
HAL Id: tel-04191571
https://theses.hal.science/tel-04191571

Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechano-biology of heterogeneous tissues using
upscaling methods : application to osteoarcoma

Adel Moreno

To cite this version:
Adel Moreno. Mechano-biology of heterogeneous tissues using upscaling methods : application to
osteoarcoma. Fluid Dynamics [physics.flu-dyn]. Institut National Polytechnique de Toulouse - INPT,
2022. English. �NNT : 2022INPT0015�. �tel-04191571�

https://theses.hal.science/tel-04191571
https://hal.archives-ouvertes.fr


En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Présentée et soutenue par :

Titre :

Rapporteurs :

Membres du jury :
MME ANNE GOMEZ-BROUCHET, CHU TOULOUSE, Présidente

MME AURÉLIE DUTOUR, CENTRE LEON BERARD LYON, Membre
MME NATACHA ENTZ-WERLE, UNIVERSITE STRASBOURG, Membre

MME PAULINE ASSEMAT, TOULOUSE INP, Membre
M. MICHEL QUINTARD, TOULOUSE INP, Membre
M. PASCAL SWIDER, TOULOUSE INP, Membre

M. ADEL MORENO

Dynamique des fluides

Mécano-biologie des tissus hétérogènes par changement d'échelles :
application à l'ostéosarcome

le mardi 1 mars 2022

Ecole doctorale :
Mécanique, Energétique, Génie civil, Procédés (MEGeP)

Unité de recherche :
 Institut de Mécanique des Fluides de Toulouse ( IMFT)

Directeurs de Thèse :
M. PASCAL SWIDER

MME PAULINE ASSEMAT

M. BENOÎT NOETINGER, IFPEN
MME PASCALE ROYER, Laboratoire de Mécanique et Génie Civil



2



Abstract

Osteosarcoma is a primary bone tumour that occurs mainly in adolescents and young adults.
The survival rate at 5 years is 70% and drops to 25% for patients with metastases or poor re-
sponders to treatment. New developments are needed to improve the specific management of
patients. These tumours show strong spatial heterogeneities in bone micro-architecture, in cell
populations distribution but also in the response to treatment. At the tissue scale and from
a biophysical point of view, osteosarcoma can be classified as a strongly heterogeneous porous
medium with mechanical stimuli potentially playing a significant role in its formation and evo-
lution.

We propose a consistent upscaling method to characterize the mechanical properties of such
a highly heterogenous porous media. It is based upon a sequential grid-block approach com-
bined to an extend-local method. The methodology is adapted to large size binarized images
and especially histological slices obtained in clinical routines. Flow and diffusive models are
explored as well as elastic and poroelastic behaviors. Piece-wise constant equivalent parameters
such as tissular permeabilities and stiffness coefficients are determined with reliability. Several
methodological results are emphasized in this thesis such as the identification of robust equiv-
alent parameters inequalities depending on the grid-block elements boundary conditions or the
evaluation of extend-local methods use in stiffness parameters calculations.

In a preliminary clinical study, relationships between tissular mechanical properties and cel-
lular populations are emerging. On the cohort of patients investigated, it is shown that the
response to treatment can be correlated to micro-environment architecture and equivalent tis-
sue properties. These results support the search for mechanobiological markers of chemotherapy
response for osteosarcoma patients.

i



ii ABSTRACT



Résumé

L’ostéosarcome est une tumeur osseuse primitive qui survient principalement chez les adoles-
cents et les jeunes adultes. Le taux de survie à 5 ans est de 70% et chute à 25% pour les patients
présentant des métastases ou ne répondant pas aux traitements. De nouveaux développements
sont nécessaires pour améliorer la prise en charge spécifique des patients. Ce type de tumeurs
présente de fortes hétérogénéités spatiales dans la micro-architecture osseuse, dans la distribu-
tion des populations cellulaires mais aussi dans la réponse au traitement. A l’échelle tissulaire et
du point de vue de la biophysique, l’ostéosarcome peut être considéré comme un milieu poreux
fortement hétérogène et nous supposons que l’ostéosarcome est sensible aux effets mécaniques
lors de sa formation et de son évolution.

Nous proposons une méthode de changement d’échelles pour caractériser les propriétés
mécaniques de tels milieux poreux. La méthode s’appuie sur une approche séquentielle ”grid-
block” combinée à une méthode ”extend-local”. La méthodologie est adaptée à des images
de grandes tailles et notamment aux images binaires de coupes histologiques d’ostéosarcomes
obtenues en routine clinique. Des modèles d’écoulement, de diffusion, d’élasticité et de poroélasticité
sont étudiés. Les paramètres équivalents, constants par morceaux, de type perméabilités tis-
sulaires et coefficients de raideurs tissulaires sont déterminés avec fiabilité. Plusieurs résultats
méthodologiques ont été obtenus tels que les inégalités portant sur les paramètres équivalents en
fonction des conditions aux limites imposées sur les éléments du ”grid-block” ou la caractérisation
du rôle des méthodes ”extend-local” dans le calcul des paramètres de raideur.

Dans une étude clinique préliminaire, des relations entre les propriétés mécaniques tissulaires
et les paramètres cellulaires sont données. Une cohorte réduite de patients montre que la réponse
au traitement peut être corrélée à l’architecture du micro-environnement et à ses propriétés
mécaniques. Ceci pourrait soutenir la recherche de marqueurs mécanobiologiques pour le suivi
de la réponse au traitement chez les patients atteints d’ostéosarcome.
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Framework and collaborations

This thesis work is at the interface with fundamental and life sciences, from mathematics to
public health through biology. The ambition of the innovative project in which this work falls is
to integrate fundamental and applied science such as mathematics, physics or numerical mod-
eling to known technical and clinical approaches. As the subject is highly multidisciplinary, the
relevance of the work lies in strong collaborations between specialists in the various disciplines
addressed. They will allow to bring adapted and relevant answers to the various problems raised
in this thesis.

This work was conducted within the group ”Milieux Poreux et Biologiques” (MPB) of the
Institute of Fluid Mechanics of Toulouse (IMFT), an institute specialized in research on physical
and chemical phenomena present in fluid flows. The expertise of the group members, theoretical,
numerical or experimental, is mainly based on multi-physics couplings in heterogeneous media.

The thesis is supervised by P. Assémat (CR CNRS, IMFT & MPB) in the framework of
her CNRS research project about mechanobiology of osteosarcoma and P. Swider (PU, IMFT &
MPB), a specialist in mechanics with a particular interface with living systems, in particular in
bone tissue. M. Quintard (DR CNRS, IMFT & MPB), a specialist in porous media and upscaling
methods, is a co-supervisor. From a clinical point of view, we worked in collaboration with A.
Gomez-Brouchet (CHU Toulouse), anatomo-pathologist of osteosarcoma. This collaboration
brings in particular an expertise of clinician in the highly complex framework of the biology and
mechanics of osteosarcoma. Finally, the contribution of A. Mancini (IMFT & MPB) has allowed
to take into account the clinical biological material by Image-Processing methods (machine
learning algorithm).
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culièrement les rapporteurs pour leurs corrections qui ont servi à l’amélioration de ce manuscrit.
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This thesis propose a mechanobiological approach to explore new quantitative metrics
obtained from clinical histological images in the context of bone cancer study. Various questions
raised by biologists and clinician are explored. This introduction chapter presents an non ex-
haustive literature of the current understanding of osteosarcoma from a clinical, biological and
mechanical point of view. Problematics and objectives of the doctoral project are detailed in
the last section.

1.1 Osteosarcoma

1.1.1 Osteosarcoma: clinical aspects

Primary bone tumors include osteosarcomas, chondrosarcomas, Ewing sarcomas and other
types of rare tumors amongst which osteosarcomas are the most frequent [1]. The World Health
Organization defines osteosarcoma as a primary osseous malignant neoplasm composed of mes-
enchymal cells producing bone tissue, even in small amount. This bone tissue can be mineralised
(mineralised extra-cellular matrix ECM) along with immature bone tissue or non-mineralized
ECM (osteoid).
In the general population, the pathology occurrence of is 2-3/million/year. Its frequency varies
according to age and follows a bi-modal distribution [2] with two peaks found respectively in
adolescence and young adults (15-19 years) and in the elderly (> 60 years). Men are affected
1.4 times more than women [3].

The tumors occur most frequently in the metaphyses of long bones, such as the femur, tibia
or humerus but can also appear in other types of bones, such as the skull, jaw, ribs and pelvis.
Although the etiology of the disease is still poorly understood, some risk factors have been iden-
tified such as patient-specific factors (age, genetic diseases, pre-existing bone abnormalities) or
environmental factors such as exposure to ionizing radiation and alkaline agents [4].

Typical symptoms of osteosarcoma are local persistent bone pain at rest (especially at night)
followed by swelling and limitation of joint movement.
The initial assessment of a suspected tumor comprises a full history, physical examination, and
radiographs. Radiography allow a description of osseous changes but cannot always decide on
the malignancy of the tumor. In that case, a magnetic resonance imaging (MRI) of the whole
bone and its neighboring joints, to not miss skip lesions, has to be conducted. Finally, a biopsy
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2 CHAPTER 1. INTRODUCTION

and its histology examination are needed for diagnosis confirmation. Beside their use for diag-
nostic, biopsies are used for research purpose [5] and could be a possible tool for personalised
patient management, provided relevant markers can be extracted.

The generic term ”osteosarcoma” includes subcategories of the pathology such as high-grade
forms including the conventional form which accounts for 90% of osteosarcomas, well differenti-
ated low-grade intramedullary, small cell and telangiectatic [6]. Within the conventional form,
about fifteen different forms are characterized according to the nature of the predominant ma-
trix created by the tumor cells (fig. 1.1). The main ones, representing 75% of the cases, are
osteoblastic type osteosarcomas (fig. 1.1a) with an essentially mineralized matrix consisting of
bone or osteoid. When the matrix is cartilaginous, it is called chondroblastic osteosarcoma (fig.
1.1c). Finally, conventional osteosarcoma is characterized as fibroblastic when fibroblastic cell
proliferation is observed or simply when the tumor could not be effectively classified in the two
previous categories (fig. 1.1b).

Figure 1.1: H&E stained histological section of the three conventional osteosarcoma categories
a) osteoblastic b) fibroblastic c) chondroblastic [6].

While neoadjuvant chemotherapy was a innovative and efficient treatment strategy in the
70-80s, no new therapy since then has been demonstrated to be effective and no robust prog-
nostic stratification exists. To date, the treatment still consists in a neoadjuvant chemotherapy
followed by tumor surgical removal through a partial or total resection of the affected bone and
a post-operation adjuvant chemotherapy. The MAP (doxorubicin/cisplatin/HD-MTX) regimen
is most frequently used as the basis of treatment in children and young adult patients. Osteosar-
coma is considered as a radioresistant tumor but recent studies suggest that a radiotherapy may
be useful in some cases where there was a no complete resection of the tumor [3].
Patients are categorized according to their response to treatment and more precisely to neo-
adjuvant chemotherapy according to the classification of Huvos and Rosen, in ”good responder”
or ”poor responder” as described in Table 1.1). The treatment response is assessed on histo-
logical slide (fig. 1.2). Grades are given according to the percentage of necrotic tumor cells
evaluated on the territories of the tumor. Grade I corresponds to less than 10%, Grade II to
a percentage between 10 and 90%, Grade III higher than 90%. Patients classified as Grade IV
correspond to good responders to chemotherapy with a percentage higher than 99%.

Grade Huvos et Rosen Chemotherapy Necrotic cells %
Bad response Grade I No effect <10%

Grade II Low efficiency 10-90%
Good response Grade III Moderate efficace 91-99%

Grade IV Highly efficient >99%

Table 1.1: Grading of response to treatment (neoadjuvant chemotherapy) in patients with os-
teosarcoma according to Huvos and Rosen grades.
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Figure 1.2: ”Evaluation of response to chemotherapy according to the Huvos and Rosen clas-
sification. (A) Good response: no residual viable tumor cells grade IV. (B) Poor response:
persistence of viable tumor cells” grade I [7].

Patients with localized disease have an overall survival rate of 70 to 75% at 5 years and
only 25% for patients with metastatic disease, chemo-resistance or relapsed disease [8]. This
variability in response to treatment, which can be related to patients [9] and to intratumoral
heterogeneity [10], requires new diagnostic and treatment strategies.

Figure 1.3: Diagram of the generic biological cancer hallmarks. Illustration from [11].

Cancers, including osteosarcoma, follow an evolution on spatial scales at different times of
their development with generic biological hallmarks [12] as shown in figure 1.3. Cancers modify
their environment in order to maintain a favorable terrain for the tumor to grow and spread.
These phenomena induce changes on the architecture and mechanics of the tumor. For example,
tumoral angiogenesis plays a crucial role in tumor pressure distribution and consequently in
tumoral interstitial flows which in return plays a role on metastasis dissemination [13]. Recently,
the inflammatory character (local or chronic) of the tumor has been highlighted and can lead
to (1) angiogenesis and (2) increasing the risk of metastasis by a mechanical degradation of
the extra-cellular matrix (ECM) [14]. Conversely, mechanical effects are shown to be related to
each of these biological effects in the literature. For example, the authors of [15] highlight links
between different biomechanical effects on the tumor microenvironment and cancer progression.
Indeed, increased stress within the tumor due to cell proliferation disrupts the epithelium and
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leads to a biological chain reaction (fig. 1.4).

Figure 1.4: ”Schematic of the biomechanical forces in the tumor microenvironment. As tumor
cells proliferate and disrupt the epithelium, they generate stresses as a result of tumor growth
(1). These stresses are transmitted to the surrounding extracellular matrix, generating radial
compressive forces and circumferential tensile forces (2). The matrix is also becoming stiffer and
more dense (3), and, at the invasive front, the matrix becomes reorganized, favoring tumor cell
invasion (4). As the fluid pressure in the tumor increases due to the increase in tumor-associated
angiogenesis, interstitial flow and lymphatic drainage increase (5). Tumor cells can use this flow
to generate autologous gradients (6). At the same time, interstitial flow induces myofibroblast
differentiation (7) and lymphatic chemokine secretion (8)” [15].

To account for the complexity of tumoral evolution, it seems crucial to point out that each of
these phenomena are interconnected and act on each other in an nested way at each scale, mix-
ing the purely biological and mechanical stages. Indeed, it is shown that the purely mechanical
effects can act in a direct way on the cells of the tumor in controlled in vitro experiments [16]
(fig. 1.5). Here, it is shown for instance that phenotype, secretome and cell differentiation can
be altered by mechanical effects. Those effects include shear stress flow, compression, stretching
and different types of interactions such as Cell-Cell and Cell-ECM interactions.

In the following section, these phenomena are described in more detail, focusing first on the
biology of osteosarcoma and then on the mechanics.
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Figure 1.5: ”Cells respond to different microenvironmental stimulus in vivo. A schematic show-
ing the different factors, (i) physical forces, (ii) shear flow, (iii) soluble factors, (iv) cell-cell
interactions and (v) matrix rigity that trigger the cells to undergo changes in their behaviors
and functions such as (a) apoptosis, (b) differentiation, (c) migration, (d) proliferation and (e)
quiescence” [17].

1.1.2 Osteosarcoma: biological aspects

The biological study of osteosarcoma is an extremely complex problem due to the multiscale
character of such tumors from a spatial and temporal point of view (fig. 1.6). Indeed, like in any
biological system, studies can be performed at different spatial scales. To cite few, pathologies
can be studied at the genomic scale, the proteins scale, the tissue scale or the organ scale. Each
of these scales is usually studied, in a more or less thorough way, independently and without
any quantitative coupling with the others. We have only recently observed the emergence of a
multi-modal multi-scale approaches but their application in clinical routine is still to be done.
It appears that, like the other main types of primary bone tumors, osteosarcoma constitute a
very heterogeneous group of tumors at each of above mentioned scales.

Only recent researches consider the question of heterogeneity at the genome scale (literature
review of [7]). Indeed, the inter- and intratumoral heterogeneity has been found to be due to a
large chromosomal instability [18] and an identification of many affected genes has been made.
Some mutations, more or less recurrent, such as on TP53, RB1, MDM2, ATRX and NF2, may
play a role in the initial development of osteosarcoma [19], resulting in copy defects. There are
also genetic deletions and genomic alterations characterized by sudden and severe fragmentation
of some or all chromosomes, followed by aberrant reassembly. In essence, the problem at this
scale seems to be too complicated to appreciate as a whole and remains an open problem to
date. New technologies, quite difficult to implement, will probably allow in the future to explore
this problem in an efficient way.
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Figure 1.6: Illustration of hierarchical biological system [20].

At the protein scale, it is determined that a deregulation of bone remodeling and resorption
takes place in osteosarcoma. These phenomena originate at the protein level, through a dis-
turbance of the RANKL/OPG balance (activating osteoclasts and promoting bone formation
respectively). Subsequently, growth factors, such as transforming growth factor-β (TGF-β), are
released. They have the direct effect of stimulating tumor growth and metastatic progression
[21].

At the macroscopic level, various imaging techniques help to characterize the heterogeneity
of osteosarcomas and their tissues. For example, a classification of osteosarcoma can be made
through their radiological representation according to the degree of mineralization (via osteocon-
densation). An MRI can be used to assess the amount of necrosis and peritumoral enhancement
which are independent predictors of tumor grade, and were associated with high grade tumors
[7]. Diffusion-weighted imaging (DWI-MRI) provides information on the vascular properties of
the tissue. DWI-MRI allows characterization of the microscopic structure of the tissue and can
differentiate benign and malignant lesions [22].

The microenvironment is the scale of interest in this thesis. Indeed, this scale is the diagnos-
tic one by the anatomo-pathologist and can account for both short-range interactions such as
cell/ECM, cell/cell interactions and long-range interactions via soluble species transport from
the mechanical point of view. The microenvironment is found in the literature to play a major
role in cancers and in osteosarcoma, progression, invasion, metastasis and resistance to treat-
ment of tumor cells [7]. At this scale, the complexity emanates directly from the geometry and
the different phases composing the biological object as well as the diversity of cell populations.
The biology of the mineralized, non-mineralized and fibrous extracellular matrix, the vessels,
the cells population (tumoral, immune and other) and the soluble species, i.e. protein, growth
factors and oxygen) intermingle and become even more complex with their respective couplings
as shown in figure 1.7a and b.
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Figure 1.7: Illustration of the principal phases find on osteosarcoma histological slide.

Each element of the microenvironment has been studied quite separately. In the following,
we focus on the macroscopic components of the microenvironment, namely the ECM, the vas-
cular network and the cell populations.

The osseous ECM composed of the mineralised and non mineralised neoformed bone phases
(fig. 1.7b) is of major interest in the study of osteosarcoma. Indeed, ECM is of interest in the
study of cancers in general [23]. Indeed, it plays a significant part in the in tumor microenviron-
ment spatio-temporal evolution as it can modulate cancer hallmarks [24] and can be a barrier
to treatments [25, 26]. Also, by influencing the cell populations via their communication or
adhesion, it contributes to the metastatic dissemination of osteosarcomatous cells [27].

Concerning the vascular network, angiogenesis is a major contributor to tumor growth and
metastatic dissemination through nutrient and oxygen delivery but also intra-/extravasation of
cancer cells [28]. Some works focus for instance on the effect of a reduced oxygen supply and
explore potential use of therapies targeting hypoxia pathways [29] or on metabolic pathways in
osteosarcoma development [30].

Regarding the cellular phase of the microenvironement, different cell populations are studied.
This is the case for example of the mesenchymal stem cells. They represent a key element in
the oncogenesis process of osteosarcoma since they are able to differentiate into osteoblasts or
chondroblasts. Because of their ambivalent role, they are at the origin of controversies, still
unresolved to this date, on the nature of the cell responsible for osteosarcoma. These cells have
different properties including the ability to indirectly influence the composition of the microen-
vironment and the ECM.

The immune microenvironment is also very heterogeneous since involving tumor-associated
macrophages, dendritic cells, myeloid cells, osteoclast and lymphocytes [31]. The roles of the im-
mune cells are directly modulated by the tumor cells (recruitment, proliferation, differentiation)
in order to set up a favorable environment for tumor growth via a breakdown of the immune
balance and a local immunosuppression [32]. Some cells such as CD8 seem to be suppressed on
bad prognostic and do not seem to have much effect on the response to treatment while CD163
is synonymous with good prognostic and seems to help chemotherapy [33].
Among these immune cells, the osteoclast are very specific immunitary cells (fig. 1.8). Indeed,
these are cells of the immune system but they also have an important role in bone remodeling
and are therefore, in a way, at the center of the problem. In its immunitary role, the osteoclast
population appears to be an indicator of poor prognosis and poor response to treatment. Yet,
a clinical trial trying to eradicate the osteoclast population was unsuccessful [10, 34]. The re-
sulting hypothesis is the potential role of bipotent cells, stained both with CD163 (marker of
macrophages) and CD68 (marker of osteoclasts) in the response to treatment [10].
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Figure 1.8: Osteoclast central role in the microenvironment of osteosarcome.

A deregulation of bone remodeling and resorption, expressed by osteoclast, is observed. The
cancer cells hack [7] the tumor microenvironment for increased bone resorption mediated by os-
teoclasts, allowing a favorable environment for their development via osteoblast activation and
release of growth factors trapped in the bone matrix. As a consequence, a vicious circle appears
between bone resorption and tumor cell proliferation, inducing a more rapid development of the
tumor (see fig. 1.9).

Figure 1.9: Osteosarcoma vicious circle between bone remodeling cells and tumor cells [21].

From the patient management perspective, many therapeutic trials are underway aiming at
targeting the above sub-problems but none of them are getting convincing results for now and
new metabolic pathways are under study [35]. Some therapeutic approach using anti-angiogenic
agents [28] have shown an increase in survival for relapsed patients. Other therapeutic avenues
have been explored through the role of osteoclasts in the development of osteosarcoma without
much success to date. Finally, the ECM is recently seen as a new therapeutic target, not yet
explored [36].

Thus, intra- and inter-tumor heterogeneity is still poorly understood by physicians and bi-
ologists, although some hypotheses have been raised. None of them is really agreed upon and
does not stand out in a flagrant way. This may be related to the fact that this research is done
on a targeted character of osteosarcoma microenvironment. An attempt was made in [7] to
characterize the relationship between the microenvironment characteristics (histology and im-
munohistology study) and tumor scales characteristics (MRI, scanner) but unfortunately it was
still difficult to identify obvious correlations between these two scales; most probably due to the
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bias of biopsy performed in osteolytic regions of the tumor. Therefore, a complex multi-scale
(spatial and temporal) model of the multi-phase problem could bring new insight in the study
of osteosarcoma.

1.1.3 Osteosarcoma: mechanical aspects

The study of the osteosarcoma mechanics may represent a viable complement to the existing
studies as it can be seen as a macroscopic trace of the complexity of biological events at cellular
and lower scales, such as metabolic or genetic changes.

The bone is a mechano-sensible organ [37] and its cycle is strongly influenced by mechan-
ical effects. Numerous studies have demonstrated an important role of biomechanical effects
in remodeling. Bones are constantly adapting to maintain their strength [38, 39], to grow [40]
and to heal [41]. The mechano transduction has been highlighted [42] as a direct link between
cellular behavior and mechanics in bone [43, 44]. The interstitial fluid seems to play a significant
role, along with other biophysical stimuli such as strain [45] and osmotic pressure shear [46],
in osteocyte mechano-sensitivity. More precisely, an interaction between osteoblasts and osteo-
clasts, responsible for bone formation and resorption, is stimulated under mechanical effects.
The piezo-electric effect of collagen has been recently studied and could limit the interstitial
flow and thus increase the mass transport and stiffness in the bone [47].

Figure 1.10: Illustration of a) external and b) internal stimuli on osteosarcoma.

Mechanical effects occur at large spatial scales such as stimulation caused by patient physical
activity (fig. 1.10a) and local scale within the tumor (fig. 1.10b). At the local scale, identified
mechanical effects include, for instance, compressive stresses in response to cells proliferation or
fluid transport changes related to tumor angiogenesis [48].
When a primary bone tumor is growing, it deregulates the homeostasis of the bone, inducing
a “vicious cycle” in the micro-environment [33] between osteoclasts, stromal cells, osteoblasts ,
immunological cell populations and cancer cells. This balance disruption at the cell population
spatial scale is thus exhibited at the tissue scale by the emergence of osteocondensation or oste-
olytic lesions in the affected area [10].
Primary bone tumors such as osteosarcoma, by the nature of the affected cells populations,
shows a high sensitivity to local and global mechanical effects [15], [49]). In addition treatment
efficiency in solid tumor depends on stresses and microarchitecture of the media[50].
Thus, a mechanical approach can represent a first step in the construction of an overall view
of the problem. Indeed, by this approach, it becomes possible to explore couplings between
complex multiphysics and biological process. To start, the ECM/cell interaction is of interest
since it has never been really studied in osteosarcoma or in any type of tumor from real data
at this scale. This biological-mechanical approach and the similtaneous study of two scales is
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highly motivated by results from past clinical trial mentioned, such as [33], as a link between
the two scales can be felt.

1.2 Thesis problematics and objectives

The study of osteosarcoma remains to this day a multi-scale problem of great complexity.
From its phenotype to the microarchitecture of its microenvironment, heterogeneities within
the pathology itself are observed, making the development of a generic follow-up protocol very
challenging. Heterogeneity in response to treatment is an open question, both from a biological
and clinical point of view.

As in all types of solid tumors, the coupling between mechanics and biology plays an impor-
tant role in the evolution of osteosarcoma. While numerous clinical questions on osteosarcoma
remain opened and could be explored by a mechanobiological approach, two problematics are
highlighted in this thesis: 1) Can interstitial flows due to high pressure at the osteosarcoma core
[51, 52] and osseous ECM spatial distribution be related to chemotherapy response heterogene-
ity ? In other words, can the neoformed bone tissue become a barrier to treatments which are
transported by interstitial flows? 2) Can elastic response of osteosarcoma to structural stimuli
play a role in chemotherapy response heterogeneity ? This question is raised due to the role of
mechanical loading on bone ECM structure and in particular through the osteoblast/osteoclast
balance which itself seems correlated with immune response [10].

To explore those questions, we hypothesize the existence of a link between the spatio-
temporal evolution of osteosarcoma and the mechanics of the tumor microenvironment. Osseous
ECM mechanical investigation can be seen as a first step in the global appreciation of the os-
teosarcoma multi-scale understanding. In particular, the examination of correlations between
cell population spatial distribution and ECM physical properties could bring new insight in the
understanding of the pathology, of the response to treatment heterogeneity and eventually in
the search of immuno-therapy targets.

In order to evaluate quantitatively those correlations, a biomechanical approach is adopted
using histological data. We target the emergence of new mechano-biomarkers by this strategy.
To achieve this objective, a coherent mechanical modelling of the microenvironment at the tissue
scale is needed. Because osteosarcoma at this scale is a porous media, mechanical modeling is
challenging. To our knowledge, there is no generic method available in the literature to inves-
tigate osteosarcoma (or other biological tissues) mechanical properties using non-idealised data
(images from patient follow-up).

The methodological aim of this thesis is to develop such mathematical and mechanistic con-
sistent tool. Because it is unknown which mechanism drives the evolution of osteosarcoma or
patient response to therapy, the strategy, initiated by clinical problematics, must relied on a
perpetual exchange between models and clinical context.

In the following chapter 2, mechanical models of osteosarcoma of increasing complexity are
presented, some definitions and the state of art of the modelling methodology in complex porous
media are reported. The chosen workflow is also detailed in this chapter. In chapter 3, the math-
ematical and numerical study of the transport phenomena in osteosarcoma, such as interstitial
flow or diffusion, at the tissue scale are discussed. A validation of the numerical methods is
detailled. The chapter 4 will be dedicated to the study of the structural mechanics and porome-
chanics of osteosarcoma. In the last part (chapter 5), a coherent mechanical/biological approach
is presented. Results exploring correlations between patients response to treatments and os-
teosarcoma mechanical properties are given for a small cohort. Finally, a general conclusion is
proposed followed by research perspectives.
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Model and methodology
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In this chapter, the mathematical model of osteosarcoma complex mechanics is de-
scribed. The model is built on the appropriate literature relative to porous media. A dedicated
methodology is developed to evaluate mechanical properties using histological exams from clini-
cal routine. This chapter also describes the overall study workflow from biological, mathematical
or numerical perspectives.

2.1 Osteosarcoma: a porous media point of view

In this section, osteosarcoma is described at the tissue level, i.e. from histological sections,
and we detail mechanical and biological assumptions made to solve the problem in the framework
of porous media. Then, generic methods to study some aspects of porous media mechanics are
presented. Finally, an upscaling method designed for osteosarcoma modelling is proposed.

2.1.1 Models of osteosarcoma at the tissue scale

To achieve a consistent mechanical characterization of the osteosarcoma, several assump-
tions must be made about the physical and geometrical character of the problem as shown in
figure 2.1. Indeed, it is challenging to model complex biology of tissues, so biological and physical
conjectures are necessary in order to target relevant parameters of the problem. Thus, choosing
a modeling approach comes down to making the relevant choices that approximate the origi-
nal problem while keeping the complexity adequate to answer the clinical or biological questions.

