
HAL Id: tel-04193273
https://theses.hal.science/tel-04193273v2

Submitted on 1 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural learning for efficient quadrotor flight control
Estéban Carvalho

To cite this version:
Estéban Carvalho. Neural learning for efficient quadrotor flight control. Automatic. Université
Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALT031�. �tel-04193273v2�

https://theses.hal.science/tel-04193273v2
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE GRENOBLE ALPES

ÉCOLE DOCTORALE SIGLE ED
Description de complète de l’école doctorale

T H È S E
pour obtenir le titre de

docteur en sciences
de l’Université de Grenoble

Mention : Automatique et Productique

Présentée et soutenue par

Estéban CARVALHO

Neural learning for efficient quadrotor flight control

Amélioration de l’efficacité du contrôle du vol des
quadrirotors par apprentissage neuronal

Thèse dirigée par Nicolas MARCHAND et co-dirigée par
Ahmad HABLY et Jilles Steeve DIBANGOYE

préparée au GIPSA-lab et CITI-lab
soutenue le 20 avril 2023

Jury :

Directeur : Nicolas MARCHAND - CNRS
Encadrants : Ahmad HABLY - UGA

Jilles Steeve DIBANGOYE - INSA Lyon
Président : Denis PELLERIN - UGA
Rapporteurs : David FILLIAT - ENSTA Paris

José Fermi GUERRERO-CASTELLANOS - BUAP
Examinateurs : Pedro CASTILLO-GARCIA - UTC

Guillaume ALLIBERT - Université Côte d’Azur

A toi Caleb,

mon neveu parti avant le commencement,
repose en paix.

“One day, I’m going to live in Theory, because in Theory
everything goes perfectly... ”

Marc Levy, P.S. from Paris, 2017

“Chacun de nous, dans sa vie, a sa propre montagne à
gravir. ”

Mike Horn, Vouloir toucher les étoiles, 2015

Remerciements

Je tiens à présenter ici mes remerciements à toutes les personnes qui ont participé de près ou
de loin à cette épopée, qu’est le parcours de mon doctorat.

Tout d’abord, je souhaite faire un n-ième remerciement par écrit à Filliat David et Guerrero-
Castellanos José Fermi d’avoir accepté la mission d’être les rapporteurs de mon manuscrit.
Un grand merci également aux examinateurs, Castillo-Garcia Pedro, Allibert Guillaume et
aussi au président du jury Pellerin Denis.

Je remercie mes encadrants Marchand Nicolas, Hably Ahmad et Dibangoye Jilles Steeve,
d’avoir eu confiance en mes travaux tout en me laissant une grande liberté.

Merci à Mazen Alamir et Filliat David d’avoir été les membres de mon CSI et d’avoir encouragé
et soutenu mon travail.

Je tiens également à remercier Gildas, « le subtil », pour la confiance placée en moi pour les
enseignements à l’ENSE3 et sa disponibilité lors de mes différents questionnements.

Merci à Alina et Alain pour les enseignements proposés à Polytech et à l’IUT.

Je remercie aussi Sylvie, Christian, Patricia et bien d’autres pour nos échanges ces dernières
années.

Je souhaite également vivement remercier Amaury et Jonathan, pour votre support technique
et logistique. Alexandre et Matthieu, merci pour l’accueil que vous m’avez fait avant même
mon arrivée au GIPSA-lab.

Merci à mes anciens enseignants que j’ai pu côtoyer au laboratoire pendant ces années de
thèses: Olivier, Christophe, John, Hayatte, Nacim, Mauro, Pierre . . . et les chercheurs avec
qui j’ai pu échanger durant ma thèse.

Un grand merci aux RH qui ont permis de me démêler de la charge administrative que l’on
adore tant en bon chercheur. Merci à toi Virginie, d’avoir pu répondre à l’ensemble de
mes interrogations avec patience, lesquelles, je le reconnais, furent très nombreuses. Merci
également d’avoir été à l’écoute et toujours été bienveillante. Merci Martine pour ta bonne
humeur, malgré les dérangements incessants pour avoir accès à l’emploi du temps de Nicolas.
Merci à toutes les autres: Akila, Maëlle, Sonia, Diane, etc.

Je remercie le service informatique pour le gain de temps apporté.

