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Résumé

Contributions à une théorie de l’exploration
pure en statistique séquentielle

Cette thèse, à la croisée entre les domaines de l’intelligence artificielle, de la statistique séquentielle
et de l’optimisation, s’intéresse au problème d’identification du meilleur bras (en espérance) dans
les bandits non structurés à K bras. Ce problème possède deux approches dont les niveaux de
compréhension sont très différents.

Le cadre à confiance fixée est le mieux compris : des stratégies asymptotiquement optimales
sont connues, et l’on s’intéresse à l’obtention de garanties non asymptotiques pour des stratégies
(si possible) simples et naturelles. Avec des bandits Gaussiens, nous proposons l’analyse à risque
fini d’une nouvelle stratégie (asymptotiquement optimale) grâce aux propriétés de régularité de ce
modèle. Cette stratégie modifie subtilement la règle d’attribution des tirages de l’algorithme Track-
and-Stop en une règle plus prudente et interprétable. Dans le contexte plus général d’un modèle
exponentiel, nous proposons l’ébauche d’une analyse de l’asymptotique optimalité d’algorithmes de
type Top-Two adaptatifs, dont les règles de choix de tirages sont particulièrement simples.

Par ailleurs, dans le cadre à budget fixé, où l’existence d’une hypothétique complexité reste à dé-
montrer, nous proposons des généralisations à des modèles non-paramétriques des bornes (supérieures
et inférieures) connues jusqu’à présent pour des modèles très spécifiques. Les bornes obtenues font
intervenir des quantités de théorie de l’information plus précises que les écarts entre les moyennes
qui apparaissaient précédemment. Ces nouvelles quantités pourraient être la clé pour mesurer la
complexité de l’identification de meilleur bras à budget fixé.

Mots-clés. Problèmes de bandits · Identification de meilleur bras · Statistiques séquentielles ·
Apprentissage statistique · Intelligence artificielle
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Liste des publications

Le présent manuscrit s’appuie sur les deux publications suivantes :

�
A. Barrier, A. Garivier, and T. Kocák. A Non-Asymptotic Approach
to Best-Arm Identification for Gaussian Bandits. In Proceedings of the
25th International Conference on Artificial Intelligence and Statistics,
pages 10078–10109. PMLR, 2022

�

A. Barrier, A. Garivier, and G. Stoltz. On Best-Arm Identification with
a Fixed Budget in Non-Parametric Multi-Armed Bandits. In Procee-
dings of the 34th International Conference on Algorithmic Learning
Theory, volume 201 of Proceedings of Machine Learning Research,
pages 136–181. PMLR, 2023

Les chapitres 3 et 4 reprennent le contenu du papier AIStats 2022, qui porte sur l’étude d’une nou-
velle stratégie d’identification de meilleur bras à confiance fixée, Exploration-Biased-Sampling,
pour des variables gaussiennes. Des guaranties à risque fini sont notamment démontrées, en utilisant
de nouveaux résultats de régularité du problème d’optimisation définissant les poids optimaux.

Ensuite, le chapitre 5 présente les travaux issus de la publication ALT 2023. L’objectif est de
généraliser les bornes connues en identification de meilleur bras à budget fixé à des modèles gé-
néraux, possiblement non paramétriques, en faisant intervenir de nouvelles quantités de théorie de
l’information plus précises que les gaps.

Le chapitre 6, qui s’intéresse aux propriétés asymptotiques des algorithmes top-two adaptatifs
en confiance fixée, est une ébauche contenant des résultats préliminaires non publiés.
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Abstract

Contributions to a Theory of Pure
Exploration in Sequential Statistics

This thesis lies in the fields of artificial intelligence, sequential statistics and optimization. We
focus on the problem of best (in expectation) arm identification in unstructured muti-armed bandits.
This problem has two approaches with very different levels of understanding.

The fixed-confidence framework is the best understood: asymptotically optimal strategies are
known, and we are interested in obtaining non-asymptotic guarantees for (if possible) simple and
natural strategies. Working with Gaussian bandits, we propose a finite risk analysis of a new (asymp-
totically optimal) strategy using the regularity properties of this model. This strategy slightly modifies
the sampling rule of the Track-and-Stop algorithm into a more conservative and interpretable rule. In
the more general context of an exponential model, we propose a preliminary analysis of the asymptotic
optimality of adaptive Top-Two algorithms, whose sampling rules are particularly simple.

Independently, in the fixed-budget framework, for which the existence of a hypothetical complexity
remains to be demonstrated, we propose generalizations to non-parametric models of the existing
bounds (upper and lower) that were available so far only for very specific models. The obtained
bounds involve more precise information-theoretic quantities than the gaps (differences between
the means) which appeared previously. These new quantities could be the key to measuring the
complexity of fixed-budget best-arm identification.

Keywords. Multi-Armed Bandits · Best-Arm Identification · Sequential Statistics · Statistical Learn-
ing · Machine Learning
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Origin of the materials

This manuscript is based on the following two publications:

�
A. Barrier, A. Garivier, and T. Kocák. A Non-Asymptotic Approach
to Best-Arm Identification for Gaussian Bandits. In Proceedings of the
25th International Conference on Artificial Intelligence and Statistics,
pages 10078–10109. PMLR, 2022

�

A. Barrier, A. Garivier, and G. Stoltz. On Best-Arm Identification
with a Fixed Budget in Non-Parametric Multi-Armed Bandits. In Pro-
ceedings of the 34th International Conference on Algorithmic Learning
Theory, volume 201 of Proceedings of Machine Learning Research,
pages 136–181. PMLR, 2023

Chapters 3 and 4 follow the contents of the AIStats 2022 paper, which deals with the study
of a new fixed-confidence best-arm identification strategy, Exploration-Biased-Sampling, for
Gaussian variables. In particular, finite-risk guarantees are demonstrated, using new regularity results
for the optimization problem defining the optimal weights.

Then, Chapter 5 presents the work resulting from the ALT 2023 publication. The aim is to
generalize the known bounds in best-arm identification with a fixed budget to general, possibly non-
parametric, models, by involving new quantities of information theory that are more precise than the
gaps.

Finally, Chapter 6, which deals with the asymptotic properties of adaptive top-two algorithms
in the fixed-confidence setting, is a draft containing preliminary unpublished results.
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CHAPITRE 1

Vue d’ensemble des résultats

Ce chapitre initial résume l’ensemble des contributions de la thèse en les replaçant dans le contexte
bibliographique de l’identification de meilleur bras. Après une présentation du problème, nous expli-
quons comment une profonde compréhension du modèle Gaussien dans le cadre à confiance fixée
nous a permis de définir une stratégie avec des garanties non asymptotiques. Puis, dans le cadre à
budget fixé, nous énonçons des généralisations de bornes existantes à des modèles quelconques en
introduisant de nouvelles mesures de complexité à base de quantités de théorie de l’information.

Sommaire
1 Exploration pure dans les problèmes de bandits . . . . . . . . . . . . . . . . . . . . . 10
2 Identification de meilleur bras à confiance fixée . . . . . . . . . . . . . . . . . . . . . 11

1 Borne inférieure pour un modèle exponentiel . . . . . . . . . . . . . . . . . . . . . . 12
2 Résolution du problème d’optimisation définissant T (µ) . . . . . . . . . . . . . . . . 14
3 L’algorithme Track-and-Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Des garanties non asymptotiques . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Les algorithmes Top-Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Identification de meilleur bras à budget fixé . . . . . . . . . . . . . . . . . . . . . . . 21
1 Bornes connues de la littérature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Généralisations des bornes existantes à des modèles quelconques . . . . . . . . . . . . 22
3 Existence d’une complexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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CHAPITRE 1. VUE D’ENSEMBLE DES RÉSULTATS

1.1. Exploration pure dans les problèmes de bandits

Dans cette thèse, on s’intéresse au problème statistique suivant. Un joueur (un learner) fait
face à K ≥ 2 distributions de probabilité ν1, . . . , νK inconnues. À chaque instant, il peut observer
une réalisation de la distribution de son choix, en utilisant les observations passées. Son objectif est
d’identifier rapidement la distribution de plus grande espérance. Il s’agit d’un problème d’optimisation
séquentielle aux nombreuses applications.

ν3

µ3

ν1

µ1

ν2

µ2

Figure 1.1: µa désigne l’espérance de νa. Considérant les trois distributions dont nous représentons
les fonctions de masse, l’objectif du joueur est d’identifier ν1 comme étant la meilleure distribution.

Par exemple, en médecine, si l’on souhaite déterminer quel médicament est le plus efficace pour
traiter une maladie parmi un ensemble de K médicaments, on peut organiser un essai clinique où
l’on administre à chaque malade un des médicaments et l’on observe s’il guérit ou non. On peut
alors procéder de manière séquentielle en choisissant le médicament administré à un patient en
fonction de toutes les observations précédentes. Si, pour les premiers patients, on voudra observer
les médicaments uniformément en l’attente de données fiables, il faudra en cours d’essai clinique se
concentrer au fur et à mesure sur les médicaments les plus prometteurs empiriquement. L’efficacité
de l’essai clinique dépendra de la stratégie adoptée, et donc de l’arbitrage choisi entre exploration de
l’ensemble des distributions et focalisation sur les distributions les plus prometteuses.

Problèmes de bandits. Le cadre et la terminologie utilisés pour modéliser la situation sont ceux
des bandits (Lattimore and Szepesvári, 2020) : on se donne un ensemble ν = (ν1, . . . , νK) de
distributions appartenant à un modèle donné D, où K ≥ 2 est fixé. Bien que les motivations initiales
concernaient des essais cliniques (Thompson, 1933), le terme de problème de bandit est utilisé pour
désigner ν et provient du nom de machines à sous, les bandits manchots, dans les casinos. Les
indices des distributions (et par extension leurs distributions associées) sont quant à eux les bras
du problème ν. On désigne par µ = (µ1, . . . , µK) le vecteur de moyennes de ν, où µa = E(νa)
est l’espérance de νa. Dans l’ensemble de la thèse, nous travaillons avec le modèle élémentaire des
bandits non structurés, i.e., dont les distributions sont supposées indépendantes. Parmi les modèles
de distributions possibles, on peut notamment citer :
• le modèle DNσ2 des distributions Gaussiennes avec variance commune σ2 > 0, le modèle DB
des distributions de Bernoulli, ou plus généralement les modèles exponentiels,
• le modèle non paramétrique P[0, 1] des lois à valeurs dans [0, 1], ou plus généralement tout
modèle Dσ2 constitué de variables σ2–sous-Gaussiennes, i.e., de lois ν satisfaisant la borne
suivante sur la fonction des moments, où X ∼ ν :

∀λ ∈ R, E
[
eλ(X−E[X])

]
≤ e

λ2σ2
2 .
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Figure 1.2: Bras optimal et moyenne optimale d’un problème de bandit ν.

Identification de meilleur bras. Le problème présenté dans le premier paragraphe est connu sous
le nom d’identification de meilleur bras ou d’exploration pure : l’objectif est d’identifier le bras,
supposé unique et noté a?(ν), dont l’espérance est la plus élevée :{

a?(ν)
}

def= argmax
1≤a≤K

µa .

Dans l’ensemble de ce chapitre, nous considérons des problèmes de bandits ayant un unique bras
optimal. Pour cela, le joueur donne, après un nombre (potentiellement aléatoire) τ d’observations,
une estimation âτ ∈ [K] def= {1, . . . , K} du meilleur bras a?(ν). Ce problème peut être traité sous
deux approches différentes en fonction des applications.
• Une première possibilité est de travailler à confiance fixée (Even-Dar et al., 2006) : le joueur
ne peut pas décider de s’arrêter tant qu’il n’est pas certain d’avoir identifié le bras optimal
avec un niveau de risque inférieur à un seuil δ ∈ (0, 1) fixé. On dit alors que sa stratégie
est δ–correcte. Le calcul du niveau de risque d’une stratégie dépend des hypothèses sur les
distributions, i.e., sur le modèle D auxquelles elles appartiennent. Ces hypothèses sont connues
du joueur. Parmi toutes les stratégies δ-correctes, on voudrait trouver celles qui minimisent le
nombre nécessaire d’observations.
• La deuxième approche est donnée par le cadre du budget fixé (Audibert et al., 2010) : le
joueur est obligé de donner son estimation après un nombre total d’observations T fixé. On
cherche les stratégies qui minimisent la probabilité d’erreur, c’est-à-dire la probabilité d’avoir
une mauvaise estimation du bras optimal.

De nombreuses applications existent pour les deux approches, selon le nombre d’observations pos-
sibles : le budget fixé est adapté pour des essais cliniques où le nombre de patients à disposition est
difficilement extensible, alors que la confiance fixée peut être utilisée, par exemple, par des sites web
souhaitant tester diverses configurations et disposant de nombreux internautes (test A/B).

De manière assez surprenante, les deux approches conduisent à des connaissances théoriques et
empiriques très différentes. Nous allons voir que les stratégies d’apprentissage diffèrent sensiblement.

1.2. Identification de meilleur bras à confiance fixée

Nous étudions d’abord l’identification de meilleur bras à confiance fixée : étant donné δ ∈ (0, 1)
fixé, la stratégie du joueur doit s’arrêter après un temps aléatoire τδ de sorte de pouvoir garantir que
son estimation âτδ

est correcte avec risque δ. L’objectif est de trouver des stratégies δ–correctes qui
nécessitent le moins d’observations possibles.

Page 11 / 192
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Stratégie. Pour commencer, nous définissons formellement ce qu’est une stratégie. On se donne
une suite (Ut)t≥0 de variables aléatoires i.i.d. de loi U([0, 1]), indépendante de tout autre source
d’aléa, et on note Yt l’observation au temps t ≥ 1. La stratégie du joueur est définie par la donnée :
• d’une règle d’échantillonnage, qui décide du choix du bras At ∈ [K] à observer à l’étape t ≥ 1,
en fonction des observations passées It−1

def=
(
U0, Y1, U1, Y2, U2, . . . , Yt−1, Ut−1

)
; At est donc

Ft−1–mesurable, où Ft−1 = σ(It−1).
• d’une règle d’arrêt τδ, qui est un temps d’arrêt par rapport à (Ft)t≥0,
• d’une règle de décision âτδ

qui est Fτδ
–mesurable et décide quel bras est estimé comme étant

optimal (il s’agit le plus souvent du bras de meilleure moyenne empirique).
La stratégie est dite δ–correcte si elle vérifie

∀ν dans D, Pν
(
τδ < +∞, âτδ

6= a?(ν)
)
≤ δ ,

où Pν désigne la probabilité sous le problème de bandit ν.

Notations. Pour un problème de bandit ν fixé, on note ∆a(ν) = µ? − µa le gap du bras a, c’est-
à-dire l’écart entre la moyenne optimale et la moyenne du bras a. Pour une stratégie donnée face au
problème ν, on note Na(t) et µ̂a(t) le nombre de tirages et la moyenne empirique1 du bras a à la fin
de l’étape t :

Na(t) def=
∑
s∈[t]

I {As = a} and µ̂a(t) def= 1
Na(t)

∑
s∈[t]

Ys I {As = a} ,

où I {E} est l’indicatrice de l’évènement E.

1.2.1. Borne inférieure pour un modèle exponentiel

Un bon critère pour mesurer la performance de ces stratégies est le nombre moyen de tirages
Eν [τδ]. Nous allons voir qu’une notion d’optimalité existe en effet pour cette quantité. Dans un
premier temps, Garivier and Kaufmann (2016) ont montré une borne inférieure sur le nombre moyen
de tirages d’une stratégie δ–correcte pour un modèle exponentiel. Elle repose sur une inégalité de
théorie de l’information faisant intervenir la divergence de Kullback-Leibler.

Remarque. Les premières stratégies d’identification de meilleur bras à confiance fixée, comme la
stratégie d’élimination de Even-Dar et al. (2006), garantissent des bornes sur τδ avec forte probabilité.
Cependant, il n’y a pas de borne inférieure pour ce critère.

La divergence de Kullback-Leibler. La divergence de Kullback-Leibler est une pseudo-distance
sur les distributions de probabilité qui joue un rôle important en théorie de l’information. Elle est
définie, pour toute paire de probabilités P et Q définies sur un espace mesurable (Ω,A), par

KL(P,Q) def=


∫

Ω
log dP

dQ dP = EX∼P

[
log dP

dQ(X)
]

si P� Q ,

+∞ sinon,

où dP
dQ est la dérivée de Radon-Nikodym de P par rapport à Q lorsque P est absolument continue

par rapport à Q. On peut vérifier que la KL est toujours positive mais n’est pas symétrique, et que
KL(P,Q) = 0 si et seulement si P = Q.

1Toutes les stratégies observent chaque bras une fois initialement, donc µ̂a(t) est bien défini pour t ≥ K.
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L’inégalité fondamentale. Les bornes inférieures de la littérature sur les bandits utilisent régulière-
ment des changements de mesure : on considère un problème de bandit ζ, dit alternatif, dont le bras
optimal diffère de celui de ν et on souhaite quantifier combien d’observations sont nécessaires pour
discriminer ν et ζ. Dans notre cadre, il est pratique d’utiliser l’inégalité de théorie de l’information
suivante, qui évite l’utilisation de changements de mesure plus explicites. Une nouvelle preuve de ce
résultat, utilisant une martingale arrêtée, est donnée en Section 2.2.2.

Lemme 1.1. [Kaufmann et al., 2016, Lemma 1]
Soient ν et ζ deux problèmes de bandits. Soit une stratégie d’identification de meilleur bras telle
que le temps d’arrêt τ est Pν–intégrable. Alors, pour tout évènement E dans Fτ , on a∑

a∈[K]
Eν
[
Na(τ)

]
KL(νa, ζa) ≥ KL

(
Ber

(
Pν(E)

)
, Ber

(
Pζ(E)

))
.

Modèles exponentiels. On désigne par modèle exponentiel, et on note Dexp, toute famille ex-
ponentielle canonique à un paramètre (voir Lehmann and Casella, 1998, Section 1.5). Il s’agit d’un
ensemble de distributions νθ indexées par θ ∈ Θ ⊂ R, toutes absolument continues par rapport à
une mesure ρ sur R, de densités données par

x 7−→ dνθ

dρ
(x) def= exp

(
θx− b(θ)

)
,

pour une fonction de normalisation b au moins deux fois dérivable. Citons par exemple les distributions
de Bernoulli, binomiales, de Poisson, et Gaussiennes de variance commune. On peut montrer que
E(νθ) = b′(θ) pour tout θ ∈ Θ, et donc que les distributions du modèle sont caractérisées par leur
espérance. La divergence de Kullback-Leibler peut aussi être paramétrée par les espérances : on note,
pour tout θ, θ′ ∈ Θ,

d
(
E(νθ), E(νθ′)

) def= KL(νθ, νθ′) .

Cela définit une divergence d qui est strictement convexe et différentiable sur M×M, où M =
(µ−, µ+) est l’intervalle supposé ouvert des moyennes du modèle. En particulier, d est continue, telle
que d(µ, µ′) = 0 si et seulement si µ = µ′, et, pour tout µ ∈M, d(µ, · ) et d( · , µ) sont strictement
décroissantes sur (µ−, µ], et strictement croissantes sur [µ, µ+).

La divergence de Kullback-Leibler entre variables de Bernoulli jouant un rôle particulier dans les
bornes inférieures, on la note kl et on a l’expression suivante :

∀p, q ∈ (0, 1), kl(p, q) def= KL
(
Ber(p), Ber(q)

)
= p log p

q
+ (1− p) log 1− p

1− q
.

Borne inférieure pour un modèle exponentiel. En utilisant le Lemme 1.1 et la propriété de
stratégie δ–correcte, Garivier and Kaufmann (2016) ont prouvé la borne inférieure suivante pour un
modèle exponentiel, où les problèmes de bandits ν sont caractérisés par leur moyennes µ comme
expliqué ci-dessus, et où l’on définit le simplexe

ΣK
def=
{

v ∈ [0, 1]K : v1 + · · ·+ vK = 1
}

,

et l’ensemble des bandits alternatifs au problème µ :

Alt(µ) def=
{

λ in Dexp : a?(λ) 6= a?(µ)
}

.
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Théorème 1.1. [Garivier and Kaufmann, 2016, Theorem 1]
Soit Dexp un modèle exponentiel. Soit δ ∈ (0, 1

2). Pour toute stratégie δ–correcte, et pour tout
problème de bandit µ dans Dexp avec un unique bras optimal,

Eµ[τδ] ≥ T (µ) kl(δ, 1− δ) ≥ T (µ) log 1
2.4δ

, (1.1)

où T (µ) est le temps caractéristique de µ, défini par

T (µ)−1 def= sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) . (1.2)

Un vecteur de poids optimal. Garivier and Kaufmann (2016) ont montré que le problème d’op-
timisation (1.2) admet un unique maximiseur w(µ), appelé le vecteur de poids optimal de µ :{

w(µ)
}

def= argmax
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) .

Pour obtenir une stratégie dont la performance est proche de la borne inférieure (1.1), il faut que
les proportions moyennes de tirages

(
Eµ
[
Na(τδ)

]
/Eµ[τδ]

)
a∈[K] de cette stratégie soient proches de

w(µ). Autrement dit, si la stratégie ne tire pas les bras selon des fréquences bien précises, elle ne
pourra pas être performante.

1.2.2. Résolution du problème d’optimisation définissant T (µ)
Considérons toujours un modèle exponentiel Dexp. Nous allons voir que la solution du problème

d’optimisation (1.2) définissant T (µ) est cruciale pour déterminer l’efficacité d’une stratégie.

Coûts de transport. Le problème d’optimisation (1.2) définissant T (µ) peut être écrit sous la
forme suivante, où a? = a?(µ) :

T (µ)−1 = sup
v∈ΣK

min
a6=a?

va?d
(
µ?, µa?, a, v

)
+ vad

(
µa, µa?, a, v

)︸ ︷︷ ︸
def= TCa→a? (µ,v)

,

où µa?, a, v
def= va?µ? + vaµa

va? + va
.

La quantité TCa→a?(µ, v) s’interprète comme un coût de transport représentant la difficulté de
changer les distributions des bras a? et a de sorte que a devienne optimal, étant données les fréquences
de tirage v. La preuve de l’unicité de w(µ) assure que le vecteur de poids optimal égalise les coûts
de transport :

∀a 6= a?, TCa→a?

(
µ, w(µ)

)
= T (µ)−1 .

Approximation du vecteur de poids optimal. Il est important de pouvoir approcher la valeur
du vecteur de poids optimal w(µ) et de comprendre sa dépendance vis-à-vis du paramètre µ. Cela
peut notamment permettre de définir des stratégies (voir la présentation de Track-and-Stop dans
la section suivante). Garivier and Kaufmann (2016) ont montré que le calcul de w(µ) revenait à
déterminer la racine d’une fonction croissante à une variable. On peut donc approcher w(µ) avec
une précision arbitraire en utilisant une méthode de dichotomie. Cette caractérisation de w(µ) a éga-
lement permis d’obtenir la continuité de µ 7→ w(µ). Cependant, d’autres caractérisations pourraient
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permettre d’obtenir des méthodes d’approximation plus efficaces d’un point de vue computationnel
et de meilleurs résultats de régularité. Dans cette thèse, nous travaillons sur ce problème d’optimisa-
tion dans le cas spécifique d’un modèle Gaussien au Chapitre 3 et, indépendamment, dans un cadre
exponentiel général au Chapitre 6.

Caractérisation pour des variables Gaussiennes. Dans le Chapitre 3, on s’intéresse au problème
d’optimisation pour des variables aléatoires Gaussiennes standards2. Dans ce cas, le problème s’écrit
simplement :

T (µ)−1 = sup
v∈ΣK

1
2 min

a6=a?

va?va

va? + va
∆2

a ,

où l’on note, tant qu’il n’y a pas d’ambiguïté, ∆a = ∆a(µ). Nous montrons que le vecteur de poids
optimal w(µ) est caractérisé par la racine de la fonction φµ définie par :

∀r ∈
( 1

∆2
min

, +∞
)

, φµ(r) def=
∑

a6=a?

1(
r∆2

a − 1
)2 − 1 .

On a en effet la proposition suivante.

Proposition 1.2. [voir Propostion 3.2]
Soit µ un problème de bandit dont les bras sont Gaussiens standards. Soient ∆ = ∆(µ), w = w(µ),
T = T (µ), et soit r = r(µ) la solution de φµ(r) = 0. Alors

wa? = 1

1 +
∑

a6=a?

1
r∆2

a − 1

,

∀a 6= a?, wa = wa?

r∆2
a − 1 ,

et T = 2 r

wa?
.

Cette caractérisation a plusieurs conséquences pour les modèles Gaussiens à variance commune.
1. Tout d’abord, la fonction φµ étant convexe et décroissante, l’application d’une méthode de

Newton permet d’approcher r, et donc w(µ) et T (µ), avec une vitesse de convergence quadra-
tique des itérées. Cela accélère la méthode proposée initialement par Garivier and Kaufmann
(2016). Voir Section 3.3 pour plus de détails.

2. Nous proposons également de nouvelles bornes pour les valeurs possibles de la coordonnée
wa?(µ) du vecteur de poids optimal et du temps caractéristique T (µ) :

1
1 +
√

K − 1
≤ wa?(µ) ≤ 1

2 ,

et max
(

8
∆2

min
, 41 +

√
K − 1

∆2

)
≤ T (µ) ≤ 2

(
1 +
√

K − 1
)2

∆2
min

,

où ∆2 def= 1
K−1

∑
a6=a? ∆2

a est la moyenne des carrés des gaps et ∆min
def= mina6=a? ∆a est le

gap minimal. Toutes ces bornes sont atteintes par des problèmes spécifiques.
3. Nous établissons des résultats de monotonicité lorsque l’on bouge l’un (ou plusieurs) des bras

de µ. Par exemple, en augmentant la valeur de la moyenne d’un bras sous-optimal a (voir
2Ou plus généralement de variance commune σ2 > 0.
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Figure 1.3: En augmentant la moyenne d’un bras sous-optimal, son poids optimal augmente tandis
que les poids des autres bras sous-optimaux diminuent, et le temps caractéristique augmente.

Figure 1.3), on augmente son poids wa(µ) tout en diminuant le poids des autres poids sous-
optimaux. Comme le gap entre le bras a et le bras optimal diminue, le problème d’identification
se complexifie et donc la valeur de T (µ) augmente. La Section 3.4 donne l’ensemble des
résultats de monotonicité obtenus, qui vont se révéler importants pour la définition de stratégies
exploratrices comme la stratégie Exploration-Biased-Sampling proposée au Chapitre 4.

4. Enfin, nous démontrons des résultats quantitatifs de régularité des solutions au problème d’opti-
misation dans la Section 3.5. On montre notamment que les fonctions µ 7→ w(µ) et µ 7→ T (µ)
sont localement lipschitziennes :

Théorème 1.2. [voir Theorem 3.9]
Soient µ et µ′ deux problèmes de bandit dont les bras sont Gaussiens standards, et de même
bras optimaux. Soient ∆, w et T (respectivement ∆′, w′ et T ′) définis comme dans la
Proposition 1.2. Supposons que, pour un ε ∈ [0, 1/7], on ait

∀a 6= a?, (1− ε)∆2
a ≤ ∆′

a
2 ≤ (1 + ε)∆2

a .

Alors

∀a ∈ [K], (1− 10ε)wa ≤ w′
a ≤ (1 + 10ε)wa ,

et (1− 3ε)T ≤ T ′ ≤ (1 + 6ε)T .

Cela précise le résultat de continuité de µ 7→ w(µ) obtenu3 par Garivier and Kaufmann (2016).
La régularité du problème d’optimisation permet d’envisager de nouvelles techniques de preuves
de bornes non asymptotiques, comme celles présentées au Chapitre 4.

Caractérisation pour un modèle exponentiel quelconque. Les techniques développées dans le
Chapitre 3 utilisent la forme particulièrement simple de la divergence de Kullback-Leibler entre deux
Gaussiennes, et il semble compliqué de les généraliser à tout modèle exponentiel. Dans la Section 6.2,
nous donnons cependant une nouvelle caractérisation pour un modèle exponentiel Dexp quelconque.
Celle-ci repose sur l’introduction d’une quantité définie pour v ∈ int(ΣK), l’intérieur de ΣK , par

Tv
def=
∑

b6=a?

1
d(µb, µa?, b, v) .

3Dans le cadre plus général d’un modèle exponentiel.
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La caractérisation de w(µ) faite par Garivier and Kaufmann (2016) assure que Tw = T (µ), et donc,
étant donné un vecteur de poids v, Tv est une approximation du temps caractéristique. Cela permet
de définir une transformation W : int(ΣK)→ int(ΣK) par

∀v ∈ int(ΣK),∀a ∈ [K], Wa(v) def=


va

T −1
v

TCa→a? (µ,v) si a 6= a? ,

1−
∑

b 6=a? vb
T −1

v

TCb→a? (µ,v) si a = a? .

On peut alors vérifier que w(µ) est l’unique point fixe de cette transformation.

Proposition 1.3. [voir Proposition 6.2]
Soit Dexp un modèle exponentiel et µ dans Dexp. Alors W a pour unique point fixe w(µ).

Cette caractérisation a elle aussi des conséquences importantes.
1. Des algorithmes itératifs, utilisant la transformation W , permettent de faire converger des

séquences de vecteurs vers le vecteur de poids optimal. Si les résultats théoriques de convergence
restent à établir, nous vérifions que cette convergence a lieu numériquement, quelque soit le
problème de bandit et le modèle, avec une convergence assez rapide, qui pourrait là encore
accélérer la méthode initiale de Garivier and Kaufmann (2016).

2. Aussi, une interprétation de la transformation W mène naturellement à la définition d’un nouvel
algorithme de type Top-Two adaptatif, que nous décrirons plus en détails en Section 1.2.5.

1.2.3. L’algorithme Track-and-Stop

Pour obtenir des garanties proches de la borne inférieure (1.1), nous avons vu qu’une stratégie
doit observer les bras avec des fréquences proches du vecteur de poids optimal (inconnu) w(µ).
L’idée de l’algorithme Track-and-Stop de Garivier and Kaufmann (2016) est d’estimer ce vecteur
de poids à chaque étape t en utilisant la moyenne empirique disponible µ̂(t− 1).

Règle d’échantillonnage. À l’étape t, Track-and-Stop choisit donc d’observer le bras qui est le
plus en retard par rapport au vecteur de poids ŵ(t− 1) = w

(
µ̂(t− 1)

)
, on parle de D-tracking, ou

à une version cumulative 1
t−1

∑
s∈[t−1] ŵa(s) plus prudente, on parle de C-tracking :

At ∈
{

argmina∈[K] Na(t− 1)−
∑

s∈[t−1] ŵa(s) (C-tracking),
argmina∈[K] Na(t− 1)− (t− 1)ŵa(t− 1) (D-tracking).

Le biais introduit par l’utilisation du vecteur ŵ(t − 1) plutôt que w(µ) peut conduire à un sous-
échantillonnage de bras de moyennes assez élevées, notamment lorsque les premières estimations sont
mauvaises. Pour y remédier, un mécanisme d’exploration forcée vient remplacer la règle d’échantillon-
nage lorsque l’un des bras n’a pas assez été observé : si le bras le moins observé a été échantillonné
moins de

√
t fois (taux arbiraire), il est tiré automatiquement.

Règle d’arrêt et décision. Le choix des règles d’arrêt est aussi crucial : celles-ci-doivent assurer
que la stratégie est δ–correcte sans pour autant nécessiter trop d’observations, ce qui diminuerait
la performance de la stratégie. Il semblerait qu’il y ait un consensus autour de la règle d’arrêt du
Global-Likelihood-Ratio introduite également par Garivier and Kaufmann (2016), qui consiste
à stopper l’algorithme dès lors que Z(t) dépasse un certain seuil β(t, δ), où

Z(t) def= max
a∈[K]

min
b6=a

Za,b(t) ,

avec Za,b(t) le ratio du log–likelihood sous les hypothèses H1 : µa > µb et H0 : µa ≤ µb, étant
données les observations à la fin de l’étape t (voir Section 2.2.5 pour plus de détails).
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Ils ont notamment établi que cette règle d’arrêt assurait que la stratégie est δ–correcte pour le
seuil suivant, quelque soit la règle d’échantillonnage.

Théorème 1.3. [Garivier and Kaufmann, 2016, Proposition 12]
Soit un modèle exponentiel Dexp. Soit δ ∈ (0, 1) et α > 1. Il existe une constante R = R(α, K)
telle que, quelque soit la règle d’échantillonnage, la règle d’arrêt du Global-Likelihood-Ratio
avec le seuil

β(t, δ) def= log Rtα

δ
, (1.3)

et avec l’estimation du meilleur bras empirique, assure que la stratégie est δ–correcte.
S’il est encore possible de diminuer légèrement le seuil, il semblerait que l’on ne puisse pas améliorer
sensiblement le temps d’arrêt en changeant la condition donnée par le Global-Likelihood-Ratio.

Optimalité asymptotique. L’algorithme Track-and-Stop est la première stratégie asymptotique-
ment optimale, pour laquelle les garanties lorsque le risque δ tend vers 0 correspondent avec la borne
inférieure :

lim
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

Nous donnons une preuve de ce résultat en Section 6.4 (voir Theorem 6.17).

1.2.4. Des garanties non asymptotiques

L’existence d’une stratégie asymptotiquement optimale questionne sur l’obtention de bornes non
asymptotiques. Dans le cadre du modèle D[0,1]

N1
des distributions Gaussiennes standards avec moyennes

dans [0, 1], nous définissons au Chapitre 4 une nouvelle stratégie appelée Exploration-Biased-
Sampling, pour laquelle nous démontrons des bornes à risque fini.

Règle d’échantillonnage. L’idée de cette nouvelle stratégie est de modifier légèrement le fonction-
nement de Track-and-Stop, en instaurant une région de confiance CRµ(t− 1) autour de µ̂(t− 1)
afin de définir un vecteur de poids qui favorise et maximise l’exploration, c’est-à-dire qui assure un
taux d’observation minimal supérieur à celui donné par le vecteur de poids optimal w(µ). Pour cela
on définit

µ̃(t− 1) ∈ argmax
ρ∈CRµ(t−1)

wmin(ρ) ,

où wmin(ρ) def= mina∈[K] wa(ρ) est la composante minimale de w(ρ). Ainsi, dès lors que le problème
de bandit µ appartient à la région de confiance CRµ(t − 1), utiliser le vecteur µ̃(t − 1) plutôt que
w(µ) augmente la fréquence minimale d’observation des bras.

La règle d’échantillonnage d’Exploration-Biased-Sampling consiste donc à suivre le poids
w̃(t−1) de manière directe (D-tracking) ou cumulative (C-tracking) de la même manière que Track-
and-Stop. Pour ce faire, il faut justifier que le vecteur w̃(t−1) est calculable. En utilisant les résultats
de monotonicité de la Section 3.4, nous montrons que cela est possible dès lors que la région de
confiance est un produit d’intervalles de confiance. Nous choisissons

CRµ(t) def=
∏

a∈[K]

[
µ̂a(t)± C γ

K

(
Na(t)

)]
, où Cγ(s) def= 2

√
log
(4s

γ

)
s

,

où γ ∈ (0, 1) est un paramètre de l’algorithme fixé. À mesure que le nombre d’observations augmente,
la région de confiance se rétrécit jusqu’à {µ} et le biais d’exploration décroît, i.e., w̃(t)→ w(µ).
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Borne non asymptotique. Les garanties théoriques d’Exploration-Biased-Sampling sont pré-
sentées dans la Section 4.3. Une première remarque intéressante est que cette stratégie a un taux
naturel d’exploration : tous les bras sont tirés au moins de l’ordre de '

√
t fois après t étapes. Cette

stratégie ne nécessite donc pas besoin d’exploration forcée (à l’inverse de Track-and-Stop). La
stratégie est asymptotiquement optimale (comme Track-and-Stop), les poids estimés convergeant
vers ceux de µ au fur et à mesure que les régions de confiance rétrécissent. Nous démontrons éga-
lement des garanties non asymptotiques, i.e., à risque fini, lorsque nous conservons la règle d’arrêt
Global-Likelihood-Ratio de Track-and-Stop.

Théorème 1.4. [voir Theorem 4.5]
Soient γ ∈ (0, 1), α ∈ [1, 2], η ∈ (0, 1], et soit µ ∈ D[0,1]

N1
. Il existe un évènement E de proba-

bilité au moins 1 − γ et δ0
def= δ0(µ, K, γ, η, α) > 0 tels que, pour tout 0 < δ ≤ δ0, l’algorithme

Exploration-Biased-Sampling avec le seuil (1.3) vérifie

∀t > (1 + η)T (µ) log 1
δ

, Pµ
(
τδ > t ∩ E

)
≤ 2Kt exp

(
−

twmin(µ)
4T (µ)2

1
log

2
3 1

δ

)
,

et

Eµ
[
τδI {E}

]
≤ (1 + η)T (µ) log 1

δ
+

27KT (µ)4

wmin(µ)2 exp
(
−

wmin(µ)
4T (µ) log

1
3

1
δ

)
log2 1

δ
.

Pour obtenir ces garanties, nous utilisons notamment les résultats de régularité démontrés pour les
poids optimaux en Section 3.5, couplés à la stabilité de la procédure de tracking.

Correction des lacunes de Track-and-Stop. La stratégie de tracking de Track-and-Stop pos-
sède quelques limitations. Outre la nécessité de recourir à une exploration forcée, le fort bruitage des
observations lors des premièrs tours peut rendre les proportions estimées très volatiles, et donc la
procédure très aléatoire. De plus, la stratégie ne présente pas le comportement attendu de tirer les
bras uniformément tant que trop peu d’informations ont été collectées. Les régions de confiance et
la procédure introduite par Exploration-Biased-Sampling permettent de corriger ces défauts :
l’algorithme commence par une phase d’uniforme exploration (de longueur variable), puis les poids
évoluent de manière assez stable. En contrepartie, cela entraîne un fort biais en faveur de l’exploration
qui, en pratique, se manifeste par un temps de prise de décision toujours plus long que Track-and-
Stop (mais d’ordre de grandeur comparable même pour des valeurs modérées de risque).

1.2.5. Les algorithmes Top-Two

De nouvelles stratégies tentent de combler les faiblesses de Track-and-Stop, notamment du
point de vue du coût computationnel. Track-and-Stop nécessite en effet le calcul d’un vecteur de
poids optimal à chaque étape. Les algorithmes de type top-two introduits par Russo (2016) utilisent
des règles d’échantillonnages simples : le bras à tirer est choisi entre un meneur Lt (un leader) et
un concurrent Ct (un challenger). De nombreux choix sont possibles, citons notamment (Jourdan
et al., 2022) le meilleur bras empirique pour le leader :

Lt ∈ argmax
a∈[K]

µ̂a(t− 1) ,

puis, pour le challenger, le bras dont le coût de transport empirique avec le leader est le plus faible :

Ct ∈ argmin
a6=Lt

TCa→Lt

(
µ̂(t− 1), N(t− 1)

t− 1

)
.
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Avec un paramètre β non adaptatif. Initialement, ces algorithmes ont été étudiés lorsque le bras
à observer est choisi comme étant le leader avec une probabilité β ∈ (0, 1) fixe. Comme un bon
choix de leader mènera à choisir la plupart du temps le meilleur bras comme leader, cela signifie
que ces algorithmes tirent en moyenne le meilleur bras avec proportion β, ce qui ne garantit pas
un choix optimal puisque a priori β 6= wa?(µ). Ainsi, les analyses actuelles montrent que certains
algorithmes de type Top-Two sont β–asymptotiquement optimaux, car ils vérifient pour des modèles
exponentiels :

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ Tβ(µ) , où Tβ(µ)−1 def= sup
v∈ΣK
va? =β

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) ,

ce qui correspond à la borne inférieure asymptotique pour ces algorithmes. Si l’on peut montrer que
des choix raisonnables de β (comme β = 1

2) n’engendrent pas une perte de garantie importante, il
n’est pas possible d’obtenir l’optimalité asymptotique des algorithmes Top-Two non adaptatifs.

Avec des proportions adaptatives. Une question naturelle consiste donc à comprendre si l’on
peut apprendre, au cours des observations, les proportions idéales de tirages entre le leader et le
challenger. La transformation W présentée en Section 1.2.2 permet en fait de mettre la main sur de
telles proportions, et donc de proposer des algorithmes adaptatifs. Nous montrons en effet que

βL,C =
wL d

(
µL, µL, C, w

)
TCC→L(µ, w) =

wL d
(
µL, µL, C, w

)
wL d

(
µL, µL, C, w

)
+ wC d

(
µC , µL, C, w

) ,

est la proportion optimale de tirages du leader L face au challenger C. Cette quantité peut être
estimée en remplaçant w par les proportions empiriques de tirages N(t)

t .
Pour un modèle Gaussien avec variances communes, You et al. (2023) ont montré que certains

de ces algorithmes Top-Two adaptatifs étaient asymptotiquement optimaux. Cependant, l’analyse
reste à établir pour des modèles exponentiels, pour lesquels nous conjecturons l’optimalité asympto-
tique.

Conjecture 1.4. [voir Conjecture 6.4]
Soit Dexp un modèle exponentiel. L’algorithme de type top-two adaptatif utilisant le meilleur bras
empirique comme leader, puis le challenger minimisant le coût de transport avec le leader, vérifie,
pour tout problème de bandit µ dans Dexp avec moyennes distinctes :

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

Nous explorons cette conjecture dans la Section 6.3. Les résultats établis dans un cadre Gaussien par
You et al. (2023) donnent une feuille de route, et nous expliquons comment adapter leurs arguments
dans le cadre général. Deux difficultés majeures sont identifiées : d’une part la propriété d’exploration
suffisante (le fait que les bras soient tirés au moins de l’ordre de

√
t à l’étape t), et d’autre part

une relation limite vérifiée par les fréquences empiriques. Si nous conjecturons, en donnant quelques
intuitions, que l’exploration suffisante est également vérifiée dans le cadre général (ou peut être forcée
si ce n’est pas le cas), la difficulté majeure semble désormais d’obtenir une relation limite similaire
au cas Gaussien.
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1.3. Identification de meilleur bras à budget fixé
Nous explorons ensuite le cadre à budget fixé, où la stratégie retourne son estimation âT du bras

optimal après un nombre déterministe d’observations T . L’objectif est de trouver des stratégies qui
minimisent la probabilité d’erreur :

Pν
(
âT 6= a?(ν)

)
.

Une décroissance exponentielle. En utilisant l’inégalité de Hoeffding avec des modèles sous-
gaussiens, on peut vérifier que la probabilité d’erreur converge vers 0 à vitesse exponentielle pour la
stratégie qui tire tous les bras uniformément et retourne le meilleur bras empirique :

Pν
(
âT 6= a?(ν)

)
≤ (K − 1) exp

(
C(ν)T

)
,

pour une constante C(ν) < 0. On s’intéresse alors à borner le taux de décroissance :
1
T

logPν
(
âT 6= a?(ν)

)
.

D’une part, on souhaite obtenir des bornes inférieures, valides pour des suites de stratégies “raison-
nables”, des quantités

`(ν) def= lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
.

D’autre part, pour une suite de stratégies fixée, on cherche une borne supérieure sur la quantité

u(ν) def= lim sup
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
.

Notons que `(ν) ≤ u(ν) et que ces taux sont négatifs.
Nous allons voir que le cadre à budget fixé est pour l’instant moins bien compris que celui à

confiance fixée : les bornes que l’on connaît sur `(ν) et u(ν) ne permettent par d’identifier un taux
de décroissance précis, et donc une notion de complexité optimale comme en confiance fixée.

1.3.1. Bornes connues de la littérature

Borne supérieure : l’algorithme Successive-Rejects. L’une des premières stratégies étudiée à
budget fixé est un algorithme d’élimination proposé par Audibert et al. (2010) nommé Successive-
Rejects. La stratégie consiste à diviser l’exploration en K − 1 tours. Une liste de bras candidats est
initialisée à l’ensemble des bras, et à chaque tour l’ensemble des bras restants sont tirés uniformément,
puis le pire bras empirique est éliminé des candidats. Audibert et al. (2010) ont considérées les
longueurs de phases, soigneusement choisies et déterministes (non adaptatives), suivantes :

`1
def= T

log K
, et ∀r ∈ {2, . . . , K − 1}, `r

def= T

(K − r + 2) log K
, (1.4)

où

log K
def= 1

2 +
K∑

k=2

1
k

,

Ils ont démontré une borne supérieure sur le taux exponentiel limite de décroissance impliquant les
gaps. Pour tout problème de bandit ν avec un unique bras optimal dans un modèle σ2–sous-Gaussien,

lim sup
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≤ − 1

4σ2 log K
min

2≤k≤K

∆2
(k)
k

, (1.5)

où log K est de l’ordre de log K, et les gaps sont ordonnés selon 0 = ∆(1) < ∆(2) ≤ · · · ≤ ∆(K).

Page 21 / 192



CHAPITRE 1. VUE D’ENSEMBLE DES RÉSULTATS

Bornes inférieures. La borne supérieure (1.5) dépend crucialement du choix des longueurs de
phases, qui a en fait été guidé par le souhait d’obtenir un même terme de complexité que celui
obtenu dans une borne inférieure pour un modèle de Bernoulli avec des moyennes dans [p, 1 − p].
Une preuve technique leur a permis de montrer que, intuitivement, pour tout problème de bandit ν
avec un unique bras optimal :

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − 5

p(1− p) min
2≤k≤K

∆2
(k)
k

. (1.6)

Le choix des longueurs de phases de Successive-Rejects a ainsi permis d’obtenir la même quantité
min2≤k≤K

∆2
(k)
k dans la borne supérieure, au prix de l’apparition d’un facteur supplémentaire log K

dû à la contrainte de budget. Autrement dit, les deux bornes ne correspondent pas.
Si d’autres bornes inférieures ont été proposées dans le cas très spécifique d’un modèle Gaussien

(pour lequel la divergence de Kullback-Leibler est symétrique), ou dans le cas de K = 2 bras (voir
Kaufmann et al., 2016), les bornes inférieures et supérieures connues aujourd’hui ne correspondent
pas en toute généralité. Pour résumer, la compréhension du problème à budget fixé est donc bien
moindre qu’à confiance fixée :
• les bornes supérieure et inférieure ne correspondent pas, avec un écart multiplicatif de l’ordre
de log K,
• les bornes existantes sont formulées uniquement à partir des gaps entre les distributions (et
non pas de quantités plus précises comme la divergence de Kullback-Leibler),
• les bornes (inférieures) sont valables pour des modèles très spécifiques (Gaussiens et Bernoulli).

1.3.2. Généralisations des bornes existantes à des modèles quelconques

Si le premier point de la liste ci-dessus semble délicat à traiter (voir Section 1.3.3), les techniques
de preuves connues peuvent être généralisées à de nombreux modèles (incluant par exemple des mo-
dèles exponentiels et non paramétriques), comme nous le montrons au Chapitre 5. Les généralisations
de ces bornes font intervenir de nouvelles quantités de théorie de l’information, plus informatives que
les gaps, et l’obtention des bornes inférieures se fait grâce à des hypothèses naturelles sur le com-
portement attendu d’une bonne stratégie.

De nouvelles quantités de théorie de l’information. La borne inférieure de théorie d’information
donnée par le Lemme 1.1 peut également être utilisée dans le cadre à budget fixé. Cependant, pour
obtenir des bornes sur le taux exponentiel de décroissance, les rôles de ν et de l’alternative ζ doivent
être inversés, i.e., on utilise l’inégalité∑

a∈[K]
Eζ

[
Na(T )

]
KL(ζa, νa) ≥ kl

(
Pν(E), Pζ(E)

)
.

pour tout évènement E ∈ FT . Si en confiance fixée, le temps caractéristique s’exprimait en fonction
des

(
KL(νa, ζa)

)
a∈[K], comme par exemple dans (1.2), il semblerait en conséquence que les bornes

sur les taux de décroissance à budget fixé s’expriment plutôt en fonction des
(
KL(ζa, νa)

)
a∈[K],

autrement dit les arguments des divergences de Kullback-Leibler sont inversés.
Pour un modèle général D, on introduit alors, pour ν ∈ D et x ∈ R, les quantités

L<
inf(x, ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}
,

et L>
inf(x, ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
.

Nous allons montrer que ces quantités interviennent dans des généralisations des bornes existantes
en remplacement des gaps. Elles pourraient ainsi être la clé pour mesurer la complexité du cadre à
budget fixé.
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Remarque 1.5. Une application de l’inégalité de Pinsker permet de montrer, lorsque les distributions
du modèle sont à valeurs dans [0, 1], que

∀x ≤ E(ν), L<
inf(x, ν) ≥ 2

(
x− E(ν)

)2
, et ∀x ≥ E(ν), L>

inf(x, ν) ≥ 2
(
x− E(ν)

)2
.

Dans le cas d’un modèle exponentiel Dexp, ces quantités s’écrivent simplement sous la forme de la
divergence de Kullback-Leibler d du modèle :

∀x ≤ E(ν), L<
inf(x, ν) = d

(
x, E(ν)

)
, et ∀x ≥ E(ν), L>

inf(x, ν) = d
(
x, E(ν)

)
.

Une analyse plus précise de Successive-Rejects. Nous proposons une nouvelle analyse de
Successive-Rejects qui consiste à remplacer l’application de l’inégalité de Hoeffding dans l’analyse
de Audibert et al. (2010) par une simple application de la borne de Cramér-Chernoff. Il en résulte
le remplacement des gaps dans la borne (1.5) par une quantité dépendant des transformées de
Fenchel-Legendre (φ?

νa
)a∈[K] des log–fonctions génératrices des moments des distributions de ν.

Remarque. On définit, pour une distribution ν,

∀λ ∈ R, φν(λ) = log
∫
R

eλx dν(x) et ∀x ∈ R, φ?
ν(x) = sup

λ∈R

{
λx− φν(λ)

}
,

et l’on rappelle que φ?
ν intervient dans le contrôle des déviations d’un N -échantillon de loi ν par la

borne de Cramér-Chernoff :

∀x ≤ E(ν), P
(
XN ≤ x

)
≤ exp

(
−N φ?

ν(x)
)

,

et ∀x ≥ E(ν), P
(
XN ≥ x

)
≤ exp

(
−N φ?

ν(x)
)

.

On obtient le résultat suivant, où l’on définit, pour tout ν, ν ′ ∈ D avec E(ν ′) < E(ν),

Φ(ν ′, ν) def= inf
x∈[E(ν′),E(ν)]

{
φ?

ν′(x) + φ?
ν(x)

}
.

Proposition 1.6. [voir Corollary 5.4]
Soit un modèle D. La séquence de stratégies Successive-Rejects utilisant les longueurs de
phase (1.4) vérifie, pour tout problème de bandit ν dans D avec un unique bras optimal,

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

Φ
(
νσk

, ν?
)

k
. (1.7)

où l’on range les bras a par ordre croissant de Φ
(
νa, ν?

)
, i.e., on considère la permutation σ telle

que
0 = Φ

(
νσ1 , ν?) < Φ

(
νσ2 , ν?) ≤ . . . ≤ Φ

(
νσK−1 , ν?) ≤ Φ

(
νσK , ν?) .

Sous des conditions de régularité assez légères du modèle D considéré (voir Section 5.4.2), nous
montrons que la quantité Φ(ν ′, ν) est égale à la quantité

L(ν ′, ν) def= inf
x∈[E(ν′),E(ν)]

{
L>

inf(x, ν ′) + L<
inf(x, ν)

}
, (1.8)

ce qui permet de réécrire la borne supérieure (1.7) en fonction des quantités L<
inf et L

>
inf :

∀ν dans D, lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

L
(
νσk

, ν?
)

k
. (1.9)

Pour un modèle sous-Gaussien, cela améliore la borne supérieure (1.5) puisque l’on peut prouver, via
l’inégalité de Pinsker, que L(ν ′, ν) ≥ 1

4σ2
(
E(ν)− E(ν ′)

)2.
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De nouvelles bornes inférieures. Nous montrons également plusieurs bornes inférieures, qui dé-
pendent de différentes hypothèses sur les suites de stratégies considérées. Une hypothèse générale
est la consistence, c’est-à-dire le fait que l’identification a lieu asymptotiquement presque sûrement
quelque soit le problème de bandit, i.e., que Pν

(
âT 6= a?(ν)

)
→

T →+∞
0 pour tout ν dans D.

Une première borne est obtenue en faisant les hypothèses supplémentaires suivantes :
• équilibrage pour le pire bras : le bras de plus petite espérance est tiré avec fréquence au plus

1
K asymptotiquement,

• exploitation astucieuse de l’élagage des bras sous-optimaux : la suite de stratégies, doublement
indexée par K et T , est plus efficace pour identifier le meilleur bras si l’on enlève un des bras
sous-optimaux du problème.

Sous ces deux hypothèses, nous montrons la borne suivante.

Théorème 1.5. [voir Theorem 5.10]
Soit un modèle D. Soit une suite de stratégies, doublement indexée, qui est consistante, équilibrée
pour le pire bras, et qui exploite astucieusement l’élagage des bras sous-optimaux. Alors, pour tout
problème de bandit ν dans D avec des moyennes distinctes,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K

L<
inf
(
µ(k), ν?

)
k

, (1.10)

où les bras sont ordonnés selon µ(1) > µ(2) > · · · > µ(K).

Ce résultat généralise la borne inférieure (1.6) de Audibert et al. (2010) à tout modèle D. Dans le
cas particulier d’un modèle de Bernoulli, l’inégalité de Pinsker permet en effet (cf. Remarque 1.5) de
déduire (1.6) de la borne (1.10).

Cette borne inférieure ne s’exprime pas en termes d’infima de combinaisons de L>
inf et L<

inf ,
i.e., sous la forme L introduite en (1.8) et que l’on retrouve dans la borne supérieure de Successive-
Rejects (1.9). Sans parvenir à obtenir une borne inférieure impliquant la quantité L, nous proposons
tout de même une borne inférieure pour des modèles dits normaux4 et des suites de stratégies dites
monotones, qui limitent (asymptotiquement) les fréquences de tirages des bras sous-optimaux :

∀ν dans D,∀a ∈ [K], lim sup
T →+∞

Eν
[
N(a)(T )

]
T

≤ 1
a

.

Théorème 1.6. [Voir Theorem 5.13]
Considérons un modèle normal D. Soit une séquence de stratégies consistante et monotone sur D.
Alors, pour tout problème de bandit ν dans D avec des moyennes distinctes,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K
min

2≤j≤k
inf

x∈[µ(j),µ(j−1))

{L>
inf
(
x, ν(k)

)
j − 1 +

L<
inf
(
x, ν?

)
j

}
.

Cette borne implique notamment la borne plus lisible suivante

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K
inf

x∈[µ(k),µ(k−1))

{L>
inf
(
x, ν(k)

)
k − 1 +

L<
inf
(
x, ν?

)
k

}
, (1.11)

4Qui nécessitent uniquement que l’infimum définissant L>
inf(x, ν) soit atteint par une suite de distributions dont les

espérances tendent vers x.
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et, de surcroît, la borne inférieure (1.10) en prenant x = µ(k). La borne (1.11) va dans la direction
du terme de complexité qui apparaît dans la borne supérieure (1.9) avec la quantité L, cependant
l’infima est pris sur de plus petits intervalles.

Remarque. Les bornes présentées au Chapitre 5 n’améliorent pas l’écart entre les bornes inférieure
et supérieure : il y a toujours (au moins) une constante multiplicative de l’ordre de log K ' log K
entre les deux.

1.3.3. Existence d’une complexité

La différence de facteur de l’ordre log K entre les bornes inférieure (1.6) et supérieure (1.5)
amène à se demander s’il existe, comme en confiance fixée, une notion de complexité dans le cadre à
budget fixé. Si des résultats minimax comme la borne inférieure de Carpentier and Locatelli (2016)
montrent que les bornes inférieures ne sont peut-être pas encore optimales, on se demande également
s’il existe une stratégie uniformément optimale, qui puisse atteindre une borne inférieure asymptotique
simultanément sur l’ensemble des problèmes de bandits.

Des travaux récents tentent de démontrer qu’une telle stratégie n’existe pas pour des modèles
assez vastes. Degenne (2023) a notamment démontré que, pour un modèle Gaussien, il n’existe pas
de stratégie qui soit, uniformément sur chaque problème de bandit, aussi performante que la meilleure
stratégie tirant les bras avec des proportions fixes contre ce problème de bandit. Ce comportement,
très différent du cadre à confiance fixée, pourrait s’expliquer par la difficulté que peuvent avoir les
stratégies à se fier aux observations dans ce cadre.
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Notation

This symbol in the external margin highlights an important notation or convention for the re- �

maining of the thesis.
All tuples (vectors of RK , list of distributions, …) are underlined.

Remark. For the sake of clarity, some technical notations of Chapters 3 to 5 are not aggregated
here. For the same reasons, most of the pieces of notation of Chapter 6 are not included, as the
chapter presents work-in-progress ideas with abundant notation.

Generalities
This first table contains general notation. Each piece of notation is associated with a reference to
the page where it is defined or where it appears first.

Notation Designation Page
K Positive integer (number of arms) 32
v Vector of RK 44

[K] Set {1, . . . , K} 33
int(A) Interior of a set A 48

sgn Sign function 50
ΣK Simplex of dimension K − 1 44
SK Set of permutations of [K] 62

log K 1
2 +

∑K
k=2

1
k 61

Probabilities
X ∼ ν The random variable X has law ν 33
E(ν) Expectation of a distribution ν 33
E[X] Expectation of a random variable X 33
I {E} Indicator function of an event E 35
PX Push-forward measure of a random variable X under probability P 40

P� Q Q absolutely dominates P 42
Leb[0,1] Lebesgue measure restricted to [0, 1] 41
Supp(ν) Support of distribution ν 145

m(ν) inf Supp(ν) 145
M(ν) sup Supp(ν) 145

δx Dirac mass at x 146
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NOTATION

Bandit problems

Letters a, b, c always refer to arms, that is elements of [K]. In subindices for sums and infima, or
with quantifiers, we sometimes omit to explicitly mention [K] for simplicity: for example, given a
fixed arm b,

∑
a6=b denotes the sum over arms a ∈ [K] \ {b}.

