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The current PhD work is part of the European project TOMOCON which joins 12 international academic institutions and 15 industry partners who work together

The numerical strategy based on the coupling of these dierent methods makes possible accurate simulations of the inline separation with limited CPU cost. A full description of single-phase ow in the separator is done, the velocity and pressure proles are plotted, a swirl number is calculted and its evolution in the streamwise direction is tted with a previous experimental correlation. Two-phase ow separation is then simulated, the bubble migration is descibed and the gas core is characterized. The eect of the Reynolds number and the condition at the pick-up tube are also studied. The numerical simulations help xing the physical parameters which inuence the separation and control the eciency and validating models with experimental data from TU Delft, HZDR and TU Lodz.

in the emerging eld of industrial process control using smart tomographic sensors.

Four industrial processes are investigated experimentally and numerically, inter alia, inline uid separation. This recent technology for oil/gas extraction makes use of a static swirl element installed inside the pipeline and which has a bullet form with deected blades on its surface to transform part of the incoming axial momentum into a tangential one. This ow splitter can generate centrifugal forces up to 100 times the gravitational acceleration and separate the phases leaving the heavy phase next to the wall and the light one in the center to be recovered at the outlet by a pick-up tube.

In the present work, we are interested in developing CFD methods in the IMFT in-house code JADIM to simulate the two-phase ow separation. Since the scales are ranging from meters the length of the device (pipe, swirl element) to a millimeter which is the size of the smallest bubbles and drops, the numerical strategy needs to combine Eulerian and Lagrangian schemes. First, because of the complexity of the separator geometry, we use Immersed Boundary Method (IBM) for solid/uid interaction to simulate the pipe, the swirl element and the pick-up tube. The ow being highly turbulent that Direct Numerical Simulation (DNS) is not possible, Large Eddy Simulation (LES) is considered and the turbulence is modeled using mixed dynamic Smagorinsky model. Then the Lagrangian solver is used to track the dispersed phase (drops/bubbles). Once the separation is done and the accumulation of the dispersed phase takes place leading to large volume of gas/oil compared to the mesh size, we switch to the Volume of Fluid (VoF) method to simulate the core inside the heavy phase. Finally, the exit control of the light core extraction is done through the ow straightner placed between the pipe and the pick-up tube using Immersed Boundary Method.

To ensure a good interaction/communication between the CFD methods considered here, a coupling of the solvers is needed. Therefore, to be able to use Large Eddy Simulation (LES) on a coarse mesh and avoid the constraint of mesh renement next to the IB wall, an original stochastic wall model is developed for hybrid LES/IBM and validated through the study of the classical turbulent pipe ow. The Lagrangian Tracking solver is also coupled to Immersed Boundary Method to enable the rebound of the bubbles/drops on the surface of the IB solids via a collision model. The hybrid Lagrangian Tracking/Volume of Fluid consists in moving the bubbles/drops in contact with a VoF cell or those which have migrated to the separator center from the Lagrangian framework to the Eulerian one and updating the phase fraction with their corresponding volume. The method is validated by simulating bubbles accumulation in a rotating ow.

Résumé

Ces travaux de thèse s'inscrivent dans le cadre du projet européen TOMOCON qui réunit 12 institutions académiques internationales et 15 partenaires industriels.

Ensemble, ils travaillent dans le domaine émergent de l'apport de la tomographie au contrôle des processus industriels. Dans le cadre du projet TOMOCON, quatre processus industriels sont étudiés expérimentalement et numériquement, et cette thèse s'applique à la séparation en ligne des écoulements diphasiques. Cette technologie récemment proposée pour l'extraction du pétrole et du gaz naturel utilise un obstacle muni d'ailettes mettant en rotation l'écoulement conduisant à une force centrifuge jusqu'à 100 fois l'accélération gravitationnelle et permet de séparer deux phases . La phase lourde est poussée vers la paroi du pipeline et la phase légère reste au centre pour être récupérée par la suite à la sortie du séparateur par un tube collecteur. Pour être ecace, ce processus nécessite un contrôle en temps réel de la pression d'aspiration du collecteur basé sur le champ de taux de gaz obtenu par un capteur tomographique de type "wire mesh sensors". La prédiction numérique de l'écoulement dans un tel dispositif est un élément clé pour la mise en place d'une telle boucle de régulation.

Dans le présent travail, nous nous intéressons au développement de méthodes CFD (Computational Fluid Dynamics) dans JADIM, un code de CFD developpé à l'IMFT, pour pouvoir simuler la séparation de l'écoulement diphasique. Cependant, puisque les échelles vont de 1 m la longueur du dispositif de séparation à 10 -6 m qui est la taille des plus petites bulles ou gouttes, la stratégie numérique doit donc combiner des méthodes eulériennes et lagrangiennes. Tout d'abord, en raison de la complexité de la géométrie du séparateur, nous utilisons la méthode 'Immersed Boundary Method (IBM)' pour l'interaction solide/uide pour simuler toutes les parties solides du séparateur. De plus, l'écoulement étant fortement turbulent, la Simulation Numérique Directe (DNS) n'est pas envisageable, et la Simulation à Grandes Echelles (LES) est considérée et la turbulence de sous-maille est modélisée à l'aide du modèle dynamique mixte de Smagorinsky. Un solveur lagrangien est utilisé pour suivre la phase dispersée (gouttes/bulles) en résolvant l'équation de trajectoire pour chaque bulles ou gouttes. La migration de la phase dispersée conduisent à former des volumes de gaz/huile grands par rapport à la taille de la maille, que nous simulons grâce à la méthode Volume of Fluid (VoF). Finalement, le contrôle de la condition sur la vanne qui agit sur le tube collecteur pour aspirer le c÷ur est fait via le redresseur de l'écoulement placé entre le pipeline et le tube collecteur, ce redresseur est modélisé par l'IBM.

Il est donc évident que pour assurer une bonne interaction/communication entre les méthodes CFD considérées ici, un couplage des solveurs est nécessaire. De ce fait, pour pouvoir utiliser la simulation des grandes Echelles (LES) sur un maillage grossier et éviter la contrainte du ranement de maillage dans la sous-couche visqueuse à proximité de la paroi, un nouveau modèle de paroi stochastique est développé pour la simulation LES/IBM hybride et validé à travers l'étude d'un écoulement turbulent en tube. Le solveur du suivi lagrangien est également couplé à la méthode IBM pour permettre le rebond des bulles/gouttes sur la surface des solides IB via un modèle de collision. En ce qui concerne la méthode hybride de suivi lagrangien/Volume de Fluide, elle consiste à transformer les bulles/gouttes en contact avec une cellule VoF ou celles ayant migré au centre du séparateur vers le VoF et à mettre à jour la fraction de volume en tenant compte du volume de la phase dispersée transformée au VoF. Cette méthode est validée par la simulation de l'accumulation des bulles dans un écoulement en rotation.

La stratégie numérique hybride basée sur le couplage de ces diérentes méthodes permet de réaliser des simulations précises de la séparation en ligne à un coût de CPU raisonnable. En premier, l'écoulement monophasique dans le séparateur est analysé et comparé aux résultats expérimentaux obtenus précédemment. La séparation de l'écoulement diphasique est ensuite simulée, la migration de la phase dispersée est decrite le c÷ur gazeux est caractérisé. L'eet du nombre de Reynolds et de la condition au niveau du tube collecteur est également étudié. Pour conclure, les simulations numériques permettent de déterminer les paramètres physiques qui inuencent la séparation et contrôlent l'ecacité de la séparation et de valider les modèles CFD développés avec des données expérimentales de TU Delft, HZDR et TU Lodz.

Mot clés: CFD, séparation, écoulement diphasique, force centrifuge, IBM, LES, VoF, suivi lagrangien.
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-Microwave drying.

-Continuous casting.

-Batch crystallization.

For each of the above processes, CFD models are developed and simulations to understand the ow are done, experiments using tomographs are conducted and nally a controller is built. Thus, interdisciplinary within each group is displayed to prepare for the nal demonstration which serves as a proof of concept for the use of process tomography in process control. The current PhD work is part of the inline uid separation study and more specically the CFD development and simulation of this process.

In addition, the project does also ensure a good public communication of the results 

Petroleum engineering

When the living organisms die and as the time goes by, they are buried in the ground by more and more layers of sediment pushing them further from the earth's crust by a few meters to a few hundred meters every million years or so. During this process, temperature and pressure increase, the nitrogen, sulfur and phosphorus atoms are gradually converted into kerogen. At a depth of about 2 km, when the temperature is around 100C, kerogen releases hydrocarbons. Wether it will be oil or natural gas, it all depends on the temperature and the organic debris. For instance more heat produces natural gas and animal source rock gives more oil than gas. With an estimated average sedimentation of 50 meters every million years, it takes 60 million years for dead animals to become liquid hydrocarbons.

Oil and gas have mostly been recovered by drilling. The latter is carried out after studies of structural geology, sedimentary basin analysis, and reservoir characterisation. The whole procedure is thus time and money demanding, that is why the concerned industries are constantly working on new technologies to recover the maximum amount of gas/oil and extend the economic lifespan of the wells both on oshore and onshore elds. One can nd various separation techniques which are used and still under development to insure a good quality, a big quantity and minimum production fees.

Gravity separator

It is the common type of separators. The concept of gravity separators is based on exploiting the density dierence between two uids, as they are naturally separated by buoyancy. The separators could either be vertical or horizontal. A vertical separator could be used to save space on a topside facility, and is mostly used to separate gas/liquid. The horizontal gravity separator is the most common separator for liquid/liquid emulsion. This kind of separators needs time and large vessels to increase the eciency. Other components are usually added (coalescing packs, weir reduction ...) to prevent certain operating problems during the process. 

Cyclones

It is a vertical pipe with a tangential/horizontal inlet and two outlets: one at the top and the other at the bottom, which uses the centrifugal separation technology. The mixture of two uids ows through the inlet into the cyclone separator. A strong swirling ow eld is formed causing the light phase to migrate to the center line and the heavy phase towards the wall. Dierent cyclones were subjects to many studies [START_REF] Cullivan | Understanding the hydrocyclone separator through computational fuid dynamics[END_REF], [START_REF] Colman | The Hydrocyclone for Separating Light Dispersions[END_REF], [START_REF] Gomez | Wet gas separation in gas-liquid cylindrical cyclone separator[END_REF].

(a) Conical Liquid Hydrocyclone [START_REF] Cullivan | Understanding the hydrocyclone separator through computational fuid dynamics[END_REF] (b) Liquid Liquid Cylindrical Cyclone [START_REF] Colman | The Hydrocyclone for Separating Light Dispersions[END_REF] (c) Gas Liquid Cylindrical

Cyclones [START_REF] Gomez | Wet gas separation in gas-liquid cylindrical cyclone separator[END_REF] A few studies were conducted on this geometry. Dirkzwager [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] designed an inline swirl element dierent from the traditional cyclone to reduce the turbulence production and pressure drop. Based on experiments, a swirl number was introduced.

However, his research was limited to single-phase ow only and was more focusing on the design itself. Then, the inline separator was further developed and investigated numerically by Delfos [START_REF] Delfos | A design tool for optimising axial liquid-liquid hydrocyclones[END_REF]. Later, Campen [START_REF] Van Campen | Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones[END_REF] measured the axial and azimuthal velocities using LDA for single-phase ow, pressure drop and the swirl number. He also made some experiments for oil/water separation to determine the physical parameters which control the eciency of separation. Simultaneously, Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] reshaped the swirl element, three geometries were dened: weak, large and strong swirl elements, RANS simulations were done for the strong element using Ansys CFX and oil/water separation was simulated using the Euler-Euler model. His numerical results were compared to the measurements of Campen [START_REF] Van Campen | Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones[END_REF]. The present work is based on one of the geometries previously designed by Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] and focuses on developing advanced CFD models for the simulations and the investigation of gas/water separation.

Present work 1.3.1 Project objectives

As mentionned before, being part of the inline uid separation team, our aim is to develop exclusively the concept of tomography controlled inline gas/water separator [START_REF] Sahovic | Controlled inline uid separation based on smart process tomography sensors[END_REF]. The latter is investigated experimentally in the large-scale Delft Inline Separator Facility (DISE) in TU Delft and is equiped with high-speed cameras, pressure transducers. A wire mesh sensor (WMS) developed in HZDR is placed upstream to measure the phase fraction and an electrical resistance tomography sensor (ERT) developed in TU Lodz is placed downstream after the swirl element to measure the gas core diameter (see Fig. 1.7). Getting real time data from both sensors, the controller acts on the valve pressure at the pick-up tube to insure a high separation eciency. The feedback loop for the controller is built based on the ow physics from both experiments and CFD simulations [START_REF] Garcia | Control of a gas-liquid inline swirl separator based on tomographic measurements[END_REF]. For the inline uid separation, the interest of using CFD comes from the complexity of the ow and if we want to control the process of the separation, we need as much information as possible about the bubble dynamics and the core stability to various conditions on the valve at the pick-up tube. The question now is how to choose the adequat approach to simulate the process since CFD proposes an arsenal of methods to model the ow features. In the next subsection 1.3.3, we introduce the ow characteristics in the inline uid separator and the brought CFD challenges.

Problem description

The CFD work, which is the subject of this thesis, is highly challenging because of the ow features present in the separator. In fact, the ow is highly turbulent, the geometry of the swirl element is complex and the scales are ranging from meters, the length of the device down to the smallest bubble or drop at millimeters.

Since we need a precise description of the ow to evaluate correctly the separation eciency, we will have to carefully build the CFD approach in a way to get all the details of uid dynamics with an aordable computation cost. For instance, avoiding complicated and irregular meshing for the complex geometry of the swirl element, going for turbulence modelling instead of Direct Numerical Simulations which is impossible considering the high Reynolds numbers. Finally for the two-phase ow modelling, choosing an approach which can capture the bubble/droplet migration as well as the behaviour of the core interface. In the next subsection 1.3.4, we present the existing CFD methods commonly used in two-phase ow separation simulations. -Lagrange methods in which one phase properties are determined by tracking the movement of its uid particles in time. This model consists in dening a continuous phase solved using an Eulerian description and tracking the dispersed phase during time through the force balance. Thus, the interaction between the two phases is well resolved but the simulation is computationally expensive.

In the current study, we are interested in the dynamics of the dispersed phase during the migration and by the core stability after the separation. Therefore, we will implement a hybrid approach detailed in subsection 1.3.5.

Proposed numerical approach

We propose a hybrid approach based on a Navier-Stokes solver that makes possible accurate simulations with coarse spatial resolution.

First, Immersed Boundary Method (IBM) is used to simulate both the pipe, the pick-up tube and the complex geometry of the swirl element on a simple regular Cartesian mesh. Turbulence is modelled with the mixed dynamic Smagorinsky subgrid model in Large Eddy Simulation (LES) with an original stochastic wall law coupled to the IBM allowing to avoid the need for mesh renement close to the wall. A Lagrangian Tracking (LT) method is used to solve the dispersed ow, it is coupled to Immersed Boundary Method via a collision model to ensure the rebound of the dispersed phase in contact with the IB walls and is also coupled to a Volume of Fluid (VoF) to switch from the Lagrangian framework to the Eulerian one once the accumulation of the dispersed phase takes place and the light core is formed.

Finally, the control of the core extraction is achieved by imposing the valve condition at the pick-up tube through a ow straightner placed between the pipe and the pick-up tube using Immersed Boundary Method.

This hybrid approach [START_REF] Atmani | Cfd approach to simulate two phase ow inline-separator coupling ibm, les, lagrangian tracking and vof methods[END_REF] allows a pertinent description of this swirling ow es-pecially that the experiments are constrained to time and cost and helps with the needed physics for the controller.

We should note that the coupling between LES and VoF is not within the scope of this thesis, but remains an interesting subject in modelling the turbulence in two phase-ows [START_REF] Vincent | A priori ltering and les modeling of turbulent two-phase ows application to phase separation[END_REF] and represents one of the perspectives for this PhD work.

Thesis outline

In previous studies [START_REF] Calmet | Large eddy simulation of high schmidt number mass transfer in a turbulent channel ow[END_REF][START_REF] Legendre | The lift force on a spherical body in a viscous linear shear ow[END_REF][START_REF] Benkineda | Developpement and validation of a numerical method for two phase ow without the interface reconstruction : application to the dynamics of the Taylor bubbles[END_REF][START_REF] Bonometti | Development of a numerical method for the computation of incompressible two-phase ows with bubbles or drops[END_REF][START_REF] Legendre | Forces on a high reynolds number spherical bubble in a turbulent ow[END_REF][START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF][START_REF] Chouippe | Numerical simulations of bubble dispersion in turbulent taylor couette ow[END_REF][START_REF] Rachih | Numerical study of conjugate mass transfer from a spherical droplet at moderate reynolds number[END_REF].

The Navier-Stokes system of equations

The mass and momentum conservation equations in a dierential form are expressed as:

∇.u = 0

(2.1) ∂u ∂t

+ u.∇u = - 1 ρ ∇p + 1 ρ ∇ • T + f (2.2)
with u is the velocity eld, p is the pressure, ρ is the density , T = µ(∇u + t ∇u) is the viscous stress tensor , f is the sum of any external volumetric force applied to the uid.

In the following, a focus is made on the solver considered during this PhD work.

First the Navier-Stokes solver is presented.

Spatial and temporal discretization

The equations 2.1 and 2.2 are solved using a nite volume method on an oset mesh.

The pressure p and the volume fraction C for VoF are calculated in the center of each cell while the components of the velocity u are dened on the facets of the cell. 

∂u i ∂x i = 0 (2.3) ∂u i ∂t + ∂u i u j ∂x i = - 1 ρ ∂p ∂x i + ν ∂ 2 u i ∂x i ∂x j + f i (2.4)
with u i (i = x, y, z) and p the velocity and pressure elds, respectively. f i is the sum of any imposed volumetric force applied to the uid in the direction i.

The integration of each unknown variable is done on a corresponding volume. The spatial derivatives are calculated using a second order centered schemes O(∆ 2 ) with ∆ is the mesh size. The diusive term is solved using a semi implicit Crank Nicolson (CN) scheme, when the other terms are treated explicitly by a Runge-Kutta 3 (RK3) procedure.

u k i -u k-1 i ∆t = SM k i (2.5) with SM k i = γ k N ( u k-1 i ) + ξ k N ( u k-2 i ) + α k L( u k-1 i ) (2.6) +β k L( u k i ) + (α k + β k )[f i - 1 ρ n+1/2 ∇p n-1/2 ]
where γ k , α k , ξ k , β k are the Runge-Kutta coecients summerized in table 2.1. N (resp. L) is a non-linear (resp. linear) operator containing the advective and viscous terms: In terms of the stability of the integration algorithm, the hybrid RK/CN have advantages from both numerical schemes. In fact, RK3 applied to a pure advection equation, when the spatial derivatives are calculated using a second order centered schemes O(∆ 2 ), is stable for CFL number under √ 3 and precise to the third order O(∆t 3 ). CN, being semi-implicit, is unconditionally stable and is second order accurate O(∆t 2 ). Therefore, the over-all algorithm is second order precise and the only stability condition on the time step is the following:

N (u i ) = ν ∂ 2 u j ∂x j ∂x i - ∂ ∂x j (u i u j ) (2.7) L(u i ) = ν ∂ 2 u i ∂x j ∂x i (2.8) k α k β k γ k ξ k 1 
∆t ≤ √ 3min ∆ x ∆ y ∆ z u xmax ∆ y ∆ z + u ymax ∆ x ∆ z + u zmax ∆ x ∆ y (2.9)
where ∆ i with i = x, y, z is the cell size and u imax is the maximum velocity in the i direction.

Projection method

At the end of the RK3 loop, the velocity u n+1 i = u 3 i resulting from the previous integration is not divergence free, to satisfy the incompressibility condition, the projection method [START_REF] Chorin | The numerical solution of the navier-stokes equations for an incompressible uid[END_REF][START_REF] Peyret | Computational methods for uid ow[END_REF] is applied.

The auxiliary potential Φ n+1 is introduced as:

∂Φ n+1 ∂x i = ρ ∆t (u n+1 i -u n+1 i ) (2.10)
By taking the divergence of this equation and knowing that ∂u n+1 i /∂x i = 0 we end up with a Poisson equation:

∂ 2 Φ n+1 ∂x i ∂x i = ρ ∆t ∂ u n+1 i ∂x i (2.11)
To get Φ n+1 , the linear system of the Poisson equation is solved by a Jacobi preconditioned conjugate gradient technique (PETSc Library) for three-dimensional cases while a multifrontal direct method (MUMPS Library) is used in two-dimensional situations. The nal divergence-free velocity and pressure are nally obtained: and spatial scales. To do so on a three dimentional realistic conguration, one can estimate the number of cells needed for that to O(Re 9/4 ) for a homogeneous isotropic turbulence and even more cells for conned ows to resolve the boundary layer. In short, DNS is highly demanding in terms of computational resources that are in most of the cases beyond the actual capacity of even the most powerful supercomputers.

u n+1 i = ũn+1 i - ∆t ρ ∂Φ n+1 ∂x i (2.12) p n+1/2 = p n-1/2 + Φ n+1 ( 
To overcome this limitation, two common methods are used: Reynolds Averaged Navier-Stokes (RANS) equations and Large Eddy Simulation (LES). While the former is based on an ensemble averaging which gives only the mean velocity. LES, on the other hand, resolves the large scales thanks to an appropriate modelling of small scale (unresolved) dynamics and is able to provide both the mean and the uctuations of the velocity close to the DNS results [START_REF] Pope | Turbulent ows[END_REF].

When the local Reynolds number is high, one expect the small scale to be universal because of the local homogeneity assumptio. However, in the case of signicant shear, typically close to a wall, the modelling of the sub-grid scale needs to be adapted. And within Large Eddy Similation, dierent methods have been proposed [START_REF] Sagaut | Large eddy simulation for incompressible ows: an introduction[END_REF] such as constant Smagorinsky model, dynamic Smagorinsky model, Bardina model, Chollet-Lesieur model, WALE ... The choice of the adequate method depends mainly on the ow conditions. And since we are dealing with conned ows, we have chosen the mixed dynamic Smagorinsky model [START_REF] Calmet | Large eddy simulation of high schmidt number mass transfer in a turbulent channel ow[END_REF] described in the following subsection 2.3.2. It is also worth mentionning that using this method still requires a mesh renement close to the wall to capture the viscous-sublayer by putting four to ve cells in there. This condition can become constraining for highly turbulent ows and one solution to avoid it is the implementation of a wall model. In the current PhD work, an original wall model for LES on IB walls is proposed and validated in chapter 3.

Mixed dynamic Smagorinsky model

Mass and momentum equations result from a spatial ltering of the equations 2.3 and 2.3. We use a uniform grid spacing ∆ yielding the lter length to be ∆ = ∆, the ltering operator is then noted G. The advantage of using a regular mesh is to be able to commute the ltering and the dierentiation operation because otherwise, commutation errors rise [START_REF] Sagaut | Large eddy simulation for incompressible ows: an introduction[END_REF].

Now by applying G, the velocity and pressure elds are decomposed as u i = u i + u i and p = p+p where u i (resp. u i ) and p (resp. p ) are the resolved (resp. unresolved) contributions. The governing equations in the LES approach are then:

∂u i ∂x i = 0 (2.14) ∂u i ∂t + ∂u i u j ∂x i = - 1 ρ ∂p i ∂x i + ν ∂ 2 u i ∂x i ∂x j - ∂τ SGS ij ∂x j + f i (2.15)
where ν is the kinematic viscosity of the uid, f i is the sum of the ltered volumetric force and τ SGS ij = u i u j -u i u j is the sub-grid stress tensor (SGS) expressed as the sum of these three terms: L ij , C ij and R ij such as:

L ij = u i u j -u i u j (2.16) C ij = u i u j + u j u i -u i u j -u j u i (2.17) R ij = u i u j -u i u j (2.18) The Leonard term L ij is calculted explicitly. τ SGS ij - 1 3 τ SGS kk δ ij = -2ν T S ij + L ij - 1 3 L kk δ ij (2.19)
where S ij is the strain rate tensor calculated from the resolved velocity eld and the turbulent viscosity ν T is given by:

ν T = C s ∆ 2 (2S ij S ij ) 1 2 
(2.20)

with ∆ is the lter length. C s is a local parameter calculated at each time step. Assuming scale similarity of τ SGS ij and by the same old dynamic procedure [START_REF] Germano | A dynamic subgridscale eddy viscosity model[END_REF],

(2.15) is reltered with a larger lter ∆ = 2∆, we dene: T ij = u i u j -u i u j . Similary as τ SGS ij , T ij is also expressed in function of C s as:

T ij - 1 3 T kk δ ij = -2C s ∆ 2 | S| S ij + L T ij - 1 3 L T kk δ ij (2.21)
with L T ij = u i u j -u i u j . Both T ij and τ SGS ij cannot be calculated explicitly however the dierence l ij = T ij -τ SGS ij = u i u j -u i u j can be and allows to nd the local coecient C s :

l ij - 1 3 l kk δ ij = -2C s ( ∆ 2 | S| S ij -∆ 2 |S|S ij ) -u i u j + u i u j + 1 3 ( u k u k -u k u k )δ ij (2.22)
C s is then:

C s = - (l ij -h ij )M ij 2M ij M ij (2.23) with M ij = ∆ 2 | S| S ij -∆ 2 |S|S ij and h ij = u i u j -u i u j
Unlike the classical Smagorinsky model, in which C s is an empirical constant in all the domain, the dynamic model by Germano [START_REF] Germano | A dynamic subgridscale eddy viscosity model[END_REF] allows a local calculation of C s to take into account the local turbulence in the ow. However, it is subject to numerical instabilities due to possible negative values of C s resulting in negative total viscosity ν + ν t . The mixed dynamic Smagorinsky model, considered in the current study [START_REF] Calmet | Large eddy simulation of high schmidt number mass transfer in a turbulent channel ow[END_REF], reduces the number of cells with a negative C s in comparison with the dynamic Smagorinsky model [START_REF] Germano | A dynamic subgridscale eddy viscosity model[END_REF] to less than 1% through its way of decomposing the sub-grid scale tensor and explicitly calculating the Leonard term as well as locally ltering C s on the test-volume surrounding each cell. The very rare remaining negative values of the total viscosity are eliminated by locally clipping ν + ν t to 0.

CFD for uid solid interaction 2.4.1 Introduction

Turbulent ows in applications often occur in complex geometries. For instance, in inline uid separation, the swirl element has a complex geometry and is placed inside the ow which makes it in continuous interaction with the uid. Therefore, the best way to avoid the use of complicated and demanding mesh is to model the uid-structure interaction. Various methods can be found in the literature such as:

• Distributed lagrange multiplier [START_REF] Glowinski | A distributed lagrange multiplier/ ctitious domain method for particulate ows[END_REF][START_REF] Singh | Distributed lagrange multiplier method for particulate ows with collisions[END_REF]: the fow inside, and on, each solid boundary is constrained to be a rigid-body motion using a distributed Lagrange multiplier. This multiplier represents the additional body force per unit volume needed to maintain the rigid-body motion inside the solid boundary, and is analogous to the pressure in incompressible uid fow, whose gradient is the force required to maintain the constraint of incompressibility. In other terms, The rigidity constraint produces a stress eld inside the solid that is a function of a scalar Lagrange multiplier.