In a first step, we consider stationary mathematical problems. This restriction is trivially
motivated by the biological material available. Indeed, histological slides represent a 2D snap-
shot of the tumor at a given time.

11



12 CHAPTER 2. MODEL AND METHODOLOGY

The tumor shows apparent structure changes according to the observation scale featuring strong
spatial heterogeneities. As a consequence, a multiscale approach is required.

We will consider the tumor as a strongly heterogeneous porous medium exhibiting three
phases that are the fluid phase formed by blood, plasma and marrow, the solid phase formed
by the fibrous and osseous ECM which main components are non-mineralized and mineralized
tissues, and the cell population mainly constituted by osteoblasts, osteoclasts, and macrophages.
The present work focuses on the microenvironment study as detailed in chapter 1.

When observing histological slides, one can see profound changes in its microarchitecture
such as calcified and osteolytic regions and in the cell populations compared to healthy tissues.
Therefore, abnormal structural mechanics and flows in the tumor and its microenvironment are
expected. These variations will induce imbalances in the healthy tissues leading to tumor pro-
gression [15]. Thus, different physics and their coupling must be highlighted to obtain a coherent
characterization of the osteosarcoma.

To achieve this objective, a consistent and adaptive methodology is necessary to handle
the multiscale tissue microarchitecture and its physical behavior in order to propose a relevant
mechano-biological exploration of osteosarcoma.

Figure 2.1: Schematic of the mechanical and biological study of osteosarcoma (dual approach)
at the tissue scale through biological/mechanical assumptions and approximations in the appli-
cation to the study of flow 1© Histological sections, stained with H&E, of vascularized osteosar-
coma. This tumor can be seen as a highly heterogeneous porous medium with multiple porosity
2© Vasculature removal hypothesis 3© Dual approach: cell population and ECM distribution are
splitted. Geometrical paradigm used for the study of different physics: transport, elasticity and
poroelasticity.

Through this process, we consider, in the following, mechanical problems in porous media of
increasing complexity, all associated with clinical and biological problematics. As illustrated in
figure 2.1, the study of transport phenomena, i.e. interstitial fluid flow and species diffusion in
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tissues, explores the coupled role of surpressure within the tumor and osseous ECM structure on
the response to chemotherapy. In this study, the pink region in figure 2.1 is considered as a fluid
phase whereas the white region corresponds to fixed rigid obstacles. The fluid phase description
is a strong assumption as in reality, this phase is a fibrous ECM porous medium saturated by a
fluid.

Because of the dependence of bone remodelling to mechanical effects, elasticity study inves-
tigates the role of osseous ECM deformation on chemotherapy response. In this study both pink
and purple region are considered to be structures with different elastic properties. Furthermore,
poromechanics can bring answers to transport and elasticity problematics simultaneously. In
this exploration, both purple and pink regions become porous materials with various elastic and
permeability properties. In this model the nanoscopic lacunar-canalicular network in the purple
phase is considered while fibous ECM is also taken into consideration.

Transport in vasculature and surrounding tissue is of interest to study the role of angiogenesis
on tumor development and chemotherapy response however it corresponds to the highly complex
question of transport in a network (vasculature) combined to the transport in a surrounding
heterogeneous porous media (fibrous and bone phase). This question is out of the scope of this
thesis.

2.1.2 Definitions and modeling of porous media

In this section, the fundamental notions and formalism of porous media, useful for the good
understanding of this work, are introduced. The concept of porous medium allows the study of
a significant number of applications from energy and geosciences to climate issues. However, the
literature on porous media mechanical models in biological and clinical applications is scarce to
non-existent when dealing with non-idealised media.

A porous medium is a geometrical object consisting of a solid matrix or porous skeleton and
its complementary called pores. Constitutive materials of the porous skeleton can be contin-
uous and consolidated such as crystals or rocks or discrete and granular such as sand. Pores,
interconnected or not, are subcategorized according to their discrete or continuous nature as
described in figure 2.2. The distinction between the continuous and discrete terminologies is
made according to the pore codimension (0 or 1) and dedicated methods are usually used to
solve mechanical problems in each case. Osteosarcoma, as described in fig. 2.1, correspond to a
porous medium with continuous pore (codimension 0).

The medium porosity, describing the ratio between the pore void volume and the total vol-
ume of the object, ranges from 0 to 1. Furthermore, the porosity nature often drive model
classification such as one-porosity or double-porosity models and some are more complex are
multi-porosity models (fig. 2.2). The connectivity and the tortuosity, which describe the sinu-
osity of the microarchitecture, can be associated with the geometrical description of the porous
media but may also play a role in the physical behavior [53].
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Figure 2.2: Schematic views of different possible porosity levels in porous media. a) A 1-porosity
model with interconnected continuous pores of codimension 0. b) Fractured porous media model
with discrete pores of codimension 1. c) 2-porosity model comprising the two previous types of
porosity.

The solid matrix is generally completed by a fluid material, fully or partially saturating the
porous medium. To distinguish between constitutive materials, the keyword phase, i.e solid or
fluid, is generally proposed. From then on, different physics can be explored such as transport,
transfers or poromechanics.

A porous medium phase is spatially homogeneous, at a given scale, if it is similar in each
point of space. As a consequence, phase heterogeneity can be taken as the antinomic situation
where significant variations into the solid and fluid phases can be observed. Note that in the
porous media framework, homogeneity and heterogeneity will be given a slightly different defi-
nition (see below section 2.2.1).
The isotropic behavior reflects the invariance of physical responses according to the orientation
of architecture and physical boundary conditions. On the contrary, the anisotropy accounts for
the dependence on the system orientation.
Finally, a physical system is defined as a system comprising the geometry, i.e the porous medium,
and physics under study.

Another important point in the modelling of porous media, is the attention paid to the
different scales of observation [54]. To remind the problematic of the osteosarcoma, figure 2.3
illustrates the different scales which are considered by clinicians. The first one is the macroscopic
X-ray imaging used for clinical diagnosis, then the tissue scale observed on histological slices
used to confirm diagnosis, to guide surgery and to establish chemotherapy response. The cell
scale, which is not yet available in clinical routine, is currently explored in research for targeted
therapy. The thesis is built around two main scales from the pore scale (close to the cell scale)
to the tissue scales (see fig. 2.5).
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Figure 2.3: Three different possible scales of observation for osteosarcoma. The first one corre-
sponds to an X-ray of the bone affected by the pathology, the second one represents the tissue
scale (showing different phases) and finally the last one shows the cellular scale.

A significant number of theoretical and numerical methods are available to describe the phys-
ical response of porous media. Some focus on an exact description of the physical phenomena
while others are targeting approximations. Finally, there is not an unified approach but rather
methods adapted to the scientific objectives.

First, problems can be modeled at the pore scale. This approach allows to describe the
behavioral equations in time and space without any simplifying hypothesis provided the porous
medium architecture is well known. Numerically, they are solved by Direct Numerical Simula-
tion (DNS), i.e methods for which the whole range of spatial scales is resolved. Their resolution
induces limited errors inherent to the numerical algorithm. Pore-scale physical information are
accessible with a significant computational cost which is prohibitive in case of complex geome-
tries and/or large domains (illustration 2.4 top images).

Multiscale methods are based on the study of physics at different scales of observation. The
first step is to determine the characteristic scales of each physical phenomenon by ascendant and
descendant approaches. Once the relevant physical systems have been identified, the couplings
and relationships related to the different scales are modeled. Then, the global simulation such as
DNS is replaced by a series simulations associated each with different scales. Thus, this method
shows a reduction of numerical cost compared with DNS, but it induces a loss of information
and accuracy in return.

Pore Network models may be used when complex physics occurs at the pore scale such as
phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport ... (illustra-
tion 2.4 bottom images). This approach links single pore processes and permits understanding
and the prediction of porous media mechanical behaviors at a larger scale, usually however on
volumes smaller than sample size [55]. In this methods porous media geometry is simplified but
solid and fluid phases are still considered and the balance equations are also approximated (e.g.
Navier-Stokes to a pressure drop relationship for instance).



16 CHAPTER 2. MODEL AND METHODOLOGY

Figure 2.4: Pressure distributions obtained by DNS (on top) and pore network methods (bottom)
for a flow going from left to right [56].

The last method presented in this paragraph is upscaling method. The most general objective
of upscaling methods is to replace a physical system, including a spatially heterogeneous porous
medium and a physics with fast spatial variations, by a new physical system constituted by a
smoother domain and a physics with slower variations (fig. 2.5). The physical coefficients at
the macroscopic scale scale are calculated from the pore scale and are called the effective or
equivalent properties of the system. Thus, through the pore scale behavior of the system, it
is possible to obtain a model of behavior at a higher scale. This approach implies the use of
averaging of the pore-scale equations and leads to a loss of some details. It must be emphasized
that the goal to replace lower-scale models by upper-scale smoothed model cannot be always
achieved and that hybrid model coupling transport equations at different scales may be needed.
This important issue will not be considered in this work.

Figure 2.5: An upscaling method allows to substitute to a complex physical system a new
physical system much simpler to study.

Mechanical effects acting on the tumor are internal as well as external in nature as illustrated
in figure 1.10. Therefore, the link between pore and macroscopic scales has to be elucidated. In
this thesis, the DNS approach had to be discarded (except for methodology validation purposes)
because of its computational cost due to the complexity and heterogeneity of the osseous ECM
structure and the large dimension of histological slices where cell scale information (smaller
than pore scale) are clinically relevant. Pore network model would be difficult to implement
in osteosarcoma because of the complexity of the micro-architecture and the limited ability to
generate the network itself.
However, an upscaling method is well-adapted to study mechanical effects at the tumor scale or
at least at the scale of a whole histological section and their influence on cellular responses.
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2.2 State of the art on upscaling methods

This section provides a description of the main concepts associated with uspcaling methods.
The main methods of deterministic homogenization are then given. These theoretical methods
are essential since they provide a rigorous framework for the determination of physical systems
at the higher scale and their associated parameters. The homogenization methods are classified
according to the spectrum of the physical system they deal with and the restrictive assumptions
they consider.

2.2.1 Upscaling methods: concept and definitions

The upscaling process gives a representation of a physical system by describing the average
behavior and accounts for global effects by removing the fluctuating effects at the pore scale
(fig. 2.6a). These methods permits the modelling of complex systems including several physics
and couplings while involving various spatial scales with partial differential equations (PDEs)
simplification.
The first models were obtained empirically and experimentally such as the Darcy’s law (1856),
the Brinkman’s equations (1949), the dispersion equation (1979). These empirical transport
models often used some empirical correlations for their effective properties, such as the Kozeny-
Carman law (1927, 1937 and 1956). The analytical results of the latter can only be applied to
limited geometries such as packed bed of solid with a limited choice of physics such as flow and
diffusion.

To implement the upscaling of generic physical systems, some methods rely on rigorous
mathematical and physical tools to derive macroscopic physical systems from the pore scale
modelling. This is the case of homogenization methods. They were originally developed for el-
liptic equations in periodic media such as asymptotic expansion [57] or in the formal derivation
of laws that were empirical such as the Darcy’s law in volume averaging [58]. They have since
been extended to other steady or unsteady physics such as convection, flow and elasticity.

These methods rely on two fundamental elements which are the ”representativity” of the
physical system and an averaging operator. These two points allow a macroscopic modelling to
be proposed using the average of pore scale physical quantities [54].

Characterizing the physical system representativity is an essential step. The aim is to search
for a sub-volume of the entire domain to account for its macroscopic properties. Such a sub-
volume is called a representative elementary volume (REV) of the physical system. The REV is
dependent upon the intrinsic characteristics of the porous medium, i.e. porosity, but also upon
the physics involved.
A region of interest for which a macroscopic property is constant (resp. variable) through the pro-
cess of upscaling and also independent from boundary conditions is considered as homogeneous
(resp. heterogeneous), as illustrated in figure 2.6b. Therefore, the REV induces macroscopic
properties independent from the domain size as well as boundary conditions. Properties are
then defined as effective properties.
Some REV representation are intended to be deterministic, others statistical depending on the
choice of homogenization method. According to De Marsily [59], ”the size of the REV is de-
fined as a volume (1) sufficiently large to contain a great number of pores so as to allow us
to define a mean global property, while ensuring that the effects of the fluctuations from one
pore to another are negligible (2) sufficiently small so that the parameter variations from one
domain to the next may be approximated by continuous functions, in order that we may use
infinitesimal calculus”. Bear [60] defines a REV as a volume capable of capturing a quantity
representative of its heterogeneity. Drugan and Willis [61] define it as ”the smallest material
volume element of the composite for which the usual spatially constant (overall modulus) macro-
scopic constitutive representation is a sufficiently accurate model to represent mean constitutive
response”. Hill [62] describes it as a heterogeneous region that :”is entirely typical of the whole
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mixture on average”and ”contains a sufficient number of inclusions for the apparent properties
to be independent of the surface values of traction and displacement, so long as these values
are macroscopically uniform.” When using stochastic volume elements, the REV accounts the
variability in the microstructure over different statistical realisations [63].

The scale separation is then defined. As shown in figure 2.6a, mechanical phenomena are
analysed according to their oscillation frequency and the mathematical methodology is based
upon the uncoupling between pore scale and macroscopic fields. The REV concerns intrinsic
material properties such as porosity whereas the scale separation concerns fields of mechanical
responses such as fluid velocity and pressure, displacements, etc. From a purely physical point of
view, scale separation describes, in any continuous approach, the difference in spatial oscillations
of pore-scale properties with respect to the spatial variable of the macroscopic domain. It is
this consideration that is exploited in the upscaling methods. Indeed, this characteristic of
continuous systems can be analytically described and allows the physical and mathematical
simplification of the equations for a description of the physics through a macroscopic point of
view.
Thus, the presence of REV always underlies the existence of scale separation in the upscaling
sense. Generally, the ratio of the characteristic length at the pore scale and the characteristic
length at the macro scale is much lower than unity.

Figure 2.6: a) Scale separation decoupling the spatial oscillations of the field variables into a
mean part (slow variations) and a disturbance (rapid oscillations). b) Determination of an REV
in respect to the porosity parameter (left). The region I corresponds to the micro-heterogeneity
effect at the characteristic l-scale, the region II where an REV defined as the property is seen as
homogeneous (quasi-constant) and the region III where the medium can be heterogeneous again
at the characteristic L-scale. In the porosity gradient case (right), a REV cannot be defined as
the porosity evolves continuously in respect to the scale. Illustration from [64].
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In the context of this thesis, statistical methodology could have been envisaged. However,
stochastic models face difficulties to determine an homogeneous medium corresponding to the
stochastic microstructure. As a consequence it is often prohibitive in term of computational costs
[65, 66]. Moreover, it is often challenging to provide the elucidation of mechanisms involved. In
our work the aim is to explore the mechano-biological events involved into the pediatric tumor,
thus we consider deterministic methods in our strategy.

2.2.2 Deterministic homogenization methods

In this paragraph, a review of the main deterministic homogenization methods is proposed.
Methods based upon restrictive assumptions are described. Then, methods bypassing some of
these limitations are detailed.

The two main methods of deterministic homogenization build the bridge from the pore scale,
characterized by the length l, to the macroscopic scale, characterized by the length L. They
are described as the asymptotic expansion (AE) [57] and the volume averaging (VA) [58]. A
comparative study showing their similarity is proposed in [67]. A review of the main results of
the asymptotic expansion is proposed in [68, 69]. As an illustration, we consider, at the pore
scale, their respective historical physical system.

In the AE case, we consider the elliptic equation (2.1) on a periodic domain Ω (of boundary
∂Ω), where a periodic tensor A exhibit strong spatial oscillation. This can describe a diffusion
problem. {

−∇ · (A · ∇c) = f in Ω
c = 0 on ∂Ω (2.1)

Here c represents a concentration field and f is a source term.

The AE method put the original pore scale problem (2.1) into a sequence of similar prob-
lems (2.2) indexed by a parameter η. This η describes the spatial periodicity of each periodic
cell of the domain and the non-dimensional number characterizing the scale separation with x
and y = x

η being the macroscopic scale and the pore scale respectively. Thus, the real physical
problem is matched to a single parameter η.{

−∇ · (A(xη ) · ∇cη) = f in Ω
cη = 0 on ∂Ω (2.2)

Here cη correspond to solution of the problem associated with the η parameter.

The limit solution of the asymptotic problem is searched in the form of an integer series
(2.3), periodical in y, on a unit cell of the domain.

cη(x) =
∞∑
i=0

ηici(x,
x

η
) (2.3)

The effective or homogenized limit problem (2.4) is obtained when η tends formally to 0 and
gives the macroscopic behavior. The asymptotic solution is given by the first term of (2.3). The
effective property A?, which is constant, is obtained from solving the so-called cell problems
(encapsulating information from the pore scale).{

−∇x.(A? · ∇xc) = f in Ω
c = 0 on ∂Ω (2.4)

For a true physical problem corresponding to a finite parameter η, the solution found is an
asymptotic approximation. A noticeable advantage is that the approximate effective property
can be complemented by the error calculation.
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An illustrative example is proposed in figure 2.7. An elliptical equation 2.1 is solved on a
unitary geometry composed of a packed bed formed by square obstacles. Boundary conditions
are a given by a non-homogeneous Dirichlet condition at the external border (c = 1) and an
homogeneous Neumann condition at the fluid-solid interface (∂nc = 0). Finally, a unity source
term is imposed in the domain (f = 1).
Effective behavior through AE is calculated by using the same outer boundary condition and
source term. Comparison of the AE model with the DNS, used as control, is proposed (fig. 2.7a
and b). The concentration profile along a horizontal path is given in figure 2.7c and results are
in very good agreement.
To correct the behavior of the homogenized model (fig. 2.7c), one can consider the theory of
effective boundary conditions [70] which will not be discussed in this work.
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Figure 2.7: Deterministic periodic homogenisation by asymptotic expansion of an elliptic equa-
tion ∇ · (∇c) = 1 with a uniform Dirichlet boundary condition (equal to 1) on a unitary packed
bed formed by square obstacles. a) DNS concentration field amplitude (FEniCSR©). b) Homog-
enized concentration field amplitude (FEniCSR©). c) Plot line comparison of the two fields for
x = 0.5.

The VA method is based upon the direct spatial averaging of the pore scale physics. Here, it
will be illustrated on the derivation of the incompressible Darcy equation from a incompressible
Stokes equation which model the fluid flow in a porous skeleton.
Key points are the choice of the integration domain of governing equations and the averaging
operator [71]. The averaging process is achieved by using convolution according to the REV.
The separation of scales is associated with the hierarchy of physical problems and it is expressed
by equation (2.5) where the velocity field u can be decomposed in a sum of 〈u〉, the average,
and ũ the perturbation, respectively, as previously illustrated in figure 2.6a.

u = 〈u〉+ ũ (2.5)

This decomposition is inserted in the Stokes pore scale equation (fig. 2.8 left model). By
doing so, the average system equation is not closed. To solve this, approximation of the pertur-
bation is obtained on a unit cell of the REV, it is the closure problem (fig. 2.8 middle model).
This unit cell is a representative domain of the REV where the invariance of the solution of
the pore scale physical problem is verified with periodicity on cell frontiers1. Finally, governing
equations at the macroscopic scale (the Darcy equation fig. 2.8 right model) are found and
completed by determining the effective properties from the closure problem on the unit cell.

1A unit cell also corresponds to a space convolution of REV.
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Figure 2.8: Historical determination of the incompressible Darcy flow equation from the incom-
pressible Stokes flow at the pore scale by the Volume Averaging method. In those equations u
is the velocity and p the pressure while κeff is the effective permeability. Other notations are
explicited in [72].

The AE and VA methods are two methodologies designed to predict macroscopic fields and
physical properties. AE is based upon more initial mathematical aspects such as the scaling
equations while VA is built upon initial physical considerations. Indeed, the VA method does not
require a priori periodicity assumption since it is only used when solving the closure problem at
the unit cell by the BCs choice. On the contrary, the AE method needs this initial assumption.
Also, the scale separation with VA, i.e η = l

L is constant and strictly positive, in opposition
from the one arising in AE.
The VA method seems to be more flexible to deal with real porous media in the sense that it
admits a priori a larger spectrum of admissible geometry than the AE; where the scaling of the
pore scale problem into a succession of periodic unitary problems can be limiting. This last
argument is subject to debate in the scientific community and some authors supporting the AE
[73] indicate, that under certain assumptions, a random structure leads to the same macroscopic
description as a periodic structure. The necessary and sufficient hypotheses for the good conduct
of the classical AE method are in fact the spatial local stationarity (i.e. no porosity gradient)
and the scale separation.

Other homogenization methods have been proposed in the literature such as the mixture the-
ory [74], the effective medium theory [75] or the two-scale convergence method [76]. The Mixture
theory [74] or hybrid mixture theory [77] are phenomenological methods based upon restricted
forms of macroscopic governing equations. They are dedicated to multiphasic fluid flows. In the
effective medium theory [75], the unit cell is immersed into a medium corresponding to the ef-
fective behavior. The solution is multiple since associated with a significant number of available
approximations such as the Green’s function or the Maxwell-Garnett, Clausius-Mossotti and
Bruggeman formulas. The two-scale convergence method is based upon robust mathematical
developments [76]. It is similar to the AE method while explicitly stating the topologies (limit
meaning) and the functional distributional spaces. Those methods have been discarded in this
work as they are not well adapted to the problem of interest.

Some extensions have been proposed to overcome the restrictive assumption of strict peri-
odicity by introducing a gradient of porosity.
Developments in [78] and [79] are associated to AE. An example on the processing of porosity
gradients by AE is given in figure 2.9 where a DNS and the AE model simulation are compared.
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Here, the effective property A?(x) is not constant but depends on the diameter of the obstacle
considered. Indeed, multiple unit cell problem need to be solved as the diameter of the obstacle
is not constant; a constant effective property is associated with each unit cell.
For the VA method, the concept of evolving heterogeneities is proposed [80].
These extended methodologies (coming from AE or VA) give similar effective properties. Indeed,
when calculating the effective coefficients A? on each cell as a function of scaled obstacle diam-
eters, similar results are obtained with non-local stationary heterogeneity, as shown in figure
2.10.
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Figure 2.9: An extension AE to unitary porosity gradient geometry on a arrangement of discs
following [78]. An elliptic equation with coefficient equal to 1 and negative unitary source term
is considered, i.e ∇.(∇c) = −1. Boundary condition are given by c = 1 on external boundary,
∂nc = 0 on internal boundary. a) DNS concentration field amplitude (FEniCS). b) Homogenized
concentration field amplitude (FEniCS). c) Plot line comparison of the two fields for x = 0.2.

Figure 2.10: Comparison of the AE and VA extension to porosity gradient paradigm on a ar-
rangement of discs for an elliptical equation. a) Effective coefficient A∗ evolution as a function of
the diameter Φ(x) of the scaled obstacles for the EA extension (FEniCS). b) Effective coefficient
A∗ evolution as a function of the diameter Φ(x) of the scaled obstacles for the VA extension
(FEniCS).

Other approaches could avoid constraints of periodicity and REV such as the Σ-convergence
[81]. They are generally based on two-scale convergence but, unfortunately, are still distant
from potential physical applications because of their fundamental concept such as the so-called
homogenization algebras.

2.3 Upscaling and biological tissues

When biological tissues are considered, most of studies concern bone mechanics and are
solved using deterministic homogenization. Considered physics are elasticity, poroelasticity cou-
pled with diffusion [82], piezoelectricity [83]. Some studies account for specific geometry such
as double porosity [84] or porosity gradient [85]. Additional applications concern vascularized
tumors [86, 87, 88]. All methodologies consider cases of idealized microstructures.
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Unfortunately, when REV is missing, the scale separation is not verified and above methodologies
cannot be applied. This is precisely the case of osteosarcoma which is a strongly heterogeneous
medium at the tissue scale. Approaches previously described find redhibitory limitations and
dedicated strategies have to be implemented.

Indeed, in osteosarcoma, the presence of a REV is not verified. The heterogeneity of the
phase distributions (with respect to the osseous ECM) varies continuously by increasing window
method (fig. 2.6b). By plotting the evolution of the porosity for these increasing windows, we
find only very locally and for very specific areas of the osteosarcoma REV sizes of 800 px×800 px
(neo-formed bone). It is important to note that the determination of a local REV, which
is very rare and exceptional, does not allow for a systematic study of the osteosarcoma by
homogenization approach, since strong geometrical variations are observed on all the histological
sections. As a consequence, a single effective value cannot correctly reflect this heterogeneity.

2.4 Upscaling methods adapted to osteosarcoma study

This section describes the main methods of upscaling that are compatible with the process-
ing of clinical material, i.e. histology sections.
Upscaling methods applied to complex porous media have to deal with two main difficulties:
the heterogeneity of the physical responses as well as the anisotropic characteristics of variables
and parameters. Here, we discuss upscaling methods applicable to heterogeneous porous me-
dia. They are based on periodic homogenization of the physical models of interest. Macroscopic
properties are obtained by using the direct averaging of physical quantities such as fluid velocity,
pressure etc.
Some analytical methods are available such as bounds-based approaches [89], power-averaging
[90] and renormalization [91]. Unfortunately, those techniques are less generic compared to ho-
mogenization. For example, in the power-averaging case, only the diagonal equivalent property
can be predicted and anisotropy is lost. Nevertheless, an extension of the renormalization to
non-diagonal equivalent properties is proposed in [92] but this method is discarded in this thesis
since we are looking for a generic method allowing the treatment of multiple physics.

2.4.1 Grid-block methods

One of the most flexible and accurate upscaling methods, saving most of pore-scale informa-
tion, considers the numerical pore scale solutions over the whole domain of interest according to
different directions of space, which has the advantage of accounting for the complete anisotropy.
The upper scale model is then obtained by direct spatial averaging of pore scale physical quan-
tities, thus the macroscopic property is constant over the domain (left image on figure 2.11).
This technique allows to replace the heterogeneous behavior of domain by a so-called equiv-
alent behavior without any restrictive assumption about geometry and microarchitecture. In
the following, we consider the terminology equivalent properties, mostly used in fluid mechan-
ics when macroscopic properties are obtained without REV. Apparent properties terminology
is also found in the literature but is more dedicated to structural mechanics. The equivalent
properties are not intrinsic or effective and they may vary according to boundary conditions and
size of the calculation domain. Convergence is eventually achieved by increasing the domain size
and effective properties are found if a REV size is reached.

This approach has a high numerical cost and may induce a significant loss of microscopic
information if the domain size is large. Grid-Block upscaling methods [89] implement this
process in a sub-division of the macroscopic domain as described in figure 2.11 (right image).
The methodology consists of direct averaging of the pore scale physics over each sub-domain of
the grid. This technique of low numerical cost, gives piecewise constant equivalent macroscopic
properties at the scale of the whole domain of interest, thus saving heterogeneous and anisotropic
properties of the porous medium. The grid-block method is a kind of approximate numerical
upscaling method in the sense that without REV, it is necessary and essential to obtain a
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macroscopic description representative of the heterogeneity of the phase distribution at the pore
scale.

Figure 2.11: Grid-block upscaling process from pore-scale giving either global (whole geometry)
or block precision equivalent properties.

Piece-wise equivalent properties on the grid are dependent upon boundary conditions on
sub-blocks of the subdivision of the original domain. Boundary conditions are specified accord-
ing to the pore scale physical model to determine the equivalent property on each sub-block.

Sub-methods of averaging are developed according to the management of boundary condi-
tions. We can find the local method, the extend-local method and the quasi-global also called
local-global method.
The local method is a standard grid-block process. Each sub-domain of the grid is independent
from its neighbors and boundary conditions on sub-blocks are dictated by the explored physics
and they are fixed arbitrarily since they are inaccessible in natural conditions.
The influence of boundary conditions on the output measures, i.e equivalent properties and
averaged fields, can be attenuated using the extend-local procedure [93] as described in figure
2.12. Each local sub-domain is immersed into a close neighborhood of characteristic size δ, then
computation of pore scale physics is achieved in a region larger than the original sub-block (blue
region fig. 2.12a). The upscaling is then performed on the target local sub-block2 (yellow region
fig. 2.12b).

Figure 2.12: Comparison of purely local vs extend-local upscaling on a sub-block. a) In the local
averaging approach, the computational and upscaling domains merge. b) In the extend-local
averaging approach, the upscaling domain is a strict subset of the computational domain where
an extend neighboring of size δ is considered.

2In case of the biological complexity of the osteoasarcoma, the local sub-block is immersed in its surrounding
biological environment which allows tissue equivalent properties to be obtained with reliability.
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In the local-global method [94], an initial computation at the macroscopic scale can guide the
choice of sub-domain boundary conditions; only if the pore scale physics is not too complex.
The coarse simulation built on a coarse mesh, gives a first estimation of boundary conditions to
be applied in an iteration of the local or extend-local grid-block methods on each sub-block.
In the fluid flow case, an harmonic interpolation can be used. Then, the equivalent response of
a sub-block only depends on the interpolated boundary conditions. An iterative process can be
implemented to improve accuracy.