Merci à mes « stagiaires »: Pierre, Antoine K., Manon, Antoine W. et Bahauddin.

v

vi

Je souhaite ici souligner le fait que cette « expérience de thèse » ne se résume pas à la
rédaction de ce manuscrit, ni même à trois ans (et demi, pour mon cas) de travail. C’est une
expérience de vie durant laquelle doutes, joies, chagrins, partages, désespoirs et réussites se
sont vivement entremêlés. Ceci bien plus que ce à quoi l’on peut s’imaginer en début de thèse.
En fait, derrière chaque manuscrit de thèse, il y a un parcours de vie, que l’on a tendance à
oublier. Un cheminement inconnu au lecteur dont le manuscrit ne retrace que les réussites
ou autres découvertes scientifiques. La vérité est en réalité bien au-delà de cela. Le parcours
ne se déroule, bien souvent, pas comme « le jeune » chercheur l’eu imaginé. Dans mon cas,
nombreux ont été les moments de doutes pendant cette période, même si j’ai bien souvent
tenter de le masquer. Fort heureusement, de multiples personnes ont été présente, à mes
côtés, pour me soutenir. Des personnes ouvertes au partage, à l’écoute et à l’échange qui ont
permis l’achèvement de cette étape de ma vie. Je tiens à remercier tous ces « proches » qui
m’ont soutenu et encouragé, que cela soit de manière amicale ou désintéressée. Les mêmes
qui m’ont permis de me relever quand j’en avais le plus besoin. Ces personnes qui m’ont
accepté tel que je suis et qui ont vu en moi, un collègue, un ami ou un être cher. Je désire
les remercier individuellement et j’y tiens, car chacun a eu son rôle dans les rouages de ce
parcours. Ce rôle, bien plus important que vous ne le pensez, m’a permis d’être là où j’en
suis aujourd’hui. Enfin, cher lecteur permettez moi dans les quelques prochaines lignes, un
ton plus amical et moins formel que celui qui régit la rédaction du « scientifique ».

Pierre. Tu as toujours cru en mes travaux même lorsque je doutais. Ta volonté et ta
force de propositions m’ont permis d’aller au bout de cette thèse. Je suis très content d’avoir
pu te rencontrer et j’espère que, tout comme moi, tu garderas de bons moments de cette
collaboration.

Maxime, dit "chocho". Ami d’école et compagnon de route (on peut le dire, de galère !)
de thèse. On a vécu des moments de hauts et de bas, durant cette période. On est enfin venu
à bout de ce périple, contrairement aux plantes de notre bureau ! J’espère ne pas t’avoir trop
fait souffert avec mes randonnées.

Chhay. D’abord collègue de bureau, de même côté de table, tu es devenu un réel ami sur
qui je peux toujours compter. Ta sagesse et ta présence sont sans pareil. En écrivant ces
lignes, j’entends ton rire à 120 décibels. Ne change pas.

Mariana. Ta joie, ta bonne humeur, ta capacité à rassembler font ta force. À ton départ
du laboratoire, nous avons tous partagé un vide. Nous avons fait un très grand bout de
parcours de thèse ensemble et je suis heureux d’avoir pu partager tous ces souvenirs avec toi.

Patrick. Merci aux moments partagés ensemble, à ton calme imperturbable et à ta bonne
humeur. Même si tu es la faute de tous les problèmes de Marian, on le sait, c’est pas vrai...

À vous deux, Mariana et Patrick, ce fut un plaisir pour moi d’assister à votre mariage
au Brésil. On y a passé des moments que je n’oublierai jamais. Je n’ai nul doute que notre
amitié perdurera, même au-delà de la distance et de cet océan qui nous sépare.

vii

Bob. L’homme multidisciplinaire. Partenaire de grimpe, depuis que j’ai soudainement
envisagé de commencer. J’espère pouvoir continuer à progresser (et te dépasser ?). En
écrivant ces lignes, je repense à nos grandes voies d’escalade en Chartreuse et en Vercors,
qui resteront des épisodes inoubliables. Tu es quelqu’un de formidable, garde cette force et
motivation qui t’anime.

Monica. On s’est connu à l’ENSE3, je suis content d’avoir appris à mieux te connaître
suite à ton arrivée en thèse au GIPSA-lab. Ton calme, ton sourire et ta détermination font ta
force. Nos périples d’escalade avec Bob resteront des histoires à compter à nos petits-enfants.

Je tiens à remercier la team intermédiaire: Agathe, Anaïs, Anna-Lena, Bob, Fanny, Loïc,
Monica et bien évidemment, notre guide : l’inestimable Thierry. Mais restons concentrés, car
ce n’est pas fini !

Mohamed. Lors de notre première rencontre, dans le cadre professionnel, j’étais loin de
m’imaginer l’amitié qui allait naître entre nous. Ta persévérance, ta volonté, ta rigueur font
de toi une personne admirable, dont on devrait prendre exemple. J’attends avec impatience
le jour où tu m’apprendras la passion du surf qui t’anime. Merci pour tout ce que tu as fait
pour moi.

Nicolas V. Je suis heureux d’avoir eu l’opportunité de te rencontrer mon ami. Merci pour
toutes les randonnées partagées. Cela m’a permis d’aller de l’avant après une période difficile.
Notre ascension de Belledonne en un jour, depuis Lancey (et non Marseille !), marque une
étape formidable de nos efforts et de notre progression.

