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The purpose of this thesis is the study of Lattice Boltzmann Methods (LBM), applied to multiphase flows. First, general principles of statistical physics and of Lattice Boltzmann Methods are introduced, followed by a historical review about Lattice Gas Automata. A state of the art of the multiphase flow simulation methods is then proposed, with a particular emphasize on diffuse interface methods. In particular, the phase field methods are introduced, and different methods allowing to numerically simulate surface tension are also presented. A second review concerning multiphase flow simulation in a Lattice Boltzmann framework is presented. More precisely, general principals are presented, and the four major methods, Color Gradient, Pseudo-Potential, Free Energy and HCZ, are successively presented. Lattice Boltzmann Methods advanced notions are then introduced, in particular, a Taylor expansion based method that allows to determine Lattice Boltzmann schemes equivalent macroscopic equation is described. A Gradient Color method theoretical study is proposed. First, an original reformulation of the algorithm allowing an improvement in computational efficiency is proposed. The Taylor expansion method is then applied to Gradient Color Method in order to determine the high order error induced by the numerical scheme. This expression allows to demonstrate how the degree of isotropy is essential to the scheme numerical stability. In particular, a numerical operator allowing to introduce an equation of states that differs from the athermal perfect gas equation is proposed. This operator efficiency is illustrated by being applied to academical testcases. The Taylor expansion method is also applied in order to show how the Color Gradient Method allows to solve an Allen-Cahn phase field equation. This theoretical result is then validated numerically. Finally, an original improved version of the Gradient Color Method is proposed. In this method, the efficient formulation and the isotropic Equation of State operator is used, and an original temporal correction term is proposed. This correction term improves the scheme numerical stability and allows to expands the method application range to higher density ratios. Finally, this method is validated through academical testcases.

Introduction

Aeronautics is one of the major french industries: 4 out of the 40 biggest french companies are dedicated to it (Airbus, Dassault, Safran and Thalès). The passengers number has been constantly growing years after years; while being previously only considered by wealthy people, this transportation mode became cheaper over the year, and is now affordable for middle classes [1]. Not only this activity has an economical importance, but it is also a national sovereignty matter for wide countries such as Russia or Australia, for which internal travels mainly rely on plane due to the country dimensions [START_REF]Aviation benefits beyond borders[END_REF]. An obstacle to this development is that the aeronautical industry remains one of the most polluting industry per passenger per kilometers, when considering green house gases emissions, representing alone 4% of European Union's green house gases emissions [3]. As a consequence, aeronautical industry growth is a priori incompatible with the fight against climate change. Recently, two policies are proposed to address this issue. The first one consists in reducing the total number of travels operated by planes, for example in France by banning flights that can be reasonably replaced by a train travel. The second consists in drastically reducing the greenhouse gas emissions. In the short term, airplane makers plan to launch a new aircraft generation with significantly reduced emissions, relying on lean combustion engines which are believed to be able to reduce CO 2 emissions by 25% [1]. However, such reduction won't be enough to reach national plans to fight climate change, such as the 2050 zero emission plan followed by the European Union. On the longer term, manufacturers plan on developing new hydrogen based sustainable aviation fuels, which are presented as "zero emission" solutions [START_REF] Atag | Hydrogen-powered aviation a fact-based study of hydrogen technology, economics, and climate impact by 2050[END_REF]. Both technical solutions rely on new aircraft engines combustion chamber architectures, allowing to use different fuel compositions or totally different fuels. An issue of the uppermost importance when designing combustion chamber is the prediction of thermoacoustic instabilities [START_REF] Keller | Thermoacoustic oscillations in combustion chambers of gas turbines[END_REF], which may lead to severe damages. Thermo-acoustic instabilities have been shown to be impacted by the use of hydrogen [START_REF] Chterev | Effect of hydrogen enrichment on the dynamics of a lean technically premixed elevated pressure flame[END_REF]. It is also known that cowlings occur between the spray and the acoustics [START_REF] Lo Schiavo | Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames[END_REF][START_REF] Christou | Influence of an oscillating airflow on the prefilming airblast atomization process[END_REF]. For these reasons, the design of combustion chambers must account for these couplings and instabilities to ensure safety [START_REF] Poinsot | Prediction and control of combustion instabilities in real engines[END_REF]. It must then account for the fuel injection and the spray formation. In order to characterize completely an engine architecture, a consistent injection model is necessary. One phenomenon in particular is of interest: primary atomization. In order to define this phenomenon, a discussion about aircraft engine structure is proposed.

Atomization in aircraft

Aeronautical civil aircraft engines consist in a stack of different components as illustrated in Figure 0.1. The fan, or propeller, located at the entrance, accelerates the incoming air and provides most of the engine thrust. The fan rotation is allowed through a primary air circuit, in which some amount of propelled air is taken, compressed in a compressor, heated in the combustion chamber thanks to the combustion of a fuel, and then expanded in a turbine which drives the shaft and consequently, the fan and compressor. A nozzle located downstream of the engine finally accelerates the air to increase the thrust. Note that compression is not essential to the engine operation but significantly increases combustion efficiency. When focusing on the combustion chamber, it is composed of a chamber as well as some fuel injectors, allowing to inject the fuel. The liquid fuel is injected in the combustion chamber through fuel injectors, for which several concepts exist ( [START_REF] Lefebvre | Atomization and Sprays[END_REF]). The role of the injector is to transform the injected liquid fuel into a spray of small droplets, so that the exchange surface between the liquid fuel and the gaseous oxidizer is increased. This allows to increase the liquid evaporation rate, favoring the fuel-oxidizer mixing, and thus the combustion -Schematic of a pressure swirl injector in a combustion chamber continuous liquid is called the atomization. It consists in a series of liquid-gas instabilities [START_REF] Lefebvre | Atomization and Sprays[END_REF][START_REF] Dumouchel | On the experimental investigation on primary atomization of liquid streams[END_REF] which remain not fully understood and hardly predictable for realistic configurations. As previously said, the atomization may significantly be influenced by acoustic, or thermo-acoustic instabilities [START_REF] Lo Schiavo | Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames[END_REF][START_REF] Ficuciello | Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering[END_REF][START_REF] Dighe | Atomization of acoustically forced liquid sheets[END_REF]]. An illustration of an actual spray at a pressure swirl injector exit is proposed Figure 0.3. For this reason, both atomization and combustion must be simultaneously investigated. Unfortunately, the experimental investigation of atomization in a closed, pressurized, reactive combustion chamber is a tough issue. This motivates the need for accurate numerical solvers able to predict atomization in a compressible and reactive environment. 

Numerical solvers

Because of the complexity resulting from non-linearity of Navier-Stokes equations, analytical solution are known only for simple academical cases such as a Poiseuille flow or a Couette flow. Proving existence and smoothness of a solution is part of the seven Millenium Prize Problems defined by the Clay Mathematical Institute, rewarded by a million dollars price [15]. The development of numerical methods and supercomputers allowed to overcome this lack of analytical solution by approximating Navier-Stokes solution through Computational Fluid Dynamics (CFD). Several numerical methods can be listed, such as finite volume, finite differences, spectral differences. Independently of the considered numerical method, high Reynold numbers (Re) flows simulation is only possible by paying a heavy price in term of computational time and memory. To reduce this costs, turbulence modeling has been proposed, such as Large Eddy Simulation (LES) [START_REF] Sagaut | Large Eddy Simulation for Incompressible Flows[END_REF], for which the smallest turbulent scales are modeled, or Reynold Averaged Numerical Simulation (RANS) [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF], averaged in space and time. Navier-Stokes convection term and pressure term non-locality are an important unstability source. Simulating non-purely aerodynamic phenomena is also an active topic of investigation, such as for evaporation, frosting, or, the main topic of this document, multiphase flows. Multiphase flows simulation is a challenging subject of investigation in fluid mechanics. In the present work, "multiphase flows" states for two immiscible phases, while "multiphase" can be more general. When two immsicible flows co-exist, a smooth transition occurs over a few atoms length. Since it is much smaller than the usual system's length of interests, the interface is considered infinitely fine. This introduces a discontinuity, which is a challenge to adress in numerical methods. Furthermore, as later detailled in the manuscript, a surface tension occurrs at the interface, which has a significant impact on the dynamics of the interface [START_REF] Ashgriz | Handbook of Atomization and Sprays[END_REF], making it a key factor in atomization study. For this force to be computed, the interface curvature needs to be accurately estimated, which is particularly challenging for complex flow topologies, such as interfacial waves, liquid ligaments, and associated break-up. Finally, atomization configurations also involve high Reynold numbers, high Weber numbers, significant shear and density gradient across the interface.

Lattice Boltzmann Method and Multiphase Flow

In the meantime, Lattice Boltzmann Method (LBM) has received a growing attention. Its basis have been originally proposed by the Cellular Automata community. Since Frish et al. [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF] and d'Humières et al. [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF] who introduced the Lattice Gas Automata (LGA) algorithm, Mc Namara and Zanetti [START_REF] Mcnamara | Use of the Boltzmann Equation to Simulate Lattice-Gas Automata[END_REF] extended this work to propose a Lattice Boltzmann Method. Originally proposed for low-Mach aerodynamics, extensions to multi-phase flows rapidly came out. Rothman and Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] proposed a LGA multiphase algorithm that has been adapted to a LBM framework by Gustensen et al. [START_REF] Gunstensen | Lattice Boltzmann model of immiscible fluids[END_REF]. LBM received a growing interest motivated by its scalability and its low dissipation properties, making it particularly well-suited for acoustic long distance dispersion problems [START_REF] Shao | Review of Lattice Boltzmann Method Applied to Computational Aeroacoustics[END_REF]. It also proved to be more computationally efficient than standard Navier-Stokes methods for aerodynamics problems for example. Its application to two-phase flows have also largely been undertaken, with several specific methodologies. Apart from the Colour Gradient Method [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] (also known as RK method from Rothman and Keller, their creators) Shan and Chen [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF][START_REF] Shan | Simulation of non-ideal gases and liquid-gas phase transition by lattice boltzmann equation[END_REF] proposed a Pseudo-potential method. Swift et al. introduced the Free Energy method [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF][START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF] and He et al. [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF] finally proposed the so-called HCZ method (from He, Chen and Zhang who first proposed the method), which recently received a lot of attention since the work of Fakhari et al [START_REF] Fakhari | Multiple-Relaxation-Time lattice Boltzmann method for immiscible fluids at high Reynold numbers[END_REF][START_REF] Fakhari | A mass-conserving lattice boltzmann method with dynamic grid refinement for immiscible two-phase flows[END_REF][START_REF] Fakhari | Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios[END_REF][START_REF] Fakhari | Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios[END_REF] and Geier et al. [START_REF] Fakhari | A conservatice phase-field lattice boltzmann model for interface tracking equation[END_REF]. Those methods were applied on a large range of cases: droplet impact [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF], free jet [START_REF] Saito | Color-gradient lattice boltzmann model with monorthogonal central moments: hydrodynamic melt-jet breakup simulations[END_REF], ternary fluid [START_REF] Yu | A versatile lattice Boltzmann model for immiscible ternary fluid flows[END_REF], drop impact on a liquid film [START_REF] Inamuro | Validation of an improved lattice Boltzmann method for incompressible two-phase flows[END_REF], flow with surfactants [START_REF] Mukherjee | A lattice boltzmann approach to surfactant-laden emulsions[END_REF] and also widely in porous flow [START_REF] Liu | Multiphase lattice boltzmann simulations for porous media applications[END_REF]. HCZ method allows to simulate a large range of flows at both large density ratios and large Reynolds numbers [START_REF] Mitchell | Development of a three-dimensional phase-field lattice boltzmann method for the study of immicible fluids at high density ratio[END_REF], while other methods are limited to moderate density ratios and / or moderate Reynolds numbers. Despite the attractiveness of this last method, it takes place in an incompressible framework. The need to account for compressibility is of importance for atomization. For such problems, other methods than HCZ must be investigated. Because of its numerical efficiency [START_REF] Leclaire | Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models[END_REF], the Color Gradient Method is chosen here. However, the derivation of the equivalent macroscopic equations is not straightforward [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF][START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF][START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF]. Considering that a lot of important steps in free energy and HCZ methods were made by appropriating methods among the Phase Field community [START_REF] Sun | Sharp interface tracking using the phase-field equation[END_REF][START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF], the difficulty of obtaining a LBM equivalent equation for the Color-Gradient Method can be seen as an important drawback.

Dissertation outline

In the present work, a new numerically efficient, but equivalent formulation of the Color-Gradient method is proposed. In particular, it is adapted to an arbitrary Equation Of State (EOS), and a new physical interpretation of the method is proposed. Based on an innovative approach different from Subhedar et al. [START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF], the equivalent macroscopic equation associated to the recoloration stepaccounting for phase segregation -is proposed. It is shown that the recoloration step allows to solve an advection-diffusion equation. Finally this work highlights a spurious temporal term, which can be corrected by a new correction term, significantly improving numerical stability, thus allowing to tackle density ratios as high as 1000. This work is organized as follow: in Chapter 1, an introduction to Lattice Boltzmann method is proposed, in Chapter 2, a review of numerical methods to predict multiphase flows is proposed. Chapter 3 is a review of Lattice Boltzmann Methods applied to multiphase flows. Chapter 4 address the advanced LBM framework that must be detailed to understand how LBM macroscopic equations can be determined from a Taylor Expansion. In Chapter 5, a theoretical analysis of the colour gradient method is proposed and finally in Chapter 6 an improved algorithm is presented and is applied to academical test-cases.

Chapter 1

At a time where the existence of the atom was still a burning subject of controversy among the scientific community, Ludwig Boltzmann (1844Boltzmann ( -1906) ) proposed the kinetic theory of gases [START_REF] Boltzmann | Lectures on gas theory[END_REF]. By assuming fluids as an aggregation of atoms ruled by Newtonian mechanic laws, Boltzmann recovered phenomena such as heat, viscosity or magnetism. The statistical approach of gases covers most of the phenomena described by thermodynamic, such as heat transfer, thermal equilibrium, equations of state, etc. Even after more than a century, this work remains particularly relevant and is still used on a daily base in the modern science framework. In particular, one the main subject of discussion of the present work, Lattice Boltzmann Methods, rely on Boltzmann's kinetic theory. The present Chapter is organized as follow. First, statistical mechanics basic principles are presented Section 1.1, then the link between Boltzmann equations and Navier-Stokes equations are presented Section 1.2. The Lattice Boltzmann method is then introduced Section 1.3, and the chapter ends on a review of LBM's birth history Section 1.4.

Introduction to statistical mechanics 1.Distribution function

The classical approach to represent a fluid is to consider a continuum system, described by several macroscopic quantities, such as the density ρ (kg.m -3 ), the velocity u (m.s -1 ), the total mass energy E (m 2 .s -2 ). The state of a fluid is fully known if those macroscopic fields are known. The temperature T (K) can be used rather than E. The dynamic of the fluid is influenced by the pressure p (kg.m -1 .s -2 ) which is a function of ρ and T . The law describing the relationship between p, ρ and T is called the Equation Of State (EOS). A fluid system can also be described from a microscopic and discontinuous point a view by calculating every atom's position and instant velocity. Such an approach would necessitate an excessive amount of computation power given the particles quantity in a typical flow (2.1 10 22 particles in a single gram of air). Note that for each atom, the position (x, y, z) and the velocity ξ = (ξ x , ξ y , ξ z ) need to be determined, which makes 6 variables per particle. An intermediate scale exists between the microscopic and the macroscopic one: the fluid can be described through a statistical approach thanks to a density function f . This statistical description of the fluid stands in a particular framework. Atoms are supposed to be all identical and mono-atomic. As a consequence of this mono-atomic assumption, no inner-rotation or inner-vibration movement are possible, making the particles translation the only source of kinetic energy. In this model, the state of a fluid at a given point of space is fully described by a distribution function f ( x, ξ, t). It is a function of time t, space x and of the microscopic velocities ξ, it is homogeneous to a density per velocity cubed (kg.m -6 .s 3 ). Its integration over the microscopic velocity space correspond to the density of particles going to a particular speed. Its integration over [ξ x,1 , ξ x,2 ], [ξ y,1 , ξ y,2 ],

[ξ z,1 , ξ z,2 ] given by

ξ x,2 ξ x,1 ξ y,2 ξ y,1 ξ z,2 ξ z,1
f ( x, ξ, t)dξ x dξ y dξ z corresponds to the density of particles at the location x at the time t whose velocity belongs to [ξ x,1 , ξ x,2 ], [ξ y,1 , ξ y,2 ] and [ξ z,1 , ξ z,2 ]. In a simpler way, f ( x, ξ, t)d ξ is the density of particles going at the velocity ξ in a volume of d ξ.

The way this function describes a fluid behavior can seem obscure, but in fact f can be linked to the macroscopic quantities through integration relationships. If f ( x, ξ, t)d ξ is the density of particles going at a given speed, then its integration over all the microscopic space gives the density of particles going at any speed, which is the total density of particles. Then density at a given point is given by:

ρ( x, t) = ∞ -∞ ∞ -∞ ∞ -∞ f ( x, ξ, t)dξ x dξ y dξ z (1.1)

Introduction to statistical mechanics

In order to make the notations slightly less heavy the triple integration over microscopic space is noted:

∞ ∞ ∞ ∞ ∞ ∞ * dξ x dξ y dξ z = * d ξ.
If f ( x, ξ, t)d ξ corresponds to the density of particles going at the velocity ξ, then ξf ( x, ξ, t)d ξ corresponds to the momentum of those particles. Then its integration gives the average momentum of all the particles. Finally the fluid macroscopic velocity can be given by: ρ( x, t) u( x, t) = ξf ( x, ξ, t)d ξ (1.2)

In a similar manner, the macroscopic total mass energy is given by:

ρ( x, t)E( x, t) = 1 2 | ξ| 2 f ( x, ξ, t)d ξ (1.3)
This total energy accounts for the internal energy e, and the kinetic energy :

ρE = ρ e + 1 2 |u| 2 (1.4)
It can be verified that the internal energy can also be calculated through an integral equation such as:

ρe( x, t) = 1 2 | ξ -u| 2 f ( x, ξ, t)d ξ (1.5)
This internal energy term is of importance in this work since it can be proven to be related to the pressure. The ξ -u is the particles velocity relatively to the mean velocity. Hereinafter, it will be noted:

v = ξ -u (1.6)
It can be shown through a demonstration proposed in Appendix A.1, that in the mono-molecular framework, internal energy and pressure are proportional according to:

p = 2 3 ρe (1.7)
If perfect gas law is assumed, internal energy can be written as:

e = 3p 2ρ = 3rT 2 = 3k B 2m (1.8)
With r the specific gas constant (m 2 s -2 K -1 ), T the temperature (in Kelvin K), k B the Boltzmann's constant and m the mass of one particle.

Equilibrium function

As detailed in Section 1.1.3, a differential equation for f describing the flow dynamic can be defined. It relies on the assumption of the existence of an equilibrium state in which all the directions of the relative velocity v are equally probable. This equilibrium state is described by an equilibrium distribution function function f eq , which expression is central in the present work. Relying on the isotropic assumption, the expression of the equilibrium distribution function can be determined. The detail of the demonstration is proposed in Appendix A.2. The equilibrium function's expression is given by:

f eq = ρ (2πrT ) 3 2 e -| v| 2 2rT
(1.9)

Chapter 1 : Lattice Boltzmann Methods This function f eq i is the Maxwell-Boltzmann distribution. A first expression of f eq has been proposed by Maxwell [49] and corresponds to the demonstration of Appendix A.2, then a more rigorous demonstration has been later proposed by Boltzmann [START_REF] Boltzmann | Lectures on gas theory[END_REF]. Note that the successive moments of f eq respects the conditions of isotropy proposed by Wolfram Eq. (1.96). In the LGA framework, to obtain the density it was necessary to sum c i over all the microscopic velocities, in this kinetic theory framework the integration operation is necessary. The first successive moments of f eq in u frame of reference follow:

f eq ( x, ξ, t)d ξ = ρ
(1.10)

v α f eq ( x, ξ, t)d ξ = 0 (1.11)
v α v β f eq ( x, ξ, t)d ξ = ρrT δ αβ (1.12)

v α v β v γ f eq ( x, ξ, t)d ξ = ρrT (u α δ βγ + u β δ αγ + u γ δ αβ ) (1.13) v α v β v γ v µ f eq ( x, ξ, t)d ξ = ρ (rT ) 2 2 (δ αβ δ γµ + δ αγ δ βµ + δ βγ δ αµ ) (1.14)
Since the function f eq is anti-symmetrical, the odd moments are always equal to 0. Then it can be shown though a recursive demonstration that the isotropic relationship are always verified, i.e.:

v x 1 v x 2 ...v x 2n f eq d ξ = ∆ (2n) (1.15)
Such a condition is not surprising since the equilibrium function f eq relies on isotropic assumptions.

Boltzmann equation

In the statistical mechanics framework, a large quantity of particles have their own velocity, which consequently leads to the occurrence of collisions. When two particles or more collide, their trajectories are modified depending on their relative velocities and positions at the impact. Collisions between particles are a complex phenomenon, which is not directly computed in LBM, but modeled. To do so, Boltzmann proposed to account for collisions in a collision operator Ω in the conservation equation of the distribution function f, following:

∂ t f + ξ α ∂ α f + F α ρ ∂f ∂ ξα = Ω (1.16)
with F α the α component of a body force F , and Ω is the collision operator. The formulation of this operator is complex, involving a double integral in space and time, and not used in practise. Its formulation is not given here, but some of its properties must be underlined. In the hypothesis of hard sphere colliding in a perfectly elastic way, mass, momentum and the internal energy of the particles are conserved: Ω( x, ξ, t)d ξ = 0 (1.17) ξ α,i Ω( x, ξ, t)d ξ = 0 (1.18)

| ξ -u| 2 Ω( x, ξ, t)d ξ = 0 (1. [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF] 1.1 Introduction to statistical mechanics If momentum and internal energy are conserved, it can be shown that total energy is also conserved:

ξ 2 Ω( x, ξ, t)d ξ = 0 (1.20)
A simpler form of the collision operator was proposed by Bathnagar Gross & Krook [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF], who proposed to write the collision operator as:

Ω(f ( x, ξ, t)) = - 1 τ f ( x, ξ, t) -f eq ( x, ξ, t) (1.21)
where f is the distribution function and f eq is the distribution function at the equilibrium, detailed in the next subsection. In this model, the collision term is seen as a relaxation toward the equilibrium with a characteristic time scale τ . It is the simplest possible collision model.

Macroscopic equivalent equation 1.2.1. The Chapmann-Enskog development

Independently proposed by Chapmann and Enskog [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases[END_REF], it can be shown that the Navier Stokes equation can be derived from the Boltzmann equation. This approach is called the Chapmann-Enskog development and is detailed here. It generally relies on a development in Knudsen number, noted Kn. The Knudsen number is defined as the ratio between the mean free path L mf p and a characteristic length of the flow, L 0 :

Kn = L mf p L 0 (1.22)
This number allows to evaluate the validity of the continuous approach to describe the fluid. If L 0 L mf p i.e. if Kn 1 then the continuous approach is valid. Otherwise the field is considered as rarefied and then Navier-Stokes equations (or other conservation equations taking place in a continuous framework) cannot be used to describe such a flow. This dimensionless number is of great importance when doing a dimension analysis of the Boltzmann equation. The Chapmann-Enskog development considers the Boltzmann equations in the BGK hypothesis framework, and first consists in normalizing the variables of interest. These variables are the space coordinates x, the time t, the microscopic velocities ξ, the relaxation time τ , the partition function f and the body force F . A characteristic velocity ξ 0 is defined. Giving the existence of two space scales L 0 and L f mp , two characteristic time scales can be defined from the characteristic velocity:

t 0 = L 0 ξ 0 , t mf p = L mf p ξ 0 (1.23)
Since the collision process is a microscopic phenomenon, the associated relaxation time is normalized thanks to t mf p while the time scale t is normalized using t 0 . Finally

t = t ξ 0 L 0 x = x ξ = ξ/ξ 0 τ = τ ξ 0 L mf p F = F L 0 ξ 2 0 ρ 0 f = f ξ 3 0 ρ 0 (1.24)
Where the . variables refer to the dimensionless variables. Then the dimensionless counterpart of the Boltzmann equation Eq. (1. [START_REF] Sagaut | Large Eddy Simulation for Incompressible Flows[END_REF]) comes as:

Kn ∂ t f + ξα ∂ xα f + Fα ∂ ξα f = - 1 τ f -f eq (1.25)
It comes that when the Knudsen number tends toward 0, then f = f eq . Then the greater Kn becomes the more the partition function f deviates from the equilibrium function f eq . This stays true for f and f eq . It is then reasonable to write the partition function as a sum in Knudsen number such as:

f = f (0) + Knf (1) + Kn 2 f (2) + ... (1.26)
with f (0) = f eq . Since by definition: f (eq) d ξ = f (0) d ξ = ρ, it comes that:

f -f (0) d ξ = 0 (1.27) f -f (0) ξ α d ξ = 0 (1.28) | ξ -u| 2 f -f (0) d ξ = 0 (1.29)

Macroscopic equivalent equation

The previous relationships are true for i Kn n f (n) , an important assumption that is made here, is that the previous relationships are true for each f (n) , and not only for all the sum:

f (n) d ξ = 0 n ≥ 1 f (n) ξ α d ξ = 0 (1.30)
The different derivative operators are also expanded in Knudsen number:

∂ t = Kn∂ t (1) + Kn 2 ∂ t (2) + ... (1.31)
In practice this relationship is truncated at the order 2, which is equivalent to assume the existence of two time scales as in the work of Da Silva et al. [START_REF] Silva | First and second order forcing expansion in a atice boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form[END_REF] : one diffuse time scale t (1) and one convective time scale t (2) . The spatial derivative is also expanded in Knudsen number.

∂ α = Kn∂ α (1) + Kn 2 ∂ α (2) + ... (1.32)
Previous equation Eq. (1.32) is truncated up to the order 1, which gives

∂ α = ∂ α (1)

Equivalent macroscopic equation of the Boltzmann equation

Applying Eqs. (1.26, 1.31, 1.32) to the Boltzmann equation Eq. (1. [START_REF] Sagaut | Large Eddy Simulation for Incompressible Flows[END_REF]), one can obtain the expansion of the Boltzmann equation in Knudsen number:

1 τ f (0) -f eq + Kn ∂ t (1) f (0) + ξ α ∂ α (1) f (0) + 1 τ f (1)
+ Kn 2 ∂ t (2) f (0) + ∂ t (1) f (1) + ξ α ∂ α (1) f (1) + 1 τ f (2) + Kn 3 ... = 0 (1.33)

The last assumption that will be made, is that Eq. (1.33) must be verified for each order in Knudsen.

For instance, at the order 0 in Knudsen, this equation becomes:

f (0) i = f eq i (1.34)
which has already been stated. Now the Boltzmann equation will be investigated for every degree in Knudsen.

Order 1 in Knudsen

Eq. (1.33) first order in Knudsen comes as:

∂ t (1) f (0) + ξ α ∂ α (1) f (0) = - 1 τ f (1) (1.35)
Using Eq. (1.30), it comes that f (1) d ξ = 0. Then the integration of Eq. (1. [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF] gives:

∂ t (1) f eq d ξ + ∂ α (1) ξ α f eq d ξ = f (1) d ξ (1.36)
Giving that f (1) d ξ = 0 according to Eq. (1.30), it comes:

∂ t (1) ρ + ∂ α (1) ρu α = 0 (1.37)
Eq. (1.37) evidences that Boltzmann equation allows to recover the mass conservation equation. Similarly, a momentum conservation equation can also be recovered by integrating Eq. (1.35) multiplied by the microscopic velocity ξ α :

∂ t (1) ρu α + ∂ α (1) (ρu α u β + ρrT δ αβ ) = 0 (1.38)
Finally, an expression for the total energy can be deduced by integrating Eq. (1.35) multiplied by | ξ| 2 . It comes:

∂ t (1) ρE + ∂ α (1) (ρEu α ) = 0 (1.39)
By manipulating Eq. (1.39) and Eq. (1. [START_REF] Inamuro | Validation of an improved lattice Boltzmann method for incompressible two-phase flows[END_REF], an equation for the internal energy can also be obtained:

∂ t (1) ρe + ∂ α (1) (ρeu α ) + p∂ α (1) u α = 0 (1.40)
Remembering that e = 3rT 2 , the previous equation Eq. (1.40) can be expressed in term of the temperature field:

∂ t (1) ρrT + ∂ γ (1) [ρrT u γ ] + 2ρrT 3 ∂ γ (1) u γ = 0 (1.41)
We see that the first order in Knudsen of the Boltzmann equation is equivalent to the Euler equation system.

Order 2 in Knudsen

It can actually be demonstrated that the Boltzmann equation is equivalent to the Navier-Stokes equations: the viscous effects come from the non-equilibrium part of the partition function at the order 2 in Knudsen. Before developing the Boltzmann equation to the order 2 in Knudsen, the knowledge of f (1) is necessary. To do so manipulating Eq. (1. [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF] gives: f (1) = -τ ∂ t (1) f eq + ξ α ∂ α (1) f (eq) (1. [START_REF] Leclaire | Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models[END_REF] Now the expression of f (1) is known, the second order in Knudsen counterpart of Eq. (1.33) can be expressed as:

∂ t (2) f (0) i + ∂ t (1) f (1) i + ξ α ∂ α (1) f (1) i = - 1 τ f (2) i (1.43) Since f (1) i d ξ = ξ α f (1) i d ξ = f (2)
i d ξ = 0 the integration of Eq. (1.43) on the microscopic velocity space provides:

∂ t (2) ρ = 0 (1.44)
Similarly, multiplying Eq. (1.43) by the microscopic velocity and integrating provides:

∂ t (2) ρu α = ∂ β (1) τ Π (1) αβ (1.45)
with Π

(1) αβ = f (1) ξ α ξ β d ξ which is the order two moment of f (1) . Thanks to Eq. (1.42), this term can be expressed in term of moments of the equilibrium function, i.e. in term of the macroscopic values. It comes that:

Π (1) αβ = ∂ t (1) ξ α ξ β f eq d ξ + ∂ γ (1) ξ α ξ β ξ γ f eq d ξ = ∂ t (1) ρu α u β (1) +∂ t (1) ρrT δ αβ + ∂ γ (1) (ρu α u β u γ + ρrT [u α δ βγ + u β δ αγ + u γ δ αβ ]) (1.46)
(1) can be determined using Eq. (1.38):

(

1) = ∂ t (1) (ρu α u β ) = ρu α ∂ t (1) (u β ) + u β ∂ t (1) (ρu α ) = -∂ γ (1) (ρu α uβu γ ) -u α ∂ β (1) (ρrT ) -u β ∂ α (1) (ρrT ) (1.47)
By injecting Eq. (1.47) into Eq. (1.46) it comes that:

Π (1) αβ = ρrT ∂ α (1) u β + ∂ β (1) u α +      ∂ t (1) ρrT + ∂ γ (1) [ρrT u γ ] Eq.(1.41)=-2 3 ρrT ∂ γ (1) uγ      δ αβ (1.48)
It finally comes that put to the order 2 in Knudsen, the Boltzmann equation comes as:

∂ t (2) (ρu α ) = ∂ β τ ρrT ∂ α u β + ∂ β u α - 2 3 ∂ γ u γ δ αβ (1.49)

Equivalent macroscopic equation

Then, remembering that

∂ t = Kn∂ t (1) + Kn 2 ∂ t (2)
the equivalent macroscopic equation can be obtained by summing the two counterpart of the temporal derivative. For instance, the momentum equation can be obtained by summing Eq. (1.38) and Eq. (1.49). The equivalent system of the Boltzmann equation is made of three equations. The continuity equation:

∂ t ρ + ∂ α ρu α = 0 (1.50)
the momentum conservation equation:

∂ t ρu α + ∂ β (ρu α u β + ρrT δ αβ ) = ∂ β τ (ρrT ) ∂ α u β + ∂ β u α - 2 3 ∂ γ u γ δ αβ (1.51)
and the total energy conservation equation (the detail of the calculation are not given here):

∂ t ρE + ∂ α (ρE + p) u α = ∂ β τ p 5r 2 ∂ α T + τ ρrT ∂ α u β + ∂ β u α - 2 3 ∂ γ u γ δ αβ (1.52)
The equations Eqs. (1.50, 1.51, 1.52) show that a Navier-Stokes system can be expressed from the Boltzmann equation. In this framework, the pressure is defined through the perfect gas equation: p = ρrT and the kinetic viscosity is a function of the relaxation time: ν = τ rT . Note that the general form of the stress tensor is given by:

µ (∂ α u β + ∂ β u α ) + µ b - 2 3 µ ∂ γ u γ δ αβ (1.53)
with µ the dynamic viscosity and µ b the bulk viscosity. The bulk viscosity corresponds to the viscous stress associated to the dilatation. A common hypothesis called the Stokes hypothesis consists in assuming that µ b = 0. This hypothesis is often made with no justification, in the present case, Eq. (1.51) shows that a mono-atomic gas close from the equilibrium respects the Stokes hypothesis.

Equivalent macroscopic equation for the athermal case

The previous subsection 1.2.2 presented the relations between the Boltzmann equation and the macroscopic equations, in which temperature is involved. Standard Lattice Boltzmann method is Chapter 1 : Lattice Boltzmann Methods historically athermal. The present subsection details the relations with the athermal macroscopic equations. In the standard LBM proposed by He et al. [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] the equilibrium function is given by:

f eq i = ρw i 1 + u α ξ α,i c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (1.54)
Using the same approach as before, it can be shown that the mass conservation equation takes a similar form:

∂ t ρ + ∂ α ρu α = 0 (1.55)
But the momentum equation is modified to:

∂ t ρu α + ∂ β ρu α u β + ρc 2 s δ αβ = ∂ β ρc 2 s ∆t(τ -1/2) (∂ α u β + ∂ β u α ) -∂ γ ρu α u β u γ (1.56)
Compared with the thermal case Eq. (1.51), two important differences must be noted. The viscous constraint term is modified to:

T αβ = ρc 2 s ∆t (τ -1/2) (∂ α u β + ∂ β u α ) (1.57)
It can be compared to the general formulation Eq. (1.53). It comes that in the athermal case, the Stokes's hypothesis is no longer verified since µ b = 2 3 µ. The reason of this difference between the thermal case and the athermal case is discussed hereinafter. In the thermal approach, temperature is defined through the second order moment of the density function:

ρ| u| + ρrT = | ξ| 2 f d ξ (1.58)
In order to guaranty the internal energy conservation principle, the collision operator must respect: | ξ| 2 Ωd ξ = 0. This implies that Eq. (1.58) must also be verified for f eq : ρ| u| + ρrT = | ξ| 2 f eq d ξ From the two last equations it comes that

| ξ| 2 (f -f eq ) d ξ = 0 (1.59)
Eq. (1.59) can also be generalised to f (1) : | ξ| 2 f (1) d ξ = 0. It happens that this last integrate is the trace of the tensor Π (1) . Then it comes that in the thermal framework:

T r Π (1) = 0 (1.60)
This last tensor being proportional to the stress tensor, it comes that the trace of the stress tensor is also equal to 0, making the Stokes's assumption true.

From the last demonstration, it comes that the fact to involve a temperature field in LBM is a sufficient condition for the Stokes's assumption to be true. It is then natural that in the athermal framework, this assumption is no longer true. The other difference between the current model and the thermal one is the presence of the spurious term: ∂ γ ρu α u β u γ in Eq. (1.56). It comes from the fact that the equilibrium function is only truncated to the order three when the knowledge of the order three of the equilibrium function is involve into the calculation of the stress tensor. This error term is discussed more in detail into Section 1.3.

Discretization of Boltzmann Equation

We saw earlier Eq. (1.16), that fi is solution of the Boltzmann equation. But the attentive reader would have note that there is a slight difference with the Boltzmann equation Eq. (1.21). In the second one, f is a continuous variable in space while f i is a finite number of fields associated with a microscopic variable. In section(1.2), we could see the Boltzmann equation allows to simulate a Navier-Stokes system, but is it the case for Eq. (1.21), the discrete Boltzmann equation? The capability of a discrete system to recover the macroscopic equation of the continuous one is linked to the capability of the discrete system to estimate accurately the moments of the partition function f . At this stage it is interesting to introduce the Hermite polynomial, as they are an essential tool to discretize the equilibrium function equation in the microscopic velocity space.

Hermite polynomial

Most of the discussion detailed hereinafter was tackled by Kruger et al [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF]. The expression of the Hermite polynomial (and the one that is used in practice) is given by:

H 0 = 1 H α = ξ α H αβ = ξ α ξ β -c 2 s δ αβ H αβγ = ξ α ξ β ξ γ -c 2 s [ξ α δ βγ + ξ β δ αγ + ξ γ δ αβ ] (1.61)
Here, c s is a constant of the scheme that is set by the user. Those polynomials form a base of the function space, then any arbitrary function h can be expressed as a serie of Hermite polynomial:

h( ξ) = w( ξ) ∞ n=0 ã(n) n!(c s ) 2n H(n) ( ξ) ã(n) = h( ξ) H(n) ( ξ)d ξ (1.62)
The equilibrium function can then fully be expressed in term of Hermite's polynomial. The most important property of the Hermite polynomial is that it is possible to calculate integrals of polynomial functions by summing values at a finite number of discrete points. Thanks to a rule named the Gauss-Hermite quadrature, there is a number of abscissa x i and a number of number of coefficient w i for which the integral of a polynomial function P (of degree N) can be exactly estimated through:

+∞ -∞ w(x)P (N ) (x)dx = n i w i P (N ) (x i ) (1.63)
where the x i are the roots of the Hermite polynomial H (N ) (x) and the w i are functions of these roots. The point is, the higher the rank of the polynomial P is, the higher the number of roots of the polynomial H (N ) then the higher is the number of x i necessary to retrieve exactly the integral of P (N ) . Put it in the other way, the higher is the order of the Hermite polynomial which integral we want to refund exactly, the higher is the number of points necessary to do so. It means that there will be limitations depending with the number of points and velocity available.

Thanks to those considerations we can define a discrete function which sums are equal to the integral of the partition function:

f i = w i w( ξ) f (ξ i ) (1.64)
Similarly a discrete equilibrium function can be expressed. It is a common practice to truncate the Hermite polynomial expansion to the order 2. The first equilibrium function that was proposed under this form was proposed by Qian et al. [START_REF] Qian | Lattice bgk models for navier-stokes equation[END_REF] in the athermal case

f eq i = w i ρ 1 + u α ξ α c 2 s + u α u β ξ α ξ β -c 2 s δ αβ 2c 4 s (1.65)
This equilibrium has been widely used after it was proposed, and it can be considered as the standard function for Lattice Boltzmann Methods. The attentive reader would have note that no pressure term seems to be involved in the equilibrium function. In practice, to obtain the proper value of the pressure, a CFL condition is imposed. The ratio between the space step and the temporal step is given by:

∆x ∆t = √ 3c s (1.66)
The motivation between the previous condition is given in Appendix A.

Velocity sets and coefficients

Similarly as in Lattice Gas Automata, the shape of the lattice and the chosen velocity set is of primary importance in the Lattice Boltzmann Method. In practice, a velocity set is created thanks to the lattice the particles evolves on. Similarly with the lattice Gas Automata, the idea is to choose only velocities for which particles located on the lattice will still be located on the lattice after a time step ∆t. Doing this way, no special treatment is necessary to locate the particles since they are on the nodes. Mathematically, it reads that for a given particle located on a lattice (2D in this example but could be 1D or 3D) with a constant space step ∆x, if the particle going at the velocity ξ i is located at the node which coordinates are (x, y), then to guaranty that after the time ∆t the particle will still be on the lattice, the velocity must read: ξ α,i = ∆x ∆t x α n α with n α an integer and x α a unit vector parallel to the x α direction. This last relationship tells that the properties of the scheme, in this case the norm of the microscopic velocities, are linked with the ratio between the dimensional step and the temporal step (also called the Courant number). This principle is illustrated Figure 1.1. It means Figure 1.1. -Illustration of some possible velocities on a 2D cartesian grid that to be sure to recover correctly the different moments of the equilibrium function, the Courant number must be chosen wisely. Before the Hermite truncature rules was discovered, the w i and the 1.3 Discretization of Boltzmann Equation velocity set was set up by using isotropic relationships:

i w i = 1 i ξ α w i = 0 i ξ α ξ β w i = c 2 s i ξ α ξ β ξ γ w i = 0 i ξ α ξ β ξ γ ξ µ w i = c 4 s (δ αβ δ γµ + δ αγ δ βµ + δ βγ δ αµ ) i ξ α ξ β ξ γ ξ µ ξ θ w i = 0 (1.67)
It must be noted that the condition i ξ α,i ξ β,i w i = c 2 s only stands in the case where the pressure is linked to the CFL number as in the previous discussion. Otherwise, the value i ξ α,i ξ β,i w i is set according to the desired CFL. Even if the mathematical framework of the Quadrature rule is more rigorous, the coefficient w i and the value of the Courant number obtained through this methods are exactly the same. Then it seems that there is a tight bound between the isotropy of a Lattice Boltzamnn scheme and its capability to recover high degree polynomial. As a matter of fact, both of those capability are linked with the number of microscopic velocities in the velocity set. Now, commonly used velocity set are presented and discussed. Each velocity set is characterised by the dimension of the system it simulates (noted d) and the number q of discrete velocity. It is then given by D d Q q . The higher q is, the more computationally expensive a scheme becomes, but also the higher are the degrees of moments the scheme is capable to recover correctly. For example, in 3D, D 3 Q 15 needs less memory allocation and less calculation per iteration than D 3 Q 19 which is itself less memory intensive and less computation time consuming than D 3 Q 27 . The most commonly used velocity sets are the one where only the first neighbours are involved. For instance in D2Q9 the values of the partition function located at (x, y) at the time t is calculated only from partition functions located at (x±1, y±1) at the time t-1. This choice makes the parallelization of the algorithm easy, and the scalability of the algorithm makes it a good candidate for High Performance Computing (HPC). The question of the relative efficiency of Lattice Boltzmann schemes compared with classical numerical methods is a currently controversial and uncertain topic. The properties of the most commonly used sets are given in Figure 1.2. In the following part, we focus on the two velocity sets that will be used in this work D 2 Q 9 and D 3 Q 19 .

