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INTRODUCTION

Discrete Event (Dynamic) Systems 1 (DES) are discrete-state systems whose dynamics are entirely driven by the occurrence of asynchronous events over discrete time instants [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]Sec. 1.3.2].

The study of DES is of great interest in analysis, control and estimation of systems that are often of human design. Examples of DES include computer systems [START_REF] Mao | Optimal control of multilayer discrete event systems with real-time constraint guarantees[END_REF], telecommunication networks [START_REF] Altman | Discrete-event control of stochastic networks : multimodularity and regularity / eitan altman, bruno gaujal, arie hordijk[END_REF][START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF], manufacturing lines and transportation systems. Unlike classical continuous systems, they usually cannot be described by differential equations because of the nature of the involved phenomena. These systems are then often represented by state-transition models: finite state automata and languages [START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF] which are used to represent simple deterministic systems; Markov chains for stochastic systems [START_REF] Gaujal | Dynamic speed scaling minimizing expected energy consumption for real-time tasks[END_REF]; and Petri nets for more complex systems that include synchronization, conflict and parallelism [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF].

Among the DES, a particular class involving only synchronization and time-delay phenomena has been the subject of a dedicated algebraic development, generally called Max-Plus linear algebra [START_REF] Baccelli | Estimates of cycle times in stochastic Petri nets[END_REF]. This class of DES can be represented graphically, depicted by Timed Event Graphs (TEG) and is typical for the modelling of systems arising in scheduling applications involving allocation of resources.

The fascinating mathematical theory of Max-Plus algebra is due to the fact it provides techniques for solving nonlinear problems that can be given in the form of linear problems, when arithmetical addition is replaced by the operation of maximization (denoted ⊕) and arithmetical multiplication is replaced by addition (denoted ⊗). The Max-Plus algebra setting, which is an idempotent semiring that is properly presented later in this thesis, is suitable to describe the behavior of TEG thanks to linear state equations which are very analogous to those found in classical linear system theory, i.e., the behavior of a Max-Plus Linear system (MPL) can be depicted thanks to matrices defined in this algebra. The states of MPL systems represent the dates of occurrence of the events in a given eventhorizon and can be simulated using the Max-Plus Toolbox [START_REF] Cohen | Maxplus toolbox of scilab[END_REF] for Scilab and ScicosLab with built-in property analysis tools that mainly concern periodic behavior regime, i.e., no verification tool is available.

These linear state equations are useful to deal with performance analysis [START_REF] Heidergott | Max Plus at Work: Modeling and Analysis of Synchronized Systems : a Course on Max-Plus Algebra and Its Applications[END_REF] and control problems addressed similarly to the classical control theory. Among the problems solved we can cite the optimal control [START_REF] Cohen | Max-plus algebra and system theory: Where we are and where to go now[END_REF][START_REF] Maia | Optimal Closed-Loop Control for Timed Event Graphs in Dioid[END_REF], the model-predictive control [START_REF] Van Den Boom | Corrections to "Model predictive control for stochastic max-plus linear systems with chance constraints[END_REF][START_REF] Necoara | Stable model predictive control for constrained max-plus-linear systems[END_REF], the robust controller design [START_REF] Lhommeau | Interval analysis in dioid: Application to robust open-loop control for timed event graphs[END_REF][START_REF] Necoara | Robust control of constrained max-plus-linear systems[END_REF] and the control strategies allowing the state to stay in a specific state subspace or semi-module [START_REF] Amari | Max-plus control design for temporal constraints meeting in timed event graphs[END_REF][START_REF] Katz | Max-plus (a,b)-invariant spaces and control of timed discrete-event systems[END_REF][START_REF] Maia | A super-eigenvector approach to control constrained max-plus linear systems[END_REF][START_REF] Necoara | Robust control of constrained max-plus-linear systems[END_REF][START_REF] Gonçalves | On the steady-state control of timed event graphs with firing date constraints[END_REF].

These models are also useful to deal with state estimation [START_REF] Hardouin | Observer design for (max,+) linear systems[END_REF][START_REF] Loreto | Duality between invariant spaces for max-plus linear discrete event systems[END_REF][START_REF] Cândido | Particle filter for max-plus systems[END_REF][START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF] which is a fundamental problem to address applications such as fault detection and diagnosis [START_REF] Paya | Observer-based detection of time shift failures in (max,+)-linear systems[END_REF] and state feedback control [START_REF] Hardouin | Control and State Estimation for Max-Plus Linear Systems[END_REF]. However, if the system is with uncertain parameters2 , some alternative methods can be considered in order to take advantage of the knowledge about the characteristics of this uncertainty [START_REF] Cândido | Particle filter for max-plus systems[END_REF][START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF][START_REF] Cândido | Particle filter for max-plus systems[END_REF][START_REF] Cândido | Conditional reachability of uncertain max plus linear systems[END_REF][START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF][START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF]. It is worth mentioning that if we do not take these uncertainties into account, we may observe tracking error or instability in closed loop control strategies [START_REF] Van Den Boom | Model predictive control for perturbed max-plus-linear systems[END_REF]. The nondeterministic MPL systems (or Stochastic Max-Plus Linear (SMPL) systems if probabilistic information is available) are defined as MPL systems whose matrix entries are characterized by random variables [START_REF] Olsder | Discrete event systems with stochastic processing times[END_REF][START_REF] Heidergott | Max-Plus Linear Stochastic Systems and Perturbation Analysis[END_REF][START_REF] Van Den Boom | Model predictive control for perturbed max-plus-linear systems[END_REF][START_REF] Diloreto | Duality between invariant spaces for max-plus linear discrete event systems[END_REF][START_REF] Hardouin | Max-plus Linear Observer: Application to manufacturing Systems[END_REF].

Objective of the thesis

In this work, we are interested in stochastic filtering of Uncertain Max-Plus Linear (uMPL) systems, a subclass of nondeterministic systems, with entries that are mutually independent bounded random variables with support in a real interval (bounded domain). The objective of the stochastic filtering is to be able to estimate the state of the system given a sequence of observations (measurements). Relying on the theory of estimation, it is well known that all the information for estimating the state of the system is contained in the posterior probability density function (PDF) of this state. However, as presented later, the solution of this problem is for linear (or nonlinear with good linear approximations) systems with Gaussian noise only (this solution is known as Kalman filter), which is not the case of nondeterministic MPL systems.

Preliminary works

To meet probabilistic objectives, we cite some preliminary works which are the basis of this thesis:

-the conditional reachability analysis (RA) corresponds to the support calculation of the posterior PDF of the uMPL system states [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF][START_REF] Cândido | Conditional reachability of uncertain max plus linear systems[END_REF][START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF]. However, it should be noted that the conditional (RA) techniques are not stochastic since it does not rely on any probability measurement. Nevertheless, this approach is useful to improve the efficiency of Particle filtering algorithms. Particle filters, or Sequential Monte Carlo methods, are suboptimal Bayesian algorithms based on weighted-particle approximation of probability densities [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF][START_REF] Doucet | On sequential monte carlo sampling methods for bayesain filtering[END_REF], and in general these approaches are limited by the numerical difficulties due to the generation of the particles and by the fact that the lower dimensionality of the measurements with respect to the state, introduces an imprecise generation of particles in the state-space. Particle filters applied to MPL systems have been studied in [START_REF] Cândido | Particle filter for max-plus systems[END_REF][START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF]; -in [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF], an alternative stochastic filtering algorithm for uMPL systems has been studied. The algorithm is depicted in a two-fold scheme, as it is the case of the Bayes filter (basis of Kalman filter): a prediction phase based on the calculation of the conditional mathematical expectation E[observation|state]; and a correction phase using available measurements and the prediction into account in order to compute a state estimate, based on a constraint satisfaction problem [START_REF] Jaulin | Applied Interval Analysis[END_REF].

Contributions

In this thesis, the following problems have been analyzed:

-we present a reinterpretation of conditional RA for uMPL systems using Max-Plus polyhedra [START_REF] Allamigeon | Inferring min and max invariants using max-plus polyhedra[END_REF]. We show that the forward reach set, i.e., the set of all states that can be reached from a previous set via dynamics, is computed in strongly polynomial-time and are characterized by a single Max-Plus polyhedron whereas in [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF][START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF] the complexity is exponential, and also being characterized as a collection of Difference-Bound Matrices (DBM) [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]Sec 4.1] to represent the same set (explosion in the number of DBM as the dimension evolves). Conversely, we show that the backward reach set, i.e., the set of all states that lead to a measurement point via observation, is computed with exponential complexity in worst-case scenarios using either the polyhedral or the DBM approaches. Nevertheless, since the intersection of the forward and backward reach sets is the objective of stochastic filtering, then we claim that we have obtained a significant improvement. Moreover, polyhedralsets allow us to promptly verify inclusion by using a procedure with polynomial complexity in the dimension; -we present conditions to compute (exactly or approximately) the forward and backward reach set using algebraic operations with quadratic complexity; -we introduce a criterion to the alternative stochastic filtering proposed in [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF] that makes it possible to define an improved filtering algorithm. The new proposed algorithm is based on the minimization of this criterion which allows evaluating the estimation error of the prediction phase and to adjust the importance to be given between the prediction estimation and the corrected estimation, as the quadratic criterion does in Kalman filter for linear continuous time-driven systems. -we extend the stochastic filtering algorithms, that are essentially devoted to TEG whose places have at least a single token, to systems with token-free places. Briefly, filtering algorithms assume that the stochastic entries of the system matrices are independent. However, with token-free places, the entries of system matrices are sums and/or max of processing times, in which various processing times appear in multiple entries. Therefore, the entries of the matrices are not independent, and these procedures are not directly adapted.
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Organization of the document

This work is organized as follows: Chapter 1 recalls the preliminaries on DES, Max-Plus algebra, Residuation theory over complete dioids and MPL systems. Chapter 2 gives an overview of the methods for RA analysis of uMPL systems. The main contribution in this Chapter is related to the use of polyhedral-sets to perform RA instead of using DBM. Chapter 3 recalls the stochastic filtering of uMPL systems and presents some contributions: the definition of criteria "à la Kalman"; an extension to TEG with tokenfree places; consistency with the support of the posterior PDF.

Chapter 1

PREREQUISITES

This chapter covers a brief introduction to Discrete Event Systems (DES), Max-Plus algebra, Residuation theory over complete dioids. At the end of this Chapter, we introduce Max-Plus Linear (MPL) systems.

Discrete Event Systems

In systems theory, systems that describe physical phenomena are controlled by considering model-based strategies using, e.g., ordinary differential equations. Some properties must be satisfied in order to properly use these models:

1. the state-space must be continuous; 2. the presence of time-driven state transition mechanism.

The state-space being continuous means that it can be defined through continuous variables that can take any arbitrary value within a real (or complex) interval. Some common physical variables such as position and temperature are examples of time-driven systems. Hence, any continuous variable, as long as one can naturally define its derivatives, is suitable to be handled by this class of systems.

The second property is due to the fact that the states generally evolve as a function of time. Figure 1.1 shows a typical trajectory of such systems.

Furthermore, control engineers are also interested in the control of complex systems, e.g., -manufacturing systems; -transportation systems; -telecommunication networks;

To describe the behavior of these systems, the mathematical tools of time-driven systems are not suitable, hence more relevant theoretical setting are considered, among them dx dt = f (x, t) t

x(t)

.1 -Typical trajectory of a time-driven system the following can be cited: languages and automata, Markov chains and Petri nets. The reader is invited to consult [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF] for an overview.

As it was done for time-driven systems, we state the properties of these systems:

1. the state-space is discrete;

2. the presence of event-driven state transition mechanism.

Definition 1.1 (Discrete Event System (DES) [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]). Discrete Event Systems (DES) are systems whose dynamics are event-driven, i.e., the state evolution depends entirely on the occurrence of asynchronous discrete events over time.

Discrete state-spaces are present in several systems, the majority of them having a technological application. The event-driven property of DES is due to the fact that the states can only change over time at discrete instants, which physically coincides to the definition of asynchronous occurrences of discrete events. The following implication naturally arises:

If it is possible to identify any sort of "event" that can trigger a state transition =⇒ time no longer serves to drive such a system.

Example 1.1. A machine has the following set of states that describe its behavior:

x ∈ {ON, OFF, Processing, Idle} Figure 1.2 depicts an arbitrary trajectory of the states of this machine. In this trajectory, events are represented by the Greek letters α, β, γ. It can be seen that a same event has different effects in the state evolution, depending on the state in which it occurs. For instance, in the figure: if the system is in state OFF and an event α occurs then the next state will be ON; if α occurs at Processing then the next state will be Idle. The trajectory can continue indefinitely. Hence, the trajectory is given by the (untimed or logical) finite list of events {α, β, γ, α, . . . }. If the timing information is explicitly included, then we consider the timed list {(α, t 1 ), (β, t 2 ), (γ, t 3 ), (α, t 4 ), . . . }, otherwise, we consider the previous logical list of events.

Example 1.2. Counters are naturally discrete, i.e., x = 1, 2, 3, . . . counts, for instance, the number of products that have been processed by a machine. Figure 1.3 depicts this behavior. The term k ∈ {1, 2, 3, 4} denotes the numbering of the events that increase the value of x (monotonic increasing function) while the set {t 1 , t 2 , t 3 , t 4 } denotes the date of occurrences of such events.

As already mentioned, it is possible to use different modeling approaches for DES, without any of them being considered as "universal". Indeed, depending on the system to be modeled, a specific approach may simplify the modeling and ease, e.g., analysis and control design. For instance, state machines, a subclass of Petri nets, cannot model synchronization phenomena but are perfectly suitable to handle problems involving conflicts and/or decisions [START_REF] Peterson | Petri nets[END_REF]. Another subclass of Petri nets, called marked graphs or event graphs, cannot model conflicts but are perfectly adapted to model synchronization phenomena [START_REF] Commoner | Marked directed graphs[END_REF], for instance in a manufacturing system subject to synchronization: the assembly of a product waits for n resources to become available. In this subclass, timing information is generally considered in the modelling, and we consider Timed Event Graphs (TEG), which explicitly contain timing information for the different events. TEG can be described in terms of state-space equations using maximization and addition operations to describe delay and synchronization phenomena.

In the sequel, we present the basic concepts of Petri nets and Timed Event Graphs (TEG). Then the following elements of N are promptly obtained

P = {p 1 , p 2 }, T = {t 1 }, A = {(p 1 , t 1 ), (t 1 , p 2 )} w(p 1 , t 1 ) = 2, w(t 1 , p 2 ) = 1, (x(p 1 ), x(p 2 )) t = (2, 0) t

Elementary structures

PN are very powerful, because they are capable of representing a large amount of features, such as:

-Sequence: Figure 1.4a depicts an example of this structure, in which a token in place p 0 enables the transition t 1 . The firing of transition t 1 enables the transition t 2 , since p 1 is now marked; -Fork: Figure 1.4b shows an example of a fork structure. This structure is the basic feature of the creation of parallel processes; -Join (synchronization): Figure 1.4c combines two concurrent processes, allowing that another process continues its execution only after the end of predecessor processes (represented by the firing of transition t 1 ), i.e., these processes need to synchronize with each other; -Choice: Figure 1.4d depicts the process of making choices, i.e., the firing of transition t 1 disables the transition t 2 and the firing of t 2 disables t 1 ; -Merging: Figure 1.4e shows a net with two independent transitions t 1 and t 2 that have an output place p 2 in common. Therefore, the firing of one of these two transitions, enables the firing of subsequent transitions since p 2 becomes marked.

Special modelling features

-Parallel processes: A model for parallel processes may be obtained by composing the model for each individual process with fork and synchronization structures. Figure 1.5a depicts an example of a parallel process, where I and II represent parallel activities. Since p 0 is marked, then transition t 1 is enabled. When transition t 1 fires, p I 1 and p II 1 become marked, representing a concurrency, i.e., internal transitions in I are independent of II. The firing of t 2 depends on p I n and p II n , implying that both process I and II are finished and p 0 is once again marked, ready to restart the process by enabling the firing of t 1 ; -Mutual exclusion: The modelling of resource sharing is addressed in a mutual exclusive way. Figure 1.5b depicts a single resource (token) in place R. This place is seen as a pre-condition for sub-systems S 1 and S 2 that need such resource. After the use of this resource by S 1 or S 2 , then it must be released and ready to be used again.

Dynamic evolution in PN with initial marking Definition 1.3 ([1]

). A transition t j ∈ T in a PN is said to be enabled if x(p i ) ≥ w(p i , t j ) for all p i ∈ I(t j ) = {p i ∈ P | (p i , t j ) ∈ A} (the set of all input places for transition t j ).

Remark 1.1. If there is no arc from place p i ∈ P to transition t j ∈ T , then w(p i , t j ) = 0. Similarly, if there is no arc from t j to p i , then w(t j , p i ) = 0. 

p i is enabled ∀p i ∈ I(t j ).
Then the following equation defines f ((x(p 1 ), . . . , x(p |P | )) t , t j ): In this way, the next marking (state), explicitly depends on the input and output places of a transition and the weights of the arcs that connect these places to the transition. It should be noted that the number of tokens does not necessarily need to be conserved after the firing of a transition in a PN. In general, it is possible that after several transition firings, the resulting state is (x(p 1 ), . . . , x(p |P | )) t = (0, . . . , 0) t , or that the number of tokens in one or more places is arbitrarily large.

x ′ (p i ) = x(p i ) -w(p i , t j ) + w(t j , p i ), i = 1, 2, . . . , n

Remark 1.2.

If a PN has transitions with choice structure, then we say that they are in conflict. In this thesis, however, the focus is on non-conflicting PN.

Definition 1.5 (Event graph). A non-conflicting PN is called an event graph, if each place has exactly one upstream and one downstream transition and if all arcs have weight 1. Event graphs are perfectly suitable to model synchronization phenomenon.

Example 1.4. Let N = (P, T, A, w, x) be an event graph, with initial marking depicted by Figure 1.6a. Then the following elements of N are promptly obtained,

P = {p 1 , p 2 , p 3 }, T = {t 1 , t 2 , t 3 }, A = {(t 1 , p 1 ), (p 1 , t 2 ), (p 3 , t 2 ), (t 2 , p 2 ), (p 2 , t 3 ), (t 3 , p 3 )} w(t 1 , p 1 ) = w(p 1 , t 2 ) = w(p 3 , t 2 ) = w(t 2 , p 2 ) = w(p 2 , t 3 ) = w(t 3 , p 3 ) = 1,      x(p 1 ) x(p 2 ) x(p 3 )      =      0 0 1     
Below we list the cyclic behavior of N :

1. Figure 1.6a: t 1 is the only transition that is enabled since there is no precedence condition. The firing of t 1 inserts a token in place p 1 , since 1.6b: t 1 and t 2 are enabled because: t 1 : there is no precedence condition; t 2 : for the set

x ′ (p 1 ) = 0 -w(p 1 , t 1 ) + w(t 1 , p 1 ) = 0 -0 + 1 = 1 x ′ (p 2 ) = 0 -w(p 2 , t 1 ) + w(t 1 , p 2 ) = 0 -0 + 0 = 0 x ′ (p 3 ) = 1 -w(p 3 , t 1 ) + w(t 1 , p 3 ) = 1 -0 + 0 = 0 2. Figure
I(t 2 ) = {p 1 , p 3 } we have x(p 1 ) = 1 ≥ w(p 1 , t 2 ) = 1 and x(p 3 ) = 1 ≥ w(p 3 , t 2 ) = 1.

Two options are possible:

(a) The firing of t 1 inserts again a token in place p 1 ;

(b) The firing of t 2 inserts a token in p 2 and eliminates a token in p 1 and another in p 3 , since

x ′ (p 1 ) = 1 -w(p 1 , t 2 ) + w(t 2 , p 1 ) = 1 -1 + 0 = 0 x ′ (p 2 ) = 0 -w(p 2 , t 2 ) + w(t 2 , p 2 ) = 0 -0 + 1 = 1 x ′ (p 3 ) = 1 -w(p 3 , t 2 ) + w(t 2 , p 3 ) = 1 -1 + 0 = 0
We choose the second option;

3. Figure 1.6c: t 1 and t 3 are enabled because: t 1 : there is no precedence condition; t 2 : for the set

I(t 3 ) = {p 2 } we have x(p 2 ) = 1 ≥ w(p 2 , t 3 ) = 1.
Two options are possible:

(a) The firing of t 1 inserts again a token in place p 1 ; (b) The firing of t 3 inserts a token in p 3 and eliminates a token in p 2 , since

(a) (b) (c) (d)
x ′ (p 1 ) = 0 -w(p 1 , t 3 ) + w(t 3 , p 1 ) = 0 -0 + 0 = 0 x ′ (p 2 ) = 1 -w(p 2 , t 3 ) + w(t 3 , p 2 ) = 1 -1 + 0 = 0 x ′ (p 3 ) = 0 -w(p 3 , t 3 ) + w(t 3 , p 3 ) = 0 -0 + 1 = 1
We choose the second option;

4. Note that after the considered firings, the PN is back to its initial condition. Analogously, a new cycle can be started, through the firing of transition t 1 .

Timed PN and Timed Event Graphs (TEG)

In a standard PN, the quantification of time does not appear. Indeed, it only models the possible ordering of firings of transitions, but not the actual firing times, since all actions are assumed to be instantaneous. In order to take into account the timing information, there are two approaches, precisely:

-T-time PN : The timing information is associated with the transitions of a PN. When the transition is activated, the triggering is not immediate, being triggered only after its delay (transition delay). When the transition delay is equal to zero, the transition will fire as soon as the transition is enabled. -P-time PN: The timing information is associated with the places of a PN. After being inserted in a timed place, a token is not available to activate a next transition ). An event graph equipped with either transition delays or holding times as timing information defines Timed Event Graph (TEG).

Remark 1.3 ([7]

). If every transition in a TEG, associated with a transition delay, has at least one input place, then the transition delays can always be converted into holding times (by simply shifting each transition delay to all input places of the corresponding transition). However, in general, it is not possible to convert every TEG with holding times into a TEG with transition delays. Therefore, we will only consider TEG with timing information in the places, i.e., for each place p ∈ P we associate a holding time θ(p) ∈ R + , where R + is the set of the non-negative real numbers. 1. input transitions that are not affected by the firing of other transitions (t 1 ); 2. output transitions that do not affect the firing of other transitions (t 4 ); 3. and internal transitions that are neither input nor output transitions (t 2 , t 3 ).

Temporal behavior of TEG

The dynamic behavior of a TEG can algebraically be represented in different ways. On top of this, we know that TEG is a subclass of timed PN, and then it is possible to consider the evolution of the marking of the places as the state recursion (see Definition 1.4). Nevertheless, in order to be able to discuss the performance of the TEG, i.e., to determine its transient regime and/or its steady state, then a suitable modeling is to not consider the state of the marking but the dates of occurrence of the transitions (events).

In the following, we will detail how to obtain the mathematical description of the dynamics of a TEG. First, we associate each transition with a dater x t i (k) : N → R + , where x t i (k) is an increasing map that denotes the date at which the firing of number k ∈ N of the transition t i occurs. By convention, the transition firings will be numbered from 0, i.e., firing number 0 is the first firing of a transition. Moreover, x t i (k) = +∞ means, by convention, that the events numbered greater than or equal k, never took place. It is also assumed that the tokens have been present in the TEG since the beginning of time, i.e., since the date -∞, and that at an initial instant (which can be taken equal to 0), no transition has been fired.

Roughly speaking, the dynamic evolution of a TEG is associated to the following general synchronization structure (join structure of the PN of Figure 1.4c) depicted in Figure 1.8 for two input places, being simple to extend to multiple input places, one input place being trivial. In this example, we have three transitions t 1 , t 2 and t 3 and two places p 1 and p 2 with corresponding holding times θ(p 1 ) and θ(p 2 ). In Figure 1.8a, no token is initially present in places p 1 and p 2 , hence, the earliest date of the k-th firing of transition t 3 is conditioned by the dates of the k-th firings of t 1 and t 2 , shifted by θ(p 1 ) and θ(p 2 ), respectively. Mathematically,

x 3 (k) ≥ x 1 (k) + θ(p 1 ) and x 3 (k) ≥ x 2 (k) + θ(p 2 ) ⇐⇒ x 3 (k) ≥ max (x 1 (k) + θ(p 1 ), x 2 (k) + θ(p 2 ))
Hence, the maximization operation is responsible by the synchronization, i.e., for instance, if

x 1 (k) + θ(p 1 ) > x 2 (k) + θ(p 2 ) then t 3 is triggered at earliest at x 1 (k) + θ(p 1 ).
Figure 1.8b represents a more general situation where the initial marking is with tokens for some places. In this case, the reasoning is as follows: the k-th firing of the transition

t 3 is conditioned by -(k -M (p 1 ))-th firing of the transition t 1 since p 1 has initially M (p 1 ) tokens; -(k -M (p 2 )
)-th firing of the transition t 2 since p 1 has initially M (p 2 ) tokens; Thus

x 3 (k) ≥ x 1 (k -M (p 1 )) + θ(p 1 ) and x 3 (k) ≥ x 2 (k -M (p 2 )) + θ(p 2 ) ⇐⇒ x 3 (k) ≥ max (x 1 (k -M (p 1 )) + θ(p 1 ), x 2 (k -M (p 2 )) + θ(p 2 ))
By applying this procedure, the fundamental principle of each dater x t i of the corre- sponding transition t i of a TEG is given in the sequel.

x t i (k) ≥ max t j ∈T \{t i } x t j (k -M (p j )) + θ(p j ) , t i ∈ T
where k ∈ N is the event-number, t i is the output transition, t j is the input transition, p j ∈ P \{p i } and p i ∈ P are the output places immediately after t j and the output places immediately after t i , respectively. Additionally,

M (p j ) ∈ N
is the number of tokens in p j and θ(p j ) the holding time a of p j .

a. If there is no arc between t i and p j then θ(p j ) = -∞ and thus x = (x t1 , . . . , x tn ) t ∈ (R ∪ {-∞}) n .

Fundamental principle of TEG

Example 1.5. Consider the TEG of Figure 1.7. By applying the fundamental principle of TEG, we obtain the following system of inequalities:

               x t 1 (k) is a control input x t 2 (k) ≥ max(x t 1 (k -1), x t 3 (k -2) + 4) x t 3 (k) ≥ x t 2 (k) + 1 x t 4 (k) ≥ x t 3 (k)
Another possible way to describe TEG is by considering the socalled counters denoted x(τ ) ∈ N. Counters determine the number of events that have occurred up to time t, for instance, x i (τ ) refers to the number of occurrences of transition i up to time τ . It is assumed that time is discrete in this representation, i.e., τ ∈ N → x(τ ) ∈ N.

Example 1.6. Consider again the TEG of Figure 1.7. The timedomain model of this TEG is given by the following system of inequalities:

               x t 1 (τ ) is a control input x t 2 (τ ) ≤ min(1 + x t 1 (τ ), x t 3 (τ -4) + 2) x t 3 (τ ) ≤ x t 2 (τ -1) x t 4 (τ ) ≤ x t 3 (τ )
Consequently, it is possible to model the dynamic behavior of a TEG either in the event-domain (daters) or in the time-domain (counters). In this work, we consider the model dynamics in the event-domain only.

Remark 1.4. Considering the earliest firing rule, i.e., every internal and output transition fires as soon as it is enabled, the system of inequalities ≥ of Example 1.5 becomes a system of equations =.

In view of the recursive equations for the transition firing times of Example 1.5, it is easy to recognize that addition and the maximization operations are necessary to determine the desired timetable. Due to the maximization operation, these equations are nonlinear in conventional algebra. Nevertheless, in the sequel we introduce a suitable mathematical framework to properly deal with these systems.

Max-Plus algebra: an idempotent semiring

The Max-Plus algebra has been an important area of study since the 1970s, with special attention to the modeling and control of DES involving allocation of resources. In the sequel, we shall use [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF] and [START_REF] Heidergott | Max Plus at Work: Modeling and Analysis of Synchronized Systems : a Course on Max-Plus Algebra and Its Applications[END_REF].

Basic concepts

Let us begin with some notations. Let R max def = (R ∪ {ε}, ⊕, ⊗) be the union of the set of all real numbers with ε = -∞. This set is an idempotent semiring or dioid 2 , (i.e., ∀a ∈ R max , a⊕a = a), endowed with max as the addition operator ⊕ and + as the product operator ⊗. These notations are consistent with respect to the usual properties:

Associativity of ⊕ and ⊗: ∀a, b, c ∈ R max , (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) ∀a, b, c ∈ R max , (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) Commutativity ⊕ and ⊗: ∀a, b ∈ R max , a ⊕ b = b ⊕ a ∀a, b ∈ R max , a ⊗ b = b ⊗ a Distributivity of ⊗ over ⊕: ∀a, b, c ∈ R max , (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c)
Neutral element for ⊕ and the absorbing element for ⊗:

∀a ∈ R max , a ⊕ ε = ε ⊕ a = a ∀a ∈ R max , a ⊗ ε = ε ⊗ a = ε Neutral element for ⊗: ∀a ∈ R max , a ⊗ e = e ⊗ a = e, with e = 0
Hereafter, as it is done in usual algebra, the operator ⊗ will usually be omitted in expressions whenever it is clear.

The n-th power of a ∈ R max is naturally introduced in Max-Plus algebra, by using the associative property as shown below

a ⊗n = a ⊗ a ⊗ • • • ⊗ a n times 2.
Dioid is an algebraic structure that has all properties of a ring except the additive inverse.

for all n ∈ N \ {0}. For n = 0, we have a ⊗0 = e. Furthermore, if a ∈ R, then a ⊗-1 stands for -a. 

Matrices and Vectors in Max-Plus algebra

The previous results are extended to matrices and vectors. The set of matrices of shape n × m is denoted R n×m max . An entry of the matrix A ∈ R n×m max is denoted as a ij for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

The sum of matrices A, B ∈ R n×m

max is defined as

(A ⊕ B) ij = a ij ⊕ b ij ,
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Furthermore, the commutativity property holds for the sum of

A, B ∈ R n×m max , i.e., A⊕B = B ⊕ A. Example 1.7.   e ε 3 2   ⊕   -5 11 1 ε   =   e ⊕ -5 ε ⊕ 11 3 ⊕ 1 2 ⊕ ε   =   e 11 3 2   .
The product of a matrix A ∈ R n×m max by a scalar α ∈ R max is defined as 

(α ⊗ A) ij = α ⊗ a ij ,
  ⊕   -5 11 1 ε   =   (e ⊗ -5) ⊕ (ε ⊗ 1) (e ⊗ 11) ⊕ (ε ⊗ ε) (3 ⊗ -5) ⊕ (2 ⊗ 1) (3 ⊗ 11) ⊕ (2 ⊗ ε)   =   -5 11 3 14  
Furthermore, the commutativity property does not hold for the product of A ∈ R n×l max and B ∈ R l×m max , i.e., A ⊗ B ̸ = B ⊗ A. The operations ⊕ and ⊗ of matrices have neutral elements similar to the neutral elements of scalars. Let E be the zero matrix, i.e., a rectangular matrix whose entries are ε. Let diag(a 1 , . . . , a d ) be the diagonal matrix, i.e., a square matrix with its diagonal elements a 1 , . . . , a d ∈ R max and its off diagonal entries ε. A trivial example of a diagonal matrix is the Max-Plus algebraic identity matrix of appropriate dimension I = diag(e, . . . , e). The following properties are easily verified:

∀A ∈ R n×m max , A ⊕ E = E ⊕ A = A ∀A ∈ R n×m max , A ⊗ E = E ⊗ A = E ∀A ∈ R n×m max , A ⊗ I = I ⊗ A = A
The transpose of A ∈ R n×m max , denoted A t , is defined as the usual way, i.e., (A t ) ij = a ji for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

The k-th power of A ∈ R n×n max is defined as

A ⊗k = A ⊗ A ⊗ • • • ⊗ A k times
where A ⊗0 = I. The set R n max = R n×1 max refers to the n-th fold Cartesian product of R max . Its elements can be thought of as points of an affine space, or as vectors. They are denoted by bold symbols, for instance x = (x 1 , . . . , x n ) t . The unit vector is denoted u = (e, . . . , e) t and ∀α ∈ R max , α ⊗ u denotes a vector whose entries are α. Furthermore, the j-th column of the identity matrix I is called the j-th basis of R n max .

Example 1.9. The vectors v 1 = (e, ε) t and v 2 = (ε, e) t are at the same time the columns of

I =   e ε ε e  
and the basis of R 2 max . The latter statement is due to the fact that any v ∈ R 2 max may be uniquely written as

v = α 1 v 1 ⊕ α 2 v 2 .
Any other pair of linearly independent vectors of R 2 max , such as v 1 = (5, ε) t and v 2 = (ε, 3) t , forms also a basis of R 2 max .