• Penalty method [START_REF] Sarthou | Eulerian lagrangian grid coupling and penalty methods for the simulation of multiphase ows interacting with complex objects[END_REF]: a penalty term is added to the conservation equation, its expression depends on the approach that is used since there are various penalty methods: Volumic penalty method, Sub mesh penalty method...

• Lattice Boltzmann method [START_REF] Wang | Coupled bonded particle and lattice boltzmann method for modelling uid solid interaction[END_REF]: the uid phase is treated as a group of imaginary uid particles which are allowed to move to the adjacent lattice nodes or stay at rest. The solid is also represented using lattice nodes. The surface of the solid is located in the boundary nodes where the bounce-back rule is applied so that the incoming uid components from uid nodes are reected back.

• Ghost uid method [START_REF] Fedkiw | Coupling an eulerian uid calculation to a lagrangian solid calculation with the ghost uid method[END_REF]: it creates a ghost articial cells which implicitly induces the proper conditions at the interface solid/uid through the interpolation of the parameters in those nodes.

• Immersed boundary method [START_REF] Peskin | Numerical analysis of blood ow in the heart[END_REF][START_REF] Peskin | The immersed boundary method[END_REF]: it was rst introduced by Peskin to study ow patterns around heart valves and has evolved into a generally useful method for problems of uid/structure interaction. Peskin used Eulerian variables dened on a xed cartesian mesh, and Lagrangian variables dened on a curvilinear mesh that moves freely through the xed cartesian mesh without being constrained to adapt to it in any way at all.

In the current study, an Immersed Boundary Method developed by Bigot [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF] is used, the equations are detailed in the following subsection.

Immersed Boundary Method (IBM)

As mentioned before, IBM was rst introduced by Peskin [START_REF] Peskin | Numerical analysis of blood ow in the heart[END_REF], then developed for other applications. It consists in adding the force applied by the solid on the uid to the Navier-Stokes equations at the interface uid/solid. Two types of IBM are generally distinguished: sharp IBM, in which the solid boundary is located within one cell but then is experiencing possible spatial and temporal discontinuities while diusive IBM overcomes this problem by providing a smooth transition between the uid and the solid across three to four cells.

A dierent diusive approach was developed [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF] in JADIM which does not need the Lagrangian marking on the solid. A solid volume fraction α IBM is dened equals 1 in the solid cell,0 in the uid cell and between 0 and 1 in the transition region between the solid and the uid. The solid-uid interaction is then presented by a forcing term added to Navier-Stokes equations as a contribution in the volumetric force f:

f k IBM,i = α IBM v k-1 s,i -u k i ∆t (2.24)
where ∆t is the time step used for time advancement, v s,i is the local velocity imposed to the immersed solid object and u i is a predictor velocity without considering the immersed object.

For a static IB solid, the velocity v s,i is set to 0 and the IB force is then reduced to:

f k IBM,i = -α IBM u k i ∆t (2.25) 
Now, when it comes to α IBM , the solid indicator, it is dened using a mathematical formula by Yuki [START_REF] Yuki | Ecient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced ow[END_REF] which decribes the form of the solid geometry. For instance, when the object is a spherical of center x p and radius R, α IBM is expressed as:

α IBM (x) = 1 2 1 -tanh x -x p -R λη∆ c (2.26)
with ∆ c is a characteristic grid size equals √ 2∆ for a regular mesh.

λ =| n x | + | n y | + | n z | calculated
using the coordinates of n the normal outward unit vector at the surface. η = 0.065(1 -λ 2 ) + 0.39 is a parameter controlling the thickness of the transition region 0 < α IBM < 1. This relation for λ suppresses parasitic uctuations of the forces applied to the object when the latter crosses a numerical cell [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF].

Immersed Boundary Method for CAD complex geometries

The IBM as developed by Bigot [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF] We should note that this procedure is applied only once to dene α IBM for the swirl element then the IBM forcing of Navier-Stokes equations is kept the same as done in equation 2.24.

Validation of IBM for complex geometries: inline uid separator

To test the solver for a complex geometry and the proposed method to generate α IBM from a CAD le, we simulate the inline separator using IBM, in which α IBM of both the pipe and the pick up tube is dened by equation 2.26 and is calculated using the above procedure for the swirl element. The numerical domain is a box of size L x × L y × L z = 0.92m × 0.1m × 0.1m made of N x × N y × N z = 800 × 92 × 92 cells along the e x , e y and e z directions. The mesh is then regular Cartesian and the pipe diameter equals D = 0.092m. It remains to mention that the separator is meant to operate on highly turbulent ows for which the Reynolds number can reach Re = 200, 000 which justies the need to use LES and consequently to develop a wall model for hybrid LES/IBM approach (see chapter 3).

Lagrangian Tracking (LT)

Lagrangian Tracking (LT) is an ecient CFD method in the current study to simulate the dispersed phase at the inlet especially that we have two dierent length scales, one of the dispersed phase (bubble or droplet) diameter which is in the order of millimeters and the other one in the order of meters for the separator. Having a diameter smaller than the mesh size, the bubbles/droplets are geometrically considered as points. The Lagrangian Tracking solver in JADIM [START_REF] Chouippe | Numerical simulations of bubble dispersion in turbulent taylor couette ow[END_REF] calculates the trajectory of each bubble/droplet based on the forces applied on it.

Let's consider now a spherical non deformable bubble/droplet (dispersed phase) of diameter d d , volume V d , velocity v d inside a ow that has a velocity u and a kinematic viscosity ν c . The Reynolds number is dened as:

Re d = d d u -v d ν c (2.27)

Buoyancy

It is an upward force exerted by the continuous phase to oppose the weight of the immerged dispersed phase, it is the result of the gravity eect and the densities dierence. The sum of buoyancy and weight of the dispersed phase is written as:

F B = (m d -m c )g (2.28)
with m d and m c are respectively the dispersed phase and continuous phase masses.

Drag force

It is a force acting in the opposite direction to the relative motion between the dispersed phase and the continuous phase, it is calculated as:

F D = C D ρ c πr 2 d 2 u -v d (u -v d ) (2.29)
with C D is a dimensionless drag coecient which depends on the Reynolds number, the ratio of densities ρ * = ρ d /ρ c and the ratio of viscosities µ * = µ d /µ c . For clean bubbles with free slip at the interface, Mei [START_REF] Mei | A note on the history force on a spherical bubble at nite reynolds number[END_REF] found a correlation for C D that is a function only of Reynolds number regardless of the latter's range variation.

C bubble D = 16 Re d   1 + 8 Re d + 1 2 1 + 3.315 Re 1/2 d -1   (2.30)
For a droplet, Rachih et al. [START_REF] Rachih | Numerical study of conjugate mass transfer from a spherical droplet at moderate reynolds number[END_REF] have recently proposed a correlation for C D which depends only on the viscosity ratio and is available for Reynolds numbers up to 200:

C droplet D = C bubble D + µ * C solid D 1 + µ * (2.31)
with C solid D is the drag coecient for a solid particle calculated from the work of Schiller and Naumann [START_REF] Schiller | A drag coecient correlation[END_REF] as:

C solid D = 24(1 + 0.15Re 0.687 d ) if Re d ≤ 1000 0.44 if Re d > 1000 (2.32)

Lift force

It is the result of the circulation of the continuous phase around the dispersed one.

Its general expression is:

F L = C L ρ c V d (u -v d ) ∧ Ω (2.33)
with Ω = ∇ × u is the vorticity and C L is the lift coecient calculated for a bubble based on the work of Legendre and Magnaudet [START_REF] Legendre | The lift force on a spherical body in a viscous linear shear ow[END_REF]:

C L = 13.53 π 2 √ SrRe d (1 + 0.2Re d /Sr) 3/2 2 + 1 2 1 + 16/Re d 1 + 29/Re d 2 1/2 (2.34)
where Sr is the shear rate.

Added (or virtual) mass and Tchen forces

Due to the acceleration of the dispersed phase, some of the continuous phase volume surrounding it is accelerated as well yielding to this force:

F V M = C M ρ c V d Du Dt - dv d dt (2.35)
with C M is the virtual mass coecient which equals 0.5 for a sphere [START_REF] Auton | The force exerted on a body in inviscid unsteady non-uniform rotational ow[END_REF].

Related to the virtual mass force, Tchen force is added to represent the inertia of the uid in the absence of the bubble/droplet.

F T chen = ρ c V d

Du Dt

(2.36)

Basset (or history) force

When the continuous phase accelerates, the inertial forces do not allow the viscous forces to establish instanteneously, so to take into account this eect, Basset force is introduced as a correction of the steady drag force. It is the history of successive time delays between the application of instantaneous viscous forces and those of a quasi-static pseudo movement and expressed as:

F H = 6πµ c r d t 0 K τ t nu du dτ - dv d dτ dτ (2.37)
where K is the kernel of the history force depends on the type of the dispersed phase and t ν = r 2 d /ν is a characteristic time of the history eect controlled by the viscous diusion.

In the case of bubbles, for high Reynolds numbers Re d , this force is negligible compared to the drag force [START_REF] Magnaudet | Accelerated ows past a rigid sphere or a spherical bubble[END_REF].

Force balance

With no history force, the force balance is expressed as:

(ρ d + C M ρ c )V d dv d dt = (ρ d -ρ c )V d g+ C D ρ c πr 2 d 2 u x d -v d (u x d -v d ) + C L ρ c V d (u x d -v d ) ∧ Ω+ ρ c V d (1 + C M ) Du Dt | x d (2.38)
Each bubble/droplet trajectory is obtained by solving:

dx d dt = v x d (2.39)
When considering the LES approach, the uid velocity u x d and acceleration Du/Dt| x d at the bubble/droplet location x = x d are obtained by a second order interpolation of the ltered velocity u with neglecting the SGS uctuations [START_REF] Zhang | Model for the dynamics of microbubbles in high reynolds number ows[END_REF].

The time integration of the trajectory of each bubble/droplet is done through a Runge Kutta 2. To satisfy the stability condition on the time step for the Lagrangian solver, the Lagrangian time dt traj is set to the minimum of three characteristic times: the continuous phase time step ∆t used for the integration of Navier-Stokes equations, the relaxation time of the bubble/droplet

r 2 d C D 6νc and the Lagrangian time ∆ max(v d )
to ensure that the inuence of the continuous phase dynamics on the bubbles/droplets is taken into account in the force balance.

dt traj = min(∆t, r 2 d C D 6ν c , ∆ max(v d ) ) (2.40)
For large number or large size of bubbles/droplets, it is possible to consider the eect of the dispered phase on the continuous phase through a two-way coupling approach, a force F lag is added to Navier-Stokes equations. When the concentration of the dispersed phase is high that the bubbles/droplets interact with each others, one can incoporate a four-way coupling by including a collision/coalescence models in the Lagrangian Tracking solver. It is clear that both the complexity of the physics and the computational time increase as we move from one-way to four-way coupling at the expense of accuracy. The choice of the adequat approach depends on the studied two-phase ow. In our case, since the fraction of the dispersed phase is not high (less than 10%) and not kept in the Lagrangian framework during the whole simulation, one-way coupling is chosen. Inside the separator, the dispersed phase is not only transported by the continuous phase but can also be in interaction with the solid part of the device namely the pipe, the swirl element or eventually the pick-up tube. This is why a coupling between IBM and Lagrangian Tracking is needed to make sure that the bubbles/droplets are not going to be trapped in a cell with α IBM > 0.

Inspired by the rebound of a particle on a solid surface, a collision model is then introduced to consider the rebound on the IB wall according to the normal n IBM with a restitution coecient e set to 1 for full restitution of the kinetic energy. The new bubble/droplet velocity in contact with the IB wall is therefore calculated as:

v new d = v d -(1 + e)(n IBM .v d )n IBM (2.41)
where n IBM is the solid surface normal oriented to the uid calculated as:

n IBM = ∇α IBM ∇α IBM (2.42)
The activation of the collision model goes through three steps. Figure 2.7 illustrates them as the following: rst we check if a bubble/droplet is located in a cell where α IBM > 0 after each trajectory integration (see Fig. 2.7a and 2.7b), if it is the case, the new velocity is calculated as 2.41. Finally, as the bubble/droplet was not supposed to be in an IB cell in the rst place, its current position is set to its previous position just before the trajectory integration x d = x old d as shown in Fig. 2.7c. This also allows to make sure that the bubble/droplet is not again trapped in another IB cell after the collision model but located in a uid cell. To simulate the interface in two-phase ows, one can either track the interface or capture it. The interface tracking method localises sharply the interface using for instance a front tracking method with ctive markers to dene a moving embedded mesh [START_REF] Unverdi | A front-tracking method for viscous, incompressible, multi-uid ows[END_REF] or a volume tracking with interface reconstruction [START_REF] Weymouth | Conservative volume-of-uid method for freesurface simulations on cartesian-grids[END_REF]. In interface capturing approach, the interface is diused over a number of cells and is dened using a distance function as in Level Set (LS) method or a volume fraction indicator as in Volume of Fluid (VoF). In the current work, since Lagrangian bubbles/droplets are switching their volume into the Eulerian framework which can directly be interpreted as a volume fraction indicator for VoF then the latter is chosen for the resolution of the light core which forms around the pipe center.

Transport equation

Volume of uid was rst introduced by Hirt and Nichols [START_REF] Hirt | Volume of uid (vof ) method for the dynamics of free boundaries[END_REF] to replace the Lagrangian markers used in interface tracking. A scalar C (volume fraction) is dened which equals to 1 in one phase, 0 in the other phase and varies between 0 and 1 at the interface. C is governed by the following transport equation:

∂C ∂t + u i ∂C ∂x i = 0 (2.43)
The two uids are assumed to be Newtonian and incompressible with no phase change. The surface tension σ is constant and uniform at the interface between the two uids. In such conditions, the velocity eld u and the pressure p satisfy the classical one-uid formulation of Navier-Stokes equations. The local density and dynamic viscosity are deduced from the value of C by a linear interpolation:

ρ = Cρ 1 + (1 -C)ρ 2 (2.44) µ = Cµ 1 + (1 -C)µ 2 (2.45)
The transport equation 2.43 for C is solved using the Flux Corrected Transport (FCT) algorithm proposed by Benkenida [START_REF] Benkineda | Developpement and validation of a numerical method for two phase ow without the interface reconstruction : application to the dynamics of the Taylor bubbles[END_REF]. It is based on a direction split approach when three intermediate equations 2.46,2.47,2.48 corresponding to the three directions are solved successively taking as initial condition the solution of previous equation. The order of the resolution of the equations changes at each time step so not to privilege a direction over another.

∂C ∂t

+ ∂Cu 1 ∂x 1 = C ∂u 1 ∂x 1 (2.46) ∂C ∂t + ∂Cu 2 ∂x 2 = C ∂u 2 ∂x 2 (2.47) ∂C ∂t + ∂Cu 3 ∂x 3 = C ∂u 3 ∂x 3 (2.48)
No interface reconstruction or redistance techniques are introduced. The problem of the numerical diusion of the interface which leads to its thickness of about 2 to 3 grid cells is controled through the work of Bonometti [START_REF] Bonometti | Development of a numerical method for the computation of incompressible two-phase ows with bubbles or drops[END_REF][START_REF] Bonometti | An interface capturing method for incompressible two-phase ows: Validation and application to bubble dynamics[END_REF]. It briey consists in making the velocity, used to transport the interface and dened locally over 2 to 3 cells, constant. A new velocity u(x) is then used in solving the transport equation in the i direction, dened for cells with the coordinate x located in the interface and equals u(x 0 ). The point x 0 should satisfy two conditions:

-C(x 0 ) = 0.5 -x 0 is on the same streamline as x if the angle β 1 = (n C , u) is higher than the angle β 2 = (e i , n C ), otherwise, x 0 is on the same direction as the mesh line i that goes through x (see Fig. This method was validated in the work of Bonometti [START_REF] Bonometti | Development of a numerical method for the computation of incompressible two-phase ows with bubbles or drops[END_REF] through diverse ow congurations.

Surface tension force

Surface tension force occurs at the interface between two dierent uids. In fact, molecules of the same uid are attracted to each other by an attractive force which is higher than the one that attract the molecules at the interface to those of the other uid. Surface tension force is then produced at the interface minimising the interface area. When using an interface capturing method, VoF for instance, the interface is not located within one cell but spread over 2 to 3 control volumes. To handle this constraint, Brackbill [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] developed the Continuum Surface Force (CSF) model to express this force as a function of the volume fraction gradient:

f σ = σk cur ∇C = -σ∇. ∇C ∇C ∇C (2.49)
with σ is the surface tension and k cur = -∇. ∇C ∇C is the curvature of the interface.

Since this force is added to Navier-Stokes equations to take into account the capillary eects, another condition on the time step ∆t has to be respected:

∆t ≤ (ρ 1 + ρ 2 )∆ 3 8σ
(2.50)

Spurious currents

Despite the use of central dierence scheme in the calculation of the surface tension force, it has been observed that the CSF suers from the generation of non-physical spurious currents due to errors in the discretization of the interface curvature, those errors are advected and are possibly amplied along with the interface leading to incorrect velocity, pressure pics at the interface and an additional source term in the vorticity production. This numerical problem can be tackled to some extent by introducing a successive smoothing procedure using a weighted volume fraction average C instead of C in the calculation of the interface curvature. For instance, it is expressed in 2D as:

C nf i,j = 3 4 C nf -1 i,j + 1 16 ( C nf -1 i+1,j + C nf -1 i-1,j + C nf -1 i,j+1 + C nf -1 i,j-1 ) (2.51)
with C 0 i,j = C i,j and n f = 1, ..., N N being the number of iterations. Dupont and

Legendre [START_REF] Dupont | Numerical simulation of static and sliding drop with contact angle hysteresis[END_REF] have shown that it is better to use a higher number of iterations for the calculation of the interface curvature set to 12 since the aim is to reduce the variations in the curvature and a lower number of iterations set to 8 for the volume fraction gradient which dene the force localization so to keep a sharp capillary force.

Now when it comes to the characterization of the intensity of the spurious currents.

Francois et al. [START_REF] Francois | A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework[END_REF] introduces the norm l 1 corresponding to the averaged spurious velocity in the domain and Renardy et al. [START_REF] Renardy | Prost: a parabolic reconstruction of surface tension for the volume-of-uid method[END_REF] denes the norm l ∞ as the maximum spurious velocity:

l 1 = 1 N 1 N 2 N 3 i,j,k u i,j,k -u th i,j,k (2.52) l ∞ = max( u i,j,k -u th i,j,k ) (2.53)
with u i,j,k and u th i,j,k are respectively the velocity from the simulation and the one from the theoretical solution. The norm l ∞ can be normalized to build the dimensionless capillary number dened as:

Ca max = µl ∞ σ (2.54)
This number is relevant when the viscous eects are dominant and the spurious currents resulting from the vorticity source term are balanced by the viscous term.

However, when inertia is the dominating eect, the velocity used to characterize the spurious currents is dened as:

u inertia = σ ρD (2.55)
with D is a length scale.

By normalizing the above velocity, the Laplace number is introduced as:

La = ρDσ µ 2 (2.56)
One can eventually link the spurious velocity based on the viscous term to the one based on the inertia term as:

l ∞ = u inertia √ La (2.57)
Dupont el al. [START_REF] Dupont | Numerical simulation of static and sliding drop with contact angle hysteresis[END_REF] performed 2D numerical simulation of a circular drop at equilibrium for water/air system, zero velocity was imposed on the boundries of the numerical domain, the results have shown a deformation of the drop and a motion due to the spurious velocities. The evaluation of the spurious currents magnitude has given that Ca max ≈ 0.004. A comparable value was later found by Abadie et al. [START_REF] Abadie | Hydrodynamics of gas-liquid taylor ow in rectangular microchannels[END_REF] through numerical simulations of a 2D Taylor bubble. Furthermore, both Dupont et al. [START_REF] Dupont | Numerical simulation of static and sliding drop with contact angle hysteresis[END_REF] and Abadie et al. [START_REF] Abadie | Hydrodynamics of gas-liquid taylor ow in rectangular microchannels[END_REF] did a mesh sensitivity of l ∞ and have shown that the intensity of spurious currents is slightly decreased by the mesh renement.

Validation: gas core in a solid body rotation using VoF

To investigate the ability of the CSF to handle spurious currents in a situation close to the one we have in the inline separator, we simulate a gas core inside a solid body rotation, we consider a two-phase ow of water/air with the following physical properties:

water (ρ w = 1000kg/m 3 , µ w = 0.0001P a.s), air (ρ g = 1kg/m 3 , µ g = 2.10 -5 P a.s), surface tension σ = 0.072N/m.

We perform 3D simulation of a VoF gas cylindrical core in a rotating IB pipe with (OX) as a rotation axis and ω is the constant angular velocity. The numerical domain is a box of size

L x × L y × L z = 0.45m × 0.1m × 0.1m made of N x × N y × N z = 200×46×46 cells along the e
x , e y and e z directions. Periodic conditions are imposed at the inlet and outlet of the pipe.

The diameter of the pipe is set to R = 23∆ and the initial gas core radius to R core = 13∆ with ∆ is the mesh size. The Reynolds number is dened as Re = R 2 ω/ν w and is xed to 4, 600. Laplace number equals La = 18.10 5 , l ∞ is then used to characterize the spurious currents.

Figure 2.12 illustrates the gas core behaviour from the initialization of the gas core to the generation of spurious currents and nally the breakage of the core. The interface in blue corresponds to C = 0.5 and the velocity is presented by red arrows.

We can see that at the beginning, the magnitude of the velocity varies with the radial position r as ωr, then high velocities are generated at the interface which is a direct indicator of spurious currents.

(a) Initialisation of the gas core at t * = 0 (b) Appearance of spurious currents at t * = 0.3 (c) Instability of the gas core at t * = 0.6 (d) breakage of the gas core at t * = 0.9 Therefore, to avoid this unphysical velocities, we have to reduce the ratio σ/µ w while keeping the same dimensionless numbers which characterize the system.

Ca max = µ w l ∞ /σ (2.
The Buckingham Π theorem is applied to nd non-dimensional groups of parameters to describe the ow. The system has 8 physical parameters (R, R core , ω, σ, ρ w , µ w , ρ g , µ g ) and 3 independent dimensions (mass, length, time). 5 dimensionless numbers are then constructed:

R * = R core /R (2.59) ρ * = ρ w /ρ g (2.60) µ * = µ w /µ g (2.61) Re = R 2 ω/ν w (2.62) W e = ρ w ω 2 R 3 /σ (2.63)
For a xed R * , the following table 2.2 summarizes the calculation of the dimensionless numbers for the previous gas/water system which leads to an intensity of the spurious currents proportional to σ/µ w = 72, another equivalent numerical gas/water system is found which gives the same dimentionless numbers and in the same time reduces the ratio σ/µ w to 1.

Variables (SI) gas/water system numerical gas/water Finally, we run the same simulation of a VoF gas core in a rotating ow using the values of the numerical gas/water system presented in table 2.2. Figure 2.14 shows the gas interface C = 0.5 at t * = 0.9 equivalent to the same time when a breakage of the core was observed in 2.12d, the numerical simulation reveals that the gas core remains stable and is rotating following the rotation of the pipe. Furthermore, no spurious velocities are observed at the interface proving that the instability we observed in gure 2.12 is eectively due to spurious currents.

Figure 2.14: Gas core stability in a rotating ow at t * = 0.9 using the numerical gas/water systems To directly compare the intensities of the spurious currents between the two gas/water systems, we plot l ∞ in both cases over time t * . Figure 2.15 shows the decrease of spurious velocity when moving from an air/water system to an equivalent system with a lower ratio σ/µ As previously mentionned, in the separator, the interface presents a variation over a wide range of length scales. The ratio between the largest scale (the length of the core) and the smallest scale (bubble/droplet) is of order 1000. On one hand, the Lagrangian Tracking is ecient to track the light phase when it is dispersed but is not adequat to investigate the stability of the core after the separation. On the other hand, Volume of Fluid is not the convenient method to simulate the dispersed phase which has a size of milimeters as it needs very ne meshes to capture the interface.

The solution is to develop a hybrid approach where a switch from Lagrangian Tracking to VoF takes place once the coalescence occurs without introducing any ective coalescence model since we are not interested into the micro scale. This type of hybrid LT/VoF has been recently a subject of interest to some researchers working on applications which involves multi-scale uid structures (separation, atomization, cavitation...). Yu et al. [START_REF] Yu | A parallel volume of uid-lagrangian parcel tracking coupling procedure for diesel spray modelling[END_REF] coupled Volume of Fluid and Lagrangian Tracking to simulate diesel spray using a Region Coupling Method (RCM), the latter consists in dening three regions which characterize the atomization, in the rst and third regions, only VoF and Lagrangian Tracking are employed respectively while the second region is the coupling region where the two methods overlap, the criteria to move uid parcels from VoF to LT is to have a volume less than 20% of the host cell and being discretised by less than 5 elements, gure illustrates an exemple of a simulation by Yu [START_REF] Yu | A parallel volume of uid-lagrangian parcel tracking coupling procedure for diesel spray modelling[END_REF] using the RCM approach, the brown contour represents the 0.1 liquid volume fraction while the Lagrangian droplets are scaled to their diameters. In short, developing a hybrid LT/VoF goes through certain steps: rst, dening a criteria for the activation of the switch from VoF to LT or vice-versa, and this depends mainly on the simulated two-phase ow. Then, identifying the elligible uid parcel which is subject to moving from one framework to the other. Finally, updating the volume fraction with the dispersed phase volume or specifying the number, volume and velocity of the new bubble/droplet to introduce when moving from VoF to LT. In the next subsection 2.7.2, an adequat hybrid LT/VoF for the inline uid separation is proposed.

Switching from LT to VoF

In the inline uid separator, since the core is formed downstream the swirl element, the hybrid LT/VoF is activated only in this region and this is the rst condition.

We also know that the bubbles/droplets migrate to the center of the pipe due to the centripetal force thus thoses bubbles/droplets trapped in cells located at the pipe center represent the starting point in the process of core formation. Thus, the second condition is to transform any dispersed phase located in the center of the separator or in contact with a lled cell C > 0 to VoF.

Figure 2.19 summerizes the steps to switch from the LT to VoF: -First, at each section x indexed by i along the separator, we detect bubbles/droplets located in (i, N y /2, N z /2) which corresponds to the center of the separator, then we tag them, to do that, a ag variable is associated to each bubbles/droplets and equals 0 by default. If the bubbles/droplet is verifying the condition to move to the Eulerian framework, the tag is set to 1 and their velocity and accelaration is set to 0 (see Fig.

2.19a)

-The tagged bubbles/droplets are removed from the Lagrangian framework, in other terms, no force balance or trajectory equation is solved for them. Then at each section x indexed by i, a cylindrical core of length ∆ (the mesh size) is constructed (see Fig. 2.19b). The details on how to dene the cylinder and initialize the volume fraction C i,j,k is in the following paragraph.