Notation Designation Page
K Number of arms 32
νa Probability distribution of arm a 32
µa Mean of probability distribution of arm a 33
ν Bandit problem, set of K distributions (ν1, . . . , νK) 33
µ Mean vector of bandit problem ν 44

a?(ν) Set of best arms of ν, or unique best arm of ν 33
a?(µ) 44

ν? Optimal distribution of ν 33
µ? Optimal mean of ν 33
Pν Probability under bandit problem ν 35
Pµ 44
Eν Expectation under bandit problem ν 35
Eµ 44

∆a, ∆a(ν) Gap of arm a in ν 36
∆min Minimal positive gap of ν 39
∆max Maximal gap of ν 74
∆2 Average squared gap of ν 48

Alternative
ζ Another bandit problem (often an alternative to ν) 40
λ Mean of ζ 44

Alt(ν) Set of alternative bandits problems to ν 66
Alt(µ) 44

Optimization problem
T (µ) Characteristic time of µ 44
Tβ(µ) Characteristic time of µ under the constraint that the best arm is

pulled a fraction β of times
57

w, w(µ) Optimal weight vector of µ 47
wmin, wmin(µ) Minimal component of the optimal weight vector of µ 74
TCa→a?(µ, v) Transportation cost of arm a to a? in ν, given draw proportions v 46

µa?, a, v Weighted mean of µ? and µa with weights va? and va 46
(a) a–th arm of ν in terms of means 37
νσ Permuted bandit instance associated to ν and permutation σ 57

H(ν) Complexity function 69
HΣ(ν)

∑
a6=a?(ν)

1
∆2

a
64
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NOTATION

Strategies
We use a special font when referring to algorithms and procedures, like for instance Track-and-Stop
or sampling-rule. Algorithm names start with a capital letter, while general procedures do not.

Notation Designation Page
δ Confidence parameter 33
T Budget parameter 34
At Observed arm at time step t 35
Yt Observation at time step t 35
Ut External randomization at time step t 35
It Available history at time step t 35
Ft σ-algebra generated by It+1 35

Na(t) Number of observations of arm a at time step t 35
µ̂a(t) Empirical mean of arm a at time step t 35
Xa,n n–th observation of arm a 37
µ̂a,n Mean of the n first observations of arm a 37

Stopping and decision rules
τ Stopping time of a δ–correct strategy 35
τδ 35

âτ , âτδ
, âT Estimated best arm 35

Za,b(t) Generalized log–likelihood ratio 50
Z(t) Test statistic for the Global-Likelihood-Ratio stopping rule 50

β(t, δ) Threshold function 50
R Constant ensuring δ–correctness of threshold (2.27) 51
α Constant in threshold (2.27) 51

Elimination strategies
r Round 36

Sr−1 Set of candidates arms remaining at the beginning of round r 36
ar Arm removed at the end of round r 36
nr Number of pulls of the arm eliminated at the end of phase r 38
`r Length of round r 60

Track-and-Stop
ŵ(t) Plug-in estimate of w(µ) at time step t 49
U(t) Set of under-sampled arms at time step t 49

Exploration-Biased-Sampling
CRµ(t) Confidence region for µ after t observations 101
Cγ(s) Constant defining the width of CRµ(t) 101
µ̃(t) Biased exploring bandit inside CRµ(t) 102
w̃(t) Optimal weight of µ̃(t) 102

top-two algorithms
Lt Leader at time step t 55
Ct Challenger at time step t 55
β Probability parameter of choosing the leader in a top-two

non-adaptive algorithm
57
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NOTATION

Information-theoretic quantities

Notation Designation Page
KL(P,Q) Kullback-Leibler divergence between probability measures P and Q 40

d Mean-parametrized Kullback-Leibler divergence of an exponential
family

43

kl Mean-parametrized Kullback-Leibler divergence of the Bernoulli
family

44

L<
inf(x, ν) inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}
67

L≤
inf(x, ν) inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) ≤ x

}
126

L>
inf(x, ν) inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
67

L≥
inf(x, ν) inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) ≥ x

}
126

L(ν, ν ′) infx∈[E(ν′),E(ν)]
{
L≥

inf(x, ν ′) + L≤
inf(x, ν)

}
67

K<
inf(ν, x) inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}
46

K>
inf(ν, x) inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
46

Models of distributions

Notation Designation Page
D General set of distributions all admitting a finite mean 33
P[0, 1] Distributions taking values in [0, 1] 33
DB Bernoulli distributions 33
B[p, 1−p] Bernoulli distributions with means in [p, 1− p] 64
DNσ2 Gaussian distributions with known variance σ2 > 0 33
DM

Nσ2
Distributions of DNσ2 with means inM 96

D[0,1]
N1

Standard Gaussian distributions with mean in [0, 1] 89
Dσ2 σ2–sub-Gaussian distributions 33

Exponential models
Dexp One-canonical exponential family 33

Θ Natural space parameter 43
θ Parameter 43
b Normalizing function 43

M = (µ−, µ+) Open interval of the expectations of distributions 43
d Mean-parametrized Kullback-Leibler divergence 43
kl Mean-parametrized Kullback-Leibler divergence of the Bernoulli

family
44

CD Regularity constant associated to a model D 65
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CHAPTER 2

Pure Exploration in Multi-Armed
Bandits

In this preliminary chapter, we first introduce and motivate the statistical problems considered in
this thesis, which constitute a sub-domain of the multi-armed bandit literature known as best-arm
identification. Then we review the state-of-the-art theoretical knowledge around those problems and
highlight our contributions (to be all presented in detail in Chapters 3 to 6).

In the fixed-confidence setting, we explain that the problem is well-understood in the asymptotic
regime and we present new results for a Gaussian model which allow us to define a new strategy with
non-asymptotic guarantees. We also present partial results for the asymptotic analysis of adaptive
top-two algorithms.

Then, we highlight the difficulties faced by the literature to obtain a precise comprehension of
the fixed-budget setting. In that setting, we present generalizations of existing bounds to possibly
non-parametric models. Those bounds are based on new information-theoretic quantities.

Contents
1 A Sequential Learning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Best-Arm Identification with a Fixed-Confidence . . . . . . . . . . . . . . . . . . . . 35

1 Naive Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 The Fundamental Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3 Lower Bound for Exponential Models . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 The Sample Complexity Optimization Problem . . . . . . . . . . . . . . . . . . . . . 45
5 The Track-and-Stop Algorithm: an Asymptotically Optimal Strategy . . . . . . . . . 49
6 Non-Asymptotic Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7 Towards Computationally More Efficient and More Natural Strategies . . . . . . . . . 54

3 Best-Arm Identification with a Fixed-Budget . . . . . . . . . . . . . . . . . . . . . . 58
1 An Exponential Decay Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2 Successive-Rejects-Type Strategies . . . . . . . . . . . . . . . . . . . . . . . . 59
3 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Comparing Upper and Lower Bounds: the Challenges of the Fixed-Budget Setting . . . 66
5 On Non-Matching Bounds and Minimax Results . . . . . . . . . . . . . . . . . . . . 68
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CHAPTER 2. PURE EXPLORATION IN MULTI-ARMED BANDITS

2.1. A Sequential Learning Problem
In this thesis, we study the following sequential learning task. A learner faces a set of K ≥ 2 unknown
real probability distributions ν1, . . . , νK . At each time step, the learner observes an independent
realization of one of the distributions, that she actively chooses according to previous observations.
Her objective is to quickly gather evidence so as to identify the distribution of highest mean.
This statistical task is a sequential and active optimization problem, which are sub-domains of
machine learning.

ν3

µ3

ν1

µ1

ν2

µ2

Figure 2.1: µa denotes the expectation of νa. For the three distributions for which we represent the
probability mass functions, the goal of the learner is to identify ν1 as the best distribution.

Motivations. Before going any further, we give two concrete applications of this learning task.

Application 2.1. [Medical trial]
Assume that you get K candidate treatments to cure a disease. You organize a medical trial to find
the treatment that responds best to the disease1. You can allocate one treatment to each participant
of the trial and observe how she responds to this treatment. You may proceed sequentially so as to
choose the next treatment to allocate based on past observations.

Application 2.2. [Online advertising, A/B testing]
You own a webpage that you want to monetize by including an advertisement in it. Your income
will be proportional to the number of clicks on the ad. Given K possible ads, you want to find the
ad which maximizes the commitment of users. To do so, for each new viewer, you can choose an ad
to display, based on previously collected data, and check whether or not he clicks on it.
A famous variant of this problem is A/B testing: you want to find which one among two versions of
a webpage maximizes customer satisfaction.

First intuitions on the learner’s strategy. The learner’s strategy has an impact on the collected
data: she chooses the next distribution to observe with the knowledge of previous observations. This
is why we say that the learner is active and we introduced the problem as a sequential learning task.
It is in contrast with more “classical” statistical problems for which we cannot influence the data
collected. In our problem, how the learner relies on past observations might evolve over time, as
intuition suggests:
• during the first steps, the learner has access to a limited amount of observations of each
distribution, hence she cannot estimate precisely the associated means. Consequently, it sounds
natural to mistrust those observations and proceed to a uniform exploration of the distributions
(i.e., observe all of them equally often),
• as more and more observations are gathered, the accuracy of the estimations increases, and
the learner should allocate more observations to empirically promising distributions in order to
better differentiate them.

1In a meaning that needs to be defined: a good treatment should cure the disease while avoiding side effects.
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2.1. A SEQUENTIAL LEARNING PROBLEM

This highlights a major difficulty when dealing with those identification problems: how much can
the learner trust previous observations? Does she need to focus on under-sampled distributions (for
which she has poor estimates) or on promising distributions (which behave well empirically)?

Multi-armed bandits. The problem introduced in this section is known in the literature as the
problem of best-arm identification in multi-armed bandits. Although the first motivations for those
questions concerned medical applications (see Thompson, 1933), this vocabulary comes from casinos
and the slot machines sometimes called “one-armed bandits”. Considering a set of K machines, a
player might try to identify the machine with the best average payoff.

The problem instance ν = (ν1, . . . , νK) is called a K–armed bandit instance and the indices of
its distributions, which belong to [K] def= {1, . . . , K} are its arms2 (hence at each round we choose
an arm to observe). All distributions of ν belong to some model denoted by D, which is a subset of
the set of real distributions which admit a finite mean.

Example. We may cite, for example,
• the model DNσ2 of Gaussian distributions with common variance σ2 > 0,
• the model DB of Bernoulli distributions with means in (0, 1),
• exponential models, denoted by Dexp (see details in page 43),
• the model Dσ2 of σ2–sub-Gaussian distributions, that is the set of distributions ν such that:

∀λ ∈ R, E
[
eλ(X−E[X])

]
≤ e

λ2σ2
2 , (2.1)

where X ∼ ν,
• the model P[0, 1] of bounded distributions taking values in [0, 1].

Multi-armed bandit problems have been vastly studied in the literature. The interest in this
model comes from the wide variety of applications (see Lattimore and Szepesvári, 2020, Chapter 1 for
additional motivations), which has led to the study of many objectives (including regret minimization
and best-arm identification), the consideration of different utility functions (mean, quantile, CVaR,
etc.), of various structures when there is an underlying dependency between the means (linear bandits,
combinatorial bandits, graph bandits, etc.), and also extensions to an infinite number of arms.

Best-arm identification. In the rest of this chapter, unless otherwise specified, we only consider
bandit instances that have a unique best arm (or optimal arm) denoted by a?(ν):{

a?(ν)
}

def= argmax
a∈[K]

µa ,

where µa
def= E(νa) is the mean of arm a. The corresponding distribution and its mean will often be

denoted by ν? and µ?:
ν? def= νa?(ν) and µ? def= µa?(ν) ,

and other arms are said to be sub-optimals.
The best-arm identification task consists in identifying a?(ν). As we will detail in the next sections,
the problem can be considered under two different approaches:
• in the fixed-confidence setting, we introduce some confidence parameter δ ∈ (0, 1) and we
want to design strategies that will stop after some (random) finite number of observations and
give an estimate of the best arm a?(ν) which is correct with probability at least 1 − δ. Such

2As the indices characterize the distribution, a slight abuse consists in using arms to directly denote the distributions.
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arm

mean

µ⋆

•
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•
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•
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•
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•
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Figure 2.2: Optimal arm and mean of a bandit instance ν.

strategies are called δ–correct. Of course, by accessing a very large number of observations,
we will be able to design δ–correct strategies, yet we want to avoid unnecessary observations.
This is why, in that setting, we try to find δ–correct strategies that minimize the expected
number of queries. This setting was originally considered by Even-Dar et al. (2006).
• in the fixed-budget setting, we have to give an estimate of the best arm after a given total
of T observations. The objective is to design strategies that minimize the probability of
misidentification. This setting is studied in Audibert et al. (2010).

Surprisingly, the two settings are not equivalent: they do not lead to the same strategies, and they
are not equally understood in the literature (as we will see in this introductive chapter).

Example. Obtaining a δ–correct estimate of the best arm might require a long number of queries,
which is not adapted to every situation:
• during a medical trial (Application 2.1), the panel of participants is limited, hence you have
a maximal number of possible observations and might model the situation as a fixed-budget
best-arm identification problem,
• in online advertising (Application 2.2), if your webpage is visited frequently enough, you have
access to a potentially large number of internet users, so that you can wait until obtaining a
δ–correct estimate of the best add, and then choose this add to be displayed to all future users.

The problem of best-arm identification is part of the pure explorationpure exploration problems
(Lattimore and Szepesvári, 2020, Chapter 33): observing sub-optimal distributions is not directly pe-
nalized (contrarily to the problem of regret minimization) and even required to increase the confidence
on the prediction. However, exploration might be done carefully:
• in the fixed-confidence setting, observing sub-optimal distributions more than necessary will be
costly for the total number of queries that we want to minimize,
• in the fixed-budget setting, too many observations of the worst arms will imply that less budget
will be devoted to comparing the best distributions, hence increasing the probability of error.

Before being seen as bandit problems, both settings of the best-arm identification problem have been
considered in the “ranking and selection” literature (see Hong et al., 2021 for a survey).
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2.2. Best-Arm Identification with a Fixed-Confidence

In this section, we describe the fixed-confidence setting introduced by Even-Dar et al. (2006) and
the main results obtained in the literature for that setting. The objective is to design strategies that
after some random number of steps τ return an estimate âτ ∈ [K], which is equal to the best arm
a?(ν) with probability at least 1− δ, where δ ∈ (0, 1) is a fixed confidence parameter.

We begin with a mathematical definition of what a strategy is in that setting. We denote by
Yt the observation at step t ≥ 1 and consider an independent sequence (Ut)t≥0 of i.i.d. random
variables of law U([0, 1]) to be used as an external randomization by the strategy.

Formal definition of a strategy. In the fixed-confidence setting, a strategy is defined by
• A sampling rule, which consists in choosing the arm At ∈ [K] to observe at each time step

t ≥ 1. This arm At depends on the previous observations Y1, . . . , Yt−1, but also possibly
on some external randomization that we capture by the random variable Ut−1. At is thus
Ft−1–measurable, where

Ft−1
def= σ(It−1) , with It−1

def=
(
U0, Y1, U1, Y2, U2, . . . , Yt−1, Ut−1

)
.

It−1 corresponds to the information available at the end of time step t− 1, i.e., to the history.
• A stopping rule τ , which is a stopping time with respect to the filtration (Ft)t≥0.
• A decision rule âτ which is Fτ–measurable.

The general structure of a strategy is presented in Algorithm 1. The stopping rule τ highly depends
on the confidence parameter δ, this is why we will denote it as τδ from now on. For the sampling
and decision rules, most of the presented strategies in this chapter are independent3 from δ.

For a given strategy facing a bandit problem ν, let Na(t) and µ̂a(t) denote the number of pulls
and the empirical mean4 of arm a at step t:

Na(t) def=
∑
s∈[t]

I {As = a} and µ̂a(t) def= 1
Na(t)

∑
s∈[t]

Ys I {As = a} ,

where I {E} denotes the indicator (or characteristic) function of event E.
A most natural decision rule, used by many strategies, is to return the arm with the best (i.e., the

largest) empirical estimate µ̂a(τδ), see Algorithm 2 .
For the sake of clarity, probabilities and expectations will be indexed by the bandit problem under

which observations are done: Pν (respectively, Eν) denotes the probability (respectively, expectation)
under the bandit problem ν. We now give a concrete definition of δ–correctness.

Definition 2.3. [δ–correct strategy]
Let δ ∈ (0, 1). A strategy is δ–correct on a model D if for all K–armed bandit problems ν in D
with a unique optimal arm,

Pν
(
τδ < +∞, âτδ

6= a?(ν)
)
≤ δ . (2.2)

Remark. The condition (2.2) means that the strategy returns a bad arm with controlled probability.
As the strategy may never stop, it is not equivalent to ask that the strategy returns a? with high
probability:

Pν
(
τδ < +∞, âτδ

= a?(ν)
)
≥ 1− δ . (2.3)

Note that both conditions (2.2) and (2.3) are used in the literature, which is not confusing as we
will see that efficient strategies satisfy τδ < +∞ Pν–a.s..

3All but elimination algorithms presented in the next section.
4All considered strategies initially pull each arm once, hence µ̂a(t) is well-defined for t ≥ K.
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Algorithm 1: General structure of a fixed-confidence strategy
Input: confidence parameter δ

sampling-rule, stopping-condition, decision-rule
Output: stopping time τδ

estimated best arm âτδ

1 Observe each arm once // initialization
2 t← K
3 while stopping-condition(It, δ) is not satisfied do
4 Increase t by 1
5 At ← sampling-rule(It−1)
6 Observe Yt ∼ νAt

7 τδ ← t
8 âτδ

← decision-rule(Iτδ
)

Algorithm 2: Empirical-Best decision rule
Input: history of observations Iτδ

Output: estimated best arm âτδ

1 Choose âτδ
∈ argmax

a∈[K]
µ̂a(τδ)

We will see that the δ–correct condition is ensured by a careful choice of the stopping rule, while
the sampling rule determines the performance of the strategy. We explore possible choices of both
procedures in Sections 2.2.1, 2.2.5 and 2.2.7.

2.2.1. Naive Approaches

In this section, we present the first δ–correct strategies introduced in the literature by Even-Dar et al.
(2006). They considered elimination (or racing) algorithms, which are strategies with a particular
structure: the exploration is split in rounds (or phases). The strategy maintains a list of candidate
arms, starting with all arms, and drops (at least) one arm at the end of each phase. We will only
consider elimination strategies for which, in each phase r, the random set Sr−1 of active candidates is
uniformly explored, and the worst empirical arm ar is removed (hence strategies have K−1 rounds).
See Algorithm 3 for details.

Remark. Elimination algorithms are the only strategies considered in this thesis that do not use the
Empirical-Best decision rule (Algorithm 2): they recommend the remaining arm of SK−1, which
might have a smaller empirical estimate than one of the arms eliminated in rounds 1 to K − 2 (even
if this is quite unlikely).

We consider here the model P[0, 1] of bounded distributions taking values in [0, 1], but the
results generalize to any σ2–sub-Gaussian model Dσ2 . Even-Dar et al. (2006) proposed a δ–correct
elimination algorithm for which they obtained guarantees on the number of pulls depending on the
gaps of bandit problem ν. The gap ∆a(ν) of arm a is the expected difference between the rewards
under the optimal distribution ν? and under νa:

∆a(ν) def= µ? − µa .
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Algorithm 3: General structure of an elimination algorithm
Input: confidence parameter δ

stopping-condition for each phase
Output: stopping time τδ

estimated best arm âτδ

1 t← 0
2 S0 ← [K]
3 for each phase r ∈ [K − 1] do
4 while stopping-condition(r, It) does not hold do
5 Observe each arm of Sr−1 once
6 Increase t by the cardinality of Sr−1
7 Choose ar ∈ argmin

a∈Sr−1

µ̂a(t)

8 Sr ← Sr−1 \ {ar}
9 τδ ← t

10 Define âτδ
as the unique element of SK−1

In the sequel, when there is no confusion, we set a? = a?(ν) and ∆a = ∆a(ν) for all a ∈ [K]. We �

will also order arms by their means, using (reverse) notation of order statistics:

µ(1) > µ(2) ≥ µ(3) ≥ · · · ≥ µ(K) .

As a consequence, note that a?(ν) = (1).
Letters a, b, c always refer to arms, that is, to elements of [K]. In subindices for sums and infima,
or with quantifiers, we sometimes omit to explicitly mention [K] for simplicity: for example, given a
fixed arm b,

∑
a6=b denotes the sum over arms a ∈ [K] \ {b}.

To be efficient in the identification task, the racing Algorithm 3 should not eliminate the best
arm at the end of all phases. If remaining arms have been pulled n times at the end of a phase, such
elimination might occur if two n–sample averages of distributions ν? and νa, for some sub-optimal
arm a, are in reverse order compared to the expectations of the underlying distributions. We will
first focus on the probability of those undesired events, which will then allow us to derive phase
lengths that ensure the δ–correctness of the elimination Algorithm 3. Before doing so, we introduce
convenient notation offered by optional skipping.

Optional skipping. Let (Xa,n)a∈[K],n≥1 be independent random variables such that Xa,n ∼ νa for
all a ∈ [K] and n ≥ 1. Optional skipping (see Garivier et al., 2022, Section 4.1 for an extensive
presentation) is a useful tool in multi-armed bandit problems based on Doob’s optional skipping
(Doob, 1953, Theorem 5.2), which allows assuming that, given At = a, the observation at time step
t is Yt = Xa,Na(t). As a consequence, we notably get �

µ̂a(t) = 1
Na(t)

Na(t)∑
n=1

Xa,n
def= µ̂a,Na(t) ,

making a link between µ̂a(t) which is a quantity defined by the global time step t to some µ̂a,n

which depends on local steps of arm a. It might be highlighted that the sequence (Xa,n)a∈[K],n≥1 is
assumed to be drawn regardless of the strategy. In the analysis, it is sometimes useful to rely on the
existence of µ̂a,n even if arm a has been totally pulled less than n times. See, e.g., Equation (2.7).
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Discriminate between two arms. Assume that you have to discriminate the means of arms a?

and a with confidence δ. How many observations do you need if you pull both arms equally? One
can prove that at most n = ∆−2

a log 1
δ pulls of each arm are required using Hoeffding’s inequality.

Remark. We recall that Hoeffding’s inequality states that, if N is an integer and X1, . . . , XN are
independent random variables such that
• either each Xs belongs to [as, bs] almost surely, with σs = bs−as

2 ,
• or, more generally5, each Xs is σ2

s–sub-Gaussian, see (2.1),
then

∀t > 0, P
(

N∑
s=1

Xs − E[Xs] ≥ t

)
≤ exp

(
− t2

2
∑N

s=1 σ2
s

)
. (2.4)

For the choice of n given above, the misidentification probability is indeed controlled by δ:

Pν

(
µ̂a,n ≥ µ̂a?,n

)
= Pν

(
n
(
µ̂a,n − µ̂a?,n + ∆a

)
≥ n∆a

)
≤ exp

(
−∆2

an
)

(2.5)

≤ δ ,

by applying Hoeffding’s inequality (2.4) to

n
(
µ̂a,n − µ̂a?,n + ∆a

)
=

n∑
s=1

(
Xa,s − E[Xa,s]

)
−

n∑
s=1

(
Xa?,s − E[Xa?,s]

)
,

which is the centered sum of a 2n–sample of 1
4–sub-Gaussian variables (as each Xa,s and Xa?,s

belongs to [0, 1] almost surely). Using this simple observation will allow us to design δ–correct
elimination algorithms.

With known gaps. Assume that we know all values of the gaps, but not the mapping a 7→ ∆a.
Then we can use inequality (2.5) to fix deterministic phase lengths so as to control the probability
of misidentification by δ. Indeed, let nr be the determined and pre-defined total number of pulls at
the end of round r of an arm that was still running in that phase (i.e., belonging to Sr−1). The
algorithm fails to identify the best arm if a? is eliminated at some phase, hence the probability of
misidentification can be decomposed as follows:

Pν
(
âτδ
6= a?) =

∑
r∈[K−1]

Pν
(
a? is eliminated at round r

)
=

∑
r∈[K−1]

Pν
(
ar = a?) . (2.6)

Fixing r ∈ [K − 1], we will choose nr such that Pν
(
ar = a?

)
≤ δ

K , which will make the strategy
δ–correct. We observe that Sr−1 contains K− r + 1 arms, hence at least one arm among the r arms
{(K), (K − 1), . . . , (K − r + 1)}. We deduce the following bound, using optional skipping and, for

5Hoeddfing’s lemma exactly claims that, if a random variable belongs almost surely to an interval of length 2σ, then
it is σ2–sub-Gaussian.
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the third inequality, bound (2.5):

Pν
(
ar = a?) = Pν

(
a? ∈ Sr−1 and µ̂a?,nr ≤ min

a∈Sr−1\{a?}
µ̂a,nr

)
≤ Pν

(
∃a ∈

{
(K), (K − 1), . . . , (K − r + 1)

}
: µ̂a?,nr ≤ µ̂a,nr

)
(2.7)

≤
K∑

a=K−r+1
Pν

(
µ̂a?,nr ≤ µ̂(a),nr

)

≤
K∑

a=K−r+1
exp

(
−∆2

(a)nr

)
≤ K exp

(
−∆2

(K−r+1)nr

)
(2.8)

≤ δ

K

as soon as nr ≥
⌈

2
∆2

(K−r+1)
log K

δ

⌉
.

Using this lower bound to define the phase lengths we obtain a δ–correct elimination algorithm
(relying on the knowledge of the gaps) for which the number of queries is deterministic: as the arm
eliminated in phase r is pulled nr times and the surviving arm is pulled nK−1 times, we get

τδ =
∑

r∈[K−1]
nr + nK−1 =

∑
a6=a?

⌈
2 log K

δ

∆2
a

⌉
+
⌈

2 log K
δ

∆2
min

⌉
, (2.9)

where ∆min
def= mina6=a? ∆a = ∆(2). By observing that

2 log K

δ

∑
a6=a?

1
∆2

a

≤ τδ ≤ 8 log K

δ

∑
a6=a?

1
∆2

a

,

the sample complexity is of order

O
(

log K

δ

∑
a6=a?

1
∆2

a

)
.

Remark. As we observed, this strategy has a constant stopping time τδ. Elimination algorithms have
been similarly studied in fixed-budget best-arm identification (Audibert et al., 2010; Karnin et al.,
2013), as we will discuss in Section 2.3.

Without the knowledge of gaps. Without the knowledge of gaps, an elimination strategy has
no choice but to consider adaptive phase lengths in order to be δ–correct. Even-Dar et al. (2006)
developed such an algorithm, using Algorithm 3 with a stopping criterion for each phase depending
on δ, K and t and based on anytime confidence intervals (we will discuss more this concept in the
paragraph on stopping conditions in page 50). They proved that their strategy satisfies

τδ = O
(∑

a6=a?

log K
δ∆a

∆2
a

)
= O

(
log
(

K

δ∆min

) ∑
a6=a?

1
∆2

a

)
(2.10)

with probability at least 1− δ.
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2.2.2. The Fundamental Inequality

When measuring the performance of δ–correct strategies, one may be interested in deriving bounds
on the number of pulls either with high probability, as in bound (2.10), or in expectation. From
now on, we focus on bounds obtained in expectation, as Sections 2.2.3 and 2.2.4 will prove that this
criterion seems more suitable.

Garivier and Kaufmann (2016) proved that the performance in expectation of δ–correct strategies
cannot be arbitrarily good: they obtained an instance-dependent lower bound on the expected number
of pulls of any δ–correct strategy that we will present in Section 2.2.3. The result is based on a
fundamental inequality whose applications go beyond the fixed-confidence setting. This fundamental
inequality relies on change-of-measure arguments and on information-theoretic properties of the
Kullback-Leibler divergence that we briefly introduce in the next paragraph.

The Kullback-Leibler divergence. The Kullback-Leibler divergence is a pseudo-distance on prob-
ability distributions that appears to play a special role in information theory. It is defined, for all
pairs of probability measures P and Q defined on a measurable space (Ω,A), by

KL(P,Q) def=


∫

Ω
log dP

dQ dP = EX∼P

[
log dP

dQ(X)
]

if P� Q ,

+∞ otherwise ,

where dP
dQ denotes the Radon-Nikodym derivative of P with respect to Q when P is absolutely

continuous with respect to Q. One can easily check that KL(P,Q) is a non-negative and non-
symmetric quantity, and that it is null if and only if P = Q.
The Kullback-Leibler divergence satisfies a useful inequality to derive lower bounds, namely the
data-processing inequality (or contraction of entropy), which states that the divergence between
push-forward measures is smaller than the divergence between the original measures. More precisely,
if P,Q are two probability distributions on a measurable space (Ω,A) and X : (Ω,A)→ (Ω′,A′) is
a random variable, then

KL
(
PX ,QX

)
≤ KL

(
P,Q

)
, (2.11)

where PX (respectively, QX) denotes the push-forward measure of X under P (respectively, Q). See
Ali and Silvey (1966) for proof of this statement, and, e.g., Cover and Thomas (2006) for additional
information on the Kullback-Leibler divergence.

The fundamental inequality. Instance-dependent lower bounds can be obtained by performing
changes of measure, an argument extensively used in the bandit literature (see, e.g., Lai and Robbins,
1985; Mannor and Tsitsiklis, 2004). This will allow us to quantify how many steps are necessary
to discriminate ν from a “close” alternative bandit problem ζ which has a different optimal arm.
Kaufmann et al. (2016) derived the following inequality for best-arm identification problems, which
is convenient to use as it “hides” the change of measure within a high-level informational argument.

Lemma 2.4. [Kaufmann et al., 2016, Lemma 1]
Let ν and ζ be K–armed bandit problems. Consider any best-arm identification strategy and
assume that the stopping-time τ is Pν–integrable. Then, for all events E in Fτ , we have∑

a∈[K]
Eν
[
Na(τ)

]
KL(νa, ζa) ≥ KL

(
Ber

(
Pν(E)

)
, Ber

(
Pζ(E)

))
. (2.12)
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Remark. As we will see, this inequality can be applied both in the fixed-confidence and the fixed-
budget settings, but it will have stronger implications in the first one. We will explain in Remark 2.18
that this is mainly due to the fact that, in Equation (2.12), expectations on the number of pulls are
relative to bandit problem ν; which implies that ν and ζ have very different roles in this inequality
(in addition to the fact that the Kullback-Leibler divergence is non-symmetric).

The proof of Kaufmann et al. (2016) is based on explicit changes of measure and Wald’s lemma,
while Garivier et al. (2019) provided a shorter proof using information-theoretic properties of the
Kullback-Leibler divergence when τ is a deterministic time. We will unify both proof schemes by
applying a martingale stopping theorem.

Stochastic transition kernels. In the following proof, we will use the fact that the law of It

under6 Pν can be defined iteratively by regular stochastic transition kernels, from which we now give
a definition. Let (Ω,A) and (Ω′,A′) be two measurable spaces. We say that K : Ω×A′ → [0, 1] is
a regular transition kernel from (Ω,A) to (Ω′,A′) if K(ω, · ) is a probability distribution on (Ω′,A′)
and if K( · , B) is A–measurable for all B ∈ A′. For a probability measure P on (Ω,A), we define
the probability distribution KP on (Ω× Ω′,A⊗A′) by

∀(A, B) ∈ A×A′, KP(A, B) def=
∫

Ω
I {ω ∈ A}K(ω, B)dP(ω) .

Fixing t ≥ 1, we get that

PIt
ν = Kt

νPIt−1
ν , where Kt

ν

(
It−1, ·

)
=
∑

a∈[K]
I {At = a} νa ⊗ Leb[0,1] = νAt ⊗ Leb[0,1] (2.13)

is a regular transition kernel, with Leb[0,1] the Lebesgue measure on [0, 1].

Proof. Once again, we rely on optional skipping (see page 10) and consider the sequence of rewards
(Xa,n)a∈[K],n≥1. Without loss of generality, we assume that KL(νa, ζa) is finite7 for each arm
a ∈ [K]. As a consequence, note that νa � ζa and that log dνa

dζa
(Xa,1) is Pν–integrable for all a ∈ [K].

We will prove that ∑
a∈[K]

Eν
[
Na(τ)

]
KL(νa, ζa) = KL

(
PIτ

ν ,PIτ
ζ

)
. (2.14)

The result will follow by combining this equality with an application of the data-processing inequal-
ity (2.11): I {E} being Fτ–measurable, it is a random variable depending only on Iτ , hence:

KL
(
PIτ

ν ,PIτ
ζ

)
≥ KL

(
PI{E}

ν ,PI{E}
ζ

)
= KL

(
Ber

(
Pν(E)

)
, Ber

(
Pζ(E)

))
.

We now prove Equation (2.14). We define M0 = 0 and

∀t ≥ 1, Mt = log
dPIt

ν

dPIt
ζ

−
∑

a∈[K]
Na(t) KL(νa, ζa) .

The process (Mt)t≥0 is adapted to (Ft)t≥0. We will show that (Mt)t≥0 is a martingale by using the
following chain rule property (see, e.g., Wainwright, 2019, Exercice 3.2 or Stoltz, 2022, Lecture 5),
which is a consequence of the Radon-Nikodym theorem.

6Note that the existence of a measurable space on which Pν is defined is ensured by Kolmogorov’s extension theorem.
7If KL(νa, ζa) = +∞, either the left-hand-size of Equation (2.12) is infinite, or Eν

[
Na(τ)

]
= 0 so that arm a is

almost surely never pulled and the proof still applies.
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Proposition 2.5. Let K, L be two regular transition kernels from (Ω,A) to (Ω′,A′) and P,Q be
two probability distributions on (Ω,A) with P� Q, and assume that
• K(ω, · )� L(ω, · ) for Q–almost all ω ∈ Ω,
• there exists a version of (ω, ω′) 7→ dK(ω, · )

dL(ω, · ) (ω′) which is A⊗A′–bi-measurable.
Then KP� LQ and the following chain rule property for densities applies:

dKP
dLQ

(ω, ω′) = dP
dQ(ω) · dK(ω, · )

dL(ω, · ) (ω′) for LQ–almost all (ω, ω′).

Fix t ≥ 1. The transition kernels K = Kt
µ and L = Kt

ζ , defined in (2.13), satisfy the hypothesis of
the above proposition, as νa � ζa for all a ∈ [K], and as for all ht−1 = (u0, y1, . . . , ut−1) and yt, ut:

dKt
µ(ht−1, · )

dKt
ζ(ht−1, · ) (yt, ut) =

∑
a∈[K]

I {At(ht−1) = a} dνa

dζa
(yt) ,

where At(ht−1) denotes the arm chosen by the strategy knowing history ht−1. We can apply the
proposition with P = PIt−1

ν and Q = PIt−1
ζ , as one can show that P� Q by induction. Using (2.13),

and recalling that Ut is an auxiliary random variable independent from all other randomization, this
entails

Mt = log dPIt−1
ν

dPIt−1
ζ

+ log
dKt

µ(It−1, · )
dKt

ζ(It−1, · ) (Yt, Ut)−
∑

a∈[K]

(
Na(t− 1) + I {At = a}

)
KL(νa, ζa)

= Mt−1 +
∑

a∈[K]
I {At = a}

(
log dνa

dζa
(Yt)−KL(νa, ζa)

)

= Mt−1 +
∑

a∈[K]
I {At = a}

(
log dνa

dζa
(Xa,Na(t))−KL(νa, ζa)

)
.

We deduce from this expression that the sequence (Mt)t≥0 is a martingale, as for all t ≥ 1

Eν
[
Mt|Ft−1

]
= Mt−1 +

∑
a∈[K]

I {At = a}Eν

[(
log dνa

dζa
(Xa,Na(t))−KL(νa, ζa)

)
|Ft−1

]

= Mt−1 +
∑

a∈[K]
I {At = a}

(
Eν

[
log dνa

dζa
(Xa,1)

]
−KL(νa, ζa)︸ ︷︷ ︸

=0

)
= Mt−1 ,

where we used that At is Ft−1–measurable and that Xa,Na(t)|Ft−1 ∼ νa has same law as Xa,1.
Note that τ was assumed to be Pν–integrable and that the conditional expectation of the absolute

increments of (Mt)t≥0 are almost surely bounded: for any t ≥ 1 we have

Eν

[∣∣Mt −Mt−1
∣∣|Ft−1

]
≤
∑

a∈[K]
I {At = a}Eν

[∣∣∣∣log dνa

dζa
(Xa,Na(t))−KL(νa, ζa)

∣∣∣∣|Ft−1

]

≤ sup
a∈[K]

{
KL(νa, ζa) + Eν

[∣∣∣∣log dνa

dζa
(Xa,1)

∣∣∣∣
]}

< +∞ ,

where we used that log dνa
dζa

(Xa,1) is Pν–integrable by assumption.
By Doob’s optional stopping theorem (Grimmett and Stirzaker, 2001, Section 12.5), we obtain that

Eν [Mτ ] = Eν [M0] = 0 .

Rearranging the terms directly leads to Equation (2.14), which concludes the proof.
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2.2.3. Lower Bound for Exponential Models

Garivier and Kaufmann (2016) used the fundamental inequality (2.12) to derive a lower bound valid
for common models of distributions like the model DNσ2 of Gaussian variables with a fixed variance
σ2 > 0, or the model DB of Bernoulli distributions with means in (0, 1), and more generally for
any canonical one-parameter exponential family. Before stating the lower bound, we give a quick
description of these families.

Canonical one-parameter exponential families. We follow largely the exposition by Lehmann
and Casella (1998, Section 1.5); more details, including the proofs of the stated properties, may
be found in the monograph by Lehmann and Casella (1998). A (regular) canonical one-parameter
exponential family Dexp is a set of distributions νθ indexed by θ ∈ Θ, all absolutely continuous with
respect to some measure ρ on R, with densities given by

x 7−→ dνθ

dρ
(x) def= exp

(
θx− b(θ)

)
, (2.15)

for some smooth enough normalizing function b. More precisely, b is assumed to be twice differ-
entiable. We also assume that Θ is the natural parameter space, i.e., that Θ contains all possible
parameters for ρ,

Θ =
{

θ ∈ R :
∫
R

exp(θy) dρ(y) < +∞
}

,

and that Θ is an open interval (this latter fact is what regularity stands for). A closed-form expression
of b is: for all θ ∈ Θ,

b(θ) = log
∫
R

eθy dρ(y) . (2.16)

The derivative b′ of b is a continuous function, by assumption, and it may be shown that it is
increasing, so that b′ is a one-to-one mapping with a continuous inverse (b′)−1. In addition, it can
be seen, by a differentiation under the integral sign, that E(νθ) = b′(θ) for all θ ∈ Θ. Therefore, the
distributions in Dexp may be rather parameterized by their expectations. We denote byM = b′(Θ)
the open interval of the expectations of distributions in Dexp, and let µ− and µ+ be its lower and
upper ends:

M = (µ−, µ+) .

For each x ∈M, there exists a unique distribution in Dexp with expectation x, namely, ν(b′)−1(x).

Example. Bernoulli distributions, binomial distributions, Poisson distributions and Gaussian distri-
butions with common variance σ2 > 0 all are canonical one-parameter exponential families.

In this thesis, any canonical one-parameter exponential family will be simply referred to as an �

exponential family, as we will not consider other exponential families.

Kullback-Leibler divergences for Dexp. For an exponential model Dexp, we may also parameterize
the Kullback-Leibler divergence function by the expectations: we define, for all θ, θ′ ∈ Θ,

d
(
E(νθ), E(νθ′)

) def= KL(νθ, νθ′) = (θ − θ′)b′(θ)− b(θ) + b(θ′) . (2.17)

This defines a divergence d which is strictly convex and differentiable on the open setM×M.
In particular, d is continuous, is such that d(µ, µ′) = 0 if and only if µ = µ′, and, for all µ ∈ M,
both d(µ, · ) and d( · , µ) are decreasing on (µ−, µ], and increasing on [µ, µ+).
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Figure 2.3: A bandit instance µ and an alternative λ.

As we will see, the mean-parametrized Kullback-Leibler divergence of the model of Bernoulli
distributions DB plays a particular role. To that end, let us denote it by kl. Its closed-form expression
reads:

∀p, q ∈ (0, 1), kl(p, q) def= p log p

q
+ (1− p) log 1− p

1− q
.

Lower bound for an exponential model. We are now able to state and prove the lower bound
obtained by Garivier and Kaufmann (2016) for an exponential model Dexp. As explained in the
paragraph on exponential families, distributions are characterized by their means, hence in the sequel�

we identify ν and its mean vector µ ∈MK ; for instance, Pµ = Pν , Eµ = Eν , and a?(µ) = a?(ν).
Before stating the lower bound, we introduce the simplex

ΣK
def=
{

v ∈ [0, 1]K : v1 + · · ·+ vK = 1
}

,

and the set of alternative bandits8 to a problem µ, which are bandit problems with a different optimal
arm than µ (see Figure 2.3):

Alt(µ) def=
{

λ in Dexp : a?(λ) 6= a?(µ)
}

. (2.18)

Theorem 2.6. [Garivier and Kaufmann, 2016, Theorem 1]
Let Dexp be an exponential model. Let δ ∈ (0, 1

2). For all δ–correct strategy and all bandit problems
µ in Dexp with a unique optimal arm,

Eµ[τδ] ≥ T (µ) kl(δ, 1− δ) ≥ T (µ) log 1
2.4δ

, (2.19)

where T (µ) is the characteristic time of µ, defined as

T (µ)−1 def= sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) . (2.20)

Example. For the model DNσ2 of Gaussian variables with variance σ2 > 0, the Kullback-Leibler
divergence enjoys the simple closed-form expression

∀µ, µ′ ∈ R, d(µ, µ′) = (µ′ − µ)2

2σ2 , (2.21)

8Again, alternative bandits ζ will be parameterized by their expectation λ.
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from which it can be proved that T (µ) satisfies the following inequalities:

∑
a6=a?

1
∆2

a

≤
∑

a6=a?

1
∆2

a

+ 1
∆2

2
≤

T (µ)
2σ2 ≤ 2

(∑
a6=a?

1
∆2

a

+ 1
∆2

2

)
≤ 4

∑
a6=a?

1
∆2

a

.

This should be compared to the high probability upper bound (2.10) obtained by Even-Dar et al.
(2006) with an adaptive elimination algorithm, which applies up to a variance term for the model
DNσ2 and gets an additional factor log K

∆min
.

Proof. Let µ be a K–armed bandit problem with a unique optimal arm, and fix an alternative bandit
instance λ ∈ Alt(µ). If Eµ[τδ] = +∞ the result holds. We assume in the rest of the proof that
Eµ[τδ] < +∞, and, as a consequence, τδ < +∞ Pµ–a.s..

Considering E =
{
τδ = +∞ or âτδ

6= a?(µ)
}
∈ Fτδ

, and recalling that the strategy is δ–correct,
we get, on the one hand, as τδ < +∞ Pµ–a.s.,

Pµ(E) = Pµ
(
τδ = +∞ or âτδ

)
= Pµ

(
τδ < +∞, âτδ

6= a?(µ)
)
≤ δ ,

and on the other hand, as a?(µ) 6= a?(λ),

Pλ(E) = Pλ

(
τδ = +∞ or âτδ

6= a?(µ)
)
≥ Pλ

(
τδ = +∞ or âτδ

= a?(λ)
)
≥ 1− δ .

Injecting those two inequalities in the fundamental inequality (2.12), and using the monotonicity
properties, recalled after Equation (2.17), of the kl divergence with δ < 1

2 , we obtain

Eµ[τδ]×
∑

a∈[K]

Eµ
[
Na(τδ)

]
Eµ[τδ] d(µa, λa) =

∑
a∈[K]

Eµ
[
Na(τδ)

]
d(µa, λa)

≥ kl
(
Pµ
(
âτδ
6= a?(µ)

)
, Pλ

(
âτδ
6= a?(µ)

))
≥ kl(δ, 1− δ) .

This inequality holds for any alternative bandit λ, hence, taking the infimum over Alt(µ) entails

kl(δ, 1− δ) ≤ Eµ[τδ]× inf
λ∈Alt(µ)

∑
a∈[K]

Eµ
[
Na(τδ)

]
Eµ[τδ] d(µa, λa)

≤ Eµ[τδ]× sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) , (2.22)

using in the last inequality that τδ =
∑

a∈[K] Na(τδ). This concludes the proof of the first inequality,
while the second can be derived by a mere calculus.

2.2.4. The Sample Complexity Optimization Problem

As in the previous subsection, we consider here an exponential modelDexp. As we will see, the solution
of the optimization problem (2.20) defining T (µ) is of high interest to design good strategies.

Transportation costs. Given a fixed proportion v ∈ ΣK , reaching the infimum over Alt(µ) in
optimization problem (2.20) is done by considering bandit instances for which only two arms differ
from µ, namely the best arm and one of the sub-optimal arms (see Figure 2.4):

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) = min
a6=a?

inf
λa? ,λa∈M

λa? <λa

va? d(µa? , λa?) + va d(µa, λa)

= min
a6=a?

inf
x∈[µa,µ?]

va? d(µ?, x) + va d(µa, x) , (2.23)
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Figure 2.4: To decrease its transportation cost with µ, an alternative bandit problem λ should only
move two arms, namely the optimal arm of µ and one sub-optimal arm of µ.

by using the continuity and monotonicity properties of d, where a? = a?(µ) and we recall that
µ? = µa? is the optimal mean of µ. The quantity

TCa→a?(µ, v) def= inf
x∈[µa,µ?]

va? d(µ?, x) + va d(µa, x)

can be seen as a transportation cost representing the difficulty of changing the distributions of arms a
and a? so as to make arm a optimal, given the pulling frequencies v. The monotonicity properties of
d ensures that the continuous function x 7→ va? d(µ?, x) + va d(µa, x) reaches is infimum in [µa, µ?],
and using the closed-form (2.17) of d, we see that its derivative vanishes if and only if

va?(x− µ?) + va(x− µa) = 0 ,

or, equivalently, if and only if x = µa?, a, v, where

µa?, a, v
def= va?µ? + vaµa

va? + va
,

so that
TCa→a?(µ, v) = va?d

(
µ?, µa?, a, v

)
+ vad

(
µa, µa?, a, v

)
.

Hence we proved that optimization problem (2.20) rewrites

T (µ)−1 = sup
v∈ΣK

min
a6=a?

TCa→a?(µ, v) = sup
v∈ΣK

min
a6=a?

va? d
(
µ?, µa?, a, v

)
+ va d

(
µa, µa?, a, v

)
. (2.24)

Remark 2.7. When considering a general model D (even non-parametric), the transportation cost
becomes

TCa→a?(ν, v) def= inf
x∈[µa,µ?]

va? K<
inf
(
ν?, x

)
+ vaK>

inf
(
νa, x

)
,

where we define, for ν ∈ D and x ∈ R,

K<
inf(ν, x) def= inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}
,

and K>
inf(ν, x) def= inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
.

A generalization of Theorem 2.6 to any model D involving those costs is straightforward (see Agrawal
et al., 2020).
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An optimal weight vector. Garivier and Kaufmann (2016) proved that the sample complexity
optimization problem (2.20) admits a unique maximizer w(µ), called the optimal weight vector of µ:{

w(µ)
}

def= argmax
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) = argmax
v∈ΣK

min
a6=a?

TCa→a?(µ, v) .

The main arguments are summarized below9.
• Existence: it can be seen that v 7→ mina6=a? TCa→a?(µ, v) is a continuous function since each

v 7→ TCa→a?(µ, v) is continuous. Hence, it admits a maximum on the compact set ΣK .
• Unicity:

1. First, we prove that, given a fixed proportion wa? ∈ (0, 1), there exists a unique vector
w ∈ ΣK which equalizes all transportation costs, i.e., such that

∃y ∈ R+,∀a 6= a?, TCa→a?(µ, w) = y .

This result is a consequence of both the constraint w ∈ ΣK and the fact that, given a
fixed va? , each cost TCa→a?(µ, v) is an increasing and continuous function of va.

2. Then, we remark that a maximizer w has to equalize the transportation costs. Let us
assume that this does not hold, i.e., that the set Amin = argmina6=a? TCa→a?(µ, w) does
not contain all sub-optimal arms. Let us transform w into a new vector w′ ∈ ΣK such
that w′

a > wa for each a ∈ Amin, wa? = w′
a? , and w′

a < wa otherwise. If the weights are
modified slightly enough, this entails10 that the minimal costs increase while the other
costs only decrease sufficiently low, i.e., that

min
a6=a?

TCa→a?(µ, w) < min
a6=a?

TCa→a?(µ, w′) ,

or, in other words, that w is not a maximizer, which is a contradiction.
3. From the two first points, potential maximizers belong to a set {wβ : β ∈ (0, 1)} of

weight vectors that are parameterized by the proportion β = wβ
a? associated to the

optimal weight. By defining y(β) as the (common) value of the transportation costs
under proportions wβ, it might be seen that y(β) is a differentiable function, such that
y(β) → 0 when β → 0 and β → 1, and whose derivative vanishes only once, at some
β? ∈ (0, 1). Hence the optimal maximizer is unique and equal to wβ? .

Note that the proof of unicity indicates that the optimal weight vector w(µ) equalizes the trans-
portation costs:

∀a 6= a?, TCa→a?

(
µ, w(µ)

)
= T (µ)−1 .

If we want a strategy for which inequality (2.22) is an equality, then its average proportions of draws(
Eµ
[
Na(τδ)

]
/Eµ[τδ]

)
a∈[K] should exactly be w(µ). To put it differently, if those average proportions

are not close to w(µ), then the performance of the strategy will be far from lower bound (2.19).

Computability of the optimal weight vector. Garivier and Kaufmann (2016) proved that solving
the optimization problem (2.20) reduces to determining the root of a one-variable increasing function.
By applying a bisection method, it is then possible to compute w(µ) with arbitrary precision. We
will denote by Optimal-Weights an algorithm computing this optimal vector.

Using their procedure, they also proved some regularity results concerning the solution of w(µ):
• the function µ 7→ w(µ) is continuous (at problems having a unique optimal arm),
• all arms have to be linearly pulled: wmin(µ) def= mina∈[K] wa(µ) > 0,

9Note, however, that the structure of the proof does not exactly follow the path given here, due to technicalities
(see Garivier and Kaufmann, 2016, Appendix A.2).

10It is, again, a consequence of the increasing and continuity properties of each TCa→a? (µ, v) relatively to va.
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• if arms are ordered so that µ(1) > µ(2) ≥ . . . ≥ µ(K), then w(2)(µ) ≥ . . . ≥ w(K)(µ), but there
may be instances (e.g., for Bernoulli instances) for which w(1)(µ) < w(2)(µ).

Remark 2.8. It is easy to find instances for which w(1)(µ) � w(2)(µ). As a consequence, for
such instances, elimination algorithms presented in Section 2.2.1 cannot get close to the lower
bound (2.19), as the last two remaining arms are pulled equally often.

Contribution. We make progress in the understanding of the solution of optimization prob-
lem (2.20) in two directions: first, in Chapter 3, we obtain regularity results for the specific case
of a Gaussian model, and then, in Section 6.2 we characterize, for all exponential models, the
solution w(µ) as the unique fixed point of some transformation. Those theoretical contributions
might be used to improve fixed-confidence best-arm identification algorithms, as we will explain in
Contributions 2.13 and 2.14.

The solution for a Gaussian model. Considering the specific model DN1 of standard Gaussian
distributions (or more generally any model of Gaussian distributions with common variance σ2 > 0
and bounded means), we will present in Chapter 3 a new method for computing the optimal
weight vector w(µ). The proposed procedure speeds up the resolution of the computation by using
Newton’s method on a convex function. In addition, we obtain new quantitative regularity results
concerning the solution of optimization problem (2.20):
• First, we prove that a? = argmaxa∈[K] wa(µ) for this model, or equivalently w(1)(µ) >

w(2)(µ). Optimal weights are thus ordered as the means for a Gaussian model,
• Then, we derive the following bounds for wa?(µ) and T (µ):

1
1 +
√

K − 1
≤ wa?(µ) ≤ 1

2 ,

max
(

8
∆2

min
, 41 +

√
K − 1

∆2

)
≤ T (µ) ≤ 2

(
1 +
√

K − 1
)2

∆2
min

,

where ∆2 def= 1
K−1

∑
a6=a? ∆2

a is the average squared gap and ∆min has been defined in
page 39. For each inequality, we characterize instances for which the equality holds, which
shows the tightness of those bounds in all generality.
• Also, we study the variations of w(µ) and T (µ) when moving one or several arms of µ.

For instance (see Figure 2.5), increasing the mean of a sub-optimal arm will increase its
associated optimal weight and increase the characteristic time T (µ).
• Finally, we prove that both w and T are locally Lipschitz functions, giving a quantification

of the continuity result obtained by Garivier and Kaufmann (2016).

Remark. All those results are specific to the Gaussian case. In particular, similar regularity results
of w and T for other models are still to be determined.

A fixed point property for exponential models. For a general exponential model Dexp, we
use sufficient and necessary conditions satisfied by the optimal weight vector w(µ) to prove in
Section 6.2 that w(µ) is the unique fixed point of a transformation W : int(ΣK) → int(ΣK),
which roughly speaking modifies a weight vector so as to decrease the difference between the
transportation costs. This could entail the design of new empirical procedures that speed up the
computation of w(µ).
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Figure 2.5: By increasing the mean of a sub-optimal arm, its associated optimal weight increases
while those of other sub-optimal arms decrease, and the characteristic time increases.

2.2.5. The Track-and-Stop Algorithm: an Asymptotically Optimal Strategy

To obtain strategies that could reach lower bound (2.19), we have seen that we have no other choice
than finding sampling rules which ensure that the empirical proportions of draws are close to w(µ).
Of course, the learner does not know µ, so she cannot directly compute w(µ). However, by continuity
of w, a strategy can estimate it by using the current empirical estimate µ̂(t) available at step t. This
is the main idea of the Track-and-Stop algorithm that we will now describe.

Sampling rule. At the beginning of time step t, we have access to µ̂(t−1) the maximum likelihood
estimator of µ. Hence, using the Optimal-Weights procedure, we can compute the plug-in estimate
ŵ(t− 1) def= w

(
µ̂(t− 1)

)
which is a good estimate of w(µ) when µ̂(t) is close to µ, thanks to the

continuity of w. The sampling rule consists in tracking this proportion ŵ(t−1): it compares ŵ(t−1)
with the empirical proportions N(t−1)

(t−1) and chooses the arm which has been most under-sampled.
There are two approaches:
• we can work in a cumulative way, by tracking the average 1

t−1
∑

s∈[t−1] ŵ(s). This option,
referred to as C-tracking , is the simplest to analyze theoretically as the variability between the
two consecutive tracked weights is low,
• or we can use a direct approach by tracking the current weight ŵ(t − 1). This option called

D-tracking performs empirically better than C-tracking.
Unfortunately, due to the randomness, it might happen that some good arms with poor initial
observations stay under-sampled and hence do not improve their estimates, which makes the strategy
inefficient. To counter this issue11, the strategy forces exploration by observing the least pulled arm
among the set U(t− 1) of arms that are under-sampled with respect to the sub-linear rate

√
t:

U(t− 1) def=
{

a ∈ [K] : Na(t− 1) <
√

t− 1− K

2

}
.

The sub-linear rate
√

t is in fact arbitrary and ensures guarantees on the minimal convergence rate
of the empirical mean to µ (see Section 6.3.3). The sampling rule of Track-and-Stop is presented
in Algorithm 4.

Remark. Note that we will present, in Contribution 2.13, a new sampling rule which modifies the
tracking of Track-and-Stop in a natural way and which enjoys the same exploration rate

√
t without

any force exploration mechanism.
11We present here the way forced exploration is ensured with D-tracking. For C-tracking, the mechanism is different

but we omit its presentation for the sake of simplicity.
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Algorithm 4: Track-and-Stop sampling rule at step t > K

Input: history of observations It−1
Output: next arm to observe At

1 U(t− 1)←
{
a ∈ [K] : Na(t− 1) <

√
t− 1− K

2
}

2 ŵ(t− 1)← Optimal-Weights(µ̂(t− 1))
3 if U(t− 1) 6= ∅ then
4 At ← argmin

a∈U(t−1)
Na(t− 1)

5 else
/* C-tracking */

6 Choose At ∈ argmin
a∈[K]

Na(t− 1)−
∑

s∈[t−1]
ŵa(s)

/* D-tracking */
7 Choose At ∈ argmin

a∈[K]
Na(t− 1)− (t− 1)ŵa(t− 1)

Stopping condition. Given observations up to time t, the algorithm should stop if it has statistical
evidence that it found the optimal arm with risk δ. The problem can be seen as a statistical test.
Garivier and Kaufmann (2016) introduced the generalized log–likelihood ratio (see Chernoff, 1959)
between arms a and b:

Za,b(t)
def= log

sup
λa,λb∈M

λa≥λb

Na(t)∏
s=1

pλa(Xa,s)
Nb(t)∏
s=1

pλb
(Xb,s)

sup
λa,λb∈M

λa≤λb

Na(t)∏
s=1

pλa(Xa,s)
Nb(t)∏
s=1

pλb
(Xb,s)

,

where pλ = dζ
dρ if ζ is the distribution of Dexp of mean λ, and whose expression is given in (2.15). It

may be shown that Za,b(t) is the empirical transportation cost from arm b to arm a up to a factor t
and the sign of µ̂a(t)− µ̂b(t):

Za,b(t) = t TCb→a

(
µ̂(t), N(t)

t

)
sgn

(
µ̂a(t)− µ̂b(t)

)
.

If Za,b(t) is large enough then we can confidently reject H0: µa ≤ µb and conclude to H1: µa > µb.
When considering all arms, we define12

Z(t) def= max
a∈[K]

min
b 6=a

Za,b(t)

= min
b6=a?(µ̂(t))

Za?(µ̂(t)),b(t)

= t min
b 6=a?(µ̂(t))

TCb→a?(µ̂(t))

(
µ̂(t), N(t)

t

)
(2.25)

= inf
λ∈Alt(µ̂(t))

∑
a∈[K]

Na(t) d(µa, λa) . (2.26)

The Global-Likelihood-Ratio stopping rule (or Chernoff stopping rule), see Algorithm 5, asso-
ciated to a given threshold function β(t, δ) consists in stopping the strategy as soon as Z(t) exceeds

12Where a?(µ̂(t)) is any of the optimal arms of µ̂(t).
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Algorithm 5: Global-Likelihood-Ratio stopping rule at step t > K

Input: history of observations It

threshold function β(t, δ)
1 Z(t)← max

a∈[K]
min
b 6=a

Za,b(t) // Za,b(t) is defined in (4.7)

2 if Z(t) > β(t, δ) then
3 Stop
4 else
5 Continue

β(t, δ):
τδ

def= inf
{

t ≥ 1 : Z(t) > β(t, δ)
}

.

Of course, the associated decision rule will be to return the best empirical arm at time τδ (see the
Empirical-Best Procedure 2). The stopping rule problem now reduces to the research of threshold
functions which ensure δ–correctness, a statistical problem that does not depend on the sampling
rule. Using Equation (2.26), we get Z(t) ≤ t

T (µ̂(t)) and expect Z(t) ∼ t
T (µ) for large values of t.

For a time-independent threshold β(t, δ) = βδ, this indicates that the strategy should stop after
approximately τδ ∼ T (µ)βδ steps, and the δ–correctness condition might force βδ & log 1

δ at the
sight of lower bound (2.19).

