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Résumé

Un grand nombre d’applications informatiques modernes sont interactives, réagis-
sant au stimulus fourni par l’environnement global. HipHop.js est un DSL réactif
synchrone inspiré d’Esterel pour JavaScript construit sur Hop.js dédié à la pro-
grammation de telles applications. HipHop.js peut être utilisé pour développer des
applications telles que les contrôleurs IoT, des interfaces graphiques réactives, etc.
Traditionnellement les systèmes réactifs ont été utilisés dans des systèmes critiques
car ils apportent des garanties de sécurités au delà de ce que peuvent fournir des
langages généralistes. Néanmoins, comme pour les langages classique, un usage
systématique et rigoureux de procédures de tests augmentent la confiance qu’un
utilisateur peut apporter dans un système réactif. Le débogage est aussi une étape
nécessaire si un dysfonctionnement est détecté. Cette thèse se concentre sur le déve-
loppement d’un environnement dédié pour les programmeurs HipHop.js, facilitant,
l’analyse et la mise au point de programmes. Il y a deux principales contributions
dans cette thèse. Le premier est le support pour le débogage d’un classe d’erreurs
typiques des systèmes réactifs appelées « erreurs de causalité » dans HipHop.js et le
second est de fournir une infrastructure aux programmeurs HipHop.js pour étudier
et comprendre le comportement de leurs programmes réactifs, identifier ainsi toute
subtilité bogues et affiner leur source.

HipHop.js suit le modèle de synchronie parfaite introduit dans le langage de
programmation Esterel. Ce mémoire de thèse commence par une brève introduction
à la programmation réactive à l’aide de HipHop.js afin de rendre accessible la
suite du document aux lecteurs peu familiers avec le modèle de la programmation
réactive. Ce modèle peut conduire à ce que cette communauté nomme des « cycles
d’erreurs de causalité ». Ceux-ci sont généralement difficiles à isoler et à réparer.
Dans cette thèse, nous discutons en détail la prise en charge du débogage des
erreurs de causalité qui peuvent être détectées à la compilation ainsi que lors
de l’exécution. Nous commençons par fournir des exemples exemples expliquant
l’origine et la formation des erreurs de causalité et les difficultés rencontrées pour
les déboguer. Ensuite, nous présentons les techniques basées sur des algorithmes de
graphes permettant de signaliser les erreurs avec des messages précis dirigeant les
programmeurs directement vers la source des erreurs. Nous illustrons l’efficacité
des méthodes proposées sur un exemple concret.

Dans une seconde partie, nous proposons un ensemble d’utilitaires destinés
à faciliter la compréhension des comportements « temporels » des programmes
HipHop.js et cela, dès les premiers stades du développement. Ces analyseurs de
programmes fournissent aux programmeurs HipHop.js des interfaces faciles à utiliser
qui permettent de simplifier et d’automatiser l’identification et la localisation des
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erreurs. Ce manuscrit commence par présenter les analyseurs de programme. Ensuite,
des exemples illustratifs expliquant les utilisations des utilitaires et leurs intérêts
sont présentés. Les détails des implémentations, y compris les outils et la théorie
pertinente, constituent la dernière partie de la thèse sur l’analyseur de programmes.

Mots clés : Techniques de débogage, HipHop.js, Erreur de causalité, Program-
mation réactive synchrone.



Abstract

Many modern-day computer applications are reactive in nature, continuously re-
acting to the stimulus from its environment. IoT controllers for orchestration,
responsive GUIs, collaborative video games are some of those reactive applications.
HipHop.js, a synchronous reactive DSL inspired by Esterel for JavaScript can be
used to build reactive applications. The objective of the thesis is to provide sup-
porting infrastructure for building error free reactive applications using HipHop.js.
There are two main contributions in this thesis. The first one is the support for
debugging a special class of errors - causal errors, typical to synchronous reactive
systems and the second one is to provide a software infrastructure for HipHop.js pro-
grammers to understand, and test the temporal behavior of their programs, aiding
in fault localization and improved debugging experience of HipHop.js programs.

HipHop.js follows the model of perfect synchrony introduced in the Esterel
programming language and this may lead to classical causality error cycles during
execution. These are generally difficult to isolate and fix. In this thesis, the support
for debugging causality errors in compile time and run time is presented in detail.
First, illustrative examples explaining the origin and formation of causality errors
in HipHop.js and the difficulties faced in debugging them are presented. Then, the
techniques based on graph-based algorithms that are used to construct better error
messages directing programmers to the source of causal errors are presented. The
effectiveness of the proposed methods is demonstrated with a real-world example.

As a second contribution, a program analyzer with utilities that can be used
to understand the temporal behavior of HipHop.js programs, right from the early
stages of program development is presented. The program analyzer aims to provide
HipHop.js programmers easy to use interface that can simplify and automate error
identification and localization. The presentation in the thesis has an introduction
to the program analyzer, detailing the motivation behind the various utilities it has.
Then, illustrative examples explaining the usage of utilities and their advantages
are presented. The implementation details including the tools and relevant theory
is the final part of the thesis on the program analyzer.

The thesis also includes a brief introduction to reactive programming using
HipHop.js to make the thesis self-contained and also provide a basic introduction
to readers from non-reactive background. The illustrative examples on HipHop.js
constructs include control flow visualization for better understanding. The thesis
concludes with a review of related literature and future work that can be carried
out on the infrastructure presented in this thesis.

Keywords: Debugging Techniques, HipHop.js, Causality error, Synchronous
reactive programming.
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Chapter 1

Introduction

“The greatest challenge to any thinker is stating the
problem in a way that will allow a solution”

— Bertrand Russell

Recent years have seen massive dissemination of computing systems and ap-
plications to every aspect of human life in the form of smart devices, triggered by
the coupling of advances in communication systems, web 2.0, Big data, IoT, Cloud
computing, etc. These applications can range from as simple as smart bulbs to
complex virtual surgery procedures and cyber knives. Blockchain technologies, ad-
vanced signaling management systems, and highly interactive, massively distributed
video games are some other applications becoming very common in our day-to-day
life. These computing applications have been harnessed with efficient and critical
software developed in various programming paradigms. Reactive systems belong to
one such software developed using reactive programming. Reactive systems have
been used extensively in applications where tasks are control intensive and are
triggered by environmental events requiring timely responses [24].

Programming languages like Esterel [24], Lustre [67] are some example languages
used to develop reactive systems. These are also called synchronous reactive
languages, since they follow “Synchrony hypothesis” - conceptually the programs
react to external events in an instantaneous and deterministic way. Functional
reactive programming languages (FRPs) have modernized the data flow style of
reactive programming through languages and libraries like Elm [47], Rx from
Microsoft, and React maintained by Meta (formerly Facebook).

HipHop.js is a dynamic DSL inspired by Esterel for JavaScript that can be
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Chapter 1. Introduction

used for the orchestration of IoT devices, development of truly responsive UIs,
etc. Typically, in reactive systems the reactive program and the environment are
interdependent. Debugging reactive programs brings in some intrinsic challenges
that are different when compared to classical software developed using traditional
programming languages. This thesis is based on the study carried out in support
of programming in HipHop.js, specifically building infrastructure for debugging of
HipHop.js programs. Section 1.1 elaborates on the research problem, explaining the
motivation and objectives of this thesis. Section 1.2 summarizes the contribution
of this thesis, and Section 1.3 presents the overview of this thesis. Now, we discuss
the research problem of this thesis.

1.1 The Research Problem - Motivation and Ob-

jectives

In programming and software development as part of successful practices, testing is
employed which reveals the effect of errors. These errors can be broadly classified
as syntax errors, type errors, run time errors, logical errors, etc. The debugging
process which then follows should help in identifying the cause of the error and
henceforth fix those errors [131]. The compilers of the language usually provide
debugging support with respect to syntax and type errors. Run time errors and
logical errors require something extra other than the compiler support in tracing
them to correct. This is where the debugging support comes into picture. Without
good debugging support, programming in any of the programming languages is
difficult and would make programming an arduous exercise for programmers.

Why do bugs occur? In a survey on debugging [103], it is stated that, some
reasons bugs may happen is due to misconceptions about language constructs by
the programmer, parallelism bug (the ability to exploit constructs in a language
that can schedule parallel execution of statements), expectation and interpretation
mismatch problems, and problem with code familiarity (scenarios when working
with code written by others). The debugging infrastructure by definition should
not only help in resolving programming errors, they should also help in finding
design errors, as it helps the developer understand the problem thoroughly. The
software engineering life cycle prescribes continuous verification and validation

2 Static and dynamic debugging techniques for the HipHop.js language
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through all the phases of the software development life cycle rather than at the
end phase - where the cost of correction would be more compared to the actual
development cost [131].

The typical debugging process includes examining the error symptom (bug),
identifying the cause, and fixing the bug is a difficult process as seen by experienced
software practitioners. The symptoms may not give clear ideas indicating the cause
of the bug. Also, the symptoms can be very difficult to reproduce, as the replay
is needed to better understand the problem, and reproducing the same execution
trace is a known hard task when the concurrent program elements are involved.

Though there is no absolute method for fixing all the bugs, there are some
useful strategies mainly focussed on the localization of the errors [131, 117]. While
debugging errors, the general strategy applied is to narrow down the search and
focus on the likely source of errors. The successful practices apply one or many of
the following strategies to narrow down the search: bottom-up and incremental
development, using stepper debugger if there is one, visualization and logging
information, hypothesis based searching, backtracking and binary search, problem
simplification and abstraction of non-important parts. It is also observed that
“forward reasoning program order” - simulating the program’s execution is an
important utility in the tool kit of the programmer who intends to debug [103].

Reactive systems interact continuously with their environment and at the
speed decided by the environment. Debugging reactive systems is quite different
when compared to traditional systems. For debugging traditional transformational
programs using a stepper, typically we need the source file and a minimum of inputs
initially. We can observe the behavior of the program with no additional inputs.
Whereas for reactive systems, we require agreeing inputs at each step triggering
many steps, for step-by-step execution.

The typical nature of reactive systems lends us the motivation for embarking on
a study providing debugging support for HipHop.js programmers. HipHop.js follows
the model of perfect synchrony introduced in the Esterel programming language.
This leads to classical causality error cycles which are generally difficult to isolate
and to fix. This is the first motivation for this thesis - providing debugging support
for causality errors in HipHop.js. As noted earlier, some logical bugs are due to
a wrong understanding of the program constructs, or may be due to a mismatch
between expectation and interpretation. This is even more true with respect to

Static and dynamic debugging techniques for the HipHop.js language 3
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reactive systems development. This motivates the study for developing debugging
support that can help programmers understand and visualize the behavior of their
programs, and observe any unexpected behavior in their programs, narrow down
the source of logical errors, and hence, possibly prevent design errors.

The motivation and the literature help us frame the objective of the study for
this thesis: to develop a simple, easy-to-use infrastructure that can help debug
HipHop.js programs. This support will possibly help programmers minimize the
errors as much as possible throughout the development phase, allow programmers
to play with their programs by simulating the executions, and in narrowing down
the source of identified errors. This is not, in traditional terms a “debugger”, as
that would convey a sense of being a stepper that can step through executions.
It is an infrastructure, we are mooting as part of a bigger debugging support for
HipHop.js programs that will also include debugging support for causality errors.
In the next section, we summarize the contribution of this thesis.

1.2 Contribution of the Thesis

This thesis, as a first contribution presents the study carried out to provide
debugging support for special class of errors called “causality errors” that are unique
to languages following “synchrony hypotheses”. This support provides a better
understanding of the origin of errors by means of providing better error messages,
thereby resolving those errors. The second part of the contribution of the thesis is
about the study to provide various utilities as part of “HipHop.js program analyzer”
that meets the objectives we arrived at in the previous section. The program
analyzer allows programmers to simulate executions of their programs and observe
them for any unexpected behavior, helps understand the working of HipHop.js
language constructs, helps visualize the control flow in an execution, and replay
recorded executions. Also, in this thesis as part of the relevant background, we
present a detailed introduction to HipHop.js language constructs and reactive
programming. This helps people from non-reactive programming backgrounds
to understand the basics of synchronous reactive programming and the use of
HipHop.js for that.

The causality error tracer provides both dynamic and static debugging support,
in the sense the “error tracer” provides meaningful error messages during compile

4 Static and dynamic debugging techniques for the HipHop.js language
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time and during execution time. Whereas, the program analyzer is more of a
static support, where analysis of HipHop.js programs is done statically, not during
execution. Next, we present the overview of the chapters in this thesis.

1.3 Organization of the Thesis

Chapter 1, introduces the thesis, giving a bird’s eye overview of the research topic, its
background, objectives, contribution, and structure of the thesis. Chapter 2 sets the
context for the thesis by reviewing the basics of synchronous reactive programming
and languages. It also introduces the language features of HipHop.js with some
reactive programming examples and the compiling strategy used by HipHop.js
compiler. Readers who have prior exposure to synchronous reactive programming
and HipHop.js can safely skip this chapter without any loss of continuity to the next
chapter. Chapter 3 builds on Chapter 2 and is on support for causality error tracing
in HipHop.js. The chapter introduces the effects of synchrony on compilers/runtime
of reactive languages, illustrates examples of causality errors in reactive languages
and shows why resolving them is a difficult problem in HipHop.js for programmers
without better error messages. It has sections on the approaches taken to resolve
causality errors with the help of graph theory algorithms and method of solving
causality error in HipHop.js. Further, it discusses the implementation details of
the causality error tracing in HipHop.js, the evaluation of the implementation with
real-world examples, and conclusion with future work very specific to causality
errors. The material presented in some sections of Chapter 2 and all the sections
of Chapter 3 are with little or no modifications of the sections from the published
paper [86], hence the chapter is self-contained with its own sections on related work
and conclusion.

Chapter 4 is about the introduction to the program analyzer. It introduces
various utilities provided by the HipHop.js program analyzer, the motivation
behind them , and their usage. Chapter 5 is about the implementation details of
the analyzer. It explains in detail the way utilities of the program analyzer are
implemented. Chapter 6 introduces another utility that can be part of HipHop.js
debugging infrastructure. The “RecordPlayer” utility can record the state of a
HipHop.js program during each reaction and then replays it with visualization of
active control flow in the program. Chapter 7 deals with related work concentrated

Static and dynamic debugging techniques for the HipHop.js language 5



Chapter 1. Introduction

more on the second contribution of this thesis, about utilities of program analyzer
and “RecordPlayer”. Chapter 8 is about the future work and concludes the thesis.
The appendix section has chapters on BLIF, AIGER and NuSMV, which are some
tools and representation formats used in the design of utilities of the HipHop.js
program analyzer.

With this, we end the introduction chapter. In the next chapter, we provide
the relevant background to understand the contribution of this thesis.

6 Static and dynamic debugging techniques for the HipHop.js language



Chapter 2

Background

“Even theories must have foundations”

— Edgar Rice Burroughs

In this chapter we cover the background required to understand the contributions
of this thesis. HipHop.js [25], which is the language of discussion of this thesis
is based on Esterel’s semantics, a synchronous reactive language. Hence, we first
introduce reactive systems and programming in section 2.1. In section 2.2 we discuss
important aspects of programming in Esterel related to this thesis. In section 2.3
we introduce HipHop.js programming and language features. In section 2.4 we
give an overview of the compilation process of HipHop.js programs which is also
relevant to understand the contribution of this thesis. We want to once again
remind the readers that section 2.1 is presented here with little modifications from
the published paper [86]. Readers who are familiar in reactive programming and
HipHop.js can directly skip to chapter 3 without any loss of continuity.

2.1 Introduction to Reactive Systems and Program-

ming

Computer systems that react continuously to their environment at the rate set by
the environment forms a class of the so-called reactive systems [21, 70]. They differ
from classical computing systems which take input at the start of execution and
produce output before terminating. Furthermore, they also differ from traditional
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interactive systems like operating systems which endlessly interact with their
environment at their own speed (in contrast to the speed determined by the
environment). A reactive system can be perceived as a black box that perpetually
receives some input events as external stimuli and reacts to them by producing
some output events as their behavior. This output may successively affect the
production of later stimuli by the environment.

Starting in the early 80s, several languages have been proposed for program-
ming such systems. Amongst those, some opted for synchrony, making concurrent
programs deterministic, which has many advantages: programs are simpler, and
when analyzing, there is no need to take into account the choices that the operat-
ing system will make. Also, deterministic programs show reproducible behavior,
which is advantageous for tests and validations [32]. On the flip side, handling
concurrency and determinism is quite complex. Resolving the design trade-off
issue between concurrency and determinism warranted special purpose languages
called synchronous languages, designed specifically for developing reactive systems.
Among these reactive languages, the Esterel [24] language takes imperative ap-
proach, Lustre [38], Signal [18], and Lingua Franca [97] are data flow based, and
SCADE [23], Ptolemy II [90] are based on graphical formalisms, SCADE 6 [45]
which is both textual and graphical. Now, we introduce the programming model
followed in Esterel language.

2.2 Programming with Esterel

In this section, we provide a quick introduction to the programming and execution
concepts of Esterel that HipHop.js reuses.

2.2.1 Programming Model

The architecture of an Esterel program is typically made of one or several modules.
Broadcast is the communication mechanism: if one wants to communicate, it
broadcasts a value, so that every other module can see it instantly. A signal is
a logical unit of interaction and information diffusion. Signals can be emitted as
presence bits, possibly with some attached value. They can be instantly tested for
presence and their value can be read instantly in any part of the program (in their

8 Static and dynamic debugging techniques for the HipHop.js language
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scope). The framework of signals is used to unify both internal communication
(between various modules of an Esterel program) and external communication
(between the Esterel program and its environment). Even if it has multiple emitters,
a signal can have only one value and one status within each reaction. To keep this
true, multiple emitters need to be combined before the signal can be accessed by
readers.

Modules have a declared interface that interacts with the external world in the
form of input signals, output signals, and input/output signals. An input signal for
a module can be an output signal of another module and vice versa. If the need
arises for the reactive system to receive a signal from the environment and also send
the same signal back to the environment after some processing or filtering, then an
input/output signal can be used, those that can be both read as well as emitted
by the module. Figure 2.1 illustrates the architecture of a typical Esterel program
made up of various modules with broadcast communication set up between them.
The emission of signals can be simplified with a simple data bus analogy [109],
the “wire” in the bus for a signal is live with the information of the signal, when
that signal is emitted by any of the modules. All modules, including the one that
emitted this signal can listen to this wire and read the information emitted through
the signal. Once the current reaction instance is over, the bus resets, listening for
any successive signals to be put by the environment on the wires. In brief, all input
signals that are received from the environment as well as those signals emitted
by the system as part of its behavior are available to all the modules in the same
reaction instant.

Module

Module

Module

Module

Input signals Output signals

Module

 ... ...

 ... ... ...

Figure 2.1: Graphical illustration of a typical Esterel program.
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2.2.2 Execution model - Reaction and Instants

According to Esterel’s programming model, a reactive system reacts when activated
with input events by producing output events. In the Esterel terminology, instants
are the moments when a reactive system reacts, and a collection of instants traces
the system’s life history [34].

Esterel instants are synchronous and deterministic (perfect synchrony hypothe-
sis). That is, the execution of an instant takes no time, as if the computer executing
it is infinitely fast. Of course, this is an intellectual illusion but it means that
within an instant, the program cannot observe any temporal dependency. Within
an instant, all the components of a program observe the same state and values
for signals. For signals that are emitted several times during the instant, all the
parallel and sequential branches of the program observe exactly the same set of
emitted values. A reaction is complete when the system has reacted to all internal
and external events.

The perfect synchrony hypothesis is a prominent feature of the Esterel design,
which brings most of its expressiveness but also comes with a cost. It constrains
the implementation that either needs static analyses (as Esterel compilers do) or
dynamic detection (as HipHop.js does) to rule out programs that do not fit within
this model, and, as we will see, it makes debugging more complex (discussed in
detail in chapter 3). Now, we introduce the HipHop.js language features with
simple programming examples.

2.3 HipHop.js

Though initially HipHop.js was developed for Hop.js [125, 126] (multitier JavaScript
extension), the code generated by HipHop.js can be used in any client or server
JavaScript environment like Node.js. HipHop.js combines the three traditional mod-
els of programming (computation), transformational programming, asynchronous
concurrency, and synchronous reactive programming. HipHop.js can be used to
develop complex web application interfaces and IoT controllers, which are dynamic
in nature. HipHop.js blends Esterel’s synchrony with JavaScript’s asynchrony,
simplifying the cooperation between synchronous and asynchronous activities that
are typical in these application domains. HipHop.js differs from Esterel in hav-
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ing its own syntax and programming model adapted to the web. For example,
HipHop.js supports partial reconfiguration of programs between two synchronous
reactions (explained in detail in section 2.2.2), while maintaining consistency of the
control state. Readers who are interested for a thorough treatment including goal,
design and compilation of HipHop.js are requested to refer the original literature
on HipHop.js [25] and also the website1 for recent updates.

In the following section, we incrementally introduce HipHop.js language con-
structs which serves two purposes. First, for the readers who are new to synchronous
reactive programming, this acts as a tutorial review to reactive programming
through HipHop.js. Second, it serves the purpose of setting the context of the
language for the thesis contribution, thereby maintaining continuity of readability.

2.3.1 HipHop.js Language Features

The important features in HipHop.js are modules, reactive machines, signals,
control flow statements and support for seamless integration of asynchronous and
synchronous operations. We start with modules.

Modules

Modules in HipHop.js define a reusable behavior and are the basic execution
units helping in modular development of reactive software. Modules will have
an interface and a body defining their behavior. The body of a module includes
declared arguments and HipHop.js statements. The arguments are generally signal
declarations and is the interface between other modules and external environment
of the reactive system. A module can use signals that are defined in its argument
list and also local signals which are local to that particular module. The interface
signals have direction, in the sense that they can be input (in), output (out) or
bidirectional (inout) signals. Since local signals are local to a module and do
not interact with the external environment, they do not have any declaration of
directions. The following code listing 2.3.1 presents a typical modules in HipHop.js
with interface declarations of sig1 and sig2 as input and output signals respectively,
localSig declared as a local signal (signal) and the body containing HipHop.js
statements. The mod1 is the name of the module.

1http://hop.inria.fr/home/hiphop/index.html
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1 hiphop module mod1() {
2 in sig1;
3 out sig2;
4 signal localSig;
5 ...;// hiphop.js statements
6 ...;// hiphop.js statements
7 }

A HipHop.js module is executed by loading it directly into a reactive machine.
These machines are the ones generated by the HipHop.js compiler for the reactive
behavior we define in the module. Once the machine is created, it can be used as
JavaScript values and made to react to various inputs from the external environment
based on the interface declared.

Before introducing HipHop.js programming, we present the initial boiler plate
required to program with HipHop.js. To create hiphop reactive machine, as a first
step we need to import the “@hop/hiphop” library which has the utility for doing
so. The following JavaScript statement imports the “@hop/hiphop” DSL and makes
all the bindings it exports available through the identifier “hh”.

import * as hh from "@hop/hiphop";

Using the bindings in “@hop/hiphop” and HipHop.js module defined by the
programmer, a new reactive machine, e.g., “machine” can be created by using the
following statement.

const machine = new hh.ReactiveMachine("module_name");

The reactive “machine”, triggers reactions for each instants based on stimulus
from the environment.

machine.react(["signal_name"]);

With this very basic introduction to modules and the creation of reactive
machines, we jump to other HipHop.js statements. We proceed with statements
handling signals.

Signals

Signals are the means to communicate with other modules and the external world.
Signals are declared as part of the interface declaration of a module and these
signals can be pure signals without any value or valued signals, similar to Esterel.
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Further, local signals can be used with prior declarations within a module M. These
are local to module M, its parts and submodules, and invisible to the other modules
and external environment. As introduced earlier, the interface signals are declared
with directions, and for local signals the keyword signal is used to declare inside
a module. Before illustrating the declaration of signals, we present some of the
HipHop.js statements used along with signals. In HipHop.js, sequential statements
are separated with ‘;’ separator. For instance, in P; Q; the statement P is run
until it terminates and then Q is run in the same reaction instant. The absence
of a signal in an instant means there is no emission of that signal in that instant.
To emit a signal in an instant, emit statement is used. The following diagram and
listing illustrates the usage of emit statement and signal declaration. For the sake
of clear understanding of reaction instants, we also present the reaction timeline
alongside. In the reaction timeline, we present the input and output signals at
specific reaction instants. In the illustration, signals above the x-axis are input
signals, and below are output signals.

1 hiphop module prgEmitAB() {
2 out A,B;
3

4 emit A();
5 emit B();
6 }

Figure 2.2: Signal declarations and emit statement usage with timeline.

In the reaction timeline, since signals A and B are output signals, they are
present below the x-axis and both are emitted at the same instant. To make it
more clear, we provide a snapshot of the flow of control in the reaction instant 1 as
follows.

From the illustration, we see that after the control begin active at line 4, in
the same instant statement it is also active at line 5. Hence, signals A and B are
emitted in the instant 1, which is highlighted in source file at line 2 also.

Signals can also be used in expressions by using .pre, .now, .nowval, .preval
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Figure 2.3: Visualization of control flow in the instant 1

attributes. The testing of signal’s presence or absence at an instant can be done
using the if construct: if (sig_expression ) {...} else {...}. In the following
listing and figure 2.4, we illustrate the above usage with reaction instants timeline.

1 hiphop module prgIf() {
2 in A;
3 out B;
4

5 if (A.now) emit B();
6 }

Figure 2.4: If construct example listing and timeline of two scenarios.

According to the listing the testing for presence happens in the first instant
and for the value of signal A in that instant (.now). From the scenario 1 timeline,
we see that since signal A is present, signal B is emitted. Whereas in scenario 2,
since the testing for presence of signal A fails in instant 1, there is no emission of
signal B and the whole program is terminated and thus remains irresponsive to all
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subsequent inputs, hence no emission in instant 2 even though there is presence of
signal A. This can be better understood by visualizing the control flow inside the
module of scenario 2 as follows:

(a) scenario 2 - instant 1. (b) scenario 2 - instant 2.

Figure 2.5: Visualization of control flow for scenario 2.

We see that by instant 2, there is no active control at line 5, which was available
in instant 1. The issue with scenario 2 can be improved by using simple loop

construct which ensures the control back at the if construct as follows. The design
of the language has a restriction that the body of the loop must not terminate in
the same instant it was started (instantaneous loop). When using loop constructs
care should be taken to ensure there are no “instantaneous” cycles (explained in
detail in chapter 3 ) with the help of the yield statements. Executions can be
suspended for an instant and resumed in the next instant by using yield construct.
The improved example is illustrated as follows:

1 hiphop module prgIfLoop() {
2 in A;
3 out B;
4

5 loop{
6 if (A.now) emit B();
7 yield;
8 }
9 }

Figure 2.6: Simple looping listing and timeline

The visualization of the control flow for the above three instants is also presented
here:
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(a) A is present - instant 1. (b) A is absent - instant 2.

Figure 2.7: Control flow visualization of instants 1 and 2 for the module prgIfLoop

Figure 2.8: A is present - Control flow visualization of instant 3.

In the above example, we tested for the presence of signal A by taking the .now

val (value at the instant when it is tested). This can also be tested by using .pre

val of signal A, wherein the value of signal A in the previous instant will be used for
testing. It is illustrated as follows.

1 hiphop module prgIfPre() {
2 in A;
3 out B;
4

5 loop{
6 if (A.pre) emit B();
7 yield;
8 }
9 }

Figure 2.9: looping listing and timeline with A.pre
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HipHop.js provides a construct using which one can wait on a signal, the await

statement. We present it next.

await

The await statement is used for waiting on a signal. Typically the await statement
checks for the presence of the signal in the next reaction instant. But, if we want
to wait on signal in the immediate reaction instant, then the keyword immediate

should be used alongside await construct. The value of the signal to be considered
is determined by using .now or .pre. The following is the illustration of the usage
of await construct. Here, the presence testing of signal A happens from instant 2

with the value of signal A at that instant.

1 hiphop module prgawaitANow() {
2 in A;
3 out B;
4

5 await(A.now);
6 emit B();
7 }

Figure 2.10: await statement - [signal].now example, Scenario 1

In scenario 1, we see that signal A is present in instant 2, and as expected there
is emission of signal B (as waiting happens from instant 2). In scenario 2, we see
that signal A is present in instant 1, but the wait happens from instant 2 and hence
the input signal is neglected in instant 1. In the second instant, there is no input A,
hence no emission of B, but the wait continues. This is illustrated by visualizing
the control flow as illustrated here:
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Figure 2.11: await statement - [signal].now example, Scenario 2

For the sake of completeness, we illustrate the earlier example with A.pre values.
The listing and corresponding timeline can be seen here:

1 hiphop module prgawaitAPre() {
2 in A;
3 out B;
4

5 await(A.pre);
6 emit B();
7 }

Figure 2.12: await statement - [signal].pre example

Now, if we want to make the wait on a signal from the first instant, then we can
use the immediate keyword alongside await. We illustrate an example here with
listing and corresponding reaction timeline.
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1 hiphop module prgawaitImmANow() {
2 in A;
3 out B;
4

5 await immediate(A.now);
6 emit B();
7 }

Figure 2.13: await immediate statement examples.

In the above example, the wait happens from the first instant on signal A and
the value of signal A at the instant when it is true. For the sake of completeness,
we present an example listing and timeline when immediate is used but the value of
signal A used for waiting is from the previous instant to the instant when it is true.

1 hiphop module prgawaitImmAPre() {
2 in A;
3 out B;
4

5 await immediate(A.pre);
6 emit B();
7 }

Figure 2.14: await immediate statement example.

From the time line, we see that, in the first instant signal A is present, but
in the await construct, A.pre value is used which will be false, hence the control
remains active in the await construct. In the second instant, when await construct
checks for A.pre value which is true, makes the active control to flow to the next
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statement (emit B()), hence we see the emission. Further, the await construct can
also be used to wait on a specific number of occurrences of a signal. For this, the
count construct should be used. In the following illustration with code listing, we
see the usage of count keyword along with await and corresponding timeline in
Figure 2.15.

1 hiphop module prgawaitCount() {
2 in A;
3 out B;
4

5 await count(3, A.now);
6 emit B();
7 }

Listing 2.1: await count construct usage example

Figure 2.15: await count example timeline.
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In the listing above wait happens from the second instant for occurrences of
signal A, 3 times with the values being at those instants (.now). Next we present
about parallel constructs fork {...} par {...} available in HipHop.js for parallel
composition.

fork {...} par {...}

HipHop.js provides parallel constructs to implement parallelism and concurrency.
They are within fork {...} par {...} constructs. There can be multiple par

blocks, all the blocks start executing at the same instant and continue in parallel.
Even though each block may not terminate at the same instant, the entire fork/par

construct terminates only after the termination of all the blocks. In the following
we provide an example listing.

1 hiphop module prgForkPar() {
2 in i1,i2;
3 out o1,o2,forkParDone;
4

5 fork {
6 await(i1.now);
7 emit o1();
8 } par {
9 await(i2.now);

10 emit o2();
11 }
12 emit forkParDone();
13 }

Listing 2.2: fork {...} par {...} construct usage listing

The following figure illustrates various timelines for the above listing. In scenario
1, only signal i1 is present in the second instant, hence only emission from fork

block - o1, and par continues waiting for signal i2 . likewise, in scenario 2, only
signal i2 is present in the second instant, hence only emission from par block - o2,
while the fork block continues to wait for signal i1. In scenario 3, both i1 and i2

are present, hence all the output signal emissions in the same instant and active
control flows out of fork {...} par {...} block after this instant. Scenario 4 can
be understood the same way.
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Figure 2.16: Parallel statement example.

Next we present examples on reusability of modules by composing them within
one another.

Composition of HipHop.js Modules

Modules in HipHop.js promote modular programming, independent behavior can
be defined inside individual modules and can be reused as with the principle “write
once use many times” approach. Programmers can compose modules within one
another. In HipHop.js, another method of running a module (the first one being
loading directly to a reactive machine) is to run it inside another module via the
“run” statement. It takes the following form:

run module() { signal_bindings }
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We illustrate this concept with a small example as follows: In this example we
are mimicking the behavior of a very simple coffee/tea vending machine in its basic
form. Here, the user inputs the type of beverage they want, the machine delivers
it. So, initially we develop two modules, one each for dispensing the respective
beverage Coffee and Tea. In the following listing from line 1 we start with declaring
a Coffee dispenser module, starting with its interface and a simple body with just
an “emit” statement to emit a signal for dispensing the respective beverage at line 3
as follows.

1 hiphop module coffeeDisp() {
2 out C;
3 emit C();
4 }

Similarly, we declare a Tea dispenser module as follows.

5 hiphop module teaDisp() {
6 out T;
7 emit T();
8 }

Next, we use the above modules inside another module to compose a behavior of a
vending machine. We call this module “vendingMach”. This one takes input signals
specifying Coffee or Tea. Based on the input signal, the request is forwarded to
one of the above defined modules. In the following module line 10 and line 11
declares the input, output interface. Then it loops through waiting for input
signal at each instance. Based on input signal at line 14 or line 17, the “teaDisp”
module for dispensing Tea or “coffeeDisp” module for dispensing Coffee is executed
using the run construct that we introduced earlier. In each of these modules, the
arguments mapping are done using as keyword, which can be used for mapping
arguments between various modules. Here, the output signal of vendingMach,
which is signal Tea_cup is declared “as” the output signal T of the module teaDisp

providing mapping between the arguments of modules. Also, similarly for the signal
Coffee_cup. To prevent infinite looping in a single reaction instant, the module
pauses after each output event with the help of yield construct at line 20.

9 hiphop module vendingMach() {
10 in Tea,Coffee;
11 out Coffee_cup, Tea_cup;
12
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13 loop {
14 if (Tea.now) {
15 run teaDisp() { Tea_cup as T };
16 } else
17 if (Coffee.now) {
18 run coffeeDisp() { Coffee_cup as C };
19 }
20 yield;
21 }
22 }

Here, we see some of the reactions for the input signals in each instant.

23 machine.react("Coffee");// [ ‘Coffee_cup’ ]
24 machine.react("Tea"); // [ ‘Tea_cup’ ]
25 machine.react("Coffee");// [ ‘Coffee_cup’ ]
26 machine.react("Coffee");// [ ‘Coffee_cup’ ]

Next, we introduce the usage of preemption constructs abort and its variations.

abort

When an emission of some signal or signals happen, it may warrant killing of a
block of statements as a requirement. HipHop.js provides abort construct. The
abortion statement kills its body based on the occurrence of some criteria. There
are strong and weak flavors of abort construct. In the strong abort case, the body
does not get the control, while in weak abort case, the body gets the control for
the last time. Based on “when to react” - present instant of the occurrence of the
signal or in the next instant, and “when to kill” present instant or next instant, we
have four possibilities:

1. abort(),

2. abort immediate(),

3. weakabort(), and

4. weakabort immediate().

The following diagram 2.17 illustrates2 the above said four options and usage
pattern.

2adapted from Esterel Tutorial, Berry et al, 2005
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Figure 2.17: Preemption construct abort in HipHop.js.

In another form of preemption support, we can declare labeled escape blocks
for trapping an execution. This can be used with the help of labeling a block along
with break label construct. The usage and different reaction timeline is illustrated
here.

1 hiphop module prgTrap() {
2 in B;
3 out A, C, D;
4 lb1: {
5 fork {
6 yield;
7 emit A();
8 yield;
9 break lb1;

10 } par {
11 await (B.now);
12 emit C();
13 }
14 }
15 emit D();
16 }

Figure 2.18: Labeled escape example.
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For the sake of clarity in understanding, we present the visualization of the
active control flow for scenario 3 as follows.

(a) instant 1 (b) instant 2

(c) instant 3

Figure 2.19: Active control flow visualization for labeled escape example, scenario 3.

These label blocks can be nested and the outer block takes precedence, that is
if several blocks are exited by simultaneously executing breaks in parallel, only the
outer break exit matters, all the others are discarded. Next, we present the usage
of another construct suspend.

Preemption statements abort, and lexical escapes terminate some block or
computation, but if there is a need to resume it later, HipHop.js has suspend

statement. Instead of preemption, this merely suspends the block in an instant
and resumes it later based on certain criteria. The following illustrates the usage
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and corresponding timeline.

1 hiphop module prgSusp() {
2 in A;
3 out B;
4 loop {
5 suspend(A.now) {
6 emit B();
7 yield;
8 }
9

10 }
11 }

Figure 2.20: Suspension statement example.

For the sake of clarity in understanding, we present the visualization of the
active control flow as follows.

(a) instant 1 (b) instant 2

(c) instant 3 (d) instant 4

Figure 2.21: Active control flow visualization for suspend statement example.
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In the next section we present and illustrate the usage of integrating plain
JavaScript code with HipHop.js.

Synchronous and asynchronous operations

One of the design goal of HipHop.js is being to integrate seamlessly with native
JavaScript code. These code can be synchronous functions or asynchronous in
nature. The following example illustrates the integration of plain JavaScript
functions with HipHop.js reactive machine. In the following listing 2.3.1 we have a
very simple JavaScript function which checks whether a number is prime or not
and returns the result. This function is integrated with HipHop.js reactive machine
to simulate a prime number checker in reactive programming.

7 function isPrimeFunc(num) {
8 for (let i = 2, n = Math.sqrt(num); i <= n; i++) {
9 if (num % i === 0) return false;

10 }
11 return num > 1;
12 }

The following module prgJSync is the HipHop.js module which will coordinate
with the JavaScript function isPrimeFun. N is the input signal, with isPrime as
the output signal. Now, in HipHop.js any plain JavaScript statements can be
included within hop {} construct. Also, to provide arguments exchange between
HipHop.js module and plain JavaScript functions, we can declare a variable with
let and can be used for information exchange. We get the value of the number
to be checked for prime, through signal N, specifically N.nowval and assign it to a
variable which can be used as an argument for the JavaScript function. So, we call
the function 2.3.1 inside hop {} construct at line 21 and also assign its return value
to another variable. Finally, with the returned value we emit the output signal
isPrime in line 22.

14 hiphop module prgJSync() {
15 in N;
16 out isPrime;
17

18 loop {
19 let keyin = N.nowval;
20 let keyout;
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21 hop { keyout = isPrimeFunc(keyin); }
22 emit isPrime(keyout);
23 yield;
24 }
25 }

Through line 29 to line 31 we see various reactions on the machine in various
instants with different input values.

29 machine.react( { N:1024 } ); // [ ‘isPrime(false)’ ]
30 machine.react( { N:9973 } ); // [ ‘isPrime(true)’ ]
31 machine.react( { N:-1 } ); // [ ‘isPrime(false)’ ]

The construct async() is used to integrate asynchronous operations and blocks
inside HipHop.js. It provides a way to control nondeterminism. It provides integra-
tion of nondeterministic asynchronous computation with synchronous computations.
The syntax is as follows:

async ([ident]) { ... }
[kill { ... }]
[suspend { ... }]
[resume { ... }]

The optional identifier in [ident] can be used to notify the completion of the
asynchronous block as that ident is emitted once the asynchronous block completes
its execution and returns. In the JavaScript code that triggers the HipHop.js module
execution, this.notify() construct triggers the emission of ident signaling the
completion of asynchronous execution. The emission will have resolve or reject

of a promise returned by the asynchronous block. This emission can be further
used by examining the values (.nowval). Further, the optional blocks preceded by
kill, suspend, resume can be killed, suspended or resumed on need basis. The
following is an example of the usage of a simple async() block in HipHop.js. We
use the same JavaScript function of the previous example but asynchronous version.
In the following listing line 6 through line 23 defines an asynchronous JavaScript
function which checks whether a number is prime or not and returns the result
after a random amount of time delay. Since it is an asynchronous function, we use
the promises and resolve the result with a JSON object containing the result of
checking and simulated time of delay as a time used to process.

6 function prime(num) {
7 let tUnit = Math.floor(Math.random() * 4);
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8 return new Promise((resolve, reject) => {
9 const primCheck = num => {

10 for (let i = 2, n = Math.sqrt(num); i <= n; i++) {
11 if (num % i === 0) {
12 resolve({ "value": num,
13 "test": false,
14 "processed␣time": tUnit });
15 }
16 }
17 resolve({ "value": num,
18 "test": num > 1,
19 "processed␣time": tUnit });
20 }
21 setTimeout(() => primCheck(num), tUnit*1000);
22 });
23 }

The following listing is the HipHop.js module that will coordinate with the
above function. We use the async() construct as introduced earlier in line 29. We
have used a local signal to signal the notification of result from the asynchronous
function. Using this notification, we emit the output signal isPrime.

24 hiphop module prgAsynJS( ) {
25 in N;
26 out isPrime;
27 signal O;
28 let keyin = N.nowval;
29 async (O) {
30 this.notify(prime(keyin));
31 }
32 emit isPrime(O.nowval.val);

Line 37 triggers a new reaction with input number and shows the corresponding
output.

37 machine.react({N:9973});
38 //output : isPrime({"value":9973,"test":true,"processed time":1})

Now, we integrate both asynchronous JavaScript functions and synchronous Java-
Script functions with a single HipHop.js reactive machine and illustrate the usage
as a simple orchestrator. This example is a simple implementation of a very basic
air conditioner, wherein based on the user required temperature setting, the air
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conditioner will manage a cooler and heater to maintain the required user set
temperature. The following listing is of a plain JavaScript function which will
mimic the working of a thermometer. We randomly generate a number add 20 to
it to generate a temperature between 20 to 30 and return this value.

7 function thermometerRead() {
8 let tempSeed = Math.floor(Math.random() * 10);
9 tempSeed += 20;

10 return { "temperature" : tempSeed };
11 }

The following listing is of an asynchronous JavaScript function, which mimics
the working of an heater. It takes the temperature setting value and present
temperature sensed by the thermometer, and switches on the heater till the present
temperature equals the setting value. As it is an asynchronous function, it returns
a promise, which is resolved after a specific delay - here we have taken delay as
equal to as many seconds as in the difference of temperature between required and
present thermometer reading.

14 function heaterOnOff(tempRef, envTemperature) {
15 console.log("Heater␣switched␣on,␣temperature:␣", envTemperature);
16 return new Promise((resolveHeater, rejectHeater) => {
17 let count = Math.abs(envTemperature - tempRef);
18

19 function heater() {
20 while (count > 0) {
21 envTemperature += 1;
22 console.log("\t␣temperature␣increased␣to:␣", envTemperature);
23 count--;
24 }
25 resolveHeater({ "temperature" : envTemperature })
26 }
27 setTimeout(heater, count*1000);
28 });
29 }

The following listing is also another asynchronous function but mimicking a
cooler. So, instead of increasing the temperature it will reduce it based on the
difference of required setting and the value read by temperature.

31 function acOnOff(tempRef, envTemperature) {
32 console.log("AC␣switched␣on,␣temperature:␣", envTemperature);
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33 return new Promise((resolveCooler, rejectCooler) => {
34 let count = Math.abs(envTemperature - tempRef);
35

36 function cooler() {
37 while (count > 0) {
38 envTemperature -= 1;
39 console.log("\t␣temperature␣decreased␣to:␣", envTemperature);
40 count--;
41 }
42 resolveCooler({ "temperature" : envTemperature })
43 }
44 setTimeout(cooler, count*1000);
45 });
46 }

The above three functions are integrated with a reactive machine whose behavior
is defined in the module prgAirCon. Lines 51 through 53 declare the interface and
local signals for the module. So the flow of control is as follows: when the machine
is made to react by giving the temperature settings, the thermometer function
returns the temperature. This function runs in a parallel branch (line 56) with
three more branches and emits the read temperature if it is less or greater than
the required temperature setting. The second branch in line 64 waits on the
temperature emitted by the first parallel branch. Based on the difference value
between the thermometer temperature and the required temperature, this branch
issues a local signal to switch on either the cooler or the heater (line 67 or line 70).
The branches three and four at line 73) and line 81) wait on the signal emitted
by the second branch. Based on the signal, either the heater (line 77) or cooler
(line 85) will be switched on to set the temperature as required. Once done, we
receive the notification and emit those resolved values.

50 hiphop module prgAirCon() {
51 inout settingTemp;
52 out Temperature, noChangeTemperature, newTemperature;
53 signal heaterOn, coolerOn, signalCooler, signalHeater;
54 let settingTempvalue = settingTemp.nowval;
55

56 fork {
57 let envTmpval;
58 hop { envTmpval = thermometerRead(); }
59 if (envTmpval["temperature"] !== settingTempvalue) {
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60 emit Temperature(envTmpval["temperature"]);
61 } else {
62 emit noChangeTemperature(settingTempvalue);
63 }
64 } par {
65 await immediate(Temperature.now)
66 if (Temperature.nowval > settingTempvalue) {
67 emit signalCooler(Temperature.nowval );
68 }
69 if (Temperature.nowval < settingTempvalue) {
70 emit signalHeater(Temperature.nowval);
71 }
72 } par {
73 await immediate(signalHeater.now)
74 let temp = signalHeater.nowval;
75

76 async(heaterOn) {
77 this.notify(heaterOnOff(settingTempvalue, temp));
78 }
79 emit newTemperature(heaterOn.nowval.val["temperature"]);
80 } par {
81 await immediate(signalCooler.now)
82 let temp = signalCooler.nowval;
83

84 async(coolerOn) {
85 this.notify(acOnOff(settingTempvalue, temp));
86 }
87 emit newTemperature(coolerOn.nowval.val["temperature"]);
88 }
89 }

The following is one of the example run on the reactive machine.

90 let machine = new hh.ReactiveMachine(prgAirCon);

We see the following output on different runs.

[ ’settingTemp(24)’, ’Temperature(29)’ ]
AC switched on, temperature: 29

temperature decreased to: 28
temperature decreased to: 27
temperature decreased to: 26
temperature decreased to: 25
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temperature decreased to: 24
[ ’newTemperature(24)’ ]
----------****---------
[ ’settingTemp(24)’, ’Temperature(21)’ ]
Heater switched on, temperature: 21

temperature increased to: 22
temperature increased to: 23
temperature increased to: 24

[ ’newTemperature(24)’ ]

With the above example, we come to the end of the introduction to programming
and language features of HipHop.js. We saw various examples with code listing
and timeline diagrams, depicting the functionality of the HipHop.js language
constructs and its temporal behavior. Next we present some internal details with
respect to compilation of HipHop.js programs which is important to understand
the contribution of this thesis.

2.4 Compilation of HipHop.js Programs

The HipHop.js implementation borrows from Esterel one of its implementation
techniques. The HipHop.js compiler translates a program into an equivalent Boolean
circuit, which is based on Esterel’s hardware translation [25]. This translation is
defined as a set of syntactic rules that map Esterel constructs to elementary circuits.
These circuits are then wired together to form the executable version of the source
Esterel program. We illustrate a typical organization of a circuit generated by the
compiler as follows.

Registers


(Logical functions)

Next state

at 't+1'

Current
state at 't'

Input
stimulus 

response
to input
stimulus

Input 

interface

Output

interfaceCombinational Circuit

Figure 2.22: General format of HipHop.js Programs when translated to circuits

For the sake of completeness, we define some of the terms used in describing
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boolean circuits as in [128]. A logic gate is a logical device with n boolean inputs
and 1 boolean output, that computes a boolean function (AND, OR, NOT, etc).
The register is a device which takes in a boolean data input, a boolean clock
input, and provides a data output. The input value is copied to the output value
during the execution of the instant. Classically, the part of the circuit (netlist)
consisting of just the logic gates is called the combinational part. We do not further
elaborate on the compilation process as it has already been fully described in
previous publications [22, 116], but we present a few examples to give readers a
intuitive feel of compilation of HipHop.js programs.

Let us consider the following listing, which is a simple program for unconditional
emission of a signal.

1 hiphop module prgEmitSimple() {
2 out O;
3

4 emit O();
5 }

This program is compiled to a boolean circuit, whose “netlist” is illustrated with
some information in Figure 2.23.

0
boot_reg

[173]

5
O

[173]

3
O_pre_reg

[173]

1
c o n s t 0
[173]

4
O_pre_ga te

[173]

Figure 2.23: Netlist for a single signal emission.

We see a set of OR gates connected alongside registers. For the sake of
illustration, in the figure, we have each net (logic gates/registers) named and
numbered alongside the first character position in the source code that contributes
to creation of the respective net (enclosed within square brackets). The actual nets
generated by the HipHop.js compiler will have more information than the ones we
have presented here. Number 0 is usually associated with the global boot register
by the present HipHop.js compiler.
The reaction for an input event (a signal) is nothing but propagation of boolean
values through the netlist that are generated for a particular program. Once the
propagation of values runs through all the nets inside the netlist, we will have the
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reaction (unique fixpoint) for the input signal at that reaction instant going with
perfect synchrony hypotheses.

Here is a second example Figure 2.24, illustrating net list for the following
listing which uses parallel execution construct fork/par.

1 hiphop module prgEmitFork() {
2 out A,B;
3

4 fork {
5 emit A();
6 } par {
7 emit B();
8 }
9 }

It is compiled as:

0
boot_reg

[173]

5
A

[173]

9
B

[173]

3
A_pre_reg

[173]

7
B_pre_reg

[173]

1
c o n s t 0
[173]

4
A_pre_gate

[173]

8
B_pre_ga te

[173]

Figure 2.24: Netlist for parallel branches.

We can see as and when the program complexity increases, the number of gates
in the netlist also increases. This marks the end of this section on HipHop.js and
chapter on general background necessary for continuity of the next chapters. In
the next chapter, we proceed with the “causality error” problem and the support
HipHop.js extends to trace them.
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Causality Error Tracing in HipHop.js

The expressiveness and the flexibility of Esterel dialects come with a downside: the
debugging support, precisely the error reporting which is difficult because errors
detected by the runtime system are loosely connected with locations in the program
source code. Improving these error messages is the subject of this chapter and
one of the main contribution of this thesis. This work has been presented at the
PPDP’21 conference [86]. We present a technique that isolates the fragments of
the program that are responsible for an error when it occurs. The technique we
present applies to the compilation technique HipHop.js uses to transform a source
program into an equivalent electric circuit. The improved error messages are built
by isolating parts in the generated circuit - minimizing the size of causality error
cycles using an iterative process.

The chapter is organized as follows. Section 3.1 introduces the effect of perfect
synchrony. Section 3.2 introduces and explains the classical causality problem
typically faced in synchronous reactive languages. Section 3.3 explains in detail the
method proposed to improve causality error reporting, including the theoretical
basis it uses. In section 3.4, we elaborate on the strategies used to implement
debugging support for causality problems. This chapter is self contained with its
own related works and conclusion sections. Section 3.5 is about related work and
section 3.6 concludes this chapter.
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3.1 Instantaneous Reaction to Absence of a Signal

The synchronous hypothesis implies that testing and reaction to presence/absence
of a signal should not take time. In the reactive synchronous language world, there
are two schools of thoughts while deciding instantaneous reaction to absence of a
signal. That is, for a conditional expression as the following one:

if (Signal.now) {
// Signal present statement

} else {
// Signal absent statement

}

if Signal is not emitted in the instant, then, when should the else branch, “Signal
absent statement”, be executed? Is it executed during the same instant or at the
next instant? In Esterel, the first option is adopted, while other synchronous
languages such as Reactive C [32], SugarCubes [35] and ReactiveML [99], go
with the second option. For an unsuspecting programmer, this may seem a futile
decision, but the approach chosen greatly impacts the design and programming
model, bringing their own inherent intricacies to tackle with.

In the approach followed by languages like Reactive C, SugarCubes and Reac-
tiveML, where there is no immediate reaction to absence of a signal, implicitly a
“yield” (or “pause”) statement is added before the “else” branch to avoid micro-
scheduling analysis and prevent execution inconsistencies analogous to deadlocks
of concurrent programming. These languages do not instantly react to signal
absence, rather they delay the execution of else branch to the next instant using the
aforementioned yield, which implies that their emission and reception of signals
are also delayed. This may desynchronize communications with other concurrent
modules that are often designed independently and reused. But, this approach
avoids the problem of detecting and reporting synchronous inconsistencies, as is
the approach taken by Esterel like languages.

Combining instantaneous reaction to absence and cyclic dependencies as Esterel
supports, makes the implementation complex as a signal is known to be absent
only when it can be established that it can no longer be emitted in that instant.
This creates a drawback of generating so-called potential causality problems, which
is a sort of circular dependency that may cause deadlocks during a reaction. The
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compiler/runtime has to perform causality analysis to see if programs have causal
cycles, then they should have a well-defined behavior [129], that is, there should
be only safe combinational cycles. This is explained in detail in next section.

3.2 Causality in Esterel Family Languages

HipHop.js adopts Esterel’s model of instantaneous reaction to absence of signal.
HipHop.js programs can test for the absence of a signal and react in the same
instant to this very absence. This leads to existence of potentially incoherent
programs in which there is no way to decide, while respecting the synchrony
hypothesis, if a signal is present or absent [33]. The compilers or runtime systems
are responsible for detecting and rejecting these programs. The Esterel compiler
detects them at compile-time. The Esterel v5 compiler accepts and generates code
for combinational cycles when using option “-I”, wherein correct cycles pose no
problem and incorrect ones are detected at runtime. Likewise, HipHop.js generally
rejects inconsistent programs at runtime whenever an attempt is made to execute
inconsistent branches.

Here is an example program, where there is no possibility to determine a signal’s
presence status. Signal S is input/output signal here. The HipHop.js expression
“S.now” tests the presence of the signal S and “emit S()” is for signal emission:

1 hiphop module prg() {
2 inout S;
3

4 if (!S.now) {
5 emit S();
6 }
7 }

In the program, signal S cannot be present as it is emitted only in case it is absent,
also, the signal S cannot be absent, since it would be emitted and thus present.
There is no possible interpretation of the above program that complies with the
perfect synchrony hypothesis and the duality/incoherence results in deadlock at
the code fragment (to be avoided by the compiler/runtime) if the environment
does not provide signal S at a reaction instant. This situation can also arise in two
parallel branches which are individually coherent as seen in the following program -
fork/par construct is used to build parallel branches in HipHop.js:
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1 hiphop module prgParallel() {
2 inout S1, S2;
3

4 fork {
5 if (!S2.now) {
6 emit S1();
7 }
8 } par {
9 if (S1.now) {

10 emit S2();
11 }
12 }
13 }

If we assume that S2 is absent, then S1 is emitted by the first parallel branch inside
fork construct; as S1 is present, S2 should be emitted in the second parallel branch
within par construct, which is contradictory with the absence of S2 (premise for
emit of S1). Now, if we assume that S2 is present, then it should have been emitted
by the par branch; but, this implies that S1 is also present; which is not possible
because in the fork branch, as S2 is present, there will be no emission of S1. This
incoherence again creates a scenario of synchronous deadlock. Generally speaking,
in incoherent statements instantaneous reaction to absence of a signal leads to
negating this absence, by emitting that signal and conversely.

For the user, the incoherence problem is complex to deal with as a program
grows - understanding the nature and source of these inconsistencies will become
difficult for non-trivial realistic programs. The aim of the study presented in this
chapter is to propose tools that can help programmers in understanding and fixing
these problems. In the following section, we elaborate the causality problem with
respect to HipHop.js, which will set the context for the requirement of tools to
mitigate from those scenarios.

Causality in HipHop.js

As we have introduced earlier in section 2.4 of previous chapter, the HipHop.js
borrows from Esterel one of its implementation techniques for compilation of
HipHop.js to circuits. We observed a significant amount of increase in the number
of nets in the netlist of the examples we presented in section 2.4. We will see that
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this growth is one of the difficulty of HipHop.js debugging.

Let us see the netlist for the following program which has “causality cycles”
problem:

1 hiphop module prgToBeOrNotToBe() {
2 inout S;
3

4 if (S.now) {
5 } else emit S();
6 }

Listing 3.1: A non-constructive program.

The execution of an instant consists in propagating values through the logical
gates. Values are pushed from gates to gates. When all the inputs of a gate
are known, then the output is computed and propagated to the connected gates.
Incorrect programs are characterized by circuits for which the value propagation
does not complete. That is, after the propagation, some gates are still missing input
values and output cannot be computed. This happens for circuits that contain bad
cycles.

When we execute the above program, the HipHop.js compiler without causality
debugging support reports the following error message, which is basically the
number of nets that prevent the reaction fixpoint to be reached:

TypeError: causality cycle of length 5 detected

Listing 3.2: The error message

The netlist for the above code is illustrated in Figure 3.1. Nets having ids 5,
16, 17, 18 and 27 are not participating in the propagation of boolean values. This
is the symptom of an error, because it means that the value propagation in the
circuit has not completed. In other words, it means that there is an error in the
program that gave rise to a causality error cycle.
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18-AND

[145]

17-AND

[145]
NOT

16-AND

[145]

5-OR

[113]

27-OR

[145]

3-REG

[113]

22-AND

[145]

0-REG

[113]

1-OR

[113] 4-OR

[113]

19-OR

[145]

Figure 3.1: Netlist for prgToBeOrNotToBe program.

The above generated circuit contains a combinational cycle highlighted within
red rectangle. The blue arrow represents negated output. In electrical engineering,
circuits with combinational cycles are usually avoided, as the presence of these
cycles can lead to oscillations and unpredictable behavior. This combinational cycle
in the context of HipHop.js has blocked the execution (does not attain fixpoint),
due to synchronous deadlock. We once again borrow the concepts of electrical
engineering to explain this situation. Generally, a circuit is well-behaved, if for
every input, the output stabilizes to a unique value (fixpoint) within a bounded
amount of time. In circuits with combinational cycles, the circuit may not be
well-behaved as they may be oscillating, giving rise to deadlocks. But, there are also
useful Esterel programs that leads to perfectly correct circuits with combinational
loops; these are exactly characterized by the constructive semantics [22]. For them,
the semantical inconsistency can only be detected at runtime in HipHop.js (Esterel
compilers detect them statically, but with an expensive Boolean or SMT based
static analysis techniques).

We conclude this section with an illustration, which shows the scaling up of
netlist considerably for a simple ABRO (the “Hello World” of reactive programming)
program listed below.

1 hiphop module ABRO() {
2 in A, B, R;
3 out O;
4

5 do {
6 fork {
7 await(A.now);
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8 } par {
9 await(B.now);

10 }
11 emit O();
12 } every(R.now)
13 }

Listing 3.3: Another simple HipHop.js program.

A program can wait for one or several signals to be emitted in HipHop.js with the
await construct, which waits for a condition to be true 2.3. In the listing, as soon as
both inputs A and B are received, O is emitted as the output. The behavior is reset
whenever the input R is received. The netlist for the above program is presented in
the following Figure 3.2. It shows that for a simple program, the number of nets
increases considerably. Some HipHop.js compilation optimization reduces the size
of this graph but for the clarity of this presentation, the optimizations have been
disabled.

0-REG

[249]

204-AND

[292]

NOT

25-AND

[312]

74-AND

[344]

132-OR

[303]

160-AND

[303]

210-AND

[292]

205-AND

[292]

206-AND

[292]

21-OR

[312]

70-OR

[344]

196-OR

[292]

1-OR

[249]
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20-AND

[312]

69-AND

[344]

179-OR

[292]

3-REG

[249]

4-OR

[249]

5-OR

[249]

48-AND

[312]

42-AND

[312]
NOT

43-AND

[312]

7-REG

[249]

8-OR

[249]9-OR

[249]

97-AND

[344]

91-AND

[344]

NOT

92-AND

[344]

11-REG

[249]

12-OR

[249]

13-OR

[249]

NOT

19-REG

[312]

22-AND

[312]

41-AND

[312]

125-OR

[303]

153-OR

[303]

NOT

34-OR

[312]

193-OR

[292]

157-OR

[303]

161-AND

[303]

31-AND

[312]

134-OR

[303]

28-AND

[312]

158-AND

[303]

128-OR

[303]

68-REG

[344]

71-AND

[344]

90-AND

[344]

146-OR

[303]

NOT

83-OR

[344]

150-OR

[303]80-AND

[344]

77-AND

[344]

17-OR

[249]

188-OR

[292]

133-OR

[303]

159-AND

[303]

168-OR

[303]

197-OR

[292]

222-OR

[249]

186-AND

[292]
177-REG

[292]

180-AND

[292]

Figure 3.2: Netlist for ABRO program.

Now, with the context set, we summarize what happens when we come across
causality problem in HipHop.js, which is not the case for ABRO above. In that
case, the runtime while propagating the signals, will not reach fixpoint, since some
of the nets will form cycles. If some of the nets do not participate in propagation,
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then the HipHop.js runtime would reject the programs as non-deterministic and
non-constructive due to causality error.

Debugging these errors require isolating parts of the source code that cause
cycles in netlist. Realistic programs are compiled into netlist of hundreds or
thousands of gates. When these netlists contain cycles, many gates are generally
involved, which makes HipHop.js error messages very difficult to interpret by
programmers. The purpose of this study is to improve the error messages triggered
for non-constructive programs by isolating smaller cycles that actually cause these
errors, and this makes it easy for programmers to localize the true source of the
error cycle in their source code.

3.3 Isolating Causality Error Cycles

After presenting the problem of causality errors in the previous section, we discuss
here the techniques used to isolate the causality error cycle for providing debugging
support to causality problems in HipHop.js. Providing the location of the statements
in the source code which form cycles in the boolean circuit to programmers is
helpful in debugging the causality errors. For a simple program or small cycles
(cycle size determined by number of nets participating in cycle formation), we can
directly present the location that can be inspected by programmers to debug, but
when the program scales or the size of the cycle becomes huge for a program, then,
presenting the locations of big cycle may not be useful to programmers as it may
span a large number of locations in the source code and may be humanly impossible
to debug with such information. Hence, our endeavor is to provide source code
locations of a smaller cycle in the program, so that programmers can comprehend
and resolve the smaller cycle and then proceed further with the next bigger cycle,
if any, to debug (a big cycle can contain several small cycles which are much easier
to debug for the user than the bigger ones). In 3.3.1, we illustrate the application
of the methodology that isolates smaller cycles and also review some more relevant
graph theory concepts. In 3.3.2, we explain the algorithm that aids in isolating
smaller cycles and we conclude this section in 3.3.3 with a case-study report on the
application of isolating smaller causality error cycles in a real-world application
that has been developed using HipHop.js.
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3.3.1 Cycle Simplification - Overview of Methodology

The combinational circuits in the form of directed graphs can be analyzed with
the help of graph theory algorithms to find smaller cycles in a given graph. Specif-
ically, we will be using R. Tarjan’s “Strongly Connected Components” (SCC)
algorithm [136] and “Weak Topological Ordering” (WTO) algorithm proposed
by F. Bourdoncle [31] to find smaller cycles in the graph and display it to the
programmer for debugging.

In a directed graph with cycles, we may have Strongly Connected Components
(SCC). We remind the reader that in a directed graph, a cycle is a directed non-
empty trace of vertices (nodes) in which, the only repeated vertices are the last
and first vertices, and a graph G is strongly connected if every vertex V1...Vn
is reachable from every other vertex. For example, in the directed graph as in
Figure 3.3, we have six vertices grouped into three SCCs, seen as clusters. These
SCCs can be of varying sizes (based on number of vertices).

SCC 1

SCC 3SCC 2

1
3

2

4 56

Figure 3.3: Strongly Connected Components (SCC) in a directed graph.

Now, reverting back to causality errors in HipHop.js, the initial display of error
message in the form of total number of all the nets not participating in the reaction
can be simplified to be useful, if we take the help of SCCs in the directed graph
formed by these non-participating nets. As we see, the SCCs contain all the cycles
that are formed in the graph and if their size is less than the original number of
non-participating nets (number of nets in SCC being less than the total number of
non participating nets in the reaction), then by presenting the source code locations
of those nets in SCC, we can help programmers narrow down to a smaller cycle,
that they can potentially debug.

We use Tarjan’s algorithm to find SCCs in the directed graph of the netlist
generated by HipHop.js compiler. We shall illustrate this application with the
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following trivial program that suits our purpose for giving intuitive understanding.
In HipHop.js a module can be executed inside another module by using the run

keyword (e.g., line 14 in listing 3.4). Here in the program listing 3.4, we have causal
dependency between signals M and N due to composition of the the two modules,
main and sub. Moreover, on signal J, the problem of to be or not to be can be seen
at line 4.

1 hiphop module sub() {
2 inout M,N,J;
3 if (N.now) {
4 if (!J.now) emit J();
5 emit M();
6 }
7 }
8

9 hiphop module main() {
10 inout M,N,J;
11

12 if (M.now) {
13 emit N();
14 run sub(){M,N,J};
15 }
16 }

Listing 3.4: More complex causality error program.

The netlist for the above listing is in Figure 3.4, where we see a large number of
nets in the boolean circuit and combinational cycles.

0-REG
[ 2 0 6 ]

80-AND
[ 2 3 0 ]

78-AND
[ 2 3 0 ]

79-AND
    [  2 3 0 ]

NOT

9-OR
[ 2 0 6 ]

52-AND
[ 1 3 1 ]

50-AND
[ 1 3 1 ]

51-AND
[ 1 3 1 ]

93-OR
[ 2 3 0 ]

1-OR
[ 2 0 6 ]

3-REG
[ 2 0 6 ]

4-OR
[ 2 0 6 ]

5-OR
[ 2 0 6 ]

84-AND
[ 2 3 0 ]

7-REG
[ 2 0 6 ]

8-OR
[ 2 0 6 ]

56-AND
[ 1 3 1 ]

NOT

11-REG
[ 2 0 6 ]

12-OR
[ 2 0 6 ]

13-OR
[ 2 0 6 ]

32-AND
[ 1 5 0 ]

36-AND
[ 1 5 0 ]

30-AND
[ 1 5 0 ]

31-AND
[ 1 5 0 ]

NOT

41-OR
[ 1 5 0 ]

61-OR
[ 1 3 1 ]

  54-OR
[ 1 3 1 ]

99-OR
[ 2 0 6 ]

81-OR
[ 2 3 0 ]

82-OR
[ 2 3 0 ]

Figure 3.4: Netlist of the causality error program in listing 3.4.
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When we compile the above listing 3.4 without the causality error debugging
support discussed in this chapter, we see the following error message, pointing out
to a specific length of the error cycle:

TypeError: causality cycle of length 13 detected,
involving signals J,N,M

This is a weakly informative message! For the same listing 3.4, using Tarjan’s SCCs
to build the error message improves the precision of the error report as seen here:

TypeError: causality cycle of length 4 detected,
involving signals J,N,M

This is a considerable improvement in the error trace that has been reduced at
least by a factor of 3. We see in Figure 3.5, the SCC of the graph highlighted.
The reason for inherent mismatch between error report (cycle of length 4) and the
number of nets (11 within SCC) is due to an optimization strategy used to combine
nodes formed at the same source location. That is, when two nodes originate from
the same source location, they are merged in the error report, without loss of any
information. We give an example of this reduction process at the end of 3.3.2.
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  54-OR
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99-OR
[ 2 0 6 ]

81-OR
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82-OR
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Figure 3.5: Netlist showing the causality cycle with SCC from Tarjan’s SCC
algorithm on listing 3.4.

Although computing SCCs helps us in narrowing down the causality problem,
it may be less useful at times if the SCC itself is huge and error messages point
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to a very large cycle. In graph theory, it has been observed that a SCC can have
smaller sub components which are themselves SCC. We can recursively traverse
through the SCC to find a smaller possible sub component which is also strongly
connected inside the original SCC. If the error message displays this smaller cycle
to the programmer, we believe the programmer can incrementally debug from
smaller cycle to the next bigger cycle. This is where we adopt Bourdoncle’s WTO
algorithm [31], which is utilized to find smaller SCCs contained within larger
SCCs. When the same listing 3.4 is compiled with Bourdoncle’s WTO refinement
(explained in next section), we see the following error message and we can see the
corresponding illustration on the netlist in 3.6. In 3.7 we provide enlarged view of
the smaller Bourdoncle component for better readability.

TypeError: causality cycle of length 2 detected,
involving signals J
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 Causality cycle - WTO

Figure 3.6: Netlist showing smaller causality cycle with Bourdoncle WTO refine-
ment.

Compared to error messages based on SCC, we see that after WTO refinement,
the quality of error message improves by another factor of 2.
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13-OR
[ 206 ]

32-AND
[ 150 ] 30-AND

[150 ]

NOT

   Causality cycle - WTO

Figure 3.7: Enlarged view of the smaller causality cycle

In total an improvement by a factor of six with the initial error report without
any causality error analysis support. Further, the refined error message precisely
isolates the source of the problem: the pattern of line 4 in listing 3.4 is incorrect
(pointing to the actual source location is explained in section 3.4).

3.3.2 Cycle Simplification - Algorithm Details

In this section, we explain in detail the WTO algorithm that we use in HipHop.js
to simplify even more the cycles reported to programmers when causality errors
occur. We start with some essential definitions from [31, 135, 57]. A Bourdoncle
component or a component is a set of vertices within a matched pair of parentheses.
The head of the component is the leftmost item and the vertices in the component
are strongly connected. The netlist is analyzed to build WTO of the nets. WTO
is defined as a well parenthesized ordering of the vertices, where in, two left
parentheses are not adjacent. In a graph G, with vertices a, b, c, ... z, a trivial
ordering (a (b (... (z))...)) is a valid WTO. It follows that the head of every
component is in no subcomponent, and if u → v is a feedback edge, then v is the
head of the component containing u.

To build a WTO, the algorithm follows the approach iterate until stabilization.
At each iteration, Tarjan’s SCC algorithm is used recursively to find a smaller SCC.
It basically decomposes a directed graph hierarchically into strongly connected
components and subcomponents. The following is a very high level representation
of the adaptation of the WTO Algorithm [31] in our implementation.
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Algorithm 1 Decomposing a directed graph into SCC and subcomponents in
hierarchical manner.
1: WTO: list of Weak Topological Ordering for a directed graph G. Initially empty.

2: function SUBCOMPONENT (G)
3: Compute S, the set of SCCs of G using
4: Tarjan’s SCC.
5: for each Comp in S do
6: append Comp in WTO
7: if | Comp | > 1 then
8: Identify the head H ∈ Comp.
9: replace Comp with

10: (H, SUBCOMPONENT ( Comp / H )) in WTO
11: else
12: Keep the Comp as it is in the WTO
13: end if
14: end for
15: end function
16: Print the WTO

So, WTO is an empty list initially as we see in line 1. The algorithm is executed
on the given directed graph G. As said earlier, Tarjan’s SCC algorithm is repeatedly
used in line 3 during the recursive calls. Each component in SCC returned by the
Tarjan’s will be strongly connected and will have a vertex as head. These vertices
are the entry points to the respective components; if sliced off, then the respective
components will cease to be strongly connected. The WTO algorithm identifies the
head node for each component (line 8) having more than one vertices. To identify
the head, it maintains a numbering scheme of vertices (based on walk during DFS)
called depth first number DFN, in a directed graph G. Parenthesis “(” are opened
before every head y of edges x -> y whose tail x has a greater DFN than y and then,
all the parentheses are closed “)” after the last vertex in the graph G [31]. Once
the head is identified for a component, that head is sliced off from the component
and the remaining vertices in the component are searched for a smaller SCC as in
line 10, and this proceeds in a recursive fashion till it reaches fixpoint and hence
stabilizes for the initial component. All these traversals are collected in the WTO
list (line 1) and finally printed to give a topological ordering of the graph G.

We illustrate here the Bourdoncle’s WTO approach for the listing 3.4. Initially,
Bourdoncle’s refinement starts with the nets identified by the Tarjan’s SCC as in
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line 0 below and Figure 3.8 illustrates the isolated Tarjan’s SCC. Net 31 will have
the minimum DFN compared to all other nets and hence it will be identified as
the initial head and accordingly we see the parentheses.

0 (31, 41, 5, 80, 78, 9, 52, 50, 32, 30, 13)

Causality cycle - SCC

31-AND
[ 150 ]

  41-OR
[ 150 ]

5-OR
[ 206 ]

 13-OR
[ 206 ]32-AND

[ 150 ]

30-AND
[ 150 ]

NOT

50-AND
[ 131 ]

52-AND
[ 131 ]

9-OR
[ 206 ]

78-AND
[ 230 ]

80-AND
[ 230 ]

Figure 3.8: Isolated Tarjan SCC.

Accordingly, we see the following steps while going through the WTO evolution,
the process of iterate until stabilization.

1 (31, (41, 5, 80, 78, 9, 52, 50, 32, 30, 13))
2 (31, (41, 5, 80, 78, 9, 52, 50, (32, 30, 13)))
3 (31, (41, 5, 80, 78, 9, 52, 50, (32, 30, 13))) WTO (stabilisation)

The following figures 3.9a, and 3.9b illustrate the respective iteration stages.
Figure 3.9c gives an enlarged view (for better readability) of the smaller cycle we
obtain.

Bourdoncle component – Iteration 
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(b) Iteration 2 and stabilization

13-OR
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[ 150 ]

 30-AND
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(c) smaller cycle

Figure 3.9: Bourdoncle component evolution.
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The Figure 3.9c illustrates the result of the error message which is displayed
by HipHop.js runtime when rejecting the program. As mentioned earlier, the
final optimization merges the nets formed at the same source location, ultimately
reducing the cycle to its minimum. In Figure 3.9c, the 3 nets highlighted are (32:
{pos:150}, 30: {pos:150}, 13: {pos: 206}). Nets 32 and 30 are considered as one,
because they both originate from the same source code location 150, yielding a
cycle of length 2 as was reported in the earlier error message. Next, we present
a case study report of using the causality error message reporting in a real world
application developed using HipHop.js.

3.3.3 Case Study: Skini

Skini is an interactive music system where a composer programs musical scores
in HipHop.js, which are then played in live concerts, in interaction with the
audience [112] [113]. The size and complexity of HipHop.js programs representing
scores depend on the duration of the music, the number of involved musical
instruments, and the granularity of the interactions with the audience. Typically,
these programs span over several thousand lines of HipHop.js code, which are
compiled into netlist of several thousand gates. For instance, opus2 1, which
is a classical music piece that lasts 2 minutes and that has been played several
time in concerts, spans over 20000 LOC (spanning multiple source files), uses 111
signals, and when compiled, counts 15053 of nets. For programs of this complexity
simplifying as much as possible the error messages is critical, especially because
Skini is supposed to be programmed by music composers, not by computer science
experts!

During the creative process of composing opus2, several “causality errors” were
reported. The last one we observed before the integration within HipHop.js of the
“causality error” tracing techniques presented in this chapter had an error report,
a causality cycle of length 11393. This spanned through multiple source files and
included all the signals declared in the program. This was un-trackable for the
composer. Improving on these error messages has been one of the motivation for
this work.

Using Tarjan’s SCC algorithm, we had the error report reduced to a length of

1www.hedelin.fr
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276 and 111 signals. These locations and signals span over multiple source code
files which is again difficult to debug. After applying the WTO refinement, we
reduced the error report even more drastically: the causality cycle reduced to a
length of 13 within a single source code file and based on a signal endReservoir
(reduction by a factor of 21× compared to SCC based error message):

TypeError: causality cycle of length 13 detected,
involving signals endReservoir
"filename":"autoOpus2-2.js",
"locations":[2602,3033,3047,3109,3399,3417,3712,

3729,3798,12935,13849,13894,16149]

The character positions in the error message correspond to actual lines in the
source code file, 13 positions are mapped to 12 lines: e.g., position 2602 is in line
number 90, 3033 and 3047 in line 107, 3109 line 110, and so on. The actual source
code of autoOpus2-2.js looks as represented in the listing 3.5; due to paucity of
space we have skipped many parts of the code and overly simplified it, as our main
intention is to illustrate how WTO refinement helps in pointing to specific positions
of the source code which are contributing a comparatively smaller causality error
cycle that can be manageably debugged.

In the source code, we see the musical notes translated to plain JavaScript code.
We have multiple modules providing various musical sessions and orchestrating
parallel interactive musical events. Each module has many parallel constructs that
read and generate various signals representing various musical instruments based
on temporal dependencies as specified by the music composer. Before we proceed
further, we will explain in short about two constructs. In HipHop.js, a body is
allowed to run even when the preemption condition holds, but is terminated at
that precise time. This is implemented using weakabort statement in HipHop.js.
Statements enclosed within “hop {...}” are plain JavaScript statements.

90 hiphop module resevoirTrompettesRouge(tick, endReservoir) {
. . . ...
107 abort immediate(endReservoir.now) {
. . . ...
110 hop { hop.broadcast(’startTank’, trompettesRouge) }
. . . ...
115 emit trompettesRouge+"OUT"([true,255]);
116 fork {
. . . ...
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127 await(trompettesRougeIN.now);
128 emit trompettesRougeOUT([false,255]);
129 }
. . . ...
132 }
133 hop { hop.broadcast(’killTank’, trompettesRouge ) }
. . . ...
153 }
. . . ...
391 hiphop module sessionRouge(tick, in abortSessionRouge) {
392 signal endReservoir, abortTheSession, stopEveryAbort;
. . . ...
406 fork {
407 every(abortSessionRouge.now) {
408 emit endReservoir();
. . . ...
425 }
426 } par {
427 weakabort immediate(abortTheSession.now) {
428 fork {
429 await count(2, violonsRougeIN.now);
430 }
. . . ...
517 fork {
518 run resevoirTrompettesRouge(...);
519 }
. . . ...
633 }
634 }
635 }
636 hiphop module sessionNoire(...inout endReservoir) {
. . . ...
705 }

Listing 3.5: autoOpus2-2.js

In the code snippet, we see the composition of two modules: resevoirTrompettes-
Rouge and sessionRouge are composed within one another. The module resevoir-

TrompettesRouge is run inside the module sessionRouge at line 518. The endReser-

voir signal is used to abort some specific patterns stored in a tank (repository)
of musical patterns. These patterns, for example, consists of those waiting for
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specific musical events like the ones we see in lines 127 and 128. The code block
“abort immediate (endReservoir.now)” (from line 107) instantly kills all these pat-
terns with the help of broadcast (line 133) whenever there is emit of endReservoir

signal, from the other module. So, when we analyze the error report generated
based on WTO refinement, we see that the causality error cycle spans through
these composed modules - when the module resevoirTrompettesRouge is executed
inside module sessionRouge, which has emissions of signal endReservoir in various
parallel branches. A causality error occurs due to a read-write inconsistency on
endReservoir signal.

The above error, for example, can be resolved by insertion of simple delay
statements (yield); for instance, after emissions of signal endReservoir in module
sessionRouge, which can break the combinational cycle as it will introduce a
register net in between the cycle. Once this error is corrected, and after re-
compiling, the runtime points to another smaller causality cycle in the module
sessionNoire (at the end of the listing in line 636), involving signals endReservoir

and abortSessionNoire. Identifying the previous error would have been very
difficult without the help of WTO refinement, as the causality error cycle would
have spanned numerous positions in multiple source files, warranting a complete
mental model by the composer of all the parallel executions, reaction by reaction,
to resolve it. Likewise, programmers can embark upon debugging smaller causality
cycles incrementally and hence solve big causality errors in complex or lengthy
programs. We experimented on various musical patterns of the opus2 musical
piece which had causality error cycles at various locations. Table 3.1 summarizes
the effect of Tarjan’s SCC and Bourdoncle’s WTO refinement on causality error
message reporting.

We observe that the initial number of nets in the netlist varied for each piece
(modified versions of opus2 ), whereas the SCCs in each piece were of the same
size at 281 nets spanning multiple source files. The corresponding causality error
locations based on WTOs were within a single source file and were much smaller
in number. Furthermore, we also experimented on some of the other musical pieces
that are available in Skini like opus1, opus2-3, opus3-1, and opus5. We observe
varying sizes of SCC and relatively smaller WTOs. Table 3.2 summarizes our
observation.

WTO refinement throws open the error accordingly to much smaller cycles.
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Sl Piece netlist Initial error SCC WTO

no name size size size size

1 opus2Ex1 24355 18619 281 22

2 opus2Ex2 12555 9475 281 16

3 opus2Ex3 15043 11477 281 22

4 opus2Ex4 19369 14718 281 22

5 opus2Ex5 26325 20516 281 13

6 opus2Ex6 21850 16705 281 22

7 opus2Ex7 17547 13393 281 13

Table 3.1: Causality cycle size in various music patterns based on opus2 with
induced causality errors.

Sl Piece netlist Initial error SCC WTO

no name size size size size

1 opus1 17253 16098 352 10

2 opus2-3 8351 6326 263 14

3 opus3-1 17326 15418 294 10

4 opus5 5460 4538 111 3

Table 3.2: Causality cycle size in other musical pieces of Skini with induced causality
errors.

We see tremendous improvement in error reporting with WTO support, on an
average of 21× over SCC and even more when compared to initial error size in real
life projects like Skini as observed here. The HipHop.js programmers can reason
out and debug causality errors with the help of error messages based on WTO
refinement, as we have shown. The error messages can point to specific locations
(relatively smaller number) of the source code of a specific module with relevant
signals participating in causality error. In the following section, we explain the
implementation aspects of causality error analysis in HipHop.js, the process of
mapping nodes to source code locations and also an elaborate example debugging
process of causality errors.
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3.4 Implementation of Causality Error Tracer

In this section, we elaborate on the implementation of the aforementioned algorithms
of section 3.3 to debug the causality errors and the process of error reporting done
by HipHop.js runtime and compiler.

For each reaction of the program, the reactive machine propagates the values
through each net in an orderly manner. All the nets participating in a reaction are
pushed into a FIFO data structure called known_list by the HipHop.js compiler
and when a reaction happens, the FIFO structure has to be empty. If at the end of
propagation, there are nets which are found to be not participating in a reaction,
then, it means the machine’s netlist has some nets which are participating in a
combinational cycle and hence are not part of the reaction. We have a causality error
and the program is rejected. When this occurs, the nets that are still pending are
analyzed by building the SCC and WTO. From the reduced graph, HipHop.js builds
its error report. In this section, we show how the actual error messages are built
and how the error reporting integrates within various programming environments.

Each net’s data structure is self-contained with all the necessary information,
including the source code location, which contributes to the respective nets creation.
The WTO of the directed graph in the form of components returned by the
algorithm is further processed to identify smaller subcomponents, pick the position
of the nets in that subcomponent, perform redundancy checks on positions, and
then present those positions to the programmer as the locations contributing to
causality error in the source code. For one of the previous example introduced in
Section 3.3, listing 3.4, from the WTO returned by the algorithm: (31, (41, 5, 80,
78, 9, 52, 50, (32, 30, 13))), HipHop.js extracts the deepest component, here (32,
30, 13), and then processes it for source code locations (as explained at the end of
section 3.3.2). Components involving only one source location are ignored because
they do not bring any useful information of their own.

The generated source code locations (e.g., 150 and 206 for nets 32, 30, and 13 as
above) are stored in a JSON object. To see the locations of the causality error cycle
in the source file, the source program has to be compiled with -g option, which
is normally used for debugging: hop -g somefilename.js. The locations in JSON
format, will be stored in a file hiphop.causality.json, which is created just for
this purpose. The popular editors like Emacs, VScode, and Atom are programmed
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to use the contents of this file to read the positions and highlight the respective
source code position (the complete word starting from the given location) as visual
markers to help programmers locate the position easily.

For Emacs, the programmer can see the locations by opening the source file in
Emacs editor and typing [C-x C-h] to highlight the locations in the source file. As
an illustration of causality error cycle’s visualization for Emacs editor, we refer back
to the same example of our discussion in Section 3.3, listing 3.4. When we use Emacs
editor to visualize the causality error cycle, we see the following visual markings in
the following Figure 3.10 (source location contributing to causality highlighted in
green color). We remind the reader of the error message the HipHop.js generated
when using WTO approach for the above program:

TypeError: causality cycle of length 2 detected,
involving signals J

Figure 3.10: Visual markings of causality error in Emacs.

With the above information, the programmer can easily deduce that the causality
error is due to signal J being checked for presence (if) to emit itself (J) and hence
it can be easily debugged. We elaborate on the cycle debugging with another
example first presented for the Quartz synchronous programming language [123]
that we have adapted to HipHop.js:

58 Static and dynamic debugging techniques for the HipHop.js language



Chapter 3. Causality Error Tracing in HipHop.js

1 hiphop module prog() {
2 in J;
3 inout M,N;
4

5 weakabort immediate(N.now) {
6 fork{
7 if (!J.now) yield;
8 emit M();
9 } par {

10 if (M.now) emit N();
11 }
12 }
13 emit M();
14 }

Listing 3.6: Complex causality error program.

The program in listing 3.6 displays two different behaviors based on the value
of J. When J is false, the first branch (lines 6-8) of the abort statement stops at
the yield statement (line 7), so that “emit M()” at line 8 is not executed. The
second branch (lines 9-11) cannot decide yet whether M is true or false at line 10.

If we assume M as false, “emit N()” does not get executed, hence M and N are
false (as initially assumed for M). On the other hand, if M is assumed to be true, then
N is emitted in line 10, and hence both M and N are true. Since N is present, the weak
abortion at line 5 takes place from the same instant. With J being absent, we have
“two” logically consistent behaviors where M and N are logically equivalent, giving
rise to a non-deterministic program. When J is true, we see that the program is
constructive during runtime emitting M and N from the two parallel branches (since
weak abort, the emissions will remain valid). When we execute the program with J

and M being absent, we get the following error message with WTO refinement:

TypeError: causality cycle of length 4 detected,
involving signals N,M

In the Emacs editor, we see the visual markings of the causality error cycle
as shown in Figure 3.11. These visual markings are very much precise and are
specific to the exact locations that are giving rise to non-determinism, matching
the explanation we discussed earlier.
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Figure 3.11: Visual markings of causality error locations in Emacs for listing 3.6.

As discussed earlier, to aid HipHop.js programmers in debugging causality error
cycles when using VScode and Atom editors, extensions are developed to pinpoint
error cycles visually in the source code. This is similar to the way we display
error cycles in Emacs editor. If these extensions are activated at the command
palette while programming after compiling HipHop.js programs, and if there are
causality errors at runtime, they can be visualized. We call our extensions as
“causality-decorators”.

The hiphop.causality.json introduced earlier provides us the character posi-
tions of the source code where causality cycles happen. Using the positions in
the file, we identify the text area (first character position) where the character is
present, we then take the help of VScode’s word definition to identify the whole
word area that should be highlighted, and then push that range of location for
highlighting with a particular color. In Atom editor, there is a slight change in the
way we identify the position of the source text, as it is dependent on the various
APIs support provided to access the editor properties.

The Screen shot in Figure 3.12 shows how the source localization is displayed in
VScode editor for a sample causality error program after activating our causality-
decorator extension in the command palette. The code decorator for Atom editor
also provides similar graphical highlighting for causality error locations and this
can be extended to a few more popular IDEs.
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Figure 3.12: Causal error cycles displayed in VScode editor.

As illustrated with examples above, we see the advantages of Bourdoncle’s WTO
approach in providing smaller error trace to the programmer to aid in debugging
causality errors in HipHop.js programs and also the visual extensions for popular
IDEs.

3.5 Related Work

In the following part, we discuss some of the approaches used for debugging reactive
programs by other languages and systems.

In Esterel, a static analysis technique [129] is used before execution to ensure that
Esterel programs are constructive. Two approaches are proposed for building this
analyzer, with one of them using Bourdoncle’s WTO. In HipHop.js we propose to
use WTO for a totally different purpose and in a totally different context. HipHop.js
uses this approach to provide debugging support for causality error programs in
both compile and runtime. HipHop.js provides compile time warnings of any
causality error cycles after generation of the nets. It uses the same implementation
as we presented earlier at compile time, but here instead of analyzing the non
participating nets of a reaction, all the nets that are generated by the HipHop.js
compiler are analyzed. If we find a cycle during this process in the WTO returned,
then we flag a warning to the programmer, that there is a potential causality
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cycle. This causality cycle of compile time detection may or may not be resolved
at reaction time.

Causality errors also appear in another language of the synchronous family
Lustre. In Lustre [67], it is not allowed for a variable to instantly depend on itself.
Furthermore, a static criterion is used for rejecting causality error programs: the
system of equations should be cycle free. A system of equations which is cyclic
is rejected, even if it has a unique solution. In Argos [69], incorrect compositions
contributing to causality are not given any meaning, similar to an Esterel based
approach. A Binary Decision Diagrams based procedure is proposed to check the
consistency of combinational loops and whenever possible, these loops are removed
without affecting the semantics of the circuit. The synchronous reactive approach
of the languages Reactive C [32] and ReactiveML [99] differs from Esterel and
HipHop.js as they avoid causality error by only allowing instantaneous reaction to
presence and forbids instantaneous reaction to absence. SugarCubes [35] is to Java
what Reactive C is to C and as expected SugarCubes also avoids causality errors
by forbidding instantaneous reaction to absence.

Functional reactive programming (FRP) is generally supported as DSL for
stateful logic that can replace the widely used observer pattern (callbacks/listeners).
FRP is used for programming reactive applications like graphical user interfaces
(GUIs), games, robotics, and music by explicit modeling of time. Generally an FRP
program gets executed in two stages; in the first stage, FRP code segments are
converted into a directed graph, and in the second stage for the input fed, the FRP
engine produces the output based on the dependencies stipulated by the directed
graph [29]. These directed graphs can also be modified dynamically during the
second stage. Reflex-FRP is an Haskell based reactive ecosystem to develop user
interfaces and web applications. In FRP, inadvertent cyclic dependency errors can
happen and the support to programmers is quite minimal such as “Maximum call
stack size exceeded”. Debugging causality error loops has been discussed as quite
time intensive and taxing on programmers; they are advised to keep programs
causal safe and avoid constructs which may contribute to unresolved causal error
loops. Here, we foresee the application of Bourdoncle’s WTO refinement on directed
graphs having causality errors. We believe one can provide better error reporting
to FRP programmers, as we do in HipHop.js.

ReactiveX (Rx) is a reactive library developed for many programming languages
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like Java, JavaScript, Scala, C++, C#, etc, and used by companies like Netflix,
GitHub and many others. According to the developer’s2 claim, Rx differs from
original FRP as FRP operates on values that continuously change over time, while
Rx operates on values that are discrete and are emitted over a period of time. Rx
introduces two basic types called Observable and Observers. Observables are used
to define the data flow and to produce the data, while observers consume the data
and move it further down the stream. Rxfiddle is a visual debugger for the Rx [15].
It provides an overview of dependencies in dataflow and timing of individual events.
The Rxfiddle debugger provides two diagrams, the data flow graph and dynamic
marble diagram as a means of visualizing reactive programs for debugging. The
“marble diagrams” contain one or more timeline containing the events that enter
and leave observables. Consider the following code listing:

Observable.just(2, 4, 6, 8)
.map(x => 20 * x)
.subscribe(x => console.log("item:␣" x)));

The source Observable stream contains four elements with numeric values 2, 4, 6
and 8. The just operator is used to convert an item into an Observable that can
emit that item. The items emitted by an Observable are transformed by the map

operator, which applies a function on each item emitted. Here, it takes numeric
values of each item (x) and multiplies it by 20. The resulting Observable contains
items with numeric values 40 (20 * 2), 80 (20 * 4), 120 (20 * 6) and 160 (20 * 8).
A simple marble diagram for the above is as shown here.

                         map(x=>20*x)

   time line

2

40

 2

80

  8 6 4

120 160

Figure 3.13: Marble diagram.

Next events are represented as circles, error events as crosses and completed
events with vertical lines. The Marble diagrams are read from left to right. In

2http://reactivex.io/intro.html
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[15], the authors extend the original Marble diagram by introducing animation
to make it dynamic. For example, the dynamic marble diagrams update are live,
when new events occur and are stacked showing the complete data flow. The
authors claim that as part of their future work, they want to show combination of
Observable streams in Marble Diagrams, visualize explicitly the causality of events
and scale up the marble diagrams for larger programs. One of the challenging
factors with visual support for debugging large reactive programs is scalability of
observable graphs and marble diagrams. Rendering them at real time may be very
difficult, one reason being visual display space being restricted. So, while displaying
marble diagrams involving causality of events, we believe the HipHop.js approach
to narrow down causality cycles can be used to visually display the smallest of
causality relationship to the programmer in Rx programs and also for better error
messaging .

In [121], the problem of debugging reactive programs is highlighted. They
propose a reactive debugger called RP Debugging for Eclipse/Scala IDE. The
debugger uses dependency graph as the runtime model to understand the progress
of reactive applications. The programmer is visually presented with a dependency
graph while debugging. At the definition position of signals, new nodes are created
for the dependency graph and dependencies among reactive values are established.
These graphs help programmers in rectifying any of the incorrect dependencies
(causality error) through the nodes and their dependencies. One of the disadvantages
in this method is scalability with respect to huge applications and large number of
signals. We believe the usage of WTO here can narrow down to a smaller cycle and
actual signals when facing causality errors in complex systems. In the next section
we conclude this chapter along with a brief discussion about proposed future work.

3.6 Conclusion and Future Work

We presented the method of causality error analysis and debugging process by
building on SCC and WTO approaches, which help HipHop.js programmers narrow
down to smaller error positions in source code with supporting examples and
illustrations. Before presenting our approach, we also provide introduction and
relevant theoretical basis to understand the genesis of causality error in synchronous
reactive languages. We show the results and advantages of application of our
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debugging approach in a real life project developed using HipHop.js. We also
present the visual debugging support for the same in Emacs and VScode editors.

We believe that in some of the recent approaches to reactive programming
based GUI design and game programming, SCC and WTO based approaches can
be of great help in debugging causality problems as many of these approaches are
using directed graphs to build dependencies, and when graphs become bigger and
complex, SCC and WTO will help in narrowing down to a smaller causality error
cycle.

As part of future work, we plan to investigate the process of providing causality
error debugging support for graphical programming environments, such as the
Blockly tool kit. Blockly3 is a JavaScript library, which provides ready made UI for
creating a visual language [110] that emits syntactically correct user generated code.
The visual approach to programming is gaining lot of traction and will be more
attractive and fun to introduce programming to non-cs background programmers.
It will be interesting to provide debugging support for HipHop.js in these sort of
visual programming environments.

With this we end this chapter on Causality error tracing, which is a part of
HipHop.js debugging infrastructure. This complements the HipHop.js program
analyzer which we present in the next chapter.

3https://developers.google.com/blockly
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HipHop.js Program Analyzer

“As soon as we started programming, we found to our
surprise that it wasn’t as easy to get programs right as
we had thought. Debugging had to be discovered. I can
remember the exact instant when I realized that a large
part of my life from then on was going to be spent in
finding mistakes in my own programs."

— Maurice Wilkes

In the previous chapter, we presented about the support to HipHop.js compiler
in debugging “causality errors”. This chapter introduces about HipHop.js program
analyzer, part of HipHop.js debugging infrastructure. Section 4.1 introduces about
HipHop.js program analyzer, including the motivation and objective for having
one. Section 4.2 will detail the various utilities provided by the HipHop.js analyzer.
Section 4.3 explains the usage of the HipHop.js analyzer utilities.

4.1 Introduction and Objective

Software have bugs, and programmers generally encounter lengthy and laborious
correction process to remove bugs. Human errors, ever-increasing complexity of
software, and lack of debugging knowledge are some reasons attributed for Software
failures in the software engineering literature. One of the survey on successful
practices for debugging [103] notes that the difficulty of debugging is more in the
earlier stages of software development, rather than in the later stages of repairing
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errors. Questions [81] and query based debugging [91, 93, 60] have been effective
in software fault localization and is practiced in providing interactive support to
debugging software throughout its life cycle. In [100] on designing a debugger for
Lustre reactive programming language, the authors argue that the debugger in
reactive systems can also be a support system for reasoning and understanding
about the system throughout the software development phase, and it should allow
a programmer to trace the execution of their program by choosing inputs, and
observe the evolution of its states by playing with the program, with simple easy
to use tools.

In reactive systems, when debugging, step by step execution is on the basic clock
of the reactive system, where every clock tick is a step. Breakpoints in reactive
systems are generally set through identifying a goal point. Here, a programmer can
choose a specific goal point (output or a combination of outputs) and check what
input leads to such a goal and at which instant [59]. When we talk about goal
points, these can be based on the expectation of the programmer that something
bad (not expected signals) should never happen, or the expected output should
happen in near future. Our objective is to provide a simple, easy to use program
analyzer infrastructure which can be part of a bigger debugging infrastructure that
can help HipHop.js programmers minimize the bugs as much as possible throughout
the development phase by helping them in understanding the behavior of their
programs, play with programs by simulating the executions, and in narrowing down
to the source of errors when confronted with. The idea of “step” or instant brings
“temporal” behavior of a program into context, and we keep this in mind in the
design of the HipHop.js program analyzer.

The HipHop.js program analyzer we propose aims to provide a library of utilities
which can help programmers analyze and understand the temporal behavior of
their programs. They can search for strange, expected, or unexpected behaviors
that may exhibit programming or design errors and also in parallel improve their
understanding of the intended program to be developed.

These analyzer utilities can be used by the HipHop.js programmers in a simple
fashion, with each of them having a specific usage context and these utilities, we
believe panders to most of the needs of HipHop.js programmers. In the next section,
we introduce the utilities provided by the program analyzer.
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4.2 HipHop.js Program Analyzer

The utilities we propose are guided by the objectives stated earlier and based on
experience of HipHop.js programmers including ourselves. The utilities automate
the part of the work which programmers had to do manually for observing the
temporal behavior of their program. The design of the utilities is inspired in part
by questions and query based debugging. Each of the utilities help HipHop.js
programmers to raise a specific question (can also be constraints) on the behavior of
the program, validated by HipHop.js program analyzer. These utilities are designed
to raise questions on the temporal relationship between input and output signal
events.

Any HipHop.js programmer or any reactive system programmer will be curious
on the emission of the signals from the reactive systems being designed. For a
program or a module which has inputs and outputs, to know its behavior, the
likely question that a programmer may have is: At what reaction instant, a specific
output signal may be emitted? or what are the input stimulus that are required
from the environment for a specific output signal to be emitted? The answer to
above questions, if the proposed program analyzer can predict, without manual
intervention from the programmers, by the way of providing inputs or deciding
the order of the inputs, we believe will help programmers clearly understand
what is happening in their program, with respect to the temporal behavior. By
removing the manual intervention of providing inputs, the analyzer can remove
any unintended biases programmers may have which may hide the actual behavior
of the program while providing inputs, especially in the early days of developing
reactive systems. Talking about biases on the inputs, for example, there may
be a scenario where input signals A and B should never be present at the same
instant, or there may be a scenario where some input signals should be present at
a given reaction instant. Then, the likely question can be: If availability of inputs
have some constraints on their timing, what will be the status of the output signals
henceforth? These answers from the analyzer will help programmers understand a
different scenario with constraints on input signals than the previous one.

When dealing with composition of multiple modules, wherein multiple output
signals and inputs come into context, the concern of the programmers may be tilted
towards undesirable output emissions in a given instant. For example, in an air
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condition system, if the “raise_temperature” to heater and “reduce_temperature”
to cooler are emitted at the same instant, it will surely defeat the design objectives
of an air conditioner. In these scenarios, the programmers will be interested to
know: Will two output signals emit at the same instant? This may be a desired or
not so desired event for the programmers, like integration errors when combining
two perfectly behaving modules. This will help programmer see through some of
the new behavior that is not exposed when dealing individual modules. Further,
when talking about the temporal behavior of a program, there may be instances
where the programmers want a specific behavior at a certain instant in terms of
output signal - Can a signal emit between specific reaction instants? The response
from the analyzer, can help assure the programmers on what to expect and hence
can ensure design of their systems in a deterministic way.

As part of analyzer, we propose a combination of utilities that to support
programmers to query on the temporal behavior of programs and get meaningful
response by the analyzer. The analyzer we provide is in the form of a library
of utilities. For the questions to be framed on their programs and interact with
utilities by the programmers, we propose easy to use and intuitive interface through
utilities.

Now, we introduce the interface to the utilities HipHop.js program analyzer
provides. They are listed as follows:

1. checkOutput(reactivMachine, [sigArray_out]) - The programmer can query
the analyzer for checking the output signals emission. The arguments for the
utility includes the reactive machine generated by HipHop.js compiler and an
optional list of output signals (sigArray_out) to be checked for emissions. If
it is empty, then all the output signals in the module will be considered to
check for emissions.

2. The following are the interfaces where constraints (relations) can be specified
on the timing of input signals at each instant to the HipHop.js program
analyzer. Other than the reactive machine from the HipHop.js compiler, the
arguments to the utility should include a list of input signals (sigArray_in)
which have constraints and an optional output signal list(sigArray_out):

(a) inputImplies(reactivMachine, sigArray_in, [sigArray_out]) - here the
input signals in the argument list can be made available by the analyzer
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at the same instant and then can be checked for the emission of output
signals. The output from the analyzer will show when a particular signal
will be emitted, if at all, and the condition under which it happens.

(b) inputExclusive(reactivMachine, sigArray_in, [sigArray_out]) - here
the input signals in the argument list can be made mutually exclusive to
one another by the analyzer and then can be checked for the emission
of output signals. The output from the analyzer will show when a
particular signal will be emitted, if at all, and the condition under which
it happens.

3. sameInstance(reactivMachine, sigArray_out) - programmers can check with
the analyzer, if the output signals in the sigArray_out list can be emitted
at the same reaction instant. The analyzer checks for possible concurrent
emission of those signals and informs the programmers if it happens so. Also,
the analyzer provides a scenario of how this can happen in terms of statuses
of inputs signals.

4. outputRange(reactivMachine, sigArray_out, timeRange) - programmers can
check if there are output signals emission in the specified reaction instants
range. The arguments include list of output signals ( sigArray_out) program-
mers are interested and another list (timeRange) of size two, containing the
reaction instant range in which the programmers are expecting the output
signals emission. If this is possible, the analyzer returns the result of input
signals and their timing, for all the output signals whose emission can possibly
happen in the specified range of instants.

The HipHop.js program analyzer with the above introduced utilities to begin
with, can help programmers understand the temporal behavior of their programs,
play with their programs, and we believe this helps in fault localization by narrowing
down any of the unintended design or logical errors. Also, based on the infrastructure
for the above introduced utilities, some more utilities can be built, providing better
testing and debugging experience to HipHop.js programmers. We discuss a couple
of them in the next chapter.

In the next section, we illustrate the usage of the above listed utilities in
actual HipHop.js programs and the way the program analyzer generates meaningful
response to programmers.
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4.3 Interfacing with Utilities

This section elaborates on previous sections with details on the usage of the
HipHop.js program analyzer utilities introduced earlier. First, we present the
way the HipHop.js program analyzer can be integrated with normal HipHop.js
programming and then present the usage of each of the utilities we propose.

The analyzer utilities are provided as part of a library which needs to be
imported into the source file of HipHop.js program the programmers want to play
with. The HipHop.js compiler generates a reactive machine for each module and
this reactive machine is used by all the utilities provided by HipHop.js program
analyzer. For each of the utilities, the arguments will include the reactive machine
and specific inputs based on the type of utility used. The following is an example
which illustrates the generic usage of the proposed HipHop.js program analyzer.

1 "use␣@hop/hiphop";
2 "use␣hopscript";
3

4 import * as hh from "@hop/hiphop";
5 import * as analyzer from "hhAnalyzer";
6

7 hiphop module prg() {
8 out B,C;
9 ...

10 }
11 const machine = new hh.ReactiveMachine(prg);
12 analyzer.checkOutput(machine, ["B"]);

Listing 4.1: General usage of Analyzer utility.

The library is imported in line 5 and the HipHop.js compiler compiles the
module prg to a reactive machine (line 11). This is passed as an argument to
the program analyzer utility, checkOutput which is part of the imported library
namespace analyzer as in line 12. When this program is executed, programmers
can get to know when (in terms of reactive instants) will the output signal B be
emitted, if it is possible. In the subsequent sections, we will elaborate on the usage
of all the utilities we propose that are part of HipHop.js program analyzer.

The first utility we present is checkOutput, which can be used to check for the
emissions of all the output signals.
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Checking Output Emissions - checkOutput

The primary utility of the program analyzer is checkOutput. It analyzes the
HipHop.js program and returns one of the possible scenarios when emissions
of the output signals can happen. Listing 4.2 is a simple example with the
utility. As we have presented earlier in the background section on HipHop.js
(section 2.3), await(Sig) waits from the next instant for “Sig” to be present. In
line 16, analyzer.checkOutput(reactivMachine), the analyzer utility is used to
check for emission of output signals. Since the argument to the utility does not
have the optional output signals list, the analyzer returns results for possible
emission scenarios of all the output signals in the module.

1 "use␣@hop/hiphop";
2 "use␣hopscript";
3

4 import * as hh from "@hop/hiphop";
5 import * as analyzer from "hhAnalyzer";
6

7 hiphop module prg() {
8 in A, B;
9 out O;

10

11 await(A.now);
12 await(B.now);
13 emit O();
14 }
15 const machine = new hh.ReactiveMachine(prg,{ sweep:true });
16 analyzer.checkOutput(machine);

Listing 4.2: utility 1, checking emission of all the outputs.

The utility will return one of the possible trace of input events for the output
signal emission of O, if it can happen. The output is presented as JSON file. The
output in listing 4.3 is a JSON object, the output signals which are being checked
for will be the “keys” and “values” will be in the form of another JSON object. The
JSON object representing the values will have number of reaction instants as its
keys and inputs signals as values for those reaction instants.

1 {
2 "O": {
3 "1": [],
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4 "2": ["A"],
5 "3": ["B"]
6 }
7 }

Listing 4.3: output trace, with inputs and output after certain reaction instants

From the output listing, we see that signal O can be emitted and one of the
possible scenarios for that is, when the emission happens at instant 3, with the
inputs specified as in the value (array of input signals) for particular reaction
instant. In instant 1 at line 3 - no inputs, in instant 2 - input signal A, and in
instant 3 - input signal B.

Here is another example (listing 4.4) wherein there is await (section 2.3) with a
counter to count the instances of input signal I (3 counts) at line 5, after which
signal O should be emitted as in line 6. The argument list to the utility does not
have the optional output list to consider, meaning which the analyzer will return
the result for all the output signals in the module, and in this example O is the
only output signal.

1 hiphop module prg() {
2 in I;
3 out O;
4

5 await count(3, I.now) {
6 emit O();
7 }
8 }
9 const machine = new hh.ReactiveMachine(prg );

10 output.checkOutput(machine);

Listing 4.4: checking outputs with a counter on input.

The output with one of the possible scenario is as follows in output lisiting 4.5.
It can be seen that output signal O is emitted at reaction instant 4. For each of the
four reaction instants, the corresponding input signal that should be true is also
presented, stressing the fact tha signal O should be emitted at the third instance
of occurrence of signal I, and since it is await without immediate construct, the
counting happens from second instant.

1 {
2 "O": {
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3 "1": [],
4 "2": ["I"],
5 "3": ["I"],
6 "4": ["I"]
7 }
8 }

Listing 4.5: output trace, with inputs bound by counter and output after certain
reaction instants.

Further, the programmers can also check with the program analyzer about
the emission of a specific output signal emission. This is illustrated in the list-
ing 4.6. Here, the interest is in the emission of signal P. This can be specified as -
checkOutput(reactivMachine, ["P"]) at line 12.

1 hiphop module prg() {
2 in A,B;
3 out O,P;
4

5 await(A.now);
6 emit P();
7 await(B.now);
8 emit O();
9 }

10

11 const machine = new hh.ReactiveMachine( prg,{ sweep:true } );
12 output.checkOutput(machine,["P"]);

Listing 4.6: Utility 1, checking a specific output signal emission.

The following output listing 4.7 illustrates one of the possible scenario for the
emission of signal P.

1 {
2 "P": {
3 "1": [],
4 "2": ["A"]
5 }
6 }

Listing 4.7: output trace, specific signal emission and its relation with inputs.
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In the above utility, there is no restriction or constraint on the order input
signals were provided. Now, we present utilities that can enforce certain constraints
on the order of the input signals.

Constraint on Input Signal Presence

The HipHop.js program analyzer provides two utilities using which programmers
can specify constraints on inputs signals. These can be viewed as a relationship
between input signals, as follows:

1. Implies - if one input signal is present at a instant then all the other signals
specified are also to be present at the same instant.

2. Exclusivity - no two or more input signals specified can be present at the
same instant.

These constraints can be set on a subset of the input signals. We provide utilities
with interfaces inputImplies and inputExclusive to let the program analyzer
enforce respective constraints while analyzing the programs.

We illustrate the usage with examples as follows. In the listing 4.8, with the
help of parallel constructs fork-par, the reactive machine is waiting in parallel
for signals A, B and C starting from the instant 2. Once they occur in any order,
signal O is emitted. The behavior resets when signal R is present. In the listing
at line 18, we can check with the program analyzer if there will be emission of O,
provided the constraint set on input signals, such that they are only available at
the same instant. This is specified by the list of input signals ["A", "B", "C"] in
the argument list.

1 hiphop module prg() {
2 in A,B,C,R;
3 out O;
4

5 do {
6 fork {
7 await(A.now);
8 } par {
9 await(B.now);

10 } par {
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11 await(C.now);
12 }
13 emit O();
14 } every (R.now);
15 }
16

17 let machine = new hh.ReactiveMachine(prg);
18 analyzer.inputImplies(machine, ["A", "B", "C" ]);

Listing 4.8: Utility 2, checking outputs with a constraint on the input.

The analyzer returns the result of one possible scenario for emission, and it is as
illustrated in the following listing 4.9. We see here that, the analyzer has identified
the trace for emission of signal O with inputs A, B and C, all provided at the same
instant.

1 {
2 "O": {
3 "1": [],
4 "2": ["A","B","C"]
5 }
6 }

Listing 4.9: output trace, signal emission based on constraints on input signals.

For the same source listing 4.8, we illustrate another constraint on inputs, the
exclusivity of input signal occurrence as in listing 4.10, checked with program
analyzer.

20 analyzer.inputExclusive(machine, ["A", "B", "C" ]);

Listing 4.10: utility 2, checking outputs with constraints on the input.

The result by the program analyzer is illustrated in the following listing 4.11.
The analyzer predicts that with inputs A, B and C at different instants (one possible
combination), signal O emission is possible at instant 4.

1 {
2 "O": {
3 "1": [],
4 "2": ["C"],
5 "3": ["A"],
6 "4": ["B"]
7 }
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8 }

Listing 4.11: output trace, signal emission based on constraints on input signals.

We illustrate another combination of exclusivity constraint on inputs as in
listing 4.12, checked with program analyzer.

20 analyzer.inputExclusive(machine, ["A", "B"]);

Listing 4.12: utility 2, checking outputs with constraints on the input.

The result by the program analyzer is illustrated in the following listing 4.13.
The analyzer predicts that with inputs A, B at different instants (one possible
combination), signal O emission is possible at instant 3.

1 {
2 "O": {
3 "1": [],
4 "2": [
5 "A",
6 "C"
7 ],
8 "3": [
9 "B"

10 ]
11 }
12 }

Listing 4.13: output trace, signal emission based on constraints on input signals.

The programmers may be interested to execute the HipHop.js reactive ma-
chine manually for a few instants with their own set of inputs (by the means of
machine.react()) and from then on, they may be interested to check emission
of output signals using the program analyzer. By executing manually for a few
instants, the programmers get the flexibility of specifying their own inputs for a few
instants and then checking for expected or unexpected behavior of their program
with the help of the analyzer. This adds on to the effort of providing interactive
debugging experience for the HipHop.js programmers. We illustrate the above
scenario with following examples. Let us consider the listing 4.14, the reactive
machine is executed manually for two instants at lines 16 (no input) and 17 (input
B) and then it is checked with the program analyzer for output emissions after the
two reaction instants.
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1 hiphop module prg() {
2 in A, B, R;
3 out O;
4

5 do{
6 fork{
7 await(A.now);
8 } par {
9 await(B.now);

10 }
11 emit O();
12 } every(R.now);
13 }
14

15 let machine = new hh.ReactiveMachine(prg);
16 machine.react();
17 machine.react("B")
18 analyzer.checkOutput(machine);

Listing 4.14: Checking outputs after some reaction instants.

In the listing, in line 16, we see that the machine is executed with no input in
the first reaction instant, and in line 17 the machine is executed with input B as
part of second reaction instant. Then in line 18, the program analyzer is asked
to check for possible emissions. The program analyzer returns as result, one of
the scenario for possible emission of signal O. The output is as illustrated here in
listing 4.15.

1 {
2 "O": {
3 "1": ["A"]
4 }
5 }

Listing 4.15: output trace, signal emission after manual execution for few instants.

Since the machine has already reacted for two instants with some inputs before
calling the analyzer, the result shows that in the instant 1, signal O can be emitted
if input A is provided at that instant as input from the environment, Here the
analyzer has taken into account that in the previous instant signal B has been
present.
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Another combination of manual execution for the above source is illustrated
here in the following listing, wherein the analyzer is checking, if after three instants
of manual execution (with emission of signal O at instant 3), can there be emission
of signal O.

1 machine.react();
2 machine.react("B")
3 machine.react("A")
4 analyzer.checkOutput(machine);

Listing 4.16: utility 3, checking outputs after some reaction instants.

The result provided by the analyzer in listing 4.17 tells the programmer that
to get the emission of the output signal O, one possible scenario henceforth the
manual execution is that in the first instant, the input should be R, which will reset
the behavior of the above reactive machine and then provide the other inputs to
get emission of signal O.

1 {
2 "O": {
3 "1": ["R"],
4 "2": ["A","B"]
5 }
6 }

Listing 4.17: output trace, signal emission after manual execution for few instants.

At this juncture, we also want to stress that the utilities which help in setting
constraints on the inputs signals ordering can also be used in interactive manner,
i.e, after executing the reactive machine for a few instants, utilities inputImplies

and inputExclusive can be used to interact with program analyzer to check for
output emissions. The program analyzer, takes note of the manual execution of
the reactive machine with user inputs, and the constraint set on the inputs, and
then provides the possible scenarios of output emission then on. Here we illustrate
the usage of inputExclusive as follows for the program (listing 4.14) as in the
following listing 4.18. We see that after three instants of manual execution, the
program analyzer is asked at line 4 to check for emission of output signals with
the constraint that input signals A and B are mutually exclusive.

1 machine.react();
2 machine.react("B");
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3 machine.react("A")
4 analyzer.inputExclusive(machine,["A0","B"]);

Listing 4.18: Combination of utilities, checking outputs after some reaction
instants with constraints on input

The output is listed as follows.

1 {
2 "O": {
3 "1": ["R"],
4 "2": ["B"],
5 "3": ["A"]
6 }
7 }

Listing 4.19: output trace, signal emission after manual execution for few instants
with constraint on inputs.

The output gives one possible scenario for the emission of signal O taking into
consideration the constraints in input signals ordering and execution for three
instants manually. As before, to get signal O emission, the input signal at first
instant should be R, which will reset the behavior of the reactive machine and then
signals B and A in instants 2 and 3 as they should be mutually exclusive of one
another in an instant. Next, we present the usage of utility which checks if two or
more output signals are emitted at the same instant.

Checking for Emission at the Same Instant - sameInstance

Here, the programmers can ascertain if there are any conflicting (unexpected) or
desired combination of emissions happening at the same instant. We illustrate the
usage with a very simple example, to show the usage rather than stressing on the
functionality, as follows.

In listing 4.20, we see that there is a wait on signals A and B and then emissions
of two signals O and P happening at the same instant. This can be checked by
the program analyzer when the utility sameInstance with the signal list ["O","P"]

is used as in line 12. This utility will check for emissions of those signals at the
same instant and produces an output based a possible scenario of those emissions
happening.
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1 hiphop module prg() {
2 in A, B;
3 out O, P;
4

5 await(A.now);
6 await(B.now);
7 emit O();
8 emit P();
9 }

10 const machine = new hh.ReactiveMachine (prg);
11 module.exports = machine;
12 analyzer.sameInstance(machine,["O","P"]);

Listing 4.20: observer utility usage for emissons at the same instant.

The output from the program analyzer, tells that whether the signals emissions
as specified in the argument list for the utility happen at the same instant or not.
The following line tells us if the test is successful or not.

-----verifying-----
[ ‘O’,‘P’ ] are emitted at the same instant.

Listing 4.21: output for sameInstance utility.

The resulting output scenario is as in the following listing 4.22

1 {
2 "O": {
3 "1": [],
4 "2": [
5 "A"
6 ],
7 "3": [
8 "B"
9 ]

10 },
11 "P": {
12 "1": [],
13 "2": [
14 "A"
15 ],
16 "3": [
17 "B"
18 ]
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19 }
20 }

Listing 4.22: output trace for two signals emitting at the same instant

Both the signals in one possible scenario are emitted at the same instant - 3. As
an illustration for failure of the test, we present the following example listing 4.23.

1 hiphop module prg() {
2 in A, B;
3 out O, P;
4

5 await(A.now);
6 emit O();
7 await(B.now);
8 emit P();
9 }

10 const machine = new hh.ReactiveMachine (prg);
11 module.exports = machine;
12 analyzer.sameInstance(machine,["O","P"]);

Listing 4.23: observer utility usage for emissons at the same instant.

The program analyzer provides the following output, implying the failure of the
test and also there will be no output showing the possible scenarios.

-----verifying-----
[ ‘O’,‘P’ ] are not emitted at the same instant.

Listing 4.24: output for sameInstance utility.

Next, we present the utility which help programmers to determine if a particular
signal can be emitted at some particular time instants.

Checking Output Emissions at a Specific Range of Instants

We provide an utility which can check with the program analyzer if a particular
signal emission happens between a range of time instants. The analyzer utility
outputRange will check if an output signal gets emitted within a specific range of
instants. The output signal in question and the range of instants are given as
arguments to the utility. The range of instants should follow the order [L,H],
where L ≥ 0 and H ≥ L.
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The following listing illustrates the usage of utility outputRange at line 11 to
check if signal O can be emitted within a range of [1,4] instants.

1 hiphop module prg() {
2 in I;
3 out O;
4

5 loop {
6 await count(3, I.now);
7 emit O();
8 }
9 }

10 const machine = new hh.ReactiveMachine(prg);
11 analyzer.outputRange(machine, ["O"],[1,4]);

Listing 4.25: outputs within range of time instants.

The output for the above program from the analyzer provides a possible scenario
for the emission of output signal in the specified range of instants.

1 {
2 "O": {
3 "1": [],
4 "2": ["I"],
5 "3": ["I"],
6 "4": ["I"]
7 }
8 }

Listing 4.26: output trace, signal emission within specified range of instants.

We run the same code with a different range as follows.

analyzer.outputRange(machine, ["O"],[1,2]);

Listing 4.27: output for another run with different criterion

The analyzer returns a failure status by means of empty output, to convey that
the output signal O cannot be emitted within the specified range of instants[1,2].
With this we come to the end of this section on the usage of various program analyzer
utilities. These utilities help in program comprehension and fault localization by
providing interactive query based debugging support for HipHop.js programmers.
Though these utilities are not exhaustive, even new additions can never cover all
the questions that may arise in the programmers mind. We believe these utilities,
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without overwhelming, provide HipHop.js programmers simple intuitive tool to
understand reactive programs temporal behavior and when faced with design or
logical errors, help with narrowing down to the source of error by improving program
comprehension. These utilities provide a basic level of support to the HipHop.js
programmers as these revolve around input-output signals relationships crucial to
working of reactive systems. In the next chapter, we detail the implementation of
each of the utilities of the program analyzer.
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Implementation of Program Analyzer

“We argue that proof construction is unnecessary in
the case of finite state concurrent systems and can
be replaced by a model-theoretic approach which will
mechanically determine if the system meets a specifi-
cation expressed in propositional temporal logic”

– Edmund M. Clarke and E. Allen Emerson

In this chapter, the implementation details of the program analyzer is presented.
This chapter presents and explains the building blocks of the program analyzer, the
approach taken in implementing those building blocks, the tools integrated with
the analyzer and a brief introduction to theory of temporal logic used by model
checkers. Overview of the implementation process is presented in section 5.1. In
section 5.2, the tools that are used by the program analyzer and relevant theory
about temporal logic is presented. Finally, in section 5.3, the implementation
method is presented in detail.

5.1 Overview

This section presents an overview of the design methodology of the utilities available
in HipHop.js program analyzer. The objective of the utilities is to help programmers
understand the temporal behavior of the HipHop.js program, thereby minimizing
design errors and also have a better understanding of their programs. The program
analyzer helps the programmers automate questions relating to the temporal
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behavior of their programs; it takes input, an HipHop.js program, based on the
utility used, provides the corresponding output to the programmers which are
readily understandable and can be used further.

The reactive machine generated by HipHop.js compiler has states and by design
is deterministic. The net list (set of logical gates and latches) generated by the
HipHop.js compiler of the corresponding reactive machine provides a Finite State
Machine (FSM) representation of the reactive machine. Using one of the strategies
like explicit state searching, or some of the advanced techniques used in the field of
model checking, states can be searched to answer the questions raised through the
utilities by the programmers. The objective of the implementation process is, getting
all the states of the reactive machine and then search for a particular state which
satisfies the condition set by the programmers through the utilities. If explicit
state checking strategies are used, one may encounter classical state explosion
problem for bigger and complex programs. Nowadays, tools like model checkers
which use new techniques to counter the state explosion problem are of industrial
strength and found to be relatively efficient in the job of state searching. These
model checkers are used as back end in the design of HipHop.js program analyzer
utilities for state searching. What to search, and providing FSM representation of
the program in an understandable form to the model checker is the responsibility
of utilities in the program analyzer.

A model checker operates on a model of the program and the queries raised
on the program. The model checker performs an efficient search and returns the
result. The model checker tools stipulate a particular input format for the model
of the program and the queries. Intermediate layers are designed inside HipHop.js
program analyzer which translates the net list generated by HipHop.js compiler
into a format that can be used by the model checkers.

The program analyzer utilizes two tools in its backend for state searching. The
XEVE [30] verification tool (introduced in next section) which has been used with
Esterel, is one of the backend used in HipHop.js program analyzer. It requires the
model of the reactive program to be in Berkeley logic interchange format (BLIF) [20].
NuSMV model checker is the second tool in the backend which requires the model
of the program to be in SMV format and the queries are to be in standard notations,
used to represent “temporal logic”.

The program analyzer translates HipHop.js programs to BLIF format that can
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be used with XEVE and then utilizes the readily available tools like AIGER [27] to
translate BLIF representation into SMV format which can be used with NuSMV
model checker. The queries raised by the utilities are converted to temporal logic
by the program analyzer and then given to model checker. The model checker
searches the model based on the search criterion defined by temporal logic. In the
next section, a brief introduction to all the tools and temporal logic is presented.

5.2 Theory and Tools

As HipHop.js program analyzer uses model checkers as back end, a brief overview
on model checking is presented and as HipHop.js program analyzer uses XEVE,
AIGER, and NuSMV tools, a brief introduction to them is also presented in later
part of the section.

5.2.1 Model Checking and Temporal Logics

The goal of model checking is automatic verification of systems. In the initial
days of computing systems, for the transformational systems, total correctness was
described as a process of proving partial correctness and termination. The model
used to represent the systems was the input - output relation represented in formal
semantics and proposition logic was used as a specification language for proving
correctness.

In the early 1960s the advent of reactive systems happened. In reactive systems,
termination is not a desirable virtue. Here the total correctness is described as a
combination of safety, progress and fairness, etc. Programs have to be represented
in a way that is verifiable and also abstracted with many of the finer details which
are not crucial for verification, called modeling. Modeling of the programs is one
of the crucial step and also specifying what needs to be searched on these models
is as important as modeling the systems or the programs in question. Usually
“safety” and “liveness” are the interesting properties one is concerned about. “Safety”
ensures nothing bad will never happen and “liveness” ensures something good will
eventually happen. Fair transition systems and temporal logics are used for the
above said modeling of systems and properties.

A fair transition system is basically represented as set of states (with an initial
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state or set of states), with transitions in between them and labels associated with
states and transitions. Fair transition systems can be used to model a system,
specifically reactive systems, and can be used for verification. These transition
systems can be represented using first order logic. Temporal logic can be used to
specify the property which needs to be checked. It all started with Linear Temporal
Logic (LTL), then Computation Tree Logic (CTL) and then a combination of both
called CTL*. These specifications are represented as first order logic and used by
model checkers. The model used to represent FTS is Kripke structures and the
specification language is temporal logic.

The model checkers initially followed explicit state model checking, going
through all the states and checking for any bad states. This proved to be fine
for small programs or programs with very less number of states. With large
programs or with those having many number of states, the popular “State explosion
problem” became an issue and this approach was prohibitive. Binary Decision
Diagrams (BDD), specifically Ordered Binary Decision Diagrams (OBDD) was a
big step in advancing the field of model checking by providing initial solution for
the state explosion problem which easily solved programs with up to 1020 states.
This approach was further supported with other advancements like partial order
reduction strategy. Later, propositional satisfiability played important role in the
progress of the model checking and increased the capability of model checkers.
Bounded model checking is based on using SAT solvers in the problem of model
checking; here, based on the value of some ‘k’, the state machine representing the
system is unrolled, in the sense that the maximum path distance of ‘k’ is considered,
and all the states in that diameter is considered while model checking. This is
further refined with approaches called “K-induction”, “invariant interpolation” and
other approaches, each refining on the previous methods. As of now SMT solvers
are occupying the scene of model checking, due to advances in theories of various
domains.

The evolution of temporal logic as a specification language dates back at least
to the beginning of Middle Ages, where temporal logic was used by philosophers
as modal and temporal inferences in natural languages. In the beginning of
20th century temporal logic went through more formalization, new primitives like
always, sometime, until, since, etc., were added to the existing ones which included
past, present, future. A. Pnueli in 1977 suggested the use of temporal logic as
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specification language [114]. In the lingua franca of model checking community,
it is defined as verifying whether a Kripke structure of a system is the model of a
temporal formula. The steps in model checking are as follows [105]:

• Model abstraction of system under investigation.

• Validate the model.

• Run model checker for properties of interest.

– If a property holds “true”, then property holds for model and possibly
for the system too.

– If the property holds “false”, counterexample helps debugging of model
and system.

– If there is a timeout, then the model building has to be fine-tuned.

Kripke Structure is a basic model of computation represented by K = (S,R,L),
where S is the system states, R⊆S × S. and L is the labeling function. With AP
has a set of atomic propositions over states, L: S → P(AP) is the set of atomic
propositions true in each state. A path π in K is an infinite sequence of states: π
= s0, s1, s2... such that, if i ≥ 0 then (si, si+1) ∈R.

Temporal logics typically differ based on the way the branches are handled in
the computation tree. In linear temporal logic (LTL), the operators describe the
events on a single computation path, whereas in branching-time logic, also called as
Computation Tree Logic (CTL), the temporal operators are provided to quantify
all possible paths from a given state. The computation tree logic CTL* combines
both linear-time and branching-time operators.
Linear-time temporal logic is used to express time-dependent properties of
system runs. It is evaluated over infinite sequence of labels. LTL is built over the
set of atomic propositions with the logical operators (¬ and ∨), and the temporal
operators X (next), and U (until). Formally, the set of LTL formulas over atomic
proposition (AP) is inductively defined as follows:

• if ap ∈ AP then, ap is a valid LTL formula.

• if ψ, ϕ are LTL formulas which are valid, then ¬ψ, ψ ∨ ϕ, Xψ, ψUϕ are also
valid LTL formulas.
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The temporal operators G(Globally), F(Future), R(Release) in LTL can be defined
in terms of X and U. Examples: if P , Q are valid LTL formulas, then

• invariant can be expressed as (GP),

• response, recurrence as (G(P→ FQ)),

• reactivity as (GFP → GFQ), and

• precedence as G(P1 U P2 ...Pn).

Branching-time temporal logic includes assertions about branching behavior.
The general format is QT. Where Q can be E - at least one path (possibly), A - for
all paths (inevitably). Whereas T can be one of the X, F, G, U, or W operators as
introduced in LTL. These are the basic CTL operators:

• AX (all next) and EX (exists next),

• AG (all global) and EG (exists global),

• AF (all future) and EF (exists future),

• AU (all until) and EU (exists until).

An example CTL formula is as follows - EF(begin ∧ ¬ready), which is true for
states where begin holds but ready does not hold.
Difference between LTL and CTL: LTL cannot express CTL formula AG(EF

p), while CTL cannot express A(FG p). More expressive logics like CTL* and
µ-calculus [101] can be used further. In CTL* logic, a path quantifier is used
to prefix an assertion composed of arbitrary combination of the LTL operators.
Model checking algorithms and techniques are not presented here as they are out
of scope of this thesis. Interested readers can refer any of the standard literatures
available like [44, 114]. Next, the BLIF format is introduced.

5.2.2 BLIF

Berkeley logic interchange format (BLIF) [20] is a form of describing logic-level
hierarchical circuits in “textual” form. A logic circuit can be a combination of
combinational and sequential circuits. Each circuit is seen as a directed graph of
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combinational and sequential logic elements where, a two-level, single-output logic
function is associated with each node. A detailed presentation on BLIF is given in
appendix A.

5.2.3 XEVE

XEVE [30] is a tool for verifying Esterel programs. The Esterel compiler, as one of
the compilation methods, compiles Esterel programs into Finite state Machines
where boolean equations and latches are used to enumerate states and transitions
into boolean circuits. The equations generated are in BLIF format. Binary Decision
Diagram (BDD) library called TIGER is used internally by XEVE. TIGER takes input
an FSM described in BLIF and provides functionalities to the programmers, like
checking the emission status of output signals. XEVE is elaborated further in
related works section. AIGER format and tool set is presented in the next section.

5.2.4 AIGER

The AIGER file format is another way of representing combinational and sequential
logic files using AIG format, the AND INVERT GRAPH format. It was introduced by
Biere et al. [27] and has been used in model checking competitions since 2007. The
format uses both ASCII and binary representations. The ASCII format is helpful
as a human-readable format, while binary format is more compact and can be used
by software applications. The AIGER tool set includes routines converting BLIF
format files to AIG format and from AIG format to SMV format which can be
utilized by NuSMV model checker. The HipHop.js program analyzer uses AIGER
tool set for the above intermediate translations. For more details on AIGER,
readers are requested to refer appendix B.

5.2.5 NuSMV

NuSMV [42] is a symbolic model checker, it is a re-implemented, extended version
of CMU SMV [104]- a BDD (ROBDD) based Symbolic model checker. Finite-
state systems are described in a specialized language and specifications to be
verified are given as LTL-CTL formulas. It verifies specification or produces a
counterexample in case of failure. NuSMV has evolved over versions. Version 1
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implemented BDD-based symbolic model checking, while the version 2 of NuSMV
extends version 1 with many other features, notable being SAT based model
checking techniques (Bounded model checking). BDD and SAT based model
checking have often been complementing each other as they are generally being
used to solve different classes of problems. NuSMV processes files written in an
extended “SMV” language. “SMV” language is used to describe finite state machines
(FSM) by declaring and instantiating modules and processes corresponding to
synchronous and asynchronous compositions (the present version does not support
directly asynchronous compositions). Specifications are expressed in LTL and CTL
notations supported by extended version of the SMV language. The language
supports modularized and hierarchical descriptions. More details are presented in
appendix C. In the next section, the building blocks of the program analyzer and
their implementation details are presented.

5.3 Implementation Details

In this section the details of program analyzer design and implementation is
presented. Initially, the details of building blocks of the program analyzer is
presented including the actual steps followed in the source code. Then, the nuances
of implementation strategies used in each utility is presented. In this process,
following are the steps:

1. BLIF generation,

2. Verification using XEVE,

3. Intermediate translation,

4. State searching using NuSMV.

An HipHop.js program of interest is initially translated to BLIF format by a primary
translator. The BLIF file generated can then be used with XEVE similar to the
way programmers used it with Esterel programs, to verify simple output emis-
sions. With XEVE, simple output emissions using utilities checkOutput(machine),
inputImplies(machine), inputExclusive(machine), sameInstance can be checked.
For anything more complex like the utility outputRange, we interface with the
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advanced NuSMV tool. Also, the infrastructure which we are building with tools
like NuSMV, helps us to provide model checking support on HipHop.js programs.
We present the details in later parts of this chapter. The program analyzer proceeds
further by converting the BLIF file to AIG format and then to SMV format using
AIGER tool set. Also, the specifications according to each utility are generated in
LTL, CTL notations and added to the SMV source file. Along with SMV source
file of an HipHop.js program, the analyzer also generates a command file that is
used with the NuSMV tool. This file is generated to interact with NuSMV shell.
The output generated by the NuSMV is processed further and stored in JSON
format. This processing is necessary since the result provided as output by the
NuSMV tool has a lot of information in terms of many variables which may not
be of interest to the programmers. Only, the relevant information with respect to
inputs and outputs of a HipHop.js program are presented.

The process followed by HipHop.js program analyzer is illustrated in the follow-
ing figure 5.1.
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                  BLIF Searcher 
   .blif files 
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Figure 5.1: General Process Flow.
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The above process is elaborated on in the following sections individually. In the
next section, details about the primary translator that generates BLIF equivalent
of an HipHop.js reactive machine is presented.

5.3.1 BLIF Generation

The primary step is to generate BLIF equivalent of the HipHop.js reactive machine.
This is important since, the circuit hence generated is used with XEVE verification
tool and also feeds on to subsequent steps. The reactive machine has net lists which
is a combination of AND, OR and Register nets. The BLIF generator generates their
equivalent BLIF nets based on the definitions for each type of nets as explained in
appendix A. The translation process involves in generating three types of BLIF
circuits:

1. primary circuit,

2. counter circuits, and

3. input relation circuit.

The primary circuit is the one which will have the translations (BLIF circuit) for
all the HipHop.js constructs in a HipHop.js source file. In these constructs, the
programmers may have used count keyword as in await, abort, etc. HipHop.js is a
DSL for JavaScript, explicit circuits for counting is not generated by the HipHop.js
compiler in the netlist, rather it is implemented as a plain JavaScript function
which counts to 0 from a set initial value. For example, in count(4, I.now), the
decrement function will decrement to 0 from an initial value of 4 whenever signal
I is present in various instants. To simulate this behavior, the program analyzer
needs to explicitly generate the counter circuit in terms of AND, OR and Register

nets. With respect to relation circuit, the programmers through the utility may
have specified some constraints on the availability of inputs, through relations. If
it is so, then BLIF circuits have to be generated which represent the specified
constraints on the input signals timing through an input relation circuit.

Process of generating BLIF source from HipHop.js is presented in detail here in
the form of a series of high level steps, with each step elaborated further with micro
steps. The process presented here is an abstracted version of the actual process
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carried out by the HipHop.js program analyzer and is based on the naming scheme
used in the present version of the compiler as of writing this thesis.

High level steps for BLIF file generation

1. From the HipHop.js source, generate the input, ouput signal list.

2. If signals are declared inout (bidirectional), generate the corresponding input,
output signal names and include in the respective list.

3. If counters are in the circuit, then generate the data for corresponding counter
circuits including the input for the counters and respective counting values.

4. Generate the input and output BLIF source from the lists prepared from the
earlier steps 1, 2, 3.

5. If there are counters in the circuit, generate BLIF source of the respective
counter circuits.

6. Generate the primary circuit of the module.

(a) If register net, generate and store the BLIF source for “Register” nets.

(b) If AND net, generate and store the BLIF source for “AND” gates.

(c) If OR net, generate and store the BLIF source for “OR” gates.

7. If inputs have relation, generate and store relation circuit in another BLIF
source file (.rel.blif extension).

The preliminary step is to generate a placeholder for the BLIF source of the
primary circuit. Since this BLIF file will be used by other utilities, the source file
is created with a unique name (.blif extension) borrowed from the file name of
HipHop.js program and also the first line (.model “name”) based on the requirement
of BLIF format. The following are the high level steps that are done to generate
a complete BLIF source file for an HipHop.js program. The initial three steps
are preparatory in nature, wherein the BLIF generator collects all the necessary
information in terms of input, output signals, and counter circuits information.
The subsequent steps are concerned with the generation of actual BLIF circuits.

The first step is related to generating BLIF source for the input and output
signals of the reactive machine, the BLIF generator gathers the input and output
signal list. The micro steps are as follows:
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Micro steps for Step 1

1. From one of the nets of the HipHop.js machine, get the input signal list from
.input_signal_map.

2. From one of the nets of the HipHop.js machine, get the output signal list
from .output_signal_map.

In the gathered list, there may be some signals declared as bidirectional, i.e.,
inout. These signals can participate in both input and output events. The program
analyzer differentiates signals in events where a bidirectional signal is participating.
For example, if a signal A is declared as inout, then in the case of input events
signal A will be marked as A_IO_I and in case of signal A emission as output, it
will be marked as A_IO_O to provide meaningful results to the programmers. If the
emission of signal A (A_IO_O) happens at instant 3 and is dependent on itself as
input (A_IO_I) in instant 1, then the analyzer would like to convey this resulting
relationship as follows.

A_IO_O = ["A_IO_I","", ""]

To facilitate the above illustrated information, the BLIF generator adds the marker
_IO_I and _IO_O to signals identified in both input and output lists. The micro
steps are presented here.

Micro steps for Step 2

1. An inout list of signals is generated by filtering the common signals from
step 1.

2. For each signal in inout list, two signals are generated with markers “_IO_I”
to specify input variant of the signal and “_IO_O” to specify the output variant
of the signal and are stored in corresponding input and output signal lists of
step 3.

The next step is to gather information for creating counter circuits in BLIF
format. In the HipHop.js machine net list, there are some specific nets generated
for counter circuits for information keeping whenever the keyword count is used
in HipHop.js source. One of them is to store the initial value for the “step down”
counter which is implemented using a plain JavaScript function. The BLIF generator
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gathers information from the machine nets to build counter circuits in BLIF. For
each counter, nets generated by HipHop.js compiler will have an “init_counter”

net among other nets. From this net, the BLIF generator fetches “countFunc”

which will provide the initial value of the “step down” counter. It also gathers the
input signal attached to counter nets and the net which gets triggered when the
counter counts down to 0. The micro steps are as follows.

Micro steps for Step 3

1. For each of “init_counter” net:

(a) Gather the values for each of the counter from .countFunc().

(b) Gather the signal name from .ast_node.accessor_list[0].signame - the
signal whose number of occurrences should drive the counter circuit (the
input signal for the counter).

(c) Gather the output gate name which will be triggered on the counter
reaching the specified number of counts.

(d) Create a reset input for the counter which when set, will clear the
respective counter.

Now, with all the information collected, the BLIF generator starts laying out
the BLIF source in the file. First, it generates the BLIF source for all the input
signals, and then BLIF source for all the output signals. An example format for
generating them is as follows:

.inputs sig_a sig_b sig_c

.outputs sig_d sig_e sig_f

The micro steps are detailed here.

Micro steps for Step 4

1. In the new line, generate the input signal list line, to the string .inputs,
concatenate each signal name in the input list, separated by a blank space.

2. In the new line, generate the output signal list line, to the string .outputs
concatenate each signal name in the output list, separated by a blank space.

Next, the BLIF counter circuits are generated before generating the primary
circuit of the main HipHop.js module. Here, there is a small difference with
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respect to the way counter circuit works in BLIF when compared to HipHop.js. In
HipHop.js, plain JavaScript function will count down to 0, whereas in BLIF, the
counter circuits, count upwards from 0 to the respective counter values gathered
in the earlier steps. The detailed steps in generating the BLIF source for counter
circuits is presented:

Micro steps for Step 5

1. For each counter circuit, with corresponding counter initial value, signal
name, reset name, and the name of the output gate from step 5- generate
the counter circuit.

(a) Generate a synchronous counter circuit in BLIF format, using three bit
adder as building blocks that counts upwards to the initial value:

i. The initial carry in will be the truth value of the signal name.
ii. The truth value of the final over flow will be fed to the output gate.
iii. The reset input value generated earlier will be fed to the reset

signal name, which when true will reset that particular counter.

2. store the generated BLIF source for each counter in the original BLIF source
file.

A counter circuit is built with a three bit adder as a building block for each
occurrence of the count keyword. The three bit adder is generated using XOR gates.
For the sake of continuity to the reader, we present the BLIF formats for AND, OR
and Register nets. For example, a three input AND gate, with input names as A, B,
C and output name as andOut, can be described (1 for truth, 0 for false and - for
dont-care) as follows.

.names A B C andOut
111 1

For the same input, we can describe a three input OR gate, with output orOut as
follows.

.names A B C orOut
1-- 1
-1- 1
--1 1

An example register net is generated in the following format.
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.latch I reg_I 0

Here I is the input to the register, reg_I is the name of the register (also the
output name), and 0 is the initial value of the register, whose next value will be
based upon its input. For an example statement count(1, I.now), the following
circuit is generated.

.names I decr_counter_34
1 1

It is seen that the counter’s initial value is set to 1. The presence of I will trigger
the gate that sets the truth value of the output of the counter (decr_counter_34).
For a little more complex example statement count(2, I.now), the following circuit
is generated.

.names I sum0I sumxorcin0I
01 1
10 1
.names I sumxorcin0I sum0I resetelse0I
11- 1
0-1 1
.names resetI resetelse0I nextsum0I
00 0
.latch nextsum0I sum0I 0
.names I sum0I enablethen0I
11 1
.names I enablethen0I overflowI coutandarg0I
11- 1
0-1 1
.names resetI coutandarg0I nextcout0I
01 1
.latch nextcout0I overflowI 0
.names I overflowI decr_counter_34
11 1

In the circuit, whenever decr_counter_34 is set to true, means the output of the
counter circuit is true, and it has successfully counted as many occurrences (specified
by initial value) of the associated input signal. We see that the above circuit is also
a combination of OR, AND and register nets. Once the BLIF circuit is generated for
all the counters, the BLIF source for the primary circuit is generated. The detailed
steps for generation of primary circuit is in the next section.
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Generation of primary circuit

The primary circuit is generated based on the nets that are available in the net list
of the main module. Each net from the net list is read and based on the type of
net, the following steps will be followed.

If the net is a register net, then the following procedure is followed:

Micro steps for Step 6a

1. For a register net, generate a BLIF source line:

• With .latch keyword in the beginning of the line.

• Get the input net name for the register net, and attach it to the string.

• Attach the name of the register net.

• Set the initial value to 0 for all the registers, except for boot_register,
whose initial value is set to 1 initially.

If the net is an AND net, then the following procedure is followed:

Micro steps for Step 6b

1. For an AND net, generate a BLIF source line:

(a) Create a temporary string tempStr1 = .names; .names is the keyword to
begin the line for an AND net in BLIF source.

(b) To the tempStr, attach the list of inputs to the AND net separated by
blank space which are fetched from the .fanin_list of the net.

(c) Attach to tempStr1, the net name and store this tempStr1 to BLIF source
file in a new line.

(d) Create another empty temporary string - tempStr2, to this string, from
the fan in list of the AND net, get the polarity of each net (.polarity)
and based on that attach the values - 1 for true and 0 for false to the
tempStr2, without any separators.

(e) To the tempStr2, after a blank space attach a value 1, specifying the
output of the present AND net.

(f) Write this tempStr2 to the BLIF source file.

If the net is an OR net, then the following procedure is followed:
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Micro steps for Step 6c

1. For an OR net,

(a) Create a temporary string tempStr1 = .names; .names is the keyword to
begin the line for an OR net in BLIF source.

(b) To the tempStr, attach the list of inputs to the OR net separated by
blank space which are fetched from the .fanin_list of the net.

(c) Attach to tempStr1 the net name and store this tempStr1 to BLIF source
file in a new line.

(d) For each input net, innet in the .fanin_list list of the OR net,

i. Create another empty temporary string - tempStr2,
ii. Based on the position of the innet in the .fanin_list - pos(innet),

attach (pos(innet) - 1) number of “-” characters to tempStr2.
iii. Get the polarity of that innet from (.polarity) and based on

that attach the values - 1 for true and 0 for false to the tempStr2,
followed by as many remaining nets in the .fanin_list. “-” specifies
“dont care” condition for the other nets in the .fanin_list, as we
are building multi input OR net.

iv. To the tempStr2, after a blank space attach a value of 1, specifying
the output of the present OR net.

v. Write this tempStr2 to the BLIF source file in the new line.

Next, if the programmer has specified some constraints or relationship on the
timing of the input signals, then another BLIF source file with .rel.blif extension
is generated to be used with the main circuit generated earlier. This relationship
circuit will ensure constraints on the way input signals are fed to the main circuit
when used with XEVE.

As of now, the program analyzer generates two types of relations on input
signals as follows:

• Implicit - the input signals specified under this relationship should be present
at the same instant, if they are present.

• Exclusive - the input signals specified under this relationship are to be present
exclusive of each other.

The signal list on whom these constraints are to be generated are taken and
two versions of the same signals are generated. The first version will be the input
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signal, the second version will be the output signal generated based on relationship.
For example, if two signal A and B are input signals with implicit relationship, then
in the relation ship circuit, the output signals will be A and B. The input list will
be generated with special markers on signals A and B. The output signals will be
generated based on the relationship filter. The steps are detailed here:

Micro steps for Step 7

1. Create a separate BLIF source file with .rel.blif extension.

2. Based on the signal lists which are required to be in a relationship, a new
input and output list is created - the output list is similar to the list of input
signals which are in a relationship, the input list includes the same input
signals which are in a relationship with extra markers to differentiate between
input and output versions of the same signal.

3. The initial .model line is created with name relation.

4. The input and output signal list is used to generate the BLIF source lines as
explained earlier.

5. A filter circuit is generated which ensures the generation of the output signals
as specified by the relationship that are used by the main circuit as the input
signals.

6. If exclusive relationship is specified between inputs:

(a) Create an exclusive filter based on the working of exclusive-or rela-
tionship which generates truth value for a particular output signal only
when its input version is true and all other input signals are false.

(b) Generate BLIF source in a new line.

7. If implicit relationship between inputs:

(a) Create an implicit filter based on the working of AND relationship which
is true only when all the inputs are high and false if one of the inputs
are false.

(b) Generate BLIF source in a new line.

We illustrate with an example, the format of the relationship file generated
with two inputs A and B in “exclusive” relationship.

.model relation
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.inputs A_A B_A

.outputs A B

.names A_A B_A EXCL_0
10 1
01 1
00 1
.names EXCL_0 _REL_FILTER
1 1
.names A_A _REL_FILTER A
11 1
.names B_A _REL_FILTER B
11 1
.end

The signals listed in .outputs line will be fed to the primary circuit, which
ensures constraints on the way input A and B are input to the primary BLIF circuit
when used with XEVE. Next, We provide a complete listing of BLIF generated for
a trivial HipHop.js program.

Example BLIF listing

The following is a very simple example HipHop.js program for which the generated
BLIF file for the source code and also for the relation specified on inputs is presented.

1 hiphop module prg( ) {
2 in A, B, R;
3 out O;
4

5 fork {
6 await (A.now);
7 } par {
8 await (B.now);
9 }

10 emit O();
11 }
12

13 let machine = new hh.ReactiveMachine(prg);
14 analyzer.inputExclusive( machine, ["A", "B" ] );

Listing 5.1: Example listing to illustrate BLIF generation.

The following BLIF listing is for the above source file 5.1.
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1 .model prg
2 .inputs A0 B R
3 .outputs O
4 .latch global_const0_1 global_boot_register_0 1
5 .names global_const0_1
6 0
7 .latch A0 A0_pre_reg_3 0
8 .names A0_pre_reg_3 A0_pre_gate_4
9 1 1

10 .latch B B_pre_reg_7 0
11 .names B_pre_reg_7 B_pre_gate_8
12 1 1
13 .latch O O_pre_reg_15 0
14 .names O_pre_reg_15 O_pre_gate_16
15 1 1
16 .names and_k0_123 and_k0_122 O
17 1- 1
18 -1 1
19 .latch or_to_reg_21 reg_19 0
20 .names reg_19 global_const0_1 and_to_reg_20
21 11 1
22 .names and_to_reg_20 global_boot_register_0 and_to_k0_22 or_to_reg_21
23 1-- 1
24 -1- 1
25 --1 1
26 .names reg_19 and2_negtest_and1_36 and_to_k0_22
27 11 1
28 .names reg_19 global_boot_register_0 and1_sel_res_35
29 10 1
30 .names testexpr_41 and1_sel_res_35 and2_negtest_and1_36
31 01 1
32 .names testexpr_41 and1_sel_res_35 and3_test_and1_37
33 11 1
34 .names A0 and1_sel_res_35 testexpr_41
35 11 1
36 .latch or_to_reg_57 reg_55 0
37 .names reg_55 global_const0_1 and_to_reg_56
38 11 1
39 .names and_to_reg_56 global_boot_register_0 and_to_k0_58 or_to_reg_57
40 1-- 1
41 -1- 1
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42 --1 1
43 .names reg_55 and2_negtest_and1_72 and_to_k0_58
44 11 1
45 .names reg_55 global_boot_register_0 and1_sel_res_71
46 10 1
47 .names testexpr_77 and1_sel_res_71 and2_negtest_and1_72
48 01 1
49 .names testexpr_77 and1_sel_res_71 and3_test_and1_73
50 11 1
51 .names B and1_sel_res_71 testexpr_77
52 11 1
53 .names union_k0_98
54 0
55 .names and3_test_and1_37 and3_test_and1_73 union_k0_99
56 1- 1
57 -1 1
58 .names or_min_k0_child1_110
59 0
60 .names and3_test_and1_73 reg_55 or_min_k0_child1_111
61 1- 1
62 -0 1
63 .names or_min_k0_child0_115
64 0
65 .names and3_test_and1_37 reg_19 or_min_k0_child0_116
66 1- 1
67 -0 1
68 .names union_k0_99 or_min_k0_child1_111 or_min_k0_child0_116 and_k0_122
69 111 1
70 .names union_k0_98 or_min_k0_child1_110 or_min_k0_child0_115 and_k0_123
71 111 1
72 .end

Listing 5.2: BLIF listing for the source file 5.1.

The following BLIF listing is for the “exclusive” relation constraint on input
signals A and B.

1 .model relation
2 .inputs A0_A0 B_A0
3 .outputs A0 B
4 .names A0_A0 B_A0 EXCL_0
5 10 1
6 01 1
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7 00 1
8 .names EXCL_0 _REL_FILTER
9 1 1

10 .names A0_A0 _REL_FILTER A0
11 11 1
12 .names B_A0 _REL_FILTER B
13 11 1
14 .end

Listing 5.3: BLIF listing for relation constraint on inputs in listing 5.1.

With this, we come to the end of the implementation details of BLIF generator
in the HipHop.js program analyzer. In the next section we present about verifying
the generated BLIF source with XEVE toolkit.

5.3.2 BLIF Checker - Verification using XEVE

For the utilities, checkOutput, inputImplies, inputExclusive, sameInstance, the
program analyzer uses XEVE tool to verify output emissions. Once the BLIF
circuits are generated, the BLIF checker module uses the checkblif utility provided
by the XEVE tool kit to check for output emissions as specified by the utilities.
The checkblif returns results when it encounters the first state a particular output
signal is true. The result, if not empty includes the input conditions for which
output signal emission happens. If the emission of an output signal is not possible,
then the output will be empty.

The output is generated as .esi file for each of the output signals. It is then
processed by a routine in the BLIF checker module to aggregate all the output
signals into a single JSON object and is stored in a JSON file. This can be used by
other utilities. The following listing is an example illustration of an typical JSON
file which BLIF checker module generates.

1 {
2 "O": {
3 "1": [],
4 "2": [
5 "A",
6 "B"
7 ]
8 },
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9 "P": {
10 "1": ["A"],
11 "2": ["B" ]
12 }
13 }

Here, O, P are output signals and A, B are input signals. It says that O is emitted
at the 2 instant provided it has A and B signals present in the 2 instant. Whereas
w.r.t P signal, though the emission happens at instant 2, it requires signal A in 1

instant and signal B in 2 instant. This is not the only condition, but this result
conveys one of the way to get the emissions of signals O and P.

In the next step, the process of converting BLIF source to other intermediate
formats to be used by more powerful tools is presented.

5.3.3 SMV Generator and Manipulator - Intermediate Trans-

lation

The generated BLIF file, the one which includes main module circuit and the
counters circuits is then translated to intermediate format AIG and then to SMV
format from AIG format. This is because the tool kit provided by the AIGER
requires converting BLIF source to AIG format first, there by also structurally
hashing the nets. This translation reduces the number of nets considerably and
also converts all the OR nets to AIG format. The utility bliftoaig converts a BLIF
file to AIG format. The following is the ASCII format representations of AIG file
for source file 5.1

1 aag 24 3 6 1 15
2 2
3 4
4 6
5 8 0 1
6 10 2
7 12 4
8 14 36
9 16 43

10 18 49
11 36
12 20 16 9
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13 22 20 2
14 24 18 9
15 26 24 4
16 28 27 23
17 30 27 18
18 32 31 29
19 34 23 16
20 36 35 32
21 38 20 3
22 40 38 16
23 42 41 9
24 44 24 5
25 46 44 18
26 48 47 9
27 i0 A0
28 i1 B
29 i2 R
30 l0 global_boot_register_0
31 l1 A0_pre_reg_3
32 l2 B_pre_reg_7
33 l3 O_pre_reg_15
34 l4 reg_19
35 l5 reg_55
36 o0 O
37 c

Listing 5.4: AIG (ASCII) listing for the source file 5.1.

The above AIG file is further translated to SMV format. The utility aigtosmv

converts the AIG file to SMV format. The following is the SMV format of the
source file 5.1

1 MODULE main
2 VAR
3 --inputs
4 A0 : boolean;
5 B : boolean;
6 R : boolean;
7 --latches
8 global_boot_register_0 : boolean;
9 A0_pre_reg_3 : boolean;

10 B_pre_reg_7 : boolean;
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11 O_pre_reg_15 : boolean;
12 reg_19 : boolean;
13 reg_55 : boolean;
14 ASSIGN
15 init(global_boot_register_0) := TRUE;
16 next(global_boot_register_0) := FALSE;
17 init(A0_pre_reg_3) := FALSE;
18 next(A0_pre_reg_3) := A0;
19 init(B_pre_reg_7) := FALSE;
20 next(B_pre_reg_7) := B;
21 init(O_pre_reg_15) := FALSE;
22 next(O_pre_reg_15) := a36;
23 init(reg_19) := FALSE;
24 next(reg_19) := !a42;
25 init(reg_55) := FALSE;
26 next(reg_55) := !a48;
27 DEFINE
28 --ands
29 a20 := reg_19 & !global_boot_register_0;
30 a22 := a20 & A0;
31 a24 := reg_55 & !global_boot_register_0;
32 a26 := a24 & B;
33 a28 := !a26 & !a22;
34 a30 := !a26 & reg_55;
35 a32 := !a30 & !a28;
36 a34 := !a22 & reg_19;
37 a36 := !a34 & a32;
38 a38 := a20 & !A0;
39 a40 := a38 & reg_19;
40 a42 := !a40 & !global_boot_register_0;
41 a44 := a24 & !B;
42 a46 := a44 & reg_55;
43 a48 := !a46 & !global_boot_register_0;
44 --outputs
45 o0 := a36;

Listing 5.5: SMV listing for the source file 5.1.

These files are used in the later steps. Next, the steps for manipulating the generated
SMV file and hence forth generating a source file that can interact with NuSMV
model checker is presented.
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Source Generator

Once the SMV file is generated, the analyzer manipulates this file to include the
search condition programmers want the NuSMV model checker to search for. It
generates these search criterions based on the utilities and store them as LTL or CTL

commands at the end of the file. Also, for specifying constraints on the input timing,
the analyzer proceeds with a new approach to generate those constraints on the
input timing, rather than using the relation BLIF file to generate the constraints
on timing of the input signals. The following listing illustrates the generation of
LTL specification and also the constraint on inputs (exclusive relationship).

1 MODULE main
2 VAR
3 --inputs
4 A0 : boolean;
5 B : boolean;
6 R : boolean;
7 --latches
8 global_boot_register_0 : boolean;
9 A0_pre_reg_3 : boolean;

10 B_pre_reg_7 : boolean;
11 O_pre_reg_15 : boolean;
12 reg_19 : boolean;
13 reg_55 : boolean;
14 ASSIGN
15 init(global_boot_register_0) := TRUE;
16 next(global_boot_register_0) := FALSE;
17 init(A0_pre_reg_3) := FALSE;
18 next(A0_pre_reg_3) := A01;
19 init(B_pre_reg_7) := FALSE;
20 next(B_pre_reg_7) := B1;
21 init(O_pre_reg_15) := FALSE;
22 next(O_pre_reg_15) := a36;
23 init(reg_19) := FALSE;
24 next(reg_19) := !a42;
25 init(reg_55) := FALSE;
26 next(reg_55) := !a48;
27 DEFINE
28 --ands
29 a20 := reg_19 & !global_boot_register_0;
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30 a22 := a20 & A01;
31 a24 := reg_55 & !global_boot_register_0;
32 a26 := a24 & B1;
33 a28 := !a26 & !a22;
34 a30 := !a26 & reg_55;
35 a32 := !a30 & !a28;
36 a34 := !a22 & reg_19;
37 a36 := !a34 & a32;
38 a38 := a20 & !A01;
39 a40 := a38 & reg_19;
40 a42 := !a40 & !global_boot_register_0;
41 a44 := a24 & !B1;
42 a46 := a44 & reg_55;
43 a48 := !a46 & !global_boot_register_0;
44 --outputs
45 o0 := a36;
46

47 --Exclusive relation modification
48 A01 := A0 & !B ;
49 B1 := !A0 & B ;
50

51 --output model checking
52 LTLSPEC G ! (o0)

Listing 5.6: SMV listing with added notations, for the source file 5.1.

We can see that in listing 5.6, for example lines 18, 20, 30, are different compared
to the listing 5.5, lines 18, 20, 30 of the initially generated SMV file. This process is
explained in detail when discussing each of the specific utility implementation. The
analyzer also generates a source file which will have commands to be executed by
the NuSMV tool. These commands are specific to NuSMV tool and are generated
for each utility based on its requirement. As an example, the following listing is
provided of source file that has commands to be executed by the NuSMV model
checker.

1 set on_failure_script_quits
2 read_model -i abro.smv
3 go
4 check_ltlspec -n 0
5 show_traces -o abro_O.xml -p 4 1
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6 quit

Listing 5.7: Source file to interact with NuSMV for an example program.

line 1 specifies that on failure of any command, quit from the NuSMV shell
and return the control to analyzer routine. In line 2, it is asking the NuSMV tool
to read SMV format file specified. In line 3, it is instructing the NuSMV tool to
build model suitable for checking based on the source file specified in SMV format.
Once the model is generated, then the model checker is asked to check for states
satisfying a condition in line 4. In line 5 the tool is instructed to generate results
in XML format and store it in a specific file before quitting from the NuSMV shell.

In the next section, the process of interactively executing source file with NuSMV
model checker is presented.

5.3.4 SMV Checker - State Searching using NuSMV

This routine utilizes the generated SMV file and the command file to interact
with NuSMV tool. Based on the commands specified in the source file interaction
happens. The NuSMV tool generates outputs in XML file which is further processed
to provide meaningful result to programmers. The program analyzer provides a
JSON file similar to the one which is generated during checking with BLIF using
XEVE. This file can be utilized by other utilities.

5.4 Utilities specific implementation

In the previous section we presented the common process to be followed to implement
the utilities provided in the HipHop.js program analyzer. Now we provide the
details which are specific to implementation of a particular utility.

5.4.1 Implementation of checkOutput utility

Programmers use the checkOutput analyzer utility when they what to know a
possible scenario that yield to emitting some output signals. This is a search based
on the goal point and this goal point is used as the criterion to search for states
in the SMV model of the reactive machine by the NuSMV model checker. The
utility after generating the SMV file through the common process, these search
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criterions are added to the SMV source file using LTL or CTL notations. For example,
in a program there are two input signals A and B, and one output signal O as in a
module prgABRO, the SMV file will have input signals as A0 (to avoid clashing with
CTL construct A) and B, and o0 (outputs are identified as o0, o1, etc). The utility
generates the CTL formula CTLSPEC AG !o0 and asks the model checker to check if
in all the states of the machine o0 is false. If the NuSMV model checker returns
a result, then it means there is a state where o0 is true and also in the model
checking jargon, whenever a test fails, the model checker is bounded to provide
that path which led to the failure of the search criterion, which is called as counter
example. This counter example contains all the information including the state of
the input signals, which ensured the failure of the required condition. This is stored
in an XML file, processed further by utilities to provide a meaningful feedback to
programmers.

For each output signal identified in the utility, the utility generates the condition
to be searched, and based on the results obtained, the utility presents a meaningful
result to the programmer.

5.4.2 Implementation of inputImplies and inputExclusive

utilities

These utilities are concerned with putting constraints on the way inputs should
be presented by the debugger. So, for XEVE other than the BLIF file on the
HipHop.js source, the utility generates another file which is a relational file specifying
relationships between input signals. For example, if there are two inputs A0 and B,
and if the programmer wants both the inputs to be present at the same instance
(inputImplies), then a relation file is generated as follows in BLIF format.

.model relation

.inputs A0_A0 B_A0

.outputs A0 B

.names A0_A0 B_A0 IMPL_0
10 0
.names IMPL_0 _REL_FILTER
1 1
.names A0_A0 _REL_FILTER A0
11 1
.names B_A0 _REL_FILTER B
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11 1
.end

This file is generated based on the simple observation on the relation that if one
input is present in an instant then another input is also present at the same instant.
This particular relation file along with BLIF file of HipHop.js program is fed to
XEVE, to ensure the inputs are presented at the same instants. For use with
NuSMV, the utility does not generate another file, rather it modifies the SMV file
generated. The utility creates temporary variables and use them instead of the
input variables in SMV source, for the previous example, A01 and B1 are created for
two input signals A0 and B, and they are defined as follows in the SMV source file.

filter := A0 & B ;
A01:= filter ;
B1 := filter ;

This does the same job as the relational file for XEVE. As with checkOutput utility,
the utility generates temporal formula, for example if there is one output: CTLSPEC

AG !o0, and use it for searching for states satisfying the condition. Similarly, if the
programmer wants both the inputs to be present at different instants, then the
utility inputExclusive produces a relation file describing the above said relation.
For the previous example with two inputs A0 and B, the following relational file is
generated in BLIF format.

.model relation

.inputs A0_A0 B_A0

.outputs A0 B

.names A0_A0 B_A0 EXCL_0
10 1
01 1
00 1
.names EXCL_0 _REL_FILTER
1 1
.names A0_A0 _REL_FILTER A0
11 1
.names B_A0 _REL_FILTER B
11 1
.end

Interaction with NuSMV is similar to inputImplies utility, the inputExclusive

utility modifies the SMV file generated as follows. It creates temporary variables
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and use them instead of input signals, for example A01 and B1 for two inputs A0

and B for the previous example and then provide definitions of those temporary
variables as follows.

A01 := A0 & !B ;
B1 := !A0 & B ;

If there is a single output o0, the temporal formula CTLSPEC AG !o0 is generated as
a search criterion with the model checker. The counter example returned is then
further processed to provide relevant information to the programmer. Next, the
idea of observers and the implementation of sameInstance utility is presented.

5.4.3 Implementation of sameInstance utility

In program verification for reactive programs, it is generally advised to verify simple
logical safety properties. Simple logical means logical dependence between events
rather than between numerical values [68]. In synchronous reactive programming,
parallel composition is synchronous and hence the desired verification can be
expressed by means of another (second) program which observes the behavior of
the first one and decides if it is behaving correctly. The second program is called
“observer” and is typically written in the same language as the first one. The
verification process consists in checking if the parallel composition of the program
and observer makes the observer complain. As an illustration of this, the HipHop.js
program analyzer provides sameInstance utility.

The idea is illustrated as follows: consider a reactive module foo, then another
module obs_foo is created which observes the output of the module foo without
influencing the behavior of the module foo. For the example listing 4.20 (page 81)
in previous chapter, we checked with the program analyzer, if the emissions of two
signals O and P happen at the same instant. What the program analyzer does is it
creates synchronous observer module as follows, taking into account the signals
which need to be observed for same instant emission. A signal sameInstant is used
to signal possibility of a scenario where the signals can be emitted at the same
instant.

1 hiphop module observer(){
2 out O, P, sameInstant;
3

4 loop {
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5 if (O.now && P.now){
6 emit sameInstant();
7 }
8 yield;
9 }

10 }

This observer is run in parallel with the original source module (listing 4.20) as
given in the following listing. Also, the earlier analyzer utility to check emission of
output signals is used:

1 hiphop module main() {
2 in A, B;
3 out O, P, sameInstant;
4

5 fork {
6 run prg() {*}
7 } par {
8 run observer() {*}
9 }

10 }
11

12 const machine = new hh.ReactiveMachine (main);
13 analyzer.checkOutput(machine);

The ability to build observers, that is programs running beside the original one, is
the strength coming from module composition ability of HipHop.js that it inherits
from Esterel. Next, we detail the implementation of emissions at a specific range
of instants utility.

5.4.4 Implementation of outputRange utility

In the listing 4.25 (page 83), we check with the program analyzer if signal O can
be emitted within a range of [1,4] instants. The implementation is once again
straightforward, we follow the common process to generate SMV equivalent and
then generate a specific formula that can help the underlying model checker to
search for states satisfying specific conditions. In this context the utility generates
the CTL formula, CTLSPEC ABG 1..4 (!o0) which means, within a bound of 1 to 4
instants, search for all the states where output o0 is false, here o0 represents signal
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O. If the model checker returns a result, it means there is a state where the o0 is
true and that means within the range of 1 to 4 instants, signal O can be emitted.

With the infrastructure to implement the HipHop.js program analyzer, we can
extend it with few more functionalities that can be utilized by programmers who
are experienced in model checking. We introduce one such utility in the following
section.

5.4.5 LTL-CTL Formula Checker

The HipHop.js program analyzer provides a utility to experienced programmers who
can specify complex LTL, CTL formulas using the utility checkFormula(arg_list)

and perform traditional model checking on their program supported by NuSMV
model checker. The arg_list can have any LTL or CTL formulas as devised by
the programmers. The utility will check for syntax correctness of the formula
forwards the SMV model and temporal formula to the NuSMV model checker and
processes the result returned by the model checker. This utility can be used by
power users who want to check their programs with advanced properties. The
utility initially performs some information processing. In the sense, it modifies
input signal names which may clash with LTL and CTL notations like G, A, etc. Also,
the utility employs a parser to check for syntax correctness before forwarding it
to NuSMV model checker. The result returned by the model checker is processed
by the utility to provide meaningful information to the programmers. This utility
allows experienced programmers to play with their HipHop.js program and model
check based on their specifications. Also, a utility which can predict the output
emissions for the user given inputs without executing the reactive machine can be
built. This utility is based on the basic utilities provided in HipHop.js program
analyzer.

5.5 Summary

This chapter provides details of the implementation of the HipHop.js program
analyzer, starting with the overview of methodology, brief introduction to the tools
used and to the theory on model checking, and in depth presentation of steps
that are carried out in implementing the program analyzer. With this we come to
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the end of this chapter which detailed the implementation of HipHop.js program
analyzer utilities.
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Replayer

One of the objective of the work in this thesis is to study various ways to support
HipHop.js programmers with analyzing and understanding temporal behavior
of their HipHop.js programs. When building complex systems, collaborative
development is a part of software engineering process, programmers should be
able to read and understand code written by others usually during integration and
testing. As a cognitive task while reading programs written by others, “Program
Comprehension” is hard involving building of various mental models of the programs
to reconstruct thinking of the original programmer. Program comprehension can
become easier with tools visualizing various aspects of the program like its behavior
and structure. Program visualization and program animations are seen as important
techniques for tools to create visual representations of the program. This allows
programmers to relate execution of the program statements with results produced
by them, thereby improving understanding of the behavior of programs [111]
Continuing with the earlier introduced program analyzer utilities in our effort to
support HipHop.js program comprehension, we introduce a utility RecordPlayer,
with the aim to improve programmers understanding of the programs they are
writing and also understand HipHop.js programs written by others. It is introduced
in section 6.1 and in section 6.2, the implementation details are presented.

6.1 Introduction

The RecordPlayer is a utility which can help programmers visualize the control
flow of a program at an instant. The RecordPlayer highlights specific programming
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constructs where the control flows in an instant. Consider the following HipHop.js
program.

1 hiphop module prgABC() {
2 in A,B;
3 out C;
4

5 fork {
6 await count(2, A.now);
7 } par {
8 await(B.now);
9 }

10 emit C();
11 }
12

13 let machine = new hh.ReactiveMachine(prgABC);
14 machine.debug_emitted_func = console.log;

Listing 6.1: A simple HipHop.js program

How to understand the temporal behavior of this program? One approach is to
use the earlier presented utilities which will predict scenarios when the output signals
may be emitted. Another approach, typically programmers use is to experiment by
checking outputs for specific inputs the programmer has in mind. Let us assume the
following set of inputs, the programmer might give as input to check the behavior
in each instant. We observe the emission of signal C in instant 5.

1 machine.react(); // output:
2 machine.react("A"); // output:
3 machine.react("B"); // output:
4 machine.react(); // output:
5 machine.react("A"); // output: C

Listing 6.2: HipHop.js program reation instants.

Why the emission of output signal happened only in instant 5 for this input
sequence? What happens to control flow in each of the earlier instants? These may
be questions that may linger in programmers who are new to reactive programming.
We want to help HipHop.js programmers answering these questions by providing
visualization of control flow in a HipHop.js module during a reaction instant, so
that they can build relationship mental model between flow of control and output
emissions.
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Using RecordPlayer, programmers can record the status of the machine in each
instant for the specified inputs, and can replay the flow of control. In our example
they can replay the flow of control in each of the 5 instants. The snapshots of each
of the instants are illustrated here. First, the snapshots of control flow in instant 1
and 2 are presented in figure 6.1

(a) Instant 1 - machine.react()

(b) Instant 2 - machine.react("A")

Figure 6.1: Control flow visualization for an example program.

In instant 1, the control is present within “fork {} par {}” constructs and
does not go further to line 10 (hence no emission in instant 1). This tells the
programmer that control is active at those constructs through which they are
waiting for respective signals starting from the next instant. In instant 2, input
A is present as input, hence it is highlighted in line 2, and the control still stays
within “fork {} par {}” construct, hence no emission of C. The visualization tells
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the programmer that control is active in those constructs since they are waiting for
the occurrences of signals A and B. Though, only signal A is present, the control
continues to stay active in the “fork {} par {}” construct. Now, in the following
illustration 6.2 the snapshots of flow of control in instant 3 and instant 4 are
presented.

(a) Instant 3 - machine.react("B")

(b) Instant 4 - machine.react()

Figure 6.2: Control flow visualization for an example program.

In instant 3, input B is present, hence it is highlighted in line 1, and the control
flow visualization says that the control stays with “fork {} par {}” construct.
Inside “fork {}” waiting for another occurrence of signal A. Inside “par {}” as it
is waiting for occurrence of signal B. Next, in instant 4 there are no inputs, and
the fork construct has active control waiting for another occurrence of signal A;
inside the par construct there is no active control, indicating that control is not
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active inside “par {}” construct. Now for control to be active at signal emission
of C, there should be no active control inside “fork {}” construct. This is seen
happening in instant 5 which is illustrated in the following illustration 6.4.

Figure 6.3: Instant 5 - machine.react("A")

Figure 6.4: Control flow visualization for an example program

In instant 4, the active control flow was active inside “fork {}” construct waiting
for presence of signal A second time (since counter value is set to 2). In the instant
5, signal A is present as input and hence the control is active outside of “fork {}

par {}” construct at the “emit C()” statement, thereby emitting it and hence it is
highlighted at line 3 and 10.

With this sort of visual support for control flow in HipHop.js reactive programs,
we believe it will meet the requirement of the program comprehension tools as
suggested in the related literature. Next we present the implementation and usage
details of the RecordPlayer.

6.2 Implementation and Usage of the Replayer

The usage of the RecordPlayer utility is presented first, and then the implementa-
tion details are presented. The API reactRecord(reactiveMachine, sigArray_in)

instantiates the execution of the RecordPlayer. The argument list includes the
reactive machine reactiveMachine and a list of input signals sigArray_in.

1 hiphop module prgABC() {
2 in A,B;
3 out C;
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4

5 fork {
6 await count(2, A.now);
7 } par {
8 await(B.now);
9 }

10 emit C();
11 }
12

13 let machine = new hh.ReactiveMachine(prgABC);
14 machine.debug_emitted_func = console.log;
15 rec.reactRecord(machine, ["","A","B","","A",""]);

Listing 6.3: HipHop.js “RecordPlayer” utility usage.

The visualization support that is provided by the RecordPlayer is based on
syntax highlighting. Syntax highlighting has been shown to improve Program
Comprehension [122]. The utility captures the state of each reaction instant and
then replays them inside the textual editor. For now, our implementation relies on
VSCode extensions, and only that editor is supported. This can be extended to all
the popular editors and also can be made web based. The building blocks of the
utility is illustrated in the following figure 6.5.

             

                                 

Replayer
     Machine.nets 

 

Location 
generator

.replay

.json
VS code source 
highlighter.

Figure 6.5: Replayer Building blocks.

For each reaction instant, the state of the nets are recorded. Specifically, the
nets whose value are true. Once that is done, the location generator generates the
locations from those nets using the location information of nets provided by the
HipHop.js compiler. The location generator, further process the information from
the source file and to generate all the relevant positions and stores it in a JSON
file, with .replay.json extension as illustrated follows in an example file.
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1 {
2 "reaction1":{"filename":"forkpar.js",
3 "locations":[152,213,198,256,242,219],
4 "interface":{"A":[[152,false]],"B":[[152,false]],"C":[[152,false]]},
5 "localSignals":{}}
6 }

Listing 6.4: An example JSON file generated and used by “RecordPlayer”

Further processing is required because, in the HipHop.js compiler the input
and output signals are instantiated at the beginning of the module. To visually
highlight the signals when they are emitted at the positions where they are declared
the location generator routine performs text processing to get the actual position
where the signals are declared. So to highlight the position whenever there is an
input or output of a signal, the RecordPlayer checks for those signals which are
high at a particular instant, locates their position in the text file. Those positions
are stored in the JSON file. The VSCode extension animates the execution. The
routine reads the locations, and the number of reaction instants in the JSON file
and based on the location info, highlights those positions with a specific color. All
the positions are highlighted and displayed. If there are more than one instant,
then it is animated with a specific amount of time delay between each reaction
instants.

The RecordPlayer aims to provide visual support for HipHop.js program compre-
hension. Since, the mental grasp of humans are limited, for a better understanding
of module behavior it is not prudent to record large number of reactions before
playing. Also, it is advised to run the RecordPlayer routine on programs which
are of size that can be visually grasped. Visualization where control flow spans
hundreds of lines of code may not be very advantageous when building mental
models for program comprehension. Large programs can be modularized and then
used with visualization tools. With this, we end this chapters devoted to the
presentation of the tools helping programmers understand the behaviors of their
HipHop programs. The next chapter presents the related work.
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This chapter presents literature review which is closely related to our work. Software
professionals spend a large amount of time and energy testing software to ascertain
whether it is behaving the right way, and to find and fix bugs (debug). Software
testing as a technique used in Verification and Validation of software, ensures
adherence to the desired specifications, thereby increasing confidence in the software.
Debugging software has remained an art [66] for a long time. Software engineering
community and scientists continue to innovate new practices and methodologies to
standardize the practice of software testing and debugging, in pursuit of minimizing
the development cost and time.

Programmers have generally observed that they experience lengthy and difficulty
testing and correction process which is attributed to ever-increasing complexity
of software [66] being developed. The important challenge for preventing software
failures is detection and localization of the required information from the source
code [53]. A major requirement in testing is developing a set of test cases that are
effective enough to cover all of the source code, and finding inputs that leads to
trigger subtle corner case bugs. Programmers are required to have understanding
of the fault chains in smaller software parts, as the cause of failure are typically
distributed throughout the software and also due to the dynamic context in
which error occurs. Furthermore, advances in programming technologies and
varied programming paradigms brings in a requirement of specialized domain
specific knowledge, making testing and debugging even more difficult. Software
fault localization [85], program comprehension [134, 130] have opened up new
frontiers of research and practices in software debugging. Likewise, automated
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testing techniques capable of performing testing activities, including test data
generation without manual intervention are being increasingly used to build reliable
software [55, 7]. Our work is closely related to techniques used in automated testing
techniques, fault localization and behavior comprehension in the bigger realm of
software testing and debugging.

Automated testing techniques like random testing [8], differential testing [64],
Concolic testing [140], etc. are matured enough to be used in building medium to
very large reliable software systems. Though traditional fault localization techniques
are in practice even today, like program logging [56], assertions [119, 120] and
breakpoints [133, 46, 71, 1], newer strategies have been employed in coming up
with new strategies for fault localization. The research in the field of program
comprehension as part of debugging activity has seen various shifts in paradigms
in the last few decades contributing to rich and varied literature. In the following
sections, we review some of the automated testing techniques, approaches in
“software fault localization” and “program comprehension”.

A brief history of testing and some approaches in automated test data generation
techniques are presented in section 7.1. We review some of the techniques that
have evolved in software fault localization in section 7.2 and then on program
comprehension methodologies used for debugging in section 7.3. Later, in section 7.4
we present debugging approaches carried out in other reactive languages. First,
we present about synchronous reactive languages Esterel, Lustre, and then we
present the debugging strategies employed in other reactive programming paradigms
and libraries like Reactive Scala, RX, etc. Finally, in section 7.5, we present a
review of literature on a new framework for verification of programs, especially for
programming languages like HipHop.js which provides facilities for composition of
synchronous and asynchronous computations.

7.1 Software Testing

Testing is generally used to detect presence of faults in the software but does not
guarantee absence of bugs. The testing process has been an integral part of the
Software life cycle, starting from the software requirement phase and continuing
throughout the lifetime of the software.

As a practice, a test plan is developed defining the scope, goal, methods,

Static and dynamic debugging techniques for the HipHop.js language 127



Chapter 7. Related Work

resources and timeline of testing. The test plan also has details explaining who,
when, why and how testing should be performed. Managers make the choices on
forms of testing like black box testing, white box testing and gray box testing. As in
other branches of software engineering, newer technologies and methods are being
developed in the domain of testing thereby continuously increasing the confidence
on the reliability of the software. In a simplified testing process, test input data
is selected from the “input” domain and is used to generate test cases. The test
case generation may be manual, or automated. The test cases hence generated
are executed on the software which is under testing. The output obtained is then
declared as pass or fail based on the “expected” result defined by the specification of
the software. The “input” domain includes all possible inputs for the software. Test
data generation is the process of identifying and selecting input data that satisfies
the given objective of testing. Various aspects of the software are considered to
generate the test data, like requirements, model, code, etc. The objective of testing
dictates the type of test data generators to be used, for example, there are test
data generators to check the coverage of all the control paths in the software of
interest.

Random testing is a technique, wherein the test data is randomly generated
(automated) based on the test objectives or specifications of the software. This
approach is seen to be very effective in discovering bugs and also found to be
economical - requiring less intellectual and computational efforts [43]. The simplicity
and cost-effectiveness makes random testing preferable in running large numbers
of test cases, as opposed to other techniques that are seen to require considerable
time and resources for generation of test cases and execution. It has been observed
that random testing is as effective as other methods in detecting subtle faults
due to large test cases employed in testing [54]. Since the test data generation
happens without any background information (thereby sometimes violating pre
and post conditions of the software), Random testing is criticized. Further, many
of the generated test cases fail at the same state of software which is also seen as a
drawback of the approach.

Differential testing, a form of random testing requires availability of two or
more comparable systems to the tester. An exhaustive series of automatically
generated test cases are presented to the above systems. If there are differences in
the results, or one of the systems indefinitely loops, then the tester has a candidate
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for debugging. To have effective differential testing, the quality of testing is a
very important issue, programmers must evolve test cases that drive deep into the
software getting tested. The problem of false positives - though the results of two
tested programs differ, they are found to be correct, is another problem that has to
be addressed, further, the amount of noise for generating test cases, in differential
testing is huge.

Symbolic execution provides a better approach to the problem, by exploring
many possible execution paths systematically at the same time without requiring
concrete inputs, rather by using symbols, thereby reducing noise considerably.
Execution by a symbolic execution engine [13] is by building a first-order Boolean
formula using symbols for all the explored control paths, along with a symbol
memory storing the variables - symbols mapping. Using SMT based model checker,
violations of any required property along each explored path is verified.

In concrete executions, the program is run on specific inputs and a single control
flow path is explored. In contrast, symbolic execution explores simultaneously
multiple paths, a program can take under different inputs. Modeling all possible
runs provides very interesting analysis, but is unfeasible on real-world software.
The problem is of scaling up, due to memory constraints and state explosion
problem arising out of large number of variables. To mitigate the above scenario,
dynamic symbolic execution strategies like Concolic testing mixes both concrete
and symbolic execution strategies as a middle path between exploring too less or
too many paths.

The programs in Concolic testing, are initially executed with some concrete
input. Based on that input, the program execution branches into different paths
at branching statements. The Concolic tester in parallel constructs a “symbolic
constraint” which describes the possible input values that can cause the program
to take either the true or false branch at a statement. The conjunction of the
above “symbolic constraints” is the “path constraint” and by solving them using
SMT solvers, test inputs can be generated for subsequent runs. Though Concolic
testing is very promising, there are some issues which is preventing easy adaptation
like expensive constraint solving, issues with symbolic representations, handling of
multithreaded programs, scalability issues, path explosion, and ways to handling
native calls or system calls [78]. Newer techniques are being discovered in the
pursuit of truly automated testing. We end the review of testing strategies here.

Static and dynamic debugging techniques for the HipHop.js language 129



Chapter 7. Related Work

From the perspective of testing, the HipHop.js program analyzer provides a
semi-automated testing infrastructure. The input can be generated without any
manual intervention or the programmers can set constraints on the way input should
be generated in the form of input relationships. Also, the flexibility provided by
the program analyzer to test manually by the programmers for a few instants and
then checking for output emissions through program analyzer, helps in exploring
lots of various temporal behaviors. But, as highlighted in drawbacks of the many
testing strategies, the HipHop.js program analyzer cannot guarantee absence of
bugs and also provide explorations of all the paths. The goal based searching as in
HipHop.js program analyzer provides an efficient trade off with respect to exploring
too less or too many possible control paths. The programmers can verify whether
their expected goal is reached or not with the help of program analyzer, improving
their confidence on the software. With this we end this section. From the next
section we review the literature on debugging.

7.2 Software Fault Localization

Software fault localization is one among expensive activities in software development
life cycle. In practice, programmers tend to localize fault manually; they observe
test cases which fail and search faults in the source code. The typical debugging
approach includes inserting logging statements and breakpoints, inspecting the
stack trace, etc. All these ad-hoc manual processes are generally costlier and time-
consuming. Recent advances in fault localization tends to automate, standardize
the techniques and have been found to be relatively cost-effective in software
development [48]. The advanced fault localization techniques can be categorized in
many ways and in one of the groupings based on the approaches to isolate the faults,
we present some of these techniques [145] and then correlate with fault localization
approaches used in our work. One of the basic fault localization technique used is
slicing.

7.2.1 Slice-based Localization

Programs are abstracted into a reduced form by slicing off the parts which do not
affect the behavior of the program with respect to certain specifications [137, 28].
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Slicing reduces the searching domain for the programmers to locate the bugs in
their programs. There are various slicing techniques like static slicing [142, 87],
dynamic slicing [5, 4, 141] and execution slicing [6]. Although slicing reduces the
amount of code to be inspected, the code that still remains is excessive in actual
production environment [48] prompting further refinements and combination with
other localization techniques. The next technique is based on program states.

7.2.2 Program State-based Localization

The variables in a program provide the snapshot of states of a program through
their values, during program execution. Faults in the “development” version are
located by a comparison at the runtime of the internal states to a “reference” version
of the program which is also called as relative debugging [2]. Further, the values of
some variables can be modified to narrow down on the ones which causes erroneous
program execution. The delta debugging [151, 152] contrasts the program states
between successful test and failed test executions using their memory graphs. This
technique can be used in automated debugging with various other improvised
approaches on delta debugging. The flip side of this technique has been state
space explosion as and when the number of program variables increase. The next
approach is based on modeling.

7.2.3 Model-based Localization

This method has been initially used in electronic digital circuits and later incorpo-
rated into software domain. In model based localization [147, 148], a logical model
is generated from the source code, and then by using logical reasoning, a minimal
set of statements explaining the existing faults are obtained. Modeling can be:

• dependency based - dependencies between statements,

• abstraction based - using abstract interpretation of loops, recursive procedures
and heap data structures,

• value based - dataflow information in programs are used to locate components
that may contain bugs.
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Value based modeling is seen to be costlier and generally applied to smaller
programs [102], whereas for bigger programs, dependency and abstraction based
modeling is preferred. This method has been augmented with the use of model
checkers. Here, a model checker is used to show (localize faults) how specifications
are violated with the help of counter-examples whenever a model of the software
does not satisfy the corresponding program specifications. A counter example may
not help directly in identifying the parts of a model that are associated with a
given bug, but, it can be viewed as a failed test case to identify reasons for the
bug [61, 62, 84]. Refining further in [14], a model checker is used again to explore all
the paths in the program except those paths of counter examples. The paths which
do not cause failures are recorded. From these, transitions to counter example
are identified and all these are the ones contributing to bug. Since all the paths
except the counter example one can be numerous, it is generally cost intensive and
is further refined. In [63], it is proposed to generate less number of executions by
going backwards from the counterexample using a model checker. These executions
which may or may not cause a failure are further analyzed to localize the source of
bugs.

The HipHop.js program analyzer uses the model based localization strategy
along with a model checker in helping programmers localize the fault based on the
results returned. This technique has been used quite vividly. In [9] a dynamic test
generation technique is presented which combines both symbolic execution and
explicit state model checking. The test cases are generated with constraints on
inputs and those tests which fail are documented and a bug report is developed
based on that. In [106] using model checking, a testing infrastructure which
can give feedback when dealing with design of distributed systems is presented.
In [83], symbolic execution is used for fault localization in imperative programs.
The classical literature on modeling software identifies the short coming in this
approach. A wrong modeling process may miss out some of the details and may
give a false result for fault localization, or may include too many details and
contribute to state explosion problem. The spectrum based localization techniques
presented next can be used alongside model based localization further refining or
independently in software fault localization.
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7.2.4 Spectrum-based Localization

This method utilizes the information of program entities executed by test cases
to localize entities that are more likely to be faulty. Code coverage, testing data,
dynamic information, execution trace, execution path, path profile, and execution
profile are some of the similar terms that are used [48]. Various techniques
have been in practice like the ones based on failed test cases, successful test cases,
combination of failed and successful test cases, coefficient based, Program Invariants
Hit Spectrum (PIHS) based, Predicate Count Spectrum (PRCS) based, etc [3]. We
will not elaborate on the techniques here, curious readers can refer any of the cited
literature for further information.

Even though there are so many techniques, none of the techniques has been able
to outperform all others in every possible scenarios [149]. The usage of a particular
technique depends on the context and application in consideration. It has been
observed that large proportion of bugs cannot be directly detected with the above
techniques, requiring inputs from multiple failed test cases and inspection of large
number of lines of codes [80]. The next category exploits advancements in the field
of AI like machine learning and data mining techniques.

7.2.5 Machine Learning and Data Mining based Localization

Artificial Intelligence techniques like machine learning and data mining are being
applied for localization of faults, with program spectrum data as input for classifying
faulting program elements. Machine learning techniques can produce models based
on data. With fault localization problem, models can be produced which learn
and can deduce the location of a fault, based on training input data of past
errors. Various approaches from machine learning are used in fault localization, like
back propagation neural network learner [146, 10], Radial basis Function neural
networks [144], and decision tree algorithm [36]. Although, a program’s complete
execution trace is a valuable resource for fault localization, the high volume of data
makes it humanly difficult for usage in practice. Therefore, some approaches have
applied data mining techniques on execution traces [40, 108, 41, 150], one of them
being graph mining. The AI application to software fault localization brings in
both the advantages and disadvantages of respective methods to fault localization
domain and may require special training to use in debugging activity which may
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drive away programmers.
Other than the above localization techniques, there are other techniques which

we briefly review as part of completeness of this section. Algorithmic debugging
technique (declarative debugging) as part of fault localization decomposes a complex
computation into a sequential sub-computations thereby helping in localization
of program bugs [127, 37]. Each sub-computation’s outcome is checked for its
correctness with respect to given input values. Then, on those sub-computations
that has faults, the algorithmic debugger is used again to further narrow down the
fault. In formula based fault localization techniques [76, 77] failed execution traces
are encoded into a “error trace formula”. The error trace formula is then proved
for non-satisfiability using certain tools or algorithms like SAT/SMT solvers. By
doing so, the programmers can capture the relevant statements causing the failure.

In the context of our work, the work on causality error tracing is also a part
of software fault localization technique, wherein a bigger causality cycle is chosen
and searched for relatively smaller cycles by slicing off parts of bigger cycle using
advanced graph theory algorithms. With respect to HipHop.js program analyzer,
a combination of techniques presented above like program state based and model
based localization along with SAT/SMT solvers are utilized to give better results
in fault localization to HipHop.js programmers. In the next section, we present
the related work on another aspect of HipHop.js program analyzer, supporting
HipHop.js program comprehension.

7.3 Program Comprehension

Supporting understanding of programs has been a major topic in software engineer-
ing research, initially as part of software maintenance and now in a supporting role
for all the software engineering activities, including debugging. Code and program
behavior understanding as part of program comprehension [124] forms the corner-
stone of research in program comprehension. Programmers build mental model
of a program with the help of information structures of the program. The mental
model of a program is the programmer’s mental representation of their program.
The information of the program to build the mental model can be gathered by
following various approaches, it is observed that programmers try to understand
their programs through collecting runtime information by executing the programs
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using a debugger quite frequently [98]. Programmers build a meta-model of the
program [94] which is a combination of various models to aid in cognition process.
According to [134], the tools that are developed to aid in comprehension should
support browsing, searching (querying), present multiple views in the form of
visualization (graphical views). We concentrate on querying, software visualization
and dynamic analysis techniques utilized in tools for program comprehension which
are related to our work in HipHop.js program analyzer.

7.3.1 Query-based Program Comprehension Tool

Query-based debugging tools have been designed to aid program comprehension. A
debugging tool with support for program comprehension [82] enables programmers
to select from a set of standardized “why did” and “why did not” questions deduced
from the source code. The tool uses call graphs and a mix of both static and
dynamic slicing (fault localization techniques) to find possible explanation to
failures. To understand program behavior, programmers can translate their query
into code-related questions, which can speculate about the causes of faults. In [74]
time traveling queries are proposed which can be used to explore programs as part
of program comprehension. These queries collect execution data and present it to
programmers. Further, in the same paper based on a survey on programmers, it
is concluded that the queries help in better comprehension of programs. Efficient
searches are made in large object spaces and their relationships whenever a program
stops as part of query based debugging tools [92, 88, 118]. A specialized query
language is suggested in “snap shot” query based debugging [115] with its own
user-friendly syntax.

Are the queries provided sufficient to cover all the behavioral patterns of a
program? This is something that cannot be answered directly and also scientifically.
Probably a survey with programmers can help in noting down the efficiency of
individual queries, thereby trimming queries or adding up after starting from a basic
set of queries. HipHop.js program analyzer also provides a basic set of standardized
queries in the form of utilities that can be used in understanding the temporal
behavior of the programs. We believe these set of queries can be the starting set
and can be added upon based on the feedback from programmers, which can be
collected by a survey. Next, we present related work on software visualization.
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7.3.2 Software Visualization

Software visualization improves program comprehension, thereby making debugging
of programs easier [12]. The visualization support provided can be based on
structure, behavior and evolution of software [52]. The visualization of a software
structure helps in analyzing the structure of the source code and the differences in
their organization based on the domain of usage. The visualization of behavior helps
in understanding complex programs and its performance, whereas the visualization
on evolution helps in understanding the versioning of software. As one of the
guideline [89] for developing visualizing tools in software, it is advised to have
tools which can visualize steps of a function, thereby helping in improving program
understanding. Execution traces have been used to present the behavior of programs
to help in program comprehension and debugging. There are various methods of
presenting execution traces like call-graph, scenario diagrams, sequence diagrams
etc.

In [96], the Enlighten approach uses fault localization techniques along with
queries on suspicious invocations which are expressed in terms of inputs and outputs
as part of visualization support. In [51], a visual instrumentation platform for
reactive programs is presented, wherein users can dynamically wire into a running
reactive program and get to know the flow of values. In [122, 11], the visualization
support in program comprehension is provided using syntax highlighting. It has
been observed that rich code visualization helps in understanding the code features
without overloading visually. In [139], a tool based on Topic models for program
comprehension in JAVA domain is proposed. This tool mines information from Java
Source code and presents a project overview to the programmers to understand the
program. Without actually running the program, all possible execution paths are
displayed in visual symbolic debugger [65] helping in understanding smaller parts
of the code.

Though there are many methods, some common drawbacks as in visualization
tools as of now are with respect to scalability with big programs and tools which
cannot be generalized for all the scenarios and programming domains. It has
also been observed that the visualization tools usage is somewhat limited, reasons
being visualization tools not part of IDEs and ease of adaptation of the tools.
HipHop.js program analyzer’s utility not only helps in building mental model of the

136 Static and dynamic debugging techniques for the HipHop.js language



Chapter 7. Related Work

language constructs of HipHop.js, it also helps in understanding complex behaviors
by providing syntax highlighting of presence of control in a particular reaction
instant. The highlighting of respective inputs and outputs also helps programmers
note input-output relationships. Next we present about dynamic analysis, which
lately has been an important approach to program comprehension.

7.3.3 Dynamic Analysis

Dynamic analysis is used in understanding the behavior and properties of a running
program. This is fundamental to debugging activities as it provides programmers a
better perspective on the corrupted program behavior. By augmenting the code
with logging code, run time information is collected, this is quite famous and one of
the oldest approaches. These approaches run the risk of slowing the code. Recent
approaches like efficient path profiling, encoding program executions, dynamic
instrumentation have been seen to optimize the runtime overhead. This is done by
compressing the trace data, or considering only subset of data, and dynamically
inserting and removing logging instructions by a smart observer without manual
intervention. Further, programming languages which support meta programming
features offers some more features like a middle layer which performs some task on
behalf - “Behavioral reflection” [50] and “Spy framework” [19] provides an abstracted
middle layer hiding many of the actual implementation details that can be worked
on. These metaobjects implement a transparent tracing mechanism that captures
run time behavior. Also, aspect oriented programming tends to extend the support
of metaobject to programming languages which do not have meta features. Here
tracing mechanism is chosen based on the level of details by the programmers. All
the above approaches typically have performance issues.

As part of dynamic analysis, time travel debugging is proposed. Wherein
programmers can step front and step back through their debuggers. Many tools
have been proposed. In [95] backward debugging is proposed - here state changes are
recorded through the run of a program and is presented back to the programmers.
The issue with time travel debugging is the amount of memory that is required
to record the executions. Various tools that optimize the memory usage and
a considerable performance are in practice. TARDIS [16], JARDIS [17] and
MCFLY [138] are some implementations of time travel debugging for languages like
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Java and JavaScript. In HipHop.js program analyzer, programmers can execute for
a few reaction instants and then use the utilities to analyze the temporal behavior
from then on. The results speculate possible input output relations from any
reaction instant. In the next section, we present the related work more specific to
debugging approaches in other reactive languages.

7.4 Debugging in other Reactive Languages and

Libraries

HipHop.js program analyzer has been in parts inspired by the verification and
debugging approach taken in Esterel. XEVE [30] is one of the tool that is used for
verifying and understanding Esterel programs in terms of input - output relations.
The Esterel compiler compiles programs into Finite state machines, where states
and transitions are enumerated into boolean circuits with equations and latches.
These equations are generated in BLIF format. XEVE is built on a Binary Decision
Diagram (BDD) library called TIGER, which takes FSMs described in BLIF as input
and provides two functionality to the programmers: minimization of the number of
states in FSM, and checking the emission status of selected output signals. The
minimization is based on symbolic bisimulation (states that are not distinguishable
are equated while walking the FSM graph). The output signal status checking can
be used to check if there is a possibility of emission of signals. Users can decide the
status of the input signals, and based on that they can verify the emission of output
signals. If emission is possible, then the path will be available in a file saved with
.esi extension. The functions which perform minimisation (BLIFFC2) and output
status checking (CHECKBLIF) are available as binaries that can be used in other
applications. The output status checking can be used along with “synchronous
observers” - these are Esterel programs, that are designed to catch misbehavior
and property violations from the program being verified.

The HipHop.js program analyzer is inspired by the idea of checking output
emissions and “synchronous observers” as used in Esterel. Program analyzer
provides an interface for HipHop.js programs to be used with XEVE. Further, the
idea of checking output emissions and observers are also implemented with backend
model checker using SAT formulas. HipHop.js program analyzer provides few more
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standard queries other than checking outputs to understand temporal behavior of
HipHop.js programs.

Lustre is another synchronous reactive language. Ludic [100] the debugger
designed for the Lustre reactive programming language, combines the idea of
imperative language debuggers with algorithmic debugging technique. Step by
step execution with breakpoints is implemented with the idea of observers, which
observes module, taking into account the inputs and outputs of the original module.
This approach lends traditional debugging approach to Lustre due to incorporating
stepper. Though HipHop.js program analyzer does not support a stepper as of now,
it provides standardized query based searching to help programmers understand
and debug their HipHop.js programs. Building on Ludic, in [59], another tool for
debugging Lustre is proposed. This debugger takes the approach of finding out the
inputs for a given state to be reached, in contrast to the approach taken by typical
debuggers as to reach a particular state for a given set of inputs which is similar to
verification of safety properties. The HipHop.js program analyzer also follows the
approach of reaching a possible goal state as defined by the programmers through
queries and then identifying the input conditions responsible for reaching the goal
states.

There are many other reactive programming paradigms other than the syn-
chronous reactive approach that are in practice as of today mainly used in game
development and design of reactive GUIs. Functional reactive programming (FRP)
combines functional and reactive programming paradigms, specifically time flow
and compositional events are integrated into functional programming [75]. Lan-
guages like Haskell and Scala have various FRP libraries, the ReactiveX (Reactive
Extensions) library initially for Microsoft platforms has been extended to many
of the languages in the form of RxJava for Java, RxScala for Scala, RxJS for
JavaScript and so on. In [121], about designing debuggers for reactive programs
written in Reactive Scala, it is suggested to use “dependency graph” of values as
runtime model in place of “execution stack” as in traditional programming. The
programmers can step through the construction of the graph, seeing the creation
of nodes and new dependencies among reactive values as soon as it is established.
Since understanding reactive programs is complex, providing visualization tools of
these sort will be more helpful to programmers as they can build mental model
of the program behavior. Also, for Reactive Scala in [107], another debugger is
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designed based on data flow graphs, where the graph nodes represent the input
variables and transitions from one value to another represent the edges of the graph.
Here, time traveling is supported by playing with the graph. Programmers can go
to a specific node and assign a new value at the node to check the data flow. In
HipHop.js program analyzer, the dependency between input and output is exploited
to provide tools for understanding temporal behavior. The programmers can also
play with program analyzer to understand if an output emission can happen at a
particular time instant and if so what are its dependencies on input signals. The
code replayer provides visualization support which will help programmers build
mental models of the program.

LINGUA FRANCA [49] is a language designed for coordination and composition
among reactive components built in various languages (C, C++, Python, Type-
Script, Esterel). The components can be concurrent, time sensitive and distributed.
As part of debugging support, an interactive debugger and a trace debugger is pro-
posed through a graphical IDE different from the way HipHop.js program analyzer
provides interfacing with its utilities. In the interactive debugger which is more
related to work on HipHop.js program analyzer, the runtime state of the model can
be viewed as a graphical representation. Users can time travel on the graphical
representation and explore various possible execution paths. The verification of
temporal properties can be done by specifying constraints as assertions checked
during debugging sessions, or for finite state space programs, similar to HipHop.js
program analyzer, model checking support is provided. The difference in approach
with respect to HipHop.js program analyzer is in the usage of CADP [58] model
checker in place of NuSMV and Model Checking Language (MCL), an enhanced
version of modal mu-calculus used for specifying verification properties, in place of
LTL, CTL.

The paper[73] is about a debugger for multi-tier version of ELM programming
language. Along with time traveling, it also provides interactive stepper with
graphical interface. Selecting on the events or on the graphical timeline can step
back to a previous point in the timeline. The paper [143] presents dynamic analysis
and visualization of reactive program behavior. The premise is that it will help
programmers to observe any unwanted or unusual behavior in the program and
help in locating the defects in the code. The sequence of reactions of the program
are analyzed to build high-level models, and are mined for recurring patterns of
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execution, to classify the patterns into similar and diverging behavior, and to identify
unusual behavior. The above approach uses a combination of some techniques
earlier discussed on software fault localization. In [72], to make debugging easier
and supportive to programmers in reactive functional programming, the authors
vouch for the visualization aspect of debugging, which will help in probing the
state, visualize relationships between input and outputs, and inspect transitions.

Building software tools for languages is getting automated to some degree.
Debuggers are being developed in a semi automated way using generic patterns
and metalanguages. The generic approach may not be quite productive when
understanding states of the program written in DSLs during debugging sessions. To
help build better debugging environment for DSLs, the ongoing work [79] proposes a
metalanguage which can help language designers specify runtime state of programs,
in the best possible way suiting the DSL.

7.5 Another Framework for Verification

Some challenges to property verification are the idea of concurrent executions
with preemption, combination of synchrony and preemption, and the combination
of synchronous constructs with asynchronous constructs as in HipHop.js (async).
Modern temporal verification techniques using traditional model checking are yet
to handle the combined model of synchronous and asynchronous computations
effectively. The temporal logics LTL and CTL are not complete enough to specify
properties for verification based on these compositions in model checkers.

Term rewriting is a computational model based on repeated application of
simplification rules. It has been advantageous for symbolic computation, program
analysis and transformation [26]. The systems built on Term rewriting (TRS)
have been found to be relatively efficient in verifying systems made up of large
number of components, as the approach does not involve translation process of
generating FSM, thereby mitigating potential problem of stat space explosion. A
new verification framework using extended regular expressions is proposed as part
of a PhD thesis [132]. This framework provides compositional verification via a
Hoare-style forward verifier in the front-end, and a Term Rewriting Systems (TRS)
in the back-end.

The work proposes a new “Effect logic” for specification of properties in various
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programming domains, in place of generic temporal logic notations LTL, CTL.
DependentEffs for general effectful programs, ASyncEffs for mixed synchronous and
asynchronous reactive programs, TimEffs for time-critical distributed programs and
ContEffs for programs with user-defined effects and handlers. The language ASync-
Effs for specification of verification properties on programs written in languages
like Esterel, HipHop.js, can also be used to generate notations equivalent to LTL
and CTL notations. The traditional temporal operators X (Next), F (Future), G
(Global) and U (Until) can be translated to “Effect logic” as follows.

• Xp = {}.{p}

• Fp = {}∗.{p}

• Gp = {p}∗,

• p U q = {p}∗.{q}

We see that the “Effect logic” notations follow Hoare-style triples: {Φpre} e
{Φpost}, where {Φpre} is the effects prior to the execution of e and {Φpost} is
the resulting effect after executing e. According to the author, the advantages
of the new verification framework are: (i) efficiency due to usage of TRS in the
backend rather than model checkers, (ii) it can address the issues in verification
of composition of synchronous and asynchronous computations as in HipHop.js
programs, and (iii) provide finer-grained, modular verification for big multi-module
systems.

The framework presented here helps in proving logical correctness of programs
coming from various domains, whereas the HipHop.js program analyzer aims to
provide infrastructure for program comprehension, semi-automated testing and
fault localization for programs written in HipHop.js, which represents one of the
programming domain of the many for which the framework presented here can
be used. Model checkers at the back end provide state space searching services
for the goals identified by the analyzer utilities, whereas in the framework the
backend TRS, with the help of forward verifier provides verification support. The
HipHop.js program analyzer as of now provides support only to the programs
having synchronous constructs of HipHop.js. The framework presented here can
be incorporated as part of the future work to deal with temporal verification of
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composition of synchronous and asynchronous HipHop.js constructs. Further, the
HipHop.js program analyzer aims to increase the adaptation of analyzer utilities
by programmers, with easy to use and intuitive interfaces that can be readily used
within their programs.

This chapter provides an overview of the related work, specifically concentrating
on advances in automated testing, software fault localization and program compre-
hension techniques which is related to the contribution of this thesis. With this
we end this chapter. The next chapter concludes this thesis along with presenting
some of the future work that can be done on the infrastructure provided by the
work in this thesis.
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Future Work and Conclusion

This chapter summarizes our work and presents directions for future work. Sec-
tion 8.1 sums up contributions answering the initial research objectives of this
thesis. Section 8.2 concludes this thesis by presenting additional work that can
extend our HipHop.js program analyzer in order to support debugging even better.

8.1 Summary

Debugging software has continued to be an art and new practices are being adopted
to standardize the process. Even before debugging, finding subtle bugs has been
trickier. Any programming language is as much attractive as the supporting
infrastructure the language has, including IDEs, debugging infrastructure and so
on. The objective of this dissertation is to present the debugging infrastructure,
we have built for the HipHop.js DSL and also to demonstrate its advantages to
HipHop.js programmers.

In HipHop.js, there is a special class of errors called causality errors. To debug
these errors, fault localization techniques are required to narrow down source of
errors. Also, to debug logical errors, special infrastructure support is required
which is different from traditional programming due to the inherent nature of
synchronous reactive systems. To debug causality errors, a new technique based
on graph theory algorithms is proposed to generate better error messages. The
technique is shown to be effective by experiments conducted on real world software
written in HipHop.js. This technique can be used in other reactive languages to
build better error messages for causality errors. Also, visualization of the error
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source is supported in popular IDEs making it easier to locate in bigger programs.
Questions, query based debugging strategies are being increasingly used in

programming languages supporting infrastructure to identify subtle errors and also
in fault localization. The proposed HipHop.js program analyzer is built on those
strategies, providing utilities which help in goal based searching. These utilities are
easy to use and can be integrated within HipHop.js programs. Since the learning
curve to use HipHop.js program analyzer is very minimal, the adaptation of the
utilities by the programmers will be more. This thesis presents the objectives,
usage, advantages of having a HipHop.js program analyzer, improving HipHop.js
debugging infrastructure.

Further, to help understand programs better, a tool supporting visualization has
been proposed in the form of RecordPlayer. This tool utilizes syntax highlighting
while replaying the executions. The usage, implementation and advantages of the
visualization tool in program comprehension is demonstrated in this thesis. Our
contribution in this thesis is towards the endeavor of providing various aspects of
HipHop.js debugging infrastructure including program understanding. We believe,
the infrastructure presented in this thesis can improve debugging experience for
HipHop.js programmers. In the next section we provide an outlook on work that
can be carried out further on the contributions of this thesis.

8.2 Future Work

The future work that can be carried out on the first contribution of this thesis,
“causality error tracer” is already presented in section 3.6. Here, we introduce
some of the work that can be carried out on the present debugging infrastructure.
The utilities that we have presented can be tested with HipHop.js programmers
to gain feedback on ease of usability and its effectiveness, henceforth modify the
utilities accordingly. As in LINGUA FRANCA, CADP model checker and MCL
property specification language can be explored for any comparable advantages.
The infrastructure provided through RecordPlayer and the HipHop.js program
analyzer can be integrated onto a web platform. Also, interactive simulation of
execution of HipHop.js programs can be provided through the web interface. As of
now, the utilities are using NuSMV model checker, which can be upgraded to more
recent upgraded version, NuXMV. Since, HipHop.js incorporates extends support
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to asynchronous communication, program analyzer utilities can be extended to
handle those constructs.

While working on the program analyzer infrastructure, we observed that plain
JavaScript code can be generated from the simplified models as in SMV/AIGER
format. To begin with, the plain JavaScript code can be easier to understand for
people getting introduced to reactive programming. Further work should be done
to see if the generated plain JavaScript code can replace the original programs
written in HipHop.js DSL, to provide the same functionality in operations. An
outlook is provided in the following section. Here, we want to stress that these
simplification techniques have been used in Esterel since 2003, including Esterel
V7 industrial compiler.

8.2.1 Simplified Code Generator

When we use the earlier presented analyzer utilities, the first step is to translate
HipHop.js reactive machine to equivalent AIG/SMV format. In this format, the
HipHop.js program can be represented as a graph with topologically sorted nodes.
This graph, can be translated to plain JavaScript code and can be used to give
programmers another perspective about their programs. We illustrate this process
with an example and then detail the implementation details.

Consider a simple HipHop.js program as in the following listing 8.1.

1 hiphop module prgIf() {
2 in I;
3 out O;
4

5 if (I.now) {
6 emit O();
7 }
8 }

Listing 8.1: A simple HipHop.js program

In this module, it is tested for the presence of input signal I in the present
instant and if true, emits signal O in the same instant. When we convert this
program to BLIF and then to AIG/SMV and based on those format, we can
represent the same translated HipHop.js program into a graph as follows in the
figure 8.1
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Figure 8.1: Directed Graph representation of the program 8.1

The graph should be read in bottom-up fashion and it is topologically sorted.
From this graph, we can generate plain JavaScript code reaction function. This is
given in the following listing 8.2. The following code is a direct translation of the
above graph. We can see that the nodes are presented in the same way as in the
graph.

1 // HipHop.js reaction function
2 // global register variable declarations
3 let global_boot_register_0L = true;
4 let I_pre_reg_3L = false;
5 let O_pre_reg_7L = false;
6

7 function reaction( I) {
8 // topologically sorted nodes
9 // level 0 nodes

10

11 let Node1 = I;
12 let Node5 = global_boot_register_0L;
13 let Node8 = I_pre_reg_3L;
14 let Node11 = O_pre_reg_7L;
15 let Node16 = false;
16 // level 1 nodes
17 let Node12 = Node1 && Node5;
18 let Node14 = Node1;
19 // level 2 nodes
20 let Node15 = Node12;
21 // level 3 nodes
22 let Node2 = Node12;
23 let O = Node2;
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24 let Node4 = Node16;
25 let global_boot_register_0L_in = Node4; // for next state
26 global_boot_register_0L = global_boot_register_0L_in;
27 let Node7 = Node14;
28 let I_pre_reg_3L_in = Node7; // for next state
29 I_pre_reg_3L = I_pre_reg_3L_in;
30 let Node10 = Node15;
31 let O_pre_reg_7L_in = Node10; // for next state
32 O_pre_reg_7L = O_pre_reg_7L_in;
33 //output signals
34 return { "O" : O }
35 }
36 console.log(reaction(true));
37 console.log(reaction(true));

Listing 8.2: Equivalent plaint JS function for the above HipHop.js program

The above reaction function can be used in similar fashion as previously the
HipHop.js reactive machine are used. This code can be further optimized and it is
as below in the listing 8.3.

1 // HipHop.js reaction function
2 // global register variable declarations
3 let global_boot_register_0L = true;
4 let I_pre_reg_3L = false;
5 let O_pre_reg_7L = false;
6

7 function if_reaction( I) {
8

9 let O = I && global_boot_register_0L;
10

11 global_boot_register_0L = false; // for next state
12 I_pre_reg_3L = I; // for next state
13 O_pre_reg_7L = O; // for next state
14

15 //output signals
16 return { "O" : O }
17 }

Listing 8.3: Equivalent plaint JS function for the above HipHop.js program

The above code is a simplified plain JavaScript reaction function that can be used
to understand the behavior of their reactive program. In the following section, we
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present the implementation details for the simplified code generator.

Implementation Details

The BLIF generator generates the BLIF equivalent of an HipHop.js source. This
file is then converted into AIG format, which performs “Strashing” - structural
Hashing. This process makes sure that there will be no subgraphs which are
structurally equivalent in the network of nodes (nets). From this AIG file, AIG
graph is generated using ABC1 tool, another tool for synthesis and verification.
The ABC generates the DOT format for the graph. The nodes in this graph
are topologically sorted, and we use this graph as input to translate into the
plain JavaScript functions we saw earlier. We use a DOT parser which process
the information from the DOT format of the graph and based upon the data we
generate the JavaScript equivalent code, which is further optimized. We present
the block diagram of the code generator in the following figure 8.2:

             

                                      Code generator

     Machine.nets

 

                            

 

BLIF generator
.blif .aig
.dot 

reaction.js

    
    DOT to JS     
     converter

ABC

 DOT       
parser

Figure 8.2: Building blocks of the Code generator

Since the size of the code is reduced, and also it is plain JavaScript the approach
may reduce the execution time. This approach can be explored further to check for
its effectiveness in reactive environment. With this we conclude this chapter and
the thesis.

1https://people.eecs.berkeley.edu/ alanmi/abc/
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The appendices presented here include details about the input formats that
are utilized in HipHop.js program analyzer. Readers who wish to have a brief
introduction to the various input formats and tools used in HipHop.js program
analyzer can refer the following appendices before reading the implementation
parts. The material presented here is a brief summary of the original literature,
adapted to our work. In appendix A, the BLIF format is introduced detailing the
notations used and examples. In appendix B, input format AIGER is presented
with illustrations on sample circuits. In appendix C, the details about the model
checker NuSMV and the extended SMV language notations are presented. As part
of ready reference, the HipHop.js language grammar is presented in appendix D.

A BLIF

We present a brief overview of the Berkeley logic interchange format (BLIF) [20]
which is a textual form of describing a logic-level hierarchical circuit. We use this
format as one of the intermediate format for transformation of HipHop.js programs
that will be used by HipHop.js program analyzer. The input format is as follows.
A logic circuit can be any combinational or sequential interconnections of logic
functions. A circuit is generally viewed as a directed graph of combinational and
sequential logic elements. A general BLIF file will have many “models” described.
A model will have declarations of flattened hierarchical logical circuits. A model
declaration inside a BLIF file has the following format and order:

• .model <decl-model-name>

• .inputs <decl-input-list>

• .outputs <decl-output-list>

• .clock <decl-clock-list>

• <command> - This section can declare one of the following:

1. <logic-gate>

2. <generic-latch>

3. <library-gate>
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4. <model-reference>

5. <subfile-reference>

6. <fsm-description>

7. <clock-constraint>

8. <delay-constraint>

• .end - signals the end of declaration of the model to the parser.

For example, a two input “AND” gate, with input names as in1, in2 and corre-
sponding output name as and1, can be described as follows.

.names in1 in2 and1
11 1

In the above listing .names is the keyword to specify the definition of a logical
relation. in1, in2 are inputs and and1 is output. In the next line, the truth table
for “AND” gate is represented. As we know the truth value of “AND” gate is true
when both the inputs are true, in the above listing “11 1” represents the same with
1 meaning true, 0 meaning false, and - meaning don’t care. For the same input
signals, we can describe a two input “OR” gate, with output signal or1, based on
the truth table for “OR” gate as follows.

.names in1 in2 or1
1- 1
-1 1

Now, we illustrate an example latch representation.

.latch in reg 0

In the above listing, .latch is the keyword used to denote a generic latch. in is a
single input to latch, of name reg, with 0 being the initial value of the latch. The
next state value is fed from the input in. We describe a BLIF combinational logic
circuit, the half adder now. The following table and circuit diagram illustrates
the truth table and logic diagram of half adder with input signals X, Y and output
signals S,C. S denotes the Sum and C denotes the carry output.
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X Y S (SUM) C (Carry)

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

X
Y

S

C

The BLIF representation for the above circuit is as follows:

.model halfadder

.inputs X Y

.outputs S C

.names X Y C
11 1
.names X Y S
10 1
01 1
.end

We illustrate an example translation from a HipHop.js program to BLIF format.
The following listing is a simple HipHop.js program which we introduced in the
previous section.

1 hiphop module prg() {
2 in I;
3 out O;
4 if (I.now) {
5 emit O();
6 }
7 }
8 let machine = new hh.ReactiveMachine(prg);
9 machine.debug_emitted_func = console.log;
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10 machine.react();

Listing 4: A sample HipHop.js program, If.js

The following listing is the BLIF format representation of the above program.

.model prg

.inputs I

.outputs O

.latch global_const0_1 global_boot_register_0 1

.names global_const0_1
0
.latch I I_pre_reg_3 0
.names I_pre_reg_3 I_pre_gate_4
1 1
.latch O O_pre_reg_7 0
.names O_pre_reg_7 O_pre_gate_8
1 1
.names and_then_18 and_then_22 O
1- 1
-1 1
.names testexpr_20 global_boot_register_0 and_then_18
11 1
.names I global_boot_register_0 testexpr_20
11 1
.names go_21
0
.names testexpr_24 go_21 and_then_22
11 1
.names I go_21 testexpr_24
11 1
.end

Listing 5: BLIF representation of the If.js program

The above listing is generated based on the netlist generated by HipHop.js compiler.
Typically, the netlist includes only “AND” and “OR” gate representations with
latches. The netlist for the circuit generated by HipHop.js compiler is as shown in
the following figure.

170



0
boot_reg

[157]

2 0
t e s t e x p r

[197]

1 8
and_ then

[197]

9
O

[157]

1
c o n s t 0
[157]

3
I_pre_reg

[157]

4
I_pre_gate

[157]

5
I

[157]

2 4
t e s t e x p r

[197]

2 2
and_ then

[197]

7
O_pre_reg

[157]

8
O_pre_ga te

[157]

2 1
g o

[197]

Figure 3: Graphical illustration of the nets in If.js program.

This is the end of appendix on BLIF format. In the next part of appendices,
the AIGER format and tool is introduced.
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B AIGER

The following appendix helps understand the AIGER format, and the way it can
be generated. The AIGER file format is another way of representing combinational
and sequential logic files using AIG format, the And Invert Graph format. It was
introduced by Biere et al., [27] and has been used in model checking competitions
since 2007. The format uses both ASCII and binary representations. The ASCII
format is helpful as a human-readable format, while binary format is compact and
can be used by other software applications. We provide a brief overview of the ASCII
format representation that is helpful in our HipHop.js program transformation.
The following notations are as in the original literature cited above.

AIGER format - ASCII version

A file in AIGER format consists of the following parts:

• Header - The header consists of a single line with text aag to indicate
ASCII format (AIG for binary format), followed by non-negative integers
represented in the form M I L O A. aag M I L O A. Here, M represents the
maximum variable index. I specifies the number of inputs, L, the number of
latches, O the number of outputs and A the total number of “AND” gates. If
all the variables are used and there are no unused “AND” gates in a circuit,
then M = I + L + A. Each of these non-negative numbers (including 0) are
written in ASCII representation of numbers and are separated by a space
character.

• Input definitions - inputs are defined by “even” number literals. Literals
are basically constants or signed variables which are represented by unsigned
integers.

• Latch definitions - every latch definition consists of an “even” number literal
followed by a number that specifies the variable used to update the latch in
each step. Initial value of a latch is assumed to be zero.

• Output definitions - defined as a single literal, represents one of the inputs
(or negated input), a latch, or an “AND” gate.
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• And-gate definitions - Each “AND” gate definition consists of three num-
bers, an even number literal representing the output of the “AND” gate,
followed by two literals representing the inputs.

In the unsigned word encoding of a literal, the least significant bit is the sign
bit, while the remaining bits represent the variable index. For example, the literal
2, whose two bit binary representation is 10 represents a non-negated first (1)
variable. Since least significant bit is 0. Literal 3 (11) represents a negated first
(1) variable. Likewise, 4 (100) and 5 (101) literals represent non-negated, negated
second (10) variable. The input variable indices can range as 1, 2, 3 ... I. The
latch variable indices range as I+1, I+2, I+3 ... L. Finally, the “AND” variable
indices range as I+L+1, I+L+2, I+L+3 ... A. To get the value of a literal from
a variable, the variable index is multiplied by 2 and optionally 1 is added if the
variable should be negated. Accordingly, the corresponding unsigned input literals
range as 2, 4, ... , 2*I. The latch literals are in the range 2*I+2, 2*I+4, ..,

2*(I+L). And finally, the “AND” literals 2*(I+L)+2, 2*(I+L)+4, ... , 2*(I+L+A)

== 2*M. AIGER library models only cycle-accurate circuits. We shall see some
example representations.

Empty Circuit The empty circuit consists of a single line, which is just the
header:

M I L O A
aag 0 0 0 0 0

TRUE constant can be represented as follows - a single 1 in the header in the O

field specifies that the number of outputs is one. Then the header is followed by a
single line which contains the literal of the single output. Here, it is 1.

aag 0 0 0 1 0
1

FALSE constant is similar to TRUE, except that the literal following the header
will be “0” as follows.

aag 0 0 0 1 0
0

A simple Buffer, which forwards the data has one input and one output variable,
with zero latches and zero “AND” gates. Accordingly, it is represented with 1 at I,
1 at O and 0 at L and A fields in the header. A 1 at M field is deduced based on the
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earlier constraint M = I+L+A. The input variables are numbered starting from value
1. Since there is only one input variable, we then list the definition of the input
field by multiplying the first input variable numbered 1 with 2 to get the literal
2, defining the input variable. Since it is a forwarding buffer without inversion,
another single line defines what should be the output. Here it will be same as input
2.

aag 1 1 0 1 0
2
2

Now, to represent an inverting buffer, we take the previous header and just change
the output definition line accordingly. Since, an inverting buffer will have one
input and one output, the input is represented by literal 2 and the output will be
represented by literal 3, which means that the input represented by literal 2 has to
be inverted before feeding the output. The number 3 is arrived at by flipping the
LSB of binary encoding of 2 as follows:

aag 1 1 0 1 0
2
3

AND gate: An AND gate header will have two inputs, one output, with zero
latches and a single AND gate. The maximum variable index M will be 3 as follows.

aag 3 2 0 1 1

Now the header should be followed by two lines representing the input variables.
These are numbered 1 and 2 respectively. Each one will be multiplied by value 2 to
get the respective literals representing the input variables (2, 4). After the input
definitions, we proceed with output definition. We see that the value of M is 3. As
of now, we have used two variables to stipulate the input variables, Now the third
value can be used to define the output variable (6) as follows.

2
4
6

Now, we need to define the inputs and output of the “AND” gate. The output
should be an even number, while the two inputs should be specified based on
previous definitions (I, L or A). For the present “AND” gate example, 6 will be
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the output, with 2 and 4 as inputs. The final representation of “AND” gate looks
as follows.

aag 3 2 0 1 1
2
4
6
6 2 4

Now the OR gate representation. We know that a two input “OR” gate with two
inputs A and B can be written as !(!A AND !B). This insight is used in defining the
AIGER format of “OR” gate.

aag 3 2 0 1 1
2
4
7
6 3 5

The output definition is 7 to specify that output of the “AND” gate 6 has to be
inverted which is specified by flipping LSB of binary representation of 6. The
latches can be used to build sequential circuits. Here is an example circuit of a
toggle flip-flop with zero input, one latch and two outputs (0 and its negation 1).

aag 1 0 1 2 0
2 3
2
3

output 2 defines 0, while output 3 defines negation of 0 in the next state, 1. Now,
we can take an example of representing a more complex circuit, a half adder circuit.
This circuit uses 2 inputs, and produces two outputs, sum and carry.

X
Y

Sum = X’Y+XY’

Carry= XY

This circuit can be re-written as follows, with just the AND gates and NOT gates
as follows.
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X
Y

XY

Sum = X’Y+XY’

Carry = XY

The above circuit can be replicated in AIGER format as follows: It uses three
“AND” gates to specify the half adder operations. The two inputs are 2 and 4 and
the two outputs are 6 and 12 representing sum and carry respectively.

aag 7 2 0 2 3
2
4
6
12
6 13 15
12 2 4
14 3 5

The above encoding in AIGER list follows the following circuit representation
presented earlier.

3

5

12

14

13

15

6

2
4

Sum

Carry

We end this section with a small encoding example of a simple HipHop.js
program. In the following listing the signal O is emitted based on the presence of
signal R at that instant.

1 hiphop module prg() {
2 in I;
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3 out O;
4 if (I.now) {
5 emit O();
6 }
7 }
8 let machine = new hh.ReactiveMachine(prg);
9 machine.debug_emitted_func = console.log;

10 machine.react();

Listing 6: A sample HipHop.js program, If.js

We see the following circuit representation based on the nets generated by the
HipHop.js compiler for the program.

0
boot_reg

[157]

2 0
t e s t e x p r

[197]

1 8
and_ then

[197]

9
O

[157]

1
c o n s t 0
[157]

3
I_pre_reg

[157]

4
I_pre_gate

[157]

5
I

[157]

2 4
t e s t e x p r

[197]

2 2
and_ then

[197]

7
O_pre_reg

[157]

8
O_pre_ga te

[157]

2 1
g o

[197]

Figure 4: Graphical illustration of the nets in HipHop.js program.

The AIGER’s ASCII representation will be more optimized and is as follows.
It has single input, of I, three latches as we see in the number of registers in the
previous circuit diagram, one output for O and a single AND gate which has input
from R and boot register.

aag 5 1 3 1 1
2
4 0 1
6 2
8 10
10
10 4 2

After the “AND” gates definition, symbol table may follow, which are optional.
The optional symbol table can be used to attach symbols, one per input, latch
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and output literals. Each entry is one line and consists of a symbol type specifier
which can be either “i”, “l”, or “o”, in the first character position. This is followed
by a position value, not separated by a space. After a space, the symbol name
(an arbitrary ASCII string ) starts and continues until before the next new line
character. A symbol table entry looks as follows:

[ilo]<pos> <string>

So, for the previous example, with one input, three latches and one output
variables, the AIGER file with symbol table is as follows:

aag 5 1 3 1 1
2
4 0 1
6 2
8 10
10
10 4 2
i0 I
l0 global_boot_register_0
l1 I_pre_reg_3
l2 O_pre_reg_7
o0 O

Listing 7: AIGER represenation of If.js

The inclusion of symbol table is advantageous for us, as it will help the HipHop.js
program analyzer with the actual names of the input and output variables. In
the ASCII format both, checking for cyclic dependencies has to be done explicitly,
whereas in binary format, based on strict order requirement on the literals ensures
no explicit checking as the representation disallows cyclic dependencies. For more
information, the eager reader is required to refer to AIGER manual cited earlier.
In HipHop.js program analyzer, the cyclic dependency check is already taken care
by HipHop.js compiler and for us ASCII representation of AIGER file is sufficient.
Further, there are utilities available inside AIGER library for transformation
between ASCII and binary formats, which can be utilized based on the need. In
the next appendix section, the model checker NuSMV is introduced.
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C NuSMV

NuSMV [42] is a symbolic model checker. It processes files written in an extended
SMV language. Using this language, one can describe finite state machines (FSM)
by declaring and instantiating modules and processes corresponding to synchronous
compositions. Specification requirements can be expressed in CTL and LTL in the
same extended SMV language.

FSMs in NuSMV are described in terms of variables, transitions and Fairness
conditions (constraints on the valid paths of the execution of the FSM). A module
declaration encapsulates declarations, constraints and specifications. The spec-
ifications to be checked on the FSM is expressed in temporal logics like CTL,
LTL and Property Specification Language (PSL) and real-time CTL specifications.
These specifications are identified with the keywords CTLSPEC, LTLSPEC, and PSLSPEC.
Following is an example illustration of the specifications.

LTLSPEC F !(o0)
CTLSPEC AF !(o0)

CTL and LTL specifications are evaluated by NuSMV to determine their truth or
falsity in the FSM. If a specification is false, then NuSMV outputs a counterexample
which is a trace of the FSM that fails the property. Verification of PSL specifications
in NuSMV is limited and is supported only for the specs having the operators
X, G, F, A, and E, and for a subset of PSL which can be translated to LTL.
For full usage of PSL, it is beneficial to use the extended version of NuSMV
called NuXMV. NuSMV also supports specifications that have real time CTL
(RTCTL) specifications. In NuSMV each transition is assumed to take a unit time
for execution, which facilitates RTCTL specifications. CTLSPEC path expressions
are extended by RTCTL. In specifications like EBF, symbol B identifies RTCTL
specifications for NuSMV. The user can apply BDD-based or SAT-based model
checking in NuSMV. BDD-based model checking, uses BDD based representation
of the FSM, while in SAT based model checking, FSM is represented as “Reduced
Boolean Circuits (RBC)”, a form of representing propositional formulae. The RBC
is then converted into CNF form and input to SAT solvers by NuSMV.

In bounded model checking (BMC), NuSMV iterates inside a loop until the
maximum bound specified is reached or a solution if found, whichever is smaller.
Different verification properties can be checked on an FSM and these are independent
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of the model checking engine used for the verification (BDD/SAT). The programmer
can decide what engine to adopt for each property and the traces of counterexample
generated by NuSMV can be exported to various formats including XML format.
Next, NuSMV representation of a sample HipHop.js program, If.js is presented.

An example HipHop.js program represented in NuSMV notation

We repeat the program in the following listing.

1 hiphop module prg() {
2 in I;
3 out O;
4 if (I.now) {
5 emit O();
6 }
7 }
8 let machine = new hh.ReactiveMachine(prg);
9 machine.debug_emitted_func = console.log;

10 machine.react();

Listing 8: A sample HipHop.js program, If.js

Its equivalent NuSMV representation is as follows.

MODULE main
VAR
--inputs

I : boolean;
--latches

global_boot_register_0 : boolean;
I_pre_reg_3 : boolean;
O_pre_reg_7 : boolean;

ASSIGN
init(global_boot_register_0) := TRUE;
next(global_boot_register_0) := FALSE;
init(I_pre_reg_3) := FALSE;
next(I_pre_reg_3) := I;
init(O_pre_reg_7) := FALSE;
next(O_pre_reg_7) := a10;

DEFINE
--ands

a10 := global_boot_register_0 & I;
--outputs
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o0 := a10;

Listing 9: NuSMV representation of If.js

NuXMV

NuXMV [39] inherits NuSMV and extends it across both Finite-state and Infinite-
state systems. It complements basic verification techniques in NuSMV with a family
of various new verification algorithms including k-induction, IC3 and k-liveness
algorithm. Other than SAT solvers, NuXMV uses SMT solvers with support for
various theories. NuXMV supports AIGER format directly. For HipHop.js program
analyzer, NuSMV is quite sufficient, but to speed up the processes the later versions
of the analyzer can use NuXMV. Other than the direct support for model checking
on AIGER format and ability to use SMT solvers, the output trace generated by
NuXMV can be more easily integrated with the analyzer. This marks the end of
appendices on tools used in HipHop.js program analyzer. In the next part of the
appendices, HipHop.js language grammar is presented.
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D HipHop.js grammar

HipHop.js Grammar

<Expression> --> ... | <HHExprStatement>

<HHExprStatement> --> hiphop <HHStatement>

<HHStatement> --> <HHHost>
| <HHMachine>
| <HHModule>
| <HHInterface>
| <HHSeq>
| <HHLet>
| <HHSignal>
| <HHHalt>
| <HHFork>
| <HHEmit>
| <HHSustain>
| <HHAbort>
| <HHWeakabort>
| <HHSuspend>
| <HHLoop>
| <HHAsync>
| <HHRun>
| <HHEvery>
| <HHDo>
| <HHIf>
| <HHTrap>
| <HHBreak>
| <HHYield>
| <HHAwait>
| <HHDollarExpression>
| <HHExpression> ;

<HHHost> --> host <HHStatement>

<HHBlock> --> {}
| { <HHStatement> }
| { <HHStatement> ... <HHStatement> }

182



<HHMachine> --> machine <HHMachineModule>

<HHModule> --> module <HHMachineModule>

<HHMachineModule> --> [ <Identifier> ][implements <MirrorIntfList>]( <FormalVarList> )
{ <FormalSignalList><HHStatement>+ }

<HHInterface> --> interface [ <Identifier> ] [extends <IntfList>]
{ <FormalSignalList> }

<MirrorIntfList> --> [mirror] <Intf>, ... [mirror] <Intf>

<IntfList> --> <Intf>, ... <Intf>

<Intf> --> <HHDollarIdent>

<FormalVarList> --> | <FormalVar>, ... <FormalVar>

<FormalVar> --> <Identifier> | <Identifier> = <Expression>

<FormalSignalList> --> | <GlobalSignal>, ... <GlobalSignal>

<GlobalSignal> --> <Direction> <Signal>, ... <Signal>

<Direction> --> | in | out | inout

<Signal> --> <Identifier> <Combine>
| <Identifier> = <HHExpression> <Combine>

<Combine> --> | combine <Expression>

<HHAwait> --> await <HHDelay>

<HHExpression> --> <Expression>
| <Identifier>.now
| <Identifier>.pre
| <Identifier>.nowval
| <Identifier>.preval
| <Identifier>.signame

<HHDelay> --> ( <HHExpression> )
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| count( <HHExpression>, <HHExpression> )
| immediate( <HHExpression> )

<HHLet> --> let <Declaration> ... <Declaration>

<Declaration> --> <Identifier> | <Identifier> = <HHExpression>

<HHSignal> --> signal <Signal> | signal [mirror] <Intf>

<HHalt> --> halt

<HHSeq> --> [ <String> ] <HHBlock>

<HHFork> --> fork [ <String> ] <HHBlock> [ par <HHBlock> ... par <HHBlock> ]

<HHEmit> --> emit <Identifier>()
| emit <Identifier>( <HHExpression> )

<HHSustain> --> sustain <Identifier>()
| sustain <Identifier>( <HHExpression> )

<HHAbort> --> abort <HHDelay> <HHBlock>

<HHWeakabort> --> weakabort <HHDelay> <HHBlock>

<HHSuspend> --> suspend <HHDelay> <HHBlock>
| suspend from <HHDelay> to <HHDelay> <HHBlock>
| suspend from <HHDelay> to <HHDelay> emit <Identifier>() <HHBlock>
| suspend toggle <HHDelay> <HHBlock>
| suspend toggle <HHDelay> emit <Identifier>() <HHBlock>

<HHLoop> --> loop <HHBlock>

<HHAsync> --> async ( [ <Identifier> ] ) HHBLock <HHAsyncKill>
<HHAsyncSuspend> <HHAsyncResume>

<HHAsyncKill> --> | kill <HHBlock>

<HHAsyncSuspend> --> | suspend <HHBlock>

<HHAsyncResume> --> | resume <HHBlock>
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<HHRun> --> run <HHDollarIdent> ( <HHExpression>, ... <HHExpression> ) { <HHSigRun> }

<HHSigRun> --> <Identifier>
| <Identifier> as <Identifier>
| <Identifier> from <Identifier>
| <Identifier> to <Identifier>
| *

<HHEvery> --> every <HHDelay> <HHBlock>

<HHDo> --> do <HHBlock> every <HHDelay>

<HHIf> --> if( <HHExpression> ) <HHStatement>
| if( <HHExpression> ) <HHStatement> else <HHStatement>

<HHTrap> --> <HHLabel> : <HHStatement>

<HHbreak> --> break <HHLabel>

<HHYield> --> yield

<HHDollarExpression> --> ${ <Expression> }

<HHDollarIdent> --> <HHDollarExpression> | <Identifier>
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