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ABSTRACT

High-order harmonic generation (HHG) from gas media is now a workhorse tool that is widely
used in attosecond science. It provides XUV pulses with unique sub-femtosecond and nanometric
resolutions in time and space, respectively. The XUV radiation is produced by the interaction
of short (usually below picosecond scale), infrared (IR), and intense laser pulses with atoms or
molecules in a gas target. The main goals of today’s research and engineering are to control and
to optimise the generation process, which comes along with challenges such as the XUV wavefront
shaping, the control of XUV angular momentum (e.g. the polarisation, the macroscopic angular
distribution of the phase, and their interplay), spectral selectivity, and XUV signal enhancement.

In this work, we develop a theoretical multi-scale model for the description of the whole
HHG process, one of the main outcomes is the spatio-spectral characterisation of the XUV beam.
We describe the effects emerging from the microscopic description of a single atom up to forming
a macroscopic XUV field given by the collective contribution of all the atomic emitters of the gener-
ating medium. The single-atom response in the XUV region is treated by non-relativistic quantum
physics, and the macroscopic propagation of the IR and XUV fields is described by respectively
non-linear and linear optics.

We use this model to address different physical problems. From the microscopic viewpoint,
we provide a novel unambiguous approach to describe the ionisation dynamics and, especially, the
time-dependent evolution of the electron density. This quantity is further used in the macroscopic
approach, where it contributes to the non-linear propagation of the IR field.

At the macroscopic scale, we investigate the spatio-spectral characteristics of the XUV beam
from HHG. In particular, we show that the focusing properties of the XUV beam can be controlled
by imprinting a specific phase distribution of the driving field. We show that different harmonics
are focused at different positions. As a result, we may create a high-, or low-pass filter by spatially
selecting the harmonic beams. Last, we use the filter to homogenise the XUV field. This theoretical
work is obtained in the frame of thin media approximation and is compared with experiments
realised at the CELIA laboratory showing a good qualitative agreement.

The second macroscopically investigated scheme is HHG in a pre-ionised medium. The pre-
ionisation is obtained, in our case, by an electrical discharge leading to the formation of a small
homogeneous fraction of electron density. We start the model with the propagation of the driving
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IR pulse. It reveals that there are two characteristic regions: i) The first region, where is a fast
spatial re-shaping of an initial Gaussian profile directly after entering the medium. ii) The second
region, where the IR beam is stabilised with only slight changes during the propagation. We
demonstrate that an efficient build-up of the XUV field is possible in the second region due to
quasi-phase-matching driven by the pre-ionisation. We show that an enhancement of up to a factor
of eight is obtained in the harmonic signal generated in krypton, which is in good quantitative
agreement with experiments conducted at ELI-Beamlines. Our model suggests that the yield can
be optimised even further in some configurations.



ABSTRAKT

Generace vysokých harmonických frekvenćı (HHG, z anglického High-order harmonic generation)
v plynných médíıch je nyńı nástrojem se širokým využit́ım v attosekundové vědě. HHG je sekundár-
ńım zdrojem impulz̊u v XUV oblasti, které poskytuj́ı unikátńı subfemtosekundové rozlǐseńı v čase
a nanometrické rozlǐseńı v prostoru. Tyto impulzy vznikaj́ı typicky při interakci krátkých (obvykle
subpikosekundových) primárńıch infračervených (IR) intenzivńıch laserových impulz̊u s atomy nebo
molekulami v plynných terč́ıch. Hlavńımi ćıli aktuálńıho výzkumu a návrhu schémat generace jsou
kontrola a optimalizace celého procesu, konkrétněji: tvar XUV vlnoploch, kontrola momentu hyb-
nosti XUV (tj. polarizace, makroskopického úhlového rozložeńı fáze a jejich vzájemného vztahu),
spektrálńı selektivita, či ześıleńı XUV zářeńı.

V této práci se zaměř́ıme na teoretický a numerický popis s použit́ım multǐskálového př́ıstupu,
jedńım z hlavńıch výsledk̊u je prostorová a frekvenčńı charakterizace XUV zářeńı. Základńı jed-
notkou popisu je odezva jediného atomu média. Makroskopické XUV zářeńı je zformováno z kolek-
tivńıho př́ıspěvku zářeńı všech atomů média. K popisu atomárńı odezvy v XUV oblasti použijeme
nerelativistickou kvantovou fyziku, makroskopický model bud́ıćıho IR impulzu vycháźı z nelineárńı
optiky a vygenerované zářeńı je popsáno pomoćı lineárńı optiky.

Tento model použijeme k vyřešeńı několika fyzikálńıch problémů. V mikroskopické části po-
skytneme inovativńı pohled na dynamiku ionizace, kde se zaměř́ıme předevš́ım na vývoj distribuce
energie v čase.

V makroskopické části se nejprve zaměř́ıme na prostorové rozložeńı (fokusaci) r̊uzných frek-
venčńıch komponent vygenerovaného zářeńı z tenkých terč̊u. Ukážeme, že fokusace může být ř́ızena
pomoćı vlnoploch ř́ıd́ıćıho svazku, jejichž fáze se promı́tne do generovaného zářeńı. Výsledný me-
chanismus vede k rozd́ılné fokusaci svazk̊u odpov́ıdaj́ıćım r̊uzným harmonickým řád̊um. Tento me-
chanismus dále využijeme ke zkonstruováńı spektrálńıho filtru pomoćı prostorové separace jednot-
livých svazk̊u. Dále ukážeme, že tato filtrace může vést ke vzniku frekvenčně homogenńıho svazku.
Tato část práce poskytne komplexńı analýzu problému ve spolupráci s experimenty realizovanými
v laboratoři CELIA.

Druhé analyzované makroskopické schéma je generace vysokých harmonických v dlouhém médiu.
Hlavńım mechanismem je zde homogenńı před-ionizace média. V této části nejprve namodelujeme
š́ı̌reńı ř́ıd́ıćıho IR pulzu. Ukážeme, že v médiu se pulz š́ı̌ŕı ve 2 r̊uzných režimech. Nejprve docháźı
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k podstatným změnám pulzu po vstupu do média. Dále následuje oblast stabilńıho š́ı̌reńı s velmi
pozvolnou změnou intenzity. V této části je možno předionizaćı dosáhnout sfázovańı primárńıho
a generovaného zářeńı. Ve výsledku jsme pozorovali až osminásobné ześıleńı v souladu s experi-
menty v kryptonu provedenými v ELI-Beamlines. Náš model dále indikuje, že v určitých př́ıpadech
je možno doćılit ještě vyšš́ıho ześıleńı.



Résumé

La génération d’harmoniques d’ordre élevé (HHG en abréviation anglaise) à partir de milieux dilués
est désormais un outil de travail largement utilisé dans la science des attosecondes. Elle fournit
des impulsions XUV ayant des résolutions sub-femtosecondes temporellement et nanométriques
spatialement qui sont uniques. Le rayonnement XUV est produit par l’interaction d’impulsions
laser brèves (généralement inférieures à la picoseconde), infra-rouge (IR), intenses avec des atomes
ou des molécules avec une cible en phase gaz. Les principaux objectifs de la recherche actuelles et
de l’ingénierie sont de contrôler et d’optimiser le processus de génération, ce qui s’accompagne de
défis tels que le contrôle du front d’onde XUV et de l’état de polarisation, la sélectivité spectrale,
la structuration du moment angulaire ou l’augmentation du signal XUV.

Dans ce travail, nous avons développé un modèle théorique multi-échelle décrivant les propriétés
spatio-spectrales du faisceau XUV. Les caractéristiques provenant de la description de l’atome
unique jusqu’à la formation du champ XUV macroscopique décrit par la contribution collective de
tous les émetteurs atomiques du milieu générateur sont complémentent prises en compte dans ce
modèle. L’échelle microscopique décrit la réponse de l’atome unique et est basée sur une description
quantique non-relativiste. L’échelle macroscopique décrit la propagation des champs et résout les
équations de l’optique non-linéaire pour modéliser le champ laser générateur et les équations de
l’optique linéaire pour le champ XUV.

Ce modèle a été appliqué pour répondre à différentes situations physiques. Du point de vue
microscopique, nous décrivons une nouvelle approche invariante pour décrire la dynamique d’io-
nisation et en particulier l’évolution dépendante du temps de la densité électronique qui pourra
par la suite être utilisée dans l’approche macroscopique et plus particulièrement dans la propaga-
tion non-linéaire de l’IR. A partir du modèle macroscopique, nous avons étudié les caractéristiques
spatio-spectrales du faisceau XUV issu de la HHG. En particulier, nous montrons que les propriétés
de focalisation du faisceau XUV peuvent-être contrôlées en imprimant une distribution de phase
spécifique au faisceau générateur. Nous avons utilisé cette propriété pour sélectionné spectralement
le peigne de fréquence harmonique créant ainsi un filtre soit passe haut soit passe bas. Nous mon-
trons également que la distribution spatiale en champ lointain peut-être contrôlée de telle sorte
qu’un faisceau plus homogène, d’une harmonique à l’autre, peut-être obtenu. Ce travail théorique
a été obtenu dans le cadre de l’approximation des milieux fins et a été comparé à des expériences
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réalisées au laboratoire CELIA et montre un bon accord qualitatif. Nous avons également appliqué
notre modèle à un schéma où une pré-ionisation du milieu a été réalisée. Elle a été obtenue par
une décharge électrique conduisant à la formation d’une petite fraction de densité électronique ho-
mogène. Dans ce schéma, pour lequel le modèle numérique complet a été utilisé pour la propagation
de l’IR, nous montrons que la propagation du champ IR se comporte différemment en deux région
distinctes : i – une première correspondant à la propagation en entrée de milieu et présente une
évolution spatiale du faisceau très rapide ii – une seconde, se situant après la première dans la
direction de propagation, où le faisceau se stabilise et peut former des interférences constructives
du faisceau XUV de telle sorte qu’un quasi accord de phase est obtenu. Nous avons montré qu’une
amplification du signal harmonique jusqu’à un facteur huit peut ainsi être obtenu. Un rendement en-
core meilleur peut-être atteint dans certaines configurations. Ce travail a été obtenu conjointement
à un travail expérimental réalisé à ELI-Beamlines. La comparaison des résultats expérimentaux et
théoriques montre un bon accord quantitatif.
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of the projects related with experiments and my successful stays at CELIA; Jiř́ı Limpouch for
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INTRODUCTION

Principles and applications of High-order harmonic generation (HHG)

This work is dedicated to the theoretical study of High-order harmonic generation in gas phase.
The interest in this physical phenomenon arises from the fact that it provides one of the sources
of attosecond pulses in the XUV domain together with free-electron lasers (FEL) [1] and plasma
mirrors [2]. An advantage of HHG in gases is its high coherence, versatility, possible high-repetition
rate and accessibility of the source compared to the other sources. The coherence is also linked
with the precise timing of the process, which makes HHG ideal for pump-probe schemes [3, 4].
Furthermore, FEL’s and plasma mirrors are limited to large facilities since it requires the pro-
duction of an energetic laser pulse,1 while an HHG source may be constructed from commercially
available equipment and is reachable for standard university laboratories. Such a source is of high
practical interest as the resulting XUV radiation may be used to probe matter on ultrashort (at-
tosecond, i.e. 10−18 s) time scales – comparable with the characteristic times of electronic motion
in atoms and molecules. HHG opens a way to directly access these scales because it produces
XUV pulses of comparable duration. A pulse of the duration down to 43 as was actually produced
and measured experimentally [6]. This state-of-the-art temporal resolution allows to study atomic
processes like electronic and molecular motion in ”real-time” [7, 8, 9]. Complementary to the dy-
namical phenomena studied in time domain, it also provides access to spatial resolution of atomic
and molecular orbitals via tomography [10, 11]. See also a comprehensive review of techniques and
applications [4].2 In this sense, attosecond XUV pulses become a unique tool being our sight and
touch of the World at atomic scales.

A limiting factor for some applications of HHG is its low conversion efficiency, which is under
a high development since the discovery of this source. However, the efficiency is still reaching at
most up to ∼ 10−6–10−4 (depending on the XUV region of the interest) [13, 14]. This motivates
high interest to study the source and find ways to control and optimise it, which requires a deep
understanding of the underlying physics.

1These limitations are of course a subject of development to make them more accessible, an example is the scheme
of a rotating plasma mirror as proposed in [5].

2To apply the XUV for precise measurements, its own metrology is necessary. A review of various techniques is
provided in [12].



2 Introduction

Let us discuss the mechanism of HHG. It is a secondary source of radiation, which means that
a primary laser source is needed. This primary source interacts with matter, which is a gaseous
medium in our case. Because the physics of HHG is swinging around the ionisation threshold of
the atoms of the medium, the intensity of the primary source must be intense enough to induce the
ionisation process but not too high to fully ionise the gas instantly. A typical intensity range to
produce efficiently harmonics is of the order I ∈

]
1013, 1016[ W/cm2 (in comparison, the threshold

intensity for suppressing the Coulomb potential in argon is I ≈ 2.5× 1014 W/cm2).
There may be additional requirements on the driving pulse characteristics depending on the

usage of the XUV field. For example, a single-cycle pulse may be used to generate a single attosecond
pulse, which is required for some applications [15]. Another aspect of the primary-laser profile is
that it is macroscopic compared to the atomic scales – the spatial evolution of the driving field
is negligible within a single microscopic system. Next, it is shown that in some cases the HHG
process is scalable and different geometries may produce the same outputs [16]. For example, the
longitudinal dimension, radial dimension, medium density and driving pulse energy (z, ρ, ϱ, E) scale
with a dimensionless η as (η2z, ηρ, ϱ/η2, η2E) in certain conditions. This may provide flexibility in
designing efficient schemes for HHG [17]. From the previous discussion, it is obvious that the better
control we have over the primary source, the more control we have over the secondary source.

The basic principle suggests that there are two scales of interest: 1) microscopic scale of a single
atom of the gas, where the laser-matter interaction induces the HHG process; 2) macroscopic
scale describing the propagation of both the driving laser field and the secondary radiation in the
medium.

We start with the microscopic part. HHG may be considered as going beyond standard per-
turbative non-linear optics. Let us explain the reason. The perturbative treatment writes the
non-linear response Pnon-lin as a power series in the electric field E , namely Pnon-lin = ∑+∞

i=1 χ
(i)E i.

In the perturbative regime, the electric susceptibilities, χ(i), are assumed to drop fast with their
order i, [18]. However, it did not agree with experiments [19, 20, 21], where an extended plateau
in the harmonic orders of the primary laser was observed. Such a mechanism was briefly discussed
theoretically in [22]. A quantitative explanation of this surprising result came later [23, 24, 25].
The explanation is the following: the perturbative approach assumes that the electrons remain
bound in the electron shell.3 In HHG, the response does not drop with the harmonic order because
the electron is torn out of the atom during the process. The full process is explained in three steps:
1) the atom is ionised by the laser field; 2) the liberated electron is driven by the field and due to
its periodicity, it may recombine with the parent ion; 3) the electron emits the excess of energy
gained from accelerating in the field in the form of an XUV-photon. This process repeats twice per
optical cycle, which results in a train of attosecond pulses [26]. The periodicity in time together

3The power series then somehow fits a notorious physical model of an anharmonic oscillator.
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with the spatial symmetry of the atom is then translated in the spectrum to form odd harmonics.

Macroscopic effects

The main interest of this work goes further towards macroscopic properties of HHG, which funda-
mentally emerge from the collective contribution of many microscopic systems. (One of the typical
targets for HHG contains ∼ 109 atoms.)4 We focus on two aspects of the macroscopic generation:
a) the control of the divergence of XUV beams generated in thin media, b) the phase-matching of
the generated field in long media. The studies of the two configurations have been done in close
collaborations with experiments conducted at CELIA and ELI-Beamlines.

We specify the classification of the length of the target before we discuss the details of the two
geometries. The classification is linked with two characteristic dimensions determining the resulting
macroscopic XUV signal. These dimensions are respectively transversal and longitudinal as defined
by the optical axis – the direction of the propagation of the driving laser. A thin target means
that these two dimensions may be decoupled or even the longitudinal effects may be neglected. As
a consequence, all the transversal XUV-signal structures in the thin-target can be attributed to the
transversal effects in the generating medium.

Referring the thin-media geometry a). A higher degree of control of the harmonic characteristics
can be potentially achieved since the longitudinal aspects are treated independently. Consequently,
it allows also a better understanding of physical mechanisms. This brings different questions such as:
How does the generated XUV beam look like? More specifically: What are the focusing properties
of the beam? What are the sources of interferences in the XUV spectrum? Are these effects
spectrally sensitive? Numerous studies [27, 28, 29, 30] recognised the radial interference patterns
in the spatially resolved harmonic spectra. A key role was attributed to the interference of different
quantum paths [31] leading to the same energy of XUV photons. The mechanism of the quantum
path interference (QPI) is that more quantum paths [32] contribute to one energy in the spectrum.
It was recognised later that another key mechanism there is the radial macroscopic profile of the
driving beam [33]. It turns out that the intensity profile is imprinted in the intrinsic phase of the
microscopic response, which adds up with the macroscopic phase driven by the curvature of the
driving beam.

To summarise the key physical principles: The phase of the XUV beam is dictated by the
macroscopic intensity and phase profiles of the driving beams. The role of the quantum paths is
also essential because the intrinsic phase of the different paths responds differently to the intensity
profile. We exploit these mechanisms in this work. We control the phase by the positioning of

4This example consider a gas cell with the length L = 1 cm filled with a gas at p = 10 mbar at standard
temperature and a laser focused to the diameter about ρ = 100 µm, the number of particles is thenN = Lπρ2(p/p0)nL,
where nL ≈ 2.7 × 1025 m−3 is the Loschmidt’s constant and p0 the standard pressure.
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the thin target which defines the imprinted curvature as of the driving field. We are thus able to
control the divergence of the generated XUV beams by this mechanism. Next, we show the spectral
selectivity of the process. These results are published in [34, 35].

The second geometry b) is dedicated to the optimisation of the phase-matching (PM) in long
media. It is a challenging problem compared to ”usual” non-linear optics in the perturbative regime
(Section 2.3, [36]). The reason is that the phase-matching becomes a dynamical process in HHG:
1) The medium is being ionised during the passage of the driving pulse, which changes the optical
properties of the medium at different parts of the pulse. As a consequence, PM is a time-dependent
quantity. 2) Because the intrinsic phase depends on the intensity profile as mentioned above, it
gives another time-dependent effect to the phase-matching. The main phase contributions are then:
the dispersion, the contribution of the free electrons due to ionisation, the geometrical phase of the
driving beam, and the contribution of the intrinsic microscopic phase. Physical insight is based
on the study of local dephasing [37]: the phase of any microscopic atomic emitter has to interfere
constructively with other emitters in the macroscopic volume. This model is then up-lifted to form
a macroscopic response [38]. It enables to infer the range of the constructive interference. This
range is the so-called coherence length that is defined as the distance along which the generated
fields add up constructively. As a result, the model [38] provides the estimate of the total XUV
signal.

The phase-matching is instrumental to optimise the XUV signal along the optical axis. Other
applications aim to the filtering of the XUV, either in time to produce an isolated attosecond
pulse [39] or select only some of the harmonics from the spectrum [40]. PM is therefore of high
interests for the HHG community from the beginning and a huge effort has been devoted in this
area, for example [41, 42, 38, 37, 43, 44, 45, 46, 47, 48, 49, 50], see also the review in [39].

Moving toward practical realisations, the understanding of phase-matching has been blossoming
various ideas and schemes. We mention some of the PM-schemes here. A natural property of intense
pulses is the gradual ionisation by the pulse. This creates a window where the PM is possible due
to an optimal plasma density produced by the ionisation. It is called the transient phase-matching
that has been studied in [51, 48, 52, 53, 54, 55, 56, 39]. The wavelength of the driving laser also
changes PM and allows different effects to be at play [57, 58, 50, 59, 14, 60]. The PM can be also
assisted by using multicolour driving fields [14]. (The multicolour field contains more dominant
spectral components: usually the fundamental frequency together with its 2nd harmonic.) Because
the phase is intrinsically linked with the geometry of the beam, controlling its wavefront may
drive PM as, for example, a two-foci scheme [61], or a use of a flat-top beam [62], or by two non-
collinear beams [63]. Another option is to guide the beams to control their phase, which leads to
one of frequent geometries in HHG [64, 52, 65, 66, 67, 68]. Complementary to the geometry of
the beam, the geometry of the target may be used for PM as well: A simple geometry is a chain
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of gas jets [41, 69, 70, 40] resembling the idea of quasi-phase-matching in usual non-linear optics,
Section 2.4 of [36]. As mentioned in the thin-media geometry a), the intrinsic microscopic phase
is related to the gradient of intensity, which brings another possibility to control PM [71]. In
summary, the complexity of the process makes the comprehensive understanding challenging but
also brings many possible ways to control it.

The geometry introduced in this work [72] adds the density of the free electrons as a tunable
parameter in the phase-matching scheme: the medium is homogeneously pre-ionised before the
interaction. It turns out that the pre-ionisation does not lead to the re-shaping of the driving
pulse. Basically, we can adjust the phase constantly in the whole medium. The main application
is demonstrated in HHG in long media, where the intensity is clamped shortly after the entry of
the medium [73, 74, 75]. The clamping also reduces the possibility to design the pulse in this case.
Our method implements a way to easily control the phase in this region.

In conclusion, our studies of HHG address two important geometrical effects in HHG: the XUV
beam focusing due to the transversal geometry of the target, and the optimisation of the phase-
matching due to pre-ionisation in long media. It thus brings novel understandings of these two
aspects in HHG.

Numerical modelling: multi-scale approach

An inseparable part of work is its numerical modelling of the physical processes. We discuss some
key concepts before we specify our concrete implementation. In some sense, the story of the multi-
scale approach contains a repeated motif of coupling and decoupling. We have already seen this
motif in the need of coupling the microscopic and macroscopic views, and in the decoupling of
the transversal and longitudinal effects in HHG. The same pattern appears to be impressed in the
numerics.

To motivate the need of a fully numerical description, we start with a short example: the concept
of the refractive index n for ultrashort pulses, i.e. with a broadband spectrum. The refractive index
describes the optical properties of a medium and is naturally expressed in the frequency domain
as n(ω). Complementary, we have already discussed the change of the optical properties in time
due to the ionisation caused by the passage of an intense pulse. It would näıvely bring the refractive
index as a function of both frequency ω and time t. However, such a function is a mathematical
nonsense because t and ω are conjugate variables. There is thus a limit in the concept of the
refractive index and a way to overcome this problem is to stick to a solution of Maxwell’s field
equations.5 To find such a solution, we are left with numerical solvers to include quantitatively the

5To be rigorous, the use of ω and t may be included using a convolution. However, the inclusion of highly
non-linear processes would be complicated anyway.



6 Introduction

non-linear effects induced by high intensities involved in HHG.
A consistent multi-scale model of HHG is thus of high interest as it may provide an essential

tool a) to understand the interplay of various mechanisms within the process and b) to design the
gaseous target and the laser pulse to control the XUV field from HHG. At the moment, we can refer
to the thin targets geometry and the two sources of interferences therein – QPI and geometrical
effects of the IR-wavefront. The PM in long media is also based on interference, the resulting
pattern forms the so-called Maker fringes [76, 77]. The complex interplay of these effects is exactly
an example to apply the multi-scale approach. Another important question is the propagation of the
driving pulse shaped including non-linearities. Especially, to quantify the plasma defocusing [78]
leading to the aforementioned intensity clamping, which may compete with the Kerr-induced self-
focusing [79] for some intensities. All these questions may be hard to quantify without a detailed
numerical treatment.

Let us introduce our computational strategy and simplifications of the description used in
our work. A model from the basic principles would require a feedback loop in the description
of the electromagnetic field and atoms of the medium. This loop is computationally demanding
when both sides – the field and the atomic responses – are fully numerical themselves. In our
approach, we decouple the driving IR-field and the generated XUV-field. The optical response of the
medium is then computed by different strategies: the driving pulse is shaped mainly by the effects
of standard non-linear optics; the source of the XUV-field needs a particular approach, but the
propagation of the XUV-field itself is not strongly affected by non-linearities. The computational
modules are then pipelined into three steps: 1) The propagation of the driving laser is computed
including the non-linearities described by the means of non-linear optics and a simplified model of
ionisation. 2) The numerical field from the previous step is inputted into the microscopic solvers,
which provide elementary emitters of XUV radiation at every point of the generating medium. 3) All
the microscopic emitters are collected to form the macroscopic XUV field. Another simplification
goes towards the reduction of the dimensionality of the problem: We assume cylindrical symmetry
in all the configurations in this work.

An inseparable part of the solver is the specification of two components: i) the physical model
used for each of the processes 1)–3), and ii) the numerical implementation. The pivoting ideas of
the implemented parts summarise as follows: 1) We use the computational kernel developed in [80],
the physics is modelled by the non-linear Schrödinger equation implying unidirectional propagation
of the field. It includes various linear and non-linear responses of the medium, the implementation
uses Fourier transform to describe each of the effects in a suitable domain – time or frequency –; it
thus needs to switch the domains frequently during the run of the solver. The propagation of the
field in the medium is treated by the Crank-Nicolson propagator [81]. 2) The microscopic response
is described by the central equation of quantum mechanics: the time-dependent Schrödinger equa-
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tion (TDSE). This has to be solved many times for various fields of the medium. Due to the high
computational cost, we use a simplified 1D-geometry. The implementation relies on a grid method
combined with the Crank-Nicolson propagation. 3) The macroscopic XUV field is retrieved from
a diffraction-like integral based on the Hankel transform.

One of the key philosophies within the development is modularity. Each subtask shall be easily
replaceable by other models. We thus use a wider range of tools for the microscopic response.
Another approach we use is the so-called Strong-Field Approximation (SFA) [25]. This approach
avoids the explicit solution of the TDSE by using an ansatz. This is further simplified down to a set
of algebraic non-linear equations [82]. A simple model of the microscopic response is of particular
interest as its computation by the TDSE is a bottleneck of the calculation.

This gradual palette of models with a various balance of accuracy vs. computational cost is
very useful for HHG-schemes, which involve many defining parameters of both the driving field and
the target. One of the strategies applied in this work is to use an advanced model to benchmark
the validity of a simplified and computationally cheap model on a test example within the range
of interest. The simple model is used to recognise promising configurations to optimise the HHG-
scheme. Finally, the advanced model is used again to verify and refine the configurations of interest.

To conclude the discussion about numerics, we put our numerical modelling into a broader
context and review other approaches. One of the milestones, and possibly the birth of modern
computational physics, is the Manhattan project [83], where machine-based computing began to be
used extensively. For example, the idea of the Particle-in-cell (PIC) for hydrodynamical problems
originated there [84]. Moving to the physics of our interest, numerical tools were already in use
in the 1960s for the focusing of an optical beam [85] and the TDSE [86] being exactly the two
problems of our interest. The development of these numerical approaches has continued later on,
and for example 1D-TDSE is today a standard classroom problem [87]. But it does not mean that
novel efficient solvers are not needed. Especially for higher dimensionality as, for example, direct
multi-electron solvers are still beyond the numerical power today.

According to the outlined high physical interest of the HHG, several numerical tools covering
the multi-scale approach have been already developed:

• A direct coupling of Maxwell’s equations with the TDSE is presented in [88]. This calculation
is very expensive and only micrometric targets are computable for the 3D-Maxwell-3D-TDSE
case with reasonable resources. Such a solver is an ideal tool for fundamental questions as
there are only inevitable numerical approximations but no physical approximations (within
the framework of non-relativistic quantum physics with classical fields). To downscale the
computational cost, some simplifications in this model are introduced: Because the free elec-
trons created by the ionisation may move away from the parent ions, the free electrons are
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described as plasma after the ionisation [89, 90]. Furthermore, the microscopic model is sim-
plified using the SFA and the number of numerically computed microscopic sources is reduced
by their interpolation [91].

• Another approach based on the unidirectional propagation is introduced in [92] and [93]. The
microscopic response is treated by the SFA and 1D-TDSE, respectively. This formulation
is also used in [94, 49, 95] and further extended in [96], where the SFA is further simplified
taking into account only semi-classical quantum paths. A similar approach based on the same
formulation is used in [97, 98].

• A multiscale approach is also presented in [99]. This method uses a simplified version of the
propagation of the driver; the effects of the medium on the field are linearised and included
only by the dispersion and absorption. The microscopic response is then treated with a gener-
alised SFA-approach (referred as SFA+ and introduced in [100]). The XUV field is retrieved
by an integral approach based on the so-called Discrete-Dipole Approximation [101, 102] with
a randomised sampling [103] of the macroscopic volume.

Unfortunately, these models are not publicly available as open-source packages unlike, for example,
some PIC codes [104]. We thus cannot provide a direct comparison of the numerical performance
and other details.

The main work done in the multiscale model in this work is thus mainly in the coupling procedure
of the originally independent codes. Besides this, we also discuss the development of a 3D-TDSE
solver in this work.

Ionisation

Here, we want to clarify one of the crucial terms we have used already several times: ionisation.
Ionisation is an important interlink of microscopic and macroscopic physics: The process starts
with a single atom and leads to the density of free electrons. Once we try to inspect ionisation
in detail within the atomic scale during the interaction with an external optical field, we may
arrive at some troubles with its proper definition. The reason is that it is non-trivial to choose an
invariant reference. Two natural choices seem to rely either on the volume, where the electron is
located with a certain probability; or on the projection onto the atomic bound states. The problem
with the former is that the volume of an atom is ambiguous. For the latter, the gauge invariance,
Chapter 16.4 of [105], comes to play. The presence of the external field affects the states, but their
form depends on the choice of the gauge. Although this problem seems subtle at the first sight,
it has been a stimulus for further research as there is something non-trivial unclear about this
fundamental term in our area.
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The idea to use quantum mechanics to treat ionisation using static fields came early with the
foundations of quantum mechanics in 1928 [106], where is proposed a correction of the perturbative
series for the Stark effect. Practical quantitative calculations became important later with the
development of the laser technique generating optical fields strong enough to ionise atoms. Works
from that time [107, 108, 109, 110] successfully estimated the ionisation rate; however, they use ad
hoc assumptions starting with a fixed gauge. The resulting description provides a rate equation,
which lacks the coherence of the process or re-collisions essential for HHG.

To overcome these complications, we develop a novel methodology based on the invariantly
calculated energetic distribution of the wavefunction of the electron [111]. We use the formalism of
the resolvent operator to find a convenient expression of the energy distribution. This allows us to do
a numerical analysis based on numerical implementation of the resolvent formalism [112, 113, 114].
The importance of the work is in a novel insight in the ionisation process. Having this universal
tool, we apply it to study the limit pictures of the ionisation explained in the terms of a single-
photon [115], multi-photon regime [116], or tunnelling regime [107]. Using our method, we both
get insight in the process and obtain a tool to verify the rate equations.

Thesis organisation & units

To ease the orientation in the thesis, there is a signpost. First, we provide a brief phenomenological
explanation of the physics involved in all the parts of the multi-scale model in Chapter 1. Then,
there are two options for the reading: the work continues talking about physics in more detail from
the microscopic, Part I and macroscopic, Part II, viewpoint. The second option is to move directly
to Part III of the thesis, for the readers interested only in the implementation of the multi-scale
model.

The content of all the remaining chapters is the following: Chapter 2 presents a general quantum-
mechanical model and the approximations we use. Based on the quantum-mechanical model, we
retrieve the source term of HHG directly from TDSE or further simplified by the SFA. Chapter 3
provides a comprehensive picture of ionisation in optical fields. We introduce there the technique to
unambiguously retrieve ionisation from a solution of TDSE. We put this method into the context of
usual phenomenological pictures of ionisation. Chapter 4 introduces formulation of the propagation
equations, which are shared for both the XUV- and IR-field. Chapter 5 then treats the propagation
of the XUV field based on the diffraction-integral formulation. This theory is then applied on the
problem of optics-less focusing. Chapter 6 completes the physics of the multiscale model. We
provide the details about the model solving the propagation equations of the IR-field. The full
model is applied to the problem of the optimisation of the harmonic yield by pre-ionising the
target. After this chapter, we move to the details about the numerical implementation in Part III.
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Chapter 7 provides the details about the numerical methods to model microscopic physics: the
Hamiltonians using 1D- and 3D-geometries; the evolution in time and the methods used to compute
the ionisation by the so-called complex rotation. Chapter 8 provides a brief review of the solver
we use to model the non-linear propagation of the driving IR-pulse. Chapter 9 introduces the
diffraction integral used to model the macroscopic XUV signal. The multi-scale model is assembled
in Chapter 10. Finally, Chapter 11 summarises the work and gives perspectives for possible future
developments.

The last remark is about the units. According to different suitable units to the physics in
microscopic and macroscopic scale, the usage of the units is part-wise in the thesis (if not stated
otherwise). Part I uses atomic units (see Appendix A). Part II uses SI units. Part III is indifferent
to the units because it discusses only numerical representations for computer modelling. All the
factors are then explicitly in the equations, and we assume all the physical constants evaluated in
SI units.



1. BASIC CONCEPTS

Although the quantitative multiscale model we will describe in this work relies on large numerical
solutions, basic examples and concepts may provide a picture of the involved physics. We overviewed
them in the introduction and here we illustrate them by simplified semi-empiric or phenomenological
models. The main purpose of this chapter is to build a skeleton that will be encased by more
advanced treatments in the rest of this work.

First, we review the picture of the microscopic response of a single atomic system in Section 1.1.
Then in Section 1.2, there are discussed the shaping effects of the IR-driving pulse due to the
non-linear propagation emphasising the effects in the principal directions: along and transversal
to the propagation. Corresponding considerations are done for the generated XUV radiation in
Section 1.3. Finally in Section 1.4, there is provided a framework of the coupling used to form the
final multi-scale model from all the respective components.

1.1 Physics driven by single-atom response: three-step model, spectra, ionisation

We start with the response of a single atom subjected to an external field with a typical intensity
for HHG, which peak value is sufficient to start ionising the atom by few %.
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1.1.1 Three-step model

Fig. 1.1: Schematic representation of the three-step model. The electron e− is ejected near the maximum
of the electric field in the first step, A. Then it propagates driven by the field and due to its periodicity,
its motion is reversed, and it is accelerated towards the parent ion, B. Finally, the electron recombines
back while emitting the sum of the excess of the kinetic energy and the binding energy in the form of an
XUV photon, C. Used from [117] under the CC BY-NC-ND 4.0 licence.

The insight into the HHG within a single half-cycle of the driving laser emerges from the
aforementioned three-step model. This model is schematically illustrated in Fig. 1.1. Because this
process is precisely triggered by the driving laser, it may provide a highly coherent source.

1.1.2 Harmonic spectra

An XUV source is characterised by its spectrum that is the energy distribution of the generated
radiation. Figure 1.2(a) shows an example of a numerically computed spectrum of a single atom.
To characterise this process, it is convenient to represent the energy E rescaled in harmonic orders
of the driving laser, H = E/(ℏω).

The harmonic spectrum can be divided into three regions with two characteristic points sepa-
rating them. First, there is the perturbative region, where the response is exponentially damped,
going towards the ionisation potential IP . After this point, the physical mechanism is dominated
by the freed electrons described by the 3-step model. Classical equations of motion imply the ex-
istence of a maximal possible energy Ecutoff that may be produced during the recombination [23].
This energy ends a plateau of harmonics between IP and Ecutoff with nearly constant amplitude.
The value of the cutoff deduced from the classical equations of motion is

Ecutoff ≈ Ip + 3.17Up , Up = 2e2

cε0me

I

4ω2 , (1.1)
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Fig. 1.2: The example of a spectrum retrieved from a numerical simulation of HHG in neon for the intensity
corresponding to cutoff starting by the 49th harmonic in this case. The ionisation potential, IP ≈ 25.5 eV,
which lies between the 13th and 15th harmonic in this case. (a) shows the spectrum from a single atom, while
(b) shows a macroscopic spectrum in a far-field region from a radiating plane of the microscopic emitters
from a Gaussian beam. (The microscopic response (a) is computed by 1D-TDSE described in Section 7.5
while (b) is a far-field distribution given as a weighted coherent sum of the emitters in a radiating plane.
See Section 5.2 for a detailed discussion of the conditions and used methods to compute the spectra.)

Up is the ponderomotive energy of the field and is proportional to the intensity of the field I and
inversely proportional to its squared fundamental frequency ω2. Note that the numerical value of
the pre-factor 2e2/(cε0me) vanishes in the atomic units.

Figure 1.2(b) presents the spectrum of the macroscopic signal. For a basic picture, we may
consider it as a coherent sum of many microscopic emitters. A notable feature is that this spectrum
is much more regular with well-defined odd-harmonic orders compared to the more ”chaotic” profile
in the plateau of the microscopic response. It means that, from the microscopic viewpoint, there
are more incoherent processes. Generally, these effects may come from the interferences of multiple
cycles that differs from each other in the case of an enveloped laser pulse. Since the macroscopic
field is a sum of the elementary emitters, only coherent components prevail leading to more regular
spectrum as depicted in Fig. 1.2(b). In this sense, the difference of these spectra is an example
of the macroscopic build-up of HHG.1 For the instant, this provides us the difference between the
spectrum of a single microscopic emitter, which corresponds to the local field, and the filtered
spectrum in the far-field.

Complementary to frequency, the XUV field is characterised in time. The components of the
spectrum are ”mode-locked”, in the sense that the three-step model is repeated every half-cycle. As
a consequence, the process leads to well-defined attosecond pulses of XUV radiation. (A detailed

1To be rigorous, there is a clarification of some terms. The terms microscopic and macroscopic are related to the
origin of a phenomenon: originating from the single-atomic response or by the collective contribution of many atoms,
respectively. In experiments, XUV is frequently characterised in ”far-field” region defined by the applicability of the
Fraunhofer diffraction (see Appendix D). In the sense that ”near-field” is taken as the opposite of ”far-field”, it still
contains macroscopic effects. The distinctions of various regions is related to different leading terms contributing to
the signal, see Sections 9.1 and 9.2 of [118]. In the limit case being at the position of a single microscopic emitter,
the field and the microscopic response are linked, this is discussed more formally in Section 5.1.
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study of these effects is the subject of Section 5.2.8.) This typical profile is the so-called attosecond
pulse train.

We conclude this section with a remark about the harmonic orders we observe in the spectrum.
We use a driving field with a single dominant frequency (single-colour field) for all the examples we
study in detail in this work. This together with the spherical symmetry of atomic targets leads to
the production of odd harmonics in the spectrum. The spectral properties are changed if some of
the symmetries is broken. It leads, for instant, to: i) An XUV supercontinuum is generated if this
process is limited to happen only once, see [119] and references therein. ii) Even harmonic orders
appears for multi-colour fields, for example [14]. iii) The response differs if there is an asymmetry
in space which may be caused by chiral molecules or even by dissociating symmetric molecules in
some circumstances [120].

1.1.3 Ionisation

Ionisation within the quantum description of HHG is an important intermediate step forming the
3-step model. There is not much of interest in the electrons that recombine. However, they may
contribute significantly to other processes. Namely, they form a low-density plasma, which is
important for the propagation of the driving laser. We thus need to estimate the probability of
ionisation to obtain the plasma density.

Here, we stick with a pragmatic intuitive picture. Quantum mechanics provide the probability
density, ϱe(r, t), of finding the electron at a given position r. We define the ionisation as the
probability of finding the electron outside the atom Pion = 1−

∫
Vatom

ϱe d3x. To find the evolution in
time, a dynamical description is needed. A desired outcome is a rate equation, ∂tPion = −Γ(|E|)Pion,
that provides a way to compute the plasma density based only on the time evolution of the electric
field E(t).

1.2 Driving laser: propagation in a non-linear medium

The macroscopic HHG-field is given by the collective contribution of all atoms of the generating
medium. As the intensity of the laser must be high enough to induce highly non-linear HHG, other
non-linear effects are naturally present as well.2 These effects significantly reshape the driving
pulse. Here, we provide some simple models to get the insight in the principal non-linear effects
in our case. We separate two characteristic directions of the problem: along the propagation axis
(∥, longitudinal) and transversally to the propagation (⊥, transversal).

2Generally, a pulse in time is dispersed already due to the linear effects as estimated in the introductory to the
wave propagation in Chapter 7.9 of [118].
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1.2.1 Transversal effects

A good insight into the impact of the transversal distribution of radiation comes from geometrical
optics and the study of lenses. We will show that the non-linear effects of our interest may be
explained using them as an analogy.

Converging lenses are characterised by the optical path being the largest near the beam axis
and decreasing with the radius. This profile is reversed for a diverging lens. The optical path is
proportional to the real physical path scaled by the refractive index n of the medium. As a result,
the phase of the light differs in the transversal dimension. This determines the change of the
wavefront of the light. Since the modification of the wavefront is the key physical mechanism, it
allows to use equivalently mirrors or other devices instead of the lenses to reach the same effect.

The pivoting ideas of the non-linear propagation can be fairly described using an analogy with
the aforementioned lensing properties. The difference is that the lensing properties of the medium
are created by the pulse itself due to the non-linear response. There are two effects of our interest:
the Kerr effects and plasma defocusing.

We start with the Kerr effect. The related refractive index is nKerr = 1 + n2I, where n2 is
a non-linear refractive index depending on the material (the type of gas in our case) and I the
intensity of the field (Chapter 4 of [36] and [121]). Because I(r) decreases with the radius for
a usual beam and n2 > 0, it naturally creates a converging lens.

Next, we move to the plasma defocusing. The plasma is characterised by the refractive index
nplasma =

√
1− (ωp/ω)2, where the squared electronic plasma frequency, ω2

p, is proportional to the
density of free electrons ϱe (Section 7.5.D of [118]). As the free electrons are created by the pulse
itself, we see a similar behaviour as for the Kerr effect but with opposite sign of the modification
of n: the optical path is shorter close to the optical axis, where the electron density is higher. As
a result, a diverging lens is created. Because ionisation evolves in time, we have nplasma = nplasma(t);
and the associated focal length evolves in time as well.

A mathematical picture may be inferred from the non-linear Schrödinger equation, which can
be derived to describe the evolution of the electric field E in the non-linear medium. Its simplified
dimensionless form is

i∂zE = −△⊥ E − α|E|2E + βϱeE , (1.2)

△⊥ is the transverse Laplacian in the dimensions orthogonal to z. α and β are coefficients associated
with the competing focusing Kerr effect, α|E|2E , and plasma defocusing, βϱeE . The plasma electron
density ϱe is retrieved from a rate equation ∂tϱe = Γ(|E|)ϱe, meaning that a complementary model
of ionisation is needed as described in the preceding sections. The importance of this equation is
that we can clearly see the two competing effects – Kerr effect and plasma generation – related to
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the beam focusing. By further inspection, these two effects are also non-trivially coupled due to
the rate equation governing the factor βϱe. Although basic roles of these two effects is seen directly
from the equation (1.2), a quantitative analysis of the interplay requires a specific solution in given
conditions.

1.2.2 Longitudinal effects

Next, we illustrate the longitudinal properties involved in the propagation. We limit this example
to modelling the phase as this is substantial to the phase-matching that we will treat in Chapter 6.
We initiate the model with a plane wave in vacuum,

E(z, t) ∝ e−i(ω0t−k0z) . (1.3)

If the vacuum is replaced by a medium that induces a non-linear response, the phase accumulated
due to the propagation, k0z, is modified by the optical path given by the refractive index above.
It is convenient to use electric susceptibilities for various contributions to the optical index, as the
resulting susceptibility is only their sum. The refractive index containing dispersion, plasma and
the Kerr effect would be

n =
√

1 + χdispersion + χplasma + χKerr . (1.4)

We recall that n is time-dependent because the Kerr effect follows the intensity profile and the
plasma is generated throughout as the pulse propagates. There is still one contribution to the
phase missing: the geometrical phase ϕG(z) related to the profile of the beam, which is a realistic
description instead the plane wave. In the case of a Gaussian beam, it corresponds to the Gouy
phase. We add this phase within the simplified longitudinal model. The final expression of the field
is then

E(z, t) ∝ e−i(ω0t−k0
∫ z

0 n(z′,t) dz′−ϕG(z)) , (1.5)

for z > 0. Compared to (1.3), we note that the physical distance z is replaced by the optical
path

∫ z
0 n(z′, t) dz′. We point out that the absorption of the field in the medium may be included

in this model via the imaginary part of the refractive index (or, equivalently, imaginary part of
electric susceptibilities).3

3An interesting point there is that we need to take into account the direction of the propagation in the integral, z >
0, to satisfy causality – only the part of the medium already travelled by the field affects its phase. This constraint
allows to link absorption and dispersion in the medium by Kramers–Kronig relations (Section 1.7 of [36]), that
are an application of the Sokhotski—Plemelj theorem connecting the real and imaginary parts of analytical electric
susceptibilities.
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1.2.3 Full picture: couplings

We have described the focusing of the beam leading to spatial shaping of a pulse and also the
phase accumulated due to propagation. The goal of this work is to provide a full model accounting
for all the effects at once. Although we have the key effects in the transversal and longitudinal
directions, a comprehensive picture becomes demanding as they non-trivially couples with each
other. Moreover, we have phenomenologically arrived to time-dependent refractive index. A natural
variable of the refractive index is ω, the conjugate variable of time. It would be contradictory to
have an explicit function of both these variables. In summary, the refractive index is a very
useful quantity for having an insight of propagation, but not so useful to quantitative description:
Basically, there are possible all mutual couplings of variables (t, r) and their conjugates (ω,k).
A way to resolve the couplings consistently is to use a direct solution of the Maxwell’s field equations.

We show an example of the non-linear propagation in Fig. 1.3. The simulation is performed
with a Gaussian profile (both in space and time) shown in (a), which is then propagated through
a 15-mm long gas cell filled by Krypton at 50 mbar. The entrance peak intensity is approximately
1.6×1014 W/cm2. (Note that the instantaneous intensity is used in the graphs, see Appendix B.2.)
It clearly shows that the Gaussian profile is heavily distorted during the propagation. It also
illustrates the formation of the off-axis ”wings” of the pulse. These are caused by the plasma
defocusing occurring at the trailing edge of the pulse as mentioned above.

60 40 20 0 20 40 60
t [fs]

0

25

50

75

100

125

150

175

200

r
[

m
]

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
I [W/cm2] 1e14

60 40 20 0 20 40 60
t [fs]

0

25

50

75

100

125

150

175

200

r
[

m
]

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
I [W/cm2] 1e14

Fig. 1.3: An example of a distorted pulse due to the non-linear numerical propagation. (a) A Gaussian pulse
both in time and space at the entry of a 15mm long gas cell filled by krypton at 50 mbar. (b) The pulse
after the passage through the cell. (See Section 6.3.6 for a detailed discussion of the conditions.)
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1.3 XUV field: Two emitters, Gaussian beams

In the previous sections, we have described the microscopic picture of a single atom in an external
field and also of the macroscopic profile of the driving laser. Here, we present the macroscopic
model of the XUV field based on simplified phenomenological description.

This study is also separated to the transversal and longitudinal effects similarly to the IR-field.
This separation is also aligned to two of the main objectives of this work: the XUV wavefront
control in thin targets (where transversal effects prevail), and the control of the phase-matching in
long media (the longitudinal effects are dominant).

1.3.1 Longitudinal effects in XUV

We start with the longitudinal effects, our goal is to get a simple insight into phase-matching, which
is given by the coherent sum of elementary emitters along the propagation axis. This model lacks
the effects due to the intensity profile of the driving field as well as due to the exact propagation
of the XUV field from the Maxwell’s equations.

Let us start with two on-axis emitters placed in z1 and z2 and ordered as z1 < z2. For the
sake of simplicity, the fields generated by both emitters are described by plane waves with the
same amplitudes. The XUV field at z1 is induced by the driving field. Using the propagation in
a dispersive medium (1.5), one has

EIR|z1
∝ e−i(ω0t−k0

∫ z1
0 nIR(ζ) dζ−ϕG(z1)) , (1.6)

E(1)
XUV

∣∣∣
z1
∝ e−i(qω0t−q(k0

∫ z1
0 nIR(ζ) dζ+ϕG(z1))−φXUV(z1)) , (1.7)

where EXUV describes the XUV field corresponding to the qth harmonic with the carrying fre-
quency ωq = qω0. The refractive index contains susceptibilities of various processes as given
by (1.4).Furthermore, there is an extra intrinsic phase of the XUV-generation process, φXUV,
in (1.7). This phase depends on the generation conditions at z1, and its quantum-mechanical origin
of will be explained in Section 2.4.

Now, let us investigate the XUV-field at the point z2. The IR- and generated XUV-field are
given only by changing z1 to z2. The XUV-field propagated from the first emitter is E(1)

XUV

∣∣∣
z2

=

E(1)
XUV

∣∣∣
z1

eikq

∫ z2
z1

nq(ζ) dζ . The complete XUV-field in z2 is given by the sum of both contributions,4

EXUV|z2
= E(1)

XUV

∣∣∣
z2

+ E(2)
XUV

∣∣∣
z2
∝
√

2 (1 + cos (Φ)) , (1.8a)

4The formulae z = |z|ei Arg(z) and
∣∣eia + eib

∣∣2 = 2(1 + cos(a− b)) have been applied.
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Φ = qk0

(∫ z2

z1
(nIR(ζ)− nq(ζ)) dζ

)
+ q∆ϕG −∆φXUV , (1.8b)

where ∆f = f(z2)− f(z1). The phase Φ plays a crucial role as it characterises the constructiveness
of the summed signal of the two emitters. The signal is amplified once their phases match. This is
the origin of the term phase-matching. In an ideal case, the emitters add perfectly, Φ = 0.