Obtaining δ–correctness is based on time-uniform bounds that require time-dependent thresholds.
Garivier and Kaufmann (2016) proposed the following threshold using deviation results.

Theorem 2.9. [Garivier and Kaufmann, 2016, Proposition 12]
Consider an exponential model Dexp. Let δ ∈ (0, 1) and α > 1. There exists a constant R =
R(α, K) such that, whatever the sampling rule, using the Global-Likelihood-Ratio stopping
rule (Algorithm 5) with threshold

β(t, δ) def= log Rtα

δ
, (2.27)

and the Empirical-Best decision rule (Algorithm 2) ensures that the strategy is δ–correct.

The performance of a strategy highly depends on both its sampling and stopping rules. While
many efficient sampling rules have been studied in the literature (see Section 2.2.7), the use of the
Global-Likelihood-Ratio stopping rule appears to be consensual: it does not seem that it might
be significantly improved, apart from slightly reducing the threshold. In the remainder of this chapter, �

except for elimination strategies, all considered fixed-confidence best-arm identification strategies will
use the Global-Likelihood-Ratio stopping rule with threshold (2.27) for a given value of α and
the Empirical-Best decision rule. The name of the strategy will be defined as the name of the
sampling rule.

Remark. • With threshold (2.27), the stopping time τδ is almost surely finite. Indeed, intuitively,
for t large enough and under a good sampling rule, based on Equation (2.25) we get

Z(t) ' t

T (µ) ,

hence Z(t) grows much faster than β(t, δ).
• Obtaining δ–correctness with threshold (2.27) crucially depends on a condition on R that does
not scale pretty well with the number of arms K. However, this is not an issue numerically:
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more convenient thresholds, which are closer to log 1
δ like

β(t, δ) = log 1 + log t

δ
,

are known to be empirically δ–correct (although there is no theoretical proof of this observa-
tion).
More generally, theoretical algorithms are often adapted in experiments to versions that per-
form better in practice (see, e.g., the use of D-tracking instead of C-tracking for the stopping
rule of Track-and-Stop).

Open question. Finding theoretical arguments to obtain better thresholds — as close to log 1
δ

as possible —, is an important statistical question, whose answer will get implications beyond
bandit problems. Recent techniques using mixture martingales (see Garivier and Kaufmann, 2021;
Kaufmann and Koolen, 2021 and very recently Chowdhury et al., 2023) proposed thresholds with
better asymptotical behaviors which are however model-dependent and quite less explicit.

Asymptotic optimality. The Track-and-Stop sampling rule has been chosen so that the empirical
frequencies of pulls converge to w(µ), while the design of the Global-Likelihood-Ratio stopping-
rule with threshold (2.27) ensures the δ–correctness. We may wonder how close the performance of
the corresponding strategy is from lower bound (2.19). It turns out that, in the asymptotic regime
when δ goes to 0, the upper bound of Track-and-Stop matches the lower bound.

Theorem 2.10. Consider an exponential model Dexp. The Track-and-Stop strategy, with
threshold (2.27) for a fixed α > 1, satisfies, for all bandit problems µ in Dexp with a unique
optimal arm,

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

Remark 2.11. The original result of Garivier and Kaufmann (2016, Theorem 14) only ensures that

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ α T (µ) .

The multiplicative factor α can be avoided using recent proof techniques, as we explain in Section 6.4.

This result indicates that the lower bound (2.19) cannot be improved in the asymptotic regime.
The Track-and-Stop strategy is hence asymptotically optimal for all exponential models.

Definition 2.12. [asymptotically optimal strategy]
A strategy is said to be asymptotically optimal on a model D if for all bandit problems µ in D with
a unique optimal arm,

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

Empirical performance. The Track-and-Stop algorithm is not only a theoretical contribution,
but it also proved to be numerically efficient: the strategy outperforms its competitors in a wide
variety of settings.
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Figure 2.6: Instability of the targeted weights ŵ(t) during the first 1200 rounds of a simulation
of Track-and-Stop with parameters δ = 0.01, µ = (0.9, 0.8, 0.6, 0.4, 0.4) and D-tracking. Dots
correspond to the use of forced exploration for under-sampled arms, while the values of the optimal
weights w(µ) = (0.477, 0.476, 0.028, 0.010, 0.010) are dashed.

2.2.6. Non-Asymptotic Guarantees

Some questions raised by Track-and-Stop. The Track-and-Stop strategy suffers from certain
shortcomings illustrated in Figure 2.6:
• first, the sampling rule appears to be pretty unstable, especially at the beginning: the target
frequencies can vary significantly as the estimated means fluctuate before stabilizing around
their expectations,
• second, Track-and-Stop does not exhibit the intuitively desirable behavior to sample uni-
formly in the beginning, until sufficient information has been gathered for significant differ-
ences between the arms to emerge. This is in contrast with elimination strategies, which are
sub-optimal but intuitively appealing.
• also, the forced exploration appears very arbitrary, with a rate of

√
t that has no other justifi-

cation than lying somewhere between constant and linear functions.
Altogether, these issues lead for example to unpredictable and irregular behaviors at the beginning
of multiple A/B testing cases with many arms extremely close to optimal.

Non-asymptotic guarantees.

Open question. As we have seen, Track-and-Stop is asymptotically optimal. The next natural
direction is to obtain guarantees in the non-asymptotic regime, for fixed values of δ. A close look
into the proofs of Garivier and Kaufmann (2016) shows that the theoretical guarantees proved
so far are asymptotic in nature. Even if the strategy works pretty well empirically, one needs to
develop different proof techniques to get non-asymptotic guarantees.

Note that lower bound (2.19) might not be well-suited for the moderate regime (values of
δ that are not too small): Simchowitz et al. (2017) proved a lower bound for moderate values
of δ that does not depend on the risk δ. This moderate setting has led to strategies that are
sub-optimal by a multiplicative constant but are proved to satisfy explicit non-asymptotic bounds
(Karnin et al., 2013; Jamieson et al., 2014; Chen et al., 2017). Yet, can we design asymptotically
optimal strategies with finite risk bounds that match the asymptotic complexity?
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Contribution 2.13. Due to the instability of the tracking procedure of Track-and-Stop that we
described in the previous paragraph, it seems difficult to obtain theoretical non-asymptotic bounds.
In order to address this problem, we present a novel algorithm named Exploration-Biased-
Sampling in Chapter 4. This algorithm effectively resolves all the limitations discussed earlier and
attains certain non-asymptotic assurances, specifically for a Gaussian model with a shared variance
σ2 > 0 and constrained means.

The exploration is conducted differently, in a statistically natural way that softens the fluctua-
tions of empirical means and avoids arbitrary parameters. The idea is to introduce, at time step t,
a confidence region CRµ(t) for µ, find the bandit problem µ̃(t) “maximizing exploration” (in a
way that we define) inside CRµ(t), and track its associated optimal weight vector w̃(t) def= w

(
µ̃(t)

)
.

Based on the lemmas of Section 3.4, which give the evolution of the weights when moving one
or several arms of a bandit problem, we give a procedure that allows computing µ̃(t). As the
confidence regions shrink to {µ} with time, the targeted weights will converge to w(µ) as for the
Track-and-Stop algorithm. A major benefit is that the procedure results in a stabilized sampling
strategy, which is much easier to follow and understand (see Figure 2.7).

This stabilization, together with the careful analysis of the quantitative regularity of the solution
to the optimization problem (2.20) developed in Section 3, allows us to propose a non-asymptotic
analysis of Exploration-Biased-Sampling with finite risk bounds. A simplification of the ob-
tained bound reads that for all standard Gaussian bandit problems ν with means in [0, 1], there exist
an event E of high probability (independent from δ) and δ0 > 0 such that algorithm Exploration-
Biased-Sampling with the threshold of Equation (2.27) satisfies

∀δ ∈ (0, δ0], Eµ
[
τδI {E}

]
. T (µ) log 1

δ + oδ→0(1) , (2.28)

See Theorem 4.5 for a precise statement, with a closed-form expression for oδ→0(1); note also
that δ0 depends, among others, on the probability of E . We observe that bound (2.28) matches
the asymptotic complexity. Similarly to Track-and-Stop, it can be shown that our strategy
Exploration-Biased-Sampling is asymptotically optimal, although it is not a direct consequence
of our non-asymptotic bound, as we considered Eµ

[
τδI {E}

]
instead of Eµ[τδ].

In the same direction, Degenne et al. (2019) obtained a highly general and remarkable non-
asymptotic bound for a pure exploration algorithm. Independently, Wang et al. (2021) obtained a
sampling rule based on a Frank-Wolfe method for which they proved finite risk analysis and asymptotic
optimality. Our bound has a better asymptotic behavior, but a worse behavior in the regime where
gaps go to zero13 (see Jourdan and Degenne, 2023, Table 1).

2.2.7. Towards Computationally More Efficient and More Natural Strategies

The sampling rule of the Track-and-Stop strategy requires computing, at each step, the solution
of optimization problem (2.20). While a call to Optimal-Weights is not too costly experimentally
(approximately proportional in the number of arms), obtaining easier sampling rules that do not need
to solve the optimization problem at each step could allow us to obtain much more efficient strate-
gies. In fact, one wants to find the most natural and simple sampling rules that ensure asymptotic
optimality. In this section, we present sampling rules that go in that direction. We will still consider
a general exponential model Dexp and a bandit problem µ in Dexp with a unique optimal arm.

13However, we do not pretend that those bounds are comparable as we only considered Eµ

[
τδI {E}

]
.
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Figure 2.7: Stability of the targeted weights w̃(t) during the first 1200 rounds of a simulation of
Exploration-Biased-Sampling with parameters δ = 0.01, µ = (0.9, 0.8, 0.6, 0.4, 0.4) and D-
tracking. The values of the optimal weights w(µ) = (0.477, 0.476, 0.028, 0.010, 0.010) are dashed.
See Figure 2.6 for a comparison with Track-and-Stop.

Gradient-based sampling rules. The solution of optimization problem (2.20) can be sequentially
approximated using (sub-)gradient optimization methods like the Frank-Wolfe algorithm. Two such
sampling strategies, Lazy-Mirror-Ascent and Frank-Wolfe-based-Sampling, were respectively
proposed by Ménard (2019) and Wang et al. (2021) with improved efficiency compared to Track-
and-Stop, and proved to be asymptotically optimal.

top-two algorithms. A promising set of strategies are top-two algorithms which come with very
simple sampling rules: at time step t, the algorithm chooses the next arm to sample At between
two arms, namely a leader Lt and a challenger Ct. Originally, Russo (2016, 2020) considered an
algorithm for which the choice of leader and challenger is done using Thompson Sampling:
• given some prior Π0 on the value of a?(µ), the leader is chosen according to the posterior Πt−1
computed given It−1,
• the challenger is obtained similarly by drawing according to Πt−1 until obtaining a different
arm than the leader.

The leader and challenger can also be chosen by non-Bayesian procedures (see, e.g., Jourdan et al.,
2022). For the leader, we may cite the Empirical-Best (EB) and Upper-Confidence-Bound
(UCB) procedures, which respectively select the arm with best empirical mean or best upper confidence
bound on the mean. It might be natural to choose the challenger among arms a 6= Lt minimizing the
empirical transportation cost to the leader, which we call the Transportation-Cost (TC) challenger,
or a version favoring exploration by adding a penalization to the cost of over-sampled arms, leading
to the Transportation-Cost-Penalized (TCP) challenger. The previously mentioned leaders and
challengers are gathered in Algorithms 7 and 8. The list is far from being exhaustive (see also Qin
et al., 2017; Shang et al., 2020 for additional Bayesian procedures).

Remark. In the special case of best-arm identification, the LUCBtop-two algorithm, introduced a
few years earlier by Kalyanakrishnan et al. (2012), can be seen as a Top-Two algorithm, in which the
leader is pulled at even steps and the challenger is pulled at odd steps.
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Algorithm 6: top-two sampling rule at step t > K

Input: history of observations It−1
leader, challenger, sample-arm procedures

Output: next arm to observe At

1 Lt ← leader(It−1)
2 Ct ← challenger(It−1, Lt)
3 At ← sample-arm(It−1, Lt, Ct)

Algorithm 7: leader procedures for top-two algorithms
Input: history of observations It−1

optional: bonus function g, prior probability Π0
Output: leader Lt

/* Empirical-Best (EB) leader */
1 Choose Lt ∈ argmax

a∈[K]
µ̂a(t− 1)

/* Upper-Confidence-Bound (UCB) leader */

2 Choose Lt ∈ argmax
a∈[K]

µ̂a(t− 1) +
√

g(t− 1)
Na(t− 1)

/* Thompson-Sampling (TS) leader */
3 Choose Lt ∼ Πt−1

Algorithm 8: challenger procedures for top-two algorithms
Input: history of observations It−1

leader Lt

Output: challenger Ct

/* Transportation-Cost (TC) challenger */

1 Choose Ct ∈ argmin
a6=Lt

TCa→Lt

(
µ̂(t− 1), N(t− 1)

t− 1

)
/* Transportation-Cost-Penalized (TCP) challenger */

2 Choose

Ct ∈ argmin
a6=Lt

TCa→Lt

(
µ̂(t− 1), N(t− 1)

t− 1

)
+ log Na(t− 1)

/* Thompson-Sampling (TS) challenger */
3 repeat
4 Draw Ct ∼ Πt−1
5 until Ct 6= Lt
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To define top-two strategies, it remains to choose which arm to sample between the leader and
the challenger (see Algorithm 6). A simple way of doing so is to fix some probability parameter
β ∈ (0, 1) and choose the leader with that probability14:

At =
{

Lt with probability β ,

Ct otherwise.
(2.29)

We will refer to top-two instances using this sampling rule as TT-leader-challenger-β. For �

instance, TT-EB-TCP-β denotes the top-two algorithm used with the Empirical-Best leader, the
Transportation-Cost-Penalized challenger, and sampling rule (2.29).

As a good leader might satisfy Lt = a? except for a sub-linear number of time steps, using
sampling rule (2.29) comes with some limitation: it implies that the best arm will be pulled a
fraction β of the time, which can be far from the optimal frequency wa?(µ). As a consequence, an
easy adaption of lower bound (2.19) implies the following lower bound (see Russo, 2016) for such
strategies:

Eµ[τδ] ≥ Tβ(µ) kl(δ, 1− δ) , where Tβ(µ)−1 def= sup
v∈ΣK
va? =β

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) , (2.30)

and β–asymptotically optimal strategies are algorithms that pull the best arm with proportion β
and having an upper bound asymptotically matching this lower bound. Of course, by uniqueness of
w(µ), we get Tβ(µ) = T (µ) if and only if β = wa?(µ). In other words, those algorithms can achieve
asymptotic optimality only if β = wa?(µ). An arbitrary choice of parameter β is however not too
dramatic: Russo (2016) proved that for β = 1

2 , one gets:

T 1
2
(µ) ≤ 2T (µ) ,

hence 1
2–asymptotically optimal strategies only loose a multiplicative factor 2 in theoretical perfor-

mance compared to asymptotically optimal strategies.
Noticeably, to ensure β–asymptotical optimality of TT-leader-challenger-β algorithms, the

conditions on the leader and challenger procedures are quite mild (see Jourdan et al., 2022); the
combination of those proposed in Algorithms 7 and 8 are suitable.
Remark. The TT-EB-TC-β algorithm does not present any exploratory mechanism in the leader or
challenger definitions. Even if it is β–asymptotically optimal, empirical performance at fixed values of
δ suffers from some outliers at which the strategy fails to stop quickly. Strategies with an explorative
procedure like TT-EB-TCP-β or TT-UCB-TC-β do not present this misbehavior and thus are preferred
in practice.
Remark. Jourdan and Degenne (2023) also proved a non-asymptotic bound for Gaussian variables
and the TT-UCB-TC-β algorithm, which asymptotically matches the β–optimality up to a factor 1

β .

Adaptivity of top-two algorithms. Until recently, it has been possible to analyze top-two algo-
rithms only with the use of sampling rule (2.29). It is quite frustrating that those top-two algorithms
can only achieve β–optimality. To tackle this issue, we must rely on an adaptive sampling rule, like,
for instance, adaptive pulling frequencies

(
β(It, Lt, Ct)

)
t≥1 of the leader. How to design such fre-

quencies might be driven by the targeted proportions that we want to asymptotically reach, namely
w(µ). See details in Section 6.2.

Recently, You et al. (2023) proposed an adaptive top-two algorithm based on the original
Bayesian leader and challenger of Russo (2016) called Top-Two-Thompson-Sampling. Their analysis
proved the asymptotical optimality of the strategy for standard Gaussian variables. The proof can
be adapted to obtain the same guarantees for adaptive versions of TT-EB-TC and TT-EB-TCP .

14One can also use a tracking procedure of proportions β instead of a sampling.
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Contribution 2.14. Based on the transformation W introduced in Section 6.2.1, we propose in
Section 6.2.3 a new challenger procedure together with adaptive pulling frequencies.

We also present partial results that generalize the analysis of You et al. (2023) in order to prove
that those algorithms are asymptotically optimal for all exponential models (not only Gaussian
distributions with known and common variance). See Section 6.3 for details. Yet, some work
remains to complete the analysis.

2.3. Best-Arm Identification with a Fixed-Budget
We now move to the problem of best-arm identification with a fixed-budget. While the identifica-
tion task seems similar to the fixed-confidence setting, it turns out that this setting is much less
understood. Strategies are defined similarly to the fixed-confidence setting, except that the stopping
time τ is not random and is equal to a given deterministic, known-in-advance, budget T ≥ 1 (see
Algorithm 9). The strategy returns an estimate âT of a?(ν), and its quality is measured by the
probability of misidentification or probability of error

Pν
(
âT 6= a?(ν)

)
.

Algorithm 9: Structure of a fixed-budget strategy
Input: budget parameter T

sampling-rule and decision-rule
Output: estimated best arm âT

1 for t ∈ [T ] do
2 At ← sampling-rule(It−1)
3 Observe Yt ∼ νAt

4 âT ← decision-rule(IT )

2.3.1. An Exponential Decay Rate

The simplest sampling, Uniform-Sampling , consists of pulling all arms equally often and returning
the best empirical estimate. We will see, by using Hoeffding’s inequality, that the error probability
vanishes exponentially fast as T goes to +∞ for a σ2–sub-Gaussian model Dσ2 .

Analysis of the Uniform-Sampling strategy. We can upper bound the probability of error when
comparing arms a? and a 6= a? by applying Hoeffding’s inequality (2.4), similarly to what we did in
Equation (2.5) with the Successive-Elimination strategy. This gives, as all arms are pulled

⌊
T
K

⌋
times

Pν
(
âT = a

)
≤ Pν

(
µ̂a(T ) ≥ max

b 6=a
µ̂b(T )

)
≤ Pν

(
µ̂a(T ) ≥ µ̂a?(T )

)
≤ Pν

(⌊
T

K

⌋ (
µ̂a(T )− µ̂a?(T ) + ∆a

)
≥
⌊

T

K

⌋
∆a

)

≤ exp
(
−∆2

a

4σ2

⌊
T

K

⌋)
. (2.31)
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Applying a union bound, we obtain the following bound for the probability of misidentification:

Pν
(
âT 6= a?(ν)

)
≤ (K − 1) max

a6=a?(ν)
Pν
(
âT = a

)
= (K − 1) exp

(
−∆2

min
4σ2

⌊
T

K

⌋)
, (2.32)

where we recall that ∆min = mina6=a?(ν) ∆a.

Asymptotic rate of the exponential decay. We proved that the probability of misidentification
of the Uniform-Sampling strategy goes to 0 exponentially fast with respect to the budget T . From
now on, we will thus be interested in obtaining the best rate for this exponential decay, that is, in �

minimizing the quantity
1
T

logPν
(
âT 6= a?(ν)

)
.

In the sequel, we will mainly work in the asymptotic regime where the budget T goes to +∞ and
hence consider sequences of strategies15 indexed by their budgets T . On the one hand, we focus on
obtaining instance-dependent lower bounds, valid for “reasonable” sequences of strategies, on the
quantities

`(ν) def= lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
,

On the other hand, for a given sequence of strategies, we look for upper bounds of

u(ν) def= lim sup
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
.

Note that `(ν) ≤ u(ν) and that those rates are negative.

Example. Given Equation (2.32), we proved the upper bound on the asymptotic rate of the sequence
of Uniform-Sampling strategies:

∀ν in Dσ2 , lim sup
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≤ − ∆2

min
4σ2K

. (2.33)

2.3.2. Successive-Rejects-Type Strategies

Can we do better than Uniform-Sampling? Upper bound (2.33) only depends on the minimal gap
∆min and the number of arms, that is, one can change the values of the means of the K − 2 worst
arms without modifying the bound. A simple look into Equation (2.31) shows that the exponential
decay of the probability of recommending sub-optimal arm a depends crucially on its gap ∆a. In
order to equalize this exponential rate among sub-optimal arms, one can be tempted to pull arm a
a fraction proportional to 1

∆2
a
of the budget. Unfortunately, this requires good estimates of the gaps

that the strategy cannot access.
This idea of having a (possibly pre-defined) different number of pulls for each arm was already

studied in the fixed-confidence setting with Successive-Elimination strategies (see Section 2.2.1).
Those strategies have also been considered in the fixed-budget setting by Audibert et al. (2010) under
the name Successive-Rejects, as we now discuss. We continue to work with a σ2–sub-Gaussian
model Dσ2 .

15In fact, we did the same in the fixed-confidence regime when considering asymptotic behaviors when δ goes to 0.
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Algorithm 10: Successive-Rejects algorithm
Input: budget parameter T

phase lengths (`r)r∈[K−1] such that
∑

r∈[K−1] `r = T
Output: estimated best arm âT

1 t← 0
2 S0 ← [K]
3 for each round r ∈ [K − 1] do
4 Observe each arm

⌊
`r

K−r+1

⌋
times

5 Increase t by `r

6 Choose ar ∈ argmin
a∈Sr−1

µ̂a(t)

7 Sr ← Sr−1 \ {ar}
8 Define âT as the unique element of SK−1

Successive-Rejects strategies. We keep the notation of the Successive-Elimination algo-
rithm (see Algorithm 3). Namely, the strategy works in K − 1 phases: at round r, candidate arms
in a set Sr−1 are pulled uniformly and the worst empirical arm of Sr−1 (since the beginning) is
dropped to obtain the set of next candidates Sr. We will consider versions of Successive-Rejects
in which the lengths of the phases are set beforehand; they are denoted by `1, . . . , `K−1 ≥ 1 and
satisfy `1 + . . . + `K−1 = T . More precisely, during phase r ∈ [K − 1], the strategy draws b `r

K−r+1c
times each of the K − r + 1 arms in Sr−1 (and does not use the few remaining time steps, if there
are some). At the end of phase r, an arm of Sr−1 has been pulled

nr =
⌊

`1
K

⌋
+ . . . +

⌊
`r

K − r + 1

⌋
times since the beginning of the first phase. The description of the strategy is summarized in
Algorithm 10.

Combining adapted versions of decomposition (2.6) and inequality (2.8) in the analysis of
Successive-Elimination to σ2–sub-Gaussian variables as in (2.31), we prove the following bound
on the probability of error of Successive-Rejects

Pν
(
âT 6= a?) ≤ K

∑
r∈[K−1]

exp
(
−

∆2
(K−r+1)
4σ2 nr

)
≤ K2 max

r∈[K−1]
exp

(
−

∆2
(K−r+1)
4σ2 nr

)
,

where we recall that we use the (reverse) notation of order statistics:

µ(1) > µ(2) ≥ µ(3) ≥ · · · ≥ µ(K) .

The bound can be rewritten, in terms of rates (recall that nr depends on T ),

lim sup
T →+∞

1
T

logPν
(
âT 6= a?) ≤ − 1

4σ2 min
r∈[K−1]

{
∆2

(K−r+1) lim inf
T →+∞

nr

T

}
. (2.34)

In order to exploit this general upper bound, one needs to carefully choose the phase lengths
`1, . . . , `K−1 (or equivalently the number of pulls n1, . . . , nK−1).
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With the knowledge of the gaps. As in the fixed-confidence setting (see page 38), we can select
the phase lengths giving the best theoretical bound with the knowledge of the set of gaps. This
boils down to equalizing the quantities appearing in the minimum of inequality (2.34), i.e., to take
nr ∝ ∆−2

(K−r+1). In order to not exceed the budget T , we should take

∀r ∈ [K − 1], nr
def=

(∑
a6=a?

1
∆2

(a)
+ 1

∆2
(2)

)−1 T

∆−2
(K−r+1)

 .

The bound (2.34) reads

lim sup
T →+∞

1
T

logPν
(
âT 6= a?) ≤ − 1

4σ2

(∑
a6=a?

1
∆2

(a)
+ 1

∆2
(2)

)
.

Remark. The complexity appearing in the right-hand side was already involved in the expression (2.9)
giving the value of τδ for the Successive-Elimination algorithm.

With the phase lengths of Audibert et al. (2010). How much do we lose without the knowledge
of the gaps? The Successive-Rejects strategy was studied by Audibert et al. (2010) with the
pre-defined phase lengths

`1
def= T

log K
, and ∀r ∈ {2, . . . , K − 1}, `r

def= T

(K − r + 2) log K
, (2.35)

where we define

log K
def= 1

2 +
K∑

k=2

1
k

,

which ensures that the phase lengths sum to T . In a nutshell, the first phase is the longest and is
devoted to a uniform exploration of all arms, and then the K − 2 next rounds share the rest of the
budget with a slight increase in length from one phase to the next (see Figure 2.8).

0 T

ℓ1 =
⌈

T

ln 6

⌉

6 arms, uniform exploration
ℓ2 =

⌈
T

6 ln 6

⌉
ℓ3 =

⌈
T

5 ln 6

⌉
ℓ4 =

⌈
T

4 ln 6

⌉
ℓ5 =

⌈
T

3 ln 6

⌉

2 arms

Figure 2.8: Successive-Rejects phase lengths of Audibert et al. (2010) for K = 6 arms.

Substituting the numbers of pulls (nr)r∈[K−1] induced by the choice of phase lengths (2.35) into
upper bound (2.34) yields the following result.

Theorem 2.15. [Audibert et al., 2010, Theorem 2]
The sequence of Successive-Rejects strategies with phase lengths given by Equation (2.35)
satisfies, for all ν in Dσ2 with a unique optimal arm:

lim sup
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≤ − 1

4σ2 log K
min

2≤k≤K

∆2
(k)
k

. (2.36)

Remark. • Audibert et al. (2010) also obtained a lower bound (that we describe in page 64)
involving the quantity min2≤k≤K

∆2
(k)
k . The phase lengths (2.35) are in fact chosen so as to

obtain the same gap-based quantity in the upper bound, which results in the apparition of the
normalizing constant log K.
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• In all generality, bounds (2.33) and (2.36) are not comparable: taking a bandit problem with all
gaps equal will lead to a better bound for Uniform-Sampling while taking one tiny gap com-
pared to the others gives an advantage to Successive-Rejects (as intuition suggests). Still,
bound (2.36) captures the bandit structure by considering the value of all gaps and is smaller
than (2.33) in a lot of regimes. Experimentally, Uniform-Sampling does not outperform
Successive-Rejects even in the first situation.
• Karnin et al. (2013) proposed Sequential-Halving, a variant of Successive-Rejects in
which half of the remaining arms are dropped at each round. Its theoretical guarantees are
similar to the ones for Successive-Rejects (up to a factor log 2 in the exponential rate),
while its experimental behavior shows slight improvement with a large number of arms.

Despite being the first non-trivial proposed strategy for the fixed-budget setting, the instance-
dependent guarantee of Successive-Rejects has not been significantly improved. It seems, how-
ever, that this gap-based upper bound might be non-optimal, as we will discuss in Section 2.3.4.

Contribution. The upper bound (2.36) for the Successive-Rejects strategy only applies to
sub-Gaussian models. We will show in Chapter 5.3 how to generalize it to other models (see
Contribution 2.22 for more details). This generalization will reveal a new information-theoretic
quantity replacing gaps that we present in page 67.

2.3.3. Lower Bounds

We now discuss existing lower bounds in the fixed-budget setting.

Avoiding bad strategies. Considering the class of all strategies precludes obtaining lower bounds
that hold simultaneously for all bandit instances. Indeed, a strategy that always recommends a given
arm (independently of all observations) will make no error for problems admitting that arm as the
best, but of course, such strategies are poor, as they completely fail on any other bandit instance.
To prevent this, it is possible to modify the objective and lower bound, for a given instance ν, the
maximal rate of error probability among permuted instances (νσ)σ∈SK

, where SK denotes the set
of permutations of [K] and νσ def= (νσ(1), . . . , νσ(K)):

max
σ∈SK

1
T

logPνσ

(
âT 6= a?(νσ)

)
.

This is not really satisfying in terms of writing, but sometimes handy (see Audibert et al., 2010).
Yet, a more natural way of proceeding is to restrict the considered class of strategies16.

(Exponentially) consistent sequences of strategies. Recall that, in the asymptotic point of
view, we consider sequences of strategies indexed by T ≥ 1 given a value of K ≥ 2. We will
assume that these sequences are “reasonable” in the sense below. The probability Pν

(
âT 6= a?(ν)

)
of misidentifying the unique optimal arm may vanish asymptotically (and even vanish exponentially
fast) for all bandit problems —in not too large a model D—, as illustrated in Section 2.3.1. We will
therefore only be interested in such sequences of strategies, called (exponentially) consistent.

16As in the regret literature, where lower bounds are derived for uniformly fast convergent strategies (see, e.g.,Burnetas
and Katehakis, 1996).
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Definition 2.16. [(exponentially) consistent sequence of strategies]
Fix K ≥ 2. A sequence of strategies is consistent, respectively, exponentially consistent, on a
model D if for all problems ν in D with a unique optimal arm,

Pν
(
âT 6= a?(ν)

)
−→

T →+∞
0 , respectively, lim sup

T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
< 0 .

The fundamental inequality. The fundamental inequality (2.12) that we presented in the fixed-
confidence setting can also be used in fixed-budget best-arm identification to obtain lower bounds
on the rate of the exponential decay. It entails the following asymptotic lemma.

Lemma 2.17. Fix K ≥ 2 and a model D. Consider a consistent sequence of strategies on D, and
two bandit problems ν and ζ in D with unique and distinct optimal arms such that a?(ζ) 6= a?(ν).
Then

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − lim sup

T →+∞

∑
a∈[K]

Eζ [Na(T )]
T

KL(ζa, νa) . (2.37)

Proof. We will first prove the following non-asymptotic lower bound, which does not make any
assumption on the strategy:

logPν
(
âT 6= a?(ν)

)
≥ −

∑
a∈[K] Eζ

[
Na(T )

]
KL(ζa, νa) + log 2

Pζ

(
âT = a?(ζ)

) . (2.38)

We apply the fundamental inequality (2.12) with E = {âT 6= a?(ν)}, and by exchanging the roles
of ν and ζ: ∑

a∈[K]
Eζ

[
Na(T )

]
KL(ζa, νa) ≥ kl

(
Pζ

(
âT 6= a?(ν)

)
,Pν

(
âT 6= a?(ν)

))
.

Combining this inequality with the following bound satisfied by the Kullback-Leibler divergence of
the Bernoulli model17:

∀p, q ∈ (0, 1), kl(p, q) ≥ p log 1
q
− log 2 , i.e., log q ≥ −kl(p, q) + log 2

p
, (2.39)

and the fact that Pζ

(
âT 6= a?(ν)

)
≥ Pζ

(
âT = a?(ζ)

)
as a?(ν) 6= a?(ζ), we obtain

logPν
(
âT 6= a?(ν)

)
≥ −

∑
a∈[K] Eζ

[
Na(T )

]
KL(ζa, νa) + log 2

Pζ

(
âT 6= a?(ν)

)
≥ −

∑
a∈[K] Eζ

[
Na(T )

]
KL(ζa, νa) + log 2

Pζ

(
âT = a?(ζ)

) ,

which concludes the proof of (2.38).
Inequality (2.37) follows simply by considering asymptotics of (2.38)18, and the fact that the

considered sequence of strategies is consistent on D:

Pζ

(
âT = a?(ζ)

)
−→

T →+∞
1 , and Pν

(
âT 6= a?(ν)

)
−→

T →+∞
0 .

17As kl(p, q) = p log 1
q

+ (1 − p) log 1
1 − q︸ ︷︷ ︸

≥0

+ p log p + (1 − p) log(1 − p)︸ ︷︷ ︸
≥− log 2

.

18One can directly use the asymptotic of the kl and obtain the result without inequality (2.39).
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Remark 2.18. By using inequality (2.39), we are forced to exchange the roles of ν and ζ when
applying the fundamental inequality (2.12). This is why expectations of pulls are now under the
alternative bandit problem ζ. The task of transforming those inequalities into informative lower
bounds gets harder: not only do we need to find alternative bandit problems close to ν in terms of
Kullback-Leibler divergences, but we also need to simultaneously control the pull frequencies under
ζ. Note also that, as a consequence, we cannot use similar techniques as in the fixed-confidence
proof of lower bound (2.19), where in inequality (2.22) we replaced the unknown frequency vector
Eν
[
N(τδ)

]
/Eν

[
τδ] by the “best” vector v ∈ ΣK , which was only possible because this frequency

vector did not depend on ζ; hence, at least at first sight, we cannot conclude the existence of an
optimal weight vector associated to a bandit problem ν as in the fixed-confidence case. As we
will discuss later, it does not seem possible to avoid those issues unless for models for which the
Kullback-Leibler divergence is symmetric.

Lower bound of Audibert et al. (2010). Audibert et al. (2010) proposed the following lower
bound for the model

B[p, 1−p]
def=
{
Ber(x) : x ∈ [p, 1− p]

}
of Bernoulli distributions Ber(x) with parameters x in [p, 1− p] for some p ∈ (0, 1

2),

Theorem 2.19. [Audibert et al., 2010, Theorem 4]
Consider the model B[p, 1−p] for some p ∈ (0, 1

2). For all strategies, and for all ν in B[p, 1−p] with a
unique optimal arm,

lim inf
T →+∞

1
T

log
(

max
σ∈SK

Pνσ

(
âT 6= a?(νσ)

))
≥ − 5

p(1− p) min
2≤k≤K

∆2
(k)
k

. (2.40)

The bound involves the same quantity min2≤k≤K
∆2

(k)
k as in the upper bound (2.36) of Successive-

Rejects. Yet, these two bounds do not match as there is a factor log K ' log K between both.
We will compare upper and lower bounds deeply in Section 2.3.4.

The Bretagnolle-Huber technique by Kaufmann et al. (2016, Section 5.2). A specific lower
bound was obtained by Kaufmann et al. (2016) for the model DNσ2 of Gaussian distributions with
common variance σ2 > 0, based on the Bretagnolle-Huber inequality (Bretagnolle and Huber, 1979)
instead of inequality (2.39):

∀p, q ∈ (0, 1), p + 1− q ≥ 1
2 exp

(
− kl(p, q)

)
.

Remark. We used inequality (2.39) in the regime p → 1 and q → 0. The Bretagnolle-Huber
inequality should be applied in the reverse regime where p → 0 and q → 1, giving a similar lower
bound to (2.39) except that the logarithm depends on both p and q:

log
(
2(p + 1− q)

)
≥ − kl(p, q) .

Kaufmann et al. (2016) proved that the rate was driven by the sum of the inverse squared gaps

HΣ(ν) def=
∑

a6=a?(ν)

1
∆2

a

. (2.41)

More precisely, an asymptotic version of their result is the following.
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Proposition 2.20. [Asymptotic version of Kaufmann et al., 2016, Theorem 16]
For all sequences of strategies and for all bandit problems ν in DNσ2 with a unique optimal arm,
there exists a set of alternative bandit instances (ν(k))k 6=a?(ν) in DNσ2 , where each ν(k) admits k

as a best arm and satisfies HΣ
(
ν(k)) ≤ HΣ(ν), and for which

lim inf
T →+∞

1
T

log max
{
Pν
(
âT 6= a?(ν)

)
, max

k 6=a?(ν)
Pν(k)

(
âT 6= k

)}
≥ − 2

σ2 HΣ(ν)−1 . (2.42)

We will give a proof and a precise interpretation of this result in Section 5.6.2, but it conveys the
intuition that

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
& − 2

σ2 HΣ(ν)−1 .

The proposed lower bounds (2.40) and (2.42) both involve a variance term but rely on gap-based
complexity terms that differ, namely, HΣ(ν) and

Hmax(ν) =
(

min
2≤k≤K

∆2
(k)
k

)−1
= max

2≤k≤K

k

∆2
(k)

.

The second quantity also appears in the upper bound (2.36), somewhat in an arbitrary way as it
crucially depends on the phase lengths, and both quantities can be linked as follow

Hmax(ν) ≤ HΣ(ν) ≤ log(2K)Hmax(ν) ,

with the two inequalities being tight in all generality (there exist instances for which equalities hold).

Contribution. In Chapter 5, we will introduce new information-theoretic complexity measures
that replace Hmax and HΣ. Those quantities will generalize the existing lower and upper bounds
to more models including, e.g., non-parametric models. See Contribution 2.22 for more details.

Generalizations to other models. In order to understand if a complexity measure is a good
candidate for being involved in the complexity of the fixed-budget setting, one may wonder if the
proof techniques might be applied to more general models. Indeed, the lower bounds presented so
far in this section are specific to Bernoulli and Gaussian.

Concerning the bound (2.42) of Kaufmann et al. (2016), a close look at the proof reveals that it
heavily relies on a property even stronger than the symmetry of the Kullback-Leibler divergence for
this model. In particular, generalizations beyond the Gaussian case appear to be infeasible.

Contribution. A detailed discussion on this statement might be found in Section 5.6.2, together
with a proof of Proposition 2.20.
For the lower bound (2.40) of Audibert et al. (2010), however, a key inequality in their proof

follows from the Kullback-Leibler – χ2-divergence bound:

∀x, y ∈ [p, 1− p], kl(x, y) ≤ (x− y)2

2p(1− p) . (2.43)

The construction may actually be generalized to models D with CD > 0 such that
∀ν, ν ′ in D, KL(ν, ν ′) ≤ CD

(
E(ν)− E(ν ′)

)2
. (2.44)

This is a property that clearly holds for some exponential families: on top of the restricted Bernoulli
model discussed above, where CB[p, 1−p] = 1

2p(1−p) by (2.43), we may cite the model Dσ2 of Gaussian
distributions with variance σ2, for which CDσ2 = 1

2σ2 .
A generalization of Theorem 2.19 to such models reads as follows.
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Proposition 2.21. Consider a model D for which property (2.44) holds with CD > 0. Then

∀ν in D, lim inf
T →+∞

1
T

log
(

max
σ∈SK

Pνσ

(
âT 6= a?(νσ)

))
≥ −5 CD min

2≤k≤K

∆2
(k)
k

.

2.3.4. Comparing Upper and Lower Bounds: the Challenges of the Fixed-
Budget Setting

We now compare the lower bounds proposed in the previous section with the upper bound of the
Successive-Rejects strategy. This comparison indicates important directions of research for the
fixed-budget setting.

Questions. This setting is much less understood than the fixed-confidence setting.
1. We actually do not know if there exists a complexity for the fixed-budget setting: there

is a ∼ log K multiplicative gap between the lower and upper bounds (2.40) and (2.36).
Can we obtain matching lower and upper bounds even for simple models like Gaussian or
Bernoulli models? Is there an optimal strategy that asymptotically reaches the lower bounds
simultaneously in all instances? We will discuss those questions in the next section.

2. The bounds so far only depend on the gaps between arms, whereas they involve the Kullback-
Leibler divergence in the fixed-confidence setting, which provides a more precise quantification
of the difficulty in terms of the geometry of information of the problem. Can we obtain bounds
that rely on more informative quantities than gaps?

3. Most of the proposed bounds are specific to a few models (even the generalization proposed
in Proposition 2.21 is limited to models with a particular structure). Can we generalize the
proof techniques to more general models, like an exponential model or even a non-parametric
model?

From now on, let us forget about the first point that we will consider in the next section, and see
how to tackle the two other questions. It turns out that the existing literature for the fixed-budget
setting offered so far a non-parametric lower bound, in the case of K = 2 arms.

The non-parametric bound of Kaufmann et al. (2016) for K = 2 arms. Namely, in a general,
possibly non-parametric, model D, Kaufmann et al. (2016, Theorem 12) stated a lower bound for
all 2–armed bandit problems ν = (ν1, ν2), and for all consistent sequence of strategies:

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − inf

ζ∈Alt(ν)
max

{
KL
(
ζ1, ν1

)
, KL

(
ζ2, ν2

)}
, (2.45)

where we recall that Alt(ν) is the set of alternative bandit problems19 to ν:

Alt(ν) def=
{

ζ in D : a?(ζ) 6= a?(ν)
}

.

The bound can be directly derived by taking the infimum over alternative bandit problems ζ in lower
bound (2.37):

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − inf

ζ∈Alt(ν)
lim sup
T →+∞

2∑
a=1

Eζ [Na(T )]
T

KL(ζa, νa)︸ ︷︷ ︸
≤max

{
KL(ζ1,ν1), KL(ζ2,ν2)

}
.

19Already defined in the fixed-confidence setting with mean-parametrized instances, see (2.18).

Page 66 / 192



2.3. BEST-ARM IDENTIFICATION WITH A FIXED-BUDGET

New information-theoretic quantities. We have seen in lower bound (2.37) that the arguments
of the involved Kullback-Leibler divergences were in reversed order compared to the fixed-confidence
setting.

Remark. Recall that we have seen in Remark 2.7 that the key quantities for the non-parametric study
of best-arm identification with fixed confidence are defined based on Kullback-Leibler divergences
K<

inf and K>
inf with arguments in reverse order. Note also that optimal bound regret-minimization

literature only depends on the K<
inf (see, e.g., Honda and Takemura, 2015; Garivier et al., 2022).

Therefore, let us introduce, for a distribution ν ∈ D and a real number x ∈ R,

L<
inf(x, ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}
,

and symmetrically, by considering rather distributions ζ with expectations larger than x,

L>
inf(x, ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
.

The L<
inf and L

>
inf quantities might be key in measuring the complexity of best-arm identification

under a fixed budget and be involved in generalizations of gap-bounds to general models. As a
first illustration, we note that we may actually rewrite lower bound (2.45) in terms of L<

inf and L
>
inf

quantities20:

inf
ζ∈Alt(ν)

max
{

KL
(
ζ1, ν1

)
, KL

(
ζ2, ν2

)}
= inf

x∈[µ(2),µ?]
max

{
L>

inf
(
x, ν(2)

)
, L<

inf
(
x, ν?)} .

Contribution 2.22. In Chapter 5, we will prove upper and lower bounds based on the information-
theoretic quantities L<

inf and L>
inf . Those bounds will be applicable to a wide variety of models,

including non-parametric models, and will imply all existing ones presented above. More precisely:
• for the upper bound, we prove that the quantity

L(ν ′, ν) def= inf
x∈[E(ν′),E(ν)]

{
L>

inf(x, ν ′) + L<
inf(x, ν)

}
, (2.46)

defined for ν, ν ′ inD such that E(ν ′) < E(ν), can replace the role of gaps in the Successive-
Rejects analysis of Audibert et al. (2010). Given a bandit problem ν with a unique opti-
mal arm, we may rank the arms a in non-decreasing order of L

(
νa, ν?

)
, i.e., consider the

permutation σ such that

0 = L
(
νσ1 , ν?) < L

(
νσ2 , ν?) ≤ . . . ≤ L

(
νσK−1 , ν?) ≤ L(νσK , ν?) ,

and we prove that for all so-called regular models D, Successive-Rejects guarantees that

∀ν in D, lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

L
(
νσk

, ν?
)

k
. (2.47)

For a sub-Gaussian model, this result improves the upper bound (2.36) as it can be proved
using Pinsker’s inequality that L(ν ′, ν) ≥ 1

4σ2
(
E(ν)− E(ν ′)

)2.
• we also derive several lower bounds, which depend on various natural assumptions on the

considered strategies. For instance, as long as the sequence of strategies asymptotically pulls
the arm associated with the smallest expectation less than a fraction 1

K of the time, and

20See the proof of Theorem 5.14 for details about this equality, which is obtained similarly to the transportation
costs calculation (2.23) of the fixed-confidence setting.
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is more efficient in the identification task when one sub-optimal arm is removed from the
bandit problem, then the lower bound (2.40) can be generalized to any model D as:

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K

L<
inf
(
µ(k), ν?

)
k

.

This lower bound is not stated in terms of infima of combinations of L>
inf and L<

inf , i.e., in
terms of the function L introduced in (2.46). While it seems challenging to obtain lower
bounds involving L, we rather obtained the following bound for so-called monotonous se-
quences of strategies, which pull more often arms with higher means:

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K
inf

x∈[µ(k),µ(k−1))

{L>
inf
(
x, ν(k)

)
k − 1 +

L<
inf
(
x, ν?

)
k

}
.

This bound goes in the direction of the complexity appearing in upper bound (2.47), involving
L quantities, however, the infima are taken over smaller intervals.

The bounds presented in Chapter 5 do not close the gap between lower and upper bounds: there
is still (at least) a multiplicative factor log K ' log K between them. The question of reducing
this gap is still open and will be discussed in the next section.

2.3.5. On Non-Matching Bounds and Minimax Results

We recall that the lower bound (2.40) and the upper bound (2.36) differ in particular by a factor
proportional to log K. As a consequence, we need to understand how to fill the gap between those
two bounds. Is it even possible?

The minimax lower bound of Carpentier and Locatelli (2016). Carpentier and Locatelli (2016)
discuss the gap between lower bound (2.40) and upper bound (2.36) in the case of the Bernoulli
model B[1/4, 3/4]. They improve the lower bound (2.40) by a factor of log K, but not simultaneously
for all bandit problems ν: they obtain the improvement just for one bandit problem ν. Their lower
bound result (formally stated and discussed in Section 5.6.1) can be asymptotically stated as the
existence of ν in B[1/4, 3/4] and of an increasing sequence of budgets (Tn)n≥1 such that

∃ ν in B[1/4, 3/4], lim inf
n→+∞

1
Tn

logPν
(
âTn 6= a?(ν)

)
≥ − 400

log K
HΣ(ν)−1 . (2.48)

This result is different in nature from the uniform instance-dependent lower bounds considered in
the previous section and in Chapter 5, which hold simultaneously for all bandit problems of a given
model. Yet, it gives directions to answer the questions raised above:
• either we need to obtain new lower bounds with the log K factor so as to match upper
bound (2.36),
• or this might not be possible, which would mean that lower and upper bounds cannot perfectly
match for large enough models, i.e., that there does not exist an optimal strategy that reaches
the best rate (among all strategies) uniformly on all instances.

Recent works have been focussing their efforts on proving that the second scenario occurs. Before
discussing those results, let us explain why the fixed-budget setting seems harder than the fixed-
confidence setting.
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Adaptive strategies and the difficulty of the fixed-budget setting. The upper bound (2.36)
was obtained for a Successive-Rejects strategy with pre-defined lengths phase, so, without any
attempt to adapt to collected data. It could be useful to rely on those observations to choose the
round lengths or design other types of strategies. If adaptivity might complicate the theoretical
arguments to obtain upper bounds, one first interesting step would be to design adaptive sampling
rules that perform well empirically. This task does not seem to be easy, as we expose now.
• One needs to have a high precision on the estimates of the means to confidently rely on observed
data in order to adapt sampling rules. However, the misidentification event

{
âT 6= a?(ν)

}
that

we want to control is the event that (at least) one sub-optimal empirical estimate is above the
empirical estimate of the best arm:{

∃a 6= a?(ν), µ̂a(T ) ≥ µ̂a?(ν)(T )
}

.

This holds when there is a failure in the precision of (at least) one of the estimates: either a
sub-optimal means is over-estimated, or the optimal mean is under-estimated.
• Using forced exploration (which is equivalent to beginning the process by a round of uniform ex-
ploration) does not seem possible in this setting: even a careful choice of the forced exploration
strategy will lead to imprecisions in the estimates, and the strategy might not exploit those
estimates correctly (see the first item). This is why Audibert et al. (2010) rather proposed an-
other strategy called Upper-Confidence-Bound-Exploration, a UCB-based algorithm with
an exploration bonus. To ensure good theoretical guarantees of those strategies, one requires
the knowledge of a complexity term, namely HΣ(ν), in order to set the scaling of the bonus
(see also Gabillon et al., 2012).

Existence of optimal sequences of strategies. Komiyama et al. (2022) conjectured that de-
creasing the error probability under an instance ν should increase the error probability under another
instance ζ. In other words, that no strategy might perform uniformly well under all bandit instances.
Given a fixed complexity function H(ν) > 0, the probability of error can be written as

Pν
(
âT 6= a?(ν)

)
= exp

(
− T

R(ν, T )H(ν)

)
,

for some corrective term R(ν, T ) ∈ [0, +∞]. If a strategy is such that R(ν, T ) ≤ 1, then H(ν) is a
good upper bound of the complexity of ν as the probability of error is less than

exp
(
− T

H(ν)

)
.

We can extend this statement to sequences of strategies such that

R(ν) def= lim sup
T →+∞

R(ν, T ) ≤ 1 .

In addition, if Rinf(ν) def= infstrategies R(ν) > 0, then H(ν) is a good lower bound of the complexity
as the probability of error is asymptotically higher than

exp
(
− T

Rinf(ν)H(ν)

)
.

Can we find a “good” complexity measure H, for which

Rinf
def= inf

ν in D
Rinf(ν) > 0 ,
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and such that there exists a uniformly optimal sequence of strategies, for which

R
def= sup

ν in D
Rsup(ν) ≤ 1 ?

Komiyama et al. (2022) conjectured that such complexity does not exist for large enough models
(including an exponential model). Given a complexity H, they proposed an intractable sequence of
strategies that can reach the best uniform upper rate Rinf among all strategies. For the complexity HΣ
defined in (2.41), they also introduced an algorithm approaching this strategy by using a pre-trained
neural network. It results in a strategy that performs empirically better than Successive-Rejects
on some instances (with an improved behavior at the beginning, the uniform phase of exploration
being reduced), yet without strong theoretical guarantees.

The recent results of Degenne (2023) partly confirmed the conjecture of Komiyama et al. (2022)
on a theoretical aspect: for the model of standard Gaussian distributions, they consider the oracle
complexity for which Rinf = 1, which is the exact rate of the best strategy pulling arms with fixed
proportions, which is equal to

H(ν) def=
(

sup
v∈ΣK

inf
ζ∈Alt(ν)

∑
a∈[K]

va KL(ζa, νa)
)−1

. (2.49)

They proved that the best rate infstrategies R goes to +∞ as K → +∞. In other words, for large
enough K, we cannot design an algorithm that will be able to track the optimal proportions of
ν for all bandit problems ν, unlike the fixed-confidence setting. This contradicts in particular the
conjecture in the conclusion of Garivier and Kaufmann (2016) according to which the complexity of
the fixed-budget best-arm identification might be (2.49).

Remark. Degenne (2023) obtained this result by considering similar arguments than the minimax
lower bound (2.48) of Carpentier and Locatelli (2016).
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CHAPTER 3

About the Fixed-Confidence Sample
Complexity Optimization Problem for

Gaussian Variables

In this chapter, we study, for a Gaussian model, the solution of the sample complexity optimization
problem (2.20) in best-arm identification with fixed-confidence. We present a new characterization
of the solution which allows the design of a new procedure to compute the optimal weight vector and
to obtain precise regularity properties concerning its dependency on the bandit instance. Materials
are extracted from Section 3 (and associated appendix) of the conference paper:

�
A. Barrier, A. Garivier, and T. Kocák. A Non-Asymptotic Approach
to Best-Arm Identification for Gaussian Bandits. In Proceedings of the
25th International Conference on Artificial Intelligence and Statistics,
pages 10078–10109. PMLR, 2022

Note that the lemmas of Section 3.4 contain unpublished additional statements.
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3.1. Introduction
In this chapter, we consider the “multi-armed bandit” framework, a collection of K ≥ 2 independent
probability distributions ν = (ν1, . . . , νK) called arms, of unknown means µ = (µa)a∈[K], and
belonging to some model D. These arms are sampled sequentially and independently: at every
discrete time step t ∈ N∗, an agent chooses an arm At ∈ [K] based on past information and
observes an independent draw Yt from distribution νAt . Multi-armed bandits are used as models for
many situations in which one needs to find the best among a set of options, using noisy observations.

The best-arm identification problem consists in identifying the arm with highest mean of a bandit
problem ν (we only consider, in the rest of this section, bandit problems with a unique optimal arm):{

a?(ν)
}

= argmax
a∈[K]

µa .

In the fixed-confidence setting (see Even-Dar et al., 2006), a confidence parameter δ ∈ (0, 1) is
given, and the objective is to design strategies that, after some random number of steps τδ return
an estimate âτδ

∈ [K], which is equal to the best arm a?(ν) with probability at least 1− δ. The aim
is to find a strategy that minimizes the expected number of samplings Eν [τδ] among all δ–correct
strategies, which are strategies satisfying

∀ν in D, Pν
(
τδ < +∞, âτδ

6= a?(ν)
)
≤ δ .

The sample complexity optimization problem. The sample complexity of δ–correct strategies
cannot be arbitrarily good. For an exponential model Dexp, for which instances ν are characterized
by their means µ, it has been proved by Garivier and Kaufmann (2016) that all strategies satisfy

∀µ ∈ Dexp, Eµ[τδ] ≥ T (µ) log 1
2.4δ

, (3.1)

where T (µ) is the characteristic time of µ, defined by the following optimization problem as

T (µ)−1 def= sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) . (3.2)

where d denotes the mean-parameterized Kullback-Leibler divergence of the model Dexp,

ΣK =
{

v ∈ [0, 1]K : v1 + · · ·+ vK = 1
}

and Alt(µ) =
{

λ in Dexp : a?(λ) 6= a?(µ)
}

.

An optimal weight vector. Garivier and Kaufmann (2016) proved that optimization problem (3.2)
admits a unique maximizer w(µ), called the optimal weight vector :{

w(µ)
}

def= argmax
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) .

This maximizer plays a very important role in the design of efficient fixed-confidence strategies:
whatever the value of the risk δ, the more a strategy pulls arms in proportions close to w(µ), the
closest from the lower bound (3.1) its performance will be. By giving a procedure to compute the
optimal weight vector when the means are known, Garivier and Kaufmann (2016) designed Track-
and-Stop, which in a nutshell boils down to tracking the current optimal weight vector w

(
µ̂(t)

)
,

where µ̂(t) is the empirical estimate of µ at time step t. Track-and-Stop is the first asymptotically
optimal strategy, for which the asymptotic upper bound matches lower bound (3.1):

∀µ in Dexp, lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

The existence of such strategies ensures the asymptotic tightness of the lower bound (3.1).
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Computing the solution w(µ). Garivier and Kaufmann (2016) proved that, with the knowledge of
µ, solving the optimization problem (3.2) reduces to determining the root of a one-variable increasing
function. By applying a bisection method, one may then compute w(µ) with arbitrary precision. The
procedure, referred to as Optimal-Weights , has consequences on the execution time of strategies
that require a computation at each time step. It might be interesting to obtain more efficient methods
to compute this optimal weight vector in order to speed up strategies such as Track-and-Stop.

Regularity and monotonicity of w and T . For a general exponential model, Garivier and Kauf-
mann (2016) obtained a few properties concerning the mappings µ 7→ w(µ) and µ 7→ T (µ). They
proved that µ 7→ w(µ), and hence µ 7→ T (µ), are continuous (at problems having a unique optimal
arm), that w(µ) charges all arms:

min
a∈[K]

wa(µ) > 0 ,

and that, if arms are ordered so that µ(1) > µ(2) ≥ . . . ≥ µ(K), then

w(2)(µ) ≥ . . . ≥ w(K)(µ) ,

but there might be instances (e.g., for a Bernoulli model) for which w(1)(µ) < w(2)(µ). Apart from
those basic properties, only a little is known about quantitative regularity results, or monotonicity
properties of w(µ) when, for instance, moving the mean of one of the arms. Obtaining such results
would have implications in the design of more efficient and natural (in several meanings) strategies,
see, e.g., Chapter 4.

The special case of Gaussian variables. Among all exponential models, the model DNσ2 of
Gaussian variables with common variance σ2 > 0 provides a suitable setting for analysis. Its Kullback-
Leibler divergence enjoys the simple closed-form expression

∀µ, µ′ ∈ R, d(µ, µ′) = (µ′ − µ)2

2σ2 , (3.3)

which allows to rewrite the optimization problem (3.2) as

T (µ)−1 = sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2σ2 . (3.4)

As this max–min optimization problem has a handy objective function, it might be possible to obtain
new procedures for the computation of its solution w(µ), together with monotonicity and regularity
results of w and T .

Outline and contributions. This chapter is devoted to the study of the Gaussian optimization
problem (3.4). For the clarity of the presentation, we only consider the model DN1 of standard
Gaussian variables, but all results naturally extend to DNσ2 .

In Section 3.2, we describe a new procedure for solving optimization problem (3.4). This results
in an accelerated algorithm for its numerical resolution that we present in Section 3.3, allowing a
significant speed-up for the Track-and-Stop algorithm in the Gaussian case. In addition, we use
our procedure to deduce monotonicity properties in Section 3.4 and develop a careful analysis in
Section 3.5 of the quantitative regularity of the solution to the optimization problem (3.4). Those
results will be essential for defining the Exploration-Biased-Sampling strategy of Chapter 4 and
proving its non-asymptotic guarantees.
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Notation. Let, in the rest of this chapter, µ ∈ DN1 be a fixed bandit parameter with a unique�

optimal arm. For the simplicity of the presentation, we set

a? = a?(µ) , w = w(µ) , and T = T (µ) .

We recall that, for v ∈ ΣK , the quantity

g(µ, v) def= inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2

can be seen as a minimum of transportation costs of the sub-optimal arms, see Equation (2.24) and
more generally Section 2.2.4, which in the Gaussian case reads

g(µ, v) = min
a6=a?

va?va

va? + va

∆2
a

2︸ ︷︷ ︸
=TCa→a? (µ,v)

, (3.5)

by use of (3.3), where ∆a = ∆a(µ) def= µa? − µa is the gap of arm a. Thus, the optimization prob-
lem (3.4) can be equivalently written as

T (µ)−1 = sup
v∈ΣK

g(µ, v) = 1
2 sup

v∈ΣK

min
a6=a?

va?va

va? + va
∆2

a , (3.6)

and the optimal weight vector w satisfies:{
w
}

= argmax
v∈ΣK

g(µ, v) = argmax
v∈ΣK

1
2 min

a6=a?

va?va

va? + va
∆2

a . (3.7)

Garivier and Kaufmann (2016) proved that, at the optimum w, all transportation costs are equal
(see also the proof of Proposition 3.2), so that, for all arms a 6= a?,

T (µ)−1 = g
(
µ, w

)
= 1

2
wa?wa

wa? + wa
∆2

a . (3.8)

Remark. We might sometimes use that g(µ, v) is defined for bandit problems µ that admit several
optimal arms (with a? begin any of the optimal arms). In that case, g(µ, v) = 0, all vectors v are
solutions of optimization problem (3.6) and T = +∞. However, unless explicitly stated, we only
consider problems with a unique optimal arm.