Let A ∈ R n×n max be a square matrix, and let b ∈ R n max and x ∈ R n max be two vectors. According to Proposition 1.1, the equation x = Ax ⊕ b admits x = A ⋆ b as smallest solution, where

A ⋆ = k∈N A ⊗k .
If A is a lower triangular matrix, i.e., a ij = ε for all i ≤ j with i, j ∈ {1, . . . , n}, then A ⊗k = E for a sufficient large k (not greater than the matrix dimension).

Equation x = Ax ⊕ b of R n max 1.

Completion of R max and residuation theory over complete dioids

In a dioid (D, ⊕, ⊗) with ε and e their zero and unit elements, respectively, the following equivalence is considered

∀a, b ∈ D, a = a ⊕ b ⇐⇒ ∃c ∈ D, a = b ⊕ c.
This equivalence defines the natural order relation ⪰ as follows:

a ⪰ b ⇐⇒ a = a ⊕ b. (1.1)
The set R max is linearly ordered with respect to ⊕ and the order ⪰ in this set coincides with the usual linear order ≥.

This order relation makes D to be a partially ordered set such that each pair of elements (a, b) admits the lowest upper bound sup{a, b}, usually denoted a ∨ b, which coincides with a ⊕ b. Hence, a dioid is in particular a sup-semilattice.

The sum and the left and right products preserve this relation:

∀a, b, c ∈ D, a ⪰ b =⇒            a ⊕ c ⪰ b ⊕ c, (sum) a ⊗ c ⪰ b ⊗ c, (left product) c ⊗ a ⪰ c ⊗ b, (right product) Definition 1.7 (Complete dioid). A dioid D is complete if it is closed
for infinite sums and the left and right distributivity of the product extend to infinite sums.

For a complete dioid D, the top element, denoted ⊤, exists and is equal to the sum of all elements of D, i.e., ⊤ = a∈D a. This element respects the absorbing rule, i.e., ε ⊗ ⊤ = ε

and ⊤ ⊗ ε = ε
The dioid R max is not complete but it can be completed by adding a top element ⊤ = +∞. Hereafter, rather than using R max we use R max def = (R max ∪ {⊤}, ⊕, ⊗) because we are able to perform computations with infinite values without a careful handling.

Complete dioid R max

For a complete dioid, an inner operation representing the lower bound of the operands, denoted by ∧, automatically exists. The partial order relation presented in Equation (1.1) can be expressed as

a ⪰ b ⇐⇒ a = a ⊕ b ⇐⇒ b = a ∧ b. (1.2)
where a ∧ b = inf{a, b} is the greatest lower bound of (a, b).

In R max , the operation a ∧ b for the scalars a, b ∈ R max coincides with min(a, b).

For matrices with entries in D, the order ⪰ on D induces a (partial) order on the set D n×m , i.e., for any A, B ∈ D n×m the following equivalence holds:

A ⪰ B ⇐⇒ a ij ⪰ b ij ,
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Remark 1.5. The dioid D n×n is complete whenever D is complete because the sum of matrices simply involves the sum of similar entries. Notice that for two matrices A, B ∈ D n×n the following holds:

A ⪰ B ⇐⇒ A = A ⊕ B ⇐⇒ B = A ∧ B,
where

(A ∧ B) ij = a ij ∧ b ij , for all i, j ∈ {1, . . . , n},
is consistent, as it is for scalars in D.

Regarding the order structure of dioids, we are interested in system of equations of form f (x) = y where f is an isotone mapping. However, in dioids, the absence of additive inverses increases the difficulty of finding the solutions of systems of linear equations. Hence, we must weaken the notion of solution, denoting that a sub-solution of f (x) = y is a x which satisfies f (x) ⪯ y. Nevertheless, as in usual algebra the solution of f (x) = y does not always exist and if it does, it is not necessary unique.

Below, we present the greatest solution of f (x) ⪯ y using residuation theory. In Appendix A.1, we collect some useful properties of left and right multiplication and their residuals.

In R max , the product is commutative, hence xa = ax ≤ y admits x = a • \y = y • /a as greatest solution where operators • \ and • / are the classical subtraction -, i.e., x = y -a with the convention that

-∞ + ∞ = +∞.
One can extend the residuation computation to matrices of dioids. Matrix inequalities of form f (X) ⪯ Y , with X a rectangular matrix of any arbitrary dimension, are also residuable. Then

L A : D p×m → D n×m , X → AX R C : D n×p → D n×m , X → XC
with A ∈ D n×p and C ∈ D p×m , are both residuated and their residuals are given by 

L ♯ A : D n×m → D p×m , Y → A • \Y R ♯ A : D n×m → D n×p , Y → Y • /C.
In R max , A • \B = -A t ⊗ ′ B = -(A t ⊗(-B)) and B • /C = B⊗ ′ (-C t ) = -((-B) ⊗ C t )
where A, B and C are matrices of appropriate dimension and ⊗ ′ is the ⊗-product of matrices but by replacing ⊕ by min a . a. The max and min operations are dual, i.e., for x, y ∈ R max , the following equalities hold: min(x, y) = -max(-x, -y) and max(x, y) = -min(-x, -y).

The following example deals with the solution of inequalities of form f (x) ⪯ y, which is a specific case of the previous calculations that are useful in the sequel of this work. 

Example 1.11. Given A ∈ D n×p , the mapping L

A : D p → D n , x → Ax is residu- able. For all y ∈ D n , the residual of L A is L ♯ A (y) = A • \y
Given A =   2 ε ⊤ 3   and y =   ε 1   then x = A • \y =   min(-2 + ε, -⊤ + 1) = min(ε, ε) min(-⊤ + ε, -3 + 1) = min(⊤, -2)   =   ε -2  
which is the greatest vector x such that Ax ≤ y. Furthermore, in this case Ax = y holds.

Theorem 1.1. Let D and C be two complete dioids and f : D → C be a residuated mapping. Then

f • f ♯ • f = f and f ♯ • f • f ♯ = f ♯ .
Proposition 1.2. Let D and C be two complete dioids and f, g : D → C be two residuated mappings. The greatest solution of f (x) = g(x) is equal to the greatest fixed-point of the isotone mapping Π :

D → D, Π(x) = x ∧ g ♯ (f (x)) ∧ f ♯ (g(x)).
Proof. The following equivalences hold:

f (x) = g(x) ⇐⇒ f (x) ⪰ g(x) and g(x) ⪰ f (x) ⇐⇒ g ♯ (f (x)) ⪰ x and f ♯ (g(x)) ⪰ x ⇐⇒ g ♯ (f (x)) ∧ f ♯ (g(x)) ⪰ x ⇐⇒ g ♯ (f (x)) ∧ f ♯ (g(x)) ∧ x = x
Hence, the greatest fixed-point of Π

(x) = x ∧ g ♯ (f (x)) ∧ f ♯ (g(x)
) is the greatest solution of f (x) = g(x). Moreover, f, f ♯ , g and g ♯ are isotone mappings, and thus the mapping Π is also isotone.

As a consequence of the previous Proposition 1.2, if the greatest solution of f (x) = g(x) exists, then it can be obtained by solving x k = Π(x k-1 ) with convergence (i.e.,

x k = x k-1 )
in a finite number of iterations k. Thus, starting from an arbitrary x 0 , we obtain x k less than or equal to x 0 because x k ⪯ x k-1 for all k. Remark 1.6. In [START_REF] Butkovic | Max-linear Systems: Theory and Algorithms[END_REF], it is shown that the complexity of computing this problem is pseudopolynomial if it converges (it exists a finite solution), i.e., the convergence rate is polynomial according to the distance between the greatest fixed-point x k and the initial value x 0 . Nevertheless, if x k = Π(x k-1 ) is not solvable, i.e., f (x) = g(x) does not possess a finite solution, then x k = Π(x k-1 ) is likely to run infinitely and some other techniques shall be considered in order to avoid this bad behavior.

Fixed-point of mappings in dioids of matrices are a natural extension of Proposition 1.2 for scalars. Hence, it is possible to compute the greatest solution x ∈ D n of the vertical concatenation of s ≥ 1 two-sided equations of form a t x = b t x, where a, b ∈ D n , as shown below.

Consider the matrices A, B ∈ R p×n max and the vector x ∈ R n max , then Proposition 1.2 implies that the greatest solution of Ax = Bx is obtained by considering the greatest fixed-point of the mapping

Π(x) = x ∧ A • \(Bx) ∧ B • \(Ax) (1.4)

On the two-sided equation

Ax = Bx in R n max
Previously, it has been shown how residuation theory can be applied to determine the greatest solution of inequalities f (x) ⪯ y in complete dioids, denoted f ♯ (y). Dually, it is of course also possible to determine the least solution x of inequalities such as y ⪯ f (x), denoted f ♭ (y). Hence, f ♭ (y) is called the dual residual of f . Example 1.13. The mapping T a (x) : 

D → D, x → x ⊕ a,
a ij ̸ = ε, i = 1, 2, . . . , n A is column G-astic : if n i=1 a ij ̸ = ε, j = 1, 2, . . . , p.
Furthermore, A is said to be doubly G-astic if it is, at the same time, row and column G-astic [START_REF] Butkovič | An elimination method for finding all solutions of the system of linear equations over an extremal algebra[END_REF]. Proof. First, if A is doubly G-astic with only one element different of ε per row and column, then (Ax) i = a ij(i) ⊗ x j(i) with j(i) ∈ {1, . . . , p} for i = 1, 2, . . . , n such that j(1) ̸ = j(2) ̸ = . . . ̸ = j(n). Thus,

Proposition 1.3. In R max , y ≤ Ax with A ∈ R n×p max , x ∈ R
y i ≤ (Ax) i ⇐⇒ y i ≤ a ij(i) ⊗ x j(i) ⇐⇒ x j(i) ≥ a ij(i) • \y i ,
which is the element-wise finite least solution of y ≤ Ax.

A general solution for this problem is given in Appendix B.2. 

Modelling of TEG in

  x 1 (k) x 2 (k)   =   max(2 + x 1 (k -1), 5 + x 2 (k -1)) max(3 + x 1 (k -1), 3 + x 2 (k -1))  
where (x 1 (0), x 2 (0)) t ∈ R 2 is supposed to be known. For instance, for (x 1 (0), x 2 (0)) t = (0, 0) t , the following timetable can be achieved such that calculating the differences between adjacent elements of the timetable, i.e., ∀k, x(k + 1)x(k) we obtain

  5 3   ,   3 5   ,   5 3   ,   3 5   ,   5 3   ,   3 5   , . . . ,
i.e., on average a train leaves station x 1 or x 2 at every 4 unit of time, but the simulated timetable is considered to be 2-periodic, since it is not hard to see that ∀k ≥ 0, x(k + 2) = 8 + x(k).

Furthermore, this system is nonlinear in the conventional algebra, however it can be expressed as the following linear system in R 2 max :

  x 1 (k) x 2 (k)   =   2 ⊗ x 1 (k -1) ⊕ 5 ⊗ x 2 (k -1) 3 ⊗ x 1 (k -1) ⊕ 3 ⊗ x 2 (k -1)   =   2 5 3 3   ⊗   x 1 (k -1) x 2 (k -1)  
This motivating example suggests that a TEG appears to have a state-space characterization similar to the one found in classical time-driven systems.

State-space equations

Example 1.15. The TEG of Figure 1.10 models a simple manufacturing system. The linear dynamical system in Max-Plus algebra, with x i (k), u j (k), z(k) being the time instants that the transitions x i , u j and z fire at k, is

               x 1 (k) ≥ 1 ⊗ x 2 (k -2) ⊕ 5 ⊗ u 1 (k -1) x 2 (k) ≥ x 1 (k) ⊕ 3 ⊗ x 3 (k -3) x 3 (k) ≥ 5 ⊗ u 2 (k) z(k) ≥ 2 ⊗ x 2 (k) ⊕ 3 ⊗ x 3 (k -1)
Rewriting the system in matrix form, one obtains

   x(k) ≥ A 0 x(k) ⊕ A 1 x(k -1) ⊕ A 2 x(k -2) ⊕ A 3 x(k -3) ⊕ B 0 u(k) ⊕ B 1 u(k -1), z(k) ≥ C 0 x(k) ⊕ C 1 x(k -1), with A 0 =      ε ε ε e ε ε ε ε ε      , A 1 = E, A 2 =      ε 1 ε ε ε ε ε ε ε      , A 3 =      ε ε ε ε ε 3 ε ε ε      , B 0 =      ε ε ε ε 5 ε      , B 1 =      5 ε ε ε ε ε      , C 0 = ε 2 ε and C 1 = ε ε 3 .
Generally speaking, for any TEG (cf. Definition 1.6), one obtains the following inequalities: where M is the maximal initial marking,

               x(k) ≥ M i=0 A i x(k -i) ⊕ M j=0 B j u(k -j), z(k) ≥ M l=0 C l x(k -l), (1.5a) (1.5b)
x ∈ R n max , u ∈ R p max , z ∈ R q max , A 0 , A 1 , . . . , A M ∈ R n×n max , B 0 , B 1 , . . . , B M ∈ R n×p max and C 0 , C 1 , . . . , C M ∈ R q×n max . Inequality (1.5) is rewritten as x(k) ≥ A 0 x(k) ⊕   M i=1 A i x(k -i) ⊕ M j=0 B j u(k -j)   ,
and according to Proposition 1.1 its smallest solution is

x(k) = M i=1 A ⋆ 0 A i x(k -i) ⊕ M j=0 A ⋆ 0 B j u(k -j).
Furthermore, x(k) is also the smallest solution of the implicit equation

x(k) = A 0 x(k) ⊕   M i=1 A i x(k -i) ⊕ M j=0 B j u(k -j)   , ( 1.6) 
and thus

               x(k) = M i=1 Ãi x(k -i) ⊕ M j=0 Bj u(k -j), with Ãi = A ⋆ 0 A i and Bj = A ⋆ 0 B j , z(k) = M l=0 C l x(k -l), (1.7a) (1.7b)
represents the behavior of the associated TEG without implicit terms.

The non-null entries of A 0 correspond to holding times of the token-free places in the initial marking. In practice, TEG are assumed to be live (otherwise some transitions would be frozen), this implies that there is an appropriate permutation of the transitions numbering such that A 0 can be written in strictly lower triangular form, i.e., the infinite sum that defines A ⋆ 0 becomes finite. Remark 1.7. Rather than using A ⋆ 0 , the implicit part of Equation (1.6) can also be eliminated by successive substitutions of scalar variables, with careful attention to the order of these substitutions.

Eliminating the implicit part of Inequality (1.5) supposes the earliest firing rule (see Remark 1.4), but also that the tokens of the initial marking are immediately available a , i.e., the initial conditions {x(k)} k<0 took place on date -∞. Other nonzero initial conditions can be circumvented using input transitions of the TEG. a. It is for this reason that in the state representation, inequalities (signs ≥) become equations (signs =) (see Remark 1.4).

We can transform any M -order system to a first order system by considering an augmented version of the state-space. For the TEG this means:

-any place between two internal transitions must contain exactly one token, i.e., for i ̸ = 1 the matrices A i must be null; -any place between an input transition and an internal transition must be without token, i.e., for j > 0 the matrices B j must be null; -any place between an internal transition and an output transition must be without token, i.e., for l > 0 the matrices C l must be null.

Hence, from the implicit Equation (1.7), it is always possible to obtain the following canonical form:

   x(k) = Ax(k -1) ⊕ Bu(k), z(k) = Cx(k), (1.8a) (1.8b)
where x, u, z, A, B and C are of appropriate dimension.

Max-Plus Linear (MPL) system

By analogy with the theory of time-driven linear systems, Equation (1.8a) is the state equation and represents the internal dynamics, Equation (1.8b) is the observation (or output) equation, x is the state vector, u is the input or control vector and z is the output or observation vector.

Nevertheless, a generic MPL system equation is represented by:

y(k) = Ax(k -1), (1.9) 
where A ∈ R n×p max , y and x are vectors of appropriate dimension.

Remark 1.8. Equation (1.9) is generic because it can represent either an autonomous MPL system (i.e., Bu(k) = ε) or a non-autonomous MPL system (i.e., Bu(k) ̸ = ε), both given by Equation (1.8a). It can also represent Equation (1.8b).

Example 1.16. Consider the non-autonomous MPL system given by Equation (1.8):

x(k) =      3 2 2 e 1 3 2 1 e      x(k -1) ⊕      e ε ε e ε ε      u(k), where x(k) ∈ R 3 max and u(k) ∈ R 2 max
. The equivalent generic system is given by (see Equation (1.9)):

x(k) =      3 2 2 e ε e 1 3 ε e 2 1 e ε e      x(k -1), with x(k -1) = (x t (k -1), u t (k)) t ∈ R 5 max .
Example 1.17. We recall Example 1.15. In order to obtain a representation of the TEG of Figure 1.10, we consider the following steps: 

1. Compute A ⋆ 0 : A ⋆ 0 =      e ε ε e e ε ε ε e      2. Compute Ã1 = A ⋆ 0 A 1 , Ã2 = A ⋆ 0 A 2 , Ã3 = A ⋆ 0 A 3 , B0 = A ⋆ 0 B 0 and B1 = A ⋆ 0 B 1 : Ã1 = E, Ã2 =      ε 1 ε ε 1 ε ε ε ε      , Ã3 =      ε ε ε ε ε 3 ε ε ε      , B0 =      ε ε ε ε 5 ε      and B1 =      5 ε 5 ε ε ε      ( 
Alternative to 2. Substitute x 1 (k) into x 2 (k)                      x 1 (k) = 1 ⊗ x 2 (k -2) ⊕ 5 ⊗ u 1 (k -1) x 2 (k) = x 1 (k) ⊕ 3 ⊗ x 3 (k -3) = 1 ⊗ x 2 (k -2) ⊕ 3 ⊗ x 3 (k -3) ⊕ 5 ⊗ u 1 (k -1) x 3 (k) = 5 ⊗ u 2 (k) z(k) = 2 ⊗ x 2 (k) ⊕ 3 ⊗ x 3 (k -1)
This step is represented by Figure 1.11a.

3. Introduce new variables ξ 1 , ξ 2 , . . . , ξ 6 such that:

                                                   x 1 (k) = 1 ⊗ ξ 2 (k -1) ⊕ 5 ⊗ ξ 1 (k -1) x 2 (k) = 1 ⊗ ξ 3 (k -1) ⊕ 3 ⊗ ξ 5 (k -1) ⊕ 5 ⊗ ξ 1 (k -1) x 3 (k) = 5 ⊗ u 2 (k) ξ 1 (k) = u 1 (k) ξ 2 (k) = x 2 (k -1) ξ 3 (k) = x 2 (k -1) ξ 4 (k) = x 3 (k -1) ξ 5 (k) = ξ 4 (k -1) ξ 6 (k) = x 3 (k -1) z(k) = 2 ⊗ x 2 (k) ⊕ 3 ⊗ ξ 6 (k)
which is clearly a first order system that is depicted by Figure 1.11b and charac-terized by Equation (1.8), i.e.,

                                                                                                                          x 1 (k) x 2 (k) x 3 (k) ξ 1 (k) ξ 2 (k) ξ 3 (k) ξ 4 (k) ξ 5 (k) ξ 6 (k)       x 1 (k -1) x 2 (k -1) x 3 (k -1) ξ 1 (k -1) ξ 2 (k -1) ξ 3 (k -1) ξ 4 (k -1) ξ 5 (k -1) ξ 6 (k -1)                        ⊕                        ε ε ε ε ε 5 e ε ε ε ε ε ε ε ε ε ε ε
It is also possible to consider a different approach to eliminate the implicit part of Inequality (1.5). First, suppose also that the corresponding TEG is under the earliest fire rule, then ≥ becomes =. Considering an augmented version of the state-space, the M -order system can be rewritten as

   x(k) = A 0 x(k) ⊕ A 1 x(k -1) ⊕ Bu(k), z(k) = Cx(k), (1.10a) (1.10b)
where x, u, z, A 0 , A 1 , B and C are of appropriate dimension. Since the TEG is considered to be live, then

   x(k) = A ⋆ 0 A 1 x(k -1) ⊕ A ⋆ 0 Bu(k), z(k) = Cx(k), (1.11a) (1.11b)
Alternatively, Equation (1.10) can be rewritten as:

x 1 (k) = y 1 (k -1), x 2 (k) = a 0 21 x 1 (k) ⊕ y 2 (k -1), x 3 (k) = a 0 31 x 1 (k) ⊕ a 0 32 x 2 (k -1) ⊕ y 3 (k -1), . . . x n (k) = n-1 l=1 a 0 nl x l (k) ⊕ y n (k -1), z(k) = Cx(k), (1.12) where y(k -1) = A 1 x(k -1) ⊕ Bu(k) and a 0 ij ∈ A 0 for all i, j ∈ {1, . . . , n}.
Triangular form of Equation 1.10

MPL systems as Piece-Wise Affine (PWA) systems

MPL systems are linear over R max . Nevertheless, in [START_REF] Heemels | Equivalence of hybrid dynamical models[END_REF], it has been shown that it was always possible to represent the nonlinear dynamics of MPL systems in R ∪ {-∞} as linear Piece-Wise Affine (PWA) systems, i.e., as the union of affine partitions of the nonlinear dynamics.

Equation (1.9) represents a generic MPL system, which is also represented by

y i (k) = max 1≤i≤p (a ij + x j (k -1)), i = 1, 2, . . . , n, (1.13) 
where

y i , a ij , x j ∈ R ∪ {-∞}. For each i ∈ {1, . . . , n}, ∃ g i ∈ {1, . . . , p} such that a ig i +x g i (k-1) ≥ a ij +x j (k-1) and then y i (k) = a ig i + x g i (k -1)
. Summing up, ∀i we define g = (g 1 , g 2 , . . . , g n ) ∈ {1, . . . , p} n , and then

y(k) = P g x(k -1) + Ξ g , for x(k -1) ∈ R g (1.14)
where ∀(i, j) ∈ {1, . . . , n} × {1, . . . , p} we have p ij g ∈ P g ∈ {0, 1} n×p , as defined below

p ij g =      1 if j = g i , 0 otherwise,
the vector of constants Ξ g is given by

Ξ g = a 1g 1 a 2g 2 . . . a ngn t
and each one of the p n affine dynamics is strictly valid in the region R g , which is defined by

R g = n i=1 p j=1 j̸ =g i {x ∈ (R ∪ {-∞}) p | x j -x g i ≤ a ig i -a ij } , ( 1.15) 
where x ≡ x(k -1) for the evaluation of x(k -1) ∈ R g . In [48, Sec. 2.2], the authors have shown that it is possible to reinterpret Equation (1.15), leading to a recursive computation. First, define the partial region

R (g 1 ,...,g k ) = k i=1 p j=1 j̸ =g i {x ∈ (R ∪ {-∞}) p | x j -x g i ≤ a ig i -a ij } , ( 1.16) 
where ∀k ∈ {1, ..., n}, (g 1 , ..., g k ) are its partial coefficients. Note that, for k > 1, the partial regions (1.16) can be computed as

R (g 1 ,...,g k ) = R (g 1 ,...,g k-1 ) ∩ p j=1 j̸ =g i {x ∈ (R ∪ {-∞}) p | x j -x g k ≤ a kg k -a kj } , ( 1.17) 
i.e., if for some k > 1 the partial region R (g 1 ,...,g k ) is empty, then, we label these coefficients as (g ∅ 1 , ..., g ∅ k ) and the regions R (g 1 ,...,gn) are also empty if and only if ∀i ∈ {1, . . . , k} g i = g ∅ i .

Remark 1.9. A procedure, with worst-case complexity O (p n (np + p3 )), is described in [START_REF] Adzkiya | Computational techniques for reachability analysis of max-plus-linear systems[END_REF]Alg. 1] and creates a PWA system from a generic MPL system 3 . Furthermore, it is worth to mention that a more efficient procedure (with the same worst-case complexity), using the algebraic operations ⊕ and ⊗ in the R max , is described in [START_REF] Mufid | Tropical abstractions of max-plus linear systems[END_REF]Alg. 1].

Example 1.18. Consider the generic MPL system given by (see Equation (1.9)):

y(k) =      8 5 4 3 1 2      ⊗ x(k). (1.18)
Following Equation (1.16), we compute R (g 1 ) ∀g 1 ∈ {1, 2}, as

R (1) = x ∈ (R ∪ {-∞}) 2 | x 2 -x 1 ≤ 3 , R (2) = x ∈ (R ∪ {-∞}) 2 | x 1 -x 2 ≤ -3 .
Now, since k > 1, we use Equation (1.17) to compute the subsequent partial regions. Thus,

to compute R (g 1 ,g 2 ) ∀(g 1 , g 2 ) ∈ {1, 2} 2 = {(1, 1), (1, 2), (2, 1), (2, 2)} we use R (g 1 )
previously calculated as follows

R (1,1) = R (1) ∩ {x | x 2 -x 1 ≤ 1} = {x | x 2 -x 1 ≤ 1} , R (1,2) = R (1) ∩ {x | x 1 -x 2 ≤ -1} = {x | 1 ≤ x 2 -x 1 ≤ 3} , R (2,1) = R (2) ∩ {x | x 2 -x 1 ≤ -1} = ∅, R (2,2) = R (2) ∩ {x | x 1 -x 2 ≤ -1} = {x | x 1 -x 2 ≤ -3} , now, ∀(g 1 , g 2 , g 3 ) ∈ {1, 2} 3 = = {(1, 1 , 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), R (2,1) =∅ (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}, 
and we finally compute R g=(g 1 ,g 2 ,g 3 ) using the nonempty partial regions R (g 1 ,g 2 ) previously calculated as follows

R (1,1,1) = R (1,1) ∩ {x | x 2 -x 1 ≤ -1} = {x | x 2 -x 1 ≤ -1} , R (1,1,2) = R (1,1) ∩ {x | x 1 -x 2 ≤ 1} = {x | -1 ≤ x 2 -x 1 ≤ 1} , R (1,2,1) = R (1,2) ∩ {x | x 2 -x 1 ≤ -1} = ∅, R (1,2,2) = R (1,2) ∩ {x | x 1 -x 2 ≤ 1} = {x ∈| 1 ≤ x 2 -x 1 ≤ 3} , R (2,1,1) = R (2,1,2) = ∅ because R (2,1) = ∅, R (2,2,1) = R (2,2) ∩ {x | x 2 -x 1 ≤ -1} = ∅, R (2,2,2) = R (2,2) ∩ {x | x 1 -x 2 ≤ 1} = {x | x 1 -x 2 ≤ -3} ,
Thus, according to Equation (1.14), the corresponding PWA system that encodes Equation

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 y = x 1 + 8 x 1 + 4 x 1 + 1 , f o r x ∈ R ( 1 , 1 , 1 ) y = ( x 1 + 8 , x 1 + 4 , x 2 + 2 ) t , f o r x ∈ R ( 1 , 1 , 2 ) y = ( x 1 + 8 , x 2 + 3 , x 2 + 2 ) t , f o r x ∈ R ( 1 , 2 , 2 ) y = x 2 + 5 x 2 + 3 x 2 + 2 , f o r x ∈ R ( 2 , 2 , 2 )
x 1

x 2 Figure 1.12 -PWA system that encodes the MPL system of Example 1.18

(1.18) is given by:

y(k) =                                                                     1 0 1 0 1 0      x(k -1) +      8 4 1      if x(k -1) ∈ R (1,1,1) ,      1 0 1 0 0 1      x(k -1) +      8 4 2      if x(k -1) ∈ R (1,1,2) ,      1 0 0 1 0 1      x(k -1) +      8 3 2      if x(k -1) ∈ R (1,2,2) ,      0 1 0 1 0 1      x(k -1) +      5 3 2      if x(k -1) ∈ R (2,2,2) .
Figure 1.12 depicts the PWA system generated by matrix A, where, for the sake of brevity,

x 1 (k -1) ≡ x 1 , x 2 (k -1) ≡ x 2 and y(k) ≡ y.

Some notions on spectral theory of matrices in R max

We briefly recall the elementary facts from spectral theory of matrices in R n×n max . We shall use [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF] and [START_REF] Heidergott | Max Plus at Work : Modeling and Analysis of Synchronized Systems : A course on Max-Plus Algebra and its Applications[END_REF].

Example 1.19. Recall Example 1.14. The timetable of the railway network simulation for the initial state x(0) = (e, e) t highlights that the associated model dynamics is 2-periodic, however it is possible to determine x(0) to ensure that the system evolves in a 1-periodic manner, i.e.,

x i (k) -x i (k -1) = λ, λ ∈ R, k = 0, 1, 2, . . ., i ∈ {1, 2}, interpreted in the classical algebra.
Example 1.19 presents a requirement that is rewritten in matrix form as follows: 

x(k) = λx(k -1), k = 0, 1, 2, . . . ( 1 
Aξ = λξ.
For the evolution of the state of the system, if λ is the eigenvalue of A and if x(0) is an eigenvector of A then

x(k) = λx(k -1) = λ ⊗k x(0),
or equivalently in the classical algebra as

x(k) = λ + x(k -1) = kλ + x(0),
i.e., all state variables are incremented by λ as k evolves and the steady state is reached, without going through a transient state phase. This behavior is called 1-periodic with a period length of λ.

Theorem 1.2. An irreducible

4 matrix A ∈ R n×n max admits a unique eigenvalue λ ∈ R max equal to λ = n j=1 trace(A ⊗j ) ⊗1/j , (1.20)
where trace(A ⊗j ) denotes the trace of A ⊗j , i.e., the ⊕-sum of its diagonal elements, and (a ⊗j ) ⊗1/j = a.

Remark 1.10. Non-irreducible (or reducible) matrices may have more than one eigenvalue whereas, as given by Theorem 1.2, irreducible matrices have a unique eigenvalue but may possess several linearly independent eigenvectors, i.e., the set of all eigenvectors corresponding to the eigenvalue λ is the eigenspace

E(A) = {x ∈ R n max | Ax = λx}.
Remark 1.11. The simplest method to obtain λ consists in evaluating Equation (1.20).

Nevertheless, there are several algorithms to more efficiently solve the Max-Plus eigenproblem. For more details, the reader is invited to refer to [START_REF] Heidergott | Max Plus at Work : Modeling and Analysis of Synchronized Systems : A course on Max-Plus Algebra and its Applications[END_REF].

Theorem 1.3. Let A ∈ R n×n max be an irreducible matrix with eigenvalue λ ∈ R max , then it exists K, c ∈ N \ {0} such that ∀k ≥ K, A k+c = λ ⊗c A ⊗k ,
and c is called the cyclicity of A.

Theorem 1.3 means that after a transient state phase of length K, the system reaches a periodic behavior with cyclicity c, i.e.,

x i (k + c) = x i (k) + cλ, i = 1, 2, . . . , n, interpreted in the classical algebra. Example 1.20. Recall Example 1.14. For x(0) = (2, e) t ,

we obtain the following timetable

  2 e   ,   5 5   ,   10 8   ,   13 13   ,   18 16   ,   21 21   , . . . , 4. A matrix A ∈ R n×n max is said to be irreducible if a ij ̸ = ε ∀i, j ∈ {1, . . . , n}, i.e.
, there exists an arc from place i to place j in the corresponding TEG.

which is 2-periodic (ciclicity c = 2) and ∀k ≥ 1 x(k + 2) = 8 + x(k). On the other hand, for x(0) = (1, e) t we obtain the following timetable

  1 e   ,   5 4   ,   9 8   ,   13 12   ,   17 16   ,   21 20   , . . . , which is 1-periodic (ciclicity c = 1) and ∀k ≥ 0 x(k + 1) = 4 + x(k) with 4 an eigenvalue of A because x(k) = 4k + x(0). Hence, x(0) = (1, e) t is an eigenvector of A.
Chapter 2

NONDETERMINISTIC SYSTEMS:

SET-MEMBERSHIP ESTIMATION

Recall the generic MPL system Equation (1.9), precisely y(k) = Ax(k). Clearly, this system is deterministic because the output y is exactly predicted if one knows the values of the system matrix entries a ij and the state x. Conversely, if each a ij assumes a different value at each k, then the system is called nondeterministic because y cannot be exactly predicted.

In this work, each a ij is assumed to be subject to bounded noise, i.e., disturbances and/or modelling errors, which should be taken into account in order to avoid tracking error or closed-loop instability [START_REF] Van Den Boom | Model predictive control for perturbed maxplus-linear systems[END_REF][START_REF] Xu | Model predictive control for stochastic max-plus linear systems with chance constraints[END_REF]. In general, these perturbations are Max-Plus multiplicative and appear as uncertainties in each a ij . Stochastic MPL (SMPL) systems [START_REF] Olsder | Discrete event systems with stochastic processing times[END_REF][START_REF] Resing | Asymptotic behavior of random discrete event systems[END_REF][START_REF] Heidergott | Max-Plus Linear Stochastic Systems and Perturbation Analysis[END_REF][START_REF] Xu | Model predictive control for stochastic max-plus linear systems with chance constraints[END_REF][START_REF] Loreto | Duality between invariant spaces for max-plus linear discrete event systems[END_REF][START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF] are defined as MPL systems, in which each a ij is an independentdistributed random variable, and its probability density function (PDF) is supposed to be known. In this Chapter, the only probabilistic aspect of the uncertainties that are taken into account is the support of PDF, i.e., the random variables a ij are supported on a bounded real interval/domain (closed or open). For instance, a ij ∼ U(a ij , a ij ), means that a ij is uniformly distributed between its lower and upper bounds a ij and a ij , respectively.