We have neglected the absorption included by the imaginary part of nq, it means that our Φ is
real. The absorption gives an inevitable attenuation of the signal proportional to the density of the
medium. The absorption thus gives an upper bound of the XUV signal in long media and cannot be
controlled compared to phase-matching. The neglect of absorption does not affect the qualitative
picture of the phase-matching and we will discuss the quantitative description later (Section 6.3.3).

The signal is maximally amplified in the perfect case Φ = 0. Being less strict, the XUV-yield
is increased if Φ ∈

]
−π

2 ,
π
2
[
. Inspecting the constructiveness locally using an infinitesimal ∆z,

the terms in Φ can be approximated using ∆f ≈ f ′(z)∆z.5 In this case, we can also assume
f ′(z) ≈ f ′(z1) ≈ f ′(z2). Using the expression (1.8b) for Φ, we can assign the phase contribution of
various effects:

Φ ≈ ∆kq∆z , ∆kq = ∆kmedium + ∆kgeom. + ∆katom , (1.9)

where ∆kmedium = qk0(nIR − nq) and ∆kgeom. = q∂zϕG(z), ∆katom = −∂zφXUV(z).
Although wavenumber mismatch ∆kq = ∂zΦ is a local quantity, it may give a good estimate of

the constructiveness of the contributions in larger volume if it is not fast-changing. The measure
is then the coherence length:

Lcoh = π

|∆kq|
. (1.10)

It gives the effective length where all emitters add up constructively so that the signal is maximised.
To conclude this part, we use this simple concept to clarify one important aspect of phase-

matching. The underlying mechanism is the interference, which means that the total signal is not
enhanced or amplified.6 The signal is only optimised by the constructiveness along the propagation
axis. A precise definition is that a phase-matched generation means that the signal is primarily
optimised along the optical axis.

5The range of validity of this approximation always depends on conditions of a given generation scheme. Generally,
the stronger non-linear response of the medium is, the smaller is the range the approximation is valid.

6The only case for which there may be a quantitative difference in the energy transferred to the XUV field is
a non-negligible contribution of the XUV field in the generation process. Because the driving force of HHG is the
driving laser, which is stronger by several orders than the generated field, this assumption is satisfied. A possibility
to break the assumption is a resonance adjusted to a specific XUV wavelength.
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1.3.2 Transversal effects in XUV

We used the example of two emitters to show the longitudinal aspect of HHG phase matching, we
use a different picture for the transversal counterpart.

Let us take only a single radiating plane. We model both driving and XUV fields as Gaus-
sian beams. A Gaussian beam is fully defined from its radius w(z) and curvature 1/R(z) at
any point z along its propagation. The radial intensity profile of the Gaussian beam is then
I(z, ρ) ∝ exp

(
−2 (ρ/w(z))2

)
. As HHG is a highly non-linear process, it emphasises the radial

profile and reduces the radius of the generated field. We can see the scaling from

Iqeff (z, ρ) ∝ e
−2 ρ2(

w(z)√
qeff

)2

,

where qeff is an effective non-linear parameter – the response is characterised as qeff-th power of the
incident intensity, the quantitative analysis will be done in the section 2.4 –, we recognise w(z)/√qeff

as the radius of the generated beam. Furthermore, the radius of curvature of the driving beam
is imprinted in the generated field. However, this is not the only contribution. The phase of
an elementary emitter, φXUV, depends on the local intensity of the driving field. As the intensity
varies with the radial profile, we get an additional profile of the radial phase that gives an additional
curvature contribution that sums up with the imprinted curvature. The situation is analogical to
that we discussed for the non-linear transversal effects of the driving laser – the generation process
may be seen as an optical element manipulating the phase.

1.3.3 Full XUV profile

We have seen that both longitudinal and transversal XUV profiles are determined by the phase and
intensity given by the discussed models. In this light, the transversal profile is described as off-axis
phase-matching, which leads to the interferences in spatially resolved harmonic spectra.

The longitudinal and transversal models already contain the main mechanisms of the two con-
figurations that we will study in detail: the control of the divergence of XUV beams in thin media
and the phase matching in long pre-ionised media. The control of the divergence will be obtained
by manipulating the wavefront by positioning the target with respect to the driving beam, which
drives the curvature inherited from the driving beam. In the second case, the pre-ionisation allows
us to externally control the refractive index of the medium via the electric susceptibility χplasma

using (1.4). It allows us to optimise the signal by reaching favourable phase-matching conditions
given by (1.8b).

In conclusion, it may enough to consider only one of the mechanisms in the cases it dominates.
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Particularly, the longitudinal effects are negligible for thin targets. However, both dimensions are
required to resolve fine structures in long media as both aspects are present.

1.4 General framework of the multiscale model

We have introduced the main physical aspects of HHG together with simple examples, the next
step to provide a quantitative model of all the processes is the mathematisation and numerical
treatment. We continue with the physics and mathematical description in this part, while the
details of all the numerical models are a subject of Part III of this thesis.

We start the description with the Maxwell’s equations

div E = ϱQ
ε0

, divB = 0 , (1.11a)

rot E = −∂B
∂t

, rotB = µ0jQ + 1
c2
∂E
∂t

. (1.11b)

These equations are completely general with microscopic charge and current densities ϱQ and jQ,
respectively. Combining the equations together, one obtains a wave equation7

□E = −µ0
∂jQ
∂t
− 1
ε0

grad ϱQ , (1.12a)

We explain later why only the treatment of the electric field is sufficient.
Now, we need to specify a way to compute the densities. Looking at bookshelves of a university

library, we look what is on our menu. There are equations of classical or relativistic mechanics
coming from the Lorentz force. Continuing the offer, we find the Schrödinger equation for non-
relativistic quantum mechanics or Dirac equation for a full quantum and relativistic treatment. For
being accurate on the atomic level; we need, for sure, quantum theory. The Dirac equation would
do the job well, but once we need to find a numerical solution many times: at every point of the
macroscopic interaction region, it will be very expensive and difficult to consume.8 We pick then
the Schrödinger equation, its single-body form reads

iℏ∂t |ψ⟩ = H(t) |ψ⟩ . (1.12b)

The Hamiltonian, H(t), specifies the model of the microscopic target interacting with the external

7The d’Alambert operator is given by □ = ∂tt/c
2 − ▽.

8The Dirac equation is mentioned because it would be a natural choice from the theoretical viewpoint: there
would be no need to care about some approximations provided by the non-relativistic theory. As we, unfortunately,
do not know a computationally cheap way to implement it, we would need to justify that the Schrödinger equation
is satisfactory in the next chapter.
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field E. However, a vector potentialA corresponding to E is more convenient in quantum mechanics
because it is a natural variable of Hamiltonian and Lagrangian formulation [122, 123, 124]. The
charge and current densities are, respectively,9

ϱQ(x, t) = Q|ψ(x, t)|2 , jQ(x, t) = Q

m
Re (ψ∗(x, t)(p−QA(x, t))ψ(x, t)) , (1.12c)

where Q and m stand for respectively the charge and the mass of the particle described by H. Gen-
erally, the introduced microscopic form of the equations (1.11) and (1.12a) is valid on all the scales
and they would provide an exact description while considering every atom of the medium. How-
ever as already mentioned, taking independently all the atoms is computationally impossible; and
our final model treats the medium as continuum by averaging over the microscopic volumes [125].
This procedure is detailed in Section 4.1.1; particularly, the current density scales with the gas
density (4.3).

The equations enlisted under (1.12) are basically all we need to resolve. There is a clear loop-
scheme where field equations drive the motion of charged matter, that creates sources of the field
equations. This model is suitable for a numerical implementation; however, an interested reader
may argue about the consistency of the model as we link two physical theories obeying different
symmetries: Lorentzian for the Maxwell’s equations and Galilean for quantum mechanics. We show
in Appendix I how they originate from one self-consistent theory as its limit cases.

We keep that motivation in mind and we dive into the world on microscopic scale and investigate
single-microscopic target interacting with an external field.

9See Eq. (11.22) of [124] for the derivation of this invariant source term.
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2. DESCRIPTION OF A SINGLE ATOMIC SYSTEM

In this chapter we present how to compute practically the source term of the field at the right-hand
side (RHS) of (1.12a) given by (1.12c). Together with this straight advancement to the macroscopic
model, this chapter creates the framework for all the other microscopic chapters of this part of the
thesis. At the end of this chapter, we also present a simplified model to compute the dipole based
on the Strong-field approximation.

This chapter starts with the assumptions leading to the description of a single microscopic
system in Section 2.1. This formulation allows to directly find the wavefunction and subsequent
current needed for the macroscopic model. This is in principle everything we need for the macro-
scopic model. However, a more detailed analysis is crucial for understanding emerging physics and
related concepts. We discuss the role of the gauges in Section 2.2. The source term and its more
suitable form for numerics is derived in Section 2.3. Finally, the Strong-Field Approximation, which
allows to find a simplified source term in a computationally cheaper way, is presented in Section 2.4;
this section was originally published in [126].

2.1 General context and approximations

The first step is to construct the Hamiltonian that will be used in the Schrödinger equation. Com-
plete description of a medium consisting of many atoms, each with several electrons, is practically
impossible; we thus use approximations allowing their numerical implementation with keeping the
dominant physics. We list the assumptions and approximations here:

1. The density of the gas is low, so we neglect the interaction between different atoms/molecules
of the medium. We treat the response from one microscopic system only at each point of the
medium (see also Section 4.1.1 describing the construction of the link with the macroscopic
scale in more detail). In practice, it means that the neighbouring atoms in the medium are
uncorrelated.1

1A basic justification of this assumption may be given by comparing the ideal gas law, pVm = RT , with its first
correction given by the Van der Waals equation, (p+a/V 2

m)(Vm − b) = RT ; where p is the pressure of the gas, Vm the
molar volume, R ≈ 8.314 the universal gas constant, T temperature, and a and b the empiric Van der Weels constants
of the given gas. We now infer the validity of the ideal gas law, i.e.when there is no interaction of the atoms. When
these laws starts to slightly deviate, we may assume the equality of the molar volumes Vm in the first order of the
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2. The intensity typically used for HHG stays within the non-relativistic regime. We thus use
quantum-mechanical non-relativistic description.2

3. Targets used for HHG are multi-electronic atoms or molecules. A complete solution would
require to include all the electrons. Since the dimensionality of the respective space grows with
the number of electrons, N , as 3N , it is not practically computable today by a direct N -body
Schrödinger equation.3 Since most of the physics is governed only by the valence electron, we
can work within the Single-active-electron approximation (SAEA). We later discuss in detail
even stronger approximation using a one-dimensional atom.

4. We neglect spatial variation of the external field due to the macroscopic beam profile (i.e. due
to the radial profile of intensity). The scale of this profile is much larger than the dynamics
within a single microscopic system.4

5. We also neglect the spatial variation of the field on the scale compared to the wavelength λ

of the external field.5 This together with the previous point gives the so-called dipole ap-
proximation. It is expressed either as A(x, t) ≈ A(x0, t) using the vector potential or
E(x, t) ≈ E(x0, t) and B ≈ 0 when using the electric and magnetic field (see also the discus-
sion on gauges in the following section). The spatial coordinate x0 denotes the macroscopic
position of the microscopic system in the medium and does not act as a variable within the

expansion. The difference is then obtained by comparing the universal gas constant with its counterpart from the
Van der Waals law. The correction is

R̃ = R
(

1 + ap

R2T 2

)(
1 − pb

RT

)
.

We use an ambient temperature T = 300 K and Van der Waals constants for xenon [127] as an upper bound for
rare gases, a ≈ 0.43 Pa · m6/mol2, b ≈ 56 × 10−6 m3/mol, to find the difference. The correction is below 0.5 % for
atmospheric pressure. The corrections for other gases are smaller by orders of magnitude. However, these values
probably still overestimate the validity of the approach as the femtosecond scale is short compared to the interatomic
processes in gases. Moreover, the collisions due to thermodynamic effects are random. Thus, even if some of the atoms
are colliding, it does not contribute coherently and may not affect the macroscopic signal (compare with Fig. 1.2).

2Generally, relativistic intensities are characterised by the acceleration of the electrons in along the direction
of the laser. This efficiently prevents the recombination in the three-step model. One of the tasks to implement
relativistic HHG from gases would be then to compensate this shift [128]. However, another complication of high
intensities is the fast depletion of the ground state due to ionisation, which also limits the generation.

3See for example [129] discussing the Time-Dependent Density-Functional Theory, which is a theory developed
to describe the density of many-electronic system including their quantum-mechanical nature.

4The spatial variation of the beam on, typically, the micrometric size is orders of magnitude higher than atomic
scales. However, in the physics of free electrons and plasma, this plays a crucial role inducing the ponderomotive
force F = − gradUp.

5Considering the harmonic part of the field, it means cos(ω0t−kzz) ≈ cos(ω0t) for the values of z from the atomic
range. Wavelength of an IR-field is of micrometric scale while atomic sizes are picometric. This approximation thus
remains valid even for the nanometric scale of external fields, i.e., to describe the interaction with the XUV field up to
extreme short wavelengths. Expressing the wavenumber as kz = 2π/λ = ω0/c = 2π/(T0c), the physical insight in the
dipole approximation may be then given by fully equivalent pictures of spatial variations or frequency components
or characteristics times neglected due to the approximation.
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microscopic problem. Neglecting the magnetic field is further related with the non-relativistic
treatment as its role becomes also important for relativistic electron velocities.6

6. We also neglect all spin effects and possible related spin-orbit couplings. This is consistent
with the fact that we neglect the magnetic field as it provides their interaction term.7

7. Last, the field is treated classically, and this is usually justified because the typical energy
of a driving pulse of the order of 1 mJ corresponds to 1011 photons at the wavelength of
800 nm. Proposed corrections due to the quantum nature of the light, for both the IR driver
and the generated harmonic field, are in [135].

Summarising these points into mathematical description, we find the Hamiltonian

H = (p+A)2

2 − φ+ V . (2.1)

In all the studied cases, it will be spherically symmetric, V = V (r), and all the other electrons
except the valence one would cause only a screening of the ionic core. We can express it (in
3 dimensions) as:

V (r) = −1
r

+W (r) , (2.2)

with W being a short-range screening potential.8 The screening accounts for the effects of the
remaining (N − 1) electrons included in V within the SAEA.

For this Hamiltonian, we can just put it in a numerical solver of the respective Schrödinger
equation (1.12b) and obtain the source terms we need for the coupled model. Before we leave
the rest of the work for the numerical solver, we discuss several phenomena laying within the
microscopic part of the model in the rest of this chapter and also in the following chapter.

2.2 Length and velocity gauges

Although the Hamiltonian (2.1) governs the dynamics uniquely, there is still a gauge degree of
freedom in the four-potentials Aµ = (φ,A), keeping the same electric and magnetic fields. We
recall that the gauge equivalence says that all the four-potential (A′)µ = Aµ + ∂µΛ are equivalent

6This limits also the intensities of the driving field. However, as large intensities lead to fast-ionisation or electron
displacements, it efficiently prevent the recombination and the high-harmonic generation process itself.

7We see that all the last two points are related to ”magnetic” effects as they enters the Hamiltonian by parts
related to either spin or (rotA)-effects. We can add also to the discussion the effects related to the coupling of more
particles from the point 3. In some circumstances, these effects may be of the cutting edge to be the first correction
of the physics we are using. There are some examples of works treating them in detail: two-electron physics [130],
spin-orbit coupling [131], non-dipole terms [132, 133, 134].

8A precise definition of the short-range potential is that it decreases faster than 1/r for r → +∞.
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for Λ being an arbitrary function of xµ.9 There are several reasons to discuss the gauges in more
detail. First, even if all the gauges are equivalent, they differ in practical implementation and
a suitable choice may work better from the numerical viewpoint. Second, the related gauge degree
of freedom must be contained in our thinking and interpreting of the physics on the microscopic
scale: All the results and interpretations must be gauge invariant.

We start with the Lorenz gauge for the laser field. It means divA = 0 and φ = 0, this gauge is
called velocity gauge in Atomic and Molecular Physics (AMP). We denote the corresponding vector
potential AV . The Hamiltonian under these conditions reads

HV =

(
p+AV

)2

2 + V . (2.3)

A second popular gauge in AMP is the so-called length gauge. We proceed generally without
considering the dipole approximation yet. We recall the relation with the electric field in the
velocity gauge. As there is no charge density related with the external field, we can integrate the
vector potential from the field:

AV (x, t) =
∫ t

−∞
E(t′,x) dt′ . (2.4)

Next, we use a gauge transformation by

Λ(x, t) = x ·AV (x, t) . (2.5)

It directly gives the Hamiltonian in the length gauge:

HL =

(
p+AL

)2

2 + VC − x ·
∂AV

∂t
. (2.6)

We note there is still a non-vanishing vector potentialAL in this gauge, we can relate this expression
to the fields:

φL(x, t) = x · E(x, t) , AL(x, t) = (x · ▽)
∫ t

−∞
E(t′,x) dt+ x×B(x, t) = (x×▽)×AV , (2.7)

the ”rotational” ingredients of the last term suggest its relation with the magnetic field that is not
described by the scalar potential. An insight from the length gauge is that an important part of
the electric field is put out of the vector potential. Indeed, applying the dipole approximation, we

9Using the words of the group theories, all the equivalent configurations belongs to a single orbit of the group.
The different configurations of the field are thus not any particular Aµ, but whole classes of equivalence.
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get AL ≈ 0, the approximated Hamiltonians in both gauges are

HV
A (t) = (p+AV )2

2 + V , (2.8a)

HL
A(t) = p2

2 + V + x · E . (2.8b)

where AV and E are only time-dependent, but not space-dependent. The advantage of the length
gauge is that there is no need of numerical integration – introducing numerical errors – of the field
in the case an analytic form is not available, which is exactly the case of the multiscale model
in this work since the electric field is obtained by the Maxwell solver. Next, the length gauge
is a logical starting point for studies using an adiabatically extended static field as done for the
ionisation studies. However, both gauges are important as the velocity form is better suited for
some numerical schemes (see Section 7.3.2).

2.3 Source term of HHG

We now focus on the source term needed in the wave equation (1.12a). The source is not the current
density, but its time derivative. Because it provides the link with the macroscopic physics, we do not
need the result with the atomic resolution: an averaging over the microscopic volume is sufficient.
We use a trick to obtain this term directly by a single expected value from the wavefunction.

The starting point is the average value of the current in the dipole approximation10

⟨j⟩ =
∫
ψ∗(p−A)ψ dV = ⟨ψ|p|ψ⟩ −A(t) , (2.9)

where we used the Gauss theorem and ⟨ψ|A|ψ⟩ = A since A is not a function of x. The second
step is to apply the Ehrenfest theorem to obtain11

∂⟨j⟩
∂t

= ∂⟨p⟩
∂t
− ∂A(t)

∂t
= −⟨ψ| ▽ (V − φ)|ψ⟩ − ∂tA = −⟨ψ| ▽ V |ψ⟩+ E . (2.10)

This is a key expression for implementation: One needs to compute only the average value of ▽V .
Because the gradient is computed analytically, it is a single-step numerical operation. In contrast,
if we compute it step-by-step from the wavefunction, we compose numerical errors from 1) the

10There is no need to specify the gauge, as the current is gauge-invariant, we are not limited to velocity nor length
gauge.

11We can easily see that this calculation is gauge-invariant obtaining the field E either from A or from the scalar
potential φ. Another interesting point that it also provides insight in the non-dipole corrections that would emerge
from ⟨ψ|A|ψ⟩, with space-dependent A. The vector potential would then weight the spatial distribution given by the
wavefunction.
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differentiation to get the current, 2) averaging the current, 3) the differentiation of the averaged
current with respect to time.

We use this expression also to get further insight in the response of atoms to external fields.
We decompose the wavefunction into the bound and continuum part: |ψ⟩ = |ψb⟩ + |ψc⟩, we show
an invariant procedure to obtain such a projector in the next chapter. It gives

∂⟨j⟩
∂t

= ⟨ψb| − ▽V + E|ψb⟩︸ ︷︷ ︸
response of bounded electrons,
the index of refraction included

+ 2 Re ⟨ψc| − ▽V + E|ψb⟩︸ ︷︷ ︸
HHG + ionisation

+ ⟨ψc|E|ψc⟩︸ ︷︷ ︸
free electrons

−⟨ψc| ▽ V |ψc⟩︸ ︷︷ ︸
re-scattering

. (2.11)

This expression allows us to assign various terms to respective processes: bound-bound transitions
are responsible for linear and non-linear optics below the ionisation threshold.12 bound-continuum
transitions are the essence of HHG physics as explained with the three-step model. continuum-
continuum transitions contain two parts: 1) ⟨ψc|E|ψc⟩ is the propagation of a free electron in the
field. Considering that within the dipole approximation ⟨ψc|E|ψc⟩ = E ⟨ψc|ψc⟩ and ⟨ψc|ψc⟩ is pro-
portional to the plasma density per single atom, we have incidentally derived the plasma frequency
from quantum physics. This treatment is strictly analogical (only by replacing the classical dynam-
ics by its quantum counterpart) to the classical-textbook microscopic solution from Section 7.5.D
of [118]. 2) ⟨ψc| ▽ V |ψc⟩ is the re-scattering of the electron on the ionic part, its high-frequency
components are usually considered as corrections within the HHG process.

2.4 Strong-field approximation (SFA)

To conclude the methods for computing the desired source term, this section provides a computa-
tionally simpler alternative compared to the TDSE. Most of the content of this Section is adapted
from [126], where more details and comments are provided. The principal idea of this approach is
to use an Ansatz of the solution of the TDSE, |ψ(t)⟩. The solution is assumed in the superposition
of the ground state, |ψg⟩, and plane waves, |k⟩.13 The Ansatz then reads14

|ψ(t)⟩ = a(t) |ψg(t)⟩+
∫

dk3b(t,k) |k⟩ , (2.12)

where b(t,k) is unknown function acting as continuous coefficients of the expansion; a(t) describes
the depletion of the ground state with the eigenenergy Eg due to ionisation and if applied, it is

12We note that the binding forces of the inner electrons are of comparable size. SAEA becomes then questionable
for these particular processes.

13The plane wave with the momentum k is defined as ⟨r |k⟩ = (2π)−3/2 exp(−ik · r).
14In fact, this form is not gauge invariant because there is no unambiguous way to choose |ψg⟩. We will return

to this question in Section 3.1.6 after we have addressed the gauge invariance in detail in the precedent Sections of
Chapter 3.
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added from an additional model of the ionisation (we will discuss several approaches in Section 3.1).
The result is obtained by inserting the ansatz directly into the Schrödinger equation. It turns out
to be a differential equation for b(t,k), with the solution

b(k, t) = −i
∫ t

−∞

(
E(t) ·

〈
q(k, t, t′)

∣∣x ∣∣ψg〉) e
−i
(

q2(k,t,t′′)
2 −Eg

)
dt′′

dt′ , (2.13)

q(k, t, t′) = k +A(t′)−A(t) .

The source term of HHG is retrieved from the dipole d(t) = ⟨ψ(t)|x|ψ(t)⟩.15 Using (2.11), we keep
only the bound-continuum contributions. Expressing the dipole in the spectral domain, we have its
final form

d̃(ω) = − i√
2π

+∞∫
−∞

(∫ t

0
dt′
∫

d3k
[
E(t′) · τ (k +A(t′))ei(ωt−S(t′,t,k))

]
τ ∗(k +A(t))

)
dt+ c.c. , (2.14)

S(t′, t,k) =
∫ t

t′

(
(k +A(t′′))2

2 − Eg

)
dt′′ , τ (k) = ⟨k|x|ψg⟩ .

This integral form of the dipole is suitable for Saddle point approximation. The transition dipole
elements, τ (k), give the transitions between the ground state and continuum states. If the contin-
uum is approximated by the field-free eigenstates of the momentum, it is suitable to compute them
from the p-representation:

τ (p) = −i∂ψg(p)
∂p

, (2.15)

where ψg(p) is the wavefunction of the ground state in the p-representation.
One possibility is to employ it only in the integration over k-space. This provides a fully

quantum model of HHG. Practically, there is needed only one numerical integration over t′ to get
the dipole in the time domain,

d(t) = −2 Re i
∫ t

0

(
E(t′) · d(k(sp)

t,t′ +A(t′))
(
−2πi

(t− t′)

) 3
2

e−iS(t′,t,k
(sp)
t,t′ )

)
d∗(k(sp)

t,t′ +A(t)) dt′ , (2.16)

where k(sp)
t,t′ = −

∫ t
t′ A(t′′) dt′′/(t− t′) gives the saddle point of the phase. The spectral dipole d̃(ω)

may be obtained by a fast FFT implementation.
Another possibility is to use Saddle-points in all the integrals, the resulting dipole is then

15Compared to the TDSE, the source term is there expressed by the dipole form. Its second derivative is needed
to match ∂tj.
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obtained only from a set of non-linear equations [136, 82],

ω = (k +A(tr))2

2 − Eg , Eg = (k +A(ti))2

2 , k = −
∫ tr
ti
A(t′′) dt′′

(tr − ti)
, (2.17)

for the unknowns ti and tr.16 Substituting the solutions of (2.17) back to the expression of the
dipole (2.14), the dipole reads

d̃(ω) ≈ − i√
2π

(
−2πi√
det Φ′′

ω

) 5
2 [

E(ti) · τ (k(0) +A(ti))eiΦω(tr,ti,k(0))
]
τ ∗(k(0) +A(tr)) + c.c. , (2.18)

Φω(t′, t,k) = ωt− S(t′, t,k) , (Φ′′
ω)ij = ∂2Φω

∂ξi∂ξj

∣∣∣∣
ξ

(0)
i

,ξ
(0)
j

,

where ξk ∈ {t, t′, kx, ky, kz} and ξ
(0)
k are respective solutions of (2.17). An important consequence

is that (2.18) manifestly shows the intrinsic phase of the dipole, which principal contribution comes
from Φω(tr, ti,k(0)). See also [137] for more details on using this method for describing both ionisa-
tion and HHG for advanced configurations of the driving field and microscopic targets. In a simple
case, the dipoles may be easily tabulated.17 It then allows to create a computationally cheap mod-
ule of the multiscale model, which is reduced into a table-lookup. The numerical approach we used
to find (2.18) is explained in Section 7.8.

Finally, it turns out that the form of the dipole as a function of the amplitude of the driving
field follows the same pattern for different harmonics in well-defined spectral regions of the plateau
and the cutoff (Fig. 1.2). The dipole is then fitted as [138]

d(IIR, ω) ≈ |IIR|
qeff

2 e−iαIIR . (2.19)

This is illustrated in Fig. 2.1. It also reveals the correspondence with the classical picture of long
and short trajectories: There are two corresponding solutions in the plateau and they merge into
a single solution in the cutoff. This classical picture is illustrated in Section 2.2 of [139]. Further
analysis, which also provide methodology to retrieve α more precisely without the Saddle points
in t and t′ is in [140].

16A physical meaning is assigned to the equations. They represent, respectively, the recombination process at
time tr, the ionisation process at ti and the conservation of the momentum, p, during the excursion in the contin-
uum [126]. However as Eg < 0, only a complex ti may solve the second equation, it thus requires the extension of
the problem into the complex plane.

17Formally, the set of equations (2.17) is given for a linearly polarised monochromatic plane wave. However, it
can be easily extended to linearly polarised laser pulses with a well-defined central frequency until the envelope of
the pulses is slowly varying; see the discussion in 7.8 for more details.



2.4. Strong-field approximation (SFA) 33

0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0 0 . 0 2 5 0 . 0 3 0
- 2 5 0

- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0
C u t - o f f

Φ
 [ra

d]

I  [ a . u . ]

 s h o r t  t r a j e c t o r y
 l o n g  t r a j e c t o r y
 � 1 =  8 2 0 0  a . u .
 � 2 =  2 8 0  a . u .
 � 3 =  4 5 0 0  a . u .

P l a t e a u

0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 . 1 2 0 . 1 4
1 E - 1 6
1 E - 1 5
1 E - 1 4
1 E - 1 3
1 E - 1 2
1 E - 1 1
1 E - 1 0

1 E - 9
1 E - 8
1 E - 7
1 E - 6
1 E - 5 P l a t e a u

|d|
 [a

rb.
u.]

E  [ a . u . ]

 s h o r t  t r a j e c t o r y
 l o n g  t r a j e c t o r y
  q ( 1 )

e f f  =  3 5
  q ( 2 )

e f f  =  4 . 5

C u t - o f f

Fig. 2.1: The expression of the generated dipole in dependence on incident field amplitude. The left figure
shows the phase Φ and its fits Φ ≈ −αI, the right panel shows the the modulus. Estimated values of
parameters are α1 ≈ 8200 a.u., α2 ≈ 280 a.u. and α3 ≈ 4500 a.u.. This simulation has been done for H35 in
neon (IP = 0.792 a.u. with an incident 800-nm light). The intensity is given by I = E2 (in atomic units).
This figure is reprinted from [126].
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3. COMPREHENSIVE PICTURE OF IONISATION

This chapter provides a comprehensive physical analysis of the ionisation process. The main goal of
the chapter is to arrive to a consistent definition of the probability of ionisation from the quantum-
mechanical viewpoint and apply this definition to get a novel insight into traditional ionisation
regimes, which are described in the multi-photon, tunnelling, or over-barrier terms.

One of the reasons why this problem is non-trivial is the gauge invariance. We recall its main
ideas: A physical state is a class of equivalence of the corresponding gauge group. A well-defined
physical observable cannot depend on the choice of a particular member of the class. It turns
out that this makes it difficult to define ionisation during the interaction of the atom with an
external electromagnetic field. In this chapter, we arrive to the Lagrangian formulation to find
a meaningful energetic distribution of the particle in the field. For the sake of simplicity, we
stay within the SAEA and treat only single-ionisation. However, some of the concepts may be
generalised without difficulties into multiple-ionisation.

We use a history-based course in this chapter and first review the traditional pictures of ion-
isation in Section 3.1; it is followed by the unambiguous way to study ionisation in Section 3.2.
Alternatively using a theoretical top-down approach, these two sections could be followed in the
reversed order starting with the unambiguous definition and arriving to the traditional pictures as
specific limit cases. Finally, both pictures are connected by a practical example investigating the
traditional regimes in Section 3.3.

3.1 Practical approaches to ionisation

We start with recalling an intuitive picture of the ionisation: the atom is ionised if the active
electron is outside of its volume. This gives the probability of ionisation as

P (t) = 1−
∫
Vatom

|ψ(t,x)|2 d3x . (3.1)

This quantity is clearly gauge-invariant, it is then a good definition of an observable quantity.1

However, the problematic parameter for a rigorous definition is Vatom we would like to interpret

1There is also a way to define this via a projector P =
∫

x∈Vatom
|x⟩ ⟨x|, using again the Bochner integral.
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it as the volume of the atom. But there is no clear definition of such a volume, so there is still
ambiguity in the definition. Since quantum mechanics is a probabilistic theory, one may formalise
the definition by using, for example, the idea of 68–95–99.7-rule2 that may help to grasp an intuition
about the physics. The intuition comes from the usual interpretation of processes in the x-space.
Next, there is also a link with the projection onto the bound states. They are exponentially dumped.
If the electron is outside of this region, we can say it is ionised for practical purposes with all the
definitions in agreement. The only problematic part is when there is an electronic wavepacket
passing through the atomic volume as, e.g., during re-scattering. In this case, the presence of the
wavepacket remaining within Vatom is not a sufficient criterion to define it as bound.

3.1.1 Adiabatic external field

Using the volumetric definition of the ionisation, we move to practical computational methods.
One of the main task is to resolve the time-dependent aspect of the ionisation. We start with
a simple model: an atom in a static external field. The static case will be adiabatically extended to
a dynamic case; it requires further assumption, namely,the time variations are slow compared to the
electronic dynamics. (See the time scales within the ionisation process discussed in Section 3.1.2.)
As we build this part of the work using bottom-up path, we discuss generalisations in Section 3.1.6.

The methods we start with share one notorious machinery of quantum mechanics: the pertur-
bation theory. It is natural to use the external field as the perturbation. Usual convention for a 3-D
Stark Hamiltonian of the system is

Hstatic = p2

2 −
1
r

+ Ez , (3.2)

E is the ”small” parameter for the perturbative series. This result is afterwards extended to time-
evolving fields using adiabatic approach. The important quantity is thus the so-called ionization
rate Γ, it is defined as the probability of ionisation per unit of time. Since the field is static at
the first step, the relevant Hamiltonian is the length gauge (2.8b). One then computes Γ(E), the
adiabatic extension assumes the validity of Γ(t) = Γ(|E(t)|). This quantity enables to establish
a rate equation for the probability of ionization

dP (t)
dt = −Γ(t)P (t) , with P (t→ −∞) = 1. (3.3)

The rate equation is a fundamental relation to link the microscopic and macroscopic physics.
P is the probability of the single scrutinized system being ionised. If P is multiplied by the total
number of atoms N , the number of free electrons is then Ne = PN . A different normalisation gives

2This well-known empirical rule is named after the σ–3σ deviations of the standard distribution.
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the density of the plasma ϱe = Pϱ, where ϱ is the atomic density.
The ionisation rate is frequently averaged over the fast oscillations of the external field, Γ̄(t) =

⟨Γ(t)⟩T0
. This is usually done if the slowly varying envelope approximation is applicable, see the

details of the propagation in Section 6.1.2. The averaging then reduces the number of required
points per optical cycle (fast oscillations being removed).

Now, we present the common historical root of the methods and then we discuss two families
of practically used methods related to different physical pictures.

Early historical approach

The idea to use quantum mechanics to treat ionization using static fields came early with the
foundations of quantum mechanics at 1928, Oppenheimer [106] proposed to correct the perturbative
series for the Stark effect and estimated the dipole transition matrix element from the bound to
continuum state.

The need for practical quantitative calculations increased later with the development of laser
technique generating optical fields strong enough to ionize atoms. It led then to the development
of various quantitative models, which we introduce in the following sections. Due to the high
interest for applications, the comparison and calibration with experiments has been exhaustively
studied [141, 142, 143, 144].

Probability flux of electron leaving the atom

The first family of methods uses the picture of the volumetric definition of the ionization. The
idea is to take (3.1) as the definition of ionisation P , and use the continuity equation in the
integral form. One then estimate the probability current flowing through the boundary ∂Vatom.
An analytic estimation of the current from WKB approximation of bound and continuum state
comes from Smirnov and Chibisov [107]. The ionisation rate turns to be the surface integral of the
probability current flowing out of the atomic volume: Γ = −∂t

∫
Vatom

|ψ(t,x)|2 d3x =
∫
∂Vatom

j dS.
There is a large variety of improvements and studies based on this methods until nowadays, we
recommend one of recent articles and references therein [145].

The calculations within the WKB approximation are rather technical [107]. There are the forms
from, respectively, [146] and [147]:

ΓTI(E) = C2
l

2|m||m|!
(2l + 1)(l + |m|)!

2(l − |m|)!
1

κ
2Zc

κ
−1

(
2κ3

E

) 2Zc
κ

−|m|−1

e− 2κ3
3E , κ =

√
2IP , (3.4a)

ΓTIcorr(E) = ΓTI(E)e−α̃E . (3.4b)
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l and m are quantum numbers of the valence orbital. Zc, IP , Cl and α̃ are parameters of the model.
”TI” stands for the tunnel ionisation and ”TIcorr” takes into account the exponential correction
factor. The idea behind this correction is that once the field is strong enough to fully suppress the
barrier, there is no tunnelling necessary for the ionisation. In this regime, the assumed form from
the WKB-approximation becomes inaccurate overestimating the rate [147]. From the practical
point of view, the result of any of the techniques is a table (E ,Γ(E)). Furthermore, Γ(E) is usually
an analytic function. The table can be used to compute the density of neutrals, ions and free
electrons.

Complex-rotation method

The second family of methods relies on the spectral theory of non-Hermitian operators. It was
first studied by Aguilar, Balslev and Combes for the decay of autoionised states [148, 149]. Its
modification for Stark Hamiltonians was proposed by Ira Herbst [108, 150]. This method is called
complex rotation because the class of the non-Hermitian operators comes from complex spatial
coordinates (rotated in the complex plane). The rotated Hamiltonian is

H̃θ(r, ϑ, φ) = Hstatic(eiθr, ϑ, φ) , (3.5)

where the arguments denotes the spherical coordinates, and θ is a free parameter. A curious
feature is that the atomic term, 1/r, is frequently a perturbation in the mathematical research as
Ez affects stronger the spectral properties of Hstatic. The key equation of the complex rotation is
the eigenvalue problem of H̃. It turns out that the eigenvalues are complex, closely linked with the
eigenvalues of Hstatic, and the bound eigenenergies are independent on the choice of θ. The key
idea is then to write the evolution of the norm of the corresponding bound state

∥ψ0(t+ ∆t)∥ = e2∆t Im(E0) ∥ψ0(t)∥ . (3.6a)

We simply identify the ionization rate as

Γ = −2 Im(E0) . (3.6b)

(Note that Γ = 0 for the field-free case, E = 0, [108, 150]. In the case of a numerical computation,
the non-zero imaginary part of E0 is then related to the numerical precision.)

A practical computation is usually done numerically by solving the eigenvalue of a finite-
dimensional representation of the non-Hermitian Hamiltonian relying on the same orbit, in the
means of the group of complex rotations, as the Hermitian realisation. Mathematically, there is
also one complication of this numerical approach, Cerjan et. al [151] manifested that the fundamen-
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tal difference between finite-dimensional and infinite-dimensional Hilbert spaces plays an important
role in that case. There is involved a residual part of the spectrum that vanishes only in the infi-
nite dimension. Such a property cannot be correctly included in a finite dimension!3 Despite these
drawbacks, this method is shown to still estimate the ionisation rates accurately [152, 153]. Further
details about mathematics behind the extension of quantum mechanics into the complex plane are
discussed in Section 3.1.5.

3.1.2 Ionization regimes in an oscillating field

A rule of thumb [154] to divide the ionization mechanism is to use the so-called Keldysh param-
eter γ =

√
Ip/(2Up) =

√
2Ip/A0. There are three physical pictures based on the amplitude of

the field together with the energy per photon characterised by the frequency of the field. Us-
ing the aforementioned WKB approach, Keldysh parameter is rewritten as γ = 2πTT /TF , where
TT =

√
2Ip/E0 is the tunnelling time in the words of WKB approach and TF is the period of the

oscillating field. This provides insight that tunnelling dominates, γ < 1, when the potential is
suppressed long enough to allow the electron to escape. Another explanation is needed for γ > 1.
We list three possibilities for usual explanations in Fig. 3.1.4

Fig. 3.1: The classical picture of the ionisation regimes by an optical field. (a) A sketch of the potential and
its electronic ground states residing Ip below the continuum. (b) The multi-photon regime. The potential is
only slightly distorted and the ionisation is explained that the electron gain the necessary energy to leave the
potential by absorbing a sufficient number of photons to get in the continuum. (c) The tunnelling regime.
The potential is significantly distorted and the electron may escape due to the quantum tunnel effect. (d) The
electron may escape even classically. Used from [155] under the CC-BY licence.

3It is then a fundamental example, when a finite-dimensional Hilbert space can never describe correctly quantum-
mechanical nature of infinite dimensional spaces. Another example is the canonical commutation relations.

4Note that the purpose of the distinction of the different regimes is to provide a basic picture of the underlying
mechanisms. A detailed treatment is more complex, especially for γ ∼ 1, and it will be discussed in detail in the rest
of this chapter.
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Multi-photon ionization (MPI), γ > 1

The potential of the atom is not suppressed by the external field enough for leading to tunnelling.
The ionization energy for exiting the potential well is gained by absorbing many photons.

Tunnel ionization (TI), γ ≲ 1

The Coulombic potential of the atom is significantly suppressed by the external field. The electron
still cannot freely exit the atom, however, the classical barrier is weakened enough that the electron
may exit atom by the tunnelling effect. This is the framework of the WKB approximation discussed
earlier.

Over-barrier ionization (OBI), γ ≪ 1

The Coulombic potential of the atom is fully suppressed by the external field. The electron exits
the atom even classically. A simple criterion of this process is obtained by −1/x0 − Ex0 = −E0,
E0 is the ground-state energy and x0 the position of the maximum of the potential. This model
represents that the ground-state energy (without considering the Stark shift) lies exactly at the top
of the suppressed Coulomb potential in the direction of the field. The critical field of this model is

Ecrit = E2
0

4 . (3.7)

This value is obtained fully in the low-frequency limit.

3.1.3 Low-frequency limit

As we intend to use the results in the adiabatic limit, and Keldysh parameter is a function of
the field-frequency; we seek for a case where the oscillations do not play an important role. The
key is the ponderomotive energy (1.1): Up = IL/(4ω2

L), where IL and ωL are the intensity and
fundamental frequency, respectively, of the oscillating field. The Keldysh parameter can be then
scanned varying only IL with ωL being fixed. The adiabaticity assumption can be linked with the
quantum system following the evolution of the field. Due to the relation of ωL with the wavelength,
it is then linked with the dipole approximation as well.

3.1.4 Comparison of various rates

Here, we provide an example of various ionisation rates computed for argon. There are two methods
based on the tunnel ionisation, complex rotation (CR) and a phenomenological fit. The results for
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Fig. 3.2: The comparison of the ionisation rates Γ in argon computed by various models in different scales.
Upper panels show Γ in linear scale. a) shows that the TIcorr fails for high intensities; however, fields
under our consideration are within the range of b); the field strength 0.1 a.u. gives the intensity about
3.5×1014 W/cm2. Lower panels present them in log scale, c), and log-log scale, d). Γphenom = a|E|k is linear
in the latter plot because log10(Γphenom) = log10 a+ k log10 |E|.

the rates are presented in Fig. 3.2. We give also some results in this section in the SI units and
explicitly denote it when used.

At the instant, we use CR as a reference since this method is considered as the most accurate
from the mentioned works [147, 153], while TI overestimates it. The plot of the rates confirms this
statement. TIcorr and CR are similar up to some point before E = 0.2 a.u., TIcorr decreases after
this point due to the correctional exponential damping term e−α̃E . It shows a limitation of TIcorr
since it leads to lower ionisation rate for higher field in this region. It is also worthy to note that
the rates are usually depicted in log-scale. It is useful to show the global behaviour of the function,
especially for the fast incremental phase in a weak field; however, the amounts of neutrals, Nn(t),
and free electrons, Ni(t) = Ne(t), retrieved from the rate equation (3.3) requires a direct integration
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Fig. 3.3: A numerical experiment of the ionisation in argon by a 50-fs (FWHM) Gaussian pulse a). The
peak intensity I0 = 1.5×1014W/cm2 for this pulse, y-axes show field strength in atomic units and SI (V/m).
The ionisation probability Pi during the interaction with this pulse is shown in b). Panel d) shows the
probabilities for a pulse with I0 = 2.25 × 1014W/cm2 with all other parameters kept the same. We also
present a linear plot of the ionisation rates in the region of field-strengths reached by the pulse a).

of Γ.

Our goal is to investigate the ranges where there is partial ionisation of targets. In other words,
the target is not fully ionised nor the ionisation is negligible – a precise ionisation model is not so
important in these limit cases. We have chosen two configurations for illustration shown in Fig. 3.3.
First I0 = 1.5× 1014 W/cm2, a value giving the ionisation about 10 % that is sometimes referred
to be optimal for experiments (see a detailed discussion in the section 6.3). Second, the critical
field Ecrit = I2

p/4 ≈ 0.08 a.u. ≈ 2.25× 1014 W/cm2 is reached at the maximum of the envelope.

The main result is that TI gives significantly different probabilities of ionisation than TIcorr
and CR. The relative difference between TIcorr and CR is

∣∣∣P (TIcorr)
i (tf )− P (CR)

i (tf )
∣∣∣ / ∣∣∣P (CR)

i (tf )
∣∣∣ ≈

16 % after the interaction in tf . Looking at the ionisation rates, the main contribution to ionisation
occurs for fields |E| > 0.05 a.u. for all the models. It means that the ionisation is almost negligible
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for lower field amplitudes.
Since the relevant region of field-strengths is quite narrow, we tried also a phenomenological

model of ionisation Γphenom = 3× 1015|E|8 (in atomic units). The motivation for this model is that
it is sometimes used as a simple analytic model of ionisation [156]. This model comes from the
multi-photon regime, where the power of |E| is associated with the number of absorbed photons.
However, as these models relies on the extension of a static field, this explanation is not satisfactory
for this case. We can rather see it as a fitting parameter characterising the non-linearity of (3.4)
in the vicinity of the field |E| of interest. The numerical parameters of this model are chosen to
correspond to TIcorr for the lower peak intensity. The model works well in this narrow region and
its use may be then justified in some cases. However, if we go beyond this region (Fig. 3.3d)), there
is a significant discrepancy.

3.1.5 Formalization of the static-field methods

We started the practical methods motived by their need for practical applications; we now add
some formal remarks that should be kept in mind while using them.

First of all, the presence of a static field strongly changes the nature of the physical system.
A field-free atom possesses continuum with only non-negative eigenenergies. This is not the case
for the Stark Hamiltonian (3.2). The continuum spans all real numbers and the eigenfuctions are
the Airy functions instead of the Coulomb wave. Actually, the studies of the spectral properties of
the Hamiltonian then takes the atomic potential as a perturbation (1/r is an integrable singularity
in higher dimensions, thus the singularity is not so disturbing). On the other hand, this model is
an idealization and the static field can never span the whole space, we conjecture that taking into
account a large but finite region with the electric field, i.e. the electric field vanishes at infinity,
resolves at least the problem of the lower-unbounded spectrum.

Revising the probabilty-flux-approach, the usual approach glues the state inside the potential
well with a free state given by the Airy function outside the well with the same eigenergy. It means
that the electron is born at the edge of the classically forbidden region with zero-initial velocity. It
was pointed out [157] that TI may overlap MPI. This means the energy may be changed. Further
discussion about the quantitative validity of the approach is in [145].

The complex-rotation method is also perturbative [150], one of the motivation for its study
is that the perturbation series of the Stark Hamiltonian is classically divergent and only Borel-
summable [158]. This summability is necessary for usual perturbative series in quantum mechanics
contained in most textbooks. The motivation from the mathematical point of view cannot be
expressed better than by Herbst and Simon [158]:

Most quantum mechanics texts present three examples of time-independent perturbation
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theory as typical and important applications of the method: the x4 anharmonic oscil-
lator, the Zeeman effect in atoms and the Stark effect in atoms. Ironically, all three
perturbation series are divergent!

A method that can rigorously treat this problem is the so-called Borel summation. It may be
introduced by

A(z) =
+∞∑
n=0

anz
n =

+∞∑
n=0

n!an
n! z

n =
+∞∑
n=0

∫ +∞

0
e−tan

n! (tz)n dt =

=
∫ +∞

0
e−t

+∞∑
n=0

an
n! (tz)n dt =

∫ +∞

0
e−tB(tz) dt . (3.8)

If RHS is finite, one can assign its value to A(z) even in the case the sum ∑+∞
n=0 anz

n is diverging.
It can be seen as a regularisation method because the interchange of the sum and the integral is
not formally possible for diverging sums. The expression B(ζ) = ∑+∞

n=0
an
n! ζ

n is the so-called Borel
transform of an. This method is straightforward in the sense that it leads to an analytic function
(Watson’s theorem).5 The limitation on analytic function is important. Let f be defined as

f(x) =

e− 1
|x| , x ̸= 0 ,

0 , x = 0 ,
(3.9)

it is easy to infer that f ∈ C+∞(R), but its MacLaurin series is 0 (while f is not).6 Particularly
it means that for any analytic g, the function g + f has exactly the same MacLaurin series as g.
The role of an e− 1

|x| -term in the Stark effect is exactly the key property recognised in very early
studies [106].

As far as we know, a full mathematical correctness of this method remains unproven since it
has been discussed together with the range of validity by Herbst [150]. There is still undergoing
mathematical research in this domain [159].

This theory may be seen also from a more general viewpoint by considering the time depen-
dence. Possible solutions head towards non-Hermitian quantum mechanics [160, 161] or towards
the extension of usual Hilbert spaces into Hardy spaces [162, 163, 164]. The second approach
basically formalises analytic continuation of wavefunctions into the complex plane. An important
consequence is a formal treatment of causality similarly as in classical physics (see the discussion

5The analyticity is a unique property that is necessary, e.g., for extending real function into complex plane. Also,
there is at most one possible analytic continuation of such a real function.

6By symmetry, only right neighbourhood of 0 can be considered. One has dn

dxn

∣∣
x→0+

f = limx→0+ Pn

(
1
x

)
e− 1

x =

limy→+∞
Pn(y)

ey = 0, where Pn is an n-th order polynomial.
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after (1.5)), which also provides a proper explanation of incoming and outgoing states in the contin-
uum. We favour the mathematical research in this area since it may have important consequences
for our subject.

3.1.6 Approximate solutions without adiabaticity

The next step is to use more advanced models overcoming adiabaticity but still below the compu-
tational effort required by fully numerical TDSE. A method directly extending the previous results
is the so-called PPT model [109, 110, 165, 166]. An analytic expression for the ionization rate is
retrieved by approximate methods. One of the great features is that the multi-photon regime for
weak intensities is covered. The ionisation rate, Γ, is proportional to INp , where I is the intensity
and Np the number of absorbed photons. The main outcome of these results is analytical formu-
lae. These formulae may be used to construct a computationally fast model, which is essential
for macroscopic approaches. The rates may be further extended to take into account different
ionisation regimes [167].