D2Q9 velocity set

An illustration of a D2Q9 velocity set is proposed Figure 1.3. As underlined by its name, it is composed of 9 velocities and takes place in a 2 dimensional framework. Among the 9 velocities, one corresponds to a velocity equal to zero, and the other ones are the velocities corresponding to velocities pointing toward the corners of a square and toward the middle of its sides. The formulation of those velocities is given by:

ξ i = ∆x ∆t      (0, 0) i = 0 (±1, 0) or (0, ±1) i = 1, 3, 5, 7 (±1, ±1) or (±1, ∓1) i = 2, 4, 6, 8 (1.68) Figure 1.2.
-Properties of the principal velocity sets (from [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF], which compiled informations from Succi [START_REF] Succi | The Lattice Boltzmann Equation for Fluid Dynamics and Beyond[END_REF] and Qian et d'Humières [START_REF] Qian | Lattice bgk models for navier-stokes equation[END_REF] As proposed in Figure 1.2, the weighted coefficients are given by:

w i =     
4/9 i = 0 1/9 i = 1, 3, 5, 7 1/36 i = 2, 4, 6, 8

(1. [START_REF] Schmidt | Global stability and nonlinear dynamics of wake flows with a two-fluid interface[END_REF] In two dimension, it is the largest velocity set that involves only the first neighbours. As in this velocity set q = 9, 9 is also the number of moments that can be recovered. It means that if we would like to recover all of the moments, for example by taking an equilibrium function with an infinite number of components:

f perf ect,eq i = w i ∞ n=0 a (n),eq n!c 2n s H (n) (1.70)
in practice only 9 moments would be recovered, i.e.:

m eq 0 = ρ m eq x = ρu x m eq y = ρu y m eq xy = ρu x u y m eq xx = ρu 2 x m eq yy = ρu 2 y m eq xxy = ρu 2 x u y m eq yyx = ρu x u 2 y m eq xxyy = ρu 2 x u 2 y (1.71)
with m eq j = i f eq i H j,i and j ∈ {0, x, y, xy, xx, yy, xxy, yyx, xxyy}. All the other moments would be equal to 0. The mechanism making this is the fact that in D 2 Q 9 , not all Hermite's polynomial moments can be recovered. For example, due to the fact that only first neighbours are involved, then ξ 3 α = c 2 s ξ α , which makes that H xxx,i = 0 for all the microscopic velocities in D 2 Q 9 , and then straightforwardly i f eq i H xxx,i = 0. It must be noted that the relationship H xxx,i = 0 is not due to the discretization In practice the consequence is well known. If we take a look at the equivalent macroscopic equation to the order ∆t 2 for the momentum:

∂ t m eq α + ∂ β m eq αβ + c 2 s m eq 0 δ αβ = ∆tρc 2 s (τ -1/2) ∂ t m eq αβ + ∂ γ m eq αβγ + c 2 s m eq α δ βγ + m eq β δ αγ (1.72)
It can be seen that the right part of the equation involves order three moments of the equilibrium function (m eq αβγ ), then if the third moments are not recovered correctly, spurious term might appear in the previous equation. In the perfect case, the Navier-Stokes equation for isothermal flow is recovered perfectly and the right term of the previous equation is given by:

∂ β Π (1),eq αβ = ρc 2 s (∂ α u β + ∂ β u α ) (1.73)
But in the D 2 Q 9 , even by using all the components of the equilibrium function, the second moment of the non-equilibrium function is given by: Π

(1),eq αβ

= ∂ β ρc 2 s (∂ α u β + ∂ β u α ) -∂ 2 α ∂ α ρu 3 α δ αβ (1.74)
It comes that a spurious term proportional to the velocity cubed appears. This term is of similar nature that the ρu α u β u γ terms that appears when using the algorithm of He et al. This spurious term is often refereed as a Mach number (Ma) cubed error, because in dimensionless units, this error term takes the following form:

∂ 2 α ρu 3 α 3 √ 3c 3 s which is proportional to the Mach number.
The consequence of this spurious term is the fact that LBM's precision tends to fall at high Mach number, but the method stays relevant to simulate compressible field at low velocity flows, and in particular for acoustic flows. This is the reason why Lattice Boltzmann methods are often recalled as "weakly compressible scheme" because they simulate compressible flow but only for low-Mach number flows, i.e., flows where the compressible effect are of less importance. It is also sometimes said that LBM lakes of Galilean invariance, this affirmation is motivated by the presence of this spurious term. Among the multiphase community, "weakly compressible" could also refer to the capability of given numerical methods to simulate two phase flows where only one phase is compressible like in Kajzer et Pozorski [START_REF] Kajzer | A weakly Compressible, Diffuse-Interface Model for Two-Phase Flows[END_REF]. 

D3Q19 velocity set

= -0.5 = 0 i w i H xxyy,i H xxzz,i 4c 8 s = i w i H xxyy,i H yyzz,i 4c 8 s = -0.25 = 0 i w i H xxyy,i H zz,i 4c 8 s = -0.75 = 0
The consequence of that, is that the equilibrium function must not be written anymore as a composition of Hermite polynomial. Instead, a new orthogonal base of polynomials should be constructed. For instance, the following one was obtained using a Gram-Schmidt algorithm:

a 0 = 1 a 1 = H x a 2 = H y a 3 = H z a 4 = H xx a 5 = H yy a 6 = H zz a 7 = H xy a 8 = H yz a 9 = H xz a 10 = H xxy a 11 = H xxy + 2H zzy a 12 = H xxz a 13 = H xxz + 2H yyz a 14 = H yyx a 15 = H yyx + 2H zzx a 16 = 2H xxyy + c 2 s H zz a 17 = 14H xxzz + 7c 2 s H yy + 4H xxyy + 2c 2 s H zz a 18 = 10H yyzz + 5c 2 s H xx + 4H xxyy + 2c 2 s H zz + 4H xxzz + 2c 2 s H yy
In practice, this base is not very convenient to use, then it is more practical to define the polynomial whose moments in Hermite are defined like:

i w i H * ,i X o,i = δ * o (1.76)
We have: 

X xxyy = 3 * 2H xxyy + c 2 s H zz + 4 (H xxyy + H xxzz + H yyzz ) + 2c
X xx = H xx 2c 4 s + c 2 s 2 X yyzz (1.79)
Finally, the moments linked to H xxx , H yyy and H zzz cannot be recovered properly for the same reason as the D 2 Q 9 velocity sets. For this reason, a similar spurious terms appear in the Navier-Stokes equation.

Classical LBM

In Section 1.3.1 and Section 1.3.2, different mechanisms allowing to discretize Boltzmann equation were proposed. This leads to the Lattice Boltzmann Methods, that can simulate fluid flows by solving Boltzmann equation. The words "Lattice Boltzmann Method" refers to a whole family of methods rather than a specific algorithm. For the sake of clarity, one particular algorithm is chosen and defined as the Classic LBM. The specific algorithm is the one proposed by He et Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF] detailed hereafter. In the approach of He and Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF], a density and velocity field must be specified at the initialization.

The distribution function is initialized at equilibrium, i.e. f i (t = 0) = f eq i (ρ(t = 0), u(t = 0)). The mainloop starts with the computation of the equilibrium function f eq i calculated from the value of the macroscopic fields. For instance, in the model proposed by He et Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF], the equilibrium function is given by:

f eq i = ρw i 1 + u α ξ α,i c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (1.80)
where w i is a set of coefficients depending with the lattice. A proper introduction is proposed in section 1.3.2. The density function f i is supposed to be in a state f * i after the collision step following:

f * i = f i - 1 τ (f i -f eq i ) (1.81)
Then the streaming step occurs:

f i (x + ξ α,i ∆t, t + ∆t) = f * i (x, t) (1.82)
Finally the new macroscopic fields are calculated thanks to the the distribution function at t + ∆t:

ρ(x, t + ∆t) = i f i (x, t + ∆t) u α (x, t + ∆t) = i ξ α f i (x, t + ∆t) ρ(x, t + ∆t) (1.83)
An illustration of this algorithm is proposed Figure 1.5. He and Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF] showed that this algorithm 

f i - 1 2τ (f i -f eq i ),
it can be shown that:

∂ t fi + ξ α ∂ α fi = - ∆t τ -1/2 fi -f eq i + O(∆t 2 ) (1.84)
which is equivalent to the Boltzmann equation. The demonstration is proposed in Appendix A.3. It shows that classical LBM is equivalent to the solving of the Boltzmann equation with a 2 nd order accuracy in time. It is interesting to note that historically, this link has been made a posteriori. Before going further in the analysis of Lattice Boltzmann Method, an introduction to statistical mechanic is necessary.

Historical review

In Section 3.1, Lattice Boltzmann Method was described as a numerical method allowing to solve the Boltzmann equation. However, the historical truth is that the link between Lattice Boltzmann Methods and Boltzmann equation was made a posteriori by He et Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF][START_REF] He | Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[END_REF][START_REF] He | Latice Boltzmann Model for the Incompressible Navier Stoke Equation[END_REF]. This makes LBM unique among others numerical methods since the algorithm was born without knowing what differential equation it solves. This can seem peculiar to the reader used to more common numerical methods and could refrain from a deep understanding of the method. For these reasons, it is of interest to describe the historical background that leaded to LBM's birth. LBM was originally thought as an improvement of the Lattice Gas Automata, a cellular automaton designed to simulate fluid flows. A review of Lattice Gas Automata history and how Lattice Boltzmann Method emerged from this alogorithm is proposed in the present Section. In the 70's, motivated by the "fast development of integrated circuits and computers", Hardy, Pomeau and de Pazzis proposed to simulate fluid flows in a molecular dynamic framework. In a succession of three papers [START_REF] Hardy | Thermodynamics and hydrodynamics for a modeled fluid[END_REF][START_REF] Hardy | Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions[END_REF][START_REF] Hardy | Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions[END_REF], they proposed a so-called "Maxwell model" to simulate molecular dynamic. The uniqueness of the model is that, rather than trying to determine the exact velocity and position of the simulated particles, only few locations distributed regularly across space are allowed, and the velocities are quantified. In this model only a finite number of velocities are allowed for the particles. The motivations are mainly numerical, at the time of the first paper (1972) velocities and positions are known with limited precision due to the technical restriction of the electronic components. By assuming constant velocities and positions, the precision of the simulation remains constant in time.

The original Hardy de Pazzis Pommeau algorithm

This first model is described as follows:

-(1): The model is a two-dimensional fluid of N identical particles with one of the four unit velocities.

- -(3): At the time t, if a particle is located at a given node and going at a velocity ξ i , then this particle will move to the closest node in the ξ i direction. This process is called streaming. If after streaming only one particle is located at the node, then this is the state of the node at time t + 1 -(4): If after streaming, two particles are located at the same node, collision occurs. The collisions involve two particles and are instantaneous. Collision occurs only between particles with opposite velocities. Cases with three particles are ignored. For instance, if after streaming two particles are located on a given node, and if these two particles' velocities are ξ I and ξ III respectively, then a collision occurs.

- [START_REF] Keller | Thermoacoustic oscillations in combustion chambers of gas turbines[END_REF]: When collision occurs, the velocities of the two particles are modified. After collision, the direction of the particles' velocities are modified to their orthogonal directions. For instance, in the cases described in (4), after collision the velocities of the two particles are changed to ξ II and ξ IV . The system being reversible, when after streaming two particles going at velocities ξ II and ξ IV coexists, then the velocities change to ξ I and ξ III . Cases where two particles going at a same velocity on the same node are excluded. A collision process is illustrated Figure 1.6(b).

To give a mathematical background to this algorithm, four c i (x, t) functions are defined (one per velocity), equal to 1 if a particle having the i th velocity is present at the node of coordinates x at the time t. Then, the algorithm gives: c * i (x, t) being equal to 1 if a particle going at the i th velocity is present at the node of coordinates x at the time t. This collision operator is given by:

c i ( x, t + ∆t) = c * i ( x -ξ i ∆t, t) (1.85)
c * 1 = c 1 (1 -c 3 ) + c 2 c 4 c * 2 = c 2 (1 -c 4 ) + c 1 c 3 c * 3 = c 3 (1 -c 1 ) + c 2 c 4 c * 4 = c 4 (1 -c 2 ) + c 1 c 3 (1.86)
One fundamental property of this collision step is the fact that it doesn't create mass or momentum, meaning that if we define N = i c i the number of particles at a given node, J x = c 1 -c 3 and J y = c 2 -c 4 the average velocities at a given point, then:

N * = N, J * x = J x and J * y = J y (1.87)
N * , J * x and J * y corresponding to N , J x and J y after the collision step.

Algorithm equivalent macroscopic equations

Two properties of the gas can be simulated such as the existence of an equilibrium state and the fact that the system tends towards it, despite an imprecision growing through time. It can be shown that this model can be related to the Navier-Stokes equations.

To do so, one should consider the presence probability function P (c i ( x, t)) of a particle to be present at (x, t), with the velocity ξ i . Contrarily to c i (x, t), P (c i ) is continuous. Eq. (1.85) can be rewritten through Taylor expansion:

P (c i ) -P (c * i ) = ∂ t P (c i ) + ξ α ∂ α P (c * i ) + O(∆t) (1.88)
Eq. (1.88) can be summed over the i indices, using Eq. (1.87), leading to a macroscopic equation. The obtained relationship deals with the probability of presence, it is interesting to write the equations in term of expected value: ρ LGA = E(N ) and ρ LGA u LGA,α = E(J α ), with E. the expected value. Then the obtained equation is:

∂ t ρ LGA + ∂ α ρ LGA u LGA,α = O(∆t) (1.89)
An equation for the momentum can also be deduced from Eq. (1.88)(giving certain constraints given by Hardy et al. [START_REF] Hardy | Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions[END_REF]):

∂ t ρ LGA u LGA,α + 1/2∂ α ρ LGA = O(∆t) (1.90)
With a bit of imagination, Eq. (1.89) and Eq. (1.90) can be seen as Euler equations with the pressure given as 1/2ρ

LGA and without the convection term.

Enhanced HPP model

It was pointed out by the authors themselves [START_REF] Hardy | Thermodynamics and hydrodynamics for a modeled fluid[END_REF] that the lack of isotropy makes it impossible to reproduce the viscous behaviour of a fluid. This model, refereed as HPP (from Hardy, Pomeau et de Pazzis who proposed the first model) is mainly known as Lattice Gas Automate (LGA). The model was improved afterward by Frish et al. [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF], where a hexagonal lattice is proposed. The improvement of the grid isotropy allowed to solve many problems pointed out by Hardy et al. [START_REF] Hardy | Thermodynamics and hydrodynamics for a modeled fluid[END_REF]. An illustration of the grid is proposed in Figure (1.7). It is a six velocities model, the velocities are given by:

ξ i =        cos iπ 3 sin iπ 3 i ∈ [1, 2, ..., 6]
(1.91) D'Humières et Lallemand [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF] noted that in the original HPP model, no degree of freedom was allowed -Hexagonal grid proposed by Frish et al [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF] for the description of the collision model. In the 6 velocities framework, different collision models are possible. Moreover, they proposed the possibility to add a resting particle to the model, i.e. a particle having velocity ξ 0 = 0 that stays still during the streaming phase, but that influences the output of the collision phase. The importance of the resting particle is pointing out by Frish et al. [START_REF] Frisch | Lattice G as Hydrodynamics in Two and Three Dimensions[END_REF]. The authors highlight the appearance of spurious conservation laws. In particular, it can be shown that if only two particles collisions occur, the total mass over a vertical or horizontal line is preserved. Without a resting particle, three particles collisions are not likely to happen, implying spurious mass conservation over straight lines. They showed that if the original model couldn't really reproduce the behavior of a Navier-Stokes system Eq. (1.90), the following equation is true:

∂ t ρ LGA u LGA,α + ∂ β (g(ρ LGA )ρ LGA u LGA,α u LGA,β + pδ αβ ) = µ LGA (∂ α u LGA,β + ∂ β u LGA,α ) + µ LGA,b ∂ γ u LGA,γ (1.92)
with g(ρ LGA ) a spurious term, p the pressure, µ LGA the shear viscosity and µ LGA,b the second viscosity. All these expressions are functions of ρ LGA but depends on the used collision model and on the number of velocities (6 without resting particles and 7 with). Independently from the chosen collision model, HPP algorithms are always capable of simulating approximately the Euler part of the Navier-Stokes equation, but the way particles interacts with each others during the collision step influences the viscosity of the system. A similar result was proposed by Frish and Rivet [START_REF] Rivet | Automates sur gaz de réseau dans l'approximation de Boltzmann[END_REF]. In the same paper [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF], d'Humières and Lallemand showed that they could simulate realistically a 2D duct, or observe Von-Karman instabilities behind a flat plate.

A discussion around isotropy

How to explain the superior performance of the hexagonal grid compared with the squared one? By analogy with numerical schemes like finite difference or spectral difference, it seems natural that increasing the number of degrees of freedom also increases the scheme accuracy. In the case of LGA, this link is not straightforward since no partial derivative equation is solved. Wolfram [START_REF] Wolfram | Cellular automaton fluids 1: Basic theory[END_REF] tackled this issue by showing the influence of the lattice on the system capability to retrieve Navier-Stokes equation. He showed that the higher the degree of isotropy of a system is, the closer the equivalent macroscopic equations are from the Navier-Stokes equations. Wolfram defined a criterion allowing to define the "degree of isotropy" of a lattice, relying on a family of tensors E n , n being an integer. He then defined relationships that E (n) should respect. For instance, if the relationships are verified for E (0) , E (1) and E (2) , then the lattice is isotropic up to the order 2. Wolfram showed that the hexagonal lattice is isotropic up to the order 4 while the squared lattice is only isotropic up to the order 2. The consequence being that the hexagonal lattice has a better capability to retrieve Navier-Stokes equations, but also some spurious terms are removed, making the simulation both more accurate and more numerically stable. The conditions for a lattice to be isotropic are described hereafter. First, the family of tensors E (n) is defined. E (n) is a tensor of order n, meaning that it contains D n elements where D is the dimension of the system. For instance, in a 2D framework E (3) is a concatenation of 2 matrices of dimension 2 * 2. The elements of the tensor E (n) is given by:

E (n) x 1 ,x 2 ,x 3 ,...,xn = 6 i=1 ξ (x 1 ,i) ξ (x 2 ,i) ξ (x 3 ,i) ...ξ (xn,i) (1.93) 
The x k corresponds to a coordinates (in a 2D framework, it must be equal to x or y) , ξ x k ,i being the velocity projection of ξ i in the x k direction. For instance, for the hexagonal lattice ξ x,0 = 1/2

ξ y,0 = √ 3 2 .
To illustrate, the matrix E (2) can be calculated for the hexagonal lattice.

E (2) xx = 6 i ξ 2
x,i = 0.5 2 + (-0.5) 2 + (-1) 2 + (-0.5) 2 + (0.5) 2 + 1 2 = 3 (1.94)

The matrix E (2) is given by:

E (2) = 3 0 0 3 (1.95)
From the definition of this operator, an isotropic condition can be defined. A lattice is said isotropic in the particular context of LGA and LBM methods when it respects the following relationships:

E (2n+1) = 0 E (2n) = C (2n) ∆ (2n)
(1. [START_REF] Olsson | A conservative level set method for two phase flow II[END_REF] with C (2n) a constant and ∆ (2n) a composition of Kronecker operator defined by the following recursive relationship:

∆ (0) = 1 ∆ (2n) i 1 ,i 2 ,i 3 ,...,in = 2n j=2 δ i 1 i j ∆ (2n-2) i 2 ,i 3 ,...,i j-1 ,i j+1 ,...,i 2n (1.97)
where δ ij the Kronecker's function being equal to 1 if i = j and 0 otherwise. A lattice is said to be isotropic up to the order k if the relationship Eq. (1.96) is respected for E (k) . For instance, for the hexagonal grid, it comes that, E (1) α = 0. From Eq. (1.95), it comes that E

(2)

αβ = 3δ αβ . Also, E (3) αβγ = 0, E (4) αβγµ = 3 4
(δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) and E [START_REF] Keller | Thermoacoustic oscillations in combustion chambers of gas turbines[END_REF] αβγµλ =0. Then it comes that the hexagonal lattice is isotropic up to the order 5.

Wolfram proposed to use the isotropy of a lattice as a criterion to evaluate its performance. Using this criterion, he proposed the possibility to use lattices in which the different velocities don't necessarily have the same norm.

In addition, Wolfram shows that to simulate accurately a Navier-Stokes system, the lattice must ensure:

E (1) α = 0 E (2) αβ = Aδ αβ E (3) αβγ = 0 (1.98)
where A is a constant. More importantly, Wolfram showed that an error proportional to u 4 can be cancelled if the tensor E respects:

- E (4) αβγγ E (2) αβ = σ (1.99)
σ being a constant of the lattice. For the details of the demonstration the interested reader is directed to the original paper [START_REF] Wolfram | Cellular automaton fluids 1: Basic theory[END_REF]. The previous conditions can be reformulated into the following one:

E (4) αβγµ = B (δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) (1.100)
with B a constant. It appears that the different conditions in Eqs. (1.98, 1.100) are isotropic conditions [START_REF] Suiker | Application of higher-order tensor theory for formulating enhanced continuum models[END_REF]. This work showed the close bound between the quality of a LGA simulation (capability to retrieve Navier-Stokes equation, numerical stability, lack of spurious currents,...) and the isotropy of the lattice.

LGA's drawback

In section 1.4.3, the link between LGA and Navier-Stokes system has been shown, by making the hypothesis that the functions c i involved in Eq. (1.85) are random variables. One could question this hypothesis since the rules of the automaton are strictly deterministic. In practice, for a number of points large enough, the system becomes complex enough so that it seems random. Another issue is that particle probability of presence cannot be directly measured, but Eq. (1.92) is given for the expected value of the random values then this probability has to be measured. To do so, d'Humières [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF] proposed to calculate the average of c i in a given spatial domain and to consider this calculated average as an estimation of the expected value of c i (seen as an averaged variable). The computation of the average value relies on the hypothesis of the system ergodicity, which cannot be proved for real flows, but however is usually assumed. It is notably an important hypothesis in the general framework of statistical physic. It should be noted that if the particle probability of presence is not constant in time or space, the spatial averaging can only provide a rough approximation of the actual average. As a consequence, the flow mean variations must occur slowly for an accurate prediction with LGA. Moreover, Higuera and Jimenez [START_REF] Higuera | Boltzmann approach to lattice gas simulations[END_REF] pointed out that LGA leads to a high level of fluctuation due to the limited number of lattice points in the space averaging. In particular, they show how the higher the Reynolds number is, the higher number of cells used in the spatial averaging must be for the simulation to be numerically stable, leading to a significant increase of the computational cost. In addition to this default, d'Humières and Lallemand [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF] pointed out the lake of numerical stability for Reynolds up to 10 3 , and the drop in accuracy for compressible flows. A detailled discussion about Lattice Gas Automata is proposed by Frish et al. [START_REF] Frisch | Lattice G as Hydrodynamics in Two and Three Dimensions[END_REF].

From LGA to LBM

As discussed, the Lattice Gas Automata has many defaults. For this reasons, McNamara and Zanetti [START_REF] Mcnamara | Use of the Boltzmann Equation to Simulate Lattice-Gas Automata[END_REF] proposed a Boltzmann alternative for the Lattice Gas Automata, that is said to produce less spurious noise than the automaton. If in LGA, the state of the fluid was described by the Boolean function c i equal to 1 or 0 if a particle is present or not, the authors proposed a continuous function noted f i whose value can continuously vary from 0 to 1. It means that f i can be interpreted as the density of particles with a velocity ξ i rather than a boolean term. In their approach, both density and momentum can be directly determined using the following identities:

i f i = ρ (1.101) and i ξ α,i f i = ρu α
In this framework, no space averaging is needed. The evolution rule for the function f i is:

f i (x, t + ∆t) = f i (x -ξ α,i ∆t, t) + Ω i (x -ξ α,i ∆t, t) (1.102)
with Ω i a collision function that is the continuous counterpart of the collisions rules given by the

LGA community [START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF] [64], and ξ α,i is a microscopic velocity. Higuera and Jimenez [START_REF] Higuera | Boltzmann approach to lattice gas simulations[END_REF] proposed to approximate the collision term for low Reynolds and Knudsen number through:

Ω i = 1 τ ij f j -f eq j (1.103)
where f eq j is an equilibrium function which formulation was proposed by Wolfram [START_REF] Wolfram | Cellular automaton fluids 1: Basic theory[END_REF], and τ ij is a matrix of dimensionless coefficients that characterize the collision scheme. In this framework, the existence of a local equilibrium is assumed. In that particular context, a state is said to be at equilibrium if density function f i only depends with the macroscopic values (ρ and ρu α ). The formulation in Eq. (1.103) is closed from an approximation proposed in the statistical physic framework by Bhatnagar, Gross and Krook [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF]. They propose that τ ij is proportional to the identity matrix, which leads the algorithm proposed in Eq. (1.102) to become:

f i (x, t + ∆t) = f i (x -ξ α,i ∆t, t) - 1 τ (f i (x -ξ α,i ∆t, t) -f eq i (x -ξ α,i ∆t, t)) (1.104)
with τ a unique coefficient. This description constitues the core of the Lattice Boltzmann Method. This leaded several years later to the method proposed by He and Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF] Interfacial two-phase flows are defined by the occurrence of two immiscible phase at different states, namely a liquid and a gas. The interface between phases is very thin, -typically a few atoms length -much smaller than the characteristic system length, and is considered infinitely thin. Moreover, a difference of attractive forces between the liquid and the gas occurs at the interface, inducing a surface forces: surface tension. This surface tension has a significant impact on the flow dynamic [START_REF] Schmidt | Global stability and nonlinear dynamics of wake flows with a two-fluid interface[END_REF], and is also involved the physics of atomization [START_REF] Eggers | Physics of liquid jets[END_REF]. Numerical simulations of interfacial flows are a challenge, for several reasons. First, large and sharp density gradients occur across the interface, which must be discretized on the mesh and taken into account in the numerical method. For atomization applications, massive shear occurs at the interface, which add difficulties. Finally, the interface curvature must be known with accuracy to predict surface tension, which requires accurate numerical schemes. Several methodologies have been proposed to deal with such flows. On One hand, sharp interface methods consider separated phases with discontinuities and jump conditions at the interface. On the other hand, diffuse interface methods have also been proposed, in which a continuous transition from one phase to the other occurs. To allow such a continuous transition, the interface is artificially thickened over several grid points, which consequently reduces interfacial gradients and associated mesh constraints required for their discretization. In this chapter, these two main approaches are presented. A specific section is dedicated to the description of surface tension operator.

Surface tracking methods

Front tracking

Front tracking methods are the first proposed in the literature to address interfacial flows, and consist in the explicit interface tracking through the use of markers. The Marker And Cells (MAC) proposed in Harlow and Welsh [START_REF] Harlow | Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[END_REF][START_REF] Welch | The mac method: a computing technique for solving viscous, incompressible transient fluid-flow problems involving free surfaces[END_REF] consists in a staggered grid, where pressure and velocity are defined at different locations, on which incompressible Navier-Stokes equations are solved through dedicated numerical scheme not presented here:

∇ u = 0
(2.1)

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = µ (∂ α u β + ∂ β u α ) (2.2)
A specificity of this method is the use of a staggered grid: the velocity fields and the pressure field are defined at different locations of the computational grid similarly as in the well known Patankar's SIMPLE algorithm [START_REF] Patankar | Numerical heat transfer and fluid flow[END_REF].

A specific flag is associated to each cell, depending on the presence of each phases among the following:

-Full (F) -Empty (E) -Boundary (B) -Interface (I)
The flags are assigned thanks to massless markers that are streamed with the flow. If a cell doesn't contain any marker, then it is assigned the (E) flag. If a cell contain at least one marker, but is in contact with at least one (E) cell, then it is considered as an interface cell (flagged (I)). A cell that contains one marker or more, and that is not a (I) cell is assigned with a (F) flag. The (B) flag corresponds to a boundary and they are assigned by the user beforehand, their statue stays unchanged all along the simulation. The algorithm is illustrated in Figure 2.1. The methodology has been later improved by Amdsen and Harlow [START_REF] Amsden | The smac method: A numerical technique for calculating incompressible fluid flows[END_REF] who proposed the Simplified MAC (SMAC) where a more efficient algorithm, as the name suggests it, is proposed. A significant improvement was made [START_REF] Tome | GENSMAC: A computational marker and cell method for free surface flows in general domains[END_REF] who proposed the GENSMAC approach, in which markers are specifically dedicated to the interface dynamic description. Mangiavacchi et al. [START_REF] Mangiavacchi | An effective implementation of surface tension using the marker and cell method for axisymmetric and planar show[END_REF] proposed to take into account surface tension. McKee et al. [START_REF] Mckee | The MAC method[END_REF] proposed a review of these front tracking methods. Promising results were obtained, such as droplet splashing in a denser and more viscous fluid proposed by De Sousa et al. [START_REF] De Sousa | A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces[END_REF] in Figure 2.2. However, these methodologies suffer from a lack of accuracy for complex flows topologies, such as the ones occurring in atomization

Volume Of Fluids

The Volume of Fluid (VoF) method belongs to the surface tracking methods, and is one of the most common approaches chosen in the interfacial flow numerical community. This eulerian method was first proposed by Nichols and Hirt [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] inspired by the work of Noh et al. [START_REF] Noh | SLIC (Simple Line Interface Calculation)[END_REF]. While front tracking methods were historically the first to be proposed in the literature, this method's family tends to be computationally expansive, and to have mass conservation issues. Volume of Fluids methods intent to fix these mass conservation issues while being less computationally intensive than Front tracking methods. In this framework, the total density ρ and the velocity u are determined by solving the incompressible continuity equation:

∂ α u α = 0 (2.3)
and the momentum conservation equation given by:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = µ (∂ α u β + ∂ β u α ) + F σ α (2.4)
F σ α being a body force accounting for surface tension. The interface location is known from the liquid mass fraction Y 1 advection, following:

∂ t Y 1 + u α ∂ α Y 1 = 0 (2.5)
Total density ρ is then recovered through:

ρ = ρ 1 Y 1 + ρ 2 (1 -Y 1 ) (2.6) Figure 2.2.
-Splashing droplet into a denser and more viscous fluid. Figure from [START_REF] De Sousa | A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces[END_REF] where ρ 1 and ρ 2 are the respective density of phase 1 and phase 2. The numerical method must ensure the interface sharpness. In practice, the numerical method induces interface dissipation. Two VOF have been developed to deal with an accurate interface prediction: VOF with interface reconstruction, and VOF with flux reconstruction. Flux reconstruction methods consist in the use of high order numerical schemes to limit numerical dissipation. These methods are detailed here, the interested reader may see Ubbink and Issa [START_REF] Ubbink | A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes[END_REF], Lafaurie et al. [START_REF] Lafaurie | Modelling merging and fragmentation in multiphase flows with SURFER[END_REF], Tsui et al. [START_REF] Tsui | Flux-blending schemes for interface capture in two-fluid flows[END_REF] and Patel et al. [START_REF] Patel | A generic framework for design of interface capturing schemes for multi-fluid flows[END_REF]. Interface reconstruction methods assume interfacial cells with liquid mass fraction Y 1 such that 0 < Y 1 < 1, and with an unknown interface topology to be reconstructed. More or less complex algorithms have been proposed, depending on their order of accuracy, as shown in Figure 2.3. The first and simplest reconstruction algorithm, the Simple Line Interface Calculation (SLIC), was introduced by Noh and Woodward [START_REF] Noh | SLIC (Simple Line Interface Calculation)[END_REF]. It assumes a linear, and horizontal or vertical interface reconstruction, as illustrated in Figure 2.3(b). This methodology was further improved by Youngs [START_REF] Youngs | Time-dependent multi-material flow with large fluid distortion[END_REF] who introduced the Piece-wise Linear Interface Calculation (PLIC), illustrated in Figure 2.3(c). This method requires to precisely estimate the interface direction in order to predict accurately the interface dynamics. The interface normal vector reconstruction is a topic in itself, the interested reader is referred to Pilliof and Puckett [START_REF] Pilliod | Second-order accurate volume-of-fluid algorithms for tracking material interfaces[END_REF], Mosso et al. [START_REF] Mosso | Recent enhancements of volume tracking algorithms for irregular grids[END_REF], Dyadechko and Shashkov [START_REF] Dyadechko | Moment-of-fluid interface reconstruction[END_REF] or Sussman and Puckett [START_REF] Sussman | A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows[END_REF]. VOF methods are fully mass conservative, even for interfacial flows at high density ratio and high Reynolds numbers. The flapping of a two phase jet for air and water at Re = 8701 performed by Schmidt et al. [START_REF] Schmidt | Numerical investigation of the breakup behavior of an oscillating two-phase jet[END_REF] is shown in Figure 2.4. In this study [START_REF] Schmidt | Numerical investigation of the breakup behavior of an oscillating two-phase jet[END_REF], the authors showed a good agreement with experimental results for both the atomization mechanism and the droplet probability density function. 

Level Set

Originally proposed by Osher and Sethian [START_REF] Osher | Front propagating with curvature dependent speed: algorithm based on Hamilton-Jacobi formulations[END_REF] for flame front propagation, and later adapted for two-phase flows by Mulder and Osher [START_REF] Mulder | Computing interface motion in compressible gas dynamics[END_REF], the Level Set method consists in the advection of the scalar signed distance function Φ defined Eq. (2.7):

|Φ( x, t)| = min x I ∈Γ | x -x I | (2.7)
where Γ is the interface and x I the interface location. The function φ is called the Level Set function, naming the method. It is computed by solving Eq. (2.8):

∂ t Φ + u α ∂ α φ = 0 (2.8)
Similarly as in VOF methods, the density ρ and velocity u are recovered through a continuity equation and momentum conservation equation Eq. (2.9) and Eq. (2.10)

∂ t ρ + ∂ α ρu α = 0 (2.9) ∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = µ (∂ α u β + ∂ β u α ) + F σ α (2.10)
where F σ α accounts for surface tension. The interface location is given by the isocontour of φ = 0. This function is signed such as its sign changes depending with the phase it is located in. To remain a distance function, the level-set function must satisfy ∇Φ = 1. However, the advection through a complex flow does not always ensure such condition. Sussman and Puckett [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF] proposed to add a redistanciation step in the phase field calculation algorithm. In this enhanced algorithm, an intermediate function Φ * ( x, t) is first calculated as the solution of Eq. (2.8). The phase field Φ( x, t + 1) is calculated as the stationary solution of the following system, Eq. (2.11):

∂ τ Φ = sign (Φ * ) 1 -| ∇Φ| with Φ( x, 0) = Φ * ( x, t) (2.11)
The main drawback of level-Set method is the lack of mass conservation, which results from this redistanciation step. The redistanciation induces non-physical interface displacements, and thus spurious mass transfer between phases. To address this issue Olson and Kreis [START_REF] Olsson | A conservative level set method for two phase flow[END_REF] proposed a so-called Conservative Level Set (CLS). This improvement consists in the consideration of a hyperbolic tangent distance function Ψ:

Ψ ( x, t) = 1 2 tanh Φ( x, t) 2 + 1 (2.12)
where is a characteristic length that controls the interface thickness. Ψ is calculated by solving a convection equation and the interface is located at Φ = ( x, t) = 0, i.e. Ψ = ( x, t) = 0.5. The conservative equation is similar to Eq. (2.8):

∂ t Ψ + ∂ α (Ψu α ) = 0 (2.13)
In order to ensure | ∇Φ| = 1, which reads for the new function ∂ α Ψ = Ψ (1 -Ψ) . Similarly as in Sussman et al. [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF], Olson and Kreiss [START_REF] Olsson | A conservative level set method for two phase flow II[END_REF] proposed an enhanced algorithm using an intermediate function Ψ * solution of Eq. (2.13). Ψ( x, t + 1) is defined as the stationary solution of Eq. (2.14):

∂ τ ψ = ∂ α ( (∂ α Ψn α ) n α -Ψ (1 -Ψ) n α ) (2.14)
where n is the interface normal vector defined Eq. (2.15)

n = ∇Ψ | ∇Ψ| (2.15)
The main strength of the Level Set Method is the capability to easily construct a normal vector and consequently compute curvature thanks to the Ψ or the Φ field. The curvature κ can be computed through:

κ = ∇. ( n) (2.16)
Desjardins et al. [START_REF] Desjardins | An accurate conservative level set/ghost fluid method for simulating turbulent atomization[END_REF] nonetheless proposed to rely on Ψ rather than Φ to compute the interface normal:

n = ∇Φ | ∇Φ| (2.17)
This methodology, refereed as the Accurate Conservative Level-Set (ACLS) is shown to significantly improve the results, allowing the computation of rather large density gradients, and high Reynolds and Weber numbers, as shown in Figure 2.5 for which Re = 3000, W e = 10000, and the density ratio is 40. Despite the improvements, the ACLS is not fully conservative, leading to a 3% mass loss in the original paper. 

Diffuse Interface Method

Diffuse interface methods consist in the consideration of a continuous change in physical properties across the interface. This continuous change is dictated by a thermodynamic approach, or a phase field method, either a multi-fluids method, described in the following.

Phase field method

Fundamental principles

The phase field methods inherit from the original work of van der Waals [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous density variation[END_REF], Korteweg [START_REF] Korteweg | Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capilarité dans l'hypothèse d'une variation continue de la densité[END_REF], Cahn and Hilliard [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF] and allow to track the interface through a thermodynamic variable characteristic of the considered phase. Several phase fields functions have been considered in the literature, either the density ρ, the liquid mass fraction Y liq , or the liquid volume fraction α liq . The specific phase field, noted φ, defined by Eq. (2.18):

φ = Y 1 -Y 2 (2.18)
where Y k corresponds to the k th mass fraction, is of particular importance in the present work, and φ = ±1 in pure phase. In pure phase 1, φ takes the value 1 and in pure phase 2, φ is equal to -1. In his original work [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous density variation[END_REF], Van der Walls proposed to consider density ρ, as the phase field, but his work can be generalised to any phase field variable. His work relies on the Helmholtz free energy defined by Eq. ( 2. [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF])

F = U -T S (2.19)
where U is the internal energy, T the temperature and S the entropy. The volume free energy writes f H , and is a function of the temperature T , the density ρ and the composition φ. Van Der Waals made three assumptions. It was assumed that the phase field and its successive spatial derivatives are independent variables, the study takes place in an isothermal framework (then f H doesn't depend on the temperature anymore), and f H is a function of the phase field, but also of the phase field's spatial derivative (f H ρ, φ, ∇φ ). Based on symmetry assumption, it can be shown that:

F = f H (ρ, φ, 0) + λ φ ∇φ 2 dx 3 (2.20)
where λ φ is a constant. It can be seen that free energy can be divided into two components. A "pure

fluid" component f H,0 = f H (ρ, φ, 0) and an "interfacial" component f σ H = λ φ ∇φ 2 .
The interested reader can find the calculation's detail in Cahn and Hilliard's work [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF]. From last equation, a volume free energy function can be defined:

f F E = f H,0 + f σ H (2.21)

Homogeneous free energy

It was pointed out by Gibbs [START_REF] Gibbs | On the equilibrium of heterogeneous substances[END_REF] that for the two phases to be at equilibrium, the pure fluid free energy f H,0 should reach a minimum in pure phases. For the phase field φ defined by Eq. (2.18), the free energy f H,0 must verify:

∂ φ f H,0 | φ=1 = ∂ φ f H,0 | φ=-1 = 0 (2.22)
The free-energy can be freely set by the user, as long as Eq. (2.22) is satisfied. In Section 2.3, it is discussed that pressure can be computed from free energy, then f H,0 's definition can be considered as an equation of state. Many formalisms have been proposed in the literature for f H,0 , among which:

f H,0 = F 0 1 -φ 2 2 (2.23)
where F 0 is a constant set by the user. This expression is sometimes expressed as a function of the phase mass fraction:

f H,0 = F 0 Y 2 1 (1 -Y 1 ) 2 (2.24)
It must be noted that the present work takes place in an isothermal framework, making the present model unable to take into consideration thermal effect. Caginal [START_REF] Caginalp | Stefan and Hele-Shaw type model as asymptotic limits of the phase-field equations[END_REF] and then Boettinger et al. [START_REF] Boettinger | Phase-field simulation of solidification[END_REF] proposed an improved free energy formalism that takes into account a thermal behavior.