-When a bubble/droplet is located in a cell (i, j, k) where C i,j,k > 0, its ag is set to 1 and it undergoes the same treatment to move to VoF (see Fig. As previously introduced, at each section x indexed by i, we know the bubbles/droplets located at each section x which are subject to the switch to VoF since they are tagged with ag=1, their total volume is therefore calculated as:

V LT i = i 4 3 πr 3 d,tagged (2.64) 
And because the tagged bubbles/droplets are moving to the Eulerian framework, the Eulerian volume has to be updated by adding V LT i as following:

V V oF i = V LT i + j,k C i,j,k V i,j,k (2.65) 
with V i,j,k is the volume of the cell (i, j, k).

To locally form the core, a cylinder of length ∆ is reconstructed at each section where the switching criteria is veried, its radius is calculated as:

r V oF i,cyl = ( V V oF i π∆ ) 1/2 (2.66)
To calculate the new volume fraction in the cell (i, j, k), four radii are dened:

r i,j,k = (y 2 i,j,k + z 2 i,j,k ) r i,j+1,k = (y 2 i,j+1,k + z 2 i,j,k ) r i,j,k+1 = (y 2 i,j,k + z 2 i,j,k+1 ) r i,j+1,k+1 = (y 2 i,j+1,k + z 2 i,j,k+1 )
Where y and z are the cell Cartesian coordinates along e y and e z directions respectively.

Then, the minimum and maximum of these distances are determined:

r i,min = min(r i,j,k , r i,j+1,k , r i,j,k+1 , r i,j+1,k+1 ) (2.67) r i,max = max(r i,j,k , r i,j+1,k , r i,j,k+1 , r i,j+1,k+1 ) (2.68)
Finally, the volume fraction resulting from the LT is C LT i,j,k :

C LT i,j,k = 1 if r i,max ≤ r V oF i,cyl r V oF i,cyl -r i,min r i,max -r i,min if r i,min < r V oF i,cyl &r i,max > r V oF i,cyl (2.69) 
To make sure that the mass of the tagged dispersed phase is totally transformed into the Eulerian framework and that no mass loss or mass gain are taking place during the calculation of C LT i,j,k locally at each section i. We recalculate the VoF volume as V V oF,cylinder i = j,k C LT i,j,k V i,j,k with C LT i,j,k obtained from 2.69, and compare it to V V oF,cylinder i from equation 2.65, if the relative error is of order 0.1% then C LT i,j,k is nal, otherwise, C LT i,j,k is calculated in a loop until the condition on the relative error on the volume E i,V is less than 0.1%, the extra step in the algorithm after 2.69 is then:

For each section i, the initialization of r i,test,max and r i,test,min :

r i,test,max = 1.5r V oF i,cyl r i,test,min = 0.5r V oF i,cyl
Then the loop starts:

while

( E i,V > 0.1%) if(V V oF,cylinder i > V V oF i
) which means we have a mass gain then r i,test,max = r

if(V V oF,cylinder i < V V oF i
) which means we have a mass loss then r i,test,min = r

The radius to test if it is resulting in the correct VoF volume is:

r i,test = 0.5(r i,test,max + r i,test,min ) (2.70)
With this radius, we redistribute the volume fraction C LT i,j,k as:

C LT i,j,k = 1 if r i,max ≤ r i,test r i,test -r i,min r i,max -r i,min if r i,min < r i,test &r i,max > r i,test (2.71) 
We nally recalculate E i,V > 0.1% to check the exit condition of the loop.

At the end of the switching algorithm (which starts from the bubbles/droplets detection step to equation 2.71), a verication if any other bubble/droplet is located in the updated C LT is needed, if there is any, then the switching algorithm is called until no bubble/droplet is trapped in a cell with C LT > 0. This case can eventually occur when, at the same time step, the interface of the formed core C LT > 0 reaches some bubbles/droplets which where not concerned by the hybrid LT/VoF (see Fig. Now, the volume fraction C i,j,k which will be used as initial condition in the next time step for the FCT is updated as C i,j,k = C lag i,j,k (see Fig. A close-up view on how the bubbles are progressively forming the gas core at a cross-section over time is given in Fig. 2.23. The bubbles are colored with their velocity and as previously explained, when the bubbles move to the Eulerian framework, their velocity is set to 0 so the red points represent the transformed bubbles.

In each section, we also visualize the cylindrical core as it grows. We should note that parallel computing is used to run the simulations. And to check the achieved HPC performance of the code, we consider a 3D simulation of the separator in a numerical domain of size L x × L y × L z = 0.92m × 0.1m × 0.1m made of N x × N y × N z = 800 × 92 × 92 cells along the e x , e y and e z directions. We run the simulations on the supercomputer Olympe from CALMIP at the University of Toulouse on N cores. In Fig. 2.25, T 32 is the time needed to run one time step on 32 cores and T N is the time needed on N cores. This time is plotted as a function of the number of cores both for a single-phase ow simulation of Re = 50, 000 when LES, IBM and the wall model are activated and for two-phase ow simulation of the same Reynolds number with the injection of a set of 70000 bubbles and the activation of whole hybrid approach summarized in Fig. 2.24. The achieved HPC performance is compared in the two cases to an ideal linear performance. Singlephase ow scales good up to 64 cores, then, the communication time between the cores starts to be relevant. For the two-phase ow case, it is worth noting that only the solvers for the continuous phase are runned in parallel (IBM, LES, VoF) while the Lagrangian Tracking is in series since the number of bubbles is not very high and that the tagged bubbles are removed from Lagrangian framework which further reduces the number of trajectory equations solved by the LT solver. The achieved performance is lower than the single-phase ow which is a normal response of the code. In short, parallel computing is favorable in the two cases as it helps getting the results in an acceptable time of such an important calculation domain. 

Conclusion

In this chapter, the hybrid CFD approach to simulate the inline uid separation is introduced, it involves four main CFD methods namely: Immersed Boundary Method (IBM) for simulating the comlex geometry of the swirl element, Large Eddy Simulation (LES) for turbulence using the mixed Dynamic Smagorinsky model, Lagrangian Tracking (LT) to calculate the trajectory of the dispersed phase and Volume of Fluid (VoF) for the core simulation. The discretization and intergation of the equations for each method are presented as it had been before developed in JADIM. However, to activate the four solvers, hybrid models need to be developed to ensure a correct interaction between them. IBM is successfully used for a CAD le for a complex geometry. The IBM solver in JADIM has been validated in many studies of ows around IB objects [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF][START_REF] Pierson | Settling of a sphere through a horizontal uid-uid interface[END_REF]. Similarly, the LES solver has been implemanted and tested for dierent turbulent ows: channel ows [START_REF] Calmet | Large eddy simulation of high schmidt number mass transfer in a turbulent channel ow[END_REF] and pipe ows [START_REF] Legendre | Forces on a high reynolds number spherical bubble in a turbulent ow[END_REF] with respect to the constraint of mesh renment next to the wall to capture the viscous sub-layer. Yet, our objectif is to use both solvers within one simulation on a coarse mesh through the development of new wall models for hybrid IBM/LES method [START_REF] Atmani | Stochastic wall model for turbulent pipe ow using immersed boundary method and large eddy simulation[END_REF].

In this chapter, we rst investigate the capacity of IBM to solve a ow inside an IB solid and for that we simulate Poiseuille ow and conclude how the model should be formulated and implemented. Then, turbulent pipe ow is studied, two wall models named: mean velocity model and stochastic model are proposed and validated, the eect of Reynolds number and the mesh size is analyzed and it is shown that with the wall model, correct mean velocity and uctuations can be obtained.

Poiseuille ow

To evaluate the ability of IBM to predict the ow inside an IB solid, we start with studying the classical Poiseuille ow, for which the exact solution for the velocity U and shear stress τ in function of the radial position r are:

U (r) = - 1 4µ dp dx R 2 -r 2 , τ (r) = - 1 2 dp dx r (3.1)
We consider a pipe, simulated using IBM and dened by 2.26, of diameter D = 2R and axis (Ox) inside a box of size L x × L y × L z along the e x , e y and e z directions (Fig. 3.1). The mesh is Cartesian and regular of size ∆ and three dierent meshes m1, m2 and m3 are considered corresponding to the number of cells per pipe radius R/∆ = 8, R/∆ = 16 and R/∆ = 32, respectively. Figure 3.2 represents the mesh on a cross section of the pipe. As shown, the solid wall thickness decreases when the mesh is rened. To evaluate the convergence of the error at the IB wall, we calculate the relative error of the velocity at the IB wall as:

U (R) = U (R) analytical -U (R) simulation U (0) analytical (3.2)
And relative error of the shear stress at two positions: at the IB wall r = R and in a uid cell r = R/2.

τ (r) = τ (r) analytical -τ (r) simulation τ (r) analytical (3.3)
As shown in Fig. 3.4, the velocity and shear stress at the IB wall using IBM with no model is lower than a second order. The IBM does not conserve the second order accuracy because of its diusive aspect. U (R) (left), the shear stress at the IB wall: τ IBM (R) and in the uid at R/2: τ F luid (R/2).

The signicant loss of accuracy close to the wall is the direct consequence of the IBM solid-uid interaction description used for the simulation. In the standard method rst applied here, a zero velocity is considered across the entire IBM wall thickness zone i.e. for 0 < α IBM ≤ 1. We clearly observe in Fig. 3.3 that the resulting viscous shear stress departs from the linear evolution in this region and this impacts the shear stress in the uid close to the wall. The control of the velocity prole cannot be made with the IBM function given by equation 2.26 since it mainly controls the width of the IBM wall thickness. The proposed method consists in directly imposing the correct velocity evolution inside the IBM wall thickness. In the case of the Poiseuille ow, the exact solution is given by equation (3.1) therefore the corresponding velocity prole for the solid wall velocity v s of the solid-uid interaction is then:

v s,x (r) = - 1 4µ dp dx (R 2 -r 2 ) , v s,y = v s,z = 0 (3.4)
By the denition of f IBM , this forcing is eective for α IBM > 0. The velocity prole in the IBM wall thickness cancels at the exact wall position r = R corresponding to α IBM = 0.5. Note that the velocity for r > R is then negative in order to respect the correct value of the velocity gradient, and thus the wall shear stress at r = R. From the DNS simulations of a Poiseuille pipe ow, we have demonstrated that the IBM method using the standard solid-uid interaction is grid convergent. However the error with the exact solution can be signicantly lowered with an appropriate condition applied inside the region of IBM wall thickness. The objective of the next section 3.3 is to consider turbulent pipe ow simulations via the IBM/LES solver.

Hybrid IBM/LES

Simulating turbulent ows by coupling IBM for complex geometries and LES for turbulence raises the question of adapting the wall boundary conditions for their coupling. The resolved LES can capture the viscous boundary layer therefore requires an adapted mesh renement next to the wall. Specic wall conditions for IB walls to overcome that resolution constraint were proposed. Tessicini et al. [START_REF] Tessicini | Wall modeling for large-eddy simulation using an immersed boundary method[END_REF] solved the LES equations up to the second grid cell away from the wall, then switched to solving the simplied turbulent boundary-layer equations on an embedded rened wall mesh. The eddy viscosity is obtained from a simple blend of an eddy viscosity model with near wall damping function. Cristallo & Verzicco [START_REF] Cristallo | Combined immersed boundary/large-eddysimulations of incompressible three dimensional complex ows[END_REF] have upgraded the work of Tessini et al. [START_REF] Tessicini | Wall modeling for large-eddy simulation using an immersed boundary method[END_REF] by using LES till the rst grid point at the wall while the wall shear stress is deduced from a boundary layer approximation. Roman et al. [START_REF] Roman | A simple wall-layer model for large eddy simulation with immersed boundary method[END_REF] used a prediction of the velocity at the rst uid grid point in contact with the IB solid boundary assuming the classical log-law evolution and imposed a RANS-like eddy viscosity. We note that these methods have been developed in the context of sharp immersed boundaries when the IB wall is well located in the Eulerian grid.

Using a diusive IBM with Lagrangian markers, Ma et al. [START_REF] Ma | A dynamic wall model for large eddy simulation of turbulent ow over complex/ moving boundaries based on the immersed boundary method[END_REF] solved the boundary layer equation on an embedded mesh and used the local wall shear stress calculated on the Eulerian points to correct the sub-grid scale viscosity.

In our case, the IBM/LES coupling consists in applying the numerical procedure described for the IBM method to the governing equations considered for LES simulations. The IBM coupling term is then expressed using the ltered velocity eld:

f k IBM,i = α IBM v k-1 s,i -u k i ∆t (3.5)
Now, we simulate turbulent pipe ow with the use of the IBM/LES method on the same numerical domain used in the Poiseuille ow study. The ow is again driven by a constant pressure drop. We note τ * = R 2 |dp/dx| the mean wall shear stress, < u * >= τ * /ρ the mean friction velocity, * =< u * > /ν the wall unit length and Re * = R < u * > /ν the friction Reynolds number. Three high Reynolds numbers ow Re = u b D/ν are simulated: Re = 50, 000, Re = 100, 000 and Re = 500, 000. Discussion on the results will be rst conducted for Re = 100, 000 because of the availability of several reference results for the mean axial velocity prole U + and the root mean square (rms) velocities u +

x , u + r , u + θ along the x, r and θ directions normalized by < u * >, respectively. The corresponding references, values of Re and Re * are reported in table 3 The simulations are performed using the three meshes m1, m2 and m3. The ratio ∆/ * is reported in Table 3.2 for the three considered Reynolds numbers. With regard to high turbulent pipe ows, these meshes are coarse and none of them is adapted for a full resolution of the viscous sub-layer, justifying the need of an appropriate wall modeling. This is clearly shown in Fig. 3.6 where the simulations performed using mesh m2 are compared to the data referenced in Table 3.2 for Re = 100, 000. As reported, all the data from literature are collapsing on a similar evolution for the mean velocity U + . The IBM/LES simulation using the standard IBM solid-uid interaction presented by circles is signicantly under-estimating the mean velocity indicating that the wall friction is not correctly predicted. This response of IBM/LES is very similar to what we observed for a laminar ow. Considering the velocity uctuations, thanks to the LES solver, their order of magnitude is correctly captured inside the pipe but not close to the wall.

The objective is now to propose a modied IBM solid-uid interaction in order to improve the results and in particular to recover a correct magnitude for the mean velocity. Two approaches will be proposed in the following: the rst one is based on the mean velocity prole while the second makes use of a stochastic model for the velocity to impose in the IBM wall thickness. 3.1). The "log-law" and "power law" modeling are considered with the constants (k = 0.41 ; B = 5) and (A = 8.3 ; C = 1/7), respectively.

Mean velocity wall model

In the case of turbulent pipe ow, no exact solution for the velocity prole is available to make possible an unsteady and local control of the velocity eld inside the IBM wall thickness as done in the previous section for the laminar Poiseuille ow.

However the mean velocity prole close to a turbulent wall in a pipe has been characterized for a large range of Reynolds numbers. In particular the mean velocity can be described by the classical log-law evolution or can be tted by a power law.

Both laws have been considered at high Reynolds number regimes in experimental and numerical studies. See for example [START_REF] Cheng | Power law versus log law in wall bounded turbulence: A large eddy simulation perspective[END_REF] where both laws compare well with LES simulation over a large range of Reynolds numbers varying from 10 4 to 10 11 .

In this section, both the "log-law" and "power law" modeling are regarded to control the velocity description inside the IBM wall thickness. Since the model has to be implemented in all the IBM thickness, a velocity condition also has to be imposed for 0.5 < α IBM < 1, i.e. for negative values of the wall unit distance r + = (R-r)/ * . In order to respect the condition v s (r + = 0) = 0 and the continuity of the velocity for discretization purposes in the viscous shear calculation, the velocity eld is extended for r + < 0 (i.e. r > R). Under these considerations, the "log law" modeling consists in imposing in the IBM forcing term f IBM dened by (3.5) the velocity eld v s following:

v s,x = r + < u * > if | r + | ≤ 11 sign(r + ) ( 1 k log(| r + |) + B) < u * > if | r + | > 11 , v s,r = v s,θ = 0 (3.6)
with k = 0.41 and B = 5 [START_REF] Th | Mechanical similitude and turbulence[END_REF], while the "power law" modeling considers:

v s,x = r + < u * > if | r + | ≤ 11 sign( r 
+ ) A | r + | C < u * > if | r + | > 11 , v s,r = v s,θ = 0 (3.7)
with A = 8.3 and C = 1/7 [START_REF] Werner | Large-eddy simulation of turbulent ow over and around a cube in a plate channel[END_REF].

To analyze the eect of such control of the velocity in the IBM wall thickness, numerical simulations are rst performed for Re = 100, 000 using mesh m2. of turbulent pipe ow, cannot be detected with such a mesh resolution (see Table 3.2 ). However we see a peak in our curves which is shifted away from the near wall with a higher intensity. Similar behavior of the peak location is reported by Ma [START_REF] Ma | A dynamic wall model for large eddy simulation of turbulent ow over complex/ moving boundaries based on the immersed boundary method[END_REF] using a dynamic wall model for IBM/LES simulations. Besides, the simulations on other meshes reveal that the peak gets closer to the wall as we rene the mesh.

The results obtained with the model follow the expectations but still need to be adapted and one possible solution to do so is through the modication of the wall law coecients. An adjustment of the coecients B for the log-law and A for the power law is performed aiming at minimizing the error on the bulk velocity. Figure 3.7 depicts the relative error on the bulk velocity as a function of the wall law coecients for the mesh m2. The reported error E U is calculated as:

E U = U expected -U simulation U expected (3.8)
where U expected is the expected value of the bulk velocity based on the pressure drop imposed to the pipe ow and U simulation is the one given by the simulation. Positive values represent the case of an underestimate of the bulk velocity as observed with no wall model giving E U = 55%. As shown in Fig. 3.6, the use of the two considered wall models induces an over-compensation of the mean velocity with a relative error E U = -20%. Thus, by adjusting the values of the model coecients, an optimal value of B ≈ 0 and A ≈ 5.8 for the log and power models, respectively, can be found with a relative error less than 1%. The ow statistics when using these coecients are reported in Fig. 3.6 and discussed more in section 3.6. As shown, with the adapted wall law coecient, one is able to obtain the accurate mean velocity proles. However, in terms of velocity uctuations, the model does not improve remarkably the rms in comparison with the basic model. This is explained by the fact that the model uses only a constant friction velocity without introducing any source of uctuations. And this can justify two main features of this model:

-the need of adjusting the wall law coecient. For instance, the simulation using the classical law coecients yields to higher bulk velocity because it does not have enough uctuations, the latter contributing to the mean shear and can bring back the correct mean velocity prole. In short, it is not just about controlling the bulk velocity but also acting on the uctuations.

-the rms velocities remain unchanged for dierent values of the wall law coecients which means that tuning the wall law coecients may not be the relevant approach if we are interested in reproducing the uctuations as well, keeping in mind that a perfect uctuation remains challenging if considering coarse meshes.

Therefore, we can conclude that the model based on the mean friction velocity overestimates the bulk velocity and needs to be corrected by an appropriate modeling for the uctuations. Indeed, if we manage to increase the uctuations, the mean velocity will decrease and it will be automatically corrected with no need of tuning the wall law coecients. This is the objective of the stochastic wall model proposed in the next section 3.5.

Stochastic wall model

The previous model based on the mean friction velocity needs to be corrected by taking into account the uctuations in the velocity imposed in the IBM wall thickness.

Indeed, the wall region is known to present signicant uctuations with characteristic spatial and temporal correlations resulting from the regeneration cycle of turbulent structures as well as from the interaction with the outer ow [START_REF] Jiménez | The autonomous cycle of near-wall turbulence[END_REF][START_REF] Smits | High-Reynolds Number Wall Turbulence[END_REF]. It has been pointed out [START_REF] Pan | Extremely high wall-shear stress events in a turbulent boundary layer[END_REF] that the complex ow structure is strongly correlated to the wall shear stress which thus presents large scale uctuations [START_REF] Hutchin | Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer[END_REF][START_REF] Pan | Extremely high wall-shear stress events in a turbulent boundary layer[END_REF][START_REF] Gomit | Structure of high and low shear-stress events in a turbulent boundary layer[END_REF].

To mimic the eect of the unresolved turbulent wall structures, we propose to use a stochastic eld which reproduces the uctuations of the wall shear stress, for the denition of the solid velocity eld v s used for IBM forcing term f IBM (3.5).

Reecting the view of the momentum cascade taking place in the logarithmic layer as a self-similar hierarchy of wall-attached eddies [START_REF] Townsend | Equilibrium layers and wall-turbulence[END_REF][START_REF] Perry | A theoretical and experimental study of wall turbulence[END_REF], we express the local IBM velocity from the law of the wall, but substituting the average friction velocity by a random friction velocity:

v s,x (r, θ, x, t) = r + u * (θ, x, t) if | r + | ≤ 11 sign(r + ) ( 1 k log(| r + |) + B) u * (θ, x, t) if | r + | > 11 (3.9)
v s,r = v s,θ = 0 while keeping the original values of k = 0.41 and B = 5.0.

Note that the length scale l * used to normalize r remains constant and is based on the average friction velocity. This model is supported by the self-similarity of large scales leading the velocity prole to scale with u * as reported in [START_REF] Hutchin | Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer[END_REF][START_REF] Gomit | Structure of high and low shear-stress events in a turbulent boundary layer[END_REF]. In order to reproduce the very large deviations of the wall shear stress [START_REF] Pan | Extremely high wall-shear stress events in a turbulent boundary layer[END_REF], we assume that the stochastic eld u * (θ, x, t) presents a log-normal distribution [START_REF] Maniero | Adhesion and detachment uxes of micro-particles from a permeable wall under turbulent ow conditions[END_REF][START_REF] Sheng | Buer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer[END_REF]. Thus, the variable f = ln(u * / u * ) has a normal distribution with average µ and variance σ 2 . From the expression of the moments of log-normal variables ( (e f ) q = e qµ+q 2 σ 2 /2 ), we impose for its average µ = -σ 2 /2 to have e f = 1 and balance the global momentum budget. Considering that the variance of u * is commensurate with the square of its mean, we introduce the ratio α h = u * 2 / u * 2 which is related to σ as σ 2 = ln(1 + α h ). Indeed [START_REF] Alfredsson | The uctuating wall-shear stress and the velocity eld in the viscous sublayer[END_REF] showed that the standard deviation of u * is between 15% and 40% of its mean value from experimental and DNS data and is probably Reynolds number dependent. We also want to impose the spatial correlation lengths in the streamwise and spanwise directions as well as the temporal correlation to account for both lifetime of the turbulent structures and their advection by the mean ow. These spatio-temporal correlations of the wall shear stress have been reported in [START_REF] Gomit | Structure of high and low shear-stress events in a turbulent boundary layer[END_REF][START_REF] Hutchin | Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer[END_REF][START_REF] Pan | Extremely high wall-shear stress events in a turbulent boundary layer[END_REF]. It has been observed that the correlation lengths in the streamwise and spanwise directions are around 1000 and 100 wall units respectively, similarly to the near wall ow structures [START_REF] Smith | The characteristics of low speed streaks in the near wall region of turbulent boundary layer[END_REF][START_REF] Chernyshenko | The mechanism of streak formation in near wall turbulence[END_REF][START_REF] Wallace | Space-time correlations in turbulent ow: review[END_REF][START_REF] He | Space-time correlations and dynamic coupling in turbulent ows[END_REF]. We expect the convection velocity of the wall friction to be scale-dependent [START_REF] Monty | Turbulent channel ow: comparison of streamwise velocity data from experiments and direct numerical simulation[END_REF][START_REF] Hutchin | Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer[END_REF][START_REF] Álamo | Estimation of turbulent convection velocities and corrections to taylor's approximation[END_REF]. Indeed, the large scales of the wall friction, which are related to events taking place in the logarithmic region have been reported to be convected at a velocity that is much faster than the average velocity in the near-wall region [START_REF] Hutchin | Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer[END_REF][START_REF] Kreplin | Propagation of perturbations in the viscous sublayer and adjacent wall region[END_REF], while the smaller scales which are due to the near-wall cycle appending in the buer layer are convected with the characteristic velocity of the buer layer [START_REF] Monty | Turbulent channel ow: comparison of streamwise velocity data from experiments and direct numerical simulation[END_REF][START_REF] Álamo | Estimation of turbulent convection velocities and corrections to taylor's approximation[END_REF]. Overall, the convection velocity, in wall unit, is estimated to stand in the range u + adv = 10 -20 [START_REF] Hutchin | Three-dimensional conditional structure of a high-reynolds-number turbulent boundary layer[END_REF][START_REF] Álamo | Estimation of turbulent convection velocities and corrections to taylor's approximation[END_REF].

To model the wall friction velocity eld, we generate initially a eld without spatial correlations (delta-correlated in space) but presenting a temporal correlation obtained by the resolution of a stochastic dierential equation. Then, in a second step this eld is convoluted with a spatial kernel to impose the adequate spatial correlation prescribed by the shape of the convolution kernel. The last step consists in taking the exponential of the eld to obtain a log-normal eld.

According to this procedure, we have:

f (t, x) = G(x -x')χ(t, x')dx' (3.10)
where the stochastic process with delta-correlation in space is noted χ and G is a convolution kernel with x(x x , x θ ) and x'(x x , x θ ) position vectors. Note that the spatial autocorrelation of f is only set by

G since χ is delta-correlated ρ f (x) = G G
where denotes the convolution product.

To deem the advection, we decompose the convolution kernel into two parts: G = G s δ(x -u adv t), the second contribution representing the spatial translation due to the advection at a constant speed u adv . We propose to model the spatial contribution G s as:

G s (x) = β exp - x x L cx 2 - x θ L cθ 2 (3.11)
and β is a pre-factor for normalization purpose. L cx and L cθ are the characteristic lengths in the streamwise and the spanwise directions respectively and are set to L cx = 1000 * and L cθ = 100 * . In the current study, we take the advection velocity in the streamwise direction with a magnitude set to u adv = 20 u * . We consider that the eld χ is the solution of a stochastic dierential Langevin equation dened and solved for each cell in the domain and at each time step:

dχ = - χ -µ χ T c dt + 2σ 2 χ T c dW (3.12)
where dW is an increment of the Wiener process, a normal variable generated for each cell at each time step with < dW >= 0 and < dW (t, x)dW (s, x') >= δ(ts)δ(x-x'). In equation (3.12) the parameter µ χ and σ 2 χ are respectively the mean and the variance of χ, while T c corresponds to the correlation time of χ. Here we have estimated the lifetime of the wall friction events as T c = L cx /u adv . From (4.24) the moments of f and χ are related, therefore we impose for µ χ and σ 2 χ :

µ χ =< f > ( G(r)dr) -1 = - 1 2 ln(1 + α h )( G(r)dr) -1 (3.13) σ 2 χ =< f 2 > ( G 2 (r)dr) -1 = ln(1 + α h )( G 2 (r)dr) -1 (3.14)
Taking advantage of the periodicity in the x and θ directions, we compute the convolution product in the spectral space through the Fourier transform making the calculation much faster:

F(f ) = F(G s ) exp(ik.u adv t)F(χ) (3.15) 
with i 2 = -1 and k the wave vector. The inverse Fourier transform allows us to obtain f and nally the friction velocity eld is as follows:

u * =< u * > exp(f ) (3.16)
We present in gure 3.8 a realization of the eld obtained with this stochastic model (see also the movie in supplementary materiel). We observe that the model reproduces elongated structures moving with the prescribed velocity u adv as expected. The main control parameter of the stochastic model is α h which controls the magnitude of the imposed uctuations. It is to note that α h being the variance of u * /< u * >, setting α h = 0 restores the model with constant friction velocity presented in the previous section. To study the eect of α h on the ow statistics, we carried out simulations of the turbulent pipe ow with an expected value of Re = 100, 000 on the mesh m2 with α h = 1, α h = 0.3 and α h = 0.07. Figure 3.9

shows the mean velocity and the velocity uctuations as a function of the distance from the wall normalized by u * and * . As expected, the stochastic IBM velocity is eectively acting on the velocity uctuations. Increasing α h leads to a signicant increase of the rms of the three components of the velocity all across the pipe section.