Uncertain MPL (uMPL) systems: a bounded representation

Uncertain MPL (uMPL) systems are assumed to have each a ij independently distributed within a closed specified range (bounded random variable). Thus, an autonomous uMPL system equation is given by Then, the entries of A(k) are within a closed range for each k, i.e., a ij ≤ a ij (k) ≤ a ij for all i, j ∈ {1, . . . , n}, i.e., A and A are, respectively, the lower and upper bounds of the domain of A.

x(k) = A(k)x(k -1), ∀k A ≤ A(k) ≤ A, ( 2.1) 
Remark 2.1. The system in Equation 2.1 is assumed to be FIFO (first in, first out). In view of this assumption, it is always true that x(k) ≥ x(k -1), such that the elements of the main diagonal of A(k) can be assumed to be greater or equal to e at each k.

Example 2.1. Recall Example 1.14. The travelling times were assumed to be fixed. However, in practice, these times are uncertain and are bounded within a range, as depicted in Figure 2.1. Hence, the travelling times (states) of the system are represented by:

x(k) ∈ x | Ax(k -1) ≤ x ≤ Ax(k -1) , where A =   2 5 3 3   , A =   3 6 4 4
  and x(k -1) are supposed to be known at each k.

Supposing that only the initial state is known, for instance x(0) = (1, e) t , then the following bounds for the timetable can be achieved:

x(k) =   1 e   ,   5 4   ,   9 8   ,   13 12   ,   17 16   ,   21 20   , . . . , k = 0, 1, . . . , and 
x(k) =   1 e   ,   6 5   ,   11 10   ,   16 15   ,   21 20   ,   26 25   , . . . , k = 0, 1, . . . .
Clearly, A and A share the eigenvector (1, e) t and the system is 1-periodic with λ = 4 and λ = 5 (refer to Section 1.3.4), i.e., x(k + 1) = 4 + x(k) and x(k + 1) = 5 + x(k).

Notions on interval analysis

Interval arithmetic is presented in [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF] and extended to R max in [START_REF] Brunsch | Duality and interval analysis over idempotent semirings[END_REF][START_REF] Hardouin | Interval systems over idempotent semiring[END_REF][START_REF] Lhommeau | Interval analysis in dioid: Application to robust open-loop control for timed event graphs[END_REF][START_REF] Litvinov | Idempotent interval analysis and optimization problems[END_REF]].

Basic concepts

Definition 2.1 (Closed interval over R max ). A closed interval, denoted [x] = [x, x], is a subset of R max , i.e., [x] ⊆ R max satisfying [x] = x ∈ R max | x ≤ x ≤ x ,
where x, x ∈ R max (x ≤ x) are the lower and upper bounds of [x], respectively.

We denote IR max , the set of intervals of R max , as

IR max = [x, x] | x ≤ x, x, x ∈ R max such that [x] ∈ IR max is equivalent to [x] ⊂ R max .

Definition 2.2. The width of an interval

[x] ∈ IR max is defined, using conventional alge- bra, as w([x]) = x -x.

Remark 2.2 (Empty interval). From the Definitions 2.1 and 2.2 above, an interval

[x] is empty if x > x, i.e., if w([x]) < 0.

Definition 2.3 (Midpoint of intervals). The midpoint of an interval

[x] ∈ IR max is defined, using conventional algebra, as mid([x]) = x+x 2 .

Remark 2.3 (Deprecated interval). If an interval [x]

has its bounds such that x = x, i.e., w([x]) = 0, then, [x] is said to be deprecated. Deprecated intervals are suitable to represent elements without uncertainties, i.e., deterministic points. In this case

[x] = [x, x] = x.
The ⊕ and ⊗ operations of scalars in R max are naturally extended to intervals in R max : [START_REF] Cohen | Maxplus toolbox of scilab[END_REF][START_REF] Cohen | Max-plus algebra and system theory: Where we are and where to go now[END_REF].

[x] ⊕ [y] = {x ⊕ y | x ∈ [x] and y ∈ [y]} = x ⊕ y, x ⊕ y , [x] ⊗ [y] = {x ⊗ y | x ∈ [x] and y ∈ [y]} = x ⊗ y, x ⊗ y . Example 2.2. Let [x] = [4, 8] and [y] = [3, 5]. Then [x] ⊕ [y] = [4 ⊕ 3, 8 ⊕ 5] = [4, 8], [x] ⊗ [y] = [4 ⊗ 5, 8 ⊗ 3] =

Remark 2.4 (Order relation of intervals in R max

). The ⊕ induces an order relation over intervals, similar to Equation (1.1) defined for scalars in R max :

[x] ⊕ [y] = [y] ⇐⇒ [x] ≤ [y] ⇐⇒ x ≤ y and x ≤ y,
As an immediate consequence of the previous Remark 2.4, the following equality of intervals is defined

[x] = [y] ⇐⇒ x = y and x = y. (2.2)
Below, we collect two important set-theoretic operations to properly handle intervals. First, let [x] = [x, x] and [y] = [y, y] be two non-disjoint intervals, then their intersection is nonempty and is defined as the set

Z = {z ∈ R max | z ∈ [x] and z ∈ [y]}, which coincides with [z] = [x] ∩ [y], i.e., Z = [z], where [z] = [max(x, y), min(x, y)].
(

Secondly, let [x] = [x, x] and [y] = [y, y] be two intervals, then their union is defined as the set

[x] ∪ [y] = {z ∈ R max | z ∈ [x] or z ∈ [y]
} which is a subset of R max but not necessarily an interval1 . Hence, in order to make the set of intervals be closed with respect to this operation, we define the interval union, i.e., the interval hull2 of [x] ∪ [y] as: Remark 2.5. Any ♢ ∈ {⊕, ⊗, ∩, ⊔} operation over two intervals is also extended to a finite number of intervals, for instance for ♢ = ⊕ we have n i=1

[z] = [x] ⊔ [y] = [min(x, y), max(x, y)] ⊇ [x] ∪ [y]. ( 2 
[x i ] = n i=1 x i | x i ∈ [x i ] = n i=1 x i , n i=1 x i . (2.5)

Matrices and Vectors

For the vector-valued case, an interval vector (also called interval box) is denoted as the Cartesian product of scalar intervals or more simplify according to the stacked notation

[x] = [x 1 ] × • • • × [x n ] ≡ ([x 1 ], . . . , [x n ]) t ,
where the set of axis-aligned interval vectors in R n max is denoted as IR n max .

Remark 2.6. The notation [A] denotes an interval matrix, i.e., a matrix with its entries composed of intervals. Formally

[A] = [A, A] = [a, a] ij 1 ≤ i ≤ n 1 ≤ j ≤ p Remark 2.7. Any matrix A ∈ R n×p max can be represented by a deprecated interval matrix [A] ∈ IR n×p max , in which a ij = a ij
for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}.

The ⊕ and ⊗ are extended to interval matrices as follows: if [A], [B] and [C] are, respectively, (n × p), (n × p) and (p × q)-dimensional interval matrices, then

([A] ⊕ [B]) ij = [a ij ] ⊕ [b ij ] = [a ij ⊕ b ij , a ij ⊕ b ij ], ([A] ⊗ [C]) ij = p k=1 [a ik ] ⊗ [c kj ] = p k=1 [a ik ⊗ c kj , a ik ⊗ c kj ] = p k=1 a ik ⊗ c kj , p k=1 {a ik ⊗ c kj } .
Thus, the k-th power and the Kleene star operation of a matrix of intervals are given by:

[A] ⊗k = [A ⊗k , A ⊗k ] and [A] ⋆ = [A ⋆ , A ⋆ ].
Furthermore, the ∩ (or ⊔) operation of two interval matrices can be computed as the element-wise ∩ (or ⊔) operation of the corresponding entries.

Example 2.4. Given

[A] =   [2, 7] [4, 5] [4, 6] [2, 6]   and [v] =   e [e, 1]   then [x] = [A][v] is given by   [x 1 ] [x 2 ]   =   [(2 ⊗ e) ⊕ (4 ⊗ e), (7 ⊗ e) ⊕ (5 ⊗ 1)] [(4 ⊗ e) ⊕ (2 ⊗ e), (6 ⊗ e) ⊕ (6 ⊗ 1)]   =   [4, 7] [4, 7]   .

Mappings and inverse mappings of points

Let f : R

n max → R m max ,
x → Ax be a linear mapping and [START_REF] Mao | Optimal control of multilayer discrete event systems with real-time constraint guarantees[END_REF][START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF]. Suppose that we take mid([2, 4]) = 3 to be a point ỹ in [START_REF] Mao | Optimal control of multilayer discrete event systems with real-time constraint guarantees[END_REF][START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF]. Thus, thanks to Remark 2.8, it exists a matrix

F (x) = [A]x = {y ∈ R m max | Ax ≤ y ≤ Ax}, (2.7 
A in [A, A] = [1, 4] [2, 3] such that 3 = A ⊗ (e, e) t .

This matrix is given by Lemma C.1 of Appendix C and is equal to

A = (ỹ • /x) ∧ A = 3 3 ∧ 4 3 = 3 3 , which is promptly verified by ⊗-multiplying it by x. Let f : R n max → R m max , x → Ax
be a linear mapping and

F -1 (y) = {x ∈ R n max | ∃A ∈ [A], Ax = y} be a set, where A ∈ [A] = [A, A] ∈ IR m×n max , x ∈ R m max and y ∈ R m max . Then, x ∈ F -1 (y) ⇐⇒ Ax ≤ y ≤ Ax, and thus F -1 (y) = {x ∈ R n max | Ax ≤ y ≤ Ax}.
(2.8)

In other words, F -1 (y) is the set in x of all y = Ax, given y and with A ∈ [A].

In view of Ax ≤ y ≤ Ax, given y, there is a unique greatest x given by Equation (1.3) such that Ax ≤ y holds, but not a unique least x such that Ax ≥ y also holds. Hence, we split F -1 (y) into two sets L and U such that F -1 (y) = L ∩ U . In details,

L = {x ∈ R n max | y ≤ Ax} (2.9) U = {x ∈ R n max | Ax ≤ y}, (2.10) 
Proposition 2.1 ([29]). The sets L and U of Equations (2.9) and (2.10), respectively, are equivalent to:

L = g∈G m i=1 set i g i and U = {x ∈ R n max | x ≤ A • \y},
where

G = {1, . . . , n} m , g ∈ G, g = (g 1 , g 2 , . . . , g m ), g i ∈ {1, . . . , n}
and

set i j =   j-1 k=1 {x ∈ R n max | x k < a ik • \y i }   ∩ {x ∈ R n max | x j ≥ a ij • \y i }.
Proof. The proof for U is straightforwardly done by using residuation theory, while the proof for L follows the proof given in Section B.2 of Appendix B.

Thus,

F -1 (y) = L ∩ U =   g∈G m i=1 set i g i   ∩ U = g∈G SET g , with SET g = m i=1 set i g i ∩ U, (2.11)
which is a set composed of at most n m pairwise disjoint sets (see Lemma B.1 and Remark B.2 of Appendix B for more details).

Example 2.6. Consider the first event of an autonomous uMPL system, described by

x(1) ∈ [A]x(0), where [A] =   [1, 4] [2, 3] [1, 2] [e, 4]
  and x(0) = (e, e) t . Then, the set of all

x(1) ∈ [A]x(0) given by Equation (2.7) is calculated below 

x(1) ∈   [1, 4] [2, 3] [1, 2] [e, 4]     e e   = [x](1) =   [2, 4] [1, 4]   ,
U = {x | x ≤ A • \x(1)}, where A • \x(1) =   1 2 1 e   • \   3 2.5   =   1.5 1   .
Calculating L is done by defining first set i j for all (i, j) ∈ {1, 2} × {1, 2}, as follows:

set 1 1 = {x | x 1 ≥ a 11 • \x 1 = 4 • /3 = -1} = {x | x 1 ≥ -1} set 1 2 = {x | x 2 ≥ a 12 • \x 1 = 3 • /3 = e} ∩ {x | x 1 < a 11 • \x 1 = 4 • /3 = -1} = {x | x 1 < -1, x 2 ≥ e} set 2 1 = {x | x 1 ≥ a 21 • \x 2 = 2 • /2.5 = 0.5} = {x | x 1 ≥ 0.5} set 2 2 = {x | x 2 ≥ a 22 • \x 2 = 4 • /2.5 = -1.5} ∩ {x | x 1 < a 21 • \x 2 = 2 • /2.5 = 0.5} = {x | x 1 < 0.5, x 2 ≥ -1.5} .
Now, we compute L∩U as g∈G SET g = n i=1 set g i ∩U , with G = {(1, 1), (1, 2), (2, 1), (2, 2)} as shown below: 

SET (1,1) = set 1 g 1 =1 ∩ set 2 g 2 =1 ∩ U = {x | x 1 ≥ -1} ∩ {x | x 1 ≥ 0.5} ∩ {x | x 1 ≤ 1.5, x 2 ≤ 1} = {x | 0.5 ≤ x 1 ≤ 1.5, x 2 ≤ 1}, SET (1,2) = set 1 g 1 =1 ∩ set 2 g 2 =2 ∩ U = {x | x 1 ≥ -1} ∩ {x | x 1 < 0.5, x 2 ≥ -1.5} ∩ {x | x 1 ≤ 1.5, x 2 ≤ 1} = {x | -1 ≤ x 1 < 0.5, -1.5 ≤ x 2 ≤ 1} SET (2,1) = set 1 g 1 =2 ∩ set 2 g 2 =1 ∩ U = {x | x 1 < -1, x 2 ≥ e} ∩ {x | x 1 ≥ 0.5} ∩ {x | x 1 ≤ 1.5, x 2 ≤ 1} = ∅, SET (2,2) = set 1 g 1 =2 ∩ set 2 g 2 =2 ∩ U = {x | x 1 < -1, x 2 ≥ e} ∩ {x | x 1 < 0.5, x 2 ≥ -1.5} ∩ {x | x 1 ≤ 1.5, x 2 ≤ 1} = {x | x 1 < -1, e ≤ x 2 ≤ 1}, such that L ∩ U = {x | 0.5 ≤ x 1 ≤ 1.5, ε < x 2 ≤ 1} ∪ {x | -1 ≤ x 1 < 0.5, -1.5 ≤ x 2 ≤ 1} ∪ {x | ε < x 1 < -1, e ≤ x 2 ≤ 1}, as depicted in Figure 2.2. -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 • x(0) • x(1)

Models of uMPL systems 2.3.1 Implicit and explicit forms of uMPL systems

The following equation defines the model of an uMPL system with implicit part Since [A 0 ] is considered to be written in strictly lower triangular form (the associated TEG is live) then

   x(k) = A 0 (k)x(k) ⊕ A 1 (k)x(k -1) ⊕ B(k)u(k), z(k) = C(k)x(k), (2.12a) (2.12b) where A 0 (k) ∈ [A 0 ] ∈ IR n×n max , A 1 (k) ∈ [A 1 ] ∈ IR n×n max , B(k) ∈ [B] ∈ IR n×p max , C(k) ∈ [C] ∈ IR
         x i (k) = i-1 l=1 a 0 il (k)x l (k) ⊕ y i (k -1), i = 1, 2, . . . , n z(k) = C(k)x(k), (2.13a) (2.13b)
where

y(k -1) = A 1 (k)x(k -1) ⊕ B(k)u(k) and a 0 ij (k) ∈ [a 0 ij (k)] = [a 0 ij (k), a 0 ij (k)
] for all i, j ∈ {1, . . . , n}. Alternatively, using Kleene star operation, we may address Equation (2.12) as the following explicit form

   x(k) = A(k)x(k -1) ⊕ B(k)u(k), z(k) = C(k)x(k), (2.14a) (2.14b) where A(k) ∈ [A ⋆ 0 ][A 1 ], B(k) ∈ [A ⋆ 0 ][B] and [A ⋆ 0 ] = [A ⋆ 0 , A ⋆ 0 ].
Remark 2.9. The entries of matrices

A(k) = A ⋆ 0 (k)A 1 (k) and B(k) = A ⋆ 0 (k)B(k) in Equation (2.14a
) are coupled, even though the entries of A 0 (k), A 1 (k) and B(k) being considered mutually independent (refer to Equation (2.1)). Thus, Equation (2.14a) is a conservative (over-approximation) representation for the real system given by Equation (2.12a), and it may lead to unfeasible states (false-positive states).

Example 2.7. Consider the autonomous uMPL system (B(k)u(k) = ε) with implicit part as given by Equation (2.12a), with

A 0 (k) ∈ [A 0 ] =   ε ε [1, 2] ε   , A 1 (k) ∈ [A 1 ] =   [4, 6] [3, 5] [3, 7] [4, 5]   .
It is possible to obtain x(1) = (5, 9) t using Equation (2.14a). In details,

A(1) =   4 5 8 7   ∈ [A] = [A ⋆ 0 ][A 1 ] =   [4, 6] [3, 5] [5, 8] [4, 7]  
and x(0) = (1, e) t yield x(1) = A(1)x(0) = (5, 9) t . However, this state is unfeasible if one considers Equation (2.13):

x 1 (1) ∈ [START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF][START_REF] Gaujal | Dynamic speed scaling minimizing expected energy consumption for real-time tasks[END_REF]x 1 (0) ⊕ [START_REF] Altman | Discrete-event control of stochastic networks : multimodularity and regularity / eitan altman, bruno gaujal, arie hordijk[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF]x 2 (0)

x(0)=(1,e) t =⇒ 5 ∈ [5, 7], x 2 (2) ∈ [1, 2]x 1 (1) ⊕ ([3, 7]x 1 (0) ⊕ [4, 5]x 2 (0)) x 1 (1)=5,x(0)=(1,e) t =⇒ 9 / ∈ [5, 8].
Hence, this Chapter will be focused on uMPL systems modeled exclusively by Equation (2.14) with

A(k) ∈ [A 1 ], B(k) ∈ [B] and C(k) ∈ [C],
i.e., systems without implicit parts.

Partitioned uMPL systems: PWA-uMPL systems

In this Section, we shall use the results of [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF][START_REF] Cândido | Conditional reachability of uncertain max plus linear systems[END_REF]. Equation (2.14a) can be rewritten as the following uMPL system equation (refer to Equation (1.9)):

y(k) = A(k)x(k -1), (2.15) 
where

A ∈ [A] ∈ IR n×p max , y ∈ R n max and x ∈ R p max . Thus, y i (k) = max 1≤j≤p (a ij (k) + x j (k -1)), a ij (k) ∈ [a ij (k)] = [a ij , a ij ], i = 1, 2, . . . , n, (2.16) with y i , x j ∈ R ∪ {-∞} and [a ij (k)] ⊂ R ∪ {-∞}
, represents the dynamics in the conventional algebra. Furthermore,

y i (k) ∈ [y i (k)] = max 1≤j≤p (a ij + x j (k -1)), max 1≤j≤p (a ij + x j (k -1)) , ⇐⇒ y i (k) ∈ y i | max 1≤j≤p (a ij + x j (k -1)) ≤ y i ≤ max 1≤j≤p (a ij + x j (k -1)) ⇐⇒ y i (k) ∈ y i | max 1≤j≤p (a ij + x j (k -1)) ≤ y i ∩ y i | y i ≤ max 1≤j≤p (a ij + x j (k -1))
Regarding the lower bound we have

max 1≤j≤p (a ij + x j (k -1)) ≤ y i ⇐⇒            a i1 + x 1 (k -1) ≤ y i . . . a ip + x p (k -1) ≤ y i ,
and thus

y i | max 1≤j≤p (a ij + x j (k -1)) ≤ y i ≡ p j=1 {y i | a ij + x j (k -1) ≤ y i }.
On the other hand, regarding the upper bound we have (refer to Section B.2 of Appendix B for more details):

y i | y i ≤ max 1≤j≤p (a ij + x j (k -1)) ≡ p j=1 {y i | y i ≤ a ij + x j (k -1)}.
Hence,

y i (k) ∈ p j=1 {y i | a ij + x j (k -1) ≤ y i } ∩ p j=1 {y i | y i ≤ a ij + x j (k -1)},
i.e., ∃g i ∈ {1, . . . , p} for all i ∈ {1, . . . , n}, such that

y i (k) ∈ p j=1 {y i | a ij + x j (k -1) ≤ y i } ∩ {y i | y i ≤ a ig i + x g i (k -1)} (2.17) ⇐⇒ y i (k) ∈ max 1≤j≤p (a ij + x j (k -1)), a ig i + x g i (k -1) , with a ig i + x g i (k -1) ≥ a ij + x j (k -1) ⇐⇒ x j (k -1) -x g i ≤ a ig i -a ij , ∀j.
Given g = (g 1 , g 2 , . . . , g n ) ∈ {1, . . . , p} n , the affine dynamics of Equation (2.15) are therefore given by

x(k -1) ∈ R g =⇒ y i (k) ∈ max 1≤j≤p (a ij + x j (k -1)), a ig i + x g i (k -1) , i = 1, 2, . . . , n, (2.18) where R g = n i=1 p j=1 j̸ =g i {x ∈ (R ∪ {-∞}) p | x j -x g i ≤ a ig i -a ij } , (2.19)
with the notation x ≡ x(k -1) for the evaluation of x(k -1) ∈ R g .

Remark 2.10. The procedure for generating a PWA system from an uMPL system has the same complexity as the one presented in Remark 1.9. As it was considered for MPL systems (refer to Equation (1.16)) it is possible to compute Equation (2.19) in a recursive way.

Example 2.8. Consider the following uMPL system

x(k) = A(k)x(k -1), A(k) ∈   [4, 6] [3, 5] [3, 7] [4, 5]   .
(2.20)

In order to compute its partitioned representation, first, compute each R g , with g ∈ {1, 2} 2 = {(1, 1), (1, 2), (2, 1), (2, 2)}, as given by:

R (1,1) = {x ∈ (R ∪ {-∞}) 2 | x 2 -x 1 ≤ 1} ∩ {x ∈ (R ∪ {-∞}) 2 | x 2 -x 1 ≤ 2} = {x ∈ (R ∪ {-∞}) 2 | x 2 -x 1 ≤ 1} R (1,2) = {x ∈ (R ∪ {-∞}) 2 | x 2 -x 1 ≤ 1} ∩ {x ∈ (R ∪ {-∞}) 2 | x 1 -x 2 ≤ -2} = ∅, R (2,1) = {x ∈ (R ∪ {-∞}) 2 | x 1 -x 2 ≤ -1} ∩ {x ∈ (R ∪ {-∞}) 2 | x 2 -x 1 ≤ 2} = {x ∈ (R ∪ {-∞}) 2 | 1 ≤ x 2 -x 1 ≤ 2} , R (2,2) = {x ∈ (R ∪ {-∞}) 2 | x 1 -x 2 ≤ -1} ∩ {x ∈ (R ∪ {-∞}) 2 | x 1 -x 2 ≤ -2} = {x ∈ (R ∪ {-∞}) 2 | x 1 -x 2 ≤ -2} .
Thus, from Equation (2.18), the PWA system that represents the corresponding uMPL system, is given by

x(k) ∈                              [max(4 + x 1 (k -1), 3 + x 2 (k -1)), 6 + x 1 (k -1)]) [max(3 + x 1 (k -1), 4 + x 2 (k -1)), 7 + x 1 (k -1)])   if x(k -1) ∈ R (1,1)   [max(4 + x 1 (k -1), 3 + x 2 (k -1)), 5 + x 2 (k -1)]) [max(3 + x 1 (k -1), 4 + x 2 (k -1)), 7 + x 1 (k -1)])   if x(k -1) ∈ R (2,1)   [max(4 + x 1 (k -1), 3 + x 2 (k -1)), 5 + x 2 (k -1)]) [max(3 + x 1 (k -1), 4 + x 2 (k -1)), 5 + x 1 (k -1)])   if x(k -1) ∈ R (2,2)

Figure 2.3 depicts the PWA system generated by the interval matrix

[A]. Notation: X 1 ≡ max(4 + x 1 (k -1), 3 + x 2 (k -1)), X 2 ≡ max(3 + x 1 (k -1), 4 + x 2 (k -1)), x(k) ≡ x ′ and x(k -1) ≡ x.
Equation (2.17) is simply expressed ∀i ∈ {1, . . . , n} as the following subset of (R ∪ {-∞}) n :

y(k) ∈ n i=1 p j=1 {y | a ij +x j (k-1) ≤ y i }∩ n i=1 {y | y i ≤ a ig i +x g i (k-1)}. (2.21) -2 -1 0 1 2 -1 0 1 2 3 x ′ ∈ [ X 1 , 6 + x 1 ] ) [ X 2 , 7 + x 1 ] ) , f o r x ∈ R ( 1 , 1 ) x ′ ∈ [ X 1 , 5 + x 2 ] ) [ X 2 , 7 + x 1 ] ) , f o r x ∈ R ( 2 , 1 ) x ′ ∈ [ X 1 , 5 + x 2 ] ) [ X 2 , 5 + x 2 ] ) , f o r x ∈ R ( 2 , 2 )
x 1 Difference-Bound Matrices (DBM) are used to represent regions (or zones as initially mentioned in [START_REF] Berthomieu | An enumerative approach for analyzing time petri nets[END_REF]) in the state-space defined by a finite number of linear inequalities (or difference constraints) in an efficient and concise way. For instance, in [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF][START_REF] Yovine | Model checking timed automata[END_REF], DBM were used on timed automata. It is also important to mention the use of DBM for the analysis of computer programs, as presented in [START_REF] Miné | Domaines numériques abstraits faiblement relationnels[END_REF][START_REF] Miné | A new numerical abstract domain based on difference-bound matrices[END_REF].

Definition 2.4 (Difference-Bound Matrices (DBM))

. Let X = {x 1 , x 2 , . . . , x n } be a set of states in a given state-space and X = X ∪ {x 0 } be its augmented form, where x 0 = 0. A DBM is a square matrix D with its rows and columns labeled by X (i.e., of dimension (n + 1) × (n + 1)) such that its entries d ij are in R ∪ {+∞} and represent for all x i , x j ∈ X the difference constraints3 (linear inequalities) x i -x j ≤ d ij with i, j ∈ {1, . . . , n + 1}. Moreover: the artificial state x 0 allows expressing

x i ≤ d i0 and -x j ≤ d 0j ; if an entry d ij is equal to +∞, then x i -x j is not upper bounded, i.e., x i -x j < +∞; the difference constraint x j -x i ≥ c with c ∈ R ∪ {+∞} is reinterpreted as x i -x j ≤ d ij = -c; the main diagonal elements d ii , are equal to +0 since x i -x i = 0 ≤ d ij = +0.
In the sequel, we use the notation R(D) to represent the set of solutions of the system of inequalities (intersection of inequalities) encoded by a DBM D. Remark 2.11 (Canonical form and emptiness verification). In general, the same region can be represented by different DBM, for instance D 1 and D 2 . Nevertheless, each DBM admits a single representation in its canonical form, denoted for instance for D 1 and D 2 as cf(D 1 ) = cf(D 2 ) (see [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]Th.2]). The algorithm of Floyd-Warshall, with complexity O(n 3 ), is responsible for computing cf(D 1 ) and cf(D 2 ). Moreover, as presented in [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF]Alg. 2.1], this algorithm allows signalizing if the corresponding DBM represents an empty region, and it stops if this is the case.

Example 2.9. Let X 1 = {(x 1 , x 2 ) t ∈ R 2 | x 1 ≥ 3, x 2 ≤ 5, x 1 -x 2 ≤ 4} and X 2 = {(x 1 , x 2 ) t ∈ R 2 | x 1 ≥ 11, x 2 ≤ 5, x 1 -x 2 ≤ 4} be two subsets of R 2 ,
representing two different zones. These sets are represented by the DBM D 1 and D 2 of (R ∪ {+∞}) 3 , as given below:

D 1 =      x 0 x 1 x 2 x 0 +0 -3 +∞ x 1 +∞ +0 4 x 2 5 +∞ +0      ⇐⇒          x 1 ≥ 3 ⇐⇒ x 0 -x 1 ≤ -3 x 2 ≤ 5 ⇐⇒ x 2 -x 0 ≤ 5 x 1 -x 2 ≤ 4
and

D 2 =      x 0 x 1 x 2 x 0 +0 -11 +∞ x 1 +∞ +0 4 x 2 5 +∞ +0      ⇐⇒          x 1 ≥ 11 ⇐⇒ x 0 -x 1 ≤ -11 x 2 ≤ 5 ⇐⇒ x 2 -x 0 ≤ 5 x 1 -x 2 ≤ 4
Computing their canonical forms using [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF]Alg. 2.1], we obtain 4 .

D 1 =      x 0 x 1 x 2 x 0 +0 -3 1 x 1 9 +0 4 x 2 5 2 +0      =⇒ R(D 1 ) ̸ = ∅ and R(D 2 ) = ∅.
4. R(D 2 ) = ∅ is also easily verified by considering that x 2 ≤ 5 =⇒ x 1 ≤ 9 when intersecting with x 1 -x 2 ≤ 4 and thus there is no x 1 that satisfies both inequalities x 1 ≤ 9 and x 1 ≥ 13. 

x 1 ≥ 3 x 2 ≤ 5 x 1 - x 2 ≤ 4 R(D 1 ) x 1 ≥ 11 x 1 x 2 Figure 2.4 -Representation of region R(D 1 ) and inequality x 1 ≥ 11 of Example 2.9 5 
Remark 2.12 (Orthogonal projection of DBM). Let D be a DBM, in its canonical form, that represents the region R(D) generated by the variables x i ∈ X = {x 0 , x 1 , x 2 , . . . , x n } and their differences x i -x j , ∀i ̸ = j and i, j ∈ {0, . . . , n}. Given X = {x i 1 , . . . , x ip } ⊆ X, then the orthogonal projection of D onto X, denoted D⌈ X , is obtained by deleting the rows and columns corresponding to X\ X, i.e., the variables x i / ∈ X (see [START_REF] Dill | Timing assumptions and verification of finite-state concurrent systems[END_REF]Sec. 4.1]). Furthermore, the region represented by D⌈ X is given by

R(D⌈ X ) = {(x i 1 , . . . , x ip ) t ∈ R p | (x 0 , x 1 , x 2 , . . . , x n ) t ∈ R(D)}.
Remark 2.13 (Cartesian product of DBM). Let D X et D Y be two DBM of dimensions (p + 1) × (p + 1) and (n + 1) × (n + 1), respectively. Then, the Cartesian product of their regions R(D X ) and R(D Y ) is computed as

R(D X ) × R(D Y ) = {(x t , y t ) t ∈ R p+n | x ∈ R(D X ), y ∈ R(D Y )}.

Alternatively, it is possible to compute

D X×Y = D X × D Y as an augmented DBM of dimension (p + n + 1) × (p + n + 1) such that R D X×Y = R D X × R D Y . Computationally, calculating D X×Y is done with complexity O(max(p 2 , n 2 )). Example 2.10. Let D R 2 =      x 0 x 1 x 2 x 0 +0 +∞ +∞ x 1 +∞ +0 +∞ x 2 +∞ +∞ +0      and D Y =   x 0 y 1 x 0 +0 0 y 1 1 +0  
be the DBM that represents R 2 and an arbitrary DBM, respectively. Then, D R 2 ×X is given by

D R 2 ×X = D R 2 × D X =         x 0 x 1 x 2 y 1 x 0 +0 +∞ +∞ 0 x 1 +∞ +0 +∞ +∞ x 2 +∞ +∞ +0 +∞ y 1 1 +∞ +∞ +0         . Clearly, D R 2 ×X is in its canonical form, i.e., cf(D R 2 ×X ) = D R 2 ×X . As proof of correctness, the orthogonal projection of cf(D R 2 ×X ) over R 2 is cf(D R 2 ×X )⌈ R 2 = D R 2 , and the orthogonal projection of cf(D R 2 ×X ) over X is cf(D R 2 ×X )⌈ X = D X .