In the context of osteosarcoma, the local and extend-local methods seem well adapted because
of the complexity of the problem and the size of clinical data, i.e. digitalized histological slices.
Indeed, a local-global scheme requires an iteration of the grid-block process as well as global
simulations with a significant computational cost.

2.4.2 Sequential upscaling process

A porous medium generally shows a continuum of observation scales. However, in classical
upscaling methods only two scales are considered but subsidiaries scales may give relevant in-
formation. Indeed, these subsidiaries scales allow a better prediction of the physical properties
as described schematically on figure 2.13.

Figure 2.13: Comparison of direct (1-step) and sequential (2-step) upscaling processes. A sub-
sidiary scale is considered in the sequential framework accounting for the mesoscopic effects.

Therefore, it is possible to go from the pore scale to the macroscopic scale by considering
a cascade of upscaling through a succession of intermediary scales. Some works study this
sequential process from classical method of homogenization like volume averaging [95, 96], as
illustrated in figure 2.14, or by asymptotic expansion [97].
This method allows a better understanding and analysis of the object of study by providing
geometric or physical characteristics at different scales of observations, which is not the case
with a classical upscaling method.
Compared to a one-step grid-block upscaling scheme, the sequential grid-block method allows
to process numerically large geometries, as it limits drastically the required computer memory
by splitting finite element matrices [98], while providing fast prediction of equivalent properties.
Note that changes in the nature of the PDEs at each scale can occur and may also allow a
reduction in numerical costs.
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Figure 2.14: A sequential upscaling approach, for an arbitrary porous medium, using volume
averaging and two intermediary scale [96].

In the following, we consider a two-steps sequential method, as illustrated in figure 2.15,
with the addition of a single scale subsidiary compared to the classical grid-block. Thus, the
characterization of the object will be done at three scales: at the pore scale (which we will call
L1) and through mechanical descriptions equivalent to the L2 and L3 scales.

Figure 2.15: A 2-steps sequential upscaling approach by grid block, applied to osteosarcoma.

2.5 Workflow developed in the thesis

In this section, we develop the overall work flow of the thesis. First, we describe how the
clinical material was obtained. Then, the numerical methods are explained; from the image
processing of histological slides to the actual calculation of the equivalent properties. Finally, a
summary of the global workflow is proposed.

2.5.1 Clinical data post-processing

Histological slides were obtained at the IUCT by the team of Pr A. Gomez-Brouchet. They
correspond to a group of patients with high-grade conventional osteosarcoma and are obtained
on surgically removed tumors after a neoadjuvant chemotherapy. After a 4mm thickness cut-
ting of the tumor, it is decalcifed, fixed and placed into parrafin. Using a microtome (Thermo
scientific; HM 340 E), the paraffin blocks were cut with a thickness of 4µm. Sections are placed
on white slides (Thermo scientific; SuperFrost Plus) and stored at 4◦C.
A H&E staining is performed corresponding to a successive application of hematin (basic nuclear
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stain) and eosin (acid cytoplasmic stain). Then, the cells are marked according to their nuclei
(purple/black) and their cytoplasm (pink). The osseous ECM shows a gradient of color from
orange-pink to dark purple depending on the degree of calcification of the tissue. Slices are
scanned using a digital slide scanner (NanoZoomer-XR Hamamatsu).

Image Segmentation (fig. 2.16a) was performed, according to the work of Anthony Mancini
(PhD student at IMFT), using Matlab c© with a machine learning k-nearest neighbors algorithm
(KNN) to label different elements of the slice such as the bone phase, the cells and the interstitial
phase [99]. The KNN method is a supervised pattern recognition algorithm. A new observation
is classified according to the k nearest neighbors and its given label will be the majority label of
these k neighbors. This method is applied to label different elements from color distributions.
Two labels are of particular interest: the bone and the cell phase. From the bone label (miner-
alized and non-mineralized ECM), a binary image is extracted (fig. 2.16b).
A post-processing is performed in which we remove all connected parts that have less than 10
pixels (corresponding to noise) followed by a smoothing of segmented bone borders.
The cell phase is also binarized. Because of the size of the histological sections, segmentation is
performed on a mosaic of images. The number of cells on a sub-image corresponds to the number
of connected parts of pixels classified as ”cell”. If a cell is between two or more sub-images, it
will not be counted more than once since the cell will be associated with the block in which its
barycenter is located. Note that red blood cells are not counted as cells, but have their own
label. The cell density is obtained by dividing this number by the number of pixels that are
not labeled as ”bone”. As a result, the cell density is obtained only in the pores (unit given by
number of cells per ”fluid“ mm2), avoiding biased correlations. Thus, a sub-image with a large
bone phase does not necessarily correspond to a region with low cell density.

Figure 2.16: Segmentation of H&E histological slide. a) A KNN algorithm to label the phases
that compose the osteosarcoma tissue. b) Binarization according to the labels given by the KNN
process and deletion of small connected parts (Anthony Mancini thesis).

2.5.2 Numerical workflow

To represent the physical models numerically, different discretization methods are possible
and they can be separated into two main families according to their integrals or differentials
nature. When dealing with integral scheme, i.e. finite element (FEM) and finite volume (FVM)
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methods, complex geometries can be considered using irregular meshes and explicit error approx-
imations. For differential method, i.e. finite difference method, the error can also be minimized
by considering regular grids.

In this work, we decided to use integral scheme and the finite element method since it per-
mits to handle multi-physical analysis with mixed formulation and explore complex geometrical
architecture. The FEM provides an effective numerical resolution of PDEs. The discrete form
of the weak solutions, i.e. resulting from the distribution representation of the governing equa-
tions, is expected to give an approximation of the strong solution of the problem. The solution
is found in specific integration points of the mesh and then interpolated. The process conducts
to the resolution of a linear system in the form AU = B. Drawback can be find in the FEM
compared to the FVM such as the non-control of local fluxes but adaptation can be available.

Many FEM software are available, either free (FEniCS, FreeFem++) or commercial pack-
ages (ANSYS, NASTRAN, COMSOL, Abaqus). In the following, FEniCS [100] is chosen for
its adaptive and intuitive design. This tool is requiring an understanding of the mathematics
underlying FEM, but it permits to solve a large spectrum of PDEs and their couplings through
an intuitive writing of weak formulations. Components of FEniCS are also designed for parallel
processing.

To generate complex meshes and manage results post-processing, GMSH [101], an open-
source 3D mesh generator software, is used 3. Scripting language (C++, C, Pyhton etc) are
available.

Matlab is used to pre-condition binarized osteosarcoma histological slides 4. The overall
numerical workflow is shown in figure 2.17.

Figure 2.17: Overall numerical worflow: from a binarized osteosarcoma image to an effective
physic computation on FEniCS.

2.5.3 Summary of the workflow

In case of heterogeneous porous media, the classical homogenization methods are not di-
rectly applicable because the upper scale physics depends strongly on the microstructure of the
object. To overcome this limitation, the grid-block computational homogenization method is
used to determine the upper scale properties.
With the improvement of image processing techniques, it is possible to work at scales with
increasingly fine and complex microstructures. Obviously, such precision has a drawback: sim-
ulations on very large volumes involve a significant computation cost, sometimes inaccessible.
To solve this problem, we decide to add a two-step sequential functionality to the grid-block
method. It is characterized by a process iteration at a subsidiary scale. The sequential approach
reduces the cost in memory and computation time while providing an accurate prediction of
physical equivalent properties at different scales while preserving anisotropy, a point that will
validated in the following chapters of the thesis.

3Note that Meshio is necessary for a translation of the mesh files produced by GMSH in understandable files
for FEniCS (a pruning is necessary for 2D mesh).

4for the tracking of internal boundaries
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Figure 2.18: A general mechanical study of osteosarcoma. (1) Osteosarcoma is removed sur-
gically from patient. (2) A microscopic study of the tumor is carried out by the pathologist
using osteosarcoma histological sections from the Biology Resources Center-CHU Toulouse and
digitalized. (3) Image processing of the histological sections is done to obtain binary images
of the bone and cell phases. (4) A sequential Grid-Block upscaling process is applied on bone
phase image which decreases the cost of computations regarding CPU time: here with two
iterations admitting three lengths L1, L2 and L3. (5) Search of correlation between cell den-
sity and equivalent mechanical properties at the L4 tumor scale. Potential identification of
mechano-biomarkers.

In conclusion, our aim is to provide a consistent computational homogenization method to
estimate, from a deterministic point of view, the 2D equivalent physical properties of osteosar-
coma considered as a biological porous media strongly heterogeneous.
The grid-block method is implemented and an extend-local method is used to limit biases of
boundary conditions. A sequential approach is used to limit computational cost. Mechanical
equivalent parameters correlated to cellular densities obtained from the segmentation will allow
the response to chemotherapy to be explored by implementing a mechanobiology approach. The
overall methodology is described in figure 2.18.
Although some methodological bricks of this workflow are available in the literature their asso-
ciation, adaptation and further development is innovative. It is also for the first time applied
on biological tissue and patient follow-up images. This thesis work describes and validates, for
the first time to our knowledge, this workflow in a complete way.

The following chapter will focus on the development and validation of this workflow in the
case of transport phenomena.
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Transport in osteosarcoma
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The aim of this chapter is to describe flow and diffusive transport into the tumoral
tissue through a consistent mechanistic approach by upscaling. The extend-local and the 2-
steps grid-block methods are explored for flow and diffusive transport. An important part of the
study is the determination of the mathematical models at higher scales which can be different,
according to the deterministic homogenization theory, from those to be considered at the pore
scale models.
The first step concern the study of interstitial flow in osteosarcoma where we consider a Stokes
equation at the pore scale. This choice not only allows us to propose an original use of the
extend-local method but also to better take into account small scale phenomena at the large
scale. In a second part, an application of the same methodology to mass transport is considered.
In both cases the resolution of continuous equations by the finite element method is described.

3.1 Context and model

The grid-block method has been frequently used to study flow and diffusive transports
[102, 103] (see section 2.4.1). Initially, the extend-local methodology was implemented to solve
elliptic equations, such as diffusive transport or to some extend incompressible Darcy flow [104].
Concerning the sequential method (section 2.4.2), very few works have been done on it. Most
of the studies of the literature assume scale separation of the treated problem and the resulting
upscaled properties are effective [95, 97].
To our knowledge, the coupling between the extend-local method and the sequential method to
describe flow and mass transport in strongly heterogeneous media has never been studied. This
is the challenge dealt with in this chapter.

As described in chapter 2, several assumptions must be made about the geometric charac-
ter of the physical system to achieve a consistent mechanical characterization of flow and mass
transport in osteosarcoma. The chosen model, at the pore scale, is illustrated on figure 3.1.
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Here, the tumor is assumed to be avascular in order to focus on the interstitial flow. This as-
sumption is legitimized from a biological point of view by the high pressure in the core of the
tumor due to 1) cell proliferation in a confined environment and 2) vessel leakage.
The tumor tissue is considered as a 2D biphasic structure, i.e. a fluid phase and a solid phase
with interconnected pores. The solid phase is representing the osseous ECM. The fluid phase,
saturating the porous matrix, includes the fibrous ECM and the interstitial fluid 1. Essentially,
a 1-porosity model is chosen, i.e. there is no sub-porosity at a lower scale, and the geometries is
like a two-dimensional perforated media.
The presence of cell populations is not considered in this mechanistic approach and cell distri-
bution will be identified separately (see chapter 5).

Figure 3.1: Biological and mechanical approximation of osteosarcoma in the transport study.

3.2 Interstitial flow

In this section, we thoroughly present the mathematics of the chosen upscaling method
through its application to interstitial fluid flow in osteosarcoma. The concept of the upscaling
process outlined in this section will be used in the rest of the thesis. In a second section, we look at
the numerical parameters of the developed methodology and their effect on the upscaling scheme.
Finally, a comprehensive study of the upscaling method will be conducted according to its various
intrinsic parameters (grid-block dimensions and boundary condition choices for example). The
resulting equivalent permeability tensors behavior will be studied through their: diagonal terms
expressing the flow dependence to pressure gradient, extra-diagonal terms expressing the flow
dependence on a orthogonal direction to the pressure gradient (also representative of anisotropy),
spectral radius or main permeability (highest eigenvalue) associated with the strength of the
main flow and eigenvectors representing intrinsic principal directions of permeabilities and flow,
not oriented by the pressure difference.

3.2.1 Development of the grid-block method

At the pore scale, the model considered is a 1-porosity model, described in figure 3.1. In
the following, Ω and ∂Ω are representing domains and boundaries, respectively, such as (1)
Ω = Ωf ∪Ωs where Ωf and Ωs correspond respectively to the fluid and solid parts of the domain
(2) ∂Ω = ∂intΩ∪ ∂extΩ, where ∂intΩ and ∂extΩ are the internal, which correspond to fluid/solid
boundaries and external boundaries, ie boundaries on the L1 grid and external boundaries of
the studied domain.

A sequential grid-block method (section 2.4) in two steps, as described in figure 2.13, is
developed to predict the interstitial flow in 2D histological sections of osteosarcoma. In this
case, the overall 2-steps workflow is described in figure 3.2. Three scales L1, L2 and L3 are used,
ordered such as L1 < L2 < L3. Since no assumptions are made about scale separation or REV,
lengths are not characteristic and they can be chosen arbitrarily. Two successive upscalings are
performed, from the L1-scale to the L2-scale then from the L2-scale to the L3-scale.

1A simplifying biological assumption is made as no explicit distinction will be made between the fibrous ECM
and the interstitial fluid: instead we consider a viscous fluid representative of a mixture between these two phases.
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Figure 3.2: a) Sequential Grid-block upscaling scheme applied to the momentum transport where
the L1-scale behavior is described by Stokes equation. A 2-steps grid-block upscaling method
is considered resulting in a Darcy regime both at the L2 and L3 scales. b) Velocity magnitude
of two representative Stokes flow calculations, obtained by imposing a horizontal and vertical
pressure gradient, as performed to calculate L2-scale permeability.

At the pore scale L1, where the micro-architecture is strongly heterogeneous, the fluid flow is
characterized by predominant viscous effects corresponding to flow with a low Reynolds number.
It is assumed to be Newtonian and incompressible. Therefore, the flow driven by a pressure
gradient ∇pL1 is modeled by the governing equations in Ω which correspond to the following
Stokes problem 2: 

µ∇2uL1 −∇pL1 = −ρg, on Ωf (L1-scale)
∇.uL1 = 0, on Ωf

uL1 = 0, on ∂intΩ
Boundary conditions (BCs) on ∂extΩ

(3.1)

where µ and ρ are fluid viscosity and density, respectively, and uL1and g are fluid velocity and
gravity, respectively. In the following, the gravity term is not considered because of its supposed
negligible role on interstitial flow in osteosarcoma.

Thus, for a given model at the pore scale, the developed 2-steps grid block method differs by
the boundary conditions (BCs) applied on the edges of the domains, at L1-scale but also, as we
will see later, at L2-scale. A comparison of the results obtained by the totality of the boundary

2The choice of the pore scale physics (3.1) allows from a numerical point of view an original study of the chosen
upscaling scheme.
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conditions discussed below is conducted in section 3.2.4.2.

The first uspcaling, from the L1-scale to the L2-scale, is based upon the splitting of the
initial domain into Nx×Ny sub-domains, named Ai with i ∈ [[1, Nx×Ny]], having the same size
Dx×Dy = L2

1. L2-scale equivalent permeability tensors Ki are computed on each subdomain Ai.
In order to construct a complete tensor, i.e. relating the complete anisotropy of a subdomain, it
is necessary to consider two Stokes flows driven by the pressure gradient δP (pressure difference
between the inlet and outlet boundaries), one in each direction of space. Moreover, to determine
explicitly the extra-diagonal coefficients of the equivalent tensor, it is not possible to simply
consider an integration on the boundaries, i.e to consider total flow rates. Indeed, for a wall
condition, the extra-diagonal terms could not be deduced from this method. Instead, we rather
consider the averaged velocities (3.2), provided here on a sub-block named A for convenience.

〈uL1〉A = 1
|A|

∫
Af

uL1dS (3.2)

where |A| corresponds to the total surface area, also taking into account the obstacles areas As.
At this scale, Af represents in fact only the pore space where fluid flow is considered.

Then, the equivalent permeability tensor at the L2-scale, for a given subblock A is given
under the matrix equation (3.3) following [102].

(K)lk =
(
− µ〈uL1,k〉lA

L1
(δP )l

)
1≤l,k≤2

(3.3)

where superscripts l correspond to the flow test direction namely 1 for horizontal direction and 2
for vertical direction as illustrated on figure 3.2b, and subscripts k correspond to space variable
components.

From now, the flow is described at the intermediate scale L2, on a piecewise smoothed
geometry Ω̃, by the incompressible Darcy equation (3.4). The permeability tensor K(s) is
piecewise constant (s is the L2-space variable) and takes its values on the splitting among the
Ki. Velocity UL2 is the Darcy velocity or filtration rate 3 and pL2 is the pressure gradient at
the L2-scale. 

UL2 = −K(s)
µ

.∇pL2 , on Ω̃ (L2-scale)

∇.UL2 = 0, on Ω̃
BCs on ∂Ω̃

(3.4)

This result is motivated by the classical homogenization results [68] on a periodic geometry with
a single porosity and a consolidated solid matrix.

For the second upscaling, the smaller scale physical system is now made up of the Ω̃ geom-
etry and the flow is described by equations (3.4). Because of the elliptic nature of the problem
to be solved, it is acceptable to consider a splitting of Ω̃ coarser than the one operated on Ω
previously. It is made of Mx ×My subdomains Ãj overlapping the previous one with Nx ≥Mx

and Ny ≥ My. Then, a new set of permeability tensors K̃i, constant on Ãi, is obtained after
the upscaling of equation (3.4) and using a specific post-processing.

The post-processing to consider L3-scale full equivalent permeability tensor can only relies
on calculation of the averaged velocities and pressure gradients over the whole domain [105].
Indeed, some approach consider only integration over boundary but this does not permit the
calculation of anisotropic terms for all boundary conditions, especially the impervious one. In
the same way as in the first upscaling, at least two flow tests solving (3.4) are needed in the two
space directions to account for the complete anisotropy of the domain. For each test i ∈ [[1, 2]],

3The Darcy velocity is a volume flow per unit area and it is different from the effective velocity of fluid particles.
Discrepancies can be exacerbated with low porosity media and/or heterogeneous architectures.
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where 1 corresponds to the horizontal direction and 2 to the vertical direction, we consider for
a given piecewise smooth sub-block named Ã, the following averaging

〈UL2〉Ã = 1
|Ã|

∫
Ã

UL2 dS (3.5)

〈∇pL2〉Ã = 1
|Ã|

∫
Ã
∇pL2 dS (3.6)

Note that using the interstitial velocity may induce continuity problems at interfaces. By using
specific hypothesis in homogenization theories (such as VA) some terms depending upon pres-
sure gradients are of higher order and can be neglected. Then, the average flux vector can be
used.

As we solve two Darcy flow tests, we obtain a total of four equations with

µ〈UL2,s1〉
j

Ω̃ = −(K̃11〈∂s1pL2〉
j

Ω̃ + K̃12〈∂s2pL2〉
j

Ω̃) (3.7)

µ〈UL2,s2〉
j

Ω̃ = −(K̃21〈∂s1pL2〉
j

Ω̃ + K̃22〈∂s2pL2〉
j

Ω̃) (3.8)

where the superscript j correspond to a given test flow, the L2-space variable is noted s = (s1, s2)
and K̃ is the equivalent tensor at the L3-scale for the sub-block Ã.
Finally, the above equations can be synthesized in matrix form, expressed by (3.9).

〈∂s1pL2〉1Ã 〈∂s2pL2〉1Ã 0 0
0 0 〈∂s1pL2〉1Ã 〈∂s2pL2〉1Ã

〈∂s1pL2〉2Ã 〈∂s2pL2〉2Ã 0 0
0 0 〈∂s1pL2〉2Ã 〈∂s2pL2〉2Ã



K̃11
K̃12
K̃21
K̃22

 = −µ


〈UL2,s1〉1Ã
〈UL2,s2〉1Ã
〈UL2,s1〉2Ã
〈UL2,s2〉2Ã

 (3.9)

A new Darcy equation (3.10), on a new domain ˜̃Ω, is obtained with a piecewise constant
permeability tensor K̃(s̃), where s̃ is the L3-space variable, UL3 and ∇pL3 are the Darcy velocity
and pressure gradient at L3-scale, respectively. Here, the 2-step process is stopped for illustration
purposes, while the sequential approach could involved further steps 4.

UL3 = −K̃(s̃)
µ

.∇pL3 , on ˜̃Ω (L3-scale)

∇.UL3 = 0, on ˜̃Ω

BCs on ∂ ˜̃Ω

(3.10)

In appearance, the nature of the physical system (3.10) is similar to (3.4). On the other
hand, this new system, encapsulating information from lower scales, smooths the spatial oscilla-
tions of the field variables through a smoother domain and thus allows an important numerical
simplification.

The transition from equation (3.4) to equation (3.10) is not trivial in the sense that the
nature of the mathematical models are not necessarily identical, even in the case of elliptic
equations. We give here some elements allowing to justify the nature of the model chosen at
the L3-scale and more precisely of equation (3.10) in the osteosarcoma case. We distinguish
two main possible extensions of the traditional Darcy flow which are the Darcy-Brinkman and
Darcy-Forcheimer equations.
The Darcy-Forcheimer model [106] expresses the non-linear effects of the flow. Through the
addition of a correction term directly depending on the Reynolds number, the inertial effects of
the flow are taken into account. In osteosarcoma and more precisely in the fibrous ECM, this
Reynolds number is sufficiently low as mentioned above to not consider this correction.
The Darcy-Brikman equation, on the other hand, describes a flow in a medium with high poros-
ity (> 95%, [107]) and allows to consider interface phenomena between the fluid and pores

4Boundary condition are considered at the L3-scale but, we emphasize, are not considered as effective but of
the form of that described below.
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boundary (inducing a shear stress). This equation represents the transient regime between the
Darcy equations and a free viscous flow. In the case of osteosarcoma, the overall porosity is way
lower (important production of bone) and the geometry ˜̃Ω considered at L3-scale is piece-wise
smooth making the Darcy-Brikman model irrelevant.

As expressed previously, boundary conditions are required to solve the sets of equations (3.1)
and (3.4). They are imposed at L1-scale and L2-scale, respectively as shown in figure 3.2 for the
Stokes equation. We recall that the permeability tensors resulting from the grid-block process
are dependent on the boundary conditions without REV assumptions.

At the L1-scale, a no-slip condition of fluid is imposed on the internal boundaries ∂intΩ.
Three type of possible boundary conditions on the external border ∂extΩ are then described
by equations (3.11), (3.12) and (3.13), associated with wall, symmetry and open boundary
conditions, respectively.

• Wall condition (W)
This first condition is the most intuitive since it represents numerically the experimental
permeameter measurements [108]. We impose a pressure difference in the domain (inlet
and outlet). On the other edges, those parallel to the direction of the flow, a no-slip
condition is imposed, leading to an interdiction of transverse flow, as illustrated in figure
3.3a. 

pL1 = 1 and ∂nuL1 = 0, at the inlet
pL1 = 0 and ∂nuL1 = 0, at the outlet
uL1 = 0,
on external edges parallel to the pressure difference direction

(3.11)

• Symmetry condition (S)
This second condition is the symmetric condition and corresponds in some way to a relax-
ation of the wall condition [102]. Here, we still impose a pressure difference in the domain
to drive the flow but the no-slip condition of (3.11) is replaced by a condition of nullity of
the normal components, as illustrated in figure 3.3b. This weakening of the wall condition
still leads to a prohibition of transverse flow but allows some sliding in the direction of the
flow (tangent velocity may be non zero).

pL1 = 1 and ∂nuL1 = 0, at the inlet
pL1 = 0 and ∂nuL1 = 0, at the outlet
uL1 · n = 0 and [−pL1Id+ µ∇uL1 ] · n = 0,
on external edges parallel to the pressure difference direction

(3.12)

• Open boundary condition (PL)
This third condition allows the consideration of transverse flow and is a direct adaptation
to the Stokes regime of a boundary condition coming in fact from a Darcy model. It was
proposed by Bamberger [109, 102]. A pressure difference is still imposed in the inlet and
outlet but the other boundaries are no longer closed, as illustrated in figure 3.3c.

pL1 = 1 and ∂nuL1 = 0, at the inlet
pL1 = 0 and ∂nuL1 = 0, at the outlet

[−pL1Id+ µ∇uL1 ] · n = −(1− xL1

L1
) · n,

on external edges parallel to the pressure difference direction

(3.13)

where xL1 can be the vertical or horizontal spatial variable depending on the direction of
the pressure difference and L1 the sub-cell length, n the normal and Id the identity matrix.
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Note that boundary conditions at flow inlet and outlet consider velocity and pressure. Imposing
a pressure and a normal velocity favors flow preferential paths (experimentally verified phe-
nomenon). In opposition, imposing only a constant velocity would generates artificial pressure
gradients and can induce a high velocity in places with low permeability.

Figure 3.3: Illustration of considered boundary conditions at the L1-scale. a) The wall condition.
b) The symmetry condition. c) The open boundary condition. d) The periodic condition.

At the L2-scale, an impervious condition expressed by equation (3.14) on equation (3.4)
is matched to the wall and symmetry conditions at the L1-scale as a homogeneous Neumann
condition on the flux UL2 describes an impermeable wall in the Darcy framework. By extension
of the first BCs, we still refer to the L3-scale tensor calculated partially by the L1-scale wall
and symmetric conditions by the name wall and symmetric (even if the L2 scale condition is
associated with the impervious condition). The open boundary conditions also needs a new
consistent description at this scale and is expressed by equation (3.15).

• Impervious
This first condition of the Darcy model corresponds in fact to permeameters. We impose a
pressure difference in the inlet and outlet domain with both edges remaining impermeable.
This method kills transverse flows and was initially used to determine diagonal tensors
reflecting a limitation of the method to isotopic geometry. Since then, this method has
been adapted for the construction of total equivalent tensors, i.e. also considering extra-
diagonal terms which include the anisotropy [95, 110].

pL2 = 1, at the inlet
pL2 = 0, at the outlet
UL2 · n = 0,
on edges parallel to the pressure difference direction

(3.14)

• Open boundary
The second boundary condition to be imposed on the Darcy model is the open boundary
condition. This is exactly the Bamberger configuration. Again, pressure difference is im-
posed in inlet and outlet and a linear pressure gradient is imposed on the other boundaries,
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following a decrease along the pressure difference. Authors of [111] called this boundary
condition the ”Immersion” boundary conditions as the ”sample appears to be ”immersed”
in an infinite domain with a ”far field” hydraulic gradient imposed everywhere outside”
the sub-block. This is illustrated in figure 3.4b.

pL2 = 1, at the inlet
pL2 = 0, at the outlet

pL2 = 1− s

L2
,

on edges parallel to the pressure difference direction

(3.15)

Figure 3.4: Illustration of streamlines resulting from two boundary conditions with a 3D 1-
porosity model and considering an elliptical equation with a macro-scale gradient −e3. a) When
the boundaries are impervious. b) When an open boundary condition is used [112].

In further development and validation of our strategy, periodic geometrical patterns of porous
media are used as control to evaluate the accuracy of this sequential grid-block approach. In
that case, homogenization theory can be directly applied [113, 114, 115].
A periodic condition (see fig. 3.3d), is considered through the classical AE method by the
resolution of Stokes-like cells problem. At the L1-scale, they take the form on the unit cell
named Y : 

∇pi −∇2wi = ei in Yf
∇.wi = 0 in Yf
wi = 0 on ∂intY
y → wi, pi Y -periodic

(3.16)

where (ei)1≤i≤2 is the canonical basis of R2 driving the flow, wi the local periodic velocity and
pi the local periodic pressure.
At the L2-scale, one has to resolve Darcy like cell problems on Ỹ :{

−∇ · (K(y) · (ei +∇pi)) = 0 in Ỹ

y → pi Ỹ -periodic (3.17)

where pi(y) is the local periodic variation solved for an averaged gradient ei.

The periodic conditions considered here come from the theory of deterministic homogeniza-
tion. As the osteosarcoma does not present any REV or separation of scales, all the conditions
are obviously not met for a strict application of this method. We consider here, after periodiza-
tion of the object to artificially generate the periodicity, that each sub-block of the splitting
is representative of its own REV. These conditions are seen here as a boundary condition al-
lowing to obtain an equivalent (and not effective!) property of each sub-block of the section.
For heterogeneous and anisotropic porous media, the use of periodic condition at the pore scale
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L1 would affect the spatial statistical characteristics of the medium [102] since they require
a spatial periodization causing percolating and anisotropy problems while requesting a larger
computational domain (fig. 3.5). In the following, we use the symmetry periodization method,
illustrated in figure 3.5b, as it has the advantage of not causing artificial percolation problems.