The complex-rotation method can be also extended to include the external electromagnetic field.
See [168], which introduces the complex rotation applied also for quantised photons interacting with
the target.

A further analysis is obtained using the SFA (Section 2.4) provides a closer insight. The main
goal is to model fully the interaction – it comes from the need to accurately describe also dynamics
after the ionization. This is exactly what we have done in the context of HHG, which requires
to describe the re-collision. Historically, SFA preceded HHG, and the interest was originally to
use it for ionisation. It had started by the generalisation of the Keldysh theory using S-matrix
formalism [169], before it celebrated a great success by grounding the quantum-model of HHG [25].
We have introduced SFA in Section 2.4, writing the wavefunction by the ansatz

ψ(t,x) = ψg(t,x) + ψc(t,x) , (3.10)

where ψg(t,x) is the field-free ground state, and ψc(t,x) is the perturbation given by continuum
states, we leave again technical details to the references. As we already discussed, the bound states
can be defined only up-to gauge equivalence: The gauge fixing is then imposed there. It motivated
next research of SFA together with the study of various perturbative orders studied [170]. It
explains that the perturbative series differ for different gauges; however, the perturbation series are
connected together by the gauge transforms of the unperturbed solution. We will clarify the choice
of the gauge from energetic viewpoint in the following section, the respective decomposition relies
on (3.16). The study [170] also mentions that the high orders of the perturbative series leads to
a divergence. This is expected results as already explained in [158].
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3.2 Invariant dynamics of ionisation

To infer the ionisation dynamics, it is convenient to do a step back and start with a classical
description. The initial point is thus a classical charged particle in an external electromagnetic
field emphasising the role of general energy in the Lagrangian formulation; which will help in the
construction of the invariant measure of the ionisation. Such an analysis provides also an insight
in the dynamical aspect of the ionisation in various regimes. This section is related to one of the
outcomes of the thesis [111].

3.2.1 Invariant energy & energy measurements

We have done a review of various methods to compute the ionisation together with some practical
calculations. All these calculations have been motivated either by the volumetric definition or the
parturbative approach based on the length gauge (the complex rotation). It means that these
calculations are not invariant. Our goal now is to find an unambiguous framework. This helps us
also to gain further insight in the process.

Let us start with a general classical Lagrangian of an electron interacting with an electromag-
netic field

L = mv2

2 − q(φ− v ·A) . (3.11)

The generalised energy of such a system is given by the formula

E = ∂L

∂v
v − L = mv2

2 + qφ . (3.12)

From this equation we see that the term qφ is not gauge invariant because it can be modified
arbitrarily by φ′ = φ+∂tΛ. What is the physical explanation of this term? It is a potential energy,
meaning that some part of the energy of the system may be deposed as potential energy in the
electromagnetic field. We should emphasise that this is not a choice of global zero of the potential.
As gauge theories are by construction local theories, the energy is set locally in the whole spacetime.
As gauge theories impose the equations for fields, we should not break it without a good reason
by any arbitrary gauge fixing. However, we can use a different freedom in the theory to adjust
the energy: any total time derivative of a function may be added to the Lagrangian. If we add
q(d/dt)

∫ t
0 φ dt, the Lagrangian reads

LI = mv2

2 − qv ·
(
A+

∫ t

0
(▽φ) dt

)
. (3.13)
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We use the subscript I to denote the invariance, as the generalised energy is only EI = mv2/2.
The physical meaning is that we do not allow any energy to be deposed as a potential energy, and
the total energy of the electron is only kinetic.

A further step is the Hamiltonian mechanics. Here, we discuss our system: an electron in
a potential and in external field. Although the nature of the potential in the Hamiltonian is also
electromagnetic, it is clearly distinct from the external field, we then keep this part as a true
potential. The Hamiltonian respecting the invariant construction is

HI =

(
p− q

(
A+

∫ t
0 (▽φ) dt

))2

2m + V (r) . (3.14)

We explicitly denote that there is no gauge fixing at this point, the procedure is that we have first
an external field at any gauge and we get this Hamiltonian in the second step by the freedom in
the Lagrangian mechanics and not in gauge theories. On the other hand, the Lagrangian is already
in the desired form, if the field is in the incomplete Weyl gauge, φ = 0. The velocity gauge (2.3)
is such a gauge. In other words, we can reach the desired invariant form by an appropriate gauge
transform. Last, we emphasise that we do not impose this Hamiltonian for the treatment of the
dynamics of the system; we need to be sure to transform to this Hamiltonian only once we intend
to measure energy.

As we fixed the energies, we stabilised the spectrum. We verify that the spectrum is strictly
preserved also in the quantum-mechanical case within the incomplete Weyl gauge. We infer that
the only allowed gauge transform to preserve the Weyl gauge are time-independent: Λ = Λ(x).
Because the eigenvalue problems(

(p+A)2

2 + V

)
|ψ⟩ = E |ψ⟩ ,

(
(p+A+▽Λ)2

2 + VC

)
|ψ̃⟩ = E |ψ̃⟩ , (3.15)

are equivalent while considering |ψ̃⟩ = eiΛ |ψ⟩, the spectra are preserved within the Weyl gauge. It
proves there are no artificial energy shifts caused by different (sub)gauges within the Weyl gauge.

Having defined the stabilised spectrum, we can invariantly inspect the dynamics of the ionisation
by measuring the energy in time. We now recall the method based on the resolvent calculation to
construct the projectors onto the spectrum of H. We use the Riesz projector for the operator H
onto the energy subspace of the eigenenergy E, it is written as

P (H;E) = − 1
2πi

∮
γE

dz
H − z

, (3.16)

γE is a closed loop in the complex plane circumventing only the eigenvalue E, the integration of the
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operator is done in the sense of the Bochner integral, see chapter I.2 of [171]. Note the analogy with
the Cauchy’s residue theorem from complex analysis. The probability distribution in the energy
space of a given state is then simply P[E = Ẽ] = ⟨ψ|P (H; Ẽ)|ψ⟩.7

This technique is already used to provide great insight of the dynamics. It was empirically
introduced by [112], the motivation there was to use a door function in the spectrum to filter
the energies. Its extension including normalisation is provided in [172], the projector is there
approximated by

P (H;E) ≈ Nϵ,n
ϵ2n

(E −H)2n + ϵ2n
, (3.17)

ϵ can be related to the radius of the chosen curve γE and 2n with the order of the approximation
of the Bochner integral. An advantage is an easy implementation. Finally, there is a normalisation
constant Nϵ,n. The normalisation must be treated with care because there is a subtlety in the
nature of the spectrum. Projecting onto the eigenstates of the point part of the spectrum is related
to the probability of finding the system at this state. However, the continuous part of the spectrum
correspond to a probability density. It thus need to be treated appropriately to keep the correct
units. (See also the discussion in Section 7.2.)

Now, we use P (H;E) to measure the energy distribution in time of our system. It is ad-
vantageous to start with the velocity gauge as aforementioned. It is written within the dipole
approximation as

HV (t) = (p− qA(t))2

2m + VC(r) . (3.18)

There is a further simplification allowing to use the field free-Hamiltonian in the resolvent. We no-
tice that some Hamiltonians with the interaction may be retrieved from the field-free Hamiltonian,
H0 = p2/2 + VC ; we define a unitary operator U = eiχ(x,t). We have

UH0U
† = (p+▽χ)2

2m + VC(r) . (3.19)

We need to emphasise: 1) This is not a gauge transform of the Hamiltonian as the compensating
term for the derivative in time is missing. 2) Not every vector field is conservative, i.e. written
as A = ▽χ (see the Fundamental theorem of vector calculus). Namely, rot▽χ = 0, ∀χ; so that
a magnetic field cannot be described. The field within the dipole approximation may be written

7For mathematical correctness, E is is defined in the sense of the probabilistic random variable while Ẽ is the
classical analytical variable used in (3.16). We will not distinguish them in the rest of the work as the meaning is
clear from the context.
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this way if we choose χ(x, t) = −qx ·A(t). We then rewrite the probability of finding the system
with the positive energy starting from the velocity gauge:

P[E ≥ 0] = ⟨ψV |P (HV ;E > 0) |ψV ⟩ = − 1
2πi

〈
ψV

∣∣∣∣ ∮
γE

dz
UH0U † − z

∣∣∣∣ψV 〉 =

= − 1
2πi

∮
γE

〈
ψV

∣∣∣∣U † 1
H0 − z

U

∣∣∣∣ψV 〉 dz = − 1
2πi

∮
γE

〈
ψL

∣∣∣∣ 1
H0 − z

∣∣∣∣ψL〉 dz =

= ⟨ψL |P (H0;E > 0) |ψL⟩ , (3.20)

where |ψL⟩ is in the length gauge. γE is chosen to circumvent all the energies in the discretised
positive part of the spectrum.

3.2.2 How to define ionization?

We finally answer the question of how to define the ionisation. We suggest the idea that using P[E ≥
0] is a good way to define it. Our motivation is the Kepler problem in the classical mechanics.
Trajectories for E < 0 are closed and always return to the vicinity of the center, in other words, the
particle never escapes from the central area. Contrary, trajectories for E ≥ 0 are non-returning and
it is a reasonable to link them with the ionisation. As we stabilised the spectrum, it is well-defined
at any time. We may see it as a part of the wavefunction that escapes if the field is turned-off
abruptly (we will show that this may be tricky without using the dipole approximation).

This can be seen also in another way. The eigenfunctions corresponding to the continuous
spectrum, σc(H), formally do not belong to the respective Hilbert space H . The Hilbert space
must be rigged to include them [173].8 With a proper extension of the Hilbert space [174, 175],
there are defined so-called outgoing |φ(+)(p)⟩ and incoming |φ(−)(p)⟩ Coulomb waves, which are
assigned to the continuous spectrum of the field-free Hamiltonian H0 and further specified by their
asymptotic behaviour of momentum p. The ionisation may be then defined as the projection onto
the outgoing states after the interaction of the atom with the pulse. These states then allow to find
another form of the projector onto the subspace given by E > 0. The projector is then written

P (H0;E > 0) =
∫ ∣∣∣φ(−)(p)

〉〈
φ(−)(p)

∣∣∣ d3p , (3.21)

which may be used as well in (3.20).
In conclusion, we recall the main interests in ionisation. The dynamics of the ionisation process
8The extension is done in the means of the Gel’fand triple. There is defined a set of test functions Φ ⊂ H

fulfilling additional constraints (usually continuity going beyond L2-integrability). The dual space Φ∗ in the sense of
the scalar product is then larger than H and include generalised functions, as for example the Dirac distribution δ.
The triplet is then formed in the means of inclusion: Φ ⊂ H ⊂ Φ∗. The generalised states then belong to Φ∗. See
also the discussion at the end of Section 3.1.5.
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during the interaction is interesting from the microscopic viewpoint. Our method is a tool providing
the required insight. Moving to the larger macroscopic scale, the microscopic picture is averaged.
The main interest is if the resulting plasma density is quantitatively correct disregarding the details
of the underlying processes. The practical use of this method is then to benchmark simplified (and
computationally fast) formulae discussed in Section 3.1.

3.2.3 Ionisation in the non-dipole case

Before we show the results of practical computations in the next section, we summarise the findings
on the non-dipole case that has been assumed in (3.19). The most important point is that the
spectrum of the Hamiltonian is not stabilised any more. Strictly speaking, we have proved that in
the dipole case the spectrum is stabilised; but we have not proved that it is not stabilised otherwise.
This remainder is proved in Appendix C. Next, the consequence of the space dependence of A
makes it impossible to abruptly turn off the field keeping the continuity of the vector potential.
It also makes impossible to use some fixed states and Hamiltonian as a substitute to compute the
projector (3.16) as done in (3.20). Finally, it makes no difficulty to use still the projector with
γE circumventing the positive real axis. However, the physical picture becomes more complicated.
There are some of the subtleties coming either from limiting or not to the dipole case:

• We limit the consideration on the dipole case, and it allows us to use the field-free Hamil-
tonian H0 with a fixed spectrum. Moreover, the fixation also preserves the eigenstates in
the means of their density distribution |ψ(x, t)|2. It is particularly interesting for the bound
states: the distribution in x-space is identical as in the field-free case. The only difference
is only in the oscillating part of the wavefunction – given by e−iAz. E = 0 is then a clear
threshold between bound and continuum part of the spectrum, which grounds the definition.
The most evident drawback of this approach is that the involved approximation is unphysi-
cal, it violates the solution of the electromagnetic waves by neglecting magnetic components,
breaking the invariants of the field and causality [176].

• E = 0 may be still defined as a threshold in the non-dipole case because the energy is still
invariant. However, the difficulty in this case is that the spectrum is not stabilised and it is not
clear that the bound states and continuum states are not mixed. Because the x-dependence
of the vector potential A creates a true potential term; the situation may be similar as
for auto-ionised states (see [177] for the corresponding model potential) encapsulated in the
continuum. It makes then a difficulty to interpret the split of the spectrum in the positive
and negative parts by the means of bound and continuum states. This discussion is similar
to the one presented in [116], where it was argued that the ionisation must be related with
the possibility of an electron to escape infinitely from the parent ion as we pointed out in the
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classical Kepler problem.

It is not surprising we reach a limit in the precise definition of the ionisation. Being strictly rigorous,
the matter and field are coupled, and the true Lagrangian is (I.1), and we sculptured only part
of it for studying a subsystem. Next, we mention that these studies were static in the sense that
all definitions are done at a fixed time t. In this light, the importance of our study is that we
provided an invariant formulation. This formulation is completely clear in the dipole-case, and the
non-dipole case needs a special care for phenomena requiring such a description as [178].

3.3 Invariant picture of ionisation: Linear, multi-photon, tunnelling processes

We conclude our discussion of the ionisation by a practical example. The perturbative approaches
have brought practical computational methods and also some physical intuition about the process.
However, we warned that this intuition had to be very cautious as it was not strictly gauge-invariant.
Fortunately, we had also introduced an invariant construction in Section 3.2. We may then combine
both paradigms: the perturbative approaches are but a scaffold, which helps us to recognise the
key patterns in the universal construction.

We use a 1D-atom with the ground energy Eg ≈ −0.67 a.u. for our numerical experiments.9 The
atom is subjected to an external field defined by A(t) = A0 sin2 (πt/T ) sin(ω0t), where T = 2πNc/ω0

is the total duration of the interaction, and we measure it by the number of cyclesNc in the envelope.
There are three cases in the study: A) linear, where a single photon can kick-up the electron into the
continuum; B) MPI, where the single-photon energy lies below the ionisation level; C) tunnelling.

The results of energy density distributions are computed from (3.17) by setting n = 1,

ρE(t) = Nϵ,nϵ
2
〈
ψL(t)

∣∣∣∣ ((E −H0)2 + ϵ2
)−1

∣∣∣∣ψL(t)
〉2

= Nϵ,nϵ
2
∥∥∥(E −H0 + iϵ)−1 ψL(t)

∥∥∥2
,

with removing the bound states from |ψL⟩. The results are shown in Fig. 3.4. The corresponding
ionisation probabilities, Pion(t) = P[E ≥ 0](t) =

∫+∞
0 ρE(t) dE. Let us discuss the results:10

A) A linear (single-photon) case with ω0 = 1 a.u., A0 = 0.01, Nc = 8; which yields the Keldysh
parameter γ ≈ 116. A simple energetic consideration of absorbing a single photon gives an
expected energetic peak of the ionised electrons at E = Eg + ω0 ≈ 0.33 a.u. It corresponds
to the resulting energetic distribution ρE(t = Tc). The width of the energetic distribution is

9The respective Hamiltonian (7.23) is discussed in the numerical methods. The soft-Coulomb potential in this
case is V (x) = −1/

√
1 + x2.

10The results were computed by a grid-method in the length gauge with the discretisation ∆t and ∆x within the
box [−xmax, xmax] and energy resolution respectively: A,B) ∆t = 0.1 a.u., ∆x = 0.4 a.u., xmax = 100, ϵ = 0.03;
C) ∆t = 0.05 a.u., ∆x = 0.5 a.u., xmax = 500, ϵ = 0.005.
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expected to be inversely proportional to the pulse duration. It agrees with the distribution
narrowing for t ≳ 25 a.u.. This result thus agrees with the analytic expectations in the main
features.

Regarding other properties, one striking result is the decrease of Pion(t) after each mini-
mum of the electric field E . Such a property cannot be obtained from a rate equation such
as (3.3) because a positive Γ provides only an increasing Pion(t) in time. The rate equation,
however, lacks two important mechanisms: it does not include the re-absorption and ”coher-
ence”. The coherence means that the ionisation process at a given time, t, cannot interfere
with the ionisation at any precedent time t′ < t. This can be illustrated by the means of the
(first-order) time-dependent perturbation theory (TDPT)

P
(rate eq.)
ion (t) = 1− e−

∫ t

0 Γ(|E(t′)|) dt′ ≈
∫ t

0
Γ(|E(t′)|) dt′ , (3.22a)

P
(TDPT)
ion (t) =

∫ +∞

0

∣∣∣∣∫ t

0
eiEt′ ⟨E|E(t′)x|g⟩ e−iEgt′ dt′

∣∣∣∣2 dE , (3.22b)

where |E⟩ is the continuum state with the energy E and |g⟩ is the ground state. The approx-
imation in (3.22a) is valid for small degrees of ionisations. The matrix element ⟨E|E(t′)x|g⟩
corresponds to the transition between |g⟩ and |E⟩ induced by the interaction E(t′)x. The
TDPT provides the coherence in the process by the integration over t′, where various con-
tributions sums coherently. Furthermore, it shows that the most probable channel of the
ionisation comes via E − ω0 − Eg = 0 because the oscillating term in the integral vanishes.
This agrees with the aforementioned expected energy distribution.

Beside these slight decreases, the shape still contains the ”ionisation-ladder” properties,
which means that the dominant contributions to the ionisation come at the maxima of the
electric field E(t).

We return to the viewpoint of the re-absorption. Since bound and continuum states
form a complete set, a decrement of the population of the continuum states is necessarily
an absorption. If this is related to a coherent processes, it is only a wave-particle duality
expressed in different words. The ”absorption” is related to the consideration of occupied
states while the coherence arises from the interference of various paths.

B) The MPI regime uses ω0 = 0.33 a.u., A0 = 0.01, Nc = 4; the Keldysh parameter is the same as
in the previous case, γ ≈ 116. The ionisation probability is much smaller, Pion(T ) ≈ 3.5×10−7

compared to Pion(T ) ≈ 8.5× 10−7 in A). The reason is that γ, thus A0, are the same, but the
peak electric field is different as it scales as ω0A0.

This evolution of Pion(t) is considerably different from the ionisation-ladder in this case as
its shape follows the field. An explanation goes with the interpretation of ρE as the distribu-



3.3. Invariant picture of ionisation: Linear, multi-photon, tunnelling processes 53

tion of the energy of the invariant Hamiltonian HV . We recall the Lagrangian construction;
the energy from the field can be deposed only in the kinetic part and the energy of a given
bound state cannot be shifted as the spectrum is stabilised. The only way to depose the
energy is either to higher energetic bound states (excitations) or in the additional kinetic
energy. This stripes in the distribution ρE in Fig. 3.4B1) shows the portion of the kinetically
deposed energy of the electron, which is dressed by the field. The ratio of the electrons that
makes it out of the influence of the Coulomb potential is much smaller. The ionisation per
half-cycle may be inferred from Pion((1 + 1/2)T0) − Pion(T0), where the times correspond to
two consecutive zeros of E .

C) The tunnelling regime is characterised by γ ≲ 1. In this case γ ≈ 0.57 by setting ω0 =
0.07 a.u., A0 = 2 a.u.. Note that the peak electric field E0 = 0.14 a.u. is then close to the
critical field Ecrit ≈ 0.11 defined by (3.7). The number of cycles is chosen Nc = 4.

The structure in Fig. 3.4C1) is much richer than in the previous cases. There is a build-up
of the interference pattern leading to the ATI-spectrum [179] with the peaks spaced by ω0,
Fig. 3.4C2), from the repeating interferences/re-collisions of the returning electronic wave-
packet with the ionising one. There is also another interference pattern: the ATI-peaks goes
in triplets. This interference is due to the shortness of our pulse and the interference within
the envelope.

Another feature is the maximal energy of the electrons extending up to 6 a.u. at the
maximal oscillations around t ≈ 180 a.u. and t ≈ 220 a.u.. This can be inferred from the
energy balance. Assuming the electron is primary governed by the external field (the role of VC
can be neglected), the canonical momentum in (3.18) is conserved. The distribution ρE shows
that the release of the electrons begins before the maximum of the field approximately in the
first quarter of the half-cycle (t ≈ 150 a.u.) with the zero initial velocity. It gives canonical
momentum pi ≈ − sin(π/4)A0. Substituting this momentum in the maximum, tm, of the field
into the kinetic term of HV , one obtains Ekin.(tm) = ((1/

√
2+1)2)2/2 ≈ 5.8 a.u. ≈ 5Up, which

corresponds the observed extent. It means that this energetic contribution comes only from
the dynamics due to the external field, in contrast with the energy gained by re-collisions [180]
producing energies up to 10Up. The investigation of these processes is currently out of our
scope and would require higher precision in the calculation of (3.16), which can be done, e.g.,
by the resolvent (3.17) of a higher order.

Finally, the structure of Pion(t) exhibits the ladder-like structure again with some finer
structures than P

(rate eq.)
ion (t).
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Fig. 3.4: The energy distributions ρE(t) of the electron during the interaction with the external field for
the three studied cases enlisted correspondingly in Section 3.3. Left panels show the energy spectrum
during the interaction ρE(t). The dashed lines in A1-C1) represents the magnitude, |E|, of the electric field.
Corresponding Keldysh parameters are γ ≈ 116 for A) and B); γ ≈ 0.57 for C). The regime of A) and B)
differs due to the different periods of the respective |E|. The bound states of the potential are removed, the
extent into the region of E < 0 is due to the Lorentzian distribution of the states for E > 0 imposed by the
approximation of (3.16).
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Fig. 3.5: (blue): The ionisation, Pion(t) in time for the cases A)-C). (grey): The magnitudes of the electric
fields |E|.
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3.3.1 Conclusion on various ionisation approaches

In conclusion, we have drafted a complex picture of the ionisation. A correct formulation relies
on the use of the stabilised spectrum and invariant energy measurements. However, the supple-
mentary perturbative approaches may provide physical intuition and fast computational models.
The primary interest of the invariant construction relies in the insight brought by the sub-cycle
dynamics. The understanding of the dynamics and appropriate tools are essential to draw an accu-
rate picture of the process and to help in designing new methods to drive the sub-cycle processes.
Complementary, the implementation of the simplified methods is important for a fast computing
of the plasma density necessary for macroscopic effects.



Part II

PHYSICS OF HHG: MACROSCOPIC SCALE





4. PROPAGATION EQUATIONS

We have described the model to compute the microscopic source term of HHG for an arbitrary
electric field in Chapter 2. The tasks are now: 1) compute the electric field at every macroscopic
point of the medium, 2) sum all the microscopic responses to form a macroscopic picture of the
generation.

In principle, the microscopic source term includes all the effects in both IR and XUV domains.
A direct approach would be then to couple the microscopic response directly with the Maxwell’s
equations (1.11) as done in [88]. We call this approach the strong coupling. However, the resulting
implementation may be very computationally expensive because of the fine discretisation needed
to describe both IR and XUV. Our strategy is then different. First, we note that the XUV spectral
range is weakly coupled with the medium because the overall XUV signal is small compared to the
IR-field. It means that the XUV propagation may be computed separately from the linearity of the
Maxwell’s equations. Second, the source term obtained from the TDSE is necessary for the XUV
field, but standard non-linear optics describe well the response of the medium for the problems of
our interest. In summary, we can decouple several physical processes within the model and treat
them independently.

The outlined procedure then leads to our computation strategy, that we call the weak coupling.
The calculation is then performed in 3 steps: 1) The propagation of the IR-field is computed by
means of standard non-linear optics. 2) The fields are used as inputs of the microscopic solver to
compute the non-linear response of the medium in the XUV region discussed in Section 2.3. 3) The
propagation of the XUV field is computed by means of linear optics.

We can then separate the physical processes and we discuss them in the chapter of this part of
thesis as follows: the rest of this chapter provides a unified framework to derive the propagation
equations from the Maxwell’s equations. Chapter 5 introduces the solution of the propagation of
the XUV field using the linear diffraction theory. These tools are already sufficient to treat the
physics of the thin targets, and we apply it to find the focusing properties of XUV in this geometry.
The multi-scale model is completed in Chapter 6, where the non-linear model of the IR-propagation
is introduced. Finally, we use it to the ab-initio study of the optimisation of the phase-matching
of HHG in pre-ionised media.
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4.1 Macroscopic Maxwell’s equations

Because we are moving to the laboratory scale, we use the Macroscopic Maxwell’s equations (MaME)
to describe the fields,

divD = ϱQ,free , divB = 0 , (4.1a)

rot E = −∂B
∂t

, rotH = jQ,free + ∂D

∂t
. (4.1b)

These equations are an averaged version of (1.11).1 Here we have introduced new quantities H
and D. The former is straightforwardly, H = B/µ0; a more complicated relation would be used in
the case of magnetic materials (far beyond the scope of gaseous media of our interest). However,
the latter is non-trivial D = ε0E + P , where P is the polarisation vector containing both linear
and non-linear responses of the medium. To put the MaME in the context, we link them with the
microscopic description and then derive the wave equation needed for the propagation of both IR
and XUV.

4.1.1 Macroscopic from microscopic

The interlink of these two descriptions is the current density averaged over one microscopic sys-
tem (2.9), [125] which is further decomposed into the bound and continuum part (which may be
done via (C.3)):

⟨j⟩ = ⟨ψb|p−A|ψb⟩+ 2 Re ⟨ψc|p−A|ψb⟩+ ⟨ψc|p−A|ψc⟩ = −jQ,free −
∂D

∂t
. (4.2)

The last equality identifies the source term computed from quantum mechanics and from the MaME.
Because we consider the current induced by electrons, the relation of the probability current and
charge current is simply jQ = −j. Recalling the discussion done after (2.11), various physical
phenomena are clearly seen in this equation:2

1. The continuum-continuum transition, ⟨ψc|p−A|ψc⟩, contains free current, jQ,free. Strictly
speaking, there is also scattering of electrons on the microscopic system, discussed as re-
scattering in HHG.

1From the fundamental viewpoint, macroscopic does not mean that they include more physics than their micro-
scopic counterpart. In contrary, the macroscopic aspect is an averaging, which may simplify the description.

2This schematic form may be modified in the case beyond single active electron for n electron. A j-times
ionised state is

∣∣∣ψ(1)
c , . . . , ψ

(j)
c , ψ

(j+1)
b , . . . , ψ

(n)
b

〉
with a proper anti-symmetrisation. The collisional ionisation may be

included in the model by ⟨ψc, ψc, ψb, . . . , ψb |p−A |ψc, ψb, . . . , ψb⟩. Generalisations to other multi-electron processes
are straightforward.
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2. The bound-bound transition, ⟨ψb|p−A|ψb⟩, is exactly the averaging procedure [125] giving
the principal contribution to ∂tD.

3. The bound-continuum transition, ⟨ψc|p−A|ψb⟩, is related to the HHG (that we neglect
for the propagation of the driver), but also to optical ionisation, which plays a crucial role.
This process violates the formal decomposition jQ,free + ∂tD, because it contributes to both
free, jQ,free and bound, ∂tD, term. The explanation is clear: the electron contributes to ∂tD
until it is unbound by ionisation, then it is described by jQ,free. The ionisation process then
links these two cases.

These effects are accounted in the macroscopic propagation model using approaches of non-linear
optics, our concrete implementation for the IR pulse is in Section 6.1.3.

The remaining part is to scale the current density of a single microscopic system into the macro-
scopic description. Because we do not consider any mutual interactions between the microscopic
systems, the appropriate macroscopic current density is retrieved only by multiplying by the number
density of particles at a given pressure N(p):

j
(macro)
Q = N(p)

〈
j

(micro)
Q

〉
, (4.3)

where ⟨·⟩ stands for the average over the microscopic volume [125]. Because the usual gases of
interest for HHG satisfy the ideal gas law, the number density of particles at a given temperature T
is N(p) = p/(kBT ).3 As we will use only the macroscopic current density, we denote it simply jQ
hereafter.

4.1.2 Wave equation

Now, we derive the wave propagation equation for the electric field E from (4.1). The linear response
in D has a simpler expression in the frequency domain: The dispersion and absorption are given
just by the multiplication by the complex first-order electric susceptibility χ(1)(ω). It means4

D̂ = ε0Ê + P̂ = ε0Ê + P̂lin + P̂non-lin = (ε0 + ε0χ
(1)(ω))Ê + P̂non-lin = ε0εr(ω)Ê + P̂non-lin , (4.4)

Using this expansion, we have(
△+ k2(ω)

)
Ê = µ0 ̂∂tjQ,free − µ0ω

2P̂non-lin + 1
ε0

grad
(
ϱQ,free − div P̂

)
. (4.5)

3Practically, the experiments of our interest are usually done close to the standard temperature and the number
density is thus N(p) = pn0/p0, where p0 is the standard pressure and n0 the Loschmidt constant.

4Throughout this and the following chapter, we find that some effects are more convenient to be described in the
frequency domain while others in the time domain. We thus specify the domain in every equation by denoting the
Fourier transform of f by f̂ or F [f ] or by the explicit integration.
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The linear effects on the left-hand side are indeed encoded in the dispersion relation k2(ω) =
ε0µ0ω2εr(ω) = ω2εr(ω)/c2. The last term in (4.5) mixes various vector components. To find
a solution, we would need to treat the set of the coupled equations. The problem can then be stated:
”Is there a way to approximate the solution to remove the coupling?” First, we need to specify more
the geometry of the problem. The solutions of our interest are beams with a defined direction of
propagation. It decomposes vectors into two subspaces: ∥ along the propagation direction and ⊥ its
transversal orthogonal complement. Generally, the strength of the coupling of the transversal and
longitudinal component is characterised by the parameter f = λ/(2πw) ∼ k⊥/k∥; where λ is the
wavelength of the radiation of interest, w the width of the beam, k⊥ and k∥ the components of
the Poynting vector in the respective directions. The last term of (4.5) may be neglected if f ≪ 1
(see [181, 182, 183]), which is fulfilled in the geometries that we will investigate in this work. The
propagation of the field is then described by(

△+ k2(ω)
)

Ê = µ0 ̂∂tjQ,free − µ0ω
2P̂non-lin . (4.6)

The way to solve this equation is split for the XUV and IR beams. This is the subject of the
following two chapters.
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We discuss two topics in this chapter. First, we introduce the description of the XUV fields using the
diffraction in Section 5.1. This completes the apparatus needed to study the focusing of harmonics
on thin targets. The model is then applied to this configuration in Section 5.2. The numerical
multi-scale approach is complemented by simpler physical model to recognise the key mechanisms.
This chapter is concluded by using a phenomenological model of HHG in long media in Section 5.3.

5.1 Macroscopic model of HHG

Here, we explicitly determine the macroscopic XUV field. Since there are no non-linear effects
considered for XUV, only the source ∂̂tjQ remains on the RHS of (4.6).

Before we derive the far-field distribution, we briefly discuss the locally generated electric field
under this assumption. If we further neglect the spatial variation in (4.6), we retrieve a simple
direct relation between the current and the electric field:

Ê = − iȷ̂Q
ε0ω

. (5.1)

This equation then complements the intuitive picture that the electric field of a dipole follows
directly the moving charge.

Now including the spatial dependence, we need to solve
(
△+ k2(ω)

)
Ê = µ0∂̂tjQ. By neglecting

the coupling, it may be directly integrated using its Green’s function (Chapter 6.4 of [118]):

Ê(ω, r) = −µ0
4π

∫
V ′

eik(ω)|r−r′|

|r − r′|

(̂
∂jQ
∂t

)
dV ′ . (5.2)

The integration is over the whole interaction volume V ′.
Next, we use the cylindrical symmetry and simplify the integral in the transversal dimensions

Ê(ω, ρ, z) ≈ −µ0eik(ω)z

4π

∫ zexit

zentry

e−ik(ω)z′ei k(ω)ρ2
2(z−z′)

z − z′

∫
∆T

ei k(ω)(ρ′)2

2(z−z′)

(̂
∂jQ
∂t

)
J0

(
k(ω)ρρ′

z − z′

)
ρ′ dρ′ dz′ , (5.3)

where J0 is the Bessel function of the first kind. The simplification of the transversal integration
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is due to the approximation |z − z′| < ρ′ and |z − z′| < ρ

|r − r′| ≈ z − z′ + 2ρρ′ cos θ
z − z′ + ρ2 + (ρ′)2

2(z − z′) , (5.4)

see Appendix D for more detailed discussion of the approximation together with its physical in-
terpretation. Due to this approximation, the integration in (5.3) is simplified for the cylindrical
symmetry: The angular integration is analytical by using (the identity 9.1.21 of [184])

J0(z) = 1
π

∫ π

0
eiz cos θ dθ . (5.5)

5.1.1 Metrology of XUV signal

Because the XUV field is our ”final product”, we introduce here some of its shared diagnostics we
use in examples. The XUV from HHG has usually a specific shape: it forms a harmonic comb in
frequency and a train of pulses in time. A general diagnostic is presented in Appendix B.

The comb naturally separates in various harmonics. We thus define a ”beam” of a given har-
monic q as spectral fluence integrated only over the respective harmonic peak:1

Sq(z, ρ) =
ω0(q+ 1

2 )∫
ω0(q− 1

2 )

∣∣∣Ê(z, ρ, ω)
∣∣∣2 dω . (5.6)

A further integration over the radial coordinate gives the energy contained within the disc of radius ρ

Eq(ρ, z) = 2π
∫ ρ

0
Sq(z, ρ′)ρ′ dρ′ . (5.7)

The total energy is given by E(tot)
q = Eq(ρ→ +∞, z). Because we consider a free-space propagation

after the interaction volume, there is no absorption and the energy is then conserved, thus z-
independent.

5.2 HHG from thin targets: optics-less focusing

Once we have the source term giving HHG as dipole radiation at any point of the medium, we can
sum them up together. Our first study employs a simplified geometry of thin targets. A thin target
means that the evolution of the driving laser is negligible along the propagation in the target. The
interest of thin targets is that transversal aspects of HHG are decoupled.

1Because there are no even harmonics generated by a linearly polarised field, the integration may be also extended
to ω0 ]q − 1, q + 1[.
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More rigorously, the reduction to thin targets is possible if:

1. The longitudinal dimension of the target L = |zexit−zentry| is much smaller than the Rayleigh
range, i.e. L≪ zR.

2. The medium is not dense enough to modify the field significantly along this path.

The integrations over ρ′ and z′ in (5.3) separate in that case and only the integration over ρ′ defines
the radial distribution in the far-field. The integration over z′ becomes a pre-factor. This pre-factor
may accounts for phase-matching in this case, which affects uniformly the whole far-field spectra.
An important conclusion is that all the spatially resolved structures within the spectrum are only
due to the transversal aspect of the generation.

A practical implementation of our interest is a gas jet. We then use ”jet” as a synonym of thin
target in this work.

5.2.1 Motivation

One of the advantages of the thin targets is that one part of the complexity is removed. It makes
easier the macroscopic analysis of the generation process: all the effects are attributed to the
transversal aspects of the field. Experimentally, it allows an easier control and manipulation with
the XUV beam. Our study continues the work done in [33], which assigned the spatio-frequency
interference patterns [185, 186, 187] to spatio-temporal profile of the driving pulse. The next step
is to study the profile of the resulting XUV field as a function of the respective position of the
thin target and the driving IR-beam. Together with experimentalists, we studied and proved that
the focusing properties of the XUV are controlled by this mechanism. The main findings on this
topic are summarised in the papers [34, 35], these papers link theory with experimental results.
The first paper study the XUV beams in the far-field region. The second paper exploits this
study further by placing a pinhole in the XUV beam: The transmittance through the pinhole gives
a direct measurement of the focusing properties. We explain more details in this manuscript from
the theoretical part. The experiment is treated in more details in the references and in [188].

According to these goals, the main questions to answer are: 1) How are the focusing properties
affected by the driving field? In other words, is the process spectrally selective? 2) How do the
field change from one harmonic order to the other? 3) How to control this mechanism to engineer
the XUV field? This section is organised as follows: We start with a simple model using Gaussian
optics in Section 5.2.2, then we move to the fully numerical approach mimicking the experiment
in Section 5.2.5.
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Fig. 5.1: The illustration of the optics-less focusing mechanism: the summing of the two curvatures. There
is the driving IR-beam (red) and the thin target (radiating plane) is placed at −0.5. The inherited phase is
in red and the intrinsic atomic phase induced the green curvature. Both of them are summed to form the
XUV beam (blue).

5.2.2 Key principle: summing two curvatures

The set-up to is composed of a thin target placed perpendicularly to the driving beam at point z0

along the propagation axis, where the origin of the coordinates is chosen at the focus of the driving
beam as shown in Fig. 5.1.

A basic physical model is to consider the XUV field for each harmonic as a Gaussian beam.
This model is justified by two arguments. First, the generated XUV beam is well-approximated
by a Gaussian beam by inserting the phenomenological dipole (2.19) into the Gaussian profile of
the driving beam. This approximation describes well the quadratic profile of the phase because the
highest XUV contribution is near the maximum on the optical axis. Second, it agrees well with
experimental findings. This model was already presented in [126] and this section is adapted from
it.

The ABCD propagation of Gaussian beams

All the parameters defining a Gaussian beam in one plane perpendicular to its propagation direction
at the point z can be obtained from the complex parameter Q [189], Chapter III.6;2 that is defined
by

1
Qz

= 1
R(z) − i λ

πw2(z) . (5.8)

R is the radius of curvature of the beam wavefront, w(z) is the beam radius, i.e. the radius where
the intensity is equal to 1/e2 of the on-axis intensity. The advantage of this formalism is that the

2We denote the parameter by the calligraphic Q because we already use q for the harmonic order.
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evolution of Q from an initial state, Q(i), to a final state, Q(f), is given by

Q(f) = AQ(i) +B

CQ(i) +D
(5.9)

for a linear optical system described by the matrix
(
A B
C D

)
. The indices i and f denote the initial

and final values, respectively. The free propagation matrix is
( 1 d

0 1
)
, where d is the propagation

distance. We find the formula

Qz0+d = Qz0 + d (5.10)

for propagation from z0 to z0 + d.
As stated above, a Gaussian beam is fully defined by the parameter Qz0 at a given point z0 (5.8).

For the analysis, the parameters of the Gaussian beam (w0, zR and the position of the focal point)
are needed. Using (5.8) and (5.10), one obtains

w2(z0 + d) = π2w4(z0) (R(z0) + d)2 + d2λ2R2(z0)
π2R2(z0)w2(z0) . (5.11)

The minimization of that function with respect to d gives the focal point in the position z0 + df .
Next, we use the definition of the Gaussian beam, (B.6), and we find the waist and Rayleigh length.
All these parameters are given by

df = − R(z0)

1 +
(
λR(z0)
πw2(z0)

)2 , w2
0 = w2

0(z0 + df ) = w2(z0)

1 +
(
πw2(z0)
λR(z0)

)2 , zR = πλR2(z0)w2(z0)
λ2R2(z0) + π2w4(z0) .

(5.12)

The generated field as a Gaussian beam

The qualitative insight into the origin of the spatial distribution can be obtained from the theory
of Gaussian-beam propagation and from the dipole model (2.19). We are analysing the generated
field for a given harmonic order q. Let us look at the radial distribution of the field modulus and
phase, that defines the beam radius and curvature, respectively. The field modulus follows the
law |Eq| ∝ |EIR|qeff (see (2.19)), thus the beam waist of the harmonic q is wq(z0) = w(z0)/

√
2qeff .

The spatial distribution of the phase is the sum of the IR-beam phase and the additional intensity
dependent phase (−αIIR). The intensity distribution in the first order expansion is (see (B.6))

IIR(ρ) =
(

w0
w(z0)

)2
I0e− 2ρ2

w2(z0) ≈
(

w0
w(z0)

)2
I0 −

2w2
0I0ρ2

w4(z0) , (5.13)
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Substituting this expansion in (2.19) and adding the IR-beam phase, we find the effective curva-
ture, Rq, of the harmonic q as the solution of

kqρ
2

2Rq(z0) = kqρ
2

2R(z0) − αIIR(ρ) ≈ kq
2

(
1

R(z0) + 4αw2
0I0

kqw4(z0)

)
ρ2 ⇒ 1

Rq(z0) ≈
1

R(z0) + 4αw2
0I0

kqw4(z0) .

(5.14)

This equation expresses the reciprocal sum of two curvatures. The first, R(z0), is simply that of
the driving beam, while the second, Ratom = kqw

4(z0)/
(
4αw2

0I0
)
, is the intrinsic curvature of the

generating process.
Finally, the waist, wq, of the harmonic q is found inserting the proper curvature and waist

in (5.11):

w2
q(z0 + d) =

π2w4
q(z0) (Rq(z0) + d)2 + d2λ2

qR
2
q(z0)

π2R2
q(z0)w2

q(z0) , (5.15)

where λq and Rq are the wavelength of the harmonic field and radius of curvature respectively and
d is the distance from the studied plane.

The summation of the curvatures is illustrated in Fig. 5.1. We also show in Appendix F that the
expansion of the phase of the microscopic dipole within the first order is inherent to the Gaussian
optics, and higher orders of phase would go beyond the Gaussian optics.

5.2.3 Methodology, microscopic dipoles

We use several levels of complexity to model the harmonic dipole and the propagation of the XUV
field. We start with the dipole coming from SFA including the Saddle-point calculation (2.17)
together with the phenomenological approach (2.19):

1. A constant α: This model of the intensity-dependent phase φ = αI is already capable to
explain the main effect in the spatial structure of the harmonics in the far-field [33].

2. A linear evolution with the harmonic order: αq = Aq +B.

3. The exact fit of the phase computed by FSPA: αq = α(q, I), where its value is retrieved
from the Full Saddle Point Approximation. This model actually fully reproduces the phase,
φ(qω0, I) = α(q, I)I, computed from FSPA.3 However, we have to take this value constant
and evaluate it on the optical axis of the beam at the point of the XUV generation to be
consistent with the Gaussian-optics model (5.14).

3We could point out that there is also another strategy for approximating α(q, I), see formula (6) in [190]. They
used a numerical solution to find a larger set of fit parameters to find a global fitting function. Our strategy is that
we take the numerical solution anywhere and we then use a first-order local fit in the variable of our interest.
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4. Fully numerical treatment using a numerical 1D-TDSE solver for the microscopic dipole
combined with the numerical propagation (5.3).

The comparison of the model of the XUV phase based on SFA in the points 2 and 3 is shown in
Fig. 5.2.

The parameters of simulations were chosen according to the experiment: w0 = 85 µm, I0 = 4×
1014 W/cm2, λ = 800 nm, pulse (FWHM) duration 40 fs; the ionisation potential: IP = 0.792 a.u.;
of neon is the only parameter describing the target in this model. Harmonics from 29 to 47 were
studied. Using these values, we may find the region interesting for studies. The initial experimental
campaign [34] recognised the region of the interest being within the Rayleigh range zR ≈ 30 mm
(computed in our conditions). Second, the study remains in the plateau regime, where the harmon-
ics are efficiently produced, see Fig. 5.3. We thus retrieve the region of interest for z ∈ [−20, 0] mm.

In the second part, we study the filtering by a pinhole placed at zpinhole = 37 cm and with the
radius ρp = 70 µm.

Fig. 5.2: The evolution of α with the harmonic order.
We compare there three cuts for intensities in the
positions of the generation that we discuss further.
There are also two extra placements for comparison.
Finally, there is the linear fit that we used in the part
of the study.

Fig. 5.3: The on-axis harmonic cutoff in our condi-
tions.

The fundamental quantity of interest is the generated electric field E . It is computed from (5.3)
by assuming thin targets:

Ê(zjet; z, ρ, ω) ∝
+∞∫
0

e−i k(ω)ρ̃2
2D

D
∂̂tj (ρ̃, ω) J0

(
k(ω)ρρ̃
D

)
ρ̃dρ̃ , D = z − zjet . (5.16)

We keep the coordinate frame fixed by the coordinates of IR-beam (the focus at z = ρ = 0). Next,
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we classify the corresponding beam by the Sq-metric introduced by (5.6). Next, we use FWHM,
energy passed through a given disc and root-mean-square characteristics (ISO recommended [191]);
we denote them, respectively, ρq,FWHM(zjet; z), Eq(zjet; z, ρ) and ρq,rms(zjet; z).4

5.2.4 XUV beams & spectra

We start with an example of beams for the jet placed 15 mm before the IR-focus for the harmon-
ics 29, 37 and 49. These beams are shown in Fig. 5.4. We present in this figure the results from
the linear-phase model, FSPA and TDSE as explained in Section 5.2.3. The beam S29 is irregular
and defocused, it suggests a more structured profile for lower harmonics. S37 is a low-divergent
and regular beam. The last beam, S47, is divergent and regular.

These three beams suggest that there is the desired focusing property as S37 is less divergent
than the others. Complementary to the shown far-field distributions, we place a virtual observation
screen in the position of the pinhole and move the jet. Figure 5.5 shows the full spectra, |E(zjet =
zjet,0; z = zpinhole, ρ, ω)|2, for different positions of the jet, zjet,0. We can trace the spectral selectivity
with moving the jet position, zjet, in these spectra. For the spectrum corresponding to the beams
from Fig. 5.4, zjet = −15 mm, there is a minimum of the divergence in the plateau around H37-
H39. Tracing the minimum divergence with zjet approaching the IR-focus, we find the minimum
moving from the cutoff towards lower frequencies in the plateau (note that the cutoff position varies
with zjet as depicted in Fig. 5.3).

4Eq(zjet; z, ρ) =
∫ ρ

0 Sq(zjet; z, ρ′) ρ′dρ′ and ρq,rms(zjet; z) =
√∫ +∞

0 ρ2Sq(zjet; z, ρ) dρ/
∫ +∞

0 Sq(zjet; z, ρ) dρ.
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Fig. 5.4: The harmonic beams SH(zjet = −15 mm, z, ρ) for harmonics, H, within the range of our interest.
We show various versions of the beams. The color-scale correspond to the fully numerical of the diffraction
from the TDSE dipoles, the corresponding metric of the beam is ρrms shown by the full white lines. There are
also Gaussian beams obtained from the linear and FSPA-models; dotted and dashed lines, respectively. Next,
the beams are shown both in the original scale and normalised by Snorm.(ρ, z) = S(ρ, z)/maxρ S(ρ, z). To
recall the conditions, the harmonics are generated in a thin neon jet by a driving field defined by w0 = 85 µm,
I0 = 4× 1014 W/cm2, λ = 800 nm, τFWHM = 40 fs, the intensity for zjet = −15 mm is inferred from Fig. 5.3
or Tab. 5.1.
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Fig. 5.5: The spatially resolved spectra in the position of the pinhole. The minimum of divergence traverse
throughout the plateau as the jet moves towards the focus. Denoting S = E(zjet = zjet,0, z = zpinhole, ρ,H),
the normalisation around a given harmonic, Hi, is defined as Snorm = S/

(
max(ρ,H)∈R+×[Hi−1/2,Hi+1/2] |S|

)
.

The parameters correspond to Fig. 5.4
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Fig. 5.6: These panels show Sq(zjet, z = zpinhole, ρ), that represents the beam sections at the position of the
pinhole as functions of the jet positions. The solid, dashed and dotted lines represent ρrms for 1D-TDSE-,
FSPA- and linear-model-beam, respectively. The parameters correspond to Fig. 5.5; zpinhole = 37 cm.
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To combine the previous two pictures – the beams and the spectra at the pinhole position –,
we show also the cut through the beam of H29, H37 and H47 at the position of the pinhole as
a function of zjet in Fig. 5.6. It agrees and complements the picture of the spectral selectivity as
a function of the jet position. There is clearly seen the variation of the minimal spot-size at the
position of the pinhole as a function of the position of the jet.

In summary, Figs. 5.4, 5.5 and 5.6 have provided us a comprehensive picture of the generation
scheme. We did cuts in the three principal variables of this generating scheme: the harmonic
order H, the propagation distance z and the position of the jet zjet. It basically confirmed the key
idea using all the models: the divergence of the harmonics is controlled by the placement of the jet,
i.e. by the curvature of the driving beam, and this control is spectrally selective. To get a better
insight we analyse in detail the generation regime of the harmonics (plateau vs. cutoff, ...) and
study the XUV field also after the filtering by the pinhole in the following Sections.

5.2.5 Transmittances: probing XUV beams by pinhole

Here, we qualitatively estimate the focusing by the same methodology as done in the experiment:
the pinhole is placed in the XUV beam, and we compute the transmittance through it. The
experimental results are shown in Fig. 5.7. It should be noted that the absolute strength of the
signal is not kept because the cutoff changes with zjet. We summarise the expected cutoffs in
Tab. 5.1.

zjet [mm] Hcutoff [-]

-5 61.8
-10 57.8
-15 52.4
-20 46.8
-25 41.6

Tab. 5.1: The cutoffs corresponding to the positions of jets of the interest.

Figure 5.8 shows the transmittances both as a function of harmonic order and of various jet
positions.