Remark 2.14 (Representing interval vectors as DBM). An interval vector [x] ∈ IR

n max is such that x 0 -x i ≤ -x i and x i -x 0 ≤ x i for i = 1, 2, . . . , n in the conventional algebra. Hence,

D [x] =         x 0 x 1 x n x 0 +0 -x 1 -x n x 1 x 1 x n x n Id n        
, 

where
R(D) ∩ R(E) = R(min(D, E)).
Similarly, max(D, E), also computed element-wise, is such that

R(D) ∪ R(E) ⊆ R(max(D, E)).
Example 2.11. Given two interval vectors

[x] =   [1, 4] [1, 3]   and [y] =   [2, 5] [2, 4]   ,
then their DBM representations (see Remark 2.14) is given below

D [x] =      x 0 x 1 x 2 x 0 +0 -1 -1 x 1 4 +0 +∞ x 2 3 +∞ +0      and D [y] =      x 0 x 1 x 2 x 0 +0 -2 -2 x 1 5 +0 +∞ x 2 4 +∞ +0      . Computing [x] ∩ [y] =   [2, 4] [2, 3]  
can alternatively be done by considering min(D [x] , D [y] ):

min           0 -1 -1 4 0 ∞ 3 ∞ 0      ,      0 -2 -2 5 0 ∞ 4 ∞ 0           =      min(0, 0) min(-1, -2) min(-1, -2) min(4, 5) min(0, 0) min(∞, ∞) min(3, 4) min(∞, ∞) min(0, 0)      =      0 -2 -2 4 0 ∞ 3 ∞ 0      . Similarly [x] ⊔ [y] =   [1, 5] [1, 4]  
can alternatively be done by considering max(D [x] , D [y] ):

max           0 -1 -1 4 0 3 3 2 0      ,      0 -2 -2 5 0 ∞ 4 ∞ 0           =      max(0, 0) max(-1, -2) max(-1, -2) max(4, 5) max(0, 0) max(∞, ∞) max(3, 4) max(∞, ∞) max(0, 0)      =      0 -1 -1 5 0 ∞ 4 ∞ 0      .
Furthermore, min(D [x] , D [y] ) ⪯ max(D [x] , D [y] ) =⇒ R(min(D [x] , D [y] )) ⊆ R(max(D [x] , D [y] )). [y]

[x] ∩ [y] [x] ⊔ [y] x 1 x 2 Figure 2.5 -Representations of [x] (or R(D [x] )), [y] (or R(D [y] )), [x] ∩ [y] (or R(min(D [x] , D [y] ) and [x] ⊔ [y] (or R(max(D [x] , D [y] )) of Example 2.11

PWA-uMPL systems represented by DBM

In [START_REF] Adzkiya | Computational techniques for reachability analysis of max-plus-linear systems[END_REF], the authors proposed a method to represent partitioned MPL systems as DBM (refer to Section 1.3.3). Algorithmically, it receives as input the matrix of the MPL system, and it returns as output the collection of DBM, in which each DBM represents an affine dynamics and its corresponding active region. Thus, the main advantage of using DBM to represent partitioned MPL systems is the existence of powerful and efficient manipulation procedures (Cartesian product, orthogonal projection, canonical form, inclusion test and set-theoretic operations). Nevertheless, it is worth to be mentioned that this representation substantially increases the dimension of the problem, i.e., instead of having a compact state-space equation, we obtain finitely many DBM.

Straightforwardly, in [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF][START_REF] Cândido | Conditional reachability of uncertain max plus linear systems[END_REF], this representation was extended to uMPL systems and for in-depth information, please refer to these works. Briefly, recall that Equation (2.15) is alternatively expressed by Equation (2.21) and is valid for x(k -1) in an active region R g given by Equation (2.19). After trivial algebraic manipulations in the conventional algebra, y(k) ∈ L ∩ U g , where

L = "lower" dynamics n i=1 p j=1 {y ∈ (R ∪ {-∞}) n | x j -y i ≤ -a ij }, (2.22 
)

U g = n i=1 {y ∈ (R ∪ {-∞}) n | y i -x g i ≤ a ig i } "upper" dynamics , ( 2.23) 
for x ≡ x(k -1) ∈ R g , which is clearly the intersection of n×(p+1) difference constraints. Hence, it is possible to write all these inequalities using a single DBM, as shown below

D g =                   x 0 y 1 (k) y n (k) x 1 (k -1) x p (k -1) x 0 +0 +∞ +∞ +∞ +∞ y 1 (k) +∞ y n (k) +∞ x 1 (k -1) +∞ x p (k -1) +∞
Id n U g from Eq (2.23)

L from Eq (2.22) R g from Eq (2.19)                   , ( 2.24) 
which is a matrix of dimension (n + p + 1) × (n + p + 1). . For

R (1,1) =          x(k -1) | x 2 (k -1) -x 1 (k -1) ≤ 1 d (1,1) 54         
, the active dynamics is given by Equations (2.22) and (2.23), as follows

x(k) ∈ L ∩          x(k) | x 1 (k) -x 1 (k -1) ≤ 6 d (1,1) 24          ∩          x(k) | x 2 (k) -x 1 (k -1) ≤ 7 d (1,1) 34         
, where

L =          x(k) | x 1 (k -1) -x 1 (k) ≤ -4 d (1,1) 42          ∩          x(k) | x 2 (k -1) -x 1 (k) ≤ -3 d (1,1) 52          ∩          x(k) | x 1 (k -1) -x 2 (k) ≤ -3 d (1,1) 43          ∩          x(k) | x 2 (k -1) -x 2 (k) ≤ -4 d (1,1) 53         
, and thus

D (1,1) =            x 0 x 1 (k) x 2 (k) x 1 (k -1) x 2 (k -1) x 0 +0 +∞ +∞ +∞ +∞ x 1 (k) +∞ +0 +∞ 6 +∞ x 2 (k) +∞ +∞ +0 7 +∞ x 1 (k -1) +∞ -4 -3 +0 +∞ x 2 (k -1) +∞ -3 -4 1 +0            . Now, for R (2,1) = {x(k -1) | 1 ≤ x 2 (k -1) -x 1 (k -1) ≤ 2} =          x(k -1) | x 1 (k -1) -x 2 (k -1) ≤ -1 d (2,1) 45          ∩          x(k -1) | x 2 (k -1) -x 1 (k -1) ≤ 2 d (2,1) 54          ,
we have the following active dynamics

x(k) ∈ L ∩          x(k) | x 1 (k) -x 2 (k -1) ≤ 5 d (2,1) 25          ∩          x(k) | x 2 (k) -x 1 (k -1) ≤ 7 d (2,1) 34         
, and thus

D (2,1) =            x 0 x 1 (k) x 2 (k) x 1 (k -1) x 2 (k -1) x 0 +0 +∞ +∞ +∞ +∞ x 1 (k) +∞ +0 +∞ +∞ 5 x 2 (k) +∞ +∞ +0 7 +∞ x 1 (k -1) +∞ -4 -3 +0 -1 x 2 (k -1) +∞ -3 -4 2 +0           
.

Following the same procedure, for

R (2,2) = {x(k -1) | x 1 (k -1) -x 2 (k -1) ≤ -2} we obtain D (2,2) =            x 0 x 1 (k) x 2 (k) x 1 (k -1) x 2 (k -1) x 0 +0 +∞ +∞ +∞ +∞ x 1 (k) +∞ +0 +∞ +∞ 5 x 2 (k) +∞ +∞ +0 +∞ 5 x 1 (k -1) +∞ -4 -3 +0 -2 x 2 (k -1) +∞ -3 -4 +∞ +0           
.

The set-estimation problem: conditional reachability analysis (RA) techniques

In stochastic estimation approach, the uncertain state vector x is characterized by probability density functions (PDF). Conversely, in set-membership estimation (or setestimation for short) approach, x is characterized by a set X such that x ∈ X. Both approaches are related by the fact that X represents the support of the PDF that represent

x.

Handling sets is easier than computing PDF (more details will be presented in the next Chapter), however PDF provide more accuracy rather than simply obtaining their support. Hence, set-membership estimation is considered to be conservative.

In this section, we consider the model of Equation (2.14) with A 0 (k) = E for all 1 ≤ k ≤ N . We also consider that the measurement vector z(k) is included in a subset of the measurement-space, precisely z(k

) ∈ Z(k) ⊂ R q max .
Definition 2.6 (Conditional reach set). Let X 0 ⊂ R n max be a set of initial conditions such that x(0) ∈ X 0 . Given that z(k), from event 1 up to N , is included in Z(k), then X k|k corresponds to the conditional reach set from X k-1|k-1 (assuming that X 0|0 = X 0 ) obtained by Equation (2.14a), which leads to Z(k) via Equation (2.14b).

The interpretation of Definition 2.6 is the following two-fold procedure:

x(k) ∈ X k|k posterior estimation = X k|k-1 prior estimation Xk|k set-inversion problem , ∀1 ≤ k ≤ N, ( 2.25) 
where -for the non-autonomous case:

X k|k-1 = {(A B)y(k -1) | y(k -1) ∈ X k-1|k-1 × U k , A ∈ [A 1 ], B ∈ [B]}, U k = {u(k)}; -for the autonomous case: X k|k-1 = {Ax(k -1) | x(k -1) ∈ X k-1|k-1 , A ∈ [A 1 ]}; -for z(k) ∈ Z(k), where Z(k) is not a singleton: Xk|k = {x(k) | ∃C ∈ [C], Cx(k) ∈ Z(k)}; -for z(k) ∈ Z(k), where Z(k) = {z(k)}, i.e., Z(k) is a singleton: Xk|k = {x(k) | ∃C ∈ [C], Cx(k) = z(k)}.
Characterizing Xk|k corresponds to a set-inversion problem [START_REF] Jaulin | Applied Interval Analysis[END_REF] in the general case and to the inverse mapping of a point problem if Z(k) is a singleton (refer to Section 2.2.3). Hence, Xk|k is the set of all states x(k) that may lead to z(k) ∈ Z(k). 

X k|k : from X k-1|k-1 we compute X k|k-1 ; it exists a x(k) ∈ X k|k-1 that generates Z(k) which in turn generates Xk|k ; finally, X k|k = X k|k-1 ∩ Xk|k Remark 2.17. If X k-1|k-1 = {x(k -1)} for any k then X k|k-1 is easily computed by Equation (2.7) as x(k) ∈ X k|k-1 = {x | A 1 x(k -1) ≤ x ≤ A 1 x(k -1)},

DBM-RA

In [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF][START_REF] Cândido | Conditional reachability of uncertain max plus linear systems[END_REF][START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF], the computation of X k|k is addressed using forward and backward reachability analysis (RA), as an extension of the results found in [START_REF] Adzkiya | Forward reachability computation for autonomous max-plus-linear systems[END_REF][START_REF] Adzkiya | Backward reachability of autonomous max-plus-linear systems[END_REF][START_REF] Adzkiya | Computational techniques for reachability analysis of max-plus-linear systems[END_REF].

Remark 2.18. The image and the inverse image of a set represented by a DBM with respect to a subsystem (cf. Definition 2.5) of a PWA-uMPL system is a set that can be represented by a DBM (see [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF]Prop. 5.1]).

Remark 2.19. The image and the inverse image of a set represented by the union of finitely many DBM with respect to a PWA-uMPL system can be represented by the union of finitely many DBM (see [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF]Cor. 5.2]).

In the sequel, we consider Remarks 2.18 and 2.19 to compute X k|k-1 and Xk|k .

Prior estimation

First, we aim at computing

X k|k-1 = {F y | y ∈ X k-1|k-1 × U k , F ∈ [F ]}, (2.26 
)

with [F ] = ([A] [ B]) and U k = {u(k)}.
It is assumed that the set X k-1|k-1 is represented by the union/collection of a finite number of DBM. Furthermore, x(k) = F (k)y(k) with F (k) ∈ [F ] and y(k) = (x t (k -1), u t (k)) t is also represented by the union of a finite number of DBM (see Section 2.3.3).

Let D g ∈ (R ∪ {+∞}) n+m+1×n+m+1 be the DBM representation of a subsystem of a PWA-uMPL system. Given D Y k = D X k-1 × D U k ∈ (R ∪ {+∞}) m+1×m+1 representing the region R D Y k = Y k = X k-1 × U k ⊆ (R ∪ {+∞}) m ,
then its image with respect to D g is given below:

1. Compute the Cartesian product between D R n and

D Y k , mathematically D R n ×Y k = D R n × D Y k (see Remark 2.13); 2. Compute the intersection of D R n ×Y k with D g , mathemati- cally D X k = min(D R n ×Y k , D g ) (see Remark 2.16); 3. Compute the canonical form of D X k , mathematically, D X k cf = cf(D X k ) (see Remark 2.11); 4. Compute the orthogonal projection of D X k cf over x(k), math- ematically D X k = D X k cf ⌈ {x 1 (k),...,xn(k)} (see Remark 2.12); 5. D X k is the image of D Y k .
The complexity of this procedure depends essentially on the canonical form computation (step 3), which is cubic in the dimension of D X k . The term m refers to an autonomous (m = n) or nonautonomous system (m = n + p).

Image of a DBM with respect to a subsystem of a PWA-uMPL system

If X k-1|k-1 ×U k is represented as the union of N DBM then its image is computed with worst-case complexity O(N m n (n + m) 3 ) where

m = n + p if [ B] ̸ = E in [F ] = ([A 1 ] [ B]) (i.e., U k ̸ = ∅) or m = n otherwise.
The term m n refers to the worst-case number of subsystems of the PWA-uMPL system, and the term (m + n) 3 refers to the complexity of computing the image of a single DBM with respect to a subsystem of the PWA-uMPL system. Assuming m = n, then the worst-case becomes O(N n n+3 ), i.e., exponential in dimension n, which is clearly cumbersome if we want to handle large systems.

Example 2.13. Recall Example 2.8, which is represented by 3 subsystems of the PWA-uMPL system that represents a uMPL system. Precisely, in Example 2.12 we have computed D = {D (1,1) , D (2,1) , D (2,2) } as its subsystems. Given

X 0|0 = {x(0) | 0 ≤ x 1 (0) ≤ 1, 1 ≤ x 2 (0) ≤ 3}, D X 0|0 =      x 0 x 1 (0) x 2 (0) x 0 +0 0 -1 x 1 (0) 1 +0 +∞ x 2 (0) 3 +∞ +0     
which is an interval vector in IR n max , represented by the corresponding DBM D X 0|0 , then X 1|0 is the collection of the images of X 0|0 with respect to each D ∈ D.

Following the procedure, we compute

D R 2 ×X 0|0 = D R 2 × D X 0|0 =            x 0 x 1 (1) x 2 (1) x 1 (0) x 2 (0) x 0 +0 ∞ +∞ 0 -1 x 1 (1) +∞ +0 +∞ +∞ +∞ x 2 (1) +∞ ∞ +0 +∞ +∞ x 1 (0) 1 +∞ +∞ +0 +∞ x 2 (0) 3 +∞ +∞ +∞ +0           
and thus, the canonical form of D X 1|g=(1,1)

D X 1|g=(1,1) cf = cf(D X 1|g=(1,1) ) =            x 0 x 1 (1) x 2 (1) x 1 (0) x 2 (0) x 0 +0 -4 -5 0 -1 x 1 (1) 7 +0 2 6 6
x 2 (1) 8 3 +0 7 7

x 1 (0) 1 -4 -4 +0 0 x 2 (0) 2 -3 -4 1 +0           
, and finally the orthogonal projection of D

X 1|g=(1,1) cf over x(k) D X 1|g=(1,1) = D X 1|g=(1,1) cf ⌈ {x 1 (1),x 2 (1)} =            x 0 x 1 (1) x 2 (1) x 1 (0) x 2 (0) x 0 +0 -4 -5 0 -1 x 1 (1) 7 +0 2 6 6
x 2 (1) 8 3 +0 7 7

x 1 (0) 1 -4 -4 +0 0 x 2 (0) 2 -3 -4 1 +0                               {x 1 (1),x 2 (1)} =      x 0 x 1 (1) x 2 (1) x 0 +0 -4 -5 x 1 (1) 7 +0 2 x 2 (1) 8 3 +0      , which corresponds to R D X 1|g=(1,1) = X 1|g=(1,1) = {x(1) | 4 ≤ x 1 (1) ≤ 7, 5 ≤ x 2 (1) ≤ 8, -2 ≤ x 2 (1) -x 1 (1) ≤ 3}.
Repeating the procedure for D (2,1) and D (2,2) , we obtain

D X 1|g=(2,1) =      x 0 x 1 (1) x 2 (1) x 0 +0 -4 -5 x 1 (1) 8 +0 1 x 2 (1) 8 3 +0      and D X 1|g=(2,2) =      x 0 x 1 (1) x 2 (1) x 0 +0 -5 -6 x 1 (1) 8 +0 1 x 2 (1) 8 2 +0      .
Hence, X 1|0 is represented by 2) .

D X 1|0 = D X 1|g=(1,1) , D X 1|g=(2,1) , D X 1|g=(2,
-1 0 1 2 3 4 5 6 7 8 9 [START_REF] Lhommeau | Interval analysis in dioid: Application to robust open-loop control for timed event graphs[END_REF]) and then we have simply 1) , which corresponds to 

-1 0 1 2 3 4 5 6 7 8 9 X 0|0 X 1|0 = R D X 1|g=(1,1) ∪ R D X 1|g=(2,1) x 1 x 2 Figure 2.7 -Computation of X 1|0 of Example 2.13 Notice that D X 1|g=(2,2) ⪯ D X 1|g=(2,1) then R D X 1|g=(2,2) ⊆ R D X 1|g=(2,1) (cf.Remark 2.
D X 1|0 = D X 1|g=(1,1) , D X 1|g=(2,
X 1|0 = R D X 1|g=(1,1) ∪ R D X 1|g=(2,1) = {x(1) | 4 ≤ x 1 (1) ≤ 7, 5 ≤ x 2 (1) ≤ 8, -2 ≤ x 2 (1) -x 1 (1) ≤ 3} ∪ {x(1) | 4 ≤ x 1 (1) ≤ 8, 5 ≤ x 2 (1) ≤ 8, -1 ≤ x 2 (1) -x 1 (1) ≤ 3}.

Set-inversion estimation

We aim at computing

Xk|k = {x(k) | ∃C ∈ [C], Cx(k) ∈ Z(k)}. (2.27)
It is assumed that Z(k) is represented by the union of a finite number of DBM. Similarly to the prediction phase, the observer z(k) = C(k)x(k) is also represented by the union of a finite number of DBM.

Let D g ∈ (R ∪ {+∞}) q+n+1×q+n+1 be the DBM representation of a subsystem of a PWA-uMPL observer. Given

D Z(k) ∈ (R ∪ {+∞}) q+1×q+1 representing the region R D Z(k) = Z(k) ⊆ (R ∪ {+∞}) q ,
then its image with respect to D g is given below:

1. Compute the Cartesian product between

D Z(k) and D R n , mathematically D Z(k)×R n = D Z(k) × D R n (see Remark 2.13); 2. Compute the intersection of D Z(k)×R n with D g , mathemati- cally D X k = min(D Z(k)×R n , D g ) (see Remark 2.16); 3. Compute the canonical form of D X k , mathematically, D X k cf = cf(D X k ) (see Remark 2.11); 4. Compute the orthogonal projection of D X k cf over x(k), math- ematically D X k = D X k cf ⌈ {x 1 (k),...,xn(k)} (see Remark 2.12); 5. D X k is the inverse image of D Z(k) .
The complexity of this procedure depends essentially on the canonical form computation (step 3), which is cubic in the dimension of

D X k .

Inverse image of a DBM with respect to a subsystem of a PWA-uMPL observer

If Z(k) is represented as the union of N -1 DBM then its inverse image is computed with worst-case complexity O(N -1 n q (q + n) 3 ), which is also exponential in dimension n for q = n. The term n q refers to the worst-case number of subsystems of the PWA-uMPL observer, and the term (q +n) 3 refers to the complexity of computing the image of a single DBM with respect to a subsystem of the PWA-uMPL observer.

Example 2.14. Consider the observer z

(k) = C(k)x(k), with C(k) ∈ [1, 3] [e, 2
] for all k. This observer is also represented as a PWA-uMPL system, depicted by the collection of DBM D = {D (1) , D (2) }, given by Equation (2.24), where

D (1) =         x 0 z(k) x 1 (k) x 2 (k) x 0 +0 +∞ +∞ +∞ z(k) +∞ +0 3 +∞ x 1 (k) +∞ -1 +0 +∞ x 2 (k) +∞ 0 1 +0         and D (2) =         x 0 z(k) x 1 (k) x 2 (k) x 0 +0 +∞ +∞ +∞ z(k) +∞ +0 +∞ 2 x 1 (k) +∞ -1 +0 -1 x 2 (k) +∞ 0 +∞ +0        
.

Suppose that x(1) = (5, 7) t originates a subset of the measurement-space, denoted Z(1), which is, in this case, an interval vector, mathematically

z(1) ∈ Z(1) ≡ [z](1) = [7, 9] ⊂ R max ,
which is represented by the following DBM

D Z(1) =   x 0 z(1) x 0 +0 -7 z(1) 9 +0   .
Then, X1|1 is the collection of the inverse images of Z( 1) with respect to each D ∈ D.

Following the procedure, we compute

D Z(1)×R 2 = D Z(1) × D R 2 =         x 0 z(1) x 1 (1) x 2 (1) x 0 +0 -7 +∞ +∞ x 1 (1) 9 +0 +∞ +∞ x 1 (1) +∞ +∞ +0 +∞ x 2 (1) +∞ +∞ +∞ +0        
.

Then, for D (1) we compute

D X 1|g=(1) = min(D Z(1)×R 2 , D (1) ) = min                 0 -7 ∞ ∞ 9 0 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ 0         ,         0 ∞ ∞ ∞ ∞ 0 3 ∞ ∞ -1 0 ∞ ∞ 0 1 0                 =         0 -7 ∞ ∞ 9 0 3 ∞ ∞ -1 0 ∞ ∞ 0 1 0        
, and thus, the canonical form of D X 1|g=(1)

D X 1|g=(1) cf = cf(D X 1|g=(1) ) =         x 0 z(1) x 1 (1) x 2 (1) x 0 +0 -7 -4 +∞ z(1) 9 +0 3 +∞ x 1 (1) 8 -1 +0 +∞ x 2 (1) 9 0 1 +0        
, and finally the orthogonal projection of D X 1|g=(1) cf over x(k)

D X 1|g=(1) = D X 1|g=(1) cf ⌈ {x 1 (1),x 2 (1)} =         x 0 z(1) x 1 (1) x 2 (1) x 0 +0 -7 -4 +∞ z(1) 9 +0 3 +∞ x 1 (1) 8 -1 +0 +∞ x 2 (1) 9 0 1 +0                         {x 1 (1),x 2 (1)} =      x 0 x 1 (1) x 2 (1) x 0 +0 -4 +∞ x 1 (1) 8 +0 +∞ x 2 (1) 9 1 +0      , which corresponds to R D X 1|g=(1) = X 1|g=(1) = {x(1) | 4 ≤ x 1 (1) ≤ 8, -∞ ≤ x 2 (1) ≤ 9, x 2 (1) -x 1 (1) ≤ 1}.
Repeating the procedure for D (2) , we obtain

D X 1|g=(2) =      x 0 x 1 (1) x 2 (1) x 0 +0 +∞ -5 x 1 (1) 8 +0 -1 x 2 (1) 9 +∞ +0      , which corresponds to R D X 1|g=(2) = X 1|g=(2) = {x(1) | -∞ ≤ x 1 (1) ≤ 8, 5 ≤ x 2 (1) ≤ 9, 1 ≤ x 2 (1) -x 1 (1)}.
Hence, 

X1|1 = R D X 1|g=(1) ∪ R D X 1|g=(2) = {x(1) | 4 ≤ x 1 (1) ≤ 8, -∞ ≤ x 2 (1) ≤ 9, x 2 (1) -x 1 (1) ≤ 1} ∪ {x(1) | -∞ ≤ x 1 (1) ≤ 8, 5 ≤ x 2 (1) ≤ 9, 1 ≤ x 2 (1) -x 1 (1)}.

Correction phase

In the correction phase, we correct the prior estimation set X k|k-1 with the set Xk|k , obtained thanks to the observation, leading to the posterior estimation set X k|k (see Equation (2.25)).

Remark 2.20. The intersection of two sets represented by the union of finitely many DBM is again a union of finitely many DBM.

Let N 1 and N 2 be the number of DBM to represent X k|k-1 and Xk|k , respectively. Then, X k|k is the collection of the canonical form representation of the intersection of each DBM that represents X k|k-1 with each DBM that represents Xk|k . Thus, the overall complexity of computing X k|k is O(N 1 N 2 n 3 ), where n 3 corresponds to canonical form computation (Floyd-Warshall algorithm).

Example 2.15. Recall the uMPL system of Examples 2.8 and 2.13. Let us consider that the associated observer is given by Example 2.14. The point x(1) = (5, 6) t is in X 1|0 and it generates Z(1) that was used to compute X1|1 (see Examples 2.13 and 2.14), hence X 1|1 = X 1|0 ∩ X1|1 is expected to be non-empty. Figure 2.9 depicts X 1|1 = X 1|0 .

Z(k) = {z(k)} -set-inversion problem becomes an inverse mapping problem

In the vast majority of cases, more particularly in stochastic filtering problems, z(k) ∈ Z(k) = {z(k)}, i.e., a sequence of measurements {z(1), . . . , z(k)} is obtained via the 

= {x(k) | ∃C ∈ [C], Cx(k) = z(k)}, (2.28) 
which is equivalent to

{x(k) | Cx(k) ≤ z(k) ≤ Cx},
with the solution given by Proposition 2.1. Hence, let us consider 5 Xk|k = g=(g 1 ,...,gq)∈{1,...,n} q

SET g ∩ U, with SET g = q i=1 set i g i and U = {x(k) | x(k) ≤ X}, (2.29) 
where

set i j =   j-1 w=1 {x(k) | x w (k) < z i (k) -c ik }   ∩ {x(k) | -x j (k) ≤ c ij -z i (k)}.
The sets U and set i j are clearly represented by DBM with strictness sign ▷◁ ∈ {<, ≤},

5. X = C • \z(k) converted in conventional algebra.
in contrast with Definition 2.4, precisely

D U =         x 0 x 1 (k) x n (k) x 0 (+0, ≤) (+∞, <) (+∞, <) x 1 (k) (X 1 , ≤)
x n (k) (X n , ≤)

Id ▷◁ n         (2.30)
where Id ▷◁ n is a matrix of dimension n × n with (+0, ≤) on the main diagonal and (+∞, <) elsewhere and

D set i j =                      x 0 x 1 (k) x j-1 (k) x j (k) x j+1 (k) x n (k) x 0 (+0, ≤) (+∞, <) (+∞, <) (-X (i) j , ≤) (+∞, <) (+∞, <) x 1 (k) (X (i) 1 , <) x j-1 (k) (X (i) j-1 , <) x j (k) (+∞, <) x j+1 (k) (+∞, <) x n (k) (+∞, <) Id ▷◁ n                      (2.31)
where

X (i) j = z i (k) -c ij .
Remark 2.21 (Partial order on DBM with strictness sign). Let (a ′ , ▷◁ ′ ) and (a ′′ , ▷◁ ′′ ) be two typical entries of DBM with strictness sign where ▷◁ ′ , ▷◁ ′′ ∈ {<, ≤} and a ′ , a ′′ ∈ R ∪ {+∞}. These pairs are ordered, i.e., (a ′ , ▷◁ ′ ) ⪯ (a ′′ , ▷◁ ′′ ) if a ′ < a ′′ or 6 a ′ = a ′′ and ▷◁ ′ ⪯ ▷◁ ′′ . (see [START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF]Sec. II]). Furthermore, this partial order is also applied to the element-wise operations max and min between two DBM, which are fundamental operations in order to handle intersection and union of DBM (see Remark 2.16).

6. The symbols < and ≤ are assumed to be partially ordered with < strictly less than ≤, i.e., < ⪯ ≤.

Then, SET g is represented as

R D SET g = q i=1 R D set i g i = R q min i=1 D set i g i , ( 2.32) 
and the set SET g ∩ U is represented as It is worth to be mentioned that D SET g ∩U is computed with complexity O(q), however it is likely that this DBM is empty for some g (see Remark 2.22), hence the overall complexity of computing D SET g ∩U amounts to O(qn) in the worst-case scenario.

R D SET g ∩U = R D SET g ∩ R D U = R min D SET g , D U . ( 2 
Finally, Xk|k is represented as Xk|k = g=(g 1 ,...,gq)∈{1,...,n} q R D SET g ∩U , (

i.e., Xk|k is represented as the collection of DBM {D SET g=(1,...,1) ∩U , . . . , D SET g=(n,...,n) ∩U }, with cardinality n q in worst-case scenarios. Thus, computing Xk|k is done with worst-case complexity O(qn q+1 ) [29, Alg. 1], whereas using the set-inversion estimation procedure, the worst-case complexity is O(n q (q + n) 3 ). Hence, the performance 7 of computing Xk|k is improved. As another advantage, Xk|k is represented by Equation (2.34) as a disjoint union of DBM, while it is also represented using the set-inversion procedure, but probably with overlapping DBM (see Example 2.13).

Remark 2.23 (Reinterpretation of X k|k-1 as a collection of DBM with strictness sign).

In order to compute X k|k using the improved computation of Xk|k of Equation (2.34), it is 7. If q = n then Xk|k is computed with complexities O(n n+2 ) and O(n n+3 ), using inverse mapping of Equation (2.34) and using set-inversion procedure, respectively. necessary to reinterpret the collection of DBM that represent X k|k-1 . Basically: +0 entries are replaced by (+0, ≤); +∞ entries are replaced by (+∞, <); other entries c ∈ R\{+0} are replaced by (c, ≤).

The complexity of computing X k|k with the new representation of Xk|k given by Equation (2.34) and the reinterpretation of X k|k-1 is still O(N 1 N 2 n 3 ) where N 1 and N 2 are the number of DBM necessary to represent X k|k-1 and Xk|k , respectively. Furthermore, it is necessary to compute the canonical form representation of the intersection of each DBM that represents X k|k-1 with each DBM that represents Xk|k , with a sligth modified version of the Floyd-Warshall algorithm, by considering the strictness signs of the involved DBM [START_REF] Adzkiya | Verisimpl 2: An open-source software for the verification of max-plus-linear systems[END_REF]VeriSiMPL]. It is also worth to note that if X k|k-1 is given by {x(k) | x(k|k -1) ≤ x(k) ≤ x(k|k -1)} (see Remark 2.17), then X k|k is computed with complexity O(N 2 n 2 ) since its calculation does not use the Floyd-Warshall algorithm, but the Remark 2.22.

Example 2.16. Let us recall the uMPL system of Examples 2.8 and 2.13. Now, consider that the associated observer is the same given by Example 2.14 but with

z(1) = C(1)x(1) ∈ Z(1) = {z(1)},
where C(1) = 1 1 and x(1) = (5, 7) t , yielding z(1) = 8, which is represented by the following DBM

D z(1) =   x 0 z(1) x 0 +0 -8 z(1) 8 +0   .
Following the same procedure used in Example 2.14 we compute

X1|1 = {x | 5 ≤ x 1 (1) ≤ 7, -∞ ≤ x 2 (1) ≤ 8, x 2 (1) -x 1 (1) ≤ 1} ∪ {x | -∞ ≤ x 1 (1) ≤ 7, 6 ≤ x 2 (1) ≤ 8, 1 ≤ x 2 (1) -x 1 (1)}.
However, let us consider the procedure of Equation (2.34) to alternatively compute X1|1 . First, we compute D U using Equation (2.30) as

D U =      x 0 x 1 (1) x 2 (1) x 0 (+0, ≤) (+∞, <) (+∞, <) x 1 (1) (7, ≤) (+0, ≤) (+∞, <) x 2 (1) (8, ≤) (+∞, <) (+0, ≤)      .
Then, for g = (g 1 ) ∈ {1, 2} we compute D set i g i for i = 1 using Equation (2.31) as

D set 1 g 1 =1 =      x 0 x 1 (1) x 2 (1) x 0 (+0, ≤) (-5, ≤) (+∞, <) x 1 (1) (+∞, <) (+0, ≤) (+∞, <) x 2 (1) (+∞, <) (+∞, <) (+0, ≤)      and D set 1 g 1 =2 =      x 0 x 1 (1) x 2 (1) x 0 (+0, ≤) (+∞, <) (-6, ≤) x 1 (1) (5, <) (+0, ≤) (+∞, <) x 2 (1) (+∞, <) (+∞, <) (+0, ≤)      .
Thus, using Equation 2.32 we obtain that

D SET g=(1) = D set 1 g 1 =1 and D SET g=(2) = D set 1 g 1 =2
and using Equation (2.33) we finally obtain Hence,

D SET g=(1) ∩U =      x 0 x 1 (1) x 2 (1) x 0 (+0, ≤) (-5, ≤) (+∞, <) x 1 (1) (7, ≤) (+0, ≤) (+∞, <) x 2 (1) (8, ≤) (+∞, <) (+0, ≤)      and D SET g=(2) ∩U =      x 0 x 1 (1) x 2 (1) x 0 (+0, ≤) (+∞, <) (-6, ≤) x 1 (1) (5, <) (+0, ≤) (+∞, <) x 2 (1) (8, ≤) (+∞, <) (+0, ≤)      . -2-
X1|1 = R D SET g=(1) ∩U ∪ R D SET g=(2) ∩U = {x | 5 ≤ x 1 (1) ≤ 7, -∞ < x 2 (1) ≤ 8} ∪ {x | -∞ < x 1 (1) < 5, 6 ≤ x 2 (1) ≤ 8}.
Both representations of X1|1 are depicted in Figure 2.10. Finally, the computation of

X 1|1 = X 1|0 ∩ X1|1 is represented in Figure 2.11.