Mohamed, Nicolas, notre trio de randonnées intensives constitue un élément majeur de la
réussite de ma thèse, je n’en ai nul doute. Merci à vous deux.

Andrea. Ton prénom, rime avec Picanha, coïncidence ? Je ne pense pas. A peine arrivé
au laboratoire, tu as su t’intégrer et nous accueillir. Nos fous rires au Brésil, comme ailleurs,
demeureront gravés dans ma mémoire. Ne change rien à ta gentillesse, ton calme et ta bonté.

Elise. Fière représentante du Langres, je te remercie pour tout ce que tu as fait pour
moi. Ta présence et ta force de caractère font de toi une personne formidable, une femme
forte. Extrêmement heureux d’avoir pu faire ta rencontre, je n’ai nul doute que notre amitié
perdurera !

Andrea, Elise, vous formez un couple incroyable. Merci à vous deux. Il me tarde d’assister
à votre union !

Houssem, dit "le grand gaillard". Je te dis : merci. Aller, salut le naze ! En réalité, j’avais
envie de m’arrêter ici mais je ne peux pas, regarde ce que tu me fais écrire... Reste qui tu es.
Courage, tu vas venir à bout de tous ces obstacles.

Louise. Je n’ai plus de paçoca, il va falloir que tu m’en rapportes, s’il te plaît. Je vais
me préparer et un jour on pourra faire une sortie vélo longue durée avec les autres ... et
contrairement à la randonnée, je serai derrière.

viii

Lucas, dit "le papa". Maintenantt tu l’es vraiment, mais tu l’as toujours été pour la famille
des doctorants. Désolé de t’avoir maltraité avec mes randonnées. Mais, en vrai, c’était sympa,
non ? On n’a toujours pas fait le petit train à Grenoble, zut ! Je te souhaite du bonheur
dans ta famille. Prends soin de Layana et Léticia.

Raj. Merci à toi. Je me souviendrai de ces longs échanges partagés. Il me tarde de visiter
l’Inde pour en apprendre plus sur ta culture. Je te souhaite le meilleur à toi, Shivi et Aadya.

Kaouther. Merci, pour ta gentillesse et l’aide que tu as pu fournir au petit nouveau que
j’étais en arrivant en Gipsa. Ta bienveillance et générosité ont fait un bien fou aux doctorants
du laboratoire.

Makia. Ta soutenance restera un exemple pour moi. Tu as fait une superbe thèse ! Je te
souhaite une très bonne continuation.

Maria. La vie du laboratoire, et celle en dehors, n’aurait jamais été la même sans toi.
Ta force de regrouper les gens et faire la fête m’impressionnera toujours autant. Puisses-tu
t’épanouir dans ton nouveau travail en Italie !

Ana. Je me souviens de nos discussions exaspérées dans ton bureau, mais au final, on s’en
est sorti ! Belle rencontre de thèse, à très bientôt !

Ariel. Je dédie ces quelques mots à ta spécialité, le "Arielito" qui doit résonner dans les
récits de remerciements.

Elena. Un jour j’irai en Colombie pour y découvrir ta culture... et y randonner ! Prends
soin de mon avocat s’il te plait.

Mukthar. C’est mon tour, j’ai enfin fini, enfin libre, comme je le dis si souvent ! Prends
soin de ta famille.

Adrien. Mon remplaçant, président du Gipsa-doc. J’espère que mes signaux de tes ex-
périences vont t’ouvrir une grande carrière dans la recherche.

Anna. Ton sourire et ton énergie positive sont bénéfiques pour la famille des doctorants.
Bonne continuation pour ta thèse !

Aurélien, l’éternel "stagiaire". À l’heure où j’écris ces lignes tu es encore en stage ! Même
quand tu auras commencé ta thèse, il sera difficile de te séparer de ton surnom. Bonne
continuation !

Mathias. Que dire, beaucoup trop pour tenir en quelques lignes.

Gian et Tommaso, bon courage à notre mafia italienne pour la suite de votre thèse.

Mathieu et Mathieu, vous êtes la relève. Rendez nous fiers !

Antoine, Bruce, Clément, Daniel, Florian, Hélène, Madalina, Marcello, Mohit, Quentin,
Renato, Sohaïb, Suha, Tarso, mais également à mes amis de plus longues date: Ann, Annis,

ix

Rémy, Gwendoline et j’en passe, merci !

Huy. Collègue et ami d’ENSE3 content d’avoir pu entretenir notre amitié sur ces années
de thèse. À très vite pour de nombreux autres restaurants.

Laurent, dit "lolo". Notre escapade à Milan et ses alentours, organisée d’une main de
maître, fut une vrai bouffée d’énergie. Garde ta positivité et ta bienvaillance, à très bientôt !

Jean-Philippe, dit "jipouille". On a passé un super séjour à Aix-les-Bains. Fais moi signe
quand tu voudras faire la traversée de Chartreuse, ton guide est prêt !