Finally, we define the following quantities:

∆min
def= min

a6=a?
∆a , ∆max

def= max
a∈[K]

∆a , and wmin
def= min

a∈[K]
wa .

3.2. Solving the Optimization Problem

In this section, we give a new characterization of the solution w of optimization problem (3.6). We
show that w can be derived using the root of the function φµ defined by:

∀r ∈
( 1

∆2
min

, +∞
)

, φµ(r) def=
∑

a6=a?

1(
r∆2

a − 1
)2 − 1 .

The following properties of φµ are straightforward.
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Lemma 3.1. φµ is strictly convex, decreasing on
( 1

∆2
min

, +∞
)
, and thus has a unique root.

To compute the solution w of optimization problem (3.6), it is sufficient to solve φµ(r) = 0. The
next result explains how to link r and w.

Proposition 3.2. Let r = r(µ) be the solution of φµ(r) = 0. Then

wa? = 1

1 +
∑

a6=a?

1
r∆2

a − 1

, (3.9)

∀a 6= a?, wa = wa?

r∆2
a − 1 , (3.10)

and T = 2 r

wa?
. (3.11)

Besides,
w2

a? =
∑

a6=a?

wa
2 . (3.12)

Before proving this result, we make two observations. Other important consequences of Proposi-
tion 3.2 will be derived in the next sections.

Monotonicity of the weights. In the case of K = 2 arms, we recall1 that w(µ) = (0.5, 0.5). For
K ≥ 3, we obtain that the optimal weights are monotonous with respect to the means.

Corollary 3.3. Assume that K ≥ 3. Then

∀a, b ∈ [K], µa > µb =⇒ wa > wb .

Proof. When a and b are sub-optimal, the result is a direct consequence of Equation (3.10). It
remains to see that wa? > maxa6=a? wa using Equation (3.12) with the fact that all weights are
positive and that K ≥ 3.

Optimal ratio of sub-optimal arms. Equation (3.10) also implies that

∀a, b 6= a?,
wa

wb
=

∆2
b −

1
r

∆2
a − 1

r

.

Intuitively, it requires about 1
∆2

a
samplings of arms a? and a before being able to distinguish them, so

that one could expect wa
wb

to be ∆2
b

∆2
a
. This would be the case if the comparisons between arms were

independent. In our problem, sampling the best arm benefits the comparison with all arms, so it is
worth sampling the optimal arm a little more than any single comparison would require, and hence
each sub-optimal arm a little less. As a result, the ratio wa

wb
is closer to 1, and the factor can be seen

as a “discount” on each squared gap for sharing the comparisons.

We close this section by proving Proposition 3.2.

1This can be obtained by Proposition 3.2, or by directly solving optimization problem (3.6).
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Proof of Proposition 3.2. Let us define, for some β ∈ [0, 1]:

G(β) def= max
v∈ΣK
va? =β

min
a6=a?

βva

β + va
∆2

a , (3.13)

so that, by Equation (3.8),

T −1 = max
v∈ΣK

g(µ, v) = 1
2 max

β∈[0,1]
G(β) . (3.14)

Remark. G(β) = 2
(
Tβ

)−1 where Tβ is the characteristic time of strategies allowing a proportion β
of their budget to the best arm, like non-adaptive top-two algorithms, see Equation (2.30).

By unicity of the optimal weight vector w, see (3.7), we know that:{
wa?

}
= argmax

β∈(0,1)
G(β) . (3.15)

Fix β ∈ [0, 1]. The maximum in Equation (3.13) is reached for a vector v such that va? = β and
all the costs

( βva

β+va
∆2

a

)
a6=a? are equal: G(β) is such that

∀a 6= a?, G(β) = βva

β + va
∆2

a ,

and hence
∀a 6= a?, va = β G(β)

β∆2
a −G(β) . (3.16)

The fact that v ∈ ΣK yields:

Φ
(
β, G(β)

) def= β +
∑

a6=a?

β G(β)
β∆2

a −G(β) − 1 = 0 . (3.17)

By the implicit function theorem, there exists a mapping β ∈ [0, 1] 7→ G(β) such that

Φ
(
β, G(β)

)
= 0 ,

and G′(β) = −

∂Φ
∂β

(
β, G(β)

)
∂Φ
∂G

(
β, G(β)

)

= −

1 +
∑

a6=a?

G(β)
(
β∆2

a −G(β)
)
− β G(β)∆2

a(
β∆2

a −G(β)
)2

β2 ∑
a6=a?

∆2
a(

β∆2
a −G(β)

)2

= −

1−
∑

a6=a?

1( β
G(β)∆2

a − 1
)2

β2 ∑
a6=a?

∆2
a(

β∆2
a −G(β)

)2
.

Hence β 7→ G(β) is a smooth non-negative function with a continuous derivative. By Equa-
tion (3.13), it vanishes when β → 0 and β → 1, and hence its maximum is reached at a point
β? where G′(β?) = 0. Defining

r
def= β?

G(β?) ,
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we get that r is the unique solution of φµ(r) = 0 using the relation

G′(β?) = 0 ⇐⇒ 1−
∑

a6=a?

1(
β?

G(β?)∆2
a − 1

)2 = 0 .

The claimed results follow by remarking that, by Equation (3.15), β? is (unique and) equal to
wa? . Equations (3.9), (3.10) and (3.11) can be respectively derived from (3.17), (3.16) and (3.14).
Lastly, we obtain Equation (3.12) by combining Equation (3.10) and the characterization φµ(r) = 0:

∑
a6=a?

w2
a = w2

a?

∑
a6=a?

1(
r∆2

a − 1
)2 = w2

a?

(
φµ(r) + 1

)
= w2

a? .

Remark. We largely used the explicit (and nice) expression 3.3 of the Kullback-Leibler divergence
between standard Gaussian variables. Obtaining a similar proof in the general case of an exponential
model might not allow us to obtain simple relations as in Proposition 3.2.

3.3. Bounds and Computation of the Problem Characteristics

By Proposition 3.2, it suffices to compute r to obtain the values of both T and w. As φµ is a strictly
convex and strictly decreasing function, Newton’s iterates initialized with a value r0 < r converge to
r from below at quadratic speed (the number of correct digits roughly doubles at every step). This
implies that a few iterations are sufficient to guarantee machine precision. The cost of the algorithm
can hence be considered proportional to that of evaluating φµ(r), which is linear in the number of
arms. The procedure called Gaussian-Optimal-Weights is summarized in Algorithm 11, where we
use the close form expression of the derivative of φµ:

φ′
µ : r ∈

( 1
∆2

min
, +∞

)
7−→ −2

∑
a6=a?

∆2
a(

r∆2
a − 1

)3 .

It remains to show that it is possible to find r0 < r, and possibly close to r. The next proposition
offers such a lower bound as simple functions of the gaps. This also yields tight bounds on the
optimal weight vector w and the characteristic time T .

Proposition 3.4. Let r be the solution of φµ(r) = 0. Then the following holds:

max
( 2

∆2
min

,
1 +
√

K − 1
∆2

)
≤ r ≤ 1 +

√
K − 1

∆2
min

, (3.18)

1
1 +
√

K − 1
≤ wa? ≤ 1

2 , (3.19)

and max
( 8

∆2
min

, 41 +
√

K − 1
∆2

)
≤ T ≤ 2

(
1 +
√

K − 1
)2

∆2
min

, (3.20)

where ∆2 def= 1
K−1

∑
a6=a? ∆2

a is the average squared gap.

Note that all of these inequalities can be reached for certain parameters µ, as discussed after the
proof of the proposition.
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Algorithm 11: Gaussian-Optimal-Weights
Input: bandit µ in DN1

initialization r0
tolerance parameter tol (typically 10−10)

Output: optimal weight vector w
characteristic time T

1 r ← r0
2 while

∣∣φµ(r)
∣∣ ≥ tol do

3 r ← r −
φµ(r)
φ′

µ(r)

4 wa? ←
(

1 +
∑

a6=a?

1
r∆2

a − 1

)−1

5 for a 6= a? do
6 wa ←

wa?

r∆2
a − 1

7 T ← 2 r
wa?

Proof. For all sub-optimal arms a, we set

qa
def= 1

r∆2
a − 1 .

By definition of r, we get
0 = φµ(r) =

∑
a6=a?

q2
a − 1 . (3.21)

Hence the (q2
a)a6=a? are positive and sum to 1. This implies, in particular, that qa ≤ 1 for all a 6= a?,

with strict inequality when K ≥ 3.
We first prove inequalities (3.19). We recall that Equation (3.9) reads, in terms of the (qa)a6=a? :

wa? =
(

1 +
∑

a6=a?

qa

)−1
.

On the one hand, the upper bound of (3.19) follows from the fact that the (qa)a6=a? are less than or
equal to 1 and relation (3.21):

wa? ≤
(

1 +
∑

a6=a?

q2
a

)−1
= (1 + 1)−1 = 1

2 ,

and on the other hand, we derive the lower bound of (3.19) by the Cauchy-Schwarz inequality:

wa? ≥
(

1 +
√

(K − 1)
∑

a6=a?

q2
a

)−1

= 1
1 +
√

K − 1
.

We now prove inequalities (3.18). For the lower bound, note first that, since qa ≤ 1 or equivalently
r∆2

a ≥ 2 for every a 6= a?, we get

r ≥ 2
∆2

min
. (3.22)
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Then, as ∆2 = 1
K−1

∑
a6=a? ∆2

a, the convexity of x 7→ 1
(rx−1)2 ensures that

1
K − 1

∑
a6=a?

1(
1+

√
K−1

∆2 ∆2
a − 1

)2 ≥
1(

1+
√

K−1
∆2 ∆2 − 1

)2 = 1
K − 1 ,

and hence

φµ

(
1 +
√

K − 1
∆2

)
=
∑

a6=a?

1(
1+

√
K−1

∆2 ∆2
a − 1

)2 + 1 ≥ 0 .

By decreasing of φµ (see Lemma 3.1), this entails that

r ≥ 1 +
√

K − 1
∆2

,

which, together with (3.22), concludes the proof of the lower bound of (3.18). The decreasing of φµ

is also helpful for the upper bound of (3.18): as

φµ

(1 +
√

K − 1
∆2

min

)
=
∑
a6=1

1(
1+

√
K−1

∆2
min

∆2
a − 1

)2 − 1 ≤ 0 ,

we get

r ≤ 1 +
√

K − 1
∆2

min
.

Finally, Equation (3.20) is derived by combining inequalities (3.18) and (3.19) with Equa-
tion (3.11).

Tightness of the bounds. To conclude this section, we discuss the tightness of the inequalities
obtained in Proposition 3.4.
• When K = 2, we note that lower and upper bounds match in inequalities (3.18), (3.19)
and (3.20). However, the bounds do not provide any additional information as w = (0.5, 0.5)
whatever the value of µ.
• In fact, equalities r = 2

∆2
min

, wa? = 1
2 and T = 8

∆2
min

occur if and only if K = 2. This is
because the (qa)a6=a? are positive and sum to 1, hence they cannot equal 1 unless K = 2: as
we proved the associated inequalities by injecting that qa ≤ 1 for all a 6= a?, there is equality
only when K = 2. The presence of additional arms increases r and T while decreases wa? .
• If there is at least K ≥ 3 arms, then the remaining equalities

wa? = 1
1 +
√

K − 1
, r = 1 +

√
K − 1

∆2
= 1 +

√
K − 1

∆2
min

, and T = 2
(
1 +
√

K − 1
)2

∆2
min

,

are reached if and only if ∆min = ∆max, that is, if ∆2 = · · · = ∆K . This might be obtained by
studying the equality cases in the proof above, using the equality case of the Cauchy-Schwarz
inequality for wa? , the strict convexity of x 7→ 1

(rx−1)2 and the decreasing of φµ for r, and
finally Equation (3.20) for T . If the condition holds, note that T grows linearly with K.
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3.4. Monotonicity of the max–min Problem
We now show monotonicity results for the characteristic time T and the optimal weight vector w
when moving some arm(s) of µ. When K = 2, we have seen that w = (0.5, 0.5) whatever the bandit
problem µ, and the variations of T are also known since T = 8

∆2 where ∆ is the unique gap of µ.
In the rest of the section, we assume that K ≥ 3. Let µ′ denote another bandit problem in DN1�

sharing the same unique optimal arm a? as µ, and define ∆′ its gap vector, w′ its optimal weight
vector, T ′ its characteristic time and r′ the root of φµ′ . Those results will be useful to define the
Exploration-Biased-Sampling strategy in Chapter 4.

3.4.1. Increasing the Mean of a Sub-Optimal Arm

The following lemma gives monotonicity properties of w and T when increasing the mean of a
sub-optimal arm, which corresponds to decreasing its gap.

Lemma 3.5. Assume that ∆′
b < ∆b for a fixed b 6= a? while ∆′

a = ∆a for all a /∈ {a?, b}. Then
1. w′

b > wb,
2. w′

a < wa for all a /∈ {a?, b},
3. T ′ > T ,
4. in addition:

• w′
a? > wa? if arm b is (one of) the second best arm(s) of µ and µ′,

• w′
a? < wa? if arm b is (one of) the worst arm(s) of µ and µ′.

The monotonicity results of the lemma are summarized in Figure 3.1. As an example, we give in
Figure 3.2 the evolution of the optimal weights when modifying the value of one sub-optimal arm.
This illustrates, in particular, the point 4 of the lemma: wa?(µx) decreases (respectively increases)
when the moved arm is the worst arm (respectively the second best arm), which corresponds to
x ≤ 2 (respectively x > 3) in the figure. Otherwise, if x ∈ [2, 3], the variation of wa?(µx) changes
at some point that is marked by a dashed line on the figure, and we cannot conclude a monotonicity
property in that case.

Proof.
1. Since ∆′

a ≤ ∆a for all a 6= a?, we get

φµ′(r) =
∑

a6=a?

1(
r∆′

a
2 − 1

)2 + 1 >
∑

a6=a?

1(
r∆2

a − 1
)2 + 1 = φµ(r) = 0 ,

hence it holds that r′ > r by decreasing of φµ′ (see Lemma 3.1). This implies that

∀a /∈ {a?, b}, 1
r′∆′

a
2 − 1

= 1
r′∆a

2 − 1
<

1
r∆2

a − 1 . (3.23)

As K ≥ 3, such an arm a exists and hence, as φµ(r) = 0 = φµ′(r′):
1

r′∆′
b
2 − 1

>
1

r∆2
b − 1

, i.e., r′∆′
b
2 − 1 < r∆2

b − 1 . (3.24)

Combining (3.23) and (3.24) with Equation (3.10) entails that:

∀a /∈ {a?, b}, w′
a

w′
b

= r′∆′
b
2 − 1

r′∆′
a

2 − 1
<

r∆2
b − 1

r∆2
a − 1 = wa

wb
,

and w′
a?

w′
b

= r′∆′
b
2 − 1 < r∆2

b − 1 = wa?

wb
.
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arm
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•

1

•

•

2

•
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4
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•

8

•

9

•

10

Evolution of w ↘ ↗ ↘ ↘ ↘ ↘ ↘ ↘ ↘ Evolution of T ↗

Figure 3.1: By increasing the mean of a sub-optimal arm, its associated optimal weight increases
while those of other sub-optimal arms decrease, and the characteristic time increases.

Figure 3.2: Evolution of the optimal weight w(µx) for x ∈ [0, 5], where µx = (5, 4, x, 2.3, 2). The
dashed line corresponds to the minimizer of w1(µx).

This leads to
1− w′

b

w′
b

=
∑
a6=b

w′
a

w′
b

<
∑
a6=b

wa

wb
= 1− wb

wb
,

and thus, finally, to w′
b > wb.

2. Given a bandit problem ρ with unique optimal arm a?, its optimal weights and the root of φρ

can be seen as functions of its squared gap vector d
def= ∆(ρ)2: we set

∀a /∈ {a?, b}, Fa(d) def= 1
wa(ρ) = r(d) da − 1

wa?(ρ) =
(
r(d) da − 1

)
+
∑

c 6=a?

r(d) da − 1
r(d) dc − 1 .

where r(d) is the unique solution of φρ(r) = 0, and where the right-equalities are derived from
Equations (3.9) and (3.10).
We are interested in the variations of Fa with respect to db (at points d corresponding to
bandit problems with optimal arm a?, i.e., such that da? = 0 and da > 0 for a 6= a?). Note
that, by an application of the implicit function theorem to the relation φρ

(
r(d)

)
= 0, we know

that r is differentiable with respect to db, with

∂r

∂db
(d) = −

r(d)(
r(d) db − 1

)3∑
c 6=a?

dc(
r(d) dc − 1

)3 < 0 . (3.25)
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Remark. Thanks to the first part of the proof, we already knew that r is decreasing with
respect to db (or equivalently to the gap ∆b).

As a consequence, the functions (Fa)a/∈{a?,b} are differentiable with respect to db, and the
proof of the second point of the lemma will follow by proving that

∀a /∈ {a?, b}, ∂Fa

∂db
(d) < 0 . (3.26)

Indeed, this will lead, as ∆′
b < ∆b and ∆′

a = ∆a for all a /∈ {a?, b}, to

∀a /∈ {a?, b}, w′
a = 1

Fa
(
∆′2) <

1
Fa
(
∆2) = wa .

We now prove (3.26). In the following calculations, we omit the dependency of the quantities
on d to facilitate the reading, even if the dependency with respect to the squared gaps d is
crucial for, e.g., r = r(d). We get, for all a /∈ {a?, b}:

∂Fa

∂db
= ∂r

∂db
da +

∑
c6=a?

[ ∂r
∂db

da

rdc − 1 −
rda − 1

(rdc − 1)2

(
∂r

∂db
dc

)]
− rda − 1

(rdb − 1)2 r

= ∂r

∂db
da

(
1 +

∑
c 6=a?

1
rdc − 1 −

rdc

(rdc − 1)2

)
+ ∂r

∂db

∑
c6=a?

dc

(rdc − 1)2 −
rda − 1

(rdb − 1)2 r

= ∂r

∂db
da

∑
c 6=a?

1 + (rdc − 1)− rdc

(rdc − 1)2︸ ︷︷ ︸
=0

+ ∂r

∂db

∑
c 6=a?

dc

(rdc − 1)2 −
rda − 1

(rdb − 1)2 r

= ∂r

∂db

∑
c 6=a?

dc

(rdc − 1)2 −
rda − 1

(rdb − 1)2 r ,

where, in the third equality, we used that, by definition of r,

1 =
∑

c 6=a?

1
(rdc − 1)2 .

As ∂r
∂db

is negative by (3.25), this implies that ∂Fa
∂db

< 0, i.e., (3.26) holds.
3. Using Equations (3.8) and (3.5), we get:

T ′−1 = 1
2 min

a6=a?

w′
a?w′

a

w′
a? + w′

a

∆′
a

2 ≤ 1
2 min

a6=a?

w′
a?w′

a

w′
a? + w′

a

∆2
a <

1
2 min

a6=a?

wa?wa

wa? + wa
∆2

a = T −1 ,

where the first inequality uses that ∆′
a ≤ ∆b for all a 6= a?, and the second inequality is a

consequence of the unicity of the optimal weight vector w and the fact that (as obtained in
the previous points) w 6= w′.

4. As in the second point of the proof, we can look at the variations of the function

Fa?(d) def= 1
wa?(ρ) = 1 +

∑
c 6=a?

1
r(d) dc − 1 ,

where the second equality is derived from Equation (3.9).
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• We want to prove that w′
a? > wa? when b is the second best arm of µ (hence of µ′), which

boils down to proving that the partial derivative ∂Fa?

∂db
is positive when db < mina/∈{a?,b} da.

Indeed, this will imply, as ∆′
b < ∆b and ∆′

a = ∆a for all a /∈ {a?, b}, that

w′
a? = 1

Fa?

(
∆′2) >

1
Fa?

(
∆2) = wa? .

Computing the derivative of Fa? with respect to db leads, by using (3.25), to

∂Fa?

∂db
= −

∑
c 6=a?

∂r
∂db

dc

(rdc − 1)2 −
r

(rdc − 1)2

= r

(rdb − 1)2︸ ︷︷ ︸
>0

[
1

rdb − 1 ·
∑

c 6=a?
dc

(rdc−1)2∑
c 6=a?

dc
(rdc−1)3

− 1
]

,

which is positive when db < mina/∈{a?,b} da, as

(rdb − 1) ·
∑

c 6=a?

dc

(rdc − 1)3 =
∑

c 6=a?

(rdb − 1)dc

(rdc − 1)3 <
∑

c 6=a?

dc

(rdc − 1)2 .

• To prove that w′
a? < wa? when b is the worst best arm of µ′ (hence of µ), we prove

that the derivative ∂Fa?

∂db
is negative as soon as db > maxa/∈{a?,b} da. By the previous

calculations, this indeed holds as

(rdb − 1) ·
∑

c 6=a?

dc

(rdc − 1)3 =
∑

c 6=a?

(rdb − 1)dc

(rdc − 1)3 >
∑

c 6=a?

dc

(rdc − 1)2 .

3.4.2. Increasing the Mean of the Best Arm

This second lemma gives the monotonicity of w and T when increasing the mean of the best arm,
which corresponds to increasing all gaps by a constant value.

Lemma 3.6. Assume that ∆′
a = ∆a + d for every a 6= a? and some d > 0. Then

1. if b ∈ argmina6=a? ∆a is (one of) the second best arm(s) of µ, then w′
b ≤ wb,

2. w′
min ≥ wmin,

3. T ′ < T ,
4. we get

lim
d→+∞

w′
a? = 1

1 +
√

K − 1
, and ∀a 6= a?, lim

d→+∞
w′

a = 1
K − 1 +

√
K − 1

.

In addition, all inequalities are strict whenever gaps (∆a)a6=a? are not all equal.

The monotonicity results of the lemma are illustrated in Figure 3.3. In Figure 3.4, we observe the
evolution of the optimal weights when modifying the value of the optimal arm. It shows that we
cannot give a general variation for sub-optimal arms that are not either the second or the worst arm:
the weight of the third arm increases at the beginning and decreases. We observe that the weight
of the optimal arm decreases and conjecture that this holds in all generality.

Before proving Lemma 3.6, we recall that the problem is scaling-invariant.
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arm

mean

•

1

•

2

•

3

•

•

4

•

5

•

6

•

7

•

8

•

9

•

10

Evolution of w ↘ ? ↗ ↘ Evolution of T ↘

Figure 3.3: By increasing the mean of the best arm, the weight of the worst arm(s) increases, while
those of the second best arm(s) decrease, and the characteristic time decreases. We also conjecture
that the weight of the optimal arm decreases.

Figure 3.4: Evolution of the optimal weight w(µx) for x ∈ [3, 24], where µx = (x, 3, 2.7, 2.3, 2). The
vertical dashed line corresponds to the maximizer of w3(µx), while the horizontal dashed lines are
the limit values 1

1+
√

K−1 and 1
K−1+

√
K−1 .

Lemma 3.7. If there exists κ > 0 such that ∆′
a = κ∆a for all a 6= a?, then w′ = w.

Proof. By definition, w and w′ are solutions of the same optimization problem up to the multiplicative
constant κ, as (3.7) gives:{

w
}

= argmax
v∈ΣK

1
2 min

a6=qa?

va?va

va? + va
∆2

a = argmax
v∈ΣK

1
2 min

a6=a?

va?va

va? + va

(
κ∆a

)2 =
{

w′
}

.

Proof of Lemma 3.6. We first treat the easy case where all gaps (∆a)a6=a? are equal to a common
gap ∆. By the equality cases of Proposition 3.4, we know that

w′
a? = 1

1 +
√

K − 1
= wa? ,

and T ′ = 2(1 +
√

K − 1)2

(∆ + d)2 = ∆2

(∆ + d)2
2(1 +

√
K − 1)2

∆2 = ∆2

(∆ + d)2 T < T .

As the optimal weights of the sub-optimal arms are equal by Equation (3.10), this ensures that

∀a 6= a?, w′
a = 1

K − 1 +
√

K − 1
= wa .
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We now treat the case where at least two gaps are distinct, i.e., there exist sub-optimal arms a
and b such that ∆a 6= ∆b.

1. Let b ∈ argmina6=a? ∆a. Let us rescale bandit problem µ′ to obtain the same gap for arm b
than in µ, by multiplying the gaps of µ′ by constant κ = ∆b

∆b+d . Let µ′′ denote the obtained
bandit (taking arbitrarily µ′′

a? = µ
a?), and set ∆′′ = ∆(µ′′) = κ∆′ and w′′ = w(µ′′). By

Lemma 3.7, we have w′′ = w′. Then, on the one hand

∆′′
b = κ∆′

b = ∆b

∆b + d
(∆b + d) = ∆b ,

and for all sub-optimal arms a 6= b, by non-decreasing of x 7→ x
x+d :

∆′′
a = κ∆′

a = ∆b

∆b + d
(∆a + d) ≥ ∆a

∆a + d
(∆a + d) = ∆a ,

with strict inequality if ∆a > ∆b, that is, for at least one arm a as gaps are not all equal.
Applying point 2 of Lemma 3.5 to every sub-optimal arm a 6= b, we go from µ to µ′′ and the
weight of arm b is non-decreasing, and increases during steps for which arm a is such that
∆′′

a > ∆a. Hence w′
b = w(µ′′) > wb.

2. The result can be obtained similarly to point 1 by rescaling bandit µ′ by constant κ = ∆min
∆min+d .

3. Using Equations (3.8) and (3.5), we get:

T ′−1 = 1
2 min

a6=a?

w′
a?w′

a

w′
a? + w′

a

∆′
a

2
>

1
2 min

a6=a?

wa?wa

wa? + wa
∆′

a
2

>
1
2 min

a6=a?

wa?wa

wa? + wa
∆2

a = T −1 ,

where the first inequality is a consequence of the unicity of the optimal weight vector w and
the fact that (as obtained in the previous points) w 6= w′, and the second uses that ∆′

a > ∆a

for all a 6= a?.
4. Using the rescaling argument of the second point of this proof, we get that the limit, when

d goes to ∞, of bandit µ′′ is the bandit problem µlim with best arm a? and constant gap
∆ = ∆b. By continuity of the optimal weight vector, this implies that

∀a ∈ [K], lim
d→+∞

w′
a = w′

a(µlim) .

Injecting the values of the optimal weight vector for a bandit problem with constant gaps,
recalled at the beginning of this proof, gives the result.

3.4.3. Increasing the Mean of the Worst Arms

Lastly, we look at the monotonicity of w and T when increasing the worst means.

Lemma 3.8. Let B = argmina∈[K] µa (respectively B′ = argmina∈[K] µ′
a) be the set of the

worst arms of µ (respectively µ′) and assume that B ⊂ B′ and ∆′
max < ∆max, while ∆′

a = ∆a for
all a /∈ B′.

1. w′
a? ≤ wa? ,

2. if c is a sub-optimal arm such that ∆′
c = ∆c, then w′

a? ≤ wa? ,
3. w′

min ≥ wmin,
4. T ′ > T ,
5. we get

lim
∆′

max→∆min
w′

a? = 1
1 +
√

K − 1
, and ∀a 6= a?, lim

∆′
max→∆min

w′
a = 1

K − 1 +
√

K − 1
.
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Evolution of w ↘ ↘ ↘ ↘ ↗ ↘ Evolution of T ↗

Figure 3.5: By increasing the means of the worst arms to a common value, the minimal optimal
weight and the characteristic time increase, while the optimal weights of unmoved arms decrease.

Figure 3.6: Evolution of the optimal weight vector w(µx) for x ∈ [1, 3], where µx =
(5, 3, max(2.7, x), max(2.3, x), x). The dashed lines are the limit values 1

1+
√

K−1 and 1
K−1+

√
K−1 .

The monotonicity results of the lemma are illustrated in Figure 3.5. In Figure 3.6, we observe the
evolution of the optimal weights when modifying the minimal mean of the arms. It shows in particular
the limit behaviors and the fact that while the mean of an arm is not modified, its weight decreases.

Proof. One can mimic the proof of Lemma 3.5 to prove that, if we equally increase the means of all
the worst arms of µ to a value which is smaller or equal to the second worst mean of µ, then:

1. wmin increases,
2. wa decreases for all a /∈ B ∪ {a?},
3. wa? decreases,
4. T increases.
By applying this observation a finite number of steps (one needs to split the reasoning each time

a new arm is added to the list of worst arms), we deduce all but the last point.
Limit behaviors of point 5 might be obtained similarly to Lemma 3.6.

3.5. Regularity Properties

In this section, we provide quantitative regularity results for the functions w, T and g. The results pre-
sented in this section will prove to be essential to the non-asymptotic analysis of the Exploration-
Biased-Sampling strategy in Chapter 4.

Page 86 / 192



3.5. REGULARITY PROPERTIES

3.5.1. Regularity of w and T

In this section, we show explicit bounds on the regularity of ρ 7→ w(ρ) and ρ 7→ T (ρ). We keep the
notation of the last section.

Theorem 3.9. Assume that, for some ε ∈ [0, 1/7],

∀a 6= a?, (1− ε)∆2
a ≤ ∆′

a
2 ≤ (1 + ε)∆2

a . (3.27)

Then

∀a ∈ [K], (1− 10ε)wa ≤ w′
a ≤ (1 + 10ε)wa , (3.28)

and (1− 3ε)T ≤ T ′ ≤ (1 + 6ε)T . (3.29)

Proof. All along the proof, we will use the following inequalities, that might be easily checked,

∀x ∈ R, 1
1+x ≤ 1− x , (3.30)

∀u ∈ [0, 1/2], 1
1−u ≤ 1 + 2u . (3.31)

We will first prove the two following supporting results:

r

1 + ε
≤ r′ ≤ r

1− ε
, (3.32)

and 1− 3ε

wa?
≤ 1− 3ε

1− ε

1
wa?
≤ 1

w′
a?

≤ 1 + 5ε

1 + ε

1
wa?
≤ 1 + 5ε

wa?
. (3.33)

On the one hand, we get, using the right-inequality in (3.27),

φµ′

(
r

1 + ε

)
=
∑

a6=a?

1(
r

1+ε∆′
a

2 − 1
)2 − 1 ≥

∑
a6=a?

1(
r

1+ε∆2
a(1 + ε)− 1

)2 − 1 = φµ(r) = 0 ,

and on the other hand, using the left inequality,

φµ′

(
r

1− ε

)
=
∑

a6=a?

1(
r

1−ε∆′
a

2 − 1
)2 − 1 ≤

∑
a6=a?

1(
r

1−ε∆2
a(1− ε)− 1

)2 − 1 = φµ(r) = 0 .

By decreasing of φµ′ (Lemma 3.1) and definition of r′, we deduce that (3.32) holds.
We move to the proof of (3.33). For all a 6= a?, we get

r′∆′
a

2 ≤ 1 + ε

1− ε
r∆2

a = (1 + η)r∆2
a , where η

def= 1 + ε

1− ε
− 1 = 2ε

1− ε
,

hence, by inequality (3.30),

1
r′∆′

a
2 − 1

≥ 1
(1 + η)r∆a

2 − 1
= 1(

r∆2
a − 1

)(
1 + ηr∆2

a
r∆2

a−1

) (3.34)

≥ 1
r∆2

a − 1

(
1− ηr∆2

a

r∆2
a − 1

)
= 1

r∆2
a − 1 − η

1
r∆2

a − 1 − η
1(

r∆2
a − 1

)2 .
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By Equation (3.9), we get

1
w′

a?

= 1 +
∑

a6=a?

1
r′∆′

a
2 − 1

≥ 1 + (1− η)
∑

a6=a?

1
r∆2

a − 1 − η
∑

a6=a?

1(
r∆2

a − 1
)2︸ ︷︷ ︸

=φµ(r)+1=1

= (1− η) 1
wa?

= 1− 3ε

1− ε

1
wa?

,

which gives the second inequality of (3.33).
We move to the proof of the third inequality. Let a 6= a?. We get

r′∆′
a

2 ≥ 1− ε

1 + ε
r∆2

a = (1− η)r∆2
a , where η

def= 1− 1− ε

1 + ε
= 2ε

1 + ε
.

Note that η ≤ 1/4 as ε ≤ 1/7. Using that r ≥ 2
∆min

by inequality (3.18), we get r∆2
a ≥ 2, hence,

by decreasing of x 7→ x
x−1 on (2, +∞),

η
r∆2

a

r∆2
a − 1 ≤

1
2 .

By using inequality (3.31), we have

1
r′∆′

a
2 − 1

≤ 1
(1− η)r∆2

a − 1 = 1(
r∆2

a − 1
)(

1− ηr∆2
a

r∆2
a−1

) (3.35)

≤ 1
r∆2

a − 1

(
1 + 2 ηr∆2

a

r∆2
a − 1

)
= 1

r∆2
a − 1 + 2η

1
r∆2

a − 1 + 2η
1(

r∆2
a − 1

)2 .

Consequently,

1
w′

a?

= 1 +
∑

a6=a?

1
r′∆′

a
2 − 1

≤ 1 + (1 + 2η)
∑

a6=a?

1
r∆2

a − 1 + 2η
∑

a6=a?

1(
r∆2

a − 1
)2︸ ︷︷ ︸

φµ(r)+1=1

= (1 + 2η) 1
wa?

= 1 + 5ε

1 + ε

1
wa?

,

which concludes the proof of (3.33).
We now deduce the results from inequalities (3.32) and (3.33). In all the following equations,

we use at least one of the inequalities of (3.32) and (3.33), together with various bounds satisfied
by ε ≤ 1

7 . First, taking the inverse of (3.33), and using (3.30) for the left-inequality and (3.31) for
the right-inequality, we get

(1− 5ε)wa? ≤ wa?

1 + 5ε
≤ w′

a? ≤
wa?

1− 3ε
≤ (1 + 6ε)wa? .
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Equation (3.10), with respectively (3.34) and (3.35), yield for all a 6= a?:

w′
a = w′

a?

r′∆′
a

2 − 1
≥

wa?

1+5ε(
r∆2

a − 1
)(

1 + 2ε
1−ε

r∆2
a

∆2
a−1︸ ︷︷ ︸
≤2

) = 1− ε

(1 + 5ε)(1 + 3ε)wa ≥ (1− 10ε)wa ,

and w′
a = w′

a?

r′∆′
a

2 − 1
≤

wa?

1−3ε(
r∆2

a − 1
)(

1− 2ε
1+ε

r∆2
a

∆2
a−1︸ ︷︷ ︸
≤2

) = 1 + ε

(1− 3ε)2 wa ≤ (1 + 10ε)wa .

This concludes the proof of (3.28). Finally, we obtain (3.29) by using Equation (3.11), as, on the
one hand,

T ′ = 2r′

w′
a?

≥ 2 · r

1 + ε
· 1− 3ε

1− ε

1
wa?

= 1− 3ε

1− ε2 ·
2r

wa?
≥ (1− 3ε)T ,

and, on the other hand,

T ′ = 2r′

w′
a?

≤ 2 · r

1− ε
· 1 + 5ε

1 + ε

1
wa?

= 1 + 5ε

1− ε2 ·
2r

wa?
≤ (1 + 6ε)T .

3.5.2. Regularity of g

The regularity of g might also be studied. Controlling the variations of g requires getting an upper
bound on the gap values. For simplicity, we work here with the model D[0,1]

N1
of standard Gaussian

variables with means in [0, 1], but one might generalize it to all sub-models of DNσ2 of standard
Gaussian bandit problems with bounded gaps. We get the following property:

Proposition 3.10. Let µ and µ′ be two bandit problems in D[0,1]
N1

, with potentially several best
arms, and let v ∈ ΣK . Setting

ε = max
a∈[K]

∣∣∣µa − µ′
a

∣∣∣ , and η = max
a∈[K]

|wa(µ)− va|
wa(µ) ,

we get

g(µ′, v) ≥ (1− η)2

1 + η

(
g
(
µ, w(µ)

)
− ε

2

)
.

We will prove Proposition 3.10 by combining two Lemmas. The first lemma states that g( · , u)
is 1

2–Lipschitz for the infinity norm.

Lemma 3.11. Let µ and µ′ be two bandit problems in D[0,1]
N1

, with potentially several best arms.
Then, for all optimal weight vectors u ∈ ΣK ,∣∣∣g(µ′, u)− g(µ, u)

∣∣∣ ≤ 1
2 max

a∈[K]

∣∣µa − µ′
a

∣∣ .
Proof. As µ and µ′ play similar roles, we only prove that

g(µ′, u) ≥ g(µ, u)− ε

2 , where ε = max
a∈[K]

∣∣µa − µ′
a

∣∣ .
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• Assume first that µ and µ′ have a common best arm denoted by a?. Then by Equation (3.5),

g(µ′, u)− g(µ, u) = 1
2 min

a6=a?

ua?ua

ua? + ua
∆′

a
2 − 1

2 min
b 6=a?

ua?ub

ua? + ub
∆2

b

= 1
2 min

a6=a?
max
b 6=a?

ua?ua

ua? + ua
∆′

a
2 − ua?ub

ua? + ub
∆2

b

≥ 1
2 min

a6=a?

ua?ua

ua? + ua

(
∆′

a
2 −∆2

a

)
. (3.36)

by taking b = a. Fix a 6= a?. One has:∣∣∆a −∆′
a

∣∣ =
∣∣(µa? − µ′

a?)− (µa − µ′
a)
∣∣ ≤ ∣∣µa? − µ′

a?

∣∣+ ∣∣µa − µ′
a

∣∣ ≤ 2ε ,

from which we obtain, using that the gaps are bounded by 1∣∣∣∆2
a −∆′

a
2
∣∣∣ =

∣∣∆a −∆′
a

∣∣(∆a + ∆′
a

)
≤ 4ε .

As u is an optimal weight vector, it satisfies ua ≤ ua? ≤ 1
2 by Corollary 3.3 and bound (3.19),

so that:
ua?ua

ua? + ua
≤ 1

2
ua

ua? + ua
≤ 1

2
ua

2ua
= 1

4 .

Finally,
ua?ua

ua? + ua

(
∆′

a
2 −∆2

a

)
≥ −ε .

This concludes the proof by injecting this inequality into (3.36).
• In case µ and µ′ do not have a common best arm, define the family of bandits

(
µ(t))

t∈[0,1] by

∀t ∈ [0, 1], ∀a ∈ [K], µ(t)
a = (1− t)µa + tµ′

a .

One can check that µ = µ(0), µ′ = µ(1) and

∀t1, t2 ∈ [0, 1], max
a∈[K]

∣∣µ(t1)
a − µ(t2)

a

∣∣ ≤ |t1 − t2| · ε ≤ ε . (3.37)

Select the subdivision 0 = t0 < t1 < · · · < tN = 1 of times at which the optimal arms of µ(t)

are modified. Note that N ≥ 2 as µ and µ′ do not have a common best arm. Note that by
continuity:

– for any 1 ≤ n ≤ N − 1, µ(tn) has at least two best arms so that g(µ(tn), u) = 0,
– µ(1) and µ have a common best arm,
– µ(N−1) and µ′ have a common best arm.

Thus, applying the first part of the proof,

g(µ′, u)− g(µ, u) = g(µ′, u)−

=0︷ ︸︸ ︷
g(µ(tN−1), u)︸ ︷︷ ︸
≥0

+

=0︷ ︸︸ ︷
g(µ(t1), u)−g(µ, u)

≥ g(µ(t1), u)− g(µ, u)

≥ −1
2 max

a∈[K]

∣∣µ(t1)
a − µa

∣∣
≥ −ε

2 ,

where we used (3.37) in the last inequality. This concludes the proof.
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The second lemma controls the variations of g(µ′, · ). Note that this lemma does not require the
use of bounded gaps.

Lemma 3.12. Let µ′ be a bandit problem in DN1 with potentially several arms. Let u, v ∈ ΣK

be such that, for a fixed η ∈ [0, 1],

max
a∈[K]

|ua − va|
ua

≤ η . (3.38)

Then:
g(µ′, v) ≥ (1− η)2

1 + η
g(µ′, u) .

Proof. Let a? is (one of) the best arm(s) of µ′. Note that condition (3.38) can be written as

∀a ∈ [K], (1− η)ua ≤ va ≤ (1 + η)ua .

Hence, for all a 6= a?,
va?va

va? + va
≥ (1− η)2

(1 + η) ·
u1ua

u1 + ua
,

which entails

g(µ′, v) = min
a6=a?

va?va

va? + va
∆′

a
2 ≥ (1− η)2

1 + η
min
a6=a?

u1ua

u1 + ua
∆′

a
2 = (1− η)2

1 + η
g(µ′, u) .

Proof of Proposition 3.10. The result follows directly by Lemmas 3.12 and 3.11 with u = w(µ):

g(µ′, v) ≥ (1− η)2

1 + η
g
(
µ′, w(µ)

)
≥ (1− η)2

1 + η

(
g
(
µ, w(µ)

)
− ε

2

)
.

3.6. Conclusion
In this chapter, we studied the sample complexity optimization 3.2 for a Gaussian model. The fact
that this optimization problem only depends on gaps allowed us to obtain a new characterization of
the solution w(µ). This characterization implies new general bounds for w(µ) and T (µ), together
with monotonicity properties that will be useful for the definition of the strategy Exploration-
Biased-Sampling in Chapter 4.

We also investigated the regularity of the solution, proving quantitative results that complement
the continuity result of Garivier and Kaufmann (2016). Obtaining such results in the context of a
general exponential model could be an interesting perspective for future work, but requires dealing
with a less explicit and easy-to-handle Kullback-Leibler divergence.
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CHAPTER 4

A Fixed-Confidence Strategy with
Non-Asymptotic Guarantees

In this chapter, we propose a new strategy for the problem of best-arm identification with fixed-
confidence of Gaussian variables. This strategy, called Exploration-Biased-Sampling, is not only
asymptotically optimal: it is to the best of our knowledge the first strategy with non-asymptotic
bounds that asymptotically matches the sample complexity. Its sampling rule is built in order to
naturally encourage exploration and uses the results of Chapter 3. The content of the present
chapter is extracted from Sections 1, 2 and 4 (and associated appendices) of the conference paper

�
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to Best-Arm Identification for Gaussian Bandits. In Proceedings of the
25th International Conference on Artificial Intelligence and Statistics,
pages 10078–10109. PMLR, 2022
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CHAPTER 4. A NON-ASYMPTOTIC THEORY OF FIXED-BUDGET BEST-ARM IDENTIFICATION

4.1. Introduction

Many modern systems of automatic decisions (from recommender systems to clinical trials, through
auto-ML and parameter tuning) require finding the best among a set of options, using noisy obser-
vations obtained by successive calls to a random mechanism (see, e.g., Lattimore and Szepesvári,
2020). The simplest formal model for such situations is the standard Gaussian multi-armed ban-
dit, a collection of K ≥ 2 independent Gaussian distributions called arms of unknown means
µ = (µa)a∈[K] ∈ RK and variances all equal to 1. They are sampled sequentially and indepen-
dently: at every discrete time step t ∈ N∗, a learner chooses an arm At ∈ [K] based on past
information, and observes an independent draw Yt from distribution N (µAt , 1).

Best-arm identification. The best-arm identification problem consists in identifying the arm with
highest mean of µ. Unless otherwise specified, we only consider bandit problems with a unique
optimal arm: {

a?(µ)
}

def= argmax
a∈[K]

µa .

The corresponding distribution mean will be denoted by µ?. In the fixed-confidence setting (see
Even-Dar et al., 2006; Kalyanakrishnan et al., 2012), a confidence parameter δ ∈ (0, 1) is given, and
the objective is to design strategies that will stop after some (random) finite number of observations
and give an estimate of the best arm a?(µ) which is correct with probability at least 1 − δ. Such
strategies are called δ–correct, and their performance is measured by how quick they are to take a
decision.

Formally, a strategy is defined by
• a sampling rule, which consists in choosing the arm At ∈ [K] to observe at each time step

t ≥ 1. This arm At depends on the previous observations Y1, . . . , Yt−1, but also possibly
on some external randomization that we capture by the random variable Ut−1. At is thus
Ft−1–measurable, where Ft−1

def= σ(It−1) with It−1
def=
(
U0, Y1, U1, Y2, U2, . . . , Yt−1, Ut−1

)
.

It−1 corresponds to the information available at the end of the time step t− 1.
• a stopping rule τδ, which is a stopping time with respect to the filtration (Ft)t≥0,
• a decision rule âτδ

which is Fτδ
–measurable.

The general structure of a strategy is presented in Algorithm 12. A strategy is δ–correct if for all
bandit problems µ in the model DN1 of standard Gaussian variables,

Pµ
(
τδ < +∞, âτδ

6= a?(µ)
)
≤ δ ,

where Pµ is the probability distribution under bandit problem µ.

Lower bound. The aim of the problem is to find strategies that minimize the sample complexity ,
that is, the expected number of samplings Eµ[τδ]. The sample complexity of δ–correct strategies
cannot be arbitrarily good: it has been proved by Garivier and Kaufmann (2016) that they obey the
lower bound

∀µ ∈ DN1 , Eµ[τδ] ≥ T (µ) log 1
2.4δ

, (4.1)

where the characteristic time T (µ) is the solution of the following optimization problem

T (µ)−1 = sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va
(µa − λa)2

2 , (4.2)

where

ΣK =
{

v ∈ [0, 1]K : v1 + · · ·+ vK = 1
}

and Alt(µ) =
{

λ in D[0,1]
N1

: a?(λ) 6= a?(µ)
}

.
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Algorithm 12: General structure of a fixed-confidence strategy
Input: confidence parameter δ

sampling-rule, stopping-condition, decision-rule
Output: stopping time τδ

estimated best arm âτδ

1 Observe each arm once // initialization
2 t← K
3 while stopping-condition(It, δ) is not satisfied do
4 Increase t by 1
5 At ← sampling-rule(It−1)
6 Observe Yt ∼ N (µAt , 1)
7 τδ ← t
8 âτδ

← decision-rule(Iτδ
)

An optimal weight vector. The information-theoretic analysis of Garivier and Kaufmann (2016)
also highlights the nature of the optimal sampling strategy: whatever the value of the risk δ, one
should sample the arms with frequencies proportional to v = w(µ), the (unique and well-defined)
maximizer in the right-hand side of Equation (4.2). This observation allowed the authors to introduce
Track-and-Stop, the first asymptotically optimal strategy, which satisfies,

∀µ ∈ DN1 , lim sup
δ→0

Eµ[τδ]
log 1

δ

= T (µ) ,

proving, by passing, that the lower bound (4.1) is tight. The algorithm works as follows: at every time
step t, the optimal frequencies relative to an estimate µ̂(t) of the mean parameter µ are computed
and used to determine which action is to be selected next: we pick the action that lays the most
behind its estimated optimal frequency unless one action was severely under-sampled (in which case
its exploration is forced). Some improvements were proposed: for example, Ménard (2019) proved
that it is not necessary to solve the optimization problem in every time step.

The shortcomings of Track-and-Stop. The Track-and-Stop algorithm is not only a theoretical
contribution, but it also proved to be numerically efficient, far exceeding its competitors in a wide
variety of settings. It was improved in different directions (Degenne and Koolen, 2019; Degenne
et al., 2019; Shang et al., 2020), and also provides a simple template for extensions, for bandit
problems with structure (Kocák and Garivier, 2020), as long as the optimization problem (4.2) can
be solved. Yet, Track-and-Stop suffers from certain shortcomings. First, a close look into the
proofs shows that the theoretical guarantees proved so far are really asymptotic in nature. Second,
the forced exploration appears very arbitrary, with a rate of

√
t that has no other justification than

lying somewhere between constant and linear functions. Third, the sampling strategy appears to
be pretty unstable, especially at the beginning: the target frequencies can vary significantly as the
estimated means fluctuate before stabilizing around their expectations. Fourth, Track-and-Stop
does not present the intuitively desirable behavior to sample uniformly in the beginning, until sufficient
information has been gathered for significant differences between the arms to emerge. This is in
contrast with strategies like Racing (Kaufmann and Kalyanakrishnan, 2013), which are sub-optimal
but intuitively appealing. Altogether, these issues lead for example to unpredictable and irregular
conduct at the beginning of multiple A/B testing cases with many arms very close to optimal.
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Towards non-asymptotic bounds. While the proven optimality of Track-and-Stop is purely
asymptotic, a different approach is followed in (Karnin et al., 2013; Jamieson et al., 2014; Chen
et al., 2017) for moderate values of δ. The proposed strategies are sub-optimal by a multiplicative
constant but are proven to satisfy explicit non-asymptotic bounds. More recently, Degenne et al.
(2019) obtained a general non-asymptotic bound, a remarkable but hardly comparable result in
particular settings.

Outline and contributions. In this chapter, we try to make a link between both approaches
by introducing a new strategy, Exploration-Biased-Sampling , with non-asymptotic guarantees
which, in the regime δ → 0, correspond to the lower bound on the sample complexity. Additionally,
Exploration-Biased-Sampling solves the issues of Track-and-Stop mentioned above. We work
with the model D[0,1]

N1
of standard Gaussian variables with means in [0, 1], but all results can be

generalized to1 the model DM
Nσ2

of Gaussian variables with means in a bounded setM and common
variance σ2.

We present in Section 4.2 our new Exploration-Biased-Sampling strategy. The exploration
is conducted very differently, in a statistically natural way that softens the fluctuations of empirical
means and avoids arbitrary parameters. It results in a stabilized sampling strategy, that is much easier
to follow and understand. Its theoretical properties and guarantees are stated in Section 4.3, including
a non-asymptotic analysis with finite risk bounds for which the proof is presented in Section 4.5. These
results have required developing a careful analysis of the quantitative regularity of the solution to the
optimization problem (4.2) that was presented in Chapter 3. Lastly, we illustrate the performance
and behavior of our strategy by numerical experiments in Section 4.4.

Note that, independently, Wang et al. (2021) obtained a sampling rule based on a Frank-Wolfe
method for which they proved finite risk analysis and asymptotic optimality. Our finite risk bound
has a better asymptotic behavior, but a worse behavior in the regime where gaps go to zero.

�

Notation. For the simplicity of the presentation, when there is no confusion we set

a? = a?(µ) , ∆a = ∆a(µ) , w = w(µ) , and T = T (µ) ,

where ∆a(µ) = µ? − µa is the gap of arm a. We recall (see Section 3.1) that the optimization
problem rewrites:

T (µ)−1 = sup
v∈ΣK

g(µ, v) , where g(µ, v) = va?va

va? + va

∆2
a

2︸ ︷︷ ︸
=TCa→a? (µ,v)

,

and hence the optimal weight vector w satisfies:{
w
}

= argmax
v∈ΣK

g(µ, v) = argmax
v∈ΣK

1
2 min

a6=a?

va?va

va? + va
∆2

a .

Garivier and Kaufmann (2016) proved that, at the optimum w, all transportation costs are equal, so
that, for all arms a 6= a?,

T (µ)−1 = g
(
µ, w

)
= 1

2
wa?wa

wa? + wa
∆2

a . (4.3)

Remark. Unless explicitly stated, we only consider instances with a unique optimal arm. However,
we might sometimes use that g(µ, v) is also defined for bandit problems µ that admit several optimal

1The algorithms discussed here can be used with a sub-Gaussian model with a known upper bound on the variances.
However, for such models, the sample complexity bounds proved in this chapter apply but are not necessarily optimal.
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arms (with a? being any of the optimal arms). In that case, g(µ, v) = 0, T (µ) = +∞, and we define
the optimal weight vector w(µ), somewhat arbitrarily, by

wa(µ) =
I
{

a ∈ A?(µ)
}

cardA?(µ) ,

where A?(µ) = argmaxa∈[K] µa is the set of optimal arms of µ.

For a given strategy facing a bandit problem µ, let Na(t) and µ̂a(t) denote the number of pulls
and the empirical mean2 of arm a at step t:

Na(t) def=
∑
s∈[t]

I {As = a} and µ̂a(t) def= 1
Na(t)

∑
s∈[t]

Ys I {As = a} .

Without loss of generality (see the paragraph on optional skipping page 37), we assume that the ob-
servation at time step t is Yt = XAt,NAt (t), where (Xa,n)a∈[K],n≥1 are independent random variables
such that Xa,n ∼ N (µAt , 1) for all a ∈ [K] and n ≥ 1. As a consequence, we notably get

µ̂a(t) = 1
Na(t)

Na(t)∑
n=1

Xa,n
def= µ̂a,Na(t) . (4.4)

4.2. The Exploration-Biased-Sampling Strategy
In this section, we introduce our new strategy called Exploration-Biased-Sampling. Instead of
Track-and-Stop’s greedy choice of actions based on a plug-in estimate of µ, it relies on a specific
estimator that is biased toward uniform exploration. We fix µ ∈ D[0,1]

N1
with a unique optimal arm

and define the following quantities, for which the dependency with respect to µ is omitted if there is
no confusion:

∆min
def= min

a6=a?
∆a > 0 , ∆max

def= max
a∈[K]

∆a , and wmin
def= min

a∈[K]
wa .

We recall that wmin is the optimal weight value of the worst arm(s) of µ.

4.2.1. Conservative Tracking

The main idea of the algorithm is to design a sampling policy of arms that naturally encourages
exploration without forcing it like Track-and-Stop does. To do so, the objective is to “wrap” the
optimal weight vector w(µ) “from above”, by ensuring that we never under-estimate its minimal
value. Indeed, even an arm with a low mean needs to be sampled sufficiently often until one is very
confident that it is sub-optimal. The idea is to construct a confidence region CRµ ⊂ [0, 1]K for µ
on which one can efficiently find a bandit µ̃ ∈ CRµ maximizing the minimal weight wmin:

µ̃ ∈ argmax
ρ∈CRµ

wmin(ρ) . (4.5)

As long as µ belongs to the confidence region CRµ, choosing the target weights w(µ̃) guarantees
that every arm is explored sufficiently, as wmin(µ̃) ≥ wmin(µ). The exploration bias decreases with
the number of observations, as CRµ shrinks to {µ}, and in the end arms are sampled with frequencies
close to the optimal weight vector w(µ).

2As strategies initially observe each arm once, µ̂a(t) is well-defined for t ≥ K.
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This approach to exploration requires two ingredients:
• the exploration-biased bandit µ̃ needs to be efficiently computable. It turns out to be the case if
the confidence region is a product of confidence intervals on each arm (a mild requirement since
the arms are independent). We propose Algorithm 13, an efficient procedure for computing
µ̃. Intuitively, maximizing wmin over CR(µ) requires increasing and equalizing all the positive
gaps as much as possible. The associated bandit will indeed be the one for which it is harder
to identify the second-best arm and thus it will require to sample the worst arms more fre-
quently. This gives a candidate bandit for each potential best arm, and our algorithm compares
those candidates. Figure 4.1 illustrates on an example the principle of Algorithm 13, whose
correctness is proved in Proposition 4.1. The algorithm requires Gaussian-Optimal-Weights
(Algorithm 11 of Chapter 3), an efficient procedure for solving optimization problem (4.2).
• the regularity of the mapping ρ 7→ w(ρ) needs to be explicitly known. Indeed, the confidence
region will decrease with the number of observations, and µ̃ will come close to µ. The continuity
proved by Garivier and Kaufmann (2016) for the asymptotic optimality of Track-and-Stop is
not sufficient: the first quantitative bounds were given in Section 3.5.

One can remark that as long as the confidence intervals have a non-empty intersection, which means
the observations do not permit to exclude that any of them is optimal, the exploration-biased weights
returned by Algorithm 13 are uniform and the arms are sampled in a round-robin way (as in a Racing
or Successive Elimination algorithm like in Even-Dar et al., 2006).

Proposition 4.1. Let CR =
∏

a∈[K][µ−
a , µ+

a ] ⊂ [0, 1]K be a confidence region and

(µ̃, w̃)← Exploration-Biased-Weights(CR) .

Then w̃ = w(µ̃) and µ̃ satisfies Equation (4.5).

The proof relies on the results of Section 3.4.

Proof. We assume that K ≥ 3, otherwise w(ρ) = (1
2 , 1

2) for all ρ and the result is clear.
With the notation of Algorithm 13, we first observe that w̃ = w(µ̃). When minUB ≥ maxLB the

algorithm returns a constant bandit and w̃ = ( 1
K , . . . , 1

K ) is its optimal weight vector by convention.
As all optimal weight vectors w(ρ) are such that wmin(ρ) ≤ 1

K , we obtain that µ̃ satisfies (4.5).
Now assume that minUB < maxLB, i.e., at least two confidence intervals are disjoint, and fix

ρ ∈ CR. If ρ as several optimal arms, then wmin(ρ) = 0 so that trivially wmin(ρ) ≤ wmin(µ̃). Assume
now that ρ has a unique optimal arm denoted by a. Note that a ∈ PotentialBest, so that we will
show that

wmin(ρ) ≤ wmin
(
µ̃test(a)) ≤ w̃min .

The latest inequality stems from the choice of µ̃ by the procedure into the set of potential most
exploring bandits

{
µ̃test(a) : a ∈ PotentialBest

}
. To obtain the first inequality, we will transform the

means of ρ to those of µ̃test(a) by modifications that only increase wmin, thanks to the results of
Section 3.4. We recall that the value of wmin is the optimal weight value of any of the worst arms.
The procedure, illustrated in Figure 4.2, is the following:

1. Transform ρ into ρ(1) by increasing arm a so that ρ(1)
a

= µ+
a . Using Lemma 3.6, one has

wmin(ρ(1)) ≥ wmin(ρ) .

2. Transform ρ(1) into ρ(2) by decreasing, for each arm b 6= a, µb to max(µ−
b , ρmin), where

ρmin = minc∈[K] ρc. By several applications3 of Lemma 3.5, one has

wmin(ρ(2)) ≥ wmin(ρ(1)) .
3Note that, as the modified means do not go below ρ

min
, the worst arms of ρ stay in the set of worst arms.
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Algorithm 13: Exploration-Biased-Weights
Input: confidence region CR =

∏
a∈[K][µ−

a , µ+
a ]

Output: exploration-biased bandit µ̃ ∈ CR
exploration-biased optimal weight vector w̃ = w(µ̃)

1 maxLB← maxa∈[K] µ−
a

2 minUB← mina∈[K] µ+
a

3 if minUB ≥ maxLB then
4 µ̃← (minUB, . . . ,minUB)
5 w ← ( 1

K , . . . , 1
K )

6 else
7 PotentialBest←

{
a ∈ [K] : µ+

a > maxLB
}

8 w̃ ← (0, . . . , 0)
9 for a ∈ PotentialBest do

10 µ̃
test(a)
a ← µ+

a

11 for b ∈ [K] \ {a} do
12 µ̃

test(a)
b ← max(µ−

b ,minUB)
13 wtest(a) ← Gaussian-Optimal-Weights

(
µ̃test(a)

)
14 if minb∈[K] w

test(a)
b > minb∈[K] w̃b then

15 w̃ ← wtest(a)

16 µ̃← µ̃test(a)
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maxLB

minUB

•
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•
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•
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•
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•
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•

6
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(a) µ̃test(1)
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•

1

•

2

•

3
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•

5

•

6
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(b) µ̃test(2)

arm

mean

•

1

•

2

•

3

•

4

•

5

•

6
↓ ↓ ↑ ↓ ↓ ↓

(c) µ̃test(3)

Figure 4.1: List of bandits (µ̃test(a))a∈PotentialBest tried by Algorithm 13 for the example confidence
region in yellow. As only the three first arms are above maxLB, they are the potential candidates for
being the best arm: PotentialBest = {1, 2, 3}. For each potential best arm, we associate a unique
bandit instance that “maximizes exploration” by putting the mean of that arm as high as possible
(↑) and all other arms as lower as possible (↓) while staying above minUB.
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(d) ρ(3) = µ̃test(2)

Figure 4.2: Transformations in the proof of Proposition 4.1, for some instance bandit ρ.