Polyhedral-RA

In this Section, we tackle the set-estimation problem given by the Equation (2.25) and presented in the Definition 2.6 by using Max-Plus polyhedral-sets, which will be defined in the sequel. We shall use [START_REF] Gaubert | The minkowski theorem for max-plus convex sets[END_REF][START_REF] Allamigeon | Computing the Vertices of Tropical Polyhedra using Directed Hypergraphs[END_REF] to recall the results concerning Max-Plus polyhedra, which allow us to solve the set-estimation problem with algebraic operations in R max only, i.e., without using any kind of affine partition of the state-space.

Max-Plus polyhedra

Conventional convex polyhedra and (convex) Max-Plus (or Tropical) polyhedra admit external descriptions, in terms of half spaces (affine constraints), and internal descriptions, in terms of convex hulls of generators (vertices and rays). Nevertheless, the underlying algebras used by the two kinds of polyhedra are different, therefore the mathematical tools and definitions are also different. Definition 2.9. A Max-Plus half space is similar to a classical half space, and is defined as the set of points 

x 1 -4 ≥ max(x 2 -7, 0) 0 ≥ max(x 1 -8, x 2 -8) x 2 -5 ≥ 0 max(x 2 -6, 0) ≥ x 1 -7 • • • • x 1 x 2 (b) Intersection of half spaces
x ∈ R n max satisfying   n j=1 a j ⊗ x j   ⊕ b ≥   n j=1 c j ⊗ x j   ⊕ d,
(W ) = m i=1 λ i w i | w i ∈ W, λ i ∈ R max .
This definition coincides with the span of W . Furthermore, a Max-Plus cone generated by a non-null vector is a ray. Such a vector is a representative of the ray that it generates. Definition 2.13. Given a subset V = {v 1 , . . . , v p } ⊂ R n max , the Max-Plus convex hull of V is denoted co(V ) and is cone(V ) with the additional constraint p i=1 λ i = e.

Theorem 2.1. A Max-Plus polyhedron P ⊆ R n max is (internally) expressed as

P = co(V ) ⊕ cone(W ), (Minkowski sum) = {v ⊕ w | v ∈ co(V ), w ∈ cone(W )},
for the finite subsets V, W ⊂ R n max (see [START_REF] Butkovič | An elimination method for finding all solutions of the system of linear equations over an extremal algebra[END_REF]).

The subsets V and W represent the generators of P, i.e., are sets of vertices and rays, respectively.

Corollary 2.1. Let P = co(V ) ⊕ cone(W ) ⊆ R n max be a Max-Plus polyhedron, then its homogenization yields P ⊆ R n+1 max , which is (internally) defined as

P = cone( V ∪ W ), V = V × {e} = {(v t , e) t | v ∈ V }, W = W × {ε} = {(w t , ε) t | w ∈ W }.
Thus, the internal representation of the homogenous Max-Plus polyhedron of Definition 2.11 is given by the Max-Plus cone of Corollary 2.1. Therefore, the representation of Max-Plus polyhedra is reduced to represent finitely generated Max-Plus cones.

Remark 2.26. If W = ∅ in V ∪ W , that defines P = cone( V ∪ W ), then P does not possess non-null rays according to Definitions 2.12 and 2.13. Hence, P is the homogenous form of P = co(V ) ⊕ cone({ε}) which is equivalently equal to P = co(V ) ⊕ cone(∅) = co(V ), where V = {v | (v t , e) t ∈ V }. This Max-Plus polyhedron is called compact and will be referred to as c-Polyhedron in the sequel.

In the literature, we find some methods to convert Max-Plus cones from their external representation (cf. Definition 2.11) to their internal representation [START_REF] Butkovič | An elimination method for finding all solutions of the system of linear equations over an extremal algebra[END_REF][START_REF] Allamigeon | Inferring min and max invariants using max-plus polyhedra[END_REF][START_REF] Allamigeon | Computing the Vertices of Tropical Polyhedra using Directed Hypergraphs[END_REF], i.e., to find its generating set. It has been proved that the generating set is finitely generated [START_REF] Butkovič | An elimination method for finding all solutions of the system of linear equations over an extremal algebra[END_REF] and is equivalent to mean payoff games [START_REF] Akian | Tropical polyhedra are equivalent to mean payoff games[END_REF], which are known to be in NP ∩ coNP [START_REF] Zwick | The complexity of mean payoff games on graphs[END_REF], i.e., the existence of a strongly polynomial procedure for solving it remains an open problem. The double description method [START_REF] Allamigeon | Computing the Vertices of Tropical Polyhedra using Directed Hypergraphs[END_REF] is practically efficient and simple to be used in Polymake [START_REF] Gawrilow | polymake: a Framework for Analyzing Convex Polytopes[END_REF] that implements TPLib [START_REF] Allamigeon | Tropical polyhedra library[END_REF] (even if its complexity is exponential in worst-case scenarios, as precisely described in Remark 2.27), and can be used to translate an external description into an internal description and vice-versa.

Double description

Remark 2.27 (Complexity of external-to-internal procedure). For a Max-Plus cone of R n max , generated by the intersection of s half spaces, the time complexity to translate its external description into its internal description is O(N 2 s 2 n). The term G is related to the maximal number of generators of the s intermediate half spaces, and the calculation of its bounds falls back on a combinatorial problem that is hard to be determined beforehand [START_REF] Allamigeon | The number of extreme points of tropical polyhedra[END_REF]. Nevertheless, in [START_REF] Allamigeon | The number of extreme points of tropical polyhedra[END_REF]Th. 1], the authors use McMullen-type bounds to show that G is always upper bounded, but a general formula (i.e., for any s and n) for the lower bound is still an open problem. Precisely (see [START_REF] Allamigeon | Static analysis of memory manipulations by abstract interpretation -Algorithmics of tropical polyhedra, and application to abstract interpretation[END_REF]Sec. 5.3.4] for more details):

-N ≤ O (s + n) ⌊ n-1 2 ⌋ ; -N ≥ O ((s -2n)2 n-2 ) if s ≥ 2n; N ≥ O n ⌊ n-p-1 2 ⌋ if n ≥ 2s + 1.

Hence, its upper bound is tight when n → +∞ for a fixed s. In many practical applications, the exact value is much smaller than this upper bound, i.e., N is a non-exponential function in the dimension n (i.e., the number of generators of the s intermediate half spaces is also non-exponential).

Although costly, the double description is suitable to easily handle set-theoretic operations of union and intersection.

Example 2.17. In Figure 2.12b, 4 half spaces generated a Max-Plus convex set, precisely

                   x 1 -4 ≥ max(x 2 -7, 0), 0 ≥ max(x 1 -8, x 2 -8), x 2 -5 ≥ 0, max(x 2 -6, 0) ≥ x 1 -7, or         -4 ε ε ε ε -5 ε -6           x 1 x 2   ⊕         ε e ε e         ≥         ε -7 -8 -8 ε ε -7 ε           x 1 x 2   ⊕         e ε e ε         .
Hence, it is possible to obtain a Max-Plus polyhedron P, externally represented as the intersection of these half spaces or internally as

P = co        8 7   ,   7 5   ,   5 8   ,   4 5        ⊕ cone(∅),
depicted by black dots in Figure 2.12b.

Let G = {g 1 , . . . , g k } be a finite subset of R n max , C = cone(G) ⊆ R
n max be a Max-Plus cone and v ∈ R n max be a vector. In [START_REF] Butkovič | A condition for the strong regularity of matrices in the minimax algebra[END_REF], it has been proven that testing whether v ∈ C is equivalent to compute the following test, with complexity O(nk):

v ∈ C ⇐⇒ k i=1 arg n min j=1 (-g i j + v j ) = {1, . . . , n}, (2.35) 
with g i j the j-th component of the vector g i . Thus, if the test holds then

∃λ 1 ⊕ • • • ⊕ λ k = e such that v = k i=1 λ i g i .

Membership to Max-Plus cones

Remark 2.28 (Partial order on Max-Plus cones). Given two finite subsets of

R n max , pre- cisely G = {g i } k i=1 = {g 1 , . . . , g k } and H = {h i } w i=1 = {h 1 , . . . , h w } then a partial or- der can be defined on G = cone(G) ⊆ R n max and H = cone(H) ⊆ R n max , as follows: H ⊆ G ⇐⇒ ∀h i ∈ H, h i ∈ G. The complexity of this test is O(nwk).

Example 2.18. Consider the internal representation of the Max-Plus polyhedron P given in Example 2.17. Its homogenization yields

P = cone                                      8 7 e      g 1 ,      7 5 e      g 2 ,      5 8 e      g 3 ,      4 5 e      g 4                                
, which is a Max-Plus cone. Let v 1 = (8, 5) t and v 2 = (6, 7) t be two vectors. Using Equation and thus, v 1 / ∈ P ⇐⇒ v 1 / ∈ P and 11. Thus, it is possible that some elements of G are redundant, i.e., linearly dependent on the other ones, and in order to represent G as a non-redundant, also unique up to normalization, generating set, one must select a representative in each extreme ray of C (refer to [START_REF] Butkovič | Generators, extremals and bases of max cones[END_REF]). Hence, C admits a minimal representation (or canonical form), denoted cf(C), which is generated by

v 2 ∈ P ⇐⇒ v 2 =      6 7 e      = -2      8 7 e      ⊕ -1      7 5 e      ⊕ -1      5 8 e      ⊕ e      4 5 e      ⇐⇒ v 2 ∈ P ⇐⇒   6 7   = -2   8 7   ⊕ -1   7 5   ⊕ -1   5 8   ⊕ e   4 
G cf = {g 1 cf , . . . , g k ′ cf } ⊆ R n max ,
where k ′ ≤ k and whose elements form a minimal basis of G, i.e., cf(C) = cf(cone(G)) = cone(G cf ). The computation of G cf is done with complexity O(nk 2 ), as summarized in the following algorithm. 

Remark 2.30. Algorithm 2.1 is exclusively for cones of the form

C = cone(G) ⊆ R n max with G = {g 1 , . . . , g k } ⊆ R n max such that ∀x ∈ C ⇐⇒ x = k i=1 λ i g i . Conversely, C ′ = co(G) ⊆ R n max with the same G of C has the following that holds ∀x ∈ C ′ ⇐⇒ x = k i=1 λ i g i , s.t. k i=1 λ i = e,
G cf =    g i cf |   g i cf e   ∈ G cf , 1 ≤ i ≤ k    .
The external-to-internal translation algorithm (compute_ext_rays of TPLib [START_REF] Allamigeon | Tropical polyhedra library[END_REF]) of the double description method computes a minimal generating set of a polyhedral (cone) set, which is externally represented by its homogenous form. Briefly, given a polyhedral set defined by a system of s half spaces in homogenous form, it computes by induction on k = 1, 2, . . . , s a generating set

G k ⊂ R n+1 max
of the intermediate homogenous cone (cf. Corollary 2.1) defined by the first k half spaces. Passing from the set G k to the set G k+1 relies on: given a homogenous cone C and a homogenous half space

H = {z | a t z ≥ b t z} ⊆ R n+1 max , allows building a (minimal) generat- ing set G ′ of C ∩ H from a generating set G of C. The initial step is with G 0 = {ϵ i } 1≤i≤n+1 representing R n+1 max , with ϵ i ∈ R n+1
max a vector whose i-th coordinate is equal to e, and the others to ε. At the end, k = s and cf(cone(G s )) = cone(G s ) (idempotence property).

Remark 2.31 (Replacing the initial generating set: intersection). Based on the externalto-internal translation algorithm of the double description method, it is assumed that

G 0 = {ϵ i } 1≤i≤n represents R n max .
However, considering that G 0 represents an arbitrary Max-Plus cone, in its internal form allows computing the intersection of G 0 with another Max-Plus cone, in its external form, also of R n max . Summing-up, replacing G 0 by an arbitrary cone in the initial step of the procedure, exactly yields a minimal system of generators of this intersection.

As mentioned previously, the external representation of Max-Plus cones encodes a single half space in each row. Consequently, the intersection between two Max-Plus cones can be performed simply by concatenating the rows of them, as precisely described in the sequel. . Then,

P ∩ P ′ =    z |   A C   z ≥   B D   z    ≡ {z | z ∈ P and z ∈ P ′ }.
As already pointed out, translating external representations of Max-Plus cones to internal representation and vice-versa is cumbersome, and it would be interesting to efficiently compute the intersection of these cones when they are internally represented by generating sets. Thus, we propose the following intersection of c-Polyhedra in internal form (see Remark 2.26), adapted from [76, Sec. 8.2.1].

Remark 2.33 (Finite subsets as matrices). A finite subset

V = {v 1 , . . . , v k } of R n max
admits a reinterpretation as a matrix

mat(V ) = (v 1 , . . . , v k ) ∈ R n×k max ,
i.e., as an "array" of column vectors, with the same expressiveness. 

Γ = {γ | Gγ = Hγ}, G = (mat(G × {e}) E), H = (E mat(H × {e})) and γ = (λ t , β t ) t .
Proof. First, thanks to Remark 2.26 we have

∀v ∈ I ⇐⇒ (v t , e) t ∈ I   v e   = mat(G × {e})λ = mat(H × {e})β ⇒ mat(G × {e})λ = mat(H × {e})β
Thus, in order to obtain a two-sided equation in the same variable, we consider Γ = {γ | Gγ = Hγ}. Hence, the elements of the generating set I of I are the columns of the matrix Gmat(Γ). Moreover, it is particularly interesting to compute the minimal canonical representation of I, i.e., cf( I) = cf(cone(I)) = cone(I cf )).

Rather than considering this costly computation, for instance using the function mpsolve that implements, in the Max-Plus toolbox [START_REF] Cohen | Maxplus toolbox of scilab[END_REF] of Scilab and ScicosLab, the elimination method (refined in [START_REF] Allamigeon | Inferring min and max invariants using max-plus polyhedra[END_REF]), with worst-case complexity that is exponential in dimension n G + n H , we define the following fixed-point equation problem in order to check if this intersection is non-empty.

Procedure 2.1. Let Gγ = Hγ be the two-sided equation raised in Proposition 2.2. Then, define

Π(γ) = H • \( Gγ) ∧ G • \( Hγ) ∧ γ (2.36)
as a fixed-point equation problem (see Equation (1.4)) with γ 0 = e since n G +n H k=1 γ 0 k = e. If the greatest solution γ of Gγ = Hγ exists, then it is given by the fixed-point equation

F : γ l = Π(γ l-1
) (with convergence), which is smaller than or equal to γ 0 . Remark 2.34. Clearly, Gγ = Hγ is solvable if and only if the fixed-point equation problem γ l = Π(γ l-1 ) converges, and in this case I = G ∩ H ̸ = ∅. Nevertheless, if the former problem is not solvable, i.e., Gγ = Hγ does not possess a finite solution, then it is likely to run infinitely, with γ l converging to ε (refer to Remark 1.6). In order to avoid this bad behavior, we consider the following stop condition to the fixed-point procedure: evaluate at each iteration l if at least one element of γ l is equal to e, i.e., if n G +n H k=1 γ l k = e is respected, and if this statement holds then the procedure keeps running, else it stops and I = ∅ (see [START_REF] Butkovic | Max-linear Systems: Theory and Algorithms[END_REF] for more details).

In the following, we consider the join operation between two Max-Plus polyhedra in their homogeneous forms, which yields the smallest over-approximation polyhedron of their exact union. As a matter of fact, neither the Max-Plus polyhedra nor DBM are generally able to calculate exactly the union of the regions they represent. However, we observe, in practice, that the over-approximation using polyhedra has lower risk of introducing false-positive points than using DBM [79, Cor. 2], i.e., approximations using Max-Plus polyhedra are tighter than DBM approximations as it is illustrated in Figure 2.13. In the sequel, we provide the technical details concerning this operation using Max-Plus cones. 

Remark 2.35 (Join operation of Max-Plus cones). Given two finite subsets of R

G ⊔ H = cf(cone(G ∪ H)), which has complexity O(n(k + w) 2 ). Furthermore, G ∪ H = {v | v ∈ G or v ∈ H} ⊆ G ⊔ H. Figure 2.
13 shows an interpretation of the tightness in the over-approximation of the union of two regions using DBM and Max-Plus polyhedra. Note that, in this case, the join operation using Max-Plus polyhedra yields the exact union. Remark 2.36. Polytropes of R n max are externally defined by the intersection of a finite number of classical half spaces of the form x i -x j ≤ c ij for all i, j ∈ {0, . . . , n} where x i , x j , c ij ∈ R and x 0 = 0, i.e., as DBM. Hence, the external representation of polytrope is similar to the one used in DBM with non-strict constraints (see Remark 2.36), and we can always represent these DBM by using Max-Plus convex polyhedral sets [START_REF] Lu | Reachability analysis for timed automata using max-plus algebra[END_REF][START_REF] Dyhrberg | Computations on zones using maxplus algebra[END_REF][START_REF] Allamigeon | Tropical fourier-motzkin elimination, with an application to real-time verification[END_REF]. Furthermore, it is worth to be mentioned that a single DBM can only represent Max-Plus polyhedral sets that are also convex in the classical context (cf. Definition 2.15), i.e., polytrope, otherwise a collection of DBM must be considered. Hence, a Max-Plus polyhedron is represented by a collection of DBM.

Example 2.19. Figure 2.12b depicts a Max-Plus polyhedron. This polyhedron is also represented by

X = =G {x | 4 ≤ x 1 ≤ 7, 5 ≤ x 2 ≤ 8, -2 ≤ x 2 -x 1 ≤ 3} ∪ {x | 4 ≤ x 1 ≤ 8, 5 ≤ x 2 ≤ 8, -1 ≤ x 2 -x 1 ≤ 3} =H , a

collection DBM as given in Example 2.13. The sets G and H are equivalent to the external representation of the polytropes

G =                            x |               e ε ε ε ε e ε ε ε e 3 ε                 x 1 x 2   ⊕               ε 7 ε 8 ε ε               ≥               ε ε e ε ε ε ε e -2 ε ε e                 x 1 x 2   ⊕               4 ε 5 ε ε ε                                          , H =                            x |               e ε ε ε ε e ε ε ε e 3 ε                 x 1 x 2   ⊕               ε 8 ε 8 ε ε               ≥               ε ε e ε ε ε ε e -1 ε ε e                 x 1 x 2   ⊕               4 ε 5 ε ε ε                                         
, which also admit the internal representations 

G = co        5 8   ,   7 5   ,   4 5        , H = co        4 7   ,   5 8   ,   7 5   ,   8 7        , such that (see Remark 2.35) G ⊔ H = cf   co        5 8   ,   7 5   ,   4 5   ,   4 7   ,   8 7          , = co        8 7   ,   7 5   ,   5 8   ,   4 5        ,
H = h, v 1 , . . . , v n ⊆ R n max , where v i = (h 1 , h 2 , . . . , h i , h i+1 , . . . , h n ) t , (2.37)
represents the non-empty Max-Plus hypercube defined as

[h] = [h, h] = {h | h ≤ h ≤ h} ⊆ R n max (see Definition 2.

1).

Proof. A simple sketch of the proof is given by considering that [h] is also represented by the following set [h] = S 1 ∩ S 2 , where

S 1 = n j=1 {h | h j ≥ h j } = n j=1 {h | h -1 j ⊗ h j ≥ e} and S 2 = n j=1 {h | h j ≤ h j } = n j=1 {h | h -1 j ⊗ h j ≤ e}.
Thus, [h] is the intersection of 2n conventional half spaces. Nevertheless, S 2 is also equivalent to

S2 =    h | n j=1 h -1 j ⊗ h j ≤ e   
, representing a single Max-Plus half space. Hence, we can conclude that [h] = S 1 ∩ S2 , i.e., [h] is the intersection of n + 1 Max-Plus half spaces 10 . For instance, Figure 2.14 depicts these Max-Plus half spaces in R

h 1 h 2 h 1 h 2 [h] • • • h 1 ≥ h 1 h 2 ≥ h 2 0 ≥ max(-h 1 + h 1 , -h 2 + h 2 ) h 1 h 2 Figure 2.

-[h] and its polytrope representation

P [h] = co(H) in R 2 max with H = h 1 h 2 , h 1 h 2 , h 1 h 2
at h, i.e., being a common point (black dot); each Max-Plus half space in S 2 is oriented toward a direction j and intersects with the single Max-Plus half space in S2 at a point v (j) (green dots) whose i-th coordinate is equal to h i for all i ∈ {1, . . . , n}\j, and the j-th coordinate is equal to h j . At the end, we have n + 1 unique points of intersection which coincide with the elements of H, and thus Remark 2.37 holds.

Furthermore, this result is also verifiable by considering Remark 2.30, i.e., by checking that the following equality holds: cf(P [h] ) = P [h] (idempotence property).

Corollary 2.2. The polytrope P [h] of Proposition 2.3 is externally represented by

P [h] =    h |   diag(h -1 ) ε t   h ⊕   ε e   ≥   E (h -1 ) t   h ⊕   e ε     
and its homogenous form P [h] is finitely generated by H = H × {e}, with H given by Equation (2.37). In other words, all elements in H are vertices (i.e., their (n + 1)-th coordinate is e).

Proof. Let us suppose that P [h] is generated by a ray (i.e., its (n + 1)-th coordinate is ε), then the following inequality must be respected

ε t e   h ε   ≥ (h -1 ) t ε   h ε   =⇒ ε ≥ (h -1 ) t h,
which is not the case. Hence, P [h] is only generated by vertices.

The following equivalences always hold true:

∀h ∈ [h] ⇐⇒ h ∈ P [h] = co(H) =    n+1 j=1 β j h j | h j ∈ H, n+1 j=1 β j = e    ⇐⇒ h = n+1 j=1 β j h j , s.t. n+1 j=1 β j = e.

Set-estimation using Polyhedral-RA: Prior estimation

This Section presents an approach to compute the image of a c-Polyhedron (2.26). Furthermore, it is assumed that X 0|0 is known and is represented by

P k|k-1 = co(G k|k-1 ) ⊆ R n max , with G k|k-1 = {g 1 k|k-1 , . . . g N k|k-1 } ⊆ R n max , i.e., representing x(k) ∈ X k|k-1 of Equation
P 0|0 = co(G 0|0 ) ⊆ R n max with G 0|0 = {g 1 0|0 , . . . g k 0|0 } ⊆ R n max .
In order to take the control input u(k) into account, we define the following extended polyhedron

Pk-1|k-1 = P k-1|k-1 × {u(k)} = co(G k-1|k-1 ) × {u(k)} = co( Gk-1|k-1 ) ⊆ R n+p max , (2.38) where Gk-1|k-1 = G k-1|k-1 × {u(k)} ⊆ R n+p max . Clearly, this extended polyhedron represents the set X k-1|k-1 × U k of Equation (2.26).

Definition 2.16 (Bounded linear maps). Let

f : R n max → R n max be a linear map, such that f ⪯ f ⪯ f , and we denote [f ] = [f , f ], then [f ](v) = [f (v), f (v)] and the following equivalences hold 1. α[f ](v) = [f ](αv) ⇐⇒ αf (v) = f (αv), ∀f ∈ [f ] 2. [f ](v) ⊕ [f ](w) = [f ](v ⊕ w) ⇐⇒ f (v) ⊕ f (w) = f (v ⊕ w), ∀f ∈ [f ] for any α ∈ R max and v, w ∈ R n max . Let V = {v 1 , . . . , v p } be a finite subset of R n max . The image of V under [f ] is given by [f ](V ) = [f ](v i ) | v i ∈ V, 1 ≤ i ≤ p ⊆ R n max ,
which is interpreted as

{[f ](v 1 ), . . . , [f ](v p )}.
The following linear map depicts the uMPL dynamics

f : R n+p max → R n max : y(k) → F y(k), (2.39) 
where

f ⪯ f ⪯ f , F = (A 1 B) ∈ [F ] = ([A] [ B]) and y(k) = (x t (k -1), u t (k)) t . Lemma 2.1. Let f : R n max → R n max be a linear map, where f ∈ [f ] = [f , f ],
as proposed in Definition 2. [START_REF] Necoara | Robust control of constrained max-plus-linear systems[END_REF] and

P = co(V ) = { p i=1 λ i v i | v i ∈ V, p i=1 λ i = e} ⊆ R n max be a c-Polyhedron for the finite subset V = {v 1 , . . . , v p } ⊆ R n max . Then, the direct image of P with respect to all f ∈ [f ], denoted χ f (P) = {f (P) | f ∈ [f ]}, is equivalently expressed as χ f (P) = co(co({H 1 , . . . , H p }),
where

H i ⊆ R n max is the generating set of the polytrope that represents each [f ](v i ) ∈ [f ](V ) (cf. Definition 2.16). Proof. First, ∀x ∈ P ⇐⇒ x = p i=1 λ i v i , s.t. p i=1 λ i = e. Then, ∀f ∈ [f ], we have f (x) ∈ f (P) ⇐⇒ f (x) = f p i=1 λ i v i , s.t. p i=1 λ i = e. with f p i=1 λ i v i = p i=1 f (λ i v i ) = p i=1 λ i f (v i ), where f (v i ) ∈ [f ](v i ). The term [f ](v i ) is a Max-Plus hypercube represented by the polytrope co(H i ) ⊆ R n max with H i ⊆ R n max given by Equation (2.37) of Proposition 2.3. Hence, ∀f ∈ [f ], we have f (v i ) ∈ [f ](v i ) ⇐⇒ f (v i ) ∈ co(H i ) =    n+1 j=1 β i j h j i | h j i ∈ H i , n+1 j=1 β i j = e    ⇐⇒ f (v i ) = n+1 j=1 β i j h j i , s.t. n+1 j=1 β i j = e
and thus, with regard to p i=1 λ i f (v i ), we have

p i=1 λ i f (v i ) = p i=1 λ i n+1 j=1 β i j h j i = p(n+1) w=1 α w g w ,
where

g w ∈ G = {H 1 , . . . , H p } and p(n+1) w=1 α w = e with α w = λ i β i j . Finally, ∀f ∈ [f ] we have f (P) = co(co(G)), which represents χ f (P) = {f (P) | f ∈ [f ]} ≡ co(co(G)).
The image of Pk-1|k-1 , denoted by P k|k-1 = [f ]( Pk-1|k-1 ), is given thanks to Lemma 2.1. Thus, consider the generating set H i of the polytrope that represents each

[f ](g i k-1|k-1 ) = ([A] [ B])g i k-1|k-1
, for all i ∈ {1, . . . , N }. We recall that H i is given by Equation (2.37). Then,

P k|k-1 = [f ]( Pk-1|k-1 ) = co(G k|k-1 ), with G k|k-1 = {H 1 , . . . , H N }. (2.40) 
Furthermore, |G k|k-1 | = N (n + 1).

In order to obtain cf(P k|k-1 ), i.e., the canonical form of the c-Polyhedron P k|k-1 , one must consider its homogenous form (see Remark 2.30). The homogenization of P k|k-1 is expressed as

P k|k-1 = cone( G k|k-1 ) ⊆ R n+1 max , where G k|k-1 = G k|k-1 × {e}. Then, cf( P k|k-1 ) = cone( G cf k|k-1
) is computed thanks to Algorithm 2.1 (note that the elements of G k|k-1 are not proportional to each other and line 1 of this algorithm is satisfied), and

cf(P k|k-1 ) = co(G cf k|k-1 )
where

G cf k|k-1 =    g i cf k|k-1 |   g i cf k|k-1 e   ∈ G cf k|k-1 , 1 ≤ i ≤ | G cf k|k-1 |    .
The procedure is summarized by Algorithm 2.2.

Algorithm 2.2:

Computing the generating set of the image of the c-Polyhedron Pk-1|k-1 

Data: a finite set Gk-1|k-1 = G k-1|k-1 × {u(k)} ⊆ R
a set G cf k|k-1 = g 1 cf k|k-1 , . . . , g |Gcf k|k-1 | cf k|k-1
.

/* Goal: Compute the minimal generating set of the image of the c-Polyhedron Pk-1|k-1

*/ 1 foreach i ∈ {1, . . . , N } do 2 Compute the hypercube [f ](g i k-1|k-1 ) ← ([A] [ B])g i k-1|k-1 3 Compute H i thanks to Equation (2.37) over ([A] [ B])g i k-1|k-1 4 end 5 Define G k|k-1 ← {H 1 , . . . , H N } and G k|k-1 = G k|k-1 × {e} 6 Compute G cf k|k-1 using Algorithm 2.1 7 Define G cf k|k-1 = g i cf k|k-1 | g i cf k|k-1 e ∈ G cf k|k-1 , 1 ≤ i ≤ | G cf k|k-1 | 8 return G cf k|k-1 = { g 1 cf k|k-1 , . . . , g |Gcf k|k-1 | cf k|k-1 }
The complexity to calculate

G cf k|k-1 amounts to O(n 3 N 2 ), since G k|k-1 is a subset of R r=n+1 max
with cardinality c = N (n + 1), and it takes rc 2 steps to compute G cf k|k-1 using Algorithm 2.1. Thus,

rc 2 = (n+1)(N (n+1)) 2 = (n+1) 3 N 2 . If f = f = f , i.
e., the uMPL system matrices are deprecated (representing a MPL system), then the complexity is O(nN 2 ) since the cardinality of G k|k-1 is, in this case, equal to N . x(0

Example 2.20. Recall the autonomous system of Example 2.8, precisely x(1) = A(1)x(0) where A(1) ∈

[A] =   [4, 6] [3, 5] [3, 7] [4, 5]   , for k = 1 Let P 0|0 = co(G 0|0 ) with G 0|0 =      e 1   ,   1 1   ,   e 3  
) ∈ P 0|0 = co(G cf 0|0 ) • g 3 cf 0|0 • g 1 cf 0|0 • g 2 cf 0|0 • • • H (1)
[f ](g

1 cf 0|0 ) = [A]g 1 cf 0|0 • • • H (2) [f ](g 2 cf 0|0 ) = [A]g 2 cf 0|0 • • • H (3) [f ](g 3 cf 0|0 ) = [A]g 3 cf 0|0
x 1 x(0

) ∈ P 0|0 = co(G cf 0|0 ) • g 3 cf 0|0 • g 1 cf 0|0 • g 2 cf 0|0 • • • • x(1) ∈ P 1|0 = co(G cf 1|0 ) G cf 1|0 x 1 x 2 Figure 2
.15 -Prior estimation set X 1|0 represented by the c-Polyhedron P 1|0 of Example 2.20, which is computed as the minimal generating set resulting from the concatenation of H (1) , H (2) and H (3) such that ∀x(0) ∈ [x](0) ⇐⇒ x(0) ∈ P 0|0 . We define P 1|0 as the image of P 0|0 with respect to the linear map f :

x(0) → A(1)x(0), with f ⪯ f ⪯ f . Following the procedure of Algorithm 2.2, for each g i 0|0 of G 0|0 with i ∈ {1, 2, 3} we compute [f ](g i 0|0 ) = [A]g i 0|0 ,
which is a Max-Plus hypercube represented by the polytrope co(H i ), where

H (1) =      4 5   ,   6 5   ,   4 7      , H (2) =      5 5   ,   7 5   ,   5 8      , H (3) =      6 7   ,   8 7   ,   6 8      .
Then, G 1|0 = {H (1) , H (2) , H (3) } and P 1|0 = cone( G 1|0 ) where G 1|0 = G 1|0 × {e}. Thus,

cf( P 1|0 ) yields cone( G cf 1|0 )
where

G cf 1|0 =               8 7 e      ,      4 5 e      ,      5 8 e      ,      7 5 e               (see Algorithm 2.1). Finally, P 1|0 = co(G cf 1|0 )
where

G cf 1|0 =      8 7   ,   4 5   ,   5 8   ,   7 5      ,
such that its columns are denoted by dots in Figure 2.15. As a matter of correctness, this region representation of X 1|0 is equivalent to the DBM representation of Example 2.13.

Set-estimation using Polyhedral-RA: Set-inversion estimation

This Section is taken from [START_REF] Espindola-Winck | Max-plus polyhedra-based state characterization for umpl systems[END_REF], and we present more details concerning the technicalities. We reinterpret, using a polyhedral approach, the computation of the inverse image of a given point (measurement), depicted by vector z(k), which is represented by set Xk|k as proposed in Equation (2.28). First, let us recall that

x(k) ∈ Xk|k ⇐⇒ Cx(k) ≤ z(k) ≤ Cx(k), where [C] = [C, C] ∈ IR q×n max . Thus, Xk|k = L ∩ U, (cf. Equation (2.8)), (2.41) 
where L is defined in Equation (2.9) and is equal to q i=1 L i , with

L i = {x | z i (k) ≤ (Cx) i } ≡ n j=1 {x | x j ≥ c ij • \z i (k)} (2.42) 
and

U = {x | x ≤ C • \z(k)}, (2.43) 
also defined in Equation (2.10). Then,

Xk|k = L ∩ U = q i=1 L i ∩ U = q i=1 L i ∩ U.
Lemma 2.2. The following Max-Plus half space directly encodes L i of Equation (2.42) with the same expressiveness

L i = {x | (z -1 i ⊗ c i1 , . . . , z -1 i ⊗ c in )x ≥ e}. (2.44) Proof. ⊗-multiply both sides of z i ≤ (Cx) i by z -1 i , which yields (z -1 i ⊗c i1 , . . . , z -1 i ⊗c in )x ≥ e.
The proof is complete.