Figure 3.5: Different process of periodization [102] a) by translation b) by symetrization.

Finally, all boundary conditions will be applied consistently across both upscalings in the
sense that no crossover between BCs is considered.

To finish, at each step of the sequential method, the tensors must be represented by definite-
positive matrices [116] in order to guarantee that the energy is always dissipated by the flow.
The symmetry of these matrices is generally required but not necessary and in some cases not
desirable 5. Indeed, symmetry allows to compute real (non complex) principal permeabilities of
any configuration through the computation of the eigenvectors. On the other hand, this sym-
metrization causes the loss of anisotropy information contained in the extra-diagonal terms of
the matrix representation 6.

3.2.2 Weak formulation (FEM)

This section describes the methodology of stable discretization of incompressible Stokes
equation and Darcy-type equations expressed at L1-scale and L2-L3 scales, respectively.
The finite element method is preferred for its ergonomy facing the complexity of tissue microar-
chitecture and mechanical responses. Despite this, FEM does not deal straightforwardly with
weak solutions in a space of divergence-free functions (H1(div))2 [117] and methods to enforce
incompressibility are needed.

A mixed formulation of the 2D incompressible Stokes equations is used: the velocity and the
pressure will be approximated simultaneously. By doing so, we consider the weak formulation
(3.18) through mixed element method with
(H1(div))2 =

{
u ∈ (H1)2(Ω), −

∫
Ω∇.uq dx = 0 with q ∈ L2(Ω)

}
. Here, the pressure is like a

Lagrange multiplier to enforce incompressibility [118].

find (u, p) ∈ (H1)2 × L2(Ω) such that for all (v, q) ∈ (H1)2 × L2(Ω)
µ

∫
Ω
∇u · ∇v dx−

∫
Ω
∇ · vp dx =

∫
Ω
f · v dx+ µ

∫
∂Ω
∂nu · v dσ −

∫
∂Ω
pv · n dσ

−
∫

Ω
∇ · uq dx = 0

(3.18)

where, for the sake of simplicity, we decide to drop in (3.18) the different indices present in
(3.1) and adopt a generic notation. Note that we add a source term f (taken as zero in our

5In certain cases such as periodical conditions or linear pressure conditions, tensor symmetry can be proved
at the upper scale, only if the tensor at the lower scale is also symmetric [116]

6The Onsager relations cannot prove the symmetry and do not say anything about the anisotropy of an
equivalent property.
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applications).
For some physical system, pressure need to be in a subspace of L2(Ω), consisting of L2-functions
with zero mean value on Ω (enforced with Lagrange multiplier), for the problem to be well-posed
as the pressure is determined up to a constant. This the case for periodic cell problems (3.16) 7.
In opposition, a Neumann condition on velocity over the whole boundary will result in a velocity
up to a rigid body velocity and a unique pressure [119].

At the L1-scale, the so-called discrete inf-sup condition is needed to solve the incompressible
Stokes equation. It is shown that the Taylor-Hood elements pair (Pk, Pk−1) satisfies this condi-
tion with k ≥ 2 [120]. In the following, we consider the Lagrange pairing (P2, P1). Physically, it
means that the velocity approximation is quadratic whereas that of pressure is linear.

Through the dual discretization, we obtain a discrete formulation of the problem described
by the matrix system (3.19). Variables u, p, are nodal variables, i.e. velocity and pressure,
f is a source term. B and Bt are the divergence and gradient matrices, respectively. A is a
Laplacian–type matrix. That block matrix is symmetric but indefinite.

[
A B
Bt 0

] [
u
p

]
=
[
f
0

]
(3.19)

A dedicated solver and preconditioner are requiered to resolve the saddle point problem
(3.19). Indeed, standard iterative linear solvers fail to converge for symmetric positive indefinite
system and the difficulties are increased for large system. To overcome this problem, a minimal
residual method (MINRES) [121] and an algebric multigrid preconditioner (AMG) [122] are
chosen.

At L2-scale of the upscaling sequential method, an incompressible Darcy flow has to be
solved. As previously, the discretization method based upon mixed finite elements is imple-
mented and the weak problem is expressed by equations (3.20) 8.

find (U, P ) ∈ (H1)2 × L2(Ω) such that for all (V, Q) ∈ (H1)2 × L2(Ω)
µ

∫
Ω

K−1 ·U ·V dx−
∫

Ω
∇ ·VP dx = −

∫
Ω
PV · n dσ

−
∫

Ω
∇ ·UQ dx = 0

(3.20)

To fulfill the discrete inf-sup condition, the Brezzi-Douglas-Marini finite elements (BDM)
for the velocity and piecewise constant elements for the pressure are considered [124]. Another
function space could also be chosen to approximate the H1(div) space for the velocities in the
lowest-order Raviart-Thomas elements (RT) [125] 9.
Moreover, pressure partial derivatives are required to obtain a non-trivial L3-scale permeability
tensor using equation (3.9). On a discontinuous Lagrange function space, pressure is piecewise
constant, i.e. element by element, which implies nil derivatives. The solution is to project the
discontinuous pressure on the continuous Lagrange space at higher approximation order, i.e. an
order 2 or 3.

3.2.3 Numerical convergence study

In this sub-section, we deal with specific numerical problems of the proposed upscaling
approach. After discussing mesh generation at each scale and their impacts on the convergence

7To constrain the problem one can also impose a pointwise constrain
8In the periodic case (3.17), the pressure is unique up to a constant and a solution exist by the Fredholm

alternative [123]
9The degree of freedom of the RT and BDM spaces can only fix the normal component on the facets of the

mesh. Thus a Dirichlet boundary condition is impossible by the very nature of the equation, hence the use of a
single boundary condition (3.14) at higher scales.
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process of physical outcomes, we examine the effect of the osseous boundaries smoothing. Then,
a mesh dedicated to extend-local method at the L1-scale is proposed and finally, the smoothing
procedure of fluid-solid interface in binarized histological images is discussed.

3.2.3.1 Meshes convergence

GmshR©, an open source finite element mesh generator 10, and MatlabR© 11 especially the
”bwboundary” function for the numerical tracking of boundary ∂intΩ, are used to generate the
meshes at both scales.

At pore scale L1, the mesh concerns interconnected pores saturated by fluid. The description
of interface, i.e. ∂intΩ, between the fluid phase and the solid phase (osseous ECM), requieres
a specific procedure. The Delaunay frontal algorithm is used to obtain triangular and unstruc-
tured mesh, as shown in figure 3.6a. At L2 and L3 scales, the same mesh algorithm is used to
generate an unstructured mesh with triangular constant size element. According to splitting of
the grid-block procedure, element respect the discontinuities of the piecewise smooth domain Ω̃,
as shown in figure 3.6b, here for a 2× 2 L1-splitting.

Figure 3.6: Illustration of meshes performed at each scale of the grid-block method for a 1-
porosity model a) Perforated, triangular and unstructured mesh at L1 scale of Ω. b) Triangular
and unstructured mesh following the discontinuities of Ω̃ at L2 scale.

Remark: From a practical point of view, we were restricted in the optimization of the mesh
construction since a software used by GMSH (namely OpenCascade) made impossible the use of
B-spline to trace the interfaces between the two phases (especially the one intersecting the ex-
ternal borders). We have therefore trivially connected each point of this boundary by a segment,
thus increasing the computation time. Of course, other methods could have been implemented
and are currently tested.

A compromise must be found between the accuracy of physical outcomes and computational
cost. Usually, mesh convergences in FEM are achieved by using the sensitivity of nodal vari-
ables to the mesh size and distance to a reference solution if such a solution is available. With

10Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in
pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79:1309 – 1331,
09 2009.

11MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks Inc., 2010.
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upscaling scheme, it is relevant to examine both impacts on local mechanical response at the
pore-scale and global response at the macro-scale. First, meshes with constant surface elements
are considered. This constant is in correspondence with the mesh density. In GMSH, a charac-
teristic length corresponds roughly to the length of elements edges 12.

The Stokes flow at the local L1-scale is explored. The convergence process is studied using
a 1600 px × 1600 px osteosarcoma binarized image, i.e a 740µm × 740µm image as shown in
figure 3.7a. The mesh ranges from about 65103 elements with a GMSH size of 30 (Table 3.1) to
210103 elements with a GMSH size of 6 (Table 3.1). Fluid pressures of 0 and 1 are applied on
left and right boundaries, respectively and symmetry on the top and bottom boundaries drives
an horizontal flow. The denser mesh is used as control since no analytical solution can be used
as reference. For local mechanical convergence, the evolution of the horizontal component of
fluid velocity along the path located at 800 px vertically is targeted as shown in figure 3.7c. For
global property convergence, first component velocity average behavior and its error are plotted
in figure 3.7b.
As shown in figure 3.7c, the convergence of local velocity is obtained with a GMSH mesh char-
acteristic length of 16. The convergence of the average velocity is obtained for a GMSH char-
acteristic size of 20, with a relative error of 4%. Finally, good accuracy is obtained considering
element size of 16 and under.

GMSH size Nb of elements
6 213038
8 145070
10 114492
12 97440
14 87350
16 80608
18 75872
20 72480
22 69964
24 68104
26 66644
28 65434
30 64474

Table 3.1: Correspondence between GMSH characteristic mesh size with the number of elements
constituting the mesh for the convergence study of the Stokes discretization.

12not exactly the true upper limit but the optimatized length as edges can be longer or shorter; for example, if
the image size is given in pixel, a GMSH characteristic size of 6 will correspond roughly to 6 px.



3.2. INTERSTITIAL FLOW 43

0

400

800

1200

1600

2000

2400

2800

0 200 400 600 800 1000 1200 1400 1600

6

10

16

26

30

Figure 3.7: Mesh convergence for the incompressible Stokes equations are performed on a
1600 px × 1600 px osteosarcoma image. Flow is imposed from left to right and a symmetry
boundary condition is considered on top and bottom of the domain. a) The equivalent behavior
is studied through the first velocity component of 〈uL1〉Ω in function of the number of elements
considered in the mesh densification. b) The pore scale magnitude first velocity component is
plotted over the line y = 800 px in function of the GMSH mesh characteristic size.

In a similar way, the mesh convergence at L2 and L3 scales is studied using a similar method
while concerning Darcy flows. Velocity component and its average are studied in case of an hori-
zontal flow driven on a piecewise smooth geometry of size 2000 px×2000 px with a 5×5 splitting
and permeability imposed randomly. The convergence is obtained fora GMSH characteristic size
of 20.

3.2.3.2 Boundaries smoothing effect

When a histological section is segmented, the result is always subject to the noise of the
method. In our case, the resolution of the images of the original biological material can be
altered by the chemical and manual treatment of the samples but also by the image acquisition.
As a result, the phases can be difficult to differentiate and a subjective bias is introduced. This
has a direct impact on digital methods of acquisition of binarized images. After segmentation
(fig. 2.16), there is a portion of the binary image where the nature of the phase is uncertain
(where cell, mineralized ECM, non-mineralized ECM and other phases are blended). This bias
has been evaluated to be 5% in average (A. Mancini thesis).

In this section, we quantify the nature of the boundaries uncertainties by discussing the
smoothing of internal boundaries ∂intΩ, on the equivalent property at the L2 scale, when a
no-slip boundary condition on the Stokes velocity is imposed on the fluid/solid interface. A
smoothing technique must be chosen with a capacity to minimise the construction time of the
mesh associated with the domain while maintaining the main geometrical features to which
the physical systems are sensitive. Thus, the study is based on the comparison of the porosity
(geometric character) and the equivalent permeability (mechanical character) responses to the
smoothing methods and smoothing parameters.
Two methods have been studied: 1) a dilatation/erosion method with the same disc-shaped
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structural element (strel) 13 with an increasing radius 2) an application of an increasing window
median filter. The influence of the roughness of ∂Ωint on L2-scale equivalent permeability tensor
is only performed with symmetric BCs. In the following, the boundary smoothing methods are
tested on images of increasing size, ranging from 500 px × 500 px to 2000 px × 2000 px). This
method allows in particular to quantify if a smoothing method at fixed parameters plays an
increasingly important role as the dimension of the studied domain decreases.

The first smoothing method consists of an application of the Matlab built-in functions ”imdi-
late” and ”imerode” with the same disc-like strel (fig. 3.8). A succession of smoothing with
increasing radii is considered (between 1px and 8px). This will allow us to see if the same
roughness (the smoothed one) plays an increasingly important role as the dimension decreases.
For this purpose, we consider a 2000 px× 2000 px image and we truncate it into a succession of
sub-images of the desired size 14.

Figure 3.8: Effect of smoothing by dilatation/erosion with different radii on the osseous bound-
aries for a 2000 px × 2000 px image. The dilatation/erosion process is applied using a 2D mor-
phological structuring element (strel), corresponding to a disc of radius 1px, 4px and 8px,
successively.

It can be noticed on figure 3.9c that porosity show very limited variations whatever the image
size. The effective permeability was almost insensitive to the process with relative error lower
than 1%, as shown in figure 3.9b 15. The impact upon CPU time user for mesh construction
was negligible for the smallest images, i.e. 500 px × 500 px, whereas the benefit can rise up to
70% with the larger image, i.e. 2000 px × 2000 px px, as shown in figure 3.9c.

13”a flat morphological structuring element is a binary valued neighborhood, either 2D or multidimensional, in
which the true pixels are included in the morphological computation, and the false pixels are not.” MATLAB

14For this purpose, we considered a much larger cohort of images than shown here demonstrating the same
phenomenon.

15note that, as the strel size increase, permeability decrease for this method.
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Figure 3.9: Effect of smoothing by dilatation/erosion with different radii by increasing window
(dimension ranging from 500 px× 500 px to 2000 px× 2000 px. a)Geometry smoothing effect on
diagonal (blue) and extra-diagonal (orange) equivalent permeability tensor components (left to
right: 500 px × 500 px, 1000 px × 1000 px, 1500 px × 1500 px, 2000 px × 2000 px). b) Geometry
smoothing effect on porosity (blue) and CPU time mesh construction (left to right: 500 px ×
500 px, 1000 px× 1000 px, 1500 px× 1500 px, 2000 px× 2000 px). MatlabR© built-in function, i.e.
”imdilate” and ”imerode” are used.

Secondly, a median filter smoothing method is applied with a smoothing spectrum similar
to the above dilation/erosion method. Results are shown in figure 3.10. Maximal relative error
on porosity is lower than 1% and error on effective diagonal permeabilities are lower than 8%.
At the same time the gain is about 1 min on CPU time user for mesh construction.
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Figure 3.10: Smoothing by median filter with different numbers of pixels on a 2000 px× 2000 px
image: mechanical and topological effect. a) Binary image. b) Equivalent permeability coef-
ficients evolution as a function of the median filter radius. b) Porosity and CPU user time
evolution in function of the median filter radius. Software ImageJR© is used.

Particular attention must be given to this stage of the study since any uncontrolled smooth-
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ing method can quickly lead to aberrant results. For example, with Gauss filter using a standard
deviation σ, the topological properties are rapidly degraded, for very low standard deviation,
and it may cause a continuous non-monotonous change in the geometric properties leading to
an alteration of the mechanical ones (percolation loss).

In conclusion, we find that the two smoothing methods give similar results on porosity and
effective permeability variations. First, it shows that the local topology of the pore is not
strongly modified and this concerns the porosity determination, but it can also be noticed that
the no-slip condition at the internal boundary ∂intΩ, limit the role of interface local roughness.
This can explain the limited variation of effective permeabilities. Therefore, the uncertainties
related to the exact identification of the fluid/solid interface, from the biological data, have very
little effect on the calculation of equivalent properties when a non-slip condition is imposed.
A larger cohort of clinical images allowed these conclusions to be validated. It can be added
that only results with symmetric boundary conditions at L1 scale are presented and we checked
that the other BCs previously detailed in section 3.2.1 exhibited same tendencies.

Since no real control over this smoothing is possible, we decide to smooth clinical images by
using the dilatation/erosion process with a strel disc of small radius, i.e. 4px, in the following
studies. The smoothing effect on the equivalent properties will then be minimal. This smoothing
is also essential for the smooth running of the meshing process on GMSH 16.

3.2.3.3 Extend-local meshes specificities

Previously in paragraph 2.4.1, we showed the relevance of the extend-local process in the
overall upscaling method, especially for clinical images showing no REV. In paragraph 3.2.3.1,
we discussed the mesh construction with an homogeneous mesh characteristic size along each
geometrical entity. Here, we are studying the potential benefit of a semi-variable construction
(S-V), for the extend-local method, based upon a constant and dense meshing for the local L1-
subcell (targeted for upscaling) while the buffering zone is meshed with a density which depends
on the distance to a fluid/solid boundary. The mesh shown in figure 3.11a concerns a sample
size of 1600 px× 1600 px with a local cell size of 600 px× 600 px. Again, the variables of interest
for convergence purpose are the porosity and equivalent permeability tensor properties.

To check the dependence of extend-local method to this choice of mesh, in figure 3.11b,
we plot the variations of the largest eigenvalue of the equivalent permeability at the L2-scale
(spectral radius) as a function of the size of the neighbouring region δ for the two types of mesh,
i.e. constant (blue cross) and semi variable (blue circle). We do the same for the porosity of
the complete geometry: the initial domain and with its buffer zone (the orange stars and circles
correspond respectively to the constant and semi-variable porosity).
It can be seen that porosity and equivalent permeability are weakly influenced by the type of
mesh on which they are calculated (i.e constant or semi-variable) because the resulting entities
are perfectly merged. Then, a calculation on a semi-variable mesh can be considered instead of
a calculation on a homogeneous mesh, without any bias.

The main benefits of the semi-variable mesh construction are that it leads to faster calcula-
tions while accuracy of predicted results is preserved regardless of the δ buffer size. Indeed, by
plotting the construction times of two meshes (in red and blue for the constant M-CST and the
semi-variable M-SV) and of the FEniCS simulations (in green and purple for the constant S-CST
and the semi-variable S-SV) as a function of the size of the neighbouring region (fig. 3.11c), we
notice a difference in total computation time coming mainly from the equations solving. As the
geometry is rather small, the mesh construction times are similar for both cases. This is not the
case for larger images since the semi-variable method is found to reduce the construction time.
This is of particular interest to explore complex and very large sized binarized histological im-
ages.

16in relation to the definition of GMSH lineloop which may not be closed for raw images.
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Figure 3.11: Comparison of the two meshing types, constant CST and semi-variable SV, in
the application of the extend-local method. a) The geometry is meshed in a semi-variable
way as a constant size is imposed on the 600 px × 600 px L1-cell while the neighboring region
mesh size depend on the distance to a boundary. b) Resulting equivalent permeability tensor
highest eigenvalue (spectral radius) for the two types of meshes together with the overall porosity
behaviour, in function of the buffer region size δ. c) Mesh construction and solving time in
function of the buffer region size δ. d) Total time (mesh and solver) for the two type of meshes
in function of the buffer region zone δ. Times are given in CPU time for a PC with 3 processors
and 30GB of memory.

Note that the constant mesh construction can lead to a change of porosity of the target
L1-cell, i.e where the upscaling is done, between the purely local geometry and the one consid-
ering a 20px buffer zone, if the mesh size is not sufficiently dense. Indeed, when considering a
constant mesh size and the evolution of the target L1-cell porosity alone Φloc (orange dashed
line in fig. 3.12), we notice a jump in value between δ = 0px and δ = 20px (i.e. the first step
of the extend-local method) and this for two L1 values (fig. 3.12b and c). This jump is due to
the variability of the mesh at the border between integration domain and buffering zone when
the last is considered. Traditionally, to solve this problem, much smaller constant mesh sizes
would have to be considered on the whole domain (buffer region included), resulting in heavier
calculations. In opposition, for the semi-variable construction, only a denser mesh within the
L1-cell and its direct neighboring is sufficient. This smooths the porosity jump (10−3 difference
order) between the two values of δ = 0, 20px (fig. 3.12d), while keeping a coarser mesh size in
the buffer region 17.
This geometrical consideration is absolutely necessary as it can have repercussions on the me-
chanical equivalent response of the physical system. Indeed, a similar jump is observed on the
resulting permeability tensor highest eigenvalues, according to different BCs (solid, dashed or
dotted blue lines on fig. 3.12b and c). This raises the question of whether the porosity jump
has a direct effect on the equivalent permeability one. Figure 3.12d shows that this is not the
case. Indeed, a semi-variable mesh construction together with denser constant mesh within the
L1-cell is built, smoothing the porosity variation. The initial jump of the equivalent spectral
radii remains and one only highlights the expression of the intrinsic effects of the BCs choice
alone (without artefacts from the geometric discretization).

17It would also have been possible to consider a constant mesh only on the L1-cell edges and variable according
to the distance to the boundary everywhere else. It’s not the method chosen here.
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In the incoming work, a semi-variable mesh will be considered at the L1-scale for the extend-
local method.

Figure 3.12: Application of the extend-local method with δ for two different L1 lengths. a)
Two L1-cell size are considered with 500 px × 500 px and 1000 px × 1000 px. b) Computations
of equivalent mechanical property (highest eigenvalue) and geometrical (porosity) through the
extend-local method for a constant meshing of the 1000 px×1000 px L1-cell and δ values ranging
from 0px to 500px. Φloc represents the calculation of the porosity on the integration domain
when a buffer region is added, Φext is the porosity of the integration domain plus the buffer
region. The amplitude ρwall, ρsym and ρpl corresponds to the equivalent permeability spectral
radii at the L2 scale. c) Similar computations for the500 px×500 px L1-cell. d) Effect of a mesh
refinement on the L1-cell on the same computations for a semi-variable meshing of the two first
steps of the extend-local method.

3.2.4 Influence of the sequential and extend-local methods parameters

In this section, we are applying the upscaling methods previously described. We start with
the extend-local scheme and its dependence on its intrinsic parameters such as the L1 length, the
size δ of the buffer zone or the choice of the boundary conditions. Then we are investigating the
impact of splitting and boundary conditions on the sequential grid-block method. Applications
concern periodic model porous media and tumor tissue.

3.2.4.1 Extend-local method study

In the following, the extend-local method will be studied. The incompressible steady Stokes
problem is described by equation (3.1) at the L1-scale. To obtain the permeability tensors of the
Darcy equation (3.4) at the L2-scale, arbitrary boundary conditions are associated to equation
(3.1). Four boundary conditions are considered: wall BC expressed by equation (3.11), sym-
metry BC expressed by equation (3.12), linear pressure BC expressed by equation (3.13) and
periodicity (3.16). The aim is to evaluate the impact of these choices upon the computation
outcomes, i.e. effective permeability tensors. The roles of parameter δ defining the buffer region
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size and L1 corresponding to the local scale, on the equivalent permeability at the L2-scale, are
investigated.

We first consider a 40 px × 40 px periodic porous medium called PM1 as shown in figure
3.13a. It is a periodic array of disks of diameter 10px, and we consider a unique buffer region
size, corresponding to a period of the geometry as shown in fig. 3.13a. It exhibits a separation
of scales with an overall porosity of 0.803. The characteristic length of 10 px corresponds to the
space between each circular obstacle. In this isotropic case, the effective permeability tensor is
reduced to a scalar. Four sets of boundary conditions are considered and permeabilities noted
K at the L1 scale and K? at the L2-scale are non-dimensionalized by the periodic characteristic
surface [102]. Considering a periodic geometry, the solution involving periodic boundary condi-
tions is the deterministic periodic homogenization solution and gives the exact solution.

Resulting permeabilities K, at the L2, are shown in figure 3.13b for the local and extend-local
upscaling methods. The local L1-L2 upscaling (filled circle curve fig. 3.13b) results in a good ap-
proximation of the reference solution P by using symmetrical conditions S and linear conditions
PL whereas the wall condition W gives an underestimation. These results are in agreement
with [102].
The L1-L2 extend-local process (empty circles curve fig. 3.13b) homogenizes the permeability
for each boundary condition compared to the reference L1-L2 periodic solution. Compared to
the reference local periodic solution, the extend-local method gives a lower permeability of about
4% 18.
Therefore, for this very special case, an improved accuracy of the extend-local L1-L2 upscaling
method compared to the local one is confirmed for the three non-periodic boundary conditions.

Figure 3.13: a) Extend-local method applied to PM1, a periodic array of discs, with a period
size buffer region. b) Resulting scalar equivalent permeabilites comparison, for this geometry,
obtained by the local and the extend-local method in function of the four boundary conditions
(Wall (W), Symmetry (S), Linear (PL) and Periodic (P)).

The next step concerns the influence of buffering size δ on the accuracy of the extend-local
method. As shown in figure 3.14, we consider a periodic geometry called PM2 and a binarized
histological section of tumor.

18We remark that there is a decrease in the extend-local periodic permeability case compared to the local one;
this bias can be attenuated if one consider a double periodicity in the mesh, i.e a mesh where periodic elements
are imposed not only on the extend computational domain boundaries but also on the target block.
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Figure 3.14: Application of the extend-local method on two geometries with different topological
characteristics considering a local cell (green) and continuously increasing extend region a)
2000 px × 2000 px periodic geometry. b) 2500 px × 2500 px osteosarcoma binary image.

PM2 is a stack of periodic and isotropic 2D disc of total size 2000 px× 2000 px with discs of
100 px diameter and with a 100 px distance between two obstacles. Calculations are made for a
local cell of length L1 = 400px comprising four disc and for buffer zones ranging from 0 to 400 px
with a 10 px step. Meshes are taken with constant mesh sizes. Note that a value different from
L1 would result in a long term phase shift of the curves accompanied by significantly different
initial values (edge effect). Furthermore, the curves would remain almost identical. Results are
shown in figure 3.15b. We plot the resulting scalar non-dimensional permeability in function of
the δ-size of the buffering region, for the 4 boundary conditions (W is represented by circles, S
by crosses, PL by squares and P by asterisk). The overall porosity variation curve is added in
orange.

The extend-local at the L1 scale allows us to homogenize (fig. 3.15b) the values of the perme-
ability value according to the four BCs and this whatever the size of the L1 local cell (generally
when a half-period for the buffer zone is reached). First, note that for δ = 0 px, the values
correspond exactly to the above purely local case (fig. 3.13b). It can be noticed that for larger
δ, the curves are repeated periodically (according to the period of the geometry) with decreasing
amplitudes in the permeability and porosity fluctuations. Considering a sufficiently large buffer
zone, a decrease in the amplitude of the permeability indicates a convergence towards the exact
solution. Indeed, edge effects, at their strongest when the edges of the geometries intersect the
obstacles, decrease for large δ.
Thus, it is shown that the extend-local method allows in the case of the PM2 geometry, even
for small δ, to choose indifferently among the four BCs in the calculation of the permeability at
the scale L2 when a REV hypothesis is considered.
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Figure 3.15: Application of the extend-local method to PM2, a periodic array of discs, and to
a 400 px × 400 px local cell with the four BCs: wall, symmetry, linear and periodic. a) The
periodic geometry. b) Permeability K and porosity values as functions of the extend region size
δ.

The L1-L2 extend-local method is now applied to tumoral tissue (fig. 3.14b). We consider
six osteosarcoma sub-samples of size 500× 500 px2, 600× 600 px2, 700× 700 px2, 800× 800 px2,
900 × 900 px2 and 1000 × 1000 px2. We choose the diagonal coefficient K11 and extra-diagonal
coefficient K21 to analyse the results. We plot for each L1-cell size, the behavior of the coef-
ficients as a function of the size of the buffering region δ and this for three different BCs: the
wall condition (3.11) (W) is plot in blue, the symmetric (3.12) (S) in red and open boundary
condition (3.13) (PL) in orange. We plot on the same graph the variations in total porosity of
the computational domain (purple dot graph) 19.

Figure 3.16 shows a decrease in the difference of diagonal equivalent permeability tensor for the
three boundary conditions when δ ≥ 100 px. Note that coefficient resulting from W and S are
perfectly merged and this for all considered L1 lengths.
Thus, the uncertainties of equivalent permeability calculations, inherent to the choice of bound-
ary conditions, at the L1-scale, can be reduced for the diagonal terms by the extend-local process
[89].

We would like to point out that no convergence is achieved in the values as a function of δ. It can
be observed that these values remain very sensitive to the computational domain global porosity;
the permeability graphs behavior, for each BCs, being sensitive to total porosity fluctuations.
However, convergence is not the objective of this approach because the goal of the grid-block
method is to take into account the heterogeneities in phase distribution in a reliable way.

Remark: The range of permeability value is consistent with the literature. As they are exposed
in this thesis in px2, a pixel size being 0.466µm, they effectively lies around 10−12m2.

19The resulting permeabilities can be non-dimensionalized by the L1-scale value. In the same way, one can
define the dimensionless magnitude of the tensor. This will essentially be used in the chapter 5.
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Figure 3.16: Behavior of the equivalent permeability diagonal coefficient K11 resulting from
the extend-local method in function of δ. The study is conducted on multiple L1-subcell size:
500 px, 600 px, 700 px, 800 px, 900 px and 1000 px.