Julien. Merci pour les moments partagés. A très bientôt dans les montagnes ! Préviens
moi, dès la sortie de tes romans, il me tarde de les lire.

Bruno. Note : mettre la musique "Roule". Merci à tous ces appels mensuels, à m’écouter
parler pendant des heures. À très bientôt mon ami !

Katia. Il est des rencontres qui changent une vie, tu en fais partie. Les moments passés
ensemble m’ont beaucoup appris. Tu es une femme forte, un jour tu t’en rendras compte.

Rémi. Rémibro. Mon frère de cœur. Notre amitié m’est inestimable. Je te remercie
pour tous les moments partagés ensemble et j’attends déjà avec impatience nos prochaines
aventures !

Bien évidemment, je ne serai pas là sans ma famille : Maman, Papa, Maxime, Anaïs,
Marina, Abel. Vous représentez tout pour moi. Mais également à tous les autres, Raphaëla,
Julien, Quentin, Ronan, Quentin, Axel, Bérénice, Claire-Lise, mes cousins, cousines, oncles,
tantes, etc. Je le sais, vous serez toujours là pour moi, même dans les moments les plus
difficiles. Je remercie la bénédiction que l’on m’a accordé d’avoir une famille aimante et
bienveillante. Je n’ai en fait qu’une chose à vous dire : je vous aime.

A toi Maxime, mon frère, mon jumeau, ma moitié. Je dédie ces dernières lignes. Comme
je me prête à le dire si souvent : ceux qui ne te connaissent pas, ne me connaissent pas. Sans
toi, je ne serai rien. Je t’aime mon frère.

Contents

Acknowledgements v

List of Figures xiv

List of Tables xviii

Table of abbreviations and acronyms xxi

Introduction 1
General introduction . 1
Thesis scope . 3

Structure of the manuscript . 4

Publications . 5

I Quadrotor modeling 7

I.1 Quadrotor movement . 8

I.2 Frames and formalism . 10
I.3 Actuator model description . 12

I.3.1 Brushless motor model . 12
I.3.2 Forces generated by propellers . 13

I.4 Quadrotor complete model . 14

I.4.1 Balance of forces . 15
I.4.2 Balance of torques . 19

I.4.3 Complete quadrotor modeling . 21

I.5 Quadrotor simplified model . 21

II Experimental setup 23

II.1 Introduction . 24
II.2 The Holybro Kopis 2 quadrotor . 25

II.3 Motion capture room . 27

II.4 Robot Operating System . 28

xi

xii Contents

II.4.1 General overview . 28
II.4.2 ROS topics for the controller node 30

II.5 Quadrotor cascaded control architecture . 32

II.5.1 PX4 controller architecture . 32
II.5.2 Implemented controllers architecture 34

II.5.3 Angular rate PID tuning . 35

II.5.4 PX4 command . 36
II.5.5 PX4 mixer identification . 37
II.5.6 Smith predictor . 39

II.6 Data pre-processing . 40

II.6.1 Dealing with outliers . 40

II.6.2 Filtering with Savitsky-Golay . 40

II.7 Conclusion . 42

III Integration of learning into control for linear behavior fitting 43

III.1 Introduction . 44
III.1.1 Motivations . 44
III.1.2 Proposed DNN-based solution . 46

III.2 Linear quadrotor model and control . 47

III.2.1 Quadrotor linear model . 47

III.2.2 Quadrotor linear cascaded PD controller 49

III.2.3 Quadrotor linear control results . 51

III.3 Error dynamics neural estimation . 53

III.3.1 Deep neural network architecture . 53

III.3.2 Deep neural network learning . 55

III.4 Neural enhanced controller . 55
III.4.1 DNN-based correction controller . 56
III.4.2 Stability analysis . 57

III.5 Simulation and experimental results . 59

III.5.1 Training and validation database . 59

III.5.2 Gazebo simulations results . 61
III.5.3 Experimental results in MOCA room 63

Contents xiii

III.6 Conclusion . 68

IV Towards an online implementation: event-based neural learning 69

IV.1 Introduction . 70
IV.1.1 Motivations . 70
IV.1.2 Proposed event-based solution . 71

IV.2 Recall and changes introduced . 72

IV.2.1 Initial cascaded controller . 72
IV.2.2 Error dynamics learning modifications 73

IV.3 The event-based neural learning strategy . 74

IV.3.1 DNN-based controller . 75
IV.3.2 The event-based strategy . 76

IV.4 Simulation and experimental results . 79

IV.4.1 Simulations results . 80
IV.4.2 Experimental results . 82

IV.5 Conclusion and perspectives . 86

V Neural controller for unknown payload transportation 89

V.1 Introduction . 90
V.1.1 Delivery application solutions . 90

V.1.2 Proposed solution . 92

V.2 Reminder: quadrotor dynamics without payload 93

V.3 The nonlinear controller . 94
V.3.1 Nonlinear attitude controller . 94
V.3.2 Nonlinear position and velocity controller 95