3. Transform ρ(2) into ρ(3) by increasing all the worst arms to minUB. By Lemma 3.8, one has

wmin(ρ(3)) ≥ wmin(ρ(2)) .

Observing that we now get ρ(3) = µ̃test(a), we proved that

wmin(ρ) ≤ wmin
(
µ̃test(a)

)
.

In conclusion,
max
ρ∈CR

wmin(ρ) = max
a∈PotentialBest

wmin
(
µ̃test(a)

)
= wmin(µ̃) ,

where the last inequality comes from the procedure defining µ̃.

4.2.2. The Strategy

We are now able to introduce our strategy called Exploration-Biased-Sampling. Given a risk
δ ∈ (0, 1) and a threshold function β(t, δ), we compute at each time confidence intervals for each
µa that will ensure µ to belong to each associated confidence region with probability at least 1− γ,
where γ ∈ (0, 1) is a fixed parameter. We can then ensure enough exploration by biasing the optimal
weight vector w(µ) using Algorithm 13.

Confidence regions. Confidence regions are designed to satisfy two requirements. First, we need
products of confidence intervals in order to use Algorithm 13, and then, we will require a time-uniform

Page 100 / 192



4.2. THE EXPLORATION-BIASED-SAMPLING STRATEGY

confidence guarantee as a key ingredient for the non-asymptotic analysis of Exploration-Biased-
Sampling. For γ ∈ (0, 1) and t ≥ K, we define

CRµ(t) def=
∏

a∈[K]

[
µ̂a(t)± C γ

K

(
Na(t)

)]
, where Cγ(s) def= 2

√
log
(4s

γ

)
s

. (4.6)

The following lemma states a time-uniform γ–confidence guarantee for µ.

Lemma 4.2. Fix γ ∈ (0, 1). For all bandit problems µ ∈ D[0,1]
N1

(with potentially several optimal
arms), it holds that

Pµ

(
∃t ≥ K : µ /∈ CRµ(t)

)
≤ γ .

Proof. By union bound we only have to show that, for all a ∈ [K],

Pµ

(
∃t ≥ K :

∣∣µ̂a(t)− µa

∣∣ ≥ C γ
K

(
Na(t)

))
≤ γ

K
.

Let a ∈ [K]. We recall that Na(t) ≥ 1 for t ≥ K, as all arms are observed once at the beginning.
Thus, using Equation (4.4), we have

Pµ

(
∃t ≥ K :

∣∣µ̂a(t)− µa

∣∣ ≥ C γ
K

(
Na(t)

))
= Pµ

(
∃t ≥ K :

∣∣µ̂a,Na(t) − µa

∣∣ ≥ C γ
K

(
Na(t)

))
= Pµ

(
∃n ∈ N∗ :

∣∣µ̂a,n − µa

∣∣ ≥ C γ
K

(n)
)

.

By a peeling argument (see, e.g., Boucheron et al., 2013), this leads to

Pµ

(
∃n ∈ N∗ :

∣∣µ̂a,n − µa

∣∣ ≥ C γ
K

(n)
)
≤
∑
k≥0

Pµ

(
∃n ∈ [2k, 2k+1] :

∣∣∣∣ 1n ∑
s∈[n]

(Xa,s − µa)
∣∣∣∣ ≥ C γ

K
(n)
)

=
∑
k≥0

Pµ

(
∃n ∈ [2k, 2k+1] :

∣∣∣∣∑
s∈[n]

Xa,s − µa

∣∣∣∣ ≥ nC γ
K

(n)
)

≤
∑
k≥0

Pµ

(
∃n ∈ [0, 2k+1] :

∣∣∣∣∑
s∈[n]

Xa,s − µa

∣∣∣∣ ≥ 2kC γ
K

(
2k))

≤ 2
∑
k≥0

exp
(
−
(
2kC γ

K
(2k)

)2
2× 2k+1

)

= 2
∑
k≥0

exp
(
− log 2k+2K

γ

)

= 2 γ

K

∑
k≥0

1
2k+2

= γ

K
,

where the second inequality is obtained using the fact that n 7→ nC γ
K

(n) is non-decreasing and the
second inequality is a well-known concentration bound for the sum of sub-Gaussian variables (see
Lattimore and Szepesvári, 2020, Theorem 9.2).
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Sampling rule. The sampling rule of Exploration-Biased-Sampling is summarized in Algo-
rithm 14. As explained in Garivier and Kaufmann (2016), one can either follow the exploration-biased
weights directly (D-tracking) or their cumulative sums (C-tracking). The theoretical results of the
strategy will be derived with the use of C-tracking, while we will run the experiments with both
options, as D-tracking appears to perform slightly better.

Algorithm 14: Exploration-Biased-Sampling sampling rule at step t > K

Input: history of observations It−1
confidence parameter γ

Output: next arm to observe At

1 CRµ(t− 1) def=
∏

a∈[K]

[
µ̂a(t− 1)± C γ

K

(
Na(t− 1)

)]
2 (µ̃(t− 1), w̃(t− 1))← Exploration-Biased-Weights

(
CRµ(t)

)
/* C-tracking */

3 Choose At ∈ argmin
a∈[K]

Na(t− 1)−
∑

s∈[t−1]
w̃a(s)

/* D-tracking */
4 Choose At ∈ argmin

a∈[K]
Na(t− 1)− (t− 1)w̃a(t− 1)

Stopping and decision rule. Following Garivier and Kaufmann (2016), our stopping rule relies on
the statistic

Z(t) def= max
a∈[K]

min
b6=a

Za,b(t) ,

where Za,b(t) is the Generalized Likelihood Ratio statistic (see Chernoff, 1959), which is defined, for
the standard Gaussian model, as

Za,b(t)
def= 1

2
Na(t)Nb(t)

Na(t) + Nb(t)
(
µ̂a(t)− µ̂b(t)

)2 sgn
(
µ̂a(t)− µ̂b(t)

)
. (4.7)

The stopping rule consists of stopping the procedure if Z(t) exceeds some threshold β(t, δ), as
described in Algorithm 15. See page 50 for more details about the Global-Likelihood-Ratio
stopping rule. The best empirical arm is then recommended by the strategy: we choose

âτδ
∈ argmax

a∈[K]
µ̂a(τδ) .

Algorithm 15: Global-Likelihood-Ratio stopping rule at step t > K

Input: history of observations It

threshold function β(t, δ)
1 Z(t)← max

a∈[K]
min
b 6=a

Za,b(t) // Za,b(t) is defined in (4.7)

2
3 if Z(t) > β(t, δ) then
4 Stop
5 else
6 Continue
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4.3. Theoretical Results
We present the theoretical guarantees of the Exploration-Biased-Sampling algorithm.

δ–correctness. Garivier and Kaufmann (2016) proved that, whatever the sampling rule, the use
of the Global-Likelihood-Ratio stopping rule ensures the δ–correct property for some suitable
threshold.

Proposition 4.3. [Garivier and Kaufmann, 2016, Proposition 12]
Let δ ∈ (0, 1) and α > 1. There exists a constant R = R(α, K) such that, whatever the sampling
rule, using the Global-Likelihood-Ratio stopping rule (Algorithm 15) with threshold

β(t, δ) def= log Rtα

δ
, (4.8)

and recommending the best empirical arm ensure that the strategy is δ–correct:

∀µ in D[0,1]
N1

, Pµ
(
τδ < +∞, âτδ

6= a?(µ)
)
≤ δ .

The Exploration-Biased-Sampling strategy is hence δ–correct if used with threshold (4.8), what-
ever the choice of parameter γ ∈ (0, 1).

Sufficient exploration. Interestingly, it happens that the choice of the confidence regions (4.6)
naturally leads to a minimal exploration rate of the arms of order

√
t.

Lemma 4.4. Let γ ∈ (0, 1). The Exploration-Biased-Sampling strategy satisfies, for all
bandit problems µ ∈ D[0,1]

N1
,

∀t ≥ 0, ∀a ∈ [K], Na(t) ≥ 2
K

√
t−K .

What is surprising is that this is exactly the arbitrary rate used by Track-and-Stop for forced
exploration. The proof of this lemma can be found in Section 4.6.1. Other practical advantages of
Exploration-Biased-Sampling over Track-and-Stop are discussed in Section 4.4.

Non-asymptotic bound. Our main result is to obtain high probability bounds for the sample
complexity of Exploration-Biased-Sampling in finite horizon.

Theorem 4.5. Fix γ ∈ (0, 1), α ∈ [1, 2], η ∈ (0, 1], and let µ ∈ D[0,1]
N1

. There exists an event E
of probability at least 1− γ and δ0

def= δ0(µ, K, γ, η, α) > 0 such that, for all 0 < δ ≤ δ0, algorithm
Exploration-Biased-Sampling with threshold (4.8) satisfies

∀t > (1 + η)T (µ) log 1
δ

, Pµ
(
τδ > t ∩ E

)
≤ 2Kt exp

(
−

twmin(µ)
4T (µ)2

1
log

2
3 1

δ

)
, (4.9)

and

Eµ
[
τδI {E}

]
≤ (1 + η)T (µ) log 1

δ
+

27KT (µ)4

wmin(µ)2 exp
(
−

wmin(µ)
4T (µ) log

1
3

1
δ

)
log2 1

δ
. (4.10)

Page 103 / 192



CHAPTER 4. A NON-ASYMPTOTIC THEORY OF FIXED-BUDGET BEST-ARM IDENTIFICATION

Section 4.5 will be devoted to the proof of this theorem. The proof will highlight why, contrary
to Track-and-Stop, the exploration strategy of Exploration-Biased-Sampling is adequate for
obtaining non-asymptotic bounds. Note that:
• the proof of Theorem 4.5 provides an explicit expression for δ0,
• the second term of bound (4.10) vanishes when δ decreases to 0, and hence negligible with re-
spect to the first term: the sample complexity is therefore arbitrarily close to lower bound (4.1),
• The dependency on wmin(µ) of the bounds might be replaced by the minimal gap ∆min, as
Lemma 4.12 in Section 4.6.1 ensures that

∀µ ∈ D[0,1]
N1

, wmin(µ) ≥
∆min(µ)

2K
.

Asymptotic optimality. We additionally prove that, from an asymptotic point of view, our strategy
presents the same guarantees as Track-and-Stop (see also Theorem 4.17 in Section 4.6.3).

Theorem 4.6. Let γ ∈ (0, 1), α ∈ (1, e/2]. Algorithm Exploration-Biased-Sampling with
threshold (4.8) satisfies, for all bandit problems µ ∈ D[0,1]

N1
,

lim sup
δ→0

Eµ[τδ]
log 1/δ

≤ αT (µ) . (4.11)

The proof of this result can be found in Section 4.6.3.

Remark. • The multiplicative factor α in bound (4.11) can be avoided using recent proof tech-
niques, as we explain in Section 6.4 (see also Remark 2.11).
• It is worth mentioning that the guarantees of Exploration-Biased-Sampling presented in
this section hold true not only for Gaussian arms but more generally for 1–sub-Gaussian arms
with means in [0, 1] (in which case, of course, a better lower bound might hold). Indeed, these
proofs only rely on sub-Gaussian deviation bounds.

4.4. Numerical Experiments
In this section, we discuss the behavior and performance of Exploration-Biased-Sampling for
practical values of risk δ. We propose a comparison with Track-and-Stop , Chernoff-Racing and
LUCB++, and begin by recalling a quick description of those strategies:
• the Track-and-Stop strategy (see 2.2.5) tracks the optimal weight vector w(µ) by using the
plugin estimate w(µ̂(t)). Some exploration rate is forced to ensure that bad initial observations
do not lead to an under-sampling of some arms. The stopping rule is the same as the one
presented for Exploration-Biased-Sampling,
• the Chernoff-Racing algorithm is an elimination algorithm (see Algorithm 3 in Section 2.2.1):
the strategy maintains a list of candidate arms, starting with all arms, and divides the explo-
ration into rounds, during which each arm of the list is observed once. At the end of each
round, a decision is made to keep or eliminate the current worst arm from the active set.
Several decision rules are possible, we will use the Chernoff rule presented in (Garivier and
Kaufmann, 2016), which eliminates the worst empirical arm ar at the end of round r if

Z`r,ar (tr) = r

4
(
µ̂`r (tr)− µ̂ar (tr)

)2
> β(tr, δ) ,

where `r (respectively tr) is the best empirical arm (respectively the number of times steps)
at the end of round r.
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• the LUCB++ strategy, introduced by Simchowitz et al. (2017) (see also Kalyanakrishnan et al.,
2012; Howard et al., 2021) samples two arms at each round: the one with the current best
estimate and the one in the remaining arms with the highest optimistic index Ua(t) which is
an upper confidence bound4:

Ua(t) def= µ̂a(t) +

√
3

Na(t) log
(2K log

(
Na(t)

)
δ

)
.

For the fairness of the comparison, we will take the same stopping condition as the strategies
Track-and-Stop and Exploration-Biased-Sampling.

For all strategies, we ran our experiments with the same threshold, given by

β(t, δ) = log
(1 + log(t)

δ

)
,

and we use, for the Exploration-Biased-Sampling strategy, the confidence lengths

Cγ(s) =

√
log( s

γ )
s

.

These choices are more aggressive than what the theoretical analysis suggests: yet, empirically, they
appear to guarantee the desired failure rate. Using the larger intervals of Section 4.2 would have
increased the number of rounds with uniform exploration, and using larger thresholds unnecessarily
delays the stopping for all strategies.

Improving the stability of Track-and-Stop. In Section 4.1, we highlighted the weaknesses of
Track-and-Stop (see page 95), especially the forced exploration parameter and the non-interpretable
and unstable sampling strategy during the first rounds. In Figures 4.3 and 4.4 we see the improve-
ments of Exploration-Biased-Sampling concerning those behaviors. During the first rounds, as
for a racing algorithm, a uniform sampling phase is observed as the learner has not collected enough
information (the confidence intervals on all arms are not separated), which is the expected behav-
ior. Then the best arms are sampled more and more often, but still in a more cautious way than
Track-and-Stop. We observe in Figure 4.4 the stability of the sampling strategies compared to
Track-and-Stop during the first rounds: the targeted weights of Exploration-Biased-Sampling
are stable and separate from each other cautiously (note that the three last arms still have the same
weight at time 1200) whereas, for Track-and-Stop, we observe an important variation of the tar-
geted weights with time. As a matter of fact, there is a clear discontinuity each time the estimated
best arm changes, as we can see with the red and green arms. We also remark that Track-and-Stop
uses forced exploration at regular rounds (for the yellow and purple dots), which is unnecessary for
Exploration-Biased-Sampling as a natural exploration is always performed (Lemma 4.4).

Comparisons of the strategies. The cost of the cautiousness of the algorithm (the exploration-
biased weights) is that in terms of pure performance, it takes a little longer for the proportions of
draws of Exploration-Biased-Sampling to converge to the optimal weight vector. This results
in a slightly larger stopping time than Track-and-Stop that occurs for all bandit parameters5. In
other words, Exploration-Biased-Sampling does not improve the numerical efficiency of Track-
and-Stop. This can be observed in Table 4.1, where we present the performances of the strategies
with two scenarios and a set of parameters. Exploration-Biased-Sampling globally performs

4Constant
√

3 appeared to be empirically optimal.
5Note that the cautiousness of our strategy is required to obtain the non-asymptotic bounds of Theorem 4.5.
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(a) Exploration-Biased-Sampling

(b) Track-and-Stop

Figure 4.3: Evolution of the sampling frequencies N(t)
t on a single simulation of the strate-

gies Exploration-Biased-Sampling and Track-and-Stop with D-tracking. The parame-
ters are δ = 0.01, γ = 0.2 and µ = (0.9, 0.8, 0.6, 0.4, 0.4). The values of w(µ) =
(0.477, 0.476, 0.028, 0.010, 0.010) are dashed.

Table 4.1: Empirical expected number of draws Eµ[τδ], averaged over 1000 experiments, with µ(1) =
(0.9, 0.8, 0.6, 0.4, 0.4), w(µ(1)) = (0.477, 0.476, 0.028, 0.010, 0.010) and µ(2) = (0.9, 0.5, 0.45, 0.4),
w(µ(2)) = (0.375, 0.286, 0.195, 0.144).

Instance δ γ T kl(δ, 1− δ) EBS-C TaS-C EBS-D TaS-D CR LUCB++

µ(1) 0.1 0.05 1476 4727 3597 4191 3477 3124 3353
µ(1) 0.01 0.05 3782 7363 5664 6330 5584 5419 5549
µ(1) 0.01 0.2 3782 7090 5664 6136 5584 5419 5372
µ(1) 10−5 0.2 9669 13801 12181 12376 11439 11557 11644
µ(2) 0.1 0.05 135 476 367 470 322 405 365
µ(2) 0.01 0.05 347 708 588 699 485 542 565
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(a) Exploration-Biased-Sampling

(b) Track-and-Stop

Figure 4.4: Evolution of the Targeted Weights w̃(t) (respectively ŵ(t)) During the First 1200 Rounds
on a Simulation of Exploration-Biased-Sampling (respectively Track-and-Stop). (δ = 0.01,
γ = 0.2, µ = (0.9, 0.8, 0.6, 0.4, 0.4))
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correctly but we see that the other strategies are always a little more efficient. Note that when
increasing γ, the confidence intervals reduce so that the targeted weights are closer to w, improving
the performance of the algorithm. For similar reasons, the initial cautiousness of the strategy disap-
pears in the long term, thus when δ is very small the relative performance of Track-and-Stop and
Exploration-Biased-Sampling gets closer. Of course, Exploration-Biased-Sampling over-
performs Chernoff-Racing in the long run when the optimal weight vector is far from the sampling
proportions of Chernoff-Racing (e.g., when w1 � w2).

Chernoff-Racing shows great performance with both µ(1) and µ(2). This strategy samples
the two last arms of the race equally often, thus can be optimal only when w(µ) has its two
highest components of similar value, e.g. when the two best arms are well separated from the
others: this is the case of bandit µ(1). For µ(2), any strategy performs well as the problem is
easy. However, Chernoff-Racing (whose theoretical analysis remains to be written) leads to a
few more misidentifications in our experiments that might be linked to the stopping rule we chose
here; for fairness reasons, it was taken as identical to that of the other algorithms. LUCB++ presents
similar performance with Chernoff-Racing, which can be explained by the similar behavior of the
strategies: LUCB++ samples half of the time the best arm asymptotically, and the worst arms are
eliminated one by one once their indexes fall under the two best estimates.

Finally, note that D-tracking shows better performance than C-tracking, either for Exploration-
Biased-Sampling and Track-and-Stop: D-tracking indeed benefits directly from the current es-
timate of µ (thus the empirical proportions of draws converge faster to w(µ)), while the impact is
diluted in time with C-tracking. However, we did not prove theoretical guarantees for D-tracking.

Dependency on the confidence parameter δ. We present numerical experiments to compare the
dependency on parameter δ of Exploration-Biased-Sampling, Track-and-Stop and Uniform-
Sampling (that samples arms uniformly).

In Figure 4.5, we plot for each strategy and several bandit parameters the estimate of Eµ[τδ] for
different values of δ (using the same threshold β as in the experiments of Section 4 and γ = 0.1 for
Exploration-Biased-Sampling). We also plot in black the lower bound of Garivier and Kaufmann
(2016), which is of order T (µ) log 1

δ when δ goes to 0.
In terms of performance, we observe that Exploration-Biased-Sampling is always between

Uniform-Sampling and Track-and-Stop. More precisely, there are different behaviors:
• For some problems (like for instance µ(1)), Exploration-Biased-Sampling behaves almost
like (but always a little worse than) Track-and-Stop. For this instance, the uniform sampling
phase of Exploration-Biased-Sampling is relatively small compared to the required number
of samples so that Exploration-Biased-Sampling has time to shrink its confidence regions
close to parameter µ and thus behaves like Track-and-Stop.
• When the problem is easier (with large gaps, see µ(2)), the sample complexity is very low
and the confidence regions of Exploration-Biased-Sampling do not have enough time to
shrink. It results in a performance close to Uniform-Sampling.
• When the problem is difficult (with small gaps, see µ(3)), it takes a large number of samples
for Exploration-Biased-Sampling before leaving the uniform exploration phase, and this
results in a behavior close to Uniform-Sampling for moderate values of δ. When δ decreases,
there is a separation between Exploration-Biased-Sampling and Uniform-Sampling as
more and more simulations reach the non-uniform sampling phase of our strategy. For even
smaller values of δ, one can expect that Exploration-Biased-Sampling will come closer to
Track-and-Stop than Uniform-Sampling, for the same reasons as before: the confidence
regions of Exploration-Biased-Sampling have more time to shrink. This is what we observe
with bandit instance µ(4), for which Exploration-Biased-Sampling behaves like Uniform-
Sampling for moderate values of δ and like Track-and-Stop for small values of δ.

Page 108 / 192



4.4. NUMERICAL EXPERIMENTS

(a) µ(1) = (0.9, 0.8, 0.6, 0.4, 0.4) (b) µ(2) = (0.9, 0.5, 0.45, 0.4)

(c) µ(3) = (0.9, 0.8, 0.75, 0.7) (d) µ(4) = (0.9, 0.8, 0.7, 0.6)

Figure 4.5: Empirical expected number of draws Eµ[τδ] as a function of δ, averaged over 500
experiments.
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4.5. Proof of the Non-Asymptotic Bounds of Theorem 4.5

The aim of this section is to prove Theorem 4.5. Let γ ∈ (0, 1) and µ ∈ D[0,1]
N1

. We assume, without
loss of generality, that a?(µ) = 1. We also write, for simplicity, ∆ = ∆(µ), w = w(µ) and T = T (µ).

We recall that the confidence regions are defined in (4.6) by

∀t ≥ K, CRµ(t) =
∏

a∈[K]

[
µ̂a(t)± `a(t)

]
,

where ∀a ∈ [K], `a(t) def= C γ
K

(Na(t)) = 2

√√√√√ log
(

4KNa(t)
γ

)
Na(t) .

Let E denotes the event that µ belongs to all confidence regions:

E =
τδ⋂

t=K

{
µ ∈ CRµ(t)

}
.

By the choice of the confidence regions and Lemma 4.2, we have

Pµ(E) ≥ 1− γ .

Furthermore, the design of Exploration-Biased-Sampling ensures that, under event E , all arms
are observed with some minimal linear rate, specified by Lemma 4.7 and proved in Section 4.6.2.

Lemma 4.7. On event E , one has:

∀t ∈ N∗, min
a∈[K]

Na(t) ≥ twmin −K . (4.12)

Inequality (4.12) implies the more handy bound:

∀t ≥ 2K

wmin
, min

a∈[K]
Na(t) ≥ twmin

2 . (4.13)

Proof Outline. The proof is organized in 3 steps:
1. We first show that, on event E , the optimal vector w and the sampling frequency vector N(t)/t

are very close for any t ≥ T1, where T1 is a (problem-dependent) constant. To do so, we will
make use of the regularity results of Section 3.5 and the fact that the confidence regions shrink
with time.

2. Then, we control the event (τδ > t) ∩ E for t > T log 1
δ by another event for which we can

easily bound the probability using Hoeffding’s inequality. This inclusion relies once again on
the regularity results of Section 3.5 and on conditions on δ, in particular, we will require to
have T log 1

δ ≥ T1 with T1 obtained at step 1.
3. Finally, we derive the two bounds of the theorem from Hoeffding’s inequality and elementary

calculations.
The proof uses some technical lemmas introduced and shown in Section 4.6.2.
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4.5.1. Step 1: Controlling the Difference between Vectors w and N(t)/t

In this step we assume that event E occurs.
Let t ≥ 2K

wmin
. Equation (4.13) implies that

∀a ∈ [K], `a(t) = 2

√√√√√ log
(

4Na(t)K
γ

)
Na(t) ≤ L(t) def=

√√√√
8

log
(

4tK
γ

)
twmin

.

L(t) is an arm-independent bound on the half-length of the confidence interval of each µa. In other
words,

∥∥µ̃(t)− µ
∥∥

∞ ≤ L(t) as we are on event E . Note that L(t) is deterministic and goes to 0 as t
goes to +∞. This control of

∥∥µ̃(t)− µ
∥∥

∞ ≤ L(t) together with Theorem 3.9 allows to control the
difference between w and w̃(t) for t large enough, as the following Lemma claims.

Lemma 4.8. Let

T0 = max
(

2242

∆2
minwmin

log
(2× 2242eK

∆2
minwminγ

)
,

2K

wmin

)
. (4.14)

Then for every t ≥ T0, one has, introducing εt = 80L(t)
∆min

,

∀a ∈ [K], wa(1− εt) ≤ w̃a(t) ≤ wa(1 + εt) . (4.15)

Proof. Let t ≥ 2K
wmin

and assume that t is such that 4L(t) < ∆min. On event E , one has

µ ∈ CRµ(t) =
∏

a∈[K]

[
µ−

a (t), µa(t)
]

,

hence for any a 6= 1:

µ−
1 (t)− µa(t) ≥ µ1 − 2L(t)−

(
µa + 2L(t)

)
≥ ∆a − 4L(t) > 0 ,

so that the confidence interval for µ1 is strictly above all other confidence intervals. Hence µ̃(t) has
a unique optimal arm which is arm 1.

For each arm a 6= 1, define ∆̃a(t) def= ∆a
(
µ̃(t)

)
= µ̃1(t)− µ̃a(t). Then

∆̃a(t)2 ≤
(
∆a + 2L(t)

)2 = ∆2
a

(
1 + 4L(t)

∆a
+ 4L(t)2

∆2
a

)
≤ ∆2

a

(
1 + 8L(t)

∆min

)
and ∆̃a(t)2 ≥

(
∆a − 2L(t)

)2 = ∆2
a

(
1− 4L(t)

∆a
+ 4L(t)2

∆2
a

)
≥ ∆2

a

(
1− 8L(t)

∆min

)
.

If t is such that 8L(t)
∆min

≤ 1
7 (this condition is stronger than 4L(t) < ∆min), we can apply Theorem 3.9

which gives
∀a ∈ [K], wa(1− εt) ≤ w̃a(t) ≤ wa(1 + εt) .

It remains to understand when the condition 8L(t)
∆min

≤ 1
7 holds. We have:

8L(t)
∆min

≤ 1
7 ⇐⇒

log
(

4tK
γ

)
t

≤ ∆2
minwmin

(7× 8)2 × 8 = ∆2
minwmin

2× 1122
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and this inequality is satisfied, by Lemma 4.15, for

t ≥ 2242

∆2
minwmin

log
(2× 2242eK

∆2
minwminγ

)
.

Combining with the initial condition t ≥ 2K
wmin

leads to the definition of T0.

As the C-tracking procedure ensures that each Na(t)
t is roughly the Cesàro sum of the

(
w̃a(s)

)
0≤s≤t−1

(see Lemma 4.14), and as εt −→
t→+∞

0, we are able to control the difference between w and N(t)
t after

a deterministic time T1.

Lemma 4.9. Fix η ∈ (0, 1) and let

T1
def=

max
(
6402, 8K

)
η2∆2

minw2
min

log
( 2× 6402eK

η2∆2
minwminγ

)
. (4.16)

Then for any t ≥ T1 one has:

∀a ∈ [K], wa(1− η) ≤ Na(t)
t
≤ wa(1 + η) .

Proof. Let T0 be defined by Equation (4.14). Let t > T0 and a ∈ [K]. Equation (4.15) of Lemma 4.8
gives: ∣∣∣∣∣

t−1∑
s=0

w̃a(s)− twa

∣∣∣∣∣ ≤
T0−1∑
s=0

∣∣w̃a(s)− wa

∣∣+ t−1∑
s=T0

∣∣w̃a(s)− wa

∣∣ ≤ T0 + wa

t−1∑
s=T0

εs .

By definition of εt one has:

t−1∑
s=T0

εs = 80
√

8
∆min

√
wmin

t−1∑
s=T0

√√√√ log
(

4sK
γ

)
s

≤
80
√

8
√

log
(

4tK
γ

)
∆min

√
wmin

t−1∑
s=T0

1√
s
≤

80
√

8
√

t log
(

4tK
γ

)
∆min

√
wmin

,

so that we have, using Lemma 4.14:∣∣∣∣Na(t)
t
− wa

∣∣∣∣ ≤ 1
t

[∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣∣+ ∣∣∣∣t−1∑

s=0
w̃a(s)− wa

∣∣∣∣
]

≤ K + T0
t

+ wa

80
√

8
√

log
(

4tK
γ

)
∆min

√
wmint

≤ wa

(
K + T0
twmin

+
80
√

8
√

log
(

4tK
γ

)
∆min

√
wmint

)
.

Thus the conclusion of the lemma holds when:

max
(

K + T0
twmin

,
80
√

8
√

log
(
4tK/γ

)
∆min

√
wmint

)
≤ η

2 ,

and this inequality is satisfied, using Lemma 4.15, when:

t ≥ max
(

2
η

K + T0
wmin

,
6402

η2∆2
minwmin

log
( 2× 6402eK

η2∆2
minwminγ

))
.
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The definition of T0 implies

K + T0 ≤
4 max

(
1122, K

)
∆2

minwmin
log
(2× 2242eK

∆2
minwminγ

)
,

hence the inequality still holds for

t ≥ max
(

8 max
(
1122, K

)
η∆2

minw2
min

log
(2× 2242eK

∆2
minwminγ

)
,

6402

η2∆2
minwmin

log
( 2× 6402eK

η2∆2
minwminγ

))
,

and T1 is greater than this lower bound.

4.5.2. Step 2: a Useful Inclusion of Events

We want to control the event {τδ > t}∩E for t > T log 1
δ . For δ small enough, we have the following

inclusion of events.

Lemma 4.10. Fix η ∈ (0, 0.15] and let δ be such that

T log 1
δ
≥ T1 , (C1)

where T1 is defined by Equation (4.16), and

log 1
δ >

4
η

log
(8eTR1/2

η

)
. (C2)

Then for all C ∈ (0, 1]:

∀t ≥ (1 + C)(1 + η)2

(1− η)2 T log 1
δ

,
{
τδ > t

}
∩ E ⊆

{∥∥µ̃(t)− µ
∥∥

∞ ≥
C

T

}
∩ E .

Remark. Latter, we will use this Lemma with C = 1
log

1
3 1

δ

.

Proof. Assume in the following that T log 1
δ ≥ T1 and let t ≥ T log 1

δ . By definition of T1 and
Lemma 4.9, one has

max
a∈[K]

∣∣∣∣∣wa − Na(t)
t

wa

∣∣∣∣∣ ≤ η .

Then using Proposition 3.10 and Equation (4.3):

{
τδ > t

}
∩ E ⊆

{
Z(t) = t g

(
µ̂(t), N(t)

t

)
≤ β(t, δ)

}
∩ E

⊆
{

t
(1− η)2

1 + η

(
g(µ, w)−

∥∥µ̃(t)− µ
∥∥

∞
2

)
≤ β(t, δ)

}
∩ E

⊆
{∥∥µ̃(t)− µ

∥∥
∞

2 ≥ 1
T
− 1 + η

(1− η)2
β(t, δ)

t

}
∩ E .

Consider now
f(t) = 1 + η

(1− η)2
β(t, δ)

t
= 1 + η

(1− η)2
log
(

Rtα

δ

)
t

.
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As α ≤ 2, one can check that f is decreasing on (4, +∞). Let us show that

∀C ∈ (0, 1], f

(
(1 + C)(1 + η)2

(1− η)2 T log 1
δ

)
≤ 1

(1 + C)T . (4.17)

Fix C ∈ (0, 1]. As α ≤ 2 and as η ≤ 0.15 is such that (1+η)2

(1−η)2 ≤ 2, we have:

f

(
(1 + C)(1 + η)2

(1− η)2 T log 1
δ

)
≤ 1 + η

(1− η)2

log
(

R
(

4T log 1
δ

)2

δ

)
(1 + C) (1+η)2

(1−η)2 T log 1
δ

≤ 1
(1 + C)T

1
1 + η

(
1 + 2

log
(
4R1/2T log 1

δ

)
log 1

δ

)
,

hence inequality (4.17) is satisfied if

log
(
4R1/2T log 1

δ

)
≤ η

2 log 1
δ

,

which is the case, by Lemma 4.15, when:

log 1
δ

>
4
η

log
(8eTR1/2

η

)
.

Finally when inequality (4.17) holds we have for t ≥ (1 + C) (1+η)2

(1−η)2 T log 1
δ :

{
τδ > t

}
∩ E ⊆

{∥∥µ̃(t)− µ
∥∥

∞ ≥
2
T
− 2

(1 + C)T

}
∩ E ⊆

{∥∥µ̃(t)− µ
∥∥

∞ ≥
C

T

}
∩ E

where we use C ≤ 1 in the last inclusion.

4.5.3. Step 3: Bounding Pµ

(
τδ > t ∩ E

)
and Eµ

[
τδI {E}

]
.

Fix η ∈ (0, 1] and assume in the following that conditions (C1) and (C2) of Lemma 4.10 are satisfied
with η′ = η

7 ≤ 0.15. We set ζ = (1+η′)2

(1−η′)2 . Let C ∈ (0, 1], t > (1 + C)ζT log 1
δ and define

Et =
{∥∥µ̃(t)− µ

∥∥
∞ ≥

C

T

} ⋂
E .

Lemmas 4.10 and 4.16 – a consequence of Hoeffding’s inequality – (note that Condition (C1) ensures
that t ≥ 2K

wmin
) give the bound:

Pµ
(
τδ > t ∩ E

)
≤ Pµ(Et) ≤ 2Kt exp

(
− twmin

4T 2 C2
)

. (4.18)

By taking C = 1
log

1
3 1

δ

, we obtained so far that

∀t >

(
1 + 1

log
1
3 1

δ

)
ζT log 1

δ
, Pµ

(
τδ > t ∩ E

)
≤ 2Kt exp

(
− twmin

4T 2
1

log
2
3 1

δ

)
,

giving Bound (4.9) as long as (
1 + 1

log
1
3 1

δ

)
ζ ≤ 1 + η .
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Note that ζ ≤ 1 + 6η′ as η′ ≤ 0.15 so that when

1
log

1
3 1

δ

≤ η′

2 ⇐⇒ log 1
δ
≥ 8× 73

η3 , (C3)

the condition holds as(
1 + 1

log
1
3 1

δ

)
ζ ≤

(
1 + η′

2

)
(1 + 6η′) ≤ 1 + 6.6η′ ≤ 1 + η .

It remains to focus on the bound of Eµ
[
τδI {E}

]
. Using Equation (4.18) we have:

Eµ
[
τδI {E}

]
=

⌊
(1+C)ζT log 1

δ

⌋
∑
t=0

Pµ
(
τδ > t ∩ E

)
+

∑
t>(1+C)ζT log 1

δ

Pµ
(
τδ > t ∩ E

)

≤ (1 + C)ζT log 1
δ

+ 1 + 2K
∑

t>(1+C)ζT log 1
δ

t exp
(
− twmin

4T 2 C2
)

.

By defining

S(C) =
∑

t>CζT log 1
δ

t exp
(
− twmin

4T 2 C2
)

,

we obtain, with some technical calculations (see Section 4.6.2), the following bound.

Lemma 4.11. One has

S(C) ≤ 32T 4

w2
min

exp
(
−wmin

4T
C2 log 1

δ

)( log 1
δ

C2 + 1
C4

)
.

Once again, taking C = 1
log

1
3 1

δ

leads to

S(C) ≤ 32T 4

w2
min

exp
(
−wmin

4T
log

1
3 1

δ

)(
log

5
3 1

δ + log
4
3 1

δ

)
≤ 64T 4

w2
min

exp
(
−wmin

4T
log

1
3 1

δ

)
log2 1

δ
,

thus

Eµ
[
τδI {E}

]
≤ ζ

(
1 + 1

log
1
3 1

δ

)
T log 1

δ
+ 1 + 27KT 4

w2
min

exp
(
−wmin

4T
log

1
3 1

δ

)
log2 1

δ
.

Under Condition (C3) we get

ζ

(
1 + 1

log
1
3 1

δ

)
T log 1

δ
+ 1 ≤ (1 + 6.6η′)T log 1

δ
+ 1 ≤ (1 + η)T log 1

δ
,

and obtain the Bound (4.10) claimed in the theorem.
Combining conditions (C1), (C2) and (C3) together, one can define δ0 satisfying:

log 1
δ0
≥

73 ×max
(
2× 1602, K

)
η3∆minw2

min
log
(72 × 2× 6402eKR1/2

η2∆2
minwminγ

)
,

with some simplifications allowed by Equation (3.20) of Proposition 3.4.
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4.6. Technical Results

4.6.1. Proof of Lemma 4.4

We will prove the lemma using two supporting results. The following lemma gives a lower bound of
wmin(µ) in terms of the minimal gap ∆min(µ), based on the study of optimization problem (4.2) in
Chapter 3.

Lemma 4.12. For all µ ∈ D[0,1]
N1

with a unique optimal arm, one has

wmin(µ) ≥
∆min(µ)

2K
.

Proof. Let w = w(µ), wmin = wmin(µ) and ∆ = ∆(µ). We have, by Equation (3.10), recalling that
the weight wmin is the optimal weight of the worst arm(s) of µ, i.e., the arm(s) with highest gap(s),

wmin = wmax
r∆max − 1 .

Applying inequalities (3.18) and (3.19), and using the fact that ∆max ≤ 1 as means belong to [0, 1],

wmin ≥
1√

K − 1 + 1
· 1

√
K−1+1
∆min

∆max − 1
≥ ∆min

(
√

K − 1 + 1)2 ≥
∆min
2K

.

The next lemma provides a lower bound on the minimal gap of the optimistic bandit µ̃ computed
by Algorithm 13.

Lemma 4.13. Let CR =
∏

a∈[K]
[µ−

a , µ+
a ] be a confidence region with µ−

a < µ+
a for all a ∈ [K],

and assume that
max
a∈[K]

µ−
a = maxLB > minUB = min

a∈[K]
µ+

a .

Then, if (µ̃, v)← Exploration-Biased-Weights(CR), we get

∆min(µ̃) ≥ min
a∈[K]

µ+
a − µ−

a .

Proof. We proceed by contradiction: let us assume that µ̃ is such that

∆min(µ̃) < min
a∈[K]

µ+
a − µ−

a .

By the two hypotheses and the algorithm’s procedure, it is clear that µ̃ has a unique best arm.
Without loss of generality let us arrange the arms so that µ̃1 > µ̃2 ≥ µ̃3 ≥ · · · ≥ µ̃K . Note that
∆min(µ̃) = µ̃1 − µ̃2.

As 1 is the best arm, once again the algorithm’s procedure ensures that µ̃1 = µ+
1 . In addition,

our assumption implies ∆min(µ̃) < µ+
1 − µ−

1 , giving µ̃2 > µ−
1 . Recall that µ̃2 = max(µ−

2 ,minUB),
so we split our analysis into the two possible cases:
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• if µ̃2 = µ−
2 , then we cannot have µ+

2 ≤ µ+
1 = µ̃1 otherwise ∆min(µ̃) > µ+

2 − µ−
2 , which is

impossible.
Then µ+

2 > µ+
1 . By defining ρ = (µ̃2, µ+

2 , µ̃3, . . . , µ̃K), one has ρ ∈ CR and wmin(ρ) >
wmin(µ̃) by Lemma 3.6. Thus µ̃ cannot maximize wmin over CR which is in contradiction with
Proposition 4.1.
• if µ̃2 = minUB, then µ̃2 = µ̃3 = · · · = µ̃K and thus all confidence intervals share a common
point equal to µ̃2 (recall that µ̃2 ∈ [µ−

1 , µ+
1 ]), which is a contradiction with maxLB > minUB.

We can now prove Lemma 4.4.

Proof of Lemma 4.4. Let t ≥ 0. We want to lower bound w̃min(t).
• If at time t one has w̃(t) = ( 1

K , . . . , 1
K ), that is, all confidence intervals share a common value,

then w̃min(t) = 1
K .

• Otherwise, by the construction of Algorithms 13 and 14 we know that t ≥ K and the confidence
region CR(t) is such that at least two confidence intervals are separated. In that case, the
optimistic bandit µ̃(t) has a unique optimal arm, hence by Lemma 4.12

w̃min(t) ≥ ∆̃min(t)
2K

.

Applying Lemma 4.13 leads to (recalling that Na(t) ≥ 1 as all arms are pulled once at the
beginning)

∆̃(t)
min ≥ min

a∈[K]
2`a(t) ≥ 4 min

a∈[K]

√√√√√ log
(

4Na(t)K
γ

)
Na(t) ≥ 4

√
log
(4K

γ

)
t

≥ 4

√
log 8

t
≥ 4√

t
.

Combining the two last equations, we obtain

w̃min(t) ≥ 2
K

1√
t

.

Hence, in both cases, we get:

∀t ≥ 0, w̃min(t) ≥ min
( 2

K

1√
t
,

1
K

)
≥ 1

K

1√
t

.

Using Lemma 4.14, this implies that for all t ≥ 0 and a ∈ [K]

Na(t) ≥
t−1∑
s=0

w̃a(s)− (K− 1) ≥
t−1∑
s=2

w̃min(s)−K ≥ 1
K

t−1∑
s=2

1√
s
−K ≥ 1

K

∫ t

1

ds√
s
−K ≥ 2

K

√
t−K .

4.6.2. Technical Details for the Proof of Theorem 4.5

Proof of Lemma 4.7. We will use the following deterministic Lemma.

Lemma 4.14. One has:

∀t > 0, ∀a ∈ [K],
∣∣∣∣Na(t)−

t−1∑
s=0

w̃a(s)
∣∣∣∣ ≤ K − 1 .
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Proof. Apply Garivier and Kaufmann (2016, Lemma 15) with p(s) = w̃(s).

Proof of Lemma 4.7. The claim is true for t ≤ K. Otherwise, fix t > K and a ∈ [K]. For all
0 ≤ s ≤ K − 1, one has w̃a(s) = 1

K by convention6, and thus w̃a(s) ≥ wmin. As µ ∈ CRµ(s) for all
K ≤ s ≤ t on event E , Proposition 4.1 ensures that

∀K ≤ s ≤ t, w̃a(s) ≥ w̃min(s) = max
ρ∈CRµ(s)

wmin(ρ) ≥ wmin .

Hence, by Lemma 4.14

Na(t) ≥
t−1∑
s=0

w̃a(s)− (K − 1) ≥ twmin − (K − 1) ≥ twmin −K .

A Technical Lemma. The following result is a direct consequence of Garivier and Kaufmann (2016,
Lemma 18).

Lemma 4.15. For any c1, c2 > 0,
x = 2

c1
log
(c2e

c1

)
is such that c1x ≥ log(c2x).

Deviation Bound. We prove the following simple consequence of Hoeffding’s inequality.

Lemma 4.16. For all t ≥ 2K
wmin

and x > 0, one has

Pµ

(
max
a∈[K]

∣∣µ̂a(t)− µa

∣∣ > x ∩ E
)
≤ 2Kt exp

(
− twmin

4 x2
)

.

Proof. Fix t ≥ 2K
wmin

and x > 0. With T = twmin
2 , we get, using Equations (4.13) and (4.4),

∀a ∈ [K], Pµ

(∣∣µ̂a(t)− µa

∣∣ > x ∩ E
)

=
t∑

s=T

Pµ

(∣∣µ̂a(t)− µa

∣∣ > x ∩ E ∩ Na(t) = s
)

≤
t∑

s=T

Pµ

(∣∣µ̂a,s − µa

∣∣ > x
)

≤
t∑

s=T

2 exp
(
−s

2x2
)

≤ 2t exp
(
−T

2 x2
)

,

where the second inequality uses Hoeffding’s inequality (2.4). The result follows by union bound.

Proof of Lemma 4.11. We have

S(C) =
∑

t>(1+C)ζT log 1
δ

t exp
(
− twmin

4T 2 C2
)

=
∑
t>B

f(t)

6As all arms are drawn once during the K first rounds, the only request is
∑K−1

s=0 w̃a(s) = 1.
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where f : t 7→ t exp(−At), A = wmin
4T 2 C2 and B = (1 + C)ζT log 1

δ . f is increasing until 1/A and
then decreasing. Let n0 =

⌊
1
A

⌋
. We will show that S(C) ≤ 2

∫+∞
B f(t) dt.

• If B > n0 then f is decreasing on [B, +∞[ and one has S(C) ≤
∫+∞

B f(t) dt.
• Otherwise, one has:

S(C) =
n0−1∑
t=dBe

f(t) + f(n0) + f(n0 + 1) +
∑

t>n0+1
f(t)

≤
n0−1∑
t=dBe

∫ t+1

t
f(t) dt + f(n0) + f(n0 + 1) +

∑
t>n0+1

∫ t

t−1
f(t) dt

≤
∫ +∞

dBe
f(t) dt + f(n0) + f(n0 + 1)

where in the second inequality, we use the increasing (respectively the decreasing) of f on
[B, n0] (respectively on [n0 + 1, +∞]). The result will be true if

f(n0) + f(n0 + 1) ≤
∫ +∞

B
f(t) dt .

We have:

f(n0) + f(n0 + 1) =
⌊ 1

A

⌋
e−A

⌊
1
A

⌋
+
⌈ 1

A

⌉
e−A

⌈
1
A

⌉
≤
( ⌊ 1

A

⌋
+
⌈ 1

A

⌉ )
e−A

⌊
1
A

⌋
≤
( ⌊ 1

A

⌋ 1
A

+ 1
A2

)
e−A

⌊
1
A

⌋
as A <

1
2

=
∫ +∞⌊

1
A

⌋ f(t) dt ≤
∫ +∞

B
f(t) dt as B ≤

⌊ 1
A

⌋
= n0 .

where in the last inequality, we used the simple calculation∫ +∞

Y
t exp(−tX)dt = exp(−Y X)

(Y

X
+ 1

X2

)
for X, Y > 0.

In both cases, we have:

S(C) ≤ 2
∫ ∞

(1+C)ζT log 1
δ

t exp
(
− twmin

4T 2 C2
)

dt

and using the same calculation as before

S(C) ≤ 2 exp
(
− ζwmin

4T
(1 + C)C2 log 1

δ

)(4(1 + C)ζT 3

wmin

log 1
δ

C2 + 16T 4

w2
min

1
C4

)
.

Bounding C ∈ (0, 1] and ζ ∈ [1, 2] (remind that ζ ≤ 1 + 6η′):

S(C) ≤ 2 exp
(
− wmin

4T
C2 log 1

δ

)(16T 3

wmin

log 1
δ

C2 + 16T 4

w2
min

1
C4

)
≤ 32T 4

w2
min

exp
(
− wmin

4T
C2 log 1

δ

)( log 1
δ

C2 + 1
C4

)
.
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4.6.3. Almost Sure Asymptotic Bound

Almost Sure Asymptotic Bound. Exploration-Biased-Sampling satisfies the following almost
sure asymptotic bound.

Theorem 4.17. Let γ ∈ (0, 1) and α ∈ [1, e/2]. Algorithm Exploration-Biased-Sampling
with threshold (4.8) satisfies

∀µ in D[0,1]
N1

, lim sup
δ→0

τδ

log 1
δ

≤ αT (µ) Pµ-a.s. .

This result was obtained for the Track-and-Stop algorithm by Garivier and Kaufmann (2016,
Proposition 13). The adaptation to Exploration-Biased-Sampling is straightforward, as soon as
we prove the almost sure convergence of the empirical means and frequencies of pulls.

Proposition 4.18. For all γ ∈ (0, 1), the sampling rule of Exploration-Biased-Sampling
satisfies, for all µ ∈ D[0,1]

N1
,

lim
t→+∞

µ̂(t) = µ Pµ-a.s. and lim
t→+∞

N(t)
t

= w(µ) Pµ-a.s. .

Proof. The first convergence is a simple application of the law of large numbers, given that the
number of pulls of all arms diverges thanks to Lemma 4.4. Note also that, as

∀a ∈ [K],
∣∣µ̃a(t)− µ̂a(t)

∣∣ ≤ C γ
K

(Na(t)) = 2

√√√√√ log
(

4Na(t)K
γ

)
Na(t) −→

t→+∞
0 ,

we have that µ̃(t) and µ̂(t) get the same limit:

lim
t→+∞

µ̃(t) = µ Pµ-a.s..

Thus, by continuity of the optimal weights w at µ:

lim
t→+∞

w̃(t) = w(µ) Pµ-a.s. .

Finally, for all t ∈ N∗ and a ∈ [K], we have:∣∣∣∣∣Na(t)
t
− wa(µ)

∣∣∣∣∣ ≤ 1
t

∣∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣∣∣+

∣∣∣∣∣1t
t−1∑
s=0

(
w̃a(s)− wa(µ)

)∣∣∣∣∣
≤ K − 1

t
+
∣∣∣∣∣1t

t−1∑
s=0

(
w̃a(s)− wa(µ)

)∣∣∣∣∣
−→

t→+∞
0 Pµ-a.s. ,

using Lemma 4.14 for the second inequality, and Cesàro Lemma for the convergence.

Asymptotic optimality. We now prove Theorem 4.6 on the asymptotic optimality of our strategy.
Once again this is a direct adaptation of Garivier and Kaufmann (2016, Theorem 14). One can apply
the original proof as long as the two lemmas shown in this section are satisfied.
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Proof. Let T ≥ 0. We get, for all t ≥
√

T = h(T )2 and a ∈ [K],∣∣∣∣∣Na(t)
t
− wa(µ)

∣∣∣∣∣ ≤ 1
t

∣∣∣∣∣Na(t)−
t−1∑
s=0

w̃a(s)
∣∣∣∣∣+

∣∣∣∣∣1t
t−1∑
s=0

(
w̃a(s)− wa(µ)

)∣∣∣∣∣
≤ K − 1

t
+ h(T )

t
+
∣∣∣∣∣1t

t−1∑
s=h(T )

(
w̃a(s)− wa(µ)

)∣∣∣∣∣ by Lemma 4.14

≤ K − 1
T 1/2 + 1

T 1/4 + ε by definition of ET

≤ K

T 1/4 + ε ,≤ 3ε ,

where we used Lemma 4.14 in the second inequality, and the definition of ET for the third inequality.
This gives the result whenever T ≥ Tε

def=
(

K
2ε

)4.
4.7. Conclusion
We introduced Exploration-Biased-Sampling, a new strategy for the problem of best arm iden-
tification with fixed confidence. In addition to asymptotic optimal results, we proved non-asymptotic
bounds for this strategy in the case of (sub-)Gaussian bandits. Those finite risk bounds were made
possible by a new analysis of the sample complexity optimization problem presented in Chapter 3,
and by the design of our strategy which tackles some shortcomings of Track-and-Stop: the proce-
dure ensures exploration in an unforced way and stabilizes the sampling strategy, observing uniformly
before having a high certainty that one arm is better than another.

Improving the guarantees of Exploration-Biased-Sampling. Although our new strategy en-
joys interesting stability properties, it is always a bit worse than Track-and-Stop in terms of pure
performance (sample complexity). This is a consequence of the biased tracking of the strategy which
implies a slower convergence of the pulling frequencies than Track-and-Stop, but was necessary to
obtain our non-asymtotic bound. A future direction of research might consist in carefully modifying
the exploration mechanism of Exploration-Biased-Sampling in order to obtain a more efficient
strategy that still benefits from a finite risk analysis. The non-asymptotic guarantees of Theorem 4.5
also come with a few limitations, which leaves room for improvement:
• The finite risk bound is given on an event E of high probability (depending on the external
parameter γ for the confidence regions). What happens when E does not occur?
• The analysis is valid for values of confidence δ that are in practice extremely small. Can we
analyze it for more moderate values of δ?

Non-Gaussian models. It would be interesting but it remains out of reach to generalize this
approach to non-Gaussian models: this requires extending our results on the sample-complexity opti-
mization problem, a technically challenging task for which the simple and clean arguments developed
here are likely to be replaced by much more involved derivations if this is possible. In addition, it will
be necessary to modify the confidence intervals on the arm means in a way that ensures exploration.
Another direction of improvement will be to investigate if similar analysis and strategies are possible
for the problem of ε-best arm identification.
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CHAPTER 5

A Non-Parametric Theory of
Fixed-Budget Best-Arm Identification

In this chapter, we study non-parametric generalizations of existing bounds in fixed-budget best-
arm identification. We consider general models D for distributions over the arms; an overarching
example is the model D = P[0, 1] of all probability distributions over [0, 1]. We propose upper bounds
on the average log-probability of misidentifying the optimal arm based on information-theoretic
quantities that we name L<

inf( · , ν) and L>
inf( · , ν) and that correspond to infima over Kullback-Leibler

divergences between some distributions in D and a given distribution ν. This is made possible by a
refined analysis of the Successive-Rejects strategy of Audibert et al. (2010). We finally provide
lower bounds on the same average log-probability, also in terms of the same new information-theoretic
quantities; these lower bounds are larger when the (natural) assumptions on the considered strategies
are stronger. All these new upper and lower bounds generalize existing bounds based, e.g., on gaps
between distributions. The content of this chapter is extracted from the conference paper

�

A. Barrier, A. Garivier, and G. Stoltz. On Best-Arm Identification
with a Fixed Budget in Non-Parametric Multi-Armed Bandits. In Pro-
ceedings of the 34th International Conference on Algorithmic Learning
Theory, volume 201 of Proceedings of Machine Learning Research,
pages 136–181. PMLR, 2023

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2 Overview of the Results and more Extended Literature Review . . . . . . . . . . . . . 126

1 The Key new Quantities: L<
inf and L≤

inf , as well as L
>
inf and L≥

inf . . . . . . . . . . . . 126
2 Overview of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3 Re-Derivation of Existing Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4 Discussion of the (Lack of) Optimality of the new Bounds Exhibited . . . . . . . . . . 130

3 Upper Bound for the Successive-Rejects Strategy, with an Improved Analysis . . . 131
1 General Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2 On Links between Φ and the Quantities L<

inf , L
≤
inf , L

>
inf and L≥

inf . . . . . . . . . . . . 137
4 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

1 Common Restriction: Consistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2 A Lower Bound Revisiting and Extending the one by Audibert et al. (2010) . . . . . . . 139
3 A Larger Lower Bound, for a more Restrictive Class of Strategies . . . . . . . . . . . . 141
4 A General Lower Bound, Valid for any Strategy . . . . . . . . . . . . . . . . . . . . 143



5 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
1 Properties of the L<

inf , L
≤
inf , L

>
inf and L≥

inf . . . . . . . . . . . . . . . . . . . . . . . 144
2 Reminder: the Cramér-Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . 147
3 Proofs and Details for Section 5.4.2: Rewriting of Φ as L . . . . . . . . . . . . . . . 148
4 Proof of the Normality of the Models P[0, 1] and Dexp . . . . . . . . . . . . . . . . . 154

6 Additional Comments for the Literature Review . . . . . . . . . . . . . . . . . . . . . 155
1 The Minimax Lower Bound of Carpentier and Locatelli (2016) . . . . . . . . . . . . . 155
2 The Bretagnolle-Huber Technique by Kaufmann et al. (2016) . . . . . . . . . . . . . 157

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1. Introduction
We consider a class D of distributions over R with finite first moments, which we refer to as the
model D. A K–armed bandit problem in D is a K–tuple ν = (ν1, . . . , νK) of distributions in D. We
denote by (µ1, . . . , µK) the K–tuple of their expectations. An agent sequentially interacts with ν:
at each step t ≥ 1, she selects an arm At and receives a reward Yt drawn from the distribution νAt .
This is the only feedback that she obtains.

While regret minimization has been vastly studied (see Lattimore and Szepesvári, 2020), another
relevant objective is best-arm identification, that is, identifying the distribution with highest expecta-
tion. In the fixed-confidence setting, this identification is performed under the constraint that a given
confidence level 1− δ is respected, while minimizing the expected number of pulls of the arms (the
expected sample complexity). This setting is fairly well understood (see Lattimore and Szepesvári,
2020, Chapter 33 for a review). A turning point in this literature was achieved by Garivier and
Kaufmann (2016), who provided matching upper and lower bounds on the expected number of pulls
of the arms in the case of canonical one-parameter exponential families. Since then, improvements
have been made in several directions, including for example non-asymptotic bounds (Degenne et al.,
2019) and the problem of ε–best-arm identification (Garivier and Kaufmann, 2021). The first gen-
eralization to non-parametric models in this fixed-confidence setting was achieved by Jourdan and
Degenne (2023), who worked in a concurrent and independent manner from us. Their upper and
lower bounds differ by a multiplicative factor of 2 (only).
Fixed-budget best-arm identification. The fixed-budget setting seems to be much less under-
stood. Therein, the total number T of pulls of the arms is fixed. After these T pulls, a strategy must
issue a recommendation âT . Assuming that ν contains a unique optimal distribution ν? of index
a?(ν), one aims at minimizing P

(
âT 6= a?(ν)

)
. We are interested in (upper and lower) bounds that

hold for all problems ν in D, possibly under the restriction that they only contain a unique optimal
arm. It may be straightforwardly seen that the probability of error can decay exponentially fast —for
instance, by uniformly exploring the arms (pulling each of them about T/K times) and recommend-
ing the one with the largest empirical average. This is why the literature (see, for instance, Audibert
et al., 2010 and Lattimore and Szepesvári, 2020, Chapter 33) focuses on lower and upper bound
functions ` ≤ U < 0 of the typical form: for all bandit problems ν in D, with a unique optimal arm,

`(ν) ≤ lim inf
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ lim sup

T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ U(ν) < 0 ,

or, put differently, exp
(
`(ν) T

(
1 + o(1)

))
≤ P

(
âT 6= a?(ν)

)
≤ exp

(
U(ν) T

(
1 + o(1)

))
.