In particular, we notice the presence of a near-wall peak for both spanwise and radial components which was not present in the simulation without model. For α h = 0.07 we observe that the prole of the rms of the various velocity components are in good agreement with the experimental data, expected for the rst two points next to the wall.

Adding uctuations in IBM region enhances the shear stress and consequently it leads to a attened mean velocity prole and causes a reduction of the bulk velocity.

For the largest values of α h it is clear that the level of uctuation is too high and gives and under-prediction of the bulk velocity, but for α h = 0.07, the mean velocity appears to match fairly well the experimental data. This is conrmed in gure 3.10 that presents the relative error on the bulk velocity E U dened by relation (3.8) as a function of α h . For α h = 0, one recovers an overestimate of the bulk velocity with E U = -22%, as already obtained with the mean velocity model (3.6) (see gure 3.7), while for α h = 0.07, which is consistent with the value reported in [START_REF] Alfredsson | The uctuating wall-shear stress and the velocity eld in the viscous sublayer[END_REF], the relative error is less than 1%. Red symbols stand for the reference studies (see Table 3 in blue and red lines, respectively. As observed, the uctuations can be adjusted thanks to the use of a stochastic model. In particular, the intensity of the peaks in the near wall region is improved: the peak is reduced in the streamwise direction while its magnitude is increased in the radial and azimuthal directions. The stochastic approach seems to provide a better prediction of the uctuating ow structures along the three spatial directions. for Re = 100, 000. Red symbols stand for the studies of reference (see Table 1). Blue line: relation (3.6) for the "log law". Red line: relation (3.7) "power law".

Sensitivity of model parameters to grid resolution and Reynolds number

The previous analysis has been conducted for a selected Reynolds number Re = 100, 000 and a given grid resolution (mesh m2). Each model has been optimized to provide the correct bulk velocity and optimized parameters have been proposed: B = 0, A = 5.8 and α h = 0.07 for the log law model, the power law model and the stochastic model, respectively. A similar investigation can be conducted for dierent Reynolds numbers and grid resolutions. The objective is now to discuss the eects of both the grid resolution and the pipe Reynolds number on the optimized values for B, A and α h . For that purpose, numerical simulations are carried out for the three Reynolds numbers Re = 50, 000, 100, 000 and 500, 000 and the three meshes m1, m2 and m3. For each case, each model is considered and the corresponding model parameter (B, A or α h ) is adjusted in order to obtain the correct bulk velocity (with a relative dierence on E U less than 1%), while imposing a constant value to the mean pressure drop as specied before. As shown in Fig. 3.12, the evolution of A can be simply described using the relation:

A = 20.5 ∆ R + X(Re) (3.17)
with the evolution of X(Re) versus Re reported in Fig. 3.12 (right). The evolution of B can be described using the relation:

B = 37.6 ∆ R -2.23 (3.18) 
Note that while the value of the coecient B becomes negative for suciently ne mesh, the IBM velocity v s,x for r + > 11 remains positive. Indeed, for consistency the IBM velocity needs to tends to 0 as the mesh is rened. The variation of the parametr of the stochastic model α h is reported in Fig. 3.13. α h is found to decrease with the grid spacing. In fact, as the mesh gets coarser, the simulated bulk velocity is decreased and wall friction has to be reduced. This can be directly controlled with a reduction of the magnitude of the uctuations imposed inside the IBM wall region. However, the same order of magnitude α h = O(0.1) is observed for the dierent Reynolds numbers and grid resolutions considered. A rst rough estimate of the evolution of α h can be described with:

α h = 0.00025 ∆ R -2 (3.19)
for the range of Reynolds number we considered.

The stochastic model is based on an instantaneous log law description (B = 5

being imposed) of the velocity inside the IBM wall thickness (see relation (3.9)). As shown above, changing B when using the log model only and α h when using the stochastic forcing (B being set xed) have both a clear impact on the bulk velocity.

A better optimization of the combination of B and α h in the stochastic model may certainly provide a better description of the uctuation level and peak location. 

Flow streaks

The turbulent ow elds obtained with the dierent approaches are now compared.

The Reynolds number is Re = 100, 000, the mesh is m2 and numerical simulations with the optimized parameters (B = 0, A = 5.8 and α h = 0.07) are compared to the basic IBM wall forcing. We also compare the impact on the LES resolution of the dierent IBM wall models. For that purpose the total viscosity ν total = ν + ν T is considered. Figure 3.16 reports an instantaneous eld of ν total made dimensionless by the uid viscosity ν in a pipe section. As shown, the intensity of ν t is enhanced when using the stochastic model. From a LES modeling point of view, this can be explained by the induced eect of the uctuations on the strain rate tensor and the local Smagorinsky coecient C s used to calculate the sub-grid viscosity ν T . 

Eect of the models on the pressure

Finally, it is worthwhile to check the eect of the models on the pressure. For that, we plot the mean and rms of the pressure for Re = 50, 000 and compare it to a previous DNS [START_REF] Khoury | Direct numerical simulation of turbulent pipe ow at moderately high reynolds numbers[END_REF] of Re = 37, 700. Figure 3.17 represents the pressure normalized by 0.5ρu * 2 in function of the distance from the wall. The mean pressure prole is reported by considering the mean wall pressure as the reference pressure, we can see that the simulations without and with the mean velocity model give closer results to the DNS both for the mean as well as the rms of the pressure.

However, the stochastic model with the optimal α h which is able to reproduce the correct bulk velocity introduces higher pressure uctuations. Now, going back to our stochastic model, two parameters are linked to the spacetime correlation, namely, T c and L cx . Simulations considering a xed α h have shown that acting only on T c does not inuence on the pressure, while using higher length correlation L cx , the mean pressure is corrected, the rms are reduced, the instantanous pressure is impoved but the bulk velocity is overestimated. This is illustrated via the pressure statistics in Fig. 3.17 and gure 3.19 which compares the normalized instantaneous pressure eld when taking L cx = 2570l * and L cx = 6630l * instead of L cx = 1000l * (Fig. 3. 18-d). An improvement is spotted with the highest correlation length but again the error on the bulk velocity surpasses 1%. We conclude that increasing the correlation length decreases the pressure uctuations and increases the bulk velocity, and if we want to recover (decrease) in this case the mean velocity, we will have to increase α h which will directly raise the pressure uctuations. Finding the couple (α h , L cx ) which can reproduce in the same time both the correct bulk velocity and the pressure uctuation does not seem to be that easy and quick. This is why we consider as a perspective of this work the development of a stochastic zero divergence velocity vector with keeping α h as the model parameter and aiming at getting an intermediate uid velocity close to the one respecting the zero divergence condition.

Conclusion

A hybrid IBM/LES method has been presented addressing the challenge to simulate high Reynolds number pipe ows on coarse Cartesian meshes. Firstly, IBM method is used to simulate a laminar pipe ow and numerical results demonstrate a second order convergence to the exact solution. By introducing the correct solid velocity condition in the forcing term inside the IBM wall thickness, the convergence is remarkably improved and the method inderlines its eciency. Then, turbulent pipe ows of Reynolds numbers in the range 50,000 to 500,000 are considered coupling the IBM method and a LES solver. As expected, the use of a coarse grid resolution does not allow to reproduce both the mean bulk velocity and the uctuations. Extending the IBM wall modeling introduced for the simulation of the laminar pipe ow, an IBM wall forcing scheme is developed based on the classical turbulent wall laws, namely the log-law and the power law, able to give the mean velocity prole. We show that adjusting the control parameters of these two models allows to recover the correct bulk velocity and mean velocity prole. With the aim of improving the uctuations and spatial distribution of streaks inside the pipe, the log law modeling is coupled with a stochastic wall model to generate an unsteady and non-uniform forcing within the IBM wall thickness. The level of uctuation is then corrected close to the wall approaching the reference data. The eect of both the Reynolds number and grid resolution are then discussed and empiric correlations for the model parameters are established.

We can consider further development of the stochastic modeling for the velocity in the IBM wall region, in particular reconstructing the three components of the free divergence velocity eld should ameliorate the prediction of the velocity and pressure rms in the near wall region.

The main interest of the hybrid IBM/LES presented here is to demonstrate that simulations coupling LES and IBM can be performed for highly turbulent pipe ows with a coarse Cartesian resolution though a wall model. This is of great interest for the simulation of high Reynolds number ows not only in simple geometries but also in complex geometries. We can nally say that all the CFD development are done and that the solver is fully ready to simulate the inline uid separation.

Chapter 4 CFD simulations of swirling single-phase ow in the separator

Introduction

The separator is designed and meant to be used for two-phase ows however it is interesting or even essential to rst investigate single-phase ow especially that the swirling ow generated by the swirl element is complex and was not extensively studied. Moreover the simulations do not require all the hybrid approach reducing then the computational cost. Therefore, in this chapter, we rst introduce the design of the swirl element and give some general aspects of the swirling ow generated by the separator namely the swirl number, the centrifugal force and the ow split. Then, a mesh sensitivity study is carried out to nd the optimal mesh size to be used in the rest of this PhD work.

An original numerical procedure is later introduced to simulate the valve condition at the pick-up tube and nally we present the results of our numerical simulations of swirling single-phase ow in the separator for dierent Reynolds numbers and ow splits.

Description of swirling ow in the separator

Swirl element

The inline uid separation, as briey introduced in the rst chapter, consists in separating two uids of dierent densities by generating a centrifugal force. This force pushes the heavy phase towards the outer wall while leaving the light one in the center to be sucked up by a pick-up tube installed at the outlet of the pipe. The particularity of this separation technology comes from the way this centrifugal force is generated, a static swirl element is designed to create a swirling ow from the incoming axial ow. In fact, the swirl element has blades (or vanes) on its surface which deect the ow and thus convert part of the axial velocity into an azimuthal velocity. The rst reported separator prototype was modelled by Dirkzwager [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] in 1996 then Delfos [START_REF] Delfos | A design tool for optimising axial liquid-liquid hydrocyclones[END_REF] updated the swirl element previousely used by [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] and recently Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] reconstructed new swirl element geometries. In each of the previous studies, the objective was to optimise the shape of the swirl element which will yield to a reduction of the pressure drop and an increase of the separation eciency. Figure 4.1 shows the key design features of the swirl element to wit: the nose section, the vane section and the tail section. In the current TOMOCON project and consequently this PhD work, since our focus is the investigation of separation and not the design itself, we will use directly one of the geometries created by Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF]. It is worth mentioning that each swirl element is characterized by a deection angle. In fact, at the trailing edge of the vane section, the geometrical angle of deection is formulated as:

α def = arctan u θ,te u x,te (4.1) 
with u θ,te and u x,te are the azimuthal and axial velocities at the trailing edge respectively which can eventually be expressed in function of the bulk velocity.

From mass conservation, we have:

u x,te = u b R 2 R 2 -R 2 int (4.2)
with R int is the radius of the internal vane section (see Fig. where u θ,0 is the azimuthal velocity right after the swirl element which depends on the radial position r. By replacing u x,te from 4.2 in 4.3 and taking into account the angular momentum loss coecient c loss ≈ 0.5 measured in [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] between the vane section and right after the swirl element, u θ,te is:

u θ,te = 3(R 3 -R 2 int )(R 2 -R 2 int ) (1 -c loss )R 2 R 0 u θ,0 r 2 dr (4.4)
Now, it remains to determine u θ,0 to express u θ,te . From the experimental results of Dirkzwager [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF], it was found that the radial distribution of the average-azimuthal velocity can be approximated by a Rankine vortex dened as:

u θ (x, r) = U θ (x) r Rc if 0 < r < R c U θ (x) if R c < r < R (4.5)
with U θ (x) is an azimuthal velocity scale in each section x along the pipe, R is the pipe radius and R c is the characteristic radius of the solid-body rotation in the Rankine vortex.

We replace 4.5 in 4.4, we get u θ,te :

u θ,te = U θ (0) (R 3 -1/4R 3 c )(R 2 -R 2 int ) (1 -c loss )R 2 (R 3 -R 3 int ) (4.6)
Finally, from 4.2 and 4.6, the angle of deection dened by 4.1 is:

α def = arctan U θ (0)(R 3 -1/4R 3 c ) u b (1 -c loss )(R 3 -1/4R 3 c ) (4.7)
In the work of Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF], designing a swirl element consisted in xing a value for the deection angle and this is what makes the dierence between the prototypes used in [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF][5], higher α def leads to higher swirl intensity, the swirl element tends to be stronger. In this PhD work, the swirl element used is characterized by a an internal radius R int = 0.04m and a deection angle α def = 63 • and the separator has a radius of R = 0.046m.

Swirl number

The intensity of swirling ows in general can be quantied by a swirl number S.

This number is nothing else but the dimensionless angular momentum in the ow.

In our case, for instance, the intensity of the swirl is 0 upstream the swirl element since the azimuthal velocity is zero then it goes up in the vane section and decreases downstream as we go far from the swirl element.

In the present work, we dene the swirl number as the axial ux of the angular momentum normalized by the bulk velocity and the pipe radius. It is expressed as [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF][1]:

S(x) = A ρu x u θ rdA ρRu 2 b A (4.8)
with u x , u θ , u b are the axial, azimuthal and bulk velocities respectively, r is the radial position, R is the pipe radius, ρ is the uid density and A is the area of the pipe cross-section.

This number varies as a function of x. From velocity measurements, Dirkzwager [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] calculted this swirl number downstream the swirl element and found that S(x) has an exponential decay:

S(x) = S 0 exp -C sw (x -x 0 ) D (4.9)
with S 0 is the swirl number at the reference axial position x 0 usually located at the end of the tail section and C sw is a swirl decay coecient which depends on the pipe Reynolds number Re = 2Ru b /ν, the swirl element and the wall roughness. Figure 4.2 shows the variation of the swirl decay coecient denoted by β in function of

Reynolds number from the measurement of Steebergen [START_REF] Steebergen | Turbulent pipe ow with swirl[END_REF] on the same swirl element as used in [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF]. Scattered of values for swirl decay coecients are observed yet they almost all tend to decrease with the increase of Reynolds number. The typical order of magnitude of C sw is between 0.01 and 0.7. From numerical simulations, Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] plotted the swirl number along the separator for a stronger swirl element and found the same exponential decay. 

Centrifugal force

The centrifugal force per unit of mass, generated by the swirl element, which is the driving force of the separation process is expressed as:

f c = u 2 θ r (4.10)
with u θ is the azimuthal velocity and r is the radial position.

Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] compared the time θ-averaged centrifugal acceleration u 2 θ r to the gravity acceleration g and showed that for a Reynolds number of 200,000 and using a stronger swirl element characterized by α def = 73 • , the force generated can reach 1,200g. Furthermore, the time θ-averaged centrifugal force can eventually be linked to the averaged radial pressure gradient. In fact, if we consider the time θ-averaging of Navier-Stokes equations in the radial direction in cylindrical coordinates expressed as:

∂u r ∂t + u r ∂u r ∂r + u θ r ∂u r ∂θ + u x ∂u r ∂x - u 2 θ r = - 1 ρ ∂p ∂r + ν[ ∂ 2 u r ∂r 2 + 1 r ∂u r ∂r - u r r 2 + 1 r 2 ∂ 2 u r ∂θ 2 + ∂ 2 u r ∂x 2 - 2 r 2 ∂u θ ∂θ ] (4.11)
This equation can be simplied by neglecting u r in front of u θ and u x . The remaining terms which are time and θ-averaged lead to:

u 2 θ r ≈ 1 ρ ∂p ∂r (4.12)
showing the direct relation at rst order between the mean centrifugal acceleration and the radial pressure gradient.

Flow split

At the exit of the separator, two outlets can be distinguished, one for the pick-up tube which is supposed to recover the core, we call it then the Light Phase Outlet (LPO) and the other outlet that is the surrounding annular region between the pipe and the pick-up tube from where the heavy phase exits and we therefore call it the Heavy Phase Outlet (HPO) (see Fig. 4.3). The same notation will be used for single-phase ow to refer to the outlet of the pick-up tube even though we do not have two separate phases. 

F S = Q LP O /Q inlet (4.13)
This parameter F S can also be interpreted as the condition on the valve acting on the pick-up tube. For instance, F S = 0.5 corresponds to a situation when the valve allows the pick-up tube to recover half of the inlet ow rate. The eect of the ow split on the velocity prole was studied numerically [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] and experimentally [START_REF] Van Campen | Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones[END_REF]. Both studies have shown that only the central part of the radial distribution of the axial and azimuthal velocities across the separator section close to the pick-up tube is aected, in this region, the velocities increases with the increase of the ow split.

Mesh sensitivity

The objective of conducting a mesh sensitivity analysis is to nd the optimal mesh size which is simultaneousely less demanding in terms of the total cells number and capable of capturing the swirling ow features. Therefore, we consider 3D simulations of single-phase ow using three mesh sizes. The numerical domain is a

box of size L x × L y × L z = 0.92m × 0.104m × 0.104m made of N x × N y × N z cells.
The mesh is regular with uniform cell distribution of width ∆ in all directions. 

Quantitative convergence

From subsection 4.3.1, since the mesh resolution has an inuence on the blade description and consequently on the deection angle. We will evaluate the mesh convergence through the calculation of this angle. By postprocessing the numerical results from the three presented single-phase ow simulations, the azimuthal velocity U θ right after the swirl element equals 2m/s, 5.7m/s and 6.01m/s for the meshes m1, m2 and m3 respectively, the bulk velocity is u b = 2.17m/s. 

E α def = |α geometrical def -α simulation def | α geometrical def (4.14)
In Fig. 4.7 , the deviation is plotted as a function of ∆/R. It is of order 60% for the coarse mesh, then it remarkably decreases to 1.77% by multiplying the number of cells by a factor of 2 3 , the nal error is 1.66% for the nnest mesh. We notice a fast convergence with the resolution, this result conrms the eect of the mesh resolution on the blades seen in subsection 4.3.1. We conclude that the coarse mesh introduces an important error on the velocity and thus on the deection angle. The deviation converges for the two other meshes, we will therefore choose the mesh size m2 for all the rest of the simulations.

Modelling of the valve condition in the pick-up tube

In addition to the pick-up tube installed at the outlet of the separator, a ow straightener is placed in the annular region between the pick-up tube and the pipe to eliminate the swirl in the HPO. In real situation, it is a porous medium which has a honeycomb form (see Fig. 

IBM for the ow straightener

To numerically model the ow straightener, Slot [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF] dened a porosity in this region and added a momentum loss term to Navier-Stokes equations which depends on a loss coecient that needs to be calibrated. In the current study, we propose to use Immersed Boundary Method (IBM) introduced in chapter 2 to model the ow straightener. In fact, (1 -α IBM ) can be seen as the opposite of the porosity. At every cross section x along the ow strainghtener, we can distinguish three regions for which an expression of α IBM is attributed. Figure 4.9 represents how α IBM varies across the section:

α IBM = 0 inside the pick-up tube, no IBM forcing is added to Navier-Stokes equations.

-0 < α IBM < 1 at the pick-up tube wall, the expression 2.26 [START_REF] Yuki | Ecient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced ow[END_REF] is used based on the radius of the pick-up tube. The IBM forcing of Navier-Stokes is active.

α IBM = constant (0.2 in Fig. 4.9) in the ow straightener. The IBM forcing of Navier-Stokes equations is active. The choice of how to set α IBM in this region is discussed in the following subsection.

-0 < α IBM < 1 at pipe wall, the expression 2.26 [START_REF] Yuki | Ecient immersed boundary method for strong interaction problem of arbitrary shape object with the self-induced ow[END_REF] is again used based on the radius of the pipe. The IBM forcing of Navier-Stokes equations is active.

α IBM = 1 outside the pipe since there is no ow. From a CFD perspective, we will take advantage of the IBM forcing used to model the ow straightener to impose the condition on the ow split F S. De facto, we can control the ow rate going through the pick-up tube by setting the ow rate which goes through the ow straightener. In this region the IBM force is expressed as:

f IBM,i = α IBM v s,i -u i ∆t (4.15)
with α IBM is the solid volume fraction, ∆t is the time step, u i is the uid velocity and v s,i is the expected velocity along the i direction i = (x, y, z) with the objective to force the uid outside the pick-up tube (inside the ow straightener in light blue in Fig. 4.9) to the imposed velocity.

For simplication purposes, if we neglect the spatial acceleration, the pressure gradient and the viscous term in the axial direction compared to the IBM force in the ow straightener, the Navier-Stokes equation becomes:

∂u x ∂t ≈ f IBM,x (4.16) 
A rst order dierential equation is then obtained:

∂u x ∂t ≈ α IBM v s,x -u x ∆t (4.17)
This reveals a characteristic time t c :

t c = ∆t α IBM (4.18)
We are interested in the permenant regime with the objective that the uid velocity in the ow straightener reaches the velocity v s,x . The solution of equation 4.17 u x = v s,x (1 -exp(-t/t c )) shows that the expected velocity is reached after some time steps. This means that we can directly set the condition on the ow split F S through v s,x and after a certain response time nt c the condition is fullled. The steps to set the valve condition can be summarized as the following:

-Fix the F S target.

-Calculate the ow rate through the heavy phase outlet:

Q HP O = Q inlet (1 -F S) (4.19)
-Calculate the solid velocity to impose in the IBM force as:

v s,x = Q HP O /(A pipe -A LP O ) (4.20)
with A pipe and A LP O the pipe and the pick-up tube areas respectively.

Validation of using IBM to impose the valve condition

To validate the proposed method in subsections 4. As expected, the ow rate in the LPO is higher when imposing a ow split of F S = 0.5 than that of a ow split F S = 0.3.

Moreover, the ratio between the velocities at the center of the pick-up tube scales very well with the ratio of their ow splits respectively. In comparison with the ow at a cross-section right after the swirl element (see Fig. Now, from the four numerical simulations, we calculate the ow split F S(t) = Q LP O (t)/Q inlet over time. Figure shows its variation in function of the dimensionless time t/t c . To begin with, we conrm that for the same ow split F S, varying t c does not change the ow response to the imposed condition. Then, for both F S values, a transient regime is rst observed then a permanent one is reached after 5t c , this denes the response time to the condition on v s,x and provides us with an interesting ability in CFD to mimic not only static conditions but also dynamic conditions on the valve if any. For instance, by just increasing α IBM in the ow straightener or decreasing the time step ∆t, the response time to the valve becomes faster and one can even follow the controller instruction. Finally, by resolving equation 4.17, we can express the temporal evolution of the ow split in function of the input parameters as: A dierence between the expected F S and the numerical results is observed which might be due to the ow streamlines inside the pick-up tube which are not totally parallel to the streamwise direction.

F S(t) = 1 - v s,x (A pipe -A LP O ) Q inlet (1 -exp(-t/t c ))
In general, we conclude that using Immersed Boundary Method to model the ow straightener and modifying the IBM forcing in this porous region is an ecient way to impose and control the condition on the ow split at the LPO and eventually mimic a dynamic change of this condition if necessary.

Numerical simulations of single-phase ow in the separator

In this section, we present the numerical results of 3D simulations of single-phase ow in the separator using the hybrid solvers: LES/IBM with a mean wall model.

The numerical domain and boundary conditions are the same as decribed in 4.3 and the mesh is again m2. In subsections 4.5.1 and 4.5.5, the Reynolds number based on the bulk velocity Re = Du b /ν is xed to 50,000. The parameters used for the simulation are: D = 0.092m, ν = 10 -6 m 2 /s and u b = 0.54m/s.

Velocity proles

When the incoming axial ow is deected by the swirl element, an azimuthal velocity is generated. After the swirl element, this velocity depends eventually on the radial position and decays along the axial direction. Therefore, to investigate its evolution, we choose sections after the swirl element and plot the radial distribution of the time and θ-averaged azimuthal and axial velocities normalized by the bulk velocity as a function of the radial position r normalized by the pipe radius R.

Figure 4.13 compares the azimuthal velocity at four dierent sections located at 0.08R, 2.5R, 5R, 7.5R after the swirl element. At 0.08R, the azimuthal velocity reaches 2.8 times the bulk velocity generating thus a centrifugal acceleration 10 times larger than the gravity g. And as we move downstream from the swirl element, the azimuthal velocity decreases due to the wall friction but keeps the same radial evolution which is 0 at the center of the separator, then a linear increase up to radial position noted R c , an almost constant velocity and nally u θ is 0 to respect the no-slip condition at the wall. The radial position R c seems to shift towards the center of the pipe as we move along the separator with a conservation of the slope representing the ratio of the angular velocity over R c in the solid-body rotation zone.

The same behaviour is observed in the velocity proles reported by [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF][START_REF] Van Campen | Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones[END_REF] 

u θ (0.08R, r) = 1.512 r Rc if 0 < r < R c 1.521 if R c < r < R (4.22)
It is decomposed of a solid body rotation for positions r ≤ R c (equals 0.65R in this case) and a free vortex for R c ≤ r < R. This conrms once again the results of Dirkzwager in assuming the Rankine vortex for the velocity prole to determine the deection angle. 

Swirl number prole

To quantify the intensity of the swirling ow, we calculate the swirl number using equation 4.8. Figure 4.19 shows its evolution along the separator as a function of the axial position normalized by the pipe diameter. Before the swirl element (up to x/D = 2), the centrifugal force is not yet generated, the swirl number is 0.

Then, at the vane section, the ow is deected and the azimuthal velocity is at its maximum, the swirl number reaches its highest value 3.4. From the tail section till the outlet of the separator, S decreases due to the wall friction. In the region after the swirl element, S is characterized by an exponentional decay following the empirical correlation 4.9 given by Dirkzwager [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] for a swirl decay coecient C sw = 0.15.

The curve is plotted in red in Fig. 4.19 and is dened as:

S(x) = 1.8 exp(-0.15(x -0.41)/D) (4.23) 
The swirl decay coecient in this case is 0.15 which is a bit higher than the one reported in 4.2 for the same Re = 50, 000. This is due to the dierence of the swirl element geometry used for the separation and thus the swirl intensity which is one of the parameters inuencing C sw . In the previous numerical simulation, the wall model proposed for hybrid LES-IBM and detailled in chapter 3 is activated to correct the velocity close to the wall, to see the eect of the wall model. The same simulation is performed without introducing a wall model. Figure 4.20 compares the evolution the swirl number along the separator obtained from the two simulations. The maximum of S located in the narrow zone of the vane section is slightly reduces when using the wall model, this can be justied by the fact that the latter acts on the axial velocity of the IB cells and not on the azimuthal one which is supposed to be the dominant one.