Free energy potential

From Gibbs [START_REF] Gibbs | On the equilibrium of heterogeneous substances[END_REF], it comes that for a system to be at thermodynamical equilibrium, its total free energy must reach a minimum. At equilibrium, the phase field φ eq must satisfy:

F (φ eq ) = min φ (F (φ)) (2.25)
It can be shown that the previous condition reduces to the following differential equation Eq. (2.26).

A rigorous demonstration was proposed by Nayigizente [START_REF] Nayigizente | Unsteady simulations of liquid / gas interfaces in real gas flows using the Second Gradient t[END_REF].

∂ φ f H,0 -∂ α (λ φ ∂ β φ) = 0 (2.26)
From the last condition, it is useful to define a phase field potential defined by:

µ φ = ∂ φ f H,0 -∂ α (λ φ ∂ β φ) (2.27)
Note that in pure phase ∂ β φ = 0, which induces ∂ φ f H,0 = 0, which satisfies the Gibbs condition Eq. (2.22). On a side note, when f H,0 is specifically defined through Eq. (2.23) and in a flat interface case, the partial derivative equation Eq. (2.26) can be solved analytically. Eq. (2.26) reduces to:

φ(x) = 1 + tanh F 0 2α x 2
(2.28)

Cahn Hilliard and Allen-Cahn equations

As discussed in Cahn et al. [START_REF] Cahn | The CahnHilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature[END_REF], a family of methods can be constructed from the definition of the phase field potential µ φ defined by Eq. (2.27). The phase field will be solution of a specific equation based on the previous principles. This equation controls the interface shape. Two main families of equations have been proposed in the literature, the Cahn-Hilliard [START_REF] Cahn | On spinodal decomposition[END_REF] and the Allen-Cahn [START_REF] Allen | Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys[END_REF] equations, detailled hereafter.

Cahn-Hilliard equation

The work of Cahn and Hilliard takes place in the context of metallurgy, and spinodal decomposition between phases. It assumes a concentration flux J Φ occuring during this spinodal decomposition, to homogenise the system. This flux is assumed to be proportional to the phase field potential gradient following:

J φ,α = M ∂ α µ φ (2.29)
where M is the so-called mobility factor, which controls the interface dynamics. The Cahn-Hilliard equation is obtained by assuming that temporal variation of the phase field corresponds to the concentration flux spatial gradient:

∂ t φ = ∂ α J φ,α = ∂ α [M (∂ φ f H,0 -∂ γ λ φ ∂ β φ)] (2.30)
As Cahn and Hilliard work takes place in a metallurgical framework, it doesn't take into account a convective term. Eq. (2.30) was generalised to fluid mechanics by Antanovski [START_REF] Antanovskii | A phase field model of capillarity[END_REF], who proposed:

∂ t ρφ + ∂ α (ρφu α ) = ∂ α [M ∂ α (∂ φ f H,0 -∂ β λ φ ∂ γ φ)] (2.31)
Unlike the Cahn-Hilliard equation Eq. (2.30), the generalisation by Antanovski Eq. (2.31) is written in a conservative form. In the incompressible framework, both φ and ρφ can be considered as transported field. However, in the compressible framework, the formulation by Antanovski Eq. (2.31) must be considered to ensure mass conservation. These equations involve the 4th order derivative of φ, which may be an issue in term of numerical cost. On the other hand, Eq. (2.31) has the advantage to be unconditionally mass conservative. More details about mass conservation are provided in Section 2.2.1.4.

Allen-Cahn equation

The fact that the Cahn-Hilliard equation implies a 4 th order spatial derivative can be numerically costly. To prevent this issue, Allen and Cahn [START_REF] Allen | Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys[END_REF] proposed a 2 nd order equation. In this equation, temporal derivative of the phase field is directly proportional to the phase field potential:

∂ t φ = M µ φ (2.32)
The generalization to a fluid dynamic framework proposed by Yang et al. [START_REF] Yang | Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method[END_REF] following:

∂ t ρφ + ∂ α (ρφu α ) = M [∂ φ f H,0 -∂ α λ φ ∂ β φ] (2.33)
It must be noted that the coefficient M is also called the mobility factor as in an Allen-Cahn framework. Note anyway that these two coefficients have different natures, and don't have the same units.

Compared to the Cahn-Hilliard equation, the Allen-Cahn equation is less computationally expensive since it only involves a second order spatial derivative. However, its main drawback is that it doesn't necessarily ensure mass conservation. More details are provided in Section 2.2.1.4

Allen-Cahn equation: a geometrical approach

Original Sun and Beckermann model

Another class of phase field methods has been proposed by Sun and Beckermann [START_REF] Sun | Sharp interface tracking using the phase-field equation[END_REF]. In the literature, this approach is often called "Allen-Cahn" equation despite being significantly different from the approach described Section 2.2.1.2. To distinguish this methodology from the original Allen-Cahn formulation, it is refereed in this present work as the geometrical Allen-Cahn approach. Sun and Beckermann work takes place in an incompressible context. The authors assumed the right hand side of the phase field transport equation to be proportional to the local interface curvature, following:

∂ t φ + ∂ α φu α = M κ| φ| (2.34)
where M is the mobility factor, and κ the interface curvature. Similarly as in Level-Set method, the curvature is estimated from the interface normal:

n = ∇φ | ∇φ| (2.35)
The interface curvature writes

κ = ∇. n = 1 | ∇φ|   ∂ 2 α φ - (∂ α φ) ∂ α | ∇φ| | ∇φ|   (2.36)
They furthermore proposed to assume that the diffuse interface follows an hyperbolic tangent profile following [START_REF] Sun | Sharp interface tracking using the phase-field equation[END_REF]:

φ = -tanh n dist √ 2W (2.37)
where n dist is the normal distance to the interface and W the interface characteristic width. Since f = 1 -f 2 for tanh, Eq. (2.36) can be recast as:

∇φ = -∂ n φ = 1 -φ 2 √ 2W (2.38) ∇φ. ∇ | ∇φ| | ∇φ| = - φ 1 -φ 2 W 2 (2.39)
Finally, the phase field transport equation writes:

∂ t φ + ∂ α (φu α ) = M ∂ 2 α φ + φ 1 -φ 2 W 2 (2.40)
The main advantage is that the interface thickness is controlled by the user through the parameter W . By construction, in a flat interface case the phase field tends to a hyperbolic tangent profile. As will be discussed in the following subsection (Section 2.2.1.4), this methodology however does not ensure mass conservation. To address this issue, Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] proposed an improved conservative model.

Chiu and Lin conservative model

Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] proposed to add a correction term in Eq. (2.40) following:

∂ t φ + ∂ α (φu α ) = M ∂ 2 α φ -| ∇φ|∂ α ∂ α φ | ∇φ| - φ 1 -φ 2 W 2 (2.41)
which can be reduced as:

∂ t φ + ∂ α (φu α ) = M ∂ α ∂ α φ - φ (1 -φ) W ∂ α φ | ∇φ| (2.42)
The previous equation is of paramount important in the current work. Similarly, like the equation proposed by Sun and Beckerman [START_REF] Sun | Sharp interface tracking using the phase-field equation[END_REF], it can be shown that for a flat interface this equation tends to a tangent hyperbolic profile. It must also be reminded that the ∂ α φ | ∇φ| term in the equation's right term corresponds to the normal vector α direction n α . By construction, this equation is purely conservative. Note that Eq. (2.42) has been proposed in the incompressible framework. In a compressible framework, this conservation equation must write:

∂ t ρφ + ∂ α (ρφu α ) = M ∂ α ∂ α φ - φ(1 -φ) W n α (2.43)
so that each phase mass fraction are conserved. It must be noted that M from (2.43) and M from (2.42) corresponds to different physical value, despite being noted in a similar manner among the literature. In particular, they don't have the same dimension.

About mass conservation

In a compressible framework, Cahn-Hilliard and Allen-Cahn equations are associated to the mass conservation equation:

∂ t ρ + ∂ α (ρu α ) = 0 (2.44)
This equation assures total mass conservation. On the other hand, ρφ variation corresponds to the mass transfer from one phase to the other. The phase field conservation equation must avoid spurious mass transfer to ensure mass conservation. In a Cahn-Hilliard or an Allen-Cahn framework, the interface thickening can only occur if mass transfers are locally allowed. This mass transfer doesn't necessarily break the mass conservation principle if its integral on the whole domain is zero. The general form of a phase field equation is reminded here:

∂ t ρφ + ∂ α (ρu α ) = ω (2.45)
When integrated on the whole spatial domain, Eq. (2.45) writes:

∂ t D ρφdV + S ρφu α n S,α dS = D ωdV (2.46)
where D dV is the integral all over space, S n S,α dS is the integral all over the domain's limit and n S is the domain limit normal vector.

In the Cahn-Hilliard case, w = ∂ α j α . Using the Grad-Ostrogradsky theorem the integrated source term can be reduced to:

D ωdV = S j α n S,α dS (2.47)
If the phase field flux is null at the domain's boundary, the phase field production integral is null. It shows how a system including a Cahn-Hilliard equation is unconditionally mass conservative.

In the Allen-Cahn framework,

w = M µ φ = M (∂ φ f H,0 -∂ α λ φ ∂ β φ)
, then the production term reduces to:

D ωdV = D M ∂ φ f H,0 (1) 
- S M λ φ ∂ β φn α,S dS (2) 
(2.48)

In the last equation, (2) can be equal to zero with the good boundary conditions choice, but (1) is not necessarily equal to 0. For instance, if f H,0 is set thanks to (2.26), the Allen-Cahn equation is not conservative. Based on Rubinstein et al.'s work [START_REF] Rubinstein | Nonlocal reaction-diffusion equations and nucleation[END_REF], conservative Allen-Cahn phase field equations were proposed [111] [112] In particular, Chiu and Lin equation (Eq. (2.42)) is mass conservative since it takes an Allen-Cahn equation's form, with a production term w equal to a gradient term.

Multi fluids methods

Multi-fluids methods are another popular class of diffuse interface methods. Originally proposed in Drew & Segel [START_REF] Drew | Averaged Field Equations for Two-Phase Media[END_REF], Baer and Nunziato [START_REF] Baer | A two phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials[END_REF] derived a seven transport equation model intending to model deflagration to detonation transition. This method is extended to a two phase immiscible framework by Saurel and Abgrall [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF]. In this methods, a unique equation system describe the whole fluid. The interface is not explicitly considered, it simply corresponds to sharp spatial gradient zones. But contrary to phase field methods, the theoretical background doesn't rely on the free energy approach. In Saurel and Abgrall's [START_REF] Saurel | A simple method for compressible multifluid flows[END_REF] work, each fluid mass, momentum and energy are considered independently, and each of them are determined through a specific transport equation. It means that this model allows to simulate fluids in a non-equilbrium state mechanically and energetically. The original equations system is given by:

∂ t (α 1 ρ 1 ) + ∂ α (α 1 ρ 1 u 1,α ) = 0 (2.49) ∂ t (α 2 ρ 2 ) + ∂ α (α 2 ρ 2 u 2,α ) = 0 (2.50) ∂ t (α 1 ρ 1 u α,1 ) + ∂ β (α 1 [ρ 1 u α,1 u β,1 + p 1 ]) = -p int ∂ t α 2 -K u (u α,1 -u α,2 ) (2.51) ∂ t (α 2 ρ 2 u α,2 ) + ∂ β (α 2 [ρ 2 u α,2 u β,2 + p 2 ]) = -p int ∂ t α 1 + K u (u α,1 -u α,2 ) (2.52) ∂ t (α 1 ρ 1 e 1 ) + ∂ α (α 1 (ρ 1 e 1 + p 1 ) u 1 ) = -p int u int ∂ t α 2 -K u u int (u 1 -u 2 ) -K p p int (p 2 -p 1 ) (2.53) ∂ t (α 2 ρ 2 e 2 ) + ∂ α (α 2 (ρ 2 e 2 + p 2 ) u 2 ) = p int u int ∂ t α 2 + K u u int (u 1 -u 2 ) + K p p int (p 2 -p 1 ) (2.54) ∂ t α 2 + u α,int ∂ α α 2 = K p (p 2 -p 1 ) (2.55) 
with α k being k th phase volume fraction, ρ k density, u k velocity, e k the internal energy. K u and K p are relaxation terms, u int corresponds to the interface velocity and p int the interface pressure. The formulation for p int and u int is a subject of discussion in itself. In this model, the two phases are not supposed to be at mechanical and thermal equilivbium, so that two different velocities (u 1 and u 2 ) and internal energies (e 1 and e 2 ) are transported.

To reduce the computational cost of this seven equations model, Kapila et al. [START_REF] Kapila | Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations[END_REF] then Saurel et al. [117][118] successively reduced this formulation to a 6 and 5-equation model.

More recently, Saurel et al. [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] have proposed a 4-equation model, and Pelletier et al. [START_REF] Pelletier | A multifluid Taylor-Galerkin methodology for the simulation of compressible multicomponent separate two-phase flows from subcritical to supercritical states[END_REF] a 3-equation model. Emphasis is put on these last two formulations, because of their similarities to the models found in phase-field LBM.

Four equation model

The 4-equation model proposed in Saurel et al. [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF] writes:

∂ t ρ + ∂ α ρu α = 0 (2.56) ∂ t α 1 ρ + ∂ α α 1 ρu α = 0 (2.57) ∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = 0 (2.58) ∂ t α 1 ρe + ∂ α (α 1 (ρe + p) u α ) = 0 (2.59)
The model assumes mechanical equilibrium ( u 1 = u 2 = u and p 1 = p 2 = p) and thermal equilibrium (e 1 = e 2 = e). While Eqs. (2.56, 2.58, 2.59) respectively account for the conservation of the mixture density ρ, momentum ρ u and energy e, Eq. (2.57) accounts for the conservation of a given phase mass fraction, and plays the role of a phase field equation. This formulation can be improved to account for surface tension and viscous effects, such as proposed in Gaillard et al. [START_REF] Gaillard | A diffuse interface Lox/hydrogen transcritical flame model[END_REF] and Carmona's PhD [START_REF] Carmona | Modélisation des phénomènes diphasiques dans des injecteurs aéronautiques de type Airblast[END_REF]. Furthermore, mass transfer can also be accounted for through Eq.(2.57) as proposed in Chiapolino et al. [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] who studied the effect of evaporation for a coaxial supercritical jet as shown in Figure 2.6. Another way to interpret the 4-equation model, is to consider that there is a colorless flow (which density is ρ and momentum is ρ u) which is solved independently, while on the other hand, a phase field equation is solved. The fluid is then "colored" thanks to this phase field. Such an interpretation is similar to Level-Set [START_REF] Osher | Front propagating with curvature dependent speed: algorithm based on Hamilton-Jacobi formulations[END_REF] model's original philosophy. 

Three equations

The 4-equation multi-fluid model can even be reduced to a 3-equation model. Relying on Barret et al. [START_REF] Barret | Schemes to compute unsteady flashing flows[END_REF], Pelleterier et al. [START_REF] Pelletier | A multifluid Taylor-Galerkin methodology for the simulation of compressible multicomponent separate two-phase flows from subcritical to supercritical states[END_REF] proposed Eqs. (2.60, 2.61, 2.62):

∂ t ρ + ∂ α ρu α = 0 (2.60) ∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = 0 (2.61) ∂ t ρe + ∂ α ((ρe + p) u α ) = 0 (2.62)
This model assumes mechanical and thermal equilibrium between phases, as well as equality of chemical potentials between phases. This set of equations is similar to a classical aerodynamical system. Similarly as in the 4-equations model, it can be improved to account for surface tension [START_REF] Laroche | A diffuse interface method with real-gas thermodynamic equilibrium closure applied to capillary problems[END_REF].

A detailed description of the strategies allowing to account for surface tension in diffuse interface methods is proposed in the following subsection. Despite taking place in the free energy framework, the second gradient methods developed by Jamet et al. [START_REF] Jamet | The Second Gradient Method for the Direct Numerical Simulation of Liquid-Vapor Flows with Phase Change[END_REF] can be classified as a three equation method. An improved second gradient method has been recently proposed by Nayigizente et al. [START_REF] Nayigizente | Development of an interface thickening method for the direct numerical simulation of compressible liquid-vapor flows in the framework of the second gradient theory[END_REF], allowing to increase the numerical stability of these technique. An illustration of a droplet splashing case using Nayigizente et al. [START_REF] Nayigizente | Development of an interface thickening method for the direct numerical simulation of compressible liquid-vapor flows in the framework of the second gradient theory[END_REF] is proposed in Figure 2.7. In this figure, the numerical results are confronted to Ashgriz et al. [START_REF] Ashgriz | Coalescence and separation in binary collisions of liquid drops[END_REF] experimental results. This method has been used in the work of Laroche et al. [START_REF] Laroche | A diffuse interface method with real-gas thermodynamic equilibrium closure applied to capillary problems[END_REF]. 

Surface tension

In the last two sections, methodologies allowing to numerically deal with a liquid-gas interface, either sharp or diffuse, have been presented. However, the modeling of surface tension has only been evoked. In pure phases, each particles are submitted to an isotropic attractive force between particles. For interfacial particles, an imbalance of these attractive forces occurs, leading to a surface force, referred as surface tension. A practical consequence of this force is the appearance of a pressure jump across the interface. Giving the nature of this force, the interface topology highly influences the pressure jump value. This pressure jump happens to be proportional to the local curvature as predicted by the Laplace Law [START_REF] Benoit | Ecoulements multiphasiques: des fondements aux méthodes d'ingénieries[END_REF]:

∆p = σ 1 R 1 + 1 R 2 (2.63)
where ∆p is the pressure jump, R 1 and R 2 the local curvatures of the interface and σ the surface tension coefficient. The coefficient σ is a function of temperature (it tends to slightly decrease when temperature rises [130][131]), but it mainly depends on the two considered fluids. Typical values are given Table 2.1. Modeling surface tension is particularly challenging; in practice, this force appears only at the interface location. In most models, interface is not considered infinitely thin, making Laplace Law unusable in practice. To overcome this issue, surface tension must be modeled. In 1901 (at a time where international scientific papers were written in french), Korteweg [START_REF] Korteweg | Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capilarité dans l'hypothèse d'une variation continue de la densité[END_REF] proposed a model to introduce surface tension in a Navier-Stokes system. Based on symmetry considerations, and on van der Walls work [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous density variation[END_REF], it was proposed that momentum conservation equation takes the following form:

∂ t (ρu α ) + ∂ β ρu α u β + pδ αβ + p σ αβ = ∂ β T αβ (2.64)
where p is the thermodynamic pressure, T αβ is the stress tensor, and p σ αβ a surface tension tensor. Korteweg also proposed that surface tension should take the following form:

p σ αβ = α K (∂ α ρ) 2 -γ K ∂ 2 α ρ δ αβ + β K ∂ α ρ∂ β ρ -µ K ∂ 2 αβ ρ (2.65) α K , β K , γ K and µ K being constant coefficients.
While in practice Korteweg model is not used, the idea that surface tension can be introduced through a stress tensor is of interest. An other way to interpret Korteweg's work is to model surface tension as a body force. In this case, the momentum conservation equation becomes:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = ∂ β T αβ + F σ α (2.66)
with F σ α a surface tension body force which should respect F σ α = -∂ β p σ αβ to account for surface tension. Based on these principles, two approaches are mainly found in the literature. They rely on totally different theoretical frameworks, the first being based on a geometrical approach, while the second relies on the Van der Waals [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous density variation[END_REF] free energy approach. These two approaches are detailed in the following. For the interested reader, less commonly used operators are discussed and proposed by Kim [START_REF] Kim | A continuous surface tension force formulation for diffuse-interface models[END_REF].

Geometrical approach

The geomretrical approach has been originally introduced by Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], and intends to model the Laplace pressure jump (Eq.(2.63)) on the basis on the interface topology. Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] proposed the so-called Continuum Surface Force (CSF), extended in Guyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] to a Continuous Surface Stress (CSS).

Continuous Surface Force

Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] proposed to rely on a continuous phase field function to estimate the interface normal, and consequently the interface curvature. Density is chosen as a phase field function in their original work, after a filtering operation on a bounded support h. This allows the introduction of a continuous density across the interface. The interface normal writes:

n = ∇φ | ∇φ| (2.67)
where φ is the continuous phase field function. The volume force, equivalently body force, writes:

F α = σκn α (2.68)
where σ is the surface tension coefficient, κ is the local curvature and n is the interface normal vector.

Local curvature value can be determined through the interface normal vector through:

κ = -∇. n (2.69)
The authors demonstrate that the volume force Eq. (2.68) tends to the actual surface tension as the transition region h (equivalent to the interface width) tends to zero. It should be noted that the phase field used to determined the fluid local composition can be different from the phase field used to determine interface normal vector.

Continuous Surface Stress

In the Continuous Surface Stress (CSS), surface tension is modeled through a surface tension tensor. The momentum conservation equation follows Eq.(2.66) and the body force satisfies:

F σ α = -∂ β p σ αβ (2.70)
The pressure tensor p σ αβ is chosen so that:

∂ β p σ αβ = σκδ int n α (2.71)
with δ int being a function equal to 1 at the interface location and equal to 0 otherwise. The pressure tensor can be formulated:

p σ αβ = -σ (δ αβ -n α n β ) δ int (2.72)
The function locating the interface δ int is given by:

δ int = | ∇φ| 2 (2.73)
where φ is a continuous phase field function across the interface. Similarly as in Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], the interface normal vector n is given by Eq. (2.67). Injecting n and δ int definitions in Eq. (2.72), Gueyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] surface tension tensor writes:

p σ αβ = - σ 2| ∇φ| -(∂ γ φ) 2 δ αβ + ∂ α φ∂ β φ (2.74)
Similarly as for Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] body force formulation, Eq. (2.74) can be generalized to any continuous and derivable phase field φ.

Free Energy approach

The second approach allowing to introduce surface tension in a system relies on Van der Walls [98] free energy principle. As detailed in Section 2.2.1, the idea introduced by Van der Walls is that the interface implies a surface additional free energy. The massic free energy f HE is reminded, it writes:

f F E = f H,0 + λ φ ∇φ 2 (2.75)
where f H,0 is the pure fluid free energy component, λ surface tension coefficient, and φ a phase field function. As shown in Antanovski [START_REF] Antanovskii | A phase field model of capillarity[END_REF], or thoroughly detailed in the second gradient theory by Jamet [START_REF] Jamet | Étude des Potentialités de la Théorie du Second Gradient pour la Simulation Numérique Directe[END_REF] and more recently in Nayigizente's PhD thesis [START_REF] Nayigizente | Unsteady simulations of liquid / gas interfaces in real gas flows using the Second Gradient t[END_REF], a surface tension tensor can be deduced from the free energy. The momentum conservation can be formulated:

∂ t (ρu α ) + ∂ β ρu α u β + pδ αβ + p σ αβ = ∂ β T αβ (2 .76) 
with:

p = φ ∂f H,0 ∂φ (2.77)
and

p σ αβ = λ φ φ∂ 2 γ φ + 1 2 (∂ γ φ) 2 δ αβ -∂ α φ∂ β φ (2.78)
The present formulation is referred to as free energy surface tension tensor form.

Potential formulation

A potential µ φ can be derived from the free energy f HE , so that:

µ φ = ∂ φ f H,0 -∂ α (λ φ ∂ α φ) (2.79)
this potential allows to write:

∂ β pδ αβ p σ αβ = φ∂ α µ φ (2.80)
It means that from the free tensor formulation, a body force formulation can be deduced:

F σ α = φ∂ α ∂ 2 γ φ (2.81)
This formulation is referred as the free energy potential formulation. From a physical point of a view, the free energy surface tension tensor and potential formulations are strictly equivalent. However, differences may appear from a numerical point of view. The free energy potential formulation is a popular operator, particularly among the HCZ community [START_REF] Fakhari | Multiple-Relaxation-Time lattice Boltzmann method for immiscible fluids at high Reynold numbers[END_REF][138] [START_REF] Lee | Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces[END_REF], presented hereafter in Section 3.5.

Relation between λ and the surface tension coefficient σ

An important note is that in Gueyffier's [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] and Brackbill's [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] operators, the coefficient σ in their operators corresponds to the desired surface tension coefficient given in Laplace Law Eq.(2.63). The present coefficient λ φ (Eq. (2.75)) is not directly proportional to the surface tension coefficient, since in the free energy framework, the homogeneous component of surface tension in the diffuse interface also contributes to the pressure jump. As a consequence, surface tension σ and λ φ are through:

σ = φ 2 φ 1 λ∂ x φdφ (2.82)
with φ 1 and φ 2 phase field values in pure phase 1 and 2 respectively.

Chapter 3

Multiphase LBM 

General Introduction

Multiphase flows and Lattice Boltzmann methods have a particularly tight relationship which appeared very early, as soon as Lattice Gas Automata was proposed. In 1988, Rothmann and Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] proposed a method that could simulate two phases, that was generalised to Lattice Boltzmann Method few years after [START_REF] Gunstensen | Lattice Boltzmann model of immiscible fluids[END_REF]. As pointed out in the previous chapter two strategies stand out of the crowd to simulate multiphase flows, the surface tracking methods or the diffuse interface methods. Few attempts were made to apply surface tracking principles in a lattice Boltzmann framework [START_REF] Lallemand | A lattice boltzmann front-tracking method for interface dynamics with surface tension in two dimensions[END_REF][START_REF] Kwak | Hybrid Lattice-Boltzmann/Level-set Method for Liquid Simulation and Visualization[END_REF][START_REF] Becker | A combined lattice BGK/level set method for immiscible two-phase flows[END_REF] while most LBM multiphase studies consider diffuse interface methods approaches. The different multiphase methods for LBM are usually divided into four famillies: Rothmann-Keller methods [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] (also called Color Gradient methods, or more rarely Chromodynamic methods), pseudo-potential method [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF][START_REF] Shan | Simulation of non-ideal gases and liquid-gas phase transition by lattice boltzmann equation[END_REF](or Shan and Chen method), free energy methods [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF][START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF] and HCZ methods [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF]. Other methods were proposed among the literature such as the ones proposed by He & Luo [START_REF] He | Discrete Boltzmann equation model for nonideal gases[END_REF] or Nourgaliev [START_REF] Nourgaliev | On lattice Boltzmann modeling of phase transition in an isothermal non-ideal fluid[END_REF] but they are not detailed here. A thorough review of the Lattice Boltzmann Methods for multiphase flows can be found in [START_REF] Huang | Multiphase Lattice Boltzmann Methods: Theory and Application[END_REF][START_REF] Li | Lattice boltzmann methods for multiphase flow and phase-change heat transfer[END_REF]. Note that some numerical approaches of interest for multiphase flows have been originally intended for porous flows, which share numerous physical similarities. A review of Lattice Boltzmann Method and porous flows is available [START_REF] Liu | Multiphase lattice boltzmann simulations for porous media applications[END_REF]. Before the description of all these specific methods for multiphase LBM, the description of few common issues is provided in this first section. The numerical introduction of surface tension in the LBM framework, the spatial derivative operator, the introduction of non-perfect equation of state and of viscosity are detailled hereafter.

Surface Tension

As discussed in the Chapter 2, one of the fundamental feature of multiphase flow is the presence of surface tension. As discussed in Section 2.3, several ways to model surface tension are possible in any numerical formalism. From the mathematical point of view, surface tension can take two forms, it can rather be seen as a stress tensor as in the work of Gueyffier [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] but it can also be seen as a body force as in Brackbill [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. The impact of these two formalisms has been recently discussed by Zhang et al. [START_REF] Zhang | On the formulations of interfacial force in the phase-field-based lattice Boltzmann method[END_REF]. In the following, only the numerical aspect is discussed, then it will be assumed for the sake of generality that surface tension takes the following form:

F σ α = ∂ β p σ αβ (3.1)
as it is the most general form.

Body force scheme

A dedicated section on the inclusion of a body in LBM is proposed in section 4.2. Surface tension can be included in the momentum conservation equation through a source term using Guo's scheme [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF] or He's scheme [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF], detailed hereafter in Section 4.2. In the case of the body force, the situation is rather simple since the process has already been discussed in Section 4.2, then a source term is included using Guo's scheme or He's scheme. It must be noted that even though this solution is simpler, it is numerically more intensive since in all the body-force surface tension schemes involve a 2 nd order spatial derivative. For instance, the body force proposed by Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] is given by:

F σ α = σ∂ α ∂ γ φ | ∇φ| (3.2)
with φ the order parameter. In practice, a second order spatial derivative term cannot be calculated directly without implying high order scheme, lowering the scalability of the algorithm. In practice, two successive first order spatial derivative must be calculated, also lowering the scalability of the algorithm, and then the numerical efficiency.

Tensor scheme

To circumvent this numerical efficiency issue the use of a tensor scheme can be preferred, i.e. expressing the surface tension as P σ αβ . Note that LBM allow an easy implementation of tensor terms. There are two main ways to do so. First, we remind that the conservation equation for the first moment of the distribution function writes: 

∂ t ρu α + ∂ β m eq αβ + m eq 0 δ αβ + (τ αβ -1/2)S αβ = O(∆t) (3.
S σ αβ = p σ αβ τ αβ -1/2 (3.4)
A source term that fulfills the previous condition is:

S i = p σ αβ τ αβ -1/2 H αβ,i 2c 4 s (3.5)
This source term is sometimes interpreted as a "second collision term", that takes into account intermolecular interaction and that originates surface-tension. This strategy is used for example in the colour gradient community, for example by Gustensen [START_REF] Gunstensen | Lattice Boltzmann model of immiscible fluids[END_REF].

Equilibrium scheme

The other way to add a tensor is to modify the equilibrium function and to add a term which 2 nd order moment is equal to the desired tensor. For instance:

f eq i = ρw i H 0,i + H α,i u α c 2 s + u α u β H αβ,i 2c 4 s + p σ αβ H αβ,i 2c 4 s (3.6)
This strategy is for example considered in the original free energy method proposed in Swift et al. [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF][START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF]. It must be noted that equilibrium scheme and tensor scheme are mathematically strictly equivalent, the only difference being the fact that in the second approach, the relaxation time is involved, which might increase the complexity of the source term expression in a MRT framework when dealing with different bulk and shear viscosity, as shown in Lafarge et al. [START_REF] Lafarge | Improved color-gradient method for lattice Boltzmann modeling of two-phase flows[END_REF].

The advantage of the tensor and the equilibrium scheme is that it necessitates only a first order spatial derivative computation, contrarily to the body force approach that needs a second order spatial derivative. The associated drawback of these methods is however the appearance of a spurious term at the order ∆t in the momentum conservation equation. Considering a tensor scheme, the equivalent macroscopic equation developed at the order ∆t 2 writes:

∂ t ρu α + ∂ β ρu α u β + ρc 2 s δ αβ + p σ αβ = ∆t∂ β ρc 2 s (τ -1/2) (∂ α u β + ∂ β u α ) + Er σ αβ + O(∆t 2 ) (3.7)
with the spurious error term given by:

Er σ αβ = (τ αβ -1/2) u α ∂ γ p σ βγ + u β ∂ γ p σ αγ (3.8)
In practice, surface tension force being relatively low in absolute value, the resultant error term is relatively low, and then is often neglected. Note that spurious currents due to a similar error will be observed when using a non-perfect EoS, as later detailed in Section 3.1.3.

Schemes comparison

Zhang et al. [START_REF] Zhang | On the formulations of interfacial force in the phase-field-based lattice Boltzmann method[END_REF] have shown that the choice of surface tension model (among free energy, Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], Gueyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF], etc...) has more influence on numerical stability than the choice of the scheme introducing surface tension.

Numerical scheme for the spatial derivative operator

At least one spatial derivative computation is required in all the schemes (two concerning the body force one) and is a key element in the method. This point is discussed here. A first approach to compute a spatial derivative might be use of a simple finite difference scheme, for instance in a 2D framework :

∂ x c |(x,y) = c(x + ∆x, y) -c(x -∆x, y) 2∆x ∂ y c |(x,y) = c(x, y + ∆x) -c(x, y -∆x) 2∆x (3.9)
By calculating surface tension with such a scheme, topological errors are however observed even for simple cases. Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF] pointed out that a droplet in a quiescent atmosphere doesn't converge toward a spherical shape if the gradient calculation scheme is not wisely chosen.

Leclaire's discretization scheme

The scheme traditionally used by the Color Gradient community was proposed by Gunstensen et al. [START_REF] Gunstensen | Lattice Boltzmann model of immiscible fluids[END_REF] and was given by:

∂ α c |(x,y) = 8 i=1 ξ α,i c(x + ξ x,i ∆t, y + ξ y,i ∆t)) 18c 2 s ∆t (3.10)
Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF] proposed to use the weighting coefficients w i used to define the lattices. For instance in a D 2 Q 9 scheme, the spatial gradient scheme is given by:

∂ α c |(x,y) = 8 i=1 w i ξ α,i c(x + ξ x,i ∆t, y + ξ y,i ∆t)) c 2 s ∆t (3.11)
For each discretization schemes, a given level of isotropy can be defined. Gradient schemes were introduced in increasing order, meaning scheme introduced by Eq. (3.9) is less isotropic than gradient scheme introduced by Eq. (3.10) which is itself less isotropic than the scheme introduced by Eq. (3.11).

For the sake of clarity, similarly as Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF] it is said that these scheme have degrees of isotropy of 0, 1 and 2. From Leclaire [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF], operator of degree of isotropy 3 and 4 can also be introduced. The operator of degree of isotropy 3 is defined by:

∂ α c |(x,y) = 13 i=1 w (D2Q13) i ξ α,i c(x + ξ x,i ∆t, y + ξ y,i ∆t)) c 2 s ∆t (3.12)
where w

(D2Q13) i
are the weighting coefficients of the D 2 Q 13 velocity set. Similarly, the 4 th order of isotropic gradient operator is defined by: The effect of the isotropy of the spatial gradient scheme can be evidenced on the static droplet testcase, in which a droplet of phase 1 is initialized with a square shape in a quiescient atmosphere of phase 2. Both phases have the same density. The expected final solution is a spherical droplet of phase 1. The solver used is the one that will be presented in Chapter 5, only the discretization operator is modified in order to observe the effect of the degree of isotropy. The different topology obtained after 10.000 iterations can be observed Figure 3.1. It comes clearly that when the degree of isotropy is too low, the solver cannot simulate accurately a still bubble. On the other side, it appears that from the only topological point of view, increasing the degree of isotropy can be useless as the degree of isotropy 2 already proposes a consistent shape. The scheme used for calculating surface tension is not only interesting from the topological point of view. As pointed out by Shan [START_REF] Shan | Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models[END_REF] in a pseudo-potential framework, the discretization scheme used to approximate the spatial operator also has an impact on the spurious current appearing at the interface.

∂ α c |(x,y) = 25 i=1 w (D2Q25) i ξ α,i c(x + ξ x,i ∆t, y + ξ y,i ∆t)) c 2 s ∆t (3.
As in most diffuse interface methods, spurious currents and spurious vorticity appears inside the interface. In the static droplet test-case presented here, no velocity is expected once the droplet has reached a steady state. In practice, spurious currents and vorticity however appear, as shown in Figure 3.2. The velocity maxima are summarized in Table 3.1 for the 3 considered cases, which evidences a direct impact of the degree of isotropy on the resulting spurious currents. We can see that to pass from the degree of isotropy 1 to the degree of isotropy 2 reduces the spurious currents by two order of magnitudes. 

Lee's discretization scheme

This discussion about the discretization has also been carried out by the free energy community. In particular, Lee and Lin [START_REF] Lee | A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[END_REF] and then Lee and Fisher [START_REF] Lee | Eliminating parasitic currents in the lattice boltzmann equation method for nonideal gases[END_REF] proposed a number of operators. The first one is the biased first derivative:

∂ α c B (x,y) = i w i ξ α,i [-c(x + 2ξ x,i ∆t, y + 2ξ y,i ∆t) + 4c(x + ξ x,i ∆t, y + ξ y,i ∆t) -3c(x, y)] 2c 2 s ∆t (3.14)
The second one is the central first derivative (that is equivalent to the one proposed by Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF]) Eq. (3.11):

∂ α c C (x,y) = i w i ξ α,i [c(x + ξ x,i ∆t, y + ξ y,i ∆t) -c(x -ξ x,i ∆t, y -ξ y,i ∆t)] 2c 2 s ∆t (3.15)
Lee and Fisher [START_REF] Lee | Eliminating parasitic currents in the lattice boltzmann equation method for nonideal gases[END_REF] proposed a mixed operator:

∂ M α c = ∂ B α c + ∂ C α c 2 (3.16)
They showed that the use of this mixed operator coupled with a potential approach and a force term numerical scheme allowed to obtain spurious currents as low as 10 -15 while a similar scheme but discretized with a forward difference scheme leaded to spurious current of 10 -4 (The units are not specified in their work). This operator is widely used in the literature for its property to reduce spurious current, despite the fact it involves neighbours as far as two spatial steps.

Non-perfect Equation Of State

However, in multiphase flows, a dedicated equation of state must be accounted for, at least for the liquid phase. As discussed in Section 1.3, in the classic LBM algorithm, the EOS doesn't need to be set since a term equal to ∂ β ρc 2 s is implied by the moment cascade.

Body force scheme

As a term in ρc 2 s is already implied by LBM, a natural way to impose a pressure field equal to p consists in imposing a suppressors term equal to ∂ β p -ρc 2 s in Navier-Stokes momentum conservation equation. Then the discussion becomes similar to the one proposed earlier about surface tension. The first solution, as proposed by Luo [START_REF] Luo | Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases[END_REF] consists in applying a force term equal to:

F α = ∂ α p -ρc 2 s (3.17)

Pressure scheme

The second way originally proposed by Swift et al. [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF] in a free energy framework consists in modifying the second moments of the equilibrium function to ensure that:

i H αβ,i f eq i = ρu α u β + (p -ρc 2 s )δ αβ (3.18)
To do so, the equilibrium function is modified to:

f eq i = ρw i 1 + ξ α,i u α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s + (p -ρc 2 s ) H γγ,i 2c 4 s (3.19)
This scheme is refereed to as the "pressure scheme". Similarly as for surface tension, the scheme consisting in modifying the pressure through the equilibrium induces a spurious term in the macroscopic equation, as shown in Holdych et al. [START_REF] Holdych | An improved hydrodynamics formulation for multiphase flow lattice-boltzmann models[END_REF]. They used a Chapman-Enskog method leading to:

∂ t ρu α + ∂ β [ρu α u β + pδ αβ ] = ∂ β ∆t(τ -1/2)     ρc 2 s (∂ α u β + ∂ β u α ) -u α ∂ β p -ρc 2 s -u β ∂ α p -ρc 2 s spurious term     (3.20)
This spurious term is responsible for lack of numerical stability, as well as spurious currents. Wagner et al. [START_REF] Wagner | investigation of galilean invariance of multi-phase lattice boltzmann methods[END_REF] discussed rather the pressure scheme should be prefered to the body force scheme. It was shown that the body force scheme should be preferred as it produces the less spurious currents. Pooley et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] proposed an improved form of the pressure scheme which produces less spurious current that the original one. In this new scheme, the equilibrium function is given by:

f eq i = w i p c 2 s + ρ ξ α,i u α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s i ∈ 1, .., 8 f eq 0 = ρ - 8 i=1 f eq i (3.21)
This formulation has been largely used among the literature particularly by the free energy community [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF][START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF][START_REF] Semprebon | Ternary free-energy lattice boltzmann model with tunable surface tensions and contact angles[END_REF]. We propose here a slightly more convenient notation of the Pooley's equilibrium function, since it fits in one line.

f eq i = ρw i 1 + u α ξ α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s + (p -ρc 2 s ) w i -δ i0 c 2 s (3.22)
Note that mathematically both formulation are strictly equivalent. Che-SiDik and Tanahasi [START_REF] Sidik | Two-phase flow simulation with lattice boltzmann method[END_REF] proposed a correction to the spurious term appearing in the momentum equation when using the pressure scheme, and applied in a multiphase framework by Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] through a correction term. Another solution is to add a third order term in the equilibrium function as proposed by Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] in a compressible framework, then transposed into a multiphase framework by Wen et al. [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF]. A deeper discussion on the correction term to modify the pressure is proposed in Chapter 5.