The first dependence we trace in Fig. 5.8 is the evolution with the harmonic order, i.e. the
spectral selectivity. It confirms the picture inferred from the incident XUV beams, Fig. 5.5, – trans-
mittances increase as the beam radii decrease. Here we also compare different dipole models. All of
them qualitatively agree. Let us describe the linear model: the transmittance in the region of the
interest decreases with the harmonic order once the jet is close to the focus, zjet ∈ {−5,−10} mm.
The maximum of the transmittance then traverses the region as it forms a bell-shaped curve for
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Fig. 5.7: Far-field spatially-resolved HHG spectrum measured for zjet = −58 mm with (a) and without (b) the
pinhole centered on the XUV path. (c) Corresponding HHG spectra after summing over the spatial co-
ordinate. (d) Measured transmission of harmonics H29 to H47 for zjet = −58 (blue),−36 (red) and −
20 mm (black). The error bar of the transmittance (not shown here) is estimated to be within 10 %. The
figure is adapted from [35].

zjet = −15 mm. At the end it reaches a decreasing regime for zjet ∈ {−20,−25} mm. The evolution
is similar for the other models but slightly shifted.

The second comparison in Fig. 5.8 is the evolution of the transmittance with zjet. There are
two maxima of transmittance for H37 presented in the FSPA- and TDSE-models. Considering
the cutoffs, one maximum is in the plateau region and the second in the cutoff. In fact, this is
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Fig. 5.8: The transmittances through the pinhole as functions of the harmonic orders (left panels) and the
positions of the jet, zjet, (right panels). Different models are used. Each of the right panels compares various
methods for a given harmonic H, different panels are for different harmonics. Right panels show the spectral
selectivity of the transmittance both for different models and different positions of the jet. The parameters
correspond to Fig. 5.4; zpinhole = 37 cm. See Fig. 5.7(d) for corresponding experimental transmittances.
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Fig. 5.9: The transmittance in the (H, zjet)-space computed from the different models. The white line
represents the cutoff. The parameters correspond to Fig. 5.4; zpinhole = 37 cm.
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not surprising as the evolution of the dipole phase is steeper in the cutoff. Translating the phase
evolution into the curvature, the condition Ratom = −R(z0) inferred from (5.14) is met twice for
these regimes. This effect is not present in the model of the linear phase αq = Aq+B explained in
the point 2 of the list from Section 5.2.3. This is expected as a monotonic evolution of the phase
cannot describe the change of the regime from the plateau to the cutoff.

Finally, we put the precedent findings together by scanning the transmittance in both harmonic
order, H, and jet position, zjet, at once. This is shown in Fig. 5.9. It provides a complete picture
of the focusing. One focusing regime is in the plateau: The minimum of the divergence moves
towards the the cutoff while increasing zjet. The second focusing regime is the cutoff region, where
the minimum of the divergence is also met in the studied geometry. It also confirms the previous
findings: the focusing related to the cutoff region is completely omitted by the linear model. It
is partially included in our FSPA model; however, it still does not matches the TDSE model. It
means that even the FSPA model in the current implementation is not accurate in this region.

In conclusion, this study added a quantitative picture of the transmittance and also revealed
the different contributions by the cutoff and the plateau.

5.2.6 Far-field XUV profiles

We started with the beam profiles for zjet before the pinhole, then we investigated the transmittance
through the pinhole and now we examine the field after the pinhole. To do so, we propagate the
field after the pinhole by the composition of two Hankel transforms to obtain the filtered far-field
profiles. Since the integral over a circular aperture is analytical, we have a similar expression for
the resulting field:

E(zjet; z, ρ, ω) ∝ ρp
k(ω)

∫
T1

ei
k(ω)ρ2

1
2D1 J (ρ, ρ1, ω)d (ρ1, ω) ρ1dρ1 , (5.17)

where ρp is the radius of the pinhole. The integral is similar to the Hankel transform, only the
kernel of the transform, J , differs, see (D.6) for details. Basically this formula is valid if both
the propagation from zjet to zpinhole and from zpinhole to z are sufficiently modelled by the Hankel
transforms.

We start with the spatially resolved spectra, Figs. 5.10 and 5.11. Figure 5.10 is basically the
same as Fig. 5.5 except the scale. It is expected as the propagation is homothetic in the far-field
region. Figure 5.11 is the counterpart of Fig. 5.10 with the pinhole employed. The beams are
truncated in all the cases and all the harmonics in the region of the interest have similar radii.

There is clear spectral filtering after the pinhole. Let us take the apertured case for zjet =
−25 mm, the strongest signal is around H40. Note that the expected cutoff, Hcutoff,zjet=−25 mm ≈ 41,
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so the strong signal is at the end of the plateau; in contrast, these harmonics are deeply in the
plateau for zjet = −5 mm. The weak observed signal for this case is thus purely by the macroscopic
defocusing of the beam.

In summary, we added the spatially resolved harmonics with and without the pinhole. We show
that the radial distribution is truncated by the pinhole and the main contribution is in the region
with the highest transmittance, it then confirms the spectral filtering in the proposed scheme.
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Fig. 5.10: The harmonic spectra at 1 m after the focus without the pinhole for various jet positions. The
organisation and methodology is the same as in Fig. 5.5. The parameters correspond to Fig. 5.4.
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Fig. 5.11: The harmonic spectra at 1 m after the focus with the pinhole for various jet positions. The
organisation and methodology is the same as in Fig. 5.5. The parameters correspond to Fig. 5.4; zpinhole =
37 cm. See Figs. 5.10 and 5.7(a,b) for comparisons with experimental spatially resolved spectra with and
without the pinhole.
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5.2.7 Spectro-temporal profiles: Gabor transforms

We will link the spectral and temporal aspect of the generation process in this section. A tool
to show the field in both frequency and time domains directly is the so-called Gabor trans-
form G

(α)
E [192]: it is basically the Fourier transform of the signal in time on which a sliding

Gaussian window is applied to select only a portion of the signal. Mathematically, G(α)
E (ω, τ) =

Ft [wα(τ, t)E(· · · , t)] (ω), where wα(τ, t) ∝ exp
(
((t− τ)/α)2). We use α = 5 a.u.5 The Gabor

transform reveals times when a given frequency is contained in the harmonic signal.

Fig. 5.12: The Gabor transform of the generating dipole placed at (ρ, zjet) = (0,−15) mm. (The right panel
is only a zoom of the right panel and it provides the insight within the sub-cycle structures). The full line
shows the cutoff and the dashed line the ionisation potential IP . The normalised time is defined as t̄ = t/T0,
where T0 is the period of the fundamental field. The parameters correspond to Fig. 5.4.

An example of the Gabor transform is shown in Fig. 5.12. There is the transformation G∂tj of
the microscopic on-axis source term, ∂tj, placed at zjet = −15 mm. From the viewpoint of one half-
cycle, there are ”arcs”. These arcs correspond to the short and long trajectories from the classical
model. The leading edge of an arc matches the short trajectories, the top of the arc represents
a single trajectory in the cutoff, and the trailing edge of the arc matches the long trajectories. It
reveals that the generation process contains a lot of anharmonic components – the structures within
the arcs. We will discuss this further once the picture is completed with the far-field distribution.

Let us move to the perspective of the whole pulse. Within this scale, the generation follows the
cutoff law (1.1) with the two families of the trajectories merging at this point. We also notice the
asymmetry of the generating process with respect to the peak of the pulse. The structure is richer
at the trailing edge of the pulse in this case. Both, there are more hal-cycles contributing to the
generation and there is also visible electron dynamics around the ionisation potential IP .

5One cycle of an 800nm-laser corresponds to T0 ≈ 110 a.u.. The length of the window, α, cannot be neither too
short nor too long to recognise the spectral features with a sufficient resolution, see Appendix E of [126] for details.
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Figure 5.13 shows the Gabor transforms of the on-axis for zjet ∈ {−25,−15,−5} mm. It allows
to infer various effects. First, the structures are much more regular than for a single microscopic
emitter. Second, we easily obtain further informations about the focusing completing the discussion
of the previous Sections: a) From the viewpoint of the whole pulse, the region of efficient generation
moves towards lower harmonic as the jet approaches the focus (in agreement with the previous
studies). b) We have a detailed insight within a single cycle. The maximum of the signal slides
along the short trajectories, starting in the cutoff for zjet = −25 and moving towards the ionisation
threshold while approaching the focus. Finally, a sub-cycle analysis (Fig. 5.14) provides also details
about possible interferences present in Fig. 5.10; for example: a) H31 and H33 for zjet = −25 mm
are split in three contributions when filtered by the pinhole. Comparing this with the respective
region of the Gabor transform, there are indeed present three peaks in |G|2. Two correspond to
short- and long trajectories; the principal contribution, however, is between them. b) For the same
conditions as in a) but without the pinhole, H39 is split into two for ρ = 250 µm. There is a local
minimum of |G|2 in the transition between the short trajectories and the cutoff merged with the
long trajectories. The spacing there also explains the split in the spectrum.

In summary, we introduced the temporal aspect in our study and also explained the generation
in the means of short and long trajectories and compared their contributions. The Gabor transform
also revealed the origin of fine structures within one harmonic signal due to the interferences within
a single cycle.
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Fig. 5.13: The Gabor transforms of the on-axis far-field obtained from the jets placed as in the previous
studies. It shows |G|2 in the linear scale. The parameters correspond to Fig. 5.4.
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Fig. 5.14: (a) The Gabor transform of the apertured signal generated by a jet placed at zjet = −25 mm.
(b) The Gabor transform of the off-axis signal showing the origin of the split of the harmonics around H41.
The parameters correspond to Fig. 5.4; zpinhole = 37 cm.

5.2.8 Spectra & time profiles

Finally, we fully decouple the spectral and temporal domains. Figure 5.15 shows both the on-axis
spectra and XUV intensity in time for the jet positions of the interest. Next, we also present the
microscopic on-axis response at the generating plane. The signals in time are spectrally filtered by
the frequency window selecting H28-H48.

The microscopic responses in the plateau region are ”jittery” compared to the far-field signals,
both in the time and spectral domain. It shows that the far-field spectrum is given by the coherent
sum of the microscopic source terms. It means that the incoherent component of the process is
removed by the propagation. Next, the harmonics in the cutoff are much cleaner, the explanation
is that there is only a single trajectory and reduced contribution of higher-order recombinations.
This explains the nature of the harmonic signal plotted in the introductory chapter.6

The spectra provide further details about the filtering. We confirm the ”homogenisation” of the
signal for zjet = −15 mm. Next, the drop in the plateau for zjet = −5 mm is exponential starting
around H30 and the plateau is ended by the usual cutoff (with a faster exponential damping)
around H60.

Changing to the time domain, the harmonic radiation forms a train of pulses where the duration
of each particular pulse may go down to 200 as. It also compares the signal with the time profile of
the source term, ∂tj, in the generating medium. In agreement with the spectral profile, this profile
contains a lot of irregular structures compared to the far-field profile of the field.

6Figure 1.2 used to illustrate the spectrum is taken from here and correspond to the case zjet = −15 mm.
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Fig. 5.15: Left panels: The on-axis harmonic spectra for different positions of the jets zjet. Red and blue
lines compare the free propagation and the signal apertured by the pinhole. The black curves show the
on-axis spectra of the source term (see (5.1) for the relation with the local field). Right panels: the intensity
profiles in time by filtering using the spectral window H28–H48 as indicated in the respective spectra. The
lines match the spectra. t̄ is normalised to optical signals of the driving laser. The parameters correspond
to Fig. 5.4; zpinhole = 37 cm.
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5.2.9 Conclusion

The conclusion of this example is twofold. First, we investigated in detail the physics necessary
to control the divergence of the XUV beams generated from thin targets and recognised the key
mechanisms. Second, we provide a methodological example of the use of the multi-scale approach
to HHG and show several possible stages of complexity of the used model.

The simple picture that takes the XUV beam for each respective harmonic defined by two
curvatures – the inherited from IR-beam and intrinsic from the generated process – explains the
key physical mechanisms. It means that the simple model of the linear evolution of the phase with
intensity together with Gaussian-beam theory for the respective harmonics is capable to explain
the main features.

We have also shown that the process is spectrally selective. We have employed the pinhole and
we have proved it may be used for trimming different spectral components of the XUV beam. This
mechanism leads to homogenisation of the trimmed beam. Furthermore, we have shown the regular
profiles of the XUV field in the time domain, where the field forms a regular attosecond train with
a single pulse duration down to 200 as. Altogether with the complementary experimental work, we
designed and verified a generation scheme that allows to control the harmonic beams with keeping
the intensity as there is no XUV optics involved.

These theoretical and numerical studies have been a part of collaborative work with experimen-
talists [34, 35]. We have reached to the agreement in the main features and trends.

From a more general perspective, the direct control by the wavefront profile of the driver paves
the way to engineer XUV beams by shaping the driving beams. This mechanism is particularly
interesting as it does not resort on any XUV optics, which cannot be fabricated today without high
losses in the XUV region.

Putting this example in the context of the multi-scale model, the several stages of approxima-
tions in the model allowed to access more subtle details of the process. We have reached a good
agreement of the employed models together with the experimental measurements that motivated
our work.

5.3 Continuous on-axis model

We provided a detailed study of the generation from thin targets accompanied by the example
where the multi-scale model was applied for quantitatively modelling of a real experiment. It
contained only the transversal aspects of HHG. Now, we move to long media. This will be done
by considering an on-axis model by suppressing the transversal dimensions. In other words, we
consider only ρ = ρ′ = 0 in (5.3) from the beginning. This model is applied, e.g., in [193].
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The longitudinal model emerges from the integration over z′ in (5.3):

∫ zexit

zentry

e−ik(ω)z′ei k(ω)ρ2
2(z−z′)

z − z′

(̂
∂jQ
∂t

)∣∣∣∣∣
ρ′=0

dz′ .

The harmonic signal, precisely the spectral intensity7 is then given by

I(ω) ∝

∣∣∣∣∣∣
∫ zexit

zentry
e− zexit−z

Labs e−i Re(k(ω))z′
(̂
∂jQ
∂t

)∣∣∣∣∣
ρ′=0

dz′

∣∣∣∣∣∣
2

, (5.18)

where we dropped out the denominator z − z′; this is valid if the far-field region is much further
compared to the length of the medium, i.e. |z − zexit| ≫ |zexit − zentry|. An insight comes from the
refractive index, n, that is introduced by k(ω) = ωn(ω)/c. The refractive index is complex: the
real part is related to the dispersion of the field in the medium, while the imaginary part is related
to the absorption length

Labs(ω) = c

2ω Im(n(ω)) = 1
ϱσ(ω) . (5.19)

This equation also defines the absorption cross-section σ(ω). This formulation is valid if Im(n(ω)) scales
with the medium density ϱ. This condition is satisfied for gaseous media. A practical implementa-
tion of the absorption comes from Eq. (3.9) of [194] and is discussed in Chapter 9.

The phase related to the propagation of the IR-field is still encoded in ∂̂tjQ. We further
disentangle it for a better insight. Let us assume that only the phase of the IR-field is driven
by the propagation and not the amplitude. Considering the phase accumulated by the refractive
index, ΦIR, the source is then

(̂
∂jQ
∂t

)∣∣∣∣∣
ρ′=0

= Â0(ω)ei ω
ω0

ΦIR , (5.20)

where Â0(ω) is the response of a single microscopic system, i.e. it is a constant for the different z-
contributions. We further model the phase ΦIR being accumulated by the driving field propagating

7We recall that the intensity is the energy flux, see Appendix B.2. The dimensionality is then related with the
omitted transversal integration.
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in the medium, it gives8,9

ΦIR(z) =
∫ z

zentry
kIR(ω0, z

′) dz′ , kIR(ω0, z) = ω0nIR(ω0, z)
c

. (5.21)

Using this phase in (5.18), we obtain the XUV signal

I(ω) ∝ Â0

∣∣∣∣∣
∫ zexit

zentry
e− zexit−z′

Labs(ω) e
i
∫ z′

zentry
∆k(ω,z′′) dz′′

dz′
∣∣∣∣∣
2

, ∆k(ω, z) = ω

ω0
kIR(ω0, z)− Re(kXUV(ω)) .

(5.22)

This equation is a continuous version of (1.8) and it then justifies the intuitive phenomenological
model introduced in Section 1.3. In this sense, (5.22) then represents a continuous sum of the
elementary emitters along the propagation axis. This formulation is instrumental to understand
the phase matching. Let us investigate the signal for a given harmonic order q, which means
ω = qω0. The resulting signal is affected by Â0, Labs and ∆k(ω, z). The phase-matching is related
only to ∆k(ω, z) that is rewritten:

∆k = qkIR − kXUV = qω0
c

(nIR − nXUV) = qω0

(
1

v
(IR)
p

− 1
v

(XUV)
p

)
. (5.23)

The difference of the wavenumbers is the usual form to classify the phase-matching. The last
expression links the phase-matching with the phase velocities, vp, of the driver and the generated
harmonic field. If they are the same, the signal is maximal and there is no modulation of the signal
due to the difference in the phase. Finally, the middle form measures the phase-matching via the
refractive indexes.

An advantage of the refractive index is that various processes may be included just by summing
the respective susceptibilities (1.4). As the ionisation is naturally time-dependent, it leads to there-
mentioned time-dependent refractive indexes. This is tricky as it mixes the conjugate domains of
time and frequency. A pragmatic approach is to fix the time in the part of the pulse of our interest
and analyse the phase at this moment [195]. A more advanced approach resolves cases while the
time evolution is the dominant effect, and we may neglect small corrections of the refractive index
in the vicinity of the carrier frequency. An exhaustive mathematical formulation assuming the

8The subscripts of kIR and nIR are redundant because the refractive index, or more generally the dispersion
relation is a single function along the spectrum. However, we use this notation in the cases where we compare the
phase inherited from the driver with the phase due to the propagation of the XUV field to emphasise their different
origin.

9The phase shift ΦIR(z) is then easily visualised as the corresponding delay: The driving field carries its phase
from zentry to z. Indeed, the related time is T (z) =

∫ z

zentry
dz′/v(z′), which is proportional by ω0 to the presented

phase shift.
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refractive-index changing linearly in time, n(t) = n̄ + at, with n̄ being the average value of the
refractive index, is in [196]. The advantage of the linear form of n(t) is its simple counterpart in
the frequency domain – only a frequency shift. However, once the formal evolution of the refractive
index becomes non-trivial in both ω and t, the frontier of the concept of the refractive index is
reached; and it cannot give a self-consistent model.

In conclusion, we have completed the model for the propagation of the XUV field by addressing
both transversal and longitudinal aspects of the XUV generation within the use of a simplified
dipole. We have also reached the limit of describing the generation from pulses with a non-trivial
spatio-temporal profile (including also non-trivial evolution in frequency as the conjugate variable
to time). To resolve the raised limits, we complete the multi-scale model including the full profile
of the driving pulse and the microscopic response from TDSE in the following chapter.



6. FULL MULTISCALE MODEL

We have shown how separately handle the transversal and longitudinal effects characterising HHG
and we have procedure to join them easily by computing the full integral (5.3) in the previous
chapter. Although we have already used some simplistic models of the IR-pulse propagation, a full
model of the non-linear propagation of the IR-driving pulse is still a crucial missing element. This
chapter completes the multi-scale model together with its application to the HHG in pre-ionised
media.

A more detailed description of the model using non-linear optics is the subject of Section 6.1.
The final coupling procedure used in this work is described in Section 6.2. Finally, this model is
applied on a real physical configuration and compared with experiments done at ELI-Beamlines.
This generation scheme led, jointly with an experimental study, to one of the outcomes of this
work [72], and the details are presented in Section 6.3.

6.1 Unidirectional pulse propagation equation (UPPE)

Although we have the necessary description by the wave equation (4.6), there is still missing
a specific expression of its right-hand side. The objective of this section is then to introduce the
model of the non-linear response and simplify the equation into a first-order partial differential
equation.

First, we recall the equation and specify the directions of the coordinate system. Let z be the
direction of propagation, the equation reads(

∂2

∂z2 + k2(ω) +△⊥

)
Ê = −µ0ω

2
(
P̂non-lin + i ȷ̂

ω

)
. (6.1)

An ultimate solution for the right-hand side would be to compute it directly from the microscopic
model as discussed in the introduction of Chapter 4, where we have called it the strong coupling.
Such a coupling would include a loop for computing the source term by the TDSE. This would
be ideal from the theoretical viewpoint. However, this is potentially very expensive from the
computational viewpoint since it requires to calculate the microscopic response from numerical
microscopic model in a fine grid due to the large spectral range that is then included in the field.
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Furthermore, the single-active electron approximation becomes questionable for some non-linear
effects. Such an approach would also need a lot of work in the design of a numerical implementation.
We then change the computation of the source term and use simpler models of the non-linear
response only including the IR-range.

The relevant effects in this frequency region are the ionisation and Kerr effect. We now present
the approach used in our implementation. I was fortunate to be able to collaborate with Stefan
Skupin and the computational core of the code is adopted from [197, 80], where is also an exhaustive
description of the physics. Further details may be found in [198].

6.1.1 Unidirectional pulse propagation approximation (UPPA)

The wave equation (6.1) is a second-order partial differential equation and it describes solutions
propagating in both direction: z an (−z). Intuitively, the propagation in the direction of (−z) cor-
responds to backscattering. To treat the backscattering, the solutions advanced in z – i.e. the field
E(z + ∆z, . . . ) – would necessarily affect the precedent field E(z, . . . ). It means a solver advancing
step-by-step in the z-direction cannot be constructed. Essentially, if the backscattering cannot be
neglected, usual approaches do not simplify Maxwell’s equations much, and the procedure is to
solve them directly [199]. A practical implementation is, for example, Particle-in-cell codes [104]
or the model introduced in [88]. However, if the backscattering can be neglected; there would be
an algorithm going step-by-step in the direction of propagation. This idea is mathematised by
rewriting ∂2

z + k2(ω) = (∂z − ik(ω))(∂z + ik(ω)) = D+(ω)D−(ω) and separating the solution into
forward- and backward-propagating parts: Ê = Û+eik(ω)z + Û−e−ik(ω)z.

If we neglect the backward component Û−, the propagation equation transforms into

∂Ê
∂z

= i
2k(ω) △⊥ Ê + ik(ω)Ê + iµ0ω2

2k(ω) F̂ , F̂ = P̂non-lin + i ȷ̂
ω
. (6.2)

This is written in the desired form of a first-order partial differential equation in z.

6.1.2 Enveloped pulse

Here, we characterise the field in time domain by a complex envelope1 and adjust it into a co-
moving frame; this description in the unidirectional propagation was originally introduced in this
form in [200]. The envelope function U is defined for a complexified field by (see (B.3) for the

1The complex envelope means that it contains not only the shape of the averaged field but also the phase difference
respective to the carrier frequency. It means that for example a chirp may be included within the complex envelope.
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details about the complexification)

E (r, t) = U(r, t)e−i(ω0t−k0z) . (6.3)

This decomposition assumes a pulse centred around a carrying frequency ω0; but it is still for
convenience without assuming a slowly varying envelope. The dispersion relation is Taylorised
around ω0:

k(ω) = k0 + k′(ω − ω0) + D̂2(ω) , D̂2(ω) =
+∞∑
n=2

k(n)

n! (ω − ω0)n , (6.4)

k0 = k(ω0), k′ = ∂ωk(ω0), etc. To obtain the evolution of U , the equation (6.2) is used for Ê and
transformed back into time domain; it yields

e−i(ω0t−k0z) (∂z + k′∂t
)
U(r, t) =

ieik0z
∫ ( △⊥

2k(ω) + D̂2(ω)
)
Û(r, ω − ω0)e−iωt dω + iµ0

2

∫
ω2

k(ω) F̂(r, ω)e−iωt dω . (6.5)

The last step transforms the equation into the co-moving frame with the group velocity vg = 1/k′

via the retarded time t̃ = t−k′z and approximates k(ω) in the denominators. The final propagation
equation reads

∂zU = iT −1△⊥
2k0

U +D2U + iµ0ω2
0

2k0
T F (env.)(U) , (6.6)

where T = 1+ i∂t/ω0 and D2 = ∑+∞
n=2 (i∂t)n /n!. The last term, Fenv., is the non-linear and plasma

effects, it is averaged over the fast oscillations of the carrier frequency ω0.

We now have the first-order equations (6.2) and (6.6), that are favourable to be numerically
advanced from an initial plane. The difference is that the latter uses only the complex envelope U
of the field; it thus allows coarser discretisation, but some sub-cycle phenomena may not be treated
well.

6.1.3 Principal non-linear effects

To complete the description of propagation, we need to write-down an explicit form of F̂ . We
discuss here the principal non-linear effects included in this term.
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– Kerr effect –

This is a standard non-linear effect of the third order,2 it contributes to the non-linear source as

P
(3)
non-lin(t) = P

(3)
Kerr(t) = 4n2

0c

3 n2
∣∣∣Ē∣∣∣2 E . (6.7)

where Ē is the averaged field with fast oscillations removed. The pre-factor is chosen to link the
non-linear constant n2 with the refractive-index n = n0 + n2I; where n0 = ck(ω0)/ω0 is the linear
refractive index; see the section 4.1 of [36] for details about the normalisation.

Since the Kerr effect is one of the key processes to understand the non-linear propagation, we
provide the context for further reading. The self-focusing of radiation due to the non-linearity, later
identified with the Kerr effect in gases, was recognised in 1962 [201]. The stability of a laser beam
due to the Kerr effect became intensively studied soon after, and theory started to develop employ-
ing various approaches as analytical [202], variational [203, 204] and numerical [85] (see also the
reviews [205, 79]).

– Plasma: free electrons and ionisation –

We arrive to the term combining the generation (and absorption) of free electrons due to the
ionisation (and recombination) processes together. Similarly as for the Kerr effect, the role of the
ionisation in the stability of the beam has been addressed in detail in literature [206, 207, 78, 208,
209].

We present a model arising from two-fluid hydrodynamical description [210] (see Appendix J
and Sections 2.4 and 2.5 of [211] for further details):

∂ϱe
∂t

+▽(ϱeve) = S , (6.8a)
∂ve
∂t

+ (ve · ▽)ve = − e

me
(E + ve ×B)− νeve − S

ve
ϱe
, (6.8b)

The first equation is the continuity equation, where S is the source of free electrons. The second
equation is the electronic motion driven by the Lorentz force; additionally, there is a friction force
due to collisions with the collisional frequency νe. The frequency is taken as a constant within
our model; however, it is only a simplification and we refer to the aforementioned literature for
further details. The source term S couples the equations with the model of ionisation. A fast
link with the microscopic model is the rate equation (3.3), it then provides the source of the
electrons S = −Γ(|E|)ϱe.

2See [121] for a quantum-mechanical description of the Kerr effect.
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The source term for the field equations is the current, it is given by j = −eϱeve in this approach.
We express it from (6.8) as

(∂t + νe)j = e2ϱe
me

E + Π , Π = − e

me
j ×B − ve (▽j)− (j · ▽)ve . (6.9)

Π describes ponderomotive forces that may be neglected in the range of intensities and pulse
durations of our interest. Posing Π ≈ 0, the current is then easily found in the Fourier space:

ȷ̂(ω) =
(

νee
2

me (ω2 + ν2
e ) + iωe2

me (ω2 + ν2
e )

)
Ft [ϱeE] (ω) . (6.10)

The first term is responsible for the ionisation losses as it vanishes for νe → 0, the second term is
thus the plasma response.

– Further effects included in the code –

Finally, the code we use contains more functionalities that we do not use in our work. There is
a 5th-order analogue of the Kerr effect, n4|Ē |4E . Another phenomenon is the retarded Kerr effect,
where the response is given by a convolution

(∫
R̄(t− t′)|E(t′)|dt

)
E(t), which may include also

the Raman scattering. There is also possibility to include the third-order harmonic generation and
also quintic non-linear effects. However, some of these effects require a finer phase-matching and
the propagation equation is different as the envelope function U is not used. Consequently, a finer
resolution in a numerical solver is needed.

Although these effects are not within the scope of this work, we mention them in the case this
manuscript is used to help the orientation in the code.

6.1.4 Final propagation equation

Finally, we arrive to an explicit expression for F (env.) in (6.6). The equation used in the solver is
then

∂zU = i
2k0
T −1 △⊥ U + iD2U + iω0

c
n2T |U |2U −

ie2k0
2n2

0ω
2
0meε0

T −1 (ϱeU)− e2νe

2meε0n0c (ν2
e + ω2)2 ϱeU

(6.11)

We recapitulate the included effects on the right-hand side. The term containing △⊥U is the
diffraction directly from the transverse Laplacian in the wave-equation. iD2U is the reduced dis-
persion relation since the 0th and 1st orders are included in the envelope and co-moving frame,
respectively. The term containing n2T |U |2U is responsible for the Kerr effect. The last two terms
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are the rescaled expressions from (6.10) describing the free electrons and absorption due to the
ionisation.

Each physical effect may be linked directly with their actions on the laser pulse [80]. △⊥U is
a spatio-temporal effect leading to self-steepening of the pulse. The Kerr and plasma generation
are leading to focusing and defocusing effects, respectively.

The equation (6.11) completes all the ingredients needed for the multi-scale model. The next
step is to assemble all the parts in the final multi-scale model.

6.2 Assembling multiscale model

We have discussed all the necessary physical models required to construct the full multiscale model.
A fully numerical counterpart of an experiment is the weak coupling procedure:

1. We compute the propagation of the driving laser using a solver implementing (6.11). The
output is E(r, t).

2. The microscopic source term (discussed in Section 2.3) is calculated on a grid covering the
macroscopic medium by a numerical solution of TDSE using E(r, t) from the previous point.

3. The XUV field in the far-field region is integrated using (5.3).

This is the central result of this work: each of the points above is represented by its respective
model described in previous chapters. An indispensable part of the solution is the ”translation”
into numerical algorithms that is described in Part III of this thesis.

Here, we use the multi-scale model for studying high-harmonic generation in a pre-ionised
medium. As this problem is of practical interest, we first explain the physical background and
motivation. The multi-scale model is then applied in Section 6.3.5. The purpose of this study is
then twofold. First, it is a practical example of the capabilities of the code. Second, it contributes
to the development of a novel method used to optimise HHG yield.

6.3 HHG from long media: phase-matching controlled by pre-ionisation

One issue one faces in HHG in long media is the phase matching: the physical picture is that the
driving pulse propagates through the macroscopic medium and it induces microscopic dynamics
at all points. This dynamics leads to the generation of an XUV field that is generated only in
a short window of re-collision times from the three-step model, which leads to highly coherent
generated field. The XUV field co-propagates with the driver; which is the second important
property of this source: the XUV field is well-spatially confined and it forms a beam as discussed
in Section 5.2. Both mentioned properties – coherence and spatial localisation – are extremely
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important for applications. There is a complication in long generating media: the phase velocity
of the driver and XUV differs; consequently, they may become dephased at some point. Once
this is reached, the generating window does not match with the co-propagated XUV and it kills
the efficiency of the process. Our goal is to provide a mechanism to control and suppress this
dephasing. We propose a scheme, where the medium is homogeneously pre-ionised. It gives us
a further tunable parameter of the medium to control the phase velocity via the plasma response
of the medium. A rough picture is that we tune the linear response of the medium by controlling
the base index of refraction n0.3 If this is reached, the driving and generated fields ”run together”
and all the generated radiation add constructively.

In this section, we explain the approach used to accompany experimental campaigns done at
ELI-Beamlines. The mechanism of pre-ionisation was to use an electric discharge. The experimental
setup was a long cell filled with argon or krypton. The conditions were adjusted so that the discharge
creates a homogeneous free-electron density compared to the beam diameter.

This section is thus organised as follows: 1) We present a simple picture by investigating the
local phase mismatch. 2) We introduce the metrics applied on macroscopic scale to recognise the
principal mechanisms of the generation in long media. 3) We apply the fully numerical model for
quantitative modelling.

6.3.1 Local dephasing

We recall the simple approach to phase-matching presented in the introductory chapter, Section 1.3.
Locally, XUV field corresponding to the qth harmonic is perfectly phase-matched if the difference
between the wavenumbers is zero, ∆kq = 0. We recall the usual contributions for the phase-
matching [37]:

∆kq = ∆kdisp. + ∆kplasma + ∆kgeom. + ∆katom . (6.12)

The dispersion term contains the dephasing due to the difference in the linear dispersion from
the refractive index, we recall their expressions: ∆kdisp. = qk0(nIR,disp. − nXUV,disp.); where only
the contribution of neutrals is included, n·,disp =

√
1 + χ·,disp.. The plasma refractive index for

plasma is nplasma =
√

1− (ϱee2)/(ε0meω2), where ϱe is the density of free electrons. A general way
to include susceptibilities attributed to various processes is given by (1.4). The geometry of the
beam contributes as ∆kgeom. = ∂zΦG(z). The atomic phase comes from the empiric dipole (2.19),
∆katom = −α∂zI.

3We discussed the plasma generation as extremely non-linear process. Indeed, the self-generated plasma by
a pulse introduces it due to its time-profile. Contrary, a homogeneous pre-ionisation acts as a constant background
contributing dominantly only to the linear refractive index.
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The decomposition (6.12) is possible only for analytically written phases of laser fields. Once
only the profile E(r, t) is known, the contributions from dispersion, plasma and beam geometry
cannot be disentangled easily. A way to obtain ∆k is directly obtained from the phase of the field
Φ(r, t) = Arg(E (r, t)), where the complexified electric field E (r, t) is assumed. The wave-vector is
then k = ▽Φ(r, t), which leads to ∆kq. In our particular case, the only effects not included in the
phase obtained from the driving-laser propagation are: the dispersion of the XUV and the intrinsic
phase. The phase-mismatch is

∆kq = ∂zΦ + kq(nXUV,disp. − 1)− α∂zI , (6.13)

where kq = qω0/c is the wave-number of the corresponding harmonic.

The local dephasing, ∆kq, provides a good insight in the phase-matching conditions, and it is
a starting point to design a phase-matching scheme. Because it considers the optimisation only
locally, the same approach may be applied for example in guided geometries [212].

6.3.2 General phase-matching schemes

Equation (6.12) is an initial point to design phase-matching schemes. ∆kdisp. is a material constant
and cannot be modified microscopically. A way to use this term is to change the macroscopic shape
of the target; for example, [70] proposes to use a series of equally spaced plasma jets to cumulate
the phase constructively in the jets and use the spaces to overcome the destructively interfering
part. A whole branch of HHG uses guided driving beams [64]. Another option is to shape the
wavefronts of the driving beam to control ∆kgeom.. For example [61] proposes to use a two-foci
scheme. A disadvantage of the mentioned methods is a difficult scalability. Once the driving beam
is significantly distorted due to non-linear propagation. Another possibility is to use an intense
pulse that ionises the medium itself to a sufficient level [48, 39]. The possible disadvantages are
1) a short temporal window in time reaching an optimal value, which gives the name of the method
– transient phase-matching; 2) the difficulty to control and stabilise an intense pulse if a long
medium is used. Another use of ionised media is to guide the driving beam in a plasma channel to
prevent defocusing of the beam [67, 68, 66].

The scheme we propose based on the homogeneous pre-ionisation relies on the control of ∆kplasma.
This effect have been briefly discussed as a part of the ”ionisation-driven” generating scheme [68].
We study a set-up of a long medium with loosely focused laser. In this case, the guiding of the
beam and the gradient of intensity are minor effects. Considering only plasma, ∆kplasma, and



6.3. HHG from long media: phase-matching controlled by pre-ionisation 99

neutrals, ∆kdisp.; the mismatch is

∆kq = qω0ϱ

2c

(
∆α(p) − η e2

ε0meω2
0

)
. (6.14)

We use the polarisability α(p) related to the susceptibility by χ·,disp. = ϱα(p).4 It shows an explicit
scaling of the dephasing with the density. There is only the difference ∆α(p) = α

(p)
IR,disp.−α

(p)
XUV,disp.

needed for the analysis. Next, we have defined the ionisation degree η so that the plasma density
is written ϱe = ηϱ. This provides a simple way to find the corresponding degree of ionisation for
a given coherence length

Lcoh = π

|∆kq|
. (6.15)

The relation is

η = ω2
0ε0me

e2

(
∆α(p) ∓ 2πc

qω0ϱLcoh

)
, ηopt. = ω2

0ε0me∆α(p)

e2 . (6.16)

The optimal ionisation ηopt. is reached by letting Lcoh → +∞.
The microscopic mechanism is clear, the next step is to zoom out to macroscopic scale. A rough

estimate of a region interfering constructively is directly Lcoh as its characteristic dimension.

6.3.3 Longitudinal simple model

The longitudinal aspect comes from the integration along the propagation (5.18), this model was
introduced in [38]. It gives the XUV-signal:

I(ω) =
4ϱ2L2

abs

∣∣∣∂̂tj∣∣∣2
1 + 4π2

(
Labs
Lcoh

)2

(
1 + e− Lmed

Labs − 2e− Lmed
2Labs cos

(
πLmed
Lcoh

))
=

=
16ϱ2L2

abs

∣∣∣∂̂tj∣∣∣2
1 + 4π2

(
Labs
Lcoh

)2 e− Lmed
2Labs

(
sinh2

(
Lmed
4Labs

)
+ sin2

(
πLmed
2Lcoh

))
. (6.17)

Because ∂̂tj is constant in this model, this equation provides a direct macroscopic insight in the
generation process driven by the absorption length, Labs, coherence length, Lcoh, and the length
of the medium Lmed. The expected signal is further simplified if Lmed ≫ Labs, this is called

4This scaling is justified for our use of gaseous media. In a general case, the link is provided by the Clausius-
Mossotti relation.
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absorption-limited generation because Lmed vanishes from the expression: the signal is given by the
pre-factor only. We consider the absorption-limited case for the rest of this analytical approach.

We can substitute the coherence length from the dephasing (6.14) and Labs = 1/ϱσ from (5.19),
the signal is then

Iq(η) ≈
4
∣∣∣∂̂tj∣∣∣2

σ2 + q2ω2
0

c2

(
∆α(p) − η e2

ω2
0ε0me

)2 . (6.18)

We use a suitable notation for studying HHG in pre-ionised media: the signal is evaluated at a given
harmonic order q, and we emphasise that the variable of interest is η. An important property is that
the signal is density-independent. An explanation is that with increasing the medium density: there
is more signal generated, but the same amount is absorbed. The main property of this equation is
that it quantitatively shows the expected signal tuned by the ionisation η. The maximal signal is
Iq(ηopt.) = 4

∣∣∣∂̂tj∣∣∣2 /σ2, we call the generation in this regime as ideal absorption-limited generation.

6.3.4 Experimental results

The goal of the numerical study in this part is to provide a detailed analysis to the experimental
campaign that studied the XUV signal from a long medium filled with krypton gas for various
pressures and pre-ionisation degrees created by an electric discharge. The details of the experiment
are described in [72]. The key parameters are the dimension of the capillary: 15-mm long with the
diameter of 1 mm. The Ti:Sapphire laser system used for the experiment delivers up to 10 mJ,
40 fs, 798 nm pulse, that is focused by a spherical mirror with the focal length of 5-m down to the
beam radius of 100 µm. We study in detail the following set-up: the discharge is fixed and pressure
is varied. Because the response of the medium to the discharge is non-linear, the pre-ionisation
varies with the pressure as well. The basic result, that will be discussed later, is that the ionisation
decreases with the increasing pressure.

The experimental results for the 17th harmonic in krypton are shown in Fig. 6.1. It compares
a reference measurement of the XUV signal without the pre-ionisation as a function of the medium
pressure and a run with a fixed discharge current. There are two key features in this result. First, the
signal without the discharge is flat as a function of the pressure, it confirms the expected absorption
limited generation – the signal independent on the pressure. Second, there is an amplification of
the signal with a peak around p = 35 mbar for 40 A. It seems that the peak may be shifted even
to higher pressures for 50 A; however, the uncertainty is high in this region. The reason is that the
discharge is more unstable with both a higher pressure and discharge current.

The measurement was, in principle, a single-shot experiment: about 10 measurements per point.
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Figures 6.3 and 6.4 show the experimental spectra with and without the pre-ionisation, respectively.
There are also histograms of the signals. The histograms show the relative stability of the set-up
without the discharge. When the discharge is applied, the set-up is more unstable; however, there
is a clear enhancement of the signal. The normalisation to arb. u. is respective to the maximum
of the signal observed for the 17th harmonic. The spectra are collected from the raw data from
a camera, and an example of these data is shown in Fig. 6.6.
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Fig. 6.1: The experimental results of the 17th har-
monic generated in long cell filled by pre-ionised
krypton gas. There are shown three cases: with-
out the pre-ionisation and pre-ionised by 40-A- and
50-A-discharge current. The data are averaged from
10 shots.
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Fig. 6.2: The simulated XUV signal (full lines).
There are also corresponding ionisations (the right
y-axis): by the discharge (dotted lines), by the laser
at the peak of the IR-pulse (dashed lines). The green
dashed line shows ηopt. given by (6.16). The gen-
eration conditions are a 15-mm long gas call filled
by krypton, Gaussian beam & pulse focused in the
middle of the cell with w0 = 110 µm, I0 = 0.9 ×
1014 W/cm2, τFWHM = 35 fs.
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Fig. 6.3: (Left:) The experimental spectra for p = 35 mbar and without the pre-ionisation and pre-ionisation
by 40 A discharge. There are plotted means of all 10 shots and the shot with the largest enhancement.
(Right:) The histogram of the maxima of the 10 shots with the discharge. The dE/dω-axes are normalised
to the mean without the pre-ionisation (see Fig. 6.4), it thus correspond to the enhancement of the XUV
signal.
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Fig. 6.4: (Left): The XUV spectra for all 10 shots for p = 30 mbar without the pre-ionisation. (Right:) The
histogram of the maxima of these shots.
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6.3.5 Full numerical model: introduction

Here, we apply the full weak-coupling procedure to model the generation process. The numerical
model does not rely on any considerations from the analytic model and provides a full numerical
counterpart to experiments. We then use various metrics to characterise and compare the results.

One of the inputs of the simulation is the initial value of the ionisation degree by the discharge.
The development of such a model is not a subject of this work. We used values computed by Nadya
Bobrova from the model introduced in [213]. The result of these computations are the values of the
ionisation during the discharge. The computed duration of the discharge is 500 ns. It means that
the time scale of the discharge is far beyond the femtosecond scale of the laser pulse, the ionisation
by the discharge is thus static during the generation. The laser is master-clocked with the discharge
circuit assuring synchronisation, the laser arrives 250 ns after the discharge is triggered. Next, the
discharge is well-approximated by a homogeneous plasma within the capillary dimensions. Under
these assumptions the pre-ionisation degree by the discharge, η0, is a constant within the generating
medium.

We start with a direct comparison with the experiment. On one hand, this is a ”rough” starting
point, as the whole multi-scale simulation is reduced to a single number: the strength of the signal
in the far field for a given harmonic. On the other hand, it is the most desired result and provides
a clear grasp of the modelled physics. Subsequently, we will go into finer detail, which help to
understand the underlying mechanisms.

The initial conditions were estimated to agree with the experimental values: the waist of the
beam w0 = 110 µm, Gaussian focus intensity I0 = 0.9 × 1014 W/cm2, assumed Gaussian focus in
the middle of a 15mm-long krypton medium,5 the duration of the pulse 35 fs (FWHM). Throughout
the chapter, we measure the intensity also in the units of the harmonic cutoff derived from (1.1) as

Cutoff = Ecutoff
ℏω0

= 1
ℏω0

(
Ip + 3.17e2

2cε0meω2
0
I

)
. (6.19)

6.3.6 Numerical simulation of experiment

The signal is computed for a given harmonic q from (5.7) as Iq =
∫+∞

0
∫ ω0(q+1/2)
ω0(q−1/2) |E(ω, ρ)|2 ρdρdω.

Figure 6.2 shows the XUV intensities for a discharge currents 40 A and 50 A. The full lines
correspond to I17 – without the pre-ionisation and for the two currents. The signal without the
pre-ionisation is flat, this agrees both with the experiment and the analytical model. Next, the
signal with the pre-ionisation is amplified, but there is a systematic shift compared to experiment;

5The gas is mainly characterised by the ionisation potential I(Kr)
P = 14.00 eV [214], see Section 8.2 for the

specification of other material constants in the model.
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Fig. 6.5: The XUV spectra as functions of pressure. The right panel show the signal without the pre-
ionisation, η0 = 0 %. The left panel shows the case corresponding to the 40A discharge. The average
value is taken from the values without the pre-ionisation. The generation conditions are a 15-mm long
gas call filled by krypton, Gaussian beam & pulse focused in the middle of the cell with w0 = 110 µm,
I0 = 0.9× 1014 W/cm2, τFWHM = 35 fs.
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Fig. 6.6: An example of raw data from camera. (Left:) A shot for 35 mbar without the pre-ionisation.
(Right:) A shot for 35 mbar for the 40A discharge. The enhancement of the signal is characterised by the
number of counts (N. counts).

the peak is moved to lower values of the pressure. It may suggest that the initial ionisation
is underestimated in the model. Another difference is in the overall amplification ratio that is
∼ 7 compared to ∼ 2.5 in the experiment. The difference could originate from the fact that the
experimental data are acquired and averaged over many shots, where one faces various instabilities
in the laser and discharge. The numerical simulations give an ”ideal” single-shot. This is compared
in Figs. 6.3 and Fig. 6.5, where the ideal experimental shot is closer to numerical results in the
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Fig. 6.7: Numerically computed spectra. The generation conditions are a 15-mm long gas call filled by
krypton, Gaussian beam & pulse focused in the middle of the cell with w0 = 110 µm, I0 = 0.9×1014 W/cm2,
τFWHM = 35 fs.

means of the enhancement (∼ 5). Finally, the analogy of the full spatially resolved spectra are
compared in Figs. 6.6 and 6.7.

Now, we can go into more detail of the key effect – the effect of the (pre-)ionisation – in
Fig. 6.2. The initial conditions for the simulations are the pre-ionisation degrees by the discharges;
as it is homogeneous, it is a clear quantity. However, the additional ionisation by the optical
field itself depends on the pulse, it is a function of both space and time, i.e. η = η(r, t). The
shown value in the figure is reduced to the on-axis value at the peak of the pulse, where we
expect the maximal generation of the XUV. It means that the ionisation shown in the figure is
ηlas. = η(ρ = 0, z = zexit, t = tpeak). The results shows that the dominant ionisation comes from the
pre-ionisation. This is a desired result as the optimal ionisation shall be seen by the whole pulse
and not only transiently.

Next, we have a look at the position of the maximum based on the ionisation. The maximum
is expected to be in the crossing of the ionisation from the laser field ηlas. with ηopt.. This is
confirmed in Fig. 6.2. We investigate this also in different conditions in Fig. 6.9. First, we increase
the ionisation. As we mentioned above, the ionisation by the discharge evolves on much longer
time-scales than the pulse. The discharge ionisation increases in time, we used the value at the end
of the discharge as a different initial condition for the multi-scale model. The maxima again follows
the crossings of ηlas. with ηopt.. Second, there is the signal for the 19th harmonic. It turns out that
the difference between the harmonics is not negligible: the refractive index for the XUV, nXUV,disp.,
varies in this region leading to a different ηopt., the crossing is then moved along the pressure
because of the small gradient of ηlas. with the pressure. This is again confirmed in Fig. 6.9.
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6.3.7 Far-field spectra

The numerical study provides us a deeper insight by: 1) analysing the processes inside the generating
medium; 2) studying in great detail the frequency contain with high resolution. Figure 6.8 shows
the same spectra as Fig. 6.7 in the logarithmic scale. These figures reveal interference patterns
within the spatially resolved spectrum.

The origin of the (ω, ρ)-plane interferences in the HHG process may be of different natures. The
arcs (clearly visible for η0 = 8.2 % around H19) are related to the modulation of the dipole phase
for long trajectories in space and time due to the intensity profiles [33]. This modulation is clear
from the phenomenological dipole (2.19): d ∝ e−iαIIR . Another known interference mechanisms
are 1) Maker fringes due to the longitudinal phase modulated attributed to the modulation of the
phase due to ∆kq from the phase-matching [195, 215, 216], or 2) the interference between different
microscopic electron paths – the long and short trajectories [31]. Generally, any modulation of the
XUV phase either in space or time would lead to an interference.

The detailed study of interferences in long targets is out of scope of the pre-ionisation-driven
phase-matching. The fine characterisation of XUV could be then a following project.
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Fig. 6.8: The same spectra as in Fig. 6.7 in the logarithmic scale.

6.3.8 Applicability of the analytic model

An important question is the applicability of the analytical model (6.18) that gives a direct relation
between the ionisation degree expressed in η and the XUV signal. Once we have the signal and the
ionisation degree from the full numerical model, we can compare this equation both ways: We can
estimate 1) the signal from the numerical ionisation plugged in (6.18) and 2) the ionisation from
the numerical signal by inverting the relation. A difficulty is that we do not know

∣∣∣∂̂tj∣∣∣2. We use
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the average in pressure without the pre-ionisation, η = 0, for a calibration:

∣∣∣∂̂tj∣∣∣2 = σ2Iq(η = 0)
4 , Iq(η = 0) = 1

N

N∑
i=1

Iq(η = 0; pi) ,

and {pi}Ni=1 are the pressures for which we done the simulations. The comparisons are in Fig. 6.10.
There are two curves estimating the ionisation; because (6.18) is not an injective function, there
are two branches of the inverse for η. The lower branch is for η below the optimal ionisation
and vice versa for the upper branch. The estimate of the ionisation differs the most close to the
optimal generation. This may be due to the steep evolution of Iq(η) around ηopt.. The opposite
procedure: the signal estimated from the ionisation follows the numerical results well in both cases.
In summary, the analytic model fits well the full ab initio computations.