V.4 Neural payload estimation . 99

V.5 Experimental results . 102

V.5.1 Baseline controller comparison . 103

V.5.2 Controller with high-gain observer comparison 105

V.5.3 Discussion on learning . 106

V.6 Conclusions and perspectives . 109

Conclusion 111

xiv Contents

V.7 General overview . 111
V.8 Perspectives . 112

A Disturbances observers 115
A.1 Linear disturbances observer . 115
A.2 High-gain observer . 116

B Deep Learning generalities 117

B.1 Introduction . 117
B.2 Deep neural networks . 117

B.2.1 Perceptrons description . 117

B.2.2 Multilayer perceptrons . 119

B.3 Learning neural network parameters . 120

B.3.1 Loss function . 120
B.3.2 Gradient descent algorithm . 121

B.3.3 Computing gradient . 122

B.4 Universal approximation theorem . 122

Bibliography 129

List of Figures

1 Illustration of quadrotor drone usage. 2

I.1 Quadrotor general description. 8

I.2 X4 - Quadrotor motion description. 9

I.3 Illustration of the frames representation using Tait-Bryan angles. The inertial
frame on the left, intermediate frames in the middle and the body fixed frame,
on the right. 10

I.4 Brushless motor equivalent mono-phase circuit. 12

I.5 Illustration of the forces generated by the four propellers. 14

I.6 Illustration of the ground effect. 16

I.7 Illustration of the blade flapping effect. 17

I.8 Quadrotor mains forces after making assumptions. 21

II.1 The Holybro Kopis 2 quadrotor. 25

II.2 The Holybro Kopis 2 hardware configuration. 26

II.3 Schematic representation of the motion capture room. 27

II.4 Pictures of the motion capture room. 28

II.5 ROS publisher/subscriber communication mechanism. Nodes communicate
a message through a given topic. They can either subscribe or publish to
topics. Nodes can do both for multiple topics. 29

II.6 The statecommand.msg: a custom message to collect all the relevant data at
the same time stamps. It is built using message from all listed topics at each
control step. 31

II.7 Common cascaded control architecture for quadrotor. 33

II.8 Proposed general control architecture. 34

II.9 Different PID architectures. (Left) Standard PID form. (Right) PID with
weighting setpoint, the weighting is set to γ = 0, meaning the derivative
operate only on the feedback. 35

xv

xvi List of Figures

II.10 Smith predictor block diagram. 39

II.11 Example of Smith predictor improvement. 40

II.12 Example of Savitsky-Golay filtering on acceleration IMU data. 41

II.13 Example of Savitsky-Golay filtering for getting second order derivative. The
first subplot is the z position of the quadrotor obtained from the VICON. It
is used to obtained the red curve in the second subplot. 42

III.1 The proposed methodology for quadrotor linear behavior fitting. It is a four
steps approach. Firstly, one designs a linear controller to reach desired linear
behavior. Secondly, we create a database of simulation/experimental flights.
Thirdly, we learn a DNN network using selected inputs, to predict the feed-
forward correction to be applied to the position and velocity loop. Fourthly,
after learning the neural network offline we can apply the DNN-enhanced
scheme. 46

III.2 Tracking results for the linear cascaded controller in a Gazebo simulation test. 51

III.3 Tracking results for the linear cascaded controller in a real flight test. 52

III.4 The deep neural network structure: a feed-forward DNN, composed of Nl

hidden layers of Nu units, using ReLU as activation functions. 54

III.5 DNN-enhanced linear controller architecture 57

III.6 Example of trajectories: step, circles, spirals, etc. that are included in the
database. Distances are in meters. 60

III.7 Evolution of the quadrotor spatial positions for the three controllers in
ROS/Gazebo simulation environment, for the test case scenario. 61

III.8 Evolution of the quadrotor positions for each controller, in real flight test
using our motion capture room. 64

III.9 Evolution of quadrotor positions for the linear cascaded controller versus the
DNN-enhanced linear controller in a near -ground scenario. 65

III.10 A picture of the quadrotor flying close to the ground. 66

III.11 Evolution of positions under a constant wind. 67

List of Figures xvii

IV.1 The proposed event-based neural learning strategy. At starting, an initial
cascaded linear controller is used. It is enhanced with DNN learning after
data collection. Two criteria are used to ensure both stability and flight
tracking performance. If the stability is faulty, the control is switched to the
initial controller. 71

IV.2 The event-based neural learning strategy: cascaded control architecture. . . 76

IV.3 Simulation scenario (I): circles motions. This scenario illustrates the per-
formance criterion. Red areas represent learning and re-learning processes.
. 80

IV.4 Simulation scenario (II): circles followed by steps motions. This scenario
illustrates stability and performance criteria. Red areas represent learning
and re-learning processes. 82