This problem is generally considered more difficult than the fixed-confidence setting (see, e.g., Lat-
timore and Szepesvári, 2020, Chapter 33 and Jourdan and Degenne, 2023, Section 6), and even
for parametric models like canonical one-parameter exponential models, no strategy with matching
upper and lower bounds (i.e., no optimal strategy) is known so far.
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Earlier approaches. So far, four main approaches were considered for the problem of best-arm
identification with a fixed budget. First, the early approach by Audibert et al. (2010) relies on gaps:
we define the gap ∆a of arm a as the difference µ?−µa between the largest expectation µ? in ν and
the expectation of the distribution νa. They introduce a Successive-Rejects strategy and provide
gap-based upper bounds for sub-Gaussian models, based on Hoeffding’s inequality. They however
propose a lower bound only in the case of a Bernoulli model, not for larger, non-parametric, models.
This lower bound was further discussed by Carpentier and Locatelli (2016), in a minimax sense. A
second series of approaches (see, e.g., Kaufmann et al., 2016) focused on Gaussian bandits with
fixed variances, but their results do not seem to be easily generalized to other models as they rely on
specific properties (even stronger than the symmetry of the Kullback-Leibler divergence, namely, that
in this model, the Kullback-Leibler divergence only depends on the gap between the expectations of
the distributions). A third approach, led by Russo (2016, 2020), considered canonical one-parameter
exponential families, but for a different target probability. Namely, a Bayesian setting is considered
and the quality of a strategy is measured as the posterior probability of identifying the best arm.
An optimal non-gap-based complexity is exhibited, together with optimal strategies matching this
complexity. However, Komiyama (2022) argues that such an approach is specific to the Bayesian
case and is not suited to the frequentist case that we consider. A fourth approach is to focus on
the case of K = 2 arms, see, e.g., Kaufmann et al. (2016). The non-parametric bounds obtained
therein do not enjoy any obvious generalization to the case of K ≥ 3 arms beyond the one stated in
Theorem 5.14 and criticized in Section 5.2.3 for only involving pairwise comparisons with the best
arm. By considering very specific models, Kato et al. (2022) constructed a strategy that is optimal
(only) in the regime where the gap between the 2 arms is small —yet, this gap-based approach does
not, by nature, go in the direction of non-parametric bounds.

We will provide more details concerning some of these approaches while presenting and discussing
our main results, in Section 5.2.2; see also Section 5.6.

Outline and contributions. In this chapter, we focus our attention on instance-dependent upper
and lower bounds, holding for all problems of general models D, including non-parametric mod-
els, and valid for any number K of arms. Put differently, we target a high degree of generality.
While admittedly not exhibiting matching upper and lower bounds, we show that the same (new)
information-theoretic quantities L<

inf and L>
inf are at stake in these upper and lower bounds. These

information-theoretic quantities are defined, in Section 5.2.1, as infima of Kullback-Leibler diver-
gences and provide a quantification of the difficulty of the identification in terms of the geometry
of information of the problem. We also present in Section 5.2.2 an overview of our results, which
we carefully compare to existing bounds (restated therein, occasionally with some improvements).
We state upper bounds in Section 5.3 and to do so, we provide an improved analysis of the classical
Successive-Rejects strategy, not relying on gaps through Hoeffding’s lemma. Section 5.4 exhibits
several possible lower bounds, which are inversely larger to the strength of the assumptions made on
the strategies. These lower bounds generalize known lower bounds in the literature, like the lower
bound for Bernoulli models by Audibert et al. (2010), but hold for arbitrary models. They share
some similar flavor with the lower bounds by Lai and Robbins (1985) and Burnetas and Katehakis
(1996) for the cumulative regret.

�

Notation. For a given strategy facing a bandit problem µ, let Na(t) and µ̂a(t) denote the number
of pulls and the empirical mean1 of arm a at step t:

Na(t) def=
∑
s∈[t]

I {As = a} and µ̂a(t) def= 1
Na(t)

∑
s∈[t]

Ys I {As = a} .

1As strategies initially observe each arm once, µ̂a(t) is well-defined for t ≥ K.
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Without loss of generality (see the paragraph on optional skipping page 37), we assume that the ob-
servation at time step t is Yt = XAt,NAt (t), where (Xa,n)a∈[K],n≥1 are independent random variables
such that Xa,n ∼ N (µAt , 1) for all a ∈ [K] and n ≥ 1. As a consequence, we notably get

µ̂a(t) = 1
Na(t)

Na(t)∑
n=1

Xa,n
def= µ̂a,Na(t) .

5.2. Overview of the Results and more Extended Literature Review

5.2.1. The Key new Quantities: L<
inf and L≤

inf , as well as L>
inf and L≥

inf

In this chapter, we only consider models D whose distributions all admit an expectation. We denote
by E(ζ) the expectation of a distribution ζ ∈ D. For a distribution ν ∈ D and a real number x ∈ R,
we then introduce

L<
inf(x, ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) < x

}
and L≤

inf(x, ν) = inf
{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) ≤ x

}
,

where KL denotes the Kullback-Leibler divergence and with the usual convention that the infimum
of an empty set equals +∞. Symmetrically, by considering rather distributions ζ with expectations
larger than x, we define

L>
inf(x, ν) = inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
and L≥

inf(x, ν) = inf
{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) ≥ x

}
.

We state some general properties on these quantities in Section 5.5.1 —among others, that L<
inf

and L≤
inf , as well as L>

inf and L≥
inf , are almost identical for the model P[0, 1]. The same holds for

canonical one-parameter exponential models, as discussed in Section 5.5.3 (see page 151). In our
results, lower bounds will be typically expressed with L<

inf and L>
inf quantities, while upper bounds

will rely on L≤
inf and L

≥
inf quantities.

Remark. The key quantities for the non-parametric study of best-arm identification with fixed-
confidence by Jourdan and Degenne (2023) are defined based on Kullback-Leibler divergences with
arguments in reverse order, namely,

K−
inf(ν, x) = inf

{
KL(ν, ζ) : ζ ∈ D s.t. E(ζ) < x

}
= Kinf(ν, x)

and K+
inf(ν, x) = inf

{
KL(ν, ζ) : ζ ∈ D s.t. E(ζ) > x

}
,

where the first quantity was referred to as simply Kinf(ν, x) by Honda and Takemura (2015) in the
regret-minimization literature (see also Section 5.5.3 and Garivier et al., 2022). Optimal bounds for
regret minimization only depend on Kinf(ν, x).

The introduction of L<
inf , L

≤
inf , L

>
inf , and L

≥
inf are motivated by the fact that, in fixed-budget best-

arm identification, the arguments in the KL are in reverse order compared to the fixed-confidence
setting, see Section 5.2.2 (and also Section 2.3). Except for very specific models (e.g., the model
Dσ2 of Gaussian distributions with a fixed variance σ2 > 0), the Kullback-Leibler divergence is not
symmetric, i.e., KL(ζ, ν) and KL(ν, ζ) differ in general. Specific best-arm-identification results were
obtained by Kaufmann et al. (2016) for the model Dσ2 , based on the Bretagnolle-Huber inequality
(Bretagnolle and Huber, 1979); they indicate that the sum of the inverse squared gaps would be
driving both the lower bound and upper bound functions ` and U . However, a close look at the proof
reveals that they heavily rely on a property even stronger than the symmetry of KL for this model:
details and discussions on this matter are provided in Section 5.6.2. In particular, generalizations
beyond the Gaussian case appear to be infeasible.
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5.2.2. Overview of the Results

The chapter provides new and more general (possibly non-parametric) bounds on the misidentification
errors based on the information-theoretic quantities introduced above. In particular, we consider a
version of Chernoff information defined, for ν, ν ′ in D with E(ν ′) < E(ν), as

L(ν ′, ν) = inf
x∈[E(ν′),E(ν)]

{
L≥

inf(x, ν ′) + L≤
inf(x, ν)

}
. (5.1)

Given a bandit problem ν with a unique optimal distribution denoted by ν?, we may rank the arms
a in non-decreasing order of L

(
νa, ν?

)
, i.e., consider the permutation σ such that

0 = L
(
νσ1 , ν?) < L

(
νσ2 , ν?) ≤ . . . ≤ L

(
νσK−1 , ν?) ≤ L(νσK , ν?) . (5.2)

Upper bound. Our first main result (Corollary 5.4 together with Lemma 5.5) considers models D
like D = P[0, 1], the set of all probability distributions over [0, 1], or D = Dexp, any canonical one-
parameter exponential family. We study the Successive-Rejects strategy, introduced by Audibert
et al. (2010), for which arms are rejected one by one at the end of phases of uniform exploration,
and state that this strategy is such that for all bandit problems ν in D with a unique optimal arm,

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

L
(
νσk

, ν?
)

k
, (5.3)

where log K is defined in (5.18) and is of order log K. The key for this result (Lemma 5.2, of
independent interest) is a grid-based application of the Cramér-Chernoff bound to control P

(
XN ≤

Y N

)
, where XN and Y N are averages of two independent N–samples. This approach can be used

to analyze similar algorithms, like Sequential-Halving (Karnin et al., 2013).

Lower bounds. The corresponding lower bounds are stated rather in terms of L<
inf and L

>
inf quan-

tities, but Sections 5.5.1 and 5.5.3 (page 151) explain that those quantities are almost the same than
L≤

inf and L
≥
inf for regular models like P[0, 1] and exponential models (for those models, L(ν ′, ν) could

be alternatively defined with L<
inf and L>

inf instead of L≤
inf and L≥

inf , except in a single pathological
case of the P[0, 1] model). We actually state several lower bounds in Section 5.4, that are larger
as the assumptions on the strategies considered are more restrictive; as usual, there is a trade-off
between the strength of a lower bound and its generality. However, all assumptions considered remain
rather mild and are empirically satisfied by Successive-Rejects-type strategies: for instance, Def-
inition 5.8 restricts the attention to strategies such that for all bandit problems, the arm associated
with the smallest expectation is pulled less than a fraction 1

K of the time. Out of all lower bounds
exhibited, our second main result (Theorem 5.13) holds, as indicated, under mild assumptions on
the model and sequences of strategies considered, and reads: for all bandit problems ν with no two
same expectations,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K
inf

x∈[µ(k),µ(k−1))

{L>
inf
(
x, ν(k)

)
k − 1 +

L<
inf
(
x, ν?

)
k

}
, (5.4)

where µ(1) > µ(2) > µ(3) > · · · > µ(K) and where ν(a) denotes the distribution with expectation µ(a).
Here, we considered the notation (k) for order statistics in reverse order.

This lower bound does not match the exhibited upper bound, as is further discussed in Sec-
tion 5.2.4. Still, we argue that quantities defined as infima over x of L>

inf
(
x, ν(k)

)
+ L<

inf
(
x, ν?

)
should measure how difficult a best-arm-identification problem is under a fixed budget. This is the
main insight of this chapter.
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5.2.3. Re-Derivation of Existing Bounds

We now survey the most important existing bounds and re-derive them from our general bounds.
These existing bounds all hold only for sub-Gaussian models and for exponential models when K ≥ 3,
while a non-parametric bound was only available in the case of K = 2 arms.

To do so, we will sometimes consider the following weaker version of the lower bound (5.4),
obtained by picking x = µ(k):

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K

L<
inf
(
µ(k), ν?

)
k

. (5.5)

Comparison to the gap-based approaches. Audibert et al. (2010) propose an analysis of the
Successive-Rejects strategy based on Hoeffding’s inequality, stating that for all bandit problems
in P[0, 1] with a unique optimal arm,

lim sup
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

∆2
(k)
k

, (5.6)

where we recall the definition of the gaps ∆(k) = µ? − µ(k). This bound is a consequence of
(Corollary 5.4, a slightly more general form of) the bound (5.3), given Pinsker’s inequality (5.26):

L
(
ν(k), ν?) ≥ inf

x∈[µ(k),µ?]

{
2
(
x− µ(k)

)2 + 2(x− µ?)2
}

=
(
µ? − µ(k)

)2 = ∆2
(k) . (5.7)

We remark that the bound (5.6) and the lower bound on L
(
ν(k), ν?

)
may actually be extended to

the model of σ2–sub-Gaussian distributions, up to considering factors 1
4σ2 . We do not discuss the

UCB-E algorithm of Audibert et al. (2010), as its performance and analysis crucially depend on a
tuning parameter set with some knowledge of the gaps.

Audibert et al. (2010) also propose a carefully constructed lower bound for the model B[p, 1−p] ={
Ber(x) : x ∈ [p, 1 − p]

}
of Bernoulli distributions Ber(x) with parameters x in [p, 1 − p] for some

p ∈ (0, 1
2). A key inequality in their proof follows from the Kullback-Leibler – χ2-divergence bound:

∀x, y ∈ [p, 1− p], KL
(
Ber(x), Ber(y)

)
≤ (x− y)2

2p(1− p) .

Their construction may actually be generalized to models D with CD > 0 such that for all ν, ν ′ in D,
one has KL(ν, ν ′) ≤ CD

(
E(ν)− E(ν ′)

)2. This is a property that clearly holds for some exponential
families: on top of the restricted Bernoulli model discussed above, for which

CB[p, 1−p] = 1(
2p(1− p)

) ,

we may cite the model Dσ2 of Gaussian distributions with variance σ2, for which CDσ2 = 1/(2σ2).
For models enjoying the existence of such a constant CD, (a straightforward modification of) the
analysis by Audibert et al. (2010) entails that for any ν in D,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ −5 CD min

2≤k≤K

∆2
(k)
k

. (5.8)

As by the very assumption on the model, L<
inf
(
µ(k), ν?

)
≤ CD ∆2

(k), the lower bound (5.5) implies
the stated lower bound (5.8), with an improved constant factor.
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The lower bound (5.8) and the upper bound (5.6) differ in particular by a factor proportional to
log K. Carpentier and Locatelli (2016) discuss this gap in the case of the Bernoulli model B[1/4, 3/4]
and improve the lower bound (5.8) by a factor of log K, but not simultaneously for all bandit problems
ν (as we aim for); they obtain the improvement just for one bandit problem ν. Their lower bound
result (formally stated and discussed in Section 5.6.1) is therefore of a totally different nature. More
results on how and when given lower bounds with a given complexity measure may, or may not, be
improved were stated by Komiyama et al. (2022).

Discussion on the non-parametric bound for K = 2 arms of Kaufmann et al. (2016). It turns
out that the existing literature for the fixed-budget setting offered so far a non-parametric bound, in
the case of K = 2 arms. Namely, in a general, possibly non-parametric model D, Kaufmann et al.
(2016, Theorem 12) stated a lower bound for all 2–armed bandit problems ν = (ν1, ν2):

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − inf

λ in D :
E(λa?(ν))<E(λw?(ν))

max
{

KL
(
λw?(ν), νw?(ν)

)
, KL

(
λa?(ν), νa?(ν)

)}
, (5.9)

where w?(ν) denotes the sub-optimal arm in ν and where the infimum is over all alternative bandit
problems (λ1, λ2) in D with a different best arm thant ν. We note (see the proof of Theorem 5.14)
that we may actually rewrite this lower bound in a more readable way, in terms of L<

inf and L>
inf

quantities, illustrating once again that these quantities are key in measuring the complexity of best-
arm identification under a fixed budget:

inf
λ in D :

E(λa?(ν))<E(λw?(ν))

max
{

KL
(
λw?(ν), νw?(ν)

)
, KL

(
λa?(ν), νa?(ν)

)}
= inf

x∈[µw?(ν),µ?]

{
max

{
L>

inf
(
x, νw?(ν)

)
, L<

inf
(
x, ν?)}} . (5.10)

The proof technique of Kaufmann et al. (2016) may be applied in a pairwise fashion to generalize
the lower bound (5.10) for 2 arms into a lower bound for K ≥ 2 arms, stated in Theorem 5.14: for
all ν in D with a unique optimal arm,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

k 6=a?(ν)
inf

x∈[µk,µ?]

{
max

{
L>

inf(x, νk), L<
inf(x, ν?)

}}
. (5.11)

We do not claim that (5.11) is a deep and interesting bound, as it only involves pairwise comparisons
with the best arm. In particular, we lack divisions by the ranks of the arms, as in (5.4). This is why
we had not stated the result (5.11) of Theorem 5.14 in Section 5.2.2 and mention it only here.

That being said, given that the infima in (5.4) are over more restricted ranges than in (5.11), we
can see no obvious ranking between the two bounds, which rather look incomparable.

Bounds for K = 2 arms and exponential families, cf. comments after Theorem 12 of Kauf-
mann et al. (2016). We denote by Dexp the model corresponding to a canonical one-parameter
exponential family with expectations defined on an open intervalM (see page 151 in Section 5.5.3
for a reminder on this matter). For such a model, we denote by d the mean-parameterized Kullback-
Leibler divergence. By continuity of d, we have that for all ν in Dexp and for all x ∈M,

∀x ≤ E(ν), L<
inf(x, ν) = L≤

inf(x, ν) = d
(
x, E(ν)

)
, (5.12)

and ∀x ≥ E(ν), L>
inf(x, ν) = L≥

inf(x, ν) = d
(
x, E(ν)

)
. (5.13)

Note that all bounds stated in Section 5.2.2 then admit simple reformulations in terms of d. The
Chernoff-information-type quantity L introduced in (5.1) may also be mean-parameterized as follows:
for µ′ < µ,

L(µ′, µ) = min
x∈[µ′,µ]

{
d(x, µ′) + d(x, µ)

}
. (5.14)
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We now explain why we called L (and therefore L) a version of Chernoff information. The
original definition of the Chernoff information D(µ′, µ) is the value d(y, µ) for y ∈ [µ′, µ] such that
d(y, µ′) = d(y, µ). As mentioned in the comments after Theorem 12 of Kaufmann et al. (2016),
D is the quantity at stake in (5.10) for a canonical one-parameter exponential family: given that
d( · , µ′) and d( · , µ) are respectively increasing and decreasing on [µ′, µ],

min
x∈[µ′,µ]

max
{
d(x, µ′), d(x, µ)

}
= D(µ′, µ) .

Therefore, D(µ′, µ) ≤ L(µ′, µ) ≤ 2 D(µ′, µ), which shows that L is related to D, as claimed.

Example 5.1. We state the lower bound (5.5) and the upper bound (5.3) for the model B[p, 1−p]
of Bernoulli distributions with parameters in [p, 1− p], where p ∈ (0, 1

2). We denote by

kl(x, y) = x log x

y
+ (1− x) log 1− x

1− y
, where x, y ∈ [p, 1− p]

the mean-parameterized Kullback-Leibler divergence of this model. We consider a generic bandit
problem ν =

(
Ber(p1), . . . , Ber(pK)

)
. We rank the parameters as in (5.4), i.e., introduce the

notation p? = p(1) > p(2) > . . . > p(K). Then, after noticing (see Lemma 5.19 in Section 5.5.3)
that this ranking is the same as the one considered in (5.2), the upper bound (5.3) rewrites as

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

min
x∈[p(k),p?]

{
kl
(
x, p(k)

)
+ kl(x, p?)

}
k

,

while the lower bound (5.5) rewrites as

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K

kl
(
p(k), p?

)
k

.

They should be compared to the upper (5.6) and lower (5.8) bounds of Audibert et al. (2010),
respectively.

5.2.4. Discussion of the (Lack of) Optimality of the new Bounds Exhibited

The lower bound (5.4) does not match the upper bound (5.3) because of two aspects. First, the infima
in (5.4) are only taken on restricted ranges [µ(k), µ(k−1)) and not on the entire intervals [µ(k), µ?]
as in (5.3). Second, the upper bound (5.3) involves a 1/ log K factor, while the lower bound (5.4)
does not. A similar 1/ log K factor was missing between the upper (5.6) and lower (5.8) bounds
of Audibert et al. (2010) for Bernoulli models, together with a numerical factor of 5 CB[p, 1−p] . The
non-parametric bounds exhibited in this chapter mainly generalize and extend the known parametric
bounds but do not refine the latter in the sense that gaps between upper and lower bounds would
be closed.

That being said, we would like to illustrate below one specific example to which extent the
gap-based bounds can be looser.

Example of an extreme improvement: distributions with separated supports. For general
non-parametric models, gaps are not enough at all to measure complexity as we may well have a
finite gap between two distributions ν1 and ν2 with µ1 > µ2, but L(ν2, ν1) = +∞. This holds, for
instance, as soon as ν1 and ν2 have closed supports separated by a threshold x0 (see Figure 5.1),
i.e., the closed supports of ν1 and ν2 are included in (−∞, x0) and (x0, +∞), respectively. Indeed,
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by mimicking the beginning of the proof of Lemma 5.16, it may be seen that L≤
inf(x, ν1) = +∞

for x ≤ x0 and L≥
inf(x, ν2) = +∞ if x ≥ x0, so that in all cases, the sum L≥

inf(x, ν2) + L≤
inf(x, ν1)

equals +∞, and thus, L(ν2, ν1) = +∞. In our bounds, e.g., the upper bound (5.3), the pair of
distributions ν1, ν2 will therefore not contribute —as intuition commands: these two distributions
are easy to distinguish—, while it does contribute to the earlier gap-based bounds.

ν1

µ1

ν2

µ2 x0

Figure 5.1: When the two distributions have separated supports, there is no confusion to identify
which of both has the highest mean.

5.3. Upper Bound for the Successive-Rejects Strategy, with an Im-
proved Analysis

We consider the Successive-Rejects strategy introduced by Audibert et al. (2010), for K arms
and a budget T . The strategy works in phases, and the lengths of the phases are set beforehand; they
are denoted by `1, . . . , `K−1 ≥ 1 and satisfy `1 + . . . + `K−1 = T . The strategy maintains a list of
candidate arms, starting with all arms, i.e., S0 = [K]. At the end of each phase r ∈ {1, . . . , K − 1},
it drops an arm to get Sr, while during phase r, it operates with the K − r + 1 arms in Sr−1.

More precisely, during phase r ∈ {1, . . . , K − 1}, the strategy draws
⌊

`r
K−r+1

⌋
times each arm in

Sr−1 (and does not use the few remaining time steps, if there are some). At the end of each phase r,
the strategy computes the empirical averages X

r
a of the payoffs obtained by each arm a ∈ Sr−1 since

the beginning; i.e., X
r
a is an average over

Nr =
⌊

`1
K

⌋
+ . . . +

⌊
`r

K − r + 1

⌋
i.i.d. realizations of νa. It then drops the arm ar with smallest empirical average (ties broken
arbitrarily). This description is summarized in Algorithm 16.

5.3.1. General Analysis

The key quantities for the general analysis will be the logarithmic moment-generating function φν of
a distribution ν ∈ D, and its Fenchel-Legendre transform φ?

ν :

∀λ ∈ R, φν(λ) = log
∫
R

eλx dν(x) and ∀x ∈ R, φ?
ν(x) = sup

λ∈R

{
λx− φν(λ)

}
. (5.15)

Based on them, we can now define, for all ν, ν ′ ∈ D with E(ν ′) < E(ν),

Φ(ν ′, ν) def= inf
x∈[E(ν′),E(ν)]

{
φ?

ν′(x) + φ?
ν(x)

}
.

The following lemma shows that Φ plays a significant role in bounding the probability that two
sample averages are in reverse order compared to the expectations of the underlying distributions. It
supersedes the use of Hoeffding’s inequality in Audibert et al. (2010).
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Algorithm 16: Successive-Rejects algorithm
Input: budget parameter T

phase lengths (`r)r∈[K−1] such that
∑

r∈[K−1] `r = T
Output: estimated best arm âT

1 t← 0
2 S0 ← [K]
3 for each round r ∈ [K − 1] do
4 Observe each arm

⌊
`r

K−r+1

⌋
times

5 Increase t by `r

6 Choose ar ∈ argmin
a∈Sr−1

µ̂a(t)

7 Sr ← Sr−1 \ {ar}
8 Define âT as the unique element of SK−1

Lemma 5.2. Fix ν and ν ′ in D, with respective expectations µ = E(ν) > µ′ = E(ν ′). For all
N ≥ 1, let XN and Y N be the averages of N–samples with respective distributions ν and ν ′.
Then,

lim sup
N→+∞

1
N

logP
(
XN ≤ Y N

)
≤ − inf

x∈[µ′,µ]

{
φ?

ν′(x) + φ?
ν(x)

} def= −Φ(ν ′, ν) .

Proof. The proof consists of two parts. We first show that for any finite grid G = {g2, . . . , gG−1} in
(µ′, µ), to which we add the points g1 = µ′ and gG = µ, we have

lim sup
N→+∞

1
N

logP
(
XN ≤ Y N

)
≤ −min

{
φ?

ν(µ′), min
2≤j≤G−1

{
φ?

ν′(gj−1) + φ?
ν(gj)

}
, φ?

ν′(µ)
}

. (5.16)

Indeed, by identifying (when XN and Y N belong to [µ′, µ]) in which interval [gj−1, gj ] lies XN , we
note that

{
XN ≤ Y N

}
⊆

{
XN ≤ µ′} ∪ {

Y N ≥ µ
}
∪

G−1⋃
j=2

{
Y N ≥ gj−1 and XN ≤ gj

}
.

µ′ µ

Y NXN

gj−1 gj

P
(
Y N > gj−1

)
≤ exp

(
−Nϕ⋆

ν′(gj−1)
)

P
(
XN < gj

)
≤ exp

(
−Nϕ⋆

ν(gj)
)

Figure 5.2: Control of the probability of
{
Y N ≥ gj−1 and XN ≤ gj

}
using a Cramér-Chernoff

bound.

First, by independence and by the Cramér-Chernoff inequalities (5.29) and (5.30),

P
(
Y N ≥ gj−1 and XN ≤ gj

)
= P

(
Y N ≥ gj−1

)
P
(
XN ≤ gj

)
≤ exp

(
−N

(
φ?

ν′(gj−1) + φ?
ν(gj)

))
.
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Second, again by the Cramér-Chernoff inequalities,

P
(
XN ≤ µ′) ≤ exp

(
−N φ?

ν(µ′)
)

and P
(
Y N ≥ µ

)
≤ exp

(
−N φ?

ν′(µ)
)

.

By a union bound,

P
(
XN ≤ Y N

)
≤ exp

(
−N φ?

ν(µ′)
)

+ exp
(
−N φ?

ν′(µ)
)

+
G−1∑
j=2

exp
(
−N

(
φ?

ν′(gj−1) + φ?
ν(gj)

))
.

The stated bound (5.16) follows by identifying the (finitely many) terms with the smallest rate in
the exponent.

In the second part of the proof, we note that the bound (5.16) holds for any finite grid in (µ′, µ),
and we consider a sequence

G(n) =
{

g
(n)
2 , . . . , g

(n)
Gn−1

}
of such finite grids. In particular,

lim sup
N→+∞

1
N

logP
(
XN ≤ Y N

)
≤ −min

{
φ?

ν(µ′), max
n≥1

Sn, φ?
ν′(µ)

}
,

where Sn
def= min

2≤j≤Gn−1

{
φ?

ν′
(
g

(n)
j−1
)

+ φ?
ν

(
g

(n)
j

)}
.

To obtain the claimed bound, given that (see the end of Section 5.5.2)

φ?
ν(µ) = 0 = φ?

ν′(µ′) ,

it suffices to show that
max
n≥1

Sn ≥ inf
x∈[µ′,µ]

{
φ?

ν′(x) + φ?
ν(x)

}
.

To that end, we assume that the steps εn of the grids G(n), which are defined as

εn
def= max

2≤j≤Gn

∣∣∣g(n)
j − g

(n)
j−1

∣∣∣ ,
vanish asymptotically, i.e., εn → 0. For each grid G(n), we denote by x?

n ∈ (µ′, µ) the argument of
the minimum in the definition of Sn. As a consequence, for each n ≥ 1,

Sn = φ?
ν′(x?

n − ε?
n) + φ?

ν(x?
n) ,

for some 0 < ε?
n ≤ εn. The quantity x?

n − ε?
n denotes the point in the grid that is right before x?

n,
and it belongs to [µ′, µ). We note that we also have ε?

n → 0. In the compact interval [µ′, µ], the
Bolzano-Weierstrass theorem (see, e.g., Bartle and Sherbert, 2000, Section 3.4) ensures the existence
of a converging sub-sequence: there exists x?

∞ ∈ [µ′, µ] and a sequence (nk)k≥1 of integers such
that

x?
nk
−→

k→+∞
x?

∞ , which also entails x?
nk
− ε?

nk
−→

k→+∞
x?

∞ .

Now, the functions φ?
ν , respectively, φ?

ν′ , are lower semi-continuous, as the suprema over λ ∈ R of
the continuous functions x 7→ λx−ϕν(λ), respectively, x 7→ λx−ϕν′(λ). Therefore, by these lower
semi-continuities,

max
n≥1

Sn ≥ lim inf
k→+∞

φ?
ν′(x?

nk
− ε?

nk
) + φ?

ν(x?
nk

) ≥ φ?
ν′(x?

∞) + φ?
ν(x?

∞)

≥ inf
x∈[µ′,µ]

{
φ?

ν′(x) + φ?
ν(x)

}
.

This concludes the proof.
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General upper bound. The main performance upper bound is stated below in terms of Φ, that is,
in terms of Fenchel-Legendre transforms of logarithmic moment-generating functions. Section 5.4.2
will later explain why and when the latter may be replaced by L≤

inf and L
≥
inf quantities, leading to a

rewriting Φ = L and to the bound claimed in (5.3).

Theorem 5.3. Fix K ≥ 2 and a model D. Consider a sequence of Successive-Rejects
strategies, indexed by T , such that Nr/T → γr > 0 as T → +∞ for all r ∈ {1, . . . , K − 1}. Let
ν be a bandit problem in D with a unique optimal arm and, for each r ∈ {1, . . . , K − 1}, let Ar

be a subset of arms of cardinality r that does not contain a?(ν). Then

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − min

1≤r≤K−1

{
γr min

k∈Ar

Φ
(
νk, ν?)} .

The proof mimics the analysis by Audibert et al. (2010), the main modification being the substi-
tution of Hoeffding’s inequality by the bound of Lemma 5.2.

Proof. We recall that for r ∈ {1, . . . , K− 1}, we denoted by Nr = b`1/Kc+ . . . + b`r/(K− r + 1)c
the total number of times an arm still considered in phase r, i.e., belonging to Sr−1, was pulled in
phases 1 to r. For each arm a, we denote by Y

r
a the average of a Nr–sample distributed according to

νa. By optional skipping (see Doob, 1953, Chapter III, Theorem 5.2, p. 145, or Chow and Teicher,
1988, Section 5.3 for a more recent reference), we may assume, with no loss of generality, that for
each r ∈ {1, . . . , K − 1},

on the event {a ∈ Sr−1}, X
r
a = Y

r
a . (5.17)

We fix a bandit problem ν with a unique optimal arm a?(ν). The Successive-Rejects strategy
fails if (and only) if it rejects a?(ν) in one of the phases. This corresponds to the event

{
âT 6= a?(ν)

}
=

K−1⋃
r=1

{
ar = a?(ν)

}
⊆

K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, X

r
a?(ν) ≤ X

r
k

}
,

where we recall that ar is the arm removed at the end of phase r (we have an inclusion because ties
are broken arbitrarily). By optional skipping (5.17),

K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, X

r
a?(ν) ≤ X

r
k

}

=
K−1⋃
r=1

{
a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, Y

r
a?(ν) ≤ Y

r
k

}
.

Recall that the set Sr−1 is a random set; dealing with it therefore requires some care. On the event
of interest, Sr−1 contains K − r + 1 elements, among which a?(ν). The set Ar is of cardinality r
and does not contain a?(ν). By the pigeonhole principle, Sr−1 thus necessarily contains one arm
in Ar. As a consequence, for each phase r ∈ {1, . . . , K − 1},{

a?(ν) ∈ Sr−1 and ∀k ∈ Sr−1, Y
r
a?(ν) ≤ Y

r
k

}
⊆

⋃
k∈Ar

{
Y

r
a?(ν) ≤ Y

r
k

}
.

Summarizing the inclusions above, taking unions bounds, and upper bounding the obtained sum in
a crude way, we proved so far

P
(
âT 6= a?(ν)

)
≤

K−1∑
r=1

∑
k∈Ar

P
(
Y

r
a?(ν) ≤ Y

r
k

)
≤ K2 max

1≤r≤K−1
max
k∈Ar

P
(
Y

r
a?(ν) ≤ Y

r
k

)
,

Page 134 / 192



5.3. UPPER BOUND FOR THE SUCCESSIVE-REJECTS STRATEGY, WITH AN IMPROVED ANALYSIS

or equivalently,
1
T

logP
(
âT 6= a?(ν)

)
≤ 2

T
log K + max

1≤r≤K−1
max
k∈Ar

1
T

logP
(
Y

r
a?(ν) ≤ Y

r
k

)
= 2

T
log K + max

1≤r≤K−1
max
k∈Ar

Nr

T

1
Nr

logP
(
Y

r
a?(ν) ≤ Y

r
k

)
.

As Nr/T → γr > 0 as T → +∞, we may apply Lemma 5.2, together with an exchange between
the lim sup and the maximum over a finite number of quantities. We obtain

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ max

1≤r≤K−1
max
k∈Ar

{
γr

(
−Φ

(
νk, ν?))}

= − min
1≤r≤K−1

{
γr min

k∈Ar

Φ
(
νk, ν?)} .

This concludes the proof.

With the phase lengths of Audibert et al. (2010). We conclude this subsection by stating the
bound of Theorem 5.3 for the phase lengths suggested by Audibert et al. (2010), namely,

`1
def= T

log K
, and ∀r ∈ {2, . . . , K − 1}, `r

def= T

(K − r + 2) log K
, (5.18)

where we define

log K
def= 1

2 +
K∑

k=2

1
k

,

The phase lengths in the example case of K = 6 arms are shown in Figure 5.3. Rather thant Φ, it

0 T

ℓ1 =
⌈

T

ln 6

⌉

6 arms, uniform exploration
ℓ2 =

⌈
T

6 ln 6

⌉
ℓ3 =

⌈
T

5 ln 6

⌉
ℓ4 =

⌈
T

4 ln 6

⌉
ℓ5 =

⌈
T

3 ln 6

⌉

2 arms

Figure 5.3: Successive-Rejects phase lengths of Audibert et al. (2010) for K = 6 arms.

is sometimes handy to rely on more readable quantities, this is why we will consider lower bounds
f
(
νk, ν?

)
on the Φ

(
νk, ν?

)
quantities. We may of course use f = Φ but f can also be, for instance,

the squared gaps: in the case of the P[0, 1] model, Hoeffding’s inequality entails that

φ?
ν(x) ≥ 2

(
x− E(ν)

)2
, so that Φ

(
νk, ν?) ≥ ∆2

k
def= f

(
νk, ν?) , (5.19)

as explained in the proof below.
Remark. Such bounds hold more generally in models consisting of sub-Gaussian distributions. For
ease of exposition, the path followed in Section 5.2.2 to show that Φ

(
νk, ν?

)
≥ ∆2

k was to first note
that Φ = L when D = P[0, 1] (see Lemma 5.5) and then use Pinsker’s inequality (5.7). We provide
below a slightly more direct but equivalent approach, based on Hoeffding’s inequality.
Proof of (5.19). When ν ∈ P[0, 1], Hoeffding’s inequality exactly states that

∀λ ∈ R, φν(λ) ≤ λE(ν) + λ2

8 ,

so that ∀x ∈ R, φ?
ν(x) ≥ sup

λ∈R

{
λ
(
x− E(ν)

)
− λ2

8

}
= 2

(
x− E(ν)

)2
.

This corresponds to the first part of (5.19).
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For its second part, we consider a pair ν, ν ′ of distributions in P[0, 1], we set any x ∈ [E(ν ′), E(ν)],
and we apply twice the bound of the first part to get

φ?
ν′(x) + φ?

ν(x) ≥ 2
(
x− E(ν ′)

)2 + 2
(
x− E(ν)

)2
.

From the definition of Φ, it follows that

Φ(ν ′, ν) ≥ inf
x∈[E(ν′),E(ν)]

{
2
(
x− E(ν ′)

)2 + 2
(
x− E(ν)

)2} =
(
E(ν ′)− E(ν)

)2
.

This corresponds to the second part of (5.19).

We now order the arms into σ1, . . . , σK based on f , namely, we let σ1 = a?(ν) and

0 = f
(
νσ1 , ν?) < f

(
νσ2 , ν?) ≤ . . . ≤ f

(
νσK−1 , ν?) ≤ f

(
νσK , ν?) , (5.20)

and we take Ar = {σK−r+1, . . . , σK}. We obtain the following corollary.

Corollary 5.4. Fix K ≥ 2, a model D, and consider a lower bound f on Φ. The sequence of
Successive-Rejects strategies based on the phase lengths (5.18) ensures, that for all bandit
problems ν in D with a unique optimal arm,

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

2≤k≤K

f
(
νσk

, ν?
)

k
,

where arms were reordered as in (5.20).

Proof. To apply Theorem 5.3, we need only to show that the phase lengths of (5.18) are such that
Nr/T converges to a positive value, and to identify this limit value γr. As N1 = b`1/Kc, where
`1 = T/ log K, we immediately have N1/T → γ1 = 1/

(
K log K

)
> 0. For r ∈ {2, . . . , K − 1},

Nr

T
=

r∑
p=1

1
T

⌊
`p

K

⌋
= 1

T

(⌊
T

K log K

⌋
+

r∑
p=2

⌊
T

(K − p + 1)(K − p + 2) log K

⌋)

−→
T →+∞

γr
def= 1

log K

( 1
K

+
r∑

p=2

1
K − p + 1 −

1
K − p + 2

)
= 1

(K − r + 1) log K
.

The bound of Theorem 5.3 reads:

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

1≤r≤K−1

{ 1
K − r + 1 min

k∈Ar

Φ
(
νk, ν?)} .

It implies, in terms of lower bounds f(νk, ν?) ≤ Φ
(
νk, ν?

)
,

lim sup
T →+∞

1
T

logP
(
âT 6= a?(ν)

)
≤ − 1

log K
min

1≤r≤K−1

{ 1
K − r + 1 min

k∈Ar

f
(
νk, ν?)} . (5.21)

The permutation σ in (5.20) and the sets Ar = {σK−r+1, . . . , σK} were exactly picked, for each
r ∈ {1, . . . , K − 1}, to minimize

min
k∈Br

f
(
νk, ν?)

over sets Br abiding by the indicated constraints: being of cardinal r and not containing the optimal
arm a?(ν) = σ1. We get

min
k∈Ar

f
(
νk, ν?) = min

K−r+1≤k≤K
f
(
νσk

, ν?) = f
(
νσK−r+1 , ν?) ,
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which, together with (5.21), yields the stated bound, up to replacing K−r+1 with r ∈ {1, . . . , K−1}
by k ∈ {2, . . . , K}:

− 1
log K

min
1≤r≤K−1

{ 1
K − r + 1f

(
νσK−r+1 , ν?)} = − 1

log K
min

2≤k≤K

{1
k

f
(
νσk

, ν?)} .

5.3.2. On Links between Φ and the Quantities L<
inf , L

≤
inf , L>

inf and L≥
inf

The Fenchel-Legendre transform φ?
ν of the logarithmic moment-generating function of ν admits a

classical (see, e.g., Boucheron et al., 2013, Exercice 4.13) dual formulation in terms of infima of
Kullback-Leibler divergences. The following lemma, proved in Section 5.5.3 (see page 149), reveals
that these infima correspond to L≤

inf and L≥
inf for the model P[0, 1] of distributions supported on

[0, 1].

Lemma 5.5. Consider the model D = P[0, 1]. For all ν ∈ P[0, 1],

∀x ≤ E(ν), φ?
ν(x) = L≤

inf(x, ν) and ∀x ≥ E(ν), φ?
ν(x) = L≥

inf(x, ν) .

Based on this lemma, we have the following rewriting, which is useful to reinterpret the quantities
appearing in Theorem 5.3 and Corollary 5.4: Φ(ν ′, ν) = L(ν ′, ν) for the model P[0, 1], i.e.,

inf
x∈[E(ν′),E(ν)]

{
φ?

ν′(x) + φ?
ν(x)

}
= inf

x∈[E(ν′),E(ν)]

{
L≥

inf(x, ν ′) + L≤
inf(x, ν)

}
. (5.22)

For canonical one-parameter exponential models Dexp, a slightly weaker version of Lemma 5.5, only
holding for x corresponding to expectations in Dexp and provided in page 151 of 5.5.3.151, similarly
shows (5.22), i.e., Φ = L. Conditions on general models for Φ = L to hold are discussed in 5.5.3.152.

5.4. Lower Bounds

In most of this section, we restrict our attention to generic2 K–armed bandit problems ν, that are
such that µj 6= µk for j 6= k. In particular, the best arm a?(ν) is unique.

Definition of a strategy, and of a (doubly-indexed) sequence of strategies. In the fixed-budget
setting, a strategy is defined by
• a sampling rule, which consists in choosing the arm At ∈ [K] to observe at each time step

t ∈ [T ]. This arm At depends on the previous observations Y1, . . . , Yt−1, but also possibly
on some external randomization that we capture by the random variable Ut−1. At is thus
Ft−1–measurable, where

Ft−1
def= σ(It−1) , with It−1

def=
(
U0, Y1, U1, Y2, U2, . . . , Yt−1, Ut−1

)
.

It−1 corresponds to the information available at the end of time step t− 1, i.e., to the history.
• a decision rule âT which is FT –measurable.

A strategy depends on the budget T and the number K of arms. As we are interested in asymptotic
rates when the budget T goes to∞, we consider sequences of strategies indexed by T . Our results will
depend on assumptions made on the strategies, which will sometimes be stated for doubly-indexed
sequences, that is, sequences of strategies indexed by T and K.

2This is probably a new terminology3 for referring to bandit problems with no two same expectations for the
distributions over the arms. It comes from measure theory: if expectations were drawn at random according to some
diffuse distribution, e.g., a uniform distribution over an interval, or a Gaussian distribution, then, almost surely, no two
expectations would be equal.
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Outline of this section. As always in lower-bound results, there is a trade-off between how re-
strictive are the assumptions on the (doubly-indexed) sequences of strategies, and sometimes on the
models, and how large the lower bounds are: the more restrictive the assumptions, the larger the
lower bounds. We are interested in assumptions on strategies that are natural in the sense that they
should be satisfied by Successive-Rejects-type strategies. For instance, Theorem 5.14 comes
with the least assumptions but provides a bound where there are no divisions by the ranks k of the
arms, which Theorems 5.10 and 5.13 do. We may see Theorem 5.10 as a warm-up result: its main
aim is to generalize the lower bound by Audibert et al. (2010) to non-parametric models with a (non-
constructive) proof that is only a few-line long. Our preferred result is Theorem 5.13, which provides
the largest lower bound while putting the heaviest (though natural) constraints on the sequences of
strategies.

5.4.1. Common Restriction: Consistence

For our lower bounds, we will consider sequences of strategies, either only indexed by T ≥ 1 given
a value of K ≥ 2, or doubly indexed by T and K. These sequences will also be assumed to be
“reasonable” in the sense below.

Consistent (or exponentially consistent) sequences of strategies. The misidentification prob-
ability P

(
âT 6= a?(ν)

)
may vanish asymptotically (and even vanish exponentially fast) for all bandit

problems —in not too large a model D—, as illustrated in Section 5.3. We will therefore only be
interested in such sequences of strategies, called (exponentially) consistent. In the sequel and for
extra clarity, we index the probabilities by the ambient bandit problem ν considered.

Definition 5.6. [(exponentially) consistant sequence of strategies]
Fix K ≥ 2. A sequence of strategies indexed by T ≥ 1 is consistent, respectively, exponentially
consistent, on a model D if for all generic problems ν in D,

Pν
(
âT 6= a?(ν)

)
−→

T →+∞
0 , respectively, lim sup

T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
< 0 .

By extension, a doubly-indexed sequence of strategies is (exponentially) consistent if for all K ≥ 2,
the associated sequences of strategies are so.

The fundamental inequality. The fundamental inequality by Garivier et al. (2019), together with
the very definition of consistency, yields in a straightforward manner our building block for lower
bounds. Details of the derivation are provided in Section 2.3.3.

Lemma 5.7. Fix K ≥ 2 and a model D. Consider a consistent sequence of strategies on D, and
two generic bandit problems ν and λ in D such that a?(λ) 6= a?(ν). Then

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − lim sup

T →+∞

K∑
a=1

Eλ[Na(T )]
T

KL(λa, νa) .

Note that the proof reveals that the inequality actually holds for limits taken along sub-sequences
(Tn)n≥1. Also, we may only relax the assumptions on the bandit models; e.g., they do not need
to be generic and it suffices that they have different unique optimal arms (the notion of a generic
bandit problem is defined in the first lines of Section 5.4).
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5.4.2. A Lower Bound Revisiting and Extending the one by Audibert et al.
(2010)

The focus of this subsection is to establish the lower bound (5.5), from which we derived the gap-
based lower bound (5.6) by Audibert et al. (2010). The lower bound (5.5) is smaller than the lower
bound to be exhibited in the next subsection, but it comes with less restrictive assumptions on the
behaviors of the sequences of strategies considered.

Firstly, we only consider sequences of strategies —actually, sequences of sampling schemes—
that do not pull too often the worst arm, and which we will refer to as being balanced against
the worst arm. Successive-Rejects-type strategies sample the worst arm less than other arms
in expectations, and hence, are indeed balanced against the worst arm. To define this constraint
formally, we denote by w?(ν) the index of the unique worst arm of a generic bandit problem ν.

Definition 5.8. [balanced against the worst arm sequence]
A doubly-indexed sequence of strategies is balanced against the worst arm on a model D if for all

K ≥ 2, for all generic K–armed bandit problems ν in D,

lim sup
T →+∞

1
T
Eν
[
Nw?(ν)(T )

]
≤ 1

K
.

A second constraint is related to bandit sub-problems. We say that ν ′ is a sub-problem of a
K–armed bandit problem ν if ν ′ = (νa)a∈A for a subset A ⊆ [K] of cardinality greater than or equal
to 2; we denote by ν ′ ⊆ ν this fact. We say in addition that ν ′ and ν feature the same optimal
arm if ν ′

a?(ν′) = νa?(ν). It should be easier to identify the best arm in ν ′ than in ν, in the sense
below, and this defines the fact that a strategy cleverly exploits pruning of sub-optimal arms. Again,
Successive-Rejects-type strategies naturally satisfy this constraint.

Definition 5.9. [clever exploitation of the pruning of sub-optimal arms]
A doubly-indexed sequence of strategies cleverly exploits pruning of sub-optimal arms on a model
D if for all generic bandit problems ν in D with K ≥ 2 arms, for all sub-problems ν ′ ⊆ ν featuring
the same optimal arm,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ lim inf

T →+∞

1
T

logPν′
(
âT 6= a?(ν ′)

)
.

We use again the order statistics µw?(ν) = µ(K) < µ(K−1) < . . . < µ(1) = µa?(ν).

Theorem 5.10. Fix a model D. Consider a doubly-indexed sequence of strategies that is consis-
tent, balanced against the worst arm on D, and that cleverly exploits the pruning of sub-optimal
arms on D. For all generic bandit problems ν in D with K ≥ 2 arms,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K

L<
inf
(
µ(k), ν?

)
k

.

Proof. The proof consists of two steps. The first step is to prove that for a generic bandit problem
ν in D with K ≥ 2 arms, we have,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ −
L<

inf
(
µ(K), ν?

)
K

. (5.23)
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Figure 5.4: The alternative λ of bandit problem ν is obtained by modifying only the best arm of ν.

In the second step, we use this lower bound and the very definition of the clever exploitation of the
pruning of sub-optimal arms to get the claimed bound.

Step 1: lower bound (5.23). We follow a well-established methodology and consider an alternative
bandit problem only differing from ν at one arm, namely, at the best arm. To do so, we set some
distribution ζ ∈ D with E(ζ) < µ(K), if some exists, and define the bandit problem λ = (λ1, . . . , λK)
as

λa =
{

ζ if a = a?(ν),
νa if a 6= a?(ν).

Observe (see Figure 5.4 that λ is also a generic bandit problem in D, that a?(ν) is the worst arm
in λ (and also that the second best arm of ν is the optimal arm in λ, but we will not use this specific
fact). Therefore, Lemma 5.7 yields, as λ and ν only differ at arm a?(ν),

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − lim sup

T →+∞

Eλ[Na?(ν)(T )]
T

KL(λa?(ν), ν?) ,

where we recall that ν? = νa?(ν). Given that a?(ν) is the worst arm of λ, and since by assumption,
the sequence of strategies is balanced against the worst arm,

lim sup
T →+∞

1
T
Eλ

[
Na?(ν)(T )

]
≤ 1

K
,

proving that
lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ −KL(ζ, ν?)

K
.

The claimed inequality (5.23) follows from taking the supremum on the right-hand side over distri-
butions ζ ∈ D with E(ζ) < µ(K).

Step 2: clever exploitation of pruning. For each k ∈ {2, . . . , K − 1}, define ν ′
1:k as the sub-

problem of ν obtained by keeping the k best arms and dropping the K − k worst arms. Use the
definition of clever exploitation of pruning of sub-optimal arms and apply (5.23) to ν ′

1:k to get

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ lim inf

T →+∞

1
T

logPν′
1:k

(
âT 6= a?(ν ′

1:k
))
≥ −
L<

inf
(
µ(k), ν?

)
k

.

Taking the maximum of all lower bounds exhibited as k varies between 2 and K, we proved the
claimed result.
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5.4.3. A Larger Lower Bound, for a more Restrictive Class of Strategies

In this section, we derive a slightly stronger version of the lower bound (5.4). This lower bound
is larger than the bound exhibited in the previous subsection but relies on stronger assumptions
on the strategies considered. Namely, we introduce an assumption of monotonicity, which extends
Definition 5.8 to provide frequency constraints on each arm a ∈ [K].

Definition 5.11. [monotonous sequence of strategies]
Fix K ≥ 2. A sequence of strategies is monotonous on a model D if for all generic problems ν in
D, for all arms a ∈ {1, . . . , K},

lim sup
T →+∞

Eν
[
N(a)(T )

]
T

≤ 1
a

,

where arms are ordered such that µ(1) > µ(2) > · · · > µ(K).

This condition is satisfied as soon as a given arm is not pulled more often, asymptotically and
on average, than better-performing arms (note that Definition 5.11 is slightly weaker than this).
Successive-Rejects-type strategies naturally satisfy this requirement.

We also rely on the following assumption on the model D, which essentially indicates that there
is “no gap” in D. Once again, the model P[0, 1] and canonical one-parameter exponential models
Dexp all satisfy this mild requirement (see Section 5.5.4 for the immediate details).

Definition 5.12. A model D is normal if for all ν ∈ D, for all x ≥ E(ν),

∀ε > 0, L>
inf(x, ν) def= inf

{
KL(ζ, ν) : ζ ∈ D s.t. E(ζ) > x

}
= inf

{
KL(ζ, ν) : ζ ∈ D s.t. x + ε > E(ζ) > x

}
.

Theorem 5.13. Fix K ≥ 2 and a normal model D. Consider a sequence of strategies that is
consistent and monotonous on D. For all generic bandit problems ν in D,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

2≤k≤K
min

2≤j≤k
inf

x∈[µ(j),µ(j−1))

{L>
inf
(
x, ν(k)

)
j − 1 +

L<
inf
(
x, ν?

)
j

}
.

Proof. We fix a generic bandit ν in D and consider the following sets of alternative bandit problems,
indexed by triplets (k, j, x) satisfying 2 ≤ k ≤ K and 2 ≤ j ≤ k, as well as x ∈ [µ(j), µ(j−1)):

Altk,j,x(ν) =
{

λ in D : E
(
λ(1)

)
< x < E

(
λ(k)

)
< µ(j−1) and λa = νa for a /∈

{
(1), (k)

}}
;

in particular, an alternative problem λ in Altk,j,x(ν) only differ from the original bandit problem ν
at the best arm (1) and at the k–th best arm (k). Given x ∈

[
µ(j), µ(j−1)

)
and E

(
λ(1)

)
< x, arm

(1) is at best the j–th best arm of λ, but it can be possibly worse. Similarly, the same condition on
x and the fact that x < E

(
λ(k)

)
implies that arm (k) is exactly the j − 1–th best arm of λ. Both

facts are illustrated in Figure 5.5.
Thus, by monotonicity of the strategy,

lim sup
T →+∞

Eλ

[
N(k)(T )

]
T

≤ 1
j − 1 and lim sup

T →+∞

Eλ

[
N(1)(T )

]
T

≤ 1
j

.
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Figure 5.5: Original bandit problem ν (in dark) and modifications made to arms (1) and (k) to
obtain an alternative bandit problem λ ∈ Altk,j,x(ν) (in blue): in λ, arm (k) is the j − 1–th best
arm, while arm (1) = a?(ν) is at best the j–th best arm.

Given that the optimal arm in λ is different from the optimal arm (1) of ν, Lemma 5.7 may be
applied; together with the two upper bounds above, it yields

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ −

(KL
(
λ(k), ν(k)

)
j − 1 +

KL
(
λ(1), ν?

)
j

)
.

We can now take the infimum over all bandit problems λ ∈ Altk,j,x(ν) and obtain the following lower
bound, where we define a quantity Ik,j,x(ν):

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − inf

λ∈Altk,j,x(ν)

{KL
(
λ(k), ν(k)

)
j − 1 +

KL
(
λ(1), ν?

)
j

}
def= −Ik,j,x(ν) .

We prove below that

Ik,j,x(ν) =
L>

inf
(
x, ν(k)

)
j − 1 +

L<
inf
(
x, ν?

)
j

, (5.24)

from which the lower bound claimed in Theorem 5.13 will follow, by taking the supremum of
−Ik,j,x(ν) first over x ∈

[
µ(j), µ(j−1)

)
, then the maximum over 2 ≤ j ≤ k, and finally, the maximum

over 2 ≤ k ≤ K.
We now prove (5.24). The infimum over λ ∈ Altk,j,x(ν) may be split into two separate infima,

respectively over λ(k) and λ(1); given that each term of the sum of KL only depends either on λ(k),
or on λ(1), but not on both, we may write

Ik,j,x(ν) = inf
λ(1),λ(k)∈D :

E(λ(1))<x

x<E(λ(k))<µ(j−1)

{KL
(
λ(k), ν(k)

)
j − 1 +

KL
(
λ(1), ν?

)
j

}

= 1
j − 1 inf

λ(k)∈D :
x<E(λ(k))<µ(j−1)

KL
(
λ(k), ν(k)

)
︸ ︷︷ ︸

=L>
inf(x,ν(k))

+1
j

inf
λ(1)∈D :

E(λ(1))<x

KL
(
λ(1), ν?)

︸ ︷︷ ︸
=L<

inf(x,ν?)

,

where we obtained L<
inf
(
x, ν?

)
by definition while we relied on the normality of the model (Defini-

tion 5.12) to obtain L>
inf
(
x, ν(k)

)
. We did so with ε = µ(j−1) − x, which is indeed positive as we

considered x < µ(j−1).
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5.4.4. A General Lower Bound, Valid for any Strategy

The previous subsections illustrated what may be achieved under restrictions —though natural
restrictions— on the classes of strategies considered. For the sake of completeness, we also pro-
vide a lower bound relying on no other restriction than consistency; it extends the lower bound (5.9)
exhibited by Kaufmann et al. (2016) for K = 2 arms, and is formulated in terms of L<

inf and L
>
inf .

Theorem 5.14. Fix K ≥ 2 and a model D. Consider a consistent sequence of strategies on D.
For all generic bandit problems ν in D,

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − min

k 6=a?(ν)
inf

x∈[µk,µ?]
max

{
L>

inf(x, νk),L<
inf(x, ν?)

}
.

Proof. Let ν be a generic bandit problem. We fix k 6= a?(ν) and x ∈ [µk, µ?], and prove that

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ −max

{
L>

inf(x, νk),L<
inf(x, ν?)

}
,

from which the stated lower bound follows, by taking suprema. To do so, we consider the set of
alternative bandit problems

Altk,x(ν) =
{

λ in D : E
(
λa?(ν)

)
< x < E(λk) and λa = νa for a /∈

{
a?(ν), k

}}
;

it is composed of bandit problems, only differing from ν at arms a?(ν) and k, and for which arm k is
better than arm a?(ν), with associated expectations separated by x. In particular, the optimal arm
in λ is different from the optimal arm a?(ν) of ν. Lemma 5.7 may therefore be applied; it states
that

lim inf
T →+∞

1
T

logPν
(
âT 6= a?(ν)

)
≥ − lim sup

T →+∞

Eλ

[
Nk(T )

]
T

KL(λk, νk) +
Eλ

[
Na?(ν)(T )

]
T

KL
(
λa?(ν), νa?(ν)

)
≥ −max

{
KL(λk, νk), KL

(
λa?(ν), νa?(ν)

)}
,

where we used, for the second inequality, the crude upper bound Nk(T ) + Na?(ν)(T ) ≤ T . Taking
the supremum of the obtained lower bound over all λ ∈ Altk,x(ν) leads to the following inequality,
where we define the short-hand notation Ik,x(ν):

lim inf
T →+∞

1
T

logPν(âT 6= a?(ν)) ≥ − inf
λ∈Altk,x(ν)

max
{

KL(λk, νk), KL
(
λa?(ν), νa?(ν)

)} def= −Ik,x(ν) .

The proof is concluded below by showing that Ik,x(ν) = max
{
L>

inf(x, νk),L<
inf(x, ν?)

}
.

As in the proof of Theorem 5.13, we use a separation of the infima, in the abstract form, for two
functions f and g,

inf
u,v

max
{
f(u), g(v)

}
= max

{
inf
u

f(u) , inf
v

g(v)
}

.
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Here, by definition of Altk,x(ν),

Ik,x(ν) = inf
λa?(ν),λk∈D
E(λa?(ν))<x

E(λk)>x

max
{

KL(λk, νk), KL
(
λa?(ν), νa?(ν)

)}

= max

 inf
λk∈D

E(λk)>x

KL(λk, νk), inf
λa?(ν)∈D

E(λa?(ν))<x

KL
(
λa?(ν), νa?(ν)

)
= max

{
L>

inf(x, νk),L<
inf(x, ν?)

}
,

which concludes the proof.

5.5. Technical Details

5.5.1. Properties of the L<
inf , L

≤
inf , L>

inf and L≥
inf

General Properties

We present here general properties, that hold for all models D, of the L<
inf , L

≤
inf , L

>
inf , and L

≥
inf

quantities. We state some properties for L<
inf , that all also hold for L≤

inf ; the corresponding properties
for L>

inf and L
≥
inf are deduced by symmetry.

The function L<
inf( · , ν) is non-increasing and satisfies L<

inf(x, ν) = 0 for all x > E(ν), as can be
seen by taking ζ = ν. Also, whenever D is convex, the function L<

inf is jointly convex over R × D,
as indicated in the lemma below. In particular, x 7→ L<

inf(x, ν) is continuous on the interior of its
domain (the set where it takes finite values).