When extra-diagonal terms are studied, as shown in figure 3.17, W and S results are similar, even
for small δ, whereas PL results seems quite erratic in comparison. This come from the fact that
the open boundary condition does allow transverse flow in opposition to the impervious boundary
conditions (wall and symmetry). In some extreme cases, the linear boundary conditions can
not ”see” an obvious non percolation geometry (fig. 3.18), and in opposition to the wall and
symmetric conditions, provides a non-zero permeability. This bias must be taken into account
if we want to consider a non-percolating geometry as having a zero permeability.
As shown in appendix A, extra-diagonnal permeability coefficients play a significant role in the
equivalent spectral radii and deserve a specific attention.
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Figure 3.17: Behavior of the equivalent permeability extra-diagonal coefficient K21 resulting
from the extend-local method in function of δ. The study is conducted on multiple L1-subcell
size: 500 px, 600 px, 700 px, 800 px, 900 px and 1000 px.

Figure 3.18: Effect of the open boundary condition, on a flow driven from left to right and on
a non-percolating geometry, allowing transverse flows.

In conclusion, the extend-local methods allows to predict permeabilities at L2-scale while
limiting the role of BCs, especially for diagonal coefficients. In case of complex biological struc-
ture, it can also provide a consistent biological characterization of the permeability tensor at the
L2-scale by immersing local sub-domain into its realistic biological architecture. By doing so,
equivalent permeability computation on a block is affected only by natural properties, preferred
path and percolation for example, as in illustrated in figure 3.19.
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Figure 3.19: Schematic view of the loss of global percolation and preferred path. Using a local
grid-block upscaling at the L1-scale (left), the target sub-block is ”wrongly” given a positive
permeability. Using an extend-local method, the target block is given ”rightly so” a null perme-
ability.

3.2.4.2 Sequential upscaling method study

In this section, we discuss the accuracy of the sequential upscaling method applied to intersti-
tial flow in osteosarcoma and isotropic periodic geometries. The incompressible Stokes equation
(3.1) is considered at the L1-scale and Darcy flow is considered on piecewise homogeneous media
at L2-scale and L3-scale associated to governing equations (3.4) and (3.10), respectively. In the
following, the sequential method is studied with a purely local method for the L1-L2 upscaling
in order to separate induced effects from the extend-local approach.

This method is very useful when the geometry is complex and when the computation time
and the memory cost of the one-step upscaling method are expected to be too large (fig. 3.20).
We know that according to the BCs considered, the permeability tensors will be quite different
either in their diagonal terms or simply in their extra-diagonal terms. But the permeability
tensor is also not constant through the sequential process even with the same boundary condition.
Indeed, three different tensors are obtained for three different splitting at the L1-scale, even when
considering the same boundary condition (fig. 3.20).
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Figure 3.20: Equivalent permeability tensor at the L3-scale, through the sequential method,
where a symmetric and wall BCs are considered at L1 and L2 scales, for 3 different splittings
(with their corresponding full time resolution).

Without loss of generality, we will consider only one cell on the L3-paving, as illustrated on
figure 3.20. Indeed, a study on a complete L3-paving, i.e with multiple L2-subcells, will only
result in similar behavior L2-cell by L2-cell. The splittings considered at the L1-scale are ranging
from 1× 1 to 5× 5 20. Here, the density of the splitting is constrained by the size of the images
but also by the heterogeneous character of the osteosarcoma. Indeed, a too dense L1-splitting of
the small images would lead to an irrelevant substitution of pore scale equations (Stokes type)
by subsidiary equations (Darcy type). For instance, a domain fully in the solid phase or in the
pore-space would lead to inconsistencies.

We start with a periodic array of disks shown in figure 3.21a similar to the structure PM1
previously used in paragraph 3.2.4.1. The reference solution of this problem is well-controlled
and given by the 1-step periodic homogenization. The splitting at the L1-scale for the first step
of the sequential upscaling scheme consists in four identical 4×4 sub-domains and as previously,
the porosity is 0.803 (fig. 3.21b). The four possible sets of boundary conditions are considered
and the resulting scalar permeabilities at the L3-scale are noted K

?. We plot the resulting
permeability curves at the L3-scale for the one-step (black dots) and 2-step (grey dots) meth-
ods (fig. 3.21c). It is also interesting to see the permeabilities resulting from a 2-step method
considering permeabilities at the L2-scale computed with extend-local method (empty dots).

Finally, it appears that results at the L3-scale are similar to those obtained at the L2-scale in
figure 3.13b. Thus, no loss of information is noted in the 2-steps upscaling process regardless of
the technique used on the intermediate upcaling, for a periodic and isotropic geometry. In this
case, a 2-step method coupled with the extend-local upscaling give better results than with a

20where 1× 1 correspond to the one-step method.
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1-step or a local 2-steps scheme as all resulting permeability values, at the L3-scale, are close to
the one obtained by the direct homogenization method.

Figure 3.21: Application of the 2-step grid-block method to PM1, a periodic disc array according
to the four BCs: wall, symmetry, linear and periodic a) The periodic geometry b) L1 splitting
equal to 2×2. c) Resulting L3-scale equivalent permeabilities values obtained by the 1-step and
the 2-steps methods (through a local or extend-local intermediary L1-L2 upscaling) in function
of the four same boundary conditions.

The sequential upscaling method applied to the tumoral tissue is now considered. We con-
sider a binarized image of 5000 px × 5000 px as shown in figure 3.22a 21. No symmetrization of
the tensors at the L2-scale is performed to preserve as much as possible the BCs intrinsic effects.
However, a symmetrization of the permeability tensor may be necessary at the L3-scale for fast
post-processing purpose and the calculation of eigenvectors and eigenvalues (real value versus
complex results otherwise).

Remark: (Practical consideration) The L1-L2 upscaling requires solving a Stokes flow for an
increasingly dense splitting. Thus, it is very likely that a permeability calculation for a pure fluid
block, i.e. without any solid matrix, must be performed. To constrain the problem, having a
unique velocity determination [119], we decide to add a little obstacle (with a L1

100 length) in the
upper right corner of the pure fluid geometry in order to fix the velocity value somewhere in the
domain (no-slip boundary conditions). This practical consideration smooth out the numerical
workflow as this artificial change in porosity has little to no effect on the resulting equivalent
tensor 22.

Coefficients of the permeability matrix and spectral radii are plotted in figure 3.22b and figure
3.22c for the four BCs and four L1-splittings ranging from 2× 2 (sublocks being of dimensions
2500 px × 2500 px) to 5× 5 (1000 px × 1000 px). The values arising from the W, S, PL and P
conditions are respectively given in blue, red, yellow and green 23.

While dominant flow is constant for all four BCs, S and P give almost constant diagonal coef-
ficients regardless of the splitting size. PL gives an overestimation of almost a factor 2 and W
underestimates them. This effect is even stronger with a sequential method since two successive
upscalings are performed. As a result, the more the splitting density increases, the more this
phenomenon of over- or underestimation is significant. The sequential method orders the diago-
nal permeabilities according to inequations (3.21) 24. Note that diagonal values of P are closed
to S and strictly comprises between W and PL. We insist here on the fact that P solutions are
altered by the spatial symmetrization of the domain as described in figure 3.5a. Therefore, P
solutions are not general since another type of symmetrization would probably lead to different

21Four 5000 px × 5000 px osteosarcoma geometries were used in this section, coming from a segmentation/bi-
narization of an H&E section. The four images have shown similar results through the sequential method, that’s
why we choose to present a part of the results only on one image.

22Another method would be to consider an extend-local method and place the notch in one of the corners of
the buffer zone as far away from the upscaling zone as possible.

23in this paragraph, we choose to simply refer to the L3-scale equivalent tensor by the terminlogy K instead of
K̃

24Note that the relation hold when considering the 1-step method in addition to the different splits. For
convenience and consistency, we have considered here only the tensors resulting from the two-step method.
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results.
Kdiag
W ≤ Kdiag

S ,Kdiag
P ≤ Kdiag

PL (3.21)

Inequality (3.21) is all the more pronounced through splitting. A general order relation on equiv-
alent permeability diagonal coefficients, in respect to the splitting, could have been expected
but this is not the case here (or else very qualitatively).

From a qualitative point of view, relation (3.21), obtained at the L3-scale, is consistent with the
literature for the first upscaling from Stokes to Darcy [102] and second upscaling [110]. Addi-
tionally, it can be mathematically proved for specific boundary conditions similar to equations
(3.11) and (3.13) for specific random porous media [126].

Remark: Note that negative diagonal term can be obtained through this method on the sec-
ond upscaling when considering very particular geometrical paradigms [127] (like checkerboard
geometries made of very large and null values). To overcome this problem on osteosarcoma, one
can either (1) increase the delta size of the extend-local method, if this method is considered
(2) iterate the process on the relevant sub-domain according to different splitting (starting if
possible with a one-step method) until a positive sign is obtained.

As in the diagonal terms case, the highest eigenvalue remains quite sensitive to boundary con-
ditions which have the same effect of over- or underestimation (fig. 3.22c).
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Figure 3.22: The sequential process is applied to the second osteosarcoma image with four
different BCs through denser L1-splitting. a) Binary image of osteosarcoma. b) Equivalent
permeability coefficient response, at the L3-scale, to the sequential process c) Spectral radii
(highest eigenvalue) behavior, at the L3-scale, to the sequential process.

Extra-diagonal permeabilities coefficients evolve with large amplitudes according to splitting
size and the BC nature, as shown in figure 3.22b 25. Impervious boundary solutions, i.e wall
and symmetry, are close and strongly varying according to the splitting. In opposition, extra-
diagonal terms resulting from the PL condition are a little more constant according to the
splitting and keep the same sign. Note that the sequential method with the open boundary
condition symmetrizes in a remarkable way each of the resulting tensors L3 (in most cases with
d = |Kij−Kji|

|Kij+Kji| ∼ 10−3).

The principal directions or tensor eigenvectors are plotted in figure 3.23 in respect to boundary
conditions and splitting. They represent the non-oriented flow directions. This local information
remains important at higher scales when a L3-paving is considered. Indeed, these entities allow
us to keep a local characterization of the domain anistropy after the sequential upscaling process.

25Assuming subsequent results on the principal flow direction, a perfect constancy through the splitting is
difficult to achieve for extra-diagonal terms since the diagonal values increase or decrease according to it but the
principal directions must remain as unchanged as possible, which always makes extra-diagonal terms vary.
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The principal directions at the exit of the sequential method show an overall similarity BCs by
BCs and according to splitting. For the impervious boundary conditions (W and S), they
practically merge. Some differences are observed with the directions resulting from the PL
conditions especially in the orthogonality of the vectors, as the open boundary condition have
orthogonal orientation (thanks to the condition propensity to symmetrize the tensors at the
exit of sequential process). The orthogonality, in the impervious boundary condition case, is
recovered when considering symmetrization of the tensors. In the case of the periodic boundary
condition, the directions keep a very good consistency across the splittings and its discrepancy
with the other three BCs most certainly come from the symmetrization of the geometry, which
leads to a total loss of the anisotropy of the original domain.
Therefore, the principal directions of permeability are qualitatively well preserved through the
different boundary conditions and splitting.
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Figure 3.23: Principal direction, accounting for the non orientated flow direction, overall be-
havior through the sequential process (in respect to boundary condition and L1-splittings).
Orthonormal cartesian frame (O,~i,~j) is added in blue.

The intrinsic effects of the sequential method have been discussed but it is relevant to study
the coupling with the extend-local method at the L1-scale, on ostesoarcoma, as previously treated
for the periodical geometry PM1. Results are given in appendix C. It is found that it drastically
reduce the gap between the diagonal coefficient resulting from the open boundary condition and
other BCs.

The sequential method is applied to larger osteosarcoma images to evaluate the performances
in case of challenging clinical data. The 16 000 px× 16 000 px binarized image is shown in figure
3.24. The fluid flow obtained using the 2-steps method is compared to a pore scale flow (3.1)
obtained by Direct Numerical Simulation (DNS). For the DNS, flow is driven from left (inflow)
to right (outflow) with symmetric BCs on the top and bottom boundaries together with a no-
slip condition on the fluid/solid interface. The 2-steps computation is performed with a 8 × 8
L3-paving accounting for the scale couple (L1, L2) = (1000 px, 2000 px). Boundary conditions
are symmetric (3.12) and impervious (3.14) for the L1-L2 and L2-L3 successive upscaling.

Figure 3.24: Osteosarcoma binary image of size 16 000 px × 16 000 px.

Pressure fields are shown in figure 3.25a for the DNS and on figure 3.25b for the upscaling
method. The geometry anisotropy inducing specific features in the DNS pressure field are re-
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covered by the upscaling. A quantitative comparison between the two calculations is done
through the horizontal pressure profiles (see fig. 3.25c) in regions of high (top graphs) and low
(bottom graphs) porosity. Overall, the direct (DNS) and macroscopic (2-step) pressure calcula-
tions are in good agreement, at the first order.
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Figure 3.25: Results comparison between a DNS and 2-steps computations on a 16 000 px ×
16 000 px geometry. a) Pressure field amplitude of a creeping flow going from left to right.
b) Pressure field obtained after solving equation (3.10) obtained by the 2-steps method with
L1 = 1000 px, L2 = 2000 px and symmetry conditions. c) Pressure profiles comparison over
horizontal lines (y = 11 000 px on top and y = 4000 px at the bottom).

Finally, we propose to investigate the statistical distribution of equivalent permeabilities at
the L2-scale. If permeability limit distribution could be found, this approach would allow to
avoid time consuming computation at local L1-scale (Stokes equation) while using fast results
at L2-scale (Darcy equation) [128, 95]. Denser L1-splittings ranging form 4× 4 to 16× 16 and
one cell at the L3-scale are used. W, S and PL boundary conditions are used and permeability
statistic histograms are given in appendix D. As shown in figure 5 and 6 of the appendix, the
BCs and successive splitting do not show significative influences on histograms.
Unfortunately, normal distribution are not clearly readable both for diagonal and non-diagonal
permeabilities. This confirm the strongly heterogeneous properties of the biological tissue in-
vestigated. As it stands, the exploration of a statistical approach to flow in osteosarcoma is not
conclusive due to the highly heterogeneous nature of the geometry.

In conclusion, the sequential method applied to the study of the flow perfectly fulfills the
essential properties of an upscaling technique already determined for a 1-step method in pre-
vious works [129] such as the order relationship on diagonal coefficient W ≤ S ≤ PL. This
relation is verified in this new workflow, considering an incompressible Stokes equation at the
small scale for the first time, and is all the more pronounced through splitting since a succession
of permeability calculations are performed. Finally, the heterogeneity of the osteosarcoma at
the L1-scale is properly taken into account through the equivalent grid-block properties of the
L3-scale.

3.3 Mass transport

Diffusive mass transport in osteosarcoma can play a role in the tumor evolution and in
chemotherapy process [130]. Our approach can also complement emerging research and clinical
modalities such as FRAP and Diffusion MRI to explore tissue properties [131].
Figure 3.26 is presenting the assumptions of the proposed approach. The convective properties
of tissue are not considered and diffusive transports concerns the fluid phase. As previously, the
geometrical paradigm is a 1-porosity model. The equivalent diffusion tensor (m2s−1), translating
the complete anisotropy of the medium, is targeted. The Fick’s law in porous media is used while
establishing the relationship between the diffusive flux and the chemical species concentration
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gradient.

Figure 3.26: Biological and mechanical approximation of osteosarcoma in the diffusive transport
case.

The upscaling methods workflow previously presented is applied to purely diffusive mass
transport. The sequential method is first presented. Then, mesh convergence and influence of
boundary conditions are studied. Finally, we report main results related to the extend-local and
sequential methods.
Note that this section is seen as a direct extension of the previous one in the sense that we
briefly explore the sequential method for tranport by diffusion.

3.3.1 Development of the grid-block and extend-local methods

A two-step grid-block method is developed to account for the diffusion in heterogeneous
media and three ordered scales of observations, i.e. L1, L2 and L3, are considered.

At the pore scale L1, an elliptic equation is considered representing the diffusion equation of
a generic passive tracer. The concentration is assumed to follow a Fick’s law and the conserva-
tion equations only on Ωf (where Ω = Ωf ∪ Ωs) and are expressed by equation (3.22) where J
is the diffusive flux, c the specie concentration and D the diffusion tensor.

At this scale, boundary conditions on ∂extΩ can be either impervious or open boundary as
expressed by equation (3.23) and(3.24), respectively (they are essentially the same than in the
Darcy model). An impervious (wall) boundary condition is considered on ∂intΩ.

J = −D · ∇c, on Ωf

∇ · J = 0, on Ωf

Boundary conditions on ∂Ω = ∂intΩ ∪ ∂extΩ
(3.22)

• Impervious (wall)

cL1 = 1, at the inlet
cL1 = 0, at the outlet
JL1 · n = 0,
on edges parallel to the concentration difference direction

JL1 · n = 0, on ∂intΩ

(3.23)

• Open boundary

cL1 = 1, at the inlet
cL1 = 0, at the outlet

cL1 = 1− XL1

L1
,

on edges parallel to the concentration difference direction
JL1 · n = 0, on ∂intΩ

(3.24)



3.3. MASS TRANSPORT 61

Periodic boundary conditions can also be used through AE homogenization and correspond-
ing to a diffusion like problem on a unit cell Y, as expressed by equation (3.25) where ci(y) is
the local periodic variation obtained for an averaged gradient ei.{

−∇.(D(y) · (ei +∇ci)) = 0 in Y
y → ci Y -periodic (3.25)

As we make the assumption of purely diffusive transport through osteosarcoma, at the L2-
scale, a diffusion equation is obtained through the Grid-Block uspcaling, admitting a piecewise
constant equivalent diffusion tensor [103], encapsulating the local information, i.e. the underly-
ing porosity. This tensor is full, i.e extra-diagonal terms are also determined as each sub-block
computations account for the two space directions.

For the second upscaling, BCs are identical to L1-scale by removing the wall condition on
∂intΩ since the geometry is now piecewise smooth with no internal boundaries. An iteration on
the upscaling process allows to consider the L3-scale with another diffusion equation and a new
piecewise constant diffusion tensor.

The post-processing to get the equivalent diffusion tensor at L2 and L3 scales is similar to
those in flow case, i.e equations (3.3) and (3.9). At L1-scale, it is given according to averaged
diffusive fluxes and the macroscopic concentration gradient as expressed by equation (3.26),
where D is the L2-scale equivalent diffusion tensor for a given A sublock of the L1-splitting,
〈Jk〉lA is the average flux from pore scale and δC is the macroscopic concentration gradient.
Equation (3.27) expressed the relationship between flux averages and explicit derivations of
concentration at L2-scale, where D̃ is an L3-scale equivalent diffusion tensor of a given sub-block
Ã, JL2 and cL2 the L2-scale flux and concentration, respectively. Definitions of superscript are
detailed in paragraph 3.2.1 and correspond respectively to the flow tests, i.e horizontal and
vertical concentration difference.

∀i ∈ J1, Nx ×NyK, (D)lk =
(
− 〈Jk〉lA

L1
(δC)l

)
1≤l,k≤2

(3.26)

∀i ∈ J1,Mx ×MyK,


〈∂s1cL2〉1Ã 〈∂s2cL2〉1Ã 0 0

0 0 〈∂s1cL2〉1Ã 〈∂s2cL2〉1Ã
〈∂s1cL2〉2Ã 〈∂s2cL2〉2Ã 0 0

0 0 〈∂s1cL2〉2Ã 〈∂s2cL2〉2Ã



D̃11
D̃12
D̃21
D̃22

 = −


〈(JL2,s1〉1Ã
〈(JL2,s2〉1Ã
〈(JL2,s1〉2Ã
〈(JL2,s2〉2Ã


(3.27)

The mathematical consideration such as the weak formulation form and finite element spaces
are those of the prior section, especially corresponding to the L2 and L3 scales of the flow study
(BDM or RT space). More precisely, to overcome the mass loss problem, a dual mixed formula-
tion of equation (3.22) like problem is implemented at each scale according to equation (3.28).

find (J, C) ∈ (H1)2 × L2(Ω) such that for all (V, Q) ∈ (H1)2 × L2(Ω)
∫

Ω
D−1 · J ·V dx−

∫
Ω
∇ ·VC dx = −

∫
Ω
CV · n dσ∫

Ω
∇ · JQ dx = 0

(3.28)

3.3.2 Numerical convergence study

At the L1-scale, equivalent and pore scale mesh convergence study, respectively accounting
for equivalent properties and field variable responses, are performed on the J flux. Here, a
constant scalar diffusion coefficient is considered at the pore scale. The same geometry than
in section 3.2.3.1 is used. The evolution of flux averaging, the relative error in respect to the
denser mesh and the overall flux magnitude along a path, are plotted in figures 3.27a and b.
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At the macroscopic scale, a plateau is found with the first meshes and for denser meshes for the
local field variable.

Finally, in the rest of the section, we choose to consider small GMSH elements size ∼ 8 for
two practical reasons (1) in order to mesh the osseous ECM border as well as possible for the
study of the roughness boundaries role in the diffusion process (2) to allow an unbiased study
of the extend-local method with a better smoothing of the porosity of the local cell L1 through
the variation of the δ of the neighboring region.
Note that at the L2-scale, mesh convergence is already done in section 3.2.3.1.
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Figure 3.27: Mesh convergence for the diffusion problem on osteosarcoma a) Mesh effect on
equivalent properties through the averaging of the diffusive flux first component. b) Mesh effect
on pore scale variable through flux magnitude profiles over a line y = 800 px.

In the next step, the influence of local roughness of solid phase, i.e. osseous ECM boundaries,
on the L2-scale equivalent diffusion tensor is studied. A dilatation-erosion method with a disk-
shaped strel which radius varies between 1 px and 8 px is implemented. Results in figure 3.28
show the variation of coefficient D11 of the equivalent diffusion tensor for three 1500 px×1500 px
images and wall condition on the outer edges and a constant diffusion coefficient at the L1-scale.
The ECM boundary roughness show no significant influence on diffusion coefficient.
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Figure 3.28: Effect of dilation/erosion smoothing on the equivalent tensor diagonal coefficient
D11 for three 1500 px × 1500 px images.

The last step concerns the extend-local method meshes and the impact of semi-variable
meshes. Constant meshes have GMSH element sizes fixed to 8 for each δ and semi-variable
meshes have element sizes varying from 8 for the L1-local sub-cell and to a size adapted to the
distance between internal and external boundary outside the sub-cell. Buffering δ size is ranging
from 100px to 500px. We plot, on figure 3.29, the evolution of the equivalent coefficient D11
resulting from the constant meshes (blue cross) and semi-variable meshes (blue cirle) together
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with the porosity (in orange).
Variations of porosity and D11 are limited and semi-variable and constant meshes give similar
results according to the buffer region size.

Figure 3.29: Comparison between semi-variable and constant meshes for the extend-local method
applied to pure diffusion. Resulting equivalent diffusion tensor coefficients D11 are plotted (blue)
in function of the buffer region size δ for the two types of meshed. Porosity is illustrated in
orange.

In the 1-porosity model and throughout the rest of the section, i.e the study of the extend-
local and sequential method in the mass transport case, the diffusion tensor considered in (3.22)
at the L1-scale is reduced to the case of a scalar to describe the diffusion of a tracer in the fluid
part Ωf only 26. In this section, for purely methodological purposes, we consider an arbitrary
diffusion coefficient given by D = 5 px2s−1.

3.3.3 Influence of the sequential and extend-local methods parameters

In this section, the extend-local and sequential methods are explored in the context of
diffusive mass transport through their dependence on their intrinsic parameters.

3.3.3.1 Extend-local method study

We study the extend-local method at the L1-scale. First, the robustness of the method is
evaluated on a periodical geometry and then it is applied on biological tissue.

The periodic geometry PM2 chosen is the same stack of discs of size 2000 px × 2000 px
(fig. 3.30a). We choose a single L1-subcell of size 400 px × 400 px with δ sizes going from 0
to 400px with a step of 10px. The resulting scalar diffusion are plotted in figure 3.30b. The
wall, open boundary and periodic conditions are respectively drawn by crosses, squares and as-
terisks. The porosity of the total domain (i.e. considering the buffer region) is plotted in orange.

The resulting equivalent diffusion coefficient are very close and merge completely since the
beginning and their overall behavior is always dependent on the geometry period and porosity
variation, with much lower oscillation magnitudes compared to the Stokes flow case. The fast
convergence is explained by geometric properties and slow variation of diffusive properties since
the diffusion coefficient was constant at the pore scale 27.
It appears that the benefit of extend-local method is limited for this type of physical system.

26the porous medium being somehow seen as a perforated porous medium, the diffusion in the solid phase Ωs

at this scale is not considered.
27Please note that for some δ values of this periodic geometry, a refinement of the mesh sizes is necessary for a

good implementation of the periodicity on GMSH (otherwise leading to a false null value of the permeability)
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Figure 3.30: Extend-local process applied to periodic geometry with a 400 px × 400 px local
L1-subcell together with buffer region δ ranging from 0 px to 400 px with a 10 px step. a)
Periodic geometry. b) Equivalent scalar diffusion coefficient for three boundary conditions (wall,
open boundaries and periodic ones) in function of the δ size together with the overall porosity
variation).

For the biological tissue, we consider one L1-subcell size equal to 700 px × 700 px with δ
ranging from 0 px to 500 px as shown in figure 3.31. The resulting equivalent diffusive properties
coefficient from the wall and open boundary conditions are plotted respectively in red and black
while the porosity is in purple (fig. 3.31b and c).

Tendencies previously found in the convective responses are also observed for the diffusive prop-
erties excepting the impact of boundary conditions which show lower effects here (in the mag-
nitude difference). A small δ (≈ 100 px) significantly reduce the bias due to BCs for diagonal
coefficients, i.e. D11 and D22 and for spectral radii. The extra-diagonal terms are still sensitive
to BCs. Larger δ might have an impact as shown by the D22 evolution.
Again, this method always requires a compromise between computation time and the nature
of the physical system considered, if one targets L1-sub-block immersed in its near environ-
ment (close to the purely local problem) or in its more global environment (better biological
characterization).

Figure 3.31: The extend-local process is applied to heterogeneous porous media with three dif-
ferent BCs (wall and open boundaries) through increasing buffer region size δ. a) Osteosarcoma
binary image. b) Equivalent diffusion coefficient response, at the L2-scale, to the extend-local
process. c) Spectral radii (highest eigenvalue) behavior, at the L2-scale, to the extend-local
process.
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3.3.3.2 Sequential method study

The 2-steps grid-block upscaling method is applied on binarized image shown in figure
3.32a. The studied properties of the resulting tensors are made with the different splitting and
boundary conditions, i.e. wall (plotted in red), open boundary (plotted in black) and periodic
condition (plotted in green). We consider the L3-scale equivalent tensor coefficients (diagonal
and extra-diagonal), the spectral radius and the principal directions.

One can observed an overestimation and underestimation respectively for the open boundaries
and wall boundary conditions. Globally, the magnitudes of the differences between BCs accord-
ing to the splitting are smaller than in the flow case. Note that the periodic BC behaves like
the impervious boundary condition for this physical system as the tensor coefficients follow the
exact same response according to the splitting. Finally, we have the same tendency for tensor
symmetry emanating from the open boundary condition.
Finally, it can be possible to propose and ordering of equivalent diffusion diagonal coefficients
as expressed by the inequality (3.29).

DW , DP ≤ DPL (3.29)

Concerning the principal directions (fig. 3.33), the eigenvectors are relatively similar according
to the splitting and the BCs. As the tensor are not symmetrical, except for the one resulting
from the open boundary condition, the found directions are not orthogonal. Note that eigen-
vectors can be numerically calculated with opposite direction since eigenvectors are invariant by
linear transformations.

Consequently, the sequential method applied to diffusive mass transport is very similar to the
momentum transport. It is possible to characterize accurately the upscaling in the osteosarcoma
case as the essential properties of resulting diffusion tensor are conserved through the method
parameters.
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Figure 3.32: The sequential process is applied to 5000 px × 5000 px osteosarcoma image with
four different BCs (wall, open boundaries and periodic ones) through different splitting. a)
Osteosarcoma binary image. b) Equivalent diffusion coefficient response, at the L3-scale, to
the sequential process for the three BCS and in function of the L1-splittings. c) Spectral radii
behavior, at the L3-scale, to the sequential process for the three BCS and in function of the
L1-splittings.
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Figure 3.33: Principal directions, accounting for the non orientated flux direction, overall behav-
ior through the sequential process for the 5000 px × 5000 px osteosarcoma image and the three
BCs, in function of the L1-splittings.

