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Summary

The current PhD work is part of the European project TOMOCON which joins
12 international academic institutions and 15 industry partners who work together
in the emerging �eld of industrial process control using smart tomographic sensors.
Four industrial processes are investigated experimentally and numerically, inter alia,
inline �uid separation. This recent technology for oil/gas extraction makes use of a
static swirl element installed inside the pipeline and which has a bullet form with
de�ected blades on its surface to transform part of the incoming axial momentum
into a tangential one. This �ow splitter can generate centrifugal forces up to 100
times the gravitational acceleration and separate the phases leaving the heavy phase
next to the wall and the light one in the center to be recovered at the outlet by a
pick-up tube.
In the present work, we are interested in developing CFD methods in the IMFT
in-house code JADIM to simulate the two-phase �ow separation. Since the scales
are ranging from meters the length of the device (pipe, swirl element) to a millimeter
which is the size of the smallest bubbles and drops, the numerical strategy needs to
combine Eulerian and Lagrangian schemes. First, because of the complexity of the
separator geometry, we use Immersed Boundary Method (IBM) for solid/�uid inter-
action to simulate the pipe, the swirl element and the pick-up tube. The �ow being
highly turbulent that Direct Numerical Simulation (DNS) is not possible, Large
Eddy Simulation (LES) is considered and the turbulence is modeled using mixed
dynamic Smagorinsky model. Then the Lagrangian solver is used to track the dis-
persed phase (drops/bubbles). Once the separation is done and the accumulation
of the dispersed phase takes place leading to large volume of gas/oil compared to
the mesh size, we switch to the Volume of Fluid (VoF) method to simulate the core
inside the heavy phase. Finally, the exit control of the light core extraction is done
through the �ow straightner placed between the pipe and the pick-up tube using
Immersed Boundary Method.
To ensure a good interaction/communication between the CFD methods considered
here, a coupling of the solvers is needed. Therefore, to be able to use Large Eddy
Simulation (LES) on a coarse mesh and avoid the constraint of mesh re�nement next
to the IB wall, an original stochastic wall model is developed for hybrid LES/IBM
and validated through the study of the classical turbulent pipe �ow. The Lagrangian
Tracking solver is also coupled to Immersed Boundary Method to enable the rebound
of the bubbles/drops on the surface of the IB solids via a collision model. The hy-
brid Lagrangian Tracking/Volume of Fluid consists in moving the bubbles/drops in
contact with a VoF cell or those which have migrated to the separator center from
the Lagrangian framework to the Eulerian one and updating the phase fraction with
their corresponding volume. The method is validated by simulating bubbles accu-
mulation in a rotating �ow.
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The numerical strategy based on the coupling of these di�erent methods makes pos-
sible accurate simulations of the inline separation with limited CPU cost. A full
description of single-phase �ow in the separator is done, the velocity and pressure
pro�les are plotted, a swirl number is calculted and its evolution in the stream-
wise direction is �tted with a previous experimental correlation. Two-phase �ow
separation is then simulated, the bubble migration is descibed and the gas core is
characterized. The e�ect of the Reynolds number and the condition at the pick-up
tube are also studied. The numerical simulations help �xing the physical parameters
which in�uence the separation and control the e�ciency and validating models with
experimental data from TU Delft, HZDR and TU Lodz.

Keys words: CFD, Inline �uid separation, Swirl, IBM, LES, VoF, Lagrangian
Tracking.
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Résumé

Ces travaux de thèse s'inscrivent dans le cadre du projet européen TOMOCON
qui réunit 12 institutions académiques internationales et 15 partenaires industriels.
Ensemble, ils travaillent dans le domaine émergent de l'apport de la tomographie
au contrôle des processus industriels. Dans le cadre du projet TOMOCON, qua-
tre processus industriels sont étudiés expérimentalement et numériquement, et cette
thèse s'applique à la séparation en ligne des écoulements diphasiques. Cette tech-
nologie récemment proposée pour l'extraction du pétrole et du gaz naturel utilise
un obstacle muni d'ailettes mettant en rotation l'écoulement conduisant à une force
centrifuge jusqu'à 100 fois l'accélération gravitationnelle et permet de séparer deux
phases . La phase lourde est poussée vers la paroi du pipeline et la phase légère
reste au centre pour être récupérée par la suite à la sortie du séparateur par un tube
collecteur. Pour être e�cace, ce processus nécessite un contrôle en temps réel de la
pression d'aspiration du collecteur basé sur le champ de taux de gaz obtenu par un
capteur tomographique de type "wire mesh sensors". La prédiction numérique de
l'écoulement dans un tel dispositif est un élément clé pour la mise en place d'une
telle boucle de régulation.
Dans le présent travail, nous nous intéressons au développement de méthodes CFD
(Computational Fluid Dynamics) dans JADIM, un code de CFD developpé à l'IMFT,
pour pouvoir simuler la séparation de l'écoulement diphasique. Cependant, puisque
les échelles vont de 1 m la longueur du dispositif de séparation à 10−6m qui est la
taille des plus petites bulles ou gouttes, la stratégie numérique doit donc combiner
des méthodes eulériennes et lagrangiennes. Tout d'abord, en raison de la com-
plexité de la géométrie du séparateur, nous utilisons la méthode 'Immersed Bound-
ary Method (IBM)' pour l'interaction solide/�uide pour simuler toutes les parties
solides du séparateur. De plus, l'écoulement étant fortement turbulent, la Simula-
tion Numérique Directe (DNS) n'est pas envisageable, et la Simulation à Grandes
Echelles (LES) est considérée et la turbulence de sous-maille est modélisée à l'aide
du modèle dynamique mixte de Smagorinsky. Un solveur lagrangien est utilisé pour
suivre la phase dispersée (gouttes/bulles) en résolvant l'équation de trajectoire pour
chaque bulles ou gouttes. La migration de la phase dispersée conduisent à former des
volumes de gaz/huile grands par rapport à la taille de la maille, que nous simulons
grâce à la méthode Volume of Fluid (VoF). Finalement, le contrôle de la condition
sur la vanne qui agit sur le tube collecteur pour aspirer le c÷ur est fait via le re-
dresseur de l'écoulement placé entre le pipeline et le tube collecteur, ce redresseur
est modélisé par l'IBM.
Il est donc évident que pour assurer une bonne interaction/communication entre
les méthodes CFD considérées ici, un couplage des solveurs est nécessaire. De ce
fait, pour pouvoir utiliser la simulation des grandes Echelles (LES) sur un mail-
lage grossier et éviter la contrainte du ra�nement de maillage dans la sous-couche
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visqueuse à proximité de la paroi, un nouveau modèle de paroi stochastique est
développé pour la simulation LES/IBM hybride et validé à travers l'étude d'un
écoulement turbulent en tube. Le solveur du suivi lagrangien est également couplé
à la méthode IBM pour permettre le rebond des bulles/gouttes sur la surface des
solides IB via un modèle de collision. En ce qui concerne la méthode hybride de
suivi lagrangien/Volume de Fluide, elle consiste à transformer les bulles/gouttes en
contact avec une cellule VoF ou celles ayant migré au centre du séparateur vers le
VoF et à mettre à jour la fraction de volume en tenant compte du volume de la
phase dispersée transformée au VoF. Cette méthode est validée par la simulation de
l'accumulation des bulles dans un écoulement en rotation.
La stratégie numérique hybride basée sur le couplage de ces di�érentes méthodes
permet de réaliser des simulations précises de la séparation en ligne à un coût de
CPU raisonnable. En premier, l'écoulement monophasique dans le séparateur est
analysé et comparé aux résultats expérimentaux obtenus précédemment. La sé-
paration de l'écoulement diphasique est ensuite simulée, la migration de la phase
dispersée est decrite le c÷ur gazeux est caractérisé. L'e�et du nombre de Reynolds
et de la condition au niveau du tube collecteur est également étudié. Pour conclure,
les simulations numériques permettent de déterminer les paramètres physiques qui
in�uencent la séparation et contrôlent l'e�cacité de la séparation et de valider les
modèles CFD développés avec des données expérimentales de TU Delft, HZDR et
TU Lodz.

Mot clés: CFD, séparation, écoulement diphasique, force centrifuge, IBM, LES,
VoF, suivi lagrangien.
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Chapter 1

Introduction

1.1 TOMOCON Project

The European Training Network �Smart tomographic sensors for advanced industrial
process control (TOMOCON)� is an EU research project �nancially funded by the
European Union's Horizon 2020 research and innovation program under the Marie
Sklodowska Curie grant agreement 764902. It started in March 2018 (see Fig.1.1)
and will end in September 2021.
The project joins 12 international academic institutions and 15 industrial partners
who work together in the emerging �eld of industrial process control using smart
tomographic sensors. The network shall set the scienti�c and technological funda-
mentals of using imaging sensors for industrial controlled processes and demonstrate
its operating feasibility on lab and pilot-scale applications.

Figure 1.1: Kick o� meeting in HZDR, Dresden, Germany

Together with their supervisors and industry partners, 15 early stage researchers
ESRs (PhD students) are engaged in multi-disciplinary research on various �elds:
tomographic imaging and sensors, control system theory and design, multi-physics
modelling and simulation. The 15 ESRs are working in 4 groups, each group is
focusing on an industrial process:
- Inline �uid separation.
- Microwave drying.
- Continuous casting.
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- Batch crystallization.
For each of the above processes, CFD models are developed and simulations to un-
derstand the �ow are done, experiments using tomographs are conducted and �nally
a controller is built. Thus, interdisciplinary within each group is displayed to pre-
pare for the �nal demonstration which serves as a proof of concept for the use of
process tomography in process control. The current PhD work is part of the inline
�uid separation study and more speci�cally the CFD development and simulation
of this process.
In addition, the project does also ensure a good public communication of the results
through publications, participation to conferences and the organization of workshops
and summer schools (see Fig.1.2) on both the technical topics of control theory, to-
mographs and sensors, multiphase �ow modelling as well as the soft skills (problem-
oriented thinking, career development, patents, entrepreneurship, marketing, project
management, team building, dissemination and open science ...)

(a) Virtual workshop organized by UEF,
Kuopio, Finland

(b) Summer school in TUD, Delft, Nether-
lands

(c) Workshop in TUL, Lodz, Poland

Figure 1.2: TOMOCON's workshops and summer schools

Moreover, the project provides scienti�c and industrial trainings for the ESRs
during short visits and stays (secondments) to academic and industry partners over a
total period up to 8 months. The objective is to help the ESRs to develop the speci�c
skills of research and innovation both in academia and industry. For instance, i spent
2 months in HZDR learning about and taking part in the two-phase �ow separation
experiments [8], 2 months in Shell Technology Centre Amsterdam (STCA) doing
numerical simulations of single-phase �ow in the separator using the open source
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CFD code Openfoam and 1 month in Frames simulating a two-phase �ow pretreater
(results are con�dential) using the commercial CFD code Star CCM+ (see Fig.1.3).
The secondments in both companies were also opportunities to discover the research
work in an industrial environment in the sector of petroleum and energy production
and to broaden my experience and knowledge in that domain.

(a) Secondment at HZDR (b) Secondment at Frames

(c) Secondment at Shell (STCA)

Figure 1.3: TOMOCON Secondments

1.2 Two-phase �ow separation

1.2.1 Petroleum engineering

When the living organisms die and as the time goes by, they are buried in the ground
by more and more layers of sediment pushing them further from the earth's crust by
a few meters to a few hundred meters every million years or so. During this process,
temperature and pressure increase, the nitrogen, sulfur and phosphorus atoms are
gradually converted into kerogen. At a depth of about 2 km, when the temperature
is around 100C, kerogen releases hydrocarbons. Wether it will be oil or natural
gas, it all depends on the temperature and the organic debris. For instance more
heat produces natural gas and animal source rock gives more oil than gas. With an
estimated average sedimentation of 50 meters every million years, it takes 60 million

24



CHAPTER 1. INTRODUCTION

years for dead animals to become liquid hydrocarbons.
Oil and gas have mostly been recovered by drilling. The latter is carried out after
studies of structural geology, sedimentary basin analysis, and reservoir character-
isation. The whole procedure is thus time and money demanding, that is why
the concerned industries are constantly working on new technologies to recover the
maximum amount of gas/oil and extend the economic lifespan of the wells both
on o�shore and onshore �elds. One can �nd various separation techniques which
are used and still under development to insure a good quality, a big quantity and
minimum production fees.

1.2.2 Gravity separator

It is the common type of separators. The concept of gravity separators is based on
exploiting the density di�erence between two �uids, as they are naturally separated
by buoyancy. The separators could either be vertical or horizontal. A vertical
separator could be used to save space on a topside facility, and is mostly used to
separate gas/liquid. The horizontal gravity separator is the most common separator
for liquid/liquid emulsion. This kind of separators needs time and large vessels to
increase the e�ciency. Other components are usually added (coalescing packs, weir
reduction ...) to prevent certain operating problems during the process.

Figure 1.4: Sketch of three-phase �ow gravity separator [1]

1.2.3 Cyclones

It is a vertical pipe with a tangential/horizontal inlet and two outlets: one at the top
and the other at the bottom, which uses the centrifugal separation technology. The
mixture of two �uids �ows through the inlet into the cyclone separator. A strong
swirling �ow �eld is formed causing the light phase to migrate to the center line and
the heavy phase towards the wall. Di�erent cyclones were subjects to many studies
[9], [10], [11].
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(a) Conical Liquid Hydro-
cyclone [9]

(b) Liquid Liquid Cylindri-
cal Cyclone [10]

(c) Gas Liquid Cylindrical
Cyclones [11]

Figure 1.5: Sketch of three types of cyclones

1.2.4 Inline �uid separator: swirl element

Based on similar principles. The swirl element is a device used to separate a dis-
persed phase from a continuous phase based on a centrifugal force. It has a bullet
shape with de�ected blades on its surface (see Fig.1.6) and remains static inside the
pipe. When the axial �ow injected at the inlet of the pipe goes through the non
moving swirl blades, part of the axial momentum is transformed into an azimuthal
momentum, which is the origin of the centrifugal force. Following this swirling mo-
tion, the two phases are separated, the heavy phase is pushed towards the wall and
the light one to the center of the pipe to be recoverd afterwards by a pick-up tube
placed at the outlet of the pipe.

Figure 1.6: Sketch of the inline separator
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This represents a new technology developed to reduce the residence time, the
investment cost and the installation weight.
A few studies were conducted on this geometry. Dirkzwager [12] designed an inline
swirl element di�erent from the traditional cyclone to reduce the turbulence pro-
duction and pressure drop. Based on experiments, a swirl number was introduced.
However, his research was limited to single-phase �ow only and was more focusing on
the design itself. Then, the inline separator was further developed and investigated
numerically by Delfos [13]. Later, Campen [5] measured the axial and azimuthal ve-
locities using LDA for single-phase �ow, pressure drop and the swirl number. He also
made some experiments for oil/water separation to determine the physical parame-
ters which control the e�ciency of separation. Simultaneously, Slot [1] reshaped the
swirl element, three geometries were de�ned: weak, large and strong swirl elements,
RANS simulations were done for the strong element using Ansys CFX and oil/water
separation was simulated using the Euler-Euler model. His numerical results were
compared to the measurements of Campen [5]. The present work is based on one of
the geometries previously designed by Slot [1] and focuses on developing advanced
CFD models for the simulations and the investigation of gas/water separation.

1.3 Present work

1.3.1 Project objectives

As mentionned before, being part of the inline �uid separation team, our aim is to
develop exclusively the concept of tomography controlled inline gas/water separator
[14]. The latter is investigated experimentally in the large-scale Delft Inline Sepa-
rator Facility (DISE) in TU Delft and is equiped with high-speed cameras, pressure
transducers. A wire mesh sensor (WMS) developed in HZDR is placed upstream to
measure the phase fraction and an electrical resistance tomography sensor (ERT)
developed in TU Lodz is placed downstream after the swirl element to measure the
gas core diameter (see Fig.1.7). Getting real time data from both sensors, the con-
troller acts on the valve pressure at the pick-up tube to insure a high separation
e�ciency. The feedback loop for the controller is built based on the �ow physics
from both experiments and CFD simulations [15].
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Figure 1.7: Tomography controlled inline separator

1.3.2 Why using CFD for inline �uid separation

Computational Fluid Dynamics (CFD), in general, have a great ability to describe
�ows in a detailed manner. Any �ow parameter can be calculated at each position
and time. Information that experiments are lacking since the measurements are
limited to the available experimental tools and their space-time resolution. Addi-
tionaly, even in terms of cost, CFD are in most cases cheaper than building rigs
and conducting experiments, this is why, campanies are becoming more and more
interested in �rst investigating the �ow of industrial processes using CFD before
moving to the prodution stage.
For the inline �uid separation, the interest of using CFD comes from the complexity
of the �ow and if we want to control the process of the separation, we need as much
information as possible about the bubble dynamics and the core stability to various
conditions on the valve at the pick-up tube. The question now is how to choose the
adequat approach to simulate the process since CFD proposes an arsenal of meth-
ods to model the �ow features. In the next subsection 1.3.3, we introduce the �ow
characteristics in the inline �uid separator and the brought CFD challenges.

1.3.3 Problem description

The CFD work, which is the subject of this thesis, is highly challenging because of
the �ow features present in the separator. In fact, the �ow is highly turbulent, the
geometry of the swirl element is complex and the scales are ranging from meters,
the length of the device down to the smallest bubble or drop at millimeters.
Since we need a precise description of the �ow to evaluate correctly the separation
e�ciency, we will have to carefully build the CFD approach in a way to get all the
details of �uid dynamics with an a�ordable computation cost. For instance, avoiding
complicated and irregular meshing for the complex geometry of the swirl element,
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going for turbulence modelling instead of Direct Numerical Simulations which is
impossible considering the high Reynolds numbers. Finally for the two-phase �ow
modelling, choosing an approach which can capture the bubble/droplet migration as
well as the behaviour of the core interface. In the next subsection 1.3.4, we present
the existing CFD methods commonly used in two-phase �ow separation simulations.

1.3.4 CFD state of art

Two-phase �ow separation can be easily found in diverse industrial processes such
as atomization, cyclones, cavitation ... They all represent similar challenges because
of the encountered interface length scales. Two approaches exist to describe those
scales:
- Euler methods in which each �uid properties are written as a function of time
and space. Within this Eulerian framework, one can distinguish between 'one �uid
model' in which only one Navier-Stokes equation and one continuity equation are
solved such as Volume of Fluid (VoF), and 'two-�uid model' which consists in solv-
ing a Navier-Stokes and a continuity equations for each phase and incorporate the
interaction between them through a momentum exchange term. The advantge of
this model is its simplicity in implementation but the drawback is that it does not
adequately solve the details of interactions dispersed phase/dispersed phase and dis-
persed phase/continuous phase.
-Lagrange methods in which one phase properties are determined by tracking the
movement of its �uid particles in time. This model consists in de�ning a continuous
phase solved using an Eulerian description and tracking the dispersed phase during
time through the force balance. Thus, the interaction between the two phases is
well resolved but the simulation is computationally expensive.
In the current study, we are interested in the dynamics of the dispersed phase dur-
ing the migration and by the core stability after the separation. Therefore, we will
implement a hybrid approach detailed in subsection 1.3.5.

1.3.5 Proposed numerical approach

We propose a hybrid approach based on a Navier-Stokes solver that makes possible
accurate simulations with coarse spatial resolution.
First, Immersed Boundary Method (IBM) is used to simulate both the pipe, the
pick-up tube and the complex geometry of the swirl element on a simple regular
Cartesian mesh. Turbulence is modelled with the mixed dynamic Smagorinsky sub-
grid model in Large Eddy Simulation (LES) with an original stochastic wall law
coupled to the IBM allowing to avoid the need for mesh re�nement close to the
wall. A Lagrangian Tracking (LT) method is used to solve the dispersed �ow, it is
coupled to Immersed Boundary Method via a collision model to ensure the rebound
of the dispersed phase in contact with the IB walls and is also coupled to a Volume
of Fluid (VoF) to switch from the Lagrangian framework to the Eulerian one once
the accumulation of the dispersed phase takes place and the light core is formed.
Finally, the control of the core extraction is achieved by imposing the valve condi-
tion at the pick-up tube through a �ow straightner placed between the pipe and the
pick-up tube using Immersed Boundary Method.
This hybrid approach [16] allows a pertinent description of this swirling �ow es-
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pecially that the experiments are constrained to time and cost and helps with the
needed physics for the controller.
We should note that the coupling between LES and VoF is not within the scope of
this thesis, but remains an interesting subject in modelling the turbulence in two
phase-�ows [17] and represents one of the perspectives for this PhD work.

1.4 Thesis outline

In chapter 2, the CFD methods are presented in details. The IMFT in-house code
JADIM used for the simulations is introduced. We provide a full description of the
discretization and the resolution of Navier-Stokes equations, the IBM solver, the
LES solver, the Lagrangian Tracking and the VoF solver as they have been already
developed and validated in JADIM. The new CFD developments and their valida-
tions are also presented to wit: the use of IBM for CAD complex geometries, the
coupling of IBM/LT and LT/VoF. The coupling of LES/IBM and the development
and validation of the stochastic wall model is detailled in chapter 3.
Chapter 4 presents the results of the numerical simulations of single-phase �ow in-
cluding a description of swirling �ow in the separator, a study of the e�ect of the
Reynolds number and the e�ect the pick-up tube outlet condition. In chapter 5,
two-phase �ow in the separator is studied, the migration of a bubble in the separa-
tor is described using Lagrangian Tracking and simulations for the core formation
are presented. Finally, conclusions are made and perspectives for further research
are given in chapter 6.
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Chapter 2

CFD developments and validations

2.1 Introduction

As previously described in 1.3.3 and 1.3.5, the inline �uid separation is a complex
process to simulate since many �ow features are present. The hybrid approach
proposed here involves Large Eddy Simulation (LES) because the �ow is highly
turbulent, Immersed Boundary Method (IBM) because the geometry is complex,
Lagrangian Tracking (LT) to e�ciently follow the trajetory of the dispersed phase,
Volume of Fluid (VoF) to simulate the evolution of the light phase core and the
coupling between them.
In this chapter, the IMFT in-house CFD code JADIM used for the simulations is
introduced, the four existing solvers in JADIM for LES, IBM, Lagrangian Tracking
and VoF are detailed and the new CFD developements done within the framework
of this PhD work are presented and validated namely the use of IBM for complex
geometries, the collision model for LT/IBM and the hybrid LT/VoF as for the wall
model for hybrid LES/IBM, a whole chapter 3 is dedicated to model description and
validation.

2.2 CFD code: JADIM

JADIM is a CFD code developed at IMFT since 1991 through the work of many
researchers and PhD students. Beside a main part for the resolution of Navier-Stokes
equations of incompressible, unsteady, Newtonian and three dimensional �ows in
curvilinear orthogonal coordinates [18, 19]. The code has many solvers: Large Eddy
Simulation (LES), Immersed Boundary Method (IBM), Lagrangian Tracking (LT),
thermal model, Volume of Fluid (VoF), Level Set (LS) and was validated in various
previous studies [18, 19, 20, 21, 22, 23, 24, 25].

2.2.1 The Navier-Stokes system of equations

The mass and momentum conservation equations in a di�erential form are expressed
as:

∇.u = 0 (2.1)
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∂u

∂t
+ u.∇u = −1

ρ
∇p+

1

ρ
∇ ·T+ f (2.2)

with u is the velocity �eld, p is the pressure, ρ is the density , T = µ(∇u+t∇u) is
the viscous stress tensor , f is the sum of any external volumetric force applied to
the �uid.
In the following, a focus is made on the solver considered during this PhD work.
First the Navier-Stokes solver is presented.

2.2.2 Spatial and temporal discretization

The equations 2.1 and 2.2 are solved using a �nite volume method on an o�set mesh.
The pressure p and the volume fraction C for VoF are calculated in the center of
each cell while the components of the velocity u are de�ned on the facets of the cell.
Figure 2.1 shows the positioning of the variables on a 3D cell.

Figure 2.1: Representation of the variables on a 3D cell: the pressure p, the volume
fraction C and the velocities ux, uy and uz in the x, y and z directions respectively

In a Cartesian formulation and using Einstein notation, equations 2.1 and 2.2
are expressed as:

∂ui
∂xi

= 0 (2.3)

∂ui
∂t

+
∂uiuj
∂xi

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xi∂xj

+ fi (2.4)

with ui (i = x, y, z) and p the velocity and pressure �elds, respectively. fi is the
sum of any imposed volumetric force applied to the �uid in the direction i.
The integration of each unknown variable is done on a corresponding volume. The
spatial derivatives are calculated using a second order centered schemes O(∆2) with
∆ is the mesh size. The di�usive term is solved using a semi implicit Crank Nicolson
(CN) scheme, when the other terms are treated explicitly by a Runge-Kutta 3 (RK3)
procedure.

ûki − ûk−1
i

∆t
= SMk

i (2.5)

with
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SMk
i = γkN(ûk−1

i ) + ξkN(ûk−2
i ) + αkL(ûk−1

i ) (2.6)

+βkL(ûki ) + (αk + βk)[fi −
1

ρn+1/2
∇pn−1/2]

where γk, αk, ξk, βk are the Runge-Kutta coe�cients summerized in table 2.1. N
(resp. L) is a non-linear (resp. linear) operator containing the advective and viscous
terms:

N(ui) = ν
∂2uj
∂xj∂xi

− ∂

∂xj
(uiuj) (2.7)

L(ui) = ν
∂2ui
∂xj∂xi

(2.8)

k αk βk γk ξk
1 4/15 4/15 8/15 0
2 1/15 1/15 5/12 -17/60
3 1/6 1/6 3/4 -5/12

Table 2.1: Values of the Runge-Kutta 3 coe�cients

In terms of the stability of the integration algorithm, the hybrid RK/CN have
advantages from both numerical schemes. In fact, RK3 applied to a pure advection
equation, when the spatial derivatives are calculated using a second order centered
schemes O(∆2), is stable for CFL number under

√
3 and precise to the third order

O(∆t3). CN, being semi-implicit, is unconditionally stable and is second order
accurate O(∆t2). Therefore, the over-all algorithm is second order precise and the
only stability condition on the time step is the following:

∆t ≤
√

3min

(
∆x∆y∆z

uxmax∆y∆z + uymax∆x∆z + uzmax∆x∆y

)
(2.9)

where ∆i with i = x, y, z is the cell size and uimax is the maximum velocity in the i
direction.