Lemma 2.3. The following Max-Plus half space directly encodes U with the same expressiveness

U = {x | e ≥ ((C • \z(k)) -1 1 , . . . , (C • \z(k)) -1 n )x}. (2.45) Proof. It follows from {x | x ≤ C • \z(k)} = n j=1 {x | x j ≤ (C • \z(k)) j }, that by ⊗- multiplying both sides of x j ≤ (C • \z(k)) j by (C • \z(k)) -1 j yields n j=1 {x | (C • \z(k)) -1 j ⊗ x j ≤ e} ≡ {x | ((C • \z(k)) -1 1 , . . . , (C • \z(k)) -1 n )x ≤ e}.
The proof is complete.

Proposition 2.4. Let Pk|k ⊆ R n max be a Max-Plus polyhedron that represents Xk|k . Then, Pk|k , in its external form, is given by

Pk|k =    x |   diag(z -1 (k))C ε t   x ⊕   ε e   ≥   E ((C • \z(k)) -1 ) t   x ⊕   e ε      , ( 2.46) 
(representing s = q + 1 single half spaces).

Proof. The proof is straightforward mixing Lemma 2.2 for i = 1, 2, . . . , q and Lemma 2.3 and does not require further details. Proof. The proof follows the same insight used in Corollary 2.2. First, we consider the homogenous form of Pk|k , which is finitely generated by G. Supposing that an element of G is a ray, then its (n + 1)-th coordinate equal to ε and hence

ε t e   x ε   ≥ ((C • \z(k)) -1 ) t ε   h ε   =⇒ ε ≥ ((C • \z(k)) -1 ) t x,
which is an absurd. As a consequence, all elements of G are vertices, i.e., their (n + 1)-th coordinate is equal to e and the proof is complete.

The external-to-internal translation of Pk|k is done with complexity

O(N 2 s 2 n) where s = q+1 and N ≤ O (s + n) ⌊ n-1 2 ⌋
is the maximal number of generators of the s intermediate Max-Plus cones. If q = n and n > 0 is an even integer, then the internal representation of Pk|k is computed with worst-case complexity O(n n+3 ). In many applications, q ≪ n and then the tightness condition of Remark 2.27 (precisely n ≥ 2s+1) is likely to occur and thus, it is preferable to use the external representation of Pk|k for large systems. obtained by using the double description method over the following matrix inequality

     -1 -2 -2 e ε ε      x(1) ⊕      ε ε e      ≥      ε ε ε ε -3 -3      x(1) ⊕      e e ε      .
The reader is invited to verify the consistency that ∀x(1) ∈ P1|1 we have Cx(1) ≤ z(1) ≤ Cx [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF], as it is shown in Figure 2.16.

-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4 0 ≥ max(-3 + x 1 , -3 + x 2 ) max(-1 + x 1 , -2 + x 2 ) ≥ 0 max(-2 + x 1 , x 2 ) ≥ 0 P1|1 ⊚ ⊚ • ⊚ ⊚ x 1 x 2 Figure 2.16 -P1|1 of Example 2.21

Set-estimation using Polyhedral-RA: Correction phase estimation

The set X k|k of Equation (2.25) is alternatively represented by the intersection of the Max-Plus polyhedra P k|k-1 (exclusively in its internal form) and Pk|k (exclusively in its external form), denoted by the c-Polyhedron11 P k|k that must be represented in its internal form to be used in the subsequent computation of P k+1|k (back-shift operation:

P k-1|k-1 ← P k|k in the event-domain). Hence, x(k) ∈ X k|k ⇐⇒ x(k) ∈ P k|k = P k|k-1 ∩ Pk|k , ( 2.47) 
is computed using Remark 2.31.

The external representation of P k|k-1 is given by O(n) Max-Plus half spaces. Thus, s = O(n + q) is the number of Max-Plus half spaces that represent P k|k of Equation (2.47). Hence, the number of generators N of P k|k is upper bounded by O (s + n) ⌊ n-1 2 ⌋ and lower bounded by O ((s -2n)2 n-2 ) if s ≥ 2n (see Remark 2.27). Assuming q = n, then the complexity to obtain the internal representation of P k|k is O (σn 3 ) with σ equal to -(best-case): 2 2n-4 ; -(worst-case): n n-1 for n an odd integer or n n for n an even integer 

P1|1 =          x |      -5 -6 -6 -4 ε ε      x ⊕      ε ε e      ≥      ε ε ε ε -7 -7      x ⊕      e e ε               .
Finally, P 1|1 is internally expressed by P 1|1 = P 1|0 ∩ P1|1 using Remark 2.31. Precisely,

P 1|1 = co      5 5   ,   4 6   ,   7 5   ,   4 7     
as depicted in Figure 2.17. 

0 ≥ max(-7 + x 1 , -7 + x 2 ) max(-6 + x 1 , -4 + x 2 ) ≥ 0 max(-5 + x 1 , -6 + x 2 ) ≥ 0 • • • • • • • • P 1|1 × x (1) 
P 1|0 P 1|0 x 1 x 2 Figure 2
.17 -P 1|0 (orange region), P1|1 (intersection of the Max-Plus half spaces in green, blue and red) and P 1|1 (intersection of P 1|0 and P1|1 in bounded by magenta dashed lines) of Example 2.22

Set-estimation using Polyhedral-RA: Correction phase estimation with

X k-1|k-1 = {x(k -1)}
This Section is also taken from [START_REF] Espindola-Winck | Max-plus polyhedra-based state characterization for umpl systems[END_REF]. The basic idea is to assume that X k-1|k-1 is as a singleton, precisely X k-1|k-1 = {x(k -1)}. Thus, based on Remark 2.17, we know that X k|k-1 is therefore a Max-Plus hypercube [x](k|k -1) that is also represented by the polytrope generated by the intersection of n + 1 half spaces or equivalently by the convex hull of n + 1 points (vertices). Proposition 2.5. Let P k|k ⊆ R n max be a c-Polyhedron that represents X k|k . Then, P k|k , in its external form, is given by

P k|k =          x |      diag(x -1 (k|k -1)) diag(z -1 (k))C ε t      x ⊕      ε ε e      ≥      E E ((x(k|k -1) ∧ C • \z(k)) -1 ) t      x ⊕      e e ε               , ( 2.48) 
(representing s = n + q + 1 single half spaces).

Proof. The proof is straightforward using the proof of Proposition 2.3 and Lemmas 2.2 and 2.3. The term x(k|k -1)

∧ C • \z(k) refers to e ≥ (x -1 (k|k -1)) t x and e ≥ ((C • \z(k)) -1 ) t x ⇔ e ≥ (x -1 (k|k -1)) t ⊕ ((C • \z(k)) -1 ) t x e ≥ ((x(k|k -1) ∧ C • \z(k)) -1 ) t x Corollary 2.3. P k|k of Proposition 2.5 is a c-Polyhedron.
Proof. The proof is similar to the proof of Lemma 2.4 and does not require further details.

In this case, the external-to-internal translation of P k|k has also exponential complexity in worst-case scenarios but rarely expected to be attained since the condition for tightness in Remark 2.27, precisely s = n + q + 1 ≤ n-1 2 , never holds. Moreover, usually q < n and then the condition s = n + q + 1 ≥ 2n of the same remark to obtain a best-case complexity (also costly) holds if and only if

n -q ≤ 1.
Example 2.23. Consider the uMPL system given below:

x(1) = A(1)x(0), A(1) ∈   [1, 3] [e, 4] [2, 4] 2.5   , z(1) = C(1)x(1), C(1) ∈ 0.5 [e, 1] ,
with x(0) = (e, e) t , x(1) = (3.3, 3.3) t , z(1) = (0.5 0.5)x(1) = 3.8. Then, P 1|1 is externally represented by

P 1|1 =                x |         -1 ε ε -2.5 -3.3 -2.8 ε ε         x ⊕         ε ε ε e         ≥         ε ε ε ε ε ε -3.3 -3.8         x ⊕         e e e ε                       
, or equivalently, internally represented by 

P 1|1 = co      1 3.8   ,   3.3 2.5   ,   1 2.8 

Interval-RA

This Section is taken from [START_REF] Espindola-Winck | Efficient state-estimation of uncertain max-plus linear systems with high observation noise[END_REF]. The goal is to propose an approach to compute overapproximations of the image of an interval vector with respect to Equation (2.14a) and of the inverse image of a measurement point z(k) with respect to Equation (2.14b).

On X k-1|k-1

Let us assume, without loss of generality, that the studied systems in this Section are autonomous, i.e., x(k

) = A(k)x(k -1) with A(k) ∈ [A] ∈ IR n×n max . Given X k-1|k-1 a set contained in R n max such that x(k -1) ∈ X k-1|k-1
, then its exact image with respect to [A] is given by Equation (2.26) as

X k|k-1 = {Ax ∈ R n max | x ∈ X k-1|k-1 , A ∈ [A]}.
As we already know, this computation is done either in exponential-time (worst-case scenario) using DBM approach or in cubic-time using polyhedral approach. Hence, in order to avoid this computational effort, we consider

[x](k -1|k -1) ∈ IR n max such that X k-1|k-1 ⊆ [x](k -1|k -1)
, i.e., the smallest interval vector that encloses X k-1|k-1 . Thus, set X k|k-1 is over-approximated by the following interval vector

[x](k|k -1) = {x(k) ∈ R n max | A x(k -1|k -1) ≤ x(k) ≤ Ax(k -1|k -1)}, (2.50) 
such that X k|k-1 ⊆ [x](k|k -1). Thus, this computation is done with complexity O(n 2 ) (see Remark 2.17). This computation is also known to be done in exponential-time (worst-case scenarios) using either DBM or polyhedral approaches.

On

In general, the smallest interval vector [x](k|k) that encloses Xk|k is given by

[x](k|k) =      [ε, (C • \z(k)) 1 ] . . . [ε, (C • \z(k)) n ]     
, such that Xk|k ⊆ [x](k|k)

However, if C (as consequence C as well) has only one element different of ε per row for the subset I ⊆ {1, . . . , q} (refer to Definition 1.9) then, based on Proposition 1.3, consider the following procedure: Procedure 2.2.

S 1 = ∅, S 2 = ∅, . . . , S n = ∅, for each i ∈ I, ∃j(i) ∈ {1, . . . , n} such that x j(i) (k) ≥ c ij(i) • \z i (k), S j(i) = S j(i) ∪ {j(i)}, such that [x](k|k) =      [x 1 , (C • \z(k)) 1 ] . . . [x n , (C • \z(k)) n ]     
, where xj =

     w∈S j c iw • \z i (k) if S j ̸ = ∅, ε otherwise.
(2.51)

Hence, this procedure is computed in bilinear/quadratic-time (matrix-vector multipli-First, we consider ( Ĉx) i ≤ z i ≤ (Cx) i for all i ∈ {1, . . . , q}, this implies ( Ĉx

) i ≤ (Cx) i , i.e., n k=1 ĉik ⊗ x k = ĉi1 ⊗ x 1 ⊕ • • • ⊕ ĉin ⊗ x n ≤ c i1 ⊗ x 1 ⊕ • • • ⊕ c in ⊗ x n = n k=1 c ik ⊗ x k . Let us define a = ĉij ⊗ x j , c = c ij ⊗ x j , b = n k=1, k̸ =j ĉik ⊗ x k and d = n k=1, k̸ =j c ik ⊗ x k ,
then it is straightforward to apply Lemma A.2 of Appendix A if c = c ij ⊗ x j < a = ĉij ⊗ x j as shown below:

a ⊕ b = ĉij ⊗ x j ⊕ n k=1, k̸ =j ĉik ⊗ x k = n k=1 ĉik ⊗ x k ≤ c ⊕ d = n k=1 c ik ⊗ x k = n k=1, k̸ =j c ik ⊗ x k = ε ⊕ d.
Furthermore, the following equivalence holds First, compute

∀x j , c ij ⊗ x j < ĉij ⊗ x j ⇔ c ij < ĉij ,
Ω =   4 1   ∧   1 2 1 e   • \   5 4   =   3 1  
and we obtain U = {x(1) | x(1) ≤ (3, 1) t }.

In order to compute the smallest interval that encloses χ of Equation (2.53), we compute [S] using Procedure 2.2 that makes it possible to replace C =

  4 3 2 4   with Ĉ =   4 ε 2 4   because Ĉ = z(1) • /Ω =   5 4   • /   3 1   =   2 4 1 3   is such that ĉ12 > c 12 . Hence, Ĉ
is row G-astic with only one element different of ε for the subset of rows {1} ⊂ {1, 2} and 

then [S] =   [1, 3] [ε, 1]   . Finally, χ ⊆ [χ] using Equation (2.55), precisely [χ] =   [1, 3] [-2, 1]   .

Trajectories x(k) ∈ X k|k within event-horizon

This Section summarizes the approaches studied to compute X k|k and their complexities in order to choose the best approach, considering the trade-off between efficiency and accuracy (risk of false-positives). An illustrative representation of the trajectories of x(k) ∈ X k|k within a finite event-horizon is depicted in Figure 2.20.

X 0|0 = X 0 X 1|1 X 2|2 X 3|3 X 4|4 x 1 x 2 Figure 2
.20 -Calculation of X k|k for k = 1, 2, 3, 4 (blue regions). The red dots represent the true state-vector x(k)

Comparison table of computational complexity

The following Table 2.1 summarizes the worst-case complexity analysis of the procedures that compute X k|k-1 , Xk|k and X k|k of Sections 2.4.1 and 2.4.2 and their overapproximations of Section 2.4.3, given a measurement point z(k) and X k-1|k-1 . In this analysis, we assume, without loss of generality, that the systems are autonomous and that the measurement-space is equal to the state-space (q = n). As a notation, we have:

-N as the number of DBM to represent X k-1|k-1 ; -N 1 and N 2 as the number of DBM to represent X k|k-1 and Xk|k , respectively; -G the number of vertices that generate the Max-Plus polyhedron P k-1|k-1 that represents X k-1|k-1 ; α is either 2 for n an odd integer or 3 for n an even integer; -"int. form" (internal representation) and "ext. form" (external representation) refers to the fact that int. form is computed from ext. form (which is considered as given in O(1) since it is only a matter of writing the inequalities);

-"approx." and "exact" refer to the fact that the Interval-RA generally yields overapproximations.

P rocedure X k|k-1 (Prior) Xk|k (Measurement info.)

X k|k (Posterior) DBM-RA O(N n n+3 ) O(n n+2 ) O(N 1 N 2 n 3 )
Poly The calculation of X k|k-1 using the polyhedral approach is both efficient and accurate (no risk of false-positives) while the calculation of Xk|k (and therefore X k|k ) are either efficient-and-inaccurate (using interval approach) or inefficient-and-accurate (using DBM and polyhedral approaches). Nevertheless, as proposed in Remark 2.38, it is possible to compute Xk|k both efficiently and accurately using the interval approach. In this case, Xk|k is an interval vector or equivalently a Max-Plus hypercube generated by n + 1 vertices (see Remark 2.37 and Proposition 2.3). Therefore, X k|k is yet computed in an inefficientand-accurate way using polyhedral approach of Proposition 2.2.

In summary, the best approach combining the trade-off between efficiency and precision is the polyhedral one.

In a closed-loop system relying on state-estimation [START_REF] Hardouin | Observer-based controllers for max-plus linear systems[END_REF], an observer-based controller is expecting an estimated vector x(k) and not a set X k|k such that x(k) ∈ X k|k at each iteration k. Thus, we have to select one point in X k|k . For instance, the estimated state can be chosen as the center a or as the greatest value of X k|k . For all types of choices, the trajectory estimated by the set-estimation approach is in general less accurate than those considering the probabilistic aspects [START_REF] Cândido | Particle filter for max-plus systems[END_REF][START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF].

a. X k|k is likely to be a non-convex object in conventional algebra and thus, the centroid is often not a part of the object itself Computing a point in the estimated set X k|k Chapter 3

NONDETERMINISTIC SYSTEMS: STOCHASTIC FILTERING

In Chapter 2, different approaches were studied in order to be able to compute the conditional reach set. In this Chapter, we will show that these reach sets correspond to the support of the posterior conditional probability density function (PDF)

p(x(k)|{z( 1), . . . , z(k)}) in the context of Bayesian filtering and that, due to the strong nonlinearity of MPL systems, it is usually not possible to obtain an analytical form of this PDF, despite calculating its support, which makes it very difficult to define an estimator for the state-vector x(k).

Nevertheless, in [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF][START_REF] Espindola-Winck | Stochastic filtering scheme of implicit forms of uncertain max-plus linear systems[END_REF][START_REF] Espindola-Winck | Criteria stochastic filtering of max-plus discrete event systems with bounded random variables[END_REF], an original approach to alternatively solve this problem was proposed. The main idea is to drawn inspiration from the maximum likelihood estimator, but rather than looking for the value of the state x(k) which maximizes the likelihood function p(z(k), x(k)), we will seek, given a measurement point z(k), to invert the conditional mathematical expectation E[z(k)|x(k)] in order to obtain a state which "gives" the measurement, i.e., a state consistent with the measurement point.

As a promising application of the stochastic filtering algorithms that will be presented in the sequel, we can cite the approach of MPL systems of queuing networks [START_REF] Baccelli | Taylor Expansions for Poisson Driven (max, +)-Linear Systems[END_REF], the so-called stochastic event graphs [START_REF] Altman | Admission control in stochastic event graphs[END_REF], which is handled, for instance, by an algebra of unbiased gradient estimators (see [START_REF] Krivulin | Unbiased estimates for gradients of stochastic network performance measures[END_REF] for details).

Nonlinear Bayesian Estimation

Bayesian methods provide a rigorous and general probabilistic framework for dynamic state estimation problems. The main idea is to recursively estimate the state-vector x(k) over time (k here represents the discrete-time) using the mathematical model of the dynamics and correcting it using measurement information. 

   x(k) = f (x(k -1), w(k)) , z(k) = h (x(k), v(k)) , (3.1a) (3.1b)
be a discrete nonlinear system with x ∈ R n the state-vector and z ∈ R q the measurementvector. We also assume that w ∈ R m and v ∈ R r are mutually independent and identically distributed (iid) noises. The nonlinear functions f : R n × R m → R n and h : R n × R r → R q are the transition and observation functions, respectively.

The true state x(k) is assumed to be an unobserved Markov process, and the measurements points z(k) are the observations of a Hidden Markov Model (HMM). Thus, the term optimal filtering1 is mathematically seen as a statistical inverse problem (or an inference or estimation problem), where the unknown quantity is a vector valued time series {x(k)} 0≤k≤+∞ = {x(0), x(1), x(2), . . . }, which is observed through a set of noisy measurements {z(k)} 1≤k≤+∞ = {z(1), z(2), . . . } as depicted in Figure 3.1 by the Bayesian Network.

We seek to stochastically understand Equations (3.1a) and (3.1b). For this purpose, we consider the random generation of vectors x(k) and z(k). First, let x(0) be a random variable distributed according to p(x(0)), i.e., x(0) ∼ p(x(0)). Thus, x(0) → f (x(0), w(1)) denotes how the state evolves with respect to x(0) and the noise w(1) (stochastic diffusion) through the nonlinear function f , i.e., x(1) ∼ p(x( 1)|x(0)) is a new random vector conditioned to x(0). Extending the reasoning for the subsequent iterations and using the fact that Markov process are under the Markov property2 , one could conclude that x(k) ∼ p(x(k)|x(k -1)) for all k. Straightforwardly, z(k) is also a random vector conditioned to x(k), i.e., z(k) ∼ p(z(k)|x(k)). In practice, it is possible to measure z(k) at each instant k and this measurement can ultimately be considered as a sample drawn from The goal of the Bayesian approach is to compute an estimation of x(k) based on all available information (sequence of measurements Z(k) = {z(1), . . . , z(k)}) for all k. To this end, it is necessary to construct the posterior PDF p(x(k)|Z(k)) as depicted in Figure 3.2. Briefly, all the information needed to properly compute an optimal estimate, based on different criteria, for x(k) is contained in this PDF. Some examples are -mean (expectation), mode, median, etc.

A classical criterion to obtain x(k) at time k, using p(x(k)|Z(k)), is to consider the minimum-variance unbiased estimator, which gives that the optimal estimate of x(k) given Z(k), denoted as x(k|k), is the mathematical expectation of the random variable x(k) conditioned to Z(k), i.e.,

x(k|k) = E[x(k)|Z(k)] = x(k)p(x(k)|Z(k))dx(k), (3.3) 
(see [START_REF] Anderson | Optimal Filtering[END_REF]Th. 3.1] for more details).

Minimum-variance unbiased estimator

The Recursive Bayesian filter allows calculating the posterior PDF and then an optimal estimate to x(k). In the sequel, we briefly summarize this framework. Given:

-The probabilistic form of the dynamic system given by Equations (3.2a) and (3.2b), with known statistics of w(k) and v(k); -Initial prior PDF p(x(0)|z(0)); -Sequence of measurement up to k, formally Z(k) = {z(1), . . . , z(k)}.

Compute in an on-line two-fold manner: Mathematically, step 1 is computed using the Chapman-Kolmogorov equation under the Markov property3 [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF][START_REF] Ristic | Beyond the Kalman Filter: Particle Filters for Tracking Applications[END_REF] as follows:

p(x(k)|Z(k -1)) = p(x(k)|x(k -1)) dynamics p(x(k -1)|Z(k -1)) previous posterior dx(k -1), (3.4) 
assuming p(x(k -1)|Z(k -1)) is given at time k -1.

Step 2 uses the famous Bayes rule, which effectively allows us to obtain an optimal solution to this problem. Precisely

p(x(k)|Z(k)) = p(x(k)|z(k), Z(k -1)) (3.5) p(A|B, C) = p(B|A, C)p(A|C) p(B|C) = z(k) is independent of Z(k -1) p(z(k)|x(k), Z(k -1)) p(x(k)|Z(k -1)) p(z(k)|Z(k -1))
"likelihood" × "prior" "evidence" = Although conceptually correct, the Bayesian principle is not practical since the associated integrals are intractable in most cases. Nevertheless, an optimal solution does exist for restrictive cases:

measurement model p(z(k)|x(k)) p(x(k)|Z(k -1)) p(z(k)|Z(k -1)) normalization constant , ∝ p(z(k)|x(k))p(x(k)|Z(k -1)) where p(z(k)|Z(k -1)) = p(z(k)|x(k))p(x(k)|Z(k -1))dx(k).
-in the case of linear systems with additive Gaussian noise the exact recursive solution of the problem is the very well known Kalman Filter [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF][START_REF] Anderson | Optimal Filtering[END_REF]; -for nonlinear problems for which the linearized model is a good approximation, the Extended Kalman filter [START_REF] Bar-Shalom | Estimation with Applications to Tracking and Navigation[END_REF] or the Unscented Kalman filter [START_REF] Julier | A new method for the nonlinear transformation of means and covariances in filters and estimators[END_REF] can be considered.

Nondeterministic MPL systems and the Bayesian filtering

In this Section, we will formalize an "alternative" Bayesian filtering approach to handle nondeterministic MPL systems with bounded random variables (uMPL systems). First, let us study the modelling of TEG with stochastic holding times. 

               x 1 (k) = max (x 2 (k -2), u(k)) , x 2 (k) = a(k) + x 1 (k), x 3 (k) = max (b(k) + x 1 (k), c(k) + x 2 (k)) , z(k) = x 3 (k).
As we can see, these dynamics are nonlinear but are not of the form f (x(k -1), w(k)) and therefore the system is not a Markov process. However, by introducing a new variable x 4 (k) = x 2 (k -1) and by naively substituting variables we obtain (refer to Section 1.3.2):

                                       x 1 (k) = max (x 4 (k -1), u(k)) x 2 (k) = a(k) + x 1 (k) = max (a(k) + x 4 (k -1), a(k) + u(k)) x 3 (k) = max (b(k) + x 1 (k), c(k) + x 2 (k)) = max (d(k) + x 4 (k -1), d(k) + u(k)) d(k) = max (b(k), c(k) + a(k)) x 4 (k) = x 2 (k -1) z(k) = x 3 (k)
which is clearly of the desired form. Even though we consider that a(k), b(k) and c(k) are mutually independent random variables distributed according to the same probability distribution over different supports, we observe, on the other hand, that d(k) is coupled (or correlated) to a(k), b(k) and c(k) and it would be necessary to take into account its joint distribution with respect to these other random variables. This means that the assumption of the mutual independence of the stochastic holding times does not hold anymore. A possible conservative solution is to consider that d(k) is a "new" independent random 

(x(k)|Z(k)) is X k|k = X k|k-1 ∩ Xk|k
Similarly, from Z(k), we will look for the state x(k) such that it leads to

z(k) = E[z(k)|x(k)]. (3.8) 
A sequence X (k) = {x(0), . . . , x(k)}, ideally tracking X (k), is obtained if it satisfies the Equations (3.7) and (3.8). This sequence can be seen as the classical maximum likelihood estimator in the sense that it is based on the likelihood function p(z(k)|x(k)). The main difference is that instead of considering the maximum of this function, with respect to

x(k), the estimate x(k) (see Equation (3.8)) chooses the value of x(k) such that z(k) is equal to E[z(k)|x(k)].
It is important to note that the strategy summarized by Equations (3.7) and (3.8) effectively takes into account the prior data 5 , since x(k) appears in both equations. Although conceptually useful, these equations are not adequate for the direct implementation of a filter, because there is no unique solution x(k) guaranteed due to the nature of the Max-Plus operations.

Alternatively, we can define x(k) as a value which is constrained by z(k) = E[z(k)|x(k)] (even though in classical filtering this is not mandatory) and is the closest to x(k) = E[x(k)|x(k -1)] (prior estimation). To retain this value, we use a suboptimal solver based on interval contraction that will be presented in the sequel.

In short, the approach is also two-fold and can be resumed by the following equations:

Prediction x(k|k -1) = E[x(k)|x(k -1|k -1)].
(3.9)

Update x(k|k) = arg min x ∥x -x(k|k -1)∥ ∞ , (3.10a) s.t. z(k) = E[z(k)|x], (3.10b) 
supposing that x(k -1|k -1) is known (previous posterior estimation).

Alternative filtering

Estimators based on p(x(k)|z(k))

are Bayesian because they consider the probability density p(x(k)|x(k -1)) (see Equations (3.4) and (3.5) and note that the dependency on past measurements Z(k -1) has been omitted for simplicity). On the other hand, estimators purely based on the measurement likelihood p(z(k)|x(k)) are non-Bayesian.

In the sequel, we will introduce the mathematical tools necessary to properly compute Equations (3.9) and (3.10).

On the mathematical conditional expectation calculation: exact and approximation approaches

Clearly, a special ingredient is the computation of expected values of max-affine expressions, for instance, the expected value of

z = max 1≤i≤n (a i + x i ),
where a 1 , . . . , a n are mutually independent bounded random variables with piecewise polynomial CDF F (a i ), is denoted by E[z|x 1 , . . . , x n ].

Let us start with the simple case of the calculation of E[v], where v = max(a 1 , . . . , a n ). First, we compute the CDF of v as 6

F v (t) = P [v ≤ t] = P [a 1 ≤ t and a 2 ≤ t and a n ≤ t] = n i=1 P [a i ≤ t] = n i=1 F a i (t).
As a corollary, if each a i is shifted by a constant x i , i.e., v = max(a 1 + x 1 , . . . , a n + x n ), then

F v (t) = n i=1 F a i (t -x i ), (3.11) 
which is a piecewise polynomial function. This expression is famous and can be found in [START_REF] Frechét | Sur la loi de probabilité de l'écart maximum[END_REF].

Remark 3.1. The computation of Equation (3.11) can become complex for some bounded piecewise polynomial distributions, since it is necessary to consider several possible combinations of ranges. Therefore, throughout this Chapter, we consider that a i are uniformly distributed on [a i , a i ], i.e., a i ∼ U(a i , a i ) and

F a i (t) =            0 if t ≤ a i , t-a i a i -a i if a i < t ≤ a i , 1 otherwise, 6. P [x ≤ t]
represents the probability that the random variable x takes on a value less than or equal to t. which allows us to directly implement this computation in a procedural way.

Let us derive the expression of the mathematical expectation. Let X be a random variable with non-negative support and with its CDF F X (x). If ∀x ≤ x 0 we have F X (x) ≡ 0 and thus

E[X] = x 0 + +∞ x 0 (1 -F X (x)) dx.
(3.12)

A simple way to understand this result is to consider the following: First,

1 -F X (x) = P [X > x] = +∞ x p x (t)dt and +∞ x 0 (1 -F X (x)) dx = +∞ x 0 P [X > t]dx = +∞ x 0 +∞ t p X (t)dtdx,
then changing the order of integration and also the integration limits, i.e.,

{x ≥ x 0 , t ≥ x ⇐⇒ {t ≥ x 0 , x 0 ≤ x ≤ t, we obtain +∞ x 0 t x 0 p X (t)dxdt = +∞ x 0 [xp X (t)] t x 0 dt = +∞ x 0 (t -x 0 )p X (t)dt, which is equal to +∞ x 0 (t -x 0 )p X (t)dt = +∞ x 0 tp X (t)dt -x 0 +∞ x 0 p X (t)dt =1-F X (x 0 )=1 = +∞ x 0 tp X (t)dt -x 0 , the term +∞ x 0 tp X (t)dt is the usual definition of E[X], i.e., E[X] = +∞ -∞ tp X (t)dt = +∞ x 0 tp X (t)dt. Hence, +∞ x 0 (1 -F X (x)) dx = E[X] -x 0 .
For the special case of bounded random variables, i.e., a ≤ X ≤ b, Equation (3.12) is rewritten as

E[X] = b - b a F X (x)dx. (3.13)
In [START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF], it was considered an approximation based on the moments of a random variable by using the fact that max(x 1 , . . . , x n ) ≤ 

lower(z) = max(E[x 1 ], . . . , E[x 1 ]) upper(z) = n i=1 E [|x i -L| p ] 1 p + L, with L = n min i=1 (min(dom(x i ), 0))
and exploiting the Jensen's inequalities for convex and concave functions, respectively. The approximation with respect to the upper bound tightens according to a suitable tuning of the parameter p. A proper discussion on this adjustment is detailed in [START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF]. For comparison purposes, the p-value can also be adjusted experimentally by increasing it while the result is improved, indeed for a larger p-value the result could deviate from the exact solution. As suggested in the work, it is recommended that p be an even integer since in this case

E[|x i | p ] = E[x p i ].
Equation (3.14) exactly computes the expectation of each E[z i |x]. By using the approximation method of [START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF], with a suitable tuning of the even integer p and of L, the following holds for i = 1, . . . , q:

E[z i |x] = ϵ +   n j=1 E [(a ij + x j -L) p ]   1 p + L E ≈ [z i |x] (3.15) 
The approximation error ϵ tends to 0 if we made a good choice for the parameters. 

(ν) = ( i E [ν p i ]) 1/p with p ̸ = 0 is clearly a continuous function since E [ν p i ] = dom(ν i ) (ν i ) p p ν i (t)dt is assumed to be continuous and positive. Isotony is proved in Lemma C.2 of Appendix C to show that if x a j ≥ x b j then E (a ij + x a j -L) p ≥ E (a ij + x b j -L) p for j = 1, . . . , n and con- sequently E ≈ [z i |x a ] ≥ E ≈ [z i |x b ].

Approximation of the condition expectation

Remark 3.4.

There are other upper approximations to max(x 1 , . . . , x n ), such as the normalized exponential function (softmax) and the LogSumExp (also seen as the sum operator of log semiring in the field of tropical analysis), which exploit Jensens' inequality and then, in theory, it is possible to get good approximations. 

(k) = α ⊗ x 1 (k -1) ⊕ β ⊗ x 2 (k -1) such that its expected value given x 1 (k -1) = x 2 (k -1) = e is denoted E[x a (k)|(x 1 (k -1), x 2 (k -1)) t ] and is given by E[max(α, β)],
where α ∼ U(3, 6) and β ∼ U(4, 8).

The analytical computation using Equation (3.14) is depicted in the Figure 3.6. It should be noticed that the PDF obtained by max(α, β) is not uniform, i.e., the max operator does not preserve the distribution (see Figure 3.7). 

E[max(X 1 , X 2 )] ̸ = max(E[X 1 ], E[X 2 ])
This result could also be computed using Equation (3.15), as follows:

E[max(α, β)] ≈ (E[(α -L) p ] + E[(β -L) p ]) 1 p + L ≈ α α (t -L) p p α (t)dt + β β (t -L) p p β (t)dt 1 p + L ≈ 1 α -α α α (t -L) p dt + 1 β -β β β (t -L) p dt 1 p + L ≈   1 α -α (t -L) p+1 p + 1 α α + 1 β -β (t -L) p+1 p + 1 β β   1 p + L,
by arbitrarily choosing L = 3 and p = 10 we obtain E[max(α, β)] ≈ 7.0247 to be compared with the exact value 55 9 (other choices for the parameter p could potentially reduce the approximation error).

On the inverse of continuous and isotonic conditional expectation functions

We shall use [28, Sec. II] in the sequel. It is assumed that the method to compute E[z|x] keeps the property of continuity and isotony (refer to [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]Lem. 3]).

Given a q-dimensional vector z, find

x ∈ R n such that z = E[z|x] = E[C ⊗ x], with C ∈ [C] ∈ IR q×n max ,
is respected. This is also seen a statistical inverse problem.

Due to the multiplicity of solutions, we seek to characterize the set

χ = {x | z = E[z|x]} ⊆ (R ∪ {-∞}) n inside a given box [x] = {x | x ≤ x ≤ x} ⊆ (R ∪ {-∞}) n ,
i.e., χ ⊆ [x], as close as possible to an arbitrary point x 0 (obtained somehow).

Contractors (see [START_REF] Jaulin | Applied Interval Analysis[END_REF]) are powerful tools to efficiently solve the problem of characterization of the set χ. The operator C χ is a contractor for χ if it satisfies ∀[x] ⊆ (R ∪ {-∞}) n the following properties 

C χ ([x]) ⊆ [x] (contractance) and C χ ([x]) ∩ χ = [x] ∩ χ (completeness
minimal if [x] ∩ χ = C χ ([x]).

Contractors

In the following, it is assumed that:

-H1) χ is not empty; -H2) E[z|x] ≤ z; -H3) ∀j ∈ {1, . . . , n}, E[z|(x 1 , x 2 , . . . , x j , . . . , x n-1 , x n ) t )] ≥ z.

Let us define some useful conditions.

Condition L true if E[z i |ξ] < z i with ξ = x 1 , x 2 , . . . , x j , . . . , x n-1 , x n t . (3.16)
If the condition L holds, then there exists at least a point

x ′′ = x 1 , x 2 , . . . , x ′′ j , . . . , x n-1 , x n t with x j ≤ x ′′ j ≤ x j , such that E[z i |x ′′ ] = z i . Similarly, Condition U true if E[z i |η] > z i with η = (x 1 , x 2 , . . . , x j , . . . , x n-1 , x n ) t . (3.17)
If the condition L holds, then there exists at least a point

x ′′ = x 1 , x 2 , . . . , x ′′ j , . . . , x n-1 , x n t , with x j ≤ x ′′ j ≤ x j , such that E[z i |x ′′ ] = z i .
These two conditions/consequences define two operations that both combined summarize the contractor Ω χ on

[x] = [x, x]. ∆ L ij operator: ∆ L ij ([x, x]) = [x ′ , x] , (3.18) with x ′ = (x 1 , x 2 , . . . , x ′ j , . . . , x n-1 , x n ) t x ′ j = sup{x j ∈ [x j , x j ]} s.t.: E[z i | x ′′ ] < z i x ′′ = (x 1 , x 2 , . . . , x j , . . . , x n-1 , x n ) t ∆ U ij operator: ∆ U ij ([x, x]) = [x, x ′ ] , (3.19) with x ′ = (x 1 , x 2 , . . . , x ′ j , . . . , x n-1 , x n ) t x ′ j = inf{x j ∈ [x j , x j ]} s.t.: E[z i | x ′′ ] > z i x ′′ = (x 1 , x 2 , . . . , x j , . . . , x n-1 , x n ) t
The calculation of x ′ j in Equations (3.18) and (3.19) is a one-dimensional search that can be efficiently performed by the dichotomy method (see [START_REF] Wilde | Optimum seeking methods[END_REF]) as follows: at each step, the search interval initialized with [x j , x j ] is divided into two equal intervals. The half containing the solution will be the search interval at the next step. Algorithm 3.1 summarizes this search for each row/column pair (i, j) and stops when the search interval is sufficiently small. Let us understand a case of this procedure: for instance, in the case of the ∆ L ij operator, y j is the middle point of the search interval [x j , x j ] with y accordingly, i.e., y = (x 1 , x 2 , . . . , y j , . . . , x n-1 , x n ) t . If E[z i |x ′′ ] ≥ z i then the solution is on the lower half (this is done by replacing the upper bound x j of the search interval by the middle point y j ).

The composition of ∆ L

ij and ∆ U ij for i = 1, . . . , q and j = 1, . . . , n We denote Ω χ the contractor obtained from the iterated composition of 2qn operators x ← x; x j ← x j ; Generally, the interval I = [x opt , x opt ] is not deprecated after the contraction procedure of the initial interval [x], then in order to obtain a point in I we consider the deprecation procedure described below (see [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]Sec. IV] for more details). Procedure 3.1. For an arbitrary j ∈ {1, . . . , n}, let a ∈ [x j , x j ]. Moreover, let χ ′ = χ ∩ {x j = a}, with {x j = a} a hyperplane in R n , and let I ′ = I ∩ {x j = a}. In general, I ′ is not minimal (see Remark 3.6) and the contraction algorithm must be run again to obtain the minimal interval containing χ ′ .

6 if E[z i |x] < z i then 7 x ← ∆ L ij ([x, x]) ; // a
The procedure above can be iteratively repeated until the minimal interval is reduced to one point (all components are fixed) that necessarily belongs to χ. The remaining question is: which component should be fixed at each step and to which value? To answer this, consider now that one holds a guess value (obtained somehow), formally x 0 . We shall look for a point x ∈ χ that is the closest to this value, i.e., x opt = arg min x∈χ ∥xx 0 ∥ ∞ . In general, x opt is not unique, i.e., multiple solutions yield the same minimum, and mostly important: an optimal value for this problem cannot be guaranteed because χ is unknown. However, following [28, Sec. IV], a suboptimal heuristic procedure, based on the deprecation method described above, is proposed to solve an alternative optimization problem, stated as follows: as we already know, I, such that χ ⊂ I, is the interval resulting from the Algorithm 3.2. Then, we consider the alternative minimization

x subopt = arg min x∈I ∥x -x 0 ∥ ∞ ,
whose optimal solution 8 is given by the line 7 of Algorithm 3.3.

Remark 3.7. The vector x subopt not necessarily belongs to χ, but it is useful to determine at each step which component must be deprecated and to which value. Given that, χ ⊂ I then the following statement holds:

min x∈χ ∥x -x 0 ∥ ∞ ≥ min x∈I ∥x -x 0 ∥ ∞ .
The Algorithm 3.3 summarizes this procedure, and it should be noticed the generation of the initial interval [x] must contain at least one solution of the problem characterized by the set χ. A simple rule to guarantee this is to choose x such that Cx < z and x such that Cx > z are respected 9 .

Let us interpret the line 9 of Algorithm 3.3. This line means that ∃j ∈ {1, . . . , n} such that |x subopt j -x 0 j | = x suboptx 0 ∞ , this j is denoted j ♯ . The goal of the iterative suboptimization procedure that was designed is to minimize x suboptx 0 ∞ . At each iteration k we obtain j ♯ , denoted j ♯ (k), and thus if we do not choose the j ♯ (k)th component of [x] to be deprecated then in the next iteration k + 1 we will obtain that j ♯ (k + 1) = j ♯ (k), i.e., without minimizing x suboptx 0 ∞ , which is not desired, and hence, at each iteration k the index of the component that must be deprecated is j ♯ . Remark 3.8. In [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF], a proper discussion of optimality is presented. In short, it is based on analyzing J = ∥x suboptx 0 ∥ ∞ at each iteration in Algorithm 3.3. If J remains unchanged, then an optimal value is obtained. In practice, this can be summarized by evaluating whether j ♯ is kept after each iteration since J = |x subopt j ♯ -x 0 j ♯ |, i.e., if after some iterations j ♯ no longer changes, then an optimal value is found. On the other hand, if j ♯ is not preserved then, although an optimal value could be found, we cannot assert optimality.

8. As for x opt , there exist multiple solutions for x subopt , but min x∈I ∥x -x 0 ∥ ∞ is unique. 9. H3 implies E[z|x] ≥ z and it must always be respected, otherwise x must be properly modified. Example 3.3. Consider the nondeterministic MPL system with mutually independent and uniformly distributed processing times, described by

x(k) = A(k)x(k -1), z(k) = C(k)x(k) with A(k) ∈ [A] =   [1, 3] [3, 4] [2, 3] [2, 4]   and C(k) ∈ [C] = [1, 3] [0, 5]
and the following initial state x(0) = (e, e) t ∈ X

0 = {x | 0 ≤ x 1 ≤ 1, 0 ≤ x 2 ≤ 1}.
Assuming that x(0|0) = x(0) ∈ X 0|0 = X 0 and considering the following simulated state and measurement sequences given by Table 3.1, we compute using the polyhedral set- 3.9.

k = 0 k = 1 k = 2 x(k) e e 3.
-1 (2.35), which denotes the membership test to the Max-Plus polyhedron that represents X 2|2 . Briefly, x(2|2) is not consistent with the support of the posterior PDF for k = 2 (a probabilistic issue), represented by X 2|2 . The simple way to consistently obtain x(2|2) belonging to X 2|2 is to compute its projection10 over X 2|2 , precisely xproj (2|2) = (8.692, 6.692) t represented by the green dot in Figure 3.9.

1 3 5 7 9 11 -1 1 3 5 7 9 11 X 0|0 = X 0 X 1|1 X 2|2

Filtering with error criteria

The aim of this Section is to propose an improvement in the correction phase of the Algorithm 3.4. The new algorithm, originally presented in [START_REF] Espindola-Winck | Criteria stochastic filtering of max-plus discrete event systems with bounded random variables[END_REF], is based on the minimization of a criterion that allows evaluating the estimation error of the prediction phase and to adjust the importance to be given between the prediction estimation and the corrected estimation, as the quadratic criterion does in Kalman filter for linear continuous time-driven systems.

In Kalman filter theory, the gain is the weight given to the measurements and current-state estimate, and can be "tuned" to achieve a particular performance. If the Kalman gain is large that means error in the measurement is small which means that new data put in can now very quickly get us to the true value, and therefore we will reduce the error in the estimate and vice versa. Then, we propose to improve the original filtering algorithm for Max-Plus systems (Algorithm 3.4) by introducing a criterion in the spirit of the Kalman filtering gain. The optimal gain matrix of the Kalman filter is often derived by minimizing the trace of the posterior covariance matrix [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF]. By analogy, we will define a criterion J to be minimized, allowing to take into account the trade-off between the noise in the prediction estimation and in the measurement.

The criterion J From Equations (3.9) and (3.10) the following information is known:

-The estimation of x(k) at k -1, formally x(k -1|k -1) (prior knowledge of state); -The current prediction estimation for the state x(k) from the available state estimation at k -1, formally x(k|k -1) = E[x(k)|x(k -1|k -1)]; -The measurement output z(k) obtained at k.

For instance, let z 0 be defined as the output prediction estimation, i.e.,

z 0 = E[z(k)|x(k|k -1)].
Consider that, z 0 will be used as input of the inversion procedure, formally x 0 = Inv(z 0 , x(k|k -1)).

Based on this, it is straightforward to see that x 0 = x(k|k -1). However, if we define z 1 as a classical convex combination between z(k) and z 0 , formally

z 1 = βz(k) + (1 -β)z 0 where β ∈ [0, 1],
then this artificial measurement should be used also as input of the same inversion procedure, precisely x 1 = Inv(z 1 , x(k|k -1)).

The pair (x 1 , z(k)) as defined before is the input of the following heuristic criterion that aims at evaluating for each k the trade-off between the noise in the prediction estimation and in the measurement:

J(x 1 , z(k)) = max{∥P -1 dyn (x 1 -x(k|k -1))∥ ∞ , ∥P -1 obs (z(k) -E[z(k)|x 1 ])∥ ∞ }, (3.20) 
where P dyn = diag(α 1 , . . . , α n ) and P obs = diag(γ 1 , . . . , γ q ) are weighting matrices in the usual algebra. The first part of the criterion reflects how the estimation impacts the prediction estimation obtained in Equation (3.9). The second part reflects how the estimation impacts the measurement.

A key point is to ensure that the criterion above is practical. For this reason, the parameters α 1 , . . . , α n must be associated with the variability of the components of the vector x(k|k-1). The inverse of these parameters is therefore an indicator of the reliability of x(k|k -1). A rule of thumb for tuning the parameter α i for all i ∈ {1, . . . , n} is given by considering the average width of the elements of the i-th row of the corresponding interval Thus, clearly x′ (k|k) ∈ X k|k for k = 1, 2 and all estimates are consistent with the support of the posterior PDF (it is not always the case, i.e., no guarantee). In addition, the following values of β opt are obtained: k = 1, β opt = 0.1753 and k = 2, β opt = 0.1784, which means that more importance was automatically given to noise in the prediction rather than noise in the measurement (too noisy). Finally, let us analyze the average distance by Algorithm 3.4 and the true value of the state is almost equal to the RMSE between the estimation provided by Algorithm 3.5 and the true state. Table 3.2 shows the obtained results.

It is important to mention that, for this example, β opt asymptotically converges to 1 for most event-firings, such that z 1 = z(k), clearly leading to the same result found using the Algorithm 3.4. [START_REF] Loreto | Duality between invariant spaces for max-plus linear discrete event systems[END_REF], modelled as a ninth order nondeterministic MPL system with mutually independent and uniformly distributed processing times, with three directly measured states

State

x 3 ,       ε ε ε ε ε ε ε ε [e, 6] ε ε ε ε ε ε ε [e, 6] ε ε ε ε [e, 6] ε ε ε ε ε
The model is not disturbed by any noise, i.e., it is under deterministic behavior. However, the measurement, represented by the interval matrix [C], is under high uncertainty, making all states become noisy. Algorithm 3.4 will then return a poor corrected estimation of the states, whereas Algorithm 3.5 is able to retrieve the prediction estimation instead of the corrected one as the reliable estimation of the states (β opt asymptotically converges to 0 for most event-firings).

The analysis of the RMSE between the estimation provided by Algorithm 3.4 and the true value of the state is greater than the RMSE between the estimation provided by Algorithm 3.5 and the true state. Table 3 The new filtering strategy for the correction equation uses the same inversion procedure but using an artificial variable generated by a convex combination between output prediction and output measurement, rather than only the output measurement. This algorithm is able to deal with the trade-off between the noise in the measurement and in the prediction. Other objective functions which improve the efficiency of the proposed filtering algorithm can be considered, as well as the weighting matrices which are of utmost importance for the practical performance of the algorithm.

Analysing the contribution: the new filtering algorithm

Filtering of live TEG with implicit form

The filtering Algorithms 3.4 and 3.5 assume that the stochastic entries of the system matrices are independent. Unfortunately, in most applications the associated TEG have token-free places and due to algebraic manipulations (Kleene star), the entries of the system matrices are Max-Plus summations of processing times (for instance, a(k) = b(k)⊕ c(k)d(k)), in which various processing times appear in multiple entries. Therefore, the entries of the matrices are not mutual independent, and these algorithms are not directly adapted. In the sequel, we use the results originally proposed in [START_REF] Espindola-Winck | Stochastic filtering scheme of implicit forms of uncertain max-plus linear systems[END_REF].

Let us recall the model of the TEG of Example 3.1, using Equation (2.13), i.e., we have x(k) = A 0 (k)x(k) ⊕ y(k -1), where A 0 (k)x(k) represents the implicit part and y(k -1) = A 1 (k)x(k -1) represents the explicit part. This equation can be componentwise depicted as follows:

x 1 (k) = y 1 (k -1), x 2 (k) = a 21 0 (k)x 1 (k) ⊕ y 2 (k -1), x 3 (k) = a 31 0 (k)x 1 (k) ⊕ a 32 0 (k)x 2 (k) ⊕ y 3 (k -1), . . .

x n (k) = n-1 l=1 a nl 0 (k)x l (k) ⊕ y n (k -1), (3.22) 
where each y i is n j=1 a ij 1 (k)⊗x j (k -1), where each a ij 1 (k) is assumed to be an independent random variable, and each x j (k -1) is fixed. Hence, the entries of the vector y(k) are assumed to be independent. Moreover, the first part of the right-hand side of Equation (3.22) is i-1 l=1 a il 0 (k) ⊗ x l (k) for all i ∈ {1, . . . , n} and depends on x l (k) from l = 1 up to i -1. By assuming that the computation of Equation (3.22) is done from i = 1 up to n and the terms x l (k) are fixed and known, we will be able to ensure the independence of the components of the vector x(k), which is worth of interest in the main contribution of this Section 12 .

Nevertheless, the stochastic systems described by the equation (3.22) have dependencies between their matrix entries. Hence, to properly calculate the expectation of the i-th component of x(k) it would be necessary to take into account its joint distribution with respect to the other components, which seems to be an intractable problem for most of the cases. From this fact, the stochastic filtering schemes that were proposed in Algorithms 3.4 and 3.5 are no longer allowed to be straightforwardly used if we are not interested in conservative results 13 .

12. We consider that each x i (k) is recursively known at each subsequent row. Following Equation (1.12), we can write and assuming that the values x(k -1) are fixed, then it is trivial to compute x1 (k|k -1). Conversely, for x2 (k|k -1) = E a 21 0 (k)x 1 (k) ⊕ y 2 (x(k -1)) , a similar trivial computation is not possible since it depends on x 1 (k). To calculate this and the subsequent mathematical expectations, the joint distribution of the vector x(k) should be obtained, which is a very difficult problem to solve. To avoid it, let us consider that a reliable value for x 1 (k) is given by the fixed value ψ(x 1 (k)) (this is discussed in the following). Then, it renders a 21 0 (k)x 1 (k) = a 21 0 (k)ψ(x 1 (k)) to be of the same kind as y 2 (x(k -1)) and thus being easily computed. To compute x3 (k|k -1) = E a 31 0 (k)x 1 (k) ⊕ a 32 0 (k)x 2 (k) ⊕ y 3 (x(k -1)) , we replace the random variables x 1 (k) and x 2 (k) by the fixed values ψ(x 1 (k)) and ψ(x 2 (k)), respectively. All the other subsequent computations are similar.

x i (k) =   i-1
The question is: how to define ψ(x i (k)) ?

We recall the method given in [28, Sec. III], which defines ψ(x i (k)) = α i • xi (k|k-1) (multiplication in the classical context). It corresponds to the strategy for systems with periodic behaviour a .

a. The set of parameters {α 1 , • • • , α n-1 } is computed only once (offline phase) using Monte Carlo techniques. This set is robust under periodic steadystate regime, but if exogenous inputs modify the system behavior, the parameters should be tuned online, by evaluating the quality of the approximation through classical statistical parameters (as for instance the mean and the standard deviation of the difference between both means). Furthemore, thanks to the triangular structure of the matrix A 0 (k), it is possible to perform an uncoupled search for each α i .

Let us assume that ψ(x i (k)) = xi (k|k) and in order to properly obtain x(k|k), one must call n-times the procedure Inv (Algorithm 3.4). Clearly, this does not refer to a classical two-fold filter scheme because we update separately the prediction for each i-th component of the state vector.

Summing-up, the filtering algorithm of implicit forms, is given by Algorithm 3.6. The Algorithm 3.6 uses n-times the Algorithm 3.3. This Algorithm 3.3 returns an estimate x(k|k) for all components of the state vector x(k), which is the solution of the constrained minimization problem (see Equations (3.10a) and (3.10b)). The input x(k|k -1) of the Algorithm 3.3 is updated at each step i, with xi (k|k -1) which is the corresponding entry of the prediction vector. At this step i, we must note that entries j ∈ {i + 1, . . . , n} of x(k|k -1) are still equal to ε, hence these entries j of the estimate x(k|k) given by Algorithm 3.3 are equal to x j since x 0 j ≤ x j (see line 7). For instance, let us assume that x(0|0) is initialized with the initial state x(0) = (2 5 1).

Also, it should be mentioned that every calculation of xi (k|k -1) = E[x i (k)|(x(k -1|k -1) t u(k) t ) t ] takes into account a pseudo-random value u(k) drawn from the standard uniform distribution on the closed interval vector between (2, 2) t and (40, 40) t .

For simulation purposes, let us compare two different filter strategies for this MPL system in implicit form:

-Filter F 1 uses the original filtering method given by Algorithm 3.6. In order to take the input action into account, the line 1 is replaced by y = A 1 (k)x(k -1|k -1) ⊕ Bu(k). -Filter F 2 considers Algorithm 3.4 with line 1 given by:

xi (k|k -1) = E[x i (k)|(x t (k -1|k -1) u t (k)) t ],
with the right-hand side calculated by

E   i-1 j=1 a ij 0 (k) (α j • xj (k|k -1)) ⊕ n j=1 a ij 1 (k)x j (k -1|k -1) ⊕ p j=1 b ij u j (k)   ,
for all i ∈ {1, . . . , n} and with • corresponding to the scalar multiplication in regular algebra. It corresponds to the strategy given in [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]Sec. III] for systems with periodic behavior, as previously presented. Let us assume that α j = 1 for all i ∈ {1, . . . , n}. The analysis of Table 3.4 indicates that the RM SE between the estimation provided by the F 2 method and the true value of the state is higher than the F 1 method with special attention to i = 3 (unobserved state). Indeed, as x 3 (k) is not observed and is the noisiest state, then this noise propagates throughout the TEG thanks to A 1 (k) and it penalizes the estimate of x 1 (k) and x 2 (k). initially one token on each place. The corresponding TEG of these systems are generally live, and then some approximate solutions are discussed: first, based on an offline Monte Carlo simulation, which is robust only if the system works in its periodic behavior (the filter works fine); our contribution is a new online strategy that is efficient even if the system works in its transient behavior, without performing a single and imprecise offline Monte Carlo simulation, since an adaptive tuning occurs in the loop.

In general

As presented at the beginning of this chapter, the absence of a complete stochastic framework for MPL systems makes all known results very difficult to use (for example the well-known Kalman filter). Indeed, it seems necessary to reinterpret the basic notions of probability, ultimately changing the complete understanding of probabilistic measurement, giving rise to a tropical Kalman-type stochastic filtering theory [START_REF] Tran | Tropical gaussians: a brief survey[END_REF]. For instance, in [START_REF] Akian | Bellman processes[END_REF], the max-plus analog of the mathematical expectation is discussed. A promising idea is to use Possibility theory for dealing with certain types of uncertainty, being an alternative to probability theory [START_REF] Mazeika | A new approach for computing with fuzzy sets using interval analysis[END_REF][START_REF] Dubois | Possibility Theory[END_REF].

y i ∈ R max . Thus, χ ∁ = n i=1    x ∈ R p max | y i > p j=1 a ij ⊗ x j    . Taking into account p j=1 a ij ⊗ x j < y i ⇐⇒                    a i1 ⊗ x 1 < y i ⇐⇒ x 1 < a i1 •
\y i and a i2 ⊗ x 2 < y i ⇐⇒ x 2 < a i2 • \y i and . . . Remark B.1. set i j 1 ∩ set i j 2 = ∅ holds for all i ∈ {1, . . . , n} and j 1 ̸ = j 2 where j 1 , j 2 ∈ {1, . . . , p}, i.e., set i j 1 and set i j 2 are pairwise disjoint sets. with G = {1, . . . , p} n , g i ∈ {1, . . . , p} and g = (g 1 , g 2 , . . . , g n ) ∈ G.

Lemma B.1 ([29]

). The sets SET g for all g ∈ G are pairwise disjoint from each other.

Proof. Consider g, g ′ ∈ G with g ̸ = g ′ . Then, ∃ k ∈ {1, . . . n} such that g k = g ′ k . SET g and SET g ′ are disjoint if and only if SET g ∩ SET g ′ . Then

SET g ∩ SET g ′ = n i=1 set i g i ∩ n i=1 set i g ′ i = n i=1 set i g i ∩ n i=1 set i g ′ i =   i∈{1,...,n}\k (set i g i ∩ set i g ′ i )   ∩ (set i g k ∩ set i g ′ k )
=∅ (see Remark B.1)

= ∅ Remark B.2. In the worst-case scenario the set χ in Equation (B.6) can be represented by the union of p n pairwise disjoint sets SET g . However, some SET g may be empty. Hence, in general, the set χ can be represented by N ≤ p n pairwise disjoint sets.
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  max admits a finite least solution if and only A is doubly Gastic with only one element different of ε per row and column.
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 1911 with x ∈ R n max and λ ∈ R max . This yields the Max-Plus eigenproblem as stated in the sequel. Let x(k) = Ax(k -1) = A ⊗k x(0), where x ∈ R n max , A ∈ R n×n max and k ∈ N, be an autonomous MPL system, i.e., Bu(k) = ε. We consider the problem of existence of eigenvalues λ ∈ R max and eigenvectors ξ ∈ R n max such that:

Figure 2 . 1 -

 21 Figure 2.1 -TEG model of the uMPL system representing a railway network

. 4 ) 2 . 3 .

 423 Example Consider the intervals [x] = [e, 4],[y] =[START_REF] Mao | Optimal control of multilayer discrete event systems with real-time constraint guarantees[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF] and [z] =[START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF][START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF]. Then,[x] ∩ [y] = [max(e, 2), min(4, 5)] = [2, 4], [x] ∩ [z] = [max(e, 5), min(4, 7)] = [5, 4] = ∅, [y] ∩ [z] = [max[START_REF] Mao | Optimal control of multilayer discrete event systems with real-time constraint guarantees[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF], min(5, 7)] =[START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages, and Computation[END_REF].Since [x] ∩ [y] and [y] ∩ [z]are not empty we have that:[x] ⊔ [y] = [min(e, 2), max(4, 5)] = [e, 5] = [x] ∪ [y], [y] ⊔ [z] = [min(2, 5), max(5, 7)] = [2, 7] = [x] ∪ [y].Note that the intersection of [x] and [z] is empty, and therefore [x] ⊔ [z] is the smallest interval that encloses the disjoint union between these intervals, formally[x] ⊔ [z] = [min(e, 5), max(4, 7)] = [e, 7] ⊃ [x] ∪ [y] = {w | w ∈ [e, 4] or w ∈ [5, 7]}.

  ) be a set, where A ∈ [A] = [A, A] ∈ IR m×n max and x ∈ R n max . In other words, ∀A ∈ [A] we have that f (x) = Ax ∈ F (x) = [A]x. Remark 2.8. In Lemma C.1 of Appendix C, it is demonstrated that given x, y and [A] = [A, A] such that Ax ≤ y ≤ Ax, then ∃A ∈ [A] such that Ax = y. Example 2.5. Given x = (e, e) t and y ∈ [1, 4] [2, 3] x then y ∈

x 1 x 2 Figure 2 . 2 -

 222 Figure 2.2 -[x](1) as the set of all x(1) ∈ [A]x(0) (in gray), x(1) as the middle point of [x](1) (black dot) and set L ∩ U (union of red, green and blue boxes) of Example 2.6

  q×n max and x, u, z are vectors of appropriate dimension (refer to Equation (1.10)).

x 2 Figure 2 . 3 - 8 2. 3 . 3

 223833 Figure 2.3 -PWA system that encodes the uMPL system of Example 2.8

Figure 2 .

 2 Figure 2.4 below depicts these regions.

Figure 2 .

 2 Figure 2.5 shows these computations.

Figure 2 . 6 -

 26 Figure2.6 -Graphical scheme of the two-fold computation of X k|k : from X k-1|k-1 we compute X k|k-1 ; it exists a x(k) ∈ X k|k-1 that generates Z(k) which in turn generates Xk|k ; finally, X k|k = X k|k-1 ∩ Xk|k

  for autonomous systems. The same is considered for non-autonomous systems by considering that A 1 x(k -1)⊕ Bu(k) ≤ x(k) ≤ A 1 x(k-1)⊕ Bu(k). This computation (matrix-vector multiplication) has bilinear complexity O(n(n+p)) for non-autonomous systems and quadratic complexity O(n 2 ) for autonomous systems. The Figure 2.6 depicts an example of the steps necessary to compute X k|k .

Figure 2 .

 2 Figure 2.7 represents X 0|0 and X 1|0 .

Figure 2 . 2 Figure 2 . 8 -

 2228 Figure 2.8 depicts R D X 1|g=(1) , R D X 1|g=(2) and X1|1 .

2 Figure 2 . 9 -

 229 Figure 2.9 -Computation of X 1|1 of Example 2.15

2 (

 2 b) Computation using inverse mapping

Figure 2 . 10 -

 210 Figure 2.10 -Both representations of X1|1 of Example 2.16

2 Figure 2 . 11 - 16 Definition 2 . 7 (Remark 2 . 24 .

 22111627224 Figure 2.11 -Computation of X 1|1 of Example 2.16

Figure 2 . 2 max

 22 12a depicts an example of a convex set in R and it can be seen that it contains all Max-Plus line segments between two points in itself (there are 6 kinds of Max-Plus line segments in R 2 max as represented by the red lines in this figure) but it does not contain the conventional line (in blue).

Figure 2 . 12 -

 212 Figure 2.12 -An example of a Max-Plus convex set in R 2 max

Definition 2 . 11 .Definition 2 . 12 .

 211212 where a j , b, c j , d ∈ R max . Definition 2.10. A Max-Plus polyhedron of R n max is (externally) defined as the intersection of finitely many Max-Plus half spaces, i.e., as the set of points x ∈ R n max satisfying s ≥ 1 inequalities as given in Definition 2.9. This can be summarized asP = {x | Ax ⊕ b ≥ Cx ⊕ d}, where A, C ∈ Rs×n max and b, d ∈ R s max . The convex set depicted in Figure 2.12a can be defined as the intersection of 4 Max-Plus half spaces, as precisely depicted in Figure 2.12b. The homogenization of a Max-Plus polyhedron P = {x | Ax⊕b ≥ Cx⊕ d} ⊆ R n max is defined as P ⊆ R n+1 max , which is (externally) expressed as P = {z | Ez ≥ F z} where E = (A b), F = (C d). When x ∈ R n max and α ∈ R max , the term (x t , α) t refers to the vector z ∈ R n+1 max whose first n coordinates coincide with x and the latter is α (refers to the affine component in P). Furthermore, thanks to Equation (1.2), the following equivalent definition holds: P = {z | (E ⊕ F )z = Ez}. By considering the Max-Plus Minkowski-Weyl Theorem [70, Th 1], in the sequel we recall the internal representation of Max-Plus polyhedra. First, we consider the following sets. Given a subset W = {w 1 , . . . , w m } ⊂ R n max , the Max-Plus cone generated by W is defined as cone

( 2 . 35 ) 6 ,

 2356 we obtain 8 :-for v 1 = (8, 5, e) t :min idx (-8 + 8, -7 + 5, 0 + 0) ∪ min idx (-7 + 8, -5 + 5, 0 + 0) ∪ min idx (-5 + 8, -8 + 5, 0 + 0) ∪ min idx (-4 + 8, -5 + 5, 0 + 0) = {2, 3} ̸ = {1, 2, 3}-for v 2 = (6, 7, e) t : -8 + 7, 0 + 0) ∪ min idx (-4 + 6, -5 + 7, 0 + 0) = {1, 2, 3} = {1, 2, 3}

5   . Definition 2 . 14 .

 5214 A vector v ∈ R n max is said to be an extreme generator of a Max-Plus cone C ⊆ R n max if v ∈ C and if the following property is satisfied v = y ⊕ z, y, z ∈ C =⇒ v = y or v = z,8. The operator min idx returns the index into the operating dimension that corresponds to the minimum value.

Remark 2 . 29 .

 229 i.e., v cannot be written as the ⊕-sum of two vectors of C that are both different from it. If v is an extreme generator of C, then the points in {λv | λ ∈ R max } form an extremal ray of C, i.e., are also extreme generators of C. It follows that a Max-Plus cone C = cone(G) ⊆ R n max is finitely generated and its generating set G = {g 1 , . . . , g k } ⊆ R n max satisfies its external representation of Definition 2.

Algorithm 2 . 1 : 2 J 4 g j ← ε 5 else 6 J ← J ∪ {j} 7 end 8 G

 21245678 Removing redundant generators of Max-Plus cones Data: a finite set G = {g 1 , . . . , g k } ⊆ R n max , assuming its elements are not proportional to each other; Result: a set G cf = {g 1 , . . . , g |J | }, with |J | ≤ k. /* Goal: Eliminate the elements of G which are a linear combination of the other ones */ 1 foreach i ∈ {1, . . . , k} do ← ∅, v ← g j and H ← {g i } i∈{1,...,k}\j 3 if v ∈ cone(H) (i.e., v is redundant cf. Equation (2.35)) then cf = {g j } j∈J 9 end 10 return G cf = {g 1 , . . . , g |J | } Clearly, the operator cf(C) is idempotent, i.e., cf(cf(C)) = cf(C) for an arbitrary Max-Plus cone C.

  which is different of C and is not taken into account by this algorithm. According to Corollary 2.1,C ′ is a Max-Plus polyhedron, i.e., co(G) ⊕ cone(∅) = co(G) ⊆ R n max ,and its homogenous cone is given byC ′ = cone( G) ⊆ R n+1 max , where G = G × {e},which is a c-Polyhedron according to Remark 2.26. Summarizing, computing cf(C ′ ) is done by considering cf( C ′ ) with complexity O((n + 1)k 2 ), resulting in set G cf and thus in set

Remark 2 . 32 (

 232 Intersection of Max-Plus cones). Let P = {z | Az ≥ Bz} and P ′ = {z | Cz ≥ Dz} be two Max-Plus cones of R n+1 max where A, B, C, D ∈ R s×(n+1) max

Proposition 2 . 2 (

 22 Intersection of c-Polyhedra). Let G = co(G) and H = co(H) be two c-Polyhedra of R n max where G = {g 1 , . . . , g n G } and H = {h 1 , . . . , h n H } are finite subsets of R n max . Then I = G ∩ H is represented by the Max-Plus cone I = cone(I) where the elements of its generating set I are the columns of the matrix Gmat(Γ) where

  n max , precisely G = {g 1 , . . . , g k } and H = {h 1 , . . . , h w } then the join operation (or abstract union) ⊔ between G = cone(G) ⊆ R n max and H = cone(H) ⊆ R n max , is given by

Figure 2 .

 2 Figure 2.13 -Over-approximation of the union of two regions using DBM and Max-Plus polyhedra

n+p

  max and a linear map f : R n+p max → R n max as given by Equation (2.39); Result:

  initial c-Polyhedron, such that x(0) ∈ P 0|0 . It is straightforward to see that this polyhedral set is a polytrope, more specifically a Max-Plus hypercube [x](0) = ([e, 1],[START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF][START_REF] Altman | Discrete-event control of stochastic networks : multimodularity and regularity / eitan altman, bruno gaujal, arie hordijk[END_REF]) t ,

Lemma 2 . 4 .

 24 Pk|k of Proposition 2.4 is a c-Polyhedron.

Example 2 . 21 . 2 max

 2212 Consider z(1) = (5, 4) t and [C] = , P1|1 is internally represented (refer to Proposition 2.4) by co(S) ⊂ R

Example 2 . 22 ..

 222 Recall the generating set of the c-Polyhedron P 1|0 of Example 2.20, represented by the generating set Now consider the observer of Example 2.21 but with z(1) = C(1)x(1) = (9, 8) t where and x(1) = (6, 6) t ∈ P 1|0 . Thus, P1|1 is externally represented by

2 Figure 2 . 18 -

 2218 Figure 2.18 -P 1|1 of Example 2.23.

  Xk|k Let z(k) = C(k)x(k) be the observation equation with C(k) ∈ [C] ∈ IR q×n max . Given z(k) a measurement point, then its exact inverse image with respect to [C] is given by Equation (2.27) as Xk|k = {x(k) | Cx(k) ≤ z(k) ≤ Cx(k)}.

FinallyExample 2 . 24 .

 224 , if [S] ̸ = ∅ then [χ] = [max (x(k|k -1), S) , S = Ω].(2.55)It is easy to interpret that if ĉij > c ij then c ij can be neglected in the analysis of the TEG's behavior. Let [x](1|0) = ([0, 4], [-2, 1]) t , z(1) = (5, 4) t and [C] =

Figure 2 . 2 Figure 2 .

 222 Figure 2.19 depicts χ and [χ].

Figure 3 . 1 -

 31 Figure 3.1 -A sequence of hidden states {x(k)} 0≤k≤+∞ is indirectly observed by a noisy sequence of measurements {z(k)} 1≤k≤+∞ of a Bayesian Network

Figure 3 . 2 -

 32 Figure 3.2 -An arbitrary posterior PDF and its estimation, which is, in this case, the maximum a-posteriori x(k|k) = arg max x(k) p(x(k)|{z(1), . . . , z(k)})

1 .

 1 Prediction step (a-priori): p (x(k -1)|Z(k -1)) p (x(k)|Z(k -1)) -by using system dynamics; inflates the support of p (x(k -1)|Z(k -1)) due to random noise; 2. Correction (or update) step (a-posteriori) p (x(k)|Z(k -1)) p (x(k)|Z(k)) -corrects the prediction by using the new measurement z(k); tightens the support of p (x(k)|Z(k -1)).

Figure 3 . 3 -

 33 Figure 3.3 -The nonlinear system propagates the state x(k) through time and produces output measurements z(k) at each instant k. In view of this principle, the Bayesian filter tracks the PDF of x(k) given the measurement set Z(k).

Figure 3 . 3 ,

 33 Figure 3.3, adapted from[START_REF] Fang | Nonlinear bayesian estimation: from kalman filtering to a broader horizon[END_REF], summarizes these two steps as the so-called Bayesian principle.

Example 3 . 1 .

 31 Consider the TEG depicted in Figure3.4 and its model with x 1 , x 2 , x 3 , a, b, c ∈ R ∪ {-∞} and k ∈ N.

Figure 3 . 4 -

 34 Figure 3.4 -A simple TEG with correlations in its canonical form representation

Figure 3 . 5 -

 35 Figure3.5 -Concatenation of the set-estimation with Bayesian principles, hereafter referred to as Bayesian set-membership filtering: from the support of p(x(k -1)|Z(k -1)), denoted X k-1|k-1 , we compute the support of the prior distribution p(x(k)|Z(k -1)), denoted X k|k-1 ; the correction phase is computed by correcting X k|k-1 thanks to the support of the measurement likelihood p(z(k)|x(k)), denoted Xk|k , in other words, the support of the posterior distribution p(x(k)|Z(k)) is X k|k = X k|k-1 ∩ Xk|k

Figure 3 . 6 - 55 9

 3655 Figure 3.6 -Computing the conditional expectation of Example 3.2 using the analytical approach -E[x a (k)|(x 1 (k -1), x 2 (k -1)) t ] = 8 -A = 8 -17 9 = 55 9

Figure 3 . 7 -

 37 Figure 3.7 -The max operation does not preserve the distribution of its inputs, and usuallyE[max(X 1 , X 2 )] ̸ = max(E[X 1 ], E[X 2 ])

Algorithm 3 . 2 : 2 x

 322 Interval contractor Data: [x], z Result: I = Ω χ ([x]) 1 while x ′ ̸ = x and x ′ ̸ = x do ′ ← x; x ′ ← x ; 3 foreach i ∈ {1, . . . , q} do 4 foreach j ∈ {1, . . . , n} do /* Lower dichotomy */ 5

Figure 3 . 8 -

 38 Figure 3.8 -Execution steps of Algorithm 3.4: first, a prediction value is computed using the conditional expectation calculation; the prediction value is corrected in a second step by using interval contraction of an initial interval that contains at least a x such that z(k) = E[z(k)|x]

x 1 x 2 Figure 3 . 9 -

 239 Figure 3.9 -Calculation of X k|k for k = 1, 2 (blue regions) of Example 3.3. The red dots represent the true state-vector x(k) and the black dots represent the estimate x(k|k) using Algorithm 3.4

2 k=1(x 1 1 (Example 3 . 5 (.

 21135 (k|k) -x 1 (k|k)) 2 + (x 2 (k|k) -x 2 (k|k)) 2 ≈ 1.6328 between the estimation x(k|k) provided byAlgorithm 3.4 and the true value of the statex(k) and the distance k|k) -x 1 (k|k)) 2 + (x ′ 2 (k|k) -x 2 (k|k)) 2 ≈ 0.9854between the estimation provided by Algorithm 3.5 and the true state. This analysis shows that Algorithm 3.5 has slightly better results for this example.Let us consider some other examples in the following. Third-Order System). Consider the third-order nondeterministic MPL system with mutually independent and uniformly distributed processing times, given byx(k) = A(k)x(k -1), z(k) = C(k)x(k) with A(k) ∈ [A] = and C(k) ∈ [C] = [1, 3] [e, 5] , with A(k) ∈ [A] and C(k) ∈ [C]where For instance, let us assume that x(0|0) is initialized with the initial state x(0) = e.The analysis of the root-mean-square-error11 (RMSE) between the estimation provided 11. Notation: RM SE(a, b) = 1 N N j=1 (a(j) -b(j)) 2 .

13 .

 13 It is always possible to consider a conservative result by taking into account the explicit form ofx(k) = A 0 (k)x(k) ⊕ A 1 (k)x(k -1), which is given by either:x(k) = H(k)r(k), where H(k) ∈ ([A 0 ] [A 1 ]) and r(k) = (x(k) x t (k -1)) t ; or x(k) = H(k)x(k -1), where H(k) ∈ [A ⋆ 0 ][A 1 ].

j=1 a ij 0

 0 (k)x j (k)   ⊕ y i (x(k -1)),(3.23)z(k) = C(k)x(k),with y i (x(k -1)) the i-th entry of y(x(k -1)) = A 1 (k)x(k -1) (assuming the components of x(k -1) are obtained from the previous iteration). It is worth to mention that the(n × n)-dimensional matrices A 0 (k) ∈ [A 0 ] and A 1 (k) ∈ [A 1 ], and the (q× n)-dimensional matrix C(k) ∈ [C] have entries (for instance, a ij 0 (k) ∈ [a ij 0 , a ij 0 ]) that are independent random variables and uniformly distributed according to the CDF:F (A 0 (k) ∈ [A 0 ]), F (A 1 (k) ∈ [A 1 ]) and F (C(k) ∈ [C]).By considering Equation(3.14), the prediction equation for all i ∈ {1, . . . , n} is given as follows:xi (k|k -1) = E -1) = E [y 1 (x(k -1))]

Algorithm 3 . 6 : 5 x

 365 Filtering algorithm of implicit formsData: x(k -1|k -1) and z(k) Result: x(k|k) = Filter(z(k), x(k -1|k -1))1 y = A 1 (k)x(k -1|k -1); 2 x(k|k -1) ← (ε, . . . , ε) t ; // initialize 3 foreach i ∈ {1, . . . , n} do 4 xi (k|k -1) = E[( i-1 j=1 a ij 0 (k)x j (k|k)) ⊕ y i ]; //Equation (3.24) (k|k) ← Inv(z(k), x(k|k -1)) ; // Algorithm 3.3 6 end 7 return x(k|k);

Example 3 . 7 .

 37 Consider the third-order nondeterministic MPL system with mutually independent and uniformly distributed processing times, governed by the equation belowx(k) = A 0 (k)x(k) ⊕ A 1 (k)x(k -1) ⊕ Bu(k), with A 0 (k) ∈ is defined by z(k) = C(k)x(k), with C(k) ∈ ([1, 3] [2, 4] ε).

apppp

  in ⊗ x n < y i ⇐⇒ x n < a in • \y i , max | x j < σ ij }   , where σ ij = a ij • \y i . Using Equation (B.2), χ is re-obtained as χ = (χ ∁ ) ∁ , formally max | x j ≥ σ ij }  However, it seems possible to reinterpret χ. First, we recall Equation (B.3), thenmax | x k < σ ij }   ∩ {x ∈ R p max | x j < σ ij } ∁ max | x k < σ ij }   ∩ {x ∈ R p max | x j ≥ σ ij }.
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  for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. ij ⊗ b jk , for all i ∈ {1, . . . , n} and k ∈ {1, . . . , m}.

	The product of matrices A ∈ R n×l max and B ∈ R l×m max is defined similarly to the usual algebra, by replacing + by ⊕ and × by ⊗. Formally j=1 (A ⊗ B) ik = l a Example 1.8.   e ε 3 2

Id D where Id D and Id C are the identity mappings on D and C, respectively. Example 1.10. Mappings L

  

	Definition 1.8 (Residual and residuated mapping). Let D and C be two complete dioids
	and f : D → C be an isotone mapping, i.e., order preserving. Then, f is residuable if, for
	all y ∈ C, there exists the greatest x to f (x) ⪯ y, hereafter denoted f ♯ (y). The monotone
	mapping f ♯ : C → D, y → {x ∈ D | f (x) ⪯ y} is called residual of f . Moreover, f ♯ is
	the unique mapping that verifies the following statements f • f are both residuated. Their residuals are isotone mappings, denoted L ♯ a : D → D, y → a • \y
	("left residuation by a") and R ♯ a : D → D, y → y • /a ("right residuation by a"), respectively.
	Hence, the greatest solutions of ax ⪯ b and xa ⪯ b are a • \b and b • /a, respectively.

♯ ⪯ Id C et f ♯ • f ⪰ a : D → D, x → ax and R a : D → D, x → xa for any a ∈ D

  Hence, the greatest solutions of AX ⪯ B and XC ⪯ B, where B ∈ D n×m , are A •

		\B and
	B • /C, respectively. Computationally,
		n
	(A • \B) ij =	a ki • \b kj , for all i ∈ {1, . . . , p} and j ∈ {1, . . . , m}
		k=1
	and	m
	(B • /C) ij =	b ik • /c
		k=1

jk , for all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}

R max : the Max-Plus Linear (MPL) systems 1.3.1 Motivating example Example 1.14

  

	Angers	Paris
		([1]). Imagine a railway network consisting of two stations (Angers := x 1
	and P aris := x 2 ) and three lines: one inner loop with two rail tracks each (one for x 1 → x 2
	and other for x 2 → x 1 ); two outer loops with one rail track each. The basic structure of this
	railway network is depicted in Figure 1.9a. It is assumed that the train company operates
	one train on each track initially; the travel times are fixed as indicated on the arcs; trains
	scheduled to depart must wait for all arriving trains before departing because passengers
	are able to change line at the stations (to change from the inner to an outer loop or vice
	versa); and departures occur as soon as possible (refer to Remark 1.4). As mentioned

  Id n is a matrix of dimension n×n with +0 on the main diagonal and +∞ elsewhere, is the DBM representation of [x].

Remark 2.15 (Partial order on DBM). Let D and E be two DBM of same dimension n × n. The partial order on D and E is defined as: D ⪯ E ⇐⇒ d ij ≤ e ij where d ij ∈ D and e ij ∈ E for all i, j ∈ {1, . . . , n}. Then, D ⪯ E implies that R(D) ⊆ R(E).

Remark 2.16 (Set-theoretic operations of DBM). Let D and E be two DBM of same dimension n × n such that their region representations R(D) and R(E) are non-empty. Thus, min(D, E), computed element-wise, is such that

  It is known that a n-dimensional polytrope is the Max-Plus convex hull of at most n + 1 points or equivalently as the intersection of n + 1 Max-Plus half spaces in R

	which is equivalent to the Max-Plus polyhedron computed in Example 2.17. Moreover, in
	this case G ∪ H = G ⊔ H.
	Remark 2.37.

n max (refer to

[START_REF] Gaubert | The minkowski theorem for max-plus convex sets[END_REF] Th 3.2] 

for further details and proofs).

Proposition 2.3. The polytrope expressed by P

[h] = co(H) ⊆ R n max , with

  hence, in S definition, matrix C can be replaced by matrix Ĉ.

	Remark 2.40. In view of the previous Proposition 2.6, the observation part of the cor-
	responding TEG is potentially simplified when evaluating its upper holding time bounds,
	i.e., some places can be neglected, without loss of information.
	Using Procedure 2.2 for S = {x(k) | Ĉx(k) ≤ z(k) ≤ Ĉx(k)} and
	assuming that Ĉ has only one element different of ε for a subset of
	rows of {1, . . . , q}, then it is straightforward to compute [S] such
	that S ⊆ [S]. It is worth to mention that if Ĉ is not row G-astic
	then [S] = ∅ and then S = ∅.

  .-RA O(G 2 n 3 ) int. form

			O(1) ext. form O(n n+α ) int. form	O(n n+α ) int. form
	Int.-RA	O(n 2 ) approx.	O(n 2 ) approx. or exact	O(n 2 ) approx.
		Table 2.1 -Comparison of the complexity	

  Briefly, the focus is on decreasing the computational burden of the calculation of z = E[max(x 1 , . . . , x n )] where x 1 , . . . , x n are random variables. Then

	∥(x 1 ,...,xn) t ∥∞	∥(x 1 ,...,xn) t ∥p
	max(|x 1 |, . . . , |x n |) ≤	(x p 1 + . . . x p n ) 1/p ,
	with equality if p → ∞.	

lower(z) ≤ z ≤ upper(z),

where the lower and upper bounds

[START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF] Sec. 3] 

are given below, for the special case where x 1 , . . . , x n have bounded domains dom(x 1 ), . . . , dom(x n ):

Example 3 . 2 .

 32 Consider a state x a (k) in a TEG that is the result of synchronization and delay of two other states, i.e., x a

  ).The first property states that the contraction of [x] always yields a contracted [x]. The second property, combined with the definition [x] ∩ χ = χ, asserts that the box C χ ([x]) does not remove a single point of χ. Moreover, a contractor is said to be

12 end 13 end 14 end 15 end 16

  new x j is computed

	8	end
		/* Upper dichotomy	*/

9

x ← x; x j ← x j ;

10 if E[z i |x] > z i then 11 x ← ∆ U ij ([x, x]); // a new x j is computed return [x, x];

Table 3 .

 3 

			956	6.097
			2.441	6.924
	z(k)	-	6.537	11.158

1 -Simulated state and measurement sequences of Example 3.3 membership method and Algorithm 3.4 the following results depicted in Figure

Table 3 .

 3 F 1 : Alg. 3.4 F 2 : Alg. 3.5 i RM SE({x(k)}, {x F 1 (k|k)}) i RM SE({x(k)}, {x F 2 (k|k)}) i 2 -Comparison between the Algorithms 3.4 and 3.5 of Example 3.5 Example 3.6 (Ninth-Order Flow Shop System). Consider the Flow Shop system modified from

	1	1.9195	1.7046
	2	2.0124	1.9171
	3	1.8908	1.8745

Table 3 .

 3 .[START_REF] Altman | Discrete-event control of stochastic networks : multimodularity and regularity / eitan altman, bruno gaujal, arie hordijk[END_REF] shows the obtained results for the noisy states x 3 , x 6 and x 8 only.State F 1 : Alg. 3.4 F 2 : Alg. 3.5 i RM SE({x(k)}, {x F 1 (k|k)}) i RM SE({x(k)}, {x F 2 (k|k)}) i 3 -Comparison between the Algorithms 3.4 and 3.5 of Example 3.6

	3	1.7230	0.0065
	6	1.6432	0.0065
	8	1.5082	0.0065

Table 3 .

 3 [START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF] shows the obtained results for simulations up to the occurrence of 4000 events.Each position of the table corresponds to root-mean-square-error RM SE(x i (k), xi (k|k))with the usage of the corresponding filter. {x F 1 (k|k)}) i RM SE({x(k)}, {x F 2 (k|k)}) i

	State	F 1	F 2
	i RM SE({x(k)}, 1 2.8883	4.5451
	2	1.1299	1.7783
	3	1.7233	16.7846

Table 3 .

 3 4 -Comparison between F 1 and F 2 of Example 3.7

The noise in MPL systems is Max-Plus multiplicative and appears as uncertainties in the Max-Plus model parameters. As a result, the system matrices are uncertain.

In[START_REF] Adzkiya | Computational techniques for reachability analysis of max-plus-linear systems[END_REF], it is shown that each row of A has 0 ≤ p ′ i ≤ p finite elements, and then the number of regions is at most N such that N ≤ Π n i=1 p ′ i ≤ p n , i.e., the sparsity of A increases the performance of the procedure in the worst-case scenario.

The union of two intervals is an interval if and only if they are non-disjoint.

The interval hull of a set X ⊆ R is the smallest interval [X] such that X ⊆ [X].

DBM allow expressing strict and non-strict difference constraints, for instance x i -x j < c and x i -x j ≤ c, respectively. However, in general, we are interested on non-strict constraints.

A polytope is the convex hull of a nonempty finite set. A polytrope is the Max-Plus analogue of a polytope.

max . Note that all Max-Plus half spaces in S 1 intersect 10. It is worth to recall that every conventional half space is a Max-Plus half space, but the converse does not hold.

The intersection of two c-Polyhedra is a c-Polyhedron.

The term optimal in this context refers to statistical optimality. Additionally, Bayesian filtering refers to the Bayesian way of formulating optimal filtering.

The Markov property states that the likelihood of a current state depends on the immediately previous state only.

The joint distribution of x(k) and x(k -1) given Z(k -1) can be computed by using the Markov property as follows:p(x(k), x(k -1)|Z(k -1)) = p(x(k)|x(k -1), Z(k -1))p(x(k -1)|Z(k -1)) = p(x(k)|x(k -1))p(x(k -1)|Z(k -1)).

If a homogenous point p = (p, e) t does not belong to the homogenous form of a c-Polyhedron represented by P = co( G), where G is its minimal generating set, then its projection, given by p proj = mat(G) ⊗ (mat(G) • \ p), necessarily belongs to P (see[START_REF] Gaubert | The minkowski theorem for max-plus convex sets[END_REF] for more details).

LIST OF TABLES

On X k|k

The set X k|k is computed as the intersection of X k|k-1 and Xk|k . Consider the alternative problem: intersection of [x](k|k -1) of Equation (2.50) and

such that /Ω.

Proof. From Lemma A.1 of Appendix A, the following holds: (z(k

Remark 2.39. Based on Lemma 2.5, the set

Proposition 2.6. Set S can be expressed equivalently as:

(2. [START_REF] Resing | Asymptotic behavior of random discrete event systems[END_REF] for all i ∈ {1, . . . , q} and all j ∈ {1, . . . , n}.

Proof. For the sake of brevity, in the proof we use the notation: x ≡ x(k) and z ≡ z(k).

variable, i.e., uncoupled to a(k), b(k) and c(k).

Consider the canonical form of nondeterministic autonomous MPL systems, given by

with vectors x and z of dimension n and q, respectively; entries of A(k) and B(k) are mutually independent bounded random variables distributed according to known piecewise polynomial cumulative distribution functions (CDF) 4 , denoted by F (a ij ) and F (c ij ) or more simply by F (A) and F (C). Therefore, this canonical form is said to be Markovian (for non-autonomous systems, this statement is also valid).

However, as already pointed out, for MPL systems, the Bayesian formulation does not rely on the Kalman filter (or its extensions) due to the strong nonlinearity of the operator ⊕ = max in classical algebra (lack of linearization). Then, even though we cannot directly apply the Bayesian filtering to obtain an estimate of the state x(k) we can still calculate the support of the posterior PDF p(x(k)|Z(k)) using the results of Chapter 2 as shown in Figure 3.5.

In the probabilistic point of view, the disadvantage of Bayesian set-membership filtering is obvious: no estimate is computed but a region in which the state x(k) and its estimate x(k|k) lie.

In order to overcome these unfeasible computations, an alternative filtering problem was proposed in [28, Sec. IV] and can be stated as follows: after event k, given a sequence of measurements Z(k) = {z(1), . . . , z(k)}, determine an estimate for x(k), denoted by x(k), supposing that an estimate x(0) is known at k = 0. For the unknown state trajectory

(3.7)

4. The CDF F x of a random variable x is a monotonic increasing mapping F x : R → [0, 1], t → F x (t) satisfying lim t→-∞ F x (t) = 0 and lim t→+∞ F x (t) = 1. It is also equivalent to the area under the PDF p x (t) from -∞ to t, i.e., F x (t) = t -∞ p x (τ )dτ . Additionally, it is possible to obtain p x (t) as p x (t) = dF X (t) dt , provided that this derivative exists.

Consider the Max-Plus mapping

with vectors x and z of dimension n and q, respectively; entries of A ∈ IR q×n max are mutually independent random variables distributed according to known piecewise polynomial CDF F a ij . Supposing that x is a deterministic vector and z is a random vector then the conditional expectation of z given x is denoted E[z|x] and is exprressed as

where z = A ⊗ x and z = A ⊗ x. Moreover, E[z i |x] is clearly a continuous and isotonic function of [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]Lem.1]).

Conditional expectation of z = A ⊗ x given x Remark 3.2. A large class of random variables can properly be approximated by piecewise polynomial CDF, including those that have no upper bound (infinite support).

For MPL systems, the requirement of a finite lower bound is generally not restrictive.

Remark 3.3 (Continuity and isotony). Any other technique to calculate E[z i |x], and therefore, E[z|x],

can alternatively be considered in the alternative filtering approach, given by Equations (3.9) and (3.10), as long as it keeps the properties of continuity and isotony with respect to x (it is the essence of the success of the next part). Particularly, we can mention the results proposed in [START_REF] Van Den Boom | Analytic expressions in stochastic maxplus-linear algebra[END_REF][START_REF] Farahani | On optimization of stochastic max-min-plus-scaling systems -An approximation approach[END_REF], which are possible alternative methods.

Algorithm 3.1: One-dimensional search

Data: [x], (i, j), z i , type L or U, tol (tolerance) defined above, i.e.,

It is worth to mention that, if the condition L is not satisfied, then ∆ L ij ([x]) is mathematically seen as the identity operator, i.e.,

Remark 3.5. The contractor Ω χ satisfies the contractance, completeness and monotonic 7 properties (see [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]Lem. 2] for proofs).

The Algorithm 3.2 summarizes the contractor Ω χ .

Remark 3.6. Ω χ ([x]) converges to a fixed point, i.e., to an interval I such that

Moreover, I contains χ (see [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]Lem. 3] for proofs).

Deprecation of I, the suboptimal solver Inv:

Algorithm 3.3: Suboptimal solver

11 end 12 end 13 return x or x ; // Notice that: x = x

Computational point of view of the alternative filtering

From the computational point of view, the Equations (3.9) and (3.10) can be summarized by Algorithm 3.4.

Algorithm 3.4: Alternative filter

Let us consider a simple graphical interpretation of Algorithm 3.4, as depicted in Figure 3.8.

It is worth to mention that this alternative filtering computes an estimate x(k|k) for x(k) ∈ X k|k (support of the posterior PDF) that not necessarily belongs to X k|k . matrix [A]. Similarly, the parameters γ 1 , . . . , γ q must be associated with the reliability of the components of E[z(k)|x 1 ]. The variability of these variables depends on the vector x 1 , and in principle, the parameter γ i must depend on x 1 . In order to avoid this dependence, although it is approximate, a possible rule of thumb for γ i for all i ∈ {1, . . . , q} is given by considering the average width of the elements of the i-th row of the corresponding interval matrix [C]. Hence, P dyn and P obs are calculated in an offline phase and remain the same throughout the filtering loop. Nevertheless, it is possible to define other suitable values for α i and γ i , possibly online, i.e., the weighting matrices could be calculated at each iteration k in order to obtain better results.

It should be noted that:

-if z 1 = z 0 , then the first part of the criterion, precisely P -1 dyn (x 1 -x(k|k -1)) is null in the classical context; -if z 1 = z(k) (this is the case of Equation (3.10)), then the second part of the criterion, precisely,

) is null, also in the classical context. The modified correction equation is also a constrained optimization problem, as shown below, and the main idea is to choose x(k|k) as the value of x 1 that minimizes Equation (3.20).

x(k|k) = arg min

Based on this, the search for z 1 will be constrained to the convex combination of z(k) and z 0 . Hence, J(x 1 , z(k)) is reinterpreted by J(β) where β ∈ [0, 1]. Any one-dimensional search method can be used to find a local minimum value of the objective function above. We summarize Equation (3.9) together with (3.21) given by the following filtering Algorithm 3.5.

The resulting one-dimensional search in the Algorithm 3.5 is represented by β opt = 1dMinimizer(f unc, 0, 1) and is can be solved using the fminbnd function, which is implemented in MATLAB. Furthermore, it is worth to mention that if the elements of the main diagonal of P -1 dyn and P -1 obs are 1/0 then fminbnd will not run as desired, and thus we replace 1/0 with a sufficient finite value, for instance 10 */

/* One-dimensional minimizer for J(β) with β between 0 and 1 */ 4 β opt ← 1dMinimizer(J(β), 0, 1);

The estimated states are represented in Figure 3.10.

-1 

CONCLUSION

Stochastic filtering of Max-Plus Linear (MPL) systems is still a work in progress, mainly due to the difficulty of using frameworks that reinterpret the basic notions of probability and stochasticity in a tropical semiring [START_REF] Del Moral | Maslov optimisation theory: stochastic interpretation, particle resolution[END_REF][START_REF] Del Moral | On applications of maslov optimization theory[END_REF][START_REF] Akian | Densities of idempotent measures and large deviations[END_REF][START_REF] Puhalskii | Large deviations and idempotent probability[END_REF].

On Chapter 2

Although the computation of the posterior probability function (PDF), the key of Bayesian formulation, cannot be computed in practice for MPL systems with stochastic processing times, we are able to compute its support with an improvement in the complexity of the forward reach set. We have shown in Chapter 2 that this computation is exact and cumbersome (worst-case scenarios) or approximate and fast, and is ultimately applied to systems without token-free place in the corresponding Timed Event Graph (TEG), otherwise we compute a conservative support. In this thesis, we did not study the use of this support to improve Particle filter algorithms, but it seems to be helpful in future works. This support is also useful to validate the alternative stochastic filtering scheme proposed in [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]. As future work, we aim to obtain a polynomial procedure to compute the backward reach set using the polyhedral approach (successful in the forward reach set computation), and then efficiently compute the posterior PDF support. It would also be interesting to take care of the exact calculation of this support for systems with token-free places, since we currently only have conservative solutions.

On Chapter 3

In Chapter 3, we have introduced an improvement to the alternative stochastic filtering algorithm proposed in [START_REF] Mendes | Stochastic filtering of max-plus linear systems with bounded disturbances[END_REF]. We have presented a significant contribution to the extent that we minimize a trade-off criterion that considers noise in state and measurement. Nevertheless, in future works, we aim to further analyze and discuss the results and to also propose other trade-off criteria, since this is premature work in progress. Also in Chapter 3, we have extended the filtering techniques to TEG with implicit part (token-free matrices), which are encountered in real applications rather than systems with

RESIDUATION

A.1 Formulae involving division

The following list provides some basic relations of left and right division, for the proofs and a more detailed list the reader is invited to consult [START_REF] Baccelli | Synchronization and Linearity : An Algebra for Discrete Event Systems[END_REF]Chap. 4].

For a complete dioid D with a, b, c ∈ D, we have: Proof. For all i ∈ {1, . . . , n} and j ∈ {1, . . . , p}:

A.2 Lemmas

and for all j ∈ {1, . . . , p}:

SET OPERATIONS

B.1 Manipulations over sets

We recall that the complement of the intersection and the complement of the union of q sets are obtained by applying DeMorgan's Laws as shown below:

An alternative way to represent Equation (B.1) is related, for instance, to the following example of classical manipulation of sets:

where ∪ stands for disjoint union. From this fact, the following always holds:

with 0 k=1 A k = U, where U stands for universal set. This equation represents the union of pairwise disjoint sets. To understand it better, for instance, suppose q = 2 then Equation (B.3) yields

and we aim at evaluating

. Thanks to the associative law over the intersection operation, we obtain

Another interesting property concerns, for instance, the set

which is equal to

thanks the distributive law over the intersection. Hence, consider the sets A i j and the following operation:

This equation is not in a compact way. However, by considering G = {1, . . . , n} q , g i ∈ {1, . . . , n} and g = (g 1 , g 2 , . . . , g q ) ∈ G, then:

B.2 Solution set to y ≤ Ax in the Max-Plus algebra

In the sequel, we recall the results of [START_REF] Ferreira Cândido | Reachability Analysis of Uncertain Max Plus Linear Systems[END_REF] and [START_REF] Candido | An algorithm to compute the inverse image of a point with respect to a nondeterministic max plus linear system[END_REF].

Let y ≤ Ax be an inequality, with

represents all x that satisfies the previous inequality.

Thanks to Equation (B.1) we calculate χ ∁ as follows 

where (y • /x) ij = y i -x j for all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}. From A ≤ Â then

Let y ′ = (  ∧ A)x where  ∧ A ∈ [A], thus for all i ∈ {1, . . . m}

Hence,

Finally, ( Â ∧ A)x = z and the proof is complete.

Lemma C.2. Let X, α and β be a real-valued random variable with bounded domain dom(X) and two constants of R, respectively. Given that the k-th moment of X is finite, i.e., E[

with p an integer.

Proof. Let us explore the expansion of (X + c) p using the well known Binomial theorem sis is based on Max-Plus polyhedra. This new approach allows, during the prediction step, to compute the support of the prior probability density function (PDF) with a strongly polynomial complexity. We also show that, under certain conditions related to the observability matrix, the correction step, which corresponds to take into account measurement information in order to shrink the support of the prior PDF, is computed with quadratic complexity. We are then looking for a solution to improve the performance of the filter. The objective is to evaluate the quality of the prediction with respect to the errors of the measurements induced by the noise. This leads us to introduce a criterion to minimize the estimation error. Finally, we devote the last part to the study of a filtering algorithm for MPL systems in implicit form. We show that this algorithm makes it possible to take into account the dependency problems between the inputs of the system matrices of MPL systems. These dependencies between state variables being intrinsic to MPL systems.