3.4 Conclusion and discussion on the transport study

In this chapter, we have developed a mechanically consistent upscaling methods for the de-
scription of flow and diffusive transport in osteosarcoma. The found optimised workflow includes
grid-block methods with extend-local computations associated with sequential upscaling. Our
targeted application is biological tissue from osteosarcoma which is particularly heterogeneous.
The extend-local method allows to drastically reduce the bias induced by the choice of bound-
ary conditions on grid block elements border. The accuracy of the proposed method provides is
carried from the pore scale to the higher scale.
In a second step, we have shown that the 2-step grid-block upscaling method allows to represent
faithfully the mechanical properties of the object as they are preserved for different splitting
and boundary conditions. The upscaling method preserves the ordered relations of permeability
tensor and diffusive tensor as follows:

Kdiag
W ≤ Kdiag

S ,Kdiag
P ≤ Kdiag

PL (3.30)

Ddiag
W , Ddiag

P ≤ Ddiag
PL (3.31)

The reliability of results will be of interest to explore correlations between tissue mechanical
properties and biological responses in osteosarcoma.

In this chapter, we have considered three non-characteristic spatial scales i.e. which could
be chosen arbitrarily as long as they are ordered according to L1 < L2 < L3. Note that
this is allowed here because of the uniform nature of the equations (Stokes, Darcy or elliptic)
where the very nature of equivalent parameters does not varies through the geometries regions.
We emphasize that this is not always true. For other transport physics such as advection-
diffusion(-reaction), which reflect a combination of two different phenomena, the scales must be
constrained. Indeed, in order to obtain a relevant upscaling, the equivalent properties must then
account for the two processes respective magnitude, i.e. a region may present a purely diffusive
or convective character or a mixture of both. Therefore, the nature of the upper scale equation
can be very different depending on the region of the geometry considered. Thus, a particular
attention must be given, at each step of the method, to the splittings and the scales. To do this,
studies of the physical behavior at each scale could be necessary. For example, on the L1-scale,
it seems relevant to separate the geometrical parts with strong convection and purely diffusive
features. To automate this procedure, we can think of percolation phenomena for relevant split-
ting through flow-based procedures [132] or more abstract procedures such as elliptic-base grid
generation [133]. The generation of these splittings, non-uniform by nature, will allow us to
better capture the dominant phenomena on each part of the geometry for a relevant resolution
of the equations. It would also be possible to consider models with N-equations [134].

The methodology developed in this chapter is directly applicable to the 3D case. An applica-
tion of the upscaling methods to the exploration of osteosarcoma in three dimensions, although
difficult in the current state due to the unavailability of biological material, would allow us to ex-
tend the validation of the numerical methods since the geometric (and thus physical) properties
of the object will be different. We can for example think of the problem of percolation which will
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be very different from the 2D case and statistical percolation distribution limit may be reached.
In the 3D case, the sequential approach is highly relevant since it will drastically reduce the
numerical cost of such simulations while faithfully characterizing the transport phenomena.

In the following chapter, we develop and study the same uspcaling methods for linear elas-
ticity and poroelasticity model in the framework of small deformations.
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The structural mechanics of bones and tumor has been vastly studied in the literature.
For example, in the mathematical and mechanical study of tumors [88], they are generally con-
sidered as elastic objects (clusters of cells) in which a fluid flow can be considered, leading to
a poroelastic modelling [135] of those objects. This model is based on the high dependence of
tumor growth on mechanical stress, typically due to confinement by the surrounding tissues and
their interactions with ECM (see chapter 1). In the bone case, this theory contributed to a bet-
ter understanding of the mechanosensory system [37], as fluid shear stresses due to mechanical
loading induce an osteocytes biological response, which drives the bone remodelling.
While the contribution of structural stresses on osteosarcoma development have not yet been
explicitly studied in the literature, because those tumors are characterized by an osseous ECM
production, it is assumed that those stresses play a significative role in osteosarcoma spatio-
temporal dynamics. In addition, because this pathological remodelling may be related to an
immune response, potentially through osteoclasts and pathological metabolic pathways associ-
ated with these cells, it is interesting to investigate their role in the response to treatments.

In this chapter, the aim is to add a new element in the upscaling approach to study the
elasticity and poroelasticity of osteosarcoma. We decided to adopt a new approximation of the
osteosarcoma physical system for the study of the elasticity and poroelasticity. In the first part
of this chapter, the osseous ECM phase is seen as a homogeneous structure discarding lacuno-
canalicular system (LCS). The osteosarcoma will then be considered as a porous medium with
two solid phases, osseous and fibrous ECM, respectively phase 1 and 2 on figure 4.1.
In the poroelasticity case, these two structural phases are crossed at each point by a fluid
phase (interstitial fluid and LCS flow) modeled by a Darcy flow. The choice (arbitrary) of the
permeability, in each of the two phases, can be seen as the choice (still arbitrary) of the viscosity
µ in our previous studies (the orders of magnitude of the literature are nevertheless respected).
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Figure 4.1: Structural mechanics in 2D osteosarcoma requires a change of geometrical paradigm:
a 2-porosity model is considered in the rest of the chapter. The fibrous and osseous phases are
explicitly taken into consideration. In the poroelasticity study, a Darcy flow will be considered
in both phases, hence the terminology of 2-porosity model.

The grid-block method applied to linear elasticity at low deformation is well known for
the effective response, i.e. when a REV can be determined, or for the equivalent response
[136, 137, 63]. On another hand, the extend-local and sequential methods have, to our knowl-
edge, never been explicitly developed for this physics.

In the poroelasticity framework, the literature is quite scarce since the majority of the work
focuses on homogenization, with REV assumptions, of transient problems [138]; in this paper,
authors consider an unknown ”external” pressure and an undrained test. Therefore, the extend-
local method has never been developed to reduce the bias related to the choice of BCs.
The choice of coherent BCs for this physics is a sensitive issue in the context of osteosarcoma.
Indeed, the consideration of non-periodic BCs remains very marginal in the literature and only a
few studies have been done [139], where the authors are interested in the equivalent character of
the poroelastic response. As a result, very few works have focused on grid-block and sequential
methods in the poroelastic case.

This chapter is splitted in two parts. In the first section, an application of the upscaling
scheme to structural elasticity alone is considered. Then, we propose developments for the
poroelasticity case.

4.1 Linear Elasticity

In this section, we study the linear elasticity of a heterogeneous material through the up-
scaling methods. In a first part we will describe the mathematical model associated with the
2-step grid-block method. The extend-local method at the L1-scale will be described in a second
part. Finally, the apparent elasticity tensor behavior through the sequential upscaling is studied
numerically on different osteosarcoma binarizations.

4.1.1 Development of the grid-block method

We describe the biological structure at the tissue level L1, as a bi-phasic solid porous
medium. No fluid phase is considered in first approximation to focus on the elastic response of
the ECM only. The two solid phases are identified with osseous ECM and fibrous ECM and
are characterised by a difference in their elastic properties at the pore scale. A simplifying as-
sumption is made through the isotropy of each solid component. Therefore, a 2-porosity model
is chosen.
We consider a domain Ω, composed of the osseous and fibrous ECM solid phases, and its exter-
nal boundaries as ∂Ω = ∂intΩ ∪ ∂extΩ. A two-steps grid-block method is used to simulate the
elastic response of the tissue obtained from 2D histological sections. As previously, three scales
are considered (L1, L2 and L3) corresponding to a pore, intermediary and macroscopic scales
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and two successive upscaling are performed.

At the pore scale L1, the linear elastic behavior is modelled considering small strains. The
total heterogeneous solid domain Ω is considered in a static equilibrium leading to the the
following equilibrium equation (4.1):

−∇ · (σ(ũL1)) = 0, (4.1)

where the second order tensor σ is the stress tensor (Pa) and ũL1 the displacement at the L1-
scale (m). No body force, via a source term, is considered.

When a domain is subject to a loading, change occurs in its shape and its size. The sec-
ond order symmetrical strain-rate tensor ε(ũL1) = ∇symũL1 = ∇ũL1+(∇ũL1 )t

2 (dimensionless),
describes the deformation of the structural volume element 1.

The two tensors σ and ε depend linearly on each other and the elastic behavior can be
expressed by Hooke’s law, which can be written with a tensor notation as

σij(ũL1) = Cijklεkl(ũL1) (4.2)

where the fourth order tensor C (Pa), namely the stiffness tensor, is constant in each phases with
C = COECMχOECM+CFECMχFECM , χOECM and χFECM being respectively the characteristic
function of the osseous and fibrous ECM.
It is assumed that phases, osseous and fibrous ECM, exhibit isotropic behavior [63]. Thus, the
tensor C in (4.2) is known for each phase, and its components are written according to the
Young’s modulus E and Poisson’s ratio ν of the two phases.
Governing equations of tissue at the L1-scale is given by:

σij(ũL1) = Cijklεkl(ũL1), on Ω
−∇ · (σ(ũL1)) = 0, on Ω
Displacement continuity at ∂Ωint

Boundary conditions on ∂Ωext

(4.3)

The strain and stress tensor symmetry (σij = σji and εkl = εlk), implies that only nine
of the 24 coefficients Cijkl are necessary to a complete description of the relation. Another
symmetry consideration allows to reduce the number of independent coefficient to six. Finally,
using Voigt’s convention, one can write the Hooke’s law in (4.3) through the matrix equation
(4.4). σ11(ũL1)

σ22(ũL1)
σ12(ũL1)

 =

 C11 C12 C13
C22 C23

symm C33


 ε11(ũL1)
ε22(ũL1)
2ε12(ũL1)

 (4.4)

At the L1-scale, as the domain Ω is piecewise isotropic according to its two phases, each
elastic phase behavior can be represented with the following relationσ11(ũL1)

σ22(ũL1)
σ12(ũL1)

 = Ei
(1 + νi)(1− νi)

1− νi νi 0
1− νi 0

symm 1−2νi
2


 ε11(ũL1)
ε22(ũL1)
2ε12(ũL1)

 (4.5)

where Ei is the Young’s modulus and νi the Poisson ratio of a given phase i of the 2-porosity
model.

Remark: The relation between the strain and the stress is given by taking the inverse equation
(4.2) as follow

εij(ũL1) = Sijklσkl(ũL1) (4.6)
1The use of the symmetrical strain-rate tensor ε, instead of the non-symmetrical one, arise from mathematical

property of the inner product of a symmetric tensor and an anti-symmetric one (see following weak formulation).
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where S is the compliance tensor.
In the following, we consider equation (4.3) as it is possible to retrieve the compliance tensor by
a tensor inversion. Note that, under the Voigt’s notation matrix representation, this inverse is
not trivial and requires an appropriate mapping of the stiffness and compliance matrices.

Three types of boundary conditions on the external boundary will be considered in the
determination of the equivalent stiffness tensor at the L2-scale: the kinematic uniform boundary
conditions (KUBC) imposing a uniform displacement, the static uniform boundary conditions
(SUBC) imposing a traction force and the periodic condition, all arising from computational
homogenization. The computational homogenization periodic condition is considered in this
chapter as the literature is very developed in its comparison with the other two BCs. The AE
method [140] is not considered here. It requires the periodization of the porous medium.
These BC are the most common ones and others exist in the form of mixed conditions in the
literature [141].
The three retained conditions are respectively written as:

• KUBC (prescribing a uniform displacement on the boundaries)

ũL1 = A · x where A is a constant second order tensor and x the space variable (4.7)

• SUBC (prescribing a uniform traction on the boundaries)

σ(ũL1) · n = Σ · n where Σ is a constant second order tensor (4.8)

• Periodic [142] (arising from computational homogenization)

∇ · σ = 0 in Ω
σ = C(y) : ε ∀y ∈ Ω
ε = A +∇symv in Ω
v Ω-periodic
Σ = σ · n Ω-antiperiodic

(4.9)

where A is a constant second order tensor, v the periodic fluctuation and y the local
space variable. Here, the formulation consider the periodic fluctuation v as the main
unknown. One can also resolve for a total periodic displacement ũL1 but this cannot be
easily implemented in FEniCS as it require features not available.

The application of the grid-block upscaling method to the theory of linear elasticity is not
straightforward in the sense that two formulations are possible to obtain the equivalent properties
in computational homogenization framework [143], i.e equilibrium and energy. The reciprocity
of these two formulations is demonstrated when we consider boundary conditions respecting the
Hill-Mandel property, i.e 〈σ(ũL1) : ε(ũL1)〉Ω = 〈σ(ũL1)〉 : 〈ε(ũL1)〉Ω, ensuring that the mechan-
ical work density at L1-scale is conserved when upscaling to the L2-scale 2. Note that the energy
based formulation allows to demonstrate the symmetry of the equivalent stiffness tensor [145].

For the first uspcaling, the domain Ω is divided into Nx ×Ny sub-domains of dimension L2
1.

By imposing three different elastic tests according to unitary macroscopic tensor Ai or Σi with
i ∈ [[1, 3]], one can compute the equivalent stiffness matrix at the L2-scale, as shown in figure
4.2 for KUBC like tests. The exact procedure is detailed below.
One have, according to the divergence theorem, for a given boundary condition [146]:

KUBC ⇒ 〈ε(ũL1)〉Ω = A (4.10)

SUBC ⇒ 〈σ(ũL1)〉Ω = Σ (4.11)

where A, Σ are second order tensor.

2The Hill-Mandel condition is equivalent to 1
|Ω|

∫
∂Ω(P − 〈σ〉Ω.n).(ũL1 − 〈ε〉Ω.x)ds = 0, where P and ũL1 are

the traction vector density on the boundary and the displacement vector, respectively [144].
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Figure 4.2: Three KUBC elastic tests for the determination of the equivalent elastic tensor.

In the periodic and KUBC case, each component of the stiffness matrix is easily given as
trivial linear relations are obtained between the L2 stress and strain thanks to (4.10). For
example, if one take the first elastic test with the tensor A1 (such as A11 = 1) then:〈σ11(ũL1)〉

〈σ22(ũL1)〉
〈σ12(ũL1)〉

 =

 CL2
11 CL2

12 CL2
13

CL2
22 CL2

23
symm CL2

33


1

0
0

 =

C
L2
11

CL2
12

CL2
13

 (4.12)

In the SUBC case, we obtain rather a system of 9 equations for 6 unknowns, namely CL2
11 ,

CL2
12 , CL2

13 , CL2
22 , CL2

23 . To solve this problem, a least squares method and a minimization of the
cost function are performed to define the matrix coefficients [139]. Indeed, as one has consider
the stiffness relation (4.3) and not a compliance one, the equivalent stiffness tensor cannot be
trivially computed thanks to relation (4.11).
From that point on, this post-processing method will be used for each BCs since it allows to
keep the same Hooke type relation without using the compliance for SUBC. Note that it gives
the same results in the periodical and KUBC cases.

Therefore, a new description of the physical system at the intermediate scale L2 is found
comprising (1) a piecewise smooth geometry Ω̃ and its boundary ∂Ω̃ (2) a novel elasticity equa-
tion in which the stiffness tensor CL2(s) is piecewise constant:

σij(ũL2) = CL2
ijklεkl(ũL2), on Ω̃

∇ · (σ(ũL2)) = 0, on Ω̃
BCs on ∂Ω̃

(4.13)

For the second upscaling, an iteration of the above procedure is conducted on a coarser grid
form and the physical system described by (4.13). A new set of stiffness matrix is obtained at the
L3-scale [147], through the same post-processing method, giving a new linear elastic behavior
at the L3-scale with a piecewise constant stiffness matrix CL3(s̃), on a new piecewise smooth
domain ˜̃Ω as follows: 

σij(ũL3) = CL3
ijklεkl(ũL3), on ˜̃Ω

∇ · (σ(ũL3)) = 0, on ˜̃Ω

BCs on ∂ ˜̃Ω

(4.14)

The two-steps grid-block method stops here.

4.1.2 Weak formulation (FEM)

The discretization of the elasticity problem relies on an appropriate geometry meshing and
a stable Hooke’s law discretization.
The mesh is again constructed by the GMSH’s Delaunay built-in frontal algorithm. The mesh
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covers entirely the domain as the osseous and the fibrous ECM phases are discretized.
The weak formulation associated with (4.3) is expressed by equation (4.15).

find ũ ∈ (H1)2 such that for all v ∈ (H1)2

∫
Ω
σ(ũ) : ε(v) dx =

∫
Ω

(C : ε(ũ)) : ε(v) dx =
∫
∂Ω
σ(ũ) · n · v ds (4.15)

where we drop subscript associated with the considered scale for simplicity.
This problem (4.15) is ill-posed for uniform Neumann-like conditions [63] as the solution is de-
termined up to rigid body motion, i.e. translation and rotation. Thus, the use of the SUBC
type boundary condition requires nullspace enforcement 3 [148]. In the same way, the solution
is given up to a translation in the periodic case. One way to circumvent this issue is to consider
Lagrange multiplier.

A two-field mixed finite element approach is possible to models (4.3) taking into account two
unknowns in the displacement and the stress through the resolution of a saddle-point problem.
A significant advantage of this method is that it allows to better capture the incompressible or
nearly incompressible elastic behavior i.e. with a Poisson’s ratio close to 0.5. In opposition, the
functional linked to the principle of virtual work (4.15) is undetermined as Poisson ratio tends
to the limit case and can lead to spurious deformations such as locking effect for piecewise linear
and continuous elements [149]. Far from the limit value, the one-field and two-fields formulations
are found in good agreement.

For the biological tissue investigated, the hypothesis of incompressibility is not valid [150],
and a discretization based on displacement is well-adapted. As no mixed-formulation is used,
finite element spaces do not pose any particular problem and Lagrange space can be trivially
considered to discretize the displacement field. Moreover, no precondtioner in 2D is necessary
as the problem converges quickly. For large images, weak formulations can be solved with the
parallel sparse direct solver MUMPS. In this case, we use a biconjugate gradient solver together
with an algebric multigrid preconditioner.

4.1.3 Numerical parameters, method parameters

We study the effect of the mesh at the L1-scale through pore scale field variables and L2-
scale equivalent properties. A mesh conforming to the two phases is built with GMSH by giving
a fixed value of the meshes according to the nature of the phase. Thus, a mesh convergence
study according to the two phases is necessary. Specifically, we study for two fixed elastic
material parameters in the two phases, a SUBC problem with an unitary macroscopic Σ tensor
on 1600 px × 1600 px image. The binarized image is shown in figure 4.3a.
The behaviour of a macroscopic and unidirectional Young’s modulus, defined as E11 = 〈σ11〉Ω

〈ε11〉Ω ,
for various densities of the mesh is shown in figure 4.3b. No difference is noticed as the osseous
ECM and fibrous ECM mesh characteristic length increases.
Concerning pore scale variable convergence, the overall displacement is plotted over a line (y =
800 px) for different mesh characteristic lengths showing convergence as soon as we consider a
GMSH size of 16 for the meshes, as shown in figure 4.3c.

3we are looking for deformation preserving volume i.e the condition ∇.(ũ) = 0.
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Figure 4.3: Mesh convergence study according to the two phases for the linear elastic equation
in respect to the GMSH characteristic element size a) Osteosarcoma binary image b) Equivalent
unidirection Young’s modulus E11 resulting from multiple osseous ECM mesh characteristic size
in function of the fibrous ECM GMSH characteristic size, using a SUBC boundary condition.
c) Mesh effect on a pore scale field variable on the magnitude of the displacement over a line
(y = 800 px) for multiple GMSH mesh characteristic size of the osseous ECM and a given fibrous
ECM GMSH mesh characteristic size.

We have checked that the smoothing method of ∂intΩ boundary had no effect on the predicted
elastic properties but results are not presented here and the protocol detailed in chapter 3 and
section 3.2.3.2 was used for further studies.

4.1.4 Influence of the sequential and extend-local methods parameters

4.1.4.1 Extend-local method study

In this section, we study the effects of the extend-local method on the stiffness tensor, at the
L2 scale after resolution of (4.3). We will consider a set of elastic parameters at the pore scale as
(EOECM , EFECM , νOECM , νFECM ) = (500 MPa, 50 MPa, 0.3, 0.35), where the subscripts OECM
and FECM correspond respectively to the osseous and fibrous ECM phases. For methodological
purposes, we consider a set of arbitrary elastic quantities, with a moderate contrast on Young’s
modulus and Poisson’s ratios not far from those found for a bone [150]. Note that different values
will result in the same qualitative response of the extend-local method and the ratio between
Young’s moduli is examined latter in this manuscript.

To do this, all the three boundary conditions are considered: the SUBC, the KUBC and the
periodic boundary conditions.
As for the previous physics (transport mechanisms), it is useful to reduce the bias inherent in the
choice of boundary conditions. It is interesting to note that this numerical process is actually
used in the experimental field with, for example, the use of standardized tensile specimens: their
ends are enlarged, so that boundary conditions influence is limited in the region of interest.
We study the evolution of resulting stiffness matrix coefficient Cij trough increasing δ neighbor-
ing size, for a constant local L1-cell.

In the extend-local case and more particularly for periodical boundary conditions, the macro-
scopic relations of the type (4.10) and (4.11) do not hold anymore since the averaging is done on
a sub-cell of the total computational domain. The least square strategy adopted to determine
the equivalent property is then used. In the periodic case for example, we have by periodicity,
on the whole domain, 〈ε〉Ω = 〈A〉Ω + 〈∇symv〉Ω = A because v is a periodic fluctuation. In
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the extend-local method case, as we proceed the upscaling only on a sub-cell L1, it leads to
〈ε〉L1-cell = 〈A〉L1-cell + 〈∇symv〉L1-cell without further simplifications.

To validate the approach, a periodic geometry is considered and is the same as in the previ-
ous section 3.2.4.1 as shown in figure 4.4a. The calculations for a single length of the local cell
are presented with L1 = 400 px. The δ-size of extend region is ranging from 0 to 400 px by steps
of 20 px. We plot the resulting stiffness matrices coefficient in figure 4.4b and 4.4b for the three
boundary conditions (KUBC in blue, SUBC in red and the periodic condition in orange).

Coefficients (diagonal and extra-diagonal) end up being perfectly merged according to all the
BCs. The C11 and C22 coefficients follow the same evolution since the geometry is isotropic.
Note that values do not stabilize exactly around the local periodic solution (as it corresponds
computational BCs and not the exact solution 4). It do not oscillates with porosity for large δ
contrary to transport calculations in chapter 3. The geometry being isotropic, the extra diagonal
coefficients C13 and C23 are close to zero (see equation (4.5)). Small variations are observed for
small δ but remain close to the zero. For larger δ, coefficients converge effectively towards 0.

Figure 4.4: The extend-local method is applied in the framework of linear elasticity at small
deformation for a periodic geometry a) Periodic geometry. b) Behavior of the stiffness matrix
diagonal coefficients (in MPa), at the L2-scale, according to the buffer size and for the 3 boundary
conditions ; KUBC in blue, SUBC in red and the periodic condition in orange. c) Behavior of
the stiffness matrix extra-diagonal coefficients (in MPa), at the L2-scale, according to the buffer
size and for the same boundary conditions.

The binarized image of biological tissue is shown in figure 4.5a. Results obtained with a
single L1 length, i.e with L1 = 1000 px, are presented. We plot stiffness coefficients as a function
of the buffering size δ for the KUBC (in blue) and the SUBC (in red) conditions. For this study,
periodic conditions are discarded because of the bias they introduce in the symmetrization of

4as it does not come from the theoretical homogenization such as AE or VA.
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the geometry since the total periodized domain also includes the buffer zone.

As shown in figure 4.5b, we notice a convergence of the diagonal terms toward an asymptotic
value according to the two BCs. Extra-diagonal coefficients show decreased discrepancies in
convergence, which still depends on the porosity evolution for the first steps of the method, as
shown in figure 4.5c.

Figure 4.5: The extend-local method is applied on an osteosarcoma geometry a) Osteosarcoma
geometry b) Behavior of the stiffness matrix diagonal coefficients (in MPa), at the L2-scale,
according to the buffer size and for two boundary conditions (KUBC, SUBC) c) Behavior of the
stiffness matrix extra-diagonal coefficients (in MPa), at the L2-scale, according to the buffer size
and for the two boundary conditions KUBC and SUBC.

In opposition to transport problems, convergence of the extend-local applied to linear elasticity
can be achieved for sufficiently large buffer zones; regardless of the chosen geometry, whether
it is periodic isotropic or from a real osteosarcoma image. As a result, the bias inherent in the
choice of boundary conditions can be completely erased for the calculation of elastic equivalent
properties.

The initial difference between the static and kinematic boundary conditions are all the more
pronounced if the contrast between the Young’s modulii is high [151]. This is due to the fact that
KUBC boundary conditions impose a uniform displacement regardless of the phase along the
boundary. On the contrary SUBC, which imposes a force on the boundary, induce a resulting
contrast in the displacement depending on the phase.
For high contrast elastic phases, the extend-local method smooths this difference for small
neighboring region (δ ≈ 100 px) by underestimating the equivalent property as would the
SUBC condition. For example, we consider the evolution of the equivalent coefficient C11 at
the L2-scale when considering a constant fibrous ECM Young modulus equal to 5 and for
osseous ECM, a Young’s modulii ranging from the value given in the set {5 MPa, 50 MPa,
500 MPa, 5000 MPa, 50 000 MPa, 500 000 MPa}. We plot the resulting coefficient for the SUBC
and KUBC conditions boundary, respectively in red and blue, given two buffer region sizes
δ = 0 px (fig. 4.6a) and 100 px (fig. 4.6b).
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Extend-local method effectively reduces the inherent bias of boundary condition but greatly un-
dervalues equivalent coefficient resulting from the KUBC condition around those of the SUBC.
To address this problem of strong contrast, some authors recommend considering only the ma-
trix, in a sort of extend-local method, without considering any solid inclusion on the edge [152].
It would also be interesting to consider a kind of effective medium method described in [102].
In chapter 5, where high contrast are considered, we are more interested in the qualitative rather
than quantitative aspects of mapping equivalent properties.

In the rest of the chapter, we choose limited contrasts between the elastic parameters of the two
phases for the sake of clarity.

Figure 4.6: Study of the elastic parameters contrast effect on the resulting equivalent properties,
represented by the C11 coefficient (in MPa), at the L2-scale according to the KUBC and SUBC
boundary condition and in function of different osseous ECM Young’s modulii (for a fix fibrous
ECM modulus equal to 5). a) The local upscaling method is applied δ = 0 px. b) The extend-
local method is applied with δ = 100 px.

4.1.4.2 Sequential method study

In this section, we will study the sequential method together with a local method at the
L1-scale, in the framework of linear elasticity. Linear elasticity has been extensively studied in
the context of grid-block upscaling. Most of the results developed here are known at the L2-
scale and the open question is to verify if they are preserved in the framework of the sequential
procedure and at the L3-scale.

We recall that at the L1-scale, the stiffness matrix are piecewise constant according to the
solid phases of the osteosarcoma. At the L2-scale, the equivalent stiffness matrix is piecewise
constant according to the considered splitting. Three standard boundary conditions are consid-
ered, consistently at each scale; the KUBC, SUBC and the periodic boundary conditions. The
elastic parameters of the phases are those of the previous section, i.e
(EOECM , EFECM , νOECM , νFECM ) = (500 MPa, 50 MPa, 0.3, 0.35). Again, different Young’s
modulus will result in different quantitative result but with a similar qualitative response.

The computational homogenization states [153] that on a REV, the effective parameters are
equals whatever are the boundary conditions, that is:

CP = CKUBC = CSUBC (4.16)

The equivalent properties of the stiffness tensor in heterogeneous porous media is also very well
understood [136]. Indeed, we have in the sense of quadratic forms 5, the following inequation:

CSUBC ≤ CP ≤ CKUBC (4.17)
5i.e in the sense that ∀x, xtAx ≤ xtBx
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A theoretical result also accounts for the splitting effect by stochastic average of the obtained
results at the L2-scale [137] with:

Cf
SUBC ≤ Cc

SUBC ≤ Cc
KUBC ≤ Cf

KUBC (4.18)

where the superscripts f , c stand for fine and coarse grid respectively, and the ”overline” nota-
tion represents the stochastic average operator 6.

Remark: Please note that inequality (4.17) is verified in the above extend-local framework.

The resulting stiffness matrices through the two-step sequential process are computed on
a binary image, shown in figure 4.7a, and having a dimension of 5000 px × 5000 px. The L1-
splitting ranges from 2 × 2 to 5 × 5 7 and only one L3-cell is considered in the L3-paving with
merging L2 and L3 scales. Results are shown in figure 4.7. KUBC resulting L3-scale equivalent
coefficients are plotted in blue, those from SUBC in red and finally those from the periodic
condition in yellow.
In order to check the consistency of the results and the numerical implementation, we will use
relation (4.17) at the intermediary scale L2. This inequality induce an explicit scalar inequality
of the same nature on the diagonal coefficients C11 and C22 [136], such as

CSUBC11 ≤ CP11 ≤ CKUBC11 (4.19)

CSUBC22 ≤ CP22 ≤ CKUBC22 (4.20)

It is interesting to see how tensors from periodic conditions will behave in the relation (4.17) as
we proceed to unconventional geometry symmetrization.
Similar to the transport case, it is also interesting to see how the resulting tensors behave at the
L3-scale as a function of the L1-splitting size and if it is possible to determine a relation similar
to (4.18) in the deterministic framework of the sequential method.

Relation (4.18) and deterministic version of (4.18) are verified for the 2-steps upscaling method
as shown by the evolution of C11 and C22. Interestingly, the periodic resulting coefficients always
lie between the other two boundary conditions even with the geometry symetrization process.

6One can show the existence of a quadratic inequality for the compliance tensor S according to the splitting
and the boundary conditions essentially given by the inverse of (4.17) and (4.18). Mixed conditions were also
considered in [136].

7made to accommodate the consistencies of the graphical representation because periodic BC in the one-step
method is not considered here; note that one-step method in the KUBC and SUBC cases give appropriate results.
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Figure 4.7: The 2-step method is applied on a 5000 px × 5000 px osteosarcoma image for linear
elasticity model. a) Osteosarcoma binary image. b) Behavior of the stiffness matrix diagonal co-
efficients (in MPa), at the L3-scale, according to the L1-splitting and for three different boundary
conditions (KUBC, SUBC and periodic). c) Behavior of the stiffness matrix extra-diagonal coef-
ficients (in MPa), at the L3-scale, according to the L1-splitting and for three different boundary
conditions (KUBC, SUBC and periodic).

In the same way as in the previous section 3.2.4.2 in the study of the flow problem, we
validate the sequential process on a large image shown in figure 3.24 (16 000 px × 16 000 px).
The displacement field resulting from the local 2-steps method is compared to those of a DNS.
The boundary condition chosen on the four external boundaries to carry out the calculations is
similar for both simulations and is an imposed displacement boundary condition KUBC (4.7)
corresponding to a hundredth of the geometry length. The 2-step method is performed with an
8×8 L3-paving together with a 2×2 L1-splitting corresponding respectively to L1 = 1000 px and
L2 = 2000 px and a consistent KUBC boundary condition across the two scales. Material prop-
erties are as follows: (EOECM , EFECM , νOECM , νFECM ) = (500 MPa, 5 MPa, 0.3, 0.35). The two
displacement magnitude fields are shown on figure 4.8a and b. Here, we plot the displacement
magnitude over two lines y = 11 000 px and y = 4000 px, respectively on top and bottom of
figure 4.8c; with the DNS results given in red and the 2-steps in blue.

The displacement calculated with DNS or 2-step method are very similar. It is therefore possible
to correctly represent the local displacement, even without REV assumption, with the 2-steps
process 8.

8Parallel Programming with MPI does not seem to be trivial in elasticity through FEniCS. Indeed, a peak
in RAM usage can make the calculation impossible (the above computations have been performed in serie on a
computer with high memory available in the laboratory). An optimization of the use of MPI in our code seems
necessary to adequately distribute the available cores.
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Figure 4.8: Comparison between DNS and 2-step computations on the 16 000 px× 16 000 px ge-
ometry (chapter 3 and figure 3.25) for the elastic model validation; with a set of elastic parame-
ters such that (EOECM , EFECM , νOECM , νFECM ) = (500 MPa, 5 MPa, 0.3, 0.35). a) Illustration
of the displacement magnitude field after solving (4.3) with a KUBC boundary condition prob-
lem like. b) Illustration of the displacement magnitude obtained after solving equation (4.14)
obtained by the 2-step method with L1 = 1000 px, L2 = 2000 px and a KUBC conditions. c)
Displacement magnitude profiles comparison over horizontal lines (y = 11 000 px on top and
y = 4000 px at the bottom).

In conclusion, the sequential grid-block method applied to the study of the linear elastic
response of biological tissue is perfectly consistent and quantitative inequalities, at the L3-scale,
are found to be in agreement with those find in the literature for the first upscaling. The extend-
local method allows a better characterization of the equivalent property at the L2-scale by an
significant reduction of the bias related to the choice of the boundary conditions. The sequential
grid-block is shown to be relevant in describing the mechanical properties of large osteosarcoma
images.
A consistent study of the osteosarcoma elastic behavior is of great importance since it will be
used in the following poroelasticity case.

4.2 Poroelasticity

We increase the complexity by considering that the elastic behavior of osteosarcoma is mod-
ified by the presence of the fluid, which transforms the problem into a poroelasticity problem.
The couplings of governing laws of two phases, i.e. fluid and solid, require specific developments.
The founding works of this physics are those of Biot (1935,1941) and Terzaghi (1923) [135].

The stationary regime of poroelasticity is considered, the fluid fully saturates the porous
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medium and structural deformations are quasi-static. The coupling between the fluid flow and
the elastic response of the solid phases is considered weak in our approach. The fluid pressure
field is determined by the imposed flow and permeability tensor. The solid stress field is then
influenced by the fluid pressure.

We choose a 2D geometrical paradigm similar to linear elasticity at small strain with a 2-
porosity model and underlying porosity is considered for each phase. The model is described
in figure 4.9. At the local L1-scale, ECM is considered as a two-phase solid, i.e. osseous tissue
and fibrous tissue, saturated by a fluid following a Darcy flow regime. Each phase is considered
isotropic and scalar permeability is associated with each phase, i.e Lacunar-Canalicular System
(LCS) is now considered.

Figure 4.9: 2-porosity poroelasticity model accounting for the flow in the two phases.

The poroelastic response of this heterogeneous material is explored using a methodology
similar to that of the elastic response described previously. We first describe the mathematical
model associated with the 2-steps grid-block method. In a second and third part, the extend-
local method at the L1-scale and the sequential method are respectively studied.

4.2.1 Mathematical model

We consider the stationary linear poroelasticity with small strain at the L1-scale. Stress
tensor is related to the strain tensor by a modified Hooke’s law as follows:

σtot(ũL1) = DC : ε(ũL1)− αpL1Id, (4.21)

where α is the Biot coefficient accounting for the compressibility of phases, ũL1 being the dis-
placement field and pL1 , the fluid pressure field.

The Ω body is maintained at equilibrium which is rewritten according to the total stress in
equation (4.22).

−∇ · (σtot(ũL1)) = 0, (4.22)

where no body force via a source term is considered and a negative sign is taken by convention.

When considering a stationary regime, no reciprocity of the coupling is possible in the gov-
erning equation of the flow as the pressure field is not modified by elastic stress and strain
changes. Therefore, a Darcy equation describes the fluid flow and local equilibrium assumption
9 is made [96, 154]. The resulting fluid pressure field can be solved separately and put into the
modified Hooke’s law (4.21) as a simple parametric function.

Remark: In the general poroelastic framework, the continuity equation associated with the
flow cannot be solved independently of the stress and strain fields and is written as

∂t(
p

M
− αTr(ε(ũL1))) +∇ · qL1 = 0, (4.23)

9The question of local equilibrium is more sensitive on unsteady problems such as weakly compressible Darcy
flow or diffusion/convection, and may lead to specific difficulties with this type of geometry.
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where qL1 , is the Darcy velocity at the L1-scale and M is an inverse storage coefficient. The
term ζ = p

M − αTr(ε(ũL1)) describe the variation of fluid volume per unit reference volume.
Thus, in stationary conditions, it is reasonable to consider a weak coupling for the poroelasticity
equations.

Finally, the set of governing equations at the L1-scale is as follows:

∇ · qL1 = 0 in Ω
−∇ · (σtot(ũL1)) = 0 in Ω
qL1 = −K

µ · ∇pL1 in Ω
σtot(ũL1) = DC : ε(ũL1)− αpL1Id in Ω
Field variables continuity condition on ∂intΩ
Boundary conditions on ∂extΩ

(4.24)

with DC = DCOECMχOECM + DCFECMχFECM where χOECM and χFECM are respectively
the characteristic function of the osseous and fibrous ECM respectively.

The modified Hooke’s law is described for the Ω domain using piecewise isotropic coeffi-
cients. The parameter α is the ratio of the fluid volume gained or lost in a material element
due to the volume change when loaded under drained conditions. In the following, α is fixed to 1.

The development of the two-step upscaling method is similar to the linear elasticity case.
The key differences are the nature of equations and the choice of boundary conditions at each
scale. Two categories of boundary conditions are imposed since they concern fluid and solid
phases.

First, Darcy flow is solved to obtain the fluid pressure field. We impose an horizontal flow.
As shown in figure 4.10, two types of boundary conditions, on top and bottom external edges, are
then considered, namely the impervious and open boundary conditions, expressed by equation
(3.14) and (3.15), respectively. In a second step, boundary conditions on the solid phases are
imposed on external boundaries. We use the KUBC (solid displacement ũL1) and SUBC (on
the total traction) conditions which are stated as follows:

• KUBC: ũL1 = Ã · x on ∂Ω (uniform displacement on the boundaries)

• SUBC: σtot(ũL1) · n = Σ̃ · n on ∂Ω (uniform total traction on the boundaries)

where Ã and Σ̃ are both symmetric tensors of order 2 not depending on the space variable. The
space variable is named x.

Remark: The physical system comprising an incompressible Darcy equation at the L1-scale
with a 2-porosity model is studied with the extend-local and sequential upscaling methods as
detailed in appendix B.

Thus, we consider four combinations boundary conditions arising from permutations between
the elastic and flow BCs and they are detailed in Table 4.1.

KUBC (solid) SUBC (solid)
Symmetry (fluid) KUBCsym SUBCsym

Linear (fluid) KUBCpl SUBCpl

Table 4.1: Poroelastic boundary conditions arising from the permutation of the linear elastic
and transport models.

For the first upscaling, we consider three tests corresponding to a unitary tensor Ã or Σ̃,
summarized in figure 4.10. For each test i ∈ [[1, 3]], one can relate stress to strain, following
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[139] with Voigt’s notation as expressed by equation (4.25).〈σ
i
biot,11(ũL1)〉Ω
〈σibiot,22(ũL1)〉Ω
〈σibiot,12(ũL1)〉Ω

 =

DC
L2
11 DCL2

12 DCL2
13

DCL2
22 DCL2

23
symm DCL2

33


 〈εi11(ũL1)〉Ω
〈εi22(ũL1)〉Ω
2〈εi12(ũL1)〉Ω

 (4.25)

where σbiot = σtot+pId is the ”Biot effective stress” [155] and DCL2 the equivalent poroelastic
tensor at the L2-scale.

Figure 4.10: Poroelastic tests for the determination of the equivalent poroelastic tensor.

The equivalent poroelastic stiffness matrix is symmetric even for anisotropic geometries
[156, 157]. The minimization of a cost function allows to determine the poroelastic stiffness
matrix coefficients. Here, one need to enforce 10 the equivalent poroelastic matrix symmetry
[139] as the least square procedure can produced some nearly symmetric tensor, even more with-
out a REV assumption.

Therefore, the physical system is represented, at the L2-scale, by a piecewise smooth medium
Ω̃ having a poroelastic stiffness tensor given by DCL2 with the modified Hooke’s law expressed
by equation (4.26). 

∇ · qL2 = 0 in Ω
−∇ · (σtot(ũL2)) = 0 in Ω̃
qL2 = −K

µ · ∇pL2 in Ω̃
σtot(ũL2) = DCL2 : ε(ũL2)− αpL2Id in Ω̃
Boundary conditions on ∂Ω̃

(4.26)

For the second upscaling, process is repeated for the same fluid and solid BCs than in the first
upscaling, and the stress-strain relation at the L3-scale is given by [155], with another piecewise
constant poroelastic stiffness tensor DCL3 . This results in the set of equations (4.27).

∇ · qL3 = 0 in Ω
−∇ · (σtot(ũL3)) = 0 in ˜̃Ω
qL3 = −K

µ · ∇pL3 in ˜̃Ω
σtot(ũL3) = DCL3 : ε(ũL3)− αpL3Id in Ω̃
Boundary conditions on ∂ ˜̃Ω

(4.27)

4.2.2 Numerical discretisation (FEM)

At L1-scale, the discretization of equation (4.24) must be consistent for Darcy’s law and
modified Hooke’s law. We consider the same mesh for both physics. The GMSH’s Delaunay
built-in frontal algorithm covers the entire domain as fluid and solid phases are considered while

10by giving the coefficient under the diagonal of the matrix, the same value as those above the diagonal
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following the phase interfaces ∂intΩ.

The weak formulation associated with the second and third equation of (4.24) on Ω at the
L1-scale, is expressed by equation (4.28).

find ũ ∈ (H1)2 such that for all v ∈ (H1)2

∫
Ω
σtot(ũ) : ε(v) dx =

∫
Ω

(DC : ε(ũ)) : ε(v) dx−
∫

Ω
pId : ε(v) dx =

∫
∂Ω
σtot(ũ) ·n ·v ds (4.28)

where we drop again the subscript associated with the scale of the grid-block method for the
sake of simplicity.
Finite element spaces, preconditioner and solver are chosen according to the ones chosen in the
elastic and flow case (see section 4.1.2 and 3.2.2) 11.

Mesh convergence can be estimated according to local variable (velocity and displacement)
or equivalent properties (average velocity and unidirectional poroelastic Young’s modulus). We
choose as mesh size, the minimum of the found values.

4.2.3 Influence of the sequential and extend-local methods parameters

4.2.3.1 Extend-local method study

In this section, we study the effects of the extend-local method on the poroelastic equivalent
property, at the L2-scale, after the resolution of equation (4.24).

All the four boundary conditions of Table 4.1 are considered. Because of the isotropic behav-
ior at the L1-scale of the phases, tensor coefficients DCijkl are known for the two individual con-
stituents, i.e osseous and fibrous ECM, and is written according to their Young’s moduli and Pois-
son’s ratio. Their values are (EOECM , EFECM , νOECM , νFMEC) = (500 MPa, 50 MPa; 0.3, 0.35).
Permeabilities are (KOECM ,KFMEC) = (0.2, 2000) in px2.
In figure 4.11, we plot the resulting equivalent poroelastic matrix coefficients, obtained for a
single L1 = 1000 px scale, in function of the buffer region size δ (ranging from 20 px to 500 px
with a 20 px step) and with respect to the four possible boundary conditions. The KUBCsym,
KUBCpl, SUBCsym and SUBCpl are respectively given in blue line, blue circles, red line and red
circles.

For the two solid types of boundary conditions (KUBC and SUBC), the values of the equivalent
diagonal coefficients converge toward a common value as shown in figure 4.11b. We note a
more difficult convergence for the DC22 coefficient accounting for the material elasticity in the
orthogonal direction to the imposed fluid direction.
In this case, the addition of the fluid pressure field term has little to no effect on the quantita-
tive behavior of the equivalent response as the resulting values are practically merge with those
obtained by the pure elastic model. (overall difference around 10%).

Concerning extra-diagonal coefficients of the poroelastic equivalent matrix, the overall behavior
remains quite erratic as no perfect convergence in value is reached even for high buffer region
size for the four BCs. This is to be balanced with the fact that the overall difference between
the four boundary condition resulting values is at best of the unity order. In contrast to the di-
agonal coefficients, there is still a difference here, albeit small, depending on the fluid condition.
The PL underestimates the value of coefficients for small buffer regions; this difference totally
disappears for sufficiently large extended region sizes.

11A two-field mixed finite element approach is also possible to simulate the weak formulation above but is not
necessary as the material are not incompressible.



86 CHAPTER 4. STRUCTURAL MECHANICS IN OSTEOSARCOMA

In general, one find a similar behavior as in the linear elasticity framework for the chosen set of
parameters.

D
D

D
D D

D

Figure 4.11: The extend-local method is applied on an osteosarcoma geometry with the sets
of elastic parameters (EOECM , EFECM , νOECM , νFMEC) = (500 MPa, 50 MPa; 0.3, 0.35) and
(KOECM ;KFMEC) = (0.2, 2000) in px2. a) Osteosarcoma geometry b) Behavior of the poroe-
lastic matrix diagonal coefficients according to the buffer size and for four different boundary
conditions (KUBCsym, KUBCpl, SUBCsym and SUBCpl) c) Behavior of the poroelastic matrix
extra-diagonal coefficients according to the buffer size and for four different boundary conditions
(KUBCsym, KUBCpl, SUBCsym and SUBCpl).

In conclusion, the extend-local method can also be used, at the L1-scale, in this very specific
case of BCs to reduce the biases intrinsic to each BCs.

4.2.3.2 Sequential method study

In this section, we study the sequential method in the framework of linear weakly coupled
poroelasticity using the local method at the L1-scale. The open question is whether or not the
addition of the pressure field modifies the quadratic order relations found in linear elasticity.

The same binarized image shown in figure 4.12a is used together with the same set of mate-
rial paramaters. Young’s moduli and Poisson’s ratio in both phases are given by
(EOECM , EFECM , νOECM , νFMEC) = (500 MPa, 50 MPa; 0.3, 0.35) and permeabilities are given
by (KOECM ;KFMEC) = (0.2, 2000) in px2.
The resulting equivalent tensor coefficients at the L3-scale are plotted in figure 4.12b and figure
4.12c. They are obtained for L1-splitting ranging from 1× 1 (1-step method) to 5× 5 and with
respect to the four possible boundary conditions. Again, the KUBCsym, KUBCpl, SUBCsym

and SUBCpl are respectively given in blue line, blue circles, red line and red circles.

The diagonal terms plotted in figure 4.12b shows the same overestimation (KUBC) and underes-
timation (SUBC) with respect to solid boundary conditions, with no significant influence of two
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fluid BCs. Moreover, an order relation is verified between the dense and fine splitting similar to
the one found in elasticity and expressed by equation (4.18). The extra diagonal term plotted
in Figure 4.12b follows the same evolution with a weak difference due to fluid BCs for a given
solid BC.

In general, the results are similar to the elastic case (qualitatively) with quantitative differences,
coming from the addition of the pressure term, of the order of few percents. This can be explained
by the weak coupling considered, as well as the poroelastic tests used for the determination of the
equivalent poroelastic properties where, we recall, we considered a single horizontal flow. This
difference can increase when considering 3D geometry where different percolation properties will
be at work.
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Figure 4.12: The 2-steps method is applied on a 5000 px × 5000 px osteosarcoma geometry for
a linear poroelasticity model. a) Osteosarcoma binary image. b) Behavior of the equivalent
matrix diagonal coefficients, at the L3-scale, according to the L1-splitting and for four different
boundary conditions (KUBCsym, KUBCpl, SUBCsym and SUBCpl). c) Behavior of the equiva-
lent poroelastic matrix extra-diagonal coefficients, at the L3-scale, according to the L1-splitting
and for four different boundary conditions (KUBCsym, KUBCpl, SUBCsym and SUBCpl).

4.3 Conclusion and discussion on structural mechanics

In this chapter, we have applied the extend-local and two-steps grid-block upscaling methods
to elastic and poroelastic responses of heterogeneous media and especially osteosarcoma tissue.
It was shown that an extend-local method was beneficial for linear elasticity models to reduce
the very important biases introduced by boundary conditions if moderate contrasts in elastic
parameters are considered.
Concerning the 2-step grid-block method, we have recovered the principal literature results
on the quadratic order relation between resulting stiffness tensor at the L3-scale. They are
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summarized as follows:
CSUBC ≤ CP ≤ CKUBC (4.29)

Furthermore, we obtained a deterministic order relation on the L3-scale equivalent tensor, in
function of the L1-splitting density, as expressed by relation (4.30).

Cf
SUBC ≤ Cc

SUBC ≤ Cc
KUBC ≤ Cf

KUBC (4.30)

We were able to confirm the consistency of the methodology applied to osteosarcoma by com-
paring the two-steps method to the DNS simulation used as reference.

An extension of the methodology allowed to explore linear poroelasticity with a weak cou-
pling between solid and fluid responses. We found qualitative behavior of the upscaling methods
resulting from poroelasticity and order relations similar to elasticity at the L3-scale, which can
be summarized by relations (4.31) and (4.32). For a given solid BC, in the range of permeabilities
explored, it is found that a fluid BC plays only a minor role in the equivalent poroelastic response.

DCSUBCsym ,DCSUBCpl
≤ DCKUBCsym ,DCKUBCpl

(4.31)

DCf
SUBCsym

,DCf
SUBCpl

≤ DCc
SUBCsym

,DCc
SUBCpl

≤ DCc
SUBCsym

,DCc
SUBCpl

≤ DCf
SUBCsym

,DCf
SUBCpl

(4.32)

As in the transport framework, the methodology developed is applicable to the 3D case. The
transition to the 3D paradigm could even be preferable from a purely methodological point of
view. Indeed, the osseous ECM connectivity and the 3D percolation properties would allow the
use of the same geometrical model as in the transport framework (i.e. 1-porosity model) and
thus a better hierarchization of the physical phenomena in the mechano-biological comparisons
(consistency of the models for both physics).

This chapter concludes the mechanical study of osteosarcoma through the sequential grid-
block upscaling method. In the next chapter, a mechano-biological study of osteosarcoma is
conducted and the heterogeneity of the response to treatment in a cohort of 4 patients is exam-
ined.
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The heterogeneity of osteosarcoma, from a genetic, cellular and tissular point of view,
makes it very difficult to understand in terms of tumoral dynamics. In addition, the response
heterogeneity of neoadjuvant chemotherapy is not yet well understood [10]. We focus on the
intratumoral treatment response heterogeneity as it may provide new clues to understand the
underlying mechanisms of bad response to treatments.

From a clinical point of view, the exploration of H&E histological sections gives the cell den-
sity and the nature of the bone, which can be used to estimate the tumor invasiveness and the
response to treatment. The extend of tumor necrosis in response to chemotherapy is assessed
as being greater or less than 90% of necrosis. Patients with more than 90% necrosis count are
good responders and those with less than 90% are poor responders [158]. While the therapy
response is currently determined through this Huvos and Rosen grading, a more quantitative
approach that takes into account the intratumoral heterogeneity could bring a new insight in
the understanding of the pathology and new perspectives for the treatments.

While osseous ECM may exhibit a chemotherapy-resistant phenotype [159], a question ex-
plored in this work is whether region with high osteo-formation could be a physical barrier to
treatment transport as highlighted in [26]. In addition, pathological osseous ECM remodelling
(see fig. 1.9) is related to a vicious cycle involving osteoclasts [21]. This cell population is also
involved into the immune response [10], and it should be sensitive to mechanical effects [51, 52]
since it is also observed in non-pathological bone [160, 161]. In this context, structural strain
and stress might play a role on treatment efficiency.

We hypothesize that the response to treatment may be correlated to the architecture of os-
seous ECM and also that responses to differentiated physical stimuli could play a significant role.
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Lacy-like and trabecular-like architectures are considered and correlations with cell populations
are investigated.

Developments are based on patient-specific anatomo-pathological images and extend-local
grid-block sequential upscaling procedure. Mass transports and structural elastic responses are
considered. This problem is complex and restrictive assumptions are made. The vasculature
is discarded to focus on steady interstitial transport which is considered steady, and reactive
processes between cell phase and fluid flow are not considered. For flow studies, osseous ECM
phase is considered as non-porous obstacles (focus on tissue interstitial flow) and for the struc-
tural behavior, a two-porosity model is used at the pore scale with isotropic elastic properties
for the two phases, i.e. osseous and fibrous phases of ECM.

First, the methodology to establish mechano-biological correlations is described and then it
is applied on a preliminary cohort of four patients.

5.1 Methodology to establish mechano-biological correlations

The upscaling method is applied to histological sections of osteosarcoma performed on surgi-
cally resected tumors. The patients selected for this study come from a cohort of bad responders
with high-grade osteoblastic osteosarcoma (Toulouse University Hospital). Histological sections
exhibit a spatial heterogeneity in response to treatment. In addition, the images show various
characteristic osseous ECM structures such as lacy- and trabecular- like formations as illustrated
in figure 5.1.

Figure 5.1: Different types of osseous ECM formations illustrated from binarized images. a)
Lacy-like structure. b) Trabecular-like structure.

The degree to which two random variables or sets of random variables tend to deviate from
their expected values in similar ways can be measured by the covariance. However such calcu-
lations are dependent upon the variable magnitude. Correlation coefficients are a normalized
form of the covariance which characterize the relationship between adimensioned variables. Cor-
relation coefficient ranges between -1 and 1. Its absolute value measures the intensity of the
relationship while its sign indicates the monotony. If a variable Yc tends to increase when a vari-
able Xc increases, the correlation coefficient is positive (where subscript c stands for correlation).
If Yc tends to decrease when Xc increases, the correlation coefficient is negative. A correlation
coefficient of zero indicates that there is no tendency for Yc to either increase or decrease when
Xc increases.

The Pearson coefficient measures a possible linear relationship between the two variables.
For two variables Xc and Yc, it is expressed by equation (5.1).

rp = Cov(Xc, Yc)
σXσY

(5.1)
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where Cov(Xc, Yc) is the covariance of the two variables, and σXc and σYc the standard devia-
tions.
Note that the normalization is done by the standard deviations, expressing the variable values
dispersion with respect to their mean.
The Pearson coefficient is only suitable for linear relationships and it is sensitive to local dis-
crepancies.

When the relationship is not strictly linear, the Spearman correlation coefficient should be
favored. By rather examining a relationship between the rank of the two variables Xc and Yc, it
is possible to detect the existence of monotonic relationships. The Spearman coefficient is given
by equation (5.2).

rs = Cov(rgXc , rgYc)
σrgXc

σrgYc

(5.2)

where rgX and rgY are the ranks of the variables Xc and Yc.
When the relationship between the two entities is linear, the Spearman coefficient is similar to
the Pearson coefficient. Local variations of variables are better taken into account and it is used
in the following developments.

In this work, the correlations will in fact be done on two arrays Xc and Yc coming from the
splittings of histological sections for the sequential method. The first vector Xc corresponds to
the equivalent mechanical properties at the L3-scale, at the output of the two-step grid-block
method. More precisely, we will consider on each sub-block, a relevant scalar property depending
on the studied physics (flow strength or stiffness in the main directions). The second vector Yc
includes the clinical information, i.e. the cell densities on the same splitting of the histological
section as realized for the mechanical study by upscaling.

For the 2-step upscaling method, the lengths being arbitrarily chosen for both physics, we
first considered L1, L2, L3 scales allowing among other things to account for the heterogeneity
in phase distribution. Indeed, a too loose splitting would lead to a too important loss of local
information and especially to a non-significant correlation (i.e. the cardinal of the sets Xc and
Yc would not be sufficient for a low p-value correlation). Also, in the context of the flow and
in view of the images, splitting too dense could introduce purely numerical problems related to
the phenomenon of percolation (see chapter 3 for the checkerboard like problem at the L2-scale
in particular).

Finally, it is necessary to evaluate the response to treatment on histological sections. Here,
the areas of good and bad responses on the selected histological sections were determined from
the Huvos and Rosen notation (10% or more of residual cell corresponds to a bad response to
treatment).

5.2 Correlation coefficients: mechano-biomarkers of the treat-
ment response?

In this section, we are exploring correlations between equivalent mechanical properties ob-
tained by using the two-step sequential grid-block method, and the cell density. First, correla-
tions are made with fluid flow and then, structural mechanics is considered with linear elasticity.

5.2.1 Transport study

First, we recall the clinical question motivating the modeling of interstitial flow in osteosar-
coma. We want to know if it is possible that an area of high osteo-formation may or may not
cause a barrier to the response to treatment.

Tissue and cell phases are segmented for the equivalent permeability calculations and the
evaluation of cell density respectively as described in chapter 2. From the 2-steps grid-block
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upscaling method, equivalent permeability distributions are obtained at the L3-scale. We con-
sider the symmetry (3.12) and impervious (3.14) boundary conditions, at the L1 and L2 scales,
respectively.

The methodology is applied on two subsamples of histological sections. The size of the im-
ages is 8000 px × 8000 px, i.e. 3.7 mm × 3.7 mm. At the L1-scale, an extend-local method is
considered with δ = 100 px. The non-dimensionalized permeability magnitude and cell density
maps are shown in figure 5.2. Zones of good response to chemotherapy correspond to low cell
densities whereas bad response corresponds to high cell densities.

An overall negative correlation between the two entities is found for patient 1 who exhibits a
trabecular-like ECM formation. An increase in permeability is associated with a decrease in
cell density. Indeed, qualitatively, one can see on Patient 1 sample (fig. 5.2 Patient 1), a clear
separation materialized by the anti-diagonal of the 5× 5 maps where a zone (top right) of very
low permeability corresponds to a zone of very high cell density. An opposite distribution is
found for patient 2 with lacy-like ECM where an increase in permeability in the left side of the
image corresponds with an increase in cells density.

Those result are confirmed by the Spearman coefficient. For patient 1 it is negative with rs =
−0.485 (p = 0.014) whereas for patient 2, the coefficient is positive with rs = 0.433 (p = 0.026).
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Figure 5.2: Comparison between permeability magnitude k
? = max K̃

(L1/2)2 (b) and cells density
(mm−2) (c) maps obtained from histological sections of resected osteosarcomas (a). Patient 1
exhibits a trabecular-like ECM microstructure and Patient 2 a lacy-like ECM microstructure (see
zooms of the sections). Permeability maps are obtained with the extend-local 2-steps upscaling
method with symmetric boundary conditions. We choose L3 = 8000 px, L2 = 1600 px, L1 =
800 px, δ = 100 px. The fluid viscosity value is 0.001 Pa.s.

Now, complete histological data are investigated since histological cuts of 24 000 px×24 000 px
(or 1.1cm× 1.1cm) are studied. They also concern trabecular-like and lacy-like architecture as
shown in figure 5.3. Similarly, permeability and cell density maps are established and perme-
ability magnitude and cell density are correlated using Spearman coefficients.

To obtain the permeability map, we choose a purely local (since no information beyond 24 000 px
is available) 2-steps uspcaling method together with the symmetric boundary conditions on a
3× 3 L3-paving.
For Patient 3, the correlation on the 3× 3 splitting leads to a high p-value: a refinement of the
calculation under a 5 × 5 splitting is needed (an extend-local method is considered just here
with δ = 100 px), showing a region of high permeability area together with a low cell density
(see extreme right column) justified by a Spearman coefficient of −0.493 and a p-value of 0.013.
The correlation coefficient sign is also conserved for Patient 4 sample and coarse splitting; given
a good qualitative behavior (fig. 5.3 Patient 4) but a not so good quantitative response as the
splitting is too coarse (Spearman coefficient of 0.251 with a p-value of 0.5 1). In this image
variations in the quality of the staining are observed which alters most probably the results as

1p-value to high to be considered good.
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it alters deeply the segmentation. More generally, the limiting factor to perform the numerical
calculations is not the size of the image thanks to the sequential approach but the capacity to
extract areas of interest with good enough imaging quality (good color contrast, no tearing, ...)
which is not trivial to obtain on bone tissues, which are hard to cut and to stain.

Figure 5.3: Correlation between permeabilty (px2) and cells density (mm−2) maps on 24 000 px×
24 000 px histological slides according to the two topology types; conserving the qualitative
behavior and correlations sign of the previous study.

For this limited-size cohort of bad responders with spatial heterogeneity in response to treat-
ment, results show treatments by chemotherapy are more efficient in lacy-like ECM regions com-
pared to trabecular-like ECM regions. While this result must be confirmed on a larger cohort,
this work shows that it is possible to match an area of good (resp. bad) response to the treat-
ment, defined by a low (resp. high) cell presence, with an area of high or low ECM permeability.
Therefore, ECM permeability can be seen as a potential mechano-biomarkers of the treatment
response.

5.2.2 Structural mechanics study

The clinical question motivating the study of elasticity may be whether mechanical stimuli
in osteosarcoma could lead to a change from anti-tumoral to pro-tumoral macrophages and vice
versa. Thus, a response to treatment could indirectly depend on the stiffness of the extracellular
matrix through its direct mechanical interaction with the cells.

We first consider two images corresponding to patient 2 and a subregion of patient 3 histo-
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logical section. Size is 8000 px × 8000 px, corresponding to histological sections showing mixed
response to treatment and respectively, trabecular and lacy-like osseous formations. Sections
are shown in figure 5.4.

We consider a 2-step grid-block upscaling method. The set of scales is given by the couple
(L1, L2) = (800 px, 1600 px). Concerning the elastic parameters, we consider Poisson’s ra-
tios such as (νOECM , νFECM ) = (0.3, 0.35) and Young’s moduli such as (EOECM , EFECM ) =
(500 MPa, 50 kPa). A KUBC type boundary condition is first considered for the determination
of the equivalent stiffness tensors at each scale (see chapter 4 section 4.1.1). The extend-local
method is considered at the L1-scale with δ = 100 px. We consider the trace of stiffness tensors,
i.e. the sum of the diagonal coefficients, with Voigt’s notation.

For patient 2 with a lacy-like ECM formation, we obtain a negative correlation with rs = −0.619
and a p-value of 0.001, as shown in figure in 5.4. It means that an increase of tissue stiffness
corresponds to a decrease in cell density. It is confirmed by distribution maps where the zone
of higher stiffness (right side of the image) corresponds to the zone of low cell density.
For Patient 3 with a trabecular-like ECM formation, we obtain a positive correlation with
rs = 0.26 and a p-value of 0.020. Increased cell density is associated with higher stiffness.

Figure 5.4: Comparison between the trace of equivalent stiffness tensor at the L3-scale (in
104kPa) (b) and cells density (mm−2) (c) maps obtained from histological sections of resected
osteosarcomas. Patient 2 exhibits a lacy-like ECM microstructure and Patient 3 a trabecular-
like ECM microstructure. Stiffness maps are obtained with the extend-local 2-steps upscaling
method with KUBC boundary conditions. We choose L3 = 8000 px, L2 = 1600 px, L1 =
800 px, δ = 100 px.
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As previously, we consider larger images, i.e 24 000 px × 24 000 px. A 15× 15 paving at the
L3-scale is implemented. The scales considered are (L1, L2) = (800 px, 1600 px). These sizes are
less constrained than in flow calculations where percolation problems may appears for denser
splitting. Figure 5.5 shows segmented images and obtained maps. Since no border around the
images is accessible, the extend-local method is not applicable. Therefore, we consider SUBC
type boundary conditions allowing a better characterization of the elastic properties within the
framework of a purely local upscaling method at the L1-scale.

For Patient 3 with a trabecular-like ECM formation, we obtain a positive correlation with
rs = 0.508 and a p-value of 10−16 (fig. 5.5 Patient 3).
For Patient 4 with a lacy-like ECM formation, we obtain a negative correlation with rs = −0.291
and a p-value of 10−6 (fig. 5.5 Patient 4). Higher cell density is associated with decreased tissue
stiffness.
Finally, signs of correlation coefficients are effectively consistent for larger images used in clinical
routine.

Figure 5.5: Comparison between the trace of equivalent stiffness tensor at the L3-scale (in
104kPa) and cells density (mm−2) maps obtained from 24 000 px×24 000 px histological sections
osteosarcomas. Patient 3 exhibits a trabecular-like ECM microstructure and Patient 4 a lacy-
like ECM microstructure. Stiffness maps are obtained with the extend-local 2-steps upscaling
method with SUBC boundary conditions. We choose L3 = 24 000 px, L2 = 1600 px, L1 =
800 px, δ = 100 px.

Thus, we again find a different response depending on the nature of the matrix. The analysis
of the structural mechanics highlights the role of the stiffness of the ECM on the therapeutic
response of patients. It is possible that the structural stress can activate a better immune
response.

5.3 Conclusion and discussion on the mechano-biology

In this chapter, we correlated equivalent mechanical properties obtained by the upscaling
workflow to the cell density evaluated on histological sections. To this purpose, we considered
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histological sections showing a mixed response to treatment according to the cell density present
in the sections. This dual mechano-biological approach allows to explore the role of the osseous
ECM on the response to treatment by linking the cellular and microenvironment scales.

By considering different physical problems, it is possible to differentiate their potential role
on the response to treatment by highlighting the maximal correlation coefficients between vari-
ous phenomena. In addition, transport and elasticity can be studied separately.

The structural mechanics analysis highlights the role of ECM stiffness on the patients ther-
apy response. We found a significant negative correlation for lacy-like osseous ECM. Possible
scenarios include the fact that structural strain may activate a better immune response. Con-
cerning convective transport, results might be counter-intuitive in 2D when only architecture
patterns are observed. Indeed, if we consider osseous ECM as a potential barrier to treatment,
lacy-like structures seems to percolate with difficulties whereas trabecular-like structure are per-
colating media and response to chemotherapy is better in lower percolation areas. This remark
may be related to the 2D nature of the data and validations should be done in 3D. In addition,
this partial conclusion must be completed by the local role of fluid shear and substrate stretch-
ing on cell response and in particular on the immune ones. The presence and reactive role of
microvascularization may be also significant and is not yet considered in this work.
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Chapter 6

Conclusion and perspective

Motivated by open questions about osteosarcoma evolution and response to treatments, a
robust mechanical model applied to bone tumors was proposed in this thesis, and an in-house
numerical software was developed and validated. Such an approach is innovative, and explores,
for the first time, the correlations between ECM and cell populations in a mechanical frame-
work developed from patients histological images. From the methodological point of view, the
literature about the characterisation of equivalent mechanical properties, in highly heteroge-
neous porous media with a pore scale resolution, is scarce. This thesis puts forward new models
and numerical developments which may be adapted for other applications in porous media re-
search. The relevance of a deterministic sequential Grid-Block upscaling method, coupled with
an extend-local method for the pore scale problems resolution has been shown. A complete
numerical validation of the coupling of these upscaling methods is proposed for the first time
incorporating the accuracy of clinical histological slides for different physical problems such as
transport and elasticity.

In the first chapter, a non-exhaustive review of the current knowledge of osteosarcoma is
done at different spatial scales. A specific attention is paid to the description of osteosarcoma
micro-environement, a scale at which this primary bone tumor can be seen as a heterogeneous
porous medium. Potential links between spatio-temporal evolution of the tumors and mechani-
cal effects are described in this chapter. Objectives of the thesis are then introduced.

In the second chapter, a review of the existing methods to model transport and elasticity in
porous media is carried out. A special attention is paid to methods which can model physical
systems in highly heterogeneous porous media where no separation of scales is observed. From
the literature exploration, and in agreement with the specifications of our problem, we chose a
grid-block upscaling method to take into account the intratumoral heterogeneity complexity in
our approach. This method is based on the main results of the theoretical deterministic homog-
enization which are mainly developed in the literature for idealized geometries. In a second step,
the use of an extend-local method was necessary to reduce the bias on the boundary conditions
chosen for the grid-block method. Finally, given the size of the images, a sequential method was
required to solve the problem of memory and computational limits.
The joint choice of these three methods drastically reduces the size and construction time of the
meshes, makes it possible to process large images of patients follow-up on a on a standard PC in
a reasonable time (minutes to few hours depending on the image size) and allows us to process
highly heterogeneous porous media. The chapter ends with a description of the workflow used
in the following of the manuscript.

In the third chapter, after the description of the transport model, we showed that the chosen
upscaling process was consistent with the numerical and methodology parameters. The extend-
local method, on incompressible Stokes flow, is shown to be sufficient to reduce the bias on the
permeability tensor components due to different BCs; allowing a reduction of the error commit-
ted in this BCs choice at the higher scale. In addition, it was shown that this bias reduction is
preserved by the sequential approach. While high precision convergence can not be reached be-
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Table 6.1: Table summarizing the models used for sequential grid-block upscaling method for
each of the physics studied in this thesis.

Table 6.2: Table summarizing the equivalent parameters inequalities, as a function of boundary
conditions, found in the chapters 3 and 4 of this thesis. In the transport framework (flow and
diffusive), the relations are diagonal coefficients while in the elastic and poroelastic frameworks
the relations are quadratic.

cause of osteosarcoma geometry complexity, comparison between Direct Numerical Simulations
performed at the pore scale for a domain at the L3-scale and sequential grid-block simulations
for the same domain, showed a very good agreement between the two approaches. Finally, the
whole upscaling procedure is applied to the case of diffusive transport in osteosarcoma showing
similar results.

In the fourth chapter, the upscaling methodology was applied to structural mechanics. We
first examined the linear elasticity with small deformation. The extend-local method effectively
reduces the BCs bias, a fact that was highlighted for the first time. In addition, the main results
of the grid-block literature about the role of boundary conditions on the elasticity study, are
preserved by the sequential methods. To finish, an extension of the workflow to poroelasticity
is made, using the main results of the previous developments, i.e. momentum transport and
elasticity.

A summary of the models used for the sequential Grid-Block upscaling in chapter 3 and 4 is
illustrated on table 6.1. One of the main results obtained from these methodology developments
is reported on table 6.2. Indeed, from this thesis, we could classify by inequalities the estimated
equivalent properties as a function of the boundary conditions used for the sequential grid-block
implementation.

In a final chapter, correlations between the equivalent mechanical properties of the ECM
and the cell population density were found. The results highlight a variability in response to
chemotherapy depending on the lacy-like or trabecular-like structure of the neo-formed bone
tissue. In lacy-like ECM tumoral regions, areas of good (respectively bad) response were cor-
related with low (respectively high) permeability regions and high (respectively low) stiffness.
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An opposite result was found for tumor regions with trabecular-like osseous ECM. The intratu-
moral variability in response to treatment corresponds most probably to underlying changes in
the cell genome, immune microenvironment or vasculature [162, 163] for which ECM microar-
chitecture and mechanical properties may be a macroscopic marker. Indeed, the understanding
of complex spatio-temporal coupling between osteoclasts [163], tumor cells, immune cells, angio-
genesis and tumoral bone remodelling (osseous ECM) could benefit from quantitative mechanical
approaches as developed in this thesis. For the available small cohort, it was shown that the
proposed work-flow could be used to identify new mechano-biomarkers in heterogeneous tumors.

Because of the rarity of osteosarcoma (100-150 cases in France per year 1) and of bad respon-
ders with spatially heterogeneous mixed response (≤ 20% patients on the Toulouse cohort), this
study has been conducted on a limited size cohort as a proof of concept. The obvious extension
of this work is to enlarge the cohort to confirm the findings of treatment response correlation to
osseous ECM microstructure and equivalent parameters.

While the developed approach introduces numerous porous media concepts, the outputs, i.e.
maps and correlation coefficients, of the in-house computational developments, are simple to
manipulate. We hope that in a short term, this software can be used by biologists and clinicians
to explore new questions. In particular, this methodology can be directly applied to immuno-
histology images, and changes in macrophages polarization due to mechanical effects could be
explored at the tissue scale. Therefore, this approach could help in finding new targets for
immunotherapy treatments of osteosarcoma. Numerical optimisation is ongoing to reach very
short calculations time and increase the usage potential of the developed software.

In a longer term, additional physical problems will be implemented to explore further po-
tential correlations between mechanics and response to treatment such as fully coupled poroe-
lasticity or convection-diffusion mass transport with or without vascular network consideration.
Some works addressed the convection-diffusion problem [164] and indicated that adapted grid-
block upscaling method must be developed for this problem as the length scales cannot be taken
arbitrarily anymore.

Moreover, acquisition of three dimensional cell-scale resolution data should be envisioned to
solve the problem. The software is directly adaptable to 3D data and sequential upscaling will be
very powerful to reduce the computational time, however acquisition of such data in mineralized
tissues remains a challenge. A transition to 3D is even preferable for structural mechanics since
the porosity associated with the osseous ECM phase will be interconnected and will not require
any limiting assumptions.

Finally, the validation of the stationary model, which was intended above all to be explana-
tory, is a first step towards the implementation of more predictive spatio-temporal models which
could take into account evolution equations of cell populations.

In conclusion, the developments of this thesis aims at integrating objective and quantifiable
biomechanical parameters in the stratification of patients for a better therapeutic management.
This work is at the crossroad between topics of high interest for cancer research such as the study
of cell/ECM interaction, the role of mechanics in tumors, the quantification of heterogeneity in
tumors. The methodology is generic and can be adapted to other types of physical problems,
images or tumors.

1https://www.gustaveroussy.fr/fr/osteosarcome

https://www.gustaveroussy.fr/fr/osteosarcome
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Appendices

A Spectral radii behavior through the extend-local method in
the flow case

In this section, we discuss the behavior of the spectral radii resulting form the extend-local
process, shown in section 3.2.4.1 of the thesis (in the osteosarcoma case).

The fundamental difference between the impervious and open boundary conditions has a direct
impact on the spectral radii as the extra-diagonal terms are taken into account in the diagonal-
isation process. For the impervious boundary conditions, their values become close quickly, i.e
for small δ (fig. 1), as the diagonal and extra-diagonal terms have a similar behavior through
the extend-local method. In opposition, computations with little bigger δ are needed to achieve
an homogenization according to the three boundary condition (fig. 1) as the open boundary
extra-diagonal terms are different since this condition allows transverse flows.

Figure 1: Behavior of the equivalent permeability spectral radius resulting from the extend-local
method in function of δ. The study is conducted on multiple L1-subcell size: 500 px, 600 px,
700 px, 800 px, 900 px and 1000 px.
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B 2-steps method on Darcy type flow (2-porosity model)

In this section, we give additional information to the chapters 3 and 4. We study the two up-
scaling methodologies proposed in this manuscript namely the extend-local method and 2-steps
grid-block process (see section 2.4) for a pore scale physical system comprising the 2-porosity
osteosarcoma geometric paradigm (see chapter 4) and a Darcy type equation (momentum trans-
port). We recall that the extend-local method considers a computational domain larger than
the one to be upscaled with adding a neighboring region on which boundary conditions will be
imposed. Also, the 2-step process corresponds to two successive grid-block upscaling.
To begin, we discuss the nature of the convergence of the extend-local approach for an in-
compressible Darcy equations on a 2-porosity osteosarcoma geometry, using two different fluid
boundary conditions found in chapters 3 and 4, namely the wall (3.14) and open boundary
condition (3.15). In a second part, we show that the 2-steps grid-block method is a consistent
mechanistic approach for the above mentioned physical system in respect to its intrinsic param-
eters.

The hypothesis on the nature of the geometry and physic at each scale are: a) at the L1-scale,
an incompressible Darcy equation is considered with constant scalar permeability on each of the
two phases of the geometry (translating an assumption of isotropy of these two phases) b) at
higher scales, namely L2 and L3, the flow is again described by incompressible Darcy equations
(3.4) and (3.10). Here, we exclude the use of periodical BC since not used in section 4.2. A
continuity condition is considered for the field variables, at the L1-scale, on ∂intΩ.
We choose for the following studies a permeability couple (KOECM ,KFECM ) = (0.2, 2000).

B.1 Extend-local method study

We study the effects of the extend-local method on the permeability tensor in respect to the
two boundary conditions and to the buffer zone size δ, at the L1-scale. Specifically, we consider
the response of the equivalent permeability tensor coefficients.

A 1000 px× 1000 px osteosarcoma sample and neighboring region size 0 ≤ δ ≤ 500px are chosen
to carried out the numerical study (see fig. 2a). We plot the behavior of the coefficients as a
function of the size of the buffering region δ for two BCs: the wall condition W is plot in red
and the and open boundary condition PL in yellow.

We notice a homogenisation in the values of the diagonal terms (see fig. 2b), according to each
BCs, for sufficiently large δ (≥ 200 px). Note that results are sensitive to the buffering region
size since no REV assumption is made.
The resulting extra-diagonal coefficients values for the W and PL boundary conditions does not
seem to be becoming more homogeneous for any δ size (see fig. 2b). This come from the same
reasons given in the chapter 3 (i.e that transverse flow can be allowed or not).
Consequently, for the 2-porosity model with a momentum transport physic, the extend-local
method refines the permeability calculations in respect to the boundary conditions by smooth-
ing out the diagonal coefficients.
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Figure 2: The extend-local method is applied on an osteosarcoma geometry when considering
an incompressible Darcy type equation at the L1-scale. a) Osteosarcoma geometry. b) Behavior
of the equivalent permeability matrix coefficients, at the L2-scale, in function of the buffer size
and for two different boundary conditions (wall and open boundary).

B.2 Sequential upscaling method study

We now discuss the consistency of the 2-steps grid-block upscaling method applied to a Darcy
equation at the L1-scale on 2-porosity geometry. The L1-splitting are ranging from 1 × 1 (i.e
the 1-step method) to 5 × 5 and boundary condition are the wall W and the open boundaries
PL ones (corresponding in fact to the parameter set in Chapter 4.2).
In this upscaling process, when considering incompressible Darcy equation at the L1-scale, only
incompressible Darcy type flow are found at the upper scales. Again, the BCs are chosen con-
sistently at each scale. Without loss of generality, only one cell at the L3 scale is considered and
no symmetrization of the equivalent tensors is performed at each scale.
The geometry is a 5000 px×5000 px osteosarcoma binarised image (fig.3a). We study the equiv-
alent properties at the L3-scale such as matrices coefficients (fig.3b), spectral radii (fig.3c) and
eigenvectors (fig.3d). The values arising from the W and PL conditions are respectively given
in red and yellow, in function of the L1-splitting.

Concerning diagonal coefficients, we recover the overestimation phenomenon for the PL condi-
tion and underestimation for the W condition (rather constant through splitting). The overall
difference between the two BCs is due for the same reasons as stated in chapter 3 (impervious vs
open boundaries). The extra-diagonal coefficient, show also the same behavior than previously
found (rather erratic).
The spectral radii behavior follows the same pattern as the diagonal coefficients one, with the
same difference in magnitude order between impervious and open conditions.
Finally, the principal directions are find consistent in respect to the two boundary condition and
each splitting.

In conclusion, the 2-steps grid-block method is shown to be consistent even for the 2-porosity
model in the momentum transport case.
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Figure 3: The 2-steps method is applied on a 5000 px × 5000 px osteosarcoma geometry in the
incompressible Darcy equation case at the L1-scale. a) Osteosarcoma binary image. b) Behavior
of the equivalent matrix coefficients, at the L3-scale, according to the L1-splitting and for two
boundary conditions (wall and open boundaries). c) Behavior of the equivalent spectral radii
matrix extra-diagonal coefficients, at the L3-scale, according to the L1-splitting and for two
boundary conditions (wall and open boundaries). d) Behavior of the principal permeability,
at the L3-scale, according to the L1-splitting and for two boundary conditions (wall and open
boundaries).
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C Flow: coupling of the extend-local and sequential method on
an osteosarcoma samples

Here, we give a relevant table comparison of the 1-steps, 2-steps local and 2-steps extend-local
methods in the case of an 1600 px× 1600 px osteosarcoma sample (fig. 4a). A 2× 2 L1-splitting
is considered resulting in L1 = 800 px (fig. 4b).

Figure 4: Geometrical consideration for the application of the 2-steps method. a) Binary image.
b) The L1-splitting considered for the methods comparison.

The non-dimensionalized permeability diagonal tensors and magnitudes resulting from the 1-
step and 2-step upscaling methods are presented in the table 3.
The non-dimensionalized permeability magnitude k? == (L1/2)−2 max

1≤i,j≤2
Kij for the 1-step, 2-

step and 2-step extend-local methods shows that the latter method still reduces the biases of
the BCs at the L3-scale. Indeed, the 2-step extend-local method induces on the magnitudes
an error relative to the mean value of 18% when choosing δ = 100 px. In contrast, the overall
heterogeneity on the magnitudes can reach 30% and 40% for the 1-step and local 2-step methods,
respectively.
One show that a 2-steps grid-block upscaling method, coupled with an extend-local method at
the L1-scale, reduce the bias on the diagonal term of the L3-scale equivalent permeability tensor,
even in the osteosarcoma case (compared to a 1-step or 2-step local method).

(a) Permeability tensor components and magnitude obtained by the 1-step and the 2-steps upscaling
scheme with either a local or a extend-local method for the first upscaling step.

1-step upscaling 2-steps upscaling (local) 2-steps upscaling (ext-local)

W S PL W S PL W S PL

k
? 2.72e− 2 3.15e− 2 4.45e− 2 2.88e− 2 3.33e− 2 5.48e− 2 2.95e-2 3.00e-2 3.89e-2

K̃22 1.32e− 2 1.61e− 2 3.19e− 2 2.29e− 2 2.625e− 2 5.19e− 2 1.77e− 2 1.82e− 2 2.96e− 2

Table 3: Permeability tensor components and magnitude obtained by the 1-step and the 2-
steps upscaling scheme with either a local or a extend-local method for the first upscaling step,
considering the three different boundary conditions W, S and PL.
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D A statistical study of a large 2D osteosarcoma samples

Here, we investigate a possible statistical characterisation of osteosarcoma. Considering denser
L1-grids ranging form 4× 4 to 16× 16 allows us to explore statistical properties at the L2-scale
in respect to the splitting and boundary condition. This will only be used as an example but not
as a general observation since two distinct osteosarcoma regions will have different statistical
properties 2.

To do so, the study is based on a 16 000 px × 16 000 px osteosarcoma geometry, coming from a
segmentation/binarization of a H&E histological section from a bad reponder patient (fig. 3.24).
As previously mentioned, we will consider only one cell at the L3-scale without any loss of gen-
erality. Here the periodic condition is discarded as the construction of the meshes on GMSH for
such geometries reach the limit of the available computers.
We study the statistics of the equivalent permeability matrix coefficients arising from the first
upscaling according to each L1-splitting and boundary conditions (fig. 5 and 6).

By analyzing the frequency of value appearance (values of coefficients in abscissa and occur-
rences in ordinate), we notice the same behavior of the permeability tensor coefficients with the
boundary conditions.
The diagonal coefficients have approximately the same distribution through the three BCs and
three splitting, i.e a normal distribution with a skweness to the left as a negative sign is not
possible 3.
Moreover, a histogram configuration similar to normal distribution with no skweness appears
for extra-diagonal terms (fig. 6b and c).

Concerning the effect of boundary condition, diagonal coefficients have the same behavior as in
the small images case. There is always the phenomenon of overestimation for the open boundary
condition, underestimation for the wall condition and quasi-constancy in the symmetrical case.
The magnitudes of the differences between each BCs do not vanish even when considering larger
images. Same goes for extra-diagonal terms but with smaller difference magnitude.

2Anecdotally, it is interesting to see if the effects of boundary conditions fade at the L3-scale when considering
larger images.

3In the diagonal term, some values appear negative but are in fact close to the numerical zero (of order 10−14).
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Figure 5: Histogram, for a 16 000 px×16 000 px and a 4×4, 8×8 and 16×16 L1-splittings, on the
resulting diagonal coefficients of the equivalent permeability tensors at the L2-scale in respect
to the three boundaries condition: wall, symmetry and open boundary condition (column 1, 2
and 3 respectively). Graphs show occurrences as a function of coefficient values. a) Statistics of
the K11 coefficient. b) Statistics of the K22 coefficient.
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Figure 6: Histogram, for a 16 000 px× 16 000 px and a 4× 4, 8× 8 and 16× 16 L1-splittings, on
the resulting extra-diagonal coefficients of the equivalent permeability tensors at the L2-scale
in respect to the three boundaries condition: wall, symmetry and open boundary condition
(column 1, 2 and 3 respectively). Graphs show occurrences as a function of coefficient values.a)
Statistics of the K12 coefficient. b) Statistics of the K21 coefficient.
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[96] Céline Béchaud, Michel Quintard, and Charles-Henri Bruneau. Modelisation numerique
de l’adsorption et de la dispersion d’un gaz binaire en milieu poreux. PhD thesis, 12 1998.

[97] Svyatoslav Korneev and Ilenia Battiato. Sequential homogenization of reactive transport
in polydisperse porous media. Multiscale Modeling & Simulation, 14:1301–1318, 10 2016.

[98] Pierre Horgue, Romain Guibert, Hervé Gross, Patrice Creux, and Debenest Gerald. Ef-
ficiency of a two-step upscaling method for permeability evaluation at darcy and pore
scales. Computational Geosciences, 19:1159–1169, 12 2015.

[99] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

[100] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders
Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells. The fenics
project version 1.5. Archive of Numerical Software, 3(100), 2015.

[101] Christophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh gener-
ator with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79:1309 – 1331, 09 2009.

[102] Romain Guibert, Pierre Horgue, Debenest Gerald, and Michel Quintard. A comparison of
various methods for the numerical evaluation of porous media permeability tensors from
pore-scale geometry. Mathematical geosciences, 48:329–347, 04 2016.

[103] Louis Durlofsky. Numerical calculation of equivalent gridblock permeability tensors for
heterogeneous porous media. Water Resources Research, 27:699–708, 05 1991.

[104] Lars Holden and Oddvar Lia. A tensor estimator for the homogenization of absolute
permeability. Transport in Porous Media, 8:37–46, 01 1992.

[105] Xiao-Hui Wu, Yalchin Efendiev, and Thomas Hou. Analysis of upscaling absolute per-
meability. Discrete and Continuous Dynamical Systems-series B - DISCRETE CONTIN
DYN SYS-SER B, 2, 05 2002.

[106] JC Ward. Turbulent flow in porous media. Journal of the hydraulics division, 90(5):1–12,
1964.

[107] L. Durlofsky and J. Brady. Analysis of the brinkman equation as a model for flow in
porous media. Physics of Fluids, 30:3329–3341, 1987.

[108] Philippe Renard, Alain Genty, and Fritz Stauffer. Laboratory determination of the full
permeability tensor. Journal of Geophysical Research, 106:26443–26452, 11 2001.

[109] Alain Bamberger. Approximation des coefficients d’opérateurs elliptiques, stable pour la
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the hydraulic conductivity of three-dimensional fractured porous rock for reservoir mod-
eling. Mathematical Geosciences, 51, 02 2019.

[112] M. Quintard. Note on the determination of permeability tensor through “permeameter”
boundary-value problems. 2021.



128 BIBLIOGRAPHY

[113] Michel Quintard and Stephen Whitaker. Transport in ordered and disordered porous
media i: The cellular average and the use of weighting functions. Transport in Porous
Media, 14:163–177, 02 1994.

[114] Michel Quintard and Stephen Whitaker. Transport in ordered and disordered porous
media ii: Generalized volume averaging. Transport in Porous Media, 14:179–206, 02 1994.

[115] Michel Quintard and Stephen Whitaker. Transport in ordered and disordered porous
media iii: Closure and comparison between theory and experiment. Transport in Porous
Media, 15:31–49, 04 1994.

[116] C. Farmer. Upscaling: A review. International Journal for Numerical Methods in Fluids,
40:63 – 78, 09 2002.

[117] K.J. Bathe. Finite Element Procedures. Prentice Hall, 2006.
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