He's pressure based scheme

Two other approaches to modify the equation of state have been proposed in the literature, and rely on a pressure-based formulation. The idea is to modify the 0 th moment of the distribution function, so that:

i f i = p/c 2 s (3.23)
This scheme proposed in He et al. [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF] usually refereed to as the HCZ model, from the name of the authors (He, Chen, Zhang), is currently one of the most stable in the literature. This methods starts from the discrete Boltzmann equation that is reformulated here:

D t f i = Ω i - (ξ α -u α ) ∂ α (p -ρc 2 s ) ρc 2 s f eq i (3.24)
where the microscopic particular derivative D * t defined as

D t * = ∂ t * +ξ α ∂ α * .
In this method, a body force is introduced by assuming that ∂f ∂ξ α ≈ ∂f eq ∂ξ α = (ξ α -u α )f eq i . In addition, the body force is introduced in Eq. (3.25) through a term proportional to ∂ α (p -ρc 2 s ) in the right-hand side, leading to:

∂ t f i + ξ α ∂ α f i = D t f i = Ω i - (ξ α -u α ) ∂ α (p -ρc 2 s ) ρc 2 s f eq i (3.25)
A new distribution function g i is introduced, defined as:

g i = f i c 2 s + (p -ρc 2 s )w i (3.26)
It comes that the 0 th moment of the g i function is given by:

i g i = p/c 2 s . By introducing g i into the
Boltzmann equation (3.25), the conservation equation respected by g i is given by:

∂ t g i + ξ α,i ∂ α g i -∂ t p -ρc 2 s -ξ α,i ∂ α (p -ρc 2 s ) = c 2 s D t f i (3.27)
This equation, Eq. (3.27) cannot be used as a scheme because of the temporal derivative. The flow is assumed to be incompressible. The continuity equation ∂ α u α = 0 leads to:

∂ t ρ = -u α ∂ α ρ (3.28) ∂ t p = -u α ∂ α p (3.29)
Integrating those previous equations into (3.27), it comes:

D t g i = - g i -g eq i τ + (ξ α -u α ) f eq i ρ F s - f eq i ρ -w i ∂ α (p -ρc 2 s ) (3.30)
F s being a body force introducing surface tension, g eq i being the equilibrium function of g i defined by:

g eq i = c 2 s f eq i + (p -ρc 2 s )w i = w i p + ρc 2 s ξ α,i u α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (3.31)
This formulation is very close to the one proposed by Pooley et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] in the pressure scheme framework (3.21). This scheme implies several changes in the macroscopic equations. In particular, it can be shown, through a Chapman-Enskog method, that the equivalent macroscopic equation for g eq i 0 th order becomes:

1 ρc 2 s ∂ t p + ∂ α u α = 0 (3.32)
In practice, the time derivative of the pressure stays small, which means that the incompressible hypothesis made to design this scheme is pretty much respected. This scheme takes a particular place among the Lattice Boltzmann Method because it alters a fundamental property of LBM being compressibility. Using this scheme, the flow becomes (almost) incompressible.

Farag's pressure based

The last way to change the Equation of State in Lattice Boltzmann method is the pressure based method proposed by Farag et al. [START_REF] Farag | A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows[END_REF] in a compressible framework. It is a pressure-based model coupled with a predictor-corrector approach. Similarly as in the approach of He et al. [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF] the equilibrium function is given by:

f eq i = w i p/c 2 s + ρ ξ α,i u α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (3.33)
Similarly with the HCZ scheme the 0 th moment of the f i population is given by:

i f i = p/c 2 s (3.34)
It can be shown that the macroscopic equation obtained for this 0 th moment is given by:

∂ t p c 2 s + ∂ α ρu α = O(∆t 2 ) (3.35)
In order to respect the continuity equation, the density field is obtained through the following equation:

ρ( x, t + ∆t) = i f i ( x, t + ∆t) + ρ( x, t) - p( x, t) c 2 s (3.36)
It has been recently shown [START_REF] Farag | A unified hybrid lattice-Boltzmann method for compressible flows: Bridging between pressure-based and density-based methods[END_REF] that this scheme is equivalent to the one proposed by Pooley et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF].

About the CFL condition

On a side note, the CFL condition that is often associated with LBM itself is given by:

∆x ∆t = √ 3c s (3.37)
with c s the speed of sound. It has been discussed in Section 1.3, that this CFL condition allows to directly include the pressure in the numerical scheme, saving some computational effort and improving the numerical stability. In a multiphase framework, the pressure field is no more equal to ρc 2 s , therefore the present CFL condition doesn't need to be imposed anymore which means that the CFL number can be freely imposed.

Viscosity

To simulate two different fluids, it is necessary to be able to simulate two different viscosities. In the present framework, the properties of the fluid have to vary continuously from the value in one phase to the value in the other phase. In practice, this means that the viscosity field has to be a function of the phase field. In the Lattice Boltzmann framework, the viscosity is imposed by the value of the relaxation time. In the classical LBM framework [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF], viscosity and relaxation time are related through:

τ = ν ∆tc 2 s + 1/2 (3.38)
To impose a viscosity that is a function of space, the relaxation time also becomes a function of space. The schemes allowing a variable viscosity are detailed in this subsection. One of the first schemes in the Lattice Boltzmann framework was introduced by Grunau et al. [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF] in the Rothmann-Keller framework. In this model, the viscosity is a function of the phase field

φ = ρ 1 -ρ 2 ρ = Y 1 -Y 2 ν =          ν 1 φ > D 0 + D 1 φ + D 2 φ 2 φ > 0 D 0 + D 3 φ + D 4 φ 2 0 φ > - ν 2 φ < - (3.39)
Where is a trigger value, chosen by the user, which must be chosen close to 1. This value should be chosen in accordance with the interface thickness, which depends on the considered model. D 0 , D 1 , D 2 , D 3 and D 4 are constants that are set in order to guaranty the continuity of ν and of its partial derivative ∂ν ∂φ .

In practice, this model is barely used nowadays since it's pretty complex and that the interface thickness is not known a priori, making the variable hard to set wisely. For this reason, Tolke et al. [START_REF] Tölke | Lattice boltzmann simulations of binary fluid flow through porous media[END_REF] proposed to make ν directly proportional to the phase field:

ν = ν 1 + ν 2 2 + ν 1 -ν 2 2 φ (3.40)
Another operator was proposed later by Leclaire et al. [START_REF] Leclaire | Unsteady immiscible multiphase flow validation of a multiplerelaxation-time lattice boltzmann method[END_REF] who showed the following operator to be more stable:

1 ν = 1 + φ 2ν 1 + 1 -φ 2ν 2 (3.41)

Rothman-Keller Method

The first algorithm that was ever proposed to simulate multiphase flows in a Lattice Boltzmann framework is the colour gradient method or RK (from Rothmann and Keller) method. It was proposed by Rothman and Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] in a LGA framework. Behind the name "Color Gradient Method" coexist a large number of methods, that evolved along time. Since the algorithm has changed through time, the recent formalism have little in common with the first ones, and it becomes difficult to precisely define what precisely characterises this approach. In practice, the words Color Gradient refer to a community of methods rather than a precise one. Note that practises among this same community may differ from a research team to another. Anyway, for the sake of understanding, a single formalism which sounds relevant in this work is considered here: the color gradient algorithm proposed in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] in 2013.

Algorithm presentation

This model is a two phase model, where each phase is described by a color (blue or red). The system is described by a mixture density ρ equals to the sum of the two phase densities, i.e. ρ = ρ B + ρ C , the momentum of the two fluids ρu α (noting that the two fluids velocities are supposed to be at equilibrium, then u 1 = u 2 ), and the density of the coloured populations ρ (R) and ρ (B) .

Equivalent macroscopic equation

Concerning the equivalent macroscopic equations, the color gradient belongs to the phase fields methods. The density and the momentum are solution of the following equations:

∂ t ρ + ∂ α ρu α = 0 (3.42) ∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∆t∂ β (τ -1/2)ρc 2 s (∂ α u β + ∂ β u α ) (3.43)
In the momentum conservation equation, the surface tension term is modeled using the Gueyffier et al. model [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF]. As a reminder, this operator is given by:

p σ αβ = σ [δ αβ -n α n β ] δ interf ace (3.44) with n = C | C| , δ interf ace = | C| 2 .
C being the so-called colour gradient that gives its name to the method. This vector aims at locating the interface and points towards the normal to the interface. It is equal to the special derivative of the phase field:

C = ∇φ (3.45)
where the phase field is given by

φ = ρ (R) -ρ (B) ρ (3.46)
To guaranty mechanical equilibrium, the pressure term is set to:

p = ρ (R) c (R) 2 s + ρ (B) c (B) 2 s (3.47)
Where c (k) s is the speed of sound in the fluid of colour k. In order to guaranty mechanical equilibrium between the two phases, those speeds of sounds must respect:

c (1) s c (2) s = ρ 2,0 ρ 1,0 (3.48) 
where ρ 1,0 and ρ 2,0 are the density of fluid 1 and fluid 2 in homogeneous state. One of the first difficulty coming from the Colour Gradient algorithm, is that the equivalent macroscopic equation of the coloured density and is a subject of discussion in itself [START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF] [167] [START_REF] Hollis | Kinematic condition for multicomponent lattice Boltzmann simulation[END_REF]. This subject has been at the center of the author's work and it has been shown [START_REF] Lafarge | Improved color-gradient method for lattice Boltzmann modeling of two-phase flows[END_REF] that the equivalent macroscopic equation for the phase field is:

∂ t ρφ + ∂ α ρφu α = ∂ α p∆t 2 ∂ α φ - β 1 -φ 2 2 C α | C| (3.49)
with β being a constant that is set freely by the user. At this point, the present scheme could be strictly equivalent to a free energy method. The particularity of the algorithm comes from the numerical scheme that is used to solve this set of equations Eqs. (3.42, 3.43, 3.49)

Numerical scheme

The numerical scheme consists in the consideration of two distinct population distribution functions, R i and B i . Furthermore, a colorless distribution function f i is also defined, as f i = R i + B i . In this scheme, the colorless distribution function f i carries the information for the total density ρ and the momentum ρu α while R i and B i only carries the information of the individual phases. As in classical LBM, f i follows a stream and collide algorithm. The novelty compared to classical LBM is the introduction of surface tension, and eventually non-perfect equation of state. In Leclaire's [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] algorithm, surface tension is introduced through a tensor scheme as described in Section 3.1.1. It means that a dedicated collision term is introduced, whose second order moments equal the Gueyffier's tensor (detailed Eq. (3.53)). Considering the equation of state, the non-perfect pressure term is introduced through a pressure scheme, i.e. by modifying the equilibrium function. The collision phase for the colourless distribution function is given by:

f * i = f eq i + 1 - 1 τ (f i -f eq i + 0.5S i ) + 0.5S i (3.50)
where S i is a source term. The equilibrium function is given by Pooley and Furtado's [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] formalism:

f eq i = ρw i 1 + u α ξ α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s + (p -ρc 2 s ) w i -δ i0 c 2 s (3.51)
The source term S i consists in two contributions, one accounting for surface tension, another to correct the spurious term resulting from the use of a non-perfect equation of state (Eq. (3.18))

S i = S σ i + S Er i (3.52)
The surface tension term S σ i is simply Gueyffier's [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] tensor projected on the second order Hermite's polynomials. Similarly the correction source term S Er i is the projection of the error term in the Hermite's polynomials base:

S σ i = p σ αβ H αβ,i 2c 4 s (3.53)
As shown in Eq. (3.44), the spatial derivative of the phase field φ is required to evaluate p σ αβ . This spatial derivative is computed following:

∂ α φ |( x,t) = i w i c 2 s ξ α φ( x + ξ i ∆t, t) (3.54)
The corrective source term is given by:

S Er i = u α ∂ β ρc 2 s + u β ∂ α ρc 2 s H αβ,i 2c 4 s (3.55)
The presented algorithm is close to a classical LBM algorithm. The specificity of the RK method lies in the "recoloration step", during which the two colored distribution functions are evaluated from the colorless one. The idea is to "paint" the colourless distribution functions thanks to the mass fraction of the corresponding coloured density. The recolored distribution functions are given by:

R i = Y R f * i + Ω (3) i B i = Y B f * i -Ω (3) i (3.56)
where Y k is k th species mass fraction. In addition of this coloration process, a source term is added, noted Ω

(3) i . Ω

(3)

i = β 1 -φ 2 2 C α | C|| ξ i | (3.57)
where β is a free parameter set freely by the user. It is linked to the interface width as discussed Eq. (3.49). This last source term acts as an anti-diffusive term for the interface thickness, so that red particles tend to be sent in the red region when located in the blue region. The recoloration step is a smart way to solve a diffusion-advection equation when using a classical Lattice Boltzmann algorithm. The algorithm proposed by Leclaire [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] is summarized in Figure 3.3 

Historical review

In this section, the progressive evolution that leaded to Leclaire's model is presented in detail. Also, the most recent features and the differences that appeared in the community are presented.

Original LGA Rothmann and Keller algorithm

As already said, the Rothmann Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF], or Colour Gradient algorithm is the first multiphase algorithm that was proposed in the literature. It was proposed in a Lattice Gas Automata framework and relies on a microscopic description of the interactions between the two phases. In this model, there are two kinds of particles characterized by their colours, respectively blue and red. The state at a given node is described by two boolean functions b i and r i which are equal to 1 if a particle going at the velocity ξ i is present at the considered node. The interactions between the two phases are modeled by an innovative collision operator. This new collision operator is defined thanks to two new fields: the color flux q and the color field C. All these functions are given by:

q α = i ξ α,i [r i -b i ]
(3.58) and:

C α = i ξ α,i j r j ( x + ξ i ) -b j ( x + ξ i ) (3.59)
The authors assume the existence of a repulsive force W between the particles that is equal to:

W = -C α q α (3.60)
The state of the system after collision (r * , b * ) is chosen among the possible states in order to minimize the repulsive force W :

W (r * , b * ) = min (r * * ,b * * ) W (r * * , b * * ) (3.61)
The state after collision is chosen among state respecting:

i r * * i = i r i i b * * i = i b i (3.62)
and:

i ξ α,i (r * * i + b * * i ) = i ξ α,i (r i + b i ) (3.63)
This ensures the mass conservation of both red and blue particles, as well as the global momentum of the two phases. This model replicates two specific behaviors of multiphase flows: the immiscibility and the Laplace law. To illustrate the algorithm's capability to simulate immiscibility a spinodal decomposition test is conducted in Rothman and Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF]. This numerical test consists in initializing a flow with a homogeneous concentration of blue and red particles. Immiscibility leads these two populations to segregate. The results from the article of Rothman and Keller [START_REF] Rothman | Immiscible Cellular-Automaton Fluids[END_REF] are proposed in Figure 3.4 

Gustensen's LBM model

The LBM counterpart of this method was proposed by Gunstensen et al. [START_REF] Gunstensen | Lattice Boltzmann model of immiscible fluids[END_REF]. In this algorithm, a colorless population f i is considered and two colored populations R i and B i . The colorless population is collided according to the following rule:

f * i = f i + Ω 1 i + Ω (2) i (3.64)
where Ω

(1) i is the "classical" BGK collision operator Ω

(1)

i = - 1 τ (f i -f eq i ),
and Ω

i is a second operator that allows to introduce surface tension. It is given by:

Ω (2) i = A| C|cos [2(θ i -θ C )] (3.65)
Where C is the same colour gradient operator defined by Rothman and Keller (3.59), θ i is the angle of the lattice i, and θ C is the angle of the colour gradient. To understand this term, it must be underlined that in this work, the color gradient C is interpreted as a marker of the interface. Moreover, the direction of C is normal to the interface. Then the second collision operator Ω

(2) i must be understood as a term that creates a pressure jump normal to the interface: it doesn't introduce density nor momentum, but it reorients the flow parallel to the interface in the normal direction. After this collision operator, the population B i and R i are calculated through the so-called "recoloration operator". This step is similar to the one proposed by Rothmann and Keller since it also consists in an optimisation process:

W (R * i , B * i ) = max R * * i ,B * * i i (R * * i -B * * i ) ξ α,i C α (3.66)
where C α is defined Eq. (3.59), and where R * * i and B * * i must respect:

R * * i + B * * i = f * i R * * i = R i (3.67)
This ensures the conservation of both the two populations, and consequently of the total mass. The two population R i and B i are then streamed using the classical relationship:

R i ( x + ξ∆t, t + ∆t) = R * i ( x, t) B i ( x + ξ∆t, t + ∆t) = B * i ( x, t) (3.68)
This algorithm proposed by Gunstensen et al. is the original LBM colour gradient algorithm. The whole approach relies on a bottom-up approach, meaning that the microscopic interactions are modeled in such a way that it allows to retrieve the desired macroscopic behavior. The main drawback is that the recoloration operator cannot be related to a continuous equation, so that the recoloration step cannot be associated to a macroscopic equation. This algorithm has been gradually improved along time, allowing to improve the original formulation's drawback, or adding new features. In practice, the algorithm has three main parts that can be modified: the equilibrium function, the surface tension term and the recoloration operator.

Equilibrium function

When proposed by Gunstensen et al. [START_REF] Gunstensen | Lattice Boltzmann model of immiscible fluids[END_REF], the algorithm only allowed to simulate density match cases. For this reason, Grunau et al. [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF] introduced an original equilibrium equation that allows the two phases to have different densities. The proposed solution is:

f eq i = φ (k) i + ρw i ξ α,i u α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (3.69) with φ (k) i
an operator that depends on the velocity set, for instance in D 2 Q 9 is given by:

φ (k) = ρ (k)              α (k) i i = 0 1 -α (k) i 5 i = 1, 3, 5, 7 1 -α (k) i 20 i = 2, 4 , 6, 8 (3.70) 
With α (k) a user defined constant. The operator is chosen to ensure:

i φ k = ρ (k) i ξ α,i φ k = 0 i ξ α,i ξ β,i φ k = 3ρ k (1 -α (k) ) 5 (3.71)
Giving the last equation, the scheme proposed by Grunau et al. can be interpreted as an equilibrium scheme where the pressure is given by:

p = 3ρ k (1 -α (k) ) 5 (3.72)
An other way to interpret the previous equation is to consider that in this scheme the speed of sound for each phase is set independently, then the pressure expression comes as:

p = ρ k c (k) s 2 (3.73) with c (k) s 2 = 3(1 -α (k) ) 5 .
Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF] pointed out that this condition can be restrictive. It means that the speed of sound is lower in the denser fluid, the consequence is that for flows with high density ratios, the speed of sound in the denser fluid can become relatively low. For instance, in a common case such as water in air under atmospheric pressure, the density of the denser fluid is ρ 1 = 1000kg.m -3 , the other one as a density of ρ 2 = 1kg.m -3 . In normal condition of pressure and temperature, the speed of sound in air is approximately c (2) s = 340m.s -1 . By calculating the speed of sound in water using (3.48) we obtain c (1) s = 10.8m.s -1 . In order to ensure incompressibility, the Mach number must remain lower than 0.3, i.e. the denser fluid velocity must be lower than 3.22m.s -1 in the denser fluid. Furthermore, it can be noted that a density ratio of 1000 is reached for a gas and a liquid, which makes the eventual compressibility in the denser fluid absolutely not physical. Leclaire et al. generalised this equilibrium function to an arbitrary number of phases [START_REF] Leclaire | Unsteady immiscible multiphase flow validation of a multiplerelaxation-time lattice boltzmann method[END_REF] and to a 3D framework [START_REF] Leclaire | Generalized three-dimensional lattice boltzmann color-gradient method for immiscible two-phase pore-scale imbition and drainage in porous media[END_REF]. Even if it might not be straightforward, the equilibrium function proposed by Grunau et al. (3.69) is equivalent to the scheme proposed by Pooley and Furtado [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] given Eq. (3.21). When discussing about the different schemes to introduce a non-perfect equation of gas, it was pointed out that a spurious term appears in the stress tensor. As shown in Huang et al. [START_REF] Huang | On simulations of high-density ratio flows using color-gradient multiphase lattice Boltzmann models[END_REF], this spurious term induces discontinuous velocities across the interface for high density ratio. An enhanced equilibrium function was introduced by Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF]. As shown in Eq. (3.18):

Er EOS = ∆t(τ -1/2)∂ β u α ∂ β p -ρc 2 s + u β ∂ α p -ρc 2 s (3.74)
Leclaire et al. note that the main contribution to the previous error term comes from the spatial derivatives of the density, then they added a correction term to the equilibrium function. This correction term, noted Φ i , introduces a stress equal to the error term. The enhanced equilibrium function is given by:

f eq i = φ (k) i + ρw i ξ α,i u α c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s + Φ i (3.75)
Saïto et al. [START_REF] Saito | Color-gradient lattice boltzmann model with monorthogonal central moments: hydrodynamic melt-jet breakup simulations[END_REF][START_REF] Saito | Lattice Boltzmann modeling and simulation of liquid jet breakup[END_REF] proposed an enhanced version of the equilibrium function proposed by Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF], that takes into account 3 rd order terms that correct the Mach cubed error introduced in Eq. (1.56). This new feature allowed an improvement of the numerical stability at high density ratio. More recently Wen et al. [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF] proposed an improved equilibrium function that allowed to improve the accuracy at high density ratio. This method will be a subject of discussion in Chapter 5.

Recoloration operator

Latva-Kokko and Rothmann [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF] pointed out that the recoloration step as proposed by Rothmann and Keller has an important drawback called "lattice pinning". It appears that when the velocity field is not high enough, the interface tends not to be able to move and is "pinned" to the lattice. For instance, in the case of a little structure of "red" particles evolving into a quiescent atmosphere of "blue" particles, the red particles tends to move into a figure height-shaped curve which create a spurious periodic flow at this location. This phenomenon becomes significant when simulating little bubbles. Inspired by the work of D'Ortona et al. [START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] and Tolke et al. [START_REF] Tölke | Lattice boltzmann simulations of binary fluid flow through porous media[END_REF], Latva-Kokko and Rothmann [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF] proposed an improved recoloration operator that takes the following form:

R * i = ρ (R) ρ f * i + β ρ (R) ρ (B) ρ 2 f eq i (ρ (R) , ρ (B) , u = 0)cos(ϕ i ) B * i = ρ (R) ρ f * i -β ρ (B) ρ (R) ρ 2 f eq i (ρ (R) , ρ (B) , u = 0)cos(ϕ i ) (3.76)
where β is a user defined parameter, ϕ i is the angle between the color gradient C and the i th lattice ξ i . Then the cosinus of ϕ 1 is given by:

cos(ϕ i ) = ξ α,i C α | C|| ξ i | (3.77)
The β term in Eq. (3.76) must be a positive number superior to 0. In practice,when β > 1, instabilities arise and 0 < β < 1 is recommended. Latva-Kokko [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF] showed that the profile obtained in the case of a flat interface could be predicted with such a recoloration operator. They showed that the density of red fluid in the case of a flat interface is given by:

ρ (R) = ρ e K(β)(x-x 0 ) 1 + e K(β) (x -x 0 ) (3.78) with K(β) = 2 3 (1 + √ 2)
β and e the exponential function. While not being straightforward, it can be shown that β is linked to the inverse of the interface thickness. From the physical point of view, β can be interpreted as a repelling term, when blue particles are present in a region of red particles in majority, blue particles tend to be sent to the other side of the interface. Then, a flow of material is created across the interface. As can be evidenced from Eq. (3.77) the 0 th moment of the recoloration operator is equal to 0, then no additional quantity of blue and red are created. In addition, as the different recoloration operators have the same magnitude but have opposite signs, the recoloration operator doesn't create any flux for the colorless distribution f i . An improvement of this operator has been proposed by Haliday et al [START_REF] Halliday | Lattice boltzmann algorithm for continuum multicomponent flow[END_REF], who proposed:

Ω (3) i = β ρ (R) ρ (B) ρ 2 C α ξ α,i | C| f eq i (ρ (R) , ρ (B) , u = 0) (3.79)
This improves the operator's properties of isotropy and the authors showed less spurious currents than with the formulation of Latva-Kokko et al. [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF].

Surface tension operator

The surface tension collision operator Ω

(2)

i has also been modified along the literature. First, Grunau et al. [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF] pointed out that (3.65) can equivalently be expressed as:

Ω (2) i = A 2 | C| w i (ξ α,i C α ) 2 | C| 2 - 3 4 (3.80)
where Reis and Philips [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF] showed that through a slight modification of the previous formulation, the present operator can be shown to be equivalent to the Continuous Stress Tensor proposed by Gueyfier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF]:

Ω (2) i = A 2 | C| w i (ξ α,i C α ) 2 | C| 2 -B i (3.81)
where B i is a correction term given in D 2 Q 9 by:

B i =      -4/27 i = 0 2/27 i = 1, 3, 5, 7 5/108 i = 2, 4, 6, 8 (3.82) 
They showed that the second moment of Eq. (3.81) is given by:

i ξ α,i ξ β,i Ω (2) i = A 2| C| C α C β -| C| 2 δ αβ (3.83)
Liu et al. [START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF] finally proposed to relate the coefficient A and Gueyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] surface tension coefficient σ given in Eq. (2.74)

σ = 2c 4 s A(τ -1/2) (3.84)
Note that Eq. (3.84) slightly differs from the original paper [START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF] since they used a different scheme to introduce a source term than in the present formulation. It comes that the scheme introduced by Reis and Philips [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF] corresponds to a tensor scheme coupled to the formalism of Gueyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF], but the colour gradient formulation can also be coupled to a body force approach and rely on the Continous Stress Force of Brackbill et al. [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] as proposed by Lishchuk et al. [175][176] or by Ba et al. [START_REF] Ba | Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio[END_REF]. Liu et al. [START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF], Leclaire et al. [START_REF] Leclaire | Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios[END_REF] and Ba et al. [START_REF] Ba | Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio[END_REF] showed that the order paramater φ can differ from ρ R -ρ B . Liu et al. [START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF] for instance showed that:

φ = ρ (R) -ρ (B) ρ (R) + ρ (B) (3.85)
leads to a better stability. Leclaire et al. [START_REF] Leclaire | Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios[END_REF] proposed:

φ = ρ (R) /ρ (R) 0 -ρ (B) /ρ (B) 0 ρ (R) /ρ (R) 0 + ρ (B) /ρ (B) 0 (3.86) 
.

Free energy methods

Free energy methods are the second family of methods that have been proposed in the literature by Swift et al. [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF][START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF]. In practice, this model is not often used recently, the HCZ formalism, presented Section 3.5 is preferred. As a lot of HCZ models inherit from these free energy methods, their description is proposed in this subsection. The very identity of the free energy methods lies in the physical model used to introduce a non-perfect equation of state, and to introduce surface tension. Note that the introduction of surface tension is part of the introduction of a non-perfect EOS in these approaches. As it was discussed in Chapter 2, in the free energy model the Helmholtz free energy is given by:

E = E 0 + λ 2 | ∇φ| 2 (3.87)
where E 0 is the bulk free energy, λ is a surface tension term and φ is the order parameter. As it as been discussing previously, the consequence of this Helmholtz energy is the appearance of a tensor term that can also be expressed as a body force following Eq. (3.1):

F α = ∂ β p αβ = ∂ β p 0 δ αβ + p σ αβ (3.88)
where p 0 is a non-perfect equation of state and p σ αβ is the free energy surface tension tensor. This pressure term can equivalently be expressed deriving from a potential µ:

F α = φ∂ α µ (3.89)
Since the free energy (Eq. (3.87)) is divided in two terms, the potential can also be expressed in two parts: µ = µ 0 -∇ λ ∇φ . The model proposed in Swift et al. [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF] for multicomponents system is described hereafter.

Introduction

Macroscopic equations

The considered macroscopic equations are the same than in color gradient:

∂ t ρ + ∂ α ρu α = 0 (3.90) ∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∆t∂ β ρc 2 s (τ -1/2) (∂ α u β + ∂ β u α ) (3.91)
with p σ αβ being the pressure resulting from the excess of free energy at the interface:

p σ αβ = λ -ρ∂ 2 γ ρ - 1 2 (∂ γ ρ) 2 δ αβ + ∂ α ρ∂ β ρ (3.92)
In Eq. (3.91), p 0 is the pressure provided by the equation of state. Swift et al. [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF] proposed to consider the van der Walls Equation of State adapted to an isothermal framework:

p = ρrT 0 1 -ρb -aρ 2 (3.93)
where T 0 is the user defined temperature of the system, a = 27

(rT c ) 2 64p c , b = rT c 8p c
, T c and p c being the temperature and the pressure at critical temperature. This model is a two phase one species model, and can be compared to three equations models such as the one by Pelleter et al. [START_REF] Pelletier | A multifluid Taylor-Galerkin methodology for the simulation of compressible multicomponent separate two-phase flows from subcritical to supercritical states[END_REF]. In this model, there are no order parameter φ to distinguish phases. The difference can be made because the equation p(ρ) = p 0 has two roots, then at mechanical equilibrium (i.e. in a field with a uniform pressure) the density can take only two values. At a given point, the nature of the phase we are located in is determined by the value of the density. It should be noted, that in a second paper [START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF], Swift et al. improved their model to account for two separate phases, that do not result from a thermodynamical equilibrium, introducing a transport equation for the phase field:

∂ t ρφ + ∂ α ρφu α = M Γ∂ 2 β µ 0 -∂ α φ∂ β p 0 δ αβ + p σ αβ (3.94)
where Γ is a free parameter set by the user, M is the mobility factor also set by the user, and µ 0 the difference of chemical potential between the two phases. In practice, it is given by:

µ 0 = T 2 ln 1 + φ 1 -φ -λ∂ 2 γ ρφ - λ 2 φ (3.95)
where φ is the phase field. In practice, the previous equation is not used due to a lack of physical background. Free energy recent methods rather use Allen-Cahn equation or Cahn-Hilliard equation as in Semprebon et al. [START_REF] Semprebon | Ternary free-energy lattice boltzmann model with tunable surface tensions and contact angles[END_REF] or Wohrwag et al. [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF]. The numerical scheme for this fee energy method is described in the following.

Numerical scheme

Similarly as in the Rothmann-Keller algorithm, the three equations system is solved thanks to two distribution functions. As in RK, a colorless distribution function f is also considered, which first two moments respectively correspond to the total density ρ and the total momentum ρu α :

i f i = ρ (3.96) i ξ α,i f i = ρu α (3.97)
In the approach of Swift et al. [START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF], a second distribution function g i is introduced, which 0 th moment is proportional to the phase field:

i g i = ρφ (3.98)
A stream and collide algorithm is applied to the main population f i to recover mass and momentum conservation. The collision step writes:

f * i = f eq i + 1 - 1 τ 1 (f i -f eq i ) (3.99)
where τ 1 is the relaxation time for the main population, related to the kinematic viscosity through:

τ 1 = ν c 2 s + 1/2.
The non-perfect equation of state and the pressure resulting from surface tension are introduced by the "equilibrium scheme". The equilibrium function f eq i is modified to account for the pressure p resulting from the equation of state and p σ resulting from surface tension:

f eq i = ρw i H 0,i + H α,i u α c 2 s + u α u β H αβ,i 2c 4 s + (pδ αβ + p σ αβ ) H αβ 2c 4 s (3.100)
The streaming phase is given by:

f i ( x, t + ∆t) = f * i ( x -ξ α,i ∆t, t) (3.101)
The second population also follows a stream and collide algorithm. It is given by:

g * i = g eq i + 1 - 1 τ 2 (g i -g eq i ) (3.102)
where τ 2 is the relaxation time of the second population g i , related to the mobility factor through:

M = ∆t (τ 2 -1/2) (3.103)
The equilibrium distribution function for g i is given by:

g eq i = ρφw i 1 + ξ α,i u α c 2 s + u α u β H αβ,i 2c 4 s + w i Γµ 0 -ρφc 2 s H αα,i 2c 4 s (3.104)
The streaming phase for g i is similar to the one for f i :

g i ( x, t + ∆t) = g * i ( x -ξ α,i ∆t, t) (3.105)
The algorithm is illustrated as follow in Figure 3.5. 

Discussion around the phase field equation

The attentive reader would have noted that in the macroscopic transport equation of the phase field, Eq. (3.94) a pressure term proportional to p 0 δ αβ + p σ αβ appears in the right-hand side. On the other hand, no pressure term is involved in the equilibrium function g eq i defined Eq. (3.104). This pressure term in the macroscopic equation results from the numerical scheme itself. It is shown here that this term allows to solve an advection-diffusion equation for the phase field φ. Both f i and g i follow the same algorithm, the only difference is that f i has two moments of interest (ρ and ρu α ) while g i has only one. The consequence is that the first moment of g i is no longer equal to the first moment of g eq i . The consequence is that the first moment of the non equilibrium function is no longer equal to zero. It can be shown through a Taylor expansion that the first moment of the non equilibrium function is given by:

i ξ α,i (g i -g eq i ) = ∆tτ 2 ∂ t i ξ α,i g i + ∂ αβ i (ξ α,i ξ β,i g * i ) + O(∆t 2 ) = 0 (3.106)
It can be shown that a term proportional to ∆t appears in the phase field equation:

∂ t ρφ + ∂ α ρφu α = ∆t∂ β (τ 2 -1/2) ∂ 2 t ρφ -∂ αβ i ξ α,i ξ β,i g eq i + O(∆t 2 ) (3.107)
Eq. (3.107) can be simplified by developing ∂ 2 t ρφ. From Eq. (3.107) it comes:

∂ 2 t ρφ = -∂ α (∂ t ρu α ) + O(∆t) = ∂ α ∂ β ρφu α u β + φ∂ β pδ αβ + p σ αβ + O(∆t) (3.108)
By remembering that g eq i 2 nd moment is known and given by:

i ξ α,i ξ β,i g eq i = ρφu α u β + pδ αβ + p σ αβ (3.109)
and by making the hypothesis that in practice p σ αβ , the pressure implied by surface tension is far weaker than the pressure implied by the Equation of State, then pδ αβ + p σ αβ pδ αβ , it can be shown that Swift et al. [START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF] equivalent phase field equation is given by:

∂ t ρφ + ∂ α ρφu α = ∂ α (∆t(τ 2 -1/2) [p∂ α φ]) (3.110)
We recognize a diffusion-advection equation, and it shows that this kind of equation can be solved through a Lattice Boltzmann stream and collide algorithm.

Historical review

This model was first proposed by Swift et al. [START_REF] Swift | Lattice boltzmann simulation of nonideal fluids[END_REF][START_REF] Swift | Lattice boltzmann simulations of liquidgas and binary fluid systems[END_REF]. A free energy method in an incompressible framework is proposed in Inamuro et al. [START_REF] Inamuro | A lattice boltzmann method sor incompressible two-phase flows with large density differences[END_REF]. Based on a generalisation of a binary fluid mixture model [START_REF] Inamuro | A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem[END_REF], Inamuro et al. proposed an iterative step at the end of the stream and collide algorithm allowing to simulate an incompressible equation. Simulations at high density ratio were proposed recently based on this method [START_REF] Inamuro | Validation of an improved lattice Boltzmann method for incompressible two-phase flows[END_REF][START_REF] Inamuro | An improved lattice Boltzmann method for incompressible two-phase flows with large density differences[END_REF][START_REF] Suzuki | Simple extended lattice Boltzmann methods for incompressible viscous single-phase and two-phase fluid flows[END_REF]. The work of Pooley and Furtado [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] that was already discussed takes place in a free energy framework. More recently, those methods were generalised to ternary flows [START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF][START_REF] Semprebon | Ternary free-energy lattice boltzmann model with tunable surface tensions and contact angles[END_REF].

Pseudo Potential

The Shan-Chen model or pseudo-potential model was the second LBM multiphase model proposed by Shan and Chen in 1993 and 1994 [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF][START_REF] Shan | Simulation of non-ideal gases and liquid-gas phase transition by lattice boltzmann equation[END_REF]. The method rely on a bottom-up approach, which means that the model intends to simulate the particles microscopic behavior rather than the macroscopic physic (as done in free energy for example). Pseudo-potential model is based on the idea, that immiscibility and surface tension come from interparticle forces occurring between particles of different phases. It must be noted that some non-perfect equation of state, including the van der Walls Equation of State, rely on the hypothesis of the existence of interparticle forces. They are mainly two popular approaches, the single chemical component (SCMP) and the multiple chemical component approach (MCMP). Both are similar, therefore only SCMP is presented. The method by Yuan and Schaeffer [START_REF] Yuan | Equation of state in a lattice boltzmann model[END_REF] is presented here and is considered as the reference method.

Macroscopic equations

The present method can be compared to the 3-equation model [START_REF] Pelletier | A multifluid Taylor-Galerkin methodology for the simulation of compressible multicomponent separate two-phase flows from subcritical to supercritical states[END_REF]. The macroscopic unknowns are ρ the total density and the velocity u. A pressure term p is introduced through an Equation of State. The knowledge of the order parameter (i.e. phases mass fraction) is not necessary. Similarly to Color gradient and free energy methods, the considered macroscopic equations are:

∂ t ρ + ∂ α ρu α = 0 (3.111) ∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∂ β ρc 2 s ∆t (τ -1/2) (∂ α u β + ∂ β u α ) (3.112)
where p is an arbitrary Equation Of State. Surface tension is introduced through the free-energy tensor scheme introduced Section 2.3 Eq. (2.78). Its formulation is recalled here:

p σ αβ = ∆t 3 2 Gc 4 s ψ∇ 2 ψ + 1 2 | ∇ψ| 2 δ αβ - ∆t 3 2 Gc 4 s ∂ α ψ∂ β ψ (3.113)
With ψ being the so called pseudo-potential, and G a constant set by the user. This is a free-energy tensor, in which the phase field is the pseudo-potential. This pseudo-potential is related to the pressure through [START_REF] Yuan | Equation of state in a lattice boltzmann model[END_REF]:

ψ = 2(p -ρc 2 s ) c 2 s G (3.114)
From the macroscopic point of view, the present method is almost identical to a free energy method. The difference lies in the numerical scheme used to implement it, as will be detailed later on. The macroscopic momentum conservation equation Eq. (3.112) can also be written:

∂ t ρu α + ∂ β ρu α u β + ρc 2 s δ αβ = ∂ β ρc 2 s ∆t (τ -1/2) (∂ α u β + ∂ β u α ) + F SC α (3.115)
where F SC α is a body force that introduces both surface tension and the pressure from the non-perfect equation of state. This body force is given by:

F SC α = -∂ β      ∆t 2 Gc 2 s ψ 2 δ αβ EOS term + ∆t 3 2 Gc 4 s ψ∇ 2 ψ + 1 2 | ∇ψ| 2 δ αβ - ∆t 3 2 Gc 4 s ∂ α ψ∂ β ψ Surf ace tension term      (3.116)
When the pseudo-potential is defined through Eq. (3.114), the EOS term in Eq. (3.116) reduces to ∂ β p -ρc 2 s . The consequence is that surface tension cannot be controlled at will, advanced methods, such as the one proposed by Sbragaglia et al. [START_REF] Sbragaglia | Geneleralized lattice boltzmann method with multirange pseudopotential[END_REF] are necessary in order to allow a decoupling between surface tension and the pressure from the EOS.

Phase Composition

The very specificity of this method among the LBM multiphase community is that the fluid composition doesn't need to be determined. The density ρ gradually changes from ρ 1 to ρ 2 , thanks to the equation of state. Thermodynamic consideration allow to determine the phase composition from the global quantities p and ρ of the total system. The liquid composition can be determined at a given location through the Maxwell construction rule. It is given by:

1/ρ 2 1/ρ 1 pd 1 ρ = p 0 1 ρ 2 - 1 ρ 1 (3.117)
where p 0 is the constant pressure resulting from the equation of state, ρ 1 and ρ 2 the respective densities of the two phases. Note that the global mass conservation is ensured through the continuity equation Eq. (3.111), but contrarily to free-energy methods, no transport equation is considered for the specific mass phase. This may lead to non-physical mass transfer from one phase to the other.

Numerical Scheme

Contrarily to the Free Energy methods, and RK, the Shan-Chen method is a one population method. It relies on a single particle distribution function f i . It follows a classical LBM approach, in which f i 's 0 th moment and 1 st moments are

i f i = ρ (3.118) i ξ α,i f i = ρu α (3.119)
The f i particle population follows a classical stream and collide algorithm given by:

f * i = f i - 1 τ (f i -f eq i ) + S i (3.120)
The equilibrium function is the same as in classical LBM and is given by:

f eq i = ρw i 1 + u α ξ α,i c 2 s + u α u β ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (3.121)
The source term S i from Eq. (3.120) is a source term that allows the introduction of a body force, using Guo et al.'s force scheme [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF]. Noting that in the original paper of Yuan et Schaefer [START_REF] Yuan | Equation of state in a lattice boltzmann model[END_REF], Shan and Chen [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF] forcing term is used. Source terms used to introduce body forces is a whole subject of discussion already tackled in Section 4.2. It is notably discussed that Guo's source term is an improved version of Shan and Chen source term, and must be prefered to introduce a body force. Guo's term writes:

S i = 1 - 1 2τ ξ α,i F SC α c 2 s + F SC α u β + F SC β u α ξ α,i ξ β,i -c 2 s δ αβ 2c 4 s (3.122)
where F SC is the interparticle force given in Eq. (3.116).

Interparticle force

The calculation of the interpaticle force is a subject of discussion in itself. The original scheme proposed in the work of Shan and Chen [START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF] is given by:

F SC α ( x, t) = -Gψ( x, t) i w i ψ x + ξ α,i ∆t, t ξ α,i (3.123)
where G and ψ were introduced respectively in Eq. (3.113) and in Eq. (3.114). The attentive reader would have recognized a spatial derivative scheme in Eq. (3.123). It can be shown that:

i w i ψ x + ξ α,i ∆t, t ξ α,i = ∆tc 2 s ∂ α ψ - ∆t 3 6 ∆t 3 c 4 s ψ∂ α ∂ 2 β ψ + O(∆t 4 ) (3.124)
Using previous equation, it comes that the numerical scheme given in Eq. (3.123) is equivalent to the force term involved in the macroscopic momentum conservation equation Eq. (3.116). The pseudopotential approach is summarized in Figure 3.6 

Historical review Pseudo potential

In their original papers, Shan and Chen [25][26] proposed two pseudo-potential forms to account for interparticle forces following:

ψ = ρ 0 [1 -exp (-ρ/ρ 0 )] (3.125)
and also:

ψ = ψ 0 [-exp (-ρ 0 /ρ)] (3.126)
where ρ 0 and ψ 0 are arbitrary constants. The second model Eq. (3.126) is said to be able to simulate an isothermal process.