2.2.3 Projection method

At the end of the RK3 loop, the velocity ûn+1
i = û3

i resulting from the previous
integration is not divergence free, to satisfy the incompressibility condition, the
projection method [26, 27] is applied.
The auxiliary potential Φn+1 is introduced as:

∂Φn+1

∂xi
=

ρ

∆t
(un+1

i − ûn+1
i ) (2.10)

By taking the divergence of this equation and knowing that ∂un+1
i /∂xi = 0 we end

up with a Poisson equation:

∂2Φn+1

∂xi∂xi
=

ρ

∆t

∂ûn+1
i

∂xi
(2.11)
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To get Φn+1, the linear system of the Poisson equation is solved by a Jacobi precon-
ditioned conjugate gradient technique (PETSc Library) for three-dimensional cases
while a multifrontal direct method (MUMPS Library) is used in two-dimensional
situations. The �nal divergence-free velocity and pressure are �nally obtained:

un+1
i = ũn+1

i − ∆t

ρ

∂Φn+1

∂xi
(2.12)

pn+1/2 = pn−1/2 + Φn+1 (2.13)

2.3 Large Eddy Simulation (LES)

2.3.1 Introduction

Like most of �ows present both in nature and in industrial applications, the swirling
�ow in the inline separator is characterized by a high Reynolds number resulting
in a turbulent regime. A precise description both in time and space of such �ows
requires Direct Numerical Simulation (DNS) which consists in solving all temporal
and spatial scales. To do so on a three dimentional realistic con�guration, one can
estimate the number of cells needed for that to O(Re9/4) for a homogeneous isotropic
turbulence and even more cells for con�ned �ows to resolve the boundary layer. In
short, DNS is highly demanding in terms of computational resources that are in most
of the cases beyond the actual capacity of even the most powerful supercomputers.
To overcome this limitation, two common methods are used: Reynolds Averaged
Navier-Stokes (RANS) equations and Large Eddy Simulation (LES). While the for-
mer is based on an ensemble averaging which gives only the mean velocity. LES,
on the other hand, resolves the large scales thanks to an appropriate modelling of
small scale (unresolved) dynamics and is able to provide both the mean and the
�uctuations of the velocity close to the DNS results [28].
When the local Reynolds number is high, one expect the small scale to be universal
because of the local homogeneity assumptio. However, in the case of signi�cant
shear, typically close to a wall, the modelling of the sub-grid scale needs to be
adapted. And within Large Eddy Similation, di�erent methods have been proposed
[29] such as constant Smagorinsky model, dynamic Smagorinsky model, Bardina
model, Chollet-Lesieur model, WALE ...
The choice of the adequate method depends mainly on the �ow conditions. And since
we are dealing with con�ned �ows, we have chosen the mixed dynamic Smagorinsky
model [18] described in the following subsection 2.3.2. It is also worth mentionning
that using this method still requires a mesh re�nement close to the wall to capture
the viscous-sublayer by putting four to �ve cells in there. This condition can become
constraining for highly turbulent �ows and one solution to avoid it is the implemen-
tation of a wall model. In the current PhD work, an original wall model for LES on
IB walls is proposed and validated in chapter 3.

2.3.2 Mixed dynamic Smagorinsky model

Mass and momentum equations result from a spatial �ltering of the equations 2.3
and 2.3. We use a uniform grid spacing ∆ yielding the �lter length to be ∆ = ∆, the
�ltering operator is then noted G. The advantage of using a regular mesh is to be
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able to commute the �ltering and the di�erentiation operation because otherwise,
commutation errors rise [29].
Now by applying G, the velocity and pressure �elds are decomposed as ui = ui + u′i
and p = p+p′ where ui (resp. u′i) and p (resp. p

′) are the resolved (resp. unresolved)
contributions. The governing equations in the LES approach are then:

∂ui
∂xi

= 0 (2.14)

∂ui
∂t

+
∂uiuj
∂xi

= −1

ρ

∂pi
∂xi

+ ν
∂2ui
∂xi∂xj

−
∂τSGSij

∂xj
+ f i (2.15)

where ν is the kinematic viscosity of the �uid, f i is the sum of the �ltered volumetric
force and τSGSij = uiuj − uiuj is the sub-grid stress tensor (SGS) expressed as the
sum of these three terms: Lij, Cij and Rij such as:

Lij = uiuj − uiuj (2.16)

Cij = uiu′j + uju′i − uiu′j − uju′i (2.17)

Rij = u′iu′j − u′iu′j (2.18)

The Leonard term Lij is calculted explicitly.

τSGSij − 1

3
τSGSkk δij = −2νTSij + Lij −

1

3
Lkkδij (2.19)

where Sij is the strain rate tensor calculated from the resolved velocity �eld and the
turbulent viscosity νT is given by:

νT = Cs∆
2
(2SijSij)

1
2 (2.20)

with ∆ is the �lter length. Cs is a local parameter calculated at each time step.
Assuming scale similarity of τSGSij and by the same old dynamic procedure [30],

(2.15) is re�ltered with a larger �lter ∆̃ = 2∆, we de�ne: Tij = ũiuj− ũiũj. Similary
as τSGSij , Tij is also expressed in function of Cs as:

Tij −
1

3
Tkkδij = −2Cs∆̃

2

|S̃|S̃ij + LTij −
1

3
LTkkδij (2.21)

with LTij = ũiuj − ũiũj. Both Tij and τ̃SGSij cannot be calculated explicitly however

the di�erence lij = Tij − τ̃SGSij = ũiuj − ũiũj can be and allows to �nd the local
coe�cient Cs:

lij −
1

3
lkkδij = −2Cs(∆̃

2

|S̃|S̃ij −∆
2 ˜|S|Sij)− ũiũj + ũiuj +

1

3
(ũkũk− ũkuk)δij (2.22)

Cs is then:

Cs = −(lij − hij)Mij

2MijMij

(2.23)

with Mij = ∆̃
2

|S̃|S̃ij −∆
2 ˜|S|Sij and hij = ũiuj − ũiũj

Unlike the classical Smagorinsky model, in which Cs is an empirical constant in all
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the domain, the dynamic model by Germano [30] allows a local calculation of Cs to
take into account the local turbulence in the �ow. However, it is subject to numerical
instabilities due to possible negative values of Cs resulting in negative total viscosity
ν+νt. The mixed dynamic Smagorinsky model, considered in the current study[18],
reduces the number of cells with a negative Cs in comparison with the dynamic
Smagorinsky model [30] to less than 1% through its way of decomposing the sub-grid
scale tensor and explicitly calculating the Leonard term as well as locally �ltering Cs
on the test-volume surrounding each cell. The very rare remaining negative values
of the total viscosity are eliminated by locally clipping ν + νt to 0.

2.4 CFD for �uid solid interaction

2.4.1 Introduction

Turbulent �ows in applications often occur in complex geometries. For instance,
in inline �uid separation, the swirl element has a complex geometry and is placed
inside the �ow which makes it in continuous interaction with the �uid. Therefore,
the best way to avoid the use of complicated and demanding mesh is to model the
�uid-structure interaction. Various methods can be found in the literature such as:
• Distributed lagrange multiplier [31, 32]: the fow inside, and on, each solid bound-
ary is constrained to be a rigid-body motion using a distributed Lagrange multi-
plier. This multiplier represents the additional body force per unit volume needed
to maintain the rigid-body motion inside the solid boundary, and is analogous to the
pressure in incompressible �uid fow, whose gradient is the force required to maintain
the constraint of incompressibility. In other terms, The rigidity constraint produces
a stress �eld inside the solid that is a function of a scalar Lagrange multiplier.
• Penalty method [33]: a penalty term is added to the conservation equation, its
expression depends on the approach that is used since there are various penalty
methods: Volumic penalty method, Sub mesh penalty method...
• Lattice Boltzmann method [34]: the �uid phase is treated as a group of imaginary
�uid particles which are allowed to move to the adjacent lattice nodes or stay at
rest. The solid is also represented using lattice nodes. The surface of the solid is
located in the boundary nodes where the bounce-back rule is applied so that the
incoming �uid components from �uid nodes are re�ected back.
• Ghost �uid method [35]: it creates a ghost arti�cial cells which implicitly induces
the proper conditions at the interface solid/�uid through the interpolation of the
parameters in those nodes.
• Immersed boundary method [36, 37]: it was �rst introduced by Peskin to study
�ow patterns around heart valves and has evolved into a generally useful method for
problems of �uid/structure interaction. Peskin used Eulerian variables de�ned on a
�xed cartesian mesh, and Lagrangian variables de�ned on a curvilinear mesh that
moves freely through the �xed cartesian mesh without being constrained to adapt
to it in any way at all.
In the current study, an Immersed Boundary Method developed by Bigot [23] is
used, the equations are detailed in the following subsection.
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2.4.2 Immersed Boundary Method (IBM)

As mentioned before, IBM was �rst introduced by Peskin[36], then developed for
other applications. It consists in adding the force applied by the solid on the �uid
to the Navier-Stokes equations at the interface �uid/solid. Two types of IBM are
generally distinguished: sharp IBM, in which the solid boundary is located within
one cell but then is experiencing possible spatial and temporal discontinuities while
di�usive IBM overcomes this problem by providing a smooth transition between the
�uid and the solid across three to four cells.
A di�erent di�usive approach was developed [23] in JADIM which does not need the
Lagrangian marking on the solid. A solid volume fraction αIBM is de�ned equals
1 in the solid cell,0 in the �uid cell and between 0 and 1 in the transition region
between the solid and the �uid. The solid-�uid interaction is then presented by a
forcing term added to Navier-Stokes equations as a contribution in the volumetric
force f :

fkIBM,i = αIBM
vk−1
s,i − ûki

∆t
(2.24)

where ∆t is the time step used for time advancement, vs,i is the local velocity imposed
to the immersed solid object and ûi is a predictor velocity without considering the
immersed object.
For a static IB solid, the velocity vs,i is set to 0 and the IB force is then reduced to:

fkIBM,i = −αIBM
ûki
∆t

(2.25)

Now, when it comes to αIBM , the solid indicator, it is de�ned using a mathematical
formula by Yuki [38] which decribes the form of the solid geometry. For instance,
when the object is a spherical of center xp and radius R, αIBM is expressed as:

αIBM(x) =
1

2

[
1− tanh

(
‖x− xp‖ −R

λη∆c

)]
(2.26)

with ∆c is a characteristic grid size equals
√

2∆ for a regular mesh.
λ =| nx | + | ny | + | nz | calculated using the coordinates of n the normal outward
unit vector at the surface.
η = 0.065(1 − λ2) + 0.39 is a parameter controlling the thickness of the transition
region 0 < αIBM < 1. This relation for λ suppresses parasitic �uctuations of the
forces applied to the object when the latter crosses a numerical cell [23].

2.4.3 Immersed Boundary Method for CAD complex geome-
tries

The IBM as developed by Bigot [23] and implemented in JADIM requires an ex-
plicit expression of αIBM such as equation 2.26. This is only working for simple
geometries such as: cylinders, squares, spheres ... but when it comes to complex
solids, like the swirl element created by a CAD softtware, there is no mathematical
equation to describe it and thus the direct calculation of αIBM is not possible. A
new method is proposed to de�ne αIBM(x) which consists �rst to have the CAD �le
under the STL format, then import it to the program 'distance' of the the Open
source CFD code BASILISK, this function 'distance' serves to build a distance �eld
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representation of a 3D CAD �le and all it needs as inputs from our side is the STL
�le and the number of grids we want which should be a power of 2. Now practically
when 'distance' is runned, it starts by reading the STL �le, computes the bounding
box of the geometry, calculates the domain center and size, initializes the distance
�eld on the mesh grids, constructs a vertex �eld interpolated from the centered �eld
and then calls the appropriate VOF functions which computes the volume fraction
(which is the solid fraction αIBM) from the distance �eld. The output from 'dis-
tance' is saved in a �le 'Alpha ibm.dat' containing the position (x, y, z) of each cell
and the corresponding αIBM . Finally the �le 'Alpha ibm.dat' is sorted by ascending
x, y and z using MATLAB and imported by JADIM to attribute the variable αIBM
for the swirl element. The procedure to calculate αIBM for the IBM solver from a
CAD geometry is brie�y summerized in Fig. 2.2 showing the inputs and outputs at
each step.
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Figure 2.2: Steps to generate αIBM from a CAD �le

We should note that this procedure is applied only once to de�ne αIBM for the
swirl element then the IBM forcing of Navier-Stokes equations is kept the same as
done in equation 2.24.

2.4.4 Validation of IBM for complex geometries: inline �uid
separator

To test the solver for a complex geometry and the proposed method to generate
αIBM from a CAD �le, we simulate the inline separator using IBM, in which αIBM
of both the pipe and the pick up tube is de�ned by equation 2.26 and is calculated
using the above procedure for the swirl element. The numerical domain is a box of
size Lx × Ly × Lz = 0.92m× 0.1m× 0.1m made of Nx ×Ny ×Nz = 800× 92× 92
cells along the ex, ey and ez directions. The mesh is then regular Cartesian and
the pipe diameter equals D = 0.092m. Figure 2.3 shows the contour αIBM = 0.5
of the separator. The latter is well described and the swirl element is successfully
simulated.

Figure 2.3: 3D visualization of the separator using IBM: contour αIBM = 0.5

A DNS of single-phase �ow in the separator is performed for Re = Dub/ν =
4, 600, the �ow is generated by a uniform velocity ub at the inlet and a condition
on the pressure at the outlet. Figure 2.4 shows the streamlines of the �ow which
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follow perfectly the shape of the swirl element. Moreover, the velocity reaches its
maximum at the position of the blades. Chapter 4 is dedicated to the investigation
of swirling single-phase �ow in the separator where further results are presented.

Figure 2.4: Streamlines of single-phase �ow in the separator of Reynolds number
Re = 4, 600

It remains to mention that the separator is meant to operate on highly turbulent
�ows for which the Reynolds number can reach Re = 200, 000 which justi�es the
need to use LES and consequently to develop a wall model for hybrid LES/IBM
approach (see chapter 3).

2.5 Lagrangian Tracking (LT)

Lagrangian Tracking (LT) is an e�cient CFD method in the current study to sim-
ulate the dispersed phase at the inlet especially that we have two di�erent length
scales, one of the dispersed phase (bubble or droplet) diameter which is in the order
of millimeters and the other one in the order of meters for the separator. Having
a diameter smaller than the mesh size, the bubbles/droplets are geometrically con-
sidered as points. The Lagrangian Tracking solver in JADIM [24] calculates the
trajectory of each bubble/droplet based on the forces applied on it.
Let's consider now a spherical non deformable bubble/droplet (dispersed phase)
of diameter dd, volume Vd, velocity vd inside a �ow that has a velocity u and a
kinematic viscosity νc. The Reynolds number is de�ned as:

Red =
dd‖u− vd‖

νc
(2.27)

2.5.1 Buoyancy

It is an upward force exerted by the continuous phase to oppose the weight of the
immerged dispersed phase, it is the result of the gravity e�ect and the densities
di�erence. The sum of buoyancy and weight of the dispersed phase is written as:

FB = (md −mc)g (2.28)

with md and mc are respectively the dispersed phase and continuous phase masses.

39



CHAPTER 2. CFD DEVELOPMENTS AND VALIDATIONS

2.5.2 Drag force

It is a force acting in the opposite direction to the relative motion between the
dispersed phase and the continuous phase, it is calculated as:

FD = CDρc
πr2

d

2
‖u− vd‖(u− vd) (2.29)

with CD is a dimensionless drag coe�cient which depends on the Reynolds number,
the ratio of densities ρ∗ = ρd/ρc and the ratio of viscosities µ∗ = µd/µc.
For clean bubbles with free slip at the interface, Mei [39] found a correlation for CD
that is a function only of Reynolds number regardless of the latter's range variation.

Cbubble
D =

16

Red

1 +

(
8

Red
+

1

2

(
1 +

3.315

Re
1/2
d

))−1
 (2.30)

For a droplet, Rachih et al. [25] have recently proposed a correlation for CD which
depends only on the viscosity ratio and is available for Reynolds numbers up to 200:

Cdroplet
D =

Cbubble
D + µ∗Csolid

D

1 + µ∗
(2.31)

with Csolid
D is the drag coe�cient for a solid particle calculated from the work of

Schiller and Naumann [40] as:

Csolid
D =

{
24(1 + 0.15Re0.687

d ) if Red ≤ 1000
0.44 if Red > 1000

(2.32)

2.5.3 Lift force

It is the result of the circulation of the continuous phase around the dispersed one.
Its general expression is:

FL = CLρcVd(u− vd) ∧ Ω (2.33)

with Ω = ∇×u is the vorticity and CL is the lift coe�cient calculated for a bubble
based on the work of Legendre and Magnaudet [19]:

CL =

[(
13.53

π2
√
SrRed(1 + 0.2Red/Sr)3/2

)2

+

(
1

2

1 + 16/Red
1 + 29/Red

)2
]1/2

(2.34)

where Sr is the shear rate.

2.5.4 Added (or virtual) mass and Tchen forces

Due to the acceleration of the dispersed phase, some of the continuous phase volume
surrounding it is accelerated as well yielding to this force:

FVM = CMρcVd

(
Du

Dt
− dvd

dt

)
(2.35)

with CM is the virtual mass coe�cient which equals 0.5 for a sphere [41].
Related to the virtual mass force, Tchen force is added to represent the inertia of
the �uid in the absence of the bubble/droplet.

FTchen = ρcVd
Du

Dt
(2.36)
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2.5.5 Basset (or history) force

When the continuous phase accelerates, the inertial forces do not allow the viscous
forces to establish instanteneously, so to take into account this e�ect, Basset force
is introduced as a correction of the steady drag force. It is the history of successive
time delays between the application of instantaneous viscous forces and those of a
quasi-static pseudo movement and expressed as:

FH = 6πµcrd

∫ t

0

K
τ

tnu

(
du

dτ
− dvd

dτ

)
dτ (2.37)

where K is the kernel of the history force depends on the type of the dispersed phase
and tν = r2

d/ν is a characteristic time of the history e�ect controlled by the viscous
di�usion.
In the case of bubbles, for high Reynolds numbers Red, this force is negligible com-
pared to the drag force [42].

2.5.6 Force balance

With no history force, the force balance is expressed as:

(ρd + CMρc)Vd
dvd
dt

= (ρd − ρc)Vdg+

CDρc
πr2

d

2
‖uxd − vd‖(uxd − vd) + CLρcVd(uxd − vd) ∧ Ω+

ρcVd(1 + CM)
Du

Dt
|xd (2.38)

Each bubble/droplet trajectory is obtained by solving:

dxd
dt

= vxd (2.39)

When considering the LES approach, the �uid velocity uxd and accelerationDu/Dt|xd
at the bubble/droplet location x = xd are obtained by a second order interpolation
of the �ltered velocity u with neglecting the SGS �uctuations [43].
The time integration of the trajectory of each bubble/droplet is done through a
Runge Kutta 2. To satisfy the stability condition on the time step for the La-
grangian solver, the Lagrangian time dttraj is set to the minimum of three charac-
teristic times: the continuous phase time step ∆t used for the integration of Navier-
Stokes equations, the relaxation time of the bubble/droplet r2dCD

6νc
and the Lagrangian

time ∆
max(vd)

to ensure that the in�uence of the continuous phase dynamics on the
bubbles/droplets is taken into account in the force balance.

dttraj = min(∆t,
r2
dCD
6νc

,
∆

max(vd)
) (2.40)

For large number or large size of bubbles/droplets, it is possible to consider the
e�ect of the dispered phase on the continuous phase through a two-way coupling
approach, a force Flag is added to Navier-Stokes equations. When the concentration
of the dispersed phase is high that the bubbles/droplets interact with each others,
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one can incoporate a four-way coupling by including a collision/coalescence models
in the Lagrangian Tracking solver. It is clear that both the complexity of the physics
and the computational time increase as we move from one-way to four-way coupling
at the expense of accuracy. The choice of the adequat approach depends on the
studied two-phase �ow. In our case, since the fraction of the dispersed phase is not
high (less than 10%) and not kept in the Lagrangian framework during the whole
simulation, one-way coupling is chosen.

2.5.7 Validation: bubble in a solid body rotation using LT

To check the Lagrangian Tracking solver in a situation close to the con�guration
considered in this work, 2D simulation of a bubble of radius rb in a solid body rota-
tion are conducted. The objective of this simple test case is to verify the calculation
of the di�erent forces and in particular those responsible of the bubble migration
towards the pipe center, because they are of great importance for the process studied
in this work.
The �ow is generated by the rotation of a cylinder simulated using Immersed Bound-
ary Method (IBM) of a radius R = 0.046m with (OZ) as a rotation axis and ω is
the constant angular velocity as shown in Fig. 2.5. The dimentionless number char-
acterizing the system is Reω = (2rb)

2ω
ν

equals 10 in this case. The numerical domain
is a box of size Lx × Ly = 0.14m × 0.14m made of Nx × Ny = 44 × 44 cells along
the ex and ey directions. Once the �ow is developed inside the cylinder, a bubble
is injected at the center (0,0) with the �uid velocity and its trajectory is calculated
using the Lagrangian Tracking solver. Figure 2.5 represents the force balance (buoy-
ancy, drag, lift, virtual mass and Tchen) of a bubble and its radial and tangential
position in the cylinder.

Figure 2.5: Geometry de�nition and sketch of the forces applied on the bubble

The bubble reaches the equilibrium position (re, θe) when the sum of the forces
applied on it is 0. Figure 2.6 shows the trajectory of the bubble, the latter has a
spiral form similar to the one reported by Nierop et al. [44] for the same considered
Reω. From the simulations, the Reynolds number at equilibrium Ree = 2rbreω/ν
equals 150, slightly di�erent from the experimental results Reexpe = 108 measured by
Nierop et al. [44] since in the numerical simulations, correlations for the drag and
lift coe�cients are �xed and are not exactly the same as the ones obtained from the
experimental measurements.

42



CHAPTER 2. CFD DEVELOPMENTS AND VALIDATIONS

-0.8 -0.6 -0.4 -0.2 0
x/R

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
/
R

Figure 2.6: Trajectory of a bubble in a rotating �ow

2.5.8 Lagrangian Tracking/ Immersed Boundary Method:
collision model

Inside the separator, the dispersed phase is not only transported by the continuous
phase but can also be in interaction with the solid part of the device namely the pipe,
the swirl element or eventually the pick-up tube. This is why a coupling between
IBM and Lagrangian Tracking is needed to make sure that the bubbles/droplets are
not going to be trapped in a cell with αIBM > 0.
Inspired by the rebound of a particle on a solid surface, a collision model is then
introduced to consider the rebound on the IB wall according to the normal nIBM
with a restitution coe�cient e set to 1 for full restitution of the kinetic energy. The
new bubble/droplet velocity in contact with the IB wall is therefore calculated as:

vnewd = vd − (1 + e)(nIBM .vd)nIBM (2.41)

where nIBM is the solid surface normal oriented to the �uid calculated as:

nIBM =
∇αIBM
‖∇αIBM‖

(2.42)

The activation of the collision model goes through three steps. Figure 2.7 illustrates
them as the following: �rst we check if a bubble/droplet is located in a cell where
αIBM > 0 after each trajectory integration (see Fig. 2.7a and 2.7b), if it is the
case, the new velocity is calculated as 2.41. Finally, as the bubble/droplet was not
supposed to be in an IB cell in the �rst place, its current position is set to its previous
position just before the trajectory integration xd = xoldd as shown in Fig. 2.7c. This
also allows to make sure that the bubble/droplet is not again trapped in another IB
cell after the collision model but located in a �uid cell.
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(a) Bubble/droplet heading towards an IB
cell (in grey)

(b) Calculation of the new velocity according
to 2.41

(c) Returning the bubble/droplet to its pre-
vious position with the new rebound velocity

Figure 2.7: Sketch of the steps for the activation of the collision model for hybrid
IBM/LT

2.5.9 Validation of the collision model for hybrid IBM/LT:
inline �uid separator

To see the interaction between the Lagrangian Tracking and the IBM solver, we
consider 3D simulation of two-phase �ow for Re = 4, 600 in the separator. The
numerical domain is a box of size Lx × Ly × Lz = 0.92m × 0.1m × 0.1m made
of Nx × Ny × Nz = 400 × 46 × 46 cells along the ex, ey and ez directions. The
gravity is g = −9.81ex and the �ow is along the pipe axis generated by a uniform
velocity at the inlet and a condition on the pressure at the outlet. When the swirling
�ow is developed, a set of 1000 bubbles of radius rb = 1mm are injected randomly
upstream the swirl element with the �uid velocity. Figure 2.8 shows the initialisation
of the bubbles in the separator, no contact with IB cells is yet taking place. Two
con�gurations are tested: without the collision model and with the collision model.
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Figure 2.8: Injection of a set of 1000 bubbles in the separator

First, we run the simulation without introducing the collision method. Figure
2.9 shows that the bubbles, when arriving at the IB cells, are moving inside the swirl
element where αIBM > 0 and this justify the need to model the interaction between
IBM and Lagrangian Tracking.

Figure 2.9: Two-phase �ow simulation using LT and IBM without the collision model

Now, we run the same simulation, but this time with the proposed collision
model activated. Figure 2.10 shows that the bubbles do not go inside the IB cells
inside the swirl element but rebound on the latter's surface and the same happens
to the bubbles in contact with the pipe wall at the blades. The magnitude of their
velocity is of course conserved since the restitution coe�cient e is set to 1. All the
bubbles remain inside the �uid domain in particular when they are located in the
small gap between the swirl element and the pipe wall.

Figure 2.10: Two-phase �ow simulation using hybrid LT/IBM: with the collision
model

2.6 Volume of Fluid (VoF)

To simulate the interface in two-phase �ows, one can either track the interface or
capture it. The interface tracking method localises sharply the interface using for
instance a front tracking method with �ctive markers to de�ne a moving embedded
mesh [45] or a volume tracking with interface reconstruction [46]. In interface cap-
turing approach, the interface is di�used over a number of cells and is de�ned using
a distance function as in Level Set (LS) method or a volume fraction indicator as
in Volume of Fluid (VoF). In the current work, since Lagrangian bubbles/droplets
are switching their volume into the Eulerian framework which can directly be in-
terpreted as a volume fraction indicator for VoF then the latter is chosen for the
resolution of the light core which forms around the pipe center.
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2.6.1 Transport equation

Volume of �uid was �rst introduced by Hirt and Nichols [47] to replace the La-
grangian markers used in interface tracking. A scalar C (volume fraction) is de�ned
which equals to 1 in one phase, 0 in the other phase and varies between 0 and 1 at
the interface. C is governed by the following transport equation:

∂C

∂t
+ ui

∂C

∂xi
= 0 (2.43)

The two �uids are assumed to be Newtonian and incompressible with no phase
change. The surface tension σ is constant and uniform at the interface between the
two �uids. In such conditions, the velocity �eld u and the pressure p satisfy the
classical one-�uid formulation of Navier-Stokes equations. The local density and
dynamic viscosity are deduced from the value of C by a linear interpolation:

ρ = Cρ1 + (1− C)ρ2 (2.44)

µ = Cµ1 + (1− C)µ2 (2.45)

The transport equation 2.43 for C is solved using the Flux Corrected Transport
(FCT) algorithm proposed by Benkenida [20]. It is based on a direction split ap-
proach when three intermediate equations 2.46,2.47,2.48 corresponding to the three
directions are solved successively taking as initial condition the solution of previous
equation. The order of the resolution of the equations changes at each time step so
not to privilege a direction over another.

∂C

∂t
+
∂Cu1

∂x1

= C
∂u1

∂x1

(2.46)

∂C

∂t
+
∂Cu2

∂x2

= C
∂u2

∂x2

(2.47)

∂C

∂t
+
∂Cu3

∂x3

= C
∂u3

∂x3

(2.48)

No interface reconstruction or redistance techniques are introduced. The problem
of the numerical di�usion of the interface which leads to its thickness of about 2 to
3 grid cells is controled through the work of Bonometti[21, 48]. It brie�y consists in
making the velocity, used to transport the interface and de�ned locally over 2 to 3
cells, constant. A new velocity u(x) is then used in solving the transport equation
in the i direction, de�ned for cells with the coordinate x located in the interface and
equals u(x0). The point x0 should satisfy two conditions:
- C(x0) = 0.5

- x0 is on the same streamline as x if the angle β1 = ̂(nC ,u) is higher than the angle

β2 = ̂(ei,nC), otherwise, x0 is on the same direction as the mesh line i that goes
through x (see Fig. 2.11)
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Figure 2.11: Sketch of the angles β1 and β2

This method was validated in the work of Bonometti [21] through diverse �ow
con�gurations.

2.6.2 Surface tension force

Surface tension force occurs at the interface between two di�erent �uids. In fact,
molecules of the same �uid are attracted to each other by an attractive force which
is higher than the one that attract the molecules at the interface to those of the
other �uid. Surface tension force is then produced at the interface minimising the
interface area. When using an interface capturing method, VoF for instance, the
interface is not located within one cell but spread over 2 to 3 control volumes. To
handle this constraint, Brackbill [49] developed the Continuum Surface Force (CSF)
model to express this force as a function of the volume fraction gradient:

fσ = σkcur∇C = −σ∇.
(
∇C
‖∇C‖

)
∇C (2.49)

with σ is the surface tension and kcur = −∇.
(
∇C
‖∇C‖

)
is the curvature of the interface.