Lemma 5.15. When D is a convex model, all four functions L<
inf , L

≤
inf , L

>
inf , and L≥

inf are jointly
convex over R×D.

Proof. We provide the proof for L<
inf , and it may be adapted in a straightforward manner for the

other functions.
We set two distributions ν and ν ′ of D, two expectation levels µ and µ′ in R, and a weight

λ ∈ (0, 1). We want to prove that

L<
inf
(
λµ + (1− λ)µ′, λν + (1− λ)ν ′) ≤ λL<

inf(µ, ν) + (1− λ)L<
inf(µ

′, ν ′) . (5.25)

The desired inequality holds whenever L<
inf(µ, ν) = +∞ or L<

inf(µ′, ν ′) = +∞. Otherwise, assuming
that both L<

inf(µ, ν) and L<
inf(µ′, ν ′) are finite, we set δ > 0 (which we will ultimately let converge

to 0) and pick ζ and ζ ′ in D such that E(ζ) < µ and E(ζ) < µ′, as well as

KL(ζ, ν) ≤ L<
inf(µ, ν) + δ and KL(ζ ′, ν ′) ≤ L<

inf(µ
′, ν ′) + δ .

Then, by joint convexity of the Kullback-Leibler divergence:

λL<
inf(µ, ν) + (1− λ)L<

inf(µ
′, ν ′) + δ ≥ λ KL(ζ, ν) + (1− λ) KL(ζ ′, ν ′)

≥ KL
(
λζ + (1− λ)ζ ′, λν + (1− λ)ν ′)

≥ L<
inf
(
λµ + (1− λ)µ′, λν + (1− λ)ν ′) ,

where for the last inequality, we used the definition of L<
inf as an infimum and the fact that by

convexity, the distribution λζ + (1−λ)ζ ′ belongs to D, with expectation larger than λµ + (1−λ)µ′.
The desired convexity inequality (5.25) follows by letting δ → 0.
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Specific Properties for the Model P [0, 1]

We study some properties of the L<
inf ,L

≤
inf ,L

>
inf and L≥

inf quantities for the model P[0, 1] of all
distributions over [0, 1]. Similar analysis might be done for, e.g., exponential models, as explained in
Section 5.5.3.

Since we are considering distributions over the interval [0, 1], the data-processing inequality (2.11)
for Kullback-Leibler divergences ensures that for all ζ ∈ P[0, 1],

KL(ζ, ν) ≥ KL
(
Ber

(
E(ζ)

)
, Ber

(
E(ν)

))
≥ 2

(
E(ζ)− E(ν)

)2
,

where Ber(p) denotes the Bernoulli distribution with parameter p and where we applied Pinsker’s
inequality for Bernoulli distributions. Therefore, taking the infimum over distributions ζ ∈ P[0, 1]
with E(ζ) < x,

∀x ≤ E(ν), L<
inf(x, ν) ≥ 2

(
E(ν)− x

)2
. (5.26)

We denote by m(ν) = min
(
Supp(ν)

)
≥ 0 the minimum of the closed support Supp(ν) of ν;

that is, m(ν) is the largest value such that Supp(ν) ⊆
[
m(ν), 1

]
. We will refer to m(ν) as the lower

end of the support of ν. Though we will not need it immediately, we also define the upper end of
the support of ν as M(ν) = max

(
Supp(ν)

)
≤ 1; by symmetry, it will be considered when studying

L>
inf and L

≥
inf instead of L<

inf and L
≤
inf .

The lemma below states that the functions L<
inf( · , ν) and L≤

inf( · , ν) coincide, except maybe
at m(ν). One may wonder what happens at x = m(ν). We denote by ν

{
m(ν)

}
the probability

mass assigned by ν to the point m(ν). It follows from the second part of the lemma below that
L<

inf
(
m(ν), ν

)
= L≤

inf
(
m(ν), ν

)
if and only if

{
m(ν)

}
is not an atom of ν.

Lemma 5.16. We consider the model D = P[0, 1]. The function L<
inf( · , ν) is continuous on the

interval
(
m(ν), +∞

)
. We also have, on the one hand,

∀µ 6= m(ν), L<
inf(µ, ν) = L≤

inf(µ, ν) , (5.27)

and on the other hand, at µ = m(ν),

log 1
ν
{
m(ν)

} = L≤
inf
(
m(ν), ν

)
≤ L<

inf
(
m(ν), ν

)
= +∞ . (5.28)

Analogous results hold for L>
inf( · , ν), L≥

inf( · , ν), and M(ν).

Proof. To prove (5.27), we first identify the interior of the domain of L<
inf .

Distributions ζ such that E(ζ) < m(ν) cannot be absolutely continuous with respect to ν;
otherwise, they would also give a null probability to values strictly smaller than m(ν), which con-
tradicts the assumption E(ζ) < m(ν). Hence KL(ζ, ν) = +∞ for these distributions. It fol-
lows that L<

inf(µ, ν) = L≤
inf(µ, ν) = +∞ for µ < m(ν); we note in passing that we also have

L<
inf
(
m(ν), ν

)
= +∞.

For µ > m(ν), we take ε > 0 with m(ν) + ε < µ and have, by definition of the support of a
measure, that

[
m(ν), m(ν) + ε] has a positive ν–measure denoted by κ. The distribution ζ given

by ν conditioned to the interval
[
m(ν), m(ν) + ε] is absolutely continuous with respect to ν, with

density dζ/dν = 1/κ on
[
m(ν), m(ν) + ε

]
, and 0 elsewhere; therefore, KL(ζ, ν) = log(1/κ) < +∞

and L<
inf(µ, ν) < +∞.

The interior of the domain of µ 7→ L<
inf(µ, ν) is therefore

(
m(ν), +∞

)
, and we recall that

L<
inf( · , ν) is continuous on this interval. We fix some µ > m(ν). For all ε > 0, by the very
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definitions of all quantities as infima of nested sets, we have

L<
inf(µ− ε, ν) ≤ L≤

inf(µ, ν) ≤ L<
inf(µ, ν) .

Letting ε → 0, we get, by a sandwich argument, that L≤
inf(µ, ν) = L<

inf(µ, ν). This concludes the
proof of (5.27).

We turn our attention to (5.28). We already showed above that L<
inf
(
m(ν), ν

)
= +∞. Now,

to compute L≤
inf(µ, ν), we wonder which are the distributions ζ that are absolutely continuous with

respect to ν, and thus, give a null probability to values strictly smaller than m(ν), and are also
such that E(ζ) ≤ m(ν): at most one such distribution exists, the Dirac mass at m(ν), denoted by
δm(ν). We then distinguish the cases ν

{
m(ν)

}
> 0 and ν

{
m(ν)

}
= 0 to establish, respectively, the

equalities

L≤
inf
(
m(ν), ν

)
= KL(δm(ν), ν) = log 1

ν
{
m(ν)

} and L≤
inf
(
m(ν), ν

)
= +∞ = log 1

ν
{
m(ν)

} .

In both cases, the first equality in (5.28) is proved, which concludes the proof.

We also have the following result, which is the most important and useful one, as it discussed
the quantity that appears in the upper bounds on the average log-probability of misidentification of
the optimal arm; see Corollary 5.4 together with Lemma 5.5.

Lemma 5.17. Let ν, ν ′ ∈ P[0, 1] with µ = E(ν) > E(ν ′) = µ′. Then

inf
x∈[µ′,µ]

L≤
inf(x, ν) + L≥

inf(x, ν ′) = inf
x∈[µ′,µ]

L<
inf(x, ν) + L>

inf(x, ν ′)

if and only if either m(ν) 6= M(ν ′) or ν
{
m(ν)

}
× ν ′{M(ν ′)

}
= 0.

Remark. In other words, the only case for which the two infima differ is when m(ν) = M(ν ′),
i.e., the upper end of the support of ν ′ equals the lower end of the support of ν, and both ν and ν ′

admit this common value as an atom.

Proof. The first lines of the proof of Lemma 5.16 show that L≤
inf(x, ν) = L<

inf(x, ν) = +∞ for
x < m(ν). We can symmetrically show that L≥

inf(x, ν ′) = L>
inf(x, ν ′) = +∞ for x > M(ν ′).

Therefore, L≤
inf(x, ν) +L≥

inf(x, ν ′) and L<
inf(x, ν) +L>

inf(x, ν ′) are infinite whenever x lies outside of[
m(ν), M(ν ′)

]
. This implies that

inf
x∈[µ′,µ]

L≤
inf(x, ν) + L≥

inf(x, ν ′) = inf
x∈[µ′,µ]∩[m(ν),M(ν′)]

L≤
inf(x, ν) + L≥

inf(x, ν ′)

and inf
x∈[µ′,µ]

L<
inf(x, ν) + L>

inf(x, ν ′) = inf
x∈[µ′,µ]∩[m(ν),M(ν′)]

L<
inf(x, ν) + L>

inf(x, ν ′) .

We now split the analysis according to how large the interval I is, where

I = [µ′, µ] ∩
[
m(ν), M(ν ′)

]
=
[
max

{
µ′, m(ν)

}
, min

{
µ, M(ν ′)

}]
.

Case 1: I is empty. In that case, the two infima are over an empty set and both equal +∞.
Case 2: I has a non-empty interior. When a 6= b, the infimum of a convex function over a closed

interval [a, b] equals the infimum over (a, b), whether the function takes finite or infinite values at a
and b. Now, the interior of I = [a, b] equals

(a, b) =
(
max

{
µ′, m(ν)

}
, min

{
µ, M(ν ′)

})
= (µ′, µ) ∩

(
m(ν), M(ν ′)

)
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and does not contain neither m(ν) nor M(ν ′). By Lemma 5.16, the functions L<
inf( · , ν) and

L≤
inf( · , ν) coincide on R\

{
m(ν)

}
. It may be similarly shown that L>

inf( · , ν ′) and L≥
inf( · , ν ′) coincide

on R\
{
M(ν ′)

}
. In particular, the functions L≤

inf( · , ν) + L≥
inf( · , ν ′) and L<

inf( · , ν) + L>
inf( · , ν ′)

coincide on the interior of I. Their infima over the interior of I, which, by convexity, are equal to
the infima over I, are therefore equal.

Case 3: I is a singleton. This case arises if and only if m(ν) = M(ν ′), as by definition, m(ν) ≤ µ
and M(ν ′) ≥ µ′. We then have I =

{
m(ν)

}
=
{
M(ν ′)

}
, and both infima are equal to the values

of the sums at m(ν) = M(ν ′). By Lemma 5.16 and by symmetric results for L>
inf and L≥

inf , on the
one hand,

L<
inf
(
m(ν), ν

)
= L>

inf
(
M(ν ′), ν ′) = +∞ ,

and on the other hand,

L≤
inf
(
m(ν), ν

)
+ L≥

inf
(
M(ν ′), ν ′) = log 1

ν
{
m(ν)

} + log 1
ν ′{M(ν ′)

} .

We get the desired equality if and only if either ν
{
m(ν)

}
= 0 or ν

{
M(ν ′)

}
= 0.

5.5.2. Reminder: the Cramér-Chernoff Bound

In this section, we recall the statement of the highly classical Cramér-Chernoff bound: with the
notation introduced in Section 5.3, for an N–sample X1, . . . , XN , distributed according to ν and of
average denoted by XN ,

∀x ≤ E(ν), P
(
XN ≤ x

)
≤ exp

(
−N φ?

ν(x)
)

, (5.29)
and ∀x ≥ E(ν), P

(
XN ≥ x

)
≤ exp

(
−N φ?

ν(x)
)

. (5.30)

Such a classical result would in principle not require to be proved here. However, it turns out that
we will re-use parts of this proof in later proofs, like the application 5.31 of Jensen’s inequality
or the variations of φ?

ν discussed at the end of this section. This is why, despite all, we now
prove (5.29)–(5.30).

Proof. For all λ < 0, by Markov’s inequality first and then by independence,

P
(
XN ≤ x

)
= P

(
eλXN ≥ eλx

)
≤ e−λx E

[
eλXN

]
= e−λx

(
E
[
eλX1/N ])N

= exp
(
−λx + N φν(λ/N)

)
= exp

(
−N

(
λ′x− φν(λ′)

))
,

where λ′ = λ/N . The bound also holds for λ = λ′ = 0 given that φν(0) = 0. Optimizing over λ ≤ 0
(or, equivalently, over λ′ ≤ 0), we proved so far

P
(
XN ≤ x

)
≤ exp

(
−N sup

λ≤0

{
λx− φν(λ)

})
.

Now, by Jensen’s inequality,

∀λ ∈ R, φν(λ) = logE
[
eλX] ≥ λE[X] = λ E(ν) ; (5.31)

therefore, for x ≤ E(ν),

∀λ ≥ 0, λx− φν(λ) ≤ λ
(
x− E(ν)

)
≤ 0 .

In particular,
0 = −φν(0) ≤ sup

λ≤0

{
λx− φν(λ)

}
= sup

λ∈R

{
λx− φν(λ)

} def= φ?
ν(x) . (5.32)

This concludes the proof of (5.29). The bound (5.30) follows by symmetry.
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We also note, in passing, that Jensen’s inequality entails, for x = E(ν), that

∀λ ∈ R, λE(ν)− φν(λ) ≤ λ
(
E(ν)− E(ν)

)
= 0 ,

thus showing that φ?
ν

(
E(ν)

)
= 0. The property (5.32) and its counterpart for x ≥ E(ν) and λ ≥ 0

actually show that φ?
ν is non-increasing on

(
−∞, E(ν)

]
and non-decreasing on

[
E(ν), +∞

)
.

5.5.3. Proofs and Details for Section 5.4.2: Rewriting of Φ as L

We use the notation of Sections 5.2.1 and 5.3 and discuss conditions on models guaranteeing that
Φ = L, i.e., that (5.22) holds. We do so for D = P[0, 1] in and for canonical one-parameter
exponential families. Based on these two examples, we provide a set of conditions for general models
at the end of the section A building block of these results is that for all these models D, the functions
L≤

inf( · , ν) and L≥
inf( · , ν) dominate the Fenchel-Legendre transform φ?

ν defined in (5.15); we prove
first.

All proofs of this section are immediate adaptations of a rather standard result, stated, among
others, but in a slightly different form (and for the model D of all real-valued distributions with a
first moment), by Boucheron et al. (2013, Exercise 4.13).

Remark. This rewriting of L≤
inf( · , ν) or L≥

inf( · , ν) as φ?
ν claimed, e.g., by Lemma 5.5, can be seen

as a counterpart to a similar rewriting of the Kinf as the supremum of a function of λ ∈ [0, 1]. More
precisely, we recall (see Remark 1) that the Kinf function is defined, for ν ∈ P[0, 1] and x ∈ [0, 1],
as

Kinf(ν, x) = inf
{
KL(ν, ζ) : ζ ∈ P[0, 1] s.t. E(ζ) > x

}
,

and Honda and Takemura (2015, Theorem 2) —see also Garivier et al., 2022, Lemma 18— show
that

Kinf(ν, x) = sup
0≤λ≤1

E
[
log
(

1− λ
X − x

1− x

)]
,

where X is a random variable distributed according to ν. In both cases, for L≤
inf( · , ν) or L≥

inf( · , ν),
and for Kinf , being able to rewrite the infimum of Kullback-Leibler divergences as a supremum is not
unexpected: a given Kullback-Leibler divergence can be formulated as a supremum, see (5.33), and
equalities between inf sup and sup inf holds under suitable assumptions (provided, e.g., by Sion’s
lemma).

L≤
inf( · , ν) and L≥

inf( · , ν) dominate φ?
ν

This domination is a consequence of a variational formula (5.33) for the Kullback-Leibler divergences.

Lemma 5.18. For all models D containing distributions with finite first moments, for all distri-
butions ν ∈ D,

∀x ≤ E(ν), φ?
ν(x) ≤ L≤

inf(x, ν) and ∀x ≥ E(ν), φ?
ν(x) ≤ L≥

inf(x, ν) .

Proof. We rely on a key variational formula for the Kullback-Leibler divergence, see Boucheron et al.
(2013, Corollary 4.15): for all distributions ν, ν ′ over R,

KL(ν ′, ν) = sup
{
Eν′ [Y ]− logEν

[
eY ] : r.v. Y ∈ L1(ν ′) s.t. Eν

[
eY ] < +∞

}
,

= sup
{
Eν′ [Y ]− logEν

[
eY ] : r.v. Y ∈ L1(ν ′)

}
, (5.33)
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where the supremum is over random variables Y : R → R with a finite first moment with respect
to ν ′, and where Eν and Eν′ indicate that expectations are relative to ν and ν ′, respectively. In
particular, when ν and ν ′ lie in D, they admit finite first moments, hence all random variables of the
form Y = λ idR are ν ′–integrable, where idR denotes the identity function over R and where λ ∈ R.
We have Eν′ [Y ] = λ E(ν ′). A consequence of (5.33) and of the definition (5.15) of φ?

ν is therefore
that

KL(ν ′, ν) ≥ sup
λ∈R

{
λ E(ν ′)− logEν

[
eλidR

]}
= φ?

ν

(
E(ν ′)

)
. (5.34)

Using the variations of φ?
ν indicated at the end of Section 5.5.2, we see that

φ?
ν

(
E(ν ′)

)
≥ φ?

ν(x) when E(ν ′) ≤ x ≤ E(ν) or E(ν ′) ≥ x ≥ E(ν) .

Therefore, taking an infimum in (5.34) yields, when x ≤ E(ν),

L≤
inf(x, ν) = inf

{
KL(ν ′, ν) : E(ν ′) ≤ x

}
≥ φ?

ν(x) ,

and similarly for the other claimed inequality.

The case of P [0, 1]
In this section, we focus on the model P[0, 1] and prove that the inequalities of Lemma 5.18 are in
fact equalities, as claimed by Lemma 5.5. This yields, in particular, the target equality (5.22), as
discussed after the statement of Lemma 5.5.

Before proving Lemma 5.5, note that it holds for all x ∈ R, that is, even outside of the [0, 1]
interval, though the proof reveals that when x is smaller than the lower end m(ν) of the support of ν,
we actually have φ?

ν(x) = L≤
inf(x, ν) = +∞. The counterpart statement φ?

ν(x) = L≥
inf(x, ν) = +∞

holds for x larger than the upper end M(ν) of the support of ν. The pieces of notation m(ν) and
M(ν) were formally defined in Section 5.5.1.

Proof of Lemma 5.5. Note first that by Lemma 5.18, it suffices to prove that

∀x ≤ E(ν), φ?
ν(x) ≥ L≤

inf(x, ν) and ∀x ≥ E(ν), φ?
ν(x) ≥ L≥

inf(x, ν) .

We only deal with the first inequality, namely L≤
inf(x, ν) ≤ φ?

ν(x) for x ≤ E(ν), as the other one
may be obtained by symmetric arguments.

In the case x = E(ν), we have φ?
ν

(
E(ν)

)
= 0, as stated at the end of Section 5.5.2, and

L≤
inf
(
E(ν), ν

)
= 0, as can be seen by taking ζ = ν in the infimum defining L≤

inf . We therefore only
consider x < E(ν) in the sequel. We will rely on the standard fact that, by Hölder’s inequality, the
logarithmic moment-generating function

φν : λ ∈ R 7−→ logEν
[
eλid[0,1]

]
,

is convex, where id[0,1] denotes the identity function on [0, 1]. Also, by two applications of a standard
theorem of differentiation under the integral, given that ν is supported by [0, 1], we have that φν is
continuously differentiable over R, with derivative

φ′
ν : λ ∈ R 7−→

Eν
[
id[0,1] eλid[0,1]

]
Eν
[
eλid[0,1]

] .

By convexity of φν , this derivative is non-decreasing. Therefore, the limit of φ′
ν at −∞ exists; we

denote it by ` and have that a priori ` ∈ {−∞} ∪ R. We now prove that actually,

`
def= lim

λ→−∞
φ′

ν(λ) = m(ν) . (5.35)

Page 149 / 192



CHAPTER 5. A NON-ASYMPTOTIC THEORY OF FIXED-BUDGET BEST-ARM IDENTIFICATION

On the one hand, by definition of m(ν), we have id[0,1] ≥ m(ν) ν-a.s., which entails φ′
ν(λ) ≥ m(ν)

for all λ ∈ R, and hence, ` ≥ m(ν). On the other hand, as φ′
ν is non-decreasing, it is always larger

than its limit ` at −∞:
∀λ ∈ R, φ′

ν(λ) ≥ ` , thus, Eν

[(
id[0,1] − `

)
eλid[0,1]

]
≥ 0 , (5.36)

or Eν

[(
id[0,1] − `

)
eλ(id[0,1]−`)

]
≥ 0 . (5.37)

The last inequality and limit arguments as λ→ −∞ impose that id[0,1]− ` ≥ 0 ν-a.s., which in turn
entails that ` ≤ m(ν). This concludes the proof of (5.35).

The various properties exhibited above for φν , including the fact that the derivative φ′
ν takes

values in
[
m(ν), +∞

)
, entail that the function

Λ : λ ∈ R 7−→ λx− φν(λ)
is concave, continuously differentiable, with a non-increasing derivative Λ′ taking values in the interval(
−∞, x−m(ν)

]
and with limit x−m(ν) at −∞.

We split the analysis of the case x < E(ν) into three sub-cases, depending on the respective
positions of x and m(ν), and recall that we want to show that L≤

inf(x, ν) ≤ φ?
ν(x).

Case 1: x > m(ν). By Jensen’s inequality (5.31) and given that we consider x < E(ν), the
limit of Λ at +∞ equals −∞. The limit of Λ at −∞ also equals −∞, as the derivative Λ′ has
limit x −m(ν) > 0 at −∞. By concavity of Λ and the fact that Λ′ is continuous, this implies the
existence of some λ? ∈ R such that

Λ′(λ?) = x− φ′
ν(λ?) = 0 and φ?

ν(x) = sup
λ∈R

{
Λ(λ)

}
= Λ(λ?) .

Denoting by ζλ? the distribution absolutely continuous with respect to ν with density
dζλ?

dν
= eλ?id[0,1]

Eν
[
eλ?id[0,1]

] = eλ?id[0,1]−φν(λ?) ,

we have Eζλ?

[
id[0,1]

]
= E

(
ζλ?

)
= φ′

ν(λ?) = x. Therefore, by definition of L≤
inf(x, ν) and of the

Kullback-Leibler divergence,

L≤
inf(x, ν) ≤ KL

(
ζλ? , ν

)
= Eζλ?

[
log dζλ?

dν

]
= λ? Eζλ?

[
id[0,1]

]
− φν(λ?) = Λ(λ?) = φ?

ν(x) .

Case 2: x = m(ν). In that case, Λ′ → 0 at −∞ and Λ′ is non-increasing, thus Λ′ ≤ 0 on R and
Λ is non-increasing on R. Thus,

φ?
ν

(
m(ν)

)
= sup

λ∈R

{
Λ(λ)

}
= lim

λ→−∞
Λ(λ) = lim

λ→−∞
− logEν

[
eλ(id[0,1]−m(ν))

]
.

By monotone convergence based on id[0,1] −m(ν) ≥ 0 ν-a.s.,

lim
λ→−∞

− logEν

[
eλ(id[0,1]−m(ν))

]
= − log ν

{
m(ν)

}
,

whether ν
{
m(ν)

}
is positive or null. Moreover, Lemma 5.16 states that

L≤
inf
(
m(ν), ν

)
= − log ν

{
m(ν)

}
.

We therefore have L≤
inf(x, ν) = φ?

ν(x) in this case.
Case 3: x < m(ν). In that case, as Λ′ → x−m(ν) < 0 at −∞, we get that Λ→ +∞ at −∞,

thus φ?
ν(x) = sup Λ = +∞. Now, no distribution ζ ∈ P[0, 1] with E(ζ) ≤ x, if some exists, can

be absolutely continuous with respect to ν; indeed, x < m(ν) imposes that ζ puts some probability
mass to the left of the support of ν. Therefore, KL(ζ, ν) = +∞. All in all, L≤

inf(x, ν) appears as
the infimum of either an empty set or of +∞ values, so that L≤

inf(x, ν) = +∞. In this case as well,
L≤

inf(x, ν) = φ?
ν(x), both being equal to +∞.
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The case of canonical one-parameter exponential models Dexp

In this section, we show that the target equality (5.22) is satisfied by so-called canonical one-
parameter exponential families Dexp. We recall that those models are defined at the beginning of
Section 2.2.3 and follow the notation of that Section: ρ is the reference measure, b the normalizing
function, Θ is the natural space parameter, andM = (µ−, µ+) is the open interval of the expectations
of distributions in Dexp.

The mean-parametrized Kullback-Leibler divergence of the model is denoted by d and defined on
M×M, where. In the following, we extend d to R× R by +∞ values outside ofM×M.

A direct application of the continuity and monotonicity properties of d is that all functions L<
inf ,

L≤
inf , L

>
inf , L

≥
inf coincide with d in the sense of the stated equalities (5.12) and (5.13). Indeed and

for instance, we have, for ν ∈ Dexp and x ≤ E(ν) with x ∈M:

L<
inf(x, ν) = inf

µ<x

{
d(µ, ν)

}
= lim

µ→x
µ<x

d(µ, ν) = d(x, ν) .

When x /∈ M, by the convention on the infimum of an empty set, L<
inf(x, ν) = +∞, while by our

definition of d outsideM×M, we also have d(x, ν) = +∞. But as Lemma 5.20 below illustrates,
we will only be interested in the behaviors onM×M.

We now state a monotonicity property of the Chernoff-information-type quantity L defined for
exponential models in (5.14). This property was referred to in Example 5.1, when indicating that
arms can be equivalently ranked in descending expectations or ascending values of L( · , µ?).

Lemma 5.19. Consider a canonical one-parameter exponential family Dexp and fix any µ ∈M.
Then L( · , µ) is non-increasing on (µ−, µ].

Proof. Fix µ− < µ2 ≤ µ1 ≤ µ. To get the desired inequality L(µ2, µ) ≥ L(µ1, µ), it suffices to
show, by (5.14), that

∀y ∈ [µ2, µ], d(y, µ2) + d(y, µ) ≥ min
x∈[µ1,µ]

d(x, µ1) + d(x, µ) def= L(µ1, µ) . (5.38)

We distinguish two cases. If µ2 ≤ µ1 ≤ y ≤ µ, then, since d(y, · ) is increasing on (µ−, y],
we have d(y, µ2) ≥ d(y, µ1), from which the inequality (5.38) follows by considering x = y. If
µ2 ≤ y ≤ µ1 ≤ µ, then similarly d(y, µ) ≥ d(µ1, µ), which yields

d(y, µ2)︸ ︷︷ ︸
≥0

+d(y, µ) ≥ d(µ1, µ) = d(µ1, µ1)︸ ︷︷ ︸
=0

+d(µ1, µ) ,

from which the inequality (5.38) follows by considering x = µ1.

A slightly weaker version of Lemma 5.5, sufficient for our purposes. We may now come back
to the proof of the target equality (5.22) for canonical one-parameter exponential families. The
following slightly weaker version of Lemma 5.5 is enough to yield (5.22), given the rewritings (5.12)
and (5.13).

Lemma 5.20. Consider a canonical one-parameter exponential familyD = Dexp. For all ν ∈ Dexp,

∀x ∈M, φ?
ν(x) = d

(
x, E(ν)

)
.

The result of the lemma holds, by conventions, for x < µ− or x > µ+, but does not hold in general
for x ∈ {µ−, µ+}.
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Proof. By Lemma 5.18, we only need to show that φ?
ν(x) ≥ d

(
x, E(ν)

)
. Given the definition (5.15)

of φ?
ν as a supremum, it suffices to exhibit a λ? ∈ R such that

d
(
x, E(ν)

)
= λ?x− φν(λ?) . (5.39)

Let θ1 ∈ Θ be such that ν = νθ1 and θ2 = (b′)−1(x) ∈ Θ be such that E(νθ2) = x. We will
prove (5.39) with λ? = θ2 − θ1. Given the closed-form expression of the densities (2.15), the
distribution νθ2 is absolutely continuous with respect to νθ1 , with density given by (θ2 − θ1)idR −(
b(θ2)− b(θ1)

)
. Therefore, by definition of the Kullback-Leibler divergence,

d
(
x, E(ν)

)
= KL(νθ2 , νθ1) = Eνθ2

[
log dνθ2

dνθ1

]
= Eνθ2

[
(θ2 − θ1) idR −

(
b(θ2)− b(θ1)

)]
= (θ2 − θ1) E(νθ2)−

(
b(θ2)− b(θ1)

)
= λ?x−

(
b(θ2)− b(θ1)

)
. (5.40)

To obtain (5.39), it only remains to show that b(θ2) − b(θ1) = φν(λ?). Using the closed-form
expressions (2.16) of b at θ2 and (2.15) of the density at θ1, we obtain

b(θ2) = log
∫
R

eθ2y dρ(y) = b(θ1) + log
∫
R

e(θ2−θ1)y

=dνθ1 (y)=dν(y)︷ ︸︸ ︷
eθ1y−b(θ1) dρ(y)

= b(θ1) + log
∫
R

eλ?y dν(y) = b(θ1) + φν(λ?) , (5.41)

which concludes the proof.

Remark. A more direct approach bypassing Lemma 5.18 can be followed with Dexp models, along
the following lines. The result (5.41) can be generalized into

∀θ ∈ Θ, φν(θ − θ1) = b(θ)− b(θ1) . (5.42)

As b is differentiable on Θ, the function φν is also differentiable; at λ? = θ2 − θ1, we have

φ′
ν(λ?) = φ′

ν(θ2 − θ1) = b′(θ2) = x .

Thus, the derivative of the strictly concave function Λ : λ ∈ R 7−→ λx−φν(λ) vanishes at λ?, which
is therefore the argument of its maximum: φ?

ν(x) = Λ(λ?). The closed-form calculation (5.40) and
the rewriting (5.42) then lead to Lemma 5.20.

Conditions for general models

In this section, we extend Lemma 5.5, and thus the target equality (5.22), to more general models.
We did so by mimicking the proof of Lemma 5.5: the result below can certainly be improved. We
extend as follows the definitions of the lower and upper ends m(ν) and M(ν) of the closed support
Supp(ν) of a distribution ν over R:

m(ν) = inf
(
Supp(ν)

)
∈ R ∪ {−∞} and M(ν) = sup

(
Supp(ν)

)
∈ R ∪ {+∞} .
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Lemma 5.21. Consider a model D containing distributions ν over R with finite first moments
and with exponential moments: eλidR ∈ L1(ν) for all λ ∈ R. Assume that the model D is stable by
exponential reweighting of densities: for all ν ∈ D, for all λ ∈ R, the distribution νλ with density

dνλ

dν
= eλidR

Eν
[
eλidR

] with respect to ν (5.43)

also belongs to D. Assume also that δx, the Dirac mass at x, belongs to D whenever there exists
ν ∈ D with x ∈

{
m(ν), M(ν)

}
∩ R and ν{x} > 0; put differently, if a distribution ν ∈ D puts

some probability mass on an end x of its closed support, then the Dirac mass at x belongs to D.
Then, for all ν ∈ D,

∀x ≤ E(ν), φ?
ν(x) = L≤

inf(x, ν) and ∀x ≥ E(ν), φ?
ν(x) = L≥

inf(x, ν) .

Proof. By symmetry and by Lemma 5.18, we only need to prove that

∀x ≤ E(ν), φ?
ν(x) ≥ L≤

inf(x, ν) .

For x = E(ν), we have φ?
ν

(
E(ν)

)
= 0 = L≤

inf
(
E(ν), ν

)
, as stated at the end of Section 5.5.2 and by

taking ζ = ν in the infimum defining L≤
inf , respectively. Before moving to the case x < E(ν), we

establish a few properties of φν based on the assumptions of Lemma 5.21. All random variables eλidR

are ν–integrable, for λ ∈ R, which entails, by application of a standard theorem of differentiation
under the integral sign together with local domination arguments of the form

∀λ ∈ (λ−, λ+),
∣∣idR eλidR

∣∣ ≤ ∣∣idR
∣∣ (eλ−idR + eλ+idR

)
≤
(
eidR + e−idR

)(
eλ−idR + eλ+idR

)
,

that φν is differentiable over R, with derivative given by

φ′
ν : λ ∈ R 7−→

Eν
[
idR eλidR

]
Eν
[
eλidR

] . (5.44)

Hölder’s inequality still entails that φν is convex, thus its derivative φ′
ν is non-decreasing; therefore,

φ′
ν admits a limit ` ∈ {−∞}∪R at −∞. Actually, we have ` = m(ν), as can be seen by combining

the following facts. First, by definition, idR ≥ m(ν) ν-a.s., thus φ′
ν ≥ m(ν), hence ` ≥ m(ν). As a

consequence, if ` = −∞, then we also have m(ν) = −∞. Otherwise, if ` ∈ R, the same arguments
as in (5.36)–(5.37) show that idR − ` ≥ 0 ν-a.s., i.e., ` ≤ m(ν).

We may now come back to establishing φ?
ν(x) ≥ L≤

inf(x, ν) in the case x < E(ν). We consider
three sub-cases, depending on the respective positions of x and m(ν).

Case 1: x > m(ν). The properties of φν ensure, exactly as in Case 1 of the proof of Lemma 5.5,
the existence of λ? such that φ′

ν(λ?) = x and φ?
ν(x) = λ?x−φν(λ?). Given the assumption (5.43), we

may consider the distribution νλ? ∈ D. We note, again exactly as in Case 1 of the proof of Lemma 5.5
and given the closed-form expression (5.44) for φ′

ν , that E(νλ?) = φ′
ν(λ?), thus E(νλ?) = x. Finally,

an explicit computation yields

KL(νλ? , ν) = λ?E(νλ?)− logEν
[
eλidR

]
= λ?x− φν(λ?) = φ?

ν(x) .

By the defining infimum of L≤
inf(x, ν), we have indeed L≤

inf(x, ν) ≤ KL(νλ? , ν) = φ?
ν(x).

Case 2: x = m(ν). In particular, m(ν) ∈ R, which allows us to follow the monotone-convergence
arguments of Case 2 of the proof of Lemma 5.5 and get the equality φ?

ν

(
m(ν)

)
= − log ν

{
m(ν)

}
.

Now, for the second part of this sub-case, we also adapt an argument of the second part of the proof
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of Lemma 5.16 (in Section 5.5.1), namely, the fact that either there exists at most one distribution
ζ ∈ D absolutely continuous with respect to ν and satisfying E(ζ) ≤ m(ν), namely, ζ = δm(ν),
the Dirac mass at m(ν). The latter is indeed absolutely continuous with respect to ν if and only if
ν
{
m(ν)

}
> 0. When ν

{
m(ν)

}
> 0, we have δm(ν) ∈ D by the Dirac assumption of the lemma, so

that
L≤

inf
(
m(ν), ν

)
= KL

(
δm(ν), ν

)
= − log ν

{
m(ν)

}
.

Otherwise, when ν
{
m(ν)

}
= 0, the infimum defining L≤

inf
(
m(ν), ν

)
is either over an empty set or of

+∞ values, and thus equals +∞ = − log ν
{
m(ν)

}
. In both situations, we obtained L≤

inf
(
m(ν), ν

)
=

φ?
ν

(
m(ν)

)
.

Case 3: x < m(ν). In particular, m(ν) ∈ R in this sub-case as well, which allows us to repeat
the exact same arguments as in Case 3 of the proof of Lemma 5.5: we may show that both L≤

inf(x, ν)
and φ?

ν(x) are equal to +∞.

5.5.4. Proof of the Normality of the Models P [0, 1] and Dexp

In this section, we show that P[0, 1] and canonical one-parameter exponential models are normal.

Proposition 5.22. P[0, 1] is a normal model.

Proof. We fix ν ∈ P[0, 1], a real x ≥ E(ν), and ε > 0. Recall the piece of notation M(ν) for the
upper end of the support of ν, as introduced in Section 5.5.1. As in Case 3 of the proof of Lemma 5.5,
we note that when x ≥ M(ν), there exists no distribution ζ ∈ P[0, 1] absolutely continuous with
respect to ν and such that E(ζ) > x; hence, both infima in Definition 5.12 equal +∞. We now
tackle the case where E(ν) ≤ x < M(ν). For all δ > 0, we introduce

x′
δ = min

{
x + δ,

x + M(ν)
2

}
< M(ν) .

Case 1 of the proof of Lemma 5.5 and Lemma 5.18 reveal (by symmetry) that for each δ > 0, there
exists a distribution ζδ ∈ P[0, 1] with expectation x′

δ and such that L
≥
inf(x′

δ, ν) = φ?
ν(x′

δ) = KL(ζδ, ν).
By Lemma 5.16, L≥

inf(x′
δ, ν) = L>

inf(x′
δ, ν) and L>

inf( · , ν) is continuous on
(
−∞, M(ν)

)
. Putting all

these elements together, we obtain

L>
inf(x, ν) = lim

δ→0
L>

inf(x
′
δ, ν) = lim inf

δ→0
KL(ζδ, ν) ≥ inf

{
KL(ζδ, ν) : δ ∈ (0, ε)

}
≥ inf

{
KL(ζ, ν) : ζ ∈ D s.t. x + ε > E(ζ) > x

}
,

where the first inequality is by the very definition of a lim inf.

Proposition 5.23. All canonical one-parameter exponential models Dexp are normal.

Proof. The proof consists of rewriting L>
inf as d, as indicated by (5.13), and using the regularity

properties for d exhibited in Section 5.5.3 (see page 151). We fix ν ∈ Dexp, a real x ≥ E(ν), and
ε > 0. When x ≥ M(ν), the same argument as in the previous proposition shows that both infima
equal +∞. For x < M(ν), we introduce δ ∈ (0, µ+ − x) and write

L>
inf(x, ν) = d

(
x, E(ν)

)
= lim

δ→0
d
(
x + δ, E(ν)

)
= inf

{
d
(
x + δ, E(ν)

)
: δ ∈ (0, ε)

}
= inf

{
KL(ζ, ν) : ζ ∈ D s.t. x + ε > E(ζ) > x

}
,
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where the second and third equalities follow, respectively, by continuity of d
(
· , E(ν)

)
onM and by

the fact that this function is non-decreasing on (x, µ+) ⊂ [E(ν), µ+), and the final equality is by the
rewriting (2.17).

5.6. Additional Comments for the Literature Review
This section is devoted to additional discussions concerning the fixed-budget literature. More pre-
cisely, we discuss in detail two gap-based lower bounds that we believe are somewhat detached from
the spirit of the chapter, namely, the minimax lower bound of Carpentier and Locatelli (2016) in
Section 5.6.1 and the Bretagnolle-Huber technique in Section 5.6.2.

5.6.1. The Minimax Lower Bound of Carpentier and Locatelli (2016)

Carpentier and Locatelli (2016, Theorem 1) proved (slightly stronger versions of) the following (non-
asymptotic) minimax lower bound. Consider the model B[1/4, 3/4] of Bernoulli distributions Ber(p)
with parameters p ∈ [1/4, 3/4]. For all sequences of strategies that are consistent on B[1/4, 3/4], for
all T ≥ 0.14 K4 log(6KT ),

∃ ν in B[1/4, 3/4],
1
T

logPν
(
âT 6= a?(ν)

)
≥ − 400

log K

( ∑
a6=a?(ν)

1
∆2

a

)−1

− log 6
T

, (5.45)

where, of course, we may rather use the weaker lower bound based on

−
( ∑

a6=a?(ν)

1
∆2

a

)−1

≥ − min
2≤k≤K

∆2
(k)
k

.

However, the bound (5.45) is different in nature from the lower bounds considered in this chapter, as
first and foremost, it only guarantees a 1/ log K improvement of the lower bound (5.8) of Audibert
et al. (2010) for a single bandit problem ν (actually belonging to a known collection of K bandit
problems). This is in strong contrast with the uniform instance-dependent lower bounds presented
in this chapter: bounds holding simultaneously for all bandit problems of a given model. Second, the
proof of the result (see the simpler proof provided below for Proposition 5.24 stated next) is truly
gap-based and does not seem to extend in any obvious way to non-parametric models.

As mentioned above, the proof of (5.45) in Carpentier and Locatelli (2016) uses only K different
bandit problems in B[1/4, 3/4]. We may therefore resort to the pigeonhole principle to exchange, in
some sense, the “for all T ≥ 0.14K4 log(6KT )” and “there exists ν in B[1/4, 3/4]” parts. More
precisely, we obtain, from (5.45) the following proposition. For the sake of completeness, we provide
a self-contained proof of this proposition closely following the original arguments by Carpentier
and Locatelli (2016), except for the change-of-measure argument, for which we rather resort to
Lemma 5.7. Doing so, we are able to improve the numerical factor 400 that would follow from (5.45)
into a smaller factor of 30.

Proposition 5.24. Fix K ≥ 3 and consider the model B[1/4, 3/4] of Bernoulli distributions Ber(p)
with parameters p ∈ [1/4, 3/4]. For all consistent sequences of strategies on B[1/4, 3/4], there exists
an increasing sequence of budgets (Tn)n≥1 such that

∃ ν in B[1/4, 3/4], lim inf
n→+∞

1
Tn

logPν
(
âTn 6= a?(ν)

)
≥ − 30

log K

( ∑
a6=a?(ν)

1
∆2

a

)−1

. (5.46)
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Proof. We consider some base Bernoulli bandit problem νbase =
(
νbase

1 , . . . , νbase
K

)
, where

νbase
1 = Ber(1/2) and ∀j ∈ {2, . . . , K}, νbase

j = Ber(pj) ,

for parameters pj ∈ [1/4, 1/2) to be specified later. For each k ∈ {2, . . . , K}, we then define the
alternative bandit problem ν(k) =

(
ν

(k)
1 , . . . , ν

(k)
K

)
as follows:

ν
(k)
j =

{
Ber(1− pk) if j = k,

νbase
j if j 6= k.

Given the constraints on the pj , the unique optimal arm of νbase is a?
(
νbase

)
= 1, while the unique

optimal arm of ν(k) is a?
(
ν(k)) = k. We introduce, for a given bandit problem ν

HΣ(ν) def=
∑

a6=a?(ν)

1
∆2

a

;

the right-hand side of (5.46) may be rewritten as (34/ log K) HΣ(ν)−1. The sub-optimality gaps of
the arms of νbase equal ∆base

j = 1/2− pj for j 6= 1, while the ones of ν(k) equal

∀j 6= k, ∆(k)
j = 1− pk − pj = (1/2− pk) + (1/2− pj) = ∆base

k + ∆base
j ,

thus HΣ
(
ν(k)) =

∑
j 6=k

1(
∆base

k + ∆base
j

)2 . (5.47)

The proof is decomposed into two steps. First, we show that for all values of the pj abiding by
the constraints and for all weights u2, . . . , uK such that uj ≥ 0 for all j and u1 + . . . + uK = 1,
there exists k? ∈ {2, . . . , K} such that there exists an increasing sequence of budgets (Tn)n≥1 with

lim inf
n→+∞

1
Tn

logPν(k?)
(
âTn 6= k?) ≥ −9 uk?

(
∆base

k?

)2
. (5.48)

Then, we set specific values of the uj and pj to get

∀k ∈ {2, . . . , K}, uk

(
∆base

k

)2 ≤ 10
3 log K

HΣ
(
ν(k))−1

. (5.49)

Proposition 5.24 follows by combining (5.48) and (5.49).
Part 1: Proof of (5.48). For all T ≥ 1,

K∑
k=2

Eνbase
[
Nk(T )

]
T

≤ 1 =
K∑

k=2
uk ;

therefore, for all T ≥ 1, there exists kT ∈ {2, . . . , K} such that Eνbase
[
NkT

(T )
]
/T ≤ ukT

. By the
pigeonhole principle, there exists k? ∈ {2, . . . , K} and an (infinite) increasing sequence (Tn)n≥1 of
integers such that kTn = k? for all n ≥ 1. In particular,

lim sup
n→+∞

Eνbase
[
Nk?(Tn)

]
Tn

≤ uk? .

Since νbase and ν(k?) only differ at arm k?, an application of Lemma 5.7 along subsequences (see the
initial comments below the lemma) guarantees that

lim inf
n→+∞

1
Tn

logPν(k?)
(
âTn 6= k?) ≥ −(lim sup

n→+∞

Eνbase
[
Nk?(Tn)

]
Tn

)
KL
(
Ber(1− pk?), Ber(pk?)

)
≥ −uk? × 9 (1/2− pk?)2 = −9 uk?

(
∆base

k?

)2
,
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where, in the last inequality, we used that for all x ∈ [1/4, 1/2),

KL
(
Ber(1− x), Ber(x)

)
= (1− x) log 1− x

x
+ x log x

1− x
≤ 9

(1
2 − x

)2
.

Part 2: Proof of (5.49). We set, for j ∈ {2, . . . , K},

uj = U(
∆base

j

)2
HΣ
(
ν(j)) , where U =

(
K∑

k=2

1(
∆base

k

)2
HΣ
(
ν(k))

)−1

.

Then, uk

(
∆base

k

)2 = HΣ
(
ν(k))−1

U for all k ∈ {2, . . . , K}. To get the desired result, it suffices to
guarantee that U ≤ 10/(3 log K). To do so, we consider the same values as in Carpentier and
Locatelli (2016) for the pj , i.e., we set, for j ∈ {2, . . . , K},

pj = 1
2 −

j

4K
or, equivalently, ∆base

j = j

4K
.

We show first that
(
∆base

k

)2
HΣ
(
ν(k)) ≤ 2k, for all k ∈ {2, . . . , K}. Indeed, by (5.47) and by lower

bounding ∆base
k + ∆base

j either by ∆base
k or ∆base

j , we get

(
∆base

k

)2
HΣ
(
ν(k)) =

∑
j<k

(
∆base

k

)2(
∆base

k + ∆base
j

)2 +
∑
j>k

(
∆base

k

)2(
∆base

k + ∆base
j

)2
≤ k − 1 +

∑
j>k

(
∆base

k

)2(
∆base

j

)2 = k − 1 +
∑
j>k

k2

j2 ≤ k − 1 + k2
∫ K

k

1
v2 dv ≤ 2k .

Finally,

U ≤
(

K∑
k=2

1
2k

)−1

≤
(∫ K+1

2

1
2v

dv

)−1

= 2
(
log(K + 1)− log 2

)−1 ≤ 10
3 log K

,

where the final inequality holds since K ≥ 3.

5.6.2. The Bretagnolle-Huber Technique by Kaufmann et al. (2016)

Kaufmann et al. (2016, Section 5.2) provide an interesting series of results relying on the so-called
Bretagnolle-Huber inequality recalled below in (5.51); we state one of their lower bounds in Corol-
lary 5.26. But as we argue in this section, the methodology followed seems extremely specific to the
case of parametric models where Kullback-Leibler divergences could be controlled (lower bounded
and upper bounded) in terms of gaps, like the model Dσ2 of Gaussian distributions with a fixed vari-
ance σ2 > 0. In particular, we state in Proposition 5.25 what would be the straightforward extension
to non-parametric models of the Gaussian results of (Kaufmann et al., 2016, Section 5.2), and we
immediately discuss after this statement why this extension lacks interpretability and interest. Propo-
sition 5.25 considers any sequence of strategies (not necessarily consistent) and provides an asymp-
totic bound; however, it does not directly control the target probability of error Pν

(
âT 6= a?(ν)

)
, but

a larger quantity. A proof of Proposition 5.25 is provided at the end of this section.
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Proposition 5.25. Fix K ≥ 2, a model D, and any sequence of strategies. Let ν be a bandit
problem in D with a unique optimal arm. Consider, for each k 6= a?(ν), a distribution ζk ∈ D such
that E(ζk) > µ?. For k 6= a?(ν), denote by ν(k) the bandit problem obtained from ν by changing
the distribution of arm k into ζk. For all T ≥ 1,

1
T

log max
{
Pν
(
âT 6= a?(ν)

)
, max

k 6=a?(ν)
Pν(k)

(
âT 6= k

)}
≥ −

( ∑
a6=a?(ν)

1
KL(νa, ζa)

)−1

− log 4
T

.

Lack of interpretability of the bound for general models. To derive an interesting and inter-
pretable bound from this result, one needs to choose carefully the distributions ζk. There is a tradeoff
between obtaining a large lower bound by choosing ζk as close as possible to νk in terms of Kullback-
Leibler divergences, and controlling the maximum of the misidentification probabilities: when ζk gets
closer to νk while abiding by the constraint E(ζk) > µ?, the probability Pν(k)

(
âT 6= k

)
becomes

larger, and should even intuitively converge to 1/2. In any case, the target error Pν
(
âT 6= a?(ν)

)
should get dominated by Pν(k)

(
âT 6= k

)
and the obtained bound is likely to be uninformative on the

target error, due to the maximum on the left-hand side. This tradeoff seems to be unsolvable in
general unless there exist some specific properties for the Kullback-Leibler divergence of the model,
as we illustrate below for a Gaussian model, which was the setting considered by Kaufmann et al.
(2016, Section 5.2).

Another intuitive issue with the bound of Proposition 5.25 is that it involves Kullback-Leibler
divergences with arguments in reverse order compared to the lower bounds presented in Section 5.4.
Indeed, taking the supremum of the lower bound over distributions ζk such that E(ζk) > µ? would
lead to a complexity in terms of the K>

inf
(
νk, µ?

)
, where

K>
inf(ν, x) def= inf

{
KL(ν, ζ) : ζ ∈ D s.t. E(ζ) > x

}
,

rather than in terms of the L>
inf
(
µ?, νk

)
. Our intuition, given all bounds presented in this chapter, is

that the K>
inf
(
νk, µ?

)
would not form the correct notion of complexity for the fixed-budget best-arm

identification.

How Kaufmann et al. (2016, Section 5.2) could exploit Proposition 5.25 in the Gaussian case.
Yet, in the case of the model Dσ2 of Gaussian distributions with a fixed variance σ2 > 0, for which
KL is symmetric, Proposition 5.25 admits an interesting corollary, corresponding4 to Theorem 16 of
Kaufmann et al. (2016, Section 5.2). The corollary actually relies on a strong property of KL in this
model: not only is it symmetric, but it only depends on the expectation gaps between its arguments.
Namely, for all pairs N (µ, σ2) and N (µ′, σ2) of distributions in Dσ2 , for all ∆ ∈ R,

KL
(
N (µ, σ2), N (µ′, σ2)

)
= (µ− µ′)2

2σ2 = KL
(
N (µ + ∆, σ2), N (µ′ + ∆, σ2)

)
. (5.50)

We introduce the following short-hand notation:

HΣ(ν) def=
∑

a6=a?(ν)

2σ2

∆2
a

.

4The maximum of the left-hand side of Corollary 5.26 is present, but somewhat discrete, in the Theorem 16 of
Kaufmann et al. (2016, Section 5.2): it corresponds to the “There exists an alternative bandit problem” part of the
statement of the latter.

Page 158 / 192



5.6. ADDITIONAL COMMENTS FOR THE LITERATURE REVIEW

Corollary 5.26. For all sequences of strategies and for all bandit problems ν in Dσ2 with a unique
optimal arm, there exists a set of alternative bandit instances (ν(k))k 6=a?(ν) in Dσ2 , where each ν(k)

admits k as a best arm and satisfies HΣ
(
ν(k)) ≤ HΣ(ν), and for which

1
T

log max
{
Pν
(
âT 6= a?(ν)

)
, max

k 6=a?(ν)
Pν(k)

(
âT 6= k

)}
≥ −4 HΣ(ν)−1 − log 4

T
.

The proof provided below is highly specific to the Gaussian model and exploits the gap-based
rewriting (5.50) of the Kullback-Leibler divergence. The calculations led would only extend to models
for which such gap-based rewritings of (upper and lower bounds on) the Kullback-Leibler divergence
would be available.

To compare the result of Corollary 5.26 with the bound (5.8) stemming from Audibert et al.
(2010), note that

HΣ(ν)−1 ≥ 2
σ2 min

2≤k≤K

∆2
(k)
k

.

Proof. We apply Proposition 5.25 with the distributions ζk = N (µ? + ∆k, σ2), for k 6= a?(ν). On
the one hand, the bound of Proposition 5.25 involves

∑
a6=a?(ν)

1
KL(νa, ζa) =

∑
a6=a?(ν)

2σ2(
E(νa)︸ ︷︷ ︸
µ?−∆a

− E(ζa)︸ ︷︷ ︸
µ?+∆a

)2 = HΣ(ν)
4 .

On the other hand, for k 6= a?(ν), as the best arm of ν(k) is k, with associated expectation µ? + ∆k,

HΣ
(
ν(k)) =

∑
a6=k

2σ2

(µ? + ∆k − µa)2 = 2σ2

∆2
k

+
∑

a/∈{k,a?(ν)}

2σ2

(µ? + ∆k − µa)2

≤ 2σ2

∆2
k

+
∑

a/∈{k,a?(ν)}

2σ2

(µ? − µa)2 =
∑

a6=a?(ν)

2σ2

∆2
a

= HΣ(ν) .

These two observations conclude the proof of Corollary 5.26.

Proof of Proposition 5.25. We conclude this section with a proof of Proposition 5.25. It relies
on the Bretagnolle-Huber inequality (Bretagnolle and Huber, 1979), which states that, for all p, q ∈
[0, 1],

p + 1− q ≥ 1
2 exp

(
−KL

(
Ber(p), Ber(q)

))
. (5.51)

Proof. We fix distributions ζk abiding by the conditions of the proposition and also fix T ≥ 1. We
will prove below that, for all convex weights (ub)b 6=a?(ν), i.e., non-negative weights summing up to 1,

1
T

log max
{
Pν
(
âT 6= a?(ν)

)
, max

k 6=a?(ν)
Pν(k)

(
âT 6= k

)}
≥ − max

b6=a?(ν)

{
ub KL(νb, ζb)

}
− log 4

T
, (5.52)

from which Proposition 5.25 follows, by optimizing the obtained lower bound, i.e., by taking

ub =
( ∑

a6=a?(ν)

1
KL(νa, ζa)

)−1

× 1
KL(νb, ζb)

.
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We now fix convex weights (ub)b 6=a?(ν) and prove (5.52). As b 6= a?(ν) and b is the unique optimal
arm of ν(b), for the first inequality, and by the Bretagnolle-Huber inequality (5.51), for the second
inequality,

Pν
(
âT 6= a?(ν)

)
+ Pν(b)

(
âT 6= b

)
≥ Pν

(
âT 6= a?(ν)

)
+ Pν(b)

(
âT = a?(ν)

)
≥ 1

2 exp
(
−KL

(
Ber(pT ), Ber(qT )

))
,

where pT
def= Pν

(
âT 6= a?(ν)

)
and qT

def= Pν(b)
(
âT 6= a?(ν)

)
. Inequality (2.12) reads, in the present

case, as ν and ν(b) only differ at arm b,

KL
(
Ber(pT ), Ber(qT )

)
≤ Eν

[
Nb(T )

]
KL(νb, ζb) .

Using max{u, v} ≥ (u + v)/2 after collecting all bounds obtained so far yields

max
{
Pν
(
âT 6= a?(ν)

)
,Pν(b)

(
âT 6= b

)}
≥ 1

4 exp
(
−Eν

[
Nb(T )

]
KL(νb, ζb)

)
.

We take the maxima over b 6= a?(ν) in both sides, apply logarithms, and conclude the proof of (5.52)
by showing that

min
b 6=a?(ν)

{
Eν
[
Nb(T )

]
KL(νb, ζb)

}
≤ max

b6=a?(ν)

{
ub KL(νb, ζb)

}
. (5.53)

Indeed, ∑
b6=a?(ν)

Eν
[
Nb(T )

]
T

≤ 1 =
∑

b 6=a?(ν)
ub ,

so that there exists b? 6= a?(ν) such that Eν
[
Nb?(T )

]
/T ≤ ub? . We then have

min
b6=a?(ν)

{
Eν
[
Nb(T )

]
KL(νb, ζb)

}
≤ ub? KL(νb? , ζb?) ≤ max

b 6=a?(ν)

{
ub KL(νb, ζb)

}
,

as desired in (5.53).

5.7. Conclusion
In this chapter, we explored the challenging fixed-budget setting of best-arm identification. We
introduced new tools, including the information-theoretic quantities L<

inf , L
≤
inf , L

>
inf and L

≥
inf , in order

to generalize the gap-based bounds of the literature to more general models. Our new general analysis
of the Successive-Rejects strategy indicates that the complexity of the fixed-budget setting might
be measured by the L quantity defined as

L(ν ′, ν) = inf
x∈[E(ν′),E(ν)]

{
L≥

inf(x, ν ′) + L≤
inf(x, ν)

}
.

We then stated several lower bounds depending on various assumptions. Those bounds do not
express in terms of the L quantity —although the bound of Theorem 5.13 invokes quantities that
are getting closer to L—, but we hope that future works could bring new ideas to improve those
bounds.

Existence of a complexity As previously explained, there is still a gap of at least a factor log K
between the lower and upper bounds presented in this chapter. In fact, we do not know if we can fill
this gap and hence prove the existence of a complexity like in the fixed-confidence setting. Recent
works (see Komiyama et al., 2022; Degenne, 2023) have been focusing on proving that such optimal
complexity does not exist for large enough models (see Section 2.3.5 for discussions).
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CHAPTER 6

Asymptotically Optimal Adaptive
Top-Two Algorithms in the
Fixed-Confidence Setting

This chapter studies adaptive top-two algorithms for a general exponential model in the fixed-
confidence setting. It gathers preliminary works that have not been submitted to date. Mainly two
conjectures are stated, supported by numerical experiments and elements of proof. Firstly, we obtain
new procedures to compute optimal weight vectors that appear to be numerically efficient. Secondly,
we give a proof structure to generalize the asymptotic optimality of adaptive top-two algorithms
obtained for a Gaussian model by You et al. (2023).
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CHAPTER 6. ASYMPTOTICALLY OPTIMAL ADAPTIVE TOP-TWO ALGORITHMS

6.1. Introduction

We consider here the problem of best-arm identification with a fixed-confidence (see Section 2.2 for
motivations about this setting and for more details concerning the following introduction). Given
some confidence parameter δ ∈ (0, 1), our aim is to find a strategy that minimizes the expected
number of samplings Eν [τδ] among δ–correct strategies, i.e., strategies such that for all bandit
problems ν,

Pν
(
τδ < +∞, âτδ

6= a?(ν)
)
≤ δ .

When considering an exponential model Dexp (see the reminder on page 43), we recall that bandit
problems ν are characterized by their mean vector µ, and a notion of asymptotic optimality (when
δ goes to 0) was introduced for the identification problem by Garivier and Kaufmann (2016). They
first proved that all δ–correct strategies satisfy, for all bandit problems µ in Dexp,

lim inf
δ→0

Eµ[τδ]
log 1

δ

≥ T (µ) , (6.1)

where T (µ) denotes the characteristic time of µ, defined as

T (µ)−1 def= sup
v∈ΣK

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa) , (6.2)

where d denotes the mean-parameterized Kullback-Leibler divergence of the model Dexp,

ΣK =
{

v ∈ [0, 1]K : v1 + · · ·+ vK = 1
}

and Alt(µ) =
{

λ in Dexp : a?(λ) 6= a?(µ)
}

.