In 1998, He et al. [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] proposed an Enskog model to simulate a van der Walls interaction potential, which is somehow similar to the present pseudo-potential model. The model proposed in Yuan and Schaefer [START_REF] Yuan | Equation of state in a lattice boltzmann model[END_REF] and described in this Section 3.4 is nowaday widely used to account for interparticle forces in a LBM framework.

Body force

One of the main drawback of the present pseudo potential method is the presence of important spurious currents located at the interface. To reduce them, Gong and Chen [START_REF] Gong | Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows[END_REF] proposed in 2012 the β model. It relies on the fact that the Shan-Chen body force truncated at the order 3 in ∆t can be written under two formulations:

F SC α = -G∆tψ∂ α ψ + O(∆t 3 ) = - G 2 ∂ α ψ 2 + O(∆t 3 ) (3.127)
The idea of the β model is to use a combination of these two formulations following:

F SC α ( x, t) = βψ ( x, t) i w i ψ x + ξ α,i ∆t, t + ∆t ξ α,i + (1 -β) i w i ψ 2 x + ξ α,i ∆t, t + ∆t ξ α,i
(3.128) where β is a weighting parameter. Zarghami et al. [START_REF] Zarghami | Assessment of interaction potential in simulating nonisothermal multiphase systems by means of lattice Boltzmann modeling[END_REF] showed that β = 1.25 allows to significantly reduce these spurious currents. Another issue raised earlier is the fact that surface tension cannot be freely set, reducing the method applicability range. Sbragaglia et al. [START_REF] Sbragaglia | Geneleralized lattice boltzmann method with multirange pseudopotential[END_REF] proposed an improvement involving the second neighbours in the Shan Chen body force, following:

F SC α = -ψ( x, t) i w i G 1 ψ x + ξ α,i ∆t, t + G 2 ψ x + 2 ξ α,i ∆t, t (3.129)
It was proposed by Benzi et al. [START_REF] Benzi | Mesoscopic modelling of a twophase flow in the presence of boundaries: The contact angle[END_REF] that the potential expression should be modified to:

ψ = 2 (p -ρc 2 s ) c 2 s (G 1 + 2G 2 ) (3.130)
Huang et al. [START_REF] Huang | Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[END_REF] showed that this framework allows to modify the surface tension tensor:

p σ αβ = ∆t 3 2 c 4 s (G 1 + 8G 2 ) ψ∇ 2 ψ + 1 2 | ∇ψ| 2 δ αβ - 1 2 c 4 s ∂ α ψ∂ β ψ (3.131)

Li and Lio's scheme

The drawbacks of relying on the second neighbour is the loss of locality, which reduces the LBM scalability. For this reason, Li and Luo [START_REF] Li | Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows[END_REF], then Xu et al. [START_REF] Xu | A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension[END_REF] for a 3D framework rather proposed to introduce an additional source term S Li i

S Li i = Q αβ H αβ,i 2c 4 s (3.132)
where Q αβ is a stress tensor in the momentum conservation equation, computed through:

Q αβ = κ G 2 ψ( x, t) i w i ψ( x + ξ α ∆t, t) -ψ( x, t) ξ α,i ξ β,i (3.133)
where κ is a free parameter. It can be shown that Q αβ is equivalent to:

Q αβ = Gκc 4 s ∆t 2 4 ψ ∂ 2 γ ψδ αβ + 2∂ 2 αβ ψ + O(∆t 4 ) (3.134)
and is therefore a surface tension tensor. When this source term is used the surface tension tensor p σ αβ in momentum conservation equation Eq. (3.112) becomes [START_REF] Fei | Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice boltzmann method[END_REF]:

p σ αβ = G c 4 s ∆t 2 2 ∆t - κ 2 ψ∂ 2 γ ψ + ∆t 2 |∂ γ ψ| 2 δ αβ -(∆t -κ) ∂ α ψ∂ β ψ + κ 2 ∂ 2 αβ ψ 2 (3.135)
Despite the fact that the present formulation differs from the classical free energy tensor, surface tension can be freely set through setting κ's value. This method allows to significantly improve numerical stability at high density ratio, as shown in Fei et al. [START_REF] Fei | Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice boltzmann method[END_REF] who where able to compute bouncing bubbles at density ratio of 1000, as shown in Figure 3.7 

HCZ

Introduced by He, Chang, and Zhang [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF] the HCZ model is one of the most widely used in the literature. The particularity of this method is that it describes incompressible flows while most of the other methods describe compressible ones. As for all the previously presented method, the HCZ denomination regroups a wide range of practices. The approach of Fakhari et al. [START_REF] Fakhari | Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios[END_REF] is retained as a reference, and described in this subsection.

Macroscopic equations

The macroscopic equations, consisting in a continuity equation, the momentum conservation equation and the phase field conservation are detailed in this subsection.

Continuity equation

The considered continuity equation writes:

∂ t p + ρc 2 s ∂ α u α = 0 (3.136)
For the previous equation to describe an incompressible flow, it must reduce to ∂ α = 0, which means that the temporal variation of the pressure term p must be equal to 0: ∂ t p = 0. For this model to be relevant, the pressure variation must be kept close from 0, which in practice is not possible since pressure is a function of the phase field which is not constant. For this reason, the pressure term p presented here is only a numerical artifact that won't vary much as soon as the Mach number (Ma) stays low. The non-perfect equation of state and surface tension are both introduced by a chemical potential in the momentum conservation equation.

Momentum conservation equation

The momentum conservation equation writes:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = µ φ ∂ α φ + ∂ β ∆t(τ -1/2)ρc 2 s (∂ α u β + ∂ β u α ) (3.137)
Where µ φ is the chemical potential introduced in Gurtin et al. [START_REF] Gurtin | Two-phase binary fluids and immiscible fluids described by an order parameter[END_REF], allowing to account for nonperfect equation of state and surface tension. The chemical potential is defined by:

µ φ = 4βφ(φ -1)(φ -1/2) -κ∂ 2 α φ (3.138)
As usual, the chemical potential is divided into two counterparts. The first contribution φ(φ -1)(φ -1/2) describes the potential in pure phases. It can be noted that µ(φ = 0) = µ(φ = 1) = 0. The last counterpart -κ∂ 2 α φ accounts for surface tension, and corresponds to the classical formulation of the free energy approach. As previously introduced, the thermodynamical state is entirely described by the potential µ, the pressure only being a numerical artifact allowing incompressibility.

Phase field equation

Finally, the phase field conservation equation follows the Allen-Cahn equation presented by Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF]:

∂ t φ + ∂ α φu α = ∂ α M ∂ α φ - 4φ(1 -φ) W n α (3.139)
where M is the mobility coefficient defined and W the interface thickness, it was presented in Section 2.2, Eq. (2.42). This equation ensures mass conservation. It is a 2 nd order spatial derivative, which is 3.5 HCZ less expensive to compute than the 4 th order spatial derivative Cahn-Hilliard equation.

The total density follows

ρ = ρ L + φ(ρ H -ρ L ) (3.140)
where ρ H and ρ L are the density in each respective phase.

Numerical Scheme

The numerical scheme relies on two particles density functions, g i allowing to resolve continuity and momentum conservation equations, h i allowing to resolve the phase field conservation equation. It is furthermore a pressure-based algorithm, which moments follow:

i f i = p (3.141) i ξ α,i f i = ρc 2 s u α (3.142) i h i = φ (3.143)
For notation convenience the function Γ i is introduced:

Γ i = w i 1 + ξ α,i u α c 2 s + u α u β H αβ,i 2c 4 s (3.144) 
Its three first moments are given by i

Γ i = 1, i ξ α,i Γ i = u α , i ξ α,i ξ β,i Γ i = u α u β .
It can be interpreted as the "classical" equilibrium function divided by the density.

Phase field equation

As proposed by Geier et al. [START_REF] Fakhari | A conservatice phase-field lattice boltzmann model for interface tracking equation[END_REF], the Allen-Cahn equation is solved through a stream and collide algorithm applied to the distribution h i . The collision phase is given by:

h * i = h eq i + 1 - 1 τ φ (h i -h eq i ) (3.145)
where τ φ is the relaxation time associated to h i . It can be shown through a Chapman-Enskog method that τ φ is related to the mobility factor through:

M = ∆t(τ φ + 1/2)c 2 s (3.146)
The equilibrium function introduced in Eq. (3.145) is given by:

h eq i = φΓ i + w i M 4φ(1 -φ) W ξ α n α c 2 s (3.147)
This equilibrium function is divided into two terms. The second one allows to control the interface thickness W through the mobility factor M in the Allen-Cahn equation. The streaming phase is given by:

h i ( x, t + ∆t) = h * i ( x -ξ i ∆t, t) (3.148)
This numerical scheme was proposed by Geier et al. [START_REF] Fakhari | A conservatice phase-field lattice boltzmann model for interface tracking equation[END_REF] and is said to solve the Allen-Cahn equations.

As discussed in Appendix B.1, this is not exactly the case.

Hydrodynamic equations

The hydrodynamic pressure-based equations are solved thanks to the distribution function g i , which follows a stream and collide algorithm. The equilibrium function g eq i is modified to account for the pressure based scheme, and some correction terms proposed in He et al. [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF] and discussed above in Section 3.1.3 are introduced. Collision is given by:

g * i = g eq i + 1 - 1 τ g i -g eq i + 1 2 S i (3.149)
The equilibrium function g eq i is given by:

g eq i = ρΓ + (p -ρc 2 s )w i (3.150)
The source term S i is given hereinafter:

S i = ∆t (Γ i -w i )(ρ H -ρ L )c 2 s + Γ i µ φ (ξ α -u α ) ∂ α φ + ∆tΓ i (ξ α,i -u α )F α (3.151)
This source term has two components. The first term, is equivalent to the term introduced in section 3.1.3, and is equal to

(Γ i -w i ) (ξ α -u α ) ∂ α p -∂ α ρc 2 s .
The second part ∆tΓ i (ξ α,i -u α )F α allows to account for a body force F α , such as gravity for instance. The streaming step remains unchanged and is given by:

g i ( x, t + ∆t) = g * i ( x -ξ i ∆t, t) (3.152)
The macroscopic fields account for the source term S i and F α through the O th and the 1 st moments of g i :

u α = 1 ρc 2 s i g i ξ α,i + ∆t (µ φ ∂ α φ + F α ) 2ρ (3.153) p = i g i + ∆t 2 (ρ H -ρ L ) c 2 s u α ∂ α φ (3.154)
The algorithm is summarized in Figure 3.8. 3.5 HCZ

Historical review

This method was first proposed in He, Chen and Zhang [START_REF] He | A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-taylor instability[END_REF], and was originally coupled to a Van Der Walls equation of state. It is the first LBM multiphase method stable enough to simulate a Rayleigh-Taylor instability at a Reynold number as high as 2000. Lee and Lin [START_REF] Lee | A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[END_REF] proposed to use high order discretization scheme to compute the phase field gradient, in order to increase numerical stability. It was then proposed by Lee and Fisher [START_REF] Lee | Eliminating parasitic currents in the lattice boltzmann equation method for nonideal gases[END_REF] to use the chemical potential scheme for setting the equation of state and the surface tension term. Lee and Liu [START_REF] Lee | Wall boundary conditions in the lattice Boltzmann equation method for nonideal gases[END_REF][139] proposed a wall boundary condition based on the free energy principles. These last methods were generalised to advanced collision models by Lycett-Brown et al. [START_REF] Lycett-Brown | Multiphase cascaded lattice Boltzmann method[END_REF] (for cascaded collision model) and Fakhari and Lee [START_REF] Fakhari | Multiple-Relaxation-Time lattice Boltzmann method for immiscible fluids at high Reynold numbers[END_REF] (for MRT collision model). Still in a HCZ framework, Fakhari et al. [31] [196] proposed adaptative mesh refinement for LBM, noting that the Boltzmann equation is solved through a Lax-Wendroff scheme and not through the classical stream and collide algorithm. In a recent work Mitchell et al. [START_REF] Mitchell | Development of a three-dimensional phase-field lattice boltzmann method for the study of immicible fluids at high density ratio[END_REF] proposed a HCZ method adapted to Zu and He's scheme [START_REF] Zu | Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts[END_REF]. The work of Premnath and Abraham [START_REF] Premnath | Lattice boltzmann model for axisymmetric multiphase flows[END_REF] and Mc Cracken and Abraham [START_REF] Mccracken | Multiple-relaxation time lattice-boltzmann model for multiphase flow[END_REF][200] that generalised Lee and Lin's [START_REF] Lee | A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio[END_REF] method to 2D axisymmetric flows must also be underlined. Still in a 2D-axisymmetric flow, the recent work of Mukherjee et al. [START_REF] Mukherjee | A lattice boltzmann approach to surfactant-laden emulsions[END_REF] allows to simulate high Reynolds break up phenomenon at high density ratio. It is in this framework that Lycett-Brown and Luo [START_REF] Lycett-Brown | Multiphase cascaded lattice Boltzmann method[END_REF] proposed the cascaded Lattice Boltzmann Method Among the multiphase LBM methods, HCZ have the best performances in term of numerical stability. For instance, in the work of Mitchel et al. [START_REF] Mitchell | Development of a three-dimensional phase-field lattice boltzmann method for the study of immicible fluids at high density ratio[END_REF], a Rayleigh-Taylor instability could be simulated for a density ratio of 1000 and Reynolds number of 3000, illustrated in Figure 3.9 Chapter 4

Taylor expansion of the Lattice Boltzmann Overview In the first chapter, the Chapman-Enskog method was introduced. This method allows to recover the equivalent macroscopic equation of the Boltzmann Equation. It shows that if a distribution function is solution of the Boltzmann equation, then its first moments are solution of a Navier-Stokes equations system. It was demonstrated in Appendix A.3 that the distribution function calculated through the Lattice Boltzmann algorithm is solution of a Boltzmann Equation. Then it comes that LBM only approximates a Boltzmann equation up to a given truncation error, then the Chapman-Enskog method alone doesn't allow to determine the numerical error for the equivalent macroscopic equation. Also, the required approximations allowing the Chapman-Enskog development can be restrictive. For those reasons a new method establishing the equivalent macroscopic equation of the Lattice Boltzmann Method is introduced. It is the method proposed by Dubois [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] relying on the principle of Taylor expansion. This method is based on the Multiple Relaxation Time approach which is an advanced collision model. For this reason, before proceeding to the presentation of Dubois's method itself, a discussion about advanced collision model will be leaded. In addition, the method is generalized to the case where a body force is introduced in the Lattice Boltzmann framework. For this reason, after the discussion about advanced collision model, a discussion about source term and body forces in Lattice Boltzmann method is proposed.

Advanced Collision Model

The choice of the collision model One of the most important one is the BGK collision operator:

f * i = f i - 1 τ (f i -f eq i ) (4.1)
It is common to write the collision operator as follow:

f * i = f eq i + 1 - 1 τ (f i -f eq i ) (4.2)
But this collision operator suffers from a lack of numerical stability particularly when dealing with high shear stress. More generally speaking, the number of degree of freedom in the lattice Boltzmann method is higher than the number of fields of interest. For instance, in an isothermal D 2 Q 9 scheme, the desired moments are the density ρ, the momentum in the x-direction ρu x and the momentum in the y-direction ρu y , which leaves 6 remaining degrees of freedom. The consequence is the existence of "ghost modes" which follow their own conservation equation and evolve freely among space. The practical consequence of those "ghost modes" is the appearance of spurious currents that reduces both accuracy and numerical stability.

Multiple Relaxation Time

Proposed by D'Humieres et al. [START_REF] Humières | Multiple-relaxation time lattice boltzmann models in three dimensions[END_REF], the Multiple Relaxation Time (MRT) approach intends to address this issue. The idea is that any value expressed in the microscopic velocity space can be projected into the moments space through a mathematical projection. For instance, the moments j of the distribution function can be defined as:

m j = i M ji f i (4.3)
with M the transformation matrix from the population function to the moments function. The choice of the transformation matrix is a subject of discussion in itself, but some choices are often made such as M 0i = 1, or M αi = ξ α,i , to ensure that m 0 = ρ, m α = ρu α . By applying the transformation operation to Eq. (4.2) the BGK operator can be expressed in the moments space as:

m * j = m eq j + 1 - 1 τ m j -m eq j (4.4)
It is interesting to not that: m * 0 = m eq 0 and m * α = m eq α It is a common practice to divide the distribution functions (collided f * i and non-collided f i ) into an equilibrium counterpart and a non equilibrium counterpart f i = f eq i + f neq i . We see that the contribution of the collision phase to the non-equilibrium part is driven by the relaxation time. But in practice, only the second moments of the non-equilibrium function is interesting (as it is linked with the stress tensor, as discussed in Section 1.2.2, more precisely Eq .(1.48)), but the other moments tend to produce spurious currents. The idea of the Multiple Relaxation Times is to attribute different relaxation times depending with the considered moment. For the moments of interest (i.e. the 2 nd order moments) the relaxation time are set in order to match the desired physic, and for the other ones, the relaxation time are set very large to assign a large viscosity to the non-desired moments. It is reminded here that the viscosity is given by: ν = ∆tρc 2 s (τ -1/2), then viscosity is proportional to the relaxation time. The MRT collision operation becomes:

f * i = f eq i + jk M -1 ij K j M jk (f k -f eq k ) (4.5)
where M is the change of basis matrix between the microscopic velocities space and the moment space, M -1 the inverse of the M matrix and K is a vector that attributes a relaxation time to each moments:

K j = 1 - 1 τ j (4.6)
with τ j the relaxation time corresponding to the j th moment. The choice of the moments base is crucial and is a subject of discussion in itself, the most obvious choice is to take the Hermite's polynomial moment. If this choice is made, then the matrix M is given by:

M ji = H j,i (4.7) 
Then the j th line of the matrix corresponds to the j th moments. The raw moment matrix is also commonly used. Obviously, an infinite number of bases are possible. D'Humières et al. proposed a matrix constructed through the Gram-Schmidt algorithm [START_REF] Humières | Multiple-relaxation time lattice boltzmann models in three dimensions[END_REF]. De Rosis, proposed a denser nonorthogonal matrix [START_REF] Rosis | Nonorthogonal central-moments-based lattice Boltzmann scheme in three dimensions[END_REF].

A popular MRT variant is the central moments. This type of collision operator intends to tackle the lack of Galilean invariance issue observed for Lattice Boltzmann Method. Always in the same idea of tranposing the collision phase into the moment space, Geier et al. [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF] proposed to express the moments as functions of the relative velocity regarding the mean flow, i.e., v = ξ -u. For instance, in his original work the raw moments are used but expressed with the relative velocity. Expressed in the more general MRT formalism, it comes that the matrix M also depends with the mean velocity u such as:

M αβγ,i = (ξ x,i -u x ) α (ξ y,i -u y ) β (ξ z,i -u z ) γ (4.8)
These models were originally named the cascaded moment method, and allowed to improve stability at high Reynolds numbers. The implementation was originally complex and though difficult to generalise to other physics (such as multiphase flows, compressible flows, etc...) or other schemes. The formulation was simplified by Lycett-Brown and Luo [START_REF] Lycett-Brown | Multiphase cascaded lattice Boltzmann method[END_REF] in a multiphase context and then by Dubois et al. in a general framework [START_REF] Dubois | Lattice Boltzmann schemes with relative velocities[END_REF]. This formulation has been shown to be more numerically stable than commonly used MRT model [START_REF] Coreixas | Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations[END_REF]. A last method that relies on the MRT principle, was proposed by Seeger et al. [START_REF] Seeger | The cumulant method for computational kinetic theory[END_REF] who proposed an approach that relies on the cumulant approach that also showed to be more stable than MRT base schemes based on raw moments [START_REF] Geier | The cumulant lattice Boltzmann equation in three dimensions: Theory and validation[END_REF] 

Relaxation times value

In the MRT framework, the value of the higher relaxation times hasn't been discussed so far. It is a usual practice to simply put them at a relatively high value. Anyway, specific values have already been discussed in the literature. The term Λ = (τ αβ-1/2 )(τ αβγ -1/2), where τ αβ and τ αβγ are relaxation times respectively linked to the Hermite polynomials H αβ and H αβγ , is called the magic number. It is a common practice to set this number as a constant value, and this value has shown to influence greatly the stability of the simulation [START_REF] Ginzburg | Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme[END_REF][START_REF] Ginzburg | Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice boltzmann schemes for anisotropic advection-diffusion equation[END_REF][START_REF] Humières | Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to "magic" collision numbers[END_REF][START_REF] Silva | Truncation errors and the rotational invariance of three-dimensional lattice models in the lattice Boltzmann method[END_REF]. It can be shown [START_REF] Ginzburg | Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme[END_REF] that setting Λ = 1/12 allows to suppress a truncation error proportional to ∆t 2 making LBM to be accurate up to the third order for steady cases. This method showed to be efficient in a multiphase framework [START_REF] Pasieczynski | Fluidfluid interactions in pseudopotential lattice Boltzmann models: Effects of model schemes and fluid properties[END_REF]. In practice, the value of Λ = 1/4 allows a better numerical stability [START_REF] Ginzburg | Optimal stability of advection-diffusion lattice boltzmann models with two relaxation times for positive/negative equilibrium[END_REF].

Regularized Collision Operators

In the mean time, a regularized algorithm was proposed by Latt [START_REF] Latt | Lattice Boltzmann method with regularized pre-collision distribution functions[END_REF]. The idea is similar to the MRT collision scheme, the non-equilibrium part of the collided population is projected into the moments space. Rather than assigning a relaxation time to every moment, the useful moments (the second order ones) are kept, but higher orders are simply truncated. To do so, the Hermite's polynomial base must be used since it is an orthogonal base. This is possible thanks to the Hermite's polynomial orthogonality property. In this algorithm, the collision step Eq. (4.2) is modified to:

f * i = f eq i + 1 - 1 τ f neq i (4.9)
with f neq i the non-equilibrium function. It is calculated by projecting the non-equilibrium part of the population function into the moments space. The non-equilibrium moments are defined through:

m neq * = i H * ,i (f i -f eq i ) (4.10)
The non-equilibrium function is calculated only using moments from the second order in Hermite's polynomial. f neq i is finally calculated through: Giving the orthogonality property of the Hermite's polynomials, it comes that the moments of order 3 and 4 of the f neq distribution are equal to 0. It is said that these moments have been regularized. This method increases stability by filtering non-hydrodynamic modes [START_REF] Wissocq | An extended spectral analysis of the lattice Boltzmann method: modal interactions and stability issues[END_REF]. To summarize, the regularized collision operator is equivalent to a MRT scheme where τ αβ = τ and τ j = 1 otherwise. The M matrix is formed by the Hermite's polynomial. The regularized collision being a particular case of the MRT, the principal interest to use regularized operator is numerical efficiency. In the MRT scheme all the moment space must be considered while only the 2 nd order polynomials can be considered in the regularized approach.

f neq i = w i 2c 4 

Recursived Regularized collision operator

This model could be improved through a recursive mechanism. The idea of recursivity was introduced by Malaspinas [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[END_REF]. He pointed out that the successive moments of the equilibrium function follow recursive relationships. If we note a (n) the moments of order n of the equilibrium function, then for n > 2 the following relationship is true:

m eq α 1 ,α 2 ...αn = m eq α 1 ,α 2 ...α n-1 u αn + u α 1 ...u α n-2 m eq α n-1 αn + perm (α n ) (4.13)
where perm (α n ) stands for all the cyclic index permutations of indexes from α 1 to α n-1 . Malaspinas pointed out that both accuracy and numerical stability of a Lattice Boltzmann numerical scheme are related to the recursivity relationships: the more these relationships are verified, the better the performance of the scheme is.

The principle of the recursive regularized operator is to assume that the recursivity relationships are also verified for the non-equilibrium moment, which allows to calculate moments higher than the order 2 with low computational cost. Expressed thanks to the recursive relationship, the 3 rd order Hermite polynomial reads:

m neq ααβ = 2u α m neq αβ + u β m neq αα (4.14)
Then the non-equilibrium function is given by: ) the moments linked to the polynomial H ααα (α being a direction of space) cannot be calculated as discussed in Section 1.3.2. When the regularized operator is coupled with the recursive approach, this new collision operator is refereed to as RR.

f neq i = w i   αβ H αβ 2c 4 

Hybrid Recursived Regularized collision operator

Finally, an other mechanism can be added to the RR collision operator [START_REF] Jacob | A new hybrid recursive regularised bhatnagargrosskrook collision model for lattice boltzmann method-based large eddy simulation[END_REF]. In practice, the 2 nd order non-equilibrium distribution function is linked with the stress tensor as discussed in Section 1.2.2. Then there are two ways to calculate the non-equilibrium function, the first one is the one proposed earlier (Eq. (4.10)) and the other one consists in calculating the stress tensor:

m F D,neq αβ = ρc 2 s τ (∂ α u β + ∂ β u α ) (4.16)
with the spatial derivative terms calculated through a finite difference scheme. In the Hybrid Regularized Recursive (HRR) scheme, the 2 nd order non-equilibrium moment is calculated by a combination of the two approaches:

m neq αβ = σ HRR m LBM,neq αβ + (1 -σ HRR )m F D,neq αβ (4.17)
where m LBM,neq αβ is the non equilibrium moment calculated through Eq. (4.10), and σ HRR is a real number which value is included between 0 and 1. The value of σ HRR corresponds to the rate of the non-equilibrium moment that will come from the finite difference scheme or from the LBM scheme. For example, if σ HRR is equal to 1, then the HRR scheme is strictly equivalent to the RR one, and when σ HRR is equal to 0, the non-equilibrium part of the distribution function is fully calculated through the Finite Difference scheme. This approach allows to introduce a small amount of numerical dissipation through the Finite Difference, which improves the numerical stability. Common values for σ HRR are σ HRR = 0.98 to 0.99. This collision operator increases greatly LBM numerical stability, allowing the method to cover a large range of applications, such as aeroacoustic [START_REF] Astoul | Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method[END_REF] or compressible flows [START_REF] Renard | Improved compressible hybrid lattice Boltzmann method on standard lattice for subsonic and supersonic flows[END_REF].

Bulk viscosity and MRT

A major property of the MRT-like (including regularized) collision operator is the capability to freely set bulk viscosity. The general form of the stress tensor is given by:

µ (∂ α u β + ∂ β u α ) + µ b - 2 D µ ∂ γ u γ (4.18)
with D the dimension of the system. As discussed in Section 1. 

∂ t ρu α + ∂ β ρu α u β + ρc 2 s δ αβ = ∂ β ρc 2 s (τ ν -1/2) (∂ α u β + ∂ β u α ) + ρc 2 s (τ b -τ ν )∂ γ u γ (4.20)
In this framework, the bulk dynamic viscosity is given by µ b = ρc 2 s (τ b -1/2) and the shear dynamic viscosity is given by µ ν = ρc 2 s (τ ν -1/2).

Traceless operator

In the standard LBM, bulk viscosity is equal to the shear viscosity through ν b = ν, but in practice the bulk viscosity is often equal to 0. It has been shown that it is the case in the mono atomic case, but this is also the case for commonly found gas (air for example). The Stokes assumption that consists in assuming that ν b = 0 is a common assumption. Two different ways to set ν b = 0 are addressed in this paragraph. The first way would be to use the base presented in this section and to impose τ b = 1/2. Another method to set bulk viscosity equal to zero was presented by Farag et al. [START_REF] Farag | A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows[END_REF] has been correctly regularized as desired. it must be recalled that the regularization of a given moment is equivalent to set the relaxation time associated to its moment to 1 in a MRT process, then the traceless operator is equivalent to setting the bulk dynamic viscosity to

µ b = ρc 2 s ∆t 2
, which is not equal to 0. In practice, a corrective term is added in order to get rid of this spurious bulk viscosity induced by this scheme.

Body Force in LBM

Body force schemes

Including a source term in the Boltzmann equation allows to widen the range of applicability of LBM, considering for example mass production, body force, gravity, or adding an eventual correction term. More specifically in the multiphase framework, surface tension can be modeled through a body force [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. This was originally present in the Boltzmann work, since a term taking into account a body force F can be included:

∂ t f + ξ α ∂ α f + F α ∂f ∂ξ α = Ω (4.22)
In practice, several schemes were originally proposed to transpose this scheme into a LBM framework. Different schemes proposed through out the literature are presented here.

Shan and Chen scheme

One of the first method was proposed by Shan and Chen in a multiphase framework [START_REF] Shan | Simulation of non-ideal gases and liquid-gas phase transition by lattice boltzmann equation[END_REF], and consists in modifying the velocity used to calculate the equilibrium function (Eq. (1.80)). The equilibrium function is calculated using the following velocity:

u eq α = u α + F α τ ρ (4.23)
An important behaviour common to most of the methods intending to include a body force is that it modifies the value of the 1 st order of the distribution function. As pointed out by Shan and Doolen [START_REF] Shan | Multicomponent lattice-Boltzmann model with interparticle interaction[END_REF], the first order moment writes:

i f i ξ α,i = ρu α - ∆tF α 2 (4.24)
Which modifies the way velocity is calculated. Even if this method is the first that has been proposed, it is barely used in practice. Two other ones are much more popular and are still used nowadays.

He's scheme

The first one was proposed by He et al. [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF], then it is refereed as "He's scheme". In this one, the term F α ∂f ∂ξ α of Eq. (4.22) that allows to introduce a force term in the Boltzmann equation is used. In this scheme, it is assumed that:

∂f ∂ξ α ≈ ∂f eq ∂ξ α = - ξ α -u α c 2 s f eq (4.25)
Previous equality was obtained by assuming the equilibrium function is equal to the Maxwell-Boltzmann distribution given in Eq. (A.15). As the formulation of f eq is known, a source term introducing a body force can be introduced. In a BGK framework, the collision step is modified to:

f * i = f i - 1 τ (f i -f eq i ) + S i (4.26)
with

S i = 1 - 1 2τ F α (ξ α,i -u α ) c 2 s f eq i (4.27)
Similarly as the Shan and Chen scheme, the velocity should be calculated through

u α = i f i ξ α,i ρ + F α ∆t 2ρ (4.28)

Guo's scheme

The second scheme often used in the literature was first introduced by Ladd and Verberg [START_REF] Ladd | Lattice-Boltzmann Simulations of Particle-Fluid Suspensions[END_REF] and then improved by Guo [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF]. It is often refereed as "Guo's scheme". In this approach, the forcing term is formed by an expansion in a power series in the particle velocity:

S i = w i 1 - 1 2τ ξ α,i -u α c 2 s + ξ α,i ξ β,i u β c 4 s F α (4.29)
w i being the coefficients introduced in Section 1.3.2. Similarly as for the He's scheme, the first moments of the distribution function are modified. The difference between Guo's and He's scheme relies in the moments of order higher than 2. At this point it is interesting to give the moments of the S i terms:

i S i = 0 i ξ α,i S i = F α i ξ α,i ξ β,i S i = u α F β + u β F α (4.30)
It could be shown through a Chapman-Enskog method or a Taylor expansion that the value of the 2 nd order moment given here must take this form to correct an error appearing in the stress tensor otherwise.

Body force and MRT schemes

It should be noted that when using a MRT or regularized collision model, both the formulation of those schemes and the formulation of the source term must be modified. First of all, it can be seen that in both Guo's and He's scheme, the relaxation time is involved in the formulation. In the MRT case, relaxation time is no longer unique to all moments. This is taken into account by changing the formulation of the source term, and removing the relaxation term's contribution. For example the Guo's source term becomes:

S i = w i ξ α,i -u α c 2 s + ξ α,i ξ β,i u β c 4 s F α (4.31)
The expression of the collision term is also modified. The MRT collision term becomes:

m * j = m eq j + (1 -1/τ j ) m j -m eq j + 0.5 i M ji S i + 0.5 i M ji S i (4.32)
Similarly in the recursive collision model, the expression of the non-equilibrium function is also modified, and it becomes:

m neq * = i H * ,i (f i -f eq i + 0.5S i ) (4.33)
To understand this, we have shown in Section 1.3 that the distribution function f i is actually not solution of the Boltzmann equation, but the function fi = f i -1 2τ (f i -f eq i ) is. Similarly, when introducing a source term, it is the population defined by fi = f i -

1 2τ Ω i - ∆tS i 2
that is solution of the equation:

∂ t fi + ξ α ∂ α fi = - 1 τ -1/2 fi -f eq i + S i (4.34)
As a consequence, the macroscopic velocity solution of the Navier-Stokes equation is the first order moment of fi . For this reason:

ρu α = i fi = i ξ α,i f i + ∆tS i 2 = i ξ α,i f i + ∆tF α 2 (4.35)

Correction terms in LBM

It has been pointed out that for the most commonly used velocity sets (i.e. D 2 Q 9 , D 3 Q 19 or D 3 Q 27 ) the number of degrees of freedom is too low to allow a perfect prediction of the Navier-Stokes equations to the order 2. For instance, in D 2 Q 9 for a "classic" LBM scheme, a Mach cubed error appears, taking the form:

Er M ach α = -∂ β ∂ γ ρu α u β u γ (4.36)
As this term takes the form of two successive spatial derivative, it can also be interpreted as a pressure tensor. This spurious pressure term can be defined:

p M ach αβ = ∂ γ ρu α u β u γ (4.37)
A corrective pressure can be introduced through a source term, equals to the opposite of this error term. The spatial derivative terms can be calculated through a finite difference scheme. It can be shown through a Taylor expansion that to introduce a pressure tensor, the corrective source term S er,i should have the following moments:

i S er,i = 0 i ξ α S er,i = 0 i ξ α ξ β S er,i = p M ach αβ (4.38)
To obtain such an error term, one can simply project it into the Hermite polynomial space, like:

S er,i = p M ach αβ H αβ,i 2c 4 s (4.39)
This strategy has been presented for the Mach error, but it can be generalised to any spurious term.

Taylor expansion

In Section 1.2.2, we showed how to recover the macroscopic equation solved by the moments of a distribution function whose behavior is described by the Boltzmann equation. As it has been shown that the distribution function f i calculated through a Lattice Boltzmann Method is solution of a Boltzmann Equation to the 2 nd order in ∆t, the Chapman-Enskog method shows that the moments of f i are also solution of a Navier-Stokes system. But this approach has two major drawbacks. First of all, f i is solution of a Boltzmann equation only up to the order ∆t 2 , the higher-order errors cannot be determined. Furthermore, the Chapman-Enskog method itself has theoretical weaknesses. As pointed out by Farag et al. [START_REF] Farag | A pressure-based regularized lattice-Boltzmann method for the simulation of compressible flows[END_REF], the hypothesis that

f (n) d ξ = ξ α f (n) d ξ = 0
for n > 0 is a strong hypothesis. On another hand, the hypothesis of the existence of two time scales is also a limiting hypothesis. For theses two reasons, there is a real need for another method allowing to determine the equivalent equation of the Lattice Boltzmann Method. For this reason, methods based on the Taylor expansion were proposed in order to obtain the equivalent macroscopic equation of the LB method. The first one was proposed by Holdych [START_REF] Holdych | Truncation error analysis of lattice Boltzmann methods[END_REF] that could recover the same macroscopic equations obtained through the Chapman-Enskog method. The default of this approach is that similarly as the Chapman-Enskog method, this demonstration relies on the hypothesis that two different time scales exist. Later Dubois [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] proposed a method that allow to determine properly the equivalent equation of the Lattice Boltzmann algorithm up to the order 3. It allows to determine the equation solved by the moments of the population f i . This development is presented here. As this development takes place in a Multiple Relaxation Time (MRT) framework, the moments m j of the distribution function f i are defined as

i M ji f i = m j (4.40)
with M the transformation matrix from the population function basis to the moments function basis.

To fit the MRT formalism, a specific relaxation time must also be attributed to each moment. In the method presented in the main text, a regularized collision model is used which can be translated in a MRT framework. An example of matrix M , based on a Hermite polynomial based is proposed here:

M α,i = H α,i (4.41) M αβ,i = H αβ,i (4.42) M αβγ,i = H αβγ,i (4.43) M αβγµ,i = H αβγµ,i (4.44)
Relaxation times must be attributed to each moments. For instance in the regularized framework, this comes as: τ xy = τ ν (linked with the shear viscosity), τ b is linked with the bulk viscosity and other relaxation times are set to 1, i.e.: τ 0 = τ α = τ αβγ = τ αβγµ = 1. The inverse-matrix of M is noted M -1 . It respects that:

f i = i M -1 ij m j (4.45)
For the sake of clarity, the Lattice-Boltzmann algorithm is reminded and adapted to the MRT formalism. The population at the time t + 1 is calculated from the collided function through the streaming step: Streaming step

f i (x, t + ∆t) = f * i (x -ξ i ∆t, t) (4.46)
where f * i is the population function obtained after collision. It is calculated from the collided moments through:

f * i = i M -1 ij m j .
The moments m * j are obtained through the collision step: Collision step:

m * j = m eq j + (1 - 1 τ j ) m j -m eq j + 1 2 S j + 1 2 S j (4.47)
where m eq j is the j th moment of the equilibrium function and S j is the j th moment of the source term. In agreement with Dubois's [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF], the following tensors are defined:

Λ k j,α = i M ji ξ α,i M -1 ik (4.48) Λ k j,αβ = i M ji ξ α,i ξ β,i M -1 ik (4.49) Λ k j,αβγ = i M ji ξ α,i ξ β,i ξ γ,i M -1 ik (4.50)
These polynomials allow to characterise the base M . For instance, Λ k j,α is the projection of the polynomial M j multiplied by ξ α in the base M k . For instance, M 0i = 1, then M 0i ξ α,i = ξ α,i . The proposed base M is orthogonal and it happens that ξ α = M α , then Λ k j,α = δ αk . In the original work, a source term introducing a body force was not considered. In order to make this development slightly more general, a body force introduced through a Guo's scheme [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF] is added. It was underlined in Section 4.2 that when a body force is introduced through a Guo's scheme, the calculation of the momentum is modified, since the first moment of the population f i is given by: m α = ρu α -∆t 2 F α . The justification for this relationship is demonstrated in the present work. The last useful notation used in this section is:

Π eq j = ∂ t m eq j + (τ j -1/2) S j + ∂ α k Λ k j,α m eq k + (τ k -1/2) S k (4.51)
It can be shown that this term corresponds to the moments of the non-equilibrium part of the population function: f i -f eq i . Also, it can be shown that Π eq αβ is the stress tensor. Similarly as in the Chapman-Enskog method, equivalent macroscopic equation are calculated through a recursive approach, it means that in order to determine the equivalent macroscopic equation at the order ∆ n , the knowledge of the equivalent macroscopic equation at the order ∆t n-1 is necessary. The equivalent macroscopic equation are given order by order, but the detail of the calculation are available in appendix.

0 th order

By developing (4.47) and (4.46), 0 th order equations can be obtained. It can be shown that up to the order 1 in ∆t the moments m j and the collided moments m * j are equivalent:

m j = m * j + O(∆t) (4.52)
Similarly, m j and m eq j are showed to be related through:

m j = m eq j + τ j - 1 2 S j + O(∆t) (4.53)
Through the Chapman-Enskog method the following relationship was obtained: f i = f eq i + O(Kn). It appears that the development in ∆t in the present approach is very similar to the development in Knudsen number in the Chapman-Enskog approach.

1 st order

The collision and streaming equations (4.47)(4.46) can then be developed to the order 1 in ∆t. Similarly as in the Chapman-Enskog method, the lower order equations C.17 are necessary to obtain an equivalent macroscopic equation. Similarly as the Chapman-Enskog method, two equations can be obtained. One for the mass conservation (the moment m 0 ) and one for momentum (the 1 st order moment m α ). The mass conservation equation is given by:

∂ t m 0 + ∂ α m eq α = O(∆t) (4.54)
The momentum conservation equation is given by:

∂ t m α + ∂ β m eq αβ + c 2 s m eq 0 δ αβ = F α + O(∆t) (4.55)
It can be seen that LBM solves an Euler system up to the order ∆t. The present equation system corresponds to the system obtained at the order 1 in Knudsen number through the Chapman-Enskog method.

Similarly as in the Chapman-Enskog method, the knowledge of the non-equilibrium part of the moments is necessary. It is given by the following formula:

m j = m eq j + (τ j -1/2) S j -∆tτ j ∂ t m eq j + ∂ α k Λ k j,α m eq k + O(∆t 2 ) (4.56)
It can be seen that the non-equilibrium part of the population function is linked with the temporal and spatial derivative of the equilibrium moments.

2 nd order

It can be shown, that up to the order 2, the Lattice Boltzmann scheme is equivalent to the following system:

∂ t m 0 + ∂ α m eq α = O(∆t 2 ) (4.57)
The first thing to notice, is that if m 0 = ρ and m eq α = ρu α , then the mass conservation equation is retrieved up to the order 2. A similar result can be obtained through a Chapman-Enskog method. The momentum conservation equation is given by:

∂ t m α + ∆t 2 F α + ∂ β m eq αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π eq αβ + F α + O(∆t 2 ) (4.58)
A first thing to notice, is that the term in the temporal derivative is m α + ∆t 2 F α . Then in order to retrieve the Navier-Stokes momentum conservation equation, the

f i 1 st moment must respect ρu α = m α + ∆t 2
F α , which is the relationship that was introduced in the body force Section 4.2. In the present work, this relationship could be retrieved "a priori". It can be shown that S j = O(∆t) (discussed in Appendix C.1), the consequence is that:

Π eq αβ = ∂ t m eq αβ + ∂ γ k Λ k j,α m eq k + O(∆t) (4.59)
The previous expression is base dependant, using the base M proposed in example (which is the Hermite's polynomial base) it becomes:

Π eq αβ = ∂ t m eq αβ + ∂ γ m eq αβγ + c 2 s m eq α δ βγ + m eq β δ αγ (4.60) which is similar to what is obtained through a Chapman-Enskog method. The current Taylor expansion showed how a Lattice Boltzmann method allows to solve a Navier-Stokes system.