Since this force is added to Navier-Stokes equations to take into account the capillary
e�ects, another condition on the time step ∆t has to be respected:

∆t ≤
√

(ρ1 + ρ2)∆3

8σ
(2.50)

2.6.3 Spurious currents

Despite the use of central di�erence scheme in the calculation of the surface tension
force, it has been observed that the CSF su�ers from the generation of non-physical
spurious currents due to errors in the discretization of the interface curvature, those
errors are advected and are possibly ampli�ed along with the interface leading to
incorrect velocity, pressure pics at the interface and an additional source term in
the vorticity production. This numerical problem can be tackled to some extent
by introducing a successive smoothing procedure using a weighted volume fraction
average Ĉ instead of C in the calculation of the interface curvature. For instance,
it is expressed in 2D as:

Ĉnf
i,j =

3

4
Ĉnf−1
i,j +

1

16
(Ĉnf−1

i+1,j + Ĉnf−1
i−1,j + Ĉnf−1

i,j+1 + Ĉnf−1
i,j−1 ) (2.51)

with Ĉ0
i,j = Ci,j and nf = 1, ..., N N being the number of iterations. Dupont and

Legendre [50] have shown that it is better to use a higher number of iterations for
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the calculation of the interface curvature set to 12 since the aim is to reduce the
variations in the curvature and a lower number of iterations set to 8 for the volume
fraction gradient which de�ne the force localization so to keep a sharp capillary
force.
Now when it comes to the characterization of the intensity of the spurious currents.
Francois et al. [51] introduces the norm l1 corresponding to the averaged spurious
velocity in the domain and Renardy et al. [52] de�nes the norm l∞ as the maximum
spurious velocity:

l1 =
1

N1N2N3

∑
i,j,k

‖ui,j,k − uthi,j,k‖ (2.52)

l∞ = max(‖ui,j,k − uthi,j,k‖) (2.53)

with ui,j,k and uthi,j,k are respectively the velocity from the simulation and the one
from the theoretical solution. The norm l∞ can be normalized to build the dimen-
sionless capillary number de�ned as:

Camax =
µl∞
σ

(2.54)

This number is relevant when the viscous e�ects are dominant and the spurious
currents resulting from the vorticity source term are balanced by the viscous term.
However, when inertia is the dominating e�ect, the velocity used to characterize the
spurious currents is de�ned as:

uinertia =

√
σ

ρD
(2.55)

with D is a length scale.
By normalizing the above velocity, the Laplace number is introduced as:

La =
ρDσ

µ2
(2.56)

One can eventually link the spurious velocity based on the viscous term to the one
based on the inertia term as:

l∞ = uinertia
√
La (2.57)

Dupont el al. [50] performed 2D numerical simulation of a circular drop at equi-
librium for water/air system, zero velocity was imposed on the boundries of the
numerical domain, the results have shown a deformation of the drop and a motion
due to the spurious velocities. The evaluation of the spurious currents magnitude
has given that Camax ≈ 0.004. A comparable value was later found by Abadie et
al. [53] through numerical simulations of a 2D Taylor bubble. Furthermore, both
Dupont et al. [50] and Abadie et al. [53] did a mesh sensitivity of l∞ and have shown
that the intensity of spurious currents is slightly decreased by the mesh re�nement.
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2.6.4 Validation: gas core in a solid body rotation using VoF

To investigate the ability of the CSF to handle spurious currents in a situation close
to the one we have in the inline separator, we simulate a gas core inside a solid
body rotation, we consider a two-phase �ow of water/air with the following physical
properties:
water (ρw = 1000kg/m3, µw = 0.0001Pa.s), air (ρg = 1kg/m3, µg = 2.10−5Pa.s),
surface tension σ = 0.072N/m.
We perform 3D simulation of a VoF gas cylindrical core in a rotating IB pipe with
(OX) as a rotation axis and ω is the constant angular velocity. The numerical domain
is a box of size Lx × Ly × Lz = 0.45m × 0.1m × 0.1m made of Nx × Ny × Nz =
200×46×46 cells along the ex, ey and ez directions. Periodic conditions are imposed
at the inlet and outlet of the pipe.
The diameter of the pipe is set to R = 23∆ and the initial gas core radius to Rcore =
13∆ with ∆ is the mesh size. The Reynolds number is de�ned as Re = R2ω/νw and
is �xed to 4, 600. Laplace number equals La = 18.105, l∞ is then used to characterize
the spurious currents.
Figure 2.12 illustrates the gas core behaviour from the initialization of the gas core
to the generation of spurious currents and �nally the breakage of the core. The
interface in blue corresponds to C = 0.5 and the velocity is presented by red arrows.
We can see that at the beginning, the magnitude of the velocity varies with the
radial position r as ωr, then high velocities are generated at the interface which is
a direct indicator of spurious currents.

(a) Initialisation of the gas core at t∗ = 0
(b) Appearance of spurious currents at t∗ =
0.3

(c) Instability of the gas core at t∗ = 0.6 (d) breakage of the gas core at t∗ = 0.9

Figure 2.12: Simulation of air core in a rotating water �ow

To characterize the intensity of the spurious currents observed above, we calculate
the capillary number de�ned as:

Camax = µwl∞/σ (2.58)

49



CHAPTER 2. CFD DEVELOPMENTS AND VALIDATIONS

Figure 2.13 represents the variation of the capillary number as a function of the
dimentionless time t∗ = t/tσ such as tσ =

√
(2R)3ρw/σ is the capillary time scale.

Camax is almost zero at the initialization of the gas core when the spurious currents
are not yet generated then Camax increases as spurious currents appear to reach
a steady state when Camax ≈ 0.004, the same order of magnitude is reported in
[50, 53].
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Figure 2.13: Evolution of the spurious currents intensity over time

Therefore, to avoid this unphysical velocities, we have to reduce the ratio σ/µw
while keeping the same dimensionless numbers which characterize the system.
The Buckingham Π theorem is applied to �nd non-dimensional groups of parameters
to describe the �ow. The system has 8 physical parameters (R,Rcore, ω, σ, ρw, µw, ρg, µg)
and 3 independent dimensions (mass, length, time). 5 dimensionless numbers are
then constructed:

R∗ = Rcore/R (2.59)

ρ∗ = ρw/ρg (2.60)

µ∗ = µw/µg (2.61)

Re = R2ω/νw (2.62)

We = ρwω
2R3/σ (2.63)

For a �xed R∗, the following table 2.2 summarizes the calculation of the dimen-
sionless numbers for the previous gas/water system which leads to an intensity of
the spurious currents proportional to σ/µw = 72, another equivalent numerical
gas/water system is found which gives the same dimentionless numbers and in the
same time reduces the ratio σ/µw to 1.
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Variables (SI) gas/water system numerical gas/water
ρw 1000 726
µw 0.001 10−5

ρg 1 0.726
µg 2.10−5 2.10−7

ω 2.17 2.10−2

σ 0.072 10−5

ρ∗ 1000 1000
µ∗ 50 50
Re 4,600 4,600
We 6.37 6.37
σ/µw 72 1

Table 2.2: Dimension analysis for two self-similarity gas/water system

Finally, we run the same simulation of a VoF gas core in a rotating �ow using the
values of the numerical gas/water system presented in table 2.2. Figure 2.14 shows
the gas interface C = 0.5 at t∗ = 0.9 equivalent to the same time when a breakage
of the core was observed in 2.12d, the numerical simulation reveals that the gas
core remains stable and is rotating following the rotation of the pipe. Furthermore,
no spurious velocities are observed at the interface proving that the instability we
observed in �gure 2.12 is e�ectively due to spurious currents.

Figure 2.14: Gas core stability in a rotating �ow at t∗ = 0.9 using the numerical
gas/water systems

To directly compare the intensities of the spurious currents between the two
gas/water systems, we plot l∞ in both cases over time t∗. Figure 2.15 shows the
decrease of spurious velocity when moving from an air/water system to an equivalent
system with a lower ratio σ/µw.
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Figure 2.15: l∞ in (m/s) over time for two self-similarity air/water system

Moreover, by calculating Camax for the numerical gas/water system and compare
it to air/water system as presented in Fig. 2.16 we con�rm once again that Camax ≈
0.004 and that the two systems are in perfect similarity.
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Figure 2.16: Camax over time for both air/water systems

2.7 Hybrid Lagrangian Tracking/Volume of Fluid

(LT/VOF)

2.7.1 Introduction

As previously mentionned, in the separator, the interface presents a variation over
a wide range of length scales. The ratio between the largest scale (the length of the
core) and the smallest scale (bubble/droplet) is of order 1000. On one hand, the
Lagrangian Tracking is e�cient to track the light phase when it is dispersed but is
not adequat to investigate the stability of the core after the separation. On the other
hand, Volume of Fluid is not the convenient method to simulate the dispersed phase
which has a size of milimeters as it needs very �ne meshes to capture the interface.
The solution is to develop a hybrid approach where a switch from Lagrangian Track-
ing to VoF takes place once the coalescence occurs without introducing any e�ctive
coalescence model since we are not interested into the micro scale. This type of
hybrid LT/VoF has been recently a subject of interest to some researchers working
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on applications which involves multi-scale �uid structures (separation, atomization,
cavitation...). Yu et al.[2] coupled Volume of Fluid and Lagrangian Tracking to
simulate diesel spray using a Region Coupling Method (RCM), the latter consists
in de�ning three regions which characterize the atomization, in the �rst and third
regions, only VoF and Lagrangian Tracking are employed respectively while the sec-
ond region is the coupling region where the two methods overlap, the criteria to
move �uid parcels from VoF to LT is to have a volume less than 20% of the host
cell and being discretised by less than 5 elements, �gure illustrates an exemple of a
simulation by Yu [2] using the RCM approach, the brown contour represents the 0.1
liquid volume fraction while the Lagrangian droplets are scaled to their diameters.

Figure 2.17: Simulation by Yu [2] for the atomization of a spay using hybrid VoF/LT

Within the same subject of atomization, Anez et al. [54] used an Eulerian�Lagrangian
spray atomization model (ELSA) in which the switching strategy is based on the
evaluation of the interface resolution as well as the curvature of the interface. the
�rst criteria concerns the minimum resolved interface area while the second criteria
assesses the ability of the LES �lter to give a low interface curvature. Hence, when
the interface �uctuations become signi�cant at subgrid scale for instance in LES
framework, the interface capturing method is droped and Euler-Lagrange method
is adopted.
Peters et al.[3] developed a hybrid VoF/LT to simulate the cavitation phenomenon,
a critical number of cells is de�ned beyond which a �uid is considered as su�cienly
resolved to be treated by VoF and vice-versa to switch the unresolved �uid into the
Lagrangian framework. Figure 2.18 depicts a snapshot in which Lagrangian bubbles
are progressively growing and switching to VoF.

Figure 2.18: Simulation by Peters [3] where Lagrangian bubbles are growing and
forming a larger Eulerian vapour structure
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In short, developing a hybrid LT/VoF goes through certain steps: �rst, de�ning
a criteria for the activation of the switch from VoF to LT or vice-versa, and this
depends mainly on the simulated two-phase �ow. Then, identifying the elligible
�uid parcel which is subject to moving from one framework to the other. Finally,
updating the volume fraction with the dispersed phase volume or specifying the
number, volume and velocity of the new bubble/droplet to introduce when moving
from VoF to LT. In the next subsection 2.7.2, an adequat hybrid LT/VoF for the
inline �uid separation is proposed.

2.7.2 Switching from LT to VoF

In the inline �uid separator, since the core is formed downstream the swirl element,
the hybrid LT/VoF is activated only in this region and this is the �rst condition.
We also know that the bubbles/droplets migrate to the center of the pipe due to
the centripetal force thus thoses bubbles/droplets trapped in cells located at the
pipe center represent the starting point in the process of core formation. Thus, the
second condition is to transform any dispersed phase located in the center of the
separator or in contact with a �lled cell C > 0 to VoF.
Figure 2.19 summerizes the steps to switch from the LT to VoF: - First, at each
section x indexed by i along the separator, we detect bubbles/droplets located in
(i, Ny/2, Nz/2) which corresponds to the center of the separator, then we tag them,
to do that, a �ag variable is associated to each bubbles/droplets and equals 0 by
default. If the bubbles/droplet is verifying the condition to move to the Eulerian
framework, the tag is set to 1 and their velocity and accelaration is set to 0 (see Fig.
2.19a)
- The tagged bubbles/droplets are removed from the Lagrangian framework, in other
terms, no force balance or trajectory equation is solved for them. Then at each
section x indexed by i, a cylindrical core of length ∆ (the mesh size) is constructed
(see Fig. 2.19b). The details on how to de�ne the cylinder and initialize the volume
fraction Ci,j,k is in the following paragraph.
- When a bubble/droplet is located in a cell (i, j, k) where Ci,j,k > 0, its �ag is set
to 1 and it undergoes the same treatment to move to VoF (see Fig. 2.19c).
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(a) Bubbles/droplets (in red) are positioned in cells at
the center of the pipe

(b) Bubbles/droplets are transformed into the Eulerian
framework and the VoF core is formed

(c) Bubbles/droplets (in red) are located in a VoF cell
C > 0 and therefore subject to switching to VoF

Figure 2.19: Sketch of the conditions to switch the dispersed phase from LT to VoF

Now that the conditions of when the hybrid LT/VoF is activated are detailed,
we move to explaining how to construct the core and initialize the volume fraction
for the VoF solver from the tagged bubbles/droplets.
As previously introduced, at each section x indexed by i, we know the bubbles/droplets
located at each section x which are subject to the switch to VoF since they are tagged
with �ag=1, their total volume is therefore calculated as:

V LT
i =

∑
i

4

3
πr3

d,tagged (2.64)

And because the tagged bubbles/droplets are moving to the Eulerian framework,
the Eulerian volume has to be updated by adding V LT

i as following:

V V oF
i = V LT

i +
∑
j,k

Ci,j,kVi,j,k (2.65)

with Vi,j,k is the volume of the cell (i, j, k).
To locally form the core, a cylinder of length ∆ is reconstructed at each section
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where the switching criteria is veri�ed, its radius is calculated as:

rV oFi,cyl = (
V V oF
i

π∆
)1/2 (2.66)

To calculate the new volume fraction in the cell (i, j, k), four radii are de�ned:

ri,j,k = (y2
i,j,k + z2

i,j,k)
ri,j+1,k = (y2

i,j+1,k + z2
i,j,k)

ri,j,k+1 = (y2
i,j,k + z2

i,j,k+1)
ri,j+1,k+1 = (y2

i,j+1,k + z2
i,j,k+1)

Where y and z are the cell Cartesian coordinates along ey and ez directions respec-
tively.
Then, the minimum and maximum of these distances are determined:

ri,min = min(ri,j,k, ri,j+1,k, ri,j,k+1, ri,j+1,k+1) (2.67)

ri,max = max(ri,j,k, ri,j+1,k, ri,j,k+1, ri,j+1,k+1) (2.68)

Finally, the volume fraction resulting from the LT is CLT
i,j,k :

CLT
i,j,k =

{
1 if ri,max ≤ rV oFi,cyl
rV oFi,cyl−ri,min
ri,max−ri,min if ri,min < rV oFi,cyl &ri,max > rV oFi,cyl

(2.69)

To make sure that the mass of the tagged dispersed phase is totally transformed into
the Eulerian framework and that no mass loss or mass gain are taking place during
the calculation of CLT

i,j,k locally at each section i. We recalculate the VoF volume

as V V oF,cylinder
i =

∑
j,k C

LT
i,j,kVi,j,k with CLT

i,j,k obtained from 2.69, and compare it to

V V oF,cylinder
i from equation 2.65, if the relative error is of order 0.1% then CLT

i,j,k is
�nal, otherwise, CLT

i,j,k is calculated in a loop until the condition on the relative error
on the volume ‖Ei,V ‖ is less than 0.1%, the extra step in the algorithm after 2.69 is
then:
For each section i, the initialization of ri,test,max and ri,test,min:

ri,test,max = 1.5rV oFi,cyl

ri,test,min = 0.5rV oFi,cyl

Then the loop starts:

while(‖Ei,V ‖ > 0.1%)
if(V V oF,cylinder

i > V V oF
i ) which means we have a mass gain then ri,test,max = r

if(V V oF,cylinder
i < V V oF

i ) which means we have a mass loss then ri,test,min = r

The radius to test if it is resulting in the correct VoF volume is:

ri,test = 0.5(ri,test,max + ri,test,min) (2.70)

With this radius, we redistribute the volume fraction CLT
i,j,k as:

CLT
i,j,k =

{
1 if ri,max ≤ ri,test
ri,test−ri,min
ri,max−ri,min if ri,min < ri,test&ri,max > ri,test

(2.71)
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We �nally recalculate ‖Ei,V ‖ > 0.1% to check the exit condition of the loop.
At the end of the switching algorithm (which starts from the bubbles/droplets de-
tection step to equation 2.71), a veri�cation if any other bubble/droplet is located
in the updated CLT is needed, if there is any, then the switching algorithm is called
until no bubble/droplet is trapped in a cell with CLT > 0. This case can eventually
occur when, at the same time step, the interface of the formed core CLT > 0 reaches
some bubbles/droplets which where not concerned by the hybrid LT/VoF (see Fig.
2.20.

(a) The core is formed from the bubbles/droplets lo-
cated at the center of the pipe (in red) at time tn and
the volume fraction CLT is calculated

(b) The core characterized by the volume fraction CLT

reaches other bubbles/droplets (in green) at time tn,
thus, they become subject to LT/VoF

Figure 2.20: Sketch of the case when the constructed CLT reaches other bub-
bles/droplets tagged with 0

Now, the volume fraction Ci,j,k which will be used as initial condition in the
next time step for the FCT is updated as Ci,j,k = C lag

i,j,k (see Fig. 2.24) if C
lag
i,j,k 6= 0

which means only in sections where a switch LT/VoF has happened. After the FCT
and before the Lagrangian solver, another special case is treated to wit when the
interface is transported and reaches another bubble/droplet with a �ag=0, in this
situation, the �ag of this bubble/droplet is set to 2 so to avoid solving its trajectory
equation and its contribution to CLag is taken into account during the following call
of the hybrid LT/VoF. Figure 2.21 brie�y summerizes the steps intervening in the
hybrid LT/VoF inside the temporal loop.
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Figure 2.21: Algorithm of the hybrid LT/VoF

2.7.3 Validation: bubbles accumulation and core formation
in a rotating �ow using LT/VoF

To validate the new LT/VoF coupling algorithm, we simulate the accumulation of
bubbles in a rotating �ow, this con�guration mimics, to some extent, the formation
of the gas core in the separator. The two-phase �ow is composed of the numerical
air/water system previously introduced in table 2.2 to avoid spurious currents.
A rotating pipe with (OX) as a rotation axis and ω = 0.3rad/s the constant angular
velocity is simulated using IBM. The numerical domain is a box of size Lx×Ly×Lz =
0.23m × 0.1m × 0.1m made of Nx × Ny × Nz = 100 × 46 × 46 cells along the ex,
ey and ez directions. Periodic conditions are imposed at the inlet and outlet of
the pipe. Once the �ow is developed, a set of 1000 bubbles of radius rb = 1mm are
injected randomly inside the tube with the �uid velocity (see Fig. 2.22a). The hybrid
LT/VoF is activated inside the pipe. Figure 2.22 shows three di�erent instants. First
when the bubbles are injected and are still all in the Lagrangian framework. Then,
the bubbles start to migrate towards the center of the pipe and once the criteria for
switching to VoF is veri�ed, the tagged bubbles are not any more resolved by LT
and their total volume is transformed into a volume fraction C. In Fig. 2.22b, the
interface corresponding to the contour C = 0.5 is visualized. After that, arriving
bubbles are reaching the gas core, therefore they are switching to VoF. At the end,
only the VoF is activated. Figure 2.22d represents the gas volume fraction C in a
section z = 0, the interface 0 < C < 1 is well resolved by VoF, C is no more updated
by the hybrid LT/VoF and the Lagrangian Tracking solver is turned o�.

58



CHAPTER 2. CFD DEVELOPMENTS AND VALIDATIONS

(a) Initialisation of the bubbles: only LT is
activated

(b) Beginning of the core formation:
LT/VoF is activated

(c) End of the core formation: only VoF is
activated

(d) The gas volume fraction in a section
along the pipe

Figure 2.22: Simulation of two-phase �ow: bubbles accumulation and core formation
in a solid body rotation using hybrid LT/VoF

A close-up view on how the bubbles are progressively forming the gas core at
a cross-section over time is given in Fig. 2.23. The bubbles are colored with their
velocity and as previously explained, when the bubbles move to the Eulerian frame-
work, their velocity is set to 0 so the red points represent the transformed bubbles.
In each section, we also visualize the cylindrical core as it grows.
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(a) Initial position of bubbles located at a
cross-section of the pipe

(b) Bubbles are migrating to the center and
the gas core is appearing in blue

(c) Some bubbles are in contact with the core
interface and therefore moved to VoF

(d) The core is growning as more bubbles are
switching to VoF

(e) All bubbles in the section have switched
and only the VoF is active

Figure 2.23: Simulation of two-phase �ow: bubbles accumulation and core formation
at a cross-section using hybrid LT/VoF

2.8 Global algorithm and HPC performance

To summarize the over-all algorithm, Figure 2.24 illustrates step by step the order
of the resolution of equations for the whole hybrid approach.
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Figure 2.24: Over-all algorithm of the numerical resolution

We should note that parallel computing is used to run the simulations. And to
check the achieved HPC performance of the code, we consider a 3D simulation of
the separator in a numerical domain of size Lx × Ly × Lz = 0.92m × 0.1m × 0.1m
made of Nx ×Ny ×Nz = 800× 92× 92 cells along the ex, ey and ez directions. We
run the simulations on the supercomputer Olympe from CALMIP at the University
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of Toulouse on N cores. In Fig.2.25, T32 is the time needed to run one time step on
32 cores and TN is the time needed on N cores. This time is plotted as a function
of the number of cores both for a single-phase �ow simulation of Re = 50, 000 when
LES, IBM and the wall model are activated and for two-phase �ow simulation of
the same Reynolds number with the injection of a set of 70000 bubbles and the
activation of whole hybrid approach summarized in Fig. 2.24. The achieved HPC
performance is compared in the two cases to an ideal linear performance. Single-
phase �ow scales good up to 64 cores, then, the communication time between the
cores starts to be relevant. For the two-phase �ow case, it is worth noting that only
the solvers for the continuous phase are runned in parallel (IBM, LES, VoF) while
the Lagrangian Tracking is in series since the number of bubbles is not very high
and that the tagged bubbles are removed from Lagrangian framework which further
reduces the number of trajectory equations solved by the LT solver. The achieved
performance is lower than the single-phase �ow which is a normal response of the
code. In short, parallel computing is favorable in the two cases as it helps getting
the results in an acceptable time of such an important calculation domain.
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3.5
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T
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/
T N

Ideal performance
Achieved performance:Single phase flow
Achieved performance:Two-phase flow

Figure 2.25: Comparison of the HPC performance for single-phase and two-phase
�ows on Olympe

2.9 Conclusion

In this chapter, the hybrid CFD approach to simulate the inline �uid separation
is introduced, it involves four main CFD methods namely: Immersed Boundary
Method (IBM) for simulating the comlex geometry of the swirl element, Large Eddy
Simulation (LES) for turbulence using the mixed Dynamic Smagorinsky model,
Lagrangian Tracking (LT) to calculate the trajectory of the dispersed phase and
Volume of Fluid (VoF) for the core simulation. The discretization and intergation
of the equations for each method are presented as it had been before developed in
JADIM. However, to activate the four solvers, hybrid models need to be developed
to ensure a correct interaction between them. IBM is successfully used for a CAD
�le for a complex geometry. Then a collision model is introduced for IBM/LT to
allow the bubbles/droplets to rebound on the surface of IB solids and �nally a hybrid
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LT/VoF is developed to switch from the Lagrangian framework to the Eulerian one
when the tracked bubbles/droplets accumulate in the center of the pipe after the
swirl element to form a core, the latter is then simulated using VoF. It remains to
mention that the LES solver as previously developed and used in JADIM requires
a mesh re�nement next to the wall to capture the viscous sub-layer, this condition
becomes more and more constraining as the Reynolds number increases, that is
why we are interesed in developing a special wall model for LES/IBM which will
allow to use LES on coarse meshes. Chapter 3 introduces an orignal wall model for
LES/IBM, the model is detailed and validated via a study of the classical turbulent
pipe �ow.
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Chapter 3

Wall model for hybrid Immersed
Boundary Method and Large Eddy
Simulations IBM/LES

3.1 Introduction

The IBM solver in JADIM has been validated in many studies of �ows around IB
objects [23, 55]. Similarly, the LES solver has been implemanted and tested for
di�erent turbulent �ows: channel �ows [18] and pipe �ows [22] with respect to the
constraint of mesh re�nment next to the wall to capture the viscous sub-layer. Yet,
our objectif is to use both solvers within one simulation on a coarse mesh through
the development of new wall models for hybrid IBM/LES method [56].
In this chapter, we �rst investigate the capacity of IBM to solve a �ow inside an IB
solid and for that we simulate Poiseuille �ow and conclude how the model should be
formulated and implemented. Then, turbulent pipe �ow is studied, two wall models
named: mean velocity model and stochastic model are proposed and validated, the
e�ect of Reynolds number and the mesh size is analyzed and it is shown that with
the wall model, correct mean velocity and �uctuations can be obtained.

3.2 Poiseuille �ow

To evaluate the ability of IBM to predict the �ow inside an IB solid, we start with
studying the classical Poiseuille �ow, for which the exact solution for the velocity U
and shear stress τ in function of the radial position r are:

U(r) = − 1

4µ

dp

dx

(
R2 − r2

)
, τ(r) = −1

2

dp

dx
r (3.1)

We consider a pipe, simulated using IBM and de�ned by 2.26, of diameter D = 2R
and axis (Ox) inside a box of size Lx × Ly × Lz along the ex, ey and ez directions
(Fig. 3.1).
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Figure 3.1: Sketch of the geometry (left). Numerical domain and wall pipe shown
using the iso-contour αIBM = 0.5 (right).

The mesh is Cartesian and regular of size ∆ and three di�erent meshes m1,m2
andm3 are considered corresponding to the number of cells per pipe radiusR/∆ = 8,
R/∆ = 16 and R/∆ = 32, respectively. Figure 3.2 represents the mesh on a cross
section of the pipe. As shown, the solid wall thickness decreases when the mesh is
re�ned.

Figure 3.2: Pipe cross-section for the three meshes m1, m2, and m3 from left to
right.

The �ow is driven by a �xed pressure drop dp/dx along the x-direction. Periodic
conditions at the inlet and outlet of the pipe are imposed. The �ow is characterized
by the Reynolds number Re = Dub/ν with ub the bulk velocity. At the beginning,
numerical simulations are carried out using the standard IBM expression (2.25) to
prescribe the presence of the wall. Figure 3.3 compares the velocity pro�le U(r)
and the shear stress τ(r) to the exact solution for the three meshes m1, m2 and
m3. U(r) and τ(r) are respectively made dimensionless by the maximum central
velocity Umax = − 1

4µ
dp/dxR2 and the wall shear stress τwall = −1

2
dp/dxR given by

the exact solution (3.1).
To evaluate the convergence of the error at the IB wall, we calculate the relative
error of the velocity at the IB wall as:

εU(R) =
U(R)analytical − U(R)simulation

U(0)analytical
(3.2)

And relative error of the shear stress at two positions: at the IB wall r = R and in
a �uid cell r = R/2.

ετ(r) =
τ(r)analytical − τ(r)simulation

τ(r)analytical
(3.3)
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As shown in Fig. 3.4, the velocity and shear stress at the IB wall using IBM with
no model is lower than a second order. The IBM does not conserve the second order
accuracy because of its di�usive aspect.
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Figure 3.3: Dimensionless radial pro�les of the velocity (left) and the shear stress
(right) for the three meshes compared to the exact solution eq. 3.1.
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Figure 3.4: Grid convergence of the relative error on the velocity at the IB wall:
U(R) (left), the shear stress at the IB wall: τIBM(R) and in the �uid at R/2:
τFluid(R/2).