Nevertheless, after the swirl element, the swirl number decays less strongly when using the wall model. In fact, the swirl decay coecient C sw decreases from 0.17

(without a wall model) to 0.15 (with a wall model). and azimuthal velocities at two dierent sections: 0.08R and 7.5R after the swirl element. Close to the latter, the simulation without a wall model gives a slightly higher negative axial velocity at the recirculation zone and the maximal azimuthal velocity is a bit decreased. However, at 7.5R after the swirl element, a signicant improvement of the azimuthal velocity is obtained with the use of the wall model.

The slope is conserved as observed by [1][5] unlike when no wall model is used.

Furthermore, the decay of the centrifugal force is reduced and this is why the swirl decay coecient C sw is found to be lower than the one without the wall model. These as a function of the radial position r at two sections x = 0.08R and x = 7.5R after the swirl element. At each of the axial positions, equation 4.12 is veried. The centrifugal force is 0 at the center of separator then it increases halfway between the center and the wall to nally decrease to 0 at the separator wall. The eect of the centrifugal force of great importance for the separation is thus observed to be maximum at a radial position r ≈ 0.7R and then decreases in magnitude along the separator. Since the separator operates for dierent bulk velocities, Reynolds number is then considered as one of the parameters for which a sensitivity study should be done.

Therefore, we compare the numerical results obtained from simulations of singlephase ow in the separator for Re = 50, 000, Re = 100, 000 and Re = 200, 000, no pick-up tube is installed. To calculate the swirl decay coecient, we plot ln(S/S 0 ) as a function of (xx 0 )/D (see Fig. 4.26: left). The slope represents therefore C sw . Similary, the evolution of C sw reported in [START_REF] Dirkzwager | A new axial cyclone design for uid uid separation[END_REF] and shown in Fig. 4.2, gure 4.26 (right) points out that C sw decreases as Re increases. A tting for the variation of the swirl decay coecient is found and expressed as: The radial distribution of the time θ-averaged azimuthal velocity at a section x = 0.08R is shown in Fig. 4.27. All proles are normalized by their corresponding bulk velocity. A minor dependence on the Reynolds number is observed for the normalized azimuthal velocity and the axial one except in the recirculation zone where increasing Re leads to an expansion of the reverse ow. For instance, for Re = 200, 000, negative axial velocities are found up to r = 0.3R while for Re = 50, 000, the recirculation region exists only up to r = 0.18R. Since the reverse ow is the main feature highly depending on the Reynolds number, we also plot the normalized axial velocity at a further section located at 7.5R

C sw = 0.3072Re -0.067
after the swirl element. Figure 4.28 shows the eect of increasing Re in developing and spreading the reverse ow not only in the radial direction but also the axial one. A recirculation zone is still detected at this section for both Re = 100, 000 and Re = 200, 000 and this is a crucial information to consider when simulating two-phase ows in the separator in terms of bubble/droplet and eventually core dynamics if located in this region. To sum up, the dimensionless azimuthal velocity is found to be slightly dependant of the Reynolds number. This means that by doubling the bulk velocity while keeping all other parameters constant, the generated centrifugal force is raised to the power 2 surpassing easily the gravitational force in highly turbulent ows. For the normalized axial velocity, the Reynolds number inuences the expansion of the recirculation zone radially and axially. In subsection 4.5.5, we are interested in the eect of the ow split F S.

Eect of the ow split

In previous numerical simulations, the ow was investigated without any inuence of the pick-up tube. In this subsection, we present the numerical results when the pick-up tube is also simulated and a condition on the ow split F S is imposed. The objective is to study the eect of the ow split on the ow features. Therefore, for the same Reynolds number Re = 50, 000, two ow splits are considered: F S = 0.3 and F S = 0.5 to be compared to the case when no pick-up tube is installed.

Figure 4.31 represents the evolution of the swirl number along the separator for the three congurations. When no pick-up tube is installed, the swirl number continues its exponential decay until the outlet of the separator. In the region up to x = 7.3D, the swirl number is independent of the ow split F S. The use of the ow straightener with a condition on the ow split F S eliminates the swirling ow inside the pick-up tube located at 8.7D resulting in S = 0 and does also inuence the swirl strength upstream of the pick-up tube between x = 7.3D and 8.7D. In fact, the suction of the ow at the central part of the separator leads to an increase of the axial velocity on the expense of a decrease of the azimuthal one. To visualize this, velocity proles are plotted. In both these regions, the velocity is signicantly lower than in the case of no use of the pick-up tube. It is also much reduced in the ow straightener in comparison to its evolution inside the pick-up tube. Furthermore, increasing the ow split F S results in an additional decrease of the centrifugal force. Besides, the time θ-averaged axial velocity is also aected by the condition on F S (see Fig.4.33). By imposing F S = 0.5, more uid goes through the pick-up tube, the velocity is thus higher than in the case of imposing F S = 0.3. The suction of the ow, which is the aim of using the pick-up tube is then present. In the other way around, for low F S, the velocity is expected to be higher in the ow straightener, which is depicted and conrmed in the region r > 0.43R. 

Conclusion

In this chapter, swirling single-phase ows in the separator are simulated using LES/IBM and the wall model and an investigation of the main features is done. A full description of the axial and azimuthal velocities, the pressure, the swirl number and the centrifugal force is given. The sensitivity to the Reynolds number is also presented. Furthermore, an original approach using IBM to model the ow straightener and to impose the condition on the valve at the pick-up tube is introduced and validated to nally study the eect of the ow split F S on the ow features.

The next chapter will therefore be dedicated to simulating two-phase ows in the separator.

Chapter 5

CFD simulations of swirling two-phase ow in the separator

Introduction

As previously introduced in the rst chapter, the inline uid separation involves various ow features: turbulence, bubble migration and gas core formation, stability and recovery. The rst experiments made within the TOMOCON project in TU Delft [START_REF] Ammerlaan | Swirl eects on vertical gas-liquid ow regimes: Experiments and modelling[END_REF][START_REF] Garcia | Control of a gas-liquid inline swirl separator based on tomographic measurements[END_REF][START_REF] Garcia | Optimized controlled inline uid separation[END_REF] give an overview of how the gas core is formed. In fact, three gas core patterns can be distinguished as shown in The experiments of two-phase ow in the separator [START_REF] Ammerlaan | Swirl eects on vertical gas-liquid ow regimes: Experiments and modelling[END_REF][START_REF] Garcia | Control of a gas-liquid inline swirl separator based on tomographic measurements[END_REF] are conducted for dierent air and water bulk velocities. By observing the ow regime upstream the swirl element, the map presented in Fig. 5.2 is constructed, three ow regimes are tested (bubbly, churn, slug) and the transition between them is validated with a theoritical study by Taitel et al. [START_REF] Taitel | Modelling ow pattern transitions for steady upward gasliquid ow in vertical tubes[END_REF] presented with a black line in Fig. 5.2.

Then, the ow is observed over 20cm downstream the swirl element to determine the gas core pattern. Figure 5.3 represents a map of the swirling gas core patterns. The experiments have shown that the core is formed only when the liquid velocity at the separator inlet is beyond a certain value (0.2m/s in this case) regardless of the gas velocity. This limit is marked by a black line in Fig. 5.3 and can be interpreted as a minimum needed centrifugal force capable of forming a gas core. For instance, for a gas velocity under 0.1m/s, the ow upstream the swirl element is bubbly according to the map 5.2, for liquid velocities below the black line in Fig. 5.3, the bubbles do not accumulate to form a core, the ow remains bubbly even downstream the swirl element. By increasing the liquid velocity over the black line, the ow upstream is still bubbly and the gas core is formed downstream and has a swirling column shape.

Similary, the same goes for the slug ow which results in a swirling pulsating core and churn ow which gives the bursts breaking the gas core when the centrifugal force is enough to accumulate the dispersed phase. Overall, the bubbly ow regime upstream seems to lead to a stable core. We should note that the condition on pick-up tube inuences the gas core behaviour as spotted in the right side of Fig. which represents the liquid supercial velocity u sl beyond which the gas core is formed and below which the generated centrifugal force is not enough to form the core and thus the ow regime downstream the swirl element is the same as the one upstream the swirl element [START_REF] Ammerlaan | Swirl eects on vertical gas-liquid ow regimes: Experiments and modelling[END_REF].

While the experiments reveal some interesting aspects of the core formation and its various patterns depending on the upstream ow regime, the objective of this chapter is to investigate numerically the physical phenomena leading to the separation for upstream bubbly ow (left part of Fig. 5.2). For that purpose, we investigate bubble accumulation and core formation using the proposed hybrid CFD approach (LES-IBM-LT-VoF).

First, a simplied model of the force balance of a bubble in the separator is given.

Then, the bubbles trajectories are calculated thanks to the Lagrangian Tracking method. The instantaneous, mean and RMS of the forces applied on the bubbles are analyzed to discuss the dominant force leading to the bubbles migration. The eects of the bubble size as well as the Reynolds number on this process are also studied.

Additionally, we visualize the bubbles accumulation and calculate the separation eciency. Finally, the hybrid approach (LT-VoF) is activated to simulate the gas core and discuss about its stability. A simplied study of a gas core in a rotating ow is also done to try to investigate the possible instabilities which can occur at the interface.

Description of bubble dynamics in swirling ow

In order to introduce the mechanisms involved in the separation process for a bubbly ow, we rst consider the motion of an isolated bubble in a swirling ow region during its migration to the pipe centerline. The motion of a bubble in a turbulent swirling ow in the separator is governed by the Newton's second law introduced in subsection2.5.6 and expressed by the force balance 5.1.

(ρ d + C M ρ c )V d dv d dt = (ρ d -ρ c )V d g+ C D ρ c πr 2 d 2 u x d -v d (u x d -v d ) + C L ρ c V d (u x d -v d ) × Ω+ ρ c V d (1 + C M ) Du Dt | x d (5.1)
To integrate this equation and get the bubble trajectory in a complex ow as the one generated here by the swirl element, we use the Lagrangian Tracking method and this will be the subject of the next section. However, we can employ the single-phase ow study done in chapter 4 and propose assumptions to simplify the terms of equation 5.1 to be able to approximate and compare the dierent forces applied on the bubble in order to discuss the process of bubble migration. In fact, the numerical simulations of single-phase ow in the separator have shown that the uid time θ-averaged azimuthal velocity has a Rankine vortex prole with a constant rotation rate ω in the solid rotation zone while the averaged radial uid velocity is neglected in front of the two other velocity components. For simplication purposes, we consider that the uid axial time and θ-averaged is constant and equal to bulk velocity u b .

Therefore, this simplied uid velocity eld takes the form:

u r = 0; u θ (r) = ωr; u x = u b (5.2) 
This leads to:

Du Dt | x d = (- u 2 θ r = -ω 2 r; 0; 0); Ω = ∇ × u = (0; 0; 2ω) (5.3) 
The gravity is g = -9.81e x .

Considering that the bubble Reynolds number is much larger than unity, Re b =

2r d ρ c u -v d /µ c >> 1, we can rst consider that C D ≈ 48/Re b (i.e. F D ≈ 12πµ c r d (u -v d )) and C L ≈ 1/2.
The bubble being assumed as spherical we have

C M = 1/2. With the additional condition ρ d << ρ c , the bubble relaxation time is τ d = r 2 d /18ν c .
Typically, for a 1 mm diameter bubble in water, τ d ≈ 0.01s.

Then, we can examine the radial components of the three forces (drag, lift and virtual mass) corresponding to the second and third lines in equation 5.1 which are involved in the process of bubble migration towards the pipe centre as:

F D,r = -12πµ c r d v d,r (5.4) 
F L,r = ρ c V d ω(ωr * -v d,θ ) (5.5) 
F V M,r = - 3 2 ρ c V d r * ω 2 (5.6) 
where r * is the radial bubble position.

Since a negative force induces a motion towards the pipe centre, the radial component of the virtual mass force always imposes the centripetal force leading to the migration of the dispersed phase, the radial lift has a centrifugal eect proportional to the azimuthal relative velocity that is a priori expected to vanishes after some bubble relaxation time τ d since the bubble adjusts to the swirling uid ow, but this point will be discussed later. The radial drag force is opposite to the radial bubble velocity. Thus, it has a centripetal eect during the migration of the bubble.

Besides, we are also interested in the axial movement of the bubble which is being transported towards the outlet of the separator in order to check if the bubble is captured by the pick-up tube or not. For this, we investigate the axial components of buoyancy, drag, lift and virtual mass.

F B,x = ρ c V d g (5.7) F D,x = 12πµ c r d (u b -v d,x ) (5.8) 
F L,x = 0

(5.9)

F V M,x = 3 2 ρ c V d u x ∂u x ∂x (5.10)
In the simplied situation where u x ≈ u b then F V M,x ≈ 0 and we see that along the axial direction, the bubble will reach after some relation times τ d a velocity composed of the uid bulk velocity u b and the so called terminal velocity v T = 2τ d g = r 2 d /(9ν c )g. For a 1 mm diameter bubble in water, v T ≈ 0.27m/s.

The bubble is also subject to an azimuthal motion which describes its rotation movement and is governed by the azimuthal components of the drag, lift and virtual mass forces:

F D,θ = 12πµ c r d (ωr * -v d,θ ) (5.11) F L,θ = ρ c V d ωv d,r (5.12) 
F V M,θ = 0

(5.13)

The lift induces an azimuthal contribution that may contribute to a slip azimuthal velocity depending on both solid body rotation and the bubble radial velocity.

In order to give an idea about the order of magnitude of these forces and their contribution in the migration and capture of the bubble in the separator, we consider, for instance, the numerical results obtained for swirling single-phase ow of Re = 50, 000 detailed in chapter 4.5. From this simulation, the continuous phase velocities at a position 0.08R after the swirl element are: ω ≈ 50s -1 , u b ≈ 0.54m/s. We consider a bubble of radius r d = 1mm transported by the ow along the pipe axis with the velocity u + v T that is instantaneously submitted to the solid rotation. We consider an initial radial position r * 0 = 0.035m and zero radial velocity when the bubbles enters inside the vortex.

Table 5.1 summarizes the order the magnitude of the dierent forces components.

We can say that the buoyancy and drag are the dominant forces for transporting the bubble to the separator outlet while the virtual mass force is dominant in the radial direction leading to the radial migration of the bubble to the centre.

F B F D F L F V M x
4.1 × 10 -5 -5.0 × 10 -5 0 0 r 0 0 3.6 × 10 -4 -5.5 × 10 -4 θ 0 6.6 × 10 -5 0 0 It is worth reminding that the force comparison done above does not take into account the eect of turbulence presented by the velocity uctuations of the continuous phase since only time and θ-averaged velocities were considered with simplied prols.

When discussing the separation eciency, three characteristic times of interest for the dispersed phase can be distinguished:

-The relaxation time τ d = r 2 d /18ν c which is the response time of the bubble to the continuous phase, i.e. the characteristic time for a bubble to adjust its velocity to the carrier uid as well as buoyancy.

ω -1 which is a relevant time scale on its own according to 5.5. It can be interpreted as the relaxation rate for the lift force.

-The migration time t migration which is the time needed for a bubble to reach the centre of the separator.

-The capture time t capture which is the time needed to reach the outlet of the separator: the HPO or the LPO.

Based on the force magnitude presented above, a rst attempt is made to provide an estimation of these characteristic times for the considered system. In order to determine the characteristic migration time t migration we consider the trajectory equation along the radial direction:

1 2 ρ c V d ( d 2 r * dt 2 - v 2 d,θ r * ) = -12πµ c r d dr * dt + ρ c V d ω(ωr * -v d,θ ) - 3 2 ρ c V d r * ω 2 (5.14) 
Considering rst that dr * /dt << r * /τ d (which is expected for the bubble dynamics in the separator). The force balance in the azimuthal direction gives v d,θ = ωr * .

From this, the trajectory along the radial direction can be simplied to:

d 2 r * dt 2 ≈ - 1 τ d dr * dt - 1 t 2 V M r * (5.15)
where appears a characteristic time t V M imposed by the virtual mass force:

t V M = 1 √ 2 ω (5.16)
The solution of equation 5.15 is reported in Fig. 5.4 for three cases: (r d = 1mm, t V M = 0.014s), (r d = 0.5mm, t V M = 0.014s) and (r d = 1mm, t V M = 0.007s). As shown, for the same ω ≈ 50s -1 , the increase of the bubble radius leads to a decrease of the migration time from 0.035s to 0.024s. Then, for the same bubble size r d = 1mm, the migration time is reduced to 0.011s by increasing ω from 50s -1 to 100s -1 which corresponds to t V M = 0.007s. Indeed the increase of the bubble radius decreases the migration time, however, it also increases the buoyancy force which speeds up the axial mouvement of the bubble. A bubble can, in some cases, be driven by the axial uid velocity before it reaches the pipe centre. To evaluate the eect of the bubble size and Reynolds number on the capture process, we calculate the axial length over which the bubble gains the pipe centre using its axial velocity estimated to u b + v T . Figure 5.5 shows the bubble radial position as function of its axial position normalized by the pipe radius for the three cases: (r d = 1mm, t V M = 0.014s), (r d = 0.5mm, t V M = 0.014s) and (r d = 1mm, t V M = 0.007s). We can see that although the increase of the bubble radius decreases the migration time from Fig. 5.4, the bubble crosses a distance of 0.8R in the axial direction which is larger than the one travelled by the bubble with lower radius. This can give an idea on where to position the pick-up tube to make sure that the bubbles have enough space and thus time to migrate. Furthermore, gure 5.5 reveals that for the same bubble radius, the increase of Reynolds number leads to a decrease of both the migration time and axial length, which means that it contributes more in the migration than in the capture. Numerical simulations using LT and LES will allow to determine precisely the role of each force and the eect of the turbulent dispersion. Considering the value of the forces reported in table 5.1, the lift force also contributes to the radial motion. The lift force has an opposite sign but its magnitude is smaller than the virtual mass force. The migration towards the pipe centre is still taking place but the time migration will be certainly increased due to the lift force. This will be discussed using the numerical simulations presented in the next section. The value of the migration time will be compared to the results obtained from the numerical simulations where all the eects are taken into account, and in particular the decay of the swirl strength and the unsteadiness and uctuations of the ow turbulence.

Numerical results of bubble dynamics in the separator using Lagrangian Tracking

One of the advantages of using the Lagrangian Tracking solver for the dispersed phase is to accurately describe its dynamics during the process of bubble migration preceeding the core formation. In this section, 3D simulations of two-phase ows are perfomed on a numerical domain of size L x × L y × L z = 0.92m × 0.104m × 0.104m made of N x × N y × N z cells. The mesh size ∆ is the same as the one retained from the mesh sensitivity study reported in the previous chapter 4 such as: R/∆ = 40.

When the incoming bubbles located upstream the swirl element pass through the vane section, they are forced to move into the tiny space between the blades and the pipe wall to nally exit to the tail section. Therefore, to save the computationnal time needed to track the bubbles up to the vane section, the bubbles are injected at the tail section with the uid velocity and the study focuses on the migration happening downstream the swirl element. In the following, a set of 5000 bubbles are injected continuousely over time with an averaged volumetric rate q = 5×10 -4 m 3 /s.

In fact, at each time step, the number of bubbles to inject is dened as a random in the (y, z) plane uctuates between positive and negative values which indicates that the bubble is rotating around the pipe centre located at (y 0 = 0, z 0 = 0) and marked by a red line in Fig. 5.7. In addition, the bubble is pushed towards the pipe centre, its radial position approaches r * = 0, reaches it at several times and oscillates around it (see Fig. 5.8 (left)). The bubble can be ejected from the axis during its migration process due to turbulent uctuations that develop in the ow, increasing the time for the bubble migration. of the forces acting on a bubble in a turbulent pipe ow [START_REF] Legendre | Forces on a high reynolds number spherical bubble in a turbulent ow[END_REF], turbulent uctuations can provide some signicant lift and virtual mass uctuations while the drag force uctuations remain around 5% of the mean drag force.

From Fig. 5.8, we can calculate the characteristic time of migration corresponding to when the bubble reaches the pipe centre for the rst time. In this case, we have t migration = 0.18s which is almost eight times higher than the time migration obtained from the simplied analysis presented in section 5.2 when neglecting the lift force eect in the migration. This is due to the decay of the centrifugal force (i.e the azimuthal velocity) which is not considered in the simplied analysis. Additional eects such as the radial turbulent dispersion may also be induced by the unsteadiness and spatial uctuations of the continuous phase. To evaluate the dierent forces applied on the bubble, we compare the magnitude of the drag, virtual mass and lift in Fig. 5.9 while keeping in mind that the sum of weight and buoyancy is constant and equals F B = 4.1×10 -5 N. First, uctuations are observed in all the forces due to turbulence which explain the uctuations present in the bubble trajectory. The drag force is smaller than the lift and virtual mass forces which are relatively of the same order of magnitude found in the simplied study in section 5.2. Now, in order to decipher the contribution of the drag, and virtual mass forces in the process of bubble migration, we plot separately in Fig. 5.9 the three components of each force over time. In the radial direction, the virtual mass force is generally negative which corresponds to a centripetal eect while the lift force is constantly changing sign which means that it has both centrifugal and centripetal eects on the bubble. As the bubble moves far from the swirl element, the uctuations and the magnitude of the forces are reduced due to the decay of the swirl strength. 

Mean force balance

In the previous subsection 5.3.1, the analysis focuses on the instantaneous evolution of the forces over time to reveal strongly uctuating forces, in particular the lift and virtual mass forces in agreement with [START_REF] Legendre | Forces on a high reynolds number spherical bubble in a turbulent ow[END_REF]. In this subsection, we will investigate the statistics of each force namely the mean and the RMS in order to characterize the uctuations observed in subsection 5.3.1. Therefore, for the set of 5000 bubbles of radius 1mm injected continousely at the same axial position x 0 = 0.35m, we average the terms of the force balance at 50 axial positions vaying between x 0 and the separator outlet.

The mean of the forces magnitude and components as function of the axial position are reported in Fig. 5.10. First, the range of values found for the magnitude of each force is consistent with the estimation calculated in table 5.1. The virtual mass is the dominant force, then comes the lift force. By taking a close look at the evolution of each force in each direction, we nd that the radial virtual mass is negative leading to the migration of the bubbles and is maximum just after the swirl element where the azimuthal velocity is maximum. The radial lift contributes in the migration process right after the swirl element but also has a centrifugal eect on the bubbles which pushes them towards the pipe wall. The lift force is characterized by numerous uctuations and peaks which are also illustrated later in the RMS proles in Fig. 5.13 showing a sensitivity to the continuous phase velocity uctuations. These peaks may after all get reduced if the number of bubbles is increased for statistical convergence. In the axial direction, considering the value of the weight and buoyancy force, the latter is the one transporting the bubbles towards the outlet. Therefore, by comparing between all the components of all the forces, we can say that the bubbles motion is rst dominated by the migration then the azimuthal swirl of the continuous phase and nally the weight and buoyancy which lead to the capture of the bubbles. We eventually can compare the radial virtual mass force, responsible of the migration, obtained from the numerical simulation and the one calculated based on the simplied analysis presented in section 5.2 and using equation 5.18 with u θ is the mean azimuthal velocity of the continueous velocity at the bubble position and r * is the mean radial position of the dispersed phase given by the simulation. In gure 5.11, the mean value of F V M,r from the numerical simulation and the one calculated from relation 5.18 are close to each others, showing that the dominant term of the averaged radial acceleration of the continuous phase is indeed -u 2 θ /r. The average of the bubbles radial position is plotted as function of the axial position in Fig. 5.12 and compared to an instantaneous projection of a single bubble trajectory. The radial position r * decreases signicantly right after the swirl element and up to x d /R ≈ 5 where the virtual mass is maximal then it is stabilized at a radial position r * around 0.008m. This equilibrium corresponds to a balance between the average and the uctuating contribution in the radial force balance. An averaged migration time can be calculated based on the bubble averaged axial velocity as t migration = 5R/v d equal to 0.37s. It is around twenty times more than the one estimated from the simplied analysis given in section 5.2. The distance 5R can also be interpreted as the migration length needed for the bubbles to draw near the pipe centre. This value is higher than 0.8R reported in Fig. 5.5 since the axial lift contributes also in pushing the bubbles towards the separator outlet and the radial uctuations delays the migration process. This is an important criteria to take into account in dimensionning the length of the separator and/or positionning the pick-up tube. First, to compare between all the RMS, the uctuations are normalized by the magnitude of the averaged virtual mass. This is illustrated in Fig. 5.13(left). The RMS of the lift and the virtual mass are higher than the drag RMS consistently with the important uctuations observed in 5.9 for these two forces. This aspect of unsteadiness which was neglected in the simplied analysis, can be responsible for increasing the time migration since it can generate a centrifugal eect on the bubble as previousely mentionned. Indeed, it can be seen that the RMS are of the order of the averaged virtual mass which is the dominant force.

F V M,r = - 3 2 ρ c V d
And in order to evaluate the contribution of the uctuations of each force separately, we normalize each RMS by its corresponding force magnitude as illustrated in Fig. 5.13(right). The uctuations in the three directions represent an important part of the instantenueous lift force since turbulence intervenes in the continuous phase velocity and vorticity. The lift force as well as the virtual mass are then the dominant forces in the process of bubble migration through their means and uctuations. The study of the instantaneous and averaged force balance has proved that the virtual mass is the driving force of bubble migration and has highlighted that the lift force is also important in either promoting the migration or delaying it. The uctuations of both these forces have also a signicant role in agitating the bubbles and increasing the migration time. Finally, it is worth noting that the contribution of each force can eventually change depending on the properties on the continuous and dispersed phase (the bubble size and the Reynolds number). This will be discussed in the next subsections.

Eect of the bubble size

To investigate the eect of the bubble size on the migration process, the same simulation with Re = 50, 000 is perfomed for 5000 bubbles of radius r d = 0.5mm injected continuousely at the axial position x 0 = 0.35m. The mean force balance is compared to the one of the previous case where the injected bubbles were of radius r d = 1mm.

We compare in Fig. 5.14 (left) the temporal evolution of the bubble radial position as function of the normalized axial position of two single bubbles of dierent radius r d = 0.5mm and r d = 1mm. Fluctuations are observed in both proles but are intensied with the increase of the bubble size. The mean of the bubbles radial position is plotted in Fig. 5.14 (right), from which we can estimate a migration time of 0.52s calculated from the averaged velocity of the dispersed phase. This value is higher than the migration time obtained for 1mm radius bubbles. Thus, we can see the eect of decreasing the bubble size in delaying the migration process. To justify this, the radial components of the forces are investigated later on.

It is worth mentionning that in the axial direction, the big bubbles reaches the outlet of the separator in less time in comparison to the small bubbles since the buoyancy is higher which indicates that the capture time increases with the decrease of the bubble size. The migration length which is the axial distance travelled by the bubbles till stabilizing its radial position around the pipe centre decreases with the decrease of the bubble size similary to what is found in the simplied analysis in section 5.2. Since we are interested in the migration process and that the radial drag force is found to be weaker than both the virtual mass and lift in the radial direction, we will focus on the evolution of the lift and virtual mass while comparing between the two cases r d = 0.5mm and r d = 1mm. Figure 5.15 shows the mean radial lift and virtual mass normalized by the buoyancy force F B = gρ c V d for bubbles of 1mm radius versus bubbles of 0.5mm radius. With decreasing the bubble size, the virtual mass decreases while keeping a negative sign to represent a centripetal eect. The lift force is mainly negative right after the swirl element and becomes weaker afterwards. The overall evolution of both forces for the two bubble sizes is the same in terms of centripetal/centrifugal eects but is propotional to the bubble size in terms of magnitude as the lift and virtual mass are propotional to the bubble volume. And this is what explains the increase of the migration time due to the decrease of the magnitude of the radial forces linked to the bubble size.

The normalized forces do not collapse onto a single curve since the lift and virtual mass do not only depend on the bubble volume but also on the continuous phase velocity at the bubble position which is dierent between the two cases r d = 0.5mm and r d = 1mm (see Fig. This study proves that the bubble size is an important parameter inuencing the migration and capture times. A decrease of the bubble radius leads to a decrease of the mean and RMS of the radial lift and virtual mass as well as the buoyancy which increases the migration and capture times respectively. It is worth reminding, as previously discussed in subsection 5.3.2, that the migration motion overcomes the axial one in magnitude, which means that even though the increase of the bubble size speeds up the capture yet it contributes more in producing a centripetal eect ensuring the migration.

Eect of the ow Reynolds number

In chapter 4, we have observed from the numerical simulation of single-phase swirling ow that the centrifugal force normalized by the bulk velocity (i.e. u 2 θ /u 2 b ) is inde- pendent of the Reynolds number. This implies that when increasing the ow rate, keeping all other parameters constant, leads to an increase of the centrifugal force.

In this section we further study the eect of varying the Reynolds number (via the bulk velocity) on the bubble migration A 3D simulation of a two-phase ow for Re = 100, 000 in the separator is performed where the injected bubbles are of radius r d = 1mm (r d /R = 2.17×10 -2 ) and the results are again compared to the previous two-phase ow simulation with Re = 50, 000 and the injected bubbles of the same radius r d = 1mm (r d /R = 2.17 × 10 -2 ). Figure 5.17 represents the evolution of the instantaneous (left) and averaged (right) bubble radial position as function of the normalized axial position for both Reynolds numbers. Fluctuations are enhanced with the increase of Re which is also shown via the RMS proles in Fig. 5.19. The averaged radial position for Re = 100, 000 is close to the one obtained for Re = 50, 000. The averaged bubbles velocity, being higher in a ow with Re = 100, 000, the calculated time migration, in this case, is 0.36s. This means that the increase of Reynolds number accelerates the migration time. In fact, since the swirl strength is raised, the azimuthal velocity after the swirl element becomes more important and therefore the migration is faster.

Moreover, the bubbles reach the outlet of the separator quicker than in the case of Re = 50, 000. By plotting the mean radial components of the lift and virtual mass normalized by F c = ρ c V d ω 2 R with ω is the rotation velocity of the swirling ow in the separator, we can see that increasing the Reynolds number and by consequence the swirl strength, those forces are increased. Considering the sign and magnitude of each force, the centripetal eect of the virtual mass overcomes the centrifugal eect of the lift even when the latter becomes positive. Thus, the virtual mass is the dominant force.

The normalized radial proles seem to be almost Re-independant where the averaged radial position is the same. The forces depends only on the rotation velocity since the bubbles size is unchanged between the two cases Re = 100, 000 and Re = 50, 000. As we have reported, the increase of the Reynolds number reduces the time migration which might be interesting from an industrial point of view as it gives an idea on when to activate the condition on the pick-up tube to recover the bubbles.

However, one should consider the eventual instabilities of the gas core which can take place due to the high shear rate at the interface and the potential change of the ow regime as depicted in Fig. 5.1 and 5.3. In this section, we have characterized the process of bubble migration. Both the virtual mass and lift are found to be the controlling forces on the radial motion of the bubble. The intensity of the forces uctuations proves the importance of taking into account the instantaneous and turbulent eect on the bubbles. Finally, the sensitivity study to the main parameters is done. An increase of the bubble size r d leads to increasing the virtual mass and thus reducing the migration time. Similary, higher bulk velocity u b gives higher swirl strength and therefore speeds up the migration. Tables 5.2 and 5.3

summarize the above conclusions:

Components

F D F L F V M
Migration time increase increase decrease In the following, we rst carry on the same simulation of two-phase ow of Re = 50, 000 using Lagrangian Tracking with a continuous bubbles injection and we check out the performance of the separator. Later, the hybrid approach LT-VoF is activated to investigate the core formation and stability.

Numerical simulations of inline uid separation

To study the inline separation, we rst conduct the simulation using only the Lagrangian Traking and we evaluate the eciency of separation. Then, the simulation is performed using the developed hybrid approach LT-VoF and the gas core is described.

Therefore, we consider 3D simulations of two-phase ow for which the numerical domain is the one previousely dened: a box of size L x × L y × L z = 0.92m × 0.104m × 0.104m made of N x × N y × N z cells. The mesh size ∆ is the same as the one retained from the mesh sensitivity study reported in the previous chapter 4 such as: R/∆ = 40. The ow is in the upwards direction, opposite to the gravity direction and the pick-up tube of radius R pt = 0.44R is located at 8R after the swirl element.

Simulations using Lagrangian Tracking

3D two-phase ow simulation of Re = 50, 000 is performed using Lagrangian Tracking. A set of 1mm radius bubbles are injected continuously over the tail section

x 0 = 0.35m with a xed volumetric rate q = 5 × 10 -4 m 3 /s following a Poisson distribution as already explained in 5.3. They are to be captured by the pick-up tube. In fact, at halfway between the swirl element tail section and the LPO, we can already observe that the majority of the bubbles are located within the operational zone of the pick-up tube. After 0.44s from the injection of the bubbles at the swirl tail section, we can see that the rst set of bubbles reaches the pick-up tube which is the moment when the condition on the ow split should be activated in the pick-up tube to recover the light phase. This time may also serve as a characteristic time to take into consideration while building the controller since the valve should respond as fast as the separation process. It is worth mentioning that the capture time depends on the pick-up tube positionning because by increasing the distance between the swirl element and LPO, the capture time systematically increases as well as the length of the separator. Therefore, from an industrial point of view, the position of the pick-up tube should be chosen in a way to simultaneousely reduce the separator size, respect the minimum needed response time of the tomographs and controller used in the experiments [START_REF] Garcia | Control of a gas-liquid inline swirl separator based on tomographic measurements[END_REF] and mainly assure a higher separation eciency. The latter is evaluated in the following. For the same simulation presented in subsection 5.4.1, we compare the separation eciency obtained by imposing a ow split of F S = 0.3 to the one for a ow split of F S = 0.5. Figure 5.23 illustrates the suction of the bubbles by the pick-up tube for the two ow splits at t = 0.5s. With a higher ow split, the dispersed phase moves axially faster inside the LPO since the velocity is higher in this case than in the case of F S = 0.3 which reduces the capture time. in the case of a ow split F S = 0.5 close to the pick-up tube. This was reported in the study of the eect of F S on the azimuthal velocity prole for single-phase ow in the previous chapter. Bubbles located close to the LPO are then subject to a higher swirl strength for F S = 0.3 and might still be captured. Overall, by calculating the mean eciency for both ow splits, we nd that ef f (F S = 0.3) = 96% and ef f (F S = 0.5) = 95% which proves that the inline separator is ecient from an industrial point of view. It is also possible to consider imposing a dynamic condition on the ow split, which changes in time to further increase the eciency of separation. Numerically, it can be simulated using the proposed approach in chapter 4 and experimentally it is doable using a controller which changes the condition on the valve depending on the arriving gas core at the pick-up tube. The fact that the averaged eciency does not attain 100% means that not all bubbles at the pick-up tube inlet are captured. This is due to the turbulent dis-considered incompressible. Results are made dimensionless, the time is normalized by D/u b and the velocity by u b . The same 3D two-phase ow simulation for Re = 50, 000 reported in subsection 5.4.1 is performed this time using the hybrid LT-VoF approach. Figure 5.25 shows the bubbles which are still in the Lagrangian framework in blue color, the formation of the gas core from the accumulated bubbles in red color, the gas volume fraction in a cross section at x = 0.5R (right) after the swirl element and the gas core fraction in a section along the separator (bottom). At rst, the bubbles continuousely injected are all simulated using the Lagrangian Tracking (Fig. 5.25 (a)). Then, the bubbles reaching the pipe centre are transformed into VoF following the method described in section 2.7 (Fig. 5.25 (b)). As other bubbles touch the gas core, the latter grows and its radius becomes important especially right after the separator since the bubbles are not constraint to reach the pipe centre to switch to VoF but only to be in contact with the core interface (Fig. 5.25 (c)). The gas core has a form of a cone that is stretched in the axial direction towards the LPO due to buoyancy (Fig. 5.25 (d)). As the injection continues, the gas core increases in size and progressively evolves to a cylindrical shape (Fig. 5.25 (d) to (g)). An instability is observed at the interface along the gas core, it propagates radially and starts with small bursts at the interface leading to the divergence of the calculation at t * = 0.44. To reduce the growth of a signicant core radius right after the separator (see Fig. Then, it gets slightly deformed while rotating yet it remains centered inside the separator.

Bursts are observed once the core radius is large enough inside the pipe. It induces the increase of the liquid velocity between the core and the pipe wall thus increasing the shear close to the core interface. This promotes the interface destabilisation both physically and numerically as shown in Fig. 5.28 (i). This is clearly illustrated in Fig. 5.29 (left) and further discussed in the following paragraph. Figure 5.29 represents a zoom on the gas core interface which corresponds to C = 0.5 (on the left) and the axial velocity normalized by the bulk velocity at a cross section 2R after the swirl element (on the right). Up to t * = 0.17, the gas fraction is about 8%, the core has a column shape which looks like the swirling column pattern 5.1(a). As the gas fraction increases, the core diameter increases, the core is deformed and small bursts are formed at the interface. The core keeps rotating in the same direction as the continuous phase as shown by the streamlines but moves towards the LPO. Its axial velocity is positive and is around 5 times the bulk velocity. By comparing this with the single-phase ow simulation of the same Re = 50, 000 reported in chapter 4 in which a recirculation zone is detected and shown in Fig. 4.16 where the axial velocity is negative, we can say that the eect of the buoyancy of the gas core overcomes the eect of the reverse ow. This is also observed in the simulation of the inline separation using only the Lagragian Tracking in which the bubbles, although located in a recirculation zone, have a positive axial velocity.

(a) t * = 0.11 (b) t * = 0.17 Finally, the same simulation is performed for a two-phase ow with Re = 25, 000

to check the eect of the swirl strength on the gas core stability. The numerical simulation has showed that the bubbles accumulation is slower in comparison to the case of Re = 50, 000 as expected and reported in subsection 5.3.4. The gas core is formed and is stable at rst as illustrated for instance in Fig. 5.30, then small bursts appear at the interface. They are characterized by high velocites as presented in The hybrid approach have allowed to simulate the two-phase ow inline separation and revealed the possible instabilities and core deformations which can happen inside the separator. Common patterns of the gas core are observed between the numerical simulations and the rst experiments which conrms qualitatively the results. However, other numerical constraints are encountered while simulating such a complex process notably the resolution of the bursts at the interface both in time and space.

Investigation of the gas core instability in a swirling ow

In the process of investigating the reason behind the instability of the core interface in the separator, we consider the simplied test case of a cylindrical gas core in a rotating ow. The numerical and physical conditions are xed in a way to match the closest ow conguration existing in the separator namely the same mesh resolution R/∆ = 40, the use of the numerical gas/water system to avoid any possible spurious currents as detailled in subsection 2.6.3. The time is normalized by t σ = D 2 ρ w /σ. The rotation velocity of the cylinder ω is xed to the one obtained in the separator right after the swirl element for Re = Du b /ν w = 50, 000. The Reynolds number of the ow in the rotating cylinder is dened based on ω as: Re ω = ωR 2 /ν w . The radius of the core corresponds to a gas volume fraction equal to 10% as the one previously simulated inside the separator, thus R core /R = 0.315 which gives R core /∆ ≈ 12.5.

Furthermore, periodic boundary conditions at the inlet and outlet of the pipe are imposed and the gravity is not considered. At rst, a single-phase ow is simulated inside a rotating cylinder till the solid rotation velocity prole is established, then the core is initialized as shown in Fig. 5.32. First, only the VoF solver is used then the need of a sub-grid model for turbulence is discussed. Figure 5.33 illustrates the temporal evolution of the interface of an unstable gas core. At t * = 0.0016, the interface is deformed following a polygonal shape. The core continues to rotate while the interface instability is being developped in the radial direction. Such a deformation was observed experimentally in a study of rotating polygon instability of a swirling free surface ow [START_REF] Tophoj | Rotating polygon instability of a swirling free surface ow[END_REF]. As time goes on, the instability spreads widely till the point when the interface is not resolved, the mass is lost and the simulation diverges at t * = 0.147 which can be an indication of the developpement of a numerical instability. This seems to indicate that the rst stage of interface deformation observed here, and certainly previously when bursts are developped, is captured by the solver. Then, the instabilities result in structures of size smaller than the interface (sub-grid phenomena which are not modelled here). This point will be discussed later.

Since the centrifugal force generated by the rotation velocity is a direct parameter which can be controlling the core deformation, an investigation of the behaviour of the core at lower rotation velocities is done to characterize the occurrence of the instability and nd a case where the core is stable. The size of the core is kept the same R core /R = 0.315. To fairely compare between the numerical results of the swirling core in the separator for Re = 50, 000 and the one inside the rotating cylinder, another detail should be taken into account to wit the turbulence modelling. In fact, the numerical simulations of the separator were done using LES, therefore, we conduct the same simulation of a gas core of radius R core /R = 0.315 in a rotating ow using the mixed dynamic Smagorinsky model.

It is worth mentionning that with the CFD code we are using, only the transport of the volume fraction by the ltered velocity is done while the extra term appearing due to the ltering operation of the transport equation: u • ∇C -u•∇C is neglected.

The surface tension force considered is also not the ltered one which is expressed as: σ(k cur ∇C -k cur ∇C). It is true that at this stage, the assumption of neglecting these terms are not physically justied but considered for the sake of simplication because the closure of these terms is still an open question. For instance, Vincent et al. [START_REF] Vincent | A priori ltering and les modeling of turbulent two-phase ows application to phase separation[END_REF] have investigated the modelling of LES for two-phase ow via the simulation of a phase inversion case. The convection, diusion, surface tension and interface advection subgrid terms are compared in magnitude and have shown a dependance on the type of the lter as well as the LES approach. Indeed the gas core of radius R core = 0.315R was found to be stable with LES, however, one can expect the behaviour to change if the core size increases since the interface will be subject to a higher centrifugal force similary to the case of a small radius in a high rotation velocity. Figure 5.37 represents the interface deformation over time for a core of radius R core = 0.547R. At rst, the polygonal instability is enhanced in comparison to a small radius. But after that, the interface is diused and the core keeps rotating.

Conclusion

Numerical simulations and results of two-phase ow inline separation are presented in this chapter. A simplied analysis of the migration of a bubble in swirling ow is rst provided using the results of single-phase ow simulations from chapter 4. The comparison between the dierent forces applied on the bubble shows that the drag force can be neglected in front of the lift and added mass in the radial direction. An estimation of the migration time is also calculated. To take into account the eects of the ow unsteadiness and uctuations, numerical simulations of a bubble in the separator using Lagrangian Tracking are performed. The results are discussed over various aspects: the bubble size, the ow Reynolds number and their inuence on the migration time.

Once the migration and capture processes are described in details, the inline separation of gas/water ow is simulated rst by considering only the Lagrangian Tracking solver and an evaluation of the separation eciency is done proving the capacity of the inline separator. Then, the hybrid LT-VoF is activated. The formation of the gas core and its resolution using VoF from the accumulated Lagrangian bubbles enables to display the patterns on the core interface as the gas volume fraction Hence, a coupling between the dierent CFD methods is needed. In chapter 1, the inline uid separation is detailed and the CFD approach proposed in this study is presented.

The rest of this thesis can be divided into two parts: chapters 2 and 3 which focuses on the CFD developements and chapters 4 and 5 which deals with the simulations and investigation of swirling single and two-phase ows in the separator.

As a matter of fact, in chapter 2, the CFD code JADIM used for the simulations is introduced and the independant LES [START_REF] Calmet | Large eddy simulation of high schmidt number mass transfer in a turbulent channel ow[END_REF], IBM [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF], LT [START_REF] Chouippe | Numerical simulations of bubble dispersion in turbulent taylor couette ow[END_REF] and VoF [START_REF] Bonometti | An interface capturing method for incompressible two-phase ows: Validation and application to bubble dynamics[END_REF] solvers as previously developed in JADIM and validated through many studies are described.

New CFD developments are then proposed in the current work: rst, the use of IBM for complex geometries (the swirl element in our case) constructed via a CAD solfware. Basilisk is used to generate the required solid fraction needed for the IBM solver [START_REF] Bigot | A simple immersed boundary method for solid uid interaction in constant and stratied density ows[END_REF]. This method is validated through the simulation of the separator. Then, IBM is coupled to LT by introducing a collision model to allow the dispersed phase to rebound on the IB solids (pipe, swirl element, pick-up tube) when a contact accurs according to the normal to the IB surface with a restitution coecient set to 1 for full restitution of the kinetic energy. A 3D simulation of a set of bubbles injected at the uid velocity upstream the swirl element in the separator is performed without the proposed collision model shows that the bubbles are trapped inside IB cells and that by activating the hybrid IBM/LT model, they are able to rebound on the swirl element. Later, when the separation takes place and the dispersed phase accumulates in the centre to form the core, a switch from LT to VoF is done. The hybrid LT/VoF consists in moving any dispersed phase reaching the pipe centre or in contact with a VoF cell from the Lagrangian framework to the Eulerian one and update the phase indicator with the transformed dispersed phase fraction. This model is validated through the simulation of bubbles accumulation in a solid body rotating uid. The core is formed and its interface is solved using VoF.

For an air/water system, the problem of spurious currents in VoF is discussed and solved via a dimentionless study. Finally, an original stochastic wall model for hybrid LES/IBM is presented in chapter 3 with the objective to develop a wall model for the mixed dynamic Smagorinsky model coupled to IB solids in order to avoid the need of mesh renment next to the wall to capture the viscous sub-layer. The development of the model has gone through three steps, Poiseuille ow is rst simulated to check the ability of IBM to solve the ow since we already know the analytical solution, a model is therefore introduced in the IBM forcing. Then, turbulent pipe ow is simulated using just IBM/LES, an underestimation of the bulk velocity is found.

Thus, a mean wall model based on the log law or the power law is implemented.

With the adjustment of the model parameter, the wall model is able to recover the mean velocity but needs a source of uctuations to act on the rms velocities. This is why, a stochastic wall model is nally proposed and is capable of correcting both the mean and velocity uctuations.

Once the proposed hybrid CFD approach is presented and validated, numerical simulations of the inline uid separation process are performed. Chapter 4 focuses on studying swirling single-phase ow in the separator using LES/IBM with the wall model. A general description of the swirling ow features in the separator is provided. The mesh sensitivity is done. Then, a single-phase ow in the separator for Re = 50, 000 is investigated in terms of the axial and azimuthal velocities, the swirl element, the pressure and the centrifugal force. The eect of the Reynolds number on these quantities is also looked at. The normalized azimuthal velocity and the swirl element are found to be slightly dependent of the Reynolds number while the recirculation zone expansion is inuenced by Re. Finally, to simulate the eect of the condition at the separator outlet, the pick up-tube and the ow straightner which eliminates the swirling ow between the separator and the pickup tube are added using IBM. And to impose the condition of the ow split F S on the valve acting on the pick-up tube, an IBM forcing is introduced in the ow straightener. This allows to control directly the ow rate going through the LPO and eventually mimic a dynamic condition of the valve when it is the case. Similary, a comparison of the velocity proles is done for dierent ow splits. The latter modies the ow not only inside the pick-up tube but also upstream of it.

Chapter 5 represents the numerical results of the two-phase ow simulations in the separator. At the beginning, the dynamics of a bubble in the separator is described though its force balance. The objective is to understand the migration process and the forces which are behind it. A simplied trajectory equation is found based on the previous single-phase ow study. And characteristic times are introduced namely the relaxation time, the migration time and the capture time.

Then, two-phase ow simulations of a set of bubbles using LT are carried out. This allows to take into account the ow uctuations eect on the dispersed phase and evaluate accurately the forces. The instantenuous and averaged forces are compared and the RMS are calculated. The migration process is found to be governed mainly by the radial virtual mass force and an eventual contribution of the lift force with either a centripetal or a centrifugal eect, the uctuations of these forces have also a role in delaying the migration especially the lift force. Furthermore, an impact of the decrease of the bubble size is noticed on the increase of the migration time. A similar eect is observed when decreasing the Reynolds number. This detailed study of the forces on the bubbles and their sensitivity to the various parameters is important to estimate the migration time and therefore optimize the separator. The second part of the chapter deals with the bubbles accumulation and core formation. Using only the Lagrangian Tracking, the separator performance is evaluated. The inline separator proves to be an ecient technology to recover the gas. Finally, by activating the hybrid approach LT-VoF, the gas core is constructed and solved employing VoF. A rotation of the gas core following the continuous swirling phase as well as an axial motion towards the LPO are observed. At the interface, instabilities marked by high velocities occur in the form of bursts and relate qualitavely to experimental results from TU Delft. To further investigate the interface deformation, a study of gas core instabilities in a rotating ow is conducted and conclusions are drawn both from a physical and numerical views. 

Perspectives

The short-term perspectives concern the ongoing work to extend the numerical domain to the same exact conguration used in the experimental study for a quantitative comparison this time. More scenarios of xed and dynamic pick-up tube the separation.

Indeed the developed hybrid CFD approach has given a relevant proof of concept of its capacities in simulating inline uid separation and which can also be used for other complex ows. But, it still has some aspects which can be done or improved in the long term. For instance, one can still ameliorate the collision model of hybrid IBM/LT to evaluate the restitution coecient for dierent types of dispersed phase (bubble, droplet, solid particle). This may need information about the microscopic physics which we cannot be solved using LT but can eventually be deduced from existing experiments and included in the CFD model. Furthermore, as we are dealing with highly turbulent bubbly ow, it is also possible to investigate the variation of the force balance coecients for drag, lift and virtual mass so to consider the deformation of the bubbles which might inuence the separation process in our study.

Concerning the proposed wall model for IBM/LES. It has been observed that the stochastic model which is able to reproduce the mean and uctuations velocities gives strong pressure uctuations since the velocity imposed in the IBM forcing is not divergence free and this represents an interesting persective to bring more improvment to the model.

Finally, one of the outlooks of this thesis is the modelling of turbulence for VoF since a limited number of publications are present in litterature [START_REF] Vincent | A priori ltering and les modeling of turbulent two-phase ows application to phase separation[END_REF][START_REF] Anez | Eulerianlagrangian spray atomization model coupled with interface capturing method for diesel injectors[END_REF] 

  my family for all their support. *********************************************************** This work is done within the TOMOCON project which has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No 764902.

1 . 1

 11 Kick o meeting in HZDR, Dresden, Germany . . . . . . . . . . . . . 1.2 TOMOCON's workshops and summer schools . . . . . . . . . . . . . 1.3 TOMOCON Secondments . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Sketch of three-phase ow gravity separator [1] . . . . . . . . . . . . . 1.5 Sketch of three types of cyclones . . . . . . . . . . . . . . . . . . . . . 1.6 Sketch of the inline separator . . . . . . . . . . . . . . . . . . . . . . 1.7 Tomography controlled inline separator . . . . . . . . . . . . . . . . .

  forming a larger Eulerian vapour structure . . . . . . . . . . . . . . . 2.19 Sketch of the conditions to switch the dispersed phase from LT to VoF 2.20 Sketch of the case when the constructed C LT reaches other bubbles/droplets tagged with 0 . . . . . . . . . . . . . . . . . . . . . . . 2.21 Algorithm of the hybrid LT/VoF . . . . . . . . . . . . . . . . . . . . 2.22 Simulation of two-phase ow: bubbles accumulation and core formation in a solid body rotation using hybrid LT/VoF . . . . . . . . . . . 59 2.23 Simulation of two-phase ow: bubbles accumulation and core formation at a cross-section using hybrid LT/VoF . . . . . . . . . . . . . . 60 2.24 Over-all algorithm of the numerical resolution . . . . . . . . . . . . . 61 2.25 Comparison of the HPC performance for single-phase and two-phase ows on Olympe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.1 Sketch of the geometry (left). Numerical domain and wall pipe shown using the iso-contour α IBM = 0.5 (right). . . . . . . . . . . . . . . . . 65 3.2 Pipe cross-section for the three meshes m1, m2, and m3 from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3 Dimensionless radial proles of the velocity (left) and the shear stress (right) for the three meshes compared to the exact solution eq. 3.1. . 66 3.4 Grid convergence of the relative error on the velocity at the IB wall: U (R) (left), the shear stress at the IB wall: τ IBM (R) and in the uid at R/2: τ F luid (R/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5 Dimensionless proles of the velocity and the shear stress when using the IBM wall model (3.4) . . . . . . . . . . . . . . . . . . . . . . . . 67

  ) (right). . . . 77 3.13 Optimal α h as a function of the mesh resolution ∆/R for dierent Reynolds numbers Re. The solid red line represents the relation (3.19) 78 3.14 Normalized instantaneous axial uctuations u x /u b . (a) basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model. . . . . . . . . . . . . . . . . 79 3.15 Streaks observation. Normalized instantaneous axial uctuations u x /u b at the distance 100 * away from the wall. (a) Basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model. . . . . . . . . . . . . . . . . . . . . . . . . 79 3.16 Normalized total viscosity ν total /ν: (a) basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.17 Pressure statistics for Re = 50, 000 . . . . . . . . . . . . . . . . . . . 80 3.18 Normalized instanteneous pressure for Re = 50, 000 at 100l * away from the wall. (a) Basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model. . . 81 3.19 Normalized instanteneous pressure for Re = 50, 000 at 100l * away from the wall using the stochastic model α h = 0.1. (a) L cx = 2570l * , (b) L cx = 6630l * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1 Layout of the swirl element with the denition of its dierent parts . 84 4.2 Swirl decay coecient C sw by [4] denoted here by β, the lines connect measurements done on the same set-up . . . . . . . . . . . . . . . . . 86 4.3 Sketch of HPO and LPO . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4 Visualization of the separator on three dierent meshes . . . . . . . . 88 4.5 Vizualization of the swirl element on three dierent meshes: m1 (left), m2 (middle), m3 (right) . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.6 Streamlines of single-phase ow for Re = 200, 000 on three meshes. . 89 4.7 Deviation from the geometrical deection angle as a function of the grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.8 Sketch of a cross section of the ow straightener [5] . . . . . . . . . . 90 4.9 Visualisation of a cross section at the outlet of the separator with corresponding value of the IBM function . . . . . . . . . . . . . . . . 91 4.10 Streamlines of swirling single-phase ow for Re = 50, 000 in the separator for two ow splits F S . . . . . . . . . . . . . . . . . . . . . . . 93 4.11 The velocity magnitude in (m/s) in cross-section at the pick-up tube for two F S: (a)=0.5, (b)=0.3 and right after the tail section of the swirl element (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.12 Evolution of the ow split over time: equation 4.13 for FS=0.5 (equation 4.13 for FS=0.3) is represented by a solid (dashed) red line, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.13 The radial distribution of the time-θ-averaged azimuthal velocity at four sections after the swirl element . . . . . . . . . . . . . . . . . . . 96 4.14 The Rankine vortex t to the time-θ-averaged azimuthal velocity . . 96 4.15 The radial distribution of the time-θ-averaged axial velocity at four sections after the swirl element . . . . . . . . . . . . . . . . . . . . . 97 4.16 Instantenuous recirculation zone where the axial velocity is negative . 97 4.17 Time θ-averaged azimuthal velocity and time-averaged azimuthal velocity along a line across the section x = 0.08R . . . . . . . . . . . . . 98 4.18 Time θ-averaged axial velocity and time-averaged axial velocity along a line across the section x = 0.08R . . . . . . . . . . . . . . . . . . . 98 4.19 Evolution of the swirl number along the separator, solid red line represents the t for the decay of S dened by 4.23 . . . . . . . . . . . 99 4.20 comparison of the swirl number in the two cases: without a wall model and with a wall model, the ts for the decay of S following 4.9 are represented with solid lines. . . . . . . . . . . . . . . . . . . . . . . . 100 4.21 comparison of the time θ-averaged azimuthal velocity (right) and axial velocity (left) at x = 0.08R for the two cases: without a wall model and with a wall model (wm). . . . . . . . . . . . . . . . . . . . . . . . 100 4.22 The radial distribution of the normalized pressure . . . . . . . . . . . 101 4.23 The radial distribution of the centrifugal force and pressure gradient 101 4.24 Time-averaged normalized pressure along the separator . . . . . . . . 102 4.25 The swirl number for dierent Reynolds numbers . . . . . . . . . . . 103 4.26 The variation of ln(S/S 0 ) along the separator (right) and the swirl decay coecient (left) for dierent Re, the solid red line represents the t dened by 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.27 The radial distribution of time θ-averaged azimuthal and axial velocities normalized by their corresponding bulk velocity at 0.08R after the swirl element for dierent Reynolds numbers . . . . . . . . . . . . 104 4.28 The radial distribution of time θ-averaged axial velocity at 7.5R after the swirl element for dierent Reynolds numbers . . . . . . . . . . . . 104 4.29 Time-averaged normalized pressure along the separator . . . . . . . . 105 4.30 The friction coecient f wall as a function of Reynolds number, the red line represents the t dened by 4.26 . . . . . . . . . . . . . . . . 105 4.31 Eect of the ow split F S on the swirl number S . . . . . . . . . . . 106 4.32 The radial distribution of time θ-averaged axial velocity across the pick-up tube for dierent ow splits . . . . . . . . . . . . . . . . . . . 107 4.33 The radial distribution of time θ-averaged axial velocity across the pick-up tube for dierent ow splits . . . . . . . . . . . . . . . . . . . 107 4.34 The radial distribution of time θ-averaged azimuthal and axial velocity upstream the pick-up tube at 7.5R after the swirl element for dierent ow splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.1

nF 1 p 2 /s 2 ]Rθ

 122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.4 Comparison of the evolution of the bubble radial position obtained by solving equation 5.15 for (r d = 1mm, t V M = 0.014s), (r d = 0.5mm, t V M = 0.014s) and (r d = 1mm, t V M = 0.007s). . . . . . . . . 115 5.5 Comparison of the evolution of the bubble radial position as function of its axial position normalized by the pipe radius for (r d = 1mm, t V M = 0.014s), (r d = 0.5mm, t V M = 0.014s) and (r d = 1mm, t V M = 0.007s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.6 Positions of a set of 5000 bubbles (in blue) at t = 0.04s after the continuous injection is done. . . . . . . . . . . . . . . . . . . . . . . . 117 5.7 Trajectory of a 1mm radius bubble in the separator swirling ow for Re = 50, 000. The red line represents the pipe centre (y, z) = (0, 0), the gravity is g = -9.81e x . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.8 The radial (left) and axial (right) positions (m) of the bubble in (m) as function of time (s). . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.9 Time evolution of the magnitude and components of the forces acting on the bubble in (N). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.10 The averaged magnitude and components of the forces in (N) as function of the axial position normalized by the separator radius. . . . . . 121 5.11 Comparison of the averaged radial virtual mass force in (N) obtained from the simulation and the one calculated using eq 5.18 as function of the axial position normalized by the separator radius. . . . . . . . 122 5.12 The mean radial position and a single bubble radial position in (m) as function of the axial position normalized by the separator radius. . 123 5.13 The RMS of the forces normalized by the averaged virtual mass force (left) and normalized by the averaged corresponding force (right) as function of the axial position normalized by the separator radius. . . 124 5.14 Comparison of the instantaneous (left) and mean (right) bubbles radial position in (m) as function of the axial position normalized by the pipe radius for bubbles of radius r d = 0.5mm vs r d = 1mm. . . . 125 5.15 The averaged radial components of the lift and virtual mass normalized by the buoyancy F B as function of the axial position normalized by the separator radius of two radius cases: r d = 0.5mm vs r d = 1mm.126 5.16 The RMS of the radial components of the lift and virtual mass normalized by the buoyancy F B as function of the axial position normalized by the separator radius of two radius cases: r d = 0.5mm vs r d = 1mm.126 5.17 Comparison of the instantaneous (left) and mean (right) bubbles radial position in (m) as function of the axial position normalized by the pipe radius in a ow for Re = 100, 000 vs Re = 50, 000. . . . . . . 127 5.18 The averaged radial components of the lift and virtual mass normalized by F c as function of the axial position normalized by the pipe radius in a ow of Re = 100, 000 vs Re = 50, 000. . . . . . . . . . . . 128 5.19 The RMS of the radial components of the lift and virtual mass normalized by F c as function of the axial position normalized by the pipe radius in a ow of Re = 100, 000 vs Re = 50, 000. . . . . . . . . . . . 128 5.20 Simulation of two-phase ow separation for Re = 50, 000 using Lagrangian Tracking. The bubbles are presented in a blue color while those located at radial positions r * < R LP O are colored in red. . . . . 131 5.21 Trajectories of four bubbles in swirling ow in the separator. The red line represents the pipe centre. . . . . . . . . . . . . . . . . . . . . . . 132 5.22 The bubbles radial positions in (m) as function of the normalized axial position. The red line represents the location of the pick-up tube.132 5.23 Simulation of two-phase ow separation. The bubbles are presented by a blue color while those situated at radial position r * < R LP O are colored in red for FS=0.3 and FS=0.5 . . . . . . . . . . . . . . . . . . 133 5.24 Comparison of the time-evolution of the separation eciency for two ow splits: F S = 0.3 and F S = 0.5 . . . . . . . . . . . . . . . . . . . 133 5.25 Simulation of two-phase ow separation for Re = 50, 000 using hybrid LT-VoF with a continuous bubbles injection. The bubbles are presented by a blue color. The gas core is colored in red. The gas volume fraction over a cross section x = 0.5R after the swirl element is showed on the right and along the separator in the bottom. . . . . 137 5.26 Gas volume fraction in dierent cross sections along the separator where an instability is developed with the corresponding velocity eld normalized by the bulk velocity. . . . . . . . . . . . . . . . . . . . . . 137 5.27 A one-time injection of a set of 70,000 bubbles after the swirl element a swirling ow for Re = 50, 000 in the separator. . . . . . . . . . . . . 138 5.28 Simulation of two-phase ow separation for Re = 50, 000 using hybrid LT-VoF with a one-time bubbles injection. The bubbles are presented by a blue color. The gas core is colored in red. The gas volume fraction over a cross section x = 0.5R after the swirl element is showed on the right and along the separator in the bottom. . . . . . . . . . . 141 5.29 Simulation of two-phase ow separation for Re = 50, 000: The gas core interface (left) with the streamlines. The axial velocity normalized by the bulk velocity u b over a cross section located at 2R after the swirl element the gas core (right). The ow is from left to right in the opposite direction of gravity. . . . . . . . . . . . . . . . . . . . 143 5.30 Simulation of two-phase ow separation for Re = 25, 000 using hybrid LT-VoF with a one-time bubbles injection. . . . . . . . . . . . . . . . 144 5.31 The normalized velocity magnitude at the gas core interface when the instability takes place. . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.32 Initialisation of a gas core in a rotating ow, on the right is shown the gas volume fraction in a cross section. . . . . . . . . . . . . . . . 145 5.33 Simulation of gas core in a rotating ow: Re ω = 1.06×10 5 , R core /R = 0.315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.34 Map of the stability of a gas core of radius R core = 0.315R in a rotating ow with three dierent Re ω : Re ω = 2.12 × 10 4 , Re ω = 4.23 × 10 4 and Re ω = 1.06 × 10 5 and for which the nal gas core snapshots are at t * = 0.237, t * = 0.0067 and t * = 0.0035 respectively. . . . . . . . . 147 5.35 Simulation of gas core in a rotating ow: Re ω = 1.06×10 5 , R core /R = 0.315 using the mixed dynamic Smagorinsky model. . . . . . . . . . . 148 5.36 Turbulent viscosity (left) normalized by the kinematic viscosity over a cross section where the gas core is located (right) : Re ω = 1.06 × 10 5 , R core /R = 0.315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.37 Simulation of gas core in a rotating ow: Re ω = 1.06×10 5 , R core /R = 0.547 using the mixed dynamic Smagorinsky model. . . . . . . . . . . 150 6.1 Illustration of the developed hybrid CFD approach for the simulation of inline uid separation. . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Sketch of the control of the inline uid separation process with the contribution of tomography sensors as well as CFD (top) and how the control condition is implemented in the CFD simulations (bottom).155 Nomenclature Greek symbols α def Deection angle of the swirl element α h Stochastic wall model parameter α IBM Solid volume fraction ∆ Mesh size [m] ∆t Time step [s] Mean wall shear [P a] τ SGS Sub-grid stress tensor [m/s 2 ] ∆ Second lter's size [m] IBM Normal vector to IB surface v d Velocity vector of the dispersed phase [m/s] Eciency of separation f IBM IBM volumetric force [m/s 2 ] F C The bulk velocity [N ] f σ Surface tension force [N ] F B Buoyancy and weight of the dispersed phase [N ] T chen Tchen force [N ] F V M Virtual mass force [N ] F S Flow split l * Wall unit [m] l Averaged spurious velocity [m/s] l ∞ Maximum spurious velocity [m/s] L cθ Turbulent spanwise characteristic length [m] L cx Turbulent streamwise characteristic length [m] Unresolved pressure [P a] Q HP O Flow rate at the Heavy Phase Outlet (HPO) [m 3 /s] Q inlet Inlet ow rate [m 3 /s] Q LP O Flow rate at the Light Phase Outlet (LPO) [m 3 /s] R Pipe radius [m] r Radial coordinate [m] r * Bubble radial position [m] r + Distance from the wall in wall units r d Radius of the dispersed phase [m] int Internal radius of the swirl element [m] R pt Radius of the pick-up tube [m] Re Reynolds number Re * Friction Reynolds number Re d Reynolds number for the dispersed phase S The bulk velocity [m/s] u + Normalized azimuthal rms velocity u adv Advection velocity [m/s] Local velocity of the IB object [m/s] W e Weber number x Coordinate in the x-direction [m] y Coordinate in the x-direction [m] z Coordinate in the z-direction [m] The European Training Network Smart tomographic sensors for advanced industrial process control (TOMOCON) is an EU research project nancially funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement 764902. It started in March 2018 (see Fig.1.1) and will end in September 2021. The project joins 12 international academic institutions and 15 industrial partners who work together in the emerging eld of industrial process control using smart tomographic sensors. The network shall set the scientic and technological fundamentals of using imaging sensors for industrial controlled processes and demonstrate its operating feasibility on lab and pilot-scale applications.

Figure 1 . 1 :

 11 Figure 1.1: Kick o meeting in HZDR, Dresden, Germany
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 121 Figure 1.2: TOMOCON's workshops and summer schools
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 14 Figure 1.4: Sketch of three-phase ow gravity separator [1]
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 15 Figure 1.5: Sketch of three types of cyclones
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 16 Figure 1.6: Sketch of the inline separator
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 17 Figure 1.7: Tomography controlled inline separator
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 2 Figure 2.1 shows the positioning of the variables on a 3D cell.
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 21 Figure 2.1: Representation of the variables on a 3D cell: the pressure p, the volume fraction C and the velocities u x , u y and u z in the x, y and z directions respectively
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 22 Figure 2.2: Steps to generate α IBM from a CAD le

Figure 2 .

 2 [START_REF] Peters | Numerical assessment of cavitation-induced erosion using a multi-scale euler-lagrange method[END_REF] shows the contour α IBM = 0.5 of the separator. The latter is well described and the swirl element is successfully simulated.
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 235 Figure 2.3: 3D visualization of the separator using IBM: contour α IBM = 0.5

  Figure 2.4 shows the streamlines of the ow which follow perfectly the shape of the swirl element. Moreover, the velocity reaches its maximum at the position of the blades. Chapter 4 is dedicated to the investigation of swirling single-phase ow in the separator where further results are presented.
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 24 Figure 2.4: Streamlines of single-phase ow in the separator of Reynolds number Re = 4, 600
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 57 Validation: bubble in a solid body rotation using LT To check the Lagrangian Tracking solver in a situation close to the conguration considered in this work, 2D simulation of a bubble of radius r b in a solid body rotation are conducted. The objective of this simple test case is to verify the calculation of the dierent forces and in particular those responsible of the bubble migration towards the pipe center, because they are of great importance for the process studied in this work. The ow is generated by the rotation of a cylinder simulated using Immersed Boundary Method (IBM) of a radius R = 0.046m with (OZ) as a rotation axis and ω is the constant angular velocity as shown in Fig. 2.5. The dimentionless number characterizing the system is Re ω = (2r b ) 2 ω ν equals 10 in this case. The numerical domain is a box of size L x × L y = 0.14m × 0.14m made of N x × N y = 44 × 44 cells along the e x and e y directions. Once the ow is developed inside the cylinder, a bubble is injected at the center (0,0) with the uid velocity and its trajectory is calculated using the Lagrangian Tracking solver. Figure 2.5 represents the force balance (buoyancy, drag, lift, virtual mass and Tchen) of a bubble and its radial and tangential position in the cylinder.
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 2526 Figure 2.5: Geometry denition and sketch of the forces applied on the bubble

  (a) Bubble/droplet heading towards an IB cell (in grey) (b) Calculation of the new velocity according to 2.41 (c) Returning the bubble/droplet to its previous position with the new rebound velocity
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 27 Figure 2.7: Sketch of the steps for the activation of the collision model for hybrid IBM/LT

Figure 2 .

 2 [START_REF] Sahovic | A study on the relationship between upstream and downstream conditions in swirling two-phase ow[END_REF] shows the initialisation of the bubbles in the separator, no contact with IB cells is yet taking place. Two congurations are tested: without the collision model and with the collision model.
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 28 Figure 2.8: Injection of a set of 1000 bubbles in the separator

Figure 2 .

 2 [START_REF] Cullivan | Understanding the hydrocyclone separator through computational fuid dynamics[END_REF] shows that the bubbles, when arriving at the IB cells, are moving inside the swirl element where α IBM > 0 and this justify the need to model the interaction between IBM and Lagrangian Tracking.
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 29 Figure 2.9: Two-phase ow simulation using LT and IBM without the collision model

Figure 2 . 2 . 6

 226 Figure 2.10: Two-phase ow simulation using hybrid LT/IBM: with the collision model
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 211211 Figure 2.11: Sketch of the angles β 1 and β 2
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 212 Figure 2.12: Simulation of air core in a rotating water ow
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 213 Figure 2.13: Evolution of the spurious currents intensity over time

Figure 2 . 17 :

 217 Figure2.17: Simulation by Yu[START_REF] Yu | A parallel volume of uid-lagrangian parcel tracking coupling procedure for diesel spray modelling[END_REF] for the atomization of a spay using hybrid VoF/LT
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 2 18 depicts a snapshot in which Lagrangian bubbles are progressively growing and switching to VoF.
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 218 Figure 2.18: Simulation by Peters [3] where Lagrangian bubbles are growing and forming a larger Eulerian vapour structure

  2.19c). (a) Bubbles/droplets (in red) are positioned in cells at the center of the pipe (b) Bubbles/droplets are transformed into the Eulerian framework and the VoF core is formed (c) Bubbles/droplets (in red) are located in a VoF cell C > 0 and therefore subject to switching to VoF

Figure 2 . 19 :

 219 Figure 2.19: Sketch of the conditions to switch the dispersed phase from LT to VoF

2. 20 .

 20 Figure 2.20: Sketch of the case when the constructed C LT reaches other bubbles/droplets tagged with 0

A

  rotating pipe with (OX) as a rotation axis and ω = 0.3rad/s the constant angular velocity is simulated using IBM. The numerical domain is a box of size L x ×L y ×L z = 0.23m × 0.1m × 0.1m made of N x × N y × N z = 100 × 46 × 46 cells along the e x , e y and e z directions. Periodic conditions are imposed at the inlet and outlet of the pipe. Once the ow is developed, a set of 1000 bubbles of radius r b = 1mm are injected randomly inside the tube with the uid velocity (see Fig.2.22a). The hybrid LT/VoF is activated inside the pipe. Figure2.22 shows three dierent instants. First when the bubbles are injected and are still all in the Lagrangian framework. Then, the bubbles start to migrate towards the center of the pipe and once the criteria for switching to VoF is veried, the tagged bubbles are not any more resolved by LT and their total volume is transformed into a volume fraction C. In Fig.2.22b, the interface corresponding to the contour C = 0.5 is visualized. After that, arriving bubbles are reaching the gas core, therefore they are switching to VoF. At the end, only the VoF is activated. Figure 2.22d represents the gas volume fraction C in a section z = 0, the interface 0 < C < 1 is well resolved by VoF, C is no more updated by the hybrid LT/VoF and the Lagrangian Tracking solver is turned o.(a) Initialisation of the bubbles: only LT is activated (b) Beginning of the core formation: LT/VoF is activated (c) End of the core formation: only VoF is activated (d) The gas volume fraction in a section along the pipe
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 222 Figure 2.22: Simulation of two-phase ow: bubbles accumulation and core formation in a solid body rotation using hybrid LT/VoF

  (a) Initial position of bubbles located at a cross-section of the pipe (b) Bubbles are migrating to the center and the gas core is appearing in blue (c) Some bubbles are in contact with the core interface and therefore moved to VoF (d) The core is growning as more bubbles are switching to VoF (e) All bubbles in the section have switched and only the VoF is active
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 223 Figure 2.23: Simulation of two-phase ow: bubbles accumulation and core formation at a cross-section using hybrid LT/VoF

Figure 2 .

 2 Figure 2.24: Over-all algorithm of the numerical resolution
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 225 Figure 2.25: Comparison of the HPC performance for single-phase and two-phase ows on Olympe
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 31 Figure 3.1: Sketch of the geometry (left). Numerical domain and wall pipe shown using the iso-contour α IBM = 0.5 (right).
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 32 Figure 3.2: Pipe cross-section for the three meshes m1, m2, and m3 from left to right.
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 33234 Figure 3.3: Dimensionless radial proles of the velocity (left) and the shear stress (right) for the three meshes compared to the exact solution eq. 3.1.
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 335 Figure 3.5 represents the velocity and shear stress obtained with the new IBM condition (3.4). All the proles are now very close to the analytical solution regardlessof the mesh size. The corresponding errors on both the velocity and the viscous shear stress are reported in gure 3.4 as a function of the grid size. We observe that by correcting the IBM forcing following the proposed model, the magnitude of the error has been signicantly reduced, the accuracy is improved and a second order convergence is obtained for both velocity and shear stress.
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 36 Figure 3.6: Proles of the mean velocity and rms velocity for simulations using the standard IBM solid-uid interaction and the IBM solid-uid interaction based on the mean velocity models for Re = 100, 000. Red symbols stand for the reference studies (see Table3.1). The "log-law" and "power law" modeling are considered

Figure 3 .

 3 6 illustrates the mean and rms proles normalized by < u * > as a function of the radial position normalized by the wall unit length * . The two models ("log law" and "power law") provide very similar results for both the mean and the rms velocities. The mean velocity prole is now over-estimated in comparison with the previous data from literature. The impact on the rms velocity diers depending on each components. The velocity uctuation in the streamwise direction increases close to the wall and is corrected far from it in the two other directions. The peak of the streamwise uctuation generally located around 15 * , considered as a feature
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 37 Figure 3.7: Relative error E U on the bulk velocity as a function of the wall law coecients B and A for the log and power laws, respectively.
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 38 Figure 3.8: Realization of the stochastic process to predict the friction velocity eld at the wall.
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 39 Figure 3.9: Mean velocity and rms using the stochastic model for Re = 100, 000.
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 31036 Figure 3.10: Relative error E U on the bulk velocity as a function of the wall law coecients.
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 311 Figure 3.11: Comparison between the mean velocity models and the stochastic model

Figure 3 .

 3 Figure 3.12 (left) reports the evolution of the optimized values of A and B as a function of the grid resolution for the three Reynolds numbers. Both A and B have to be increased when the mesh is getting coarser, because the underestimation of the bulk velocity is enhanced resulting in the need of larger solid velocity in the forcing inside the IBM wall region. A linear evolution with the grid size is observed for both A and B. The origin of the linear evolution for A (power law) needs to be adjusted for each Reynolds number while the linear t of B (log law) is unchanged for the three dierent Reynolds numbers, outlining the relevance of the use of the log-law in the mean velocity model.
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 8312 Figure3.12: Optimal values for A and B as a function of the mesh resolution R/∆ for dierent Reynolds numbers Re (left). Lines stand for the linear ts 3.17 and 3.18. Evolution of X(Re) (see relation 3.17) (right).
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 313 Figure 3.13: Optimal α h as a function of the mesh resolution ∆/R for dierent Reynolds numbers Re. The solid red line represents the relation (3.19)

Figure 3 .

 3 Figure 3.14 represents an instantaneous snapshot of the axial uctuations u x normalized by the bulk velocity u b at a section along the pipe axis. The uctuations seem to have almost the same structures in the four cases. No noticeable dierence can be observed and a zoom close to the wall is proposed in gure 3.15 where u x /u b is plotted at a distance of 100 * away from the wall.
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 314 Figure 3.14: Normalized instantaneous axial uctuations u x /u b . (a) basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model.

Figure 3 .

 3 Figure 3.15 clearly points out a dierence in the streaks organization close to the wall. As shown, basic IBM forcing, log law and power law models provide similar uctuation structures close to the wall. The streaks in those cases are somehow suppressed yielding to a reduced turbulence intensity. On the opposite, the stochastic model enhances the ow uctuations and typical highspeed and lowspeed streaks are observed in gure 3.15 (d).
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 315 Figure 3.15: Streaks observation. Normalized instantaneous axial uctuations u x /u b at the distance 100 * away from the wall. (a) Basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model.
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 316 Figure 3.16: Normalized total viscosity ν total /ν: (a) basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model.

Figure 3 .Figure 3 . 17 :

 3317 Figure 3.17: Pressure statistics for Re = 50, 000

Figure 3 . 18 :

 318 Figure 3.18: Normalized instanteneous pressure for Re = 50, 000 at 100l * away from the wall. (a) Basic IBM wall forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic model.

Figure 3 . 19 :

 319 Figure 3.19: Normalized instanteneous pressure for Re = 50, 000 at 100l * away from the wall using the stochastic model α h = 0.1. (a) L cx = 2570l * , (b) L cx = 6630l *

Figure 4 . 1 :

 41 Figure 4.1: Layout of the swirl element with the denition of its dierent parts

4 . 1 )

 41 calculated from the center of the pipe till the beginning of the blades, where there is no ow. Similary, the conservation of the axial ux of the angular momentum in the vane section and after the swirl element is expressed as: R R int u x,te ρru θ,te 2πrdr = R 0 u b ρru θ,0 2πrdr (4.3)

Figure 4 . 2 :

 42 Figure 4.2: Swirl decay coecient C sw by [4] denoted here by β, the lines connect measurements done on the same set-up

Figure 4 . 3 :

 43 Figure 4.3: Sketch of HPO and LPO
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 8031 Qualitative convergenceFirst, qualitatively from Fig.4.4, the visualization of the contours α IBM shows the eect of the grid size on the description of the swirl element, In fact, at the vane section (see Fig.4.5), we can notice that for the coarse mesh m1, the resolution of the tip of the blades is lower, their length is reduced as well as their curvature. This inuences directly the ow deection and the swirl intensity. As we rene the mesh, the resolution becomes higher. (a) Mesh m1 (b) Mesh m2 (c) Mesh m3

Figure 4 . 4 :Figure 4 . 5 :

 4445 Figure 4.4: Visualization of the separator on three dierent meshes

Figure 4 .

 4 [START_REF] Ammerlaan | Swirl eects on vertical gas-liquid ow regimes: Experiments and modelling[END_REF] illustrates the streamlines of the ow using the three meshes. With meshes m2 and m3, the swirling feature is more highlighted and by comparing the velocity at the vane section, we can see that the maximum velocity attained on the coarse mesh m1 is lower than the one on the other meshes. This is due to the resolution of the blades which generates the swirling ow.

Figure 4 . 6 :

 46 Figure 4.6: Streamlines of single-phase ow for Re = 200, 000 on three meshes.

Figure 4 . 7 :

 47 Figure 4.7: Deviation from the geometrical deection angle as a function of the grid resolution

  4.8).

Figure 4 . 8 :

 48 Figure 4.8: Sketch of a cross section of the ow straightener[START_REF] Van Campen | Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones[END_REF] 

Figure 4 . 9 :

 49 Figure 4.9: Visualisation of a cross section at the outlet of the separator with corresponding value of the IBM function

4 . 1

 41 and 4.4.2, we perform simulations of single-phase ow in the separator for Re = 50, 000 with a pick-up tube of radius R pt = 0.44R. This value is xed according to the experimental set-up in TU Delft. The pick-up tube is of length 2.6R and placed after the swirl element at a distance of 9R. Two values of α IBM in the ow straightener are tested to wit: 0.01 and 0.02, this corresponds respectively to two characteristic times tc: 1.0 and 0.5 and for each of t c , two conditions on the ow split are simulated: F S = 0.5 and F S = 0.3. In short, four simulations are done: (F S = 0.5, t c = 1), (F S = 0.5, t c = 0.5), (F S = 0.3, t c = 1), (F S = 0.3, t c = 0.5).

Figure 4 .

 4 10 depicts the streamlines in the separator for the two cases F S = 0.5 (a) and F S = 0.3 (b) for the characteristic time t c = 1. We see that in both cases the swirling ow is damped in the HPO where the streamlines are parallel to the axial direction and this is the eect of the ow straightener. Furthermore, in comparison to F S = 0.5, more uid goes through the HPO for F S = 0.3 since the pick-up tube recovers only 30% of the inlet ow rate. (a) (F S = 0.5, t c = 1) (b) (F S = 0.3, t c = 1)

Figure 4 . 10 :Figure 4 .

 4104 Figure 4.10: Streamlines of swirling single-phase ow for Re = 50, 000 in the separator for two ow splits F S

  4.11c), we can see that the swirling ow is cancelled in the ow straightener. It is worth noting that for the same ow split, we got the same ow features for two dierent characteristic times t c . More details are given in the next paragraph.(a) (F S = 0.5, t c = 1) (b) (F S = 0.3, t c = 1) (c) Right after the swirl element

Figure 4 . 11 :

 411 Figure 4.11: The velocity magnitude in (m/s) in cross-section at the pick-up tube for two F S: (a)=0.5, (b)=0.3 and right after the tail section of the swirl element (c)

5 Figure 4 . 12 :

 5412 Figure 4.12: Evolution of the ow split over time: equation 4.13 for FS=0.5 (equation 4.13 for FS=0.3) is represented by a solid (dashed) red line, respectively.

Figure 4 . 13 :

 413 Figure 4.13: The radial distribution of the time-θ-averaged azimuthal velocity at four sections after the swirl element

Figure 4 . 14 :

 414 Figure 4.14: The Rankine vortex t to the time-θ-averaged azimuthal velocity

Figure 4 . 15 :

 415 Figure 4.15: The radial distribution of the time-θ-averaged axial velocity at four sections after the swirl element

Figure 4 . 16 :Figure 4 . 17 :Figure 4 . 18 :

 416417418 Figure 4.16: Instantenuous recirculation zone where the axial velocity is negative

4 SFigure 4 . 19 :

 4419 Figure 4.19: Evolution of the swirl number along the separator, solid red line represents the t for the decay of S dened by 4.23

Figure 4 . 20 :

 420 Figure 4.20: comparison of the swirl number in the two cases: without a wall model and with a wall model, the ts for the decay of S following 4.9 are represented with solid lines.

Figure 4 .

 4 Figure 4.21 depicts the eect of the wall model on the time θ-averaged axial

Figure 4 . 21 : 2 bFigure 4 . 22 :

 4212422 Figure 4.21: comparison of the time θ-averaged azimuthal velocity (right) and axial velocity (left) at x = 0.08R for the two cases: without a wall model and with a wall model (wm).

Figure 4 . 23 :

 423 Figure 4.23: The radial distribution of the centrifugal force and pressure gradient

Figure 4 .Figure 4 . 24 :

 4424 Figure 4.24: Time-averaged normalized pressure along the separator

Figure 4 .Figure 4 . 25 :

 4425 Figure 4.25 represents the swirl number for three Reynolds numbers. The maximum value is 3.4 located at the vane section and is independent of the Reynolds number.A slight dierence exists in the decay of S. As the Reynolds number increases, the swirl number increases and its decay becomes weaker.

Figure 4 . 26 :

 426 Figure 4.26: The variation of ln(S/S 0 ) along the separator (right) and the swirl decay coecient (left) for dierent Re, the solid red line represents the t dened by 4.25

Figure 4 . 27 :

 427 Figure 4.27: The radial distribution of time θ-averaged azimuthal and axial velocities normalized by their corresponding bulk velocity at 0.08R after the swirl element for dierent Reynolds numbers

Figure 4 . 28 :

 428 Figure 4.28: The radial distribution of time θ-averaged axial velocity at 7.5R after the swirl element for dierent Reynolds numbers

Figure 4 .

 4 Figure 4.29 represents the time-averaged pressure along the separator for the three considered Re normalized by the corresponding 1/2ρu 2 b . The pressure drop introduced by the swirl element is almost the same for which the friction coecient dened by equation 4.24 equals 21. Before and after the swirl element, the pressure variation is linear and depends on the Reynolds number.

Figure 4 . 29 :

 429 Figure 4.29: Time-averaged normalized pressure along the separator

Figure 4 . 30 :

 430 Figure 4.30: The friction coecient f wall as a function of Reynolds number, the red line represents the t dened by 4.26

Figure 4 . 31 :Figure 4 .

 4314 Figure 4.31: Eect of the ow split F S on the swirl number S

Figure 4 . 32 :

 432 Figure 4.32: The radial distribution of time θ-averaged axial velocity across the pick-up tube for dierent ow splits

Figure 4 . 33 :

 433 Figure 4.33: The radial distribution of time θ-averaged axial velocity across the pick-up tube for dierent ow splits

Figure 4 .Figure 4 . 34 :

 4434 Figure 4.34: The radial distribution of time θ-averaged azimuthal and axial velocity upstream the pick-up tube at 7.5R after the swirl element for dierent ow splits

Fig. 5 . 1 :

 51 the swirling column, the swirling pulsating and the swirling burst. The pattern of the swirling gas core and the instability of its interface depend on the ow regime imposed upstream the swirl element. (a) Swirling column (b) Swirling pulsating (c) Swirling burst

Figure 5 . 1 :

 51 Figure 5.1: The dierent gas core patterns observed between the swirl element and the pick-up tube [6]. The ow is from the left to the right in the opposite direction to gravity.

5. 1 ,

 1 which means that a dierent ow map is found for the core if observed at this location: close to the pick-up inlet (right side of Fig.5.1).

Figure 5 . 2 :

 52 Figure 5.2: Map of two-phase ow regimes upstream the swirl element, the points are identied experimentally [6] while the black line marks the transition between bubbly-churn-slug found by Taitel et al. [7].

Figure 5 . 3 :

 53 Figure 5.3: Map of the swirling gas core patterns observed just after the swirl element. A transition marked by a black line can be observed from the experiments

Figure 5 . 4 :

 54 Figure 5.4: Comparison of the evolution of the bubble radial position obtained by solving equation 5.15 for (r d = 1mm, t V M = 0.014s), (r d = 0.5mm, t V M = 0.014s) and (r d = 1mm, t V M = 0.007s).

Figure 5 . 5 :

 55 Figure 5.5: Comparison of the evolution of the bubble radial position as function of its axial position normalized by the pipe radius for (r d = 1mm, t V M = 0.014s), (r d = 0.5mm, t V M = 0.014s) and (r d = 1mm, t V M = 0.007s).

  integer N inj which follows a Poisson distribution with the parameter µ poisson = q∆t/V d :P ois(µ poisson ) = µ N inj poisson e -N inj N inj ! (5.17)In space, the bubbles are initialized at the same axial position x 0 = 0.35m and at random dierent radial positions as illustrated in Fig.5.6. The bubbles are considered non deformable clean spheres and the gravity is g = -9.81e x opposite to the ow direction.

Figure 5 . 6 :

 56 Figure 5.6: Positions of a set of 5000 bubbles (in blue) at t = 0.04s after the continuous injection is done.

Figure 5 .

 5 Figure 5.7 represents the spatial 3D trajectory of the bubble. The bubble position

Figure 5 . 7 :

 57 Figure 5.7: Trajectory of a 1mm radius bubble in the separator swirling ow for Re = 50, 000. The red line represents the pipe centre (y, z) = (0, 0), the gravity is g = -9.81e x .

Figure 5 .

 5 Figure 5.8 shows the temporal evolution of the radial and axial positions of the bubble. Fluctuations are observed for the radial position which might be a result of the turbulent dispersion intervening in the force balance via the velocity uctuations of the continuous phase. On the other side, the axial position shows weak uctuations since it is mainly controlled by the drag balanced by the buoyancy and weight which are independant of the uid velocity. As revealed by the silmulation

Figure 5 . 8 :

 58 Figure 5.8: The radial (left) and axial (right) positions (m) of the bubble in (m) as function of time (s).

Figure 5 . 9 :

 59 Figure 5.9: Time evolution of the magnitude and components of the forces acting on the bubble in (N).

Figure 5 . 10 :

 510 Figure 5.10: The averaged magnitude and components of the forces in (N) as function of the axial position normalized by the separator radius.

Figure 5 . 11 :

 511 Figure 5.11: Comparison of the averaged radial virtual mass force in (N) obtained from the simulation and the one calculated using eq 5.18 as function of the axial position normalized by the separator radius.

Figure 5 . 12 :

 512 Figure 5.12: The mean radial position and a single bubble radial position in (m) as function of the axial position normalized by the separator radius.

Figure 5 . 13 :

 513 Figure 5.13: The RMS of the forces normalized by the averaged virtual mass force (left) and normalized by the averaged corresponding force (right) as function of the axial position normalized by the separator radius.

Figure 5 . 14 :

 514 Figure 5.14: Comparison of the instantaneous (left) and mean (right) bubbles radial position in (m) as function of the axial position normalized by the pipe radius for bubbles of radius r d = 0.5mm vs r d = 1mm.
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 515516 Figure 5.15: The averaged radial components of the lift and virtual mass normalized by the buoyancy F B as function of the axial position normalized by the separator radius of two radius cases: r d = 0.5mm vs r d = 1mm.

Figure 5 . 17 :

 517 Figure 5.17: Comparison of the instantaneous (left) and mean (right) bubbles radial position in (m) as function of the axial position normalized by the pipe radius in a ow for Re = 100, 000 vs Re = 50, 000.

Figure 5 . 18 :

 518 Figure 5.18: The averaged radial components of the lift and virtual mass normalized by F c as function of the axial position normalized by the pipe radius in a ow of Re = 100, 000 vs Re = 50, 000.

Figure 5 .Figure 5 . 19 :

 5519 Figure 5.19 shows the radial RMS of the lift and virtual mass normalized byF c = ρ c V d ω 2 Ras function of the axial position made dimensionless by the pipe radius. The intensity of the uctuations increases with the increase of Reynolds number. The radial lift force uctates more than the virtual mass and peaks are also observed similary to the case Re = 50, 000. The dimensionless proles are very close, allowing to predict the forces uctuations for the same bubble size while varying Re.

Figure 5 .

 5 Figure 5.20 visualizes snapshots of the two-phase ow simulation at dierent moments. The bubbles are colored in blue. Due to the centripetal force applied on them, they progressively migrate towards the pipe centre. All the bubbles with a radial position below the Light Phase Outlet (LPO) radius are colored in red.

Figure 5 . 20 :

 520 Figure 5.20: Simulation of two-phase ow separation for Re = 50, 000 using Lagrangian Tracking. The bubbles are presented in a blue color while those located at radial positions r * < R LP O are colored in red.

Figure 5 .

 5 Figure 5.21 illustrates trajectories of four bubbles in the separator. A quasi-spiral movement around the pipe centre is observed with a uctuating and decreasing radial positions as the bubbles are being transported towards the LPO. Figure 5.22 shows the evolution of the radial positions of the four bubbles as function of the axial position normalized by the pipe radius. We notice that although the black and blue bubbles have the same initial radius and axial positions yet their trajectories are dierent due to the dierence in their initial azimuthal position thus the eect of the unsteadiness and non-symmetry of the continuous phase velocity reported in chapter 4 on the bubbles force balance.

Figure 5 . 21 :

 521 Figure 5.21: Trajectories of four bubbles in swirling ow in the separator. The red line represents the pipe centre.

Figure 5 . 22 :

 522 Figure 5.22: The bubbles radial positions in (m) as function of the normalized axial position. The red line represents the location of the pick-up tube.

5 Figure 5 . 23 : 5 Figure 5 .

 552355 Figure 5.23: Simulation of two-phase ow separation. The bubbles are presented by a blue color while those situated at radial position r * < R LP O are colored in red for FS=0.3 and FS=0.5

Figure 5 . 24 :

 524 Figure 5.24: Comparison of the time-evolution of the separation eciency for two ow splits: F S = 0.3 and F S = 0.5

44 Figure 5 . 25 :

 44525 Figure 5.25: Simulation of two-phase ow separation for Re = 50, 000 using hybrid LT-VoF with a continuous bubbles injection. The bubbles are presented by a blue color. The gas core is colored in red. The gas volume fraction over a cross section x = 0.5R after the swirl element is showed on the right and along the separator in the bottom.

Figure 5 .

 5 Figure 5.26 shows the distribution of the gas volume fraction (top) and the normalized velocity eld (bottom) at t * = 0.4 over four dierent sections along the separator located respectively from left to right at: x = 0.76R, x = 1.2R, x = 1.41R, x = 1.52R after the swirl element. The instability is present in the four locationsand has a similar pattern as the swirling burst observed in the experiments[START_REF] Ammerlaan | Swirl eects on vertical gas-liquid ow regimes: Experiments and modelling[END_REF] and reported in Fig.5.1 for higher gas volume fraction where the bursts spread radially till reaching the pipe wall. From the simulation, those instabilities are characterized by a high velocity magnitude which destablizes the simulation later than t * = 0.44.

Figure 5 . 26 :

 526 Figure 5.26: Gas volume fraction in dierent cross sections along the separator where an instability is developed with the corresponding velocity eld normalized by the bulk velocity.

5. 25

 25 (b)), we test a one-time bubbles injection all along the separator as illustrated in Fig. 5.27. The bubbles of radius 1mm are injected with the continuous phase velocity. The core is not yet formed.

Figure 5 .

 5 Figure 5.27: A one-time injection of a set of 70,000 bubbles after the swirl element a swirling ow for Re = 50, 000 in the separator.

Figure 5 .

 5 Figure5.28 shows the bubbles migration and core formation over time. We can see that the bubbles follow the swirling spiral shape of the continuous phase. The accumulated bubbles are transformed into a gas core resolved using VoF. Since the centrifugal force decreases along the separator, the accumulation of the bubbles is more signicant close to the swirl element leading to a larger gas core radius at this location than far from it as shown in Fig.5.28(a,b). As the migration of bubbles continues, the gas core grows, and while rotating, the core is transported towards the pick-up tube due to weight and buoyancy. Its size is also changing along the separator, more gas is owing towards the LPO, the core radius increases close to the LPO and decreases close to the swirl element. By activating the condition on the ow split F S = 0.3 at the pick-up tube, the core is recovered by the LPO, but then gets diused because of the high velocity inside the LPO.The temporal evolution of the gas core fraction across the separator at x = 0.5R presented on the right side of Fig.5.28 illustrates that the core is cylindrical at the begining of the simulation following the proposed algorithm of the hybrid LT-VoF.

  (a) t * = 0.086 (b) t * = 0.11 (c) t * = 0.17

(d) t * = 0. 3 (Figure 5 . 28 :

 3528 Figure 5.28: Simulation of two-phase ow separation for Re = 50, 000 using hybrid LT-VoF with a one-time bubbles injection. The bubbles are presented by a blue color. The gas core is colored in red. The gas volume fraction over a cross section x = 0.5R after the swirl element is showed on the right and along the separator in the bottom.

(c) t * = 0. 3 (Figure 5 . 29 :

 3529 Figure 5.29: Simulation of two-phase ow separation for Re = 50, 000: The gas core interface (left) with the streamlines. The axial velocity normalized by the bulk velocity u b over a cross section located at 2R after the swirl element the gas core (right). The ow is from left to right in the opposite direction of gravity.

Fig. 5 .

 5 Fig. 5.31.

Figure 5 . 30 :

 530 Figure 5.30: Simulation of two-phase ow separation for Re = 25, 000 using hybrid LT-VoF with a one-time bubbles injection.

Figure 5 . 31 :

 531 Figure 5.31: The normalized velocity magnitude at the gas core interface when the instability takes place.

Figure 5 . 32 :

 532 Figure 5.32: Initialisation of a gas core in a rotating ow, on the right is shown the gas volume fraction in a cross section.

  (a) t * = 0.0016 (b) t * = 0.002 (c) t * = 0.003 (d) t * = 0.0035

Figure 5 . 33 : 315 Figure 5 .

 5333155 Figure 5.33: Simulation of gas core in a rotating ow: Re ω = 1.06 × 10 5 , R core /R = 0.315

Figure 5 . 34 :

 534 Figure 5.34: Map of the stability of a gas core of radius R core = 0.315R in a rotating ow with three dierent Re ω : Re ω = 2.12 × 10 4 , Re ω = 4.23 × 10 4 and Re ω = 1.06 × 10 5 and for which the nal gas core snapshots are at t * = 0.237, t * = 0.0067 and t * = 0.0035 respectively.

Figure 5 .

 5 Figure 5.35 illustrates the temporal evolution of the gas core interface. The polygonal instability is slightly distinguished, it is not as sharp as it was with DNS case in Fig.5.33. Moreover, the interface diusion which happens using DNS disappears when the LES in considered and the numerical results converges. The LES is then helping in stabilizing the calculation. The question now is how does the LES eliminates what looks like a small scale instability and to what extent it does.

Figure 5 . 35 :

 535 Figure 5.35: Simulation of gas core in a rotating ow: Re ω = 1.06 × 10 5 , R core /R = 0.315 using the mixed dynamic Smagorinsky model.

Figure 5 . 36 :

 536 Figure 5.36: Turbulent viscosity (left) normalized by the kinematic viscosity over a cross section where the gas core is located (right) : Re ω = 1.06×10 5 , R core /R = 0.315

  increases and relates them to the experimental observations. Bursts are developed radially at the interface due to the centrifugal force and are characterized by high velocities. From a CFD point of view, these simulations reveal other open questions about the resolution of turbulent two-phase ow using LES and VoF. A simplied study of the instabilities of a gas core inside a rotating ow is conducted to make an openning statement on this topic for a future work. This PhD work is about the development of a hybrid CFD approach based on four dierent CFD methods to wit: Immersed Boundary Method (IBM), Large Eddy Simulation (LES), Lagrangian Tracking (LT) and Volume of Fluid (VoF) to be able to simulate and understand a two-phase ow separation process investigated within the scope of the European project TOMOCON. The inline uid separator makes use of a static swirl element which is xed inside the pipeline and has blades on its surface to deect part of the arriving axial ow into a swirling tangential ow generating then a centrifugal force. The latter pushes the heavy phase towards the wall, leaving the light phase in the centre to be recoverd afterward by a pick-up tube at the outlet of the separator. From a CFD standpoint, the simulation of such process represents many challenges taking into account the ow features present in the separator. In fact, the ow is highly turbulent, the geometry of the swirl element is complex and the interface length scales of the two-phase ow are varying from a millimeter (the size of the dispersed phase) to few meters (the size of the separator).

Figure 6 .

 6 Figure 6.1 summarizes the numerical developments of this PhD work by presenting the complex ow features in the inline separator, the proposed hybrid CFD approach which consists of IBM/LES, IBM/LT and LT/VoF and illustrations of numerical simulations using this approach.

Figure 6 . 1 :

 61 Figure 6.1: Illustration of the developed hybrid CFD approach for the simulation of inline uid separation.

  and the subject remains an open question in the domain of CFD modelling. A hybrid LES/VoF should discuss many aspects such as the eect of the LES approach, the formulation of the two-phase LES sub-grid terms and the robustness of the method to simulate dierent ow congurations. This is why, this represent an immense work in itself allowing to explain what happens to the interface in turbulent ows like what we observe in the inline uid separation.
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  IBM ) from the distance eld. The output from 'distance' is saved in a le 'Alpha ibm.dat' containing the position (x, y, z) of each cell and the corresponding α IBM . Finally the le 'Alpha ibm.dat' is sorted by ascending x, y and z using MATLAB and imported by JADIM to attribute the variable α IBM for the swirl element. The procedure to calculate α IBM for the IBM solver from a CAD geometry is briey summerized in Fig.2.2 showing the inputs and outputs at each step.

	representation of a 3D CAD le and all it needs as inputs from our side is the STL
	le and the number of grids we want which should be a power of 2. Now practically
	when 'distance' is runned, it starts by reading the STL le, computes the bounding
	box of the geometry, calculates the domain center and size, initializes the distance
	eld on the mesh grids, constructs a vertex eld interpolated from the centered eld
	and then calls the appropriate VOF functions which computes the volume fraction
	(which is the solid fraction α Alpha STL file BASILISK: CAD :	Alpha	JADIM:
	Complex		Run	ibm	MATLAB :	ibm	Read and
	geometry	N cells	distance		Sort the file		initialize
					1	
					2	
				and implemented in JADIM requires an ex-
	plicit expression of α IBM such as equation 2.26. This is only working for simple
	geometries such as: cylinders, squares, spheres ... but when it comes to complex
	solids, like the swirl element created by a CAD softtware, there is no mathematical
	equation to describe it and thus the direct calculation of α IBM is not possible. A
	new method is proposed to dene α IBM (x) which consists rst to have the CAD le
	under the STL format, then import it to the program 'distance' of the the Open
	source CFD code BASILISK, this function 'distance' serves to build a distance eld

  [START_REF] Cristallo | Combined immersed boundary/large-eddysimulations of incompressible three dimensional complex ows[END_REF] Figure2.13 represents the variation of the capillary number as a function of the dimentionless time t * = t/t σ such as t σ = (2R) 3 ρ w /σ is the capillary time scale. Ca max is almost zero at the initialization of the gas core when the spurious currents are not yet generated then Ca max increases as spurious currents appear to reach a steady state when Ca max ≈ 0.004, the same order of magnitude is reported in

	[50, 53].					
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Table 2 .

 2 2: Dimension analysis for two self-similarity gas/water system

	ρ w	1000	726
	µ w	0.001	10 -5
	ρ g	1	0.726
	µ g	2.10 -5	2.10 -7
	ω	2.17	2.10 -2
	σ	0.072	10 -5
	ρ *	1000	1000
	µ *	50	50
	Re	4,600	4,600
	W e	6.37	6.37
	σ/µ w	72	1

  Figure2.15: l ∞ in (m/s) over time for two self-similarity air/water system Moreover, by calculating Ca max for the numerical gas/water system and compare it to air/water system as presented in Fig.2.16 we conrm once again that Ca max ≈ 0.004 and that the two systems are in perfect similarity.
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	Figure 2.16: Ca max over time for both air/water systems
	2.7 Hybrid Lagrangian Tracking/Volume of Fluid
	(LT/VOF)					
	2.7.1 Introduction					
			w .				

  2.24) if C lag i,j,k = 0 which means only in sections where a switch LT/VoF has happened. After the FCT and before the Lagrangian solver, another special case is treated to wit when the interface is transported and reaches another bubble/droplet with a ag=0, in this situation, the ag of this bubble/droplet is set to 2 so to avoid solving its trajectory equation and its contribution to C Lag is taken into account during the following call of the hybrid LT/VoF. Figure2.21 briey summerizes the steps intervening in the hybrid LT/VoF inside the temporal loop.

	Volume of Fluid: FCT	1 st test: if a	Lagrangian	LT/VoF: transform	2 nd test: if
	knowing	bubble is	tracking:	eligible	a bubble
	, we	located in	only for	bubbles,	with tag=0
	calculate	> 0	bubbles	tag them	is located
		then tag=2	with tag=0	to 1, define	in	>0

YES NO Temporal loop: = only in sections where a switch to VoF occurs Figure 2.21: Algorithm of the hybrid LT/VoF 2.7.3 Validation: bubbles accumulation and core formation in a rotating ow using LT/VoF

To validate the new LT/VoF coupling algorithm, we simulate the accumulation of bubbles in a rotating ow, this conguration mimics, to some extent, the formation of the gas core in the separator. The two-phase ow is composed of the numerical air/water system previously introduced in table 2.2 to avoid spurious currents.

  VoF is developed to switch from the Lagrangian framework to the Eulerian one when the tracked bubbles/droplets accumulate in the center of the pipe after the swirl element to form a core, the latter is then simulated using VoF. It remains to mention that the LES solver as previously developed and used in JADIM requires a mesh renement next to the wall to capture the viscous sub-layer, this condition

	becomes more and more constraining as the Reynolds number increases, that is why we are interesed in developing a special wall model for LES/IBM which will Chapter 3
	allow to use LES on coarse meshes. Chapter 3 introduces an orignal wall model for
	LES/IBM, the model is detailed and validated via a study of the classical turbulent pipe ow. Wall model for hybrid Immersed
	Boundary Method and Large Eddy
	Simulations IBM/LES
	3.1 Introduction

Then a collision model is introduced for IBM/LT to allow the bubbles/droplets to rebound on the surface of IB solids and nally a hybrid CHAPTER 2. CFD DEVELOPMENTS AND VALIDATIONS LT/

Table 3 .

 3 .1.

	Method	References	Re	Re *	Available data	Symbol in graphs
	LES/RANS	[61]	100,000	2350	U +	×
	Experiments	[62]	98,000	2315	U +	∧
	DNS Experiments	[63] [64]	83,000 81,000	2000 1960	U + , u + x , u + r , u + θ U + , u + x	+

1: References used for comparison and corresponding symbols in the gures.

Table 3 .

 3 2: Value of ratio ∆/ * for the meshes and Reynolds numbers considered

	R/∆ -Re 50,000 100,000 500,000
	8 (m1)	160	292	1260
	16 (m2)	80	146	630
	32 (m3)	40	73	315

Table 5 .

 5 1: Estimation of the magnitude of the forces components (N ) applied on the bubble in the separator.

Table 5 .

 5 2: Summary of the contribution of each force in the bubble migration pro-

	cess.		
	Parameter	r d	u b
	Migration time	decrease	decrease
	Capture time	decrease	decrease

Table 5 .

 5 3: The eect of increasing r d and u b on the migration and capture times.
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5.4

Dimensional analysis for similarity systems simulation of the separator.134 THE SEPARATOR persion eect since the bubbles coalescence is not considered and no core is formed. This is why it is interesting to introduce a hybrid approach LT-VoF. Using the latter, the gas core formation and stability is simulated in the following.

Simulations using hybrid LT/VoF

In this subsection, numerical simulations of two-phase ow in the separator are carried out using the hybrid approach LT/VoF allowing to transform accumulated bubbles from the Lagrangian framework into a gas core and predict its dynamics using VoF as proposed in chapter 2. Since we are simulating an air/water two-phase ow, the problem of spurious current is present as detailed in subsection 2.6.3. To avoid it, we conduct a similarity simulation as proposed in 2.6.4 which consists in reducing σ/µ w while keeping the same dimentionless numbers. In the case of the inline separator, the gravity is considered as a physical parameter thus an extra dimensionless number is added, namely the Bond number. The physical parameters representing the system are as follow:

For a xed R * , Table 5 In this section, we have tried to shed some lights on the instability of a gas core in a rotating ow in order to understand what occurs in the inline separator.

There is no doubt that some numerical improvement are still to be introduced in the proposed numerical method coupling Lagrangian Tracking and VoF especially when coupled to LES.

conditions are to be simulated in a way to mimic the condition of the controller on the valve in experiments. In fact, by following the time evolution of the eciency of separation, the condition on the ow rate at the HPO can be adapted depending on the coming gas fraction at the LPO to ensure a good eciency. This is implemented The same device of separation including a controller can also be tested on liquid liquid two-phase ow. This can represent an extension of the previous work [START_REF] Slot | Development of a centrifugal inline separator for oil/water ows[END_REF][START_REF] Van Campen | Bulk Dynamics of Droplets in Liquid-Liquid Axial Cyclones[END_REF].

Numerically, the VoF solver will be more stable since the viscosity ratio of oil water two phase-ow is lower, the instabilities at the interface are then reduced. However, the drag coecient should be adapted to droplets following the recent work of Rachih et al. [START_REF] Rachih | Numerical study of conjugate mass transfer from a spherical droplet at moderate reynolds number[END_REF] while the lift coecient for droplets is less known and a correlation for solid particles could be used as a rst approximation. The same study can be done on dierent swirl element geometries to determine the eect of its shape on