The current determination of the equivalent macroscopic equation process can be extended to the order 3, allowing to know the numerical errors implied by the LBM scheme. Similarly as previously, the knowledge of the development of m j up to ∆t 3 is necessary:

m * j = m eq j + (τ j -1/2)S j -∆t (τ j -1) Π eq j -∆t 2 (τ j -1) (τ j -1/2)∂ t Π eq j + ∂ α k (τ k -1/2)Λ k j,α Π eq k + O(∆t 3 ) (4.61)

3 rd order

Finally, the ∆t 2 error can be determined for the mass conservation equation:

∂ t m 0 + ∂ α m eq α = ∆t 2 ∂ α 1 12 ∂ β Π eq αβ - 1 6 ∂ t F α + O(∆t) 3 (4.62)
It comes from the last equation that the ∆t 2 error for the mass conservation equation is proportional to Π eq αβ which corresponds to the stress tensor. It is also proportional to the time derivative of the body force. For the momentum conservation equation, up to the order three it is given by:

∂ t m α + ∆t 2 F α + ∂ β m eq αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π eq αβ + F α + ∆t 2 ∂ β τ αβ - 1 2 2 - 1 6 ∂ t Π eq αβ + τ αβγ - 1 2 τ αβ - 1 2 - 1 12 ∂ γ Π eq αβγ - ∆t 2 6 ∂ 2 t F α + c 2 s ∂ βγ (F α δ βγ + F β δ αγ + F γ δ αβ ) + O(∆t 3 ) (4.63)
The ∆t 2 error has three counterparts. One is equal to the temporal derivative of the stress tensor ∂ t Π eq αβ , one is equal to the spatial derivative of the third moments of the non-equilibrium distribution, and the last one is a composition of derivatives of the body force. As it was already discussed, the second component of the ∆t 2 error can be cancelled. As it is proportional to the so-called magic number [START_REF] Ginzburg | Truncation errors, exact and heuristic stability analysis of two-relaxation-times lattice boltzmann schemes for anisotropic advection-diffusion equation[END_REF], this error term can be cancelled by choosing:

τ αβγ = 1/2 + 1 12τ αβ -6 (4.64)
Chapter 5

Colour Gradient algorithm theoretical analysis Overview Among the presented Lattice Boltzmann methods, HCZ methods showed the best qualities in term of numerical stability and application range. Unfortunately, such methods take place in an incompressible framework, which limits their interest for fuel atomization in aeroengines. In particular, acoustics waves are known to influence greatly the atomization process [START_REF] Lo Schiavo | Effects of liquid fuel/wall interaction on thermoacoustic instabilities in swirling spray flames[END_REF][START_REF] Christou | Influence of an oscillating airflow on the prefilming airblast atomization process[END_REF][START_REF] Davis | Shear-coaxial jets from a rocket-like injector in a transverse acoustic field at high pressures[END_REF][START_REF] Baillot | Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field[END_REF][START_REF] Qi | Interfacial destabilization and atomization driven by surface acoustic waves[END_REF][START_REF] Apeloig | Liquid-fuel behavior in an aeronautical injector submitted to thermoacoustic instabilities[END_REF] in break up jet cases. For this reason, the need for a compressible multiphase simulation method is strong. In addition, thermal effects are also of paramount importance when dealing with injector applications. For this reason, there is also a need for a numerical scheme able to include non-perfect equation of state. Among the Lattice Boltzmann methods described in Chapter 3, pseudo-potential methods and freeenergy methods fulfill these conditions since they allow to introduce an equation of state, and belong to compressible methods. They can moreover be generalized to thermal flows. For the pseudo-potential method, it could be an interesting subject of investigation to transpose methods such as the one proposed by Pelletier et al. [START_REF] Pelletier | A multifluid Taylor-Galerkin methodology for the simulation of compressible multicomponent separate two-phase flows from subcritical to supercritical states[END_REF][START_REF] Nayigizente | Development of an interface thickening method for the direct numerical simulation of compressible liquid-vapor flows in the framework of the second gradient theory[END_REF] in a pseudo-potential framework. The generalization to freeenergy method to has already been investigated by Verdier et al. [START_REF] Verdier | Performance portability of lattice Boltzmann methods for two-phase flows with phase change[END_REF]. On the other hand, adding a non-perfect equation of state in the colour-gradient framework is not straightforward. As pointed out in Section 3.2, the equation of state generally used in colour-gradient methods induces spurious compressible phenomena. Another drawback of the colour gradient method is the fact that the equivalent phase field equation is not known, which limits its generalization to other physics. In this chapter, an analysis of the colour gradient algorithm is proposed. A link between these methods and phase-field methods (presented in Section 2.2.1) is also proposed. Also, in this chapter, it is proposed that color gradient equilibrium function is similar to Pooley's equilibrium scheme [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF]. Pooley et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] proposed their equilibrium scheme based on an empirical argument. They pointed out that this precise scheme allows to minimize spurious currents in the interface. In this chapter, a theoretical argument is added to justify this mechanism. It is demonstrated that the discussed operator maximizes the degree of isotropy, eliminating an error proportional to ∆t 2 . Finally, based on Dubois's work [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF], an equivalent equation for the recoloration phase is proposed. It is shown how the color-gradient algorithm allows to solve a Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] phase field equation.

Algorithm reformulation

As described in Section 3.2, in colour gradient the fluid is described thanks to two populations R i and B i corresponding to a red phase and a blue phase [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF]. Their 0 th moment corresponds to the density of each phase, then if we note Y 1 and Y 2 the red and blue mass fraction respectively, it comes:

i R i = ρY 1 and i B i = ρY 2 (5.1)
It is proposed to consider two populations f i and g i such as:

f i = R i + B i and g i = R i -B i (5.2)
which are linked to the total mass ρ, the phase field φ and the total momentum ρ u through:

i f i = ρ and i f i ξ α u α = ρu α (5.3) i g i = ρφ (5.4)
Leclaire's et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] algorithm detailed in Section 3.2 can be re-expressed only in term of f i and g i .

Algorithm reformulation f i : stream and collide

It can be shown that f i follows a classical stream and collide algorithm. The collide step is given by:

f * i = f eq i + 1 - 1 τ (f i -f eq i + 0.5S i ) + 0.5S i (5.5)
with S i being the source term that introduces surface tension and correction term. Its formulation is given Eq.(3.52), but this term is not central in the current discussion. f eq i is the equilibrium function. The formulation given in Section 3.2 (Eq. (3.75)) is the one proposed by Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF], it can actually be reformulated to:

f eq i = ρw i 1 + u α H α,i c 2 s + u α u β H αβ 2c 4 s + p -ρc 2 s w i -δ i,0 c 2 s (5.6)
with p the pressure given by:

p = ρ 1 + φ 2 c (R) s 2 + 1 -φ 2 c (B) s 2 (5.7) 
It can be noticed that Eq.(5.6) is identical to the equilibrium function given by Pooley et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] (Eq. (3.21)), which was not straightforward using previous formulations (from Grunau et al. [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF], Eq. (3.75) or from Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] given Eq. (3.69) for example). The streaming step is simply given by:

f i (x + ξ α,i ∆t, t + ∆t) = f * i (x, t) (5.8) 
Note that f i is only involved in the computation of the total mass and momentum, while the recoloration process, described hereafter (Eq. (6.16)), only involves g i .

g i : stream and recolor

After reformulation, it comes that the g i function calculated through a stream and recolor algorithm is given by:

g * i = φf * i + Ω (3) i (5.9) 
with Ω

(3) i the collision operator accounting for phase segregation. The g i function is then streamed:

g i (x + ξ α,i ∆t, t + ∆t) = g * i (x, t) (5.10) 
The recoloration operator Ω

(3) i can also be reformulated. The formulation given in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] is strictly equivalent to:

Ω (3) i = w i p(1 -φ 2 ) 2c 2 s W ξ α,i ∂ α φ | ξ i || ∇φ| (5.11) 
where W has the dimension of a length (m) and corresponds to the characteristic width of the interface. It is useful to give Ω

(3) i two first moments:

i Ω (3) i = 0 (5.12) i Ω (3) i ξ α,i = p 1 -φ 2 2W ∂ α φ | ∇φ| (5.13) 
Note that Ω

(3) i 0 th moment given Eq. (5.12) is equal to 0 in order to ensure that no mass transfer occurs between phase 1 and phase 2. The equilibrium function present formulation, given Eq. (5.6), makes stand out the mechanism that allows to introduce pressure in colour gradient algorithm. It comes that the equilibrium function used in colour gradient algorithm can be associated to a Pooley's equilibrium scheme [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] given Eq. (3.21). The reformulation of the recoloration term Eq. (5.11) stresses the role played by the equation of state, making straightforward the generalization of the colour gradient method to an arbitrary equation of state under the form p = f (ρ, φ).

Equation of State Operator

It has been shown in the previous subsection that the color-gradient algorithm can be reformulated in such a way that mass and momentum are described by a single population f i . Thanks to this reformulation, colour gradient algorithm can be compared to other methods such as free energy or HCZ. As it was pointed out in Section 3.1.3, the ability to introduce an arbitrary equation of state is required for the considered multiphase flows. Among the available tools in Lattice Boltzmann methods to introduce an equation of state, one of them is the equilibrium scheme. The general principle of the equilibrium scheme is to write the equilibrium such as:

f eq i = f eq,0 i + p -ρc 2 s E i (5.14)
where E i is an operator discussed in the following, and f eq,0 i the classical equilibrium function from He et al. [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] f eq,0 i

= ρw i 1 + u α H α,i c 2 s + u α u β H αβ,i 2c 4 s (5.15) 
In this Section, the formulation of E i presented in Eq. (5.14) is discussed. A D2Q9 framework is considered here, but the discussion can be extended to other lattices (D3Q19, D3Q27, etc...).

Discussion

In D2Q9, an operator E i is defined through its 9 values corresponding to each microscopic velocities. It can also be defined through 9 independent moments. In order to determine these moments, the equivalent macroscopic equations are determined, and the operator E i 's moments are chosen to satisfy the desired physics. In the present case, the operator E i is aimed to introduce a pressure gradient ∂ α p into the momentum conservation equation. It can be shown through a Taylor expansion that the two equivalent macroscopic equations while using the equilibrium function Eq.(5.14) are:

∂ t ρ + (p -ρc 2 s ) i H 0,i E i + ∂ α ρu α + (p -ρc 2 s ) i H α,i E i = 0 (5.16) ∂ t ρu α + (p -ρc 2 s ) i H α,i E i + ∂ β        ρu α u β + ρc 2 s δ αβ + (p -ρc 2 s ) i H αβ,i + c 2 s H 0,i δ αβ E i (1)        = ∆t (τ -1/2) ∂ β   -∂γρuαu β u γ Mach error + Er αβ EOS error + ρc 2 s [∂ α u β + ∂ β u α ] stress tensor + i      H αβ,i ∂ t (p -ρc 2 s ) (2) 
+ H αβγ,i + c 2 s (H α δ βγ + H β δ αγ ) ∂ γ (p -ρc 2 s ) (3)      E i     
(5.17 where red terms corresponds to terms introduced by the Equation of State operator E i . In order to guaranty mass conservation and momentum conservation, the operator E i must respect:

i H 0,i E i = 0 (5.18) i H α,i E i = 0 (5.19)
In addition, in the right equation of the momentum conservation the term noted (3) can be cancelled by imposing:

i H αβγ,i E i = 0 (5.20)
Finally, the term noted (1) shows that to introduce the pressure gradient in the momentum conservation equation, the operator must respect:

i H αβ,i E i = δ αβ (5.21)
Note that the term noted ( 2) is not cancelled. This term is a spurious term and should be removed in order to accurately simulate the stress tensor. To do so, an original temporal correction is proposed in Chapter 6. In a D2Q9 framework, it should be enough moments to entirely determine the operator E i . But, it was pointed out in Section 1.3.2.1 that in D2Q9 the moments H α and H ααα are not independent, involving that only 8 independent moments can be determined. One more condition is then required to fully determine E i to determine completely the operator E i . Which means that the E i operators that fulfill the conditions given Eqs. (

Thanks to

form a one dimensional space. In this work, the moment related to H xxyy is considered to determine E i .

To build their operator, Pooley's et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] investigated this 1D space measuring the amount of spurious current produced by each possible operator, and chosen the one producing the less amount of current. In Pooley's et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] work, a specific operator E i among the 1D space is characterized by a factor p. 

E i = w i -δ i,0 c 2 s (5.22)
This choice relies on an empirical result. In the present work, a theoretical argument is proposed to support Pooley's et al. [START_REF] Pooley | Eliminating spurious velocities in the free-energy lattice boltzmann method[END_REF] result.

Theoretical result

It was proposed in Section 4.3 Eq. (4.63) that the ∆t 2 error of the momentum conservation equation is given by:

Er ∆t 2 = ∂ β τ αβ - 1 2 2 - 1 6 ∂ t Π eq αβ + τ αβγ - 1 2 τ αβ - 1 2 - 1 12 ∂ γ Π eq αβγ (5.23)
In the present chapter, Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] algorithm is considered, which relies on a BGK collision operator, for which τ αβ = τ αβγ = τ . The expression for Π eq αβγ is reminded here:

Π eq αβγ = ∂ t m eq αβγ + ∂ µ m eq αβγµ + m eq αβ δ γµ + m eq αγ δ βµ + m eq βγ δ αµ c 2 s (5.24) By injecting previous equation Eq. (5.24) into Eq. (5.23), it comes that the ∆t 2 error at steady state (i.e. when ∂ t = 0) becomes:

Er ∆t 2 = ∂ 3 βγµ τ - 1 2 2 - 1 12
m eq αβγµ + m eq αβ δ γµ + m eq αγ δ βµ + m eq βγ δ αµ c 2 s (5.25)

In the absence of mean flow, i.e. if u = 0, Eq. (5.6) shows that the values of the moments of the equilibrium function (the m eq * ) only depend with p and ρ. Per construction, in absence of mean flow, second moment of the equilbirum function is:

m eq αβ = (p -ρc 2 s )δ αβ (5.26)
Also, the values of the 4 th order moments of the equilibrium function only depends on the moments of the operator

E i m eq αβγµ = i H αβγµ,i E i p -ρc 2 s (5.27)
It comes that the ∆t 2 error can be partially cancelled with a wise choice of E i H xxyy moment. In these conditions (steady flow and no mean velocity) it is possible to nullify the ∆t 2 error, (i.e., to impose Er ∆t 2 = 0) by setting:

i H αβγµ,i E i = -c 2 s (δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) (5.28) 
In practice, due to the limitation of the D2Q9 scheme discussed in Section 1.3. can be defined by:

E (iso) i = H xx,i + H yy,i 2c 2 s - H xxyy,i 4c 6 s (5.30) 
It happens that this last operator, determined only by theoretical arguments coincides with Pooley's operator Eq. (5.22). In the E (iso) i notation, "iso" stands for isotropic. This notation is justified in the next section.

Links with isotropy

It can be shown that the previous operator E (iso) i also respects isotropic conditions. The eight first moments were determined to ensure that mass and momentum conservation are accurately predicted, yielding conditions Eqs. (5.18, 5.19, 5.21, 5.20). And these conditions can be expressed in term of raw moments (raw moments are defined Appendix A.4 Eq. (A.30)):

i E i = 0 (5.31) i ξ α,i E i = 0 (5.32) i ξ α,i ξ β,i E i = δ αβ (5.33) i ξ α,i ξ β,i ξ γ,i E i = 0 (5.34) 
A detailed discussion about isotropy has been conducted in Section 1. It must be noted that the present Eqs. (5.31,5.32,5.33,5.34) comply with isotropic conditions (namely Eq.(1.97) or Eq.(1.67)). This means the present operator E i reaches a 3 rd degree of isotropy to satisfy the correct resolution of mass and momentum conservation equations. Let us focus on the 4 th moments. It should be noted that the product of 4 microscopic velocities can be expressed as a function of the Hermite polynomials:

ξ α,i ξ β,i ξ γ,i ξ µ,i = H αβγµ,i + c 2 s (H αβ,i δ γµ + H αγ,i δ βµ + H αµ,i δ βγ + H βγ,i δ αµ + H βµ,i δ αγ + H γµ,i δ αβ ) + c 4 s (δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) (5.35)
By injecting Eqs.(5.18, 5.21, 5.28) into Eq. (5.35), it comes that E (iso) i 4 th order raw moments are given by:

i ξ α,i ξ β,i ξ γ,i ξ µ,i E (iso) i = c 4 s (δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) (5.36)
According to the discussion of Section 1, and Eq. (1.67), it can be concluded that E iso i also reaches a 4 th degree of isotropy. Interestingly, this operator E iso i allowing to cancel the ∆t 2 error Er ∆t 2 Eq. (5.23), is the one which reaches the highest degree of isotropy. It can be verified that:

E (iso) i = w i -δ i,0 c 2 s (5.37) it comes that E (iso) i
has the same degree of isotropy that w i , i.e. the same degree of isotropy that the chosen velocity set. It means that E (iso) i reaches the maximum level of isotropy possible in a D2Q9 framework.

Transposition to 3D

The present discussion can be generalised to 3D velocity sets. The most commonly used velocity sets are D3Q19 and D3Q27. In D3Q19 an operator is entirely defined when the moments associated to the following Hermite's polynomial are defined: It happens that in D3Q19, the different conditions proposed in the previous section (Eqs. (5.18, 5.19, 5.21, 5.20, 5.29)) cannot simply be projected into Hermite's polynomial basis. More specifically, while Eq. (5.37) stays true in 3D, Eq. (5.30) is no longer verified:

H 0 , H x , H y , H z , H xx ,
E (iso) i = w i -δ i,0 c 2 s = H xx,i + H yy,i + H zz,i 2c 4 s - H xxyy,i + H yyzz,i + H xxzz,i 4c 6 s (5.38) 
Eqs. (5.18, 5.19, 5.21, 5.20, 5.29) cannot be expressed in the Hermite's polynomial basis since Hermite's polynomials loose their orthogonality property in D3Q19 as discussed in Section 1.3.2.2, then the polynomial noted X defined Eqs. (1.77, 1.78, 1.79) must be used.

E (iso) i = X xx,i + X yy,i + X zz,i -c 2 s (X xxyy,i + X yyzz,i + X xxzz,i ) (5.39) 
It can still be useful to expressed it in term of Hermite's polynomials. It is given by:

E (iso) i = H xx,i + H yy,i + H zz,i + 3c 4 s - H xxyy,i + H yyzz,i + H xxzz,i 3c 6 s (5.40) 

Numerical illustration

The efficiency of the isotropic formulation E (iso) i can be evaluated through the testcase of a static droplet. In a squared box with periodical boundary conditions, a spherical droplet of density ρ 1 = 10kg.m -3 is set into an atmosphere of a lower density fluid (ρ 2 = 1kg.m -3 ). The surface tension is set to 0, and the velocity field is initiated at 0 in all the domain. Giving the absence of phenomena able to animate the fluids, the flow is supposed to stay still, which makes it ideal to observe the spurious currents induced by the numerical scheme. The other parameters of the case are given afterward. The space step is ∆x = 0.001m, the number of points in the x and y directions are N x = N y = 128 and the time step is ∆t = 1, 6638.10 -6 s. The radius of the droplet is a multiple of the grid size: R = 20∆x and so does the width of the interface W = 2∆x (as a reminder, W is the parameter of the collision term in the recoloration operation Eq. (5.11)). The shear viscosity of the fluids are set equal, and the bulk viscosity is equal to the shear viscosity:

ν 1 = ν 2 = ν b,1 = ν b,1 = 0.001m 2 .s -2 .
Two cases are compared, one with E i defined with i H xxyy E i = 0, and a second one with the isotropic operator E (iso) i . In Fig. 5.2, the spurious currents induced by the two methods are compared after 2000 iterations. The location of the interface is given by the line φ = 0, and the velocity field is represented with arrows, whose length has a scale of 1m.s -1 . In the non-isotropic case, it can be seen that strong spurious currents appear in the interface, reaching a maximum value of velocity of 53m.s -1 . These spurious currents are strong enough to deform the interface shape. Around 4000 iterations, numerical instabilities led to the failure of the computation. In the isotropic case, the spurious currents are not visible (the maximum value of spurious velocity is 1.210 -3 m.s -1 ), and the initial shape of the droplet is preserved. This illustrates the capability of this isotropic operator to reduce drastically the spurious currents. Note that the value 

Recoloration equivalent phase field equation

One of the major drawback of the colour-gradient algorithm is that the interface dynamics is not known. In particular, and contrary to other two populations methods (such as HCZ, free energy), the equivalent phase field equation was not known until recently [START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF]. It was discussed in Section 4.3 that two methods were proposed among the literature to determine the equivalent macroscopic equation of a Lattice Boltzmann Method, one from Holdych et al. [START_REF] Holdych | Truncation error analysis of lattice Boltzmann methods[END_REF] and one from Dubois [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF]. The first approach relies on the assumlption that two different time scale exist. This assumption is particularly strong and is not required in Dubois's work. The work of Subhedar et al. [START_REF] Subhedar | Interface tracking characteristics of color-gradient lattice boltzmann model for immiscible fluids[END_REF] relies on Holdych's [START_REF] Holdych | Truncation error analysis of lattice Boltzmann methods[END_REF] approach, which can limits the theoretical foundings of the result. To compensate this issue, the colour gradient equivalent phase field equation is determined based on Dubois's [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] work.

Discussion

As pointed out in Section 5.1, Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] original algorithm can be recast to involve a population function g i (defined Eq. (5.2)) dedicated to the phase field prediction, so that i g i = ρφ. The new formulation for the recoloration phase is reminded here. The recolored function g * i is calculated following:

g * i = φf * i + Ω (3) i (5.41) 
where f * i is the collided main population function, and Ω

(3) i is the forcing term accounting for phase segregation. This population is then streamed:

g i (x, t + ∆t) = g i (x -ξ α,i ∆t, t) (5.42) 
Through a Taylor expansion inspired by Dubois [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF] which details are given in Appendix D, it can be shown that the equivalent macroscopic equation up to the order 1 in ∆t is (Eq. (D.7)):

∂ t φm eq 0 + ∂ α φm eq α + S (3) α = O(∆t) (5.43)
where S

(3) j corresponds to the Ω

(3) i moments. To be more precise:

i ξ α,i Ω (3) 
i = S (3) α . Eq. (5.43) can then be extended to the order 2 in ∆t 2 (cf Appendix D):

∂ t φm eq 0 + ∂ α φm eq α + S (3) α = ∆t 2 ∂ t (φm eq α ) + ∂ β φm eq αβ + O(∆t 2 ) (5.44)
Using the expression of S (3) α (Eq. (5.13)) and m eq j (Eq. (5.6)), it can be shown that the equivalent macroscopic equation for the recoloration is given by:

∂ t ρφ + ∂ α (ρφu α ) = ∂ α p∆t 2 ∂ α φ - 1 -φ 2 W ∂ α φ | ∇φ| + O(∆t 2 ), (5.45) 
The right-side of Eq. (5.45) is related to the interface itself, and involves a diffusive term

∂ α p∆t 2 ∂ α φ , and an anti-diffusive term -∂ α p∆t 2 1 -φ 2 W
. The two effects are antagonist and can eventually compensate each other, meaning that the interface width can be controlled. Actually, in the case of a steady flat interface in a quiescent flow, the interface stabilizes in a hyperbolic tangent profile:

φ = tanh x -x W (5.46)
with x the location of the interface φ = 0. It comes from the fact that in the steady and with no velocity case, Eq. (5.45) reduces to:

∂ x ∂ x φ - 1 -φ 2 W = 0 (5.47)
which solution is a hyperbolic tangent. Since tanh(2.65) ≈ 0.99 the terminal thickness of the interface can be approximated at 2x2.65 = 5.3W . It is interesting to notice that the anti-diffusion force is simulated through the third collision term Ω (3) , while the diffusive term is induced by the recoloration step. It shows that the recoloration scheme allows to solve an advection-diffusion type equation in a LBM framework in an efficient way. A drawback of this method is that the diffusion rate (i.e., the p∆t 2 factor in Eq. (5.45)) is implied by the numerical scheme and then cannot be set freely.

An important result is that Eq. (5.45) corresponds to the compressible counterpart of the Chiu and Lin Allen-Cahn equation [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] discussed in Section 2.2.1.3, given Eq. (2.43). Its formulation is remembered here:

∂ t ρφ + ∂ α (ρφu α ) = M CL ∂ α ∂ α φ - 1 -φ 2 W n α (5.48)
with M CL the so-called mobility factor and n α the interface normal vector. In the colour-gradient context, as shown by Eq. (5.45), the mobility factor is given by:

M CL = p∆t 2 (5.49) 
and the normal vector is given by:

n α = ∂ α | ∇φ| (5.50) 
It was discussed in Section 2.2.1.4 that Allen-Cahn equation is mass conservative, which supports the mass conservation property of the colour-gradient method already underlined by D'ortona [START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] and Latva-Kokko [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF].

Numerical illustration

Let us now conduct a study in the density matched case to highlight the influence of the mobility parameter M CL . It is first interesting to note, that in the density match case (ρ 1 = ρ 2 ), Eq. (5.45) reduces to:

∂ t φ + ∂ α (φu α ) = ∂ α M ∂ α φ - 1 -φ 2 W n α (5.51)
which corresponds to Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] Allen-Cahn equation for incompressible flows, where M is a constant also called the mobility factor (but different from the mobility factor M CL given in Eq. (5.48))

given by:

M = p∆t 2ρ . ( 5.52) 
In this section, the M formulation is preferred since it has the dimension of a diffusion term (m 2 .s -1 ), which fits its physical effects. The influence of the mobility factor is investigated through the case of a flat interface. First of all, a convergence analysis is held to recover Eq. (5.45), and then the impact of the mobility on the interface dynamics is investigated. The flat interface case is described as follow. The domain is a rectangular box with only few points (N x = 5) in the short side, N y = L ∆x in the long side. The physical length of the domain is constant for all cases: L = 1m, and the space step ∆x is used to set the mobility factor M though Eq. (5.52). The boundary conditions are set periodic for the long side (normal to the x direction) and to wall conditions for the short side (along the x direction). Two phases are initialized in two equal volume of space such as:

     φ(y, t = 0) = -1 0 < y < L 2 φ(y, t = 0) = 1 L 2 < y < L (5.53)
The interface is initially infinitely sharp. The interface widens under the effect of diffusion until it reaches its terminal thickness. First, the grid convergence is investigated. The characteristic length of the interface is set to W = 0.1m. As seen in Eq. (5.46), the solution at steady state should be a tangent hyperbolic profile. Then a L2 error can be defined as:

L2 = N y j (φ(j) -tanh j∆x-y W ) 2 N y (5.54)
It was stated in Eq. (5.45) that φ is solution of the Allen-Cahn equation with an error proportional to ∆t 2 which is itself proportional to ∆x 2 . This can be verified by plotting the L2-error in a loglog diagram as in Fig. 5.3. The L2 error follows nicely the expected tendency, which supports the theoretical result of Eq. ( 5.45).

To study the dynamics on the interface, the same set up is used chosing W = 2.5∆x. As previously, the case is performed for different values of ∆x in order to compare the results with different values of the mobility factor M . Assuming that the profile of the interface at any time corresponds to a tangent hyperbolic profile: φ(x, t) = tanh( x -x W (t) ), the value of W (t) can be determined at any time by proceeding through a least square algorithm. For clarity issues, W 0 now denotes the final value of the interface thickness (which corresponds to the W term in the recoloration phase Eq. (5.11)). As the system only depends on W 0 and M , a non-dimensional time scale can be defined:

τ int = W 2 0 2M .
The evolution of the ratio W/W 0 is represented on Fig. (5.4) as a function of the dimensionless time: t/τ int . It can be seen that the different profiles of interface thickening nicely superimpose on each other, evidencing that the evolution of the interface is driven by τ int and W 0 . Thanks to this analysis, it can be seen that the interface reaches 99% of its final thickness around t = 5.6τ int . It was pointed out Section 5.3.1 that the mobility factor (and consequently the interface thickening characteristic time) is imposed by the numerical scheme, which could result in thickening of the interface slower than the flow characteristic time. To answer that issue, it is interesting to write τ int as a function of the dimensionless interface final width W0 defined as W0 = W 0 ∆x :

0 2 4 6 8 10 t τ 0.0 0.2 0.4 0.6 0.8 1.0 W W0 M =0.001m 2 s -1 M =0.005m 2 s -1 M =0.01m 2 s -1 M =0.05m 2 s -1 M =0.1m 2 s -1
τ int = W0 ρc 2 s ∆t p ( 5.55) 
In this equation it is straightforward that the characteristic time of thickening can be reduced by reducing the time step, i.e. by refining the mesh. It shows that a grid fine enough allows to compensate the fact to not be able to set the interface thickening characteristic time.

A theoretical framework for the color gradient method has been provided in Chapter 5, for which a macroscopic equation for the recoloration has been provided. A detailled investigation for the operator E i allowing to introduce an equation of state has also been provided, evidencing the need for an isotropic operator. In the present Chapter, relying on the theoretical background provided in Chapter 5, a color-gradient framework is described, for which further improvements are proposed to deal with practical issues. Validations and numerical results are then provided for this improved algorithm.

Improved algorithm

Targeted macroscopic equations

The present algorithm allows to solve three macroscopic equations reminded hereafter. First, the continuity equation reads:

∂ t ρ + ∂ α ρu α = 0 (6.1)
The momentum conservation equation is then addressed:

∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = µ (∂ α u β + ∂ β u α ) + (µ b -µ) ∂ γ u γ (6.2)
where µ b is the bulk viscosity, µ the shear viscosity, p σ αβ the tensor introducing surface tension (detailed afterward Eq. (6.5)), and p the pressure which expression is discussed afterward.

The phase field equation is finally resolved following:

∂ t ρφ + ∂ α (ρφu α ) = ∂ α p∆t 2 ∂ α φ - 1 -φ 2 W ∂ α φ | ∇φ| (6.3) 

Surface tension

In the present algorithm, surface tension is modeled using Gueyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF] stress tensor. Surface tension is given as: (6.4) where the tensor p sigma αβ is given by:

F σ α = ∂ β p σ αβ
p σ αβ = σ 2| ∇φ| ∂ α φ∂ β φ -| ∇φ|δ αβ (6.5)

Equation of State

To close the above system, a thermodynamic closure is required, which can be generically written as:

p = f (ρ, Y 1 ) = g(ρ, φ). (6.6)
Note that the equation of state (EOS) necessarily differs from p = ρc 2 s (c s being the speed of sound), classically used in athermal Lattice-Boltzmann modelling [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF]. In the classical color gradient formulation [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF], the closure relation reads:

p = ρY 1 c 2 1 + ρY 2 c 2 2 , ( 6.7) 
where c k is the speed of sound in the k th phase, and Y k is the k th phase mass fraction. c 1 and c 2 are chosen to ensure mechanical equilibrium. This equation of state proposed by Grunau et al. [START_REF] Grunau | A lattice Boltzman model for multiphase fluid flows[END_REF] presents a major drawback for high density ratios, as it implies

c 2 2 c 2 1 = ρ 1 ρ 2 . ( 6.8) 
This drawback can easily be illustrated considering the liquid-air system: for a density ratio of 1000, the air sound speed c s,2 = 347m.s -1 would imply a liquid sound speed of c s,2 = 11m.s -1 . In such conditions, any liquid flow speed above 3m.s -1 would correspond to a local Mach number over 0.3, and therefore create non-physical compressible effects. To circumvent this limitation, an Equation Of State (EOS) is used, inspired from the Stiffened Gas formulation [START_REF] Métayer | Élaboration des lois d ' état d ' un liquide et de sa vapeur pour les modèles d ' écoulements diphasiques Elaborating equations of state of a liquid and its vapor for two-phase flow models[END_REF] p = ρ(c p -c v )T -p ∞ for each phase, where p ∞ accounts for the attractive forces in the liquid. Assuming an isothermal fluid, the equation of state in each phase k only differs from the classical athermal EOS used in LBM by p ∞,k , as:

p k = ρ k c 2 k -p ∞,k . (6.9)
Note that p ∞,k , c k are constants of the flows. Finally, a mixture equation of state for the two-phase flow by assuming mechanical equilibrium [START_REF] Saurel | A general formulation for cavitating, boiling and evaporating flows[END_REF][START_REF] Boivin | A thermodynamic closure for the simulation of multiphase reactive flows[END_REF], is derived:

p = p k , ∀k, (6.10 
)

yielding 1 ρ = Y 1 ρ 1 + Y 2 ρ 2 = Y 1 c 2 1 p + p ∞,1 + Y 2 c 2 2 p + p ∞,2 , ( 6.11) 
which can be inverted to explicitly provide the expression required in Eq. (6.6), e.g.

p = 1 2 ρĉ 2 -p ∞,1 -p ∞,2 + (p ∞,2 -p ∞,1 + ρc 2 ) 2 + ρ 2 (1 -φ 2 )c 2 1 c 2 2 (6.12) where ĉ2 = c 2 1 + c 2 2 2 + φ c 2 1 -c 2 2 2 and c2 = c 2 1 -c 2 2 2 + φ c 2 1 + c 2 2 2
. Derivation of Eqs. (6.11, 6.12) and proof of the pressure's positivity can be found in Chiapolino, Boivin et Saurel [START_REF] Chiapolino | A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows[END_REF] in the more general non-isothermal case. Note nonetheless that the present work is compatible with any other EOS which can be written under the generic form Eq. (6.6).

Algorithm presentation

In Chapter 5, it was pointed out that the colour gradient algorithm can equivalently be expressed through a f i and g i functions (defined Eq. (5.2)), respectively corresponding to total mass and mass phase field, rather than to R i and B i corresponding to each phase mass fraction. In the present method, the flow description through the distribution functions f i and g i is considered. As pointed out in Section 5.1, such formalism allows to only involve g i in the recoloration step, while both R i and B i are involved in the original formulation. The computational cost associated to the recoloration step is then divided by two. As previously said, f i allows to calculate both the total mass and the total momentum, then its moments of interest are given by:

i f i = ρ and i ξ α,i f i = ρu α (6.13)
while g i allows to calculate the phase field function, and its moment of interest is:

i g i = ρφ (6.14)
The algorithm is then given by the three following steps:

Step 1: collision:

f * i = f eq i + Ω
(1)

i + Ω (2) i + 1 2 S i , ( 6.15) 
where Ω

(1) i is the collision operator, Ω

i is the surface tension operator, and S i is a forcing term, also detailed later. These different operators are detailed afterward (Eqs. (6.31)(6.35)).

Step 2: recoloration. The recoloration step writes now:

g * i = φf * i + Ω (3) i (6.16)
with Ω

(3) i the collision operator accounting for phase segregation, further detailed in Eq(6.34).

Step 3: streaming. Both f i and g i populations are then streamed, through

f i (x + ξ α,i ∆t, t + ∆t) = f * i (x, t) (6.17) g i (x + ξ α,i ∆t, t + ∆t) = g * i (x, t) (6.18)
The equilibrium function, the collision terms, and the force term S i for the revised color gradient method are provided in the following.

Equilibrium function

The equilibrium function considered here reads:

f eq i = ρw i H 0,i + u α H α,i c 2 s + u α u β H αβ,i 2c 4 s + (p -ρc 2 s ) E (iso) i + u α w i H ββα,i 2c 6 s (6.19) 
where the first terms correspond to the classical formulation [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF], and the last one allows to consider an arbitrary EOS (e.g. when p = ρc 2 s ). It is reminded that the moment m eq * associated to the Hermite polynomial H * is defined by

m eq * = i H * ,i f i . (6.20)
The equilibrium function of (Eq. (6.19)), is designed so that its low-order moments follow:

m eq 0 = ρ (6.21)
m eq α = ρu α (6.22)

The second-order moment is obtained by pointing out that the macroscopic equation corresponding to the equilibrium part follows [START_REF] Farag | Consistency study of lattice-boltzmann schemes macroscopic limit[END_REF]:

∂ t m eq α + ∂ β m eq αβ + m 0 c 2 s δ αβ = F α + O(∆t), ( 6.23) 
corresponding to the Eulerian part of the momentum equation:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = 0. (6.24)
Comparing the two previous equations, the second order moment of the equilibrium has to be:

m eq αβ = ρu α u β + (p -ρc 2 s )δ αβ (6.25)
The definition of the third moment depends on the velocity set (D2Q9, D3Q15, etc...). As discussed in Section 1.3, in a Lattice Boltzmann framework, the number of discrete velocities is directly related to the number of moments that are correctly recovered. In particular, in D2Q9 not all three order moments (i.e. the moments related to the third degree Hermite's polynomials: H xxx , H xxy , H xyy and H yyy ) can be correctly recovered:

i w i H xxx,i f eq i = i
w i H yyy,i f eq i = 0 for all f eq i . The consequence is that, while the third moments of f eq i should be m eq αβγ = (p -ρc 2 s )(u α δ βγ + u β δ αγ + u γ δ αβ ), (6.26) due to the D2Q9 limitations, it actually reads:

m eq ααβ = (p -ρc 2 s )u β α = β m eq ααα = 0 otherwise (6.27)
This problem has already been discussed by Wen et al. [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF], and the proposed solution is to adopt the forcing strategy proposed by Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] for the color-gradient framework, leading to a forcing term S Sp , detailed hereafter in Eq. (6.37).

Collision step: Ω

(1) i

In LB methods, the collision term Ω

(1) i relaxes the population towards the so-called equilibrium distribution function Eq. (6.19). In practice, the BGK collision operator [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF] is quite limited in terms of stability [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[END_REF]. To enhance stability, a regularized collision operator [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[END_REF] is used in this study. The effect of the bulk viscosity is also accounted for following the method by Renard et al [START_REF] Renard | Improved compressible hybrid lattice boltzmann method on standard lattice for subsonic and supersonic flows[END_REF].

The proposed collision term reads:

Ω (1) i = 1 - 1 τ ν f r,neq xy,i + f r,neq ν,i + 1 - 1 τ b f r,neq b,i (6.28) 
where f r,neq ν,i , f r,neq b,i and f r,neq xy,i are the projections of the non-equilibrium counterpart of the population function on respectively the H ν and H b polynomials:

f r,neq k,i = H k,i c 4 s i f i -f eq i + 1 2 S i H k,i , k = ν, b, xy. (6.29)
where S i is a source term detailled Eq. (6.35) that introduces volumic forces, surface tension and correction terms. The dimensionless relaxation times (τ ν , τ b ) depend on the kinematic viscosity ν and bulk viscosity ν b following:

τ ν = ρν p∆t + 1 2 τ b = ρν b p∆t + 1 2 (6.30)

Collision step: Ω

(2) i

The collision term Ω

(2) i introduces surface tension to the model:

Ω (2) i = σw i 4| C|c 4 s   2C x C y H xy,i + (C 2 x -C 2 y )H ν,i τ ν - (C 2 x + C 2 y )H b,i τ b (6.31)
This operator is a reformulation of the one proposed by Liu et al. [START_REF] Liu | Three dimensionnal lattice boltzmann model for immiscible two phase flow simulations[END_REF], taking into account the different relaxation times for the moments of H ν and H b . C refers to the colour gradient that gave the method's name and σ is the surface tension (kg.s -2 ) . The colour gradient can be seen as an approximation of the spatial gradient of the phase field as showed by Leclaire et al. [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF]. Among the discretization schemes proposed in [START_REF] Leclaire | Isotropic color gradient for simulating very highdensity ratios with a two-phase flow lattice Boltzmann model[END_REF], we chose the one providing the highest level of isotropy while involving only the first neighbours:

C α (x, t) = i w i ξ α,i φ(x + ξ α,i ∆t, t) c 2 s = ∆t∂ α φ + O(∆t 2 ) (6.32)
When τ ν = τ b = τ , this formulation is equivalent to the one proposed by Reis & Phillips [START_REF] Reis | Lattice Boltzmann model for simulating immiscible two-phase flows[END_REF], where the operator Ω

(2) i is designed in order to guarantee

i ξ α,i ξ β,i Ω (2) i = p σ αβ τ (6.33)
with p σ αβ the pressure tensor introducing surface tension proposed as by Gueyffier et al. [START_REF] Gueyffier | Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows[END_REF].

Recoloration step: Ω

(3) i

The recoloration step applies to the phase-field population g i (Eq. (6.16)) and reads

Ω (3) i = w i p(1 -φ 2 ) 2W ξ α,i ∂ α φ c 2 s | ∇φ| (6.34)
where W has the dimension of a length (m) and corresponds to the characteristic width of the interface (see Section 5.3). This term was originally proposed by Latva-Kokko [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF] inspired by the work of D'Ortona [START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] and later improved by Halliday et al. [START_REF] Halliday | Lattice boltzmann algorithm for continuum multicomponent flow[END_REF]. The present formalism is strictly equivalent to the one proposed by Halliday et al. [START_REF] Halliday | Lattice boltzmann algorithm for continuum multicomponent flow[END_REF].