The signi�cant loss of accuracy close to the wall is the direct consequence of
the IBM solid-�uid interaction description used for the simulation. In the standard
method �rst applied here, a zero velocity is considered across the entire IBM wall
thickness zone i.e. for 0 < αIBM ≤ 1. We clearly observe in Fig. 3.3 that the
resulting viscous shear stress departs from the linear evolution in this region and
this impacts the shear stress in the �uid close to the wall. The control of the velocity
pro�le cannot be made with the IBM function given by equation 2.26 since it mainly
controls the width of the IBM wall thickness. The proposed method consists in
directly imposing the correct velocity evolution inside the IBM wall thickness. In
the case of the Poiseuille �ow, the exact solution is given by equation (3.1) therefore
the corresponding velocity pro�le for the solid wall velocity vs of the solid-�uid
interaction is then:

vs,x(r) = − 1

4µ

dp

dx
(R2 − r2) , vs,y = vs,z = 0 (3.4)
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By the de�nition of fIBM , this forcing is e�ective for αIBM > 0. The velocity pro�le
in the IBM wall thickness cancels at the exact wall position r = R corresponding to
αIBM = 0.5. Note that the velocity for r > R is then negative in order to respect
the correct value of the velocity gradient, and thus the wall shear stress at r = R.
Figure 3.5 represents the velocity and shear stress obtained with the new IBM con-
dition (3.4). All the pro�les are now very close to the analytical solution regardless
of the mesh size. The corresponding errors on both the velocity and the viscous
shear stress are reported in �gure 3.4 as a function of the grid size. We observe that
by correcting the IBM forcing following the proposed model, the magnitude of the
error has been signi�cantly reduced, the accuracy is improved and a second order
convergence is obtained for both velocity and shear stress.
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Figure 3.5: Dimensionless pro�les of the velocity and the shear stress when using
the IBM wall model (3.4)

From the DNS simulations of a Poiseuille pipe �ow, we have demonstrated that
the IBM method using the standard solid-�uid interaction is grid convergent. How-
ever the error with the exact solution can be signi�cantly lowered with an appro-
priate condition applied inside the region of IBM wall thickness. The objective of
the next section 3.3 is to consider turbulent pipe �ow simulations via the IBM/LES
solver.

3.3 Hybrid IBM/LES

Simulating turbulent �ows by coupling IBM for complex geometries and LES for
turbulence raises the question of adapting the wall boundary conditions for their
coupling. The resolved LES can capture the viscous boundary layer therefore re-
quires an adapted mesh re�nement next to the wall. Speci�c wall conditions for
IB walls to overcome that resolution constraint were proposed. Tessicini et al. [57]
solved the LES equations up to the second grid cell away from the wall, then switched
to solving the simpli�ed turbulent boundary-layer equations on an embedded re�ned
wall mesh. The eddy viscosity is obtained from a simple blend of an eddy viscosity
model with near wall damping function. Cristallo & Verzicco [58] have upgraded the
work of Tessini et al. [57] by using LES till the �rst grid point at the wall while the
wall shear stress is deduced from a boundary layer approximation. Roman et al. [59]
used a prediction of the velocity at the �rst �uid grid point in contact with the IB
solid boundary assuming the classical log-law evolution and imposed a RANS-like
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eddy viscosity. We note that these methods have been developed in the context of
sharp immersed boundaries when the IB wall is well located in the Eulerian grid.
Using a di�usive IBM with Lagrangian markers, Ma et al. [60] solved the boundary
layer equation on an embedded mesh and used the local wall shear stress calculated
on the Eulerian points to correct the sub-grid scale viscosity.
In our case, the IBM/LES coupling consists in applying the numerical procedure
described for the IBM method to the governing equations considered for LES sim-
ulations. The IBM coupling term is then expressed using the �ltered velocity �eld:

f
k

IBM,i = αIBM
vk−1
s,i − uki

∆t
(3.5)

Now, we simulate turbulent pipe �ow with the use of the IBM/LES method on the
same numerical domain used in the Poiseuille �ow study. The �ow is again driven
by a constant pressure drop. We note τ ∗ = R

2
|dp/dx| the mean wall shear stress,

< u∗ >=
√
τ ∗/ρ the mean friction velocity, `∗ =< u∗ > /ν the wall unit length and

Re∗ = R < u∗ > /ν the friction Reynolds number. Three high Reynolds numbers
�ow Re = ubD/ν are simulated: Re = 50, 000, Re = 100, 000 and Re = 500, 000.
Discussion on the results will be �rst conducted for Re = 100, 000 because of the
availability of several reference results for the mean axial velocity pro�le U+ and
the root mean square (rms) velocities u+

x , u
+
r , u

+
θ along the x, r and θ directions

normalized by < u∗ >, respectively. The corresponding references, values of Re and
Re∗ are reported in table 3.1.

Method References Re Re∗ Available data Symbol in graphs
LES/RANS [61] 100,000 2350 U+ ×
Experiments [62] 98,000 2315 U+ ∧

DNS [63] 83,000 2000 U+, u+
x , u

+
r , u

+
θ �

Experiments [64] 81,000 1960 U+, u+
x +

Table 3.1: References used for comparison and corresponding symbols in the �gures.

The simulations are performed using the three meshes m1, m2 and m3. The ra-
tio ∆/`∗ is reported in Table 3.2 for the three considered Reynolds numbers. With
regard to high turbulent pipe �ows, these meshes are coarse and none of them is
adapted for a full resolution of the viscous sub-layer, justifying the need of an ap-
propriate wall modeling. This is clearly shown in Fig. 3.6 where the simulations
performed using mesh m2 are compared to the data referenced in Table 3.2 for
Re = 100, 000. As reported, all the data from literature are collapsing on a similar
evolution for the mean velocity U+. The IBM/LES simulation using the standard
IBM solid-�uid interaction presented by circles is signi�cantly under-estimating the
mean velocity indicating that the wall friction is not correctly predicted. This re-
sponse of IBM/LES is very similar to what we observed for a laminar �ow. Consid-
ering the velocity �uctuations, thanks to the LES solver, their order of magnitude
is correctly captured inside the pipe but not close to the wall.
The objective is now to propose a modi�ed IBM solid-�uid interaction in order to
improve the results and in particular to recover a correct magnitude for the mean
velocity. Two approaches will be proposed in the following: the �rst one is based on
the mean velocity pro�le while the second makes use of a stochastic model for the
velocity to impose in the IBM wall thickness.
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R/∆ - Re 50,000 100,000 500,000
8 (m1) 160 292 1260
16 (m2) 80 146 630
32 (m3) 40 73 315

Table 3.2: Value of ratio ∆/`∗ for the meshes and Reynolds numbers considered
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Figure 3.6: Pro�les of the mean velocity and rms velocity for simulations using the
standard IBM solid-�uid interaction and the IBM solid-�uid interaction based on
the mean velocity models for Re = 100, 000. Red symbols stand for the reference
studies (see Table 3.1). The "log-law" and "power law" modeling are considered
with the constants (k = 0.41 ; B = 5) and (A = 8.3 ; C = 1/7), respectively.

3.4 Mean velocity wall model

In the case of turbulent pipe �ow, no exact solution for the velocity pro�le is avail-
able to make possible an unsteady and local control of the velocity �eld inside the
IBM wall thickness as done in the previous section for the laminar Poiseuille �ow.
However the mean velocity pro�le close to a turbulent wall in a pipe has been char-
acterized for a large range of Reynolds numbers. In particular the mean velocity
can be described by the classical log-law evolution or can be �tted by a power law.
Both laws have been considered at high Reynolds number regimes in experimental
and numerical studies. See for example [65] where both laws compare well with LES
simulation over a large range of Reynolds numbers varying from 104 to 1011.

In this section, both the "log-law" and "power law" modeling are regarded to
control the velocity description inside the IBM wall thickness. Since the model has to
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be implemented in all the IBM thickness, a velocity condition also has to be imposed
for 0.5 < αIBM < 1, i.e. for negative values of the wall unit distance r+ = (R−r)/`∗.
In order to respect the condition vs(r+ = 0) = 0 and the continuity of the velocity for
discretization purposes in the viscous shear calculation, the velocity �eld is extended
for r+ < 0 (i.e. r > R). Under these considerations, the "log law" modeling consists
in imposing in the IBM forcing term fIBM de�ned by (3.5) the velocity �eld vs
following:

vs,x =

{
r+ < u∗ > if | r+ | ≤ 11
sign(r+) ( 1

k
log(| r+ |) +B) < u∗ > if | r+ | > 11

, vs,r = vs,θ = 0

(3.6)
with k = 0.41 and B = 5 [66], while the "power law" modeling considers:

vs,x =

{
r+ < u∗ > if | r+ | ≤ 11
sign(r+)A | r+ |C < u∗ > if | r+ | > 11

, vs,r = vs,θ = 0 (3.7)

with A = 8.3 and C = 1/7 [67].
To analyze the e�ect of such control of the velocity in the IBM wall thickness,

numerical simulations are �rst performed for Re = 100, 000 using mesh m2. Figure
3.6 illustrates the mean and rms pro�les normalized by < u∗ > as a function of
the radial position normalized by the wall unit length `∗. The two models ("log
law" and "power law") provide very similar results for both the mean and the rms
velocities. The mean velocity pro�le is now over-estimated in comparison with the
previous data from literature. The impact on the rms velocity di�ers depending
on each components. The velocity �uctuation in the streamwise direction increases
close to the wall and is corrected far from it in the two other directions. The peak
of the streamwise �uctuation generally located around 15`∗, considered as a feature
of turbulent pipe �ow, cannot be detected with such a mesh resolution (see Table
3.2 ). However we see a peak in our curves which is shifted away from the near wall
with a higher intensity. Similar behavior of the peak location is reported by Ma [60]
using a dynamic wall model for IBM/LES simulations. Besides, the simulations on
other meshes reveal that the peak gets closer to the wall as we re�ne the mesh.
The results obtained with the model follow the expectations but still need to be
adapted and one possible solution to do so is through the modi�cation of the wall
law coe�cients. An adjustment of the coe�cients B for the log-law and A for the
power law is performed aiming at minimizing the error on the bulk velocity. Figure
3.7 depicts the relative error on the bulk velocity as a function of the wall law
coe�cients for the mesh m2. The reported error EU is calculated as:

EU =
U expected − U simulation

U expected
(3.8)

where U expected is the expected value of the bulk velocity based on the pressure drop
imposed to the pipe �ow and U simulation is the one given by the simulation. Positive
values represent the case of an underestimate of the bulk velocity as observed with
no wall model giving EU = 55%. As shown in Fig. 3.6, the use of the two considered
wall models induces an over-compensation of the mean velocity with a relative error
EU = −20%. Thus, by adjusting the values of the model coe�cients, an optimal
value of B ≈ 0 and A ≈ 5.8 for the log and power models, respectively, can be found
with a relative error less than 1%. The �ow statistics when using these coe�cients
are reported in Fig. 3.6 and discussed more in section 3.6.
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Figure 3.7: Relative error EU on the bulk velocity as a function of the wall law
coe�cients B and A for the log and power laws, respectively.

As shown, with the adapted wall law coe�cient, one is able to obtain the accurate
mean velocity pro�les. However, in terms of velocity �uctuations, the model does not
improve remarkably the rms in comparison with the basic model. This is explained
by the fact that the model uses only a constant friction velocity without introducing
any source of �uctuations. And this can justify two main features of this model:
- the need of adjusting the wall law coe�cient. For instance, the simulation using
the classical law coe�cients yields to higher bulk velocity because it does not have
enough �uctuations, the latter contributing to the mean shear and can bring back
the correct mean velocity pro�le. In short, it is not just about controlling the bulk
velocity but also acting on the �uctuations.
- the rms velocities remain unchanged for di�erent values of the wall law coe�cients
which means that tuning the wall law coe�cients may not be the relevant approach
if we are interested in reproducing the �uctuations as well, keeping in mind that a
perfect �uctuation remains challenging if considering coarse meshes.
Therefore, we can conclude that the model based on the mean friction velocity
overestimates the bulk velocity and needs to be corrected by an appropriate modeling
for the �uctuations. Indeed, if we manage to increase the �uctuations, the mean
velocity will decrease and it will be automatically corrected with no need of tuning
the wall law coe�cients. This is the objective of the stochastic wall model proposed
in the next section 3.5.

3.5 Stochastic wall model

The previous model based on the mean friction velocity needs to be corrected by tak-
ing into account the �uctuations in the velocity imposed in the IBM wall thickness.
Indeed, the wall region is known to present signi�cant �uctuations with charac-
teristic spatial and temporal correlations resulting from the regeneration cycle of
turbulent structures as well as from the interaction with the outer �ow [68, 69]. It
has been pointed out [70] that the complex �ow structure is strongly correlated to
the wall shear stress which thus presents large scale �uctuations [71, 70, 72].

To mimic the e�ect of the unresolved turbulent wall structures, we propose to
use a stochastic �eld which reproduces the �uctuations of the wall shear stress, for
the de�nition of the solid velocity �eld vs used for IBM forcing term fIBM (3.5).
Re�ecting the view of the momentum cascade taking place in the logarithmic layer
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as a self-similar hierarchy of wall-attached eddies [73, 74], we express the local IBM
velocity from the law of the wall, but substituting the average friction velocity by a
random friction velocity:

vs,x(r, θ, x, t) =

{
r+ u∗(θ, x, t) if | r+ | ≤ 11
sign(r+) ( 1

k
log(| r+ |) +B) u∗(θ, x, t) if | r+ | > 11

(3.9)

vs,r = vs,θ = 0
while keeping the original values of k = 0.41 and B = 5.0.
Note that the length scale l∗ used to normalize r remains constant and is based on
the average friction velocity. This model is supported by the self-similarity of large
scales leading the velocity pro�le to scale with u∗ as reported in [71, 72]. In order
to reproduce the very large deviations of the wall shear stress [70], we assume that
the stochastic �eld u∗(θ, x, t) presents a log-normal distribution [75, 76]. Thus, the
variable f = ln(u∗/〈u∗〉) has a normal distribution with average µ and variance σ2.
From the expression of the moments of log-normal variables (〈(ef )q〉 = eqµ+q2σ2/2

), we impose for its average µ = −σ2/2 to have 〈ef〉 = 1 and balance the global
momentum budget. Considering that the variance of u∗ is commensurate with the
square of its mean, we introduce the ratio αh = 〈u′∗2〉/〈u∗〉2 which is related to σ as
σ2 = ln(1 + αh). Indeed [77] showed that the standard deviation of u∗ is between
15% and 40% of its mean value from experimental and DNS data and is probably
Reynolds number dependent. We also want to impose the spatial correlation lengths
in the streamwise and spanwise directions as well as the temporal correlation to
account for both lifetime of the turbulent structures and their advection by the
mean �ow. These spatio-temporal correlations of the wall shear stress have been
reported in [72, 71, 70]. It has been observed that the correlation lengths in the
streamwise and spanwise directions are around 1000 and 100 wall units respectively,
similarly to the near wall �ow structures [78, 79, 80, 81]. We expect the convection
velocity of the wall friction to be scale-dependent [82, 71, 83]. Indeed, the large
scales of the wall friction, which are related to events taking place in the logarithmic
region have been reported to be convected at a velocity that is much faster than
the average velocity in the near-wall region [71, 84], while the smaller scales which
are due to the near-wall cycle appending in the bu�er layer are convected with the
characteristic velocity of the bu�er layer [82, 83]. Overall, the convection velocity,
in wall unit, is estimated to stand in the range u+

adv = 10− 20 [71, 83].
To model the wall friction velocity �eld, we generate initially a �eld without

spatial correlations (delta-correlated in space) but presenting a temporal correlation
obtained by the resolution of a stochastic di�erential equation. Then, in a second
step this �eld is convoluted with a spatial kernel to impose the adequate spatial
correlation prescribed by the shape of the convolution kernel. The last step consists
in taking the exponential of the �eld to obtain a log-normal �eld.

According to this procedure, we have:

f(t,x) =

∫
G(x− x')χ(t,x')dx' (3.10)

where the stochastic process with delta-correlation in space is noted χ and G is
a convolution kernel with x(xx, xθ) and x'(x′x, x

′
θ) position vectors. Note that the

spatial autocorrelation of f is only set by G since χ is delta-correlated ρf (x) = G?G
where ? denotes the convolution product.
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To deem the advection, we decompose the convolution kernel into two parts:
G = Gs ? δ(x− uadvt), the second contribution representing the spatial translation
due to the advection at a constant speed uadv. We propose to model the spatial
contribution Gs as:

Gs(x) = β exp

[
−
(
xx
Lcx

)2

−
(
xθ
Lcθ

)2
]

(3.11)

and β is a pre-factor for normalization purpose. Lcx and Lcθ are the characteristic
lengths in the streamwise and the spanwise directions respectively and are set to
Lcx = 1000`∗ and Lcθ = 100`∗. In the current study, we take the advection velocity
in the streamwise direction with a magnitude set to uadv = 20〈u∗〉.

We consider that the �eld χ is the solution of a stochastic di�erential Langevin
equation de�ned and solved for each cell in the domain and at each time step:

dχ = −χ− µχ
Tc

dt+

√
2σ2

χ

Tc
dW (3.12)

where dW is an increment of the Wiener process, a normal variable generated for
each cell at each time step with < dW >= 0 and < dW (t,x)dW (s,x') >= δ(t −
s)δ(x-x'). In equation (3.12) the parameter µχ and σ2

χ are respectively the mean
and the variance of χ, while Tc corresponds to the correlation time of χ. Here we
have estimated the lifetime of the wall friction events as Tc = Lcx/uadv. From (4.24)
the moments of f and χ are related, therefore we impose for µχ and σ2

χ:

µχ =< f > (

∫
G(r)dr)−1 = −1

2
ln(1 + αh)(

∫
G(r)dr)−1 (3.13)

σ2
χ =< f ′2 > (

∫
G2(r)dr)−1 = ln(1 + αh)(

∫
G2(r)dr)−1 (3.14)

Taking advantage of the periodicity in the x and θ directions, we compute the
convolution product in the spectral space through the Fourier transform making the
calculation much faster:

F(f) = F(Gs) exp(ik.uadvt)F(χ) (3.15)

with i2 = −1 and k the wave vector. The inverse Fourier transform allows us to
obtain f and �nally the friction velocity �eld is as follows:

u∗ =< u∗ > exp(f) (3.16)

We present in �gure 3.8 a realization of the �eld obtained with this stochastic model
(see also the movie in supplementary materiel). We observe that the model repro-
duces elongated structures moving with the prescribed velocity uadv as expected.
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Figure 3.8: Realization of the stochastic process to predict the friction velocity �eld
at the wall.

The main control parameter of the stochastic model is αh which controls the
magnitude of the imposed �uctuations. It is to note that αh being the variance
of u∗/< u∗ >, setting αh = 0 restores the model with constant friction velocity
presented in the previous section. To study the e�ect of αh on the �ow statistics,
we carried out simulations of the turbulent pipe �ow with an expected value of
Re = 100, 000 on the mesh m2 with αh = 1, αh = 0.3 and αh = 0.07. Figure 3.9
shows the mean velocity and the velocity �uctuations as a function of the distance
from the wall normalized by 〈u∗〉 and `∗. As expected, the stochastic IBM velocity
is e�ectively acting on the velocity �uctuations. Increasing αh leads to a signi�cant
increase of the rms of the three components of the velocity all across the pipe section.
In particular, we notice the presence of a near-wall peak for both spanwise and radial
components which was not present in the simulation without model. For αh = 0.07
we observe that the pro�le of the rms of the various velocity components are in good
agreement with the experimental data, expected for the �rst two points next to the
wall.

Adding �uctuations in IBM region enhances the shear stress and consequently it
leads to a �attened mean velocity pro�le and causes a reduction of the bulk velocity.
For the largest values of αh it is clear that the level of �uctuation is too high and
gives and under-prediction of the bulk velocity, but for αh = 0.07, the mean velocity
appears to match fairly well the experimental data. This is con�rmed in �gure 3.10
that presents the relative error on the bulk velocity EU de�ned by relation (3.8) as
a function of αh. For αh = 0, one recovers an overestimate of the bulk velocity with
EU = −22%, as already obtained with the mean velocity model (3.6) (see �gure
3.7), while for αh = 0.07, which is consistent with the value reported in [77], the
relative error is less than 1%.
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Figure 3.9: Mean velocity and rms using the stochastic model for Re = 100, 000.
Red symbols stand for the reference studies (see Table 3.1).
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Figure 3.10: Relative error EU on the bulk velocity as a function of the wall law
coe�cients.

3.6 Validation of the wall model for hybrid IBM-

LES: turbulent pipe �ow

3.6.1 Model comparison

We �rst compare the di�erent modeling proposed in this work. The results are
summarized in Fig. 3.11 in order to make a direct comparison between the basic
IBM (without a wall model), the mean velocity model based on the log law and the
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stochastic model. Flow statistics are reported for the value of B = 0 for the model
(3.6) and αh = 0.07 for the model (3.9) that reproduces for each model the correct
bulk velocity for the conducted simulations on mesh m2. These models are giving
the same mean velocity pro�le and are providing a good agreement with previous
data as well as the log law relation (3.6) and the power law relation (3.7) plotted
in blue and red lines, respectively. As observed, the �uctuations can be adjusted
thanks to the use of a stochastic model. In particular, the intensity of the peaks in
the near wall region is improved: the peak is reduced in the streamwise direction
while its magnitude is increased in the radial and azimuthal directions. The stochas-
tic approach seems to provide a better prediction of the �uctuating �ow structures
along the three spatial directions.
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Figure 3.11: Comparison between the mean velocity models and the stochastic model
for Re = 100, 000. Red symbols stand for the studies of reference (see Table 1). Blue
line: relation (3.6) for the "log law". Red line: relation (3.7) "power law".

3.6.2 Sensitivity of model parameters to grid resolution and
Reynolds number

The previous analysis has been conducted for a selected Reynolds number Re =
100, 000 and a given grid resolution (mesh m2). Each model has been optimized
to provide the correct bulk velocity and optimized parameters have been proposed:
B = 0, A = 5.8 and αh = 0.07 for the log law model, the power law model and the
stochastic model, respectively. A similar investigation can be conducted for di�erent
Reynolds numbers and grid resolutions. The objective is now to discuss the e�ects of
both the grid resolution and the pipe Reynolds number on the optimized values for
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B, A and αh. For that purpose, numerical simulations are carried out for the three
Reynolds numbers Re = 50, 000, 100, 000 and 500, 000 and the three meshes m1,m2
and m3. For each case, each model is considered and the corresponding model
parameter (B, A or αh) is adjusted in order to obtain the correct bulk velocity
(with a relative di�erence on EU less than 1%), while imposing a constant value to
the mean pressure drop as speci�ed before.
Figure 3.12 (left) reports the evolution of the optimized values of A and B as a
function of the grid resolution for the three Reynolds numbers. Both A and B have
to be increased when the mesh is getting coarser, because the underestimation of
the bulk velocity is enhanced resulting in the need of larger solid velocity in the
forcing inside the IBM wall region. A linear evolution with the grid size is observed
for both A and B. The origin of the linear evolution for A (power law) needs to be
adjusted for each Reynolds number while the linear �t of B (log law) is unchanged
for the three di�erent Reynolds numbers, outlining the relevance of the use of the
log-law in the mean velocity model.
As shown in Fig. 3.12, the evolution of A can be simply described using the relation:

A = 20.5
∆

R
+X(Re) (3.17)

with the evolution of X(Re) versus Re reported in Fig. 3.12 (right).
The evolution of B can be described using the relation:

B = 37.6
∆

R
− 2.23 (3.18)

Note that while the value of the coe�cient B becomes negative for su�ciently �ne
mesh, the IBM velocity vs,x for r+ > 11 remains positive. Indeed, for consistency
the IBM velocity needs to tends to 0 as the mesh is re�ned.
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Figure 3.12: Optimal values for A and B as a function of the mesh resolution R/∆
for di�erent Reynolds numbers Re (left). Lines stand for the linear �ts 3.17 and
3.18. Evolution of X(Re) (see relation 3.17) (right).

The variation of the parametr of the stochastic model αh is reported in Fig. 3.13.
αh is found to decrease with the grid spacing. In fact, as the mesh gets coarser, the
simulated bulk velocity is decreased and wall friction has to be reduced. This can
be directly controlled with a reduction of the magnitude of the �uctuations imposed
inside the IBM wall region. However, the same order of magnitude αh = O(0.1) is
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observed for the di�erent Reynolds numbers and grid resolutions considered. A �rst
rough estimate of the evolution of αh can be described with:

αh = 0.00025

(
∆

R

)−2

(3.19)

for the range of Reynolds number we considered.
The stochastic model is based on an instantaneous log law description (B = 5

being imposed) of the velocity inside the IBM wall thickness (see relation (3.9)). As
shown above, changing B when using the log model only and αh when using the
stochastic forcing (B being set �xed) have both a clear impact on the bulk velocity.
A better optimization of the combination of B and αh in the stochastic model may
certainly provide a better description of the �uctuation level and peak location.

0.02 0.05 0.1 0.15
 / R

0.005

0.01

0.1

0.5

h

Re = 5.104

Re = 10 5

Re = 5.105

Figure 3.13: Optimal αh as a function of the mesh resolution ∆/R for di�erent
Reynolds numbers Re. The solid red line represents the relation (3.19)

3.6.3 Flow streaks

The turbulent �ow �elds obtained with the di�erent approaches are now compared.
The Reynolds number is Re = 100, 000, the mesh is m2 and numerical simulations
with the optimized parameters (B = 0, A = 5.8 and αh = 0.07) are compared to
the basic IBM wall forcing.
Figure 3.14 represents an instantaneous snapshot of the axial �uctuations u′x nor-
malized by the bulk velocity ub at a section along the pipe axis. The �uctuations
seem to have almost the same structures in the four cases. No noticeable di�erence
can be observed and a zoom close to the wall is proposed in �gure 3.15 where u′x/ub
is plotted at a distance of 100 `∗ away from the wall.
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Figure 3.14: Normalized instantaneous axial �uctuations u′x/ub. (a) basic IBM wall
forcing, (b) mean velocity model: log law, (c) mean velocity model: power law, (d)
stochastic model.

Figure 3.15 clearly points out a di�erence in the streaks organization close to the
wall. As shown, basic IBM forcing, log law and power law models provide similar
�uctuation structures close to the wall. The streaks in those cases are somehow sup-
pressed yielding to a reduced turbulence intensity. On the opposite, the stochastic
model enhances the �ow �uctuations and typical highspeed and lowspeed streaks
are observed in �gure 3.15 (d).

Figure 3.15: Streaks observation. Normalized instantaneous axial �uctuations u′x/ub
at the distance 100`∗ away from the wall. (a) Basic IBM wall forcing, (b) mean
velocity model: log law, (c) mean velocity model: power law, (d) stochastic model.

We also compare the impact on the LES resolution of the di�erent IBM wall
models. For that purpose the total viscosity νtotal = ν + νT is considered. Figure
3.16 reports an instantaneous �eld of νtotal made dimensionless by the �uid viscosity
ν in a pipe section. As shown, the intensity of νt is enhanced when using the
stochastic model. From a LES modeling point of view, this can be explained by the
induced e�ect of the �uctuations on the strain rate tensor and the local Smagorinsky
coe�cient Cs used to calculate the sub-grid viscosity νT .
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Figure 3.16: Normalized total viscosity νtotal/ν: (a) basic IBM wall forcing, (b)
mean velocity model: log law, (c) mean velocity model: power law, (d) stochastic
model.

3.6.4 E�ect of the models on the pressure

Finally, it is worthwhile to check the e�ect of the models on the pressure. For
that, we plot the mean and rms of the pressure for Re = 50, 000 and compare
it to a previous DNS [85] of Re = 37, 700. Figure 3.17 represents the pressure
normalized by 0.5ρu∗2 in function of the distance from the wall. The mean pressure
pro�le is reported by considering the mean wall pressure as the reference pressure,
we can see that the simulations without and with the mean velocity model give
closer results to the DNS both for the mean as well as the rms of the pressure.
However, the stochastic model with the optimal αh which is able to reproduce the
correct bulk velocity introduces higher pressure �uctuations. Figure 3.18 shows the
normalized instantaneous pressure for each case, a di�erent distribution and higher
extreme values for the pressure are obtained with the stochastic model. Further
investigations on this model points that the observed pressure jumps are a result
of potential jumps when solving the Poisson equation and that the values increases
with the incease of αh. This is attributed to the fact that the imposed local solid
velocity in the IBM forcing is not divergence free and is varying roughly both in
time and especially in space.
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Figure 3.17: Pressure statistics for Re = 50, 000
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Figure 3.18: Normalized instanteneous pressure for Re = 50, 000 at 100l∗ away from
the wall. (a) Basic IBM wall forcing, (b) mean velocity model: log law, (c) mean
velocity model: power law, (d) stochastic model.

Now, going back to our stochastic model, two parameters are linked to the space-
time correlation, namely, Tc and Lcx. Simulations considering a �xed αh have shown
that acting only on Tc does not in�uence on the pressure, while using higher length
correlation Lcx, the mean pressure is corrected, the rms are reduced, the instantanous
pressure is impoved but the bulk velocity is overestimated. This is illustrated via
the pressure statistics in Fig. 3.17 and �gure 3.19 which compares the normalized
instantaneous pressure �eld when taking Lcx = 2570l∗ and Lcx = 6630l∗ instead of
Lcx = 1000l∗ (Fig.3.18-d). An improvement is spotted with the highest correlation
length but again the error on the bulk velocity surpasses 1%.

Figure 3.19: Normalized instanteneous pressure for Re = 50, 000 at 100l∗ away from
the wall using the stochastic model αh = 0.1. (a) Lcx = 2570l∗, (b) Lcx = 6630l∗

We conclude that increasing the correlation length decreases the pressure �uc-
tuations and increases the bulk velocity, and if we want to recover (decrease) in
this case the mean velocity, we will have to increase αh which will directly raise the
pressure �uctuations. Finding the couple (αh, Lcx) which can reproduce in the same
time both the correct bulk velocity and the pressure �uctuation does not seem to
be that easy and quick. This is why we consider as a perspective of this work the
development of a stochastic zero divergence velocity vector with keeping αh as the
model parameter and aiming at getting an intermediate �uid velocity close to the
one respecting the zero divergence condition.

3.7 Conclusion

A hybrid IBM/LES method has been presented addressing the challenge to simulate
high Reynolds number pipe �ows on coarse Cartesian meshes. Firstly, IBM method
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is used to simulate a laminar pipe �ow and numerical results demonstrate a second
order convergence to the exact solution. By introducing the correct solid velocity
condition in the forcing term inside the IBM wall thickness, the convergence is
remarkably improved and the method inderlines its e�ciency. Then, turbulent pipe
�ows of Reynolds numbers in the range 50,000 to 500,000 are considered coupling the
IBM method and a LES solver. As expected, the use of a coarse grid resolution does
not allow to reproduce both the mean bulk velocity and the �uctuations. Extending
the IBM wall modeling introduced for the simulation of the laminar pipe �ow, an
IBM wall forcing scheme is developed based on the classical turbulent wall laws,
namely the log-law and the power law, able to give the mean velocity pro�le. We
show that adjusting the control parameters of these two models allows to recover
the correct bulk velocity and mean velocity pro�le. With the aim of improving the
�uctuations and spatial distribution of streaks inside the pipe, the log law modeling
is coupled with a stochastic wall model to generate an unsteady and non-uniform
forcing within the IBM wall thickness. The level of �uctuation is then corrected
close to the wall approaching the reference data. The e�ect of both the Reynolds
number and grid resolution are then discussed and empiric correlations for the model
parameters are established.
We can consider further development of the stochastic modeling for the velocity
in the IBM wall region, in particular reconstructing the three components of the
free divergence velocity �eld should ameliorate the prediction of the velocity and
pressure rms in the near wall region.
The main interest of the hybrid IBM/LES presented here is to demonstrate that
simulations coupling LES and IBM can be performed for highly turbulent pipe �ows
with a coarse Cartesian resolution though a wall model. This is of great interest
for the simulation of high Reynolds number �ows not only in simple geometries but
also in complex geometries. We can �nally say that all the CFD development are
done and that the solver is fully ready to simulate the inline �uid separation.
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Chapter 4

CFD simulations of swirling
single-phase �ow in the separator

4.1 Introduction

The separator is designed and meant to be used for two-phase �ows however it is
interesting or even essential to �rst investigate single-phase �ow especially that the
swirling �ow generated by the swirl element is complex and was not extensively
studied. Moreover the simulations do not require all the hybrid approach reducing
then the computational cost.
Therefore, in this chapter, we �rst introduce the design of the swirl element and give
some general aspects of the swirling �ow generated by the separator namely the swirl
number, the centrifugal force and the �ow split. Then, a mesh sensitivity study is
carried out to �nd the optimal mesh size to be used in the rest of this PhD work.
An original numerical procedure is later introduced to simulate the valve condition
at the pick-up tube and �nally we present the results of our numerical simulations of
swirling single-phase �ow in the separator for di�erent Reynolds numbers and �ow
splits.

4.2 Description of swirling �ow in the separator

4.2.1 Swirl element

The inline �uid separation, as brie�y introduced in the �rst chapter, consists in
separating two �uids of di�erent densities by generating a centrifugal force. This
force pushes the heavy phase towards the outer wall while leaving the light one in
the center to be sucked up by a pick-up tube installed at the outlet of the pipe. The
particularity of this separation technology comes from the way this centrifugal force
is generated, a static swirl element is designed to create a swirling �ow from the
incoming axial �ow. In fact, the swirl element has blades (or vanes) on its surface
which de�ect the �ow and thus convert part of the axial velocity into an azimuthal
velocity. The �rst reported separator prototype was modelled by Dirkzwager [12] in
1996 then Delfos [13] updated the swirl element previousely used by [12] and recently
Slot [1] reconstructed new swirl element geometries. In each of the previous studies,
the objective was to optimise the shape of the swirl element which will yield to a
reduction of the pressure drop and an increase of the separation e�ciency. Figure
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4.1 shows the key design features of the swirl element to wit: the nose section, the
vane section and the tail section.

Figure 4.1: Layout of the swirl element with the de�nition of its di�erent parts

In the current TOMOCON project and consequently this PhD work, since our
focus is the investigation of separation and not the design itself, we will use directly
one of the geometries created by Slot [1]. It is worth mentioning that each swirl
element is characterized by a de�ection angle. In fact, at the trailing edge of the
vane section, the geometrical angle of de�ection is formulated as:

αdef = arctan

(
uθ,te
ux,te

)
(4.1)

with uθ,te and ux,te are the azimuthal and axial velocities at the trailing edge respec-
tively which can eventually be expressed in function of the bulk velocity.
From mass conservation, we have:

ux,te = ub
R2

R2 −R2
int

(4.2)

with Rint is the radius of the internal vane section (see Fig. 4.1) calculated from the
center of the pipe till the beginning of the blades, where there is no �ow.
Similary, the conservation of the axial �ux of the angular momentum in the vane
section and after the swirl element is expressed as:∫ R

Rint

ux,teρruθ,te2πrdr =

∫ R

0

ubρruθ,02πrdr (4.3)

where uθ,0 is the azimuthal velocity right after the swirl element which depends on
the radial position r.
By replacing ux,te from 4.2 in 4.3 and taking into account the angular momentum
loss coe�cient closs ≈ 0.5 measured in [12] between the vane section and right after
the swirl element, uθ,te is:

uθ,te =
3(R3 −R2

int)(R
2 −R2

int)

(1− closs)R2

∫ R

0

uθ,0r
2dr (4.4)

Now, it remains to determine uθ,0 to express uθ,te. From the experimental results of
Dirkzwager [12], it was found that the radial distribution of the average-azimuthal
velocity can be approximated by a Rankine vortex de�ned as:

uθ(x, r) =

{
Uθ(x) r

Rc
if 0 < r < Rc

Uθ(x) if Rc < r < R
(4.5)

with Uθ(x) is an azimuthal velocity scale in each section x along the pipe, R is
the pipe radius and Rc is the characteristic radius of the solid-body rotation in the
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Rankine vortex.
We replace 4.5 in 4.4, we get uθ,te:

uθ,te = Uθ(0)
(R3 − 1/4R3

c)(R
2 −R2

int)

(1− closs)R2(R3 −R3
int)

(4.6)

Finally, from 4.2 and 4.6, the angle of de�ection de�ned by 4.1 is:

αdef = arctan

(
Uθ(0)(R3 − 1/4R3

c)

ub(1− closs)(R3 − 1/4R3
c)

)
(4.7)

In the work of Slot [1], designing a swirl element consisted in �xing a value for the
de�ection angle and this is what makes the di�erence between the prototypes used
in [1][5], higher αdef leads to higher swirl intensity, the swirl element tends to be
stronger. In this PhD work, the swirl element used is characterized by a an internal
radius Rint = 0.04m and a de�ection angle αdef = 63◦ and the separator has a radius
of R = 0.046m.

4.2.2 Swirl number

The intensity of swirling �ows in general can be quanti�ed by a swirl number S.
This number is nothing else but the dimensionless angular momentum in the �ow.
In our case, for instance, the intensity of the swirl is 0 upstream the swirl element
since the azimuthal velocity is zero then it goes up in the vane section and decreases
downstream as we go far from the swirl element.
In the present work, we de�ne the swirl number as the axial �ux of the angular
momentum normalized by the bulk velocity and the pipe radius. It is expressed as
[12][1]:

S(x) =

∫
A
ρuxuθrdA

ρRu2
bA

(4.8)

with ux, uθ, ub are the axial, azimuthal and bulk velocities respectively, r is the
radial position, R is the pipe radius, ρ is the �uid density and A is the area of the
pipe cross-section.

This number varies as a function of x. From velocity measurements, Dirkzwager
[12] calculted this swirl number downstream the swirl element and found that S(x)
has an exponential decay:

S(x) = S0 exp

(
−Csw

(x− x0)

D

)
(4.9)

with S0 is the swirl number at the reference axial position x0 usually located at the
end of the tail section and Csw is a swirl decay coe�cient which depends on the pipe
Reynolds number Re = 2Rub/ν, the swirl element and the wall roughness. Figure
4.2 shows the variation of the swirl decay coe�cient denoted by β in function of
Reynolds number from the measurement of Steebergen [4] on the same swirl element
as used in [12]. Scattered of values for swirl decay coe�cients are observed yet they
almost all tend to decrease with the increase of Reynolds number. The typical order
of magnitude of Csw is between 0.01 and 0.7. From numerical simulations, Slot [1]
plotted the swirl number along the separator for a stronger swirl element and found
the same exponential decay.
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Figure 4.2: Swirl decay coe�cient Csw by [4] denoted here by β, the lines connect
measurements done on the same set-up

4.2.3 Centrifugal force

The centrifugal force per unit of mass, generated by the swirl element, which is the
driving force of the separation process is expressed as:

fc =
u2
θ

r
(4.10)

with uθ is the azimuthal velocity and r is the radial position.
Slot [1] compared the time θ-averaged centrifugal acceleration u2θ

r
to the gravity ac-

celeration g and showed that for a Reynolds number of 200,000 and using a stronger
swirl element characterized by αdef = 73◦, the force generated can reach 1,200g.
Furthermore, the time θ-averaged centrifugal force can eventually be linked to the
averaged radial pressure gradient. In fact, if we consider the time θ-averaging of
Navier-Stokes equations in the radial direction in cylindrical coordinates expressed
as:

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ ux
∂ur
∂x
− u2

θ

r
= −1

ρ

∂p

∂r
+

ν[
∂2ur
∂r2

+
1

r

∂ur
∂r
− ur
r2

+
1

r2

∂2ur
∂θ2

+
∂2ur
∂x2

− 2

r2

∂uθ
∂θ

] (4.11)

This equation can be simpli�ed by neglecting ur in front of uθ and ux. The remaining
terms which are time and θ-averaged lead to:

u2
θ

r
≈ 1

ρ

∂p

∂r
(4.12)

showing the direct relation at �rst order between the mean centrifugal acceleration
and the radial pressure gradient.
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4.2.4 Flow split

At the exit of the separator, two outlets can be distinguished, one for the pick-up
tube which is supposed to recover the core, we call it then the Light Phase Outlet
(LPO) and the other outlet that is the surrounding annular region between the pipe
and the pick-up tube from where the heavy phase exits and we therefore call it the
Heavy Phase Outlet (HPO) (see Fig. 4.3). The same notation will be used for
single-phase �ow to refer to the outlet of the pick-up tube even though we do not
have two separate phases.

Figure 4.3: Sketch of HPO and LPO

Following this con�guration, we introduce the inlet volumetric �ow rate Qinlet

which is the total �ow rate, the volumetric �ow rate at the light phase outlet QLPO

and the volumetric �ow rate at the heavy phase outlet QHPO. The ratio between
QLPO and Qinlet is called the �ow split:

FS = QLPO/Qinlet (4.13)

This parameter FS can also be interpreted as the condition on the valve acting on
the pick-up tube. For instance, FS = 0.5 corresponds to a situation when the valve
allows the pick-up tube to recover half of the inlet �ow rate. The e�ect of the �ow
split on the velocity pro�le was studied numerically [1] and experimentally [5]. Both
studies have shown that only the central part of the radial distribution of the axial
and azimuthal velocities across the separator section close to the pick-up tube is
a�ected, in this region, the velocities increases with the increase of the �ow split.

4.3 Mesh sensitivity

The objective of conducting a mesh sensitivity analysis is to �nd the optimal mesh
size which is simultaneousely less demanding in terms of the total cells number
and capable of capturing the swirling �ow features. Therefore, we consider 3D
simulations of single-phase �ow using three mesh sizes. The numerical domain is a
box of size Lx × Ly × Lz = 0.92m× 0.104m× 0.104m made of Nx ×Ny ×Nz cells.
The mesh is regular with uniform cell distribution of width ∆ in all directions.

Mesh m1 m2 m3
R/∆ 20 40 80

4.3.1 Qualitative convergence

First, qualitatively from Fig. 4.4, the visualization of the contours αIBM shows the
e�ect of the grid size on the description of the swirl element, In fact, at the vane
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section (see Fig. 4.5), we can notice that for the coarse mesh m1, the resolution of
the tip of the blades is lower, their length is reduced as well as their curvature. This
in�uences directly the �ow de�ection and the swirl intensity. As we re�ne the mesh,
the resolution becomes higher.

(a) Mesh m1

(b) Mesh m2

(c) Mesh m3

Figure 4.4: Visualization of the separator on three di�erent meshes

Figure 4.5: Vizualization of the swirl element on three di�erent meshes: m1 (left),
m2 (middle), m3 (right)

On the three considered meshes, we perform single-phase �ow simulations in the
separator for Reynolds number Re = 2Rub/ν = 200, 000 (R is the pipe radius, ν
is the �uid kinematic viscosity and ub is the bulk velocity). To ensure that the
turbulence at the inlet of the separator is fully developped, we impose at each time
step an instantenous velocity �eld obtained from a turbulent pipe �ow simulation
with the same Reynolds number Re = 200, 000 on the same mesh size. (OX) is
the separator axis. Figure 4.6 illustrates the streamlines of the �ow using the three
meshes. With meshes m2 and m3, the swirling feature is more highlighted and by
comparing the velocity at the vane section, we can see that the maximum velocity
attained on the coarse mesh m1 is lower than the one on the other meshes. This is
due to the resolution of the blades which generates the swirling �ow.
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(a) Mesh m1

(b) Mesh m2

(c) Mesh m3

Figure 4.6: Streamlines of single-phase �ow for Re = 200, 000 on three meshes.

From this qualitative comparison, we can already estimate the following sub-
section 4.3.2, the convergence of the mesh sensitivity is quanti�ed based on the
de�ection angle.

4.3.2 Quantitative convergence

From subsection 4.3.1, since the mesh resolution has an in�uence on the blade de-
scription and consequently on the de�ection angle. We will evaluate the mesh con-
vergence through the calculation of this angle. By postprocessing the numerical
results from the three presented single-phase �ow simulations, the azimuthal veloc-
ity Uθ right after the swirl element equals 2m/s, 5.7m/s and 6.01m/s for the meshes
m1, m2 and m3 respectively, the bulk velocity is ub = 2.17m/s. Then we can calcu-
late the de�ection angle using equation 4.7. The obtained value is compared to the
theoritical value αgeometricaldef = 63◦ �xed by construction of the CAD. The deviation

from αgeometricaldef is then expressed as:

Eαdef =
|αgeometricaldef − αsimulationdef |

αgeometricaldef

(4.14)

In Fig. 4.7 , the deviation is plotted as a function of ∆/R. It is of order 60% for
the coarse mesh, then it remarkably decreases to 1.77% by multiplying the number
of cells by a factor of 23, the �nal error is 1.66% for the �nnest mesh. We notice
a fast convergence with the resolution, this result con�rms the e�ect of the mesh
resolution on the blades seen in subsection 4.3.1.
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Figure 4.7: Deviation from the geometrical de�ection angle as a function of the grid
resolution

We conclude that the coarse mesh introduces an important error on the velocity
and thus on the de�ection angle. The deviation converges for the two other meshes,
we will therefore choose the mesh size m2 for all the rest of the simulations.

4.4 Modelling of the valve condition in the pick-up

tube

In addition to the pick-up tube installed at the outlet of the separator, a �ow
straightener is placed in the annular region between the pick-up tube and the pipe
to eliminate the swirl in the HPO. In real situation, it is a porous medium which
has a honeycomb form (see Fig. 4.8).

Figure 4.8: Sketch of a cross section of the �ow straightener [5]

4.4.1 IBM for the �ow straightener

To numerically model the �ow straightener, Slot [1] de�ned a porosity in this region
and added a momentum loss term to Navier-Stokes equations which depends on
a loss coe�cient that needs to be calibrated. In the current study, we propose to
use Immersed Boundary Method (IBM) introduced in chapter 2 to model the �ow
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straightener. In fact, (1 − αIBM) can be seen as the opposite of the porosity. At
every cross section x along the �ow strainghtener, we can distinguish three regions
for which an expression of αIBM is attributed. Figure 4.9 represents how αIBM
varies across the section:
- αIBM = 0 inside the pick-up tube, no IBM forcing is added to Navier-Stokes
equations.
- 0 < αIBM < 1 at the pick-up tube wall, the expression 2.26 [38] is used based on
the radius of the pick-up tube. The IBM forcing of Navier-Stokes is active.
- αIBM = constant (0.2 in Fig.4.9) in the �ow straightener. The IBM forcing of
Navier-Stokes equations is active. The choice of how to set αIBM in this region is
discussed in the following subsection.
- 0 < αIBM < 1 at pipe wall, the expression 2.26 [38] is again used based on the
radius of the pipe. The IBM forcing of Navier-Stokes equations is active.
- αIBM = 1 outside the pipe since there is no �ow.

Figure 4.9: Visualisation of a cross section at the outlet of the separator with cor-
responding value of the IBM function

Therefore, IBM allows us to represent the porous region at the �ow straight-
ener, in the next subsection 4.4.2, we make use of this method to simultaneously
implement the �ow condition at the LPO.

4.4.2 Valve condition at the pick-up tube

In experiments, a valve is installed at the outlet of the pick-up tube and regulated by
the control unit. It can be totally opened, closed or in between. The corresponding
condition on the valve is what we eventually represent by the �ow split FS previ-
ousely de�ned in 4.13.
From a CFD perspective, we will take advantage of the IBM forcing used to model
the �ow straightener to impose the condition on the �ow split FS. De facto, we can
control the �ow rate going through the pick-up tube by setting the �ow rate which
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goes through the �ow straightener. In this region the IBM force is expressed as:

fIBM,i = αIBM
vs,i − ui

∆t
(4.15)

with αIBM is the solid volume fraction, ∆t is the time step, ui is the �uid velocity
and vs,i is the expected velocity along the i direction i = (x, y, z) with the objective
to force the �uid outside the pick-up tube (inside the �ow straightener in light blue
in Fig. 4.9) to the imposed velocity.
For simpli�cation purposes, if we neglect the spatial acceleration, the pressure gra-
dient and the viscous term in the axial direction compared to the IBM force in the
�ow straightener, the Navier-Stokes equation becomes:

∂ux
∂t
≈ fIBM,x (4.16)

A �rst order di�erential equation is then obtained:

∂ux
∂t
≈ αIBM

vs,x − ux
∆t

(4.17)

This reveals a characteristic time tc:

tc =
∆t

αIBM
(4.18)

We are interested in the permenant regime with the objective that the �uid velocity
in the �ow straightener reaches the velocity vs,x. The solution of equation 4.17
ux = vs,x(1 − exp(−t/tc)) shows that the expected velocity is reached after some
time steps. This means that we can directly set the condition on the �ow split FS
through vs,x and after a certain response time ntc the condition is ful�lled. The
steps to set the valve condition can be summarized as the following:
- Fix the FS target.
- Calculate the �ow rate through the heavy phase outlet:

QHPO = Qinlet(1− FS) (4.19)

- Calculate the solid velocity to impose in the IBM force as:

vs,x = QHPO/(Apipe − ALPO) (4.20)

with Apipe and ALPO the pipe and the pick-up tube areas respectively.

4.4.3 Validation of using IBM to impose the valve condition

To validate the proposed method in subsections 4.4.1 and 4.4.2, we perform sim-
ulations of single-phase �ow in the separator for Re = 50, 000 with a pick-up
tube of radius Rpt = 0.44R. This value is �xed according to the experimen-
tal set-up in TU Delft. The pick-up tube is of length 2.6R and placed after the
swirl element at a distance of 9R. Two values of αIBM in the �ow straightener
are tested to wit: 0.01 and 0.02, this corresponds respectively to two character-
istic times tc: 1.0 and 0.5 and for each of tc, two conditions on the �ow split
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are simulated: FS = 0.5 and FS = 0.3. In short, four simulations are done:
(FS = 0.5, tc = 1), (FS = 0.5, tc = 0.5), (FS = 0.3, tc = 1), (FS = 0.3, tc = 0.5).
Figure 4.10 depicts the streamlines in the separator for the two cases FS = 0.5 (a)
and FS = 0.3 (b) for the characteristic time tc = 1. We see that in both cases the
swirling �ow is damped in the HPO where the streamlines are parallel to the axial
direction and this is the e�ect of the �ow straightener. Furthermore, in comparison
to FS = 0.5, more �uid goes through the HPO for FS = 0.3 since the pick-up tube
recovers only 30% of the inlet �ow rate.

(a) (FS = 0.5, tc = 1)

(b) (FS = 0.3, tc = 1)

Figure 4.10: Streamlines of swirling single-phase �ow for Re = 50, 000 in the sepa-
rator for two �ow splits FS

Figure 4.11 represents the velocity contours in a cross section both at the pick-up
tube and right after the swirl element. As expected, the �ow rate in the LPO is
higher when imposing a �ow split of FS = 0.5 than that of a �ow split FS = 0.3.
Moreover, the ratio between the velocities at the center of the pick-up tube scales
very well with the ratio of their �ow splits respectively. In comparison with the �ow
at a cross-section right after the swirl element (see Fig.4.11c), we can see that the
swirling �ow is cancelled in the �ow straightener. It is worth noting that for the
same �ow split, we got the same �ow features for two di�erent characteristic times
tc. More details are given in the next paragraph.
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(a) (FS = 0.5, tc = 1) (b) (FS = 0.3, tc = 1)

(c) Right after the swirl element

Figure 4.11: The velocity magnitude in (m/s) in cross-section at the pick-up tube
for two FS: (a)=0.5, (b)=0.3 and right after the tail section of the swirl element (c)

Now, from the four numerical simulations, we calculate the �ow split FS(t) =
QLPO(t)/Qinlet over time. Figure shows its variation in function of the dimensionless
time t/tc. To begin with, we con�rm that for the same �ow split FS, varying tc does
not change the �ow response to the imposed condition. Then, for both FS values,
a transient regime is �rst observed then a permanent one is reached after 5tc, this
de�nes the response time to the condition on vs,x and provides us with an interesting
ability in CFD to mimic not only static conditions but also dynamic conditions on
the valve if any. For instance, by just increasing αIBM in the �ow straightener or
decreasing the time step ∆t, the response time to the valve becomes faster and one
can even follow the controller instruction. Finally, by resolving equation 4.17, we can
express the temporal evolution of the �ow split in function of the input parameters
as:

FS(t) =

(
1− vs,x(Apipe − ALPO)

Qinlet

)
(1− exp(−t/tc)) (4.21)
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Figure 4.12: Evolution of the �ow split over time: equation 4.13 for FS=0.5 (equation
4.13 for FS=0.3) is represented by a solid (dashed) red line, respectively.

A di�erence between the expected FS and the numerical results is observed
which might be due to the �ow streamlines inside the pick-up tube which are not
totally parallel to the streamwise direction.
In general, we conclude that using Immersed Boundary Method to model the �ow
straightener and modifying the IBM forcing in this porous region is an e�cient way
to impose and control the condition on the �ow split at the LPO and eventually
mimic a dynamic change of this condition if necessary.

4.5 Numerical simulations of single-phase �ow in

the separator

In this section, we present the numerical results of 3D simulations of single-phase
�ow in the separator using the hybrid solvers: LES/IBM with a mean wall model.
The numerical domain and boundary conditions are the same as decribed in 4.3 and
the mesh is again m2. In subsections 4.5.1 and 4.5.5, the Reynolds number based
on the bulk velocity Re = Dub/ν is �xed to 50,000. The parameters used for the
simulation are: D = 0.092m, ν = 10−6m2/s and ub = 0.54m/s.

4.5.1 Velocity pro�les

When the incoming axial �ow is de�ected by the swirl element, an azimuthal velocity
is generated. After the swirl element, this velocity depends eventually on the radial
position and decays along the axial direction. Therefore, to investigate its evolution,
we choose sections after the swirl element and plot the radial distribution of the time
and θ-averaged azimuthal and axial velocities normalized by the bulk velocity as a
function of the radial position r normalized by the pipe radius R.

Figure 4.13 compares the azimuthal velocity at four di�erent sections located
at 0.08R, 2.5R, 5R, 7.5R after the swirl element. At 0.08R, the azimuthal velocity
reaches 2.8 times the bulk velocity generating thus a centrifugal acceleration 10 times
larger than the gravity g. And as we move downstream from the swirl element,
the azimuthal velocity decreases due to the wall friction but keeps the same radial
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evolution which is 0 at the center of the separator, then a linear increase up to
radial position noted Rc, an almost constant velocity and �nally uθ is 0 to respect
the no-slip condition at the wall. The radial position Rc seems to shift towards the
center of the pipe as we move along the separator with a conservation of the slope
representing the ratio of the angular velocity over Rc in the solid-body rotation zone.
The same behaviour is observed in the velocity pro�les reported by [1, 5] using a
stronger swirl element.

0 0.2 0.4 0.6 0.8 1
r/R

0

0.5

1

1.5

2

2.5

3

u
/
u b

0.08R
2.5R
5R
7.5R

Figure 4.13: The radial distribution of the time-θ-averaged azimuthal velocity at
four sections after the swirl element

Furthermore, the variation of the azimuthal velocity at each section is similar
to Lamb-Ossen vortex or a more simple vortex: Rankine vortex. Figure 4.14 shows
the Rankine pro�le �t to our simulations at x = 0.08R of equation:

uθ(0.08R, r) =

{
1.512 r

Rc
if 0 < r < Rc

1.521 if Rc < r < R
(4.22)

It is decomposed of a solid body rotation for positions r ≤ Rc (equals 0.65R in this
case) and a free vortex for Rc ≤ r < R. This con�rms once again the results of
Dirkzwager in assuming the Rankine vortex for the velocity pro�le to determine the
de�ection angle.
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Figure 4.14: The Rankine vortex �t to the time-θ-averaged azimuthal velocity
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Another interesting pro�le to check is the radial distribution of the axial velocity
plotted in Fig. 4.15. The maximum attained by the axial velocity is 1.7ub located
around r = 0.8R which is lower than the maximum azimuthal velocity 2.8ub. This is
an expected results considering the value of the angle de�ection 63◦ which is beyond
45◦ leading to more angular momentum than the axial one. Around the separator
center, the velocity becomes negative, this a sign of the appearance of a reverse
�ow, a phenomenon which characterizes strong swirling �ows in general [1][5]. The
radial extension of the recirculation zone diminishes as we move away from the swirl
element and this is illustrated in Fig. 4.16 which highlights regions with negative
velocites in the separator.
In fact, the formation of a recirculation zone is caused by the pressure radial distri-
bution in the separator over the concerned region (see Fig. 4.22). The pressure in
the center close to the swirl element is lower than the one located at further axial
positions. This de�nes the direction of the axial �ow from high pressure zone (far
from the swirl element) towards low pressure zone (close to the swirl element).
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Figure 4.15: The radial distribution of the time-θ-averaged axial velocity at four
sections after the swirl element

Figure 4.16: Instantenuous recirculation zone where the axial velocity is negative

In addition, �gure 4.16 reveals an asymmetrical distribution of the velocity at
each section along the separator, this comes from the asymmetrical shape of the
swirl element which contains 9 blades. In Fig. 4.17 and 4.18 the time-averaged
azimuthal and axial velocities along a line at the section x = 0.08R are plotted and
compared to the time θ-averaged velocities which suppose that the swirling �ow is
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axi-symmetrical. The velocities �uctuate slightly around the θ-average value. The
extreme values are almost the same. However both the time-averaged axial and
azimuthal velocities are not symmetrical with respect to the pipe center (0, 0). The
measurements of Campen [5] have also detected this behaviour.
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Figure 4.17: Time θ-averaged azimuthal velocity and time-averaged azimuthal ve-
locity along a line across the section x = 0.08R

-1 -0.5 0 0.5 1
r/R

-0.5

0

0.5

1

1.5

2

2.5

u
x
/
u b

time -averaged
time-avegared

Figure 4.18: Time θ-averaged axial velocity and time-averaged axial velocity along
a line across the section x = 0.08R

4.5.2 Swirl number pro�le

To quantify the intensity of the swirling �ow, we calculate the swirl number using
equation 4.8. Figure 4.19 shows its evolution along the separator as a function of
the axial position normalized by the pipe diameter. Before the swirl element (up
to x/D = 2), the centrifugal force is not yet generated, the swirl number is 0.
Then, at the vane section, the �ow is de�ected and the azimuthal velocity is at its
maximum, the swirl number reaches its highest value 3.4. From the tail section till
the outlet of the separator, S decreases due to the wall friction. In the region after the
swirl element, S is characterized by an exponentional decay following the empirical
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correlation 4.9 given by Dirkzwager [12] for a swirl decay coe�cient Csw = 0.15.
The curve is plotted in red in Fig. 4.19 and is de�ned as:

S(x) = 1.8 exp(−0.15(x− 0.41)/D) (4.23)

The swirl decay coe�cient in this case is 0.15 which is a bit higher than the one
reported in 4.2 for the same Re = 50, 000. This is due to the di�erence of the swirl
element geometry used for the separation and thus the swirl intensity which is one
of the parameters in�uencing Csw.
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Figure 4.19: Evolution of the swirl number along the separator, solid red line rep-
resents the �t for the decay of S de�ned by 4.23

In the previous numerical simulation, the wall model proposed for hybrid LES-
IBM and detailled in chapter 3 is activated to correct the velocity close to the wall,
to see the e�ect of the wall model. The same simulation is performed without
introducing a wall model. Figure 4.20 compares the evolution the swirl number
along the separator obtained from the two simulations. The maximum of S located
in the narrow zone of the vane section is slightly reduces when using the wall model,
this can be justi�ed by the fact that the latter acts on the axial velocity of the
IB cells and not on the azimuthal one which is supposed to be the dominant one.
Nevertheless, after the swirl element, the swirl number decays less strongly when
using the wall model. In fact, the swirl decay coe�cient Csw decreases from 0.17
(without a wall model) to 0.15 (with a wall model).

99



CHAPTER 4. CFD SIMULATIONS OF SWIRLING SINGLE-PHASE FLOW IN
THE SEPARATOR

0 2 4 6 8 10
x/D

0

1

2

3

4

S

Without wall model
With wall model

Figure 4.20: comparison of the swirl number in the two cases: without a wall model
and with a wall model, the �ts for the decay of S following 4.9 are represented with
solid lines.

Figure 4.21 depicts the e�ect of the wall model on the time θ-averaged axial
and azimuthal velocities at two di�erent sections: 0.08R and 7.5R after the swirl
element. Close to the latter, the simulation without a wall model gives a slightly
higher negative axial velocity at the recirculation zone and the maximal azimuthal
velocity is a bit decreased. However, at 7.5R after the swirl element, a signi�cant
improvement of the azimuthal velocity is obtained with the use of the wall model.
The slope is conserved as observed by [1][5] unlike when no wall model is used.
Furthermore, the decay of the centrifugal force is reduced and this is why the swirl
decay coe�cient Csw is found to be lower than the one without the wall model. These
results con�rm the need of a wall model to perform the simulation to avoid the loss
of the centrifugal force due to extra wall friction brought by the IBM method.
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Figure 4.21: comparison of the time θ-averaged azimuthal velocity (right) and axial
velocity (left) at x = 0.08R for the two cases: without a wall model and with a wall
model (wm).

4.5.3 Pressure and centrifugal force

When the centrifugal force pushes the �uid towards the wall, it creates a pressure
drop at the center of the separator, this is depicted in Fig. 4.22 where the pressure
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normalized by 1/2ρu2
b is plotted as a function of the radial position. By comparing

the pressure at di�erent axial positions, we see that p decreases along the separator
due to friction except in the recirculation zone where the curves intersect leading to
the reverse �ow.

0 0.2 0.4 0.6 0.8 1
r/R

0

5

10

15

p
-
p
0

0.08R
2.5R
5R
7.5R

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Figure 4.22: The radial distribution of the normalized pressure

As shown in subsection 4.2.3, the centrifugal force can be associated to the radial
pressure gradient through equation 4.12. In Fig. 4.23 we represent separately the
two terms: u2θ

r
and 1

ρ
∂p
∂r

as a function of the radial position r at two sections x = 0.08R
and x = 7.5R after the swirl element. At each of the axial positions, equation 4.12
is veri�ed. The centrifugal force is 0 at the center of separator then it increases
halfway between the center and the wall to �nally decrease to 0 at the separator
wall. The e�ect of the centrifugal force of great importance for the separation is
thus observed to be maximum at a radial position r ≈ 0.7R and then decreases in
magnitude along the separator.
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Figure 4.23: The radial distribution of the centrifugal force and pressure gradient

To evaluate the pressure drop along the separator, we calculate the time-averaged
pwall at the wall. Figure 4.24 illustrates the pressure normalized by 1/2ρu2

b . Before
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and after the swirl element, the pressure varies linearly with x/D, a friction coe�-
cient similar to the one in non-swirling �ow can be de�ned:

fwall =
∆pwall
1/2ρu2

b

D

L
(4.24)

It represents the slope of the curve for x ∈ [0; 2D] and x ∈ [4D; 10D] (in the regions
before and after the swirl element) and equals 6.54 . Across the swirl element
region, a remarkable pressure loss is introduced by this element and in which the
local pressure loss coe�cient equals fswirl = ∆pwall

1/2ρu2b
= 60.5
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Figure 4.24: Time-averaged normalized pressure along the separator

4.5.4 E�ect of the Reynolds number

Since the separator operates for di�erent bulk velocities, Reynolds number is then
considered as one of the parameters for which a sensitivity study should be done.
Therefore, we compare the numerical results obtained from simulations of single-
phase �ow in the separator for Re = 50, 000, Re = 100, 000 and Re = 200, 000, no
pick-up tube is installed.
Figure 4.25 represents the swirl number for three Reynolds numbers. The maximum
value is 3.4 located at the vane section and is independent of the Reynolds number.
A slight di�erence exists in the decay of S. As the Reynolds number increases, the
swirl number increases and its decay becomes weaker.
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Figure 4.25: The swirl number for di�erent Reynolds numbers

To calculate the swirl decay coe�cient, we plot ln(S/S0) as a function of (x −
x0)/D (see Fig.4.26: left). The slope represents therefore Csw. Similary, the evo-
lution of Csw reported in [12] and shown in Fig. 4.2, �gure 4.26 (right) points out
that Csw decreases as Re increases. A �tting for the variation of the swirl decay
coe�cient is found and expressed as:

Csw = 0.3072Re−0.067 (4.25)
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Figure 4.26: The variation of ln(S/S0) along the separator (right) and the swirl
decay coe�cient (left) for di�erent Re, the solid red line represents the �t de�ned
by 4.25

The radial distribution of the time θ-averaged azimuthal velocity at a section
x = 0.08R is shown in Fig. 4.27. All pro�les are normalized by their corresponding
bulk velocity. A minor dependence on the Reynolds number is observed for the
normalized azimuthal velocity and the axial one except in the recirculation zone
where increasing Re leads to an expansion of the reverse �ow. For instance, for
Re = 200, 000, negative axial velocities are found up to r = 0.3R while for Re =
50, 000, the recirculation region exists only up to r = 0.18R.
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Figure 4.27: The radial distribution of time θ-averaged azimuthal and axial velocities
normalized by their corresponding bulk velocity at 0.08R after the swirl element for
di�erent Reynolds numbers

Since the reverse �ow is the main feature highly depending on the Reynolds
number, we also plot the normalized axial velocity at a further section located at 7.5R
after the swirl element. Figure 4.28 shows the e�ect of increasing Re in developing
and spreading the reverse �ow not only in the radial direction but also the axial
one. A recirculation zone is still detected at this section for both Re = 100, 000
and Re = 200, 000 and this is a crucial information to consider when simulating
two-phase �ows in the separator in terms of bubble/droplet and eventually core
dynamics if located in this region.

0 0.2 0.4 0.6 0.8 1
r/R

-1

-0.5

0

0.5

1

1.5

2

u
x
/
u b

5 104

10 5

2 105

Figure 4.28: The radial distribution of time θ-averaged axial velocity at 7.5R after
the swirl element for di�erent Reynolds numbers

Figure 4.29 represents the time-averaged pressure along the separator for the
three considered Re normalized by the corresponding 1/2ρu2

b . The pressure drop
introduced by the swirl element is almost the same for which the friction coe�cient
de�ned by equation 4.24 equals 21. Before and after the swirl element, the pressure
variation is linear and depends on the Reynolds number.
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Figure 4.29: Time-averaged normalized pressure along the separator

Figure 4.30 shows the evolution of the friction coe�cient calculted from the
end of the tail of the swirl element to the separator outlet for di�erent Reynolds
numbers. fwall decreases linearly with the increase of Re and the numerical results
can be �tted to:

fwall = −3.10−5Re+ 7.97 (4.26)
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Figure 4.30: The friction coe�cient fwall as a function of Reynolds number, the red
line represents the �t de�ned by 4.26

To sum up, the dimensionless azimuthal velocity is found to be slightly dependant
of the Reynolds number. This means that by doubling the bulk velocity while
keeping all other parameters constant, the generated centrifugal force is raised to
the power 2 surpassing easily the gravitational force in highly turbulent �ows. For
the normalized axial velocity, the Reynolds number in�uences the expansion of the
recirculation zone radially and axially. In subsection 4.5.5, we are interested in the
e�ect of the �ow split FS.
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4.5.5 E�ect of the �ow split

In previous numerical simulations, the �ow was investigated without any in�uence
of the pick-up tube. In this subsection, we present the numerical results when the
pick-up tube is also simulated and a condition on the �ow split FS is imposed. The
objective is to study the e�ect of the �ow split on the �ow features. Therefore, for
the same Reynolds number Re = 50, 000, two �ow splits are considered: FS = 0.3
and FS = 0.5 to be compared to the case when no pick-up tube is installed.
Figure 4.31 represents the evolution of the swirl number along the separator for the
three con�gurations. When no pick-up tube is installed, the swirl number continues
its exponential decay until the outlet of the separator. In the region up to x = 7.3D,
the swirl number is independent of the �ow split FS. The use of the �ow straightener
with a condition on the �ow split FS eliminates the swirling �ow inside the pick-up
tube located at 8.7D resulting in S = 0 and does also in�uence the swirl strength
upstream of the pick-up tube between x = 7.3D and 8.7D. In fact, the suction of
the �ow at the central part of the separator leads to an increase of the axial velocity
on the expense of a decrease of the azimuthal one. To visualize this, velocity pro�les
are plotted.
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Figure 4.31: E�ect of the �ow split FS on the swirl number S

Figure 4.32 illustrates the e�ect of the �ow split on the time θ-averaged azimuthal
velocity at a distance 0.08R from the inlet of the pick-up tube. The wall of the pick-
up tube is located at r/R = 0.43 and marks the begining of the �ow straightener.
In both these regions, the velocity is signi�cantly lower than in the case of no use
of the pick-up tube. It is also much reduced in the �ow straightener in comparison
to its evolution inside the pick-up tube. Furthermore, increasing the �ow split FS
results in an additional decrease of the centrifugal force.
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Figure 4.32: The radial distribution of time θ-averaged axial velocity across the
pick-up tube for di�erent �ow splits

Besides, the time θ-averaged axial velocity is also a�ected by the condition on
FS (see Fig.4.33). By imposing FS = 0.5, more �uid goes through the pick-up tube,
the velocity is thus higher than in the case of imposing FS = 0.3. The suction of the
�ow, which is the aim of using the pick-up tube is then present. In the other way
around, for low FS, the velocity is expected to be higher in the �ow straightener,
which is depicted and con�rmed in the region r > 0.43R.
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Figure 4.33: The radial distribution of time θ-averaged axial velocity across the
pick-up tube for di�erent �ow splits

It is worth mentioning that the in�uence of the �ow split is not limited only
across the pick-up tube but also upstream of it at a distance 1.2R from the entrance
of the pick-up tube. Figure 4.34 highlights the reduction of the azimuthal velocity
when imposing FS especially far from the separator wall. The use of the pick-up
tube does also eliminate the reverse �ow since it forces the �ow to move towards it
and this is how the pick-up tube is able the recover the central core.
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Figure 4.34: The radial distribution of time θ-averaged azimuthal and axial velocity
upstream the pick-up tube at 7.5R after the swirl element for di�erent �ow splits

4.6 Conclusion

In this chapter, swirling single-phase �ows in the separator are simulated using
LES/IBM and the wall model and an investigation of the main features is done. A
full description of the axial and azimuthal velocities, the pressure, the swirl number
and the centrifugal force is given. The sensitivity to the Reynolds number is also
presented. Furthermore, an original approach using IBM to model the �ow straight-
ener and to impose the condition on the valve at the pick-up tube is introduced
and validated to �nally study the e�ect of the �ow split FS on the �ow features.
The next chapter will therefore be dedicated to simulating two-phase �ows in the
separator.
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Chapter 5

CFD simulations of swirling
two-phase �ow in the separator

5.1 Introduction

As previously introduced in the �rst chapter, the inline �uid separation involves
various �ow features: turbulence, bubble migration and gas core formation, stability
and recovery. The �rst experiments made within the TOMOCON project in TU
Delft [6, 15, 86] give an overview of how the gas core is formed. In fact, three gas
core patterns can be distinguished as shown in Fig.5.1: the swirling column, the
swirling pulsating and the swirling burst. The pattern of the swirling gas core and
the instability of its interface depend on the �ow regime imposed upstream the swirl
element.

(a) Swirling column

(b) Swirling pulsating

(c) Swirling burst

Figure 5.1: The di�erent gas core patterns observed between the swirl element and
the pick-up tube [6]. The �ow is from the left to the right in the opposite direction
to gravity.
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The experiments of two-phase �ow in the separator [6, 15] are conducted for
di�erent air and water bulk velocities. By observing the �ow regime upstream the
swirl element, the map presented in Fig. 5.2 is constructed, three �ow regimes are
tested (bubbly, churn, slug) and the transition between them is validated with a
theoritical study by Taitel et al.[7] presented with a black line in Fig. 5.2.
Then, the �ow is observed over 20cm downstream the swirl element to determine the
gas core pattern. Figure 5.3 represents a map of the swirling gas core patterns. The
experiments have shown that the core is formed only when the liquid velocity at the
separator inlet is beyond a certain value (0.2m/s in this case) regardless of the gas
velocity. This limit is marked by a black line in Fig. 5.3 and can be interpreted as a
minimum needed centrifugal force capable of forming a gas core. For instance, for a
gas velocity under 0.1m/s, the �ow upstream the swirl element is bubbly according
to the map 5.2, for liquid velocities below the black line in Fig. 5.3, the bubbles do
not accumulate to form a core, the �ow remains bubbly even downstream the swirl
element. By increasing the liquid velocity over the black line, the �ow upstream is
still bubbly and the gas core is formed downstream and has a swirling column shape.
Similary, the same goes for the slug �ow which results in a swirling pulsating core
and churn �ow which gives the bursts breaking the gas core when the centrifugal
force is enough to accumulate the dispersed phase. Overall, the bubbly �ow regime
upstream seems to lead to a stable core. We should note that the condition on
pick-up tube in�uences the gas core behaviour as spotted in the right side of Fig.
5.1, which means that a di�erent �ow map is found for the core if observed at this
location: close to the pick-up inlet (right side of Fig. 5.1).

Figure 5.2: Map of two-phase �ow regimes upstream the swirl element, the points
are identi�ed experimentally [6] while the black line marks the transition between
bubbly-churn-slug found by Taitel et al. [7].
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Figure 5.3: Map of the swirling gas core patterns observed just after the swirl
element. A transition marked by a black line can be observed from the experiments
which represents the liquid super�cial velocity usl beyond which the gas core is
formed and below which the generated centrifugal force is not enough to form the
core and thus the �ow regime downstream the swirl element is the same as the one
upstream the swirl element [6].

While the experiments reveal some interesting aspects of the core formation
and its various patterns depending on the upstream �ow regime, the objective of
this chapter is to investigate numerically the physical phenomena leading to the
separation for upstream bubbly �ow (left part of Fig. 5.2). For that purpose, we
investigate bubble accumulation and core formation using the proposed hybrid CFD
approach (LES-IBM-LT-VoF).

First, a simpli�ed model of the force balance of a bubble in the separator is given.
Then, the bubbles trajectories are calculated thanks to the Lagrangian Tracking
method. The instantaneous, mean and RMS of the forces applied on the bubbles are
analyzed to discuss the dominant force leading to the bubbles migration. The e�ects
of the bubble size as well as the Reynolds number on this process are also studied.
Additionally, we visualize the bubbles accumulation and calculate the separation
e�ciency. Finally, the hybrid approach (LT-VoF) is activated to simulate the gas
core and discuss about its stability. A simpli�ed study of a gas core in a rotating
�ow is also done to try to investigate the possible instabilities which can occur at
the interface.

5.2 Description of bubble dynamics in swirling �ow

In order to introduce the mechanisms involved in the separation process for a bubbly
�ow, we �rst consider the motion of an isolated bubble in a swirling �ow region
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during its migration to the pipe centerline. The motion of a bubble in a turbulent
swirling �ow in the separator is governed by the Newton's second law introduced in
subsection2.5.6 and expressed by the force balance 5.1.

(ρd + CMρc)Vd
dvd
dt

= (ρd − ρc)Vdg+

CDρc
πr2

d

2
‖uxd − vd‖(uxd − vd) + CLρcVd(uxd − vd)× Ω+

ρcVd(1 + CM)
Du

Dt
|xd (5.1)

To integrate this equation and get the bubble trajectory in a complex �ow as the
one generated here by the swirl element, we use the Lagrangian Tracking method
and this will be the subject of the next section. However, we can employ the
single-phase �ow study done in chapter 4 and propose assumptions to simplify the
terms of equation 5.1 to be able to approximate and compare the di�erent forces
applied on the bubble in order to discuss the process of bubble migration. In fact,
the numerical simulations of single-phase �ow in the separator have shown that the
�uid time θ-averaged azimuthal velocity has a Rankine vortex pro�le with a constant
rotation rate ω in the solid rotation zone while the averaged radial �uid velocity is
neglected in front of the two other velocity components. For simpli�cation purposes,
we consider that the �uid axial time and θ-averaged is constant and equal to bulk
velocity ub.
Therefore, this simpli�ed �uid velocity �eld takes the form:

ur = 0; uθ(r) = ωr; ux = ub (5.2)

This leads to:

Du

Dt
|xd = (−u

2
θ

r
= −ω2r; 0; 0); Ω = ∇× u = (0; 0; 2ω) (5.3)

The gravity is g = −9.81ex.
Considering that the bubble Reynolds number is much larger than unity, Reb =
2rdρc‖u − vd‖/µc >> 1, we can �rst consider that CD ≈ 48/Reb (i.e. FD ≈
12πµcrd(u − vd)) and CL ≈ 1/2. The bubble being assumed as spherical we have
CM = 1/2. With the additional condition ρd << ρc, the bubble relaxation time is
τd = r2

d/18νc. Typically, for a 1 mm diameter bubble in water, τd ≈ 0.01s.
Then, we can examine the radial components of the three forces (drag, lift and

virtual mass) corresponding to the second and third lines in equation 5.1 which are
involved in the process of bubble migration towards the pipe centre as:

FD,r = −12πµcrdvd,r (5.4)

FL,r = ρcVdω(ωr∗ − vd,θ) (5.5)

FVM,r = −3

2
ρcVdr

∗ω2 (5.6)

where r∗ is the radial bubble position.
Since a negative force induces a motion towards the pipe centre, the radial com-

ponent of the virtual mass force always imposes the centripetal force leading to the
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migration of the dispersed phase, the radial lift has a centrifugal e�ect proportional
to the azimuthal relative velocity that is a priori expected to vanishes after some
bubble relaxation time τd since the bubble adjusts to the swirling �uid �ow, but this
point will be discussed later. The radial drag force is opposite to the radial bubble
velocity. Thus, it has a centripetal e�ect during the migration of the bubble.

Besides, we are also interested in the axial movement of the bubble which is be-
ing transported towards the outlet of the separator in order to check if the bubble is
captured by the pick-up tube or not. For this, we investigate the axial components
of buoyancy, drag, lift and virtual mass.

FB,x = ρcVdg (5.7)

FD,x = 12πµcrd(ub − vd,x) (5.8)

FL,x = 0 (5.9)

FVM,x =
3

2
ρcVdux

∂ux
∂x

(5.10)

In the simpli�ed situation where ux ≈ ub then FVM,x ≈ 0 and we see that along
the axial direction, the bubble will reach after some relation times τd a velocity
composed of the �uid bulk velocity ub and the so called terminal velocity vT =
2τdg = r2

d/(9νc)g. For a 1 mm diameter bubble in water, vT ≈ 0.27m/s.
The bubble is also subject to an azimuthal motion which describes its rotation

movement and is governed by the azimuthal components of the drag, lift and virtual
mass forces:

FD,θ = 12πµcrd(ωr
∗ − vd,θ) (5.11)

FL,θ = ρcVdωvd,r (5.12)

FVM,θ = 0 (5.13)

The lift induces an azimuthal contribution that may contribute to a slip azimuthal
velocity depending on both solid body rotation and the bubble radial velocity.

In order to give an idea about the order of magnitude of these forces and their
contribution in the migration and capture of the bubble in the separator, we consider,
for instance, the numerical results obtained for swirling single-phase �ow of Re =
50, 000 detailed in chapter 4.5. From this simulation, the continuous phase velocities
at a position 0.08R after the swirl element are: ω ≈ 50s−1, ub ≈ 0.54m/s. We
consider a bubble of radius rd = 1mm transported by the �ow along the pipe axis
with the velocity u+vT that is instantaneously submitted to the solid rotation. We
consider an initial radial position r∗0 = 0.035m and zero radial velocity when the
bubbles enters inside the vortex.

Table 5.1 summarizes the order the magnitude of the di�erent forces components.
We can say that the buoyancy and drag are the dominant forces for transporting
the bubble to the separator outlet while the virtual mass force is dominant in the
radial direction leading to the radial migration of the bubble to the centre.

113



CHAPTER 5. CFD SIMULATIONS OF SWIRLING TWO-PHASE FLOW IN
THE SEPARATOR

Components FB FD FL FVM
x 4.1× 10−5 −5.0× 10−5 0 0
r 0 0 3.6× 10−4 −5.5× 10−4

θ 0 6.6× 10−5 0 0

Table 5.1: Estimation of the magnitude of the forces components (N) applied on
the bubble in the separator.

It is worth reminding that the force comparison done above does not take into
account the e�ect of turbulence presented by the velocity �uctuations of the contin-
uous phase since only time and θ-averaged velocities were considered with simpli�ed
pro�ls.

When discussing the separation e�ciency, three characteristic times of interest
for the dispersed phase can be distinguished:
- The relaxation time τd = r2

d/18νc which is the response time of the bubble to the
continuous phase, i.e. the characteristic time for a bubble to adjust its velocity to
the carrier �uid as well as buoyancy.
- ω−1 which is a relevant time scale on its own according to 5.5. It can be interpreted
as the relaxation rate for the lift force.
- The migration time tmigration which is the time needed for a bubble to reach the
centre of the separator.
- The capture time tcapture which is the time needed to reach the outlet of the
separator: the HPO or the LPO.

Based on the force magnitude presented above, a �rst attempt is made to provide
an estimation of these characteristic times for the considered system. In order
to determine the characteristic migration time tmigration we consider the trajectory
equation along the radial direction:

1

2
ρcVd(

d2r∗

dt2
−
v2
d,θ

r∗
) = −12πµcrd

dr∗

dt
+ ρcVdω(ωr∗ − vd,θ)−

3

2
ρcVdr

∗ω2 (5.14)

Considering �rst that dr∗/dt << r∗/τd (which is expected for the bubble dynamics
in the separator). The force balance in the azimuthal direction gives vd,θ = ωr∗.
From this, the trajectory along the radial direction can be simpli�ed to:

d2r∗

dt2
≈ − 1

τd

dr∗

dt
− 1

t2VM
r∗ (5.15)

where appears a characteristic time tVM imposed by the virtual mass force:

tVM =
1√
2ω

(5.16)

The solution of equation 5.15 is reported in Fig. 5.4 for three cases: (rd =
1mm, tVM = 0.014s), (rd = 0.5mm, tVM = 0.014s) and (rd = 1mm, tVM = 0.007s).
As shown, for the same ω ≈ 50s−1, the increase of the bubble radius leads to a
decrease of the migration time from 0.035s to 0.024s. Then, for the same bubble
size rd = 1mm, the migration time is reduced to 0.011s by increasing ω from 50s−1

to 100s−1 which corresponds to tVM = 0.007s.
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Figure 5.4: Comparison of the evolution of the bubble radial position obtained by
solving equation 5.15 for (rd = 1mm, tVM = 0.014s), (rd = 0.5mm, tVM = 0.014s)
and (rd = 1mm, tVM = 0.007s).

Indeed the increase of the bubble radius decreases the migration time, however,
it also increases the buoyancy force which speeds up the axial mouvement of the
bubble. A bubble can, in some cases, be driven by the axial �uid velocity before
it reaches the pipe centre. To evaluate the e�ect of the bubble size and Reynolds
number on the capture process, we calculate the axial length over which the bubble
gains the pipe centre using its axial velocity estimated to ub + vT . Figure 5.5 shows
the bubble radial position as function of its axial position normalized by the pipe
radius for the three cases: (rd = 1mm, tVM = 0.014s), (rd = 0.5mm, tVM = 0.014s)
and (rd = 1mm, tVM = 0.007s). We can see that although the increase of the bubble
radius decreases the migration time from Fig. 5.4, the bubble crosses a distance of
0.8R in the axial direction which is larger than the one travelled by the bubble with
lower radius. This can give an idea on where to position the pick-up tube to make
sure that the bubbles have enough space and thus time to migrate. Furthermore,
�gure 5.5 reveals that for the same bubble radius, the increase of Reynolds number
leads to a decrease of both the migration time and axial length, which means that it
contributes more in the migration than in the capture. Numerical simulations using
LT and LES will allow to determine precisely the role of each force and the e�ect of
the turbulent dispersion.
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Figure 5.5: Comparison of the evolution of the bubble radial position as function
of its axial position normalized by the pipe radius for (rd = 1mm, tVM = 0.014s),
(rd = 0.5mm, tVM = 0.014s) and (rd = 1mm, tVM = 0.007s).

Considering the value of the forces reported in table 5.1, the lift force also con-
tributes to the radial motion. The lift force has an opposite sign but its magnitude
is smaller than the virtual mass force. The migration towards the pipe centre is
still taking place but the time migration will be certainly increased due to the lift
force. This will be discussed using the numerical simulations presented in the next
section. The value of the migration time will be compared to the results obtained
from the numerical simulations where all the e�ects are taken into account, and in
particular the decay of the swirl strength and the unsteadiness and �uctuations of
the �ow turbulence.

5.3 Numerical results of bubble dynamics in the

separator using Lagrangian Tracking

One of the advantages of using the Lagrangian Tracking solver for the dispersed
phase is to accurately describe its dynamics during the process of bubble migration
preceeding the core formation. In this section, 3D simulations of two-phase �ows are
perfomed on a numerical domain of size Lx × Ly × Lz = 0.92m× 0.104m× 0.104m
made of Nx ×Ny ×Nz cells. The mesh size ∆ is the same as the one retained from
the mesh sensitivity study reported in the previous chapter 4 such as: R/∆ = 40.

When the incoming bubbles located upstream the swirl element pass through the
vane section, they are forced to move into the tiny space between the blades and the
pipe wall to �nally exit to the tail section. Therefore, to save the computationnal
time needed to track the bubbles up to the vane section, the bubbles are injected
at the tail section with the �uid velocity and the study focuses on the migration
happening downstream the swirl element. In the following, a set of 5000 bubbles are
injected continuousely over time with an averaged volumetric rate q = 5×10−4m3/s.
In fact, at each time step, the number of bubbles to inject is de�ned as a random
integer Ninj which follows a Poisson distribution with the parameter µpoisson =
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q∆t/Vd:

Pois(µpoisson) =
µ
Ninj
poissone

−Ninj

Ninj!
(5.17)

In space, the bubbles are initialized at the same axial position x0 = 0.35m and
at random di�erent radial positions as illustrated in Fig. 5.6. The bubbles are
considered non deformable clean spheres and the gravity is g = −9.81ex opposite
to the �ow direction.

Figure 5.6: Positions of a set of 5000 bubbles (in blue) at t = 0.04s after the
continuous injection is done.

At �rst, an analysis of the force balance on a single bubble is done to show
the temporal evolution of the forces acting on it. Then, a mean force balance is
calculated by averaging over the 5000 injected bubbles to determine the driving
force leading to the migration. Finally, the e�ect of both the bubble size and the
Reynolds number on the migration is studied.

5.3.1 Instantaneous force balance

A 3D simulation of a two-phase �ow in the separator is performed for Re = Dub/νc =
50, 000. A single bubble of radius rd = 1mm is tracked and its force balance is
calculated.

Figure 5.7 represents the spatial 3D trajectory of the bubble. The bubble position
in the (y, z) plane �uctuates between positive and negative values which indicates
that the bubble is rotating around the pipe centre located at (y0 = 0, z0 = 0) and
marked by a red line in Fig. 5.7. In addition, the bubble is pushed towards the
pipe centre, its radial position approaches r∗ = 0, reaches it at several times and
oscillates around it (see Fig. 5.8 (left)). The bubble can be ejected from the axis
during its migration process due to turbulent �uctuations that develop in the �ow,
increasing the time for the bubble migration.
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Figure 5.7: Trajectory of a 1mm radius bubble in the separator swirling �ow for
Re = 50, 000. The red line represents the pipe centre (y, z) = (0, 0), the gravity is
g = −9.81ex.

Figure 5.8 shows the temporal evolution of the radial and axial positions of the
bubble. Fluctuations are observed for the radial position which might be a result
of the turbulent dispersion intervening in the force balance via the velocity �uctu-
ations of the continuous phase. On the other side, the axial position shows weak
�uctuations since it is mainly controlled by the drag balanced by the buoyancy and
weight which are independant of the �uid velocity. As revealed by the silmulation
of the forces acting on a bubble in a turbulent pipe �ow [22], turbulent �uctuations
can provide some signi�cant lift and virtual mass �uctuations while the drag force
�uctuations remain around 5% of the mean drag force.

From Fig.5.8, we can calculate the characteristic time of migration correspond-
ing to when the bubble reaches the pipe centre for the �rst time. In this case, we
have tmigration = 0.18s which is almost eight times higher than the time migration
obtained from the simpli�ed analysis presented in section 5.2 when neglecting the
lift force e�ect in the migration. This is due to the decay of the centrifugal force
(i.e the azimuthal velocity) which is not considered in the simpli�ed analysis. Ad-
ditional e�ects such as the radial turbulent dispersion may also be induced by the
unsteadiness and spatial �uctuations of the continuous phase.
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Figure 5.8: The radial (left) and axial (right) positions (m) of the bubble in (m) as
function of time (s).
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To evaluate the di�erent forces applied on the bubble, we compare the magnitude
of the drag, virtual mass and lift in Fig. 5.9 while keeping in mind that the sum of
weight and buoyancy is constant and equals FB = 4.1×10−5N. First, �uctuations are
observed in all the forces due to turbulence which explain the �uctuations present
in the bubble trajectory. The drag force is smaller than the lift and virtual mass
forces which are relatively of the same order of magnitude found in the simpli�ed
study in section 5.2.

Now, in order to decipher the contribution of the drag, and virtual mass forces in
the process of bubble migration, we plot separately in Fig.5.9 the three components
of each force over time. In the radial direction, the virtual mass force is generally
negative which corresponds to a centripetal e�ect while the lift force is constantly
changing sign which means that it has both centrifugal and centripetal e�ects on the
bubble. As the bubble moves far from the swirl element, the �uctuations and the
magnitude of the forces are reduced due to the decay of the swirl strength. Finally,
since the instantaneous force balance for only one bubble remains insu�cient to
adequately compare with the simpli�ed analysis and conclude on the e�ect of the
each force, a statistical study is conducted on the force balance in the next subsection
5.3.2.
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Figure 5.9: Time evolution of the magnitude and components of the forces acting
on the bubble in (N).

5.3.2 Mean force balance

In the previous subsection 5.3.1, the analysis focuses on the instantaneous evolution
of the forces over time to reveal strongly �uctuating forces, in particular the lift and
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virtual mass forces in agreement with [22]. In this subsection, we will investigate
the statistics of each force namely the mean and the RMS in order to characterize
the �uctuations observed in subsection 5.3.1. Therefore, for the set of 5000 bubbles
of radius 1mm injected continousely at the same axial position x0 = 0.35m, we
average the terms of the force balance at 50 axial positions vaying between x0 and
the separator outlet.

The mean of the forces magnitude and components as function of the axial
position are reported in Fig.5.10. First, the range of values found for the magnitude
of each force is consistent with the estimation calculated in table 5.1. The virtual
mass is the dominant force, then comes the lift force. By taking a close look at
the evolution of each force in each direction, we �nd that the radial virtual mass
is negative leading to the migration of the bubbles and is maximum just after the
swirl element where the azimuthal velocity is maximum. The radial lift contributes
in the migration process right after the swirl element but also has a centrifugal
e�ect on the bubbles which pushes them towards the pipe wall. The lift force is
characterized by numerous �uctuations and peaks which are also illustrated later in
the RMS pro�les in Fig. 5.13 showing a sensitivity to the continuous phase velocity
�uctuations. These peaks may after all get reduced if the number of bubbles is
increased for statistical convergence. In the axial direction, considering the value
of the weight and buoyancy force, the latter is the one transporting the bubbles
towards the outlet. Therefore, by comparing between all the components of all the
forces, we can say that the bubbles motion is �rst dominated by the migration then
the azimuthal swirl of the continuous phase and �nally the weight and buoyancy
which lead to the capture of the bubbles.
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Figure 5.10: The averaged magnitude and components of the forces in (N) as func-
tion of the axial position normalized by the separator radius.

We eventually can compare the radial virtual mass force, responsible of the
migration, obtained from the numerical simulation and the one calculated based on
the simpli�ed analysis presented in section 5.2 and using equation 5.18 with uθ is the
mean azimuthal velocity of the continueous velocity at the bubble position and r∗

is the mean radial position of the dispersed phase given by the simulation. In �gure
5.11, the mean value of FVM,r from the numerical simulation and the one calculated
from relation 5.18 are close to each others, showing that the dominant term of the
averaged radial acceleration of the continuous phase is indeed −u2

θ/r.

FVM,r = −3

2
ρcVd

u2
θ

r∗
(5.18)
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Figure 5.11: Comparison of the averaged radial virtual mass force in (N) obtained
from the simulation and the one calculated using eq 5.18 as function of the axial
position normalized by the separator radius.

The average of the bubbles radial position is plotted as function of the axial
position in Fig.5.12 and compared to an instantaneous projection of a single bubble
trajectory. The radial position r∗ decreases signi�cantly right after the swirl element
and up to xd/R ≈ 5 where the virtual mass is maximal then it is stabilized at a radial
position r∗ around 0.008m. This equilibrium corresponds to a balance between the
average and the �uctuating contribution in the radial force balance. An averaged
migration time can be calculated based on the bubble averaged axial velocity as
tmigration = 5R/vd equal to 0.37s. It is around twenty times more than the one
estimated from the simpli�ed analysis given in section 5.2. The distance 5R can
also be interpreted as the migration length needed for the bubbles to draw near the
pipe centre. This value is higher than 0.8R reported in Fig. 5.5 since the axial
lift contributes also in pushing the bubbles towards the separator outlet and the
radial �uctuations delays the migration process. This is an important criteria to
take into account in dimensionning the length of the separator and/or positionning
the pick-up tube.
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Figure 5.12: The mean radial position and a single bubble radial position in (m) as
function of the axial position normalized by the separator radius.

Now, to characterize the forces �uctuations observed in the instantaneous pro-
�les, the RMS are calculated for each force component.
First, to compare between all the RMS, the �uctuations are normalized by the mag-
nitude of the averaged virtual mass. This is illustrated in Fig.5.13(left). The RMS
of the lift and the virtual mass are higher than the drag RMS consistently with the
important �uctuations observed in 5.9 for these two forces. This aspect of unsteadi-
ness which was neglected in the simpli�ed analysis, can be responsible for increasing
the time migration since it can generate a centrifugal e�ect on the bubble as pre-
viousely mentionned. Indeed, it can be seen that the RMS are of the order of the
averaged virtual mass which is the dominant force.
And in order to evaluate the contribution of the �uctuations of each force sepa-
rately, we normalize each RMS by its corresponding force magnitude as illustrated
in Fig.5.13(right). The �uctuations in the three directions represent an important
part of the instantenueous lift force since turbulence intervenes in the continuous
phase velocity and vorticity. The lift force as well as the virtual mass are then
the dominant forces in the process of bubble migration through their means and
�uctuations.
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Figure 5.13: The RMS of the forces normalized by the averaged virtual mass force
(left) and normalized by the averaged corresponding force (right) as function of the
axial position normalized by the separator radius.

The study of the instantaneous and averaged force balance has proved that the
virtual mass is the driving force of bubble migration and has highlighted that the
lift force is also important in either promoting the migration or delaying it. The
�uctuations of both these forces have also a signi�cant role in agitating the bubbles
and increasing the migration time. Finally, it is worth noting that the contribution of
each force can eventually change depending on the properties on the continuous and
dispersed phase (the bubble size and the Reynolds number). This will be discussed
in the next subsections.
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5.3.3 E�ect of the bubble size

To investigate the e�ect of the bubble size on the migration process, the same
simulation with Re = 50, 000 is perfomed for 5000 bubbles of radius rd = 0.5mm
injected continuousely at the axial position x0 = 0.35m. The mean force balance is
compared to the one of the previous case where the injected bubbles were of radius
rd = 1mm.

We compare in Fig. 5.14 (left) the temporal evolution of the bubble radial
position as function of the normalized axial position of two single bubbles of di�erent
radius rd = 0.5mm and rd = 1mm. Fluctuations are observed in both pro�les but
are intensi�ed with the increase of the bubble size. The mean of the bubbles radial
position is plotted in Fig. 5.14 (right), from which we can estimate a migration time
of 0.52s calculated from the averaged velocity of the dispersed phase. This value is
higher than the migration time obtained for 1mm radius bubbles. Thus, we can see
the e�ect of decreasing the bubble size in delaying the migration process. To justify
this, the radial components of the forces are investigated later on.

It is worth mentionning that in the axial direction, the big bubbles reaches the
outlet of the separator in less time in comparison to the small bubbles since the
buoyancy is higher which indicates that the capture time increases with the decrease
of the bubble size. The migration length which is the axial distance travelled by the
bubbles till stabilizing its radial position around the pipe centre decreases with the
decrease of the bubble size similary to what is found in the simpli�ed analysis in
section 5.2.
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Figure 5.14: Comparison of the instantaneous (left) and mean (right) bubbles radial
position in (m) as function of the axial position normalized by the pipe radius for
bubbles of radius rd = 0.5mm vs rd = 1mm.

Since we are interested in the migration process and that the radial drag force
is found to be weaker than both the virtual mass and lift in the radial direction,
we will focus on the evolution of the lift and virtual mass while comparing between
the two cases rd = 0.5mm and rd = 1mm. Figure 5.15 shows the mean radial
lift and virtual mass normalized by the buoyancy force FB = gρcVd for bubbles
of 1mm radius versus bubbles of 0.5mm radius. With decreasing the bubble size,
the virtual mass decreases while keeping a negative sign to represent a centripetal
e�ect. The lift force is mainly negative right after the swirl element and becomes
weaker afterwards. The overall evolution of both forces for the two bubble sizes is
the same in terms of centripetal/centrifugal e�ects but is propotional to the bubble
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size in terms of magnitude as the lift and virtual mass are propotional to the bubble
volume. And this is what explains the increase of the migration time due to the
decrease of the magnitude of the radial forces linked to the bubble size.
The normalized forces do not collapse onto a single curve since the lift and virtual
mass do not only depend on the bubble volume but also on the continuous phase
velocity at the bubble position which is di�erent between the two cases rd = 0.5mm
and rd = 1mm (see Fig. 5.14).
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Figure 5.15: The averaged radial components of the lift and virtual mass normalized
by the buoyancy FB as function of the axial position normalized by the separator
radius of two radius cases: rd = 0.5mm vs rd = 1mm.

Regarding the �uctuations, the RMS of the radial lift and virtual mass normal-
ized by the buoyancy FB are plotted in Fig.5.16. The increase of the bubble size
leads to a decay of the RMS and this is why the evolution of the instantaneous
radial position of the bubble contains less �uctuations. The bubbles move slower
thus they are not subject to high unsteadiness of the continuous phase. Similarly,
the normalized radial lift and virtual mass RMS are not the same because the 1mm
and 0.5mm do not have the same radial position at the same axial position, which
means not the same continuous phase velocity used in the forces de�nition.
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Figure 5.16: The RMS of the radial components of the lift and virtual mass nor-
malized by the buoyancy FB as function of the axial position normalized by the
separator radius of two radius cases: rd = 0.5mm vs rd = 1mm.
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This study proves that the bubble size is an important parameter in�uencing the
migration and capture times. A decrease of the bubble radius leads to a decrease of
the mean and RMS of the radial lift and virtual mass as well as the buoyancy which
increases the migration and capture times respectively. It is worth reminding, as
previously discussed in subsection 5.3.2, that the migration motion overcomes the
axial one in magnitude, which means that even though the increase of the bubble
size speeds up the capture yet it contributes more in producing a centripetal e�ect
ensuring the migration.

5.3.4 E�ect of the �ow Reynolds number

In chapter 4, we have observed from the numerical simulation of single-phase swirling
�ow that the centrifugal force normalized by the bulk velocity (i.e. u2

θ/u
2
b) is inde-

pendent of the Reynolds number. This implies that when increasing the �ow rate,
keeping all other parameters constant, leads to an increase of the centrifugal force.
In this section we further study the e�ect of varying the Reynolds number (via the
bulk velocity) on the bubble migration

A 3D simulation of a two-phase �ow for Re = 100, 000 in the separator is per-
formed where the injected bubbles are of radius rd = 1mm (rd/R = 2.17×10−2) and
the results are again compared to the previous two-phase �ow simulation with Re =
50, 000 and the injected bubbles of the same radius rd = 1mm (rd/R = 2.17×10−2).

Figure 5.17 represents the evolution of the instantaneous (left) and averaged
(right) bubble radial position as function of the normalized axial position for both
Reynolds numbers. Fluctuations are enhanced with the increase of Re which is
also shown via the RMS pro�les in Fig.5.19. The averaged radial position for Re =
100, 000 is close to the one obtained for Re = 50, 000. The averaged bubbles velocity,
being higher in a �ow with Re = 100, 000, the calculated time migration, in this
case, is 0.36s. This means that the increase of Reynolds number accelerates the
migration time. In fact, since the swirl strength is raised, the azimuthal velocity
after the swirl element becomes more important and therefore the migration is faster.
Moreover, the bubbles reach the outlet of the separator quicker than in the case of
Re = 50, 000.
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Figure 5.17: Comparison of the instantaneous (left) and mean (right) bubbles radial
position in (m) as function of the axial position normalized by the pipe radius in a
�ow for Re = 100, 000 vs Re = 50, 000.

By plotting the mean radial components of the lift and virtual mass normalized
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by Fc = ρcVdω
2R with ω is the rotation velocity of the swirling �ow in the separa-

tor, we can see that increasing the Reynolds number and by consequence the swirl
strength, those forces are increased. Considering the sign and magnitude of each
force, the centripetal e�ect of the virtual mass overcomes the centrifugal e�ect of the
lift even when the latter becomes positive. Thus, the virtual mass is the dominant
force.
The normalized radial pro�les seem to be almost Re-independant where the averaged
radial position is the same. The forces depends only on the rotation velocity since
the bubbles size is unchanged between the two cases Re = 100, 000 and Re = 50, 000.
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Figure 5.18: The averaged radial components of the lift and virtual mass normalized
by Fc as function of the axial position normalized by the pipe radius in a �ow of
Re = 100, 000 vs Re = 50, 000.

Figure 5.19 shows the radial RMS of the lift and virtual mass normalized by
Fc = ρcVdω

2R as function of the axial position made dimensionless by the pipe
radius. The intensity of the �uctuations increases with the increase of Reynolds
number. The radial lift force �uctates more than the virtual mass and peaks are
also observed similary to the case Re = 50, 000. The dimensionless pro�les are
very close, allowing to predict the forces �uctuations for the same bubble size while
varying Re.
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Figure 5.19: The RMS of the radial components of the lift and virtual mass normal-
ized by Fc as function of the axial position normalized by the pipe radius in a �ow
of Re = 100, 000 vs Re = 50, 000.
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As we have reported, the increase of the Reynolds number reduces the time
migration which might be interesting from an industrial point of view as it gives an
idea on when to activate the condition on the pick-up tube to recover the bubbles.
However, one should consider the eventual instabilities of the gas core which can
take place due to the high shear rate at the interface and the potential change of the
�ow regime as depicted in Fig. 5.1 and 5.3. In this section, we have characterized
the process of bubble migration. Both the virtual mass and lift are found to be
the controlling forces on the radial motion of the bubble. The intensity of the
forces �uctuations proves the importance of taking into account the instantaneous
and turbulent e�ect on the bubbles. Finally, the sensitivity study to the main
parameters is done. An increase of the bubble size rd leads to increasing the virtual
mass and thus reducing the migration time. Similary, higher bulk velocity ub gives
higher swirl strength and therefore speeds up the migration. Tables 5.2 and 5.3
summarize the above conclusions:

Components FD FL FVM
Migration time increase increase decrease

Table 5.2: Summary of the contribution of each force in the bubble migration pro-
cess.

Parameter rd ub
Migration time decrease decrease
Capture time decrease decrease

Table 5.3: The e�ect of increasing rd and ub on the migration and capture times.

In the following, we �rst carry on the same simulation of two-phase �ow of
Re = 50, 000 using Lagrangian Tracking with a continuous bubbles injection and we
check out the performance of the separator. Later, the hybrid approach LT-VoF is
activated to investigate the core formation and stability.

5.4 Numerical simulations of inline �uid separation

To study the inline separation, we �rst conduct the simulation using only the La-
grangian Traking and we evaluate the e�ciency of separation. Then, the simulation
is performed using the developed hybrid approach LT-VoF and the gas core is de-
scribed.

Therefore, we consider 3D simulations of two-phase �ow for which the numerical
domain is the one previousely de�ned: a box of size Lx × Ly × Lz = 0.92m ×
0.104m × 0.104m made of Nx × Ny × Nz cells. The mesh size ∆ is the same as
the one retained from the mesh sensitivity study reported in the previous chapter
4 such as: R/∆ = 40. The �ow is in the upwards direction, opposite to the gravity
direction and the pick-up tube of radius Rpt = 0.44R is located at 8R after the swirl
element.
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5.4.1 Simulations using Lagrangian Tracking

3D two-phase �ow simulation of Re = 50, 000 is performed using Lagrangian Track-
ing. A set of 1mm radius bubbles are injected continuously over the tail section
x0 = 0.35m with a �xed volumetric rate q = 5 × 10−4m3/s following a Poisson
distribution as already explained in 5.3.

Figure 5.20 visualizes snapshots of the two-phase �ow simulation at di�erent
moments. The bubbles are colored in blue. Due to the centripetal force applied
on them, they progressively migrate towards the pipe centre. All the bubbles with
a radial position below the Light Phase Outlet (LPO) radius are colored in red.
They are to be captured by the pick-up tube. In fact, at halfway between the swirl
element tail section and the LPO, we can already observe that the majority of the
bubbles are located within the operational zone of the pick-up tube. After 0.44s
from the injection of the bubbles at the swirl tail section, we can see that the �rst
set of bubbles reaches the pick-up tube which is the moment when the condition on
the �ow split should be activated in the pick-up tube to recover the light phase. This
time may also serve as a characteristic time to take into consideration while building
the controller since the valve should respond as fast as the separation process.
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(a) t = 0s

(b) t = 0.088s

(c) t = 0.176s

(d) t = 0.264s

(e) t = 0.352s

(f) t = 0.44s

Figure 5.20: Simulation of two-phase �ow separation for Re = 50, 000 using La-
grangian Tracking. The bubbles are presented in a blue color while those located at
radial positions r∗ < RLPO are colored in red.

Figure 5.21 illustrates trajectories of four bubbles in the separator. A quasi-spiral
movement around the pipe centre is observed with a �uctuating and decreasing ra-
dial positions as the bubbles are being transported towards the LPO. Figure 5.22
shows the evolution of the radial positions of the four bubbles as function of the
axial position normalized by the pipe radius. We notice that although the black and
blue bubbles have the same initial radius and axial positions yet their trajectories
are di�erent due to the di�erence in their initial azimuthal position thus the e�ect
of the unsteadiness and non-symmetry of the continuous phase velocity reported in
chapter 4 on the bubbles force balance.
It is worth mentioning that the capture time depends on the pick-up tube position-
ning because by increasing the distance between the swirl element and LPO, the
capture time systematically increases as well as the length of the separator. There-
fore, from an industrial point of view, the position of the pick-up tube should be
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chosen in a way to simultaneousely reduce the separator size, respect the minimum
needed response time of the tomographs and controller used in the experiments [15]
and mainly assure a higher separation e�ciency. The latter is evaluated in the
following.

Figure 5.21: Trajectories of four bubbles
in swirling �ow in the separator.
The red line represents the pipe centre.
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Figure 5.22: The bubbles radial positions in
(m) as function of the normalized axial po-
sition. The red line represents the location
of the pick-up tube.

5.4.1.1 E�ciency of separation

At t = 0.44s, we activate the condition on the �ow split FS = QLPO/Qinlet at the
pick-up tube to recover the light phase as explained in section 4.4. And in order
to evaluate the performance of the inline separator, we introduce the e�ciency of
separation eff calculated at the pick-up tube inlet as the ratio of the cumulative
volume of bubbles passing through the LPO over the cumulative volume of all the
bubbles passing through the entire cross-section (LPO+HPO).

eff =
ΣV LPO,inlet

d

ΣV LPO,inlet
d + ΣV HPO,inlet

d

(5.19)

For the same simulation presented in subsection 5.4.1, we compare the separation
e�ciency obtained by imposing a �ow split of FS = 0.3 to the one for a �ow split
of FS = 0.5. Figure 5.23 illustrates the suction of the bubbles by the pick-up tube
for the two �ow splits at t = 0.5s. With a higher �ow split, the dispersed phase
moves axially faster inside the LPO since the velocity is higher in this case than in
the case of FS = 0.3 which reduces the capture time.
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(a) FS = 0.3

(b) FS = 0.5

Figure 5.23: Simulation of two-phase �ow separation. The bubbles are presented by
a blue color while those situated at radial position r∗ < RLPO are colored in red for
FS=0.3 and FS=0.5

Figure 5.24 represents the time evolution of the separation e�ciency for both �ow
splits averaged over 50∆t. Indeed the decrease of the �ow split increases the capture
time, however it increases the e�ciency of separation since the centrifugal force of the
continuous phase which pushes the bubbles to the pipe centre is less in�uenced than
in the case of a �ow split FS = 0.5 close to the pick-up tube. This was reported in
the study of the e�ect of FS on the azimuthal velocity pro�le for single-phase �ow in
the previous chapter. Bubbles located close to the LPO are then subject to a higher
swirl strength for FS = 0.3 and might still be captured. Overall, by calculating
the mean e�ciency for both �ow splits, we �nd that eff(FS = 0.3) = 96% and
eff(FS = 0.5) = 95% which proves that the inline separator is e�cient from
an industrial point of view. It is also possible to consider imposing a dynamic
condition on the �ow split, which changes in time to further increase the e�ciency of
separation. Numerically, it can be simulated using the proposed approach in chapter
4 and experimentally it is doable using a controller which changes the condition on
the valve depending on the arriving gas core at the pick-up tube.
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Figure 5.24: Comparison of the time-evolution of the separation e�ciency for two
�ow splits: FS = 0.3 and FS = 0.5

The fact that the averaged e�ciency does not attain 100% means that not all
bubbles at the pick-up tube inlet are captured. This is due to the turbulent dis-
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persion e�ect since the bubbles coalescence is not considered and no core is formed.
This is why it is interesting to introduce a hybrid approach LT-VoF. Using the latter,
the gas core formation and stability is simulated in the following.

5.4.2 Simulations using hybrid LT/VoF

In this subsection, numerical simulations of two-phase �ow in the separator are
carried out using the hybrid approach LT/VoF allowing to transform accumulated
bubbles from the Lagrangian framework into a gas core and predict its dynamics
using VoF as proposed in chapter 2. Since we are simulating an air/water two-phase
�ow, the problem of spurious current is present as detailed in subsection 2.6.3. To
avoid it, we conduct a similarity simulation as proposed in 2.6.4 which consists in
reducing σ/µw while keeping the same dimentionless numbers. In the case of the
inline separator, the gravity is considered as a physical parameter thus an extra
dimensionless number is added, namely the Bond number. The physical parameters
representing the system are as follow:

R∗ = rd/R (5.20)

ρ∗ = ρw/ρg (5.21)

µ∗ = µw/µg (5.22)

Re = ubD/νw (5.23)

We = ρwu
2
bD/σ (5.24)

Bo = (ρw − ρg)gD2/σ (5.25)

For a �xed R∗, Table 5.4 summarizes the calculation of the dimensionless numbers
for two self-similarity gas/water systems characterizing the two-phase �ow in the
separator.

Variables (SI) gas/water system similarity simulation
ρw 1000 726
µw 0.001 10−5

ρg 1 0.726
µg 2× 10−5 2× 10−7

ub 0.54 7.5× 10−3

σ 0.072 10−5

g 9.81 1.88× 10−3

ρ∗ 1000 1000
µ∗ 50 50
Re 50,000 50,000
We 3.75× 10+2 3.75× 10+2

Bo 1.15× 10+3 1.15× 10+3

σ/µw 72 1

Table 5.4: Dimensional analysis for similarity systems simulation of the separator.

Therefore, to simulate the two-phase �ow separation using LT/VoF, the sim-
ilarity system presented in 5.4 is considered in all the following. Both �uids are
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considered incompressible. Results are made dimensionless, the time is normalized
by D/ub and the velocity by ub.

The same 3D two-phase �ow simulation for Re = 50, 000 reported in subsection
5.4.1 is performed this time using the hybrid LT-VoF approach. Figure 5.25 shows
the bubbles which are still in the Lagrangian framework in blue color, the formation
of the gas core from the accumulated bubbles in red color, the gas volume fraction in
a cross section at x = 0.5R (right) after the swirl element and the gas core fraction in
a section along the separator (bottom). At �rst, the bubbles continuousely injected
are all simulated using the Lagrangian Tracking (Fig.5.25 (a)). Then, the bubbles
reaching the pipe centre are transformed into VoF following the method described in
section 2.7 (Fig.5.25 (b)). As other bubbles touch the gas core, the latter grows and
its radius becomes important especially right after the separator since the bubbles
are not constraint to reach the pipe centre to switch to VoF but only to be in
contact with the core interface (Fig.5.25 (c)). The gas core has a form of a cone
that is stretched in the axial direction towards the LPO due to buoyancy (Fig.5.25
(d)). As the injection continues, the gas core increases in size and progressively
evolves to a cylindrical shape (Fig.5.25 (d) to (g)). An instability is observed at the
interface along the gas core, it propagates radially and starts with small bursts at
the interface leading to the divergence of the calculation at t∗ = 0.44.

(a) t∗ = 0

(b) t∗ = 0.19
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(c) t∗ = 0.27

(d) t∗ = 0.31

(e) t∗ = 0.34

(f) t∗ = 0.4
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(g) t∗ = 0.44

Figure 5.25: Simulation of two-phase �ow separation for Re = 50, 000 using hybrid
LT-VoF with a continuous bubbles injection. The bubbles are presented by a blue
color. The gas core is colored in red. The gas volume fraction over a cross section
x = 0.5R after the swirl element is showed on the right and along the separator in
the bottom.

Figure 5.26 shows the distribution of the gas volume fraction (top) and the
normalized velocity �eld (bottom) at t∗ = 0.4 over four di�erent sections along the
separator located respectively from left to right at: x = 0.76R, x = 1.2R, x = 1.41R,
x = 1.52R after the swirl element. The instability is present in the four locations
and has a similar pattern as the swirling burst observed in the experiments [6] and
reported in Fig. 5.1 for higher gas volume fraction where the bursts spread radially
till reaching the pipe wall. From the simulation, those instabilities are characterized
by a high velocity magnitude which destablizes the simulation later than t∗ = 0.44.

Figure 5.26: Gas volume fraction in di�erent cross sections along the separator where
an instability is developed with the corresponding velocity �eld normalized by the
bulk velocity.
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To reduce the growth of a signi�cant core radius right after the separator (see Fig.
5.25(b)), we test a one-time bubbles injection all along the separator as illustrated
in Fig. 5.27. The bubbles of radius 1mm are injected with the continuous phase
velocity. The core is not yet formed.

Figure 5.27: A one-time injection of a set of 70,000 bubbles after the swirl element
a swirling �ow for Re = 50, 000 in the separator.

Figure 5.28 shows the bubbles migration and core formation over time. We can
see that the bubbles follow the swirling spiral shape of the continuous phase. The
accumulated bubbles are transformed into a gas core resolved using VoF. Since the
centrifugal force decreases along the separator, the accumulation of the bubbles is
more signi�cant close to the swirl element leading to a larger gas core radius at this
location than far from it as shown in Fig. 5.28(a,b). As the migration of bubbles
continues, the gas core grows, and while rotating, the core is transported towards
the pick-up tube due to weight and buoyancy. Its size is also changing along the
separator, more gas is �owing towards the LPO, the core radius increases close to
the LPO and decreases close to the swirl element. By activating the condition on
the �ow split FS = 0.3 at the pick-up tube, the core is recovered by the LPO, but
then gets di�used because of the high velocity inside the LPO.

The temporal evolution of the gas core fraction across the separator at x = 0.5R
presented on the right side of Fig. 5.28 illustrates that the core is cylindrical at the
begining of the simulation following the proposed algorithm of the hybrid LT-VoF.
Then, it gets slightly deformed while rotating yet it remains centered inside the
separator.

Bursts are observed once the core radius is large enough inside the pipe. It in-
duces the increase of the liquid velocity between the core and the pipe wall thus
increasing the shear close to the core interface. This promotes the interface desta-
bilisation both physically and numerically as shown in Fig. 5.28 (i). This is clearly
illustrated in Fig. 5.29 (left) and further discussed in the following paragraph.
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(a) t∗ = 0.086

(b) t∗ = 0.11

(c) t∗ = 0.17

(d) t∗ = 0.3
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(e) t∗ = 0.42

(f) t∗ = 0.46

(g) t∗ = 0.47

(h) t∗ = 0.48
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(i) t∗ = 0, 486

Figure 5.28: Simulation of two-phase �ow separation for Re = 50, 000 using hybrid
LT-VoF with a one-time bubbles injection. The bubbles are presented by a blue
color. The gas core is colored in red. The gas volume fraction over a cross section
x = 0.5R after the swirl element is showed on the right and along the separator in
the bottom.

Figure 5.29 represents a zoom on the gas core interface which corresponds to
C = 0.5 (on the left) and the axial velocity normalized by the bulk velocity at a
cross section 2R after the swirl element (on the right). Up to t∗ = 0.17, the gas
fraction is about 8%, the core has a column shape which looks like the swirling
column pattern 5.1(a). As the gas fraction increases, the core diameter increases,
the core is deformed and small bursts are formed at the interface. The core keeps
rotating in the same direction as the continuous phase as shown by the streamlines
but moves towards the LPO. Its axial velocity is positive and is around 5 times the
bulk velocity. By comparing this with the single-phase �ow simulation of the same
Re = 50, 000 reported in chapter 4 in which a recirculation zone is detected and
shown in Fig. 4.16 where the axial velocity is negative, we can say that the e�ect
of the buoyancy of the gas core overcomes the e�ect of the reverse �ow. This is also
observed in the simulation of the inline separation using only the Lagragian Tracking
in which the bubbles, although located in a recirculation zone, have a positive axial
velocity.

(a) t∗ = 0.11
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(b) t∗ = 0.17

(c) t∗ = 0.3

(d) t∗ = 0.42

(e) t∗ = 0.46
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(f) t∗ = 0.47

(g) t∗ = 0.48

(h) t∗ = 0, 486

Figure 5.29: Simulation of two-phase �ow separation for Re = 50, 000: The gas
core interface (left) with the streamlines. The axial velocity normalized by the bulk
velocity ub over a cross section located at 2R after the swirl element the gas core
(right). The �ow is from left to right in the opposite direction of gravity.

Finally, the same simulation is performed for a two-phase �ow with Re = 25, 000
to check the e�ect of the swirl strength on the gas core stability. The numerical
simulation has showed that the bubbles accumulation is slower in comparison to the
case of Re = 50, 000 as expected and reported in subsection 5.3.4. The gas core is
formed and is stable at �rst as illustrated for instance in Fig. 5.30, then small bursts
appear at the interface. They are characterized by high velocites as presented in
Fig. 5.31.
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Figure 5.30: Simulation of two-phase �ow separation for Re = 25, 000 using hybrid
LT-VoF with a one-time bubbles injection.

Figure 5.31: The normalized velocity magnitude at the gas core interface when the
instability takes place.

The hybrid approach have allowed to simulate the two-phase �ow inline separa-
tion and revealed the possible instabilities and core deformations which can happen
inside the separator. Common patterns of the gas core are observed between the
numerical simulations and the �rst experiments which con�rms qualitatively the re-
sults. However, other numerical constraints are encountered while simulating such
a complex process notably the resolution of the bursts at the interface both in time
and space.

5.4.3 Investigation of the gas core instability in a swirling
�ow

In the process of investigating the reason behind the instability of the core interface
in the separator, we consider the simpli�ed test case of a cylindrical gas core in a
rotating �ow. The numerical and physical conditions are �xed in a way to match the
closest �ow con�guration existing in the separator namely the same mesh resolution
R/∆ = 40, the use of the numerical gas/water system to avoid any possible spurious
currents as detailled in subsection 2.6.3. The time is normalized by tσ =

√
D2ρw/σ.

The rotation velocity of the cylinder ω is �xed to the one obtained in the separator
right after the swirl element for Re = Dub/νw = 50, 000. The Reynolds number of
the �ow in the rotating cylinder is de�ned based on ω as: Reω = ωR2/νw. The radius
of the core corresponds to a gas volume fraction equal to 10% as the one previously
simulated inside the separator, thus Rcore/R = 0.315 which gives Rcore/∆ ≈ 12.5.
Furthermore, periodic boundary conditions at the inlet and outlet of the pipe are
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imposed and the gravity is not considered. At �rst, a single-phase �ow is simulated
inside a rotating cylinder till the solid rotation velocity pro�le is established, then
the core is initialized as shown in Fig.5.32. First, only the VoF solver is used then
the need of a sub-grid model for turbulence is discussed.

Figure 5.32: Initialisation of a gas core in a rotating �ow, on the right is shown the
gas volume fraction in a cross section.

Figure 5.33 illustrates the temporal evolution of the interface of an unstable gas
core. At t∗ = 0.0016, the interface is deformed following a polygonal shape. The
core continues to rotate while the interface instability is being developped in the
radial direction. Such a deformation was observed experimentally in a study of
rotating polygon instability of a swirling free surface �ow [87]. As time goes on, the
instability spreads widely till the point when the interface is not resolved, the mass
is lost and the simulation diverges at t∗ = 0.147 which can be an indication of the
developpement of a numerical instability. This seems to indicate that the �rst stage
of interface deformation observed here, and certainly previously when bursts are
developped, is captured by the solver. Then, the instabilities result in structures of
size smaller than the interface (sub-grid phenomena which are not modelled here).
This point will be discussed later.

Since the centrifugal force generated by the rotation velocity is a direct parameter
which can be controlling the core deformation, an investigation of the behaviour of
the core at lower rotation velocities is done to characterize the occurrence of the
instability and �nd a case where the core is stable. The size of the core is kept the
same Rcore/R = 0.315.
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(a) t∗ = 0.0016

(b) t∗ = 0.002

(c) t∗ = 0.003

(d) t∗ = 0.0035

Figure 5.33: Simulation of gas core in a rotating �ow: Reω = 1.06× 105, Rcore/R =
0.315

Figure 5.34 represents the temporal evolution of the gas volume fraction for three
di�erent rotation velocities corresponding to: Reω = 2.12 × 104, Reω = 4.23 × 104

and Reω = 1.06× 105 and for which the �nal gas core snapshots are at t∗ = 0.237,
t∗ = 0.0067 and t∗ = 0.0035 respectively.

For Reω = 4.23×104, the polygonal instability is observed at the beginning then
the instability di�uses the interface similary to the case of Reω = 1.06 × 105. We
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should note that by increasing the rotation velocity, the instability happens faster.
Finally, by reducing the rotation velocity, the core remains stable while rotating
and no deformation is obtained. This comparison shows the e�ect of increasing the
rotation velocity in developping the instability and explains, to some extent, why
the instabilities of the core in the separator take place with the considered Reynolds
number.
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Figure 5.34: Map of the stability of a gas core of radius Rcore = 0.315R in a rotating
�ow with three di�erent Reω: Reω = 2.12 × 104, Reω = 4.23 × 104 and Reω =
1.06× 105 and for which the �nal gas core snapshots are at t∗ = 0.237, t∗ = 0.0067
and t∗ = 0.0035 respectively.

To fairely compare between the numerical results of the swirling core in the
separator for Re = 50, 000 and the one inside the rotating cylinder, another detail
should be taken into account to wit the turbulence modelling. In fact, the numerical
simulations of the separator were done using LES, therefore, we conduct the same
simulation of a gas core of radius Rcore/R = 0.315 in a rotating �ow using the mixed
dynamic Smagorinsky model.

It is worth mentionning that with the CFD code we are using, only the transport
of the volume fraction by the �ltered velocity is done while the extra term appearing
due to the �ltering operation of the transport equation: u · ∇C−u·∇C is neglected.
The surface tension force considered is also not the �ltered one which is expressed
as: σ(kcur∇C − kcur ∇C). It is true that at this stage, the assumption of neglecting
these terms are not physically justi�ed but considered for the sake of simpli�cation
because the closure of these terms is still an open question. For instance, Vincent et
al.[17] have investigated the modelling of LES for two-phase �ow via the simulation
of a phase inversion case. The convection, di�usion, surface tension and interface
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advection subgrid terms are compared in magnitude and have shown a dependance
on the type of the �lter as well as the LES approach.

Figure 5.35 illustrates the temporal evolution of the gas core interface. The
polygonal instability is slightly distinguished, it is not as sharp as it was with DNS
case in Fig.5.33. Moreover, the interface di�usion which happens using DNS disap-
pears when the LES in considered and the numerical results converges. The LES is
then helping in stabilizing the calculation. The question now is how does the LES
eliminates what looks like a small scale instability and to what extent it does.

(a) t∗ = 0.001

(b) t∗ = 0.01

(c) t∗ = 0.05

Figure 5.35: Simulation of gas core in a rotating �ow: Reω = 1.06× 105, Rcore/R =
0.315 using the mixed dynamic Smagorinsky model.

In an attempt to explain the e�ect of LES on the core stability, and since the
mixed dynamic Smagorinsky model acts in modelling sub-grid scale e�ect and in
particular dissipation at small scales through the local turbulence viscosity, we show
in Fig.5.36 the latter normalized by the kinematic viscosity of the gas in a cross-
section. At initialisation t∗ = 0s, the turbulent viscosity is zero, then at t∗ =
0.001, the core is slightly deformed while rotating, the turbulent viscosity becomes
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important and reaches 80νg in region close to the interface where small scales are
developed. This means that the turbulence is dissipated at the interface leading to
a reduction of the intensity of the instability. This represents a transient regime
because after that, the turbulent viscosity becomes more homogeneous even though
the interface instability due to the swirling �ow still exists.

(a) t∗ = 0.001

(b) t∗ = 0.03

(c) t∗ = 0.05

Figure 5.36: Turbulent viscosity (left) normalized by the kinematic viscosity over a
cross section where the gas core is located (right) : Reω = 1.06×105, Rcore/R = 0.315

Indeed the gas core of radius Rcore = 0.315R was found to be stable with LES,
however, one can expect the behaviour to change if the core size increases since the
interface will be subject to a higher centrifugal force similary to the case of a small
radius in a high rotation velocity. Figure 5.37 represents the interface deformation
over time for a core of radius Rcore = 0.547R. At �rst, the polygonal instability is
enhanced in comparison to a small radius. But after that, the interface is di�used
and the core keeps rotating.
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(a) t∗ = 0.001

(b) t∗ = 0.003

(c) t∗ = 0.007

(d) t∗ = 0.1

Figure 5.37: Simulation of gas core in a rotating �ow: Reω = 1.06× 105, Rcore/R =
0.547 using the mixed dynamic Smagorinsky model.

In this section, we have tried to shed some lights on the instability of a gas
core in a rotating �ow in order to understand what occurs in the inline separator.
There is no doubt that some numerical improvement are still to be introduced in
the proposed numerical method coupling Lagrangian Tracking and VoF especially
when coupled to LES.
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5.5 Conclusion

Numerical simulations and results of two-phase �ow inline separation are presented
in this chapter. A simpli�ed analysis of the migration of a bubble in swirling �ow is
�rst provided using the results of single-phase �ow simulations from chapter 4. The
comparison between the di�erent forces applied on the bubble shows that the drag
force can be neglected in front of the lift and added mass in the radial direction. An
estimation of the migration time is also calculated. To take into account the e�ects
of the �ow unsteadiness and �uctuations, numerical simulations of a bubble in the
separator using Lagrangian Tracking are performed. The results are discussed over
various aspects: the bubble size, the �ow Reynolds number and their in�uence on
the migration time.

Once the migration and capture processes are described in details, the inline
separation of gas/water �ow is simulated �rst by considering only the Lagrangian
Tracking solver and an evaluation of the separation e�ciency is done proving the ca-
pacity of the inline separator. Then, the hybrid LT-VoF is activated. The formation
of the gas core and its resolution using VoF from the accumulated Lagrangian bub-
bles enables to display the patterns on the core interface as the gas volume fraction
increases and relates them to the experimental observations. Bursts are developed
radially at the interface due to the centrifugal force and are characterized by high
velocities. From a CFD point of view, these simulations reveal other open questions
about the resolution of turbulent two-phase �ow using LES and VoF. A simpli�ed
study of the instabilities of a gas core inside a rotating �ow is conducted to make
an openning statement on this topic for a future work.
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Chapter 6

Conclusion and perspectives

6.1 Conclusions

This PhD work is about the development of a hybrid CFD approach based on four
di�erent CFD methods to wit: Immersed Boundary Method (IBM), Large Eddy
Simulation (LES), Lagrangian Tracking (LT) and Volume of Fluid (VoF) to be able
to simulate and understand a two-phase �ow separation process investigated within
the scope of the European project TOMOCON. The inline �uid separator makes
use of a static swirl element which is �xed inside the pipeline and has blades on
its surface to de�ect part of the arriving axial �ow into a swirling tangential �ow
generating then a centrifugal force. The latter pushes the heavy phase towards the
wall, leaving the light phase in the centre to be recoverd afterward by a pick-up
tube at the outlet of the separator. From a CFD standpoint, the simulation of such
process represents many challenges taking into account the �ow features present in
the separator. In fact, the �ow is highly turbulent, the geometry of the swirl element
is complex and the interface length scales of the two-phase �ow are varying from a
millimeter (the size of the dispersed phase) to few meters (the size of the separator).
Hence, a coupling between the di�erent CFD methods is needed. In chapter 1, the
inline �uid separation is detailed and the CFD approach proposed in this study is
presented.

The rest of this thesis can be divided into two parts: chapters 2 and 3 which
focuses on the CFD developements and chapters 4 and 5 which deals with the
simulations and investigation of swirling single and two-phase �ows in the separator.

As a matter of fact, in chapter 2, the CFD code JADIM used for the simulations is
introduced and the independant LES [18], IBM [23], LT [24] and VoF [48] solvers as
previously developed in JADIM and validated through many studies are described.
New CFD developments are then proposed in the current work: �rst, the use of
IBM for complex geometries (the swirl element in our case) constructed via a CAD
solfware. Basilisk is used to generate the required solid fraction needed for the IBM
solver [23]. This method is validated through the simulation of the separator. Then,
IBM is coupled to LT by introducing a collision model to allow the dispersed phase
to rebound on the IB solids (pipe, swirl element, pick-up tube) when a contact
accurs according to the normal to the IB surface with a restitution coe�cient set
to 1 for full restitution of the kinetic energy. A 3D simulation of a set of bubbles
injected at the �uid velocity upstream the swirl element in the separator is performed
without the proposed collision model shows that the bubbles are trapped inside IB
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cells and that by activating the hybrid IBM/LT model, they are able to rebound
on the swirl element. Later, when the separation takes place and the dispersed
phase accumulates in the centre to form the core, a switch from LT to VoF is
done. The hybrid LT/VoF consists in moving any dispersed phase reaching the
pipe centre or in contact with a VoF cell from the Lagrangian framework to the
Eulerian one and update the phase indicator with the transformed dispersed phase
fraction. This model is validated through the simulation of bubbles accumulation in
a solid body rotating �uid. The core is formed and its interface is solved using VoF.
For an air/water system, the problem of spurious currents in VoF is discussed and
solved via a dimentionless study. Finally, an original stochastic wall model for hybrid
LES/IBM is presented in chapter 3 with the objective to develop a wall model for the
mixed dynamic Smagorinsky model coupled to IB solids in order to avoid the need of
mesh re�nment next to the wall to capture the viscous sub-layer. The development
of the model has gone through three steps, Poiseuille �ow is �rst simulated to check
the ability of IBM to solve the �ow since we already know the analytical solution,
a model is therefore introduced in the IBM forcing. Then, turbulent pipe �ow is
simulated using just IBM/LES, an underestimation of the bulk velocity is found.
Thus, a mean wall model based on the log law or the power law is implemented.
With the adjustment of the model parameter, the wall model is able to recover the
mean velocity but needs a source of �uctuations to act on the rms velocities. This
is why, a stochastic wall model is �nally proposed and is capable of correcting both
the mean and velocity �uctuations.

Once the proposed hybrid CFD approach is presented and validated, numerical
simulations of the inline �uid separation process are performed. Chapter 4 focuses
on studying swirling single-phase �ow in the separator using LES/IBM with the
wall model. A general description of the swirling �ow features in the separator is
provided. The mesh sensitivity is done. Then, a single-phase �ow in the separator
for Re = 50, 000 is investigated in terms of the axial and azimuthal velocities, the
swirl element, the pressure and the centrifugal force. The e�ect of the Reynolds
number on these quantities is also looked at. The normalized azimuthal velocity
and the swirl element are found to be slightly dependent of the Reynolds number
while the recirculation zone expansion is in�uenced by Re. Finally, to simulate
the e�ect of the condition at the separator outlet, the pick up-tube and the �ow
straightner which eliminates the swirling �ow between the separator and the pick-
up tube are added using IBM. And to impose the condition of the �ow split FS
on the valve acting on the pick-up tube, an IBM forcing is introduced in the �ow
straightener. This allows to control directly the �ow rate going through the LPO
and eventually mimic a dynamic condition of the valve when it is the case. Similary,
a comparison of the velocity pro�les is done for di�erent �ow splits. The latter
modi�es the �ow not only inside the pick-up tube but also upstream of it.

Chapter 5 represents the numerical results of the two-phase �ow simulations
in the separator. At the beginning, the dynamics of a bubble in the separator is
described though its force balance. The objective is to understand the migration
process and the forces which are behind it. A simpli�ed trajectory equation is
found based on the previous single-phase �ow study. And characteristic times are
introduced namely the relaxation time, the migration time and the capture time.
Then, two-phase �ow simulations of a set of bubbles using LT are carried out. This
allows to take into account the �ow �uctuations e�ect on the dispersed phase and
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evaluate accurately the forces. The instantenuous and averaged forces are compared
and the RMS are calculated. The migration process is found to be governed mainly
by the radial virtual mass force and an eventual contribution of the lift force with
either a centripetal or a centrifugal e�ect, the �uctuations of these forces have also a
role in delaying the migration especially the lift force. Furthermore, an impact of the
decrease of the bubble size is noticed on the increase of the migration time. A similar
e�ect is observed when decreasing the Reynolds number. This detailed study of the
forces on the bubbles and their sensitivity to the various parameters is important to
estimate the migration time and therefore optimize the separator. The second part of
the chapter deals with the bubbles accumulation and core formation. Using only the
Lagrangian Tracking, the separator performance is evaluated. The inline separator
proves to be an e�cient technology to recover the gas. Finally, by activating the
hybrid approach LT-VoF, the gas core is constructed and solved employing VoF. A
rotation of the gas core following the continuous swirling phase as well as an axial
motion towards the LPO are observed. At the interface, instabilities marked by high
velocities occur in the form of bursts and relate qualitavely to experimental results
from TU Delft. To further investigate the interface deformation, a study of gas core
instabilities in a rotating �ow is conducted and conclusions are drawn both from a
physical and numerical views.

Figure 6.1 summarizes the numerical developments of this PhD work by pre-
senting the complex �ow features in the inline separator, the proposed hybrid CFD
approach which consists of IBM/LES, IBM/LT and LT/VoF and illustrations of
numerical simulations using this approach.

Figure 6.1: Illustration of the developed hybrid CFD approach for the simulation of
inline �uid separation.

6.2 Perspectives

The short-term perspectives concern the ongoing work to extend the numerical do-
main to the same exact con�guration used in the experimental study for a quan-
titative comparison this time. More scenarios of �xed and dynamic pick-up tube
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conditions are to be simulated in a way to mimic the condition of the controller on
the valve in experiments. In fact, by following the time evolution of the e�ciency of
separation, the condition on the �ow rate at the HPO can be adapted depending on
the coming gas fraction at the LPO to ensure a good e�ciency. This is implemented
in the CFD code by imposing the adequat IBM force de�ned in the �ow straightener
and the response time of the �ow to the new condition can also be controlled. More-
over, the simpli�ed model of the bubble migration can be upgraded by including the
contribution of the �uctuations of the forces deduced from this PhD work to help
predict the migration and capture time accurately. This can eventually contribute
in adding some physics in the transfer function of the controller (see Fig. 6.2). The
results are expected to be presented in future publications.

Figure 6.2: Sketch of the control of the inline �uid separation process with the con-
tribution of tomography sensors as well as CFD (top) and how the control condition
is implemented in the CFD simulations (bottom).

The same device of separation including a controller can also be tested on liquid
liquid two-phase �ow. This can represent an extension of the previous work [1, 5].
Numerically, the VoF solver will be more stable since the viscosity ratio of oil water
two phase-�ow is lower, the instabilities at the interface are then reduced. How-
ever, the drag coe�cient should be adapted to droplets following the recent work of
Rachih et al. [25] while the lift coe�cient for droplets is less known and a correlation
for solid particles could be used as a �rst approximation. The same study can be
done on di�erent swirl element geometries to determine the e�ect of its shape on
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the separation.

Indeed the developed hybrid CFD approach has given a relevant proof of concept
of its capacities in simulating inline �uid separation and which can also be used for
other complex �ows. But, it still has some aspects which can be done or improved
in the long term. For instance, one can still ameliorate the collision model of hybrid
IBM/LT to evaluate the restitution coe�cient for di�erent types of dispersed phase
(bubble, droplet, solid particle). This may need information about the microscopic
physics which we cannot be solved using LT but can eventually be deduced from
existing experiments and included in the CFDmodel. Furthermore, as we are dealing
with highly turbulent bubbly �ow, it is also possible to investigate the variation
of the force balance coe�cients for drag, lift and virtual mass so to consider the
deformation of the bubbles which might in�uence the separation process in our
study.
Concerning the proposed wall model for IBM/LES. It has been observed that the
stochastic model which is able to reproduce the mean and �uctuations velocities
gives strong pressure �uctuations since the velocity imposed in the IBM forcing
is not divergence free and this represents an interesting persective to bring more
improvment to the model.
Finally, one of the outlooks of this thesis is the modelling of turbulence for VoF since
a limited number of publications are present in litterature [17, 54] and the subject
remains an open question in the domain of CFD modelling. A hybrid LES/VoF
should discuss many aspects such as the e�ect of the LES approach, the formulation
of the two-phase LES sub-grid terms and the robustness of the method to simulate
di�erent �ow con�gurations. This is why, this represent an immense work in itself
allowing to explain what happens to the interface in turbulent �ows like what we
observe in the inline �uid separation.
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