IV.5 Experimental test illustration: back and forth motions in front of a sinusoidal
varying wind. 83

IV.6 The event-based neural learning strategy experimental test: back and forth
motions in front of a sinusoidal varying wind. Red areas represent learning
and re-learning process. For x, y and z, the red curve is the result with the
event-based neural learning strategy. The green curve is the obtained result
with the PID along with disturbance observer. The blue one is the expected
linear behavior with the linear PD controller only. 84

IV.7 The Kopis quadrotor facing the wind indoor tunnel. 84

IV.8 The event-based neural learning strategy experimental test: illustration of
the stability criterion. 86

V.1 An example of a suspended payload transportation using a quadrotor. . . . 91

V.2 The proposed methodology: DNN-assisted nonlinear feedback linearization
for quadrotor unknown payload transportation. 92

V.3 The DNN-assisted nonlinear cascaded control to perform trajectory tracking
with an unknown suspended payload. 95

V.4 The windowed deep neural network architecture. 100

V.5 Initial load position in database construction. 102

V.6 The spatial position of the quadrotor with the unknown suspended payload
over the experimental test scenario. 104

V.7 Load positions during transportation test flight and DFT (modulus) of the
signals around load oscillations. 106

xviii List of Figures

V.8 The position of the quadrotor with the unknown suspended payload over the
test scenario. It is a comparison between the nonlinear controller using a high-
gain observer and the DNN-assisted feedback linearizing cascaded controller.
. 107

V.9 Experimental payload positions during transportation test flight and DFT
(modulus) of the signals around load oscillations. 108

B.1 Illustration of an artificial neural network 118

B.2 Some activation functions for neural networks. 119

B.3 An example of basic deep neural network. 120

List of Tables

II.1 The Holybro Kopis 2 specifications. 27

II.2 PID gains for PX4 angular rate loop. 36

III.1 Parameters selected for learning and for the architecture of the deep neural
network. 56

III.2 Mean squared errors on each axis, between the expected linear behavior and
the response of the three presented controllers, in simulation environment. . 62

III.3 Mean squared error on each axis, between the expected linear behavior and
response of the three presented controllers, for the experimental steps flight
scenario. 64

IV.1 List of parameters and hyper-parameters selected for the DNN and its training. 74

IV.2 RMSE (m) in each components during the wind scenario for each controller. 85

V.1 Parameters selected for the windowed DNN and hyperparamters for its learn-
ing process. 102

V.2 Root mean squared errors on each axes for transportation scenario, computed
for both controllers with respect to the expected linear behavior. 105

xix

Table of abbreviations and
acronyms

AI Artificial Intelligence

DFT Discrete Fourier Transform

DNN Deep Neural Network

EKF Extended Kalman Filter

ESC Electronic Speed Controller

IMU Inertial Measurement Unit

LQR Linear-Quadratic Regulator

MOCA Motion Capture

MPC Model Predictive Control

MSE Mean Squared Error

NADAM Nesterov-Accelerated Adaptive Moment (algorithm)

NN Neural Network

PID Proportional Integral Derivative (regulator)

PWM Pulse Width Modulation

RC Remote Control

RL Reinforcement Learning

RMSE Root Mean Squared Error

ROS Robot Operating System

SGD Stochastic Gradient Descent

UAV Unmanned Aerial Vehicle

VRPN Virtual Reality Peripheral Network

xxi

Introduction

General introduction

Unmanned Aerial Vehicles (UAVs), and in particular quadrotors, have been
experiencing a growing interest during last decades. That exponential interest

can be explained in several ways, in particular, thanks to their small size, their
ease of construction, low maintenance and repair cost. The quadrotor high

maneuverability, ability to hover, to perform indoor navigation or acrobatic flights have made
it possible to have a wide range of usages. Thus, many applications have emerged and have
continuously developing since. To introduce some applications of this disruptive technology,
we can cite: industrial surveillance [Sil+21], infrastructure inspections [Gu+20], safety and
rescue missions [Bir+11], cinematography [TG+17], merchandise transport [Sch20] or aerial
manipulation [KCK13]. The figure n°1 illustrates some of possible usage of quadrotors. More
uses can be found in the survey [Sha+19]. These numerous applications reveal a vast field of
research activity. Indeed, it requires the design of reactive piloting algorithms, precise vision
algorithms or high-performance obstacle detection technologies, for instance. It also concerns
the work on the autonomy of the batteries or the performance of the different components
that compose it.

Although many research and development efforts are currently focused on perception
tools, as well as their integration into trajectory generation, or the collaboration of several
aircraft in flight (e.g. swarm flight), the control application for the trajectory tracking per-
formance still raises great interest in the research field. A lot of different control techniques
have been developed and tested on quadrotors: Proportional Integral Derivative (PID)
[Sal+10], backstepping control [BS], Model Predictive Control (MPC) [BM14], adaptive
control [DAL13], bounded control [GC+11] or event-based control [Dur+18]. However,
quadrotors are highly nonlinear systems and their increasingly varied uses subject them to
conditions, environments and disturbances that are not often considered in the controller
design. For instance, the presence of wind gusts in the context of surveillance missions or the
presence of an additional suspended payload when transporting goods. All these effects must
be taken into account and are sometimes difficult to integrate and overcome using standard
control methods.

With the tremendous advances in the field of Artificial Intelligence (AI), machine and deep
learning technologies have progressively moved towards quadrotors. Thus, many data-driven
methods have emerged. Promising results of AI in perception field and in a lot of other
domains, motivated the use of such approaches to improve quadrotors flights. Furthermore,

1

2 Introduction

Package delivery Cinematography

Rescue missionsInfrastructureinspectionsAerial manipulation

Agriculture Mapping

LeisureQuadrotor Applications
Figure 1: Illustration of quadrotor drone usage.

the use of such intelligent algorithms is encouraged by the ease of learning thanks to the
large amount of data generated during flights, coming from multiple sensor sources. AI has
thus constituted a research axis for possible improvement of control algorithms for trajectory
tracking. For example, Neural Network (NN) have been integrated into the PID tuning
process [Wan+15]; [Efe11]. New solutions propose to integrate Deep Neural Network (DNN)
in MPC schemes [Kau+19]; [Shi+19]. Reinforcement Learning (RL) methods have also been
developed and applied to quadrotor control [Hwa+17]; [Lam+19]; [Zha+22]. Numerous
data-driven methods are thus emerging to enhance quadrotor flight performance.

However, the development of such adaptive and learning-based algorithms has led to
an increase of complexity of the proposed algorithms. The use of such methods requires a
rather long and tedious tuning process in order to obtain satisfactory performance in mission
situations. In addition, such algorithms require a large amount of data to learn a controller.
In the case of RL algorithms, it will require a large number of trials and errors. This is
particularly problematic for quadrotor systems which are highly nonlinear systems. The many
potential crashes before learning a performing controller is not directly feasible experimentally.
This requires a lot of simulation beforehand and a transfer of the learned controller into the
real world, which takes a lot of time and effort compared to the design of a more standard
controller. Thus, the use of such methods is not a miracle solution and still requires research
efforts to improve these drawbacks and propose algorithms that are both simple and efficient.

Introduction 3

Thesis scope

The work presented in this document lies within the trendy research area of the last decade,
which aims at merging AI and standard control techniques in order to improve the flight
performance of auto-piloted quadrotors.

By flight performance improvements, one means to perform accurate trajectory tracking
with reduced overshoots and limited oscillations. The trajectory tracking is used here for
scenarios typically faced during a mission situation of the quadrotor. It is requiring a reactive
control, robust to the wind, being able to manage payloads or to fly close to the ground.
This includes having an autopilot robust to the various existing disturbances, both internal
(control offsets, model errors, additional load, etc.) and external (ground effect, wind gusts,
unmodeled effects, etc.). As stated earlier, many techniques to achieve this goal have been
developed. But their major disadvantage is that, very often, presented algorithms are very
complex and demanding in terms of data and tuning process. Furthermore, techniques relying
purely on AI are not reliable from a safety point of view for the system.

The aim of this work is to be able to easily and quickly automatically drive a quadrotor,
with a very limited initial knowledge on it, using a mix between standard control approaches
and learning methods. This is achieved by an intelligent control able to correct its errors
made during flights. Here, we wish to easily setup an initial controller, on which the user
specifies his performance requirements. Afterwards, the controller self-improves using ar-
tificial intelligence techniques. Thus, a quadrotor with a given initial control architecture,
possibly unknown, could be improved with a learning module that would allow to optimize
the flight performance while guaranteeing the non-destabilization of the closed-loop system
by the learning-based controller. The latter will allow to model effects not taken into account
in the initial controller, because they are often very complex (e.g.: blade flapping effect). It
will overcome the approximations due to the linearizations possibly done (e.g.: linear con-
trol). Also, it will learn unknown effects visible in the measurements (e.g.: wind), as well
as the uncertainties related to the modeling (e.g.: bad estimation of the parameters), etc.
Ultimately, the AI-based controller will be able to handle all these errors, improving tracking
and bringing the quadrotor behavior closer to the initially desired performance.

The framework of this thesis involves the study and development of quadrotor control
algorithms. Thus, we will pay a particular attention on their implementation and on the
experimental tests carried out within the GIPSA-lab aerial platform. Numerous efforts have
been made for the success of the proposed algorithms in practice. We have determined that
the experimental part, including the technical details, will be included in this manuscript and
given equal weight to the theoretical aspects.

4 Introduction

Structure of the manuscript

The manuscript is organized as follows:

• Quadrotor modeling: The first chapter introduces the quadrotor dynamics commonly
used in literature. It begins with a brief introduction of the quadrotor functioning.
Then, necessary frames and notations used to model the device are presented. An
extensive model used for simulations and for the controller validation is given using
Newton-Euler formalism, by developing a balance of forces and torques that are applied
on the system. A simplified model is ultimately outlined, this model is the commonly
presented model in literature.

• Experimental setup: The chapter two focuses on the experimental setup used to
test and validate proposed controllers. It presents in details the quadrotor used and its
hardware architecture. The experimental room is also presented. A description of ROS
mechanisms and how data are communicated and collected is done afterward. The con-
troller architecture experimentally implemented is then explained. Deeper explanations
are provided on PX4 software to perform low-level control. Finally, data processing for
learning purposes is explained.

• Integration of learning into control for linear behavior fitting: The chapter
three presents the first proposed approach for quadrotor flight tracking improvement
using artificial intelligence. A Deep Neural Network is trained using flight data in order
to learn unknown dynamics and is introduced in the control loop to cancel undesired
behavior. It is based on a standard cascaded controller utilizing linear tools to control
the different loops: position, velocity and attitude. The proposed solution is a several
step procedure: first performing flights with the original controller and learning the
errors made during flight. The following step is the improved flight using the proposed
DNN-based controller. Results are presented on both simulations and experimental
tracking scenarios.

• Towards an online implementation: event-based neural learning: The chapter
four is about enhancing the firstly proposed solution, presented in the previous chapter.
It focuses on improving main drawbacks of the previous solution: the offline learning
and the limited stability guarantees. This newly proposed approach is an event-based
learning strategy. It learns or re-learns a DNN and corrects quadrotor tracking in an
iterative way. The strategy is based on two main events linked to stability and tracking
performance. The solution is tested in simulations and real experiments, to assess its
effectiveness. It mainly corrects internal model errors but also external disturbances,
such as wind gusts perturbations.

• Neural controller for unknown payload transportation: The chapter six is about
designing a controller for unknown suspended payload transportation. The task under
consideration is more difficult than standard missions as it adds a disturbance acting
like a pendulum, requiring a more efficient initial controller. The proposed solution

Introduction 5

is mix between nonlinear linearizing control and a windowed deep neural network for
estimating and correcting the payload dynamics. The proposed algorithm is directly
tested via experimental transportation scenarios. It demonstrates the effectiveness of
the approach in comparison to solutions including high-gain observers.

• Further details on disturbance observers are given in appendix Disturbances ob-
servers and a general overview of Deep Learning is given in appendix Deep Learning
generalities.

Publications

This thesis led to the publication and submission of the following papers:

[Car+22] Esteban Carvalho, Pierre Susbielle, Ahmad Hably, Jilles Dibangoye, Nicolas
Marchand. “Neural Enhanced Control for Quadrotor Linear Behavior Fitting.”
In: 2022 International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, June 2022.

[Submitted] Esteban Carvalho, Pierre Susbielle, Ahmad Hably, Jilles Dibangoye, Nicolas
Marchand. “Neural Network Feedback Linearization Control for Quadrotor
Flight with Unknown Suspended PayLoad.”

[Submitted] Esteban Carvalho, Pierre Susbielle, Ahmad Hably, Jilles Dibangoye, Nicolas
Marchand. “Event-based Neural Learning for Quadrotor Control.”

These articles are the objects of the different chapters presented in this document.

Open-source software

A part of the produced code, including programs to perform experimental tests, is made
available on Github. It is freely accessible via the following link: https://github.com/
gipsa-lab-uav/uav_control_ai

Funding Sources

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01) and ROBOTEX 2.0 (Grants ROBOTEX ANR-10-EQPX-44-01 and TIRREX ANR-
21-ESRE-0015) funded by the French program Investissements d’Avenir.

https://github.com/gipsa-lab-uav/uav_control_ai
https://github.com/gipsa-lab-uav/uav_control_ai

Chapter I

Quadrotor modeling

This chapter introduces the quadrotor aerial device used in this thesis. After a brief descrip-
tion of the functioning of the aircraft, the formalism used to describe spatial movement of
the vehicle is given. Then, an exhaustive description of the model is described. This first
model includes several known possible aerodynamic effects that operate on the quadrotor. A
simplified model, more commonly used in the control community, is finally derived from the
previous one.

Contents
I.1 Quadrotor movement . 8
I.2 Frames and formalism . 10
I.3 Actuator model description . 12

I.3.1 Brushless motor model . 12
I.3.2 Forces generated by propellers . 13

I.4 Quadrotor complete model . 14
I.4.1 Balance of forces . 15
I.4.2 Balance of torques . 19
I.4.3 Complete quadrotor modeling . 21

I.5 Quadrotor simplified model . 21

7

8 Chapter I. Quadrotor modeling

I