Forcing term S i

In this work, the forcing term consists in three contributions:

S i = S F,i + S Sp,i + S t,i . (6.35)
S F is a source term accounting for potential volume forces, e.g. gravity. Given a force F α , S F writes:

S F,i = w i F α H α,i c 2 s + (u α F β + u β F α ) H αβ,i 2c 4 s . (6.36)
S Sp is a corrective term which corrects the error stemming from the third order moment, improperly resolved on the D2Q9 lattice [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF][START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF][START_REF] Guo | Improved standard thermal lattice boltzmann model with hybrid recursive regularization for compressible laminar and turbulent flows[END_REF]: (6.37) This expression corresponds to the correction introduced by Wen et al. [START_REF] Wen | Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows[END_REF] recast in the present formalism. The derivative terms are calculated with the scheme proposed in Eq. (6.32).

S Sp,i = w i 3 ∂ y [(p -ρc 2 s )u y ] -∂ x [(p -ρc 2 s )u x ] 2c 4 s H ν,i - ∂ y [(p -ρc 2 s )u y ] + ∂ x [(p -ρc 2 s )u x ] 2c 4 s H b,i
Finally, a novel temporal correction term is proposed in this work:

S t,i = p(x, t) -p(x, t -∆t) + (ρ(x, t) -ρ(x, t -∆t))c 2 s E i . (6.38)
The derivation of Eqs. (6.37, 6.38) is provided in Section 6.1.3.

Correction term justification

It has been known since the work of Holdych [START_REF] Holdych | An improved hydrodynamics formulation for multiphase flow lattice-boltzmann models[END_REF], that when the EOS of state is modified through an equilibrium scheme (i.e. by putting the equilibrium function into the form f eq i = f eq,0 i + (p -ρc 2 s )E i or other equivalent scheme), an error term appears in the stress tensor, at the first order in ∆t. In such a case, the macroscopic conservation equation follows:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = ∂ β ∆t (τ -1/2) ρc 2 s (∂ α u β + ∂ β u α ) + Er αβ O(∆t 2 ), (6.39) 
where the error Er αβ is given by: (6.40) It comes that this error can be divided into a spatial component (a component made of spatial derivatives) and a temporal component (a component made of temporal derivative). Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] following the work of Che Sidick [START_REF] Sidik | Two-phase flow simulation with lattice boltzmann method[END_REF] proposed an enhancement of the equilibrium function that aims to correct the spatial component of the error Er αβ given in Eq. (6.40). Note that this enhancement of the equilibrium function could be expressed under the form of a source term, as all the correction terms in this study. In these two approaches [START_REF] Sidik | Two-phase flow simulation with lattice boltzmann method[END_REF][START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF], the temporal components are not corrected and are considered negligible.

Er αβ = u α ∂ β p -ρc 2 s + u β ∂ α p -
An alternative way to correct the error Er αβ was proposed in the literature. To understand it, it is useful to point out a less straightforward split of the Er αβ error. Er αβ 's expression can be manipulated to give:

Er αβ = ∂ α p -ρc 2 s u β + ∂ β p -ρc 2 s u α -∂ γ (p -ρc 2 s )u γ δ αβ Er rec αβ + ∂ t p -ρc 2 s + ∂ γ (p -ρc 2 s )u γ δ αβ
Er cons αβ (6.41) where Er rec αβ and Er cons αβ correspond to two distinct errors. It is detailed hereafter that Er rec αβ comes from the breaking of the recursive relationships between the moments of the equilibrium functions, and Er cons αβ from the fact that the evolution of the pressure p is not determined by a conservation equation.

A discussion about recursivity

As pointed out by Malaspinas et al. [START_REF] Malaspinas | Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization[END_REF], the moments of the equilibrium function for a classical LBM model respects the following relationships: m eq α 1 ...αn = m eq α 1 ...α n-1 u αn + u α 1 ...u α n-2 m eq αnαn + perm(α n ) (6.42)

with perm(α n ) being all the cyclic index permutations of indexes from α 1 to α n-1 . Then by setting:

m eq αβ = ρu α u β + (p -ρc 2 s ) (6.43) without setting m eq αβγ = ρu α u β u γ + (p -ρc 2 s )(u α δ βγ + u β δ αγ + u γ δ αβ ) (6.44)
the recursive relationships are broken. The practical consequence is the appearance of the Er rec αβ error in the momentum conservation equation. To address this issue, Li et al [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] proposed to heal the scheme's recursivity by imposing Eq. (6.44). In the case of a perfect scheme (i.e. a microscopic velocity set with an infinite number of velocities), Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] would be preferred: the source term proposed in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] needs the computation of a gradient term ( ∇ p -ρc 2 s ), which is a price to pay in term of computational efficiency, since spatial gradient at given point requires the knowledge of (at least) the first neighbours. Moreover, one of the advantages of a LBM scheme is the fact that locality is only broken during the streaming phase, which makes LBM a good candidate for parallelization. By adding a non-local term, this potential of parallelization decreases.

In practice, Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] method still needs corrections. In D2Q9 for example m eq xxx and m eq yyy cannot be imposed, then Eq. (6.44) cannot be verified for αβγ = xxx and αβγ = yyy, which implies that recursivity cannot be fully restored.

The other counterpart of the error, Er cons αβ , is not often discussed. In Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF], it is divided into a temporal and a spatial component, the temporal component is considered negligible and the spatial component is corrected through a source term. It must be noted that Er cons αβ can be reduced. Noting that LBM is mass conservative, i.e. that ∂ t ρ + ∂ α ρu α = 0, it comes that Er cons αβ reduces to: (6.45) This error looks like the left hand side of a "p conservation equation", that is why Er cons αβ is said to be an error occuring from the fact that p doesn't follow a conservation equation. In the general case, this error cannot be simply calculated and cannot be considered negligible neither. It was pointed out by Renard et al. [START_REF] Renard | Improved compressible hybrid lattice boltzmann method on standard lattice for subsonic and supersonic flows[END_REF], that in a compressible framework, when p follows the perfect gas equation of state (p = ρrT , T being the temperature and r the specific constant of the gas), Er cons αβ reduces to a spatial derivative error, and then can be corrected through a source term. A source term allowing to correct both Er cons αβ and Er rec αβ is proposed hereinafter.

Er cons αβ = [∂ t p + ∂ γ (pu γ )] δ αβ

Source term for the enhanced algorithm

The enhanced algorithm being different from Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF]'s algorithm, the error term Er αβ 's formulation is different as well. If we suppose that no correction term is introduced (i.e. that Eq. (6.35) is modified to S i = 0), then it can be shown through a Taylor-expansion detailed in Appendix D.2 that the enhanced algorithm equivalent macroscopic equation is given by: (6.47) In practice, similarly as in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF], Er α is divided in a spatial error and a temporal error:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = ∆t∂ β (p(τ ν -1/2) (∂ α u β + ∂ β u α ) + p(τ b -τ ν )∂ γ u γ + Er α δ αβ ) + O(∆t 2 ) (6.46) With Er α = -(τ ν -1/2)3∂ α (p -ρc 2 s )u α + 3 2 (τ ν -τ b ) ∂ γ (p -ρc 2 s )u γ lack of recursivity + (τ b -1/2) ∂ t (p -ρc 2 s ) + ∂ γ (p -ρc 2 s )u γ N ot conservative
Er = Er t + Er Sp (6. 48 
)
Er t = (τ b -1/2)∂ t (p -ρc 2 s ) (6. 49 
)
Er Sp = 3(τ ν -1/2) ∂ γ (p -ρc 2 s )u γ -∂ α (p -ρc 2 s )u α 2 -(τ b -1/2) ∂ γ (p -ρc 2 s )u γ 2 (6.50)
The forcing term S Sp and S t given in Eqs. (6.37)(6.38) aims to correct Er Sp and Er t respectively.

-S Sp corrects the spatial counterpart of the error, it then must guaranty:

i H ν,i S Sp,i = 3 ∂ y (p -ρc 2 s )u y -∂ y (p -ρc 2 s )u y 2 (6.51) i H b,i S Sp,i = ∂ γ (p -ρc 2 s )u γ 2 (6.52)
All the other moments must be 0.

-S t aims to correct the temporal component of the error. It must respect:

i H b,i S t,i = ∂ t (p -ρc 2 s ) (6.53)
and the 0 th , 1 st and 3 rd moments are set to 0. Eq. (6.53) can equally be expressed as i S t,i H αβ,i = ∂ t (p -ρc 2 s )δ αβ , which corresponds to Eq. (5.21). It means that the conditions used to defined S t are similar to the conditions used to define the operator E i (Eqs. (5.18, 5.19, 5.21, 5.20)). For this reason, and as discussed in Section 5.2, the operator E (iso) i must be used for a better numerical stability:

S t,i = ∂ t p -ρc 2 s E (iso) i (6.54)
The stencil used to approximate ∂ t (p -ρc 2 s ) is now discussed. When taking S i into consideration, Eq. (6.46) is modified to:

∂ t ρu α + ∂ β (ρu α u β + pδ αβ ) = ∆t∂ β p(τ ν -1/2) (∂ α u β + ∂ β u α ) + p(τ b -τ ν )∂ γ u γ + (Er t + Er Sp ) δ αβ - i [(τ b -1/2) (St i + Sp i ) + (τ ν -1/2) Sp i ] + O(∆t 2 ) (6.55)
Noting that ∆t is in factor of the right hand side of Eq. ( 6.55), it comes that in order to recover the momentum conservation equation to the order 2 in ∆t, S Sp,i and S t,i must ensure:

(Er t + Er Sp ) δ αβ - i [(τ b -1/2) (St i + Sp i ) + (τ ν -1/2) Sp i ] = O(∆t) (6.56)
When isolating only the temporal component of Eq. (6.56) , and injecting Eq. (6.49) it comes that:

i S t,i H b,i = Er t + O(∆t) = ∂ t (p -ρc 2 s ) + O(∆t) (6.57)
It comes that the temporal derivative in the temporal correction term can only be estimated with a ∆t precision. The following expression is then chosen for S t

S t,i (x, t) = p(x, t + ∆t) -p(x, t) -c 2 s (ρ(x, t + ∆t) -ρ(x, t)) E (iso) i (6.58)
On a side note, the attentive reader would underlined that the Li et al's scheme [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] used in this work requires the calculation of a gradient term as in the scheme proposed by Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF]. This would make these two schemes equivalent in term of numerical efficiency. But the performances of these two models are in practice not similar. If not corrected, the error term Er leads to the growth of a spurious shear stress in the interface which leads to a non continuous velocity field across the interfacial region. The higher the density ratio is, the more this spurious stress in the interface becomes significant. At high density ratio (i.e. up to 100) the model proposed in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] doesn't allow to correct the velocity jump, and the continuity of the velocity field across the interface no longer holds.

To illustrate this last statement, the effect of the different corrections through the schemes of Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] and Li et al. [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] are investigated on a two-phase Poiseuille flow in the following section.

Numerical Results

Poiseuille Flow

The considered test case consists in a rectangular 2D box, discretized in a N The analytical solution is known, as proposed in Huang and Lu [START_REF] Huang | Relative permeabilities and coupling effects in steady-state gas-liquid flow in porous media: A lattice Boltzmann study[END_REF]. Then the simulated field obtained can be compared to the analytical solution. Results are proposed in Fig. 6.2 where the analytical solution is also reported. Two simulation are conducted. In the first one, referred as "model 1", Leclaire's scheme is implemented, i.e. S Sp = 0, S t = 0 and a correction term is added to the equilibrium function given in Eq. (6.19) f eq,(Leclaire) i = f eq i + Φ i with the expression of Φ given in Leclaire et al. [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF]. In the second one, referred as "model 2", the equilibrium presented Eq. (6.19) is used. As evidenced in Fig. 6.2, a non-physical velocity jump appears at the interface for the Leclaire's -Comparison between "model 1" inspired fom the scheme in Leclaire [START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] (left), and "model 2" the present scheme inspired from Li [START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] (right), for a two-phase Poiseuille flow at high density ratio case [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF]. Both are compared with the theoretical solution (solid line) scheme, while the flow stays continuous across the interface with the proposed scheme.

Laplace test

One of the fundamental capability intended from a multiphase solver is the ability to accurately simulate surface tension. This behavior can be evaluated through the Laplace test. It consists in simulating a bubble or a droplet of a phase 1 in a quiescent atmosphere composed of phase 2. Due to surface tension, a pressure jump appears across the interface. In a 2D framework (which comes to simulate an infinite cylinder), the pressure jump is given by the following form of the Laplace law

p 1 -p 2 = σ exp r (6.60)
r being the cylinder radius, p 1 the pressure outside the droplet/bubble, p 2 the pressure inside the droplet/bubble, σ exp being the surface tension and r the radius of the cylinder. The test consists in comparing the value of the user set surface tension (in this case, the term σ in the surface tension operator Ω

(2)

i Eq. (6.31)), and the observed surface tension σ exp calculated from the measured pressure jump across the interface and Eq. (6.60). This test is performed in a squared grid of size N x = 128, N y = 128, for a space step of ∆x = 0.0001m. In this box, a bubble of radius r taking one value in the range of [START_REF] Lefebvre | Atomization and Sprays[END_REF]15,[START_REF] Lallemand | Lattice gas automata for fluid mechanics[END_REF][START_REF] Shan | Lattice boltzmann model for simulating flows with multiple phases and components[END_REF]∆x, and with σ taking one value in (1, 3, 5, 8)10 -2 kg.s -2 (this relative narrow range of surface tension coefficient is motivated by the fact that the vast majority of practical cases falls into this interval, which excludes only extreme cases like mercury for instance). The density of the outside phase is the lowest and set to ρ 2 = 1kg.m -3 , while the other phase's density ρ 1 falls into the range: (4, 10, 100, 1000)kg.m -3 The test is initialized by setting: φ(x, y, 0) = -tanh (x -x 0 ) 2 + (y -y 0 ) 2 ) -r W 0 (6.61)

W 0 = 1.3∆x being the initial interface thickness and (x 0 , y 0 ) the coordinates of the center of the box. The other parameters of the simulation are: the relationship of proportionality between the pressure jump and the dimensionless inverse radius ∆x/r is nicely recovered for a large range of density ratio, even as high as 1000. The accuracy of the pressure jump prediction is satisfying in most cases. Defining the relative error by:

c 1 = c 2 = c s = 347m.s -1 , W = 1.6∆x, ν 1 = ν 2 = ν b,1 = ν b,2 = 0.
E = 100 |σ exp -σ| σ with σ exp = (p 1 -p 2 )r (6.62)
E is found systematically to be lower than 2% and can be as low as 0.007% for density ratio of 4, 10 and 100. For a density ratio of 1000 the error increases between 7% and 8% for the case where the radius is r = 10∆x, and higher for surface tension, and remains reasonable for the other cases. The values for the relative error are given in Table 6.1.

Oscillating droplet

If the previous test case allowed to evaluate the capability of the model to simulate surface tension in a static case, a dynamic case is now evaluated. The case of an ellipsoidal oscillating bubble is chosen. As in the previous case a denser phase 1 is put into a quiescent atmosphere composed of phase 2. The final shape of this droplet must be spherical. As the droplet is not initially in its equilibrium shape, surface tension initiates the contraction of the bubble to its final shape, but due to its own inertia, the bubble tends to oscillate around the spherical shape until viscous effects degrade the interface motion. The oscillation of a droplet has been studied by Lord Rayleigh [START_REF] Rayleigh | On The Instability Of Jets[END_REF], who proposed a theoretical value for a cylinder oscillation period when excited through different modes. When adapted to a 2D circle, this period is [START_REF] Fyfe | Surface tension and viscosity with lagrangian hydrodynamics on a triangular mesh[END_REF]: The case is described as follows: in a squared box (N x = N y = 128), an ellipsoidal droplet is initialized in a quiescent atmosphere. The initial profile is given by: φ(x, y, 0) = -tanh

T theo = 2π (ρ 1 + ρ 2 )
(x-x 0 ) 2 a 2 + (y-y 0 ) 2 b 2 -R W 0 (6.64)
where a and b are the semi-axis length of the ellipsoid, given by a = 3 2 , b = 1/a, W 0 = 1.1∆x is the initial interface width. R is the radius of the disk with the same area of the ellipse (i.e., the area of the ellipse is πR 2 ). The other parameters are: ∆x = 0.0001m,

ν 1 = ν 2 = ν b,1 = ν b,2 = 0.0002m 2 s -1 , W = 1.6∆x, ρ 2 = 1kg.m -3 , c 1 = c 2 = 347m.s -1
. ρ 1 varies between 1kg.m -3 and 1000kg.m -3 All boundaries are periodic. An illustration of the setup is proposed Fig. 6.4. As explained by Rayleigh [START_REF] Rayleigh | On The Instability Of Jets[END_REF], the phenomenon of the oscillating droplet consists in a periodic transfer of energy between the kinetic energy and the surface tension energy. When the droplet is totally deformed, the kinetic energy is minimum and the surface tension energy is minimum when the sphere is into a spherical shape. As a consequence, the period of the phenomenon can easily be measured by plotting the kinetic energy of the system. The total kinetic energy (K E ) of the droplet is calculated through:

K E = Nx,Ny i,j ρ 1 + φ 2 u 2 x + u 2 y 2 (6.65)
The temporal evolution of K E is provided in Fig. 6.4. The period can then be determined by measuring the time between the extrema of this curve. From this measured period (noted T exp ), a numerical surface tension can be defined by inverting Eq.(6.63):

σ num = 2π T exp 2 (ρ 1 + ρ 2 )r 3 6 (6.66)
Then a relative error can be defined:

Er = 100 |σ num -σ| σ (6.67)
This analysis has been performed for different radii (r = (15, 20, 25)∆x), density ratio (γ = (4, 10, 100) giving ρ 2 = 1kg.m -3 ) and surface tension (σ = (0.05, 0.07, 0.08)). Moreover, this test case also allows to evaluate the gain in terms of numerical stability coming from the temporal correction (the counterpart of the source term given in Eq. (6.38)). The simulation is then performed twice, one with S t = 0 (no correction) and one with S t defined as in Eq. (6.38). The results are compiled in Table 6 test. This is due to the fact that all ellipsoidal droplets do not oscillate. In Fig. 6.4, it can be seen that the envelope of the kinetic energy oscillations decreases with time due to viscous dissipation. When this decrease is too sharp (i.e., when the characteristic time of the dissipation is shorter than the period of oscillation), the droplet does not oscillate. For this reason, systems with surface tension lower than 0.05kg.s -2 , radii lower than 15∆x, or density ratio of 1000 are not presented in this study. A possibility to simulate the oscillation of the cases would be to reduce the viscosity. In this study, it was set to ν = 2.10 -4 m.s -2 , but a lower value would lead to unstable behaviors.

First of all, it can be seen that the temporal correction allows a better robustness of the method at high density ratio. For a density ratio of 100, the absence of temporal correction implies the non-stability of the method. It should also be noted that, despite the absence of cases at a ratio density of 1000, they were simulated and found numerically unstable without the temporal correction. Otherwise, it can be seen that when the method is stable enough, the performances in terms of prediction are pretty similar in most cases. The trend seems to be that the higher surface tension is, the more precise the method is and the larger the radius of the droplet is, the more precise the method is. These two values are directly related to the amplitude of the oscillation: high oscillations lead to better precision. This explains the poor capability of prediction in the case γ = 100 for r = 20 and r = 25 for σ = 0.05 : in all these cases, the oscillation is particularly weak, and the droplet is nearly not oscillating. In favorable cases, the performances of the method are very good since it can go as low as a 3.47% error.

Giving the fact that Eq. (6.63) was obtained by assuming an inviscid system, it is reasonable to think that this performances could be enhanced in a less viscous simulation.

Rayleigh-Taylor instability

Previous cases showed that the method could accurately predict the interface behavior. Then the numerical robustness of the method can be interrogated. The Rayleigh Taylor instability is a good case for such investigation. This instability appears when a heavier fluid is put over a lighter one and when both of them are under the influence of a gravitational field. Under certain conditions, the interface is unstable which turns a small disturbance into non-linear behaviors and can lead to break-up for high Reynolds Number (Re) cases. In order to compare with the literature, the setup of He et al [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF] is reproduced. In a rectangular box (Nx=256, Ny=1024) the, a fluid of density ρ 1 = 3kg.m -3 is put up on a lighter fluid ρ 2 = 1kg.m -3 . The box width is L = ∆xN x. Defining the Atwood number (At) by:

At = ρ 1 -ρ 2 ρ 1 + ρ 2 (6.68)
this choice of density leads to At = 0.5. The phase field is initiated as:

φ(x, y, 0) = tanh y -y 0 -0.2L cos -2πx L W 0 (6.69) y 0 being the vertical coordinate box center. As it can be seen, a single-mode initial perturbation is imposed. Moreover, a volume force is applied, taking the form: F = -ρg e y (6.70) e y being the vertical direction. In this case, no surface tension is included, then σ = 0. A characteristic velocity is given by U 0 = Lg. In He et al. [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF], the characteristic non-dimensional velocity is set to the value of 0.04 which gives U 0 = 0.04 ∆x ∆t in the present study, as well as L = 56.1m. From this velocity, a Reynolds number can be determined:

Re = U 0 L ν = 2048 (6.71)
Leading to the kinematic viscosity ν = 0.643m 2 .s -1 . Finally, a dimensionless time can be defined as:

t * = t g L (6.72)
The result of the simulation is illustrated in Fig. 6.5. The flow profiles obtained are similar to the one obtained through the HCZ method (He et al [START_REF] He | Discrete boltzmann equation model for nonideal gases[END_REF]). Compared to HCZ method, the present work tends to accentuate the atomization process since smaller structures appear. This results underlines the method capability to handle high Reynolds flows for a colour gradient method without the need for a high bulk viscosity. Moreover, as expected from a diffuse interface method, the break up into small structures, even in structures as complex as in the present work, does not affect the numerical stability.

Conclusion

This work focused on the investigation of Lattice Boltzmann Method applied to compressible multiphase flows, with a particular interest in accounting for compressible flows. Statistical physics basis were introduced, leading to a Lattice Boltzmann Methods basic principles presentation. A review of multiphase flows simulation's methods in a more general framework than Lattice Boltzmann Methods, as well as a comprehensive review of Lattice Boltzmann methods applied to multiphase flows was proposed. This last review showed the strong link between diffuse interface methods and Lattice Boltzmann Methods. The different methods allowing to introduce surface tension, to solve a phase field equation or to set a real gas equation of state were also listed.

In the present work, a Taylor expansion of a Lattice Boltzmann Method involving a body force was proposed. This expansion allows to determine a Lattice Boltzmann algorithm equivalent macroscopic equation in a more rigorous way than the widely used Chapman-Enskog method. In addition, the Taylor expansion allows to determine the LBM discretization error. A theoretical analysis of the colour gradient method was proposed. Based on a Taylor's expansion, an expression for the ∆t 2 colour gradient error term for the macroscopic equivalent momentum transport equation was proposed. Thanks to this expression, the form of the equilibrium function when accounting for a non-perfect equation of state was discussed. It turns out that the Hermite's fourth order moment of the equilibrium function is of prime importance, and a non-cautious choice can lead to severe instabilities at the interface location. A theoretical argument was added to the already known empirical argument that allows to choose carefully an accurate operator. In addition, the re-coloration phase equivalent macroscopic equation was established. It can be shown that re-coloration allows to solve a phase field equation as proposed in Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF]. It was also shown that the recoloration scheme implies a natural thickening for which characteristic time was proposed.

Based on the theoretical analysis conducted along this manuscript, an improved colour gradient algorithm was proposed. In this algorithm, the stream and collide algorithm structure is preserved. As for other colour gradient methods, the knowledge of the first neighbours only is required, preserving LBM efficiency and scalability. The proposed model is used with a stiffened gas equation but can be generalised to an arbitrary equation of state, removing the nonphysical relationship between the speed of sound and the density ratio in the colour gradient original formulation. Finally, an original temporal correction is proposed, allowing to improve numerical stability for high density ratio configurations. The algorithm efficiency and consistency was assessed on academical test-cases. The improved algorithm was shown to be stable for simple cases at density ratios as high as 1000. On a Rayleigh-Taylor test-case, the proposed algorithm method showed to be stable for Reynolds number as high as 3000, but is limited to low density ratios (around 3).

Perspectives

From this work, several perspectives can be foreseen. The proposed operator to account for an equation of state can be generalised to other contexts than multiphase flows. In particular, modifying the Equation of State is also of importance in a compressible flows context, then this operator can be generalised to this framework.

It has been shown that re-coloration operator allows to solve a phase field equation in an efficient way. The gain in term of computational time has not been evaluated properly nevertheless in comparison with other existing methods in the literature such as double distribution or hybrid methods. In addition, a stability comparison between these methods would also be of interest. As all numerical methods, the present improved colour gradient algorithm induces the appearance of spurious currents at the interface location. This spurious currents production is a major concern since they are source of numerical instabilities. Their origin is still a subject of investigation since no general agreement exist on this subject. Jamet et al. [START_REF] Jamet | On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method[END_REF] states that these spurious currents result from of a lack of chemical potential equilibrium in the interface while Lee and Fisher considered spurious current as a purely numerical issue [START_REF] Lee | Eliminating parasitic currents in the lattice boltzmann equation method for nonideal gases[END_REF] As the present study takes place in a compressible framework, acoustic wave studies are of major importance. In particular, acoustic waves resulting from the numerical method is a subject of discussion in itself. Spurious acoustic waves tends to appear at the interface location and to stay in the domain when interacting with boundary conditions. Non Reflective Boundary Conditions must be investigated in order to tackle this issue and then increase numerical stability and physical accuracy. Finally, for multiphase flow problems involving large gradients that lead to numerical instability, a fine mesh is required to ensure numerical stability. Yet, this fine mesh is required only at the interface location. An adaptive mesh refinement mechanism would allow both a stable simulation, and a significant computational cost reduction.

A.1. pressure and internal energy

If the definition of the pressure is challenging in itself, the mechanical effect of the pressure is well known. When it is in contact with a wall, a fluid exerts a force proportionally to the contact surface between the wall and the fluid. Even if it is restrictive, pressure can then be interpreted as a surface force. The reason why fluids exert a force on an adjacent wall comes from the collision between in-coming particle and the wall. If the wall is assumed to exert no particular attractive or repulsive force on the particles, then when entering into contact with the wall, the particle will bounce-back. The bounce-back is supposed to be ideally elastic, i.e., the magnitude of the velocity is conserved, the particle will change its direction to the opposite one. This brutal change of direction leads to a force applied to the wall proportional to the momentum jump according to the 3 rd Newton principle. To determine the link between pressure p and distribution function f , we will make the assumption that the fluid is at rest, making the state of the flow constant in space and time. Then in that demonstration, f is only a function of ξ. More over, the spherical coordinates will be used, then ξ(ξ x , ξ y , ξ z ) can also be written ξ(|v|, ϕ, θ). With |v| the norm of the velocity (relatively to the main velocity), ϕ the azimuthal angle and θ the polar angle We assume that a wall is placed normal to the z-direction, and is supposed to be at rest with the fluid, i.e. going at the speed u. A particle travelling at the relative velocity -v will impact the wall and change its momentum from -mv to mv with m the mass of one particle, resulting to a momentum change of 2mv. Now, let's consider an infinitesimal time length dt during which a certain number of particle will hit the wall. We consider particles whose velocity have an azimuthal angle ϕ, a polar angle π + θ and a norm (relatively to the wall) | v|. Note that to hit the wall, the velocity must lean toward the wall, i. This expression cannot be reduced without an additional fundamental hypothesis: the hypothesis of isotropy. We assume that the distribution function is only function of the norm of the microscopic

A.2. Equilibrium function

Here, the demonstration of the form taken by the equilibrium function is proposed. The main hypothesis is that the equilibrium function must be isotropic. The partition function is normally function of v, ϕ and θ. As it is isotropic, the partition function is only function of | v|. The equilibrium function is now written f eq (| v|). The next hypothesis is that the distribution function is the product of three function of the coordinates of the velocity:

f eq (| v| 2 ) = f eq x (v 2 x )f eq y (v 2 y )f eq z (v 2 z ) (A.7) Then if we note a(v 2 x ) = ln(f eq x (v 2 x )) and b(| v| 2 ) = ln(f eq (| v| 2 )), then we have a(v 2 x ) + a(v 2 y ) + a(v 2 z ) = b(v 2 x + v 2 y + v 2 z ) (A.8)
The partial derivative of the previous equation with respect to v 2 x gives:

a (v 2 x + v 2 y + v 2 z ) = b (v 2 x ) (A.9)
Then the derivative with respect to v 2 y or v 2 z gives: a = 0, and then:

ln(f eq (| v|)) = α -β| v| 2 (A.10)
with α and β integration constants. Then:

f eq = e α e -β| v| 2 (A.11)
The values of α and β are then deduced from the integral relationship that should respect any partition function. The integral of this partition function is still equal to the density, then:

f eq (| v|)d ξ = e α +∞ -∞ +∞ -∞ +∞ -∞ e -β v 2 x +v 2 y +v 2 z dξ x dξ y dξ z = ρ (A.12) Then f eq (| v|) = ρ β π 3 2 e -β| v| 2 . By calculating the ρe = ρ β π 3 2 +∞ -∞ +∞ -∞ +∞ -∞ v 2 x + v 2 y + v 2 z 2 e -β v 2 x +v 2 y +v 2 z dξ x dξ y dξ z = 3ρ 4β (A.13)
The value of β can then be deduced from Eq. (A.6), and by assuming the law of perfect gas:

β = 1 2rT (A.14)
Which finally gives us:

f eq = ρ (2πrT ) 3 2 e -| v| 2 2rT
(A.15)

A.3. From LBM to the Boltzmann Equation

In this section, the link between the LBM algorithm proposed by He and Luo [START_REF] He | A priori derivation of the lattice Boltzmann equation[END_REF] and the Boltzmann equation is proposed. A variable should be made, then fi is introduced: fi

= f i - 1 2τ (f i -f eq i ).
This definition is included into Eq. (1.82) giving:

fi (x, t + ∆t) = fi (x -ξ α,i ∆t, t) - 1 2τ ([f i (x -ξ α,i ∆t, t) -f eq i (x -ξ α,i ∆t, t)] + [f i (x, t + ∆t) -f eq i (x, t + ∆t)]) (A.16)
Giving the definition of fi , the following equation is true:

1 τ (f i -f eq i ) = 1 τ -1/2 fi -f eq i (A.17)
Taking into account Eq. (A.17) into Eq. (A.16), we obtain: fi (x, t + ∆t) = fi (x -ξ α,i ∆t, t)- 

1 2(τ -1/2) fi (x -ξ α,i ∆t, t) -f eq i (x -ξ α,i ∆t, t) + fi (x, t + ∆t) -f eq i (x, t + ∆t) (A.
∆t ∂ t fi + ξ α,i ∂ α fi = - 1 τ -1/2 fi -f eq i + ∆t 2(τ -1/2) ξ α ∂ α ( fi -f eq i ) -∂ t ( fi -f eq i ) + O(∆t 2 ) (A.20)
Giving that according to Eq. (A. [START_REF] Frisch | Lattice-Gas Automata for the Navier-Stokes Equation[END_REF]), fi -f eq i = O(∆t), then:

∂ t fi + ξ α ∂ α fi = 1 ∆t(τ -1/2) fi -f eq i + O(∆t) (A.21)
Finally, using the Taylor expansion relationship to the order 2:

f i (x, t + ∆t) = f i (x, t) + ∆t∂ t f i (x, t) + ∆t 2 2 ∂ 2 t f i (x, t) + O(∆t 3 ) (A.22) f i (x -ξ α ∆t, t) = f i (x, t) -∆tξ α ∂ α f i (x, t) + ξ α ξ β ∆t 2 2 ∂ 2 αβ f i (x, t) + O(∆t 3 ) (A.23)
Integrating Eq. (A.22) into Eq. (A.18), it comes:

∆t [∂ t f i + ξ α ∂ α f i ] = - 1 (τ -1/2) fi -f eq i - ∆t 2 2 ∂ 2 t fi -ξ α ξ β ∂ 2 αβ fi + ∆t 2(τ -1/2) ∂ t ( fi -f eq i ) -ξ α ∂ α ( fi -f eq i ) (1) - ∆t 2 2(τ -1/2) ∂ 2 t fi -f eq i + ξ α ξ β ∂ 2 αβ fi -f eq i (2) + O(∆t 3 ) (A.24)
In the previous equation Eq. (A.24), giving that fi = f eq i + (∆t) (Eq. (A.19)), we directly have (2) = O(∆t 3 ). The expression of the value of fi -f eq i allow to express (1) only in term of fi , by injecting Eq. (A.21) into (1):

(

1) = ∆t 2 2(τ -1/2) ∂ t (τ -1/2) ∂ t fi + ξ β ∂ β fi -ξ α ∂ α (τ -1/2) ∂ t fi + ξ β ∂ β fi = ∆t 2 2 ∂ 2 t fi -ξ α ξ β ∂ 2 αβ fi (A.25)
Injecting the expressions of (1) and (2) into Eq. (A.24), it becomes:

∂ t fi + ξ α ∂ α fi = - ∆t τ -1/2 fi -f eq i + O(∆t 2 ) (A.26)
two solutions are possible. In the first case, we can add a second order term in the equilibrium function to "remove" the spurious term and "add" the desired one:

f eq i + = ρ c 2 s - i ξ α ξ β w i δ αβ H αβ 2c 4 s (A.33)
In practice, a second solution is chosen, constraint is imposed on the x i and on the w i to have:

i w i ξ α ξ β = c 2 s δ αβγ (A.34)
It should be noted that the term i w i ξ α ξ β depends with the numerical scheme. The question of the numerical scheme is detailed afterward, but the information to remember for the moment is that for the most commonly used scheme (D

2 Q 9 , D 3 Q 19 or D 3 Q 27 for instance), i w i ξ α ξ β = ∆x 2
3∆t 2 , then it comes that this term is linked to the ratio between the spatial step and the time step. It comes that the second solution for having the good pressure term consists in a condition on the Courant number (also called CFL number) that comes as:

∆x ∆t = √ 3c s (A.35)
Despite imposing a condition on the CFL number, the second solution is simpler and requires less computational effort, and also the first choice showed to reduce the numerical stability of the whole method. This discussion is an introduction to another discussion that will be addressed later in this document which is the practical solution to introduce an Equation of State in a Lattice Boltzmann system, which is not straightforward due to the moments cascade phenomenon described earlier.

A.5. Construction of the Hermite polynomials

The Hermite polynomials are an infinite family of polynomial defined from the weight function:

w(x) = 1 √ 2π e -x 2 2 
(A.36)

Their are given by the successive derivative of this function; the n th order Hermite polynomial (n being an integer) is given by:

H (n) = (-1) n 1 w w (n) (A.37)
where w (n) is the n th derivative of the function w. The first six polynomials are given by:

H (0) (x) = 1 H (1) (x) = x H (2) (x) = x 2 -1 H (3) (x) = x 3 -3x H (4) (x) = x 4 -6x 2 + 3 H (5) (x) = x 5 -10x 3 + 15x (A.38)
They were introduced in a statistical mechanic framework by Grad [START_REF] Grad | Note on Ndimensional hermite polynomials[END_REF]. The Hermite polynomial can then be generalised to a D spatial dimensions system. The Hermite polynomial in a multi-dimensional system is a tensor of rank n, it is given by:

H (n) x 1 ,x 2 ,...,xn = (-1) n 1 w ∂ (n) x 1 ,x 2 ,...,xn w w(x) = 1 (2π) D 2 e -x 2 2 
(A.39) with x 1 , x 2 , x n being dimensions of space include in [1, D]. For instance, H (3) xxy = (x 2 -1)y. The interest of the Hermite polynomial is that they form an orthogonal base in the function base. We can define a product

∞ -∞ w( x) H (n) α H (n) β d D x = Π D i=1 n i !δ (n+m) α β = 0 (A.40)
where δ is a Kronecker function, i.e., δ nm = 1 if n = m and δ nm = 0 otherwise. In the previous equation α = (α 1 , α 2 , ..., α n ) and β = (β 1 , β 2 , ..., β n ) are vectors of size n and m respectively with α k and β k directions of space. For instance we can write α = (x, y, y). Then δ

(n+m) α β
is a generalization of the Kronecker operator which is equal to 1 if β is a permutation of α. For example for α = (x, x, y) β = (x, y, z) then δ = 1. To illustrate that:

w( x) H (2)( x) xy H (3)( x) xxy = 0 (A.41) w( x) H (2)( x) xx H (2)( x) xx = 2 (A.42)
The fact that the Hermite polynomial forms an orthogonal bases allows the fact that any well behaved function h can be expressed as a series of Hermite polynomial:

h( x) = w( x) ∞ n=0 1 n! a (n) H a (n) = h( x) H (n) d x (A.43)
By applying this rules, the equilibrium function can be expressed in term of Hermite polynomial:

f eq i (ρ, u, T, ξ) = w(ξ) ∞ n=0 1 n! a (n),eq (ρ, u, T ) H (n) ( ξ) (A.44) with a (n),eq (ρ, u, T ) = f eq i (ρ, u, T, ξ) H (n) ( ξ)d ξ (A.45)
It comes:

a (0),eq = ρ a (1),eq α = ρu α a (2),eq αβ = ρu α u β + ρ(rT -1)δ αβ a (3),eq αβγ = ρ = ρ [u α u β u γ + (rT -1) (u α δ βγ + u β δ αγ + u γ δ αβ )] (A.46) ∞ -∞ w( x) H (n) α H (n) β d D x = Π D i=1 n i !δ (n+m) α β = 0 (A.47)
The attentive reader might have note an issue concerning the previous formulation, some terms are summed without having the same dimension (notably rT and 1). This is due to the fact than in the definition of the Hermite polynomial that doesn't take this physical consideration into account. For instance, H (2) xx = ξ 2 x -1 is not homogeneous. For this reason, in practice the definition of the weight function and the Hermite polynomial in the Lattice Boltzmann context is changed to:

w( ξ) = 1 √ 2π D/2 (rT ) D e -| xi| 2 2rT (A.48) and H(n) ( ξ) = (-rT ) n w( ξ) ∇ (n) w(ξ) (A.49)
Then the Hermite polynomial expression are modified to:

H(0) = 1 H(1) α ( ξ) = ξ α H(2) αβ ( ξ) = ξ α ξ β -rT δ αβ H(3) αβγ ( ξ) = ξ α ξ β ξ γ -rT (ξ α δ βγ + ξ β δ αγ + ξ γ δ αβ ) H(4) αβγµ ( ξ) = ξ α ξ β ξ γ ξ µ -rT (ξ α ξ µ δ βγ + ξ β ξ µ δ αγ + ξ γ ξ µ δ αβ + ξ α ξ β δ γµ + ξ α ξ γ δ βµ + ξ β ξ γ δ αµ ) +(rT ) 2 (δ βγ δ αµ + δ αβ δ γµ + δ αβ δ γµ ) (A.50)
Then the scalar product relationship is modified as follow:

∞ -∞ w( ξ) H(n) α H(n) β d D ξ = Π D i=1 n i !(rT ) n δ (n+m) α β = 0 (A.51)
Then the expression of an arbitraty function h expressed as a serie of Hermite polynomial:

h( ξ) = w( ξ) ∞ n=0 ã(n) n!(rT ) n H(n) ( ξ) ã(n) = h( ξ) H(n) ( ξ)d ξ (A.52)
The new expressions of the integrals come as: a (0),eq = ρ a (1),eq α = ρu α a The attentive reader would have note that the Hermite polynomial as proposed in Eq. (A.50) are function of the temperature, it would mean that the velocity set, and then the grid length, would depend with the temperature. As it is obviously not possible, the Hermite polynomial need to be modified one more time with the athermal assumption. In this assumption, we define a reference temperature T 0 and the temperature will be constant for the weighted function. In an isothermal framework, the Laplace constant is equal to 1: γ = 1 and then the speed of sound is equal to: c s = rT 0 . Note that this reference speed corresponds to the speed of sound of the system if and only if the system is isothermal. The weighted function is given by: The expression of the Hermite polynomial (and the one that is used in practice) is given by:

w at ( ξ) = (-c 2 s ) n √ 2π D/2 c 2D
H 0 = 1 H α = ξ α H αβ = ξ α ξ β -c 2 s δ αβ H αβγ = ξ α ξ β ξ γ -c 2 s [ξ α δ βγ + ξ β δ αγ + ξ γ δ αβ ] (A.55)
The moments of the equilibrium function are then modified. To make the link with the discussion proposed in Chapter 5, temperature is expressed under the form a pressure term: p = ρrT : a (0),eq = ρ a (1),eq α = ρu α a

(2),eq αβ = ρu α u β -[p -ρc The following notation is introduced. We note m In the previous equation, the temporal derivative of the velocity ∂ t u α appears. Then it comes that the macroscopic equivalent equation of the phase field also depends on the equation of the velocity.

For this illustration to be relevant, a numerical scheme that solves the velocity field must be chosen.

To be consistent with Section 3.5, the equation solved by the velocity in the scheme proposed by Fakhari et al. [START_REF] Fakhari | Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios[END_REF] is chosen. As a consequence, the temporal derivative of the velocity field is given by: ∂ t u α = -u β ∂ β u α -µ ρ ∂ α φ. As a consequence, the expression of (a) can be deduced: Otherwise, the expression of (b) can be determined from the expression of h eq i :

∂ αβ φu α u β + φc 2 s δ αβ (B.11)
The final expression of the equivalent macroscopic equation is finally given by:

∂ t φ + ∂ α φu α = ∆t∂ α (τ φ -1/2) c 2 s - φµ ρ ∂ α φ - 4φ(1 -φ) W n α O(∆t 2 ) (B.12)
From this development it comes that the expression of the chemical potential appears in the expression of the mobility factor. Then it is very likely that the hyperbolic tangent profile is not retrieve while using this method. On a side note, the surface tension term has been ignored in this development and it also has an influence on the form of the equivalent macroscopic expression. In practice, this term is very low relatively with other terms, then its influence on the field is neglected.

It should be noted that the thickening of the interface is not physical anyway, then it is not of the greatest importance for the Allen-Cahn equation to be strictly retrieved. The most important property that must be verified by the phase field equations are the mass conservation and the capability to stabilise the width of the interface, which is the case for the scheme proposed by Geier et al. [START_REF] Geier | Conservative phase-field lattice Boltzmann model for interface tracking equation[END_REF].

with M the transformation matrix from the population function basis to the moments function basis.

To fit the MRT formalism, a specific relaxation time must also be attributed to each moment. In the method presented in the main text, a regularized collision model is used which can be translated in a MRT framework. An example of matrix M , based on a Hermite polynomial based is proposed here: Noting that the present development is not base dependent, but the final equivalent macroscopic equations are. In the present Appendix, the base M will be used only in an illustration purpose, without any loss of generality. Relaxation times must be attributed to each moments. For instance in the regularized framework, this comes as: τ xy = τ ν (linked with the shear viscosity), τ b is linked with the bulk viscosity and other relaxation times are set to 1, i.e.: τ 0 = τ α = τ αβγ = τ αβγµ = 1. The inverse-matrix of M is noted M -1 . It respects that:

M α,i = H α,i (C.
f i = i M -1 ij m j (C.6)
For the sake of clarity, the Lattice-Boltzmann algorithm is reminded and adapted to the MRT formalism. The population at the time t + 1 is calculated from the collided function through the streaming step: Streaming step

f i (x, t + ∆t) = f * i (x -ξ i ∆t, t) (C.7)
where f * i is the population function obtained after collision. It is calculated from the collided moments through:

f * i = i M -1 ij m j .
The moments m * j are obtained through the collision step: Collision step:

m * j = m eq j + (1 - 1 τ j ) m j -m eq j + 1 2 S j + 1 2 S j (C.8)
where m eq j is the j th moment of the equilibrium function and S j is the j th moment of the source term. In agreement with Dubois' [START_REF] Dubois | Equivalent partial differential equations of a lattice Boltzmann scheme[END_REF], the following tensors are defined: These polynomials allow to characterise the base M . For instance, Λ k j,α is the projection of the polynomial M j multiplied by ξ α in the base M k . For instance, M 0i = 1, then M 0i ξ α,i = ξ α,i . The proposed base M is orthogonal and it happens that ξ α = M α , then Λ k j,α = δ αk . In Dubois's original work, a source term introducing a body force was not considered. Dubois's work is then generalized to the case when a body force is introduced through a Guo's scheme [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF]. It was underline in Section 4.2 that when a body force is introduced through a Guo's scheme, the calculation of the momentum is modified, since the first moment of the population f i is given by: m α = ρu α -∆t 2 F α . The justification for this relationship is demonstrated in the present work. The last useful notation used in this section is: Π eq j = ∂ t m eq j + (τ j -1/2) S j + ∂ α k Λ k j,α m eq k + (τ k -1/2) S k (C.12)

It can be shown that this term corresponds to the moments of the non-equilibrium part of the population function: f i -f eq i . Also, it can be shown that Π eq αβ is the stress tensor. Eq. (C.8) can be manipulated to obtain:

m j -m * j = 1 τ j m j -m eq j -1 - 1 2τ j S j (C.13)
also, the following relationship will be used:

Λ l j,αβ = k (Λ k jα Λ β kl ) (C.14)
Using Taylor expansion, Eq. (C.7) can be extended to: At the first order in ∆t the last equation becomes f i = f * i + O(∆t). This equation is true for all the microscopic velocities i, then by using equation Eq. (C.1):

f i (x,
m j = m * j + O(∆t) (C.16)
By injecting this relationship in Eq. (C.13) and after small manipulations, it comes: Using the collision relationship, Eq. (C.13), it comes:

m j = m eq j + τ j - 1 2 S j + O(∆t) (C.
∂ t m j + ∂ α k Λ k j,α m * k = 1 ∆t 1 - 1 2τ j S j - m j -m eq j τ j (C.19)
For j = 0, the previous equation can be simplified (giving m 0 = ρ, m eq 0 = ρ and S 0 = 0). Moreover, the term Λ k j,α can be determined. Given M 0,i = 1 then M ji ξ α,i = M α,i . Then:

k Λ k j,α m * k = ik M ji ξ α,i M -1 ki m * k = k i M α,i M -1 ik m * k = k δ αk m * k = m * α (C.20)
By expressing m * j in term of m eq j and S j through Eq. (C.16) and Eq. (C.17) it comes:

∂ t m 0 + ∂ α m eq α + τ α - 1 2 S α = O(∆t) (C.21)
For j = α, the sum term can also be simplified. M ji becomes M αi . Then M αi ξ βi = ξ α ξ β . Then the product ξ α ξ β must be expressed in terms of vectors of the matrix M:

ξ α ξ β = M αβ,i + c 2 s H 0,i δ αβ (C.22)
In the case of the polynomial basis used in the main text, this expression is slightly more complicated and must be detailed for the different values of α and β: From the previous equation, a condition between the first moments m eq α , m α and S α stands out:

F α = 1 ∆t 1 - 1 2τ α S α - m α -m eq α τ α (C.28)
To conclude with the first order, the following relationships can be obtained by manipulating both Eq. (C.17 

C.1.2. 2 nd order

Eq. (C.15) when fully integrated into the moments space is given by: 1 τ j (m j -m eq j ) -1 -

1 2τ j S j = -∆t ∂ t m j + ∂ α k Λ k j,α m * k - ∆t 2 2 ∂ 2 t m j -∂ αβ k Λ k j,αβ m * k + O(∆t 3 ) (C.31)
Then this equation must be reduced for the two moments of interest: j = 0 and j = α. First of all Λ k j,αβ must be determined for j = 0. Giving M ji = 1, it reduces to: Λ After few manipulations implying Eq. (C.27), and by integrating the relationship between the body force and the 1 st moments Eq. (C.28):

∂ t m 0 + ∂ α m α + ∆t 2 F α = O(∆t 2 ) (C.34)
From the previous equation, it comes in a straightforward way that to ensure the mass conservation principle, the first moments of the density population must respect:

m α + ∆t 2 F α = ρu α (C.35)
which is the condition often found in the literature [START_REF] Guo | Discrete lattice effects on the forcing term in the lattice boltzmann method[END_REF].

The same work should now be done for j = α. Eq. (C. m * j = m eq j + (τ j -1/2)S j -∆t (τ j -1) Π eq j -∆t 2 (τ j -1) (τ j -1/2)∂ t Π eq j + ∂ α k

(τ k -1/2)Λ k j,α Π eq k + O(∆t 3 ) (C.44)

C.1.3. 3 rd Order

Eq. (C.15) can be extended to an additional order and then integrated to the moment space which gives: 1 τ j (m j -m eq j ) -1 - By combining the expression of (1) and ( 2), the equation that is solved by the first moment of the main population is finally given by:

1 2τ j S j = -∆t ∂ t m j + ∂ α k Λ k j,α m * k - ∆t 2 2 ∂ 2 t m j -∂ αβ k Λ k j,
∂ t m 0 + ∂ α m eq α = ∆t 2 ∂ α 1 12 ∂ β Π eq αβ - 1 6 ∂ t F α + O(∆t) 3 (C.51)
Finally, for j = α, Eq. (C.45) comes as: (2) can be expressed as a composition of Π eq αβγ and Π eq αβ :

∂ t m α + ∂ β m * αβ +
(2) = ∂ To express the ∆t 2 , the spatial derivative must also be expressed: Finally, the final equation is given by:

∂ αβ k Λ k j,
∂ t ρφ + ∂ α ρφu α = ∂ α p∆t 2 ∂ α φ -S (3) α + O(∆t 2 ) (D.12)
This justifies the form of the collision term in the re coloration phase, to mimic the right term of the Allen-Cahn equation proposed by Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF], the source term first moments must be:

S (3) α = p∆t 2 1 -φ 2 W ∂ α φ | ∇φ| (D.13)
This justifies the form of the source term proposed in this work. The moment of the source term is projected in the Hermite's polynomial base:

Ω (3) i = w i S (3) α H α,i c 2 s (D.14)
Which allows to recover Eq. (6.34). It is interesting to note that this operator is almost similar to the one originally proposed by D'Ortona [START_REF] Ortona | Two-color nonlinear boltzmann cellular automate: Surface tension and wetting[END_REF] in 1995 and Latva-Kokko [START_REF] Latva-Kokko | Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids[END_REF] in 2005. At the time, recoloration operator wasn't understood as a scheme allowing to solve a diffusion-advection equation for the phase field, and Chiu and Lin [START_REF] Chiu | A conservative phase field method for solving compressible two phase flows[END_REF] only proposed their conservative form of the Allen-Cahn equation in 2011.

D.2. Improved algorithm equivalent equation

The conservation equation for momentum to the order 2 is given by Eq.(C.41). By expressing the moments of the equilibrium function, it comes as:

∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∆t(τ αβ -1/2)∂ β Π eq αβ (D.15)
Noting that in the previous expression, for the sake of clarity no volumic force are considered. This equation can be extended by determining the expression of Π eq αβ . This calculation is given for α = x, the method being symmetrical for x and y direction the equation obtained for y -direction is similar. ∂ β Π j xβ is given by: and the term O(M a 3 ) is an error proportional to the Mach number [START_REF] Krüger | The Lattice Boltzmann Method, Principles and Practice[END_REF]. 
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 5 1 extracted from Pooley et al. depicts the maximum spurious velocity as a function of the parameter p. It can be shown that the minimum spurious velocity is reached for p = 1/12. The operator chosen by Pooley et al. [156] consequently follows:

Figure 5 .

 5 Figure 5.1. -The maximum spurious velocity (in Lattice Boltzmann Units) for a static bubble as a function of the parameter p (Figure (a) plain line) from Pooley et al. [156]

iHFigure 5 . 2 .

 52 Figure 5.2. -Case of a static bubble in a quiescent atmosphere with two different operators, one without the isotropic condition, i.e.i

Figure 5 .

 5 Figure 5.3. -Visualization of a phase field profile after grid convergence (left). L2 error expressed as a function of the spatial step ∆x compared with a straight line of slope=2 in a log-log scale.

Figure 5 . 4 .

 54 Figure 5.4. -Time evolution of the non-dimensional interface thickness for different mobility factors M as a function of dimensionless time.

= 5 *= ∆xN y 2 and b = ∆xN y 4 .

 54 N y = 200 mesh. Two separated phases coexist in the channel, the denser fluid 1 is located in a band of width 2a surrounded by two bands of width b -a of the fluid 2, a and b being geometrical values given by a The system is invariant along the x-axis. Placing that the origin of the y-axis in the middle of the box, the initial phase field profile is given by |y| < a: φ = 1 and when a < |y| < b: φ = -1. The boundaries normal to the x-axis are set as walls, and the boundaries normal to the y-axis are periodic. Finally, a constant volumic force, which simulates a constant pressure gradient G, is applied. The expression of the force is given by F = G e x . The norm of this force is given by G = 9.81kg.m -1 .s -2 An illustration is proposed in Fig.6.1. Other usefull parameters that were used for the testcase are given afterward. The spatial step is set to ∆x = 0.001m. The density ratio is set to 100, with densities of ρ 1,0 = 1kg.m -3 and ρ 2,0 = 0.01kg.m -3 , the kinematic viscosity of the fluids are identical: ν 1 = ν 2 = 1.666667m 2 .s -1 , and the bulk viscosity is set equal to the shear viscosity: ν b,1 = ν b,2 = ν 1 . The speed of sound in both fluids is identical and equal to the speed of sound in air at ambient temperature. Moreover the characteristic velocity c s is set equal to the speeds of sound: c 1 = c 2 = c s = 347m.s -1 . The lighter fluid is supposed to have no coherent forces, then p ∞,2 = 0, and p ∞,1 is chosen to guarantee mechanical equilibrium between the phases, i.e., p ∞,1 = (ρ 1,0 -ρ 2,0 )c 2 s . The surface tension is neglected σ = 0 which has no impact here, since the interfaces are planar in this Poiseuille flow. The interface thickness is set to W = 1.6∆x. The initial solution is implemented with a thick interface, i.e.: φ(x, y, 0) = tanh -|y| -a W , (6.59) with W the interface thickness.

Figure 6 .

 6 Figure 6.1. -Two-phase Poiseuille flow case

  Figure 6.2. -Comparison between "model 1" inspired fom the scheme in Leclaire[START_REF] Leclaire | Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice boltzmann models[END_REF] (left), and "model 2" the present scheme inspired from Li[START_REF] Li | Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices[END_REF] (right), for a two-phase Poiseuille flow at high density ratio case[START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF]. Both are compared with the theoretical solution (solid line)

Figure 6 .

 6 Figure 6.3. -Laplace test for a range of surface tension σ, and dimensionless radius r/∆x for different density ratios γ. The value of the pressure jump p 1 -p 2 (dots) can be compared with σ r (plain curve)

Figure 6 .

 6 Figure 6.4. -Illustration of an oscillating ellipsoidal droplet between initial state (left) and half period state (centre). Time evolution of kinetic energy curve (right)

Figure 6 . 5 .

 65 Figure 6.5. -Rayleigh-Taylor instability at various characteristic times t * , Reynolds number is Re = 2048

  e. θ ∈ [0, -π]. Such particles will hit the wall during the time interval dt if and only if they are included in the parallelepiped illustrated Figure A.1.

Figure2cos 2

 2 Figure A.1. -Illustration of a cone of particle hitting the surface of area dS

  but if α = (x, y, y) and β = (y, x, y) then δ (6) α β

( 2 )

 2 ,eq αβ = ρu α u β a (3),eq αβγ = ρu α u β u γ (A.53)

αβ = φu α u β (B. 7 ) 8 )

 78 the function h associated to the Hermite's polynomial H j . It is given by:m (h) j = i H j,i h eq i (B.4)Giving the definition of h eq i , the moments of the function can be deduced: α = φu α + ∆t (τ φ -Through the methodology proposed in Section 4.3, it can be shown that the equivalent macroscopic equation solved by φ∂ t m (h) 0 + ∂ α m (h) α = -∆t (τ φ -1/2)The term on the right part of the equation must be determined to obtain the equivalent macroscopic equation:(a) = ∂ 2 t m (h) 0 = -∂ t ∂ α φu α + O(∆t) = ∂ α (-φ∂ t u α -u α ∂ t φ) + O(∆t) (B.9)

  (a) = ∂ α φ u β ∂ β u α + µ ρ ∂ α φ + u α ∂ β (φu β ) + O(∆t) = ∂ α ∂ β φu α u β + φµ ρ ∂ α φ + O(∆t) (B.10)

2 )M

 2 αβ,i = H αβ,i (C.3) M αβγ,i = H αβγ,i (C.4) M αβγµ,i = H αβγµ,i (C.5)

M

  Λ k j,α = i M ji ξ α,i M -1 ik (C.9) Λ k j,αβ = i M ji ξ α,i ξ β,i M ji ξ α,i ξ β,i ξ γ,i M -1 ik (C.[START_REF] Dumouchel | On the experimental investigation on primary atomization of liquid streams[END_REF] 

17

 17 

  ) C.1.1. 1 st Order Developed at the order O(∆t 2 ), and integrated in the moment space, Eq. (C.15) becomes:(m j -m * j ) = -∆t ∂ t m j + ∂ α k Λ k j,α m * k + O(∆t 2 ) (C.18)

ξ 2 s(C. 24 ) ξ 2 y 2 s(C. 25 )

 2242225 x ξ y = M xy,i (C.23)ξ 2 x = M b,i + M ν,i + M 0,i c = M b,i -M ν,i + M 0,i cAs a consequence, Λ k j,α can be detailed:k Λ k j,α m * k = ik M ji ξ β,i M -1 ki m * k = k i M αβ,i + c 2 s M 0i δ αβ m * k = m * αβ + m * 0 c 2 s δ αβ (C.26) Then using previous relationships Eqs. (C.16, C.17), Eq. (C.19) can be expressed for j = α: ∂ t m α + ∂ β m eq αβ + c 2 s m eq 0 δ αβ + τ αβ -

  ) and Eq. (C.8):m * j = m eq j + (τ j -1/2) S j -∆t(τ j -1) ∂ t m j + ∂ α k Λ k j,α m * k + O(∆t 2 ) (C.29) m j = m eq j + (τ j -1/2) S j -∆tτ j ∂ t m j + ∂ α k Λ k j,α m * k + O(∆t 2 ) (C.30)

+

  O(∆t) = φ m eq j + (τ j -1/2)S j ) + S(3) j + O(∆t) (D.5) Eq(D.4) can be expressed at a higher degree:α φ(m eq α ) + (τ α -1/2)S α ) + S (3) α = O(∆t) (D.7) Noting that S α = ∆tf α = O(∆t), S (3) α = O(∆t)and using the values of m eq α and m(g) 0 it comes:∂ t ρφ + ∂ α ρφu α = O(∆t) (D.8)Now Eq(D.4) can be integrated into the moment space at its higher degree:m (g) j -m (g), * j = -∆t ∂ t m j -∂ αβ k Λ k j,αβ m (g), * k + O(∆t 2 ) (D.9)Chapter D : Appendix D To express this equation for j = 0,∂ 2 t m j = -∂ t ∂ α φm eq α + O(∆t) = -∂ α (u α ∂ t ρφ + φρ∂ t u α ) + O(∆t) = ∂ α (u α ∂ β (ρφu β ) + ρφu β ∂ β u α + φ∂ β pδ αβ ) + O(∆t)= ∂ αβ ρφu α u β + ∂ α (φ∂ α p) + O(∆t) (D.10)

δ

  αβ = ∂ αβ (ρφu α u β + φp) + O(∆t) (D.11)

2 s u x (D. 25 )

 25 By merging Eqs. (D.23, D.24, D.25) into Eq. (D.16), the macroscopic equation that is solved by the scheme is:∂ t ρu α + ∂ β ρu α u β + pδ αβ + p σ αβ = ∆t∂ β O(M a 3 ) + (τ ν -1/2)p (∂ β u α + ∂ α u β ) + (τ b -τ ν )p∂ γ u γ + Er α δ αβ (D.26)where the error term readsEr α = -(τ ν -1/2)3∂ α (p -ρc 2 s )u α + 3 2 (τ ν -τ b ) ∂ γ (p -ρc 2 s )u γ + (τ b -1/2) ∂ t (p -ρc 2 s ) + ∂ γ (p -ρc 2 s )u γ (D.27)
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  . They are listed here: H 0 , H x , H y , H z , H xy , H xz , H yz , H xx , H yy , H zz , H xxy , H xxz , H yyx , H yyx , H yyz , H zzx , H xxyy , H yyzz and H xxzz . But another difficulty rises from this velocity set, it is the breaking of the relationships of orthogonality between the Hermite's polynomial. This concerns mainly the H ααβ and H ααββ . In particular, we have:

	1.3 Discretization of Boltzmann Equation		
	and				
			i	w i	H xxy,i H zzy,i 2c 6 s
	i	w i	H xxy,i H zzy,i s 2c 6	= -0.5 = 0	(1.75)

detailled in Section 1.3.3. Chapter 2 Multiphase flows simulation Overview 2.1. Surface tracking methods

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1. Front tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2. Volume Of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3. Level Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2. Diffuse Interface Method

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1. Phase field method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2. Multi fluids methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3. Surface tension

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1. Geometrical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2. Free Energy approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2

 2 

	.1. -Surface tension value for different fluids [132]
	Fluids	Temperature (•C) σ(kg.s -2 )
	water-air	20	72.86
	water-air	21.5	72.75
	water-air	25	71.99
	ethanol-air	20	22.39
	kerosene-air [133]	20	23.0
	water-oil	20	37.2
	mercury-air	20	486.5
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  3)with S αβ the 2 nd order Hermites moments of the source term, i.e. S αβ = ,i f eq i , and τ αβ the relaxation times associated to the moments of H αβ . There are two ways to include a tensor to Eq. (3.3). The first one consists in adding a source term which 2 nd order moments are given by:

i H αβ,i S i , and m eq * the moments of the equilibrium function, i.e. i H *

  -1 ) 2.19 * 10 -2 5.94 * 10 -4 6.70 * 10 -5

	Eq	(3.10)	(3.11)	(3.10)
	Degree of isotropy	1	2	4
	Maximum velocity (m.s			

[START_REF] Dighe | Atomization of acoustically forced liquid sheets[END_REF] 

where w (D2Q25) i are the weighting coefficients of the D 2 Q 25 velocity set. Note that usually there are only nine microscopic velocities, here ξ i for i > 8 corresponds to a D 2 Q 25 microscopic velocities.

Table 3 .

 3 1. -Maximum velocity corresponding to the spurious currents in the interface as a function of the degree of isotropy
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  2.2, in the classic BGK athermal framework, µ = µ b (Eq. (1.57)), and in the thermal framework µ b = 0 (Eq. (1.51)). In a MRT athermal framework, it is possible to freely set the bulk viscosity. The present method will be illustrated in a D 2 Q 9 framework for a better comprehension. The common practice is to set a similar relaxation time for all the second order polynomials (in D 2 Q 9 H xx , H yy and H xy ), that are linked to the value of the dynamic viscosity. It must be noted that the 2 nd order Hermite polynomials form a partition of the polynomial space and that {H xx , H yy , H xy } is a base of this sub-space. To freely set the bulk

	f * i = f eq i + w i 1 -	1 τ ν	H xy,i c 4 s	m neq xy +	H xx,i -H yy,i 2c 4 s	m neq ν	+ 1 -	1 τ b	H xx,i + H yy,i 2c 4 s	m neq b	(4.19)
	with m neq b	=	i	(f i -f eq i )	H xx,i + H yy,i 2	and m neq ν	=	i	(f i -f eq i )	H xx,i -H yy,i 2	and m neq xy =

viscosity, an alternative rotated base must be used: {H xy , H xx + H yy 2 , H xx -H yy 2 }. A relaxation time is attributed to H xy and H xx -H yy 2 (noted τ ν ) and a second relaxation time to H xx + H yy 2 (noted τ b ). For example, in a regularized framework, the collision operator writes i (f if eq i )H xy,i . It can be shown than the equivalent macroscopic equation is given as follow:

3. Recoloration equivalent phase field equation
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  Eqs.(5.18, 5.19, 5.20, 5.21), the moments linked to the Hermite's polynomials H 0 , H x , H y , H xy , H xx , H yy , H xxx , H xxy , H yyx and H yyy are determined, which is a total of 10 moments.

  Thanks to this last condition, the E i operator can be fully determined. By projecting the conditions given in Eqs.(5.18, 5.19, 5.21, 5.20, 5.29) into the Hermite polynomial space, an optimum operator, noted E

	s	(5.29)
	(iso)	
	i	

2.1, only the moment linked to H xxyy,i can be imposed. Applying the previous equation to H xxyy,i , it comes that the ∆t 2 error can be reduced by setting: i H xxyy,i E i = -c 2

  H xy , H xz , H yy , H yz , H zz , H xxx , H yyy , H zzz , H xyy , H yzz , H xzz , H xxyy , H xxzz and H yyzz .

  ρc2 

	s	+ ∂ t p -ρc 2 s δ αβ
	Spatial error	temporal error
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	6σ	r 3	(6.63)

1. -Relative error E calculated with Eq(6.62) for different density ratios (γ), surface tension (σ in kg.s -2 ) and for different droplet radii (expressed in l.b.u., i.e., as multiples of ∆x)

Table 6 .

 6 .2. It should be noted that the range of radii and surface tension is smaller than for the Laplace 2. -Oscillation of an ellipsoidal droplet: comparison between expected surface tension σ and experimental value σ exp The symbol "-" underlines a lack of oscillation and "crash" a lack of numerical stability.

					γ = 4			γ = 10			γ = 100	
			Correction No correction	Correction No correction	Correction No correction
	radius	σ	σ exp	Er	σ exp	Er	σ exp	Er	σ exp	Er	σ exp	Er σ exp	Er
		0.05 0.042 9.2 0.042	9.2	0.046 4.79 0.046 4.38	-	-	crash
	15	0.07 0.059 8.56 0.059 8.98	0.065 3.57 0.036 40.0	-	-	crash
		0.08 0.068 8.38 0.068 8.80	0.075 4.79 0.040 42.3	-	-	crash
		0.05 0.043 7.94 0.043 8.35	0.046 4.16 0.046 4.16	0.035 19.9	crash
	20	0.07 0.061 7.41 0.061 7.41	0.065 3.59 0.065 3.59	0.054 14.0	crash
		0.08 0.070 7.28 0.070 7.28	0.075 3.42 0.075 3.22	0.065 10.8	crash
		0.05 0.043 7.58 0.043 7.78	0.046 4.41 0.046 4.21	0.16 43.4	crash
	25	0.07 0.061 6.89 0.061 7.09	0.065 3.83 0.065 3.66	0.065 3.73	crash
		0.08 0.070 6.74 0.070 6.74	0.074 3.67 0.075 3.47	0.073 4.72	crash

  2 s ]δ αβ a (3),eq αβγ = ρu α u β u γ + (p -ρc 2 s ) [u α δ βγ + u β δ αγ + u γ δ αβ ] a (4),eq αβγµ = ρu α u β u γ u µ + (p -ρc 2 s ) [u α u µ δ βγ + u β u µ δ αγ + u γ u µ δ αβ + u α u β δ γµ + u α u γ δ βµ + u β u γ δ αµ ]

						τ φ	(h i -h eq i )			(B.1)
	with	h eq i = φw i 1 +	+ρ u α ξ α,i c 2	p ρ	2c 4 s	s δ αβ	+ ∆t (τ φ -1/2)	4φ(1 -φ) W	ξ α n α	(A.56) (B.2)
	with n α =	∂								

2 -c 4 s (δ αβ δ γµ + δ αγ δ βµ + δ βγ δ αµ ) s + u α u β ξ α,i ξ β,i -c 2 α φ | ∇φ|

, and W a value chosen by the user. The streaming step is given by:

h i ( x, t + ∆t) = h * i ( x -∆t ξ, t) (B.3)

  -∂ αβ m * αβ + c 2 s m * 0 δ αβ = O(∆t 2 ) (C.32)By expanding ∂ 2 t m 0 using Eq. (C.21), and by expanding m * α , the previous equation becomes:∂ t m 0 + ∂ α (m eq α + (τ α -1/2) S α ) -∆t (τ α -1/2) ∂ t m α + ∂ β m * αβ + c 2 s m * 0 δ αβ = O(∆t 2 ) (C.33)

			k 0,αβ =	ξ α,i ξ β,i M -1 ik which has
			ik
	already been calculated Eq. (C.22):		
	∆t (∂ t m 0 + ∂ α m * α ) +	∆t 2 2	∂ 2 t m 0

  31) becomes∂ t m α + ∂ β m * αβ + c 2 s m * 0 c 2 s δ αβ + ∆t ∂ 2 t m α -∂ αβGiving that M α,i = ξ α,i and that:ξ α ξ β ξ γ = M αβγ + c 2 s (M α δ βγ + M β δ αγ + M γ δ αβ ) (C.37) * α δ βγ + m * β δ αγ + m * γ δ αβ )Using Eq. (C.29) to expand m * αβ and Eq. (C.27) to expand ∂ 2 t m α , the following equation comes:∂ t m α + ∆t 2 f α + ∂ β m eq αβ + m eq 0 c 2 s δ αβ + ((τ αβ -1/2) S αβ ) -∆t (τ αβ -1) ∂ β ∂ t m αβ + ∂ γ γ δ αβ ) = F α + O(∆t 2 ) (C.38) Giving M αβ,i ξ γ,i = M αβγ,i + c 2 s (M α,i δ βγ + M β,i δ αγ )and by including Eq. (C.21), it comes:∂ t m α + ∆t 2 F α + ∂ β m αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π αβ + f α + O(∆t 2 ) (C.39) with Π j = ∂ t m j + ∂ αNoting that: Π αβ = Π eq αβ + O(∆t), the equation of conservation of momentum can be written as:∂ t m α + ∆t 2 F α + ∂ β m αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π eq αβ + F α + O(∆t 2 ) (C.41)To conclude with the 2 nd order, the following relationships can be obtained by manipulating Eq. (C.8) and Eq. (C.31):m * j = m eq j + (τ j -1/2) S j -∆t (τ j -1) ∂ t m j + ∂ α = ∂ t Π j -∂ α Λ l j,α Π l + O(∆t) = ∂ t Π eq j -∂ α Λ l j,α Π eq l + O(∆t) (C.43) By extending ∂ t m j and ∂ α Λ k j,α m k * using Eq. (C.29) and Eq. (C.30) and Eq. (C.42) reduces to:

					(Λ k j,α m * k ). It is also useful to define:
					k
				Π eq j = ∂ t m eq j + (τ j -1/2) S j + ∂ α	Λ k j,α m eq k + (τ k -1/2) S k	(C.40)
						k
						Λ k j,α m * k
						k
					-	∆t 2 2	(τ j -1) ∂ 2 t m j -∂ αβ	k	Λ k j,αβ m *
	∂ 2 t m j -∂ αβ		Λ k j,αβ m * k
				k	
				= ∂ 2 t m j + ∂ t ∂ α Λ l j,α m * l -∂ t ∂ α Λ l j,α m l	-∂ αβ	Λ l j,α Λ k j,αβ m * k + O(∆t)
					=O(∆t)	kl
						Λ k α,βγ m * k	= F α + O(∆t 2 )	(C.36)
						k
	It comes:	k	Λ k α,βγ m * k = m * αβγ + c 2 s (m k	Λ k αβ,γ m * k
			-	∆t 2	∂ t m * αβ + m * 0 c 2

s δ αβ + ∂ γ m * αβγ + c 2 s (m * α δ βγ + m * β δ αγ + m * k + O(∆t 3 ) (C.42)

Using Eq. (C.16) and Eq. (C.14), the last term can be manipulated:

  αβ m * + ∂ αβγ m * αβγ + c 2 s (m * α δ βγ + m * β δ αγ + m * γ δ αβ )can then be detailed by expanding ∂ 2 t m 0 using Eq. (C.34) and m * αβ using Eq. (C.29)(1) = -∂ α ∂ t m α + ∆t 2 f α + ∂ β m eq αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ-∆t (τ αβ -1) Π eq

	For j = 0, the equation becomes:
							
	∂ t m 0 + ∂ α	m * α	-	∆t 2	   ∂ 2 t m 0 -∂ αβ (m * αβ + c 2 s m * 0 δ αβ )	  
		=m eq α + ∆t 2 fα			(1)
							
		-	∆t 2 6	    ∂ 3 t m 0 (2)	   	= O(∆t 3 ) (C.46)
	(1)					
							k
						-	∆t 3 6	∂ 3 t m j + ∂ αβγ	k	Λ k j,αβγ m * k	+ O(∆t 4 ) (C.45)

αβ + O(∆t 2 ) (C.47) Which gives (using Eq. (C.41)):

(

1) = -∂ α F α + ∂ β ∆t 2 Π eq αβ + O(∆t 2 ) (C.48)

In (

2

), ∂ 3 t m 0 can be developed by using Eq. (C.21) and Eq. (C.27) successively, which gives:

(2) = ∂ α ∂ β ∂ t m * αβ + m * 0 c 2 s δ αβ + ∂ γ m * αβγ + c 2 s m * α δ βγ + m * β δ αγ + m * γ δ αβ -∂ t F α ] + O(∆t) (C.49)

Which can be reduced to:

(

2) = ∂ α ∂ β Π eq αβ -∂ t F α + O(∆t) (C.50)

  α,βγµ m * k , can actually be expressed but was simply to long to be inserted in the same expression as the rest. It is given by: *αβ δ γµ + m * αγ δ βµ + m * αµ δ βγ + m * βγ δ αµ + m * βµ δ αγ + m * γµ δ αβ )+ m * 0 c 4 s (δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ) (C.53)To express (2), ∂ 3 t m α must be expanded by using Eq. (C.21), then Eq. (C.27) and finally the definition of Π αβ :∂ 3 t m α = ∂ 2 t F α -∂ β ∂ 2 t m * αβ + m 0 c 2 s δ αβ + ∂ t ∂ βγ F α -∂ β ∂ t Π αβ + ∂ βγ ∂ t m αβγ * + m * γ δ αβ + m α δ βγ + m * β δ αγ c 2 s + O(∆t) (C.54)

	Λ k α,βγµ m * k =					
	k					
	m * αβγµ + c 2 s (m k	Λ k αβ,γ m * k -Λ k αβ,γ m * k	+ O(∆t)
	= ∂ 2 t By underlining that:					
	m * 0 c 2 s δ αβ +			
							
	∆t 2	   	∂ 2 t m α -∂ βγ m * αβγ + c 2 s m * α δ βγ + m * β δ αγ + m * γ δ αβ	   	+
			(1)			
							
			∆t 2 6	     	∂ 3 t m α + ∂ βγµ	k	Λ k α,βγµ m * k	     
					(2)	

+ O(∆t 3 ) (C.52) k Λ k k Λ k α,βγµ m * k = k Λ k αβγ,µ m * k + m * αµ δ βγ + m * βµ δ αγ + m * γµ δ αβ c 2 s + m * 0 [δ αβ δ γµ + δ αγ δ βµ + δ αµ δ βγ ] c 4 s (C.55)

and that according to Eq. (C.27):

∂ t m α + ∂ β (m αβ + m 0 c 2 s δ αβ ) = F α + O(∆t) (C.56)

  2 t F α + c 2 s ∂ βγ (F α δ βγ + F β δ αγ + F γ δ αβ ) + ∂ βγ Π eq αβγ -∂ β ∂ t Π eq αβ + O(∆t) (C.57)Developing ∂ 2 t m α using Eq. (C.41), and developing m αβγ using Eq. (C.44), (1) is expressed as:(1) = ∂ t F α -∂ β Π αβ + ∆t (τ αβ -1/2) ∂ t Π eq αβ + (τ αβγ -1) ∂ γ Π eqBy combining the expressions of (1), (2) and m * αβ (Obtained through Eq. (C.44), the 2nd order equivalent equation to the algorithm comes as follow:∂ t m α + ∆t 2 F α + ∂ β m αβ + m eq 0 c 2 s δ αβ + (τ αβ -1/2) S αβ = ∆t(τ αβ -1/2)Π eq αβ + F α F α + c 2 s ∂ βγ (F α δ βγ + F β δ αγ + F γ δ αβ ) + O(∆t 3 ) (C.59)Integrated into the moment space and by integrating Eq(C.29) the last expression can be expressed:

	+ ∆t 2 ∂ β	τ αβ -g g i + ∆t∂ t g i + 1 2 2 --∆t 2 1 6 ∆t 2 6 2 ∂ 2 ∂ t Π eq αβ + τ αβγ -∂ 2 j + S (3) 1 2 j t = φm * t g i = g * i + ∆t∂ t g * i +	τ αβ -∆t 2 2 g * i + O(∆t 3 ) 1 2 -1 12	∂ γ Π eq αβγ	(D.2) (D.4)

αβγ (C.58) i (x, t + ∆t) = g * i (x -ξ α,i , t) (D.3)

By expanding the streaming relationship:

  xβ -1/2)Π eq xβ = (τ ν -1/2) ∂ x Π eq ν + ∂ y Π eq xy + ∂ x (τ b -1/2)Π eq H xy,i ξ γ,i = H xyγ,i + c 2 s (H x,i δ γy + H y,i δ γx ) (D.22)By integrating the definition of the equilibrium function Eq. (6.19), it gives:

	D.2 Improved algorithm equivalent equation	
					Π eq b = ∂ t	H b,i f eq i + ∂ γ	H b,i ξ γ,i f eq i	(D.19)
						i			i
	Giving that							
					H b,i ξ γ,i =	H xxγ,i + H yyγ,i 2	+ c 2 s H γ,i	(D.20)
				H ν,i ξ γ,i =	H xxγ,i -H yyγ,i 2	+ c 2 s H x,i δ γx -c 2 s H y,i δ γy	(D.21)
	Π eq ν = ∂ t	ρu 2 x -ρu 2 y 2	+ ∂ x	(p -ρc 2 s )u x 2	+ ρc 2 s u x + ∂ y	(p -ρc 2 s )u y 2	+ ρc 2 s u y	(D.23)
	Π eq b = ∂ t	ρu 2 x + ρu 2 y 2	+ (p -ρc 2 s ) -∂ x	(p -ρc 2 s )u x 2	-ρc 2 s u x + ∂ y	(p -ρc 2 s )u y 2	-ρc 2 s u y (D.24)
			Π eq xy = ∂				
									b	(D.16)
	With							
					Π eq ν = ∂ t		

i H ν,i f eq i + ∂ γ i H ν,i ξ γ,i f eq i (D.17) Π eq xy = ∂ t i H xy,i f eq i + ∂ γ i H xy,i ξ γ,i f eq i (D.18) t ρu x u y + ∂ x (p -ρc 2 s )u y + ρc 2 s u y + ∂ y (p -ρc 2 s )u x + ρc

Remerciements

It happens that 4π = ϕ=2π ϕ=0 θ=π θ=0 cos(θ)dϕdθ which allows us to write:

Taking into consideration the definition of the internal energy Eq. 1.5 in this framework, the pressure is proportional to the internal energy :

A.4. CFL condition in LBM

In this appendix, the motivation behind the CFL condition usually imposed in the Lattice Boltzmann framework is presented here. In the classical LBM framework, the equilibrium function is given by:

The attentive reader would have note that if in the thermal case, the order two in polynomial involved a pressure term, then it seems like no pressure term is involved in this model. Actually, a fundamental property of the Lattice Boltzmann method is the moment cascade. To introduce this concept, we must distinguish the raw moments and the Hermite polynomial moments. The raw moments are defined as the successive moments of the partition function that takes the following form:

It is very important to note that the raw moments carry the physical meaning of the partition function, while the Hermite's polynomial moment are practical tools used to discretize the equilibrium function in the microscopic velocity space. To emphasize this point, we note that the macroscopic equation obtained through the Chapman-Enskog method can be written in term of raw moment. For instance, for the first moment:

M eq * being the raw moments of the equilibrium function. We noted that the Hermite's polynomial form an orthogonal basis in the polynomial space, but it is not the case for the raw polynomials. It means in concrete terms that a raw polynomial of order n will have moments at superior order. A raw polynomial of degree n is given by:

Then, scalar products between different order polynomials are not equal to 0 in general, unlike the Hermite polynomial. For instance:

This lake of orthogonality can be clearly seen if we express the raw polynomial in term of Hermite polynomial. For instance:

Then the non-orthogonality of H 0 and H xx becomes clear. But the last relationship illustrates the fact that in our framework the contribution to the total energy (M αβ ) comes from the projection of the partition function on the moments H αβ but also from the moment H 0 . This explains why, despite the presence of no pressure term in the equilibrium function, in the formulation proposed by He et al. Eq. (A.15), the equivalent equation at the order 1 in ∆t for the 1 st moment in Hermite is given by:

In the present situation the system doesn't seem realistic as, in a isothermal framework, the term inside the derivative should take the following form: ρu α u β + ρc 2 s δ αβ . Then to retrieve this behavior

Appendix B

B.1. Allen-Cahn equation and Geier's scheme

The numerical schemes used to solve an Allen-Cahn equation is a widely discussed subject. In this context, Geier [START_REF] Geier | Conservative phase-field lattice Boltzmann model for interface tracking equation[END_REF] proposed a scheme to solve this equation. This method is widely used in the literature, and in particular by the HCZ community [START_REF] Fakhari | A mass-conserving lattice boltzmann method with dynamic grid refinement for immiscible two-phase flows[END_REF][32][33] [START_REF] Mitchell | Development of a three-dimensional phase-field lattice boltzmann method for the study of immicible fluids at high density ratio[END_REF]. In practice, we can show that this numerical scheme does not exactly solve an Allen-Cahn equation. To do so, a development that retrieves the equivalent macroscopic equation of the scheme is proposed. This numerical scheme is reminded here. It consists in a stream and collide algorithm, where the collision phase is given by:

Appendix C

C.1. Taylor expansion

The Taylor expansion allowing to determine LBM's equivalent macroscopic equation is detailled here. Some notations that were already given in Section 4.3 are reminded here for the sake of clarity. As Dubois' development takes place in a Multiple Relaxation Time (MRT) framework, the moments m j of the distribution function f i are defined as

Appendix D

D.1. Colour Gradient phase field equation

In this section, the equivalent macroscopic equation of the g i population is determined. First of all, some value must be defined. The moments of the g i population are noted:

By definition of φ m (g) 0 = ρφ. As previously, the algorithm that is followed by the phase field population function should be slightly re-formulated. The recoloration is expressed in the moment space: