresponding to the local scale, on the equivalent permeability at the L 2 -scale, are investigated.

We first consider a 40 px × 40 px periodic porous medium called PM1 as shown in figure 3.13a. It is a periodic array of disks of diameter 10px, and we consider a unique buffer region size, corresponding to a period of the geometry as shown in fig. 3.13a. It exhibits a separation of scales with an overall porosity of 0.803. The characteristic length of 10 px corresponds to the space between each circular obstacle. In this isotropic case, the effective permeability tensor is reduced to a scalar. Four sets of boundary conditions are considered and permeabilities noted K at the L 1 scale and K at the L 2 -scale are non-dimensionalized by the periodic characteristic surface [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF]. Considering a periodic geometry, the solution involving periodic boundary conditions is the deterministic periodic homogenization solution and gives the exact solution.

Resulting permeabilities K, at the L 2 , are shown in figure 3.13b for the local and extend-local upscaling methods. The local L 1 -L 2 upscaling (filled circle curve fig. 3.13b) results in a good approximation of the reference solution P by using symmetrical conditions S and linear conditions PL whereas the wall condition W gives an underestimation. These results are in agreement with [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF]. The L 1 -L 2 extend-local process (empty circles curve fig. 3.13b) homogenizes the permeability for each boundary condition compared to the reference L 1 -L 2 periodic solution. Compared to the reference local periodic solution, the extend-local method gives a lower permeability of about 4% 18 . Therefore, for this very special case, an improved accuracy of the extend-local L 1 -L 2 upscaling method compared to the local one is confirmed for the three non-periodic boundary conditions. Figure 3.13: a) Extend-local method applied to PM1, a periodic array of discs, with a period size buffer region. b) Resulting scalar equivalent permeabilites comparison, for this geometry, obtained by the local and the extend-local method in function of the four boundary conditions (Wall (W), Symmetry (S), Linear (PL) and Periodic (P)).

The next step concerns the influence of buffering size δ on the accuracy of the extend-local method. As shown in figure 3.14, we consider a periodic geometry called PM2 and a binarized histological section of tumor. PM2 is a stack of periodic and isotropic 2D disc of total size 2000 px × 2000 px with discs of 100 px diameter and with a 100 px distance between two obstacles. Calculations are made for a local cell of length L 1 = 400px comprising four disc and for buffer zones ranging from 0 to 400 px with a 10 px step. Meshes are taken with constant mesh sizes. Note that a value different from L 1 would result in a long term phase shift of the curves accompanied by significantly different initial values (edge effect). Furthermore, the curves would remain almost identical. Results are shown in figure 3.15b. We plot the resulting scalar non-dimensional permeability in function of the δ-size of the buffering region, for the 4 boundary conditions (W is represented by circles, S by crosses, PL by squares and P by asterisk). The overall porosity variation curve is added in orange.

The extend-local at the L 1 scale allows us to homogenize (fig. 3.15b) the values of the permeability value according to the four BCs and this whatever the size of the L 1 local cell (generally when a half-period for the buffer zone is reached). First, note that for δ = 0 px, the values correspond exactly to the above purely local case (fig. 3.13b). It can be noticed that for larger δ, the curves are repeated periodically (according to the period of the geometry) with decreasing amplitudes in the permeability and porosity fluctuations. Considering a sufficiently large buffer zone, a decrease in the amplitude of the permeability indicates a convergence towards the exact solution. Indeed, edge effects, at their strongest when the edges of the geometries intersect the obstacles, decrease for large δ. Thus, it is shown that the extend-local method allows in the case of the PM2 geometry, even for small δ, to choose indifferently among the four BCs in the calculation of the permeability at the scale L 2 when a REV hypothesis is considered. The L 1 -L 2 extend-local method is now applied to tumoral tissue (fig. 3.14b). We consider six osteosarcoma sub-samples of size 500 × 500 px 2 , 600 × 600 px 2 , 700 × 700 px 2 , 800 × 800 px 2 , 900 × 900 px 2 and 1000 × 1000 px 2 . We choose the diagonal coefficient K 11 and extra-diagonal coefficient K 21 to analyse the results. We plot for each L 1 -cell size, the behavior of the coefficients as a function of the size of the buffering region δ and this for three different BCs: the wall condition (3.11) (W) is plot in blue, the symmetric (3.12) (S) in red and open boundary condition (3.13) (PL) in orange. We plot on the same graph the variations in total porosity of the computational domain (purple dot graph) 19 . Figure 3.16 shows a decrease in the difference of diagonal equivalent permeability tensor for the three boundary conditions when δ ≥ 100 px. Note that coefficient resulting from W and S are perfectly merged and this for all considered L 1 lengths. Thus, the uncertainties of equivalent permeability calculations, inherent to the choice of boundary conditions, at the L 1 -scale, can be reduced for the diagonal terms by the extend-local process [START_REF] Ph | Calculating equivalent permeability: a review[END_REF].

We would like to point out that no convergence is achieved in the values as a function of δ. It can be observed that these values remain very sensitive to the computational domain global porosity; the permeability graphs behavior, for each BCs, being sensitive to total porosity fluctuations. However, convergence is not the objective of this approach because the goal of the grid-block method is to take into account the heterogeneities in phase distribution in a reliable way.

Remark:

The range of permeability value is consistent with the literature. As they are exposed in this thesis in px 2 , a pixel size being 0.466µm, they effectively lies around 10 -12 m 2 . Figure 3.16: Behavior of the equivalent permeability diagonal coefficient K 11 resulting from the extend-local method in function of δ. The study is conducted on multiple L 1 -subcell size: 500 px, 600 px, 700 px, 800 px, 900 px and 1000 px.

When extra-diagonal terms are studied, as shown in figure 3.17, W and S results are similar, even for small δ, whereas PL results seems quite erratic in comparison. This come from the fact that the open boundary condition does allow transverse flow in opposition to the impervious boundary conditions (wall and symmetry). In some extreme cases, the linear boundary conditions can not "see" an obvious non percolation geometry (fig. 3.18), and in opposition to the wall and symmetric conditions, provides a non-zero permeability. This bias must be taken into account if we want to consider a non-percolating geometry as having a zero permeability. As shown in appendix A, extra-diagonnal permeability coefficients play a significant role in the equivalent spectral radii and deserve a specific attention. In conclusion, the extend-local methods allows to predict permeabilities at L 2 -scale while limiting the role of BCs, especially for diagonal coefficients. In case of complex biological structure, it can also provide a consistent biological characterization of the permeability tensor at the L 2 -scale by immersing local sub-domain into its realistic biological architecture. By doing so, equivalent permeability computation on a block is affected only by natural properties, preferred path and percolation for example, as in illustrated in figure 3.19. Figure 3.19: Schematic view of the loss of global percolation and preferred path. Using a local grid-block upscaling at the L 1 -scale (left), the target sub-block is "wrongly" given a positive permeability. Using an extend-local method, the target block is given "rightly so" a null permeability.

Sequential upscaling method study

In this section, we discuss the accuracy of the sequential upscaling method applied to interstitial flow in osteosarcoma and isotropic periodic geometries. The incompressible Stokes equation (3.1) is considered at the L 1 -scale and Darcy flow is considered on piecewise homogeneous media at L 2 -scale and L 3 -scale associated to governing equations (3.4) and (3.10), respectively. In the following, the sequential method is studied with a purely local method for the L 1 -L 2 upscaling in order to separate induced effects from the extend-local approach. This method is very useful when the geometry is complex and when the computation time and the memory cost of the one-step upscaling method are expected to be too large (fig. 3.20). We know that according to the BCs considered, the permeability tensors will be quite different either in their diagonal terms or simply in their extra-diagonal terms. But the permeability tensor is also not constant through the sequential process even with the same boundary condition. Indeed, three different tensors are obtained for three different splitting at the L 1 -scale, even when considering the same boundary condition (fig. 3.20). Without loss of generality, we will consider only one cell on the L 3 -paving, as illustrated on figure 3.20. Indeed, a study on a complete L 3 -paving, i.e with multiple L 2 -subcells, will only result in similar behavior L 2 -cell by L 2 -cell. The splittings considered at the L 1 -scale are ranging from 1 × 1 to 5 × 5 20 . Here, the density of the splitting is constrained by the size of the images but also by the heterogeneous character of the osteosarcoma. Indeed, a too dense L 1 -splitting of the small images would lead to an irrelevant substitution of pore scale equations (Stokes type) by subsidiary equations (Darcy type). For instance, a domain fully in the solid phase or in the pore-space would lead to inconsistencies.

We start with a periodic array of disks shown in figure 3.21a similar to the structure PM1 previously used in paragraph 3.2.4.1. The reference solution of this problem is well-controlled and given by the 1-step periodic homogenization. The splitting at the L 1 -scale for the first step of the sequential upscaling scheme consists in four identical 4 × 4 sub-domains and as previously, the porosity is 0.803 (fig. 3.21b). The four possible sets of boundary conditions are considered and the resulting scalar permeabilities at the L 3 -scale are noted K . We plot the resulting permeability curves at the L 3 -scale for the one-step (black dots) and 2-step (grey dots) methods (fig. 3.21c). It is also interesting to see the permeabilities resulting from a 2-step method considering permeabilities at the L 2 -scale computed with extend-local method (empty dots).

Finally, it appears that results at the L 3 -scale are similar to those obtained at the L 2 -scale in figure 3.13b. Thus, no loss of information is noted in the 2-steps upscaling process regardless of the technique used on the intermediate upcaling, for a periodic and isotropic geometry. In this case, a 2-step method coupled with the extend-local upscaling give better results than with a 1-step or a local 2-steps scheme as all resulting permeability values, at the L 3 -scale, are close to the one obtained by the direct homogenization method. The sequential upscaling method applied to the tumoral tissue is now considered. We consider a binarized image of 5000 px × 5000 px as shown in figure 3.22a 21 . No symmetrization of the tensors at the L 2 -scale is performed to preserve as much as possible the BCs intrinsic effects. However, a symmetrization of the permeability tensor may be necessary at the L 3 -scale for fast post-processing purpose and the calculation of eigenvectors and eigenvalues (real value versus complex results otherwise).

Remark: (Practical consideration)

The L 1 -L 2 upscaling requires solving a Stokes flow for an increasingly dense splitting. Thus, it is very likely that a permeability calculation for a pure fluid block, i.e. without any solid matrix, must be performed. To constrain the problem, having a unique velocity determination [START_REF] Fabricius | Homogenization of the stokes equation with mixed boundary condition in a porous medium[END_REF], we decide to add a little obstacle (with a L 1 100 length) in the upper right corner of the pure fluid geometry in order to fix the velocity value somewhere in the domain (no-slip boundary conditions). This practical consideration smooth out the numerical workflow as this artificial change in porosity has little to no effect on the resulting equivalent tensor 22 .

Coefficients of the permeability matrix and spectral radii are plotted in figure 3.22b and figure 3.22c for the four BCs and four L 1 -splittings ranging from 2 × 2 (sublocks being of dimensions 2500 px × 2500 px) to 5 × 5 (1000 px × 1000 px). The values arising from the W, S, PL and P conditions are respectively given in blue, red, yellow and green 23 .

While dominant flow is constant for all four BCs, S and P give almost constant diagonal coefficients regardless of the splitting size. PL gives an overestimation of almost a factor 2 and W underestimates them. This effect is even stronger with a sequential method since two successive upscalings are performed. As a result, the more the splitting density increases, the more this phenomenon of over-or underestimation is significant. The sequential method orders the diagonal permeabilities according to inequations (3.21) 24 . Note that diagonal values of P are closed to S and strictly comprises between W and PL. We insist here on the fact that P solutions are altered by the spatial symmetrization of the domain as described in figure 3.5a. Therefore, P solutions are not general since another type of symmetrization would probably lead to different 21 Four 5000 px × 5000 px osteosarcoma geometries were used in this section, coming from a segmentation/binarization of an H&E section. The four images have shown similar results through the sequential method, that's why we choose to present a part of the results only on one image. 22 Another method would be to consider an extend-local method and place the notch in one of the corners of the buffer zone as far away from the upscaling zone as possible. 23 in this paragraph, we choose to simply refer to the L3-scale equivalent tensor by the terminlogy K instead of K 24 Note that the relation hold when considering the 1-step method in addition to the different splits. For convenience and consistency, we have considered here only the tensors resulting from the two-step method.

results.

K diag W ≤ K diag S , K diag P ≤ K diag P L (3.21) Inequality (3.21
) is all the more pronounced through splitting. A general order relation on equivalent permeability diagonal coefficients, in respect to the splitting, could have been expected but this is not the case here (or else very qualitatively).

From a qualitative point of view, relation (3.21), obtained at the L 3 -scale, is consistent with the literature for the first upscaling from Stokes to Darcy [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF] and second upscaling [START_REF] Durlofsky | Upscaling of geocellular models for reservoir flow simulation: A review of recent progress[END_REF]. Additionally, it can be mathematically proved for specific boundary conditions similar to equations (3.11) and (3.13) for specific random porous media [START_REF] Du | On the size of representative volume for darcy's law in random media[END_REF].

Remark: Note that negative diagonal term can be obtained through this method on the second upscaling when considering very particular geometrical paradigms [START_REF] Durlofsky | Upscaling and gridding of fine scale geological models for flow simulation[END_REF] (like checkerboard geometries made of very large and null values). To overcome this problem on osteosarcoma, one can either (1) increase the delta size of the extend-local method, if this method is considered (2) iterate the process on the relevant sub-domain according to different splitting (starting if possible with a one-step method) until a positive sign is obtained.

As in the diagonal terms case, the highest eigenvalue remains quite sensitive to boundary conditions which have the same effect of over-or underestimation (fig. 3.22c). The principal directions or tensor eigenvectors are plotted in figure 3.23 in respect to boundary conditions and splitting. They represent the non-oriented flow directions. This local information remains important at higher scales when a L 3 -paving is considered. Indeed, these entities allow us to keep a local characterization of the domain anistropy after the sequential upscaling process.

The principal directions at the exit of the sequential method show an overall similarity BCs by BCs and according to splitting. For the impervious boundary conditions (W and S), they practically merge. Some differences are observed with the directions resulting from the PL conditions especially in the orthogonality of the vectors, as the open boundary condition have orthogonal orientation (thanks to the condition propensity to symmetrize the tensors at the exit of sequential process). The orthogonality, in the impervious boundary condition case, is recovered when considering symmetrization of the tensors. In the case of the periodic boundary condition, the directions keep a very good consistency across the splittings and its discrepancy with the other three BCs most certainly come from the symmetrization of the geometry, which leads to a total loss of the anisotropy of the original domain. Therefore, the principal directions of permeability are qualitatively well preserved through the different boundary conditions and splitting. The intrinsic effects of the sequential method have been discussed but it is relevant to study the coupling with the extend-local method at the L 1 -scale, on ostesoarcoma, as previously treated for the periodical geometry PM1. Results are given in appendix C. It is found that it drastically reduce the gap between the diagonal coefficient resulting from the open boundary condition and other BCs.

The sequential method is applied to larger osteosarcoma images to evaluate the performances in case of challenging clinical data. The 16 000 px × 16 000 px binarized image is shown in figure 3.24. The fluid flow obtained using the 2-steps method is compared to a pore scale flow (3.1) obtained by Direct Numerical Simulation (DNS). For the DNS, flow is driven from left (inflow) to right (outflow) with symmetric BCs on the top and bottom boundaries together with a noslip condition on the fluid/solid interface. The 2-steps computation is performed with a 8 × 8 L 3 -paving accounting for the scale couple (L 1 , L 2 ) = (1000 px, 2000 px). Boundary conditions are symmetric (3.12) and impervious (3.14) for the L 1 -L 2 and L 2 -L 3 successive upscaling. Finally, we propose to investigate the statistical distribution of equivalent permeabilities at the L 2 -scale. If permeability limit distribution could be found, this approach would allow to avoid time consuming computation at local L 1 -scale (Stokes equation) while using fast results at L 2 -scale (Darcy equation) [START_REF] Boschan | Scale dependence of effective hydraulic conductivity distributions in 3d heterogeneous media: A numerical study[END_REF][START_REF] Kfoury | Upscaling fractured heterogeneous media: Permeability and mass exchange coefficient[END_REF]. Denser L 1 -splittings ranging form 4 × 4 to 16 × 16 and one cell at the L 3 -scale are used. W, S and PL boundary conditions are used and permeability statistic histograms are given in appendix D. As shown in figure 5 and 6 of the appendix, the BCs and successive splitting do not show significative influences on histograms. Unfortunately, normal distribution are not clearly readable both for diagonal and non-diagonal permeabilities. This confirm the strongly heterogeneous properties of the biological tissue investigated. As it stands, the exploration of a statistical approach to flow in osteosarcoma is not conclusive due to the highly heterogeneous nature of the geometry.

In conclusion, the sequential method applied to the study of the flow perfectly fulfills the essential properties of an upscaling technique already determined for a 1-step method in previous works [START_REF] Durlofsky | Effective permeability of heterogeneous reservoir regions[END_REF] such as the order relationship on diagonal coefficient W ≤ S ≤ P L. This relation is verified in this new workflow, considering an incompressible Stokes equation at the small scale for the first time, and is all the more pronounced through splitting since a succession of permeability calculations are performed. Finally, the heterogeneity of the osteosarcoma at the L 1 -scale is properly taken into account through the equivalent grid-block properties of the L 3 -scale.

Mass transport

Diffusive mass transport in osteosarcoma can play a role in the tumor evolution and in chemotherapy process [130]. Our approach can also complement emerging research and clinical modalities such as FRAP and Diffusion MRI to explore tissue properties [START_REF] Donnell | An introduction to diffusion tensor image analysis[END_REF]. Figure 3.26 is presenting the assumptions of the proposed approach. The convective properties of tissue are not considered and diffusive transports concerns the fluid phase. As previously, the geometrical paradigm is a 1-porosity model. The equivalent diffusion tensor (m 2 s -1 ), translating the complete anisotropy of the medium, is targeted. The Fick's law in porous media is used while establishing the relationship between the diffusive flux and the chemical species concentration gradient. The upscaling methods workflow previously presented is applied to purely diffusive mass transport. The sequential method is first presented. Then, mesh convergence and influence of boundary conditions are studied. Finally, we report main results related to the extend-local and sequential methods. Note that this section is seen as a direct extension of the previous one in the sense that we briefly explore the sequential method for tranport by diffusion.

Development of the grid-block and extend-local methods

A two-step grid-block method is developed to account for the diffusion in heterogeneous media and three ordered scales of observations, i.e. L 1 , L 2 and L 3 , are considered. 

∂ int Ω.        J = -D • ∇c, on Ω f ∇ • J = 0, on Ω f Boundary conditions on ∂Ω = ∂ int Ω ∪ ∂ ext Ω (3.22) • Impervious (wall)                  c L 1 = 1, at the inlet c L 1 = 0, at the outlet J L 1 • n = 0, on edges parallel to the concentration difference direction J L 1 • n = 0, on ∂ int Ω (3.23) • Open boundary                      c L 1 = 1, at the inlet c L 1 = 0, at the outlet c L 1 = 1 - X L 1 L 1 ,
on edges parallel to the concentration difference direction

J L 1 • n = 0, on ∂ int Ω (3.24)
Periodic boundary conditions can also be used through AE homogenization and corresponding to a diffusion like problem on a unit cell Y, as expressed by equation (3.25) where c i (y) is the local periodic variation obtained for an averaged gradient e i .

-∇.(D(y) • (e

i + ∇c i )) = 0 in Y y → c i Y -periodic (3.25)
As we make the assumption of purely diffusive transport through osteosarcoma, at the L 2scale, a diffusion equation is obtained through the Grid-Block uspcaling, admitting a piecewise constant equivalent diffusion tensor [START_REF] Durlofsky | Numerical calculation of equivalent gridblock permeability tensors for heterogeneous porous media[END_REF], encapsulating the local information, i.e. the underlying porosity. This tensor is full, i.e extra-diagonal terms are also determined as each sub-block computations account for the two space directions.

For the second upscaling, BCs are identical to L 1 -scale by removing the wall condition on ∂ int Ω since the geometry is now piecewise smooth with no internal boundaries. An iteration on the upscaling process allows to consider the L 3 -scale with another diffusion equation and a new piecewise constant diffusion tensor.

The post-processing to get the equivalent diffusion tensor at L 2 and L 3 scales is similar to those in flow case, i.e equations (3.3) and (3.9). At L 1 -scale, it is given according to averaged diffusive fluxes and the macroscopic concentration gradient as expressed by equation (3.26), where D is the L 2 -scale equivalent diffusion tensor for a given A sublock of the L 1 -splitting, J k l A is the average flux from pore scale and δC is the macroscopic concentration gradient. Equation (3.27) expressed the relationship between flux averages and explicit derivations of concentration at L 2 -scale, where D is an L 3 -scale equivalent diffusion tensor of a given sub-block Ã, J L 2 and c L 2 the L 2 -scale flux and concentration, respectively. Definitions of superscript are detailed in paragraph 3.2.1 and correspond respectively to the flow tests, i.e horizontal and vertical concentration difference.

∀i ∈ 1, N x × N y , (D) lk = -J k l A L 1 (δC) l 1≤l,k≤2 (3.26) ∀i ∈ 1, M x × M y ,      ∂ s 1 c L 2 1 Ã ∂ s 2 c L 2 1 Ã 0 0 0 0 ∂ s 1 c L 2 1 Ã ∂ s 2 c L 2 1 Ã ∂ s 1 c L 2 2 Ã ∂ s 2 c L 2 2 Ã 0 0 0 0 ∂ s 1 c L 2 2 Ã ∂ s 2 c L 2 2 Ã          D11 D12 D21 D22      = -      (J L 2 ,s 1 1 Ã (J L 2 ,s 2 1 Ã (J L 2 ,s 1 2 Ã (J L 2 ,s 2 2 Ã     (3.27)
The mathematical consideration such as the weak formulation form and finite element spaces are those of the prior section, especially corresponding to the L 2 and L 3 scales of the flow study (BDM or RT space). More precisely, to overcome the mass loss problem, a dual mixed formulation of equation (3.22) like problem is implemented at each scale according to equation (3.28).

find (J, C) ∈ (H 1 ) 2 × L 2 (Ω) such that for all (V, Q) ∈ (H 1 ) 2 × L 2 (Ω)        Ω D -1 • J • V dx - Ω ∇ • VC dx = - Ω CV • n dσ Ω ∇ • JQ dx = 0 (3.28)

Numerical convergence study

At the L 1 -scale, equivalent and pore scale mesh convergence study, respectively accounting for equivalent properties and field variable responses, are performed on the J flux. Here, a constant scalar diffusion coefficient is considered at the pore scale. The same geometry than in section 3.2.3.1 is used. The evolution of flux averaging, the relative error in respect to the denser mesh and the overall flux magnitude along a path, are plotted in figures 3.27a and b.

At the macroscopic scale, a plateau is found with the first meshes and for denser meshes for the local field variable.

Finally, in the rest of the section, we choose to consider small GMSH elements size ∼ 8 for two practical reasons (1) in order to mesh the osseous ECM border as well as possible for the study of the roughness boundaries role in the diffusion process [START_REF] Mirabello | Osteosarcoma incidence and survival rates from 1973 to 2004 data from the surveillance, epidemiology, and end results program[END_REF] to allow an unbiased study of the extend-local method with a better smoothing of the porosity of the local cell L 1 through the variation of the δ of the neighboring region. Note that at the L 2 -scale, mesh convergence is already done in section 3.2.3.1. In the next step, the influence of local roughness of solid phase, i.e. osseous ECM boundaries, on the L 2 -scale equivalent diffusion tensor is studied. A dilatation-erosion method with a diskshaped strel which radius varies between 1 px and 8 px is implemented. Results in figure 3.28 show the variation of coefficient D 11 of the equivalent diffusion tensor for three 1500 px ×1500 px images and wall condition on the outer edges and a constant diffusion coefficient at the L 1 -scale. The ECM boundary roughness show no significant influence on diffusion coefficient. The last step concerns the extend-local method meshes and the impact of semi-variable meshes. Constant meshes have GMSH element sizes fixed to 8 for each δ and semi-variable meshes have element sizes varying from 8 for the L 1 -local sub-cell and to a size adapted to the distance between internal and external boundary outside the sub-cell. Buffering δ size is ranging from 100px to 500px. We plot, on figure 3.29, the evolution of the equivalent coefficient D 11 resulting from the constant meshes (blue cross) and semi-variable meshes (blue cirle) together with the porosity (in orange). Variations of porosity and D 11 are limited and semi-variable and constant meshes give similar results according to the buffer region size. In the 1-porosity model and throughout the rest of the section, i.e the study of the extendlocal and sequential method in the mass transport case, the diffusion tensor considered in (3.22) at the L 1 -scale is reduced to the case of a scalar to describe the diffusion of a tracer in the fluid part Ω f only 26 . In this section, for purely methodological purposes, we consider an arbitrary diffusion coefficient given by D = 5 px 2 s -1 .

Influence of the sequential and extend-local methods parameters

In this section, the extend-local and sequential methods are explored in the context of diffusive mass transport through their dependence on their intrinsic parameters.

Extend-local method study

We study the extend-local method at the L 1 -scale. First, the robustness of the method is evaluated on a periodical geometry and then it is applied on biological tissue.

The periodic geometry PM2 chosen is the same stack of discs of size 2000 px × 2000 px (fig. 3.30a). We choose a single L 1 -subcell of size 400 px × 400 px with δ sizes going from 0 to 400px with a step of 10px. The resulting scalar diffusion are plotted in figure 3.30b. The wall, open boundary and periodic conditions are respectively drawn by crosses, squares and asterisks. The porosity of the total domain (i.e. considering the buffer region) is plotted in orange.

The resulting equivalent diffusion coefficient are very close and merge completely since the beginning and their overall behavior is always dependent on the geometry period and porosity variation, with much lower oscillation magnitudes compared to the Stokes flow case. The fast convergence is explained by geometric properties and slow variation of diffusive properties since the diffusion coefficient was constant at the pore scale 27 . It appears that the benefit of extend-local method is limited for this type of physical system. For the biological tissue, we consider one L 1 -subcell size equal to 700 px × 700 px with δ ranging from 0 px to 500 px as shown in figure 3.31. The resulting equivalent diffusive properties coefficient from the wall and open boundary conditions are plotted respectively in red and black while the porosity is in purple (fig. 3. 31b andc).

Tendencies previously found in the convective responses are also observed for the diffusive properties excepting the impact of boundary conditions which show lower effects here (in the magnitude difference). A small δ (≈ 100 px) significantly reduce the bias due to BCs for diagonal coefficients, i.e. D 11 and D 22 and for spectral radii. The extra-diagonal terms are still sensitive to BCs. Larger δ might have an impact as shown by the D 22 evolution. Again, this method always requires a compromise between computation time and the nature of the physical system considered, if one targets L 1 -sub-block immersed in its near environment (close to the purely local problem) or in its more global environment (better biological characterization). 

Sequential method study

The 2-steps grid-block upscaling method is applied on binarized image shown in figure 3.32a. The studied properties of the resulting tensors are made with the different splitting and boundary conditions, i.e. wall (plotted in red), open boundary (plotted in black) and periodic condition (plotted in green). We consider the L 3 -scale equivalent tensor coefficients (diagonal and extra-diagonal), the spectral radius and the principal directions.

One can observed an overestimation and underestimation respectively for the open boundaries and wall boundary conditions. Globally, the magnitudes of the differences between BCs according to the splitting are smaller than in the flow case. Note that the periodic BC behaves like the impervious boundary condition for this physical system as the tensor coefficients follow the exact same response according to the splitting. Finally, we have the same tendency for tensor symmetry emanating from the open boundary condition. Finally, it can be possible to propose and ordering of equivalent diffusion diagonal coefficients as expressed by the inequality (3.29).

D W , D P ≤ D P L (3.29)
Concerning the principal directions (fig. 3.33), the eigenvectors are relatively similar according to the splitting and the BCs. As the tensor are not symmetrical, except for the one resulting from the open boundary condition, the found directions are not orthogonal. Note that eigenvectors can be numerically calculated with opposite direction since eigenvectors are invariant by linear transformations.

Consequently, the sequential method applied to diffusive mass transport is very similar to the momentum transport. It is possible to characterize accurately the upscaling in the osteosarcoma case as the essential properties of resulting diffusion tensor are conserved through the method parameters. 

Conclusion and discussion on the transport study

In this chapter, we have developed a mechanically consistent upscaling methods for the description of flow and diffusive transport in osteosarcoma. The found optimised workflow includes grid-block methods with extend-local computations associated with sequential upscaling. Our targeted application is biological tissue from osteosarcoma which is particularly heterogeneous. The extend-local method allows to drastically reduce the bias induced by the choice of boundary conditions on grid block elements border. The accuracy of the proposed method provides is carried from the pore scale to the higher scale. In a second step, we have shown that the 2-step grid-block upscaling method allows to represent faithfully the mechanical properties of the object as they are preserved for different splitting and boundary conditions. The upscaling method preserves the ordered relations of permeability tensor and diffusive tensor as follows:

K diag W ≤ K diag S , K diag P ≤ K diag P L (3.30) D diag W , D diag P ≤ D diag P L (3.31)
The reliability of results will be of interest to explore correlations between tissue mechanical properties and biological responses in osteosarcoma.

In this chapter, we have considered three non-characteristic spatial scales i.e. which could be chosen arbitrarily as long as they are ordered according to L 1 < L 2 < L 3 . Note that this is allowed here because of the uniform nature of the equations (Stokes, Darcy or elliptic) where the very nature of equivalent parameters does not varies through the geometries regions. We emphasize that this is not always true. For other transport physics such as advectiondiffusion(-reaction), which reflect a combination of two different phenomena, the scales must be constrained. Indeed, in order to obtain a relevant upscaling, the equivalent properties must then account for the two processes respective magnitude, i.e. a region may present a purely diffusive or convective character or a mixture of both. Therefore, the nature of the upper scale equation can be very different depending on the region of the geometry considered. Thus, a particular attention must be given, at each step of the method, to the splittings and the scales. To do this, studies of the physical behavior at each scale could be necessary. For example, on the L 1 -scale, it seems relevant to separate the geometrical parts with strong convection and purely diffusive features. To automate this procedure, we can think of percolation phenomena for relevant splitting through flow-based procedures [START_REF] Wen | Upscaling of channel systems in two dimensions using flow-based grids[END_REF] or more abstract procedures such as elliptic-base grid generation [START_REF] He | Structured flow-based gridding and upscaling for modeling subsurface flow[END_REF]. The generation of these splittings, non-uniform by nature, will allow us to better capture the dominant phenomena on each part of the geometry for a relevant resolution of the equations. It would also be possible to consider models with N-equations [START_REF] Davit | A domain decomposition approach to finite-epsilon homogenization of scalar transport in porous media[END_REF].

The methodology developed in this chapter is directly applicable to the 3D case. An application of the upscaling methods to the exploration of osteosarcoma in three dimensions, although difficult in the current state due to the unavailability of biological material, would allow us to extend the validation of the numerical methods since the geometric (and thus physical) properties of the object will be different. We can for example think of the problem of percolation which will be very different from the 2D case and statistical percolation distribution limit may be reached. In the 3D case, the sequential approach is highly relevant since it will drastically reduce the numerical cost of such simulations while faithfully characterizing the transport phenomena.

In the following chapter, we develop and study the same uspcaling methods for linear elasticity and poroelasticity model in the framework of small deformations. The structural mechanics of bones and tumor has been vastly studied in the literature. For example, in the mathematical and mechanical study of tumors [START_REF] Raimondo Penta | Effective governing equations for poroelastic growing media[END_REF], they are generally considered as elastic objects (clusters of cells) in which a fluid flow can be considered, leading to a poroelastic modelling [135] of those objects. This model is based on the high dependence of tumor growth on mechanical stress, typically due to confinement by the surrounding tissues and their interactions with ECM (see chapter 1). In the bone case, this theory contributed to a better understanding of the mechanosensory system [START_REF] Stephen | Bone poroelasticity[END_REF], as fluid shear stresses due to mechanical loading induce an osteocytes biological response, which drives the bone remodelling. While the contribution of structural stresses on osteosarcoma development have not yet been explicitly studied in the literature, because those tumors are characterized by an osseous ECM production, it is assumed that those stresses play a significative role in osteosarcoma spatiotemporal dynamics. In addition, because this pathological remodelling may be related to an immune response, potentially through osteoclasts and pathological metabolic pathways associated with these cells, it is interesting to investigate their role in the response to treatments.

Chapter 4

Structural mechanics in osteosarcoma

In this chapter, the aim is to add a new element in the upscaling approach to study the elasticity and poroelasticity of osteosarcoma. We decided to adopt a new approximation of the osteosarcoma physical system for the study of the elasticity and poroelasticity. In the first part of this chapter, the osseous ECM phase is seen as a homogeneous structure discarding lacunocanalicular system (LCS). The osteosarcoma will then be considered as a porous medium with two solid phases, osseous and fibrous ECM, respectively phase 1 and 2 on figure 4.1. In the poroelasticity case, these two structural phases are crossed at each point by a fluid phase (interstitial fluid and LCS flow) modeled by a Darcy flow. The choice (arbitrary) of the permeability, in each of the two phases, can be seen as the choice (still arbitrary) of the viscosity µ in our previous studies (the orders of magnitude of the literature are nevertheless respected). The grid-block method applied to linear elasticity at low deformation is well known for the effective response, i.e. when a REV can be determined, or for the equivalent response [START_REF] Hazanov | Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[END_REF][START_REF] Huet | Application of variational concepts to size effects in elastic heterogeneous bodies[END_REF][START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]. On another hand, the extend-local and sequential methods have, to our knowledge, never been explicitly developed for this physics.

In the poroelasticity framework, the literature is quite scarce since the majority of the work focuses on homogenization, with REV assumptions, of transient problems [START_REF] Jänicke | A poro-viscoelastic substitute model of fine-scale poroelasticity obtained from homogenization and numerical model reduction[END_REF]; in this paper, authors consider an unknown "external" pressure and an undrained test. Therefore, the extendlocal method has never been developed to reduce the bias related to the choice of BCs. The choice of coherent BCs for this physics is a sensitive issue in the context of osteosarcoma. Indeed, the consideration of non-periodic BCs remains very marginal in the literature and only a few studies have been done [START_REF] Rubino | Numerical upscaling in 2d heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves[END_REF], where the authors are interested in the equivalent character of the poroelastic response. As a result, very few works have focused on grid-block and sequential methods in the poroelastic case. This chapter is splitted in two parts. In the first section, an application of the upscaling scheme to structural elasticity alone is considered. Then, we propose developments for the poroelasticity case.

Linear Elasticity

In this section, we study the linear elasticity of a heterogeneous material through the upscaling methods. In a first part we will describe the mathematical model associated with the 2-step grid-block method. The extend-local method at the L 1 -scale will be described in a second part. Finally, the apparent elasticity tensor behavior through the sequential upscaling is studied numerically on different osteosarcoma binarizations.

Development of the grid-block method

We describe the biological structure at the tissue level L 1 , as a bi-phasic solid porous medium. No fluid phase is considered in first approximation to focus on the elastic response of the ECM only. The two solid phases are identified with osseous ECM and fibrous ECM and are characterised by a difference in their elastic properties at the pore scale. A simplifying assumption is made through the isotropy of each solid component. Therefore, a 2-porosity model is chosen. We consider a domain Ω, composed of the osseous and fibrous ECM solid phases, and its external boundaries as ∂Ω = ∂ int Ω ∪ ∂ ext Ω. A two-steps grid-block method is used to simulate the elastic response of the tissue obtained from 2D histological sections. As previously, three scales are considered (L 1 , L 2 and L 3 ) corresponding to a pore, intermediary and macroscopic scales and two successive upscaling are performed.

At the pore scale L 1 , the linear elastic behavior is modelled considering small strains. The total heterogeneous solid domain Ω is considered in a static equilibrium leading to the the following equilibrium equation (4.1):

-∇ • (σ(ũ L 1 )) = 0, (4.1)
where the second order tensor σ is the stress tensor (Pa) and ũL 1 the displacement at the L 1scale (m). No body force, via a source term, is considered.

When a domain is subject to a loading, change occurs in its shape and its size. The second order symmetrical strain-rate tensor (ũ

L 1 ) = ∇ sym ũL 1 = ∇ũ L 1 +(∇ũ L 1 ) t 2
(dimensionless), describes the deformation of the structural volume element1 .

The two tensors σ and depend linearly on each other and the elastic behavior can be expressed by Hooke's law, which can be written with a tensor notation as

σ ij (ũ L 1 ) = C ijkl kl (ũ L 1 ) (4.2)
where the fourth order tensor C (Pa), namely the stiffness tensor, is constant in each phases with C = C OECM χ OECM +C F ECM χ F ECM , χ OECM and χ F ECM being respectively the characteristic function of the osseous and fibrous ECM.

It is assumed that phases, osseous and fibrous ECM, exhibit isotropic behavior [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]. Thus, the tensor C in (4.2) is known for each phase, and its components are written according to the Young's modulus E and Poisson's ratio ν of the two phases.

Governing equations of tissue at the L 1 -scale is given by:

           σ ij (ũ L 1 ) = C ijkl kl (ũ L 1 ), on Ω -∇ • (σ(ũ L 1 )) = 0, on Ω Displacement continuity at ∂Ω int Boundary conditions on ∂Ω ext (4.
3)

The strain and stress tensor symmetry (σ ij = σ ji and kl = lk ), implies that only nine of the 24 coefficients C ijkl are necessary to a complete description of the relation. Another symmetry consideration allows to reduce the number of independent coefficient to six. Finally, using Voigt's convention, one can write the Hooke's law in (4.3) through the matrix equation (4.4).

   σ 11 (ũ L 1 ) σ 22 (ũ L 1 ) σ 12 (ũ L 1 )    =    C 11 C 12 C 13 C 22 C 23 symm C 33       11 (ũ L 1 ) 22 (ũ L 1 ) 2 12 (ũ L 1 )    (4.4)
At the L 1 -scale, as the domain Ω is piecewise isotropic according to its two phases, each elastic phase behavior can be represented with the following relation

   σ 11 (ũ L 1 ) σ 22 (ũ L 1 ) σ 12 (ũ L 1 )    = E i (1 + ν i )(1 -ν i )    1 -ν i ν i 0 1 -ν i 0 symm 1-2ν i 2       11 (ũ L 1 ) 22 (ũ L 1 ) 2 12 (ũ L 1 )    (4.5)
where E i is the Young's modulus and ν i the Poisson ratio of a given phase i of the 2-porosity model.

Remark:

The relation between the strain and the stress is given by taking the inverse equation (4.2) as follow

ij (ũ L 1 ) = S ijkl σ kl (ũ L 1 ) (4.6)
where S is the compliance tensor.

In the following, we consider equation ( 4.3) as it is possible to retrieve the compliance tensor by a tensor inversion. Note that, under the Voigt's notation matrix representation, this inverse is not trivial and requires an appropriate mapping of the stiffness and compliance matrices.

Three types of boundary conditions on the external boundary will be considered in the determination of the equivalent stiffness tensor at the L 2 -scale: the kinematic uniform boundary conditions (KUBC) imposing a uniform displacement, the static uniform boundary conditions (SUBC) imposing a traction force and the periodic condition, all arising from computational homogenization. The computational homogenization periodic condition is considered in this chapter as the literature is very developed in its comparison with the other two BCs. The AE method [START_REF] Pinho Da Cruz | Asymptotic homogenisation in linear elasticity. part i: Mathematical formulation and finite element modelling[END_REF] is not considered here. It requires the periodization of the porous medium. These BC are the most common ones and others exist in the form of mixed conditions in the literature [START_REF] Hazanov | Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[END_REF]. The three retained conditions are respectively written as:

• KUBC (prescribing a uniform displacement on the boundaries)

ũL 1 = A • x
where A is a constant second order tensor and x the space variable (4.7)

• SUBC (prescribing a uniform traction on the boundaries)

σ(ũ L 1 ) • n = Σ • n
where Σ is a constant second order tensor (4.8)

• Periodic [START_REF] Michel | Effective properties of composite materials with periodic microstructure: a computational approach[END_REF] (arising from computational homogenization)

             ∇ • σ = 0 in Ω σ = C(y) : ∀y ∈ Ω = A + ∇ sym v in Ω v Ω-periodic Σ = σ • n Ω-antiperiodic (4.9)
where A is a constant second order tensor, v the periodic fluctuation and y the local space variable. Here, the formulation consider the periodic fluctuation v as the main unknown. One can also resolve for a total periodic displacement ũL 1 but this cannot be easily implemented in FEniCS as it require features not available.

The application of the grid-block upscaling method to the theory of linear elasticity is not straightforward in the sense that two formulations are possible to obtain the equivalent properties in computational homogenization framework [START_REF] Sanchez-Palencia | Homogenization techniques for composite media[END_REF], i.e equilibrium and energy. The reciprocity of these two formulations is demonstrated when we consider boundary conditions respecting the Hill-Mandel property, i.e σ(ũ L 1 ) : (ũ L 1 ) Ω = σ(ũ L 1 ) : (ũ L 1 ) Ω , ensuring that the mechanical work density at L 1 -scale is conserved when upscaling to the L 2 -scale2 . Note that the energy based formulation allows to demonstrate the symmetry of the equivalent stiffness tensor [START_REF] Dirrenberger | Computational Homogenization of Architectured Materials[END_REF].

For the first uspcaling, the domain Ω is divided into N x × N y sub-domains of dimension L 2 1 . By imposing three different elastic tests according to unitary macroscopic tensor A i or Σ i with i ∈ [ [START_REF] Fletcher | WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition[END_REF][START_REF] Ritter | Osteosarcoma[END_REF]], one can compute the equivalent stiffness matrix at the L 2 -scale, as shown in figure 4.2 for KUBC like tests. The exact procedure is detailed below. One have, according to the divergence theorem, for a given boundary condition [START_REF] Kanit | Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry[END_REF]:

KUBC ⇒ (ũ L 1 ) Ω = A (4.10) SUBC ⇒ σ(ũ L 1 ) Ω = Σ (4.11)
where A, Σ are second order tensor. In the periodic and KUBC case, each component of the stiffness matrix is easily given as trivial linear relations are obtained between the L 2 stress and strain thanks to (4.10). For example, if one take the first elastic test with the tensor A 1 (such as A 11 = 1) then:

   σ 11 (ũ L 1 ) σ 22 (ũ L 1 ) σ 12 (ũ L 1 )    =    C L 2 11 C L 2 12 C L 2 13 C L 2 22 C L 2 23 symm C L 2 33       1 0 0    =    C L 2 11 C L 2 12 C L 2 13    (4.12)
In the SUBC case, we obtain rather a system of 9 equations for 6 unknowns, namely

C L 2 11 , C L 2 12 , C L 2 13 , C L 2 22 , C L 2 23 .
To solve this problem, a least squares method and a minimization of the cost function are performed to define the matrix coefficients [START_REF] Rubino | Numerical upscaling in 2d heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves[END_REF]. Indeed, as one has consider the stiffness relation (4.3) and not a compliance one, the equivalent stiffness tensor cannot be trivially computed thanks to relation (4.11). From that point on, this post-processing method will be used for each BCs since it allows to keep the same Hooke type relation without using the compliance for SUBC. Note that it gives the same results in the periodical and KUBC cases.

Therefore, a new description of the physical system at the intermediate scale L 2 is found comprising (1) a piecewise smooth geometry Ω and its boundary ∂ Ω (2) a novel elasticity equation in which the stiffness tensor C L 2 (s) is piecewise constant:

       σ ij (ũ L 2 ) = C L 2 ijkl kl (ũ L 2 ), on Ω ∇ • (σ(ũ L 2 )) = 0, on Ω BCs on ∂ Ω (4.13)
For the second upscaling, an iteration of the above procedure is conducted on a coarser grid form and the physical system described by (4.13). A new set of stiffness matrix is obtained at the L 3 -scale [START_REF] Sanchez-Palencia | Homogenization in mechanics, a survey of solved and open problems[END_REF], through the same post-processing method, giving a new linear elastic behavior at the L 3 -scale with a piecewise constant stiffness matrix C L 3 (s), on a new piecewise smooth domain Ω as follows:

         σ ij (ũ L 3 ) = C L 3 ijkl kl (ũ L 3 ), on Ω ∇ • (σ(ũ L 3 )) = 0, on Ω BCs on ∂ Ω (4.14)
The two-steps grid-block method stops here.

Weak formulation (FEM)

The discretization of the elasticity problem relies on an appropriate geometry meshing and a stable Hooke's law discretization. The mesh is again constructed by the GMSH's Delaunay built-in frontal algorithm. The mesh covers entirely the domain as the osseous and the fibrous ECM phases are discretized. The weak formulation associated with (4.3) is expressed by equation (4.15).

find ũ ∈ (H 1 ) 2 such that for all v ∈ (H 1 ) 2 Ω σ(ũ) : (v) dx = Ω (C : (ũ)) : (v) dx = ∂Ω σ(ũ) • n • v ds (4.15)
where we drop subscript associated with the considered scale for simplicity. This problem (4.15) is ill-posed for uniform Neumann-like conditions [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF] as the solution is determined up to rigid body motion, i.e. translation and rotation. Thus, the use of the SUBC type boundary condition requires nullspace enforcement3 [START_REF] Kuchta | On the singular neumann problem in linear elasticity[END_REF]. In the same way, the solution is given up to a translation in the periodic case. One way to circumvent this issue is to consider Lagrange multiplier.

A two-field mixed finite element approach is possible to models (4.3) taking into account two unknowns in the displacement and the stress through the resolution of a saddle-point problem. A significant advantage of this method is that it allows to better capture the incompressible or nearly incompressible elastic behavior i.e. with a Poisson's ratio close to 0.5. In opposition, the functional linked to the principle of virtual work (4.15) is undetermined as Poisson ratio tends to the limit case and can lead to spurious deformations such as locking effect for piecewise linear and continuous elements [START_REF] Anaya | Mixed displacement-rotation-pressure formulations for linear elasticity[END_REF]. Far from the limit value, the one-field and two-fields formulations are found in good agreement.

For the biological tissue investigated, the hypothesis of incompressibility is not valid [START_REF] Rupin | Experimental determination of young modulus and poisson ratio in cortical bone tissue using high resolution scanning acoustic microscopy and nanoindentation[END_REF], and a discretization based on displacement is well-adapted. As no mixed-formulation is used, finite element spaces do not pose any particular problem and Lagrange space can be trivially considered to discretize the displacement field. Moreover, no precondtioner in 2D is necessary as the problem converges quickly. For large images, weak formulations can be solved with the parallel sparse direct solver MUMPS. In this case, we use a biconjugate gradient solver together with an algebric multigrid preconditioner.

Numerical parameters, method parameters

We study the effect of the mesh at the L 1 -scale through pore scale field variables and L 2scale equivalent properties. A mesh conforming to the two phases is built with GMSH by giving a fixed value of the meshes according to the nature of the phase. Thus, a mesh convergence study according to the two phases is necessary. Specifically, we study for two fixed elastic material parameters in the two phases, a SUBC problem with an unitary macroscopic Σ tensor on 1600 px × 1600 px image. The binarized image is shown in figure 4.3a. The behaviour of a macroscopic and unidirectional Young's modulus, defined as

E 11 = σ 11 Ω
11 Ω , for various densities of the mesh is shown in figure 4.3b. No difference is noticed as the osseous ECM and fibrous ECM mesh characteristic length increases. Concerning pore scale variable convergence, the overall displacement is plotted over a line (y = 800 px) for different mesh characteristic lengths showing convergence as soon as we consider a GMSH size of 16 for the meshes, as shown in figure 4.3c. c) Mesh effect on a pore scale field variable on the magnitude of the displacement over a line (y = 800 px) for multiple GMSH mesh characteristic size of the osseous ECM and a given fibrous ECM GMSH mesh characteristic size.

We have checked that the smoothing method of ∂ int Ω boundary had no effect on the predicted elastic properties but results are not presented here and the protocol detailed in chapter 3 and section 3.2.3.2 was used for further studies.

Influence of the sequential and extend-local methods parameters

Extend-local method study

In this section, we study the effects of the extend-local method on the stiffness tensor, at the L 2 scale after resolution of (4.3). We will consider a set of elastic parameters at the pore scale as (E OECM , E F ECM , ν OECM , ν F ECM ) = (500 MPa, 50 MPa, 0.3, 0.35), where the subscripts OECM and FECM correspond respectively to the osseous and fibrous ECM phases. For methodological purposes, we consider a set of arbitrary elastic quantities, with a moderate contrast on Young's modulus and Poisson's ratios not far from those found for a bone [START_REF] Rupin | Experimental determination of young modulus and poisson ratio in cortical bone tissue using high resolution scanning acoustic microscopy and nanoindentation[END_REF]. Note that different values will result in the same qualitative response of the extend-local method and the ratio between Young's moduli is examined latter in this manuscript.

To do this, all the three boundary conditions are considered: the SUBC, the KUBC and the periodic boundary conditions. As for the previous physics (transport mechanisms), it is useful to reduce the bias inherent in the choice of boundary conditions. It is interesting to note that this numerical process is actually used in the experimental field with, for example, the use of standardized tensile specimens: their ends are enlarged, so that boundary conditions influence is limited in the region of interest. We study the evolution of resulting stiffness matrix coefficient C ij trough increasing δ neighboring size, for a constant local L 1 -cell.

In the extend-local case and more particularly for periodical boundary conditions, the macroscopic relations of the type (4.10) and (4.11) do not hold anymore since the averaging is done on a sub-cell of the total computational domain. The least square strategy adopted to determine the equivalent property is then used. In the periodic case for example, we have by periodicity, on the whole domain,

Ω = A Ω + ∇ sym v Ω = A because v is a periodic fluctuation.
In the extend-local method case, as we proceed the upscaling only on a sub-cell L 1 , it leads to

L 1 -cell = A L 1 -cell + ∇ sym v L 1 -cell without further simplifications.
To validate the approach, a periodic geometry is considered and is the same as in the previous section 3.2.4.1 as shown in figure 4.4a. The calculations for a single length of the local cell are presented with L 1 = 400 px. The δ-size of extend region is ranging from 0 to 400 px by steps of 20 px. We plot the resulting stiffness matrices coefficient in figure 4.4b and 4.4b for the three boundary conditions (KUBC in blue, SUBC in red and the periodic condition in orange).

Coefficients (diagonal and extra-diagonal) end up being perfectly merged according to all the BCs. The C 11 and C 22 coefficients follow the same evolution since the geometry is isotropic. Note that values do not stabilize exactly around the local periodic solution (as it corresponds computational BCs and not the exact solution4 ). It do not oscillates with porosity for large δ contrary to transport calculations in chapter 3. The geometry being isotropic, the extra diagonal coefficients C 13 and C 23 are close to zero (see equation (4.5)). Small variations are observed for small δ but remain close to the zero. For larger δ, coefficients converge effectively towards 0.

Figure 4.4: The extend-local method is applied in the framework of linear elasticity at small deformation for a periodic geometry a) Periodic geometry. b) Behavior of the stiffness matrix diagonal coefficients (in MPa), at the L 2 -scale, according to the buffer size and for the 3 boundary conditions ; KUBC in blue, SUBC in red and the periodic condition in orange. c) Behavior of the stiffness matrix extra-diagonal coefficients (in MPa), at the L 2 -scale, according to the buffer size and for the same boundary conditions.

The binarized image of biological tissue is shown in figure 4.5a. Results obtained with a single L 1 length, i.e with L 1 = 1000 px, are presented. We plot stiffness coefficients as a function of the buffering size δ for the KUBC (in blue) and the SUBC (in red) conditions. For this study, periodic conditions are discarded because of the bias they introduce in the symmetrization of the geometry since the total periodized domain also includes the buffer zone.

As shown in figure 4.5b, we notice a convergence of the diagonal terms toward an asymptotic value according to the two BCs. Extra-diagonal coefficients show decreased discrepancies in convergence, which still depends on the porosity evolution for the first steps of the method, as shown in figure 4.5c.

Figure 4.5: The extend-local method is applied on an osteosarcoma geometry a) Osteosarcoma geometry b) Behavior of the stiffness matrix diagonal coefficients (in MPa), at the L 2 -scale, according to the buffer size and for two boundary conditions (KUBC, SUBC) c) Behavior of the stiffness matrix extra-diagonal coefficients (in MPa), at the L 2 -scale, according to the buffer size and for the two boundary conditions KUBC and SUBC.

In opposition to transport problems, convergence of the extend-local applied to linear elasticity can be achieved for sufficiently large buffer zones; regardless of the chosen geometry, whether it is periodic isotropic or from a real osteosarcoma image. As a result, the bias inherent in the choice of boundary conditions can be completely erased for the calculation of elastic equivalent properties.

The initial difference between the static and kinematic boundary conditions are all the more pronounced if the contrast between the Young's modulii is high [START_REF] Justin | Computational Homogenization of Architectured Materials[END_REF]. This is due to the fact that KUBC boundary conditions impose a uniform displacement regardless of the phase along the boundary. On the contrary SUBC, which imposes a force on the boundary, induce a resulting contrast in the displacement depending on the phase. For high contrast elastic phases, the extend-local method smooths this difference for small neighboring region (δ ≈ 100 px) by underestimating the equivalent property as would the SUBC condition. For example, we consider the evolution of the equivalent coefficient C 11 at the L 2 -scale when considering a constant fibrous ECM Young modulus equal to 5 and for osseous ECM, a Young's modulii ranging from the value given in the set {5 MPa, 50 MPa, 500 MPa, 5000 MPa, 50 000 MPa, 500 000 MPa}. We plot the resulting coefficient for the SUBC and KUBC conditions boundary, respectively in red and blue, given two buffer region sizes δ = 0 px (fig. 4.6a) and 100 px (fig. 4.6b).

Extend-local method effectively reduces the inherent bias of boundary condition but greatly undervalues equivalent coefficient resulting from the KUBC condition around those of the SUBC. To address this problem of strong contrast, some authors recommend considering only the matrix, in a sort of extend-local method, without considering any solid inclusion on the edge [START_REF] Salmi | Apparent and effective mechanical properties of linear matrix-inclusion random composites: Improved bounds for the effective behavior[END_REF]. It would also be interesting to consider a kind of effective medium method described in [START_REF] Guibert | A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry[END_REF]. In chapter 5, where high contrast are considered, we are more interested in the qualitative rather than quantitative aspects of mapping equivalent properties.

In the rest of the chapter, we choose limited contrasts between the elastic parameters of the two phases for the sake of clarity. 

Sequential method study

In this section, we will study the sequential method together with a local method at the L 1 -scale, in the framework of linear elasticity. Linear elasticity has been extensively studied in the context of grid-block upscaling. Most of the results developed here are known at the L 2scale and the open question is to verify if they are preserved in the framework of the sequential procedure and at the L 3 -scale.

We recall that at the L 1 -scale, the stiffness matrix are piecewise constant according to the solid phases of the osteosarcoma. At the L 2 -scale, the equivalent stiffness matrix is piecewise constant according to the considered splitting. Three standard boundary conditions are considered, consistently at each scale; the KUBC, SUBC and the periodic boundary conditions. The elastic parameters of the phases are those of the previous section, i.e (E OECM , E F ECM , ν OECM , ν F ECM ) = (500 MPa, 50 MPa, 0.3, 0.35). Again, different Young's modulus will result in different quantitative result but with a similar qualitative response. The computational homogenization states [START_REF] Sab | On the homogenization and the simulation of random materials[END_REF] that on a REV, the effective parameters are equals whatever are the boundary conditions, that is:

C P = C KU BC = C SU BC (4.16)
The equivalent properties of the stiffness tensor in heterogeneous porous media is also very well understood [START_REF] Hazanov | Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[END_REF]. Indeed, we have in the sense of quadratic forms5 , the following inequation:

C SU BC ≤ C P ≤ C KU BC (4 .17) 
A theoretical result also accounts for the splitting effect by stochastic average of the obtained results at the L 2 -scale [START_REF] Huet | Application of variational concepts to size effects in elastic heterogeneous bodies[END_REF] with:

C f SU BC ≤ C c SU BC ≤ C c KU BC ≤ C f KU BC (4.18)
where the superscripts f , c stand for fine and coarse grid respectively, and the "overline" notation represents the stochastic average operator 6 .

Remark: Please note that inequality (4.17) is verified in the above extend-local framework.

The resulting stiffness matrices through the two-step sequential process are computed on a binary image, shown in figure 4.7a, and having a dimension of 5000 px × 5000 px. The L 1splitting ranges from 2 × 2 to 5 × 5 7 and only one L 3 -cell is considered in the L 3 -paving with merging L 2 and L 3 scales. Results are shown in figure 4.7. KUBC resulting L 3 -scale equivalent coefficients are plotted in blue, those from SUBC in red and finally those from the periodic condition in yellow. In order to check the consistency of the results and the numerical implementation, we will use relation (4.17) at the intermediary scale L 2 . This inequality induce an explicit scalar inequality of the same nature on the diagonal coefficients C 11 and C 22 [START_REF] Hazanov | Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[END_REF], such as

C SU BC 11 ≤ C P 11 ≤ C KU BC 11 (4.19) C SU BC 22 ≤ C P 22 ≤ C KU BC 22 (4.20)
It is interesting to see how tensors from periodic conditions will behave in the relation (4.17) as we proceed to unconventional geometry symmetrization. Similar to the transport case, it is also interesting to see how the resulting tensors behave at the L 3 -scale as a function of the L 1 -splitting size and if it is possible to determine a relation similar to (4.18) in the deterministic framework of the sequential method.

Relation (4.18) and deterministic version of (4.18) are verified for the 2-steps upscaling method as shown by the evolution of C 11 and C 22 . Interestingly, the periodic resulting coefficients always lie between the other two boundary conditions even with the geometry symetrization process. 6 One can show the existence of a quadratic inequality for the compliance tensor S according to the splitting and the boundary conditions essentially given by the inverse of (4.17) and (4.18). Mixed conditions were also considered in [START_REF] Hazanov | Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume[END_REF].

7 made to accommodate the consistencies of the graphical representation because periodic BC in the one-step method is not considered here; note that one-step method in the KUBC and SUBC cases give appropriate results. In the same way as in the previous section 3.2.4.2 in the study of the flow problem, we validate the sequential process on a large image shown in figure 3.24 (16 000 px × 16 000 px). The displacement field resulting from the local 2-steps method is compared to those of a DNS. The boundary condition chosen on the four external boundaries to carry out the calculations is similar for both simulations and is an imposed displacement boundary condition KUBC (4.7) corresponding to a hundredth of the geometry length. The 2-step method is performed with an 8×8 L 3 -paving together with a 2×2 L 1 -splitting corresponding respectively to L 1 = 1000 px and L 2 = 2000 px and a consistent KUBC boundary condition across the two scales. Material properties are as follows: (E OECM , E F ECM , ν OECM , ν F ECM ) = (500 MPa, 5 MPa, 0.3, 0.35). The two displacement magnitude fields are shown on figure 4.8a and b. Here, we plot the displacement magnitude over two lines y = 11 000 px and y = 4000 px, respectively on top and bottom of figure 4.8c; with the DNS results given in red and the 2-steps in blue.

The displacement calculated with DNS or 2-step method are very similar. It is therefore possible to correctly represent the local displacement, even without REV assumption, with the 2-steps process 8 . In conclusion, the sequential grid-block method applied to the study of the linear elastic response of biological tissue is perfectly consistent and quantitative inequalities, at the L 3 -scale, are found to be in agreement with those find in the literature for the first upscaling. The extendlocal method allows a better characterization of the equivalent property at the L 2 -scale by an significant reduction of the bias related to the choice of the boundary conditions. The sequential grid-block is shown to be relevant in describing the mechanical properties of large osteosarcoma images. A consistent study of the osteosarcoma elastic behavior is of great importance since it will be used in the following poroelasticity case.

Poroelasticity

We increase the complexity by considering that the elastic behavior of osteosarcoma is modified by the presence of the fluid, which transforms the problem into a poroelasticity problem. The couplings of governing laws of two phases, i.e. fluid and solid, require specific developments. The founding works of this physics are those of Biot (1935Biot ( ,1941) ) and Terzaghi (1923) [135].

The stationary regime of poroelasticity is considered, the fluid fully saturates the porous medium and structural deformations are quasi-static. The coupling between the fluid flow and the elastic response of the solid phases is considered weak in our approach. The fluid pressure field is determined by the imposed flow and permeability tensor. The solid stress field is then influenced by the fluid pressure.

We choose a 2D geometrical paradigm similar to linear elasticity at small strain with a 2porosity model and underlying porosity is considered for each phase. The model is described in figure 4.9. At the local L 1 -scale, ECM is considered as a two-phase solid, i.e. osseous tissue and fibrous tissue, saturated by a fluid following a Darcy flow regime. Each phase is considered isotropic and scalar permeability is associated with each phase, i.e Lacunar-Canalicular System (LCS) is now considered. The poroelastic response of this heterogeneous material is explored using a methodology similar to that of the elastic response described previously. We first describe the mathematical model associated with the 2-steps grid-block method. In a second and third part, the extendlocal method at the L 1 -scale and the sequential method are respectively studied.

Mathematical model

We consider the stationary linear poroelasticity with small strain at the L 1 -scale. Stress tensor is related to the strain tensor by a modified Hooke's law as follows:

σ tot (ũ L 1 ) = DC : (ũ L 1 ) -αp L 1 Id, ( 4.21) 
where α is the Biot coefficient accounting for the compressibility of phases, ũL 1 being the displacement field and p L 1 , the fluid pressure field.

The Ω body is maintained at equilibrium which is rewritten according to the total stress in equation (4.22).

-∇ • (σ tot (ũ L 1 )) = 0, (

where no body force via a source term is considered and a negative sign is taken by convention.

When considering a stationary regime, no reciprocity of the coupling is possible in the governing equation of the flow as the pressure field is not modified by elastic stress and strain changes. Therefore, a Darcy equation describes the fluid flow and local equilibrium assumption 9 is made [START_REF] Béchaud | Modelisation numerique de l'adsorption et de la dispersion d'un gaz binaire en milieu poreux[END_REF][START_REF] Quintard | Two-medium treatment of heat transfer in porous media: Numerical results for effective properties[END_REF]. The resulting fluid pressure field can be solved separately and put into the modified Hooke's law (4.21) as a simple parametric function.

Remark:

In the general poroelastic framework, the continuity equation associated with the flow cannot be solved independently of the stress and strain fields and is written as

∂ t ( p M -αT r( (ũ L 1 ))) + ∇ • q L 1 = 0, (4.23) 
where q L 1 , is the Darcy velocity at the L 1 -scale and M is an inverse storage coefficient. The term ζ = p M -αT r( (ũ L 1 )) describe the variation of fluid volume per unit reference volume. Thus, in stationary conditions, it is reasonable to consider a weak coupling for the poroelasticity equations.

Finally, the set of governing equations at the L 1 -scale is as follows:

                   ∇ • q L 1 = 0 in Ω -∇ • (σ tot (ũ L 1 )) = 0 in Ω q L 1 = -K µ • ∇p L 1 in Ω σ tot (ũ L 1 ) = DC : (ũ L 1 ) -αp L 1 Id in Ω Field variables continuity condition on ∂ int Ω Boundary conditions on ∂ ext Ω (4.24) 
with DC = DC OECM χ OECM + DC F ECM χ F ECM where χ OECM and χ F ECM are respectively the characteristic function of the osseous and fibrous ECM respectively.

The modified Hooke's law is described for the Ω domain using piecewise isotropic coefficients. The parameter α is the ratio of the fluid volume gained or lost in a material element due to the volume change when loaded under drained conditions. In the following, α is fixed to 1.

The development of the two-step upscaling method is similar to the linear elasticity case. The key differences are the nature of equations and the choice of boundary conditions at each scale. Two categories of boundary conditions are imposed since they concern fluid and solid phases.

First, Darcy flow is solved to obtain the fluid pressure field. We impose an horizontal flow. As shown in figure 4.10, two types of boundary conditions, on top and bottom external edges, are then considered, namely the impervious and open boundary conditions, expressed by equation (3.14) and (3.15), respectively. In a second step, boundary conditions on the solid phases are imposed on external boundaries. We use the KUBC (solid displacement ũL 1 ) and SUBC (on the total traction) conditions which are stated as follows:

• KUBC: ũL 1 = Ã • x on ∂Ω (uniform displacement on the boundaries)

• SUBC: σ tot (ũ L 1 ) • n = Σ • n on ∂Ω (uniform total traction on the boundaries) where à and Σ are both symmetric tensors of order 2 not depending on the space variable. The space variable is named x.

Remark: The physical system comprising an incompressible Darcy equation at the L 1 -scale with a 2-porosity model is studied with the extend-local and sequential upscaling methods as detailed in appendix B. Thus, we consider four combinations boundary conditions arising from permutations between the elastic and flow BCs and they are detailed in Table 4 For the first upscaling, we consider three tests corresponding to a unitary tensor à or Σ, summarized in figure 4.10. For each test i ∈ [ [START_REF] Fletcher | WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition[END_REF][START_REF] Ritter | Osteosarcoma[END_REF]], one can relate stress to strain, following [START_REF] Rubino | Numerical upscaling in 2d heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves[END_REF] with Voigt's notation as expressed by equation (4.25).

   σ i biot,11 (ũ L 1 ) Ω σ i biot,22 (ũ L 1 ) Ω σ i biot,12 (ũ L 1 ) Ω    =    DC L 2 11 DC L 2 12 DC L 2 13 DC L 2 22 DC L 2 23 symm DC L 2 33       i 11 (ũ L 1 ) Ω i 22 (ũ L 1 ) Ω 2 i 12 (ũ L 1 ) Ω    (4.25) 
where σ biot = σ tot + pId is the "Biot effective stress" [START_REF] Cheng | Material coefficients of anisotropic poroelasticity[END_REF] and DC L 2 the equivalent poroelastic tensor at the L 2 -scale. The equivalent poroelastic stiffness matrix is symmetric even for anisotropic geometries [START_REF] Cheng | Material coefficients of anisotropic poroelasticity[END_REF][START_REF] Helbig | Kelvin's eigensystems in anisotropic poroelasticity[END_REF]. The minimization of a cost function allows to determine the poroelastic stiffness matrix coefficients. Here, one need to enforce 10 the equivalent poroelastic matrix symmetry [START_REF] Rubino | Numerical upscaling in 2d heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves[END_REF] as the least square procedure can produced some nearly symmetric tensor, even more without a REV assumption. Therefore, the physical system is represented, at the L 2 -scale, by a piecewise smooth medium Ω having a poroelastic stiffness tensor given by DC L 2 with the modified Hooke's law expressed by equation (4.26).

               ∇ • q L 2 = 0 in Ω -∇ • (σ tot (ũ L 2 )) = 0 in Ω q L 2 = -K µ • ∇p L 2 in Ω σ tot (ũ L 2 ) = DC L 2 : (ũ L 2 ) -αp L 2 Id in Ω Boundary conditions on ∂ Ω (4.26)
For the second upscaling, process is repeated for the same fluid and solid BCs than in the first upscaling, and the stress-strain relation at the L 3 -scale is given by [START_REF] Cheng | Material coefficients of anisotropic poroelasticity[END_REF], with another piecewise constant poroelastic stiffness tensor DC L 3 . This results in the set of equations (4.27).

               ∇ • q L 3 = 0 in Ω -∇ • (σ tot (ũ L 3 )) = 0 in Ω q L 3 = -K µ • ∇p L 3 in Ω σ tot (ũ L 3 ) = DC L 3 : (ũ L 3 ) -αp L 3 Id in Ω Boundary conditions on ∂ Ω (4.27)

Numerical discretisation (FEM)

At L 1 -scale, the discretization of equation (4.24) must be consistent for Darcy's law and modified Hooke's law. We consider the same mesh for both physics. The GMSH's Delaunay built-in frontal algorithm covers the entire domain as fluid and solid phases are considered while 10 by giving the coefficient under the diagonal of the matrix, the same value as those above the diagonal following the phase interfaces ∂ int Ω.

The weak formulation associated with the second and third equation of (4.24) on Ω at the L 1 -scale, is expressed by equation (4.28).

find ũ ∈ (H 1 ) 2 such that for all v ∈ (H 1 ) 2 Ω σ tot (ũ) : (v) dx = Ω (DC : (ũ)) : (v) dx- Ω pId : (v) dx = ∂Ω σ tot (ũ)•n•v ds (4.28)
where we drop again the subscript associated with the scale of the grid-block method for the sake of simplicity. Finite element spaces, preconditioner and solver are chosen according to the ones chosen in the elastic and flow case (see section 4.1.2 and 3.2.2) 11 . Mesh convergence can be estimated according to local variable (velocity and displacement) or equivalent properties (average velocity and unidirectional poroelastic Young's modulus). We choose as mesh size, the minimum of the found values.

Influence of the sequential and extend-local methods parameters

Extend-local method study

In this section, we study the effects of the extend-local method on the poroelastic equivalent property, at the L 2 -scale, after the resolution of equation (4.24).

All the four boundary conditions of Table 4.1 are considered. Because of the isotropic behavior at the L 1 -scale of the phases, tensor coefficients DC ijkl are known for the two individual constituents, i.e osseous and fibrous ECM, and is written according to their Young's moduli and Poisson's ratio. Their values are (E OECM , E F ECM , ν OECM , ν F M EC ) = (500 MPa, 50 MPa; 0.3, 0.35). Permeabilities are (K OECM , K F M EC ) = (0.2, 2000) in px 2 . In figure 4.11, we plot the resulting equivalent poroelastic matrix coefficients, obtained for a single L 1 = 1000 px scale, in function of the buffer region size δ (ranging from 20 px to 500 px with a 20 px step) and with respect to the four possible boundary conditions. The KUBC sym , KUBC pl , SUBC sym and SUBC pl are respectively given in blue line, blue circles, red line and red circles.

For the two solid types of boundary conditions (KUBC and SUBC), the values of the equivalent diagonal coefficients converge toward a common value as shown in figure 4.11b. We note a more difficult convergence for the DC 22 coefficient accounting for the material elasticity in the orthogonal direction to the imposed fluid direction. In this case, the addition of the fluid pressure field term has little to no effect on the quantitative behavior of the equivalent response as the resulting values are practically merge with those obtained by the pure elastic model. (overall difference around 10%).

Concerning extra-diagonal coefficients of the poroelastic equivalent matrix, the overall behavior remains quite erratic as no perfect convergence in value is reached even for high buffer region size for the four BCs. This is to be balanced with the fact that the overall difference between the four boundary condition resulting values is at best of the unity order. In contrast to the diagonal coefficients, there is still a difference here, albeit small, depending on the fluid condition. The PL underestimates the value of coefficients for small buffer regions; this difference totally disappears for sufficiently large extended region sizes.

In general, one find a similar behavior as in the linear elasticity framework for the chosen set of parameters. In conclusion, the extend-local method can also be used, at the L 1 -scale, in this very specific case of BCs to reduce the biases intrinsic to each BCs.

Sequential method study

In this section, we study the sequential method in the framework of linear weakly coupled poroelasticity using the local method at the L 1 -scale. The open question is whether or not the addition of the pressure field modifies the quadratic order relations found in linear elasticity.

The same binarized image shown in figure 4.12a is used together with the same set of material paramaters. Young's moduli and Poisson's ratio in both phases are given by (E OECM , E F ECM , ν OECM , ν F M EC ) = (500 MPa, 50 MPa; 0.3, 0.35) and permeabilities are given by (K OECM ; K F M EC ) = (0.2, 2000) in px 2 . The resulting equivalent tensor coefficients at the L 3 -scale are plotted in figure 4.12b and figure 4.12c. They are obtained for L 1 -splitting ranging from 1 × 1 (1-step method) to 5 × 5 and with respect to the four possible boundary conditions. Again, the KUBC sym , KUBC pl , SUBC sym and SUBC pl are respectively given in blue line, blue circles, red line and red circles.

The diagonal terms plotted in figure 4.12b shows the same overestimation (KUBC) and underestimation (SUBC) with respect to solid boundary conditions, with no significant influence of two fluid BCs. Moreover, an order relation is verified between the dense and fine splitting similar to the one found in elasticity and expressed by equation (4.18). The extra diagonal term plotted in Figure 4.12b follows the same evolution with a weak difference due to fluid BCs for a given solid BC.

In general, the results are similar to the elastic case (qualitatively) with quantitative differences, coming from the addition of the pressure term, of the order of few percents. This can be explained by the weak coupling considered, as well as the poroelastic tests used for the determination of the equivalent poroelastic properties where, we recall, we considered a single horizontal flow. This difference can increase when considering 3D geometry where different percolation properties will be at work. 

Conclusion and discussion on structural mechanics

In this chapter, we have applied the extend-local and two-steps grid-block upscaling methods to elastic and poroelastic responses of heterogeneous media and especially osteosarcoma tissue. It was shown that an extend-local method was beneficial for linear elasticity models to reduce the very important biases introduced by boundary conditions if moderate contrasts in elastic parameters are considered. Concerning the 2-step grid-block method, we have recovered the principal literature results on the quadratic order relation between resulting stiffness tensor at the L 3 -scale. They are summarized as follows:

C SU BC ≤ C P ≤ C KU BC (4.29)
Furthermore, we obtained a deterministic order relation on the L 3 -scale equivalent tensor, in function of the L 1 -splitting density, as expressed by relation (4.30).

C f SU BC ≤ C c SU BC ≤ C c KU BC ≤ C f KU BC (4.30)
We were able to confirm the consistency of the methodology applied to osteosarcoma by comparing the two-steps method to the DNS simulation used as reference.

An extension of the methodology allowed to explore linear poroelasticity with a weak coupling between solid and fluid responses. We found qualitative behavior of the upscaling methods resulting from poroelasticity and order relations similar to elasticity at the L 3 -scale, which can be summarized by relations (4.31) and (4.32). For a given solid BC, in the range of permeabilities explored, it is found that a fluid BC plays only a minor role in the equivalent poroelastic response. As in the transport framework, the methodology developed is applicable to the 3D case. The transition to the 3D paradigm could even be preferable from a purely methodological point of view. Indeed, the osseous ECM connectivity and the 3D percolation properties would allow the use of the same geometrical model as in the transport framework (i.e. 1-porosity model) and thus a better hierarchization of the physical phenomena in the mechano-biological comparisons (consistency of the models for both physics). This chapter concludes the mechanical study of osteosarcoma through the sequential gridblock upscaling method. In the next chapter, a mechano-biological study of osteosarcoma is conducted and the heterogeneity of the response to treatment in a cohort of 4 patients is examined.

DC

Chapter 5

Correlation between the osteosarcoma response to treatment and equivalent mechanical properties of biological tissue; a preliminary study The heterogeneity of osteosarcoma, from a genetic, cellular and tissular point of view, makes it very difficult to understand in terms of tumoral dynamics. In addition, the response heterogeneity of neoadjuvant chemotherapy is not yet well understood [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF]. We focus on the intratumoral treatment response heterogeneity as it may provide new clues to understand the underlying mechanisms of bad response to treatments.

From a clinical point of view, the exploration of H&E histological sections gives the cell density and the nature of the bone, which can be used to estimate the tumor invasiveness and the response to treatment. The extend of tumor necrosis in response to chemotherapy is assessed as being greater or less than 90% of necrosis. Patients with more than 90% necrosis count are good responders and those with less than 90% are poor responders [START_REF] Casali | Bone sarcomas: Esmo-paedcan-euracan clinical practice guidelines for diagnosis, treatment and followup[END_REF]. While the therapy response is currently determined through this Huvos and Rosen grading, a more quantitative approach that takes into account the intratumoral heterogeneity could bring a new insight in the understanding of the pathology and new perspectives for the treatments.

While osseous ECM may exhibit a chemotherapy-resistant phenotype [START_REF] Mintz | An expression signature classifies chemotherapy-resistant pediatric osteosarcoma[END_REF], a question explored in this work is whether region with high osteo-formation could be a physical barrier to treatment transport as highlighted in [START_REF] Henke | Extracellular matrix in the tumor microenvironment and its impact on cancer therapy[END_REF]. In addition, pathological osseous ECM remodelling (see fig. 1.9) is related to a vicious cycle involving osteoclasts [START_REF] Verrecchia | Transforming growth factor-β signaling plays a pivotal role in the interplay between osteosarcoma cells and their microenvironment[END_REF]. This cell population is also involved into the immune response [START_REF] Gomez-Brouchet | Characterization of macrophages and osteoclasts in the osteosarcoma tumor microenvironment at diagnosis: New perspective for osteosarcoma treatment?[END_REF], and it should be sensitive to mechanical effects [START_REF] Helmlinger | Solid stress inhibits the growth of multicellular tumor spheroids[END_REF][START_REF] Nathan | Elevated physiologic tumor pressure promotes proliferation and chemosensitivity in human osteosarcoma[END_REF] since it is also observed in non-pathological bone [START_REF] Weinbaum | A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses[END_REF][START_REF] Ambard | A predictive mechano-biological model of the bone-implant healing[END_REF]. In this context, structural strain and stress might play a role on treatment efficiency.

We hypothesize that the response to treatment may be correlated to the architecture of osseous ECM and also that responses to differentiated physical stimuli could play a significant role.

Lacy-like and trabecular-like architectures are considered and correlations with cell populations are investigated.

Developments are based on patient-specific anatomo-pathological images and extend-local grid-block sequential upscaling procedure. Mass transports and structural elastic responses are considered. This problem is complex and restrictive assumptions are made. The vasculature is discarded to focus on steady interstitial transport which is considered steady, and reactive processes between cell phase and fluid flow are not considered. For flow studies, osseous ECM phase is considered as non-porous obstacles (focus on tissue interstitial flow) and for the structural behavior, a two-porosity model is used at the pore scale with isotropic elastic properties for the two phases, i.e. osseous and fibrous phases of ECM.

First, the methodology to establish mechano-biological correlations is described and then it is applied on a preliminary cohort of four patients.

Methodology to establish mechano-biological correlations

The upscaling method is applied to histological sections of osteosarcoma performed on surgically resected tumors. The patients selected for this study come from a cohort of bad responders with high-grade osteoblastic osteosarcoma (Toulouse University Hospital). Histological sections exhibit a spatial heterogeneity in response to treatment. In addition, the images show various characteristic osseous ECM structures such as lacy-and trabecular-like formations as illustrated in figure 5.1. The degree to which two random variables or sets of random variables tend to deviate from their expected values in similar ways can be measured by the covariance. However such calculations are dependent upon the variable magnitude. Correlation coefficients are a normalized form of the covariance which characterize the relationship between adimensioned variables. Correlation coefficient ranges between -1 and 1. Its absolute value measures the intensity of the relationship while its sign indicates the monotony. If a variable Y c tends to increase when a variable X c increases, the correlation coefficient is positive (where subscript c stands for correlation). If Y c tends to decrease when X c increases, the correlation coefficient is negative. A correlation coefficient of zero indicates that there is no tendency for Y c to either increase or decrease when X c increases.

The Pearson coefficient measures a possible linear relationship between the two variables. For two variables X c and Y c , it is expressed by equation (5.1).

r p = Cov(X c , Y c ) σ X σ Y (5.1)
where Cov(X c , Y c ) is the covariance of the two variables, and σ Xc and σ Yc the standard deviations.

Note that the normalization is done by the standard deviations, expressing the variable values dispersion with respect to their mean. The Pearson coefficient is only suitable for linear relationships and it is sensitive to local discrepancies.

When the relationship is not strictly linear, the Spearman correlation coefficient should be favored. By rather examining a relationship between the rank of the two variables X c and Y c , it is possible to detect the existence of monotonic relationships. The Spearman coefficient is given by equation (5.2).

r s = Cov(rg Xc , rg Yc ) σ rg Xc σ rg Yc (5.2)
where rg X and rg Y are the ranks of the variables X c and Y c . When the relationship between the two entities is linear, the Spearman coefficient is similar to the Pearson coefficient. Local variations of variables are better taken into account and it is used in the following developments.

In this work, the correlations will in fact be done on two arrays X c and Y c coming from the splittings of histological sections for the sequential method. The first vector X c corresponds to the equivalent mechanical properties at the L 3 -scale, at the output of the two-step grid-block method. More precisely, we will consider on each sub-block, a relevant scalar property depending on the studied physics (flow strength or stiffness in the main directions). The second vector Y c includes the clinical information, i.e. the cell densities on the same splitting of the histological section as realized for the mechanical study by upscaling.

For the 2-step upscaling method, the lengths being arbitrarily chosen for both physics, we first considered L 1 , L 2 , L 3 scales allowing among other things to account for the heterogeneity in phase distribution. Indeed, a too loose splitting would lead to a too important loss of local information and especially to a non-significant correlation (i.e. the cardinal of the sets X c and Y c would not be sufficient for a low p-value correlation). Also, in the context of the flow and in view of the images, splitting too dense could introduce purely numerical problems related to the phenomenon of percolation (see chapter 3 for the checkerboard like problem at the L 2 -scale in particular).

Finally, it is necessary to evaluate the response to treatment on histological sections. Here, the areas of good and bad responses on the selected histological sections were determined from the Huvos and Rosen notation (10% or more of residual cell corresponds to a bad response to treatment).

Correlation coefficients: mechano-biomarkers of the treatment response?

In this section, we are exploring correlations between equivalent mechanical properties obtained by using the two-step sequential grid-block method, and the cell density. First, correlations are made with fluid flow and then, structural mechanics is considered with linear elasticity.

Transport study

First, we recall the clinical question motivating the modeling of interstitial flow in osteosarcoma. We want to know if it is possible that an area of high osteo-formation may or may not cause a barrier to the response to treatment. Tissue and cell phases are segmented for the equivalent permeability calculations and the evaluation of cell density respectively as described in chapter 2. From the 2-steps grid-block upscaling method, equivalent permeability distributions are obtained at the L 3 -scale. We consider the symmetry (3.12) and impervious (3.14) boundary conditions, at the L 1 and L 2 scales, respectively.

The methodology is applied on two subsamples of histological sections. The size of the images is 8000 px × 8000 px, i.e. 3.7 mm × 3.7 mm. At the L 1 -scale, an extend-local method is considered with δ = 100 px. The non-dimensionalized permeability magnitude and cell density maps are shown in figure 5.2. Zones of good response to chemotherapy correspond to low cell densities whereas bad response corresponds to high cell densities.

An overall negative correlation between the two entities is found for patient 1 who exhibits a trabecular-like ECM formation. An increase in permeability is associated with a decrease in cell density. Indeed, qualitatively, one can see on Patient 1 sample (fig. 5.2 Patient 1), a clear separation materialized by the anti-diagonal of the 5 × 5 maps where a zone (top right) of very low permeability corresponds to a zone of very high cell density. An opposite distribution is found for patient 2 with lacy-like ECM where an increase in permeability in the left side of the image corresponds with an increase in cells density.

Those result are confirmed by the Spearman coefficient. For patient 1 it is negative with r s = -0.485 (p = 0.014) whereas for patient 2, the coefficient is positive with r s = 0.433 (p = 0.026). To obtain the permeability map, we choose a purely local (since no information beyond 24 000 px is available) 2-steps uspcaling method together with the symmetric boundary conditions on a 3 × 3 L 3 -paving. For Patient 3, the correlation on the 3 × 3 splitting leads to a high p-value: a refinement of the calculation under a 5 × 5 splitting is needed (an extend-local method is considered just here with δ = 100 px), showing a region of high permeability area together with a low cell density (see extreme right column) justified by a Spearman coefficient of -0.493 and a p-value of 0.013. The correlation coefficient sign is also conserved for Patient 4 sample and coarse splitting; given a good qualitative behavior (fig. 5.3 Patient 4) but a not so good quantitative response as the splitting is too coarse (Spearman coefficient of 0.251 with a p-value of 0.5 1 ). In this image variations in the quality of the staining are observed which alters most probably the results as 1 p-value to high to be considered good.

it alters deeply the segmentation. More generally, the limiting factor to perform the numerical calculations is not the size of the image thanks to the sequential approach but the capacity to extract areas of interest with good enough imaging quality (good color contrast, no tearing, ...) which is not trivial to obtain on bone tissues, which are hard to cut and to stain. Figure 5.3: Correlation between permeabilty (px 2 ) and cells density (mm -2 ) maps on 24 000 px× 24 000 px histological slides according to the two topology types; conserving the qualitative behavior and correlations sign of the previous study.

For this limited-size cohort of bad responders with spatial heterogeneity in response to treatment, results show treatments by chemotherapy are more efficient in lacy-like ECM regions compared to trabecular-like ECM regions. While this result must be confirmed on a larger cohort, this work shows that it is possible to match an area of good (resp. bad) response to the treatment, defined by a low (resp. high) cell presence, with an area of high or low ECM permeability. Therefore, ECM permeability can be seen as a potential mechano-biomarkers of the treatment response.

Structural mechanics study

The clinical question motivating the study of elasticity may be whether mechanical stimuli in osteosarcoma could lead to a change from anti-tumoral to pro-tumoral macrophages and vice versa. Thus, a response to treatment could indirectly depend on the stiffness of the extracellular matrix through its direct mechanical interaction with the cells.

We first consider two images corresponding to patient 2 and a subregion of patient 3 histo-logical section. Size is 8000 px × 8000 px, corresponding to histological sections showing mixed response to treatment and respectively, trabecular and lacy-like osseous formations. Sections are shown in figure 5.4.

We consider a 2-step grid-block upscaling method. The set of scales is given by the couple (L 1 , L 2 ) = (800 px, 1600 px). Concerning the elastic parameters, we consider Poisson's ratios such as (ν OECM , ν F ECM ) = (0.3, 0.35) and Young's moduli such as (E OECM , E F ECM ) = (500 MPa, 50 kPa). A KUBC type boundary condition is first considered for the determination of the equivalent stiffness tensors at each scale (see chapter 4 section 4.1.1). The extend-local method is considered at the L 1 -scale with δ = 100 px. We consider the trace of stiffness tensors, i.e. the sum of the diagonal coefficients, with Voigt's notation. As previously, we consider larger images, i.e 24 000 px × 24 000 px. A 15 × 15 paving at the L 3 -scale is implemented. The scales considered are (L 1 , L 2 ) = (800 px, 1600 px). These sizes are less constrained than in flow calculations where percolation problems may appears for denser splitting. Figure 5.5 shows segmented images and obtained maps. Since no border around the images is accessible, the extend-local method is not applicable. Therefore, we consider SUBC type boundary conditions allowing a better characterization of the elastic properties within the framework of a purely local upscaling method at the L 1 -scale. Thus, we again find a different response depending on the nature of the matrix. The analysis of the structural mechanics highlights the role of the stiffness of the ECM on the therapeutic response of patients. It is possible that the structural stress can activate a better immune response.

Conclusion and discussion on the mechano-biology

In this chapter, we correlated equivalent mechanical properties obtained by the upscaling workflow to the cell density evaluated on histological sections. To this purpose, we considered histological sections showing a mixed response to treatment according to the cell density present in the sections. This dual mechano-biological approach allows to explore the role of the osseous ECM on the response to treatment by linking the cellular and microenvironment scales.

By considering different physical problems, it is possible to differentiate their potential role on the response to treatment by highlighting the maximal correlation coefficients between various phenomena. In addition, transport and elasticity can be studied separately.

The structural mechanics analysis highlights the role of ECM stiffness on the patients therapy response. We found a significant negative correlation for lacy-like osseous ECM. Possible scenarios include the fact that structural strain may activate a better immune response. Concerning convective transport, results might be counter-intuitive in 2D when only architecture patterns are observed. Indeed, if we consider osseous ECM as a potential barrier to treatment, lacy-like structures seems to percolate with difficulties whereas trabecular-like structure are percolating media and response to chemotherapy is better in lower percolation areas. This remark may be related to the 2D nature of the data and validations should be done in 3D. In addition, this partial conclusion must be completed by the local role of fluid shear and substrate stretching on cell response and in particular on the immune ones. The presence and reactive role of microvascularization may be also significant and is not yet considered in this work.

Chapter 6

Conclusion and perspective

Motivated by open questions about osteosarcoma evolution and response to treatments, a robust mechanical model applied to bone tumors was proposed in this thesis, and an in-house numerical software was developed and validated. Such an approach is innovative, and explores, for the first time, the correlations between ECM and cell populations in a mechanical framework developed from patients histological images. From the methodological point of view, the literature about the characterisation of equivalent mechanical properties, in highly heterogeneous porous media with a pore scale resolution, is scarce. This thesis puts forward new models and numerical developments which may be adapted for other applications in porous media research. The relevance of a deterministic sequential Grid-Block upscaling method, coupled with an extend-local method for the pore scale problems resolution has been shown. A complete numerical validation of the coupling of these upscaling methods is proposed for the first time incorporating the accuracy of clinical histological slides for different physical problems such as transport and elasticity.

In the first chapter, a non-exhaustive review of the current knowledge of osteosarcoma is done at different spatial scales. A specific attention is paid to the description of osteosarcoma micro-environement, a scale at which this primary bone tumor can be seen as a heterogeneous porous medium. Potential links between spatio-temporal evolution of the tumors and mechanical effects are described in this chapter. Objectives of the thesis are then introduced.

In the second chapter, a review of the existing methods to model transport and elasticity in porous media is carried out. A special attention is paid to methods which can model physical systems in highly heterogeneous porous media where no separation of scales is observed. From the literature exploration, and in agreement with the specifications of our problem, we chose a grid-block upscaling method to take into account the intratumoral heterogeneity complexity in our approach. This method is based on the main results of the theoretical deterministic homogenization which are mainly developed in the literature for idealized geometries. In a second step, the use of an extend-local method was necessary to reduce the bias on the boundary conditions chosen for the grid-block method. Finally, given the size of the images, a sequential method was required to solve the problem of memory and computational limits. The joint choice of these three methods drastically reduces the size and construction time of the meshes, makes it possible to process large images of patients follow-up on a on a standard PC in a reasonable time (minutes to few hours depending on the image size) and allows us to process highly heterogeneous porous media. The chapter ends with a description of the workflow used in the following of the manuscript.

In the third chapter, after the description of the transport model, we showed that the chosen upscaling process was consistent with the numerical and methodology parameters. The extendlocal method, on incompressible Stokes flow, is shown to be sufficient to reduce the bias on the permeability tensor components due to different BCs; allowing a reduction of the error committed in this BCs choice at the higher scale. In addition, it was shown that this bias reduction is preserved by the sequential approach. While high precision convergence can not be reached be-Table 6.1: Table summarizing the models used for sequential grid-block upscaling method for each of the physics studied in this thesis. Table 6.2: Table summarizing the equivalent parameters inequalities, as a function of boundary conditions, found in the chapters 3 and 4 of this thesis. In the transport framework (flow and diffusive), the relations are diagonal coefficients while in the elastic and poroelastic frameworks the relations are quadratic. cause of osteosarcoma geometry complexity, comparison between Direct Numerical Simulations performed at the pore scale for a domain at the L 3 -scale and sequential grid-block simulations for the same domain, showed a very good agreement between the two approaches. Finally, the whole upscaling procedure is applied to the case of diffusive transport in osteosarcoma showing similar results.

In the fourth chapter, the upscaling methodology was applied to structural mechanics. We first examined the linear elasticity with small deformation. The extend-local method effectively reduces the BCs bias, a fact that was highlighted for the first time. In addition, the main results of the grid-block literature about the role of boundary conditions on the elasticity study, are preserved by the sequential methods. To finish, an extension of the workflow to poroelasticity is made, using the main results of the previous developments, i.e. momentum transport and elasticity.

A summary of the models used for the sequential Grid-Block upscaling in chapter 3 and 4 is illustrated on table 6.1. One of the main results obtained from these methodology developments is reported on table 6.2. Indeed, from this thesis, we could classify by inequalities the estimated equivalent properties as a function of the boundary conditions used for the sequential grid-block implementation.

In a final chapter, correlations between the equivalent mechanical properties of the ECM and the cell population density were found. The results highlight a variability in response to chemotherapy depending on the lacy-like or trabecular-like structure of the neo-formed bone tissue. In lacy-like ECM tumoral regions, areas of good (respectively bad) response were correlated with low (respectively high) permeability regions and high (respectively low) stiffness.

An opposite result was found for tumor regions with trabecular-like osseous ECM. The intratumoral variability in response to treatment corresponds most probably to underlying changes in the cell genome, immune microenvironment or vasculature [START_REF] Wu | Immuno-genomic landscape of osteosarcoma[END_REF][START_REF] Liu | Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma[END_REF] for which ECM microarchitecture and mechanical properties may be a macroscopic marker. Indeed, the understanding of complex spatio-temporal coupling between osteoclasts [START_REF] Liu | Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma[END_REF], tumor cells, immune cells, angiogenesis and tumoral bone remodelling (osseous ECM) could benefit from quantitative mechanical approaches as developed in this thesis. For the available small cohort, it was shown that the proposed work-flow could be used to identify new mechano-biomarkers in heterogeneous tumors.

Because of the rarity of osteosarcoma (100-150 cases in France per year1 ) and of bad responders with spatially heterogeneous mixed response (≤ 20% patients on the Toulouse cohort), this study has been conducted on a limited size cohort as a proof of concept. The obvious extension of this work is to enlarge the cohort to confirm the findings of treatment response correlation to osseous ECM microstructure and equivalent parameters.

While the developed approach introduces numerous porous media concepts, the outputs, i.e. maps and correlation coefficients, of the in-house computational developments, are simple to manipulate. We hope that in a short term, this software can be used by biologists and clinicians to explore new questions. In particular, this methodology can be directly applied to immunohistology images, and changes in macrophages polarization due to mechanical effects could be explored at the tissue scale. Therefore, this approach could help in finding new targets for immunotherapy treatments of osteosarcoma. Numerical optimisation is ongoing to reach very short calculations time and increase the usage potential of the developed software.

In a longer term, additional physical problems will be implemented to explore further potential correlations between mechanics and response to treatment such as fully coupled poroelasticity or convection-diffusion mass transport with or without vascular network consideration. Some works addressed the convection-diffusion problem [START_REF] Efendiev | A generalized convection-diusion model for subgrid transport in porous media[END_REF] and indicated that adapted gridblock upscaling method must be developed for this problem as the length scales cannot be taken arbitrarily anymore. Moreover, acquisition of three dimensional cell-scale resolution data should be envisioned to solve the problem. The software is directly adaptable to 3D data and sequential upscaling will be very powerful to reduce the computational time, however acquisition of such data in mineralized tissues remains a challenge. A transition to 3D is even preferable for structural mechanics since the porosity associated with the osseous ECM phase will be interconnected and will not require any limiting assumptions.

Finally, the validation of the stationary model, which was intended above all to be explanatory, is a first step towards the implementation of more predictive spatio-temporal models which could take into account evolution equations of cell populations.

In conclusion, the developments of this thesis aims at integrating objective and quantifiable biomechanical parameters in the stratification of patients for a better therapeutic management. This work is at the crossroad between topics of high interest for cancer research such as the study of cell/ECM interaction, the role of mechanics in tumors, the quantification of heterogeneity in tumors. The methodology is generic and can be adapted to other types of physical problems, images or tumors.

Appendices

A Spectral radii behavior through the extend-local method in the flow case

In this section, we discuss the behavior of the spectral radii resulting form the extend-local process, shown in section 3.2.4.1 of the thesis (in the osteosarcoma case).

The fundamental difference between the impervious and open boundary conditions has a direct impact on the spectral radii as the extra-diagonal terms are taken into account in the diagonalisation process. For the impervious boundary conditions, their values become close quickly, i.e for small δ (fig. 1), as the diagonal and extra-diagonal terms have a similar behavior through the extend-local method. In opposition, computations with little bigger δ are needed to achieve an homogenization according to the three boundary condition (fig. 1) as the open boundary extra-diagonal terms are different since this condition allows transverse flows.

Figure 1: Behavior of the equivalent permeability spectral radius resulting from the extend-local method in function of δ. The study is conducted on multiple L 1 -subcell size: 500 px, 600 px, 700 px, 800 px, 900 px and 1000 px. 

B.2 Sequential upscaling method study

We now discuss the consistency of the 2-steps grid-block upscaling method applied to a Darcy equation at the L 1 -scale on 2-porosity geometry. The L 1 -splitting are ranging from 1 × 1 (i.e the 1-step method) to 5 × 5 and boundary condition are the wall W and the open boundaries PL ones (corresponding in fact to the parameter set in Chapter 4.2). In this upscaling process, when considering incompressible Darcy equation at the L 1 -scale, only incompressible Darcy type flow are found at the upper scales. Again, the BCs are chosen consistently at each scale. Without loss of generality, only one cell at the L 3 scale is considered and no symmetrization of the equivalent tensors is performed at each scale. The geometry is a 5000 px × 5000 px osteosarcoma binarised image (fig. 3a). We study the equivalent properties at the L 3 -scale such as matrices coefficients (fig. 3b), spectral radii (fig. 3c) and eigenvectors (fig. 3d). The values arising from the W and PL conditions are respectively given in red and yellow, in function of the L 1 -splitting.

Concerning diagonal coefficients, we recover the overestimation phenomenon for the PL condition and underestimation for the W condition (rather constant through splitting). The overall difference between the two BCs is due for the same reasons as stated in chapter 3 (impervious vs open boundaries). The extra-diagonal coefficient, show also the same behavior than previously found (rather erratic). The spectral radii behavior follows the same pattern as the diagonal coefficients one, with the same difference in magnitude order between impervious and open conditions. Finally, the principal directions are find consistent in respect to the two boundary condition and each splitting.

In conclusion, the 2-steps grid-block method is shown to be consistent even for the 2-porosity model in the momentum transport case. The non-dimensionalized permeability diagonal tensors and magnitudes resulting from the 1step and 2-step upscaling methods are presented in the table 3.

The non-dimensionalized permeability magnitude k == (L 1 /2) -2 max 1≤i,j≤2

K ij for the 1-step, 2step and 2-step extend-local methods shows that the latter method still reduces the biases of the BCs at the L 3 -scale. Indeed, the 2-step extend-local method induces on the magnitudes an error relative to the mean value of 18% when choosing δ = 100 px. In contrast, the overall heterogeneity on the magnitudes can reach 30% and 40% for the 1-step and local 2-step methods, respectively.

One show that a 2-steps grid-block upscaling method, coupled with an extend-local method at the L 1 -scale, reduce the bias on the diagonal term of the L 3 -scale equivalent permeability tensor, even in the osteosarcoma case (compared to a 1-step or 2-step local method).

(a) Permeability tensor components and magnitude obtained by the 1-step and the 2-steps upscaling scheme with either a local or a extend-local method for the first upscaling step. To do so, the study is based on a 16 000 px × 16 000 px osteosarcoma geometry, coming from a segmentation/binarization of a H&E histological section from a bad reponder patient (fig. 3.24).

As previously mentioned, we will consider only one cell at the L 3 -scale without any loss of generality. Here the periodic condition is discarded as the construction of the meshes on GMSH for such geometries reach the limit of the available computers.

We study the statistics of the equivalent permeability matrix coefficients arising from the first upscaling according to each L 1 -splitting and boundary conditions (fig. 5 and6).

By analyzing the frequency of value appearance (values of coefficients in abscissa and occurrences in ordinate), we notice the same behavior of the permeability tensor coefficients with the boundary conditions. The diagonal coefficients have approximately the same distribution through the three BCs and three splitting, i.e a normal distribution with a skweness to the left as a negative sign is not possible 3 . Moreover, a histogram configuration similar to normal distribution with no skweness appears for extra-diagonal terms (fig. 6b andc).

Concerning the effect of boundary condition, diagonal coefficients have the same behavior as in the small images case. There is always the phenomenon of overestimation for the open boundary condition, underestimation for the wall condition and quasi-constancy in the symmetrical case. The magnitudes of the differences between each BCs do not vanish even when considering larger images. Same goes for extra-diagonal terms but with smaller difference magnitude. 
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 12 Figure 1.2: "Evaluation of response to chemotherapy according to the Huvos and Rosen classification. (A) Good response: no residual viable tumor cells grade IV. (B) Poor response: persistence of viable tumor cells" grade I [7].

Figure 1 . 3 :

 13 Figure 1.3: Diagram of the generic biological cancer hallmarks. Illustration from [11].
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 15 Figure 1.5: "Cells respond to different microenvironmental stimulus in vivo. A schematic showing the different factors, (i) physical forces, (ii) shear flow, (iii) soluble factors, (iv) cell-cell interactions and (v) matrix rigity that trigger the cells to undergo changes in their behaviors and functions such as (a) apoptosis, (b) differentiation, (c) migration, (d) proliferation and (e) quiescence" [17].
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 17 Figure 1.7: Illustration of the principal phases find on osteosarcoma histological slide.

Figure 1 . 8 :

 18 Figure 1.8: Osteoclast central role in the microenvironment of osteosarcome.

Figure 1 . 10 :

 110 Figure 1.10: Illustration of a) external and b) internal stimuli on osteosarcoma.

Figure 2 . 1 :

 21 Figure 2.1: Schematic of the mechanical and biological study of osteosarcoma (dual approach) at the tissue scale through biological/mechanical assumptions and approximations in the application to the study of flow 1 Histological sections, stained with H&E, of vascularized osteosarcoma. This tumor can be seen as a highly heterogeneous porous medium with multiple porosity 2 Vasculature removal hypothesis 3 Dual approach: cell population and ECM distribution are splitted. Geometrical paradigm used for the study of different physics: transport, elasticity and poroelasticity.

Figure 2 . 2 :

 22 Figure 2.2: Schematic views of different possible porosity levels in porous media. a) A 1-porosity model with interconnected continuous pores of codimension 0. b) Fractured porous media model with discrete pores of codimension 1. c) 2-porosity model comprising the two previous types of porosity.

  2.5).

Figure 2 . 3 :

 23 Figure 2.3: Three different possible scales of observation for osteosarcoma. The first one corresponds to an X-ray of the bone affected by the pathology, the second one represents the tissue scale (showing different phases) and finally the last one shows the cellular scale.

Figure 2 . 4 :

 24 Figure 2.4: Pressure distributions obtained by DNS (on top) and pore network methods (bottom) for a flow going from left to right [56].

Figure 2 .

 2 Figure 2.6: a) Scale separation decoupling the spatial oscillations of the field variables into a mean part (slow variations) and a disturbance (rapid oscillations). b) Determination of an REV in respect to the porosity parameter (left).The region I corresponds to the micro-heterogeneity effect at the characteristic l-scale, the region II where an REV defined as the property is seen as homogeneous (quasi-constant) and the region III where the medium can be heterogeneous again at the characteristic L-scale. In the porosity gradient case (right), a REV cannot be defined as the porosity evolves continuously in respect to the scale. Illustration from[START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF].

Figure 2 . 7 :

 27 Figure 2.7: Deterministic periodic homogenisation by asymptotic expansion of an elliptic equation ∇ • (∇c) = 1 with a uniform Dirichlet boundary condition (equal to 1) on a unitary packed bed formed by square obstacles. a) DNS concentration field amplitude (FEniCS R ). b) Homogenized concentration field amplitude (FEniCS R ). c) Plot line comparison of the two fields for x = 0.5.

Figure 2 . 8 :

 28 Figure 2.8: Historical determination of the incompressible Darcy flow equation from the incompressible Stokes flow at the pore scale by the Volume Averaging method.In those equations u is the velocity and p the pressure while κ ef f is the effective permeability. Other notations are explicited in[START_REF] Whitaker | Flow in porous media i: A theoretical derivation of darcy's law[END_REF].
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 29 Figure 2.9: An extension AE to unitary porosity gradient geometry on a arrangement of discs following [78]. An elliptic equation with coefficient equal to 1 and negative unitary source term is considered, i.e ∇.(∇c) = -1. Boundary condition are given by c = 1 on external boundary, ∂ n c = 0 on internal boundary. a) DNS concentration field amplitude (FEniCS). b) Homogenized concentration field amplitude (FEniCS). c) Plot line comparison of the two fields for x = 0.2.
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 210 Figure 2.10: Comparison of the AE and VA extension to porosity gradient paradigm on a arrangement of discs for an elliptical equation. a) Effective coefficient A * evolution as a function of the diameter Φ(x) of the scaled obstacles for the EA extension (FEniCS). b) Effective coefficient A * evolution as a function of the diameter Φ(x) of the scaled obstacles for the VA extension (FEniCS).

Figure 2 . 13 :

 213 Figure 2.13: Comparison of direct (1-step) and sequential (2-step) upscaling processes. A subsidiary scale is considered in the sequential framework accounting for the mesoscopic effects.

Figure 2 . 16 :

 216 Figure 2.16: Segmentation of H&E histological slide. a) A KNN algorithm to label the phases that compose the osteosarcoma tissue. b) Binarization according to the labels given by the KNN process and deletion of small connected parts (Anthony Mancini thesis).

Figure 2 . 17 :

 217 Figure 2.17: Overall numerical worflow: from a binarized osteosarcoma image to an effective physic computation on FEniCS.

Figure 2 .

 2 Figure 2.18: A general mechanical study of osteosarcoma. (1) Osteosarcoma is removed surgically from patient. (2) A microscopic study of the tumor is carried out by the pathologist using osteosarcoma histological sections from the Biology Resources Center-CHU Toulouse and digitalized. (3) Image processing of the histological sections is done to obtain binary images of the bone and cell phases. (4) A sequential Grid-Block upscaling process is applied on bone phase image which decreases the cost of computations regarding CPU time: here with two iterations admitting three lengths L 1 , L 2 and L 3 . (5) Search of correlation between cell density and equivalent mechanical properties at the L 4 tumor scale. Potential identification of mechano-biomarkers.
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Figure 3 . 1 :

 31 Figure 3.1: Biological and mechanical approximation of osteosarcoma in the transport study.

Figure 3 .

 3 Figure 3.2: a) Sequential Grid-block upscaling scheme applied to the momentum transport where the L 1 -scale behavior is described by Stokes equation. A 2-steps grid-block upscaling method is considered resulting in a Darcy regime both at the L 2 and L 3 scales. b) Velocity magnitude of two representative Stokes flow calculations, obtained by imposing a horizontal and vertical pressure gradient, as performed to calculate L 2 -scale permeability.
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 33 Figure 3.3: Illustration of considered boundary conditions at the L 1 -scale. a) The wall condition. b) The symmetry condition. c) The open boundary condition. d) The periodic condition.

(3. 15 )Figure 3 . 4 :

 1534 Figure 3.4: Illustration of streamlines resulting from two boundary conditions with a 3D 1porosity model and considering an elliptical equation with a macro-scale gradient -e 3 . a) When the boundaries are impervious. b) When an open boundary condition is used [112].
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 35 Figure 3.5: Different process of periodization [102] a) by translation b) by symetrization.

Figure 3 . 6 :

 36 Figure 3.6: Illustration of meshes performed at each scale of the grid-block method for a 1porosity model a) Perforated, triangular and unstructured mesh at L 1 scale of Ω. b) Triangular and unstructured mesh following the discontinuities of Ω at L 2 scale.
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 37 Figure 3.7: Mesh convergence for the incompressible Stokes equations are performed on a 1600 px × 1600 px osteosarcoma image. Flow is imposed from left to right and a symmetry boundary condition is considered on top and bottom of the domain. a) The equivalent behavior is studied through the first velocity component of u L1 Ω in function of the number of elements considered in the mesh densification. b) The pore scale magnitude first velocity component is plotted over the line y = 800 px in function of the GMSH mesh characteristic size.
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 38 Figure 3.8: Effect of smoothing by dilatation/erosion with different radii on the osseous boundaries for a 2000 px × 2000 px image. The dilatation/erosion process is applied using a 2D morphological structuring element (strel), corresponding to a disc of radius 1px, 4px and 8px, successively.

Figure 3 . 9 :

 39 Figure 3.9: Effect of smoothing by dilatation/erosion with different radii by increasing window (dimension ranging from 500 px × 500 px to 2000 px × 2000 px. a)Geometry smoothing effect on diagonal (blue) and extra-diagonal (orange) equivalent permeability tensor components (left to right: 500 px × 500 px, 1000 px × 1000 px, 1500 px × 1500 px, 2000 px × 2000 px). b) Geometry smoothing effect on porosity (blue) and CPU time mesh construction (left to right: 500 px × 500 px, 1000 px × 1000 px, 1500 px × 1500 px, 2000 px × 2000 px). Matlab R built-in function, i.e. "imdilate" and "imerode" are used.

Figure 3 . 10 :

 310 Figure 3.10: Smoothing by median filter with different numbers of pixels on a 2000 px × 2000 px image: mechanical and topological effect. a) Binary image. b) Equivalent permeability coefficients evolution as a function of the median filter radius. b) Porosity and CPU user time evolution in function of the median filter radius. Software ImageJ R is used.
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 314 Figure 3.14: Application of the extend-local method on two geometries with different topological characteristics considering a local cell (green) and continuously increasing extend region a) 2000 px × 2000 px periodic geometry. b) 2500 px × 2500 px osteosarcoma binary image.

Figure 3 . 15 :

 315 Figure 3.15: Application of the extend-local method to PM2, a periodic array of discs, and to a 400 px × 400 px local cell with the four BCs: wall, symmetry, linear and periodic. a) The periodic geometry. b) Permeability K and porosity values as functions of the extend region size δ.

Figure 3 . 17 :

 317 Figure3.17: Behavior of the equivalent permeability extra-diagonal coefficient K 21 resulting from the extend-local method in function of δ. The study is conducted on multiple L 1 -subcell size: 500 px, 600 px, 700 px, 800 px, 900 px and 1000 px.

Figure 3 . 18 :

 318 Figure 3.18: Effect of the open boundary condition, on a flow driven from left to right and on a non-percolating geometry, allowing transverse flows.

Figure 3 . 20 :

 320 Figure 3.20: Equivalent permeability tensor at the L 3 -scale, through the sequential method, where a symmetric and wall BCs are considered at L 1 and L 2 scales, for 3 different splittings (with their corresponding full time resolution).

Figure 3 . 21 :

 321 Figure 3.21: Application of the 2-step grid-block method to PM1, a periodic disc array according to the four BCs: wall, symmetry, linear and periodic a) The periodic geometry b) L 1 splitting equal to 2 × 2. c) Resulting L 3 -scale equivalent permeabilities values obtained by the 1-step and the 2-steps methods (through a local or extend-local intermediary L 1 -L 2 upscaling) in function of the four same boundary conditions.

Figure 3 . 22 :

 322 Figure 3.22: The sequential process is applied to the second osteosarcoma image with four different BCs through denser L 1 -splitting. a) Binary image of osteosarcoma. b) Equivalent permeability coefficient response, at the L 3 -scale, to the sequential process c) Spectral radii (highest eigenvalue) behavior, at the L 3 -scale, to the sequential process.

Figure 3 . 23 :

 323 Figure 3.23: Principal direction, accounting for the non orientated flow direction, overall behavior through the sequential process (in respect to boundary condition and L 1 -splittings).Orthonormal cartesian frame (O, i, j) is added in blue.
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 324325 Figure 3.24: Osteosarcoma binary image of size 16 000 px × 16 000 px.

Figure 3 . 26 :

 326 Figure 3.26: Biological and mechanical approximation of osteosarcoma in the diffusive transport case.

  At the pore scale L 1 , an elliptic equation is considered representing the diffusion equation of a generic passive tracer. The concentration is assumed to follow a Fick's law and the conservation equations only on Ω f (where Ω = Ω f ∪ Ω s ) and are expressed by equation (3.22) where J is the diffusive flux, c the specie concentration and D the diffusion tensor. At this scale, boundary conditions on ∂ ext Ω can be either impervious or open boundary as expressed by equation (3.23) and(3.24), respectively (they are essentially the same than in the Darcy model). An impervious (wall) boundary condition is considered on

Figure 3 . 27 :

 327 Figure 3.27: Mesh convergence for the diffusion problem on osteosarcoma a) Mesh effect on equivalent properties through the averaging of the diffusive flux first component. b) Mesh effect on pore scale variable through flux magnitude profiles over a line y = 800 px.

Figure 3 . 28 :

 328 Figure 3.28: Effect of dilation/erosion smoothing on the equivalent tensor diagonal coefficient D 11 for three 1500 px × 1500 px images.

Figure 3 . 29 :

 329 Figure 3.29: Comparison between semi-variable and constant meshes for the extend-local method applied to pure diffusion. Resulting equivalent diffusion tensor coefficients D 11 are plotted (blue) in function of the buffer region size δ for the two types of meshed. Porosity is illustrated in orange.

Figure 3 .

 3 Figure 3.30: Extend-local process applied to periodic geometry with a 400 px × 400 px local L 1 -subcell together with buffer region δ ranging from 0 px to 400 px with a 10 px step. a) Periodic geometry. b) Equivalent scalar diffusion coefficient for three boundary conditions (wall, open boundaries and periodic ones) in function of the δ size together with the overall porosity variation).

Figure 3 . 31 :

 331 Figure 3.31: The extend-local process is applied to heterogeneous porous media with three different BCs (wall and open boundaries) through increasing buffer region size δ. a) Osteosarcoma binary image. b) Equivalent diffusion coefficient response, at the L 2 -scale, to the extend-local process. c) Spectral radii (highest eigenvalue) behavior, at the L 2 -scale, to the extend-local process.
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 332333 Figure 3.32: The sequential process is applied to 5000 px × 5000 px osteosarcoma image with four different BCs (wall, open boundaries and periodic ones) through different splitting. a) Osteosarcoma binary image. b) Equivalent diffusion coefficient response, at the L 3 -scale, to the sequential process for the three BCS and in function of the L 1 -splittings. c) Spectral radii behavior, at the L 3 -scale, to the sequential process for the three BCS and in function of the L 1 -splittings.
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Figure 4 . 1 :

 41 Figure 4.1: Structural mechanics in 2D osteosarcoma requires a change of geometrical paradigm: a 2-porosity model is considered in the rest of the chapter. The fibrous and osseous phases are explicitly taken into consideration. In the poroelasticity study, a Darcy flow will be considered in both phases, hence the terminology of 2-porosity model.

Figure 4 . 2 :

 42 Figure 4.2: Three KUBC elastic tests for the determination of the equivalent elastic tensor.

Figure 4 . 3 :

 43 Figure 4.3: Mesh convergence study according to the two phases for the linear elastic equation in respect to the GMSH characteristic element size a) Osteosarcoma binary image b) Equivalent unidirection Young's modulus E 11 resulting from multiple osseous ECM mesh characteristic size in function of the fibrous ECM GMSH characteristic size, using a SUBC boundary condition.c) Mesh effect on a pore scale field variable on the magnitude of the displacement over a line (y = 800 px) for multiple GMSH mesh characteristic size of the osseous ECM and a given fibrous ECM GMSH mesh characteristic size.

Figure 4 . 6 :

 46 Figure 4.6: Study of the elastic parameters contrast effect on the resulting equivalent properties, represented by the C 11 coefficient (in MPa), at the L 2 -scale according to the KUBC and SUBC boundary condition and in function of different osseous ECM Young's modulii (for a fix fibrous ECM modulus equal to 5). a) The local upscaling method is applied δ = 0 px. b) The extendlocal method is applied with δ = 100 px.

Figure 4 . 7 :

 47 Figure 4.7: The 2-step method is applied on a 5000 px × 5000 px osteosarcoma image for linear elasticity model. a) Osteosarcoma binary image. b) Behavior of the stiffness matrix diagonal coefficients (in MPa), at the L 3 -scale, according to the L 1 -splitting and for three different boundary conditions (KUBC, SUBC and periodic). c) Behavior of the stiffness matrix extra-diagonal coefficients (in MPa), at the L 3 -scale, according to the L 1 -splitting and for three different boundary conditions (KUBC, SUBC and periodic).
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 48 Figure 4.8: Comparison between DNS and 2-step computations on the 16 000 px × 16 000 px geometry (chapter 3 and figure 3.25) for the elastic model validation; with a set of elastic parameters such that (E OECM , E F ECM , ν OECM , ν F ECM ) = (500 MPa, 5 MPa, 0.3, 0.35). a) Illustration of the displacement magnitude field after solving (4.3) with a KUBC boundary condition problem like. b) Illustration of the displacement magnitude obtained after solving equation (4.14) obtained by the 2-step method with L 1 = 1000 px, L 2 = 2000 px and a KUBC conditions. c) Displacement magnitude profiles comparison over horizontal lines (y = 11 000 px on top and y = 4000 px at the bottom).
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 4 Figure 4.9: 2-porosity poroelasticity model accounting for the flow in the two phases.

Figure 4 . 10 :

 410 Figure 4.10: Poroelastic tests for the determination of the equivalent poroelastic tensor.

Figure 4 . 11 :

 411 Figure 4.11: The extend-local method is applied on an osteosarcoma geometry with the sets of elastic parameters (E OECM , E F ECM , ν OECM , ν F M EC ) = (500 MPa, 50 MPa; 0.3, 0.35) and (K OECM ; K F M EC ) = (0.2, 2000) in px 2 . a) Osteosarcoma geometry b) Behavior of the poroelastic matrix diagonal coefficients according to the buffer size and for four different boundary conditions (KUBC sym , KUBC pl , SUBC sym and SUBC pl ) c) Behavior of the poroelastic matrix extra-diagonal coefficients according to the buffer size and for four different boundary conditions (KUBC sym , KUBC pl , SUBC sym and SUBC pl ).

Figure 4 . 12 :

 412 Figure 4.12: The 2-steps method is applied on a 5000 px × 5000 px osteosarcoma geometry for a linear poroelasticity model. a) Osteosarcoma binary image. b) Behavior of the equivalent matrix diagonal coefficients, at the L 3 -scale, according to the L 1 -splitting and for four different boundary conditions (KUBC sym , KUBC pl , SUBC sym and SUBC pl ). c) Behavior of the equivalent poroelastic matrix extra-diagonal coefficients, at the L 3 -scale, according to the L 1 -splitting and for four different boundary conditions (KUBC sym , KUBC pl , SUBC sym and SUBC pl ).
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Figure 5 . 1 :

 51 Figure 5.1: Different types of osseous ECM formations illustrated from binarized images. a) Lacy-like structure. b) Trabecular-like structure.

Figure 5 . 2 :

 52 Figure 5.2: Comparison between permeability magnitude k = max K (L 1 /2) 2 (b) and cells density (mm -2 ) (c) maps obtained from histological sections of resected osteosarcomas (a). Patient 1 exhibits a trabecular-like ECM microstructure and Patient 2 a lacy-like ECM microstructure (see zooms of the sections). Permeability maps are obtained with the extend-local 2-steps upscaling method with symmetric boundary conditions. We choose L 3 = 8000 px, L 2 = 1600 px, L1 = 800 px, δ = 100 px. The fluid viscosity value is 0.001 Pa.s.

For patient 2

 2 with a lacy-like ECM formation, we obtain a negative correlation with r s = -0.619 and a p-value of 0.001, as shown in figure in 5.4. It means that an increase of tissue stiffness corresponds to a decrease in cell density. It is confirmed by distribution maps where the zone of higher stiffness (right side of the image) corresponds to the zone of low cell density. For Patient 3 with a trabecular-like ECM formation, we obtain a positive correlation with r s = 0.26 and a p-value of 0.020. Increased cell density is associated with higher stiffness.

Figure 5 . 4 :

 54 Figure 5.4: Comparison between the trace of equivalent stiffness tensor at the L 3 -scale (in 10 4 kPa) (b) and cells density (mm -2 ) (c) maps obtained from histological sections of resected osteosarcomas. Patient 2 exhibits a lacy-like ECM microstructure and Patient 3 a trabecularlike ECM microstructure. Stiffness maps are obtained with the extend-local 2-steps upscaling method with KUBC boundary conditions. We choose L 3 = 8000 px, L 2 = 1600 px, L1 = 800 px, δ = 100 px.

For Patient 3

 3 with a trabecular-like ECM formation, we obtain a positive correlation with r s = 0.508 and a p-value of 10 -16 (fig. 5.5 Patient 3). For Patient 4 with a lacy-like ECM formation, we obtain a negative correlation with r s = -0.291 and a p-value of 10 -6 (fig. 5.5 Patient 4). Higher cell density is associated with decreased tissue stiffness. Finally, signs of correlation coefficients are effectively consistent for larger images used in clinical routine.
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 55 Figure 5.5: Comparison between the trace of equivalent stiffness tensor at the L 3 -scale (in 10 4 kPa) and cells density (mm -2 ) maps obtained from 24 000 px × 24 000 px histological sections osteosarcomas. Patient 3 exhibits a trabecular-like ECM microstructure and Patient 4 a lacylike ECM microstructure. Stiffness maps are obtained with the extend-local 2-steps upscaling method with SUBC boundary conditions. We choose L 3 = 24 000 px, L 2 = 1600 px, L1 = 800 px, δ = 100 px.

Figure 2 :

 2 Figure 2: The extend-local method is applied on an osteosarcoma geometry when considering an incompressible Darcy type equation at the L 1 -scale. a) Osteosarcoma geometry. b) Behavior of the equivalent permeability matrix coefficients, at the L 2 -scale, in function of the buffer size and for two different boundary conditions (wall and open boundary).

Figure 3 :

 3 Figure 3: The 2-steps method is applied on a 5000 px × 5000 px osteosarcoma geometry in the incompressible Darcy equation case at the L 1 -scale. a) Osteosarcoma binary image. b) Behavior of the equivalent matrix coefficients, at the L 3 -scale, according to the L 1 -splitting and for two boundary conditions (wall and open boundaries). c) Behavior of the equivalent spectral radii matrix extra-diagonal coefficients, at the L 3 -scale, according to the L 1 -splitting and for two boundary conditions (wall and open boundaries). d) Behavior of the principal permeability, at the L 3 -scale, according to the L 1 -splitting and for two boundary conditions (wall and open boundaries).

Figure 4 :

 4 Figure 4: Geometrical consideration for the application of the 2-steps method. a) Binary image. b) The L 1 -splitting considered for the methods comparison.

Figure 5 :

 5 Figure 5: Histogram, for a 16 000 px×16 000 px and a 4×4, 8×8 and 16×16 L 1 -splittings, on the resulting diagonal coefficients of the equivalent permeability tensors at the L 2 -scale in respect to the three boundaries condition: wall, symmetry and open boundary condition (column 1, 2 and 3 respectively). Graphs show occurrences as a function of coefficient values. a) Statistics of the K 11 coefficient. b) Statistics of the K 22 coefficient.

Figure 6 :

 6 Figure 6: Histogram, for a 16 000 px × 16 000 px and a 4 × 4, 8 × 8 and 16 × 16 L 1 -splittings, on the resulting extra-diagonal coefficients of the equivalent permeability tensors at the L 2 -scale in respect to the three boundaries condition: wall, symmetry and open boundary condition (column 1, 2 and 3 respectively). Graphs show occurrences as a function of coefficient values.a) Statistics of the K 12 coefficient. b) Statistics of the K 21 coefficient.
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Table 1 .

 1 

		Grade Huvos et Rosen Chemotherapy	Necrotic cells %
	Bad response	Grade I	No effect	<10%
		Grade II	Low efficiency	10-90%
	Good response Grade III	Moderate efficace 91-99%
		Grade IV	Highly efficient	>99%

1: Grading of response to treatment (neoadjuvant chemotherapy) in patients with osteosarcoma according to Huvos and Rosen grades.
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Table 3 .

 3 and under.

	GMSH size Nb of elements
	6	213038
	8	145070
	10	114492
	12	97440
	14	87350
	16	80608
	18	75872
	20	72480
	22	69964
	24	68104
	26	66644
	28	65434
	30	64474

1: Correspondence between GMSH characteristic mesh size with the number of elements constituting the mesh for the convergence study of the Stokes discretization.

Table 4 .

 4 

			.1.
		KUBC (solid) SUBC (solid)
	Symmetry (fluid) KUBC sym	SUBC sym
	Linear (fluid)	KUBC pl	SUBC pl

1: Poroelastic boundary conditions arising from the permutation of the linear elastic and transport models.

  SU BCsym , DC SU BC pl ≤ DC KU BCsym , DC KU BC pl (4.31)

	DC f SU BCsym , DC f SU BC pl ≤ DC c SU BCsym , DC c SU BC pl
	≤ DC c SU BCsym , DC c SU BC pl ≤ DC f SU BCsym , DC f SU BC pl (4.32)

Table 3 :

 3 Permeability tensor components and magnitude obtained by the 1-step and the 2steps upscaling scheme with either a local or a extend-local method for the first upscaling step, considering the three different boundary conditions W, S and PL.

		1-step upscaling		2-steps upscaling (local)		2-steps upscaling (ext-local)
		W	S	PL	W	S	PL	W	S	PL
	k	2.72e -2 3.15e -2 4.45e -2	2.88e -2	3.33e -2 5.48e -2	2.95e-2	3.00e-2 3.89e-2
	K22 1.32e -2 1.61e -2 3.19e -2	2.29e -2 2.625e -2 5.19e -2	1.77e -2 1.82e -2 2.96e -2

D A

statistical study of a large 2D osteosarcoma samples

  Here, we investigate a possible statistical characterisation of osteosarcoma. Considering denser L 1 -grids ranging form 4 × 4 to 16 × 16 allows us to explore statistical properties at the L 2 -scale in respect to the splitting and boundary condition. This will only be used as an example but not as a general observation since two distinct osteosarcoma regions will have different statistical properties 2 .

A unit cell also corresponds to a space convolution of REV.

In case of the biological complexity of the osteoasarcoma, the local sub-block is immersed in its surrounding biological environment which allows tissue equivalent properties to be obtained with reliability.

Note that Meshio is necessary for a translation of the mesh files produced by GMSH in understandable files for FEniCS (a pruning is necessary for 2D mesh).

A simplifying biological assumption is made as no explicit distinction will be made between the fibrous ECM and the interstitial fluid: instead we consider a viscous fluid representative of a mixture between these two phases.

The choice of the pore scale physics (3.1) allows from a numerical point of view an original study of the chosen upscaling scheme.

The Darcy velocity is a volume flow per unit area and it is different from the effective velocity of fluid particles. Discrepancies can be exacerbated with low porosity media and/or heterogeneous architectures.

Boundary condition are considered at the L3-scale but, we emphasize, are not considered as effective but of the form of that described below.

In certain cases such as periodical conditions or linear pressure conditions, tensor symmetry can be proved at the upper scale, only if the tensor at the lower scale is also symmetric[START_REF] Farmer | Upscaling: A review[END_REF] 

The Onsager relations cannot prove the symmetry and do not say anything about the anisotropy of an equivalent property.

To constrain the problem one can also impose a pointwise constrain

In the periodic case (3.17), the pressure is unique up to a constant and a solution exist by the Fredholm alternative[START_REF] Ramm | A simple proof of the fredholm alternative and a characterization of the fredholm operators[END_REF] 

The degree of freedom of the RT and BDM spaces can only fix the normal component on the facets of the mesh. Thus a Dirichlet boundary condition is impossible by the very nature of the equation, hence the use of a single boundary condition (3.14) at higher scales.

Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79:1309 -1331, 09 2009.

MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc., 2010.

not exactly the true upper limit but the optimatized length as edges can be longer or shorter; for example, if the image size is given in pixel, a GMSH characteristic size of 6 will correspond roughly to 6 px.

in relation to the definition of GMSH lineloop which may not be closed for raw images.

It would also have been possible to consider a constant mesh only on the L1-cell edges and variable according to the distance to the boundary everywhere else. It's not the method chosen here.

We remark that there is a decrease in the extend-local periodic permeability case compared to the local one; this bias can be attenuated if one consider a double periodicity in the mesh, i.e a mesh where periodic elements are imposed not only on the extend computational domain boundaries but also on the target block.

The resulting permeabilities can be non-dimensionalized by the L1-scale value. In the same way, one can define the dimensionless magnitude of the tensor. This will essentially be used in the chapter 5.

where 1 × 1 correspond to the one-step method.

Assuming subsequent results on the principal flow direction, a perfect constancy through the splitting is difficult to achieve for extra-diagonal terms since the diagonal values increase or decrease according to it but the principal directions must remain as unchanged as possible, which always makes extra-diagonal terms vary.

the porous medium being somehow seen as a perforated porous medium, the diffusion in the solid phase Ωs at this scale is not considered.

Please note that for some δ values of this periodic geometry, a refinement of the mesh sizes is necessary for a good implementation of the periodicity on GMSH (otherwise leading to a false null value of the permeability)

The use of the symmetrical strain-rate tensor , instead of the non-symmetrical one, arise from mathematical property of the inner product of a symmetric tensor and an anti-symmetric one (see following weak formulation).

The Hill-Mandel condition is equivalent to1 |Ω| ∂Ω (Pσ Ω .n).(ũL 1 -Ω .x)ds = 0, where P and ũL 1 are the traction vector density on the boundary and the displacement vector, respectively[START_REF] Hazanov | Hill condition and overall properties of composites[END_REF].

we are looking for deformation preserving volume i.e the condition ∇.(ũ) = 0.

as it does not come from the theoretical homogenization such as AE or VA.

i.e in the sense that ∀x, x t Ax ≤ x t Bx

Parallel Programming with MPI does not seem to be trivial in elasticity through FEniCS. Indeed, a peak in RAM usage can make the calculation impossible (the above computations have been performed in serie on a computer with high memory available in the laboratory). An optimization of the use of MPI in our code seems necessary to adequately distribute the available cores.

The question of local equilibrium is more sensitive on unsteady problems such as weakly compressible Darcy flow or diffusion/convection, and may lead to specific difficulties with this type of geometry.

A two-field mixed finite element approach is also possible to simulate the weak formulation above but is not necessary as the material are not incompressible.

https://www.gustaveroussy.fr/fr/osteosarcome

Anecdotally, it is interesting to see if the effects of boundary conditions fade at the L3-scale when considering larger images.

In the diagonal term, some values appear negative but are in fact close to the numerical zero (of order 10 -14 ).

Remerciements

B 2-steps method on Darcy type flow (2-porosity model)

In this section, we give additional information to the chapters 3 and 4. We study the two upscaling methodologies proposed in this manuscript namely the extend-local method and 2-steps grid-block process (see section 2.4) for a pore scale physical system comprising the 2-porosity osteosarcoma geometric paradigm (see chapter 4) and a Darcy type equation (momentum transport). We recall that the extend-local method considers a computational domain larger than the one to be upscaled with adding a neighboring region on which boundary conditions will be imposed. Also, the 2-step process corresponds to two successive grid-block upscaling. To begin, we discuss the nature of the convergence of the extend-local approach for an incompressible Darcy equations on a 2-porosity osteosarcoma geometry, using two different fluid boundary conditions found in chapters 3 and 4, namely the wall (3.14) and open boundary condition (3.15). In a second part, we show that the 2-steps grid-block method is a consistent mechanistic approach for the above mentioned physical system in respect to its intrinsic parameters.

The hypothesis on the nature of the geometry and physic at each scale are: a) at the L 1 -scale, an incompressible Darcy equation is considered with constant scalar permeability on each of the two phases of the geometry (translating an assumption of isotropy of these two phases) b) at higher scales, namely L 2 and L 3 , the flow is again described by incompressible Darcy equations (3.4) and (3.10). Here, we exclude the use of periodical BC since not used in section 4.2. A continuity condition is considered for the field variables, at the L 1 -scale, on ∂ int Ω. We choose for the following studies a permeability couple (K OECM , K F ECM ) = (0.2, 2000).

B.1 Extend-local method study

We study the effects of the extend-local method on the permeability tensor in respect to the two boundary conditions and to the buffer zone size δ, at the L 1 -scale. Specifically, we consider the response of the equivalent permeability tensor coefficients.

A 1000 px × 1000 px osteosarcoma sample and neighboring region size 0 ≤ δ ≤ 500px are chosen to carried out the numerical study (see fig. 2a). We plot the behavior of the coefficients as a function of the size of the buffering region δ for two BCs: the wall condition W is plot in red and the and open boundary condition PL in yellow.

We notice a homogenisation in the values of the diagonal terms (see fig. 2b), according to each BCs, for sufficiently large δ (≥ 200 px). Note that results are sensitive to the buffering region size since no REV assumption is made. The resulting extra-diagonal coefficients values for the W and PL boundary conditions does not seem to be becoming more homogeneous for any δ size (see fig. 2b). This come from the same reasons given in the chapter 3 (i.e that transverse flow can be allowed or not). Consequently, for the 2-porosity model with a momentum transport physic, the extend-local method refines the permeability calculations in respect to the boundary conditions by smoothing out the diagonal coefficients.