Additionally, they designed Track-and-Stop , the first asymptotically optimal strategy, for which
the asymptotic upper bound matches the above lower bound:

∀µ in Dexp, lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

The existence of such strategies ensures the asymptotic tightness of lower bound (6.1).

Computing the solution w(µ). The information-theoretic analysis of Garivier and Kaufmann
(2016) also highlights the nature of optimal sampling strategies: whatever the value of the risk
δ, they should sample the arms with frequencies proportional to v = w(µ), the (unique and well-
defined) maximizer of optimization problem (6.2), called the optimal weight vector . To achieve this,
the Track-and-Stop sampling rule estimates these proportions by computing, at each time step t,
the optimal weight vector w

(
µ̂(t)

)
of the current empirical mean µ̂(t). Indeed, they proved that,

with the knowledge of µ, solving the optimization problem (6.2) reduces to determining the root of
a one-variable increasing function. By applying a bisection method, one may then compute w(µ)
with arbitrary precision. Yet, it can be interesting to obtain more efficient methods to compute this
optimal weight vector, as we did for a Gaussian model in Chapter 3.

The shortcomings of Track-and-Stop. Computing the solution of optimization problem (6.2) at
each time step is not very efficient in terms of computational cost. This is one of the shortcomings
of Track-and-Stop (see Section 2.2.5), we may also cite, among others, the requirement of forced
exploration to ensure that all arms are pulled sufficiently. Some improvements were proposed: for
example, Ménard (2019) and Wang et al. (2021) proved that it is not necessary to solve the opti-
mization problem at every time step. Instead, they perform a single gradient step in every round,
which enables asymptotic optimality of computationally more efficient algorithms. Another direction
of simplification is the study of top-two algorithms (see Russo, 2016) that we present in depth
below.
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The importance of sampling rules. The performance of a strategy highly depends on both
its sampling and stopping rules. Yet, the analysis of Garivier and Kaufmann (2016) proved (see
Theorem 2.9) that the δ–correctness of a strategy can be obtained, whatever the sampling rule is,
using the Global-Likelihood-Ratio stopping rule with a carefully designed threshold:

β(t, δ) def= log Rtα

δ
, (6.3)

where α > 1 and R is a constant depending on α and K. As it seems that the stopping rule cannot
be significantly improved, the performance of a strategy should mostly be determined by its sampling
rule.

top-two algorithms. top-two strategies are promising sets of strategies that come with simple
sampling rules: at time step t, the algorithm chooses the next arm to sample At between two arms,
namely a leader Lt and a challenger Ct. We recall the general structure of the sampling rule in
Algorithm 17. An example of a natural leader is to choose the arm with the current best empirical
mean (Algorithm 18), while the challenger might be the arm minimizing its transportation cost,
defined in Equation (6.6), with the leader, or a penalized version of that cost which encourages
exploration (Algorithm 19). See also Section 2.2.7 (and references therein) for additional leader
and challenger procedures.

Algorithm 17: top-two sampling rule at time step t > K

Input: history of observations It−1
leader, challenger, sample-arm procedures

Output: next arm to observe At

1 Lt ← leader(It−1)
2 Ct ← challenger(It−1, Lt)
3 At ← sample-arm(It−1, Lt, Ct)

Algorithm 18: Empirical-Best leader
Input: history of observations It−1
Output: leader Lt

1 Choose Lt ∈ argmax
a∈[K]

µ̂a(t− 1)

Algorithm 19: challenger procedures for top-two algorithms
Input: history of observations It−1

leader Lt

Output: challenger Ct

/* Transportation-Cost (TC) challenger */

1 Choose Ct ∈ argmin
a6=Lt

TCa→Lt

(
µ̂(t− 1), N(t− 1)

t− 1

)
// TCa→b(µ, v) is defined in (6.6)

/* Transportation-Cost-Penalized (TCP) challenger */

2 Choose Ct ∈ argmin
a6=Lt

TCa→Lt

(
µ̂(t− 1), N(t− 1)

t− 1

)
+ log Na(t− 1)
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The asymptotic optimality of top-two algorithms has been discussed, but only (until very re-
cently) for non-adaptive strategies, for which the sampling rule chooses the leader with a fixed
probability parameter β ∈ (0, 1). As a good leader might satisfy Lt = a? except for a sub-linear
number of time steps, such non-adaptive strategies will pull the best arm a fraction β of the time,
which can be far from the optimal frequency wa?(µ). As a consequence, those strategies satisfy the
following lower bound (see Russo, 2016):

∀µ in Dexp, lim inf
δ→0

Eµ[τδ]
log 1

δ

≥ Tβ(µ) def=
(

sup
v∈ΣK
va? =β

inf
λ∈Alt(µ)

∑
a∈[K]

va d(µa, λa)
)−1

.

It has been proved (see, e.g., Jourdan et al., 2022) that good choices of leaders and challengers
(like those proposed in Algorithms 18 and 19) lead to β–asymptotically optimal strategies, that is,
strategies such that, for all generic (hence with distinct means) bandit problems µ in Dexp,

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ Tβ(µ) .

Adaptive top-two algorithms. Non-adaptive algorithms are hence asymptotically optimal only if
β = wa?(µ), which is quite frustrating even if it can be proved (see Russo, 2016) that T 1

2
(µ) ≤ 2T (µ),

i.e., that the choice of β = 1
2 leads to a loss in guarantee of a multiplicative factor 2 only. To tackle

this problem, we might consider adaptive algorithms, for which the sampled arm between the leader
and the challenger is not chosen according to an external parameter, but thanks to an adaptive
parameter. Based on this idea, You et al. (2023) proved that Top-Two-Thompson-Sampling with
an adaptive sampling rule (a top-two strategy with a Bayesian choice of the leader and the challenger,
see Section 2.2.7) is asymptotically optimal, but only for a Gaussian model with common variance
σ2 > 0.

Outline and contributions. The question of extending the asymptotic guarantees of adaptive
top-two algorithms to more general models is still open. The objective of this chapter is to present
preliminary work in that direction. We focus on exponential models, which form the class of models
for which the fixed-confidence best-arm identification problem is best understood (see Garivier and
Kaufmann, 2016).

To begin with, in Section 6.2, we prove that for a general exponential model, the solution w(µ)
of optimization problem (6.2) can be seen as the unique fixed point of some transformation. We
use this property to present a new procedure for computing the optimal weight vector w(µ) that
turns out to be empirically efficient. Additionally, an interesting interpretation of the transformation
naturally leads to the introduction of a new challenger rule together with an adaptive sampling rule
for top-two algorithms. Then, in Section 6.3, we explore how to generalize the Gaussian analysis of
You et al. (2023) to a general exponential model Dexp. As a by-product of the analysis of Section 6.3,
we give a new proof of the asymptotic optimality of Track-and-Stop in Section 6.4.

�

Notation. For a given strategy facing a bandit problem µ, let Na(t) and µ̂a(t) denote the number
of pulls and the empirical mean1 of arm a at step t:

Na(t) def=
∑
s∈[t]

I {As = a} and µ̂a(t) def= 1
Na(t)

∑
s∈[t]

Ys I {As = a} .

1As strategies initially observe each arm once, µ̂a(t) is well-defined for t ≥ K.
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In the rest of this chapter, we fix some exponential model Dexp and rely on the associated notation �

defined on page 43. In a nutshell, distributions νθ of the model are parameterized by elements θ of
the natural space parameter Θ, or equivalently by their means µ = E(νθ), which belong to a convex
open intervalM = (µ−, µ+). The log–partition function, denoted by b, is twice differentiable, such
that E(νθ) = b′(θ) and b′ is invertible, and the mean-parameterized Kullback-Leibler divergence
function of the model is defined, for all θ, θ′ ∈ Θ, by

d
(
E(νθ), E(νθ′)

) def= KL(νθ, νθ′) = (θ − θ′)b′(θ)− b(θ) + b(θ′) . (6.4)

6.2. A Fixed Point Property

Let, until the end of Section 6.2.2, µ be a fixed bandit instance in Dexp with a unique best arm a?,
and w = w(µ) be its optimal weight vector. We focus on optimization problem (6.2) and recall its
formulation in terms of transportation costs (see Section 2.2.4):

T (µ)−1 = sup
v∈ΣK

min
a6=a?

TCa→a?(µ, v) , (6.5)

where, for v ∈ ΣK and a 6= a?,

TCa→a?(µ, v) = va? d
(
µ?, µa?, a, v

)
+ va d

(
µa, µa?, a, v

)
, where µa?, a, v

def= va?µ? + vaµa

va? + va
. (6.6)

Garivier and Kaufmann (2016) proved that the optimal weight vector w solving (6.5) is characterized
by the following sufficient and necessary conditions, where int(A) is the interior of a set A.

Proposition 6.1. Let µ be a fixed bandit instance in Dexp with a unique best arm a?. Then for
all v ∈ int(ΣK), the following conditions are equivalent:

(i) v = w(µ),
(ii) for all sub-optimal arms a 6= a?,

TCa→a?(µ, w) =
(∑

b 6=a?

1
d(µb, µa?, b, w)

)−1
= T (µ)−1 , (6.7)

(iii) all transportation costs
(
TCa→a?(µ, w)

)
a6=a? are equal and

∑
b6=a?

d(µ?, µa?, b, w)
d(µb, µa?, b, w) = 1 . (6.8)

In Section 2.2.4, we explained the intuition why, for a given proportion β ∈ (0, 1), there exists
a unique vector wβ = wβ(µ) such that wβ

a? = β and which equalizes the transportation costs(
TCa→a?(µ, wβ)

)
a6=a? . We also explained that the optimal weight vector w belongs to the set

of β–optimal weight vectors
{
wβ : β ∈ (0, 1)

}
, and that the corresponding value of β might be

computed by a first-order condition. Conditions (6.7) and (6.8) are equivalent to this condition.

We use Proposition 6.1 to interpret w as the unique fixed point of some transformation in
Section 6.2.1. We then analyze this transformation to design efficient procedures for the calculation
of w in Section 6.2.2, and to introduce a new adaptive top-two sampling scheme in Section 6.2.3.
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6.2.1. The Transformation

We recall that µ is a fixed and known bandit instance in this section. At the optimum w, thank to
condition (6.7), all transportation costs are equal and we get

T (µ) =
∑

b 6=a?

1
d(µb, µa?, b, w) .

Defining, for a weight vector v ∈ int(ΣK),

Tv
def=
∑

b6=a?

1
d(µb, µa?, b, v) , (6.9)

the previous equation reads Tw = T (µ). As v 7→ Tv is continuous, Tv can be interpreted as an
approximation of T (µ), at least when v is around w.

Consider some frequency vector v ∈ ΣK . If it is not optimal, one could try to correct the difference
between costs TCa→a?(µ, w) and T −1

v for all sub-optimal arms a. As the cost TCa→a?(µ, w) is
homogeneous in (va? , va), multiplying both the values of va? and va by T −1

v / TCa→a?(µ, v) would
transform the cost to the exact value T −1

v . Yet, note that if this multiplicative factor is not 1,
changing the value of (va? , va) for a fixed a will result in a vector out of ΣK . Similarly, it is not
possible to change simultaneously the value of the pair for all sub-optimal arm a, as va? would be
multiplied by different factors. However, we can see what will give the transformation which consists
in updating each va by the corresponding multiplicative factor and then choosing va? so as to get
v ∈ ΣK . Formally, this defines a transformation W : int(ΣK)→ int(ΣK) by

∀v ∈ int(ΣK),∀a ∈ [K], Wa(v) def=


va

T −1
v

TCa→a? (µ,v) if a 6= a? ,

1−
∑

b6=a? vb
T −1

v

TCb→a? (µ,v) if a = a? .
(6.10)

It is easy to check that this transformation is well-defined. Indeed, for all v ∈ int(ΣK), we get that
Wa?(v) > 0 by using the definition of the costs (6.6):

∑
b6=a?

vb

TCb→a?(µ, v) <
∑

b6=a?

vb

vb d(µb, µb, a?, v) =
∑

b6=a?

1
d(µb, µb, a?, v) = Tv .

By the necessary and sufficient conditions (6.7), the following fixed-point property holds.

Proposition 6.2. Let µ be a bandit instance in Dexp. Then w is the unique fixed point of W .

Proof. Using (6.7), one gets that, for all a 6= a?,

Wa(w) = wa

T −1
w

TCa→a?(µ, w) = wa ,

which ensures that W (w) = w.
Reciprocally, if some vector v ∈ int(ΣK) is such that W (v) = v, then

∀a 6= a?, TCa→a?(µ, v) = T −1
v =

(∑
b 6=a?

1
d(µb, µa?, b, w)

)−1
,

hence v satisfies condition (6.7), which gives v = w.
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6.2.2. New Empirical Optimal-Weights Procedures

The computation of the optimal weight vector at each time step is the most costly part of strategies
like Track-and-Stop. Reducing the complexity of a procedure Optimal-Weights which computes
(an approximation of) those weights is then of high interest. We already proposed, independently,
such an improvement for Gaussian variables in Chapter 3, and will now see how to use transformation
W to define a procedure for an exponential model Dexp.

In view of the definition W and of its associated fixed point property for w, it is natural to
wonder whether the iterates

(
v(n) def= W n(v(0))

)
n≥0 of some initial vector v(0) (e.g., the uniform

vector) will converge to w, by showing for instance that W is a contraction. If so, then we obtain a
new Optimal-Weights procedure to approximate w, which seems to be computationally efficient.

(a) µ = (0.9, 0.7, 0.65, 0.63, 0.6)

(b) µ = (0.95, 0.93, 0.92, 0.9, 0.8, 0.7, 0.5, 0.4)

Figure 6.1: For the standard Gaussian model, coordinates of the iterated vectors (v(n))n≥0 with v(0)

the uniform vector; the values of the corresponding coordinates of w are dashed.

W is not a contraction. Unfortunately, the convergence does not hold in all generality. Even in the
simple model of standard Gaussian variables, the iterates may end up oscillating between two vectors
and not converge to w, see Figure 6.1. Let us highlights a few remarks concerning the numerical
behavior that we observed whatever the Gaussian bandit instance. First, we observe that, when the
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Figure 6.2: For the Bernoulli model and µ = (0.9, 0.7, 0.65, 0.63, 0.6), coordinates of the iterated
vectors (v(n))n≥0 with v(0) the uniform vector.

weight of the optimal arm is over-estimated, those of sub-optimal arms are under-estimated, and vice
versa. Then, the process quickly stabilizes into an oscillation between two vectors, which, strangely,
do not satisfy any remarkable property, in particular:
• neither the optimal weight vector is the average of the two oscillations vectors, and, as a
consequence, even the Cesàro sums of the iterates would not converge to w,
• nor those two vectors equalize the transportation costs of sub-optimal arms. Nevertheless,
they are numerically quite close to vectors satisfying this property, i.e., belonging to the set{
wβ(µ) : β ∈ (0, 1)

}
of β–optimal weight vectors. This explains why the weights of sub-

optimal arms are approximately multiplied by the same value at each iteration (see Figure 6.1).

Remark. For Bernoulli instances, we observe in our experiments that the magnitude of the oscillations
decreases slowly, and the iterates converge to the optimal weight vector, as can be seen in Figure 6.2.
However, the convergence is not very fast and smooth.

Soft update rule. In order to obtain convergence, one can consider less aggressive update rules.
For instance, let us focus on the sequence defined by

∀n ≥ 0, ṽ(n+1) def=
ṽ(n) + W

(
ṽ(n))

2 . (6.11)

For this sequence, we observed on all our simulations that the convergence to w is quick and
unambiguous whatever the model (see Figure 6.3 for a Gaussian model, the figures are similar for,
e.g., Bernoulli or Poisson variables). Yet, how to guarantee this convergence theoretically is still to
be understood. It might be possible to show that the associated transformation is a contraction, as
it numerically seems to be the case for the `2–norm.

Conjecture 6.3. For all exponential models Dexp, and all bandit problems µ in Dexp with a
unique optimal arm, the sequence of iterates (ṽ(n))n≥0 defined by (6.11) converges to w.

Remark. One can state other update rules, like modifying only the weights of one sub-optimal arm
together with the weight of the optimal arm, choosing this sub-optimal arm circularly or randomly.
The empirical performance of those procedures is also pretty good, as far as we observed in some
numerical experiments.
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(a) µ = (0.9, 0.7, 0.65, 0.63, 0.6)

(b) µ = (0.95, 0.93, 0.92, 0.9, 0.8, 0.7, 0.5, 0.4)

Figure 6.3: For the standard Gaussian model, coordinates of the vectors (ṽ(n))n≥0 with ṽ(0) the
uniform vector; the values of the corresponding coordinates of w are dashed.

6.2.3. A New Sampling Rule for top-two Algorithms

We now give another point of view on the transformation W , that will allow us to define a top-two
sampling rule. We write, for all sub-optimal arms a:

Wa(v) = va

T −1
v

TCa→a?(µ, v) ·
d
(
µa, µa?, a, v

)
d
(
µa, µa?, a, v

) =
T −1

v

d
(
µa, µa?, a, v

) · va d
(
µa, µa?, a, v

)
TCa→a?(µ, v) = χa(v)·

(
1−βa(v)

)
,

where we define

χa(v) def=
T −1

v

d(µa, µa?, a, v) and βa(v) def=
va? d

(
µ?, µa?, a, v

)
TCa→a?(µ, v) . (6.12)

χa(v) is the relative contribution of arm a in T −1
v , while βa(v) is the proportion of transportation

cost TCa→a?(µ, v) due to the transport of arm a?. We note, in passing, that vector χ is a probability
vector, which will be useful in Section 6.2.3.

Page 169 / 192



CHAPTER 6. ASYMPTOTICALLY OPTIMAL ADAPTIVE TOP-TWO ALGORITHMS

Example. For the model DNσ2 of Gaussian variables with common variance σ2 > 0, the closed-form
expression (2.21) of the Kullback-Leibler divergence gives

βa(v) =
va? d

(
µ?, µa?, a, v

)
va? d

(
µ?, µa?, a, v

)
+ va d

(
µa, µa?, a, v

)
=

va?

(
va

va+va?
(µ? − µa)

)2

va?

(
va

va+va?
(µ? − µa)

)2
+ va

(
va?

va+va?
(µa − µ?)

)2

= va

va + va?
.

We note that this quantity does not depend on µ, which is a specificity of the model.

The definition of transformation W now reads

∀v ∈ int(ΣK),∀a ∈ [K], Wa(v) =
{

χa(v)
(
1− βa(v)

)
if a 6= a? ,∑

b6=a? χb(v)βb(v) if a = a? .

We note that the knowledge of χ(w) and βa(w) is sufficient to generate the optimal weights w(µ).
, we select a couple of best-arm and challenger (a?, a) where the challenger a is sampled according
to the probability χ(w). Then we choose between the optimal arm and its challenger by keeping the
leader with probability βa(w). This results in a sample from the optimal weight vector w thanks to
the fixed point property 6.2. Interestingly, we recognize here a top-two procedure that first samples
a couple of leader and challenger and then selects an arm from this couple.

Sampling rule. To give a precise description of the top-two sampling rule, we need to write
explicitly the dependency on µ of the previously defined quantities Tv, χa(v), βa(v) and Wa(v), as
the bandit instance is unknown to the strategy. To that end, we define Tv(µ), χa(µ, v) and Wa(µ, v)
respectively by Equations (6.9), (6.12) and (6.10), and we set:

∀a 6= b ∈ [K], βb,a(µ, v) def=


vb d

(
µb, µb, a, v

)
vb d

(
µb, µb, a, v

)
+ va d

(
µa, µb, a, v

) if µb 6= µa ,

1
2 if µb = µa ,

which corresponds to the relative contribution of arm b to the transportation cost between arms a
and b. Note that the dependency of βb,a(µ, v) on vector v is only though the ratio xb,a = vb

vb+va
, as

βb,a(µ, v) = 1

1 + va

vb

d
(
µa, µb, a, v

)
d
(
µb, µb, a, v

) = 1

1 + 1− xb,a

xb,a

d
(
µa, (1− xb,a)µa + xb,aµb

)
d
(
µb, (1− xb,a)µa + xb,aµb

) .

Hence we will sometimes see βb,a(µ, · ) as a one-variable function:

∀x ∈ (0, 1), βb,a(µ, x) def= 1

1 + 1− x

x

d
(
µa, (1− x)µa + xµb

)
d
(
µb, (1− x)µa + xµb

) . (6.13)

Once again (see, e.g., the Track-and-Stop strategy), at each time step t, we consider the
plug-in estimates of those quantities when replacing µ by its empirical estimate µ̂(t). We choose
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Algorithm 20: χ challenger
Input: history of observations It−1

leader Lt

Output: challenger Ct

1 p← p(t− 1)
2 µ̂← µ̂(t− 1)
3 for a 6= Lt do

4 χa ←
T −1

p (µ̂)
d
(
µ̂a, µ̂Lt, a, p

)
5 Choose Ct according to distribution χ

Algorithm 21: Adaptive sample-arm (sampling version)
Input: history of observations It−1

leader Lt

challenger Ct

Output: sampled arm At

1 At ←
{

Lt with probability βLt,Ct

(
µ̂(t− 1), p(t− 1)

)
,

Ct otherwise.

Lt as the Empirical-Best leader (see Algorithm 18), and as previously explained, the challenger
procedure consists in2 choosing Ct according to vector

χ̂(t− 1) def= χ
(
µ̂(t− 1), p(t− 1)

)
, where p(t− 1) def= N(t− 1)

t− 1

denotes the empirical proportions of draws after time step t − 1. The leader Lt, respectively the
challenger Ct, is then pulled with probability

β̂Lt,Ct(t)
def= βLt,Ct

(
µ̂(t− 1), p(t− 1)

)
, respectively β̂Ct,Lt(t)

def= βCt,Lt

(
µ̂(t− 1), p(t− 1)

)
.

See Algorithms 20 and 21 for details. This adaptive strategy will be denoted by TT-EB-χ .

Remark. The adaptive proportions βb,a(µ, v) have also been obtained by You et al. (2023) for a
general exponential model.

Experiments. The convergence of the sampling frequencies of the strategy TT-EB-χ to the optimal
weight vector w(µ) is illustrated on Figures 6.4 and 6.5. Whatever the model and parameter, numer-
ical experiments show convergence to the optimal frequencies. We observe that the evolution of the
sampling frequencies is quite smooth compared to, e.g., Track-and-Stop or the top-two algorithm
TT-EB-TC with adaptive proportions, for which the challenger is chosen as the arm minimizing the
transportation cost with the leader.

2To be well-defined, χ requires µ̂(t − 1) to have a unique optimal arm. If not, we can simply choose At among all
empirically optimal arms (but note that this event occurs with null probability for a continuous model).
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(a) µ = (0.9, 0.7, 0.4, 0.3)

(b) µ = (0.95, 0.93, 0.92, 0.9, 0.8, 0.7, 0.5, 0.4)

(c) µ = (0.9, 0.7, 0.65, 0.63, 0.6)

Figure 6.4: Evolution of the sampling frequencies on a simulation of TT-EB-χ with standard Gaussian
variables. The values of the corresponding coordinates of w(µ) are dashed.
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(a) Bernoulli model, µ = (0.9, 0.7, 0.5, 0.1)

(b) Bernoulli model, µ = (0.9, 0.7, 0.65, 0.63, 0.6)

(c) Poisson model, µ = (0.9, 0.7, 0.65, 0.63, 0.6)

Figure 6.5: Evolution of the sampling frequencies on a simulation of TT-EB-χ with the Bernoulli and
Poisson models. The values of the corresponding coordinates of w(µ) are dashed.
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6.3. Asymptotically Optimal Adaptive Algorithms

The objective of this section is to discuss some adaptive top-two algorithms that could be asymp-
totically optimal for a general exponential model Dexp. The result was recently obtained for a
Gaussian model by You et al. (2023) for the Top-Two-Thompson-Sampling algorithm, but their
analysis also holds for, e.g., the pair of Empirical-Best leader and Transportation-Cost or
Transportation-Cost-Penalized challenger.

Considered leaders and challengers. In order to get the simplest possible analysis, we focus in
this section on the Empirical-Best leader given in Algorithm 18 and the Transportation-Cost
and Transportation-Cost-Penalized challengers given in Algorithm 19. The adaptive versions
of those top-two algorithms are denoted by TT-EB-TC and TT-EB-TCP (similarly to the acronyms
of Jourdan et al., 2022, see also Section 2.2.7). The conjecture is given below.

Conjecture 6.4. Let Dexp be an exponential model. The TT-EB-TC and TT-EB-TCP algorithms
with the adaptive sampling rule of Algorithm 21 satisfy, for all bandit problems µ in Dexp with
distinct means:

lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

Remark. When studying top-two algorithms, it is a common hypothesis to work with bandits
instance for which all means differ (see, e.g., Jourdan et al., 2022). We will refer to such instances
as generic bandits. For other instances, there might be a lack of exploration, especially when the
first estimates of the best arm are poor.

In the rest of this section, we provide some first arguments to prove Conjecture 6.4. We largely
follow the proof structure of You et al. (2023, Appendix A) for Gaussian variables (except the
additional step 2), and try to generalize their statements. As we will see, this might imply slight
modifications of the considered strategies TT-EB-TC and TT-EB-TCP, which do not deeply affect the
definition of the sampling rules.

Overview of the argumentation. In the sequel, we fix some generic bandit problem µ in Dexp.
Let a? and w respectively denote its unique optimal arm and its optimal weight vector.

We split the analysis into several steps:
1. In the first step, we introduce notation and recall that asymptotic optimality can be proved by

showing the convergence of the ratios pa(t)/pa?(t) to wa/wa? for all sub-optimal arms a,
2. Then, in step 2, we propose to slightly modify the sampling rule in order to facilitate the control

of the empirical numbers of pulls.
3. To ensure the convergence of empirical estimates, we have to prove that the strategy sufficiently

explores all arms. While we still do not know how to prove the sufficient exploration for TT-
EB-TC and TT-EB-TCP with a general exponential model, we give a possible path of reasoning.

4. In order to prove the convergence of the ratios pa(t)/pa?(t), You et al. (2023) showed another
useful convergence in the Gaussian case. We explain in step 4 that the generalization of this
convergence seems to be the difficult part of our analysis.

5. Finally, we quickly explain in step 5 how one could prove the convergence of the ratios
pa(t)/pa?(t) if the requirements of steps 3 (sufficient exploration) and 4 (supporting con-
vergence) were satisfied.
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6.3.1. Step 1: A Sufficient Condition

Let us introduce a notion of quick convergence for random variables.

Definition 6.5. [quick convergence]
Let L1 denotes the set of real valued random variables X such that E

[
|X|

]
< +∞.

We say that a sequence of real random variables
(
X(t)

)
t∈N quickly converges:

• to x ∈ R, a fact which we denote X(t) q.−→
t→+∞

x, if

∀ε > 0, ∃T ∈ L1, ∀t ≥ T, |X(t)− x| ≤ ε .

• to +∞, a fact which we denote X(t) q.−→
t→+∞

+∞, if

∀c > 0,∃T ∈ L1, ∀t ≥ T, X(t) ≥ c .

• to −∞, a fact which we denote X(t) q.−→
t→+∞

−∞, if −X(t) q.−→
t→+∞

+∞.

We say that a sequence of random vectors
(
X(t)

)
t∈N in RK quickly converges to x ∈ RK , a fact

which we denote X(t) q.−→
t→+∞

x, if Xa(t) q.−→
t→+∞

xa for all a ∈ [K].

Proving the asymptotic optimality of a strategy using the Global-Likelihood-Ratio stopping
rule can be reduced to showing that the empirical frequencies of pulls quickly converge to w, as the
following result states.

Proposition 6.6. Let Dexp be an exponential model. Consider a strategy for which the stopping
rule is the Global-Likelihood-Ratio stopping rule (Algorithm 5) with threshold (6.3) for some
α > 1. If µ is a bandit problem in DNσ2 such that the sampling rule (applied infinitely without
stopping rule) satisfies

p(t) q.−→
t→+∞

w ,

then
lim sup

δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

This result was originally stated for a Gaussian model by Qin et al. (2017), but the generalization to
exponential models is straightforward3.

In fact, the quick convergence of p(t) to w is equivalent to the quick convergence of the ratios(
pa(t)/pa?(t)

)
a6=a? :

p(t) q.−→
t→+∞

w ⇐⇒ ∀a 6= a?,
pa(t)
pa?(t)

q.−→
t→+∞

wa

wa?
.

This equivalence is easy to prove, using that p(t) and w belong to ΣK for the indirect sense. Hence

∀a 6= a?,
pa(t)
pa?(t)

q.−→
t→+∞

wa

wa?
=⇒ lim sup

δ→0

Eµ[τδ]
log 1/δ

≤ T (µ) .

Objective. To prove the conjecture, we now focus on demonstrating that

∀a 6= a?,
pa(t)
pa?(t)

q.−→
t→+∞

wa

wa?
. (6.14)

3And even to more general models, up to technicalities, see Jourdan et al. (2022, Theorem 2 in Appendix C.5).
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Remark. You et al. (2023) actually worked with a stronger condition than quick convergence: instead
of considering random variables in L1, they require those variables to be in ∩p≥1Lp, following tools
developed by Qin and Russo (2022). Yet, quick convergence is sufficient for what we want to prove.

6.3.2. Step 2: Tracking versus Sampling

Due to the randomization of the strategy (and especially the random choice between the leader and
the challenger), the vector p(t) might largely deviate from its expected value. When working with
(sub-)Gaussian variables, this deviation might be controlled so that it does not really complicate the
arguments (see You et al., 2023). With a general exponential model, we might ease the analysis
by replacing the sampling with a tracking: no concentration result will be required. The technique
was considered by Jourdan and Degenne (2023) to obtain non-asymptotic guarantees for a Top-Two
algorithm.

Tracking. When choosing between the leader and the challenger, one can replace the sampling
choice with a C-tracking of the targeted proportions. We now explain the modification in detail.

We will need to define tracking procedures associated with fixed pairs of leader and challenger.
To that end, for a pair of arms a 6= b and a time step t, we consider the event

Ca,b(t) def=
{

Lt = a and Ct = b
}

,

which indicates a time step at which the leader and challenger are respectively arms a and b. We
count the cumulative number of pulls of arms a and b under those events and denote them by:

Na,b
a (t) def=

∑
s∈[t]

I {As = a} I
{
Ca,b(s)

}
and Na,b

b (t) def=
∑
s∈[t]

I {As = b} I
{
Ca,b(s)

}
,

and we also define the average target proportions of arms a and b under those events:

β
a,b
a (t) def= 1

Na,b(t)
∑
s∈[t]

β̂a,b(s)I
{
Ca,b(s)

}
,

and β
a,b
b (t) def= 1

Na,b(t)
∑
s∈[t]

β̂b,a(s)I
{
Ca,b(s)

}
= 1− β

a,b
a (t) ,

where Na,b(t) def= Na,b
a (t) + Na,b

b (t) =
∑
s∈[t]

I
{
Ca,b(s)

}
.

We modify the choice of arm At between the leader Lt and the challenger Ct so as to track the
associated average target proportions, see Algorithm 22.

Algorithm 22: Adaptive sample-arm (tracking version)
Input: history of observations It−1

leader Lt

challenger Ct

Output: sampled arm At

1 At ←


Lt if

NLt,Ct

Lt
(t− 1)

NLt,Ct

Lt
(t− 1) + NCt,Lt

Ct
(t− 1)

< β
Lt,Ct

Lt
(t) ,

Ct otherwise.

With that modification, we get precise control of the quantities Na,b
a (t) and Na,b

b (t) :
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Lemma 6.7. For all pairs (a, b) of arms with a 6= b, and t ≥ 0, we get∣∣∣Na,b
a (t)−Na,b(t) β

a,b
a (t)

∣∣∣ =
∣∣∣Na,b

b (t)−Na,b(t) β
a,b
b (t)

∣∣∣ ≤ 1 .

Before proving this result, we explain why it might be useful. Given a good choice of leader, we
hope that Lt = a? except for a sub-linear number of time steps. If this property holds, then

∀a 6= a?, pa(t) ' Na?,a
a (t)

t
' Na?,a(t)

t
β

a?,a
a (t) ,

and proving the condition (6.14) (or maybe p(t) q.−→
t→+∞

w) might be done by studying the asymptotic
behaviour of Na?,a(t)/t and β

a?,a
a (t).

Proof. The equality comes from the relationship:

Na,b
b (t)−Na,b(t) βb,a(t) = Na,b(t)−Na,b

a (t)−Na,b(t)
(
1− βa,b(t)

)
= Na,b(t) βa,b(t)−Na,b

a (t) .

To obtain the inequality, we proceed by induction on t. Let us assume that the result holds at
time step t − 1. If at time step t, we have Lt 6= a or Ct 6= b, then all considered quantities are
not updated and the result holds by induction. Now, if Lt = a and Ct = b, let us assume that arm
At = a (one can adapt the argument when At = b) and prove that

−1 ≤ Na,b
a (t)−Na,b(t) β

a,b
a (t) ≤ 1 . (6.15)

By definition of At (see Algorithm 22), we know, as At = a, that

Na,b
a (t− 1) ≤ Na,b(t− 1) β

a,b
a (t) ,

hence, using that Na,b
a (t) = Na,b

a (t− 1) + 1 and Na,b(t) = Na,b(t− 1) + 1:

Na,b
a (t)−Na,b(t) β

a,b
a (t) = Na,b

a (t− 1) + 1−Na,b(t− 1) β
a,b
a (t)− β

a,b
a (t) ≤ 1 ,

which gives the second inequality of (6.15). For the first inequality, remark that

Na,b(t) β
a,b
a (t) = Na,b(t− 1) β

a,b
a (t− 1) + βa,b(t) ,

which, together with the induction property, leads to

Na,b
a (t)−Na,b(t) β

a,b
a (t) = Na,b

a (t− 1) + 1−Na,b(t− 1) β
a,b
a (t− 1)︸ ︷︷ ︸

≥0 by induction

−βa,b(t) ≥ −1 .

This concludes the proof.

6.3.3. Step 3: Sufficient Exploration

A typical methodology in fixed-confidence best-arm identification (see, e.g., the use of forced ex-
ploration for Track-and-Stop in page 49) is to ensure that empirical quantities converge to their
expected values by requiring that the number of pulls of arms diverges almost surely, with a minimal
sub-linear rate that we take (arbitrarily) of order

√
t.
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Definition 6.8. [sufficient exploration]
We say that a strategy provides sufficient exploration with rate

√
t if

∃C > 0,∃T ∈ L1, ∀t ≥ T, min
a∈[K]

Na(t) ≥ C
√

t . (6.16)

Jourdan et al. (2022) proved that both TT-EB-TC-β and TT-EB-TCP-β, which are non-adaptive
versions of TT-EB-TC and TT-EB-TCP, provide sufficient exploration for an exponential model. Their
result does not generalize to adaptive versions for which the probability of choosing the leader instead
of the challenger might be arbitrarily close to 0 or 1. You et al. (2023) explained how to override
this limitation in the Gaussian case. In the last paragraph of this section, we will explain why we do
think that the result still holds for an exponential model, without providing explicit proof.

Forced exploration. Meanwhile, we can use a tool that ensures that sufficient exploration is pro-
vided: we might simply force exploration (like, e.g., the Track-and-Stop strategy) and hence assume
that this step is satisfied for free. We recall the process quickly (see also page 49). We define, at
a given time step t, the set U(t− 1) of arms that are under-sampled with respect to the sub-linear
rate
√

t:

U(t− 1) def=
{

a ∈ [K] : Na(t− 1) <

√
t

K
+ 1

}
.

If this set is not empty, we overrule the choice of At given by the top-two sampling rule and replace
it by picking the least pulled arm. This implies that the following lemma holds.

Lemma 6.9. The TT-EB-TC and TT-EB-TCP algorithms, with the forced exploration process
defined above, provide sufficient exploration with rate

√
t:

∀t ≥ 0, min
a∈[K]

Na(t) ≥
√

t

K
.

Remark. • With forced exploration, we do not have to restrict our attention to a generic bandit
problem µ. The analysis stands for all bandit problems with a unique optimal arm.
• With forced exploration, the penalization of the Transportation-Cost-Penalized chal-
lenger is useless. Yet, as we aim to prove that forced exploration is not necessary at least for
TT-EB-TCP, we still consider this strategy in this section.

Convergence of the empirical means. The sufficient exploration property implies an important
property which is the quick convergence of the empirical means to µ.

Proposition 6.10. Consider a strategy for which sufficient exploration holds with rate
√

t. Then

µ̂(t) q.−→
t→+∞

µ .

Remark. This result can be used, together with Proposition 6.6 to prove the asymptotic optimality
of the Track-and-Stop and Exploration-Biased-Sampling algorithms, as we detail in Section 4.

The proof is an adaptation of Garivier and Kaufmann (2016, Lemma 19).
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Proof. Let C > 0 and T ∈ L1 satisfying (6.16). Fix ε > 0 and define, for t ≥ 1:

Et =
⋂
s≥t

⋂
a∈[K]

{
|µ̂a(t)− µa| ≤ ε

}
.

We want to prove that

Eµ[Tε] < +∞ , where Tε
def= inf

{
t ≥ 1 : Et

}
. (6.17)

We get

Eµ[Tε] =
∑
t≥0

Pµ
(
Tε > t

)
=
∑
t≥0

Pµ

(
Tε > t, T > t

)
+ Pµ

(
Tε > t, t ≥ T

)
=
∑
t≥0

Pµ

(
T > t

)
+ Pµ

(
Tε > t, t ≥ T

)
= Eµ[T ] +

∑
t≥0

Pµ

(
Ec

t , t ≥ T
)

(6.18)

Fix t ≥ 0. We have, using optional skipping and the definition of t

Pµ

(
Ec

t , t ≥ T
)

= Pµ

(
∃s ≥ t,∃a ∈ [K], |µ̂a(s)− µa| > ε, t ≥ T

)
≤ Pµ

(
∃n ≥ C

√
t,∃a ∈ [K], |µ̂a,n − µa| > ε, t ≥ T

)
≤
∑

a∈[K]

∑
n≥C

√
t

Pµ

(
|µ̂a,n − µa| > ε, t ≥ T

)
≤
∑

a∈[K]

∑
n≥C

√
t

Pµ

(
|µ̂a,n − µa| > ε

)
.

For a ∈ [K] and n ≥ 0, a Cramér-Chernoff bound gives

Pµ

(
|µ̂a,n − µa| > ε

)
= Pµ

(
µ̂a,n < µa − ε

)
+ Pµ

(
µ̂a,n > µa + ε

)
≤ exp

(
−nd(µa − ε, µa)

)
+ exp

(
−nd(µa + ε, µa)

)
.

Hence we get that

Pµ

(
Ec

t , t ≥ T
)
≤
∑

a∈[K]

exp
(
−C
√

td(µa − ε, µa)
)

1− exp
(
−d(µa − ε, µa)

) +
exp

(
−C
√

td(µa + ε, µa)
)

1− exp
(
−d(µa + ε, µa)

)
≤ 2KC1 exp(−C2

√
t) , (6.19)

where we set

C1
def= max

a∈[K]

(
max

( 1
1− exp

(
−d(µa − ε, µa)

) , 1
1− exp

(
−d(µa + ε, µa)

))) < +∞ ,

and C2
def= C · min

a∈[K]

(
min

(
d(µa − ε, µa), d(µa + ε, µa)

))
> 0 .

Injecting (6.19) into (6.18) finally leads to Eµ[Tε] < +∞ and concludes the proof of (6.17).
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Avoiding forced exploration. We hope to avoid the use of forced exploration with additional
arguments. Especially since this sufficient exploration occurs for non-adaptive versions of TT-EB-TC
and TT-EB-TCP, and it seems that the adaptive versions are kind of encouraging exploration: given
a pair (`, c) of leader and challenger, pulling arm ` (respectively c) will increase the probability of
pulling c (respectively `) at next time step the pair of leader and challenger will be the same. This is a
consequence of the monotonicity of the function x ∈ (0, 1) 7→ β`,c(µ, x) defined in (6.13), where we
recall that x is interpreted as the proportion v`

v`+vc
associated to a weight vector v.

Lemma 6.11. Let a, b ∈ [K] be such that µa 6= µb. Then βb,a(µ, · ) is a decreasing (continuous)
function such that

lim
x→1

βb,a(µ, x) = 0 , and lim
x→0

βb,a(µ, x) = 1 .

Proof. The continuity of βb,a(µ, · ) is a direct consequence of the continuity properties of d (see
page 43), since

∀x ∈ (0, 1), βb,a(µ, x) def= 1

1 + 1− x

x

d
(
µa, (1− x)µa + xµb

)
d
(
µb, (1− x)µa + xµb

)
To prove the decreasing of βb,a(µ, · ), we use the strict convexity of d on its domain. Let

0 < x < x′ < 1. By setting µx = (1 − x)µa + xµb, we get µx ∈ (µa, µx′) or µx ∈ (µx′ , µa),
depending on the relative positions of µa and µb, hence there exists α ∈ (0, 1) such that

µx = αµx′ + (1− α)µa .

In fact, it is easy to see that α = x
x′ . By strict convexity of d, we get that

d
(
µa, µx

)
≤ αd

(
µa, µx′

)
+ (1− α) d(µa, µa)︸ ︷︷ ︸

=0

= x

x′ d
(
µa, µx′

)
,

hence we proved that
d
(
µa, µx

)
x

<
d
(
µa, µx′

)
x′ .

Similarly, one can show that
d
(
µb, µx

)
1− x

>
d
(
µb, µx′

)
1− x′ ,

which entails that βb,a(µ, x) > βb,a(µ, x′). This concludes the proof of the decreasing of βb,a(µ, · ).
We now prove the limit behaviors. We recall the expression of the mean-parameterized Kullback-

Leibler divergence of the model defined in Equation (6.4):

∀µ, µ′ ∈M, d
(
µ, µ′) def= KL(νθ, νθ′) = (θ − θ′)b′(θ)− b(θ) + b(θ′) ,

where θ = (b′)−1(µ) and θ′ = (b′)−1(µ′). As b is twice differentiable, a first-order Taylor expansion
of d(µ , · ) ensures that for all µ ∈M,

d(µ, µ′) = oµ′→µ

(
µ′ − µ

)
.
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Injecting this asymptotic behaviour in the expression (6.13) of βb,a(µ, x) leads to

βb,a(µ, x) = 1

1 + 1− x

x

d
(
µa, (1− x)µa + xµb

)
d
(
µb, (1− x)µa + xµb

)
= 1

1 + 1− x

x

ox→0
(
x(µb − µa)

)
d
(
µb, (1− x)µa + xµb

)
= 1

1 + (µb − µa)
d
(
µb, µa

) ox→0(1)
−→
x→0

1 .

The second result can be derived similarly.

6.3.4. Step 4: A Useful Relationship

To obtain the required convergence (6.14), an important argument in the final step will be to use
that, if there exists a 6= a? such that pa(t)/pa?(t) is a little bit above its target wa/wa? , then if t is
large enough, there exists another sub-optimal arm b such that pb(t)/pa?(t) is slightly under wb/wa? .
This property occurs, for instance (see the next step for precise calculations), as soon as∑

a6=a?

pa(t)
pa?(t)

q.−→
t→+∞

∑
a6=a?

wa

wa?
. (6.20)

In the Gaussian case, You et al. (2023) were able to prove that∑
a6=a?

pa(t)2

pa?(t)2
q.−→

t→+∞
1 =

∑
a6=a?

w2
a

w2
a?

,

and uses this relation to get the desired property. Yet, this clearly uses the fact that the optimal
weight vector w satisfies a property that is highly specific to Gaussian variables:

w2
a? =

∑
a6=a?

w2
a ,

that can be obtained directly from Equation (6.8) or by the analysis of Chapter 3, see Equation (3.12).
It seems that this Gaussian argument is the most challenging to extend the analysis of You et al.

(2023) to all exponential models. A general relation that might be obtained to replace this Gaussian
property is that the frequencies of pulls satisfy the following quick convergence:∑

b 6=a?

d(µ?, µa?, b, p(t))
d(µb, µa?, b, p(t))

q.−→
t→+∞

1 =
∑

b6=a?

d(µ?, µa?, b, w)
d(µb, µa?, b, w) ,

where the equality stands from Equation (6.8).

pa?(t) bounded away from 0. An important implication of such convergence is that the ratio
pa(t)/pa?(t) does not blow up, i.e., that pa?(t) is bounded away from 0 after a sufficiently large
enough time:

∃pmin > 0, ∃T ∈ L1, ∀t ≥ T, pa?(t) ≥ pmin .

If another proof structure is required to replace this step, it might be possible to obtain this prop-
erty4 by using Lemma 6.11, which, as previously discussed, indicates that the strategy somewhat
encourages exploration.

4Even without forced exploration.
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6.3.5. Step 5: Quick Convergence of pa(t)/pa?(t)

In this last step we assume that the convergence (6.20) is satisfied:

∑
a6=a?

pa(t)
pa?(t)

q.−→
t→+∞

∑
a6=a?

wa

wa?
. (6.21)

In this step, we prove (6.14) with similar arguments to You et al. (2023). Some simplifications are
made by the use of the deterministic challenger rules considered in this work (Transportation-Cost
and Transportation-Cost-Penalized) instead of the Bayesian challenger of You et al. (2023).

Lemma 6.12. For all ε > 0, there exists T ∈ L1 such that for all t ≥ T and a 6= a?,

pa(t)
pa?(t) ≥

wa + ε

wa?
=⇒ At+1 6= a .

This result states that, after a sufficiently long time, if arm a is over-pulled at time step t, it has no
chance to be pulled at t + 1.

For the sake of completeness, we will give a proof of that result that was already known (see, e.g.,
Jourdan et al., 2022, Page 7). We need to introduce notation and preliminary results. To simplify
the reading, we set:

∀t ≥ 0, ∀a 6= b, T̂Ca→b(t)
def= TCa→b

(
µ̂(t), p(t)

)

For a 6= a?, we also define

fa(x) def= d

(
µ?,

x

1 + x
µa + 1

1 + x
µ?
)

+ x d

(
µa,

x

1 + x
µa + 1

1 + x
µ?
)

,

and note that
TCa→a?

(
µ, v

)
= va?fa

( va

va?

)
,

As a consequence of Proposition 6.1, we have that

∀a 6= a?, fa

( wa

wa?

)
=

T (µ)−1

wa?
. (6.22)

We will use the fact that fa is an increasing function.

Lemma 6.13. [Garivier and Kaufmann, 2016, Appendix 5.2]
For all a 6= a?, x ∈ (0, +∞) 7→ fa(x) is an increasing function.

We also use the sufficient exploration property (Lemma 6.9) to ensure that the empirical costs
are quite close to their theoretical value after a sufficiently long time:

Lemma 6.14. For all η > 0, there exists T ∈ L1 such that

∀t ≥ T, ∀a 6= a?, (1− η)T̂Ca→a?(t) ≤ TCa→a?

(
µ, p(t)

)
≤ (1 + η)T̂Ca→a?(t) .

Proof. This is a consequence of Proposition 6.10 and the continuity of the transportation costs.

Page 182 / 192



6.3. ASYMPTOTICALLY OPTIMAL ADAPTIVE ALGORITHMS

Proof of Lemma 6.12. For the sake of simplicity, we only prove the result for the Transportation-
Cost challenger. The same proof applies for the Transportation-Cost-Penalized challenger, up
to slightly modifying Lemma 6.14 with the penalized empirical costs.

Let ε > 0. Thanks to the previous steps, we get the existence of some integrable times satisfying
the following properties:
• By assumption (6.21), there exists T1 ∈ L1 such that

∀t ≥ T1,

∣∣∣∣ ∑
a6=a?

pa(t)
pa?(t) −

∑
a6=a?

wa

wa?

∣∣∣∣ ≤ ε

wa?
. (6.23)

• In addition, note that by Proposition 6.10, we get the existence of T2 ∈ L1 such that for all
t ≥ T2

∀t ≥ T2, ∀a ∈ [K], |µ̂a(t)− µa| <
∆min

2 ,

where ∆min = mina6=a? ∆a. As a consequence Lt = a? for all t ≥ T2.
• Also, by Lemma 6.14, for a fixed η > 0 there exists T3 ∈ L1 such that for all t ≥ T3,

∀a 6= a?, (1− η) TCa→a?(t) ≤ TCa→a?(µ, p(t)) ≤ (1 + η) TCa→a?(t) . (6.24)

We now set T
def= max(T1, T2, T3) ∈ L1 where T3 is associated with a value of η to be chosen later.

Let t ≥ T and assume that there exists a 6= a? such that

pa(t)
pa?(t) ≥

wa + ε

wa?
. (6.25)

We will prove that At+1 6= a. As Lt+1 = a?, we only need to prove that Ct+1 6= a. By definition of
Ct+1 (which is an arm minimizing its empirical transportation cost with a?), it suffices to prove that

T̂Cb→a?(t) < T̂Ca→a?(t) . (6.26)

By Equation (6.23), the condition (6.25) implies that

∃b 6= a?,
pb(t)
pa?(t) ≤

wb

wa?
. (6.27)

Using the monotonicity property of fa and fb (Lemma 6.13), this leads to

(1 + η)T̂Ca→a?(t) ≥ TCa→a?(µ, p(t)) by (6.24)

= pa?(t) · fa

(
pa(t)
pa?(t)

)
≥ pa?(t) · fa

(
wa + ε

wa?

)
by (6.25)

= pa?(t) · (1 + εa) · fa

( wa

wa?

)
= pa?(t) · (1 + εa) · fb

( wb

wa?

)
by (6.22)

≥ (1 + εa) · pa?(t) · fb

(
pb(t)
pa?(t)

)
by (6.27)

= (1 + εa) · TCb→a?(µ, p(t)) by (6.24)
≥ (1 + εa)(1− η)T̂Cb→a?(t) ,
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where we defined

εa
def=

fa

(
wa+ε
wa?

)
fa

(
wa
wa?

) − 1 ,

which is positive by Lemma 6.13. Hence we proved that

T̂Ca→a?(t) ≥ (1− η)
(1 + η)(1 + εa)T̂Cb→a?(t) .

Taking η small enough, such that

(1− η)
(1 + η)

(
1 + min

a6=a?
εa

)
> 1 ,

leads to inequality (6.26), which enforces Ct 6= a and completes the proof.

Using Lemma 6.12, it is not hard to prove the convergence of pa(t)/pa?(t). The analysis of You
et al. (2023) might be followed, by proving first that, for all ε > 0, there exists T ∈ L1 such that

∀t ≥ T, ∀a 6= a?,
pa(t)
pa?(t) ≤

wa + ε

wa?
,

and then deduce the required objective (6.14) by using assumption (6.21).

6.3.6. Conclusion

In this section, we proposed some ideas to generalize the Gaussian analysis of You et al. (2023)
and prove Conjecture 6.4. In steps 2 and 3, we slightly modified the definition of the strategies
TT-EB-TC and TT-EB-TCP in order to simplify their analysis for an exponential model. In step 5, we
proved that the Gaussian arguments still apply for those models, provided that some hypothetical
condition holds. It seems that the last biggest challenge is to prove that this condition is satisfied
(see discussions in step 4).

About the χ challenger. The analysis made in this section might be extended to the χ challenger
presented in Section 6.2.3, but the randomization of the challenger complicates the analysis as well
as technical issues with non-continuous models. For this challenger, a first step might be to obtain
the convergence of the empirical frequencies of pulls with the knowledge of µ, stated in the following
conjecture.

Conjecture 6.15. Consider a version of the TT-EB-χ algorithm which knows the values of µ and
use it instead of µ̂(t− 1) to compute χ̂(t− 1) and β̂Lt,Ct(t). Then

p(t) −→
t→+∞

w Pµ–a.s. .

6.4. Side Note: On the Asymptotic Optimality of Track-and-Stop

In this section, we give a proof of the asymptotic optimality of Track-and-Stop . When introducing
their strategy, Garivier and Kaufmann (2016) proved that Track-and-Stop satisfies the following
asymptotic bound, which does not exactly correspond to asymptotic optimality in the sense of
Definition 2.12.
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Theorem 6.16. [Garivier and Kaufmann, 2016, Theorem 14]
Consider an exponential model Dexp. The Track-and-Stop strategy, with threshold (6.3) for a
fixed α > 1, satisfies

∀µ in Dexp, lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ αT (µ) .

As a by-product of some of the results stated in Section 6.4, we show that Track-and-Stop is
asymptotically optimal whatever the choice of α > 1.

Theorem 6.17. Consider an exponential model Dexp. The Track-and-Stop strategy, with C-
tracking and the Global-Likelihood-Ratio stopping rule with threshold (6.3) for a fixed α > 1,
is asymptotically optimal:

∀µ in Dexp, lim sup
δ→0

Eµ[τδ]
log 1

δ

≤ T (µ) .

Remark. The proposition also applies for the Exploration-Biased-Sampling strategy studied
in Chapter 4. One can follow the same proof structure, recalling that this strategy naturally has
sufficient exploration with rate

√
t.

The result is deduced from the general Propositions 6.6 and 6.10.

Proof. We will prove that the hypothesis of Proposition 6.6 is satisfied, i.e., that

p(t) q.−→
t→+∞

w .

We rely on the following lemma, which controls the values of the number of pulls.

Lemma 6.18. [Garivier and Kaufmann, 2016, Lemma 7]
The Track-and-Stop algorithm with C-tracking satisfies, for all t ≥ 0 and a ∈ [K],

Na(t) ≥
√

t + K2 − 2K , (6.28)

and
∣∣∣∣pa(t)− 1

t

∑
s∈[t]

ŵ(s)
∣∣∣∣ ≤ K

1 +
√

t

t
. (6.29)

We deduce from (6.28) that the strategy provides sufficient exploration with rate
√

t, for some
constant C ∈ (0, 1). By Proposition 6.10, this implies that

µ̂(t) q.−→
t→+∞

µ ,

and by continuity of µ̂ 7→ w
(
µ̂
)
at µ, that

ŵ(t) = w
(
µ̂(t)

) q.−→
t→+∞

w .

It can be easily seen that this implies the quick convergence of the Cesàro sum:

1
t

∑
s∈[t]

ŵ(s) q.−→
t→+∞

w .
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By Equation (6.29), this implies that

p(t) q.−→
t→+∞

w ,

and concludes the proof.

6.5. Conclusion
In this chapter, we first considered a new transformation of weights which is of high interest for the
sample complexity optimization problem, as its unique fixed point is the optimal weight vector. We
derived procedures for the computation of the optimal weight vector that revealed empirically correct
and efficient, but we are still looking for theoretical arguments that to guarantee the convergence.

Then, we came to grips with adaptive top-two algorithms in order to prove their asymptotic
optimality for a general exponential model. Following the Gaussian proof structure of You et al.
(2023), we showed that some arguments might easily be generalized or bypassed (in a preliminary
study, by using, e.g., forced exploration). However, a crucial convergence argument presented in
step 4 is missing in the general case, and constitutes the main remaining challenge, unless different
proof structures avoiding this argument are studied. Indeed, in future work, we might also investigate
another path based on the three following steps:
• prove Conjecture 6.3, that is, prove the convergence of the empirical procedures proposed in
Section 6.2.2 for the computation of w(µ) with the knowledge of µ,
• independently, prove that the TT-EB-TC and/or TT-EB-TCP strategies have sufficient explo-
ration, using the partial ideas introduced in Section 6.3.3,
• finally, prove the asymptotic optimality by combining the results of the two first phases.
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Contributions à une théorie de l’exploration pure en statistique séquentielle

Résumé. Cette thèse, à la croisée entre les domaines de l’intelligence artificielle, de la statistique
séquentielle et de l’optimisation, s’intéresse au problème d’identification du meilleur bras (en es-
pérance) dans les bandits non structurés à K bras. Ce problème possède deux approches dont les
niveaux de compréhension sont très di�érents.

Le cadre à confiance fixée est le mieux compris : des stratégies asymptotiquement optimales
sont connues, et l’on s’intéresse à l’obtention de garanties non asymptotiques pour des stratégies
(si possible) simples et naturelles. Avec des bandits Gaussiens, nous proposons l’analyse à risque
fini d’une nouvelle stratégie (asymptotiquement optimale) grâce aux propriétés de régularité de ce
modèle. Cette stratégie modifie subtilement la règle d’attribution des tirages de l’algorithme Track-
and-Stop en une règle plus prudente et interprétable. Dans le contexte plus général d’un modèle
exponentiel, nous proposons l’ébauche d’une analyse de l’asymptotique optimalité d’algorithmes de
type Top-Two adaptatifs, dont les règles de choix de tirages sont particulièrement simples.

Par ailleurs, dans le cadre à budget fixé, où l’existence d’une hypothétique complexité reste à dé-
montrer, nous proposons des généralisations à des modèles non-paramétriques des bornes (supérieures
et inférieures) connues jusqu’à présent pour des modèles très spécifiques. Les bornes obtenues font
intervenir des quantités de théorie de l’information plus précises que les écarts entre les moyennes
qui apparaissaient précédemment. Ces nouvelles quantités pourraient être la clé pour mesurer la
complexité de l’identification de meilleur bras à budget fixé.

Mots-clés. Problèmes de bandits · Identification de meilleur bras · Statistiques séquentielles ·

Apprentissage statistique · Intelligence artificielle

Contributions to a Theory of Pure Exploration in Sequential Statistics

Abstract. This thesis lies in the fields of artificial intelligence, sequential statistics and optimization.
We focus on the problem of best (in expectation) arm identification in unstructured muti-armed
bandits. This problem has two approaches with very di�erent levels of understanding.

The fixed-confidence framework is the best understood: asymptotically optimal strategies are
known, and we are interested in obtaining non-asymptotic guarantees for (if possible) simple and
natural strategies. Working with Gaussian bandits, we propose a finite risk analysis of a new (asymp-
totically optimal) strategy using the regularity properties of this model. This strategy slightly modifies
the sampling rule of the Track-and-Stop algorithm into a more conservative and interpretable rule. In
the more general context of an exponential model, we propose a preliminary analysis of the asymptotic
optimality of adaptive Top-Two algorithms, whose sampling rules are particularly simple.

Independently, in the fixed-budget framework, for which the existence of a hypothetical complexity
remains to be demonstrated, we propose generalizations to non-parametric models of the existing
bounds (upper and lower) that were available so far only for very specific models. The obtained
bounds involve more precise information-theoretic quantities than the gaps (di�erences between
the means) which appeared previously. These new quantities could be the key to measuring the
complexity of fixed-budget best-arm identification.

Keywords. Multi-Armed Bandits · Best-Arm Identification · Sequential Statistics · Statistical Learn-
ing · Machine Learning
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