The benchmark of the analytical model is of high interest – the computation of the source term
from the numerical solution of the Schrödinger equation is computationally the most expensive
part of the model. Relying only on the ionisation from the numerical model is cheap compared
to the full computation. Finally, if the optical ionisation is small compared to the pre-ionisation
– as shown for this particular case in the previous figures – only reaching the value ηopt. becomes
sufficient to design phase-matching mechanisms.

In conclusion, we must clarify up to which point it is a true benchmark of two independent
approaches to avoid possible circular reasoning. In both cases, the initial values – the ionisation
and the electric field as functions of (r, t) in the whole medium – comes from CUPRAD, but
the computation splits at this moment. 1) The analytic model is a short-cut to get the result
directly from the ionisation relying on ∆α(p). 2) The full study first computes numerically TDSE’s
and then sums the elementary dipoles by the Hankel transform. The refractive indexes, nIR,disp.

and nXUV,disp., within the multi-scale model are sourced from the same data as ∆α(p).6 It means
that both models share this quantity: this part is thus not an independent check. However, the
multi-scale model surpasses analytic model in two key aspects: the time profile of the pulse – the
envelope – and transversal profile of the beam. This benchmark thus cannot answer if there are
any inaccuracies due to the refractive indexes, but it answers that the spatio-temporal profile of
the pulse does not destroy the phase-matching in our conditions.

6However, they are decoupled in the multi-scale model. nIR,disp. is used only in the code propagating the IR-laser,
while nXUV,disp. is in the independent code for collecting the dipoles. Thus, it is still a self-consistency check of the
multi-scale model.
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Fig. 6.9: The sensitivity of the XUV signal on the optimal ionisation ηopt.. The left panel shows the H17-
signal for different pre-ionisation curves obtained at the end of discharges for 40 A and 50 A. The right
panel shows the signals for H19 for the pre-ionisations at the half of the discharges. There are also shown
the initial ionisations, η0, and ionisation by the IR pulse, ηlas.. The generation conditions are a 15-mm long
gas cell filled by krypton, Gaussian beam & pulse focused in the middle of the cell with w0 = 110 µm,
I0 = 0.9× 1014 W/cm2, τFWHM = 35 fs.
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Fig. 6.10: The comparison of numerical model with the analytic model (6.18). The reference, numerical and
num. ionisation are obtained from the multi-scale model. The estimates are obtained from (6.18) (inverted
for the est. ionisation) by using respective values from the numerical model. The generation conditions
are a 15-mm long gas cell filled by krypton, Gaussian beam & pulse focused in the middle of the cell with
w0 = 110 µm, I0 = 0.9× 1014 W/cm2, τFWHM = 35 fs.

6.3.9 Detailed characterisation of HHG in multi-parametric space

We have investigated the physics corresponding to experiments, confirmed the key principle and
benchmarked the analytic model. We extended the analyses in two directions compared to the
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Fig. 6.11: The electric fields, E(ρ = 0, z = zexit, t) for p = 25 mbar, zexit = 15 mm and the input peak
intensity 1.2 × 1014 W/cm2, at the exit of the gas cell for various pre-ionisations. The time is adjusted to
the co-propagating frame by c. The key features are the stability of the envelope and the shifts of the fast
oscillating parts.

experiment: 1) We may get insight of the physics inside the medium during the generation. For
example, the electric field, E , and microscopic source terms, ∂tj. 2) A single run is a realisation
of the experiment in a multi-parametric space of input parameters. In simulations, some of them
may be easier or more precisely controlled. We thus may inspect HHG in a broader perspective.
We add these parameters as the quantities of the interest. For example, E(r, t; p, I0, η0) denotes
the electric field in its natural variables r and t, together with the conditions p, I0 and η0 that
denote respectively: the pressure of the gas p, the peak intensity in the vacuum focus of the driving
beam I0 and the pre-ionisation η0.

6.3.10 Stability of beam with respect to η0

We mentioned that one of the key advantages of the homogeneous pre-ionisation is that we tune the
linear part of the refractive index. In other words, we control the phase velocity of the driving laser
without affecting the focusing properties, the pulse shapes, etc. We verify this by our simulations.
As examples, we show the evolution of the electric field for various degrees of pre-ionisation in
Fig. 6.11. The electric field is plotted in two scales: The envelope of the pulse is not affected
and the fast oscillations fit within in all the cases. Zooming only few cycles of the field, the
fields for various pre-ionisations are shifted by the pre-ionisation. This is a clear straightforward
demonstration of the mechanism as the electric field is one of the most fundamental characteristics
of the field.

Figure 6.12 shows the profile of the (ρ, z)-profile of the peak intensity of the pulse for η0 = 0 %
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and ionisation degrees at corresponding times for η0 ∈ {0 %, 8 %}. Note that the ionisation degree
is only shifted by η0 for the two cases. There were no noticeable differences in the intensity profile.

In conclusion, these results prove the expected scalability with the pre-ionisation and that it
really acts as a background changing the phase velocity. We verified this behaviour also for other
configurations within the region of the initial conditions of our interest; we thereafter will not show
the beam profiles for different values of η0 as η0 = 0 is representative enough.7

0 2 4 6 8 10 12 14
z [mm]

0

20

40

60

80

100

120

 [
m

]

(a)

I0=9.37e+13 W/cm2, p=36 mbar, 0=0 %

10

12

14

16

18

Cu
to

ff 
[-]

0 2 4 6 8 10 12 14
z [mm]

0

20

40

60

80

100

120

 [
m

]

(b)

I0=9.37e+13 W/cm2, p=36 mbar, 0=0 %

0.5

1.0

1.5

2.0

2.5

3.0

Io
ni

sa
tio

n 
[%

]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
z [mm]

0

20

40

60

80

100

120

 [
m

]

(c)

I0=9.37e+13 W/cm2, p=36 mbar, 0=8 %

8.5

9.0

9.5

10.0

10.5

Io
ni

sa
tio

n 
[%

]

Fig. 6.12: (a): The peak intensity profile I(ρ, z) for the given input conditions I0, p and η0. (Measured by the
harmonic cutoff (6.19).) (b): The corresponding ionisation of the medium. (c): The ionisation profile for the
case differing only in η0. The intensity profile corresponding to (c) is not shown as there is no recognisable
difference compared to (a). We see that also (b) and (c) differ only by a constant shift of the scale.

7Note, this is not a general proof in all the cases. For example, once multiple-ionisation becomes to play a role,
the propagation may be more complicated; however, this is beyond our interest at the instant.
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6.3.11 Beam shape, intensity clamping

Now, we move to the shaping of the pulse in space and time due to the propagation and study the
impacts to the phase-matching conditions. The pulse is expected to be heavily distorted once the
intensity is high enough to induce strong non-linear response. The plasma-induced defocusing due
to the ionisation prevails in our conditions [73, 74, 75, 217]. Here we investigate in detail this effect
from our simulations.

We start with the intensity distribution on the axis. Figure 6.13 shows the intensity and phase-
mismatch evolution for various initial peak intensities and pressures. The first panel, (a), shows
the on-axis peak intensity profiles as for various pressures and initial intensities of the pulse. It
illustrates the key mechanism of the long-media generation in our conditions. The intensity is
clamped at the first part of the medium for z ≲ 6 mm (region I) and is stabilised after this region,
z ≳ 6 mm, with only a mild decrease (region II). Moreover, the stabilised intensity in the region II
is driven also by the pressure. Generally, lower pressure can accommodate beams with lower peak
intensity as expected: the the two cases with sufficiently high intensity are above all the others
in the region II, while the others fall to approximately the same peak intensity. Next panels, (b)
and (c), show also the corresponding scaled phase mismatches |∆k17/p| for different pre-ionisation
degree η0. It directly shows the reduction of the mismatch by the order of magnitude (note y-axis
scales). Moreover, it shows the scaling with pressures: the limit value in the region II is very similar
for higher pressures and slightly different for the lowest pressure (but still far below the differences
between the two cases of various η0).

This study gives us the insight in the generation: our medium is long enough so that the
intensity is clamped at its first part, region I, and then we generate in a relatively stable region
of the beam evolution. Note Labs ≈ 1 mm for H17 at 15 mbar in krypton from the scattering
coefficients [218, 219], it means that the relevant contribution to the signal comes from the rear
part of the medium.

Off-axis intensity, fluence

Next, we look into more detail on the off-axis physics. We have seen the on-axis defocusing in
Fig. 6.13 and also the corresponding beam shape and ionisation in Fig. 6.12 for p = 36 mbar, which
is an intermediate case of the defocusing. ”Limit cases” are shown in Fig. 6.14. These two cases use
(a) low intensity and low pressure and (b) high intensity and high pressure. Concerning the case (a),
the focusing is preserved in the middle of the medium as the intensity increases with z. Contrary,
the beam is heavily distorted for the case (b). Notably, the peak of the intensity is reached off the
axis at the edge of the beam for z < 8 mm. It means that a significant portion of the energy is
pushed off the axis due to defocusing before an equilibrium is reached, in agreement with what is
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Fig. 6.13: (a) shows the on-axis intensity profiles in the harmonic cutoff units (6.19) for various initial
pressures and intensities. The initial intensity is given by the value at z = 0 and pressures by various styles
of the lines. Next panels show the corresponding scaled phase mismatches |∆k/p| without the pre-ionisation,
η0 = 0 % (b), and for η0 = 8 % (c).

observed as the stable region II. Next, the ionisation acts as a fast defocusing mechanism in our
conditions: high amount of the ionisation degree, η, is reached in approximately the first 2 mm of
the propagation.

The intensity provides an image of the pulse profile. Mainly, we find the cases when the pulse
is distorted. However, a part of the information is still not complete by this methodology: the time
aspect of the generation is partially suppressed because we have evaluated the quantities of interest
at the peak of the pulse in time. We complete this discussion in Section 6.3.13. Now, we restrict
our analysis to the main concept characterising the phase-matching conditions.
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Fig. 6.14: The peak intensities and ionisation for two ”limit cases”: 1) low pressure and low initial intensity,
2) high pressure and high initial intensity.

Coherence maps

Because the ionisation affects the phase, which together with the intensity drives HHG, we link
these quantities in the map of the coherence length Lcoh given by (6.15). We continue with the
beam characteristics presented in Fig. 6.12. Considering the effect of η0, the intensity profile is
unaffected and η is only shifted by η0. The corresponding coherence lengths for H17 are shown in
Fig. 6.15. There is a significant difference in the coherence maps. The case of η0 = 8 % indicates
an optimal generation in a large part of the region II both on- and off-axis, which agrees well with
the already discussed results in sections 6.3.6 and 6.3.8.
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Fig. 6.15: The coherence lengths, see (6.15), at the peak of the pulse without the pre-ionisation (a) and near
optimal η0 (b). Note different scales.

6.3.12 Measures to optimise phase-matching

We defined two different metrics of the phase-matching: the coherence length Lcoh = |π/∆kq| and
the dephasing ∆kq. These quantities are very intuitive and we could infer a good qualitative picture
of phase-matching. The question is: how do they stand quantitatively?

We list the difference between the dephasing (6.13), coherence length and the expected inten-
sity Iq (6.18):

∆k: It is a ”notorious” quantity in optics and it naturally emerges from the superposition of the
waves to find its constructiveness. It is also a natural quantity of the local viewpoint.

Lcoh: It is a very instructive quantity, it gives the spatial dimension of the region, where we expect
a constructive addition of the signal. It is a natural quantity of the global viewpoint.

Iq: This is the most specific quantity, it is fitted for our problem and aligned with our goal:
optimise the expected signal. Its largest advantage is that it is properly scaled with the
density. Both aforementioned quantities are not, it means that one must keep in mind the
scaling while working with them.

Either of them can be used to optimisation. However, some care is needed. Their mutual relations
are non-linear, which has to be considered once one applies them. The quantities ∆k or Lcoh

are commonly used. But we suggest that Iq should be used as a fitness function to optimise the
intensity. The difference between |∆kq|-, Lcoh- and Iq-map is shown in Fig. 6.16. The main trend
is still covered by all the metrics. However, Iq includes the proper scaling with the pressure, which
extends the ridge-shape in the centre of the Lcoh-map.
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The information contained in all three measures is thus similar. However, the key information
is about setting a proper threshold – the value we accept to call the generation optimised – for
each of them. Such an information is naturally contained in Iq as it measures directly the expected
XUV signal.
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Fig. 6.16: There are various measures of phase matching for H17. From left to right: |∆k|, Lcoh and I. These
graphs show the values at the peak of the pulse, on the axis at the end of the medium, using the notation of
the multi-parametric space, the cuts are |∆k(z = zexit, ρ = 0, t = tpeak; p, I0, η0 = 8 %)| and correspondingly
for the others. The units of I are normalised to the maximal possible signal of the ideal absorption-limited
generation.

6.3.13 Time aspect of the generation

To complete the study, we infer the role of time and finish the introduction from Section 6.3.11. The
motivation is that some dimensions are always removed if we intend to visualise multidimensional
quantities. To slice out the temporal dependence, we present the quantities at the peak of laser
intensity (Figs. 6.12, 6.13, 6.14, 6.15 and 6.16). This choice is logical as we expect the maximum of
the XUV to be generated at this point. It is also consistent with the methodology used in, e.g., [75].
However, this may put together unsynchronised parts of the pulse if it is seriously distorted due to
its propagation in the medium. We address the question of the time profile in this section. This
will also help us to understand the shaping of the pulse during the propagation.

Before we go into detail, we need to synchronise the clock along the propagation. Our convention
for this section is to use a frame co-moving with the pulse by the speed of light c along the laser
propagation.
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Fig. 6.17: The evolution of the on-axis time-intensity profile during the numerical propagation of the driving
pulse, the difference between the panels is the pressure and the initial peak intensity. In the case of the
lower pressure and intensity, the pulse is not strongly shaped and also the maximum of intensity is inside the
medium. The intensity drops throughout the propagation for the higher pressure and intensity; the trailing
edge is suppressed; and the actual peak of the pulse moves towards the leading edge. It is expected as the
propagation is generally more affected in a denser medium.

Fig. 6.18: The radial intensity profiles for fixed times along the propagation corresponding to the points and
conditions from Fig. 6.17. It confirms that the profile remains Gaussian also in the radial coordinate in the
case of the lower pressure and intensity; while the intensity is pressed outwards the on-axis region for the
higher pressure and intensity.
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One-dimensional cuts

We start with simple one-dimensional cuts of the intensity profiles. Figures 6.17 and 6.18 show
respectively the intensity evolution in time at different points in the gas cell and corresponding radial
distribution for a fixed time. There are the two limit cases from Fig. 6.14 used for the illustration.
(They represent low-intensity, low-pressure and high-intensity, high-pressure cases.) The pulse is
almost undistorted in low pressure and preserves also its focusing property: the peak at 7.5 mm is
higher than that at the entry and exit. The radial profile also follows the Gaussian shape during
the whole propagation. The situation is very different in high pressure. The defocusing clearly
affects the pulse from the trailing edge as this part of the pulse is mostly defocused. The peak
of the intensity is reduced and moved into the raising edge. The pulse shape is at the end quite
close to the low-pressure case, only shifted in time. It also complements Fig. 6.13, where the peak
intensity is stabilised at similar values.

The conclusion from these findings is that the peak of the intensity moves in time towards the
original raising edge of the pulse once the intensity surpasses the threshold of defocusing. The
surplus of the intensity from the peak and the trailing edge is pushed out from the propagation
axis. It causes the formation of wings at the radial edge of the pulse, where the peak intensity may
be even higher than on the axis.

2D-scans: wings of pulse

Having introduced the basic picture, we go into more detail by scanning the profile. First, there
are snapshots of the pulse at the entry and at the exit of the medium shown in Fig. 1.3. The
pressure is 50 mbar and the peak entry intensity is 1.2 × 1014 W/cm2. (The figure shows the
instantaneous intensity that is doubled compared with the usual intensity that is averaged over the
fast oscillations, see Appendix B.2.) It shows the formation of the wings at the trailing of the pulse.

Now, let us see the formation of the wings along the passage through the medium and compare it
with the ”peak-intensity” methodology. Figure 6.19 shows the intensity in the (z, ρ)-cut at different
times of the co-moving frame. The snapshot on the leading edge (t ≈ −5 fs) shows a regular profile
similar to Gaussian focused at the entry of the medium. The wings with the off-axis intensity are
clearly formed at the trailing edge of the pulse (t ≈ 5 fs). The intensity taken at the peak of the
pulse, Fig. 6.19(d), demonstrates that the maximum of the intensity is not reached at a fixed time.
It suggests that the peak of the intensity is reached later in the pulse in the wings rather than on
the optical axis. It is natural as the wings are formed later in the pulse.
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Fig. 6.19: The spatial intensity profiles of the IR-field at various times of the pulse. Panels (a)-(c) show the
intensity profiles at a fixed time, I(t = tfix, ρ, z). (d) is the intensity profile at the peak of the pulse at every
point.

Insight into focusing

The profile of the pulse from the previous study demonstrates that each part of the pulse may have
different focusing properties. Here we show a way to quantify this property.

Let us recall the spatio-temporal distribution of the phase for a Gaussian beam (B.6),

ΦGauss(r, t) = ω0t− k0z −
k0ρ2

2R(z) + ϕG(z) . (6.20)

Subtracting the ”plane-wave” oscillations ω0t− k0z, we obtain the spatial variations of phase

Φ̃Gauss(r) = k0ρ2

2R(z) + ϕG(z) , ϕCurv.,Gauss(r) = k0
2R(z)ρ

2 . (6.21)
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Fig. 6.20: The curvatures ϕCurv.(ρ, z, t = tfix) for tfix ≈ ±5 fs, corresponding to Fig. 6.19. The positive
values of ϕCurv. give the focusing property, while negative values are the defocusing. The initial conditions
correspond to a Gaussian beam focused in the middle of the medium, z = 7.5 mm.

Φ̃Gauss contains both the curvature and the geometrical (Gouy) phase ϕG(z). The second term,
ϕCurv.,Gauss, contains only the curvature related to focusing. We can extract a corresponding quan-
tity from a numerical field as

ϕCurv.(ρ, z, t) = Φ(ρ, z, t)− Φ(ρ = 0, z, t) . (6.22)

Note, that the Gaussian curvature, ϕCurv.,Gauss, is t-independent, while the general case is not. This
means that each part of the pulse may be focused at a different spot. This is exactly the case for
our defocusing of the trailing edge of the pulse.

These considerations are illustrated in Fig. 6.20. It shows the curvatures for fixed times in
Figs. 6.19(a) and 6.19(c). The case for the raising edge of the pulse is close to ”vacuum” Gaussian
beam focused in the middle of the medium, which corresponds to the initial parameters at the entry
of the medium. The difference is that slight defocusing starts to occur for (ρ, z) ≈ (2 mm, 40 µm).
The profile differs much more at the trailing edge, t ≈ 5 fs. It starts to defocus significantly around
z = 2 mm. Furthermore, the scale is twice the scale compared to t ≈ −5 fs.

This analysis showed: a) the capability of the code to study the focusing properties in detail;
b) that the pulse is significantly distorted at the trailing edge of the pulse while the raising edge
remains close to Gaussian.
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Fig. 6.21: The beam trace given by the fluence F (ρ, z) =
∫ +∞

−∞ I(ρ, z, t) dt, we show further the radii of the
beam defined by ρrms(z) =

∫ +∞
0 ρ2F (ρ, z) dρ/

∫ +∞
0 F (ρ, z) dρ and F (ρ1/e2(z), z) = F (ρ = 0, z)/e2, shown in

respectively dashed and full lines. The conditions of the limit cases are the same as in Figs. 6.17 and 6.18.

Aggregated time: fluence

Finally, we apply the measurements of the pulse by its fluence F , defined in (B.4). The snapshots
at time – either fixed or corresponding to the peak of the intensity – are appropriate to HHG as
it is an instantaneous process. However, a snapshot of the field in time may be difficult to reach
experimentally. On the other hand, it is easy to measure the energy integrated over the pulse at
a given radius.8 This is exactly the fluence.

The fluences corresponding to the two limit cases from Figs. 6.17 and 6.18 are shown in Fig. 6.21.
Note that the drop of the fluence with the radial coordinate is not necessarily a drop in energy, as
the scaling includes the Jacobian, i.e. the differential energy is dE/dρ = 2πρF (ρ, z).

6.4 Conclusion and discussion

This chapter has followed two goals. First, we have presented the multi-scale model of HHG, which
is an important result of this thesis. Second, we have investigated a real scheme to optimise HHG,
where the model is complemented with an experiment. The multi-scale model has provided a de-
tailed insight into the underlying physical processes. This approach is indispensable to comprehend
the key mechanisms which are then turned into a design of optimised HHG.

We have shown that the phase matching in long-media HHG can be controlled by pre-ionising
the medium. Moreover, we have proved that it is almost an independent parameter of the control

8For example, this is exactly the way the harmonics are measured experimentally, Fig. 6.6. The frequency
resolution is obtained by grating placed in the beam.
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within the investigated range. Next, we have recognised that the pre-ionisation degree is the key
parameter of the optimisation and we have found a great agreement with the analytical model,
which confirms the applicability of the analytical model in designing phase-matching schemes.
The numerical model may be then used for confirmations and further refinements of the designs.
Additionally, the robustness of the pre-ionisation scheme has been shown for various parameters.

The model has also been compared with the experiments, and we have reached quantitative
agreement of all the approaches. The XUV signal has enhanced up to 8 times. Applying the verified
model beyond the experimental conditions, it indicates that even higher enhancement is reachable
in some configurations, at instant up to 25 for H45 in neon.9

Finally, we return to another goal of the thesis – the model itself. We had access to the physics
of the HHG in the generating medium. Mainly, we have been able to retrieve the spatio-temporal
profile of the driving laser, together with detailed analyses of its phase, plasma density and others.
We have also presented various approaches to proceed. Beside the numerical solution of HHG based
on the coupling with the Schrödinger equation (that is computationally expensive), we have found
a great utility of simpler models based on the phenomenological dipole. Such an approach allows
to scan larger portion of multi-parametric space given by various initial conditions of the incident
laser and generating medium relatively cheaply from a computation viewpoint. In conclusion this
part of the work should be seen not only as a complement to the particular experiment, but also
as a demonstration of the capability of the code.

9This estimate is obtained by using (6.18) for 800 nm input laser for ηopt. ≈ 6.8 %, the material constants are
obtained from [218, 219].
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Part III

NUMERICAL CONSIDERATION OF MODELLING





7. NUMERICS OF MICROSCOPIC SCALE

This chapter introduces the numerical procedures used to solve the TDSE and the related eigenvalue
problem in a static field. First, we pose the problems of interest mathematically. Then, we present
the general framework: the tools to represent states by vectors |ψ⟩ from a Hilbert space (Sections 7.1
and 7.2) and the Hamiltonian H driving the dynamics (Section 7.3). Last, the procedure describing
the evolution in time of the system is presented in Section 7.4. This general framework is then
applied to our 1D-TDSE solver, 3D-TDSE solver and the complex rotation in Sections 7.5, 7.6
and 7.7, respectively. Last, we provide details about the calculation of the dipole using the FSPA
in Section 7.8.

The central equations are1

i∂t |ψ(t)⟩ = H(t) |ψ(t)⟩ , (7.1a)

H |ψE⟩ = E |ψE⟩ . (7.1b)

The first equation describes the evolution of the state |ψ(t)⟩, the second equation is the eigenvalue
problem for the eigenvector |ψE⟩ associated with the eigenvalue E. There are three main points to
address before we implement an algorithm to find a numerical solution:

• The choice of a proper Hamiltonian H and the respective Hilbert space H . At this stage,
we need to resolve the degree of complexity of physics that we want to include in the model.
For example: How many electrons will be described? Do we further reduce the size of H

by using ”1D-atoms”? Do we include spin interactions? This is intimately related to the
approximations discussed in detail in Section 2.1. Here in Section 7.3, we will discuss the
implementation of 3D- and 1D-atoms using the approximations.

• Next point is the choice of the representation of |ψ⟩. Basically, it means to choose a finite-
dimensional subspace G of H .

• The last point is the evolution in time. It means to discretise t and use finite differences to
find |ψ(t)⟩.

1As stated in Section 2.1, we stay within the frame of non-relativistic quantum mechanics. See, at instant, [220,
221] for recent numerical methods for a relativistic case.
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Before we address these points in the respective section, there is a place for a mathematical
insertion about the nature of finite- and infinite-dimensional Hilbert spaces in relation to numerical
modelling because the dimensionality may significantly change the mathematical nature of a space.

Finite- vs. infinite-dimensional Hilbert spaces

The goal is to approximate functions and other mathematical structures of the infinite-dimensional spaces
using only finite representations. This problem is shared in all numerical treatments in last decades, it is thus
well-grounded today. However, one should be aware about some of these details as it may lead to non-trivial
consequences. We thus only recapitulate some of the main points.

The functions may be approximated with arbitrary precision as shown by the Stone-Weierstrass theo-
rem [222]. It is not very restrictive to physical problems as it holds for a large set of functions. Difficulties
occur once we arrive to differential equations. The requirements are stronger in this case. According to
a given problem, only some numerical schemes converge to the desired solution. An important result in this
area is the Lax–Richtmyer theorem, see Theorem 10.5.1 of [223] or Chapter 10.5 of [224].

To conclude this remark, we recall two examples from quantum mechanics. First, we recall the Heisenberg
commutation relations [xi, pj ] = iδij , which are obeyed by the position x and momentum p operator. This
relation can never be represented exactly in a finite-dimensional space, see Chapter 8, Problem 10 of [225].
The second example is the spectral property of the Hamiltonian under the complex rotation [151]. We have
already discussed this property in the relation to (3.5) recalling the existence of an infinite dimensional linear
operator with an empty spectrum. This case is more dramatic, as an n-dimensional linear operator can never
have the empty spectrum.

7.1 Numerical methods for TDSE: representation of |ψ⟩

A way to represent |ψ⟩ is usually to choose an orthonormal basis of H . Let us denote the basis
A = {|α⟩}α∈I . The state is thus written

|ψ⟩ =
∑
α

⟨α|ψ⟩ |α⟩+
∫
⟨α|ψ⟩ |α⟩ dα , (7.2)

where the summation and integration run through the discrete and continuous part, respectively,
of the index set I. It is a complete description of the state. Roughly said, a numerical treatment
of a problem having an infinite number of variables (either discrete or continuous) approximates
the problem with a finite number of variables. A way to obtain these variables is to truncate A
and use the coefficients of the truncated basis.
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There are two families of methods – Spectral methods (SM) and Grid methods (GM)2 – based
on the choice of A. For the SM, we take a finite truncation of any basis of functions as A (for
example Gaussian functions); for the GM, we take finite number of points x from the position
representation of the wave function.3 We now list some of the properties of the methods:

(SM): We choose a basis {|φi⟩}+∞
i=1 of H . The state is then given by the finite truncation |ψ⟩ =∑N

i αi |φi⟩. The unknowns characterising the state are now αi.

+ The number of unknowns may be reduced by the choice of basis suitable for the problem.
− Its accuracy and performance strongly depend on the choice of the basis thus the method

may be limited only to a particular task.
− It may be difficult to express the matrix elements of the Hamiltonian ⟨φi|H|φj⟩.4

(GM): The wave function is evaluated at the given points in the position space: ψi = ψ(xi) = ⟨xi|ψ⟩.
The unknowns are then directly ψi.

+ The method is very versatile; it provides a direct physical insight since problems are
usually formulated in the x-space.

− Increasing accuracy usually demands very fine grids, which leads to a high computational
cost.5

Before we proceed to practical examples relevant for our work, we recall the decomposition for
Hilbert spaces that may be written as a tensor product of ”smaller” spaces. Let us take H = H1⊗
H2. A possible basis is the tensor product of their respective bases, A = {|α1⟩ ⊗ |α2⟩}α1∈I1,α2∈I2

.
It means that the aforementioned approaches may be applied independently in both H1 and H2.
An important example are the square-integrable functions in the 3-dimensional space described in
spherical coordinates:

L2(R3, d3x) = L2(R+, r2dr)⊗ L2(S2,dΩ) , (7.3)

where S2 denotes the 2-dimensional sphere. A convenient basis for L2(S2, dΩ) are the spherical
harmonics Y m

l , which can be mixed with an arbitrary method for the radial part L2(R+, r2dr).
2We adopt the classic definition of the spectral methods [226, 227]. These methods are defined in Preface of [226]

as: ”Spectral methods involve seeking the solution to a differential equation in terms of a series of known, smooth
functions.” In atomic physic, a spectral method may be narrowed to use, for example, the basis of the corresponding
field-free Hamiltonian. We do not restrict the definition in this sense here.

3In both cases, the computation is then a restriction to a finite-dimensional subspace G ⊂⊂ H . The represen-
tation of operators Õ is then given by the projection Õ = PGOPG , where PG is the projector on G . It means that
G = PG H .

4For example, if |φi⟩ is an orthogonal polynomial, the integration of the scalar products for large values of i
contains fast oscillations.

5This is meant by comparing to the SM, where – with a suitable basis – the accuracy grows faster with the
number of additional basis functions compared to the number of additional points in GM.
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7.1.1 Grid methods

We present how to represent the wave function and differential operators in this section. If we
adjust the above scheme to an N -dimensional space, the wave function is represented by a finite
number of points in the chosen representation,

ψJ(t) = ψ(xJ , t) = ⟨xJ |ψ(t)⟩ = ⟨x(J1)
1 , . . . , x

(JN )
N |ψ(t)⟩ , (7.4)

we adopted the multi-index notation J = (J1, . . . , JN ), where any of Ji runs in a given finite range.

All the differential operators are thus represented by finite differences on the grid. For example

∂x2ψ(xJ , t) ≈
ψ(J1,J2+1,J3,... )(t)− ψ(J1,J2,J3,... )(t)

x
(J2+1)
2 − x(J2)

2
, (7.5)

using the forward-difference approximation of the first order. The important property is that all
the derivatives are still represented by linear operations and may be thus described by matrices.

Numerov’s approximation of derivatives

The idea leading to the finite differences approximation used in (7.5) comes from the Taylor’s
expansion of f(x + kh) = f(x) + (kh)f ′(x) + · · · , subtractions of these series would give the
required order of precision [228]. There is another way to increase the accuracy. Let us consider
an equation y′′ = f for a single-variable function y. The Numerov’s method (see [229] and [230],
chapter III.10, Implicit Störmer Methods) increases the accuracy of the derivatives by using more
grid points on both sides of the approximation, the discretised version of y′′ = f is:

yi−1 − 2yi−1 + yi+1
(∆x)2 ≈ fi−1 + 10fi−1 + fi+1

12 ⇔ ∆2y ≈M2f . (7.6)

∆2 and M2 represent the linear operations and are defined by the first equation, we may then
modify the approximation of the second derivative as ∆̃2y = f , ∆̃2 = M−1

2 ∆2. The newly defined
operator ∆̃2 gives a new approximation of the second derivative with the accuracy O(∆x5) com-
pared to O(∆x2) included in ∆2. Further details including non-uniform grids or the approximation
of the first-order derivative necessary for the interaction term in the velocity gauge can be found
in, e.g., [231, 232, 233].

A disadvantage of this approach is the inversion in ∆̃2 that generally mixes all the grid points,
but it could be avoided in some cases as we will see later.
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7.1.2 Spectral representation

This paradigm focuses on the discrete-type decompositions in (7.2). We use an example of a 3D-
Hamiltonian including a Coulomb-tail in the effective potential, which we will use later for the
diagonalisation with the complex rotation. We use a basis defined by the solution of the following
equation: (

−1
2

d2

dr2 + l(l + 1)
2r2 − λn

r
+ λ2

2

)
Sλnl(r) = 0 , (7.7)

these functions are called Sturmians [234].6 If we fix n, the Sturmians solve a Coulomb problem
with a charge Z = λn. However, the enumeration of the Sturmians is not linked with the scaling in
the energy as the Coulomb-problem eigenfunctions are. The Sturmians are scaled in the charge λn
(n is a varying parameter of the Sturmian). The Sturmians then seems to be a suitable basis for
Coulomb-tailed problems analytically introduced by (2.1) since the short-range potential W may
be attributed to the local change of the charge seen by the electron as it will be seen in (7.26b).

The Sturmians resolve only the radial part, the full description includes also angular part. The
full basis is then ⟨r|ilm⟩ = Sλl+i,l(r)Y m

l (Ωr), where i and l enumerate the Sturmians and m is
the usual magnetic quantum number. Although we used the Sturmians as an example of spectral
methods, they do not obey (7.2) because this basis is not orthonormal. Its overlap matrix, also
called Gramian, is written

G =


S1

. . .
Slmax

 , (7.8a)

(Gl)jk =
〈
Sλl+j,l

∣∣∣Sλl+k,l〉 , (7.8b)

and is a tridiagonal matrix. The decomposition in (7.2) is then still possible, it is replaced by

|ψ⟩ =
∑
α

ξα |α⟩+
∫
ξ(α) |α⟩ dα . (7.9)

The coefficients ξα and ξ(α) are still uniquely defined, but they cannot be obtained by the scalar

6In broader sense, the Sturmians are the eigenfunctions of a general Sturm-Liouville operator

L = − 1
w(x)

( d
dx

(
p(x) d

dx

)
+ q(x)

)
.

However, we restrict the term only for solutions of the Sturm-Liouville equation corresponding to the Coulomb
problem in this work.
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products ⟨α|ψ⟩ any more.

7.1.3 Discrete variable representation (DVR)

We introduce a methodology benefiting from the advantages of GM and SM in this section. The
idea is to bind a basis with a grid, in other words to construct the basis on the grid. The underlying
structure is similar to B-splines [235, 236, 237, 238], but its technical realisation is different. We
use the so-called Discrete variable representation (DVR), see, e.g., [239, 240] and references therein
for the overview of the method.

Our starting point is the Gaussian quadrature rules for the integration using orthogonal poly-
nomials pi with respect to a weight function w. The orthogonality and the integration rule are,
respectively,

∫
Ω
w(x)pi(x)pj(x) dx = δij ,

∫
Ω
w(x)f(x) dx ≈

N∑
i=1

wif(xi) , (7.10)

wi are called weights and xi abscissae. The role of the polynomials is that weights are related to
them and abscissae are zeros of the (N − 1)st polynomial.

Based on the abscissae xi, we define the cardinal functions and DVR-basis functions

Ci(x) =
√
w(x)
w(xi)

N∏
j=1
j ̸=i

(
x− xj
xi − xj

)
= 1
P ′
N (xi)

PN (x)
x− xi

, fi(x) =
√
w(xi)
wi
Ci(x) , (7.11)

respectively, Pi(x) =
√
w(x)pi(x) and {xi}Ni=1 are the zeros of pN .7 By construction, the DVR-basis

functions satisfy fi(xj) =
√

w(xi)
wi

δij .
Next, the matrix elements in the DVR-basis are calculated from the quadrature rule8

⟨fi|fj⟩ =
∫

Ω
f∗
i (x)fj(x) dx =

N∑
k=1

wkf
∗
i (xk)fj(xk) =

N∑
k=1

wk
δik√
wi

δjk√
wj

= δij (7.12a)

⟨fi|V |fj⟩ =
∫

Ω
f∗
i (x)V (x)fj(x) dx ≈ V (xi)δij . (7.12b)

The important consequences are that the basis is orthonormal (compared to the aforementioned
7In the vicinity of xj , the Cardinal function may be found by Taylor expansion

Ci(x) = δij + 1
P ′

N (xi)

+∞∑
k=2

P(k)
N (xj)
k! (x− xj)k−1 ,

note, that the expansion is generally infinite since PN includes
√
w(x).

8The calculation of ⟨fi|fj⟩ is exact because of Theorem 2.4.1 [241].
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B-splines), and the expression of local operators V is diagonal in the DVR basis. Furthermore,
only the evaluation of the potential in abscissae is required to construct the matrix. Conversely,
the expression of the kinetic term is usually a full matrix.

The above derivation uses the machinery of spectral methods and the solution is thus given by
the expansion |ψ⟩ = ∑N

i=1 αi |fi⟩. On the other hand, the basis is entangled with the choice of the
grid. It leads to

ψ(xi) =
N∑
j=1

αjfj(xi) = αi√
wi

. (7.13)

If we define ψi = αi√
wi

, we have a straightforward resemblance with GM.

DVR as spectral method

DVR is closely related to spectral methods. A simple analysis of the dimensionality shows that
using PN leads to an N -dimensional subspace of H , which is of the same dimensionality as for
a truncated expansion

ψ(x) =
N−1∑
i=0

βi+1Pi(x) . (7.14)

We included the weight in the basis and thus the wave function is expanded in Pi. This makes sense
since the orthonormality corresponds to the standard scalar product, ⟨Pi|Pj⟩ = δij . Furthermore,
the factor

√
w(x) suppresses the function for large values of x. This suppression can be exactly seen

as a closure of the wave function in a finite soft-box, which we will describe further in Section 7.1.5.
A natural question is to find a relation between G1 = span{|Pi⟩}N−1

i=0 and G2 = span{|fi⟩}Ni=1. We
will prove that G1 = G2:

First, we compute ⟨fi|Pj⟩ for an arbitrary i and j:

⟨fi|Pj⟩ = 1
√
wiP ′

N (xi)

∫
Ω
w(x) pN (x)

x− xi
pj(x) dx = 1

√
wiP ′

N (xi)

∫
Ω
w(x)gi(x)pj(x) dx ,

gi(x) = pN (x)
x−xi

. The calculation can be now performed first for j < N , since the order of the
polynomial gipj is (N − 1 + j) ≤ (2N − 1), the quadrature rule gives the exact result,

⟨fi|Pj⟩ = 1
√
wiP ′

N (xi)
∑
k

wk
pN (xk)
xk − xi

pj(xk) = 1
√
wi

∑
k

wk√
w(xk)

( √
w(xk)pN (xk)

P ′
N (xi)(xk − xi)

)
pj(xk) =

= 1
√
wi

∑
k

wk√
w(xk)

δikpj(xk) =
√

wi
w(xi)

pj(xi) =
√
wi

w(xi)
Pj(xi) , ∀j ≤ N − 1 . (7.15a)
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For higher values of j, we have gi being (N − 1)st order polynomial, and such a polynomial is
orthogonal by construction to all pj , j ≥ N . We conclude

⟨fi|Pj⟩ = 0 , ∀j ≥ N . (7.15b)

Since G1 ⊥ G ⊥
2 and from the fact, that any vector from G1 is contained in G2, we have proven

G1 = G2.
It is a particularly important result. From a mathematical point of view, working in any of

these two subspaces is fully equivalent. It means that there no further information is obtained
by DVR with respect to the spectral methods. Vice-versa, it provides a grid representation to the
corresponding spectral methods and links them to the representation on the grid. The difference
may be in the numerical implementation, mainly that ⟨fi|V |fj⟩ forms a diagonal matrix, if we
impose the quadrature rule for evaluating the integral.9

Furthermore, we have an explicit unitary transform between our two orthonormal bases,

β = Uα , Uij =
√

wi
w(xi)

Pj(xi) = √wipj(xi) . (7.16)

Finally, there may be seen a difference between the two bases. For the spectral method, we just
extend the space by adding next |Pi⟩ in the sequence and others remain the same. In DVR, all the
basis vectors are shuffled by adding a new vector.

7.1.4 DVR from different truncating function, multidimensional DVR

The choice of an orthogonal polynomial, PN , as a reference function to construct the DVR basis
has been motivated by the quadrature rules for integration. It was useful for explaining the idea
of the method, but the machinery may be repeated also using various reference functions; i.e. the
replacemet PN 7→ v, v being the new truncating function; e.g. a Coulomb wave function [242]. The
requirement on these functions is that they should be somehow properly adjusted to the task (proper
tails for x→ ±∞, generally boundary conditions, adapted to the singularities in the problem, etc.),
their zeros should construct a good grid, and a quadrature rule derived from v should be possible
to construct on this grid. We should note that the procedure is not completely universal [240].

Another generalisation comes in the direction of multidimensional domains [243]. This gen-
eralisation is straightforward if we write the domain as a tensor product of one-dimensional do-
mains. However, a direct method using a multivariate basis that is not a tensor product is non-
trivial [244, 245]. See e.g. [246] for a recent computational method to cover the multidimensional

9For example, if V changes in time, we need only O(n) matrix operations per one time step compared to O(n2)
with a full matrix.
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domains.

7.1.5 Boundaries and finite soft-box

Here, we make a remark about the boundaries in GM and SM. The DVR is used to enlighten
the SM, because it provides the insight from GM. A usual procedure to construct a GM is to close
the system in a box defined by the first and last point of the grid. This is then complemented by
boundary conditions. However, it is more subtle. Let us consider the 1D case. A particle in a unit
box can be described by

H = p2

2m + V (x) , V (x) =

V0, x ∈ [−1, 1] ,

+∞, otherwise.
(7.17)

A correct mathematical definition is to restrict the Hilbert space and use H = L2(]−1, 1[ , dx), the
particle is then effectively closed in the box [−1, 1]. This creates a clear well-defined boundary.

The situation is a bit different for spectral methods, the basis functions usually contain tails
spanning the expansion into infinity. However, there are two properties to consider: 1) The last
point containing some information is the last zero of PN .10 There is thus much limited space to
include any information about the system beyond this point. 2) Finite systems without external
effects (i.e. no time-dependent Hamiltonians or absorbers) always evolve in time periodically, this
inevitably leads to a reflection at some point. In conclusion, the effect of the boundary in this case
may be called as a finite soft-box [247].

Let us focus more on the reflections. If there is no real physical boundary within the system, the
reflections are numerical artefacts, which we want to remove. One possibility is to choose the box
large enough to contain the propagated wavepacket within the time T of interest. The size can be
simply estimated as s = vT , where v is the maximal estimated within the process. However, this can
potentially lead to very large ”boxes”, while the part of the wavefunction describing the processes
of interest remains close to the center, but the reflections lead to artificial interferences even at
this point. A resolution is to employ an absorber on the boundary. One option is, for example, to
clamp the function on the boundary by using a continuous transition; which can be done by the
cosine attenuation scaled from [0, π/2] to an interval near the edge of the box. Another option is to
include an absorber in the potential, or to use the exterior complex scaling, see [248, 249, 250, 251]
and references therein for details.

10For example, the farthest zero of the nth Sturmian (7.7) is approximately 2n/λ [247].
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7.1.6 Piecewise DVR

Up to this point, we have been staying with a general basis for DVR. Concerning practical numerical
applications, the choice of a suitable basis is important. It may be useful to think about the domain
of the problem in a piecewise manner. For example, atomic potential and respective wavefunctions
are characterised by different regions: First, there is the region near the nuclei placed in the origin
of the coordinate system, which is linked to a cusp condition on the wavefunction [252, 253, 254].
Moving away from the nucleus, there is the principal region where bound states reside. The last
region, far from the nucleus, contains continuum states. This region is also characterised by the
asymptotic of the potential at infinity. In our problems, the asymptotic behaviour is governed by
the Coulomb tail.

It may be then natural to use different numerical descriptions in these regions. An advantage
of DVR is that it can be easily constructed from a piecewise basis. The DVR-method is then
suitable even for potential containing discontinuities [255]. The boundary intervals may include
the required conditions: 1) The cusp condition may be included near the origin. 2) The last
interval may include an infinitely spanned basis discussed in the previous section. Another suitable
approach is to use the aforementioned ideal absorber given by the complex scaling to eliminate
possible artificial reflections at the boundaries [249].

The last question to resolve is then the connection of neighbouring segments. To describe flows
between the elements, the basis must contain overlapping functions. These links are called the
bridge functions [256, 257]. A direct way to link two functions is to include the limits point of the
interval as done in, e.g., the Gauss-Lobatto quadrature. We denote the grid points {x(j)

i }
Nj+1,Ns

i=0,j=1 ,
where i enumerates the points of the jth segment including the limit points x(j)

0 and x
(j)
Nj+1. Nj is

the number of points in the jth segment and Ns is the number of segments. Because two consecutive
segments share the limit points, we have x(j)

Nj+1 = x
(j+1)
0 . Using the same indexing in the definition

of the DVR-basis (7.11), we have two functions being unity at this point: f (j)
Nj+1 and f

(j+1)
0 . The

bridge function is then given by

f
(j)
b =

f
(j)
Nj+1 + f

(j+1)
0√

2
, j = 1, . . . , Ns − 1 . (7.18)

The final DVR-basis is then {f (j)
i }

Nj ,Ns

i=1,j=1 ∪{f
(j)
b }

Ns−1
j=1 . We note that the matrix representing local

operators V stays diagonal, and the representation of the kinetic terms forms a band-matrix for
the Gauss-Lobatto quadrature [256].

In conclusion, the piece-wise DVR provides a way to use different bases for different regions,
this allows to fit the asymptoticity of the problem or to use different discretisations. Next, it also
allows to use many segments reducing the degree of the polynomials within one piece, which may
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be seen as an analogy to B-splines [236].

7.2 Discretised continuum states

One important aspect to clarify regarding all the numerical methods is the approximation of the
continuous part of spectra. Let us take, for the sake of simplicity a Hamiltonian H with purely
continuous spectrum, σ(H) = σc(H) = [0,+∞[. Choosing a finite-dimensional subspace G of H

always leads to a finite set of eigenvalues of the restriction of H to G . Let us call this restriction H̃.
The eigenvectors of H̃ approximate the formerly continuous basis of H . Let us take a normalised
state |ψ⟩ ∈H ,

|ψ⟩ =
∫

dE c(E) |ψE⟩ , (7.19)

where |ψE⟩ ∈H is the generalised eigenvector corresponding to E ∈ σc(H). The normalisation of
the eigenvectors is ⟨ψE′ |ψE⟩ = δ(E − E′). The normalisation condition is11,12

⟨ψ|ψ⟩ =
∫

dE
∫

dE′ c∗(E′)c(E) ⟨ψE′ |ψE⟩ =
∫

dE
∫

dE′ c∗(E′)c(E)δ(E − E′) ≈

≈
∫ Emax

0
|c(E)|2 dE ≈

∑
n

|c(En)|2En+1 − En−1
2 , (7.20)

the discretisation corresponds to the finite restriction of the Hamiltonian, H̃ |ψ̃En⟩ = En |ψ̃En⟩. The
normalisation of these states is ⟨ψ̃En |ψ̃E′

n
⟩ = δnn′ in the finite dimension. The approximation of

the original state given by

|ψ̃⟩ =
∑
n

c(En) |ψ̃En⟩ , (7.21)

which is not normalised because ⟨ψ̃|ψ̃⟩ = ∑
n |c(En)|2. The way to establish the correspondence

with the original normalisation is to define a new state

|φEn⟩ = ρ(En) |ψ̃En⟩ , ρ(En) =
√

2
En+1 − En−1

. (7.22)

If we use this new basis |ψ̃⟩ = ∑
n c(En) |φEn⟩ instead of (7.21), the normalisation is correct

correspondingly to |ψ⟩. A further analysis may be found, e.g., in [258].
11We may restrict the integration because the finiteness of the integral ensures that for all ε > 0, there exists

Emax > 0 satisfying
∫ +∞

Emax
|c(E)|2 dE < ε.

12The approximation of the integral is given as the average of the left and right Riemann sum (omitting the
outermost intervals).
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7.3 Finite approximations of Hamiltonians

We presented various methods to represent states, but they are still quite general and allows to
accommodate various physical descriptions. Now, we describe the two models used in this work.

7.3.1 1D-Hamiltonians

The multi-scale model uses ”1D-atoms” for which the field-free-Hamiltonian is

H
(1D)
0 = −1

2
d2

dx2 −
1√

a2 + x2 . (7.23)

The atom is modelled by the soft-Coulomb potential −1/
√
a2 + x2.13,14 The only free parameter

of the description is a, which allows to set the ionisation energy of the atom. Table 7.1 summarises
its values for the rare gases of our interest. Our implementation allows to switch between length
and velocity gauges

H
(1D)
L = −1

2
d2

dx2 −
1√

a2 + x2 + E(t)x , H
(1D)
V = −1

2

( d
dx − iA(t)

)2
− 1√

a2 + x2 , (7.24)

in the dipole approximation, see (2.8). Both of them may be chosen for an analytic field. However,
the multi-scale model limits to the length gauge as its input is a numerical solution of E .

The Hamiltonians (7.24) are directly represented by standard techniques of either finite differ-
ences replacing derivatives, in the case of GM; or by evaluating the matrix elements ⟨φi|H(1D)

G |φj⟩
with a suitable numerical approach while using SM or DVR.

7.3.2 3D-Hamiltonians

Now, we present the 3D-Hamiltonian. First, we fix the gauge, which turns out to be an important
question in the 3D-geometry. A computationally convenient choice is the velocity gauge, mainly due
to its fast convergence in the angular subspace L2(S2, dΩ). Therefore, we use it in our treatment.
Although we simply stated our choice, the reasoning behind is non-trivial and we provide a brief
overview of related references. A detailed discussion is in Section 2.3 of [231] and in [260]. Further
details and the transformations between different gauges are in [261]. Find also a direct comparison
of the length and velocity gauges in [262], where is also discussed the retrieval of the source term

13The term soft-Coulomb is chosen because there is no singularity in the potential. Let us denote that there
is a difference in the singularities in the classic (”hard”) Coulomb potential depending on the dimension because
a singularity ∼ 1/r is integrable in all dimensions higher than 1.

14This potential gives also the correct asymptotic behaviour 1/x for x → +∞, see also [259] for further details
and generalisations.
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IP [eV] IP [a.u.] a[a.u.]

He 24.59 0.9036 0.6950
Ne 21.56 0.7924 0.8161
Ar 15.76 0.5792 1.1893
Kr 14.00 0.5145 1.3676
Xe 12.13 0.4458 1.6171

Tab. 7.1: The ionisation potentials of rare gases of our interest taken from [214] and the corresponding a-
parameters of the soft-Coulomb potential used in (7.23). The ground state energy is verified by diagonalising
the Hamiltonian using various bases. We have implemented grid methods (with and without Numerov
approach), Hermite-spectral basis, Hermite-DVR basis, sinus-cardinal-DVR basis and B-splines for testing
1D-diagonalisations.

complementary to the the approach presented in Section 2.3. A mix of the length and velocity
gauge for different interaction regions is discussed in [263].

The next step is to represent a state |ψ⟩ in the spherical coordinates

⟨r,Ωr|ψ⟩ =
∑
l,m

Rlm(r)Y m
l (Ωr) , Ωr = (ϑ, φ) stands for the spherical angles. (7.25)

The full-form of the 3D-Hamiltonian derived from (2.1) reads under these assumptions

H = −1
2

(
∂2

∂r2 + 2
r

∂

∂r
− L

2

r2

)
+ VC(r) + VI(t, r,p) , (7.26a)

where L is the angular momentum operator.
The Coulomb potential, VC , includes the screening short-range potential W , introduced by (2.2).

A common approach is to obtain the form of W from the Hartree-Fock screening,

VC(r) = −Z+∞
r
− 1
r

(
N∑
i=1

αie−βir

)
, (7.26b)

where Z+∞ is the asymptotic ionic charge and αi and βi the coefficient from the Hartree-Fock
procedure, which are tabulated for several atoms [264]. The second asymptotic condition is VC(r) ∼
Znucl, as r → 0, where Znucl is the nuclear charge number.

The interaction term reads

VI(t, r,p) = −iA(t) · p+ i [A(t),p]
2 + A2(t)

2 ≈ −iA(t) · p . (7.26c)

The last two term are disregarded in the dipole approximation. The commutator [A,p] vanishes
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directly, while A2/2 changes only the global phase (see Eq. (2.25) of [265]).
In the case of a linearly polarised field, it is convenient to choose the z-axis in the direction of

the field. The interaction term is then simply

VI(t, r,p) = −iA(t)pz = −iA(t)
(

cosϑ∂r + sinϑ
r

∂ϑ

)
. (7.27)

Furthermore, the linear field does not include any coupling of different quantum numbers m. The
dimensionality of the problem is then further reduced because we can fix m = m0 in (7.25).

Now, we find a more suitable form of the Hamiltonian. The standard substitution Rlm(r) =
χlm(r)/r transforms (7.26a) into

H =
(
−1

2
d2

dr2 + VC(r)
)
⊗
(∑

l

Il

)
+
∑
l

(
l(l + 1)

2r2 ⊗ Il
)

+ ṼI(t, r,p) , (7.28)

where the radial part is now given by χlm. The respective Hilbert space with the fixed m0 is
decomposed into a tensor product: Hm0 = L2(]0,+∞] ,dr) ⊗ spanl≥|m0|{|l,m0⟩}.15 The angular
part is spanned by spherical harmonics, ⟨Ωr|l,m0⟩ = Y m0

l (Ωr). The radial part is then reduced
into a 1D-problem. The boundary condition of χlm is χlm(0) = 0; however, it does not impose any
constraints on Rlm(0) due to the substitution. The boundary should be treated with care; namely
including cusp conditions for r → 0 imposed by (7.26b), which may improve the accuracy of the
approximation [231].

An important structure of (7.28) is the decomposition into the sum of tensor products in the
first two terms. These terms are thus block-diagonal. The coupling of various blocks is given only
due to the coupling terms in ṼI , the tilde denotes there, that the representation of VI is changed
due to the substitution of Rlm. Due to the selection rules, there are only couplings of neighbouring
values of l. This results into a block tridiagonal matrix. The final representation is obtained
by truncating the expansion in l and choosing a finite representation of the radial subspace. In
summary, the desired matrix representation is:

H =



H0(|m0|) VI(|m0|)
V†
I(|m0|) H0(|m0|+ 1) VI(|m0|+ 1)

V†
I(|m0|+ 1) H0(|m0|+ 2) . . .

. . . . . . VI(lmax − 1)
V†
I(lmax − 1) H0(lmax)


. (7.29)

15The measure in the radial subspace is different that of (7.3). However, these are isometric as∫ +∞
0 |Rlm(r)|2r2 dr =

∫ +∞
0 |χlm(r)|2 dr.
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The size of each elementary block is given by the finite representation in r, and |m0| ≤ l ≤ lmax.
The diagonal blocks, H0(l), represent the field-free interaction of (7.28). The interaction terms
V†
I(l) are computed directly from ṼI with the respective spherical harmonic Y m0

l . It is interesting
to note, that the block tridiagonal form is due to the dipole approximation. Going beyond the
dipole approximation would significantly enlarge the numerical description: The couplings are not
limited to ∆l = ±1 by the selection rules. Furthermore, there occur transitions in the quantum
number m (cf. the couplings discussed in Appendix C).

Finally, the formulae to find the original wavefunction in the case of GM and SM are respectively

ψ(ri,Ωr) ≈
lmax∑
l=|m0|

χilm0

ri
Y m0
l (Ωr) , ψ(r,Ωr) ≈

lmax∑
l=|m0|

N∑
i=1

αilm0φi(r)
r

Y m0
l (Ωr) . (7.30)

The coefficients χilm0 correspond to the grid, χilm0 = ⟨ri|χlm0⟩. The coefficients αilm0 correspond
to the finite basis spanning the radial subspace, span{|φi⟩}Ni=1 ⊂ L2(]0,+∞[ ,dr).

7.4 Evolution in time

Once we have a state |ψ(t = t0)⟩ = |ψ0⟩ and its suitable finite representation, we need to solve the
evolution in time driven by (7.1a). We first recall a mathematically exact solution and then discuss
the approximations.

The evolution is unitary in quantum mechanics, |ψ(t)⟩ = U(t, t0) |ψ0⟩; where U is a unitary
operator called evolution operator. If H would be time-independent, the solution is directly:

U(t, t0) = e−i(t−t0)H . (7.31)

Otherwise, more care is needed – the solution incorporates possible non-commutativity of the
Hamiltonian at different times – and the unitary evolution is given by the Magnus expansion

U(t, t0) = e−iΩ(t,t0) , (7.32a)

Ω(t, t0) =
∫ t

t0
dt1H(t1) + 1

2

∫ t

t0
dt1

∫ t1

t0
dt2 [H(t1), H(t2)] + · · · . (7.32b)

The exact form of the next terms in the sum is given recursively in Eq. (3.31) of [266]. Note that
the higher terms in the sum (7.32b) contain recursively more commutators, they thus provides
corrections due to non-commutativity and vanish for a commutative H; the solution then reduces
to (7.31). Furthermore, as these terms contain multiple integrals, the nth term goes in O(∆tn) if
integrated over ∆t.

Although we have a formally exact solution, we need only an approximate solution in a numerical
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scheme. The elementary idea is to evolve the solution by a small amount of discretised time, we
thus need to solve |ψ(t+ ∆t)⟩ = U(t+ ∆t, t) |ψ(t)⟩. A straightforward approximation is

U(t+ ∆t, t) ≈ e−i∆tH(t′) , (7.33)

where t′ ∈ [t, t+ ∆t]. Such an approximation may be seen as O(∆t) from the viewpoint of (7.32),
but we need to mention an important point related to our problem. The changes of the Hamiltonian
with time are related with the evolution of the external field. This evolution is much slower than
the electronic motion (cf. the adiabatic approach to the ionisation in section 3.1.1 and the dipole
approximation). It suggests that neither this approximation nor including higher orders in (7.32b)
are a bottleneck in the accuracy. A potential limitation is the need of the computation of the
matrix exponential, which is computationally expensive. We thus discuss another candidate, the
Crank-Nicolson scheme (CN):

U(t+ ∆t, t) ≈
(

1 + iH
(
t′
) ∆t

2

)−1 (
1− iH

(
t′
) ∆t

2

)
. (7.34)

An advantage is that this scheme is per-construction norm-preserving. The stability of this solver
for the Schrödinger equation using grid methods is proven in [267].

7.4.1 Krylov-subspace methods

Here we discuss another possible numerical scheme to reduce the dimensionality of the inverse
problem solved in each time step.

Since the proposed method is implicit, there is a need for an inverse problem in a space with
the dimensionality of the subspace G at every time step. For an efficient solver, we may seek for
reducing the dimensionality. Both for the original exponential (7.33) or CN (7.34), the propagator
may be expanded in a series

|ψ(t+ ∆t)⟩ = |ψ(t)⟩+
+∞∑
n=1

βn(∆t)nHn(t) |ψ(t)⟩ (7.35)

(we do not need to write down the coefficients βn exactly). The main idea is to truncate the series
to reduce the dimensionality as the higher terms contributes with O(∆tn). The Krylov subspace
at a given time t is defined as K (t) = span {|Ki(t)⟩}Ni=0, where |Ki(t)⟩ = H i(t) |ψ(t)⟩. The
propagation is then computed within K (t) ⊂⊂ G at every time step, this procedure is discussed in
detail in Chapter 6 of [268]. A key intermediate step is to use an orthonormal basis of K (t) as the
vectors {|Ki(t)⟩}Ni=0 may be close to linearly dependent and leading to a numerically stiff problem
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in K (t). A standard way that may remove the stiffness is to use an orthonormal basis, which
may be always constructed by the Gram-Schmidt procedure. Due to the used algorithms [268], the
orthonormalised basis is called the Lanczos basis {|Li(t)⟩}Ni=0. The dimensionality of the original
problem is then reduced in K (t).

We summarise the main idea of this approach. First, K (t) is constructed using the Lanczos
basis together with the respective representation of the Hamiltonian, H(K ). The dimensionality n
of K (t) could be really small as it should include the propagation within the order O(∆tn). The
propagator is thus computationally cheap in K (t) even, for example, for full inverses.

7.4.2 Split-operator technique

To conclude this part about general methods for solving TDSE, we briefly present the so-called
split-operator technique. Let us use a typical case of this technique with the Hamiltonian

H(t) = H0 + V (t) , (7.36)

whereH0 is a static part of the Hamiltonian and V (t) is a time-dependent part. BecauseH0 and V (t)
generally do not commute,

e−i∆t(H0+V (t)) ̸= e−i∆tH0e−i∆tV (t) .

A similar problem was discussed in (7.32). The approach here is reformulated in a different way. It
uses the Trotter formula, which can be found in [225], Theorem 5.9.7. Using only the approximation
in the first order (consistently with the approximations in the Magnus expansion), the Trotter
formula gives

e−i∆tH(t) ≈ e−i ∆t
2 H0e−i∆tV (t)e−i ∆t

2 H0 . (7.37)

An implementation is then straightforward, the exponentials are applied in the chain given
by (7.37).16 Each exponential in the chain may be treated by a suitable technique for this particular
term (e.g. by CN or direct calculation).

Now, we have a palette of possible approaches, we then proceed to the motivation of the choices
applied in our work.

16The separated action of exp (−i∆tH0) makes this technique a cornerstone of the time evolution in the Dirac
picture because this term vanishes in that case.
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7.5 1D-TDSE solver

Now, we recapitulate all the ingredients used in the workhorse tool of our microscopic model: the
1D-TDSE solver. We use a uniform-grid to represent the wavefunction and evolve it with the
length-gauge Hamiltonian (7.24). We use the Crank-Nicolson scheme with splitting H0 and the
interaction VI = E(t)x, while applying Numerov’s refinement (7.6) in H0. Summing this up, a single
step is

ψ̃n+1 =
(
M2 + i∆t

2 ∆2 − i∆tM2VC

)
ψn , (7.38a)(

M2 −
i∆t
2 ∆2 + i∆tM2VC

)
˜̃ψn+1 =ψ̃n+1 , (7.38b)

ψn+1
i =e−i∆tE(tn)xi ˜̃ψn+1

i . (7.38c)

The notation of the discretised wavefunction is ψ(xi, tn) = ψni and ψn = (ψn1 , . . . , ψnN ).
Note, that the inversion of the Numerov’s matrix, M2, is not needed because it can be used to

modify the Crank-Nicolson scheme:

(
1 + iH0

∆t
2

)−1 (
1− iH0

∆t
2

)
=
(

1 + iH0
∆t
2

)−1
M−1

2 M2

(
1− iH0

∆t
2

)
=

=
(
M2

(
1 + iH0

∆t
2

))−1 (
M2 − iM2H0

∆t
2

)
=

=
(
M2 + i∆t

2

(
−∆2

2 +M2VC

))−1 (
M2 − i∆t

2

(
−∆2

2 +M2VC

))
. (7.39)

Because VC is diagonal, M2VC is still tridiagonal, and there is just some extra multiplication by
a tridiagonal matrix in the propagator step. All the matrices in the expression are tridiagonal, thus
the inversion can be done very efficiently.

One can note that the action of the electric external field (7.38c) is not applied using explicitly
the Trotter formula (7.37). The error is negligible in this case because the evolution of the field E(t)
is much slower than the studied dynamics as discussed directly after (7.33). The Trotter formula
is then retrieved by composing two consecutive steps by considering the half of the action (7.38c)
being a part of the (n+ 1)st step leading to ψn+2.

The solver we presented (7.38) uses directly the electric field, which provides a straightforward
link with the outputs of the macroscopic propagation, and there is no significant difference for
various gauges unlike for the 3D-geometry. In the case of an analytic field, the solver implements
velocity gauge as well. It then replaces only the action of exp (−i∆tE(tn)x) by its counterpart in
the velocity gauge. (Practically, it is included in the CN-steps and (7.38c) is not applied.)
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7.6 3D-TDSE solver

A part of this work is dedicated to the development of an efficient 3D-TDSE solver. The starting
point is a direct implementation in the velocity gauge using a grid method in the radial sub-
space L2(R+, r2dr) and spherical harmonics in the angular subspace L2(S2,dΩ). Last, the main
goal is to find the parameters and propagators of the solver using the Krylov subspace and focusing
in the extent in the angular subspace.

The parameters of the grid in time and space are: the step in space, ∆r, the size of the
grid, Nr, and the step in time ∆t. We used their values from a precedent solver that computed the
propagation without the Lanczos basis. The parameters of interest to optimise the solver are the
size of the Lanczos basis NL, the maximal angular momentum lmax and the form of the propagator.

We used the Hydrogen atom for the study and a single-photon process in a linear field. The
parameters of the field are chosen as: ω = 1 a.u., E0 = 0.01 a.u., sin2-envelope spanning three
cycles of the fundamental field. The aforementioned numeric parameters with verified convergence
are ∆t = 0.005 a.u., ∆r = 0.2 a.u. and Nr = 2000.

We use the radial density at the end of the interaction to measure the differences. It is ob-
tained from the wavefunction ρr(r) =

∫
Ω |ψ(r,Ωr, t = tend)|2 dΩ. After testing various propagators

in K (t), we observed the best results for the Crank-Nicolson propagator (7.34).17

We have found that the dimensionality results converged with the rather low NL = 5, which
makes no problem to use arbitrary method within such a small subspace. We also confirmed that
our test problem is indeed a single-photon process, the solution was stable for lmax = 2 and few
higher values. However, one of the purposes of the study was to extend the possible number of
angular momenta as they become large for more complicated problems. Having a well behaved
solver with a large lmax is a necessary condition for the solver to be successful in that extended
case. We observed a poor performance in that case as shown in Fig. 7.1: The solution is not
stable with increasing l. The culprit has not been easily identified, the Hamiltonian in the Krylov
subspace provide a clue since its eigenvalues has grown with lmax. Recently to our study, this issue
has been recognised by [269], the high energies are introduced by the centrifugal term in the kinetic
operator.18 The kinetic operator for a given l is found from (7.29):

Tr(l) = −1
2

d2

dr2 + l(l + 1)
r2 = T0 + Vc(l) . (7.40)

17The step without the inverse would be easy to apply directly as the action of H(t) is required anyway to
construct K (t). However, different techniques for each half-steps of CN would not assure the unitarity of the
propagator.

18Interestingly, very analogical problem is also recognised in the Kapler problem in classical mechanics and it
causes also numerical difficulties [270].
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The problem can be explicitly recognised here, the centrifugal term Vc(l) ∼ 106 for the discretisation
∆r ∼ 0.1 a.u. and maximal angular momenta lmax ∼ 100.

The solution of this problem is to apply the split-operator on the centrifugal term, which may
be applied exactly because it acts diagonally. The resulting one step of the scheme is

|ψ(t+ ∆t)⟩ = e−i ∆t
2 Vce−i∆tH1(t)e−i ∆t

2 Vc |ψ(t)⟩ , (7.41)

where H1 = T0 + ṼI as described in (7.28). The part of the Hamiltonian H1 does not contain the
problematic term and does not present difficulties in the evolution operator.

Our finding are summarised in Figs. 7.1 and 7.2. We make 2 comments: the unstable solution
with increasing l in Fig. 7.1; and the difference between the solver within the Krylov subspace
and the direct CN applied without using the subspace. The results with the split-operator are not
presented as we verified that they strictly overlap the reference solution in the Krylov subspace up
to lmax = 80.

The result we have discussed so far consider only a linear field. It reduces the dimensionality
if the problem as m = m0 is fixed. The dimensionality of the matrix representation (7.29) grows
significantly in the case of an arbitrary polarised field because there are (2l+ 1) possibilities for m
in that case.

Unfortunately, the 3D-TDSE solver was not incorporated or further developed in the timespan
of this work. Its further development and deployment in the model is one of the nearest follow-up
projects. One of the important goals is a comparison with other codes as some available solver have
been published recently, for example [271, 272, 248].

7.7 Eigenvalue problem of complex rotation

We return to the eigenvalue problem in the last section of the microscopic scale and provide some
details about the calculation we used for the computation of the complex rotation presented in
Section 3.1.

We use the Sturmian basis, (7.7), for computing the ionisation rates (3.6b) in the 3D-geometry
defined by the Hamiltonian (7.26) with the following modifications: 1) The interaction term is
replaced by the length gauge, VI = Ez, as required by the machinery of the static-field methods.
2) The radial coordinate is complexly scaled by r 7→ eiθr. The matrix representation is similar
to (7.29) but with one crucial difference: The Hamiltonian is no longer Hermitian, which affects
also the Hermiticity of the matrix. Compared to the 3D-TDSE solver, the radial subspace is treated
with the spectral method instead of the grid.



7.7. Eigenvalue problem of complex rotation 145

Fig. 7.1: The radial distribution of the wave function
after the interaction with the single-photon-process
pulse for various truncations in lmax. The results
are computed by the Crank-Nicolson propagator with
Lanczos basis and without the split-operator tech-
nique.

Fig. 7.2: Different propagators used in the propaga-
tion. The conditions are the same as in Fig. 7.1. All
the results except CN coincide in our precision.

7.7.1 Eigenvalue problem in non-orthogonal bases

The Sturmians do not form an orthogonal basis, the matrix form of the eigenvalue problem includes
explicitly the Gramian. Let us take any non-orthogonal basis span {|ei⟩}i∈I . We seek a solution |ψ⟩
of an eigenvalue problem H |ψE⟩ = E |ψE⟩. This solution can be expanded in the considered basis
|ψE⟩ = ∑

i ξi |ei⟩. The original eigenvalue problem is thus rewritten as

(H − E) |ψ⟩ = 0 ⇔
∑
i

ξi(H − E) |ei⟩ = 0 ⇔

∑
i

ξi ⟨ek|(H − E)|ei⟩ = 0 ,∀k ⇔ (H− EG)ξ = 0 , (7.42)

Hij := ⟨ei|H|ej⟩, ξ is now a vector from the l2-space. Since the overlap matrix G is not the identity
matrix, this problem is usually called generalised eigenvalue problem.19

7.7.2 Matrix elements

Now, we specify the matrix representation given by the Sturmians. The solution of (7.7) is

Sλnl(r) = Nλ
nl(2λr)l+1e−λr L2l+1

n−l−1(2λr) , Nλ
nl =

√
λ

n

(n− l − 1)!
(n+ l)! , (7.43)

19G is regular in our case, thus it is equivalent to the eigenvalue problem for the matrix G−1H.
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Lαk are the generalised Laguerre polynomials. The normalisation Nλ
nl is chosen so that

〈
Sλnl

∣∣∣Sλnl〉 =
1. The values of l follows from (7.43); it starts with n = l + 1, the first polynomial is then L2l+1

0
for each value of l. The finite basis of each l-subspace is {|Sλl+i,l⟩}Ni=1. The full basis is then |eil⟩
defined by ⟨r|eil⟩ = Sλl+i,l(r)Y

m0
l (Ωr).

The first series of the matrix elements is

⟨eil′ | ejl⟩ ,
〈
eil′
∣∣∣ eiθr cosϑ

∣∣∣ ejl〉 , 〈
eil′

∣∣∣∣ 1
eiθr

∣∣∣∣ ejl〉 ,

〈
eil′

∣∣∣∣∣− 1
2e2iθ

d2

dr2 + l(l + 1)
2e2iθr2

∣∣∣∣∣ ejl
〉
. (7.44)

All the elements except the second one stays within the radial subspace and are sufficient to
treat for l = l′. It thus means that for any angular-independent operator Ξ: ⟨eil′ |Ξ | ejl⟩ =〈
Sλl+i,l

∣∣∣Ξ ∣∣∣Sλl+j,l〉 δll′ . Let us compute the coupling element of the interaction,

eiθ
〈
Sλl′+j,l′

∣∣∣ r ∣∣∣Sλl+k,l〉 ∫
Ω

(
Y m0
l′
)∗ (Ωr) cos(ϑ)Y m0

l (Ωr) dΩ =

= (−1)m0eiθ
√

(2l + 1)(2l + 3)
(
l 1 l + 1
0 0 0

)(
l 1 l + 1
−m0 0 m0

)〈
Sλl+1+j,l+1

∣∣∣ r ∣∣∣Sλl+k,l〉 . (7.45)

The selection rules of the Wigner 3j-symbols,
(
l1 l2 l3
m1 m2 m3

)
, reveal the coupling of only neighbouring

l’s and provides the respective coupling constants. The remaining computation is thus only the
last scalar product.

The required scalar products are

〈
Sλil

∣∣∣Sλjl〉 =



1 , i = j ,

−1
2

√
(j+l)(j−l−1)

j(j−1) , i = j − 1 ,

−1
2

√
(j−l)(j+l+1)

j(j+1) , i = j + 1 ,

0 , otherwise,

(7.46a)

〈
Sλil′

∣∣∣ eiθr
∣∣∣Sλjl〉 =



− eiθ

4λ

√
(j+l)(j−l−1)(j−l−2)(j−l−3)

j(j−2) , i = j − 2 ,

− eiθ

4λ

√
(j−l)(j+l+1)(j+l+2)(j+l+3)

j(j+2) , i = j + 2 ,

−eiθ 2j+l
2λ

√
(j−l−1)(j−l−2)

j(j−1) , i = j − 1 ,

−eiθ 2j−l
2λ

√
(j+l+1)(j+l+2)

j(j+1) , i = j + 1 ,

−3eiθ

2λ
√

(j + l + 1)(j − l − 1) , i = j ,

0 , otherwise,

(7.46b)
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〈
Sλil′

∣∣∣∣ 1
eiθr

∣∣∣∣Sλjl〉 = e−iθ λ

j
δij , (7.46c)

〈
Sλil′

∣∣∣∣∣− 1
2e2iθ

d2

dr2 + l(l + 1)
2e2iθr2

∣∣∣∣∣Sλjl
〉

=



e−2iθλ2

2 , i = j ,

e−2iθλ2

4

√
(j+l)(j−l−1)

j(j−1) , i = j − 1 ,

e−2iθλ2

4

√
(j−l)(j+l+1)

j(j+1) , i = j + 1 ,

0 , otherwise,

(7.46d)

The first three are obtained using tabled integrals [273] and the expansion of the Wigner 3j-symbols;
the last element comes from the definition of Sturmians (7.7) and already known elements of (7.46).
The element (7.46b) also present a band-diagonal structure of the interaction matrix-block.

The last missing element to construct the matrix representation is the short-range term of the
potential. It reads〈

Sλn′l

∣∣∣∣∣ e−qreiθ

eiθr

∣∣∣∣∣Sλnl
〉

= e−iθN λ
n′nl

∫ +∞

0

e−q̃r

r
(2λr)2l+2e−2λrL2l+1

n′−l−1(2λr)L2l+1
n−l−1(2λr) dr (7.47a)

= e−iθN λ
n′nl

∫ +∞

0
e−(1+ q̃

2λ )xx2l+1L2l+1
n′−l−1(x)L2l+1

n−l−1(x) dx (7.47b)

= e−iθN λ
n′nlΓ(n′ + n)

(n′ − l − 1)!(n− l − 1)!
F2 1 (−n′ + l + 1,−n+ l + 1,−(n′ + n− 1); z)(

q̃
2λ

)2l+2 (
1 + 2λq̃

)n′+n

(7.47c)

=
e−iθλ

√
a!b!

nn′(n+l)!(n′+l)!(
q̃

2λ

)2l+2 (
1 + 2λq̃

)n′+n

min{a,b}∑
m=0

(c−m)!
(a−m)!(b−m)!

(−z)m
m! , (7.47d)

N λ
n′nl = Nλ

n′lN
λ
nl , q̃ = qeiθ , a = n′ − l − 1 , b = n− l − 1 , c = n+ n′ − 1 , z = 1−

(2λ
q̃

)2
.

see [273], Eq. (7.714.4). We have tried several approaches to compute various expressions enlisted
under (7.47); this problem arises as numerically non-trivial and unstable.20 We noted a recurrence
in the matrix calculation of the corresponding short-range potential term

[VSR(l)]i,j =
〈
Sλl+i,l

∣∣∣∣∣ e−qreiθ

eiθr

∣∣∣∣∣Sλl+j,l
〉
, (7.48)

20The explicit integration seems suitable for quadrature rules, the last sum is finite, there are procedures to
evaluate the hypergeometric function F2 1 , [274, 275]. However, all the procedures occurred inaccurate for large n
and/or n′.
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because (7.47) is symmetric in n and n′, also VSR(l) is symmetric. The recurrence reads

[VSR(l)]i,j+1
[VSR(l)]i,j

= 2l + 2 + j + i

1 + 2λ
q̃

√
j + l + 1

(j + 1)(j + l + 2)(2l + j + 2)
F2 1 (−i,−j,−(2l + j + i+ 2); z)

F2 1 (−i,−(j + 1),−(2l + j + i+ 1); z) , (7.49)

where the ratio of the hypergeometric functions F2 1 can be obtained from the Gauss’s continued
fraction (Eq. (15.3.3) of [276]):

F2 1 (a+ 1, b, c; z)
F2 1 (a, b, c+ 1; z) = 1 +

+∞

K
i=1

(
kiz

1

)
,

k2j+1 = − (b+ j)(c− a+ j)
(c+ 2j)(c+ 2j + 1) , j ∈ Z+ ,

k2j = − (a+ j)(c− b+ j)
(c+ 2j − 1)(c+ 2j) , j ∈ N ,

(7.50)

and the symmetry in the first two arguments of F2 1 . A general continued fraction is given by

b0 +
+∞

K
i=1

(
ai
bi

)
= b0 +

a1

b1 +
a2

b2 +
a3

b3 + .. .

. (7.51)

Combining these equations, we compute recurrently (7.47) from the initial point

[VSR(l)]1,1 = e−iθ F2 1 (0, 0, 0; z)

(l + 1)
(
1 + q̃

2λ

)2l+2 = e−iθ

(l + 1)
(
1 + q̃

2λ

)2l+2 . (7.52)

All the other elements follows from the symmetry and the recurrence. Note that the continued
fraction is finite as the first three arguments of F2 1 are integers. Using this approach, we are able
to construct the matrix up to 1000 Sturmians involved in the standard double precision.

7.7.3 Ionisation rates

We constructed all the required matrices and implemented the task in FORTRAN using lapack [277]
procedure ZGGEV to compute the generalised eigenvalue problem. Here we show examples of com-
plexly rotated spectra and conclude this section by explaining how the ionisation rates are retrieved.

The spectra of the rotated 3D-Hamiltonian are shown in Figs. 7.3 and 7.4. These examples show
the spectra of an argon atom given by the potential (7.26b) with the parameters from [264]. The
parameters of the calculation was chosen to reach the precision 10−16 estimated by the imaginary
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part of the bound states of the field-free spectrum.
The spectrum of the field-free Hamiltonian is in Fig. 7.3. A general field-free spectrum fulfils

the following properties [278, 279]:

1. σd(H0(θ)) = σd(H0(0)),

2. σc(H0(θ)) = e−2iθσc(H0(0)),

where σp and σd are the discretised and continuum spectrum, respectively. The unscaled field-free
Hamiltonian is H0(0), and H0(θ) is scaled by r 7→ eiθr. The points on the negative real axis
correspond to the bounded states of the model potentials, these are 2s, 2p, 3s, 3p,. . . (1s states is
out of the range of the figure). The continuum, σc, is rotated by 2θ as expected.

The spectrum of the Hamiltonian with the external field E = 0.05 a.u., Fig. 7.4, exhibits more
structures. The most important feature is the imaginary value of the bound states, which is related
to the ionisation rate of interest Γ = −2 Im(En). A new structure are the eigenenergies sorted along
the red line eiθ. Although it seems natural to link them with the scaled interaction term Ereiθ cosϑ,
this part of the spectrum is a pure numerical artefact linked with the finite dimension.21

The final task is to automatise the retrieval of the ionisation rates from the spectra that looks
alike Fig. 7.4. We need to find the proper eigenvalue. We use its geometrical placement that

Fig. 7.3: The complexly rotated spectrum of the field-
free case.

Fig. 7.4: The complexly rotated spectrum with an
external field E = 0.05 a.u..

21We recall the discussion from [151] and [108, 108]. The core of the artefact is the emptiness of the spectrum
is imposed by σ

(
− △

2 + αx
)

= ∅ for Imα ̸= 0; theorem II.1 in [108]. It is also interesting to note the characteristic
value θ = π/3 mentioned as the bound of the applicability. If we omit the Coulomb potential, the Hamiltonian reads
H̃(θ) = e−2iθ (− △

2 + Ee3iθr
)
. Considering only the part in the bracket and accounting the theorem, the field Ee3iθ

only changes its sign for θ = π/3 and both terms in H̃ are scaled by the same angle. If θ > π/3 is chosen, the artificial
part of the spectrum is flipped around the red line.
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clearly distinguishes it from the others. The complex rotation separates this value until this value
lies above the red line eiθ. The scaling θ must then be chosen appropriately to this condition.
Next, this value lies close to the unscaled eigenenergy, while its real part is shifted according to
the Stark shift. Our approach was to choose a polygon containing only the eigenenergy of the
interest. For example for argon as shown in Fig. 3.2 with Ip ≈ 0.58 a.u., we used the rectangle
[−0.7,−0.4]× [−0.4, 0.01], which lies above eiθ and contains the ionisation rates up to E = 0.3 a.u.
(the corresponding intensity is ∼ 3.2× 1015 W/cm2).

7.8 Calculation of FSPA

Here we reproduce the implementation of a solver of (2.17) that was introduced in [126]. The set
of equations to solve is

ω = (k +A(tr))2

2 − Eg , Eg = (k +A(ti))2

2 , k = −
∫ tr
ti
A(t′′) dt′′

(tr − ti)
.

We solve these equations for a monochromatic field, A(t) = (A0 cos(ω0t), 0, 0), and given Eg and ω.
The unknowns are then ti, tr and k. The last equation may be substituted to the other ones,
reducing the unknowns to ti and tr. The equations to solve are then

(
A0
ω0

)2 (
ω0 cos(ω0tr)−

sin(ω0tr)− sin(ω0ti)
tr − ti

)2
− 2Eg − 2ω = 0 , (7.53a)(

A0
ω0

)2 (
ω0 cos(ω0ti)−

sin(ω0tr)− sin(ω0ti)
tr − ti

)2
− 2Eg = 0 . (7.53b)

We use the Newton iterative method22 to obtain the solutions [280]. Using this method, we reach
a converged solution (∥ti − ti−1∥ < 10−10) in ≲ 10 iterations for the initial guesses t0 = (0.3T0 +
2T0i, 0.44T0 + 2T0i)⊺ and t0 = (0.15T0 + 2T0i, 0.75T0 + 2T0i)⊺, T0 = 2π/ω0, for the short and long
trajectories, respectively. With these conditions, the merged solution in the cutoff is the extension
of the long trajectories. Because we require the calculation of the dipoles also in the frequency range
corresponding to the transition between the plateau and cutoff, we use polynomial interpolation
linking the short trajectories to the cutoff.

The FSPA approach is computationally cheap compared to the other methods. It then provides
a fast estimate of the harmonic signal once the intensity of the driver is known. Although this
solution is formally obtained only for a monochromatic plane wave, it can be easily extended for
pulses with well-defined carrying frequency ω0 until the variation of the amplitude in time and
space is slow compared to the carrying frequency. In other words, until the slowly varying envelope

22The iterative scheme reads ti+1 = ti − A−1F (ti), where t = (ti, tr)⊺ and F is given by (7.53a).
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approximation may be applied. In this case, the harmonic response is obtained by a simple masking
of the intensity profile. The macroscopic source of the qth harmonic is then

d(macro)
q (r, t) = d(qω0; IIR(r, t)) , (7.54)

where d(qω0; IIR(r, t)) is given by (2.18) with the amplitude of the field corresponding to the
respective IR-intensity at (r, t).
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8. CUPRAD: DRIVING LASER PROPAGATION

Because the development of the computational kernel of this part of the model is not a subject
of this thesis, we only briefly plot its functionality. The main work done during this project is:
1) creating an interface to be sorted within the multi-scale model; 2) modifying the ionisation
module and creating the ”pre-ionisation” module.

8.1 Main routines

While we were describing the physics of non-linear propagation of laser pulses, we found convenient
to represent a part of it in spectral domain and part of it in time domain. In this implementation,
this is not only about the words, but it is actually a crucial concept of the code. Profiting from
a parallelised fast implementation of the Fourier transform (FFT), it switches the domains at each
step.

The objective of the code is the implementation of (6.11) to evolve U , which correspond to the
electric field in the co-moving frame with removed fast oscillations. We recall the equation here:

∂zU = i
2k0
T −1 △⊥ U + iD2U + iω0

c
n2T |U |2U −

ie2k0
2n2

0ω
2
0meε0

T −1 (ϱeU)− e2νe

2meε0n0c (ν2
e + ω2)2 ϱeU

The code uses a grid representation in all the discretised dimensions, namely: time/frequency,
radial coordinate ρ and z. The desired quantity is the electric field E that is obtained from U as
explained in the derivation of (6.11). Second, the plasma density ϱe is retrieved from the ionisation
model.

Algorithm 1 shows the schematic of the main operation procedure. It explains the key philoso-
phies of the code. The evolution is done by the Crank-Nicolson operator, already introduced for
TDSE (7.34). There is implemented adaptive-step control governed by ∆φ, which symbolises the
change of the phase of the field from one plane to the next one (note that the fast oscillations are
removed and co-moving frame is applied, i.e. ∆φ = 0 for a free linear propagation). The step-
size ∆z is then reduced or enlarged if the phase is outside the interval of changes [φmin, φmax].1

The core of the code uses the FFT implemented by the FFTW3 [281] and the application of the

1To be rigorous, there is possible to set also a maximal possible advancement ∆zmax.
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Algorithm 1 Main CUPRAD routine
1: Initialise
2: while z < zexit do ▷ loop until the end of the medium is reached
3: if z ≥ zprint then
4: Save data
5: zprint ← zprint + ∆zprint

6: FFT: U → Û
7: Crank-Nicolson + the physics in the ω-domain: U ← U(z + ∆z); z ← z + ∆z
8: inverse FFT: Û → U
9: physics in t-domain

10: FFT: U → Û
11: Crank-Nicolson + the physics in the ω-domain: U ← U(z + ∆z); z ← z + ∆z
12: inverse FFT: Û → U
13: Absorbing boundaries ▷ avoid artificial reflections on boundaries
14: if ∆φ > ∆φmax then ▷ adaptive-step control
15: decrease ∆z
16: else if ∆φ < ∆φmin then
17: increase ∆z
18: Finalise

respective physical effects in their natural time or frequency domains. Further details about the
implementation are in Appendix B.1 of [197].

There are two points where physical effects are treated: the physics in the t-domain and the
physics in the ω-domain. The physics in the ω-domain means basically applying of the differential
operator and dispersive effects k(ω). These effects are contained in

i
2k0
T −1 △⊥ U + iD2U . (8.1)

The rest of (6.11) is natural to treat in the t-domain as there stands either the plasma density ϱ

or the intensity of the field |U |2.

Next, we infer that the storing of data is not done at every iteration, the data are stored with
an independently prescribed spacing ∆zprint. Note, that the adaptive-steps does not ensure this
spacing exactly. It means, that the outputs within the medium are not equidistant. This has to
be considered, if one would finely compare simulations with different inputs as the output z-grids
would not match exactly.

One has to pay attention to the use of the units in the code. Internally, the code constructs
its own computational units (C.U.) adjusted to the input parameters based on a Gaussian beam.
The normalisations are done respective to 4 Rayleigh ranges in the longitudinal dimension, beam
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waist w0 in the radial dimension, pulse duration in time and the density is expressed using the
critical plasma density ϱc = ε0meω

2
0/e

2.
Finally, we mention, that our description of the code is not limited to the actual needs of the

multi-scale model. The code may be used for broader range of cases. For example, the approxi-
mations due to the use of the enveloped description from section 6.1.2 is optional. It is possible to
use the routine directly for the complexified field E (as introduced in (6.3)), see the equation (43)
of [80].2

8.2 Code modules

Beside the main routine, we mention two important modules of the code: the ionisation module
and I/O processing.

• The ionisation is computed in all the cases by the rate equation ∂tϱ = −Γ(|U(t)|)ϱ (see (3.3)),
computed locally at each point. There are two options implemented within the module
for HHG in gases. First, there is the PPT-formula, [110]. Second, it is possible to load an
external table Γ(|U |), which is considered as an input of the code. One alternative we tested
was the complex rotation.

• I/O processing is the interface of the code with user inputs and outputs linked with either
post-processing or the TDSE-solver. One of the tasks of these procedures is to convert the
units from SI to C.U. and vice versa, so C.U. remains encapsulated in the code.

– The inputs are of three natures: i) the set-up of the laser pulse and medium; ii) the
material constants, i.e. the pre-set parameters of the medium; iii) the numerical param-
eters of the computation. There are now implemented pre-sets for rare gases in the
code: the dispersion relation for k(ω) from [282], the ionisation potentials from [214],
the Kerr-effect refractive index n2 from [283] (please find a discussion of various sources
for n2 in [284]). The laser pulse is constructed in the pre-processor, we currently use
Gaussian beams and pulses, but from the viewpoint of the main code, the input is an
arbitrary E (t, ρ, z = zentry).

– The key outputs – the electric field E and plasma density ϱ – are stored on-the-fly in the
main routine, Algorithm 1. There are also some other characteristics stored throughout
the computation and stored during the Finalise phase.

2One case where this approach is required is to treat correctly the third harmonic generation. Next, this approach
would give also the ”ionisation ladder” on the sub-cycle resolution. A disadvantage is higher computational cost as
the sub-cycle resolution is required.
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9. XUV SIGNAL: THE HANKEL TRANSFORM

Here we present the last module of the multi-scale model: the propagation of the XUV field. From
the implementation viewpoint, we use a solution expressed in the means of the integral (5.3):

Ê(ω, ρ, z) ≈ −µ0eik(ω)z

4π

∫ zexit

zentry

e−ik(ω)z′ei k(ω)ρ2
2(z−z′)

z − z′

∫
∆T

ei k(ω)(ρ′)2

2(z−z′)

(̂
∂jQ
∂t

)
J0

(
k(ω)ρρ′

z − z′

)
ρ′ dρ′ dz′ .

There is thus no need to solve a partial differential equation as in the previous two sections.

We implement it straightforwardly by first integrating over the radial coordinate ρ′ to obtain
the signal from a single plane. Second, the planes are integrated over z′ in the case of long media.
We need to take some care about the correct reference frames, especially when treating the phase-
matching.

The reference frame imposed by the CUPRAD, Fg, is co-moving with the pulse with the group
velocity vg. The original integral (5.3) is in the laboratory frame Fl. We now adjust the phases in
the integral. First, we transform the source term in the laboratory frame

(̂
∂jQ
∂t

)
Fl

= ei ωz′
vg

(̂
∂jQ
∂t

)
Fg

. (9.1)

Second, we adjust k(ω) for the harmonics. Because we consider only the linear dispersion and
absorption, it can be written as

k(ω) = ωn(ω)
c

, n(λ) = 1− Nreλ
2

2π (f1(λ)− if2(λ)) , (9.2)

where n(λ) is the refractive index conventionally written (see Eq. (3.9) of [194]) using the atomic
scattering factors f1 and f2 for the dispersion and absorption, respectively. We implemented the
option from the tabulated values from [218] and [219, 285]. λ is the vacuum wavelength, re the
classical electron radius ℏα0/(mec) and N the density of the gas atoms.

Now, we substitute the adjustments in (5.3). The final integral expression for the generated
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field in th far-field region reads

Ê(ω, ρ, z) ≈ −µ0eikr(ω)z

4π

∫ zexit

zentry

∫
∆T

eΦ(ρ,ρ′,z,ω)

z − z′

(̂
∂jQ
∂t

)
Fg

J0

(
kr(ω)ρρ′

z − z′

)
ρ′ dρ′ dz′ , (9.3a)

Φ
(
ρ, ρ′, z, ω

)
= iωz′

(
1
vg
− nr(ω)

c

)
+ i kr(ω)ρ2

2(z − z′) + ikr(ω) (ρ′)2

2(z − z′) −
zexit − z
Labs(ω) . (9.3b)

We use nr and kr to denote the real parts of n and k, respectively. The terms involved in the
phase Φ can be assigned to various effects:

• The first term, iωz′(1/vg − n(ω)/c), adjust the frames and gives the principal contribution
to the phase-matching. An intuition about the phase-matching comes from the difference of
the phase-velocities of the IR-driver and the XUV-field as explained earlier (see (5.23) for
instant). The expression (9.3) contains explicitly the group velocity vg instead of the phase
velocity vp to adjust the phase. This is specific for our model that describes the physics in
the co-moving frame with vg: The other phase effects are encoded directly in ∂̂tjQFg

. The
proper phase is then restored by matching the reference frames.

• The first curvature term, ikr(ω)ρ2/ (2(z − z′)), basically gives the wave-front profile of the
beam in the far-field region.

• The second curvature term, ikr(ω) (ρ′)2 / (2(z − z′)), is the correction that allows the focusing
of the generated beam and goes beyond the Fraunhofer diffraction as explained in Appendix D.

• The last term, (zexit − z)/Labs(ω), is the attenuation due to the absorption with Labs(ω) =
c/ (ω Im(n(ω))).

The propagation of the XUV field completed the numerical part of the multi-scale model and
we can assemble the modules.



10. COUPLED MODEL

The last part is completion of the code. We recall that our approach is sequential: 1) We compute
the non-linear propagation by CUPRAD; 2) We run TDSE solvers on a grid covering the medium;
3) We use the Hankel transform to obtain the far-field XUV. Because there is no real-time commu-
nication between the processes, we can simply pipeline the process, and each stage is inputted by
the outputs of the previous one.

There is then no fundamental challenge in the implementation of the multi-scale model itself.
However, we consider the computational needs as non-trivial from the viewpoint of the resources
needed. This chapter introduces our specific implementation of the model. The linear operation of
the three main modules is introduced in Section 10.1. Section 10.2 mentioned the post-processing of
the results. Section 10.3 shows the roadmap of the multiscale model including also computationally
cheaper modules and possible outputs. A complementary analysis of the computational cost of the
model is done in Appendix E.

One of the main philosophies is to keep data from the whole calculation together and the
modularity of the model: to easily change one part of the process. It suggests some level of
standardisation in the process.

We opted for the HDF5-data format [286]. We briefly introduce its features. The elementary
block of an hdf5-archive is a dataset: This is an N -dimensional array of either integer or real
numbers in single or double precision. Complementary to numbers, strings can be also stored.
The archive may contain many of datasets ordered in a hierarchical structure, which is similar to
a directorial structure in usual file-systems. Because there are interfaces to many programming
languages and software (Python, MATLAB®, Fortran, c, Java, . . . ), it provides portability across
these platforms. Last, the HDF5-library supports the parallel file access. All these features are
demanded and used in the multi-scale model for all the data-flows.

10.1 Multi-scale model work-flow

Here we present the work-flow of the code. The input of the code are various parameters that can
be divided into 3 groups:

• The driving IR laser: This input is generally the electric field at the entry plane of the medium,



160 10. Coupled model

E(z = zentry, ρ, t). A standard model of the driving laser is a Gaussian profile (B.6). This
profile is fully defined by its: wavelength λ, peak intensity I0, waist w0, focus position zfocus

and pulse duration τFWHM. We frequently use a vacuum Gaussian profile as a reference.
It means that we first consider a virtual set-up without medium with analytically defined
Gaussian beam. Second, we place the medium in the path of the beam at a given position
compared to the vacuum focus.

• The specification of the target: There are two aspects of the target: 1) the macroscopic
properties as pressure, the length of the gas-cell and eventually further specifications as pre-
ionisation as applied in Section 6.3; 2) the microscopic property is basically only the type of
atoms in the medium. For the rare gases of our interest, we use pre-set values discussed in
the previous chapters.

• The parameters of the numerics: This set of parameters defines the discretisations of grids
and their sizes, it also contain the driving variables of the code as the number of processors.

The last set of parameters are the properties of the analyser – the Hankel transform. These are
the properties of the observation plane: its size and distance from the target.

All the modules of the model are prepared to be executed as jobs on a computer cluster using
the slurm workload manager [287]. These jobs are submitted in the sequence of the weak-coupling
model. There are some details about the implementation

1. CUPRAD: The first step of the calculation is the propagation of the IR-laser. This is done
in two steps, first, the data are pre-processed. The pre-processor constructs the beam profile
and convert the inputs into the computational units of CUPRAD. The second step is the
computation of the propagation itself. The output of this code is the electric field and plasma
density. The actual implementation is done in FORTRAN [288] for both pre-processor and
the main code.

2. 1D-TDSE : The 1D-TDSE solver is executed for all the required points covering the macro-
scopic medium. The desired output is ∂̂tj on the same grid. The main computational chal-
lenge is the need to execute a large amount of the simulation. Even though there is no
communication between the simulations, it is not possible to separate the jobs easily. For ex-
ample, the typical amount of TDSE’s per one simulation is about 105 for the set-up required
in Section 6.3.6 (approximately 15 mm of the propagation of a beam about 100µm radius
and pressure in the order of 101-102 mbar). This is beyond reasonable limits both for num-
ber of jobs submitted to slurm and the files used. The solver is then encapsulated into an
MPI-scheduler, which executes all the TDSE’s within a single parallelised job. The actual
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implementation uses a 1D-solver introduced in the Section 7.5, which is implemented in the
c-language [289, 290].

3. Hankel transform: This is the last step of the computation. As the current approach is the
least expensive part of the computation, it can be comparable with post-processing. The
actual implementation is done in Python [291, 292].1

The final result is then the XUV field in the far-field region. However, a valuable result is also
intermediate outputs of CUPRAD. Most of the physics can be inferred from these profiles directly,
which provides a short-cut over the TDSE computation.

10.2 Post-processing

The post-processing is mainly the visualisation of the data. Because they are stored in the HDF5-
archives, it can be easily ported into Python [293], MATLAB® [294] or similar tools. We use mainly
the two mentioned.

Complementary to these ”trivial” post-processing, we may consider also the use of the full-saddle
points tabulated from (2.17) and implemented in Section 7.8 as a post-processing. It provides
a table of the required source terms for the XUV only as functions of the actual intensity of the
field: d = d(I). This can be applied then only as ”masking” of the electric fields from CUPRAD.
The study in Section 6.3 confirmed that it can provide a good insight of the physics without the
need of large computational resources. The advantage is that these resources may be used in other
way: to scan the large parametric space of a given task. These results provide a valuable initial
point for possible detailed simulations with the full model.

1Beyond these standard references, we use many of packages that are contained in usual Python distributions.
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10.3 Computational models roadmap

Input E-field

CUPRAD

TDSE SPA p-integration FSPA

Hankel

pulse diagnostics

microscopic spectra

far-field harmonic
spectra

simplified models

Fig. 10.1: Computational models roadmap: The left part of the schematic represents possible process chains
initiated by the input electric field E . The right part represents possible outputs.

The schematic of the operation of various modules of the multi -scale model is shown in Fig. 10.1:

• Input E-field: The computation is started by the input electric field E . It is generally a macro-
scopic field at the entry plane of the medium E(ρ, t). Another option is to perform only
a microscopic study, the input is then only E(t) within the dipole approximation.

• CUPRAD: It computes the electric field in the whole medium E(ρ, z, t). This output may be
input in the TDSE or FSPA, or this field may be directly diagnosed by the pulse diagnostics.

• TDSE : Its primary function is to transform an input field E(t) into the source term ∂tj.
Complementary, it also provides the profile of the degree of ionisation.

• SFA p-integration: The source term is computed by (2.16) in this module. It allows to work
with two-colour arbitrary polarised pulses. This method is used in [126] to study polarisation
gating. However, the current implementation relies on analytic models of the input field, the
reason is that there are required quantities up to

∫
A dt, where A is the vector potential

corresponding to E. This module is thus unlinked to the CUPRAD now.

• FSPA: This module allows to infer basic properties of harmonics by masking the intensity
profile of the field. These sudies are, so far, limited to the regions where different semi-
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classical trajectories (long and short in the plateau or the single trajectory in the cutoff) may
be distinguished.

• Hankel: This module collects microscopic source terms and transforms them into far-field
spatially resolved spectra.

The purpose of the model is to provide various physical quantities considered as outputs indicated
in Fig. 10.1:

• pulse diagnostics: These diagnostics include the intensity profiles, ionisation maps or spectra
of the driving field.

• microscopic spectra: The source terms, ∂̂tj, at a given point of the medium.

• simplified models: This indicates models directly linked with the FSPA. It mainly provides
a fast model of the phase of the generated field. We have proven that this approach is
sufficient in the two geometries – the optics-free XUV focusing and pre-ionisation driven
phase matching – studied in Sections 5.2 and 6.3, respectively.

• far-field harmonic spectra: This is one of the most important outputs because it gives a direct
link with experiments.

10.4 Optimisation

We have reviewed the operation of the multi-scale model and its typical cost in the actual imple-
mentation is discussed in Appendix E. It shows possible ways to make the model more efficient
both computationally and in its usage. There seem to be two significant bottlenecks at the instant.
First, the computational cost may be probably reduced. The resolution needed at different regions
is probably different. Using again Fig. 6.14 as a practical example, we ensured the convergence in
the region with the fast changes of the field and fixed this grid. A coarser grid would be proba-
bly sufficient in less critical regions. The second point is related to the first one, there is needed
a non-negligible effort to run the code and check the results manually.

Both of these points should be avoided by using adaptive steps and other internal metrics, which
choose automatically computational parameters according to some heuristics and verify the con-
vergence and other requirements. This task is non-trivial as it needs a) to define these metrics and
implement them; b) the management of the computational resources, which dynamically allocate
them.
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Part IV

CONCLUSION & PERSPECTIVE





11. CONCLUSIONS

We have developed a comprehensive numerical model of the High-order harmonic generation in
gaseous media in this thesis. Our model has been applied to two different generation schemes
in Sections 5.2 and 6.3, which have been investigated in close collaboration with experimentalists
and have brought novel ways to control HHG process. The first scheme allows for the control of
the harmonic beams via optics-free mechanism: the wavefront is driven directly by the generation
process in thin media[34, 35]. The second method provides the control of the phase-matching in
a long medium by homogeneously pre-ionising the medium [72].

Aside the results directly synthesised with experiments, another important outcome the com-
prehensive study of the ionisation, Chapter 3, and the work on the development of the 3D-TDSE
solver, Section 7.6. For the former, the summary of different perturbative approaches is comple-
mented by a rigorous treatment based on the resolvent technique. This work is summarised in [111].
The development of the TDSE solver consists of the experiments with the Krylov subspace method
and treatment of high-energy components from the large angular momenta in the solver, this work
contributes to ongoing development of a 3D-solver that shall be deployed soon after the thesis.

These results demonstrated the use of the multi-scale model, which is the primary goal of this
thesis. It may be then used to study other HHG schemes without significant changes. An example of
recently introduced techniques is the generation in the so-called ”over-driven” regime [295, 60, 296],
it is characterised by higher intensity than the usual HHG schemes. This intensity is linked to
plasma generation leading to the re-shaping of the pulse. Another possibility goes towards the use
of gradually changing phase along the phase induced by the chirp of the driving pulse [297].

The code also provides a basis for possible future development. One of the advantages of the
discussed and not fully implemented 3D-TDSE is the reach of arbitrary polarised driving IR pulses.
Complementary to this approach, it would be favourable to link the model with other methods to
describe these fields based on SFA, e.g. [137, 298, 299, 300]. Extending also the dimensionality of
CUPRAD, there is a sibling code beyond the cylindrical symmetry, see e.g. [197, 301, 302, 303].
The implementation of these extensions would help to cover broader range of phenomena in HHG.
More details about possible follow-up topics are in Section 11.2.
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11.1 Scientific significance of designed HHG schemes

Here we return to the details about the two HHG designs to control and optimise HHG. We have
studied the XUV beams on thin targets leading to the optics-free focusing mechanism in the first
study. The main contribution of the work consists in the recognition of the key principle of the
formation of the harmonic beams in thin targets. The XUV wavefront is the sum of 1) the curvature
inherited from the driving IR-beam, and 2) the intrinsic phase of the process as a function of the
intensity. We have investigated a particular set-up in Section 5.2 and in [35], there were used a IR
beam with the waist 85 µm and a thin neon jet. It is possible to focus the XUV beams down to
approximately 5–20 µm. Another key feature is the spectral selectivity of the mechanism: each
harmonic beam is focused differently. This is another key principle of the set-up, it allows to create
a low-pass, high-pass or broadband filter in the given spectral region.

The second multi-scale study has discussed the HHG in long pre-ionised media [72]. The pre-
ionisation has been proposed and verified as a mechanism to control the phase-matching. We have
shown that the pre-ionisation acts as an independent tuning parameter in the studied range of the
input intensities: the phase or intensity profile of the beam is not affected by the homogeneous
pre-ionisation. Consequently, the shape of the generated XUV beams is also not affected. We have
used the full multi-scale model in this work and we have shown the possible enhancement of the
order of 8 for the 17th harmonic in krypton generated in the absorption-limited regime. We have
also recognised that this regime puts the limit on the intensity in long media due to the defocusing.
This intensity is in our case I ∼ 0.9× 1014 W/cm2. Two important consequences of the defocusing
limit are: 1) it imposes the generation regime and the investigated H17 in krypton is near the cutoff;
2) the driving beam itself cannot ionise sufficiently the generating medium. The pre-ionisation can
overcome this problem as being an external mechanism. Finally, the low ionisation induced by the
driving pulse itself can be taken as an advantage. The XUV signal can be optimised in long pulses
avoiding transient ionisation to over-ionise the medium during the interaction.

In the microscopic study of the ionisation, the resolvent technique has allowed to find an un-
ambiguous view on the energy distribution of the electron during the ionisation process. The
ambiguity caused by the gauge freedom is resolved by the removal of the potential energy of the
external field, which coincides with the velocity gauge. Furthermore, the spectrum is stable –
i.e. unitarily equivalent to the field-free case – within the dipole approximation. The developed
methodology of the energy measurement has been applied in three typical regimes of ionisation
(perturbative singe-photon linear, perturbative multi-photon, and tunnelling). There is no concep-
tual obstacle to extend this methodology on more complex setups and benchmark usual practical
methods based on perturbative approaches.
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11.2 Perspective

The research carried out in this thesis has proven that our developed computer model can be used
to provide both qualitative and quantitative analyses of the discussed configurations. We believe
that our model can be further developed and various follow-up projects are possible. We sketch
some of the ideas in the following points (sorted thematically, not by their impact or difficulty to
implement):

• 3D-TDSE solver : Unfortunately, the completion of the development of the 3D-TDSE solver
has not fit within the timespan of the PhD project. However, significant effort was made,
and the completion of the solver with the DVR method in the radial subspace still seems
promising to be computationally affordable to link even with the multi-scale model.

The completion of this model is not only a numerical exercise, but it is crucial for some
effects in the XUV. Namely, 1D-TDSE cannot contain arbitrary polarised field. As generation
schemes including polarisation states of the generating beam are one of widely studied ap-
proaches [304, 305, 306]. The polarisation represents the spin angular momentum of light, the
generation becomes particularly interesting when combined with the orbital angular momen-
tum of the light – helical beams – [307, 308, 309]. Another aspect is the geometry of the atom
itself. One dimension contains parity of states, which include some of the symmetry prop-
erties. However, the full symmetry contained in, e.g., p-orbitals are correctly included only
in 3 dimensions. Furthermore, 3D-potentials, (7.26b), contain more parameters to describe
subtle structures as e.g. Rydberg atoms.

The incorporation of the efficient 3D-TDSE is then one of the most prioritised follow-up
projects.

• Strong coupling: The basic idea of the strong coupling is to use the TDSE solver to replace
the sources from non-linear optics. Such an approach for coupling directly with Maxwell’s
equations was introduced by [88, 90, 89, 91]. In our case, it basically means to run both codes
together. The unidirectional laser propagation calls the microscopic responses at every plane.
This becomes challenging even from the viewpoint of computer science. It would require an
efficient design of the microscopic solvers and implementing the coupling with parallelising
the procedures.

• FSPA library: As a part of the complementary models, we modelled harmonics by the Full-
Saddle-Point Approximation given by the set of non-linear equations (2.17). We have proved
that this approximation provides a good insight and also a sufficient quantitative analysis in
the problems we investigated. We solved these equations ad-hoc for our purposes. However,
it can be easily generalised to tabulate the dipoles for different targets as a function of the
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frequency and intensity. The treatment of the transition between the plateau and the cutoff
may be improved by [310]. At this stage, we can provide API to use the dipoles or linearised
phases for various models of HHG.

• Accessibility & open-sourcing of the code: One of the issues of the actual multi-scale model
is that it is not published and accessible. Because the availability of codes and the possibil-
ity to be used and verified by scientific community pairs with one of the pillars of science:
reproducibility, the publication of the code is one of priorities as well.

An inspiration can be nowadays well-established PIC-codes in plasma physics; as for
example EPOCH [311], SMILEI [312], FLUKA [313, 314].1

• User interface: This project follows the previous point and it is even more challenging. The
main goal of such a project is to create an interface for users to operate the multi-scale model.
Another aspects of this part is the modularity and accessibility of the code to user-created
sub-modules and other modifications.

Complementary to the physical motivation, the processing linked with software-engineering
should made the code more user-friendly.

• Code optimisation & modularity: This work confirmed the applicability of the multi-scale
model, which is now fully operational. However, the performance of the code should be
further optimised for wider applications. We can see this optimisation from two sides. First,
the numerical techniques may be advanced as, for example, by using adaptive steps in the
TDSE solvers. Generally, the goal is to implement internal convergence checks etc. to let the
code itself to choose optimal numerical parameters of calculation. Second, the code should
be done easily deployable on various architectures, so it can be used more on the user-base
as defined in the user interface.

Regarding the computational part, we can consider also more advanced methods as paral-
lelisation. For that, we spent significant effort in the development of a general MPI-scheduler
of the sub-tasks. Unfortunately, we did not succeed to scale and deploy it on the architecture
available. We are able to use a simplified version of the 1D-TDSE code, where the runtime
of the processes with a fixed discretisation may be considered as constant. However, more
sophisticated approaches as the aforementioned adaptive step-size control would require im-
provement also in this overhead of the execution of the code. Finally, we consider to port the
code using GPU’s or employing techniques as machine learning.

Another way to extend the model is to use different modules with an optimal cost-accuracy
balance for a given problem. We have already mentioned the 3D-TDSE, which includes finer
microscopic effects. A different way could be to use SFA-based modules for the microscopic

1See [104] for a comparison of various codes.
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response. Regarding the model of the XUV, we could include near-field XUV and different
strategies to calculate the XUV signal. It would be beneficiary to compare our work with
other treatments, such as [94, 99, 91]

• Porting the code for other media: We study only atomic targets in this thesis. There is
high interest in other targets since there are fundamental limits in the generation in gases.
One comes from the recombination as the last step of the three-step model. The wavepacket
spreads in the continuum during the second step, which reduces the efficiency of the recom-
bination according to the atomic cross-section. It suggests to use larger targets. A direct
extension is to use molecules or even macromolecules as C60 [315]. The situation may be
dramatically different in solids [316] or nanostructures [317]. In atomic cases, the electron is
in a ”free-space” continuum during the second step and propagates almost as a free particle.
This is not generally true any more for the different targets, the electron stays within the
strong influence of the material even during the ”propagation”.2 Although this sounds as
a dramatic change of the setup at the first glance, we believe the code can be adapted to
these cases with a reasonable effort as both kernels of CUPRAD and TDSE are shared with
codes used to model analogical processes in solids [80, 318].

• Electron dynamics near the ionisation threshold, non-linear optics: Our invariant study of
the ionisation is a) challenging exactly the coupling point of the microscopic and macroscopic
physics, b) providing insight into the mechanisms of both ionisation and HHG. This can
be further extended by including complementary spatial resolution of the problem. Another
aspect to include is the dimensionality of the problem and investigate the dynamics in elliptical
fields including the couplings of various orbitals differing in the magnetic quantum number m.

The second direction of research is the approach to the non-linear optics from quantum
mechanics. This approach is manifested theoretically in (2.11) and (4.2). However, the
practical computation of the optical response of the medium in the IR-region is based on non-
linear optics. The TDSE solver opens a way to compare these approaches on the microscopic
scale as a building bricks of the proposed strong coupling.

Finally, this may be used to systematically study the validity of the ionisation formulae
providing rate equations and to extend the them into, e.g., multi-colour fields.

• Optics-free harmonic beam control & off-axis contributions: We have recognised the two
effects defining the curvature of harmonic beams – the inherited phase from the IR-driver
and the intrinsic phase induced by the intensity profile φXUV = −αIIR. We have limited our
applications to Gaussian driving fields. A possible generalisation is to engineer the driving-
field profile to achieve arbitrary shape of the generated field (see for instant [319] using annular

2The nature of the corresponding continuum in the spectrum is, e.g., a conduction band.
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beams) .

• Multi-scale studies: We have studied the effect of the pre-ionisation in long media. This
model should be ready to study different set-ups without large modifications. For example,
the generation from the first region when high intensity is used corresponds to the over-driven
regime [60, 296]. This process can be studied directly by our approach. Next, we have been
interested mainly in the harmonic yield. The ab-initio model contains more subtle effects as
the interplays of the microscopic and macroscopic effects. Another logical continuation is to
connect the formation of XUV beams in thin targets and do a similar analysis for long media.

• Off-axis contributions: A direct simplification of the generation process is to consider only
the on-axis contribution. Considering only the energetic perspective of a Gaussian beam,
the energy distribution is fE(ρ) = ρ exp

(
−2ρ2/w2). It means that the highest energetic

contribution is at the ρ = w/2, i.e. the half of the waist of a beam. It suggests that the
off-axis region may contribute significantly.3

• Data management, tabulations: The multi-scale model becomes non-trivial in both computa-
tional resources and the amount of the produced data. The data then may become valuable
to store or we may need to keep many results to some larger analyses. The management of
the data is then another space to improve. At the time of this work, the author participated
on the development of an SQL database system, which is now used for listing experimental
data. The design of this database reflected these considerations and its further development
should be able to include the data from numerical simulations. The basic idea is to list char-
acteristics of each simulation (inputs and some metrics of the outputs), which allows to run
a fast database over these data.

• Automatised optimisation procedures: In the previous points, we touched several optimisation
or controllability problems. During this work, we have seen that there is a large amount of
parameters of the generation, for the instant, the arbitrary profiles of the radial intensity
and phase from the optics-free harmonic beam control. To investigate such a space system-
atically requires some automatic optimisation technique. This consideration sounds exactly
as a starting point of machine-learning, genetic algorithms and similar approaches. Our
multi-scale model then becomes an underlying structure of such a model. The challenges of
this approach is to design a proper optimisation function and handle the computations with
a reasonable computation cost.

Basically these points provide a direct perspective for the continuation of the multi-scale model.
These are quite straightforward: the actual topic of HHG are advanced generation schemes. All

3To be precise, the non-linear processes reduce the size at the non-linear response is induced by the local intensity.
On the other hand, we observed the radial redistribution of the energy due to the defocusing (cf. Figs. 6.17 and 6.18).
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these points address further development either to expand the capabilities of the multi-scale model
or to investigate different physics related to HHG.
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D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature, vol. 432, pp. 867–871,
Dec. 2004.

[11] C. Zhai, L. He, P. Lan, X. Zhu, Y. Li, F. Wang, W. Shi, Q. Zhang, and P. Lu, “Coulomb-
corrected molecular orbital tomography of nitrogen,” Scientific Reports, vol. 6, Mar. 2016.

[12] I. Orfanos, I. Makos, I. Liontos, E. Skantzakis, B. Förg, D. Charalambidis, and P. Tzallas,
“Attosecond pulse metrology,” APL Photonics, vol. 4, no. 8, p. 080901, 2019.

[13] Y. Fu, K. Nishimura, R. Shao, A. Suda, K. Midorikawa, P. Lan, and E. J. Takahashi, “High
efficiency ultrafast water-window harmonic generation for single-shot soft x-ray spectroscopy,”
Communications Physics, vol. 3, May 2020.
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[73] A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity
clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,”
Applied Physics B, vol. 73, pp. 287–290, Sept. 2001.

[74] E. Takahashi, V. Tosa, Y. Nabekawa, and K. Midorikawa, “Experimental and theoretical
analyses of a correlation between pump-pulse propagation and harmonic yield in a long-
interaction medium,” Phys. Rev. A, vol. 68, p. 023808, Aug 2003.

[75] D. E. Rivas, B. Major, M. Weidman, W. Helml, G. Marcus, R. Kienberger, D. Charalambidis,
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APPENDIX





A. ATOMIC UNITS

We use two systems of units throughout the work: SI and atomic units. The system of atomic units
is defined by setting the numerical values of the following physical constants

ℏ = e = me = 1
4πε0

= kB = 1 . (A.1)

There are two additional observations:

• The values of other physical constants are also determined by the definition. One of them is
the speed of light in vacuum, its numerical value in atomic units is ca.u. = 1/α0, where α0 is
the fine-structure constant.

The gravitational constant can be also computed in atomic units as

Ga.u. = GSIm
2
e

α0ℏc
≈ 2.4× 10−43 .

Since the electric constant together with electron charge and mass are set to one, it provides
a direct comparison of gravitational and electric force acting on an electron.1

• Last, base SI units contain also candela. To define luminous intensity, one needs also one
constant – luminous efficacy – and the luminosity function. Since we are not usually use
human eye for direct measurements of light parameters in quantum mechanics, we may let it
undefined without any consequences.

1In fact, the force comes from the Newton and Coulomb laws. We may do an estimation by considering a valence
electron in xenon. One of frequent isotopes is 131Xe. The gravitational force is then FG ≈ Ga.u.131µm/r, while
electric force in a neutral atom is Fe = 1/r. Their ratio then still gives FG/Fe ≈ 4.3 × 10−38 that totally justifies the
neglect of gravitation in atomic physics.
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B. FEW NOTES ON DESCRIBING ELECTROMAGNETIC PULSES

The purpose of this appendix is to review the way to describe the electric field and also recalls the
physical meaning of various quantities related to the electromagnetic pulses. Section B.1 introduces
the complex notation of the field, Section B.2 provides the details about the quantities related with
an electromagnetic pulse, which is considered as a form of energy carried through space. Section B.3
defines and uses a Gaussian beam and pulse to illustrate these quantities, the remaining sections
provide further notes on photons and angular momenta of the field.

B.1 Complex notation for the field

The pattern of complex number is suitable for the linearity of Maxwell’s equations together with
the wave behaviour of their solutions. Frequently, complex notation is then very advantageous for
the field; many effects, for example interferences, just naturally emerge. There are two possibilities,
either E = Re E1 or E = E2 + c.c.. However, there are still some points, where a care is needed:

• Quantities beyond linearity–as the intensity–need a specification, since E2 = E1/2. It must
be specified which form is used to find a proper scaling to intensity and other quantities.

• We reduce the ambiguity of the sign caused by cos(ωt − kz) = cos(−(ωt − kz)), it proposes
E1 = ei(ωt−kz) or E1 = e−i(ωt−kz). The latter is consistent with the convention of the Fourier
transform, that has been set by the choice of the momentum operator in quantum mechanics.

– Further physical insight may be then obtained. Let us take an arbitrary field written in
this form, E1 = e−iϕ(t,z). We can then obtain local wavenumber using the ”momentum
operator” k(z′)E1 = −i ∂z|z=z′ E1 = −∂ϕ(t,z′)

∂z E1. A similar approach may be done in the
time domain. This allow us to define two quantities: instantaneous frequency and local
wavelength:

ω(t) = ∂ϕ

∂t
, λ(z) = 2π

k(z) = 2π
(
∂ϕ

∂z

)−1
, (B.1)

respectively.1

1The same sign of the derivatives is given by the respective Fourier and inverse Fourier transform.
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– The formal description of monochromatic light with a fundamental frequency ω0 propa-
gating in the direction k0 is given by E(ω,k) = δ(ω−ω0)δ(k−k0)/(4π2) in the conjugate
domain. The magnitude of k0 comes from the vacuum dispersion relation.

• It provides a direct way to obtain the local phase of electromagnetic field. Let us take
E(t, r) = Re (exp(−i(ω0t− k0z − ϕ(t, r))))

ϕ(t, r) = Arg (E1(t, r)) . (B.2)

A convenient way to obtain E1 is

E1(t, r) = F −1
ω [θ(ω)Ft [E(t, r)] (ω)] (t) . (B.3)

We took a scalar field in these considerations. A general field E(t, r) may be rewritten with only one
shared amplitude A and phase ϕ as A(t, r)e−iϕ(t,r)e(t, r), where e = E/ ∥E∥ is the local direction
of the field. ϕ is the so-called Eikonal, see Chapter 7 of [320], and it defines the equations of the
Ray optics. The curvature of a ray there is ▽⊥ϕ.

Although the discussion is rather technical, a physical insight emerge not only for the ray
optics, but as well for quantum mechanics where the de Broglie’s wave links the ”local” momentum
of a particle with the phase of the wavefunction the same way as for the electric field.

B.2 Energetic picture of electromagnetic pulses

In this appendix we provide the link between the energy and other quantities characterising laser
pulses. It will be illustrated on a Gaussian pulse propagating in a Gaussian beam.

It is useful to picture a pulse as energy and momentum carried by an electromagnetic field
in the direction of propagation. This abstract definition is useful as it allows easy transition for
both classical (A-, B- and E-field) and quantum description of fields (photons). Let us then start
with a part of the energy-momentum tensor (also Maxwell stress tensor) T 0µ = (w,S/c), where
w = ε0E2 is the energy density and the Poynting vector S = wck/ ∥k∥ gives the energy flux together
with the direction of the propagation given by the wavevector k. The total energy contained in the
field is then E =

∫
R3 w d3x. Let us consider a pulse carrying the energy in the z-axis direction.2

We use this axis to define cylindrical coordinates (ρ, φ, z). It is useful to introduce some quantities
that provide insight in the physics in a plane perpendicular to the propagation at a given z.3 We

2Precisely speaking, it does not necessary mean that this is the direction of the wavevector in any point. But
since total momentum is a constant of motion, we can uniquely define it by ez = P / ∥P ∥, where P =

∫
R S(t) d3x at

arbitrary time t.
3We do not write thus z explicitly in the following formulae since it is fixed.
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start with the instantaneous irradiance Ee(ρ, φ, t) = S(ρ, φ, t) · ez, its unit is ENERGY
TIME·LENGTH2 and

it gives energy flux through the plane.4 The total energy flowing through a given point is called
instantaneous intensity, I(ρ, φ, t) = ∥S(ρ, φ, t)∥ with the same unit ENERGY

TIME·LENGTH2 . We consider
further that the direction of propagation deviates slightly from the propagation axis (paraxial
approximation), in this case Ee ≈ I. We can now introduce two integral quantities

P (t) =
∫
I(ρ, φ, t) dS , F (ρ, φ) =

∫
I(ρ, φ, t) dt . (B.4)

P is the instantaneous power given as ENERGY
TIME and F fluence as ENERGY

LENGTH2 . The total energy E can be
then integrated from both of them. We called I and P as instantaneous because the nature of the
field is that there is usually a fast-oscillating part and carrier envelope with slow evolution compared
to these fast oscillations. It allows to average over the fast oscillations and obtain intensity ⟨I⟩T0

and power ⟨P ⟩T0
, where T0 is the period of the fast oscillations.5 These quantities still depend on

time, but only through the envelope. The averaging gives ⟨I(t)⟩T0
= I(t)/2 and ⟨P (t)⟩T0

= P (t)/2.
These two quantities are in most cases used instead of the instantaneous values. One of the reasons
is that the phase of the fast oscillations is not controlled in experiments. The averages are necessary
for mathematical clarity. However, physical literature usually omits them, and we do the same if
there is no special need.

All these quantities have a clear meaning since E < +∞. However, a monochromatic plane
wave is a useful frequent model of an electromagnetic wave even though the total energy diverges in
that case. Fluence and power also diverge for the plane wave, but they are still sometimes defined
as ”renormalising” them by saying, respectively, per unit of time or per unit area. These are also
well defined since the distribution is homogeneous in time and space. It is useful for physical models
based on monochromatic and/or plane waves that needs only a local field.

B.2.1 Spectral domain

I and P provide an insight into the distribution of the energy in time. A complementary analysis in
the spectral domain is useful as well. We then define the spectrum S(ρ, φ, ω) = |Ft [E(ρ, φ, t)] (ω)|2,
which is basically the intensity in the spectral domain. Second, there is the spectral power S̄(ω) =

4For different boundaries that the plane, ez is replaced by the proper normal vector.
5We do not use term average intensity or average power since we may use them for the average quantities from

the viewpoint of the envelope. Once the duration τ of the envelope is defined, we may define them as ⟨I⟩τ and ⟨P ⟩τ ,
respectively.
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dE
dω , which is related to the total energy by6

E =
∫
R
S̄(ω) dω . (B.5)

Finally, we may be interested in a combined analysis in both frequency and time domain. We
basically answer the question: ”When does a given frequency occur?” The tool answering this
question is the so-called Gabor transform [192] (see Appendix E of [126] for its illustrations).

B.2.2 Coupling with matter

Up to this point, we did not mention the influence of the matter that affects the field propagation.
Since there is interchange of energy, only total energy is conserved Etot = Ef(t) +Em(t), while the
energy of the field, Ef , and that of matter, Em, are not independently.7 It is useful to change our
consideration from the whole space at a given time t to the energy Ef(z) passed through the plane
in the given z as we already done. It means that we just add the variable z to all the quantities
defined above, which helps us to analyse the processes in the underlying medium. In summary,
Ef(z) is not generally conserved and the difference Ef(z2) − Ef(z1) tells us the amount of energy
absorbed (or emitted) between the planes in z1 and z2.8

B.3 Example: Gaussian beam

Now, we use a vacuum Gaussian beam with Gaussian time profile as an example of the previously
defined quantities. The full field in the whole space is given by

E(ρ, z, t) = E0
w0
w(z)e−

(
ρ

w(z)

)2

e
−2 ln(2)

(
t− z

vg
τFWHM

)2

cos
(
ω0t− k0z −

k0ρ2

2R(z) + ϕG(z) + φ0

)
, (B.6)

where w(z) = w0
√

1 + (z/zR)2, R(z) = z + z2
R/z, ϕG(z) = arctan(z/zR), and zR = k0w2

0/2. In
vacuum vg = c. Note that (ω0t− k0z) = ω0 (t− z/c). If we take the pulse propagating in vacuum,
it gives exactly the retarded time and the phase ω0 (t− z/c) = ω0t′.

The defining parameters are
6Due to the parity of S(ω) and S̄(ω) in ω, one can consider only ω > 0. A care in scaling is needed to ensure the

normalisation E =
∫
S̄ dω.

7Note that the coupling is not a trivial theoretical problem, as for example the momentum of the light coupled
with matter had been unclear throughout the 20th century before a detailed investigation was done in [321].

8We then have the energy balance for the matter: E(z1,z2)
m (t → −∞) −E

(z1,z2)
m (t → +∞) = Ef(z2) −Ef(z1). This

difference says the amount of energy deposed in the part of the space {(z, y, z) ∈ R3|z1 ≤ z ≤ z2}. This energy has
to be understood really in a thermodynamic sense since it may be any from kinetic, potential, internal, thermal, etc.
parts. Moreover, we suppose that the planes act as a perfect thermodynamic insulator and only the E-M field carries
the energy.
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• w0: the waist at focus, i.e. the radius where the electric field and the intensity reach, respec-
tively, E0/e and I0/e2;

• τFWHM: the FWHM of the envelope in intensity.

• E0: the peak electric field amplitude at focus.

• λ: the vacuum wavelength related to the frequency ω0 = 2πc/λ = k0c.

• φ0: the carrier envelope phase (CEP): the offset of the fundamental phase at the peak of the
pulse with respect to the ”cosine” pulse defined by φ0 = 0 in (B.6).

We now review and calculate the above-mentioned quantities. First, the intensity is

⟨I(t)⟩T0
= cε0E2

0
2 e

−2
(

ρ
w0

)2

e
−4 ln(2)

(
t

τFWHM

)2

= I0e
−2
(

ρ
w0

)2

e
−4 ln(2)

(
t

τFWHM

)2

. (B.7)

The fluence and power are, respectively,9

F (ρ) =
√

π

ln(2)
cε0
4 E

2
0 τFWHMe

−2
(

ρ
w0

)2

= F0e
−2
(

ρ
w0

)2

, (B.9a)

⟨P (t)⟩T0
= π

4 cε0w
2
0E2

0 e
−4 ln(2)

(
t

τFWHM

)2

= P0e
−4 ln(2)

(
t

τFWHM

)2

. (B.9b)

The last step is the total energy

E ≈ cε0

√
π3

26 ln(2)τFWHMw
2
0E2

0 ⇔ E0 ≈

 1
√
cε0

4

√
26 ln(2)
π3

( 1
w0

√
E

τFWHM

)
. (B.10)

The energy is proportional to the section of the beam and the duration of the pulse as expected.
Finally we can link all the peak values with the peak intensity

I0 = cε0
2 E

2
0 =

√
24 ln(2)
π3

E

w2
0τFWHM

=

√
ln(2)
π

2F0
τFWHM

= 2
π

P0
w2

0
; (B.11)

9We used the following two integrals:

∫ +∞

−∞
e−αx2

cos2 (βx+ γ) dx =

√
π
(

1 + e− β2
α cos(2γ)

)
2
√
α

,

∫ +∞

0
xe−αx2

dx = 1
2α . (B.8)

We neglect the term e− β2
α cos(2γ) since α represents envelope varying slowly compared to the fast frequency β.
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cos2-envelope

The model we introduced in (B.6) describes both Gaussian beam (the spatial shape) and Gaussian
pulse (the profile in time). Here, we explicitly compute analogical quantities in the case the envelope
in time is replaced by the cos2-shape (using only one half-cycle). This shape is sometimes more
convenient in the description as it has a finite support and some manipulations with the field may
be easier at it contains only goniometric functions (e.g. the integrations in (2.14)).

Let us consider a pulse having a time profile

E(t) = E0 cos2(ωct) cos(ω0t+ φ0) , I(t) = cε0E2
0

2 cos4(ωct) . (B.12)

The characteristics of this pulse are

τFWHM = 2
ωc

arccos
( 1

4√2

)
≈ 1.14372

ωc
, (B.13)

F = 3π
8ωc

, (B.14)∫ t

0
cos4(ωct′) dt′ = 12ωct+ 8 sin (2ωct) + sin (4ωct)

32ωc
, (B.15)

τrms =

√
2π2 − 15

24
1
ωc
≈ 0.44437

ωc
. (B.16)

The correspondence between a Gaussian envelope exp(−(t/t(G)
0 )2) and cos2-pulse preserving E0

and τrms is ωc =
√

2π2−15
12

1
t
(G)
0
≈ 0.628438

t
(G)
0

.

Radial distribution of energy

Here, we provide a perspective of the power/energy distribution with the radial coordinate. Let us
consider the total energy computed from the fluence

E = F0

∫
e

−2
(

ρ
w0

)2

ρdρdφ = 2πF0

∫
ρe

−2
(

ρ
w0

)2

dρ . (B.17)

The differential of the energy is proportional to ρe
−2
(

ρ
w0

)2

. It reaches its maximum at ρm = w0
2 .

It means that the greatest contribution to the energy comes from the first half of the beam radius.
Next we can compute the radius, ρE0.5 , for which the half of the total energy is deposed:

∫ ρE0.5

0
ρe

−2
(

ρ
w0

)2

dρ = 1
2

∫ +∞

0
ρe

−2
(

ρ
w0

)2

dρ. (B.18)
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It gives ρE0.5 =
√

ln(2)
2 w0 ≈ 0.6w0. The introduced radii, ρm and ρE0.5 , emphasise the role of the

off-axis contributions and possibly limits the accuracy of on-axis studies. However, as non-linear
processes follows the local intensity and not the total deposed energy, the role of the near-axis
region is amplified. (See also the non-linear scaling by qeff in (2.19).)

B.4 Photons

One of main inspiration of the quantum theory is the quantisation of light (which explained the
electric photo-effect [322]). The proposed quantisation assigns the energy ℏω to one photon with
the frequency ω. The total number of photons of a monochromatic field with an energy E is
then simply N = E/ℏω. However, the model of a monochromatic field is unrealistic: its fluence
F (ρ, φ) =

∫+∞
−∞ E0(ρ, φ) cos2(ωt) dt diverges for any non-zero amplitude E0. A proper physical

quantity then emerges, it is the spectral density of photons N (ω) = 2S(ω)/ℏ, ω > 0. If the pulse
is nearly monochromatic (a narrow peak in the spectrum), the number of photons of the given
frequency is then Nω0 =

∫
peakN (ω) dω. Since the total energy may be computed in any domain,10

the total number of photons in a pulse with a well-defined fundamental frequency is N = E/ℏω.
However, the formula for Nω0 is more general and may be used, e.g., for harmonics.

The photons are natural to the (ω,k)-domain. Although this domain is mathematically fully
equivalent to (t, r), it frequently tear physicists. The reason are the questions: ”Where?” and
”When?”. These questions are completely (Dirac-δ-)local in (t, r), thus completely delocalised
in (ω,k). If consider a sharply defined photon δ(ω − ω0)δ(k − k0), ω0 = c ∥k0∥; we just simply
cannot think when a given photon was created or where it is. Meaningful answer are re-established,
if we 1) consider narrow (but not pointy) distributions, 2) give our thanks to the Gabor analysis.

Having in mind the previous discussion, we can construct an artificial single photon propagating
along a ray defined by the z-axis:

Eω0,k0(t, r) = E0χ[0, 2π
ω0

] (t− z

c

)
sin (ω0t− k0z) δ(x)δ(y) , E0 =

√
ℏ

πcε0
ω0 . (B.19)

The factor ω0 favours the description by the vector potential because its amplitude A0 =
√
ℏ/(πcε0)

thus preserves the energy of a given field.11 Although we provided an understandable example,
the single-photon state is defined only by its total energy assuming only the possibility to define

10Mathematically, it is linked with the Parseval’s theorem.
11A is then much better to quantify the field. For example, the cutoff of the harmonics (1.1) naturally scales

with A = E/ω. The Plasma physics also favours the vector potential in some cases, see for example [323]. This is
natural since it adds with (four-)momentum (as seen in (2.1) or in (I.1), where the four-momentum is linked with
/p = i/∂) and it thus characterises one of fundamental physical quantities. Moreover, it also fulfil Lorentz invariance
compared to the pseudovectors E and B. A drawback of A is its non-uniqueness due to gauge freedom.
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a fundamental frequency. For example, we can construct an arbitrary Gaussian beam with the
Gaussian time profile satisfying E = ω0ℏ. We see that this requirement is quite loose.

All the above are large simplifications, the real nature – at least closer to the contemporary
understanding of physics – are quantised photons (see Appendix I). One of the first attempts to
describe it is the so-called second quantisation based on the expansion |ψfield⟩ =

∫
f(k) |k⟩, where

|k⟩ = a†(k) |0⟩ is a state with sharply defined momentum of field. a†(k) is then the creation
operator of the given mode of the field. This is a useful description in quantum optics. However,
the Fock space is frequently built from the single-particle Hilbert spaces H1 = L2(R3,d3x). This is
fundamentally wrong because the Lebesgue measure d3x violates Lorentz invariance. The solution
is to use a similar quantisation procedure, but with a Lorentz-invariant measure; the base space is
then H1 = L2 (Minkowski manifold, dp/2Ep).

B.5 Angular momentum: polarisation and helical beams

We started the discussion about the general pulse as a carrier of energy, it is not the only quantity
carried through the space. An electromagnetic field can carry angular momentum as well. There
are two possible forms of the angular momentum in a pulse: spin angular momentum and orbital
angular momentum.

The spin angular momentum can be considered as an intrinsic property of photons, and it is the
so-called polarisation of light. A fully circularly polarised light consists of photons each with the
same spin angular momentum Lk̂ = ±ℏ, where k̂ is the direction of propagation. Linearly polarised
field is given as a superposition (|k, ℏ⟩+eiφ |k,−ℏ⟩)/

√
2, where φ then defines the polarisation axis.

Arbitrary polarisation state (even unpolarised) is described by using density-matrix formalism on
the photonic states.

The orbital angular momentum is a macroscopic property of a beam, it is given by the spatially
shaped wavefront. The eigenmodes are given by the Laguerre-Gaussian distribution [324, 325].
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In this appendix, we expand the discussion of energy measurements from 3.2.1 and go beyond the
dipole approximation, where we prove that spectrum of the Hamiltonian (3.14) is not stabilised
once the dipole approximation is not used. Next, we add some physical interpretations. We use the
perturbative expansion of interaction in the Hamiltonian to explicitly find the couplings leading to
energy shifts. We also provide the physical meaning of the related physics, which complements the
discussion from Section 3.2.3.

We start with the physics motivated by the Stark shift in the stabilised energy spectrum.
The Hamiltonian at a fixed time in the velocity gauge within the dipole approximation is HA =
(p − Aez)2/2 + VC . If we forgot the time dependence, this is, in fact, gauge-equivalent to a field-
free case. We can explain the difference that A deforms the momentum space by a linear shift.
We employ the usual form of the field-free Hamiltonian H0 = p2/2 + VC . Using (3.15), we have
|ψ̃⟩ = e−iAz |ψ⟩, where HA |ψ̃⟩ = E |ψ̃⟩ and H0 |ψ⟩ = E |ψ⟩. We now perform an experiment and
try to measure the energy of |ψ̃⟩ by H0. Using

H0 ◦ f(x) = f(x) ◦H0 + [H0, f(x)] = f(x) ◦H0 − i(▽f(x)) · p−
(△f(x)

2

)
, (C.1)

we obtain for the lowest energy state E:

EH0,|ψ̃⟩ =
〈
ψ̃
∣∣∣H0

∣∣∣ ψ̃〉 =
〈
ψ
∣∣∣ eiAzH0e−iAz

∣∣∣ψ〉 =
〈
ψ
∣∣∣ eiAz

(
e−iAzH0 +

[
H0, e−iAz

]) ∣∣∣ψ〉 =

= ⟨ψ |H0 |ψ⟩+A ⟨ψ | −i∂z |ψ⟩ −
A2

2 ⟨ψ |ψ⟩ = E0 −
A2

2 . (C.2)

This corresponds exactly to the quadratic Stark shift that is expected. However, we mismatched
the state with its parent Hamiltonian. We can explain it by the following consideration; most of
the measurements of quantum-mechanical systems rely on transitions between states. If we do so
by a pump-probe experiment, the gauges of pump and probe need to be consistent. Accepting H0

as an energy measure of |ψ̃⟩, we find that the energy shift is deposed in the kinetic part – the
oscillatory part of the wavefunction. It fully agrees with the analysis of the spectrum stabilisation
and the construction of LI .
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Next, we now have a clearer meaning of the abrupt turn-off of the field. As HA is gauge-
equivalent to the field-free Hamiltonian, the abrupt change means only a stop in the time evolution
of A(t). However, there is not imposed any discontinuity in the Hamiltonian (there may be discon-
tinuity in the electric field E).

Finally, we recall the relation (3.20): ⟨ψV |P (HV ;E)|ψV ⟩ = ⟨ψL|P (H0;E)|ψL⟩. As the identity
is decomposed within as

I = P (H;E ≥ 0) + P (H;E ∈ {bound states}) , (C.3)

we get the probability of ionisation by projecting onto the bound states of H0 from the length
gauge. This may be explained as a surprising result: An ostensible definition based on the length
gauge is linked with the invariant construction that is expressed in the velocity gauge.

C.1 Beyond dipole approximation

We now discuss a perturbative extension of a non-dipole case. First, we specify the incident field
as a monochromatic wave

A = (ϵ cos(ω0(t− α0z)), 0, 0) , (C.4)

which thus propagates in the z-direction and is polarised along x. It is convenient to use a different
coordinate notation in this example, the quantisation axis related to the spin number is along the
propagation direction. Physics is, of course, independent on this choice.1 Corrections of the spatial
dependence induced by the field are linked with the orders of the expansion in z, we have

A = ϵ cos(ω0t)︸ ︷︷ ︸
A0

+ ϵω0α0z sin(ω0t)︸ ︷︷ ︸
A1

− ϵω
2
0α

2
0z

2

2 cos(ω0t)︸ ︷︷ ︸
A2

+ · · · . (C.5)

We can now expand the Hamiltonian

H ≈ (p+A0(t))2

2 + VC +A1px +A0A1 +A0A2 +A2px +A2
1 , (C.6)

A1px = ϵω0α0z sin(ω0t)px ,

A0A1 = ϵ2ω0α0z cos(ω0t) sin(ω0t) ,

1In the dipole case, it was suitable to identify the direction of the field A with the usual axis for the quantisation
of the momentum: Lz. Once we have two exceptional directions (of the field A and the Poynting vector), it turns
out that the calculation is simpler by identifying the quantisation axis with the direction of the propagation.
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A0A2 = −ϵ
2ω2

0α
2
0z

2

2 cos2(ω0t) ,

A2px = −ϵω
2
0α

2
0z

2

2 cos(ω0t)px ,

A2
1 = ϵ2ω2

0α
2
0z

2

2 sin2(ω0t) .

(
(p+A0(t))2 /2 + VC

)
is the Hamiltonian in the dipole approximation. We have kept the cor-

rections up to the second order in the vector potential amplitude, ϵ, and in the fine-structure
constant, α0. We can now inspect how the energy levels are affected. Let us take the lowest or-
der correction in the both parameters, A1px. The ground state is not affected in the first order
as it is highly symmetric. Some higher-order corrections are of the same order, and they would
have to be taken into account in equal footing. We then move to a higher energetic state and
show that the first degenerated energy state is affected. Let us compute ⟨211; d|zpx|210; d⟩, where
|nlm; d⟩ = e−ixA |nlm⟩ is the dressed state in the field. We first recall some expressions in the
spherical coordinates,

⟨r, φ, θ|21m⟩ = 1
2
√

6
Y m

1 (φ, θ) re− r
2 , (C.7a)

z = r cos θ , (C.7b)

px = −i
(

cosφ sin θ∂r −
sinφ
r sin θ∂φ + cos θ cosφ

r
∂θ

)
, (C.7c)

Y 0
1 (φ, θ) = 1

2

√
3
π

cos θ . (C.7d)

First, we show that the dressing of the state does not contribute in the first-order

⟨211; d|zpx|210; d⟩ = −i
〈
211

∣∣∣ eiϵx cos(ω0(t−α0z))z∂xe−iϵx cos(ω0(t−α0z))
∣∣∣ 210

〉
=

= ⟨211|zpx|210⟩+ ϵ cos(ω0t) ⟨211|z|210⟩+O(ϵα0) . (C.8)

Because ⟨211|z|210⟩ = 0 from the selection rules of the usual Stark effect, the demonstration that
the dressing does not play a role is done. To proceed the calculation of the energy shift, we
insert (C.7) and perform trivial derivatives, the matrix element of the interest reads then

⟨211|z∂x|210⟩ = 1
24

(∫ +∞

0
r4
(

1− r

2

)
e−rdr

∫
Ω

(
Y 1

1
)∗

(φ, θ) cos θ sin θ cosφY 0
1 (φ, θ) dΩ

− 1
2

√
3
π

∫ +∞

0
r4e−rdr

∫
Ω

(
Y 1

1
)∗

(φ, θ) cos2 θ cosφ sin θdΩ
)

=
√

2
4 . (C.9)
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It proves that there is an energy shift from the first excited state. It follows from the fact that only
nilpotent matrices have all eigenvalues 0. The matrix of the perturbation theory of a degenerate
state is Hermitian. As the only nilpotent Hermitian matrix is zero matrix, there is always a non-
zero eigenvalue of a non-zero Hermitian matrix. Hence, at least one eigenvalue is non-zero in our
case because we explicitly computed the matrix element ⟨211|zpx|210⟩ = −i

√
2/4.

It is interesting to consider some physical explanation of the computed coupling due to the
product zpx. px is in the direction of the vector potential (so is the electric field accelerating
the electron), and z is the direction of the Poynting vector, which coincides the direction where
the magnetic force induced by (C.4) acts. This coupling is linked with the transition between the
magnetic numbers m = 0 and m = 1. We should note that a quantitative analysis of the corrections
is more subtle. We neglected the spin in all our calculations. As it is also a subject of magnetic
effects, it should be included in such a study, but it is beyond the scope of this work.

Another aspect is in the whole pre-factor: ϵω0α0 sin(ω0t). It is time-dependent perturbation
and the stationary perturbation theory assumes the adiabaticity of the system. The scope of this
study was to inspect the spectral properties of the Hamiltonian, that turned out to be trivial in the
dipole case, where the spectrum was stabilised. We shown that even from a stationary viewpoint,
the spectral properties are non-trivial in the non-dipole case.



D. DIFFRACTION INTEGRALS (FRAUNHOFER, FRESNEL AND OTHERS)

In this appendix we discus in detail the approximations related with the diffractive integrals together
with their physical interpretations. Next, we introduce the diffraction integral of the optical system
containing a pinhole in Section D.1.

The approximations of the diffraction integral as the Fraunhofer and Fresnel diffraction rises
from the approximation

eik(ω)∥r−r̃∥ ≈
(

eik(ω)De−ik(ω) ρ2
2D

)
e−ik(ω) ρ̃2

2D e−ik(ω) ρρ̃ cos θ
D , (D.1)

D = z̃− z. The term in the parentheses acts as a phase-pre-factor and is not interesting as a global
phase in t-domain. We now recall the zones used for the description of the radiation. There are
called as far-field and near-field. The near-field is further subdivided to radiative (Fresnel) and
non-radiative (reactive) zones, see Section 9.1 of [118]. The approximation (D.1) is shared for both
the radiative and far-field regions. The last term, e−ik(ω)ρρ̃ cos θ/D, leads to J0. The unresolved term
is finally e−ik(ω)ρ̃2/(2D).

We recall the meaning of the involved quantities. As k(ω) = 2π/λ, it characterises the wave-
length. D is the distance of the source from the screen and ρ̃ is the dimension of the source, we can
use it as the radius of an aperture. We present two ways to insight the quantity. First is purely
mathematical and imposes the conditions where the exponential can be neglected:

πρ̃2

λD
≪ 1 . (D.2)

The second description is provides a geometrical insight and it is based on the Huygens’ principle.
Let us consider a circular aperture with the diameter ρ̃ and an on-axis point placed at the distance D
from the aperture. Using the picture of rays, we try to sum two rays radiating from the edge of
the aperture and from the center. We would like to neglect the difference of the optical paths from
these two sources compared to the wavelength. Since these points form a right-angled triangle, we
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can easily write the condition:

√
D2 + ρ̃2 −D = D

√1 +
(
ρ̃

D

)2
− 1

 ≈ ρ̃2

2D ≪ λ . (D.3)

Up to numerical factors within one order of magnitude, these conditions are equivalent: ρ̃2/(λD) =
dF ≪ 1; dF is the Fresnel number. Satisfying the condition, we have Fraunhofer diffraction in
the far-field region. Otherwise, we include e−ik(ω)ρ̃2/(2D) and obtain the Fresnel diffraction in the
radiative zone of the near-field region. It is still not valid in the reactive zone due to (D.1).

D.1 Composed optical system

Here, we present the model of the composed optical system we use to model the field passed through
the pinhole in Section 5.2.6

We compose two diffraction integrals (5.16) that gives

E(zjet; z, ρ, ω) ∝
∫
T2

∫
T1

e
i k(ω)

2

(
ρ2

2
D2

+ ρ2
1

D1

)
D1D2

J0

(
k(ω)ρρ2
D2

)
J0

(
k(ω)ρ2ρ1

D1

)
d (ρ1, ω) ρ2ρ1 dρ2dρ1 , (D.4)

where D1 = zp − zjet, D2 = z − zp. We keep the same ordering of the variables to follow the
experimental campaign, zjet is the position of the movable target, zp and ρp are the position and
radius of the pinhole, respectively. We first integrate in ρ2 over the aperture T2 = [0, ρp]. Since
J0 (k(ω)ρ2ρ1/D1) acts as a source, we can use an analytic expression for the diffraction on a circular
aperture derived from the integral1∫ a

0
xJ0(bx)J0(cx) dx = a

bJ1(ab)J0(ac)− cJ0(ab)J1(ac)
b2 − c2 . (D.5)

The analytic integration may be used if we neglect e−ik(ω)ρ2
2/(2D2). This leads to the final expression

of the diffraction integral of the composed optical system:

E(zjet; z, ρ, ω) ∝
∫
T1

ρp
k(ω)ei

k(ω)ρ2
1

2D1 J (ρ, ρ1, ω)d (ρ1, ω) ρ1dρ1 , (D.6a)

J (ρ, ρ1, ω) =

(
ρD1J1

(
k(ω)ρρp
D2

)
J0
(
k(ω)ρpρ1

D1

)
− ρ1D2J0

(
k(ω)ρρp
D2

)
J1
(
k(ω)ρpρ1

D1

))
(D1ρ)2 − (D2ρ1)2 . (D.6b)

1If b = c, then
∫ a

0 x (J0(bx))2 dx = a2 ((J0(ab))2 + (J1(ab))2) /2.



D.1. Composed optical system 225

D.1.1 Meaning of the Hankel transform

Here, we provide some additional physical explanation of the Hankel transform (5.16); it applies
also for a composed system as (D.6). Let us consider the on-axis field, ρ = 0; Bessel function thus
does not contribute at since there is only J0(0) = 1.

In the Fraunhofer diffraction, this field is only the average of the sources over the radiating
plane. Fresnel diffraction aligns the phases according to the optical-path differences.
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E. COMPUTATIONAL COST, CONVERGENCE

We present some details about the numerical parameters and the computational cost of the multi-
scale model. We refer to the use case in Section 6.3.6. The goal is thus to simulate the passage
of an 800nm-laser pulse trough a 15mm-long medium filled with krypton. There are some typical
parameters of the numerical experiment. The pressure of the gas is in the range p ∈ [5, 50] mbar.
The peak entry intensity is in the range I0 ∈ [0.7, 1.6] × 1014 W/cm2. The further parameters of
the pulse are its radius at the entry of the medium, w(zentry) = 100µm and its duration τ = 35 fs
(defined by the FWHM in the intensity). The goal is then to obtain the XUV harmonic spectra in
the far-field region using the pipe of the codes: CUPRAD, 1D-TDSE, Hankel transform.

E.1 CUPRAD

The first step is the computation of the fields using CUPRAD. The field is represented on a discre-
tised grid in the radial coordinate, ρ, and time/frequency, t/ω.1 The discretisation in our experiment
is Nt = 2048 and Nρ = 1024. The computational box spans 4w(zentry) × 12τ̃ .2 The discretisation
in z is chosen automatically by the adaptive-step-size control, a typical spacing is in the order
of 10 µm.

The code has been executed in parallel using 32 threads of 2.6 GHz processors [326]. A typical
run is in the order of dozens of minutes. This make the code favourable for a multi-dimensional
scans in the input parameters, allowing hundreds of simulations being executed.

E.2 1D-TDSE & Hankel transform

This is the computationally most expensive part of the code. The 1D-TDSE and the Hankel
transform are linked by the means that the convergence of the Hankel transform drives the number
of 1D-TDSE’s to be executed.

We start with a single 1D-TDSE. The only additional parameter defining the physics is the soft-
Coulomb potential in (7.23). We use a = 1.3677 corresponding to IP ≈ 0.514 a.u.. The parameters

1As explained, CUPRAD performs FFT at each step and represents the field in both domains during its execution.
2The window is defined using 1/e-metric in the amplitude of the electric field. The value corresponding to τ is

τ̃ ≈ 30 fs.



228 E. Computational cost, convergence

of a single run are Nx = 16 × 103, ∆x = 0.4 a.u. for the spatial grid. The discretisation in time
uses ∆t = 0.25 a.u.. The grid in time is then refined from the one defined in CUPRAD. The electric
field E is smoothly interpolated using zero-padding in the ω-domain.

Using the same architecture as for CUPRAD, one run of TDSE takes about 20 minutes. The
code is not internally parallelised; the parallelisation is made by running many TDSE solvers
for various macroscopic points, e.g., different electric fields as inputs. The number of points is
determined by the resolution needed for the Hankel transform computation.

The next step is the consecutive Hankel transforms computed by (9.3). We have been interested
to compute it only for the spectral range H14-H22; according to the temporal resolution in TDSE,
it reads ∼ 500 points. The resolution in ρscreen uses 300 points for ρscreen ∈ [0, 15] mm. The total
amount of integrations is then 150× 103. The key parameter is then the integration box. We have
used ∆ρint ≈ 4 µm, ∆zint ≈ 10 µm, using ∼ 50 points in ρint and 1500 in zint. The radial dimension
than covers the region of interest according to Fig. 6.14 even for defocused beams. The resulting
integration has taken several hours using multi-threading with 28 threads of the same architecture
as above.

Obviously, the resolution for the final Hankel transform is the most critical parameter as it
defines the number of TDSE executed. From that viewpoint, the computational time consumed
by CUPRAD and Hankel transform is minor compared that of the TDSE. We then study this in
detail. We have been considering possible optimisations of the integration in z. Our metric was
to consider the phase of XUV source term ∂̂tjQ in the spectral range of interest. This phase is
constant in the co-moving frame for a plane wave without any spatial profile. Complementary to
checking the convergence of the computation, we also studied the evolution of this phase in the
co-moving frame. According to these analyses, ∆zint ≈ 10 µm appears to be close to this limit for
fast evolution in the fast-evolving region at the beginning of the gas medium, Fig. 6.14.

In conclusion, we have arrived to compute ∼ 100× 103 of TDSE. Considering the time needed
for a single TDSE, the computation cost of one simulation is then ∼ 10× 103 CPU hours.



F. TRANSVERSAL PHASE PROFILE OF HARMONICS IN FSPA

In this appendix, we show that only the first order expansion, i.e. (2.19), of the dipole phase φ is
included in the model of Gaussian optics and higher contributions included in (2.18) go beyond the
Gaussian optics.

We prove that the first-order expansion is exhaustive within the assumption of Gaussian optics.
Let use recall α from (2.19) that is assigned to the linear coefficient in the expansion. Let us fix the
harmonic order and study only the expansion in intensity around a given I0. The full expansion is:

φ(I) = φ(I0) + ∂φ(I0)
∂I

(I − I0) + 1
2
∂2φ(I0)
∂I2 (I − I0)2 + · · · . (F.1)

In our approach, we fix z and expand the intensity in the radial coordinate, ρ, of the beam I(z, ρ) =
I0e−(ρ/w(z))2 . We take the mth term of the expansion,

Im0
m!

∂mφ(I0)
∂Im

(+∞∑
n=1

(−1)n
n!

(
ρ

w(z)

)2n
)m

=
(

ρ

w(z)

)2m Im0
m!

∂mφ(I0)
∂Im

(+∞∑
n=1

(−1)n
n!

(
ρ

w(z)

)2n−2
)m

,

(F.2)

we see that the leading power of the mth term is 2m. It proves that only m = 1 contributes to the
quadratic phase, and all higher orders are automatically beyond the Gaussian optics.
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G. ORTHOGONAL POLYNOMIALS

In this appendix, we recall some basic properties of orthogonal polynomials and their construction.
Orthogonal polynomials are important functions applied in various fields because they can

be used to construct orthogonal bases of Lp(]a, b[ , w(x)dx)-spaces. It leads to their wide use in
quantum mechanics and also in numerics. We provide only a list of polynomials we are using,
detailed information can be consulted in, e.g., the monograph [241]. They are special (or limit)
cases of the Jacobi polynomials orthogonal w.r.t. the weight w(x; a, b) = (1 − x)a(1 + x)b on the
interval ]−1, 1[. See the references for their relations, there is specially a general recursive relation for
all these polynomials ([241], Eq. (4.2.9)) that provides a straightforward way to evaluate numerically
their values.

G.1 Legendre polynomials

The Legendre polynomials, Pn, are obtained from the Jacobi polynomials putting a = b = 0. They
satisfy a recursive relation

P0(x) = 1 , P1(x) = x , Pk(x) = (2k − 1)xPk−1(x)− (k − 1)Pk−2(x)
k

. (G.1)

It may be useful to observe that they preserve the parity of polynomials, i.e. they are also a proper
basis to describe odd and even functions. Their derivative is given by

P ′
k(x) = k(xPk(x)− Pk−1(x))

x2 − 1 . (G.2)

G.2 Associated Legendre polynomials

Based on the Legendre polynomials, one defines the so-called associated Legendre polynomials,

Plm(x) =
(
1− x2

)m
2 dm

dxmPl(x) , for x ∈ [−1, 1] and non-negative values of m, (G.3a)
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the definition for negative values of m follows from

Pl(−m)(x) = (−1)m (l −m)!
(l +m)!Plm(x) . (G.3b)

G.3 Generalised Laguerre polynomials

The Generalised Laguerre polynomials are the Jacobi polynomials transformed to the interval [0, A]
and extended by A→ +∞. They satisfy a recursive relation

Lα0 (x) = 1 , Lα1 (x) = 1 + α− x , Lαk (x) =
(2k + α− 1− x)Lαk−1(x)− (k + α− 1)Lαk−2(x)

k
.

(G.4)

Their derivative is given by (the relation (8.971) of [273]),

d
dxL

α
k (x) = −Lα+1

k−1 (x) =
kLαk (x)− (n+ α)Lαk−1(x)

x
. (G.5)

The generalised Laguerre polynomials satisfies∫ +∞

0
xαe−xLαn(x)Lαm(x) dx = Γ(n+ α+ 1)

n! δmn (G.6)

that means they form an orthogonal set of polynomials on the interval ]0,+∞[ with the weight
xαe−x.

G.4 Hermite polynomials

A substitution x = y2 in (G.6) gives a new set of orthogonal polynomials w.r.t. the weight w(y) =
|y|γe−y2 on the interval ]−∞,∞[. Only odd polynomials are defined by the substitution, the resting
even polynomials can be added multiplying the odd ones by y for:

Hγ
2n(y) ∝ L

γ−1
2

n (y2) , (G.7a)

Hγ
2n+1(y) ∝ yL

γ+1
2

n (y2) (G.7b)

(the definition is unique up to normalisation).1 A special case of these polynomials are so-called
Hermite polynomials obtained by γ = 0.

1If one defines H̃n = (−1)nH0
n, their norm is ⌊ n

2 ⌋!√√
πn!2n

that is closer to 1 than the usual definition and it may thus

have better numerical performance. The standard convention of Hermite polynomials normalises them to
√
π2nn!,

with the same signature as introduced by us.
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Another definition suitable from the computational viewpoint [327] are polynomials defined by

H̃−1 = 0 , H̃0 = 1
4
√
π
, H̃k = x

√
2
k
H̃k−1 −

√
k − 1
k

H̃k−2 . (G.8)

All three proposed forms are related by:

H̃n =
(−1)n2 n

2 ⌊n2 ⌋!√√
πn!

H0
n = 1√√

π2nn!
Hn , (G.9)

Hn is a Hermite polynomial with standard normalisation including the sign. A convenient form for
numerics is H̃n because

∥∥∥H̃n

∥∥∥ = 1.

G.5 Remarks

According to our knowledge, orthogonal polynomials are not treated in much detail considering
boundary conditions that arises naturally solving differential equations. One might be interested
in such a polynomials [328].
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H. DISCRETE FOURIER TRANSFORM

In this appendix, we introduce our notation of the discrete Fourier transform, we also recall the
link and conversion factors between the discrete Fourier transform and Fourier transform.

The DFT is defined by

Xk =
N−1∑
i=0

xie− 2πi
N
ik , xk = 1

N

N−1∑
i=0

Xie
2πi
N
ik . (H.1)

The coefficients in the expansion satisfy similar properties as the Fourier transform described in
Appendix A.2 of [126] if one of the sequences is real (only proper index reordering has to be taken
into account).

H.1 Relation with the Fourier transform & conventions

The DFT can be used to approximate the Fourier transform. One needs to be little careful with
the conventions. Since this work is about physical applications, and we have defined conventions
consistently with QM, where the Schrödinger equation is not a subject of a discussion, there is
not much choice. Let us start with a real signal f limited in time placed in the interval [0, T ] and
sampled in N equidistant points, fj := f(j∆t), 0 ≤ j ≤ N − 1. The Fourier transform can be
approximated by

f̃(ω) = 1√
2π

∫ ∞

−∞
f(t)eitω dt = 1√

2π

∫ T

0
f(t)eitω dt ≈ 1√

2π

N−1∑
j=0

fjeij∆tω∆t . (H.2)

The result is evaluated in special points, as defined by f̃k = f̃(k∆ω), ∆ω = 2π
N∆t , it gives

f̃k ≈
∆t√
2π

N−1∑
j=0

fje− 2πi
N
jk

∗

= ∆t√
2π
F ∗
k , (H.3)

where Fk corresponds to the definition (H.1). This equality provides a consistent link between the
Fourier transform and DFT for real signals.

Let us note that we pre-assumed the original signal with a finite support. The formal definition
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of DFT makes periodic continuation of the function in a contrast with the assumption. The above
description is motivated to make a straightforward link with the wide-used FFTW3 [281] algorithm
and the conventions used therein.

Last, the integral is approximated by a simple rectangle rule. There are two advantages in
relying on this simple rule: 1) There is a simple exact transform doing the inverse (there is no
intrinsic error of the method assuming exact computer arithmetic), 2) As the abbreviation FFT
suggests, its implementations are fast, and the accuracy may be reached by finer sampling.



I. ON DERIVATION OF FIELD AND QUANTUM EQUATIONS OF MOTION
(MAXWELL, DIRAC, PAULI, SCHRÖDINGER) FROM STANDARD MODEL AND

THEIR COUPLING

The purpose of this appendix is to conceptualise our work and to provide a strictly theoretical
view from the top. To expand this statement in this context, there are three main motivations:
I) The coupling of quantum mechanics with the field theory is not self-consistent as introduced
at the end of Section 1.4. The internal symmetries of these theories differ: Galilean for quantum
mechanics and Lorentzian for the classical field theory. We answer here how to derive both of
them as a special case of a unified theory. A useful spin-off of this consideration is a consistent
introduction of relativistic corrections mentioned in Section 2.1. II) We discussed in detail the
invariant formulation of the ionisation in Chapter 3. We obviously reached a limit in theory as we
were able to make a conclusion only within the dipole approximation and the extension beyond
that point was problematic. One of the culprits is that we treated the field as an external quantity;
the energy was considered for the electron only, and there was no coupled energy of the field.
This appendix shows a consistent way to overcome this problem by considering dynamically all
the terms: the electron, the field and their interaction term. The reached limit also shows that
a fully consistent way of thinking is always to consider the full system of the particles coupled with
the field and not only some of its subsystems. III) We encounter the gauge treatment at several
places of this thesis (e.g. the treatment of the ionisation in Chapter 3 or their suitable choice in
the numerical treatment in Section 7.3.2). In this appendix, we recall also a general role of the
gauges. The gauge theories may be taken just as a tool to describe the field. However, their role
in today geometrised physics [105] is much more important. The field theories are actually only
consequences of the gauge theories. To illustrate this, we go beyond the U(1)-electromagnetism.

To conclude the motivation, this physics is far beyond the scope of HHG today, it is a question
if this will change in future. For example, there were sketched some ideas to apply the nuclear
photonics to transmute isotopes in the nuclear waste [329, 330, 331, 332]. As the transmutations of
atoms is the subject of the weak and strong interaction, this may be eventually framework needed
for this task. However, it is necessary to add that these ideas are still far away from applications,
and it is a question if our technology would ever be able to use subatomic scales. In any case, some
of today trends in HHG go in the direction of studying the symmetries related with chirality and



238 I. Quantum and field equations of motion

additions of angular momenta. Form this viewpoint, the interplay of more group of symmetries
related to the weak and strong interaction would produce wonderfully beautiful physics.

The starting point for this appendix is to resolve the inconsistency of the symmetries. To join
the used theories together – the Maxwell’s equation and quantum mechanics –, we need to go to the
quantum field theory (QFT). It is also a clear way to include relativistic correction of the theory
and estimate their contribution. Here, we present only a minimalistic recapitulation of the subject.
There is a list of monographs for a comprehensive picture [333, 334, 335, 336, 337, 338].

The organisation is the following, first we introduce the Lagrangian and the underlying mathe-
matical structures with their physical interpretation. The general equations of motion (Section I.5)
are then applied to derive the quantum-mechanical equations of motion (Dirac and Schrödinger)
in Section I.6 and Maxwell’s equations in Section I.7. Finally, we present the limiting procedure
leading to the non-relativistic quantum physics in Section I.8.

I.1 Lagrangian

The starting point of all the physics of the interest is the Lagrangian of the Standard Model (SM).
It reads1,2

L =−1
4Fµν F

µν − 1
2W

a
µνW

µν
a −

1
2G

a
µνG

µν
a︸ ︷︷ ︸

kinetic terms of fields

+
∑

ψ∈{q,l}
ψ

(
i/∂ − g′YW

2
/A− gw

2 τ ·
/W

)
ψ

︸ ︷︷ ︸
electroweak sector

+
∑
q

q
(
i/∂ − gsT · /G

)
q︸ ︷︷ ︸

quantum chromodynamics

+Lmass + · · ·︸︷︷︸
beyond SM

. (I.1)

The chosen form of the Lagrangian keeps the ingredients we would like to point out. The Standard
Model is a theory with U(1)× SU(2)× SU(3) symmetry formulated in the Minkowski space. This
statement itself determines most of the physics up to free parameters of the model, i.e. of the
physics as we understand it today. We will go briefly through all the terms in the next section and
discuss their physical meaning after. Before we do so, there is an insertion on the mathematical
structures acting in (I.1).

1Just few remarks to the notation, the Einstein summation is used for all up-down indices, it is both for Minkowski-
space indexing (µ, ν,. . . ) and also for the structure index a. Further in this appendix, we also use decompose the
relativistic index in a given reference frame: its 0th component for time and the resting 3 components for spatial
indices denoted by i, j, . . . There is also the Dirac slash notation /Ξ = γµΞµ corresponding to a representation of the
γ-matrices in a given Lorentz frame. ψ is closely related to ψ† by ψ = ψ†γ0.

2The Lagrangian formulation is more convenient in QFT due to its Lorentz invariance and a natural description by
path integration (see Sections 3.1 and 6.1.2 of [338]). The correspondence of Lagrangian and Hamiltonian formulation
may become subtle when the Legendre transform is singular [339].
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I.2 Brief summary of Lie group properties

We would make a short summary of the important parts on Lie groups. The goal is to extract the
key properties based on manifolds, matrix algebra and elementary group theory, without a need of
studying in precise detail. Consequently, we do not stick to full rigorousness and refer to specialised
literature [333, 340, 341, 342].

Lie groups are geometrical structures combining properties of manifolds and groups. Let us
take a simple example of 2 × 2 matrices with the determinant equal to one. We can parametrise
them as

G =
{(

x11 x12

x21 x22

) ∣∣∣∣∣ det
(
x11 x12

x21 x22

)
= x11x22 − x12x21 = 1

}
⊂ T 4 . (I.2)

The last equation shows that it is a 3-dimensional hypersurface in a 4-dimensional space. The
number field T ∈ {R,C} denotes that the manifolds may be both real or complex. We see that the
identity matrix belongs to G, as well as any matrix products of two matrices from G; finally, every
matrix from G is invertible and the inverse is within G. Consequently, G is both group and manifold
as required. Closely connected structures are Lie algebras, g can be identified with the tangent space
of G at any point (the algebraical structure is independent on the choice). g is thus a simple linear
space with the dimensionality of G with an additional structure of commutation relations between
basis vectors, these relations are inherited from the group structure of G by the following procedure:
Let us take two vectors X,Y ∈ g, i.e. taken from the tangent space at A ∈ G. X and Y are then
direction vectors of two integral curves A+tX and A+sY contained in G. We then do infinitesimal
consecutive steps along these curves: C = A + εX + εY and C ′ = A + εY + εX. As going along
such curves is not generally a commutative operation on a curved manifold, C and C ′ may differ.
The direction of their difference defines exactly the commutator [X,Y ], i.e. [X,Y ] = C − C ′. The
structure of the commutators uniquely defines the Lie algebra, and the generators of the algebra
are then exactly the structures describing the fields Fµν , W a

µν and Gaµν .
There is also a converse relation and a group may be reconstructed by the so-called exponential

mapping (in fact, only its connected part, see the referred literature for details) from its Lie algebra.
As the group is generated only using a basis of the algebra, base vectors of g are called generators.
Regarding the groups involved in the Standard Model, the Lie algebras su(n) are given as traceless
n × n matrices. A non-trivial commutative structure occurs for su(2),3 which can be represented

3This is the reason we have explicitly mentioned also the other groups than U(1), which lacks the internal
commutation structure. Consequently, a part of the physics originating from the gauge theories is no present in
electromagnetism. The explicit mention of the other groups than helps to grasp the underlying mechanism, which
then provide U(1) only as a simplified case. We mention the consequences for the field equations in Section I.7.
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by the Pauli matrices

σ =
((

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
. (I.3)

There is needed another step in the application of the symmetry groups: the natural dimen-
sionality of the defining representation of the respective group does not provide enough room. It
means that the groups are not used directly, but their representation is required. It turns out that
the study of the irreducible representation of the respective groups allows for derive the structure
of elementary particles, see Chapter 11 of [343]. These particles are then the building bricks of ψ
and q in (I.1).

To conclude the discussion of the underlying geometrical structures, we recall that the theory
is realised within the special relativity. The associated group is the Lorentz group O(1, 3), and
the theory is invariant under the Lorentz transformations defined by he generators of o(1, 3). The
practical realisation relies on the γ-matrices, which are included in the description of the fields /Ξ =
γµΞµ. The γ-matrices then provide the underlying geometry of the Minkowsky space in the SM.

This part of the model is also related with one of its limits: a consistent coupling with the
general relativity. Practically, we may consider the theory described by (I.1) living on a curved
manifold driven by the Einstein’s equation. Roughly speaking, this would lead to the replacement
of the partial derivatives by the corresponding covariant derivatives. However, the problem is the
interlink the two natures of the equations of motion. Despite several attempts (see for instance
Chapters 15 and 22 of [338] and [344]), it is still not satisfactory resolved.

I.3 Ingredients of the Standard Model

Here we provide a basic overview of the interpretation of the elementary objects: fields Fµν , W a
µν

and Gaµν , and particles ψ. The first ingredient is the tensor fields Ξaµν , which are retrieved from
gauge fields, Ξaµ, by Ξaµν = ∂µΞaν − ∂νΞaµ + gξabcΞbµΞcν , the summation coefficients ξabc are the
structure constants; we use Fµν and Aµ (Maxwell stress tensor and vector potential, respectively)
to emphasise the electromagnetic field by its standard notation at this point. Thus the tensor fields
are just useful composed objects representing the fundamental gauge fields Ξaµ, which defines the
tensors uniquely.

As each gauge field correspond to one vector representation of a given symmetry group, a-
indexed components of the field Ξaµ enumerate the generators of the group. These generators are
denoted by τ = (τ1, τ2, τ3) for W a

µ (generators of the SU(2) group) and analogically by T for Gaµ
(generators of SU(3)).4 The dot product τ ·Wµ = τaW

a
µ is then clearly defined. The generators

4Since the symmetry of Fµν is U(1), its generator is only 1.
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also define structure constants as commutators, [τa, τb] = it c
ab τc.5

Next part are wavefunctions or spinors denoted as ψ (eventually q and l, see the following
section). One or more of their components are assigned to elementary particles. The interaction
with the fields is provided by the actions of /A, /W and /G, which include also the representation of γ-
matrices. As a result, all their components are functions on the Minkowski timespace, i.e. functions
of xµ.

To summarise the representation of fields and particles: fields correspond to the tensor fields Ξaµν
and particles to the vectors ψ and q from (I.1). We extend the interpretation in the following
paragraph.

I.4 Interpretation of the Standard Model

Having introduced all the objects, we can assign the physical meaning to them. The gauge fields
mediate the interaction between sensitive elementary particles. The field of our interest is Aµ

and its quantisation leads to photons. The next field from the electroweak sector, W a
µ represent-

ing SU(2), correspond to so-called W±- and Z0-bosons. The last field is Gaµ representing SU(3),
and the force carriers are called gluons.

The second part of the model is elementary particles described by ψ: quarks, q, and leptons, l.6

These are electrons, muons, standard quarks – forming protons and neutrons –, but also neutrinos
and others.

Last, we inspect the structure of L . The kinetic terms describe kinetic energy of the gauge fields.
The electroweak sector describes the electric interaction that is the driving force for the formation
of atoms, molecules. This is of high interest since it basically covers all the chemistry, electro
engineering and most of today human technology. Next part is the weak interaction that drives the
dynamics of atomic nuclei composed from protons and neutrons. The quantum chromodynamics is
responsible for the formation of compound particles–hadrons. Hadrons may be composed from two
quarks (mesons) or three quarks (baryons including protons and neutrons). As both nuclear fission
and fusion involves atomic nuclei formation and also transmutations of protons and neutrons, they
are a subject of the both preceding mechanisms. Next part, Lmass, is the Higgs mechanism [345,
346, 347] responsible for the mass of particles, see Chapter 6 of [348] for its explanation within the
terms of classical fields. The last part beyond SM denotes that the contemporary model of particle
physics is not complete, for example neutrino masses may be included there.

5The up-down position of the indices a, b and c is just for aesthetics of summations, i.e. t c
ab = tabc = tabc = · · · .

6To be precise, there is required a further steps in QFT. The particle wavefunctions ψ are interpreted in the terms
of the classical fields. There are then a subject of the same quantisation procedure as, for example, the photons as
quanta of the electromagnetic field. This allows for finding corresponding creation and annihilation, which are used
in the construction of the Fock space including an arbitrary number of particles. This shift of the paradigm was one
of the most important steps in the construction of the modern QFT.
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Another discussed extension is to enlarge the group structure U(1) × SU(2) × SU(3), which
may is a subgroup of SU(5) providing a larger physical playground [349].

In summary, we have identified the structure of elementary of particles ψ and their mutual
interaction provided by the fields Fµν , W a

µν and Gaµν via their respective contractions to /A, /W

and /G. The Lagrangian (I.1) provides all their mutual relations. The nature of these links is
encoded in the mathematical structure of the groups discussed in Sections I.2 and I.3.

I.5 Euler-Lagrange equations of motion

Any Lagrangian itself encodes the dynamics of the fields or particles that are its variables. The
Hamilton variational principle for a field Θ allows to find the Euler-Lagrange equations of motion,

∂µ

(
δL

δ∂µΘ

)
−
(
δL

δΘ

)
= 0 . (I.4)

Θ may be both gauge fields, as a vector potential Aµ, or elementary-particles wavefunctions ψ.
The dynamics of the full system arises from the set of coupled equations retrieved by the Hamilton
principle applied to all dynamical variables of interest.

I.6 Dirac, Pauli & Schrödinger equation

Although all elementary particles are included, we use only a Dirac 4-components bispinor Ξ =
ψ = ψ†γ0 = (ψ∗

+,−ψ∗
−) which is assigned to a single electron. The reason is that we intend to

derive the relevant equations for our work; however, the same procedure may be applied to other
variables. Next, we omit all the interactions except the electromagnetism, /A, and use the mass as
a parameter, Lmass = mψψ. Collecting all the terms, we have

LDirac = ψ

(
i/∂ − g′YW

2
/A−m

)
ψ . (I.5)

The Euler-Lagrange equation is directly the Dirac equation
(
i/∂ − /A−m

)
ψ = 0. The choice of

units allows to set the numerical value of the charge g′YW/2 = 1.
As we have the Dirac equation, we can go down by performing the non-relativistic limit and

obtain the Pauli equation. The Dirac equation may be written explicitly as(
ℏi∂ct − eA0 −mc σ · (iℏ▽−eA)
−σ · (iℏ▽−eA) −ℏi∂ct + eA0 −mc

)
ψ = 0 , (I.6)

where we recovered the physical units, ∂ct = ∂t/c. The equation is then decomposed into the
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two doublets of the bispinor coupled by the off-diagonal terms. The goal is to perform the non-
relativistic limit by the expansion in 1/c. We see that the mass term is always a leading term for
the both doublets. It can be taken out of one equation using a new bispinor defined as(

ψ+

ψ−

)
= ei mc2

ℏ tψ , (I.7)

with the two doublets ψ±.7 The equations (I.6) are then recast:

(iℏ∂t − eϕ)ψ+ + cσ · (iℏ▽−eA)ψ− = 0 , (I.8a)(
− iℏ
c2∂t + eϕ

c2 − 2m
)
ψ− −

1
c
σ · (iℏ▽−eA)ψ+ = 0 , (I.8b)

we used Aµ = (ϕ/c,A) to introduce the scalar potential to keep consistently (1/c)-terms. Neglecting
(1/c2)-terms, the second equation gives

ψ− ≈ −
1

2mcσ · (iℏ▽−eA)ψ+ . (I.9)

Inserting it in the first equation, we obtain the Pauli equation

iℏ∂ψ+
∂t

=
( 1

2m (σ · (iℏ▽−eA))2 + eϕ

)
ψ+ . (I.10)

The Schrödinger equation is a further approximation given by the neglect of the spin-interaction
giving the mutual coupling of the components of ψ+, mathematically it means (σ · (iℏ▽−eA))2 ≈
(iℏ▽−eA)2. It may seem as a crude approximation at first glance, but the ”kinetic” term of the
Pauli equation is expanded as (σ · (iℏ▽−eA))2 = (p − eA)2 + eℏσ ·B, where B = rotA is the
magnetic field, the effects of which can be neglected in certain cases.

This procedure has led to the non-relativistic theory. There is still one point to discuss, the
neglect of A0/c = ϕ/c2. This is valid for non-relativistic strengths of the scalar potential. If these
potentials are strong enough – for example electrons in inner shells of atomic nuclei with many
protons –, it may not be satisfied. Non-relativistic theory may be used for the electron even in
this case, there is machinery called the Foldy-Wouthuysen transformation, that takes into account
higher-order relativistic corrections in the Pauli equation. Since there has been no approximation
in the vector potential A, Pauli or Schrödinger equation may give satisfactory results for the inter-
action of charged particles with relativistic A, eventually with further corrections for relativistic ϕ,
up to the case when the particle itself reaches a relativistic velocity.

7For the sake of clarity, we keep denoting the spinors ψ± hereafter even there is the additional phase factor.
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So far, we considered a particle interacting only with fields directly. The full theory with all
the elementary particles and their mutual couplings is too complicated for a direct calculation in
most cases we meet in everyday life. A way to great simplification is to take into account part of
the physics by an averaged model clustering elementary particles into composed particles or even
larger units.

For example, we can fairly take a nucleus of an atom as a massive charged center seen by
electrons forming an atom. The effect of the nucleus is then given only by the Coulomb potential,
which also includes the photonic interaction as a classical field. The only thing to resolve is the
origin of the Coulomb potential from QFT. Indeed, this is possible. It is a non-trivial problem, but
it can be approached by computing the compound state of a charged particle and photonic field,
see Eq. (D.12) of [335].

Once models of nuclei as Coulomb wells are available, larger compounds as molecules, crystal
structures and other are constructed. A simplification in this process that deserves to be mentioned
is the decoupling of nuclei and electrons that is the so-called Born-Oppenheimer approximation.
This is exploited even further as a part of strongly bounded electrons can be taken as a charged
continuum as well (see for example the Hartree-Fock method [264]). Continuing in this concept,
we can describe complex materials as solids or crystals by complex potentials acting on the less-
bounded parts of a physical system – usually electrons in valence or conduction bands. The crystals
are modelled by periodic boundaries. Finally, all the classical states of matter are constructed from
the fundamental origin.

I.7 Maxwell’s equations

Next, we derive the Maxwell’s equations. The kinetic term contributes in the equations of motion
by

−1
4
δFιλF

ιλ

δAµ,ν
= Fµν ⇒ ∂µ

(
δL

δAµ,ν

)
= Fµν,µ . (I.11)

Complementary equations are the Bianchi identities that emerge purely from the geometrical struc-
ture,

Fµν,λ + Fνλ,µ + Fλµ,ν = 0 . (I.12)

This part of the equations remain unchanged even with a presented source. In summary, equa-
tions Fµν,µ = 0 and (I.12) are the Maxwell’s sourceless equation.

The derived equations are linear in the fields Aµ, and a non-linearity comes from the interaction
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with particles as we proceed to derive. This property is specific for the Abelian U(1)-theory of the
electromagnetism. The covariant derivatives of the fields in non-Abelian theories are DµΞλι =
∂µΞλι + [Ξµ,Ξλι], the commutator of the gauge field with the tensor field provides second-power
terms even in the theory without an interaction with other particles. This self-interaction occurs in
the case of a non-Abelian field, namely Z-, W -bosonic and gluonic fields arising from Wµ and Gµ.

I.7.1 Source term

We would expect a classical limit Linteraction, classical = jµAµ. The interaction part of the full
Lagrangian is LDirac. The Euler-Lagrange equation leads to

δLDirac
δAµ

= ψγµψ . (I.13)

jµ = ψγµψ is a good candidate for the corresponding source as it is exactly a Noether current. We
thus need only show that the non-relativistic limit leads to the right result.

The 0th component is straightforward, we need only ψ+ as it is the non-relativistic spinor;
Pψ+j

0 = Pψ+ψ
†(γ0)2ψ = ψ†

+ψ+, where we used the idempotence of γ0, and Pψ+ takes the first two
components from a four-component vector. ψ†

+ψ+ is then directly the desired density. We use the
non-relativistic limit (I.9) from the Dirac equation to retrieve the resting components,

Pψ+j
i = Pψ+ψγ

iψ = ψ†
+σ

iψ− ≈ ψ†
+σ

i(σ · (p−A))ψ+ =

= ψ†
+
(
σi
)2

(p−A)ψ+ + iψ†
+

3∑
j=1, j ̸=i

εijkσ
k(p−A))ψ+ . (I.14)

The non-relativistic limit is is then

Pψ+j = ψ†
+(p−A)ψ+ + j(spin) , (I.15)

it is in the form of the Gordon decomposition, where j(spin) corresponds to the current induced
by the gradient of the spin density. Finally, we recovered the expression from the non-relativistic
quantum mechanics.

I.7.2 Maxwell’s equations with the source term, classical limit, macroscopic form

If we put together the previous results, we have the Maxwell’s equations8

F νµ,µ = µ0j
ν (I.16)

8We use explicitly the vacuum permeability µ0 to recall the form in dimensional units.
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and (I.12). These equations are the equations for the electric, E, and magnetic, B, field since they
are related to the electromagnetic tensor

F 00 = 0 , F 0i = −Ei
c
, F i0 = −F 0i , F ij = εijkBk , (I.17)

where we have directly the components of the electric, E, and magnetic, B, field. By writing down
the partial derivatives explicitly or by expanding Fµν , one may easily retrieve many known forms
of the Maxwell’s equations.

Next, we see the correspondence with the electromagnetism induced by non-quantum charge
distribution. Neglecting spin in (I.15) and simplifying notation in the terms of non-relativistic
quantum mechanics, we have j = ψ∗(p−A)ψ. As v = p−A, it suggests the link with the classical
expression jclassical = ρv ∼ |ψ|2v. A correct approach is to average the quantum current. Such
averaging can be seen also as a path from microscopic quantum physics to macroscopic description:

j(xmacro) =
∫

V (xmacro)

fψ∗(p−A)ψ dV . (I.18)

The integration is performed over a microscopic volume V (xmacro), f is a test function ensuring
the correct normalisation with a smooth treatment of boundaries ∂V (xmacro).

The averaging procedure is treated in great detail in [125]. It can be seen as a dynamical
counterpart of the discussion in the last paragraph of Section I.6. This averaging procedure allows
to simplify the calculations with two additional fields D and H that requires a split of charges and
currents into free and bound summands. The responses of the bound parts are contained within D
and H, so there is no need to solve the dynamics in the microscopic scale. The details of the split
are a part of the approximating procedure using the averaging.

I.8 Quantum to classical

To conclude the grounding of the derivation of the physical description based on (I.1), we retrieve
a non-quantum non-relativistic theory. A popular shorthand could be saying that it is obtained
from the Standard Model by the limits c → +∞ and ℏ → 0. Indeed, the path to the non-
relativistic theory was straightforwardly analytical considering a perturbative expansion in 1/c.
However, the second transition requires a different approach: the reason is that the playgrounds of
quantum mechanics and a non-quantum theory are different. The states are given by vectors from
Hilbert spaces or points in a phase-space, respectively. We recall two possible ways to perform
the non-quantum limit. We illustrate these approaches on an already simplified system described
equivalently by a Hamiltonian, H(x,p) = p2/(2m)+V (x), or Lagrangian, L(x, ẋ) = mẋ2/2−V (x):
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• The Ehrenfest theorem states that the expectation values of the position and momentum
operators evolves similarly to the classical Hamilton equations of motion:9 d ⟨x⟩ /dt = ⟨p⟩,
d ⟨p⟩ /dt = −⟨▽V (x)⟩. Generally, ⟨▽V (x)⟩ ̸= ▽V (⟨x⟩); the difference in this expression
may be seen as quantum corrections.

• The Feynman path integral provides an expression for the solution of the Schrödinger equation

ψ(x, t) =
∫

ξ(t0)=y,
ξ(t)=x

e
i
ℏ

∫
L(ξ(τ),ξ̇(τ)) dτψ(y, t0) Dξ , (I.19)

Dξ is a measure over all possible trajectories given as a limit: Dξ = limn→+∞ Πn
i=1dξi, where

ξi are all the possible intermediate points the particle may travel through.10 The interesting
point is the action S =

∫
L(ξ(τ), ξ̇(τ)), its stationary points are are prescribed by the classical

Euler-Lagrange equation of motion. The weight factor 1/ℏ puts an infinite contribution to
the classical path if ℏ→ 0.

I.9 Conclusion

Finally, we have introduced a consistent approach of coupling the Galilean and Lorentzian symme-
tries and linked it with the physics we use. The resolution is that the non-relativistic limit (I.9)
is performed in a reference frame, where the velocities of the particles are non-relativistic. The
laboratory frame fulfils this condition in HHG.

The second use of this appendix is in the invariant study of the ionisation. There was reached
the limit of the coupling from the energetic viewpoint. The reason is that the field was taken as
external, thus unaffected by the evolution of the particles. The solution is to include the fields
consistently by FµνFµν and the interaction term jµA

µ.
Finally, we have introduced framework which may be used to extend theory to different kinds

of interaction than electromagnetic. It still seems as a difficult question to estimate if we master
the sub-atomic physics to a sufficient state that we will need to treat the dynamics of the Z- and
W -bosonic or gluonic fields within the atomic nuclei for our future technology.

9The average of an operator A is ⟨A⟩ = ⟨ψ|A|ψ⟩.
10It should be noted that a correct definition of the measure D is non-trivial (see Section 2-4 of [32]). Today

formulation arises from stochastic approaches (for example [350, 351] and references therein).



248 I. Quantum and field equations of motion



J. MODELLING MATTER FOR LASER PROPAGATION

This appendix explains the hierarchy to derive the source term related with the ionisation, which
is included in the non-linear optics.

The model of the interaction of a gaseous medium with a laser pulse may be done on different
levels of complexity. This appendix is a brief review of possible physical pictures using top-down
approach. The advantage of such a description is that physical approximations and neglects becomes
obvious in consecutive steps. Here, we always consider a classical field coupled with matter – the
field is modelled by Maxwell’s equations in any case.

1. Starting with a general formulation, we use a quantum-statistical description. It means an
n-body density matrix ρ to describe a state. For the simplicity of formulation, we stay within
a subspace of the Fock space with a fixed number of particles. The evolution of the density
matrix is driven (in the Schrödinger picture) by the Von Neumann equation:

∂ρ(t)
∂t

= − i
ℏ

[H(t), ρ(t)] , (J.1)

where H is the Hamiltonian of the system. This Hamiltonian principally includes all the
mutual interactions of various particles and the effects of the coupled external field as well,
see Lindblad master equation [352]. The exact solution of this equation is absolutely out
of any bounds for practical numerical calculation. However, it is a good starting point for
simplifications.

2. In the first step, we move from quantum statistics to classical statistics using the Wigner
distribution.1 A state of the system is classically described by a phase-space distribution

1The Wigner distribution does not satisfy non-negativity. This is sometimes a subject of discussions about its
interpretation, Chapter 15 of [124]. We do not intend to precisely analyse this topic, but we can recall some ideas.
1) There are still some constraints about f , so it cannot be arbitrary negative in large regions. There also holds the
fundamental normalisation

∫
f
∏n

i=1 d3xid3pi = 1. 2) Let us mention one classical example: quantum tunnelling.
This process also violates locally the energy conservation and more energy than classically available is used to ”climb
over the barrier”. This can be seen as the energy is ”borrowed” from adjacent regions of the phase space. Such
a picture is supported by studies of the Wigner distribution in the tunnelling regime [353].
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function f . A way to link this with ρ is to use the n-body Wigner distribution defined by

f(x1, . . . ,xn,p1, . . . ,pn, t) = ⟨p1, . . . ,pn | ρ(t) |x1, . . . ,xn⟩ ⟨p1, . . . ,pn |x1, . . . ,xn⟩ . (J.2)

The Von Neumann equation then limits to the Liouville equation that governs the classical
evolution of the density

∂f

∂t
=

n∑
i=1

(▽xiH · ▽pif −▽piH · ▽xif) . (J.3)

What is the physics lost by this approximation? Basically, we have lost the quantum
nature of the interaction. It means quantum entanglement of the particles, but also HHG,
for example, as well as this is a quantum-mechanical process. However, we should have in
mind, that this still follows only the logic of the derivation: the collective contribution of all
the electrons within the medium. The interaction on the microscopic level of a single atom
may be still covered by the Macroscopic Maxwell’s equations.

3. Although f is a statistical quantity, it still gives the probability distribution for each particle,
it means that f lives on very large space, which is still beyond all practical computational
tools. A next possible step is to reduce the number of variables and use a true continuum
in the description. The idea is to create a sequence of distributions with reduced number of
variables. As the particles are of the same kind, it would lead to continuum of this kind. This
procedure is the so-called BBGKY hierarchy.2 It defines the sequence:

fs(x1, . . . ,xs,p1, . . . ,ps, t) =
∫ n∏

i=s+1
d3xid3pi f(x1, . . . ,xn,p1, . . . ,pn, t) . (J.4)

The first and last terms of the chain are, respectively, f1 = f1(x1,p1, t) and fn = f . The
important hierarchical structure derived from (J.4) links only two consecutive distributions:

∂fs
∂t

+ Lsfs = Φs[fs+1] . (J.5)

Ls is a linear differential operator and Φs is a functional, both may depend on xi, pi, i =
1, . . . , s. The functional Φs contains an integration, so the number of variables is correct. The
distribution of interest is f1. The lowest equation in the chain is

∂f1
∂t

+
(
p

m
· ▽x

)
f1 + (F · ▽p) f1 = Φ1[f2] , (J.6)

2Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
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where p and F are the local momentum and force,3 respectively. We have identified x = x1

and p = p1 as they are the only variables of f1. This is already almost the Boltzmann
equation driving the continuum, the difference is the source Φ1[f2]. A way to break the
chain is to approximate it without the need of knowing f2. The source Φ1[f2] represents the
changes induced by the two-particle distribution. In other words, we may see it as the effect
of collisions. The resolution is then to replace Φ1[f2] by the so-called collision integral S ,
that is obtained by modelling two-particle collisions. There are various approaches originating
from this model as, for example, Vlasov equation for a collisionless medium.

Again, we review the effects lost by this approximation. We arrived to truly continuous
description, containing up to two-particle collisions by S . The missing part may be then the
interaction of more than 2 particles. Next, all the parts of the medium are then given by
the local density only. In the detailed sense, this state is not unique. A possible viewpoint is
a local grand canonical ensemble in the thermodynamic sense. This becomes indistinguishable
within this theory. However, a lot of these things are still fairly modelled: collective effects of
more particles may be included by Debye screening; instabilities allows a completely distinct
evolution of various points. The instabilities grow from random fluctuations, which can be
seen as different states within the grand canonical ensemble. In summary, this formulation
opens the way for practical calculation (e.g. particle-in-cell codes). It then becomes a notorious
starting equation for modelling plasma.

4. A further simplification is useful for both the insight in the physics and a simpler numerical
procedures. It is obtained by a further reduction of the momentum space in the Boltzmann
equation. The kinetic equations of the continuum are found by computing the moments of
the Boltzmann equation, the 0th and 1st moments are related to the density and flow velocity

ϱ(x, t) =
∫
f1(x,p, t) d3p , u(x, t) =

∫ p
mf1(x,p, t) d3p∫
f1(x,p, t) d3p

, (J.7)

respectively. The related moments are

∂ϱ

∂t
+▽ (ϱu) =

∫
S d3p+

∫
(▽pF ) f1 d3p︸ ︷︷ ︸
S

, (J.8a)

∂(ϱu)
∂t

+▽T = F +
∫
pS d3p , (J.8b)

we use ▽ = ▽x as x is an explicit variable of the equations for the continuum, while p is
3The force in the Hamiltonian contracted to single particle is F = − ▽x H. However, the force there comes

also from the other particles integrated by the BBGKY hierarchy. We do not precise details here as it is beyond the
purpose of this appendix.



252 J. Modelling matter for laser propagation

contracted by the integration. The derivation is straightforward using only the integration
by parts in ▽pf1-terms and boundedness of f1 given by lim∥p∥→+∞ f1 = 0.

The 0th moment, (J.8a), is the continuity equation. S gives the sources and sinks. If we
consider electronic fluid, as is of the main interest of this work, its created or absorbed,
respectively, by ionisation or recombination. The ionisation may be due to avalanche –
electron-atomic collisions – ionisation or photoionisation by the electromagnetic field. The
sink is due to recombinations. The rightmost term vanishes for p-divergence-free forces, which
includes the Lorentz force.

The 1st moment, (J.8b), is the Euler equation of motion for the fluid. The driving force
is F =

∫
F f1 d3p +

∫
p (▽pF ) f1 d3p. Again, it is simplified for p-independent forces – and

also the Lorentz force – to just force density F = ϱF . The collision term including S

may change the amount of the fluid either by sourcing or sinking with a given momentum
distribution. The last interesting quantity is the tensor T =

∫
(p⊗ p) f1 d3p. Its diagonal

terms are related to the kinetic energy-density ϵ =
(∫
∥p∥2 f1 d3p

)
/m. The off-diagonal

terms relate to fluxes of the momentum (e.g. T12 =
∫
p1p2f1 d3p describes the flux of the

x-component of to momentum in the y-direction). Principally, this would require a higher
moment of the Boltzmann equation; which would contain another higher-order quantity as
heat-flow: q(x, t) =

(∫
p ∥p/m∥2 f1 d3p

)
/(mϱ(x, t)).

A way to stop the need of equations for higher-moments is to truncate the chain by an
empiric law. There is no universal recipe. The beauty of the equation is in the universality:
They may be used to model phenomena from cosmical scales as formation of stars, stellar
winds, supernovae – passing macroscopic and laboratory scales –, inertial fusion, tokamaks
– down to the microscopic world –, the free electrons due to the optical ionisation as of the
interest of this thesis. Some closure examples are the state equation of a polytropic gas;
Fourier’s law of heat conduction or instantaneous thermalisation.

Let us show a possible simplification for a microscopic volume of a gas ionised by an
ultrashort laser impulse. Assuming instantaneous thermalisation – no transport of higher
moments –, the dynamics of free electrons is given by

∂ϱe
∂t

+▽(ϱeue) = S , (J.9a)
∂ue
∂t

+ (ue · ▽)ue = − e

me
(E + ue ×B)− νeue − S

ue
ϱe
. (J.9b)

ϱe and ue are the electronic density and average velocity, respectively. The RHS terms
are: 1) The source S is due to ionisation from collisions, but also photoionisation by the
optical field. It is an external mechanism within the description. 2) The Lorentz force,
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FL = −e (E + ue ×B). 3) The collisions generally originating from collision integrals. The
presented model, νeue, simplifies this quantity down to a single parameter: the collision
frequency νe.

5. The final simplification is the Drude model. It comes from the equation (J.9b) for ue, the
parameter of collisions is νe = 1/τe. The collision frequency is seen in the terms of the kinetic
theory of gases; τe is the average time between the collisions of electrons with neutrals and
ions. The kinetic equation for a single electron is

meẍ = FL − νeẋ . (J.10)

The form of the collisions is simply a linear drag force. It is then an easy-to-understand
explanation.

The main goal of this top-down derivation throughout the physical theories was to describe
a collective motion of electrons. We have lost HHG and other effects of non-linear optics quite
early in the procedure. We then may put this into context even in this description. A way to
obtain these effects is to break the collectivity early after the first step, the decomposition of the
space would give:

2*. We omit the interaction between the particles; moreover, we assume each particle to be given
by a pure state, so there are no off-diagonal terms in the density matrix ρ. Summarising these
ideas mathematically:

ρij = 0 , ρii = |ψi⟩ ⟨ψi| ; H =
n⊗
i=1

Hi . (J.11)

The Von Neumann equation reduces into single-particle subspaces

iℏ∂|ψi⟩ ⟨ψi|
∂t

= Hi |ψi⟩ ⟨ψi| − |ψi⟩ ⟨ψi|Hi , (J.12)

which can be transformed into the Schrödinger equation. The index i relates to the particle, it
implies that the Hi describes the microscopic volume of the interest placed in the macroscopic
position xi.

In conclusion, we have provided a systematic derivation scheme to describe a macroscopic
physical system from a fundamental quantum-mechanical statistical approach. It would be possible
to follow the scheme analogously in a relativistic case, which we have not used for simplicity. The
choice of a correct description always relies on the complexity of the problem and the need of
various effects to be included as commented in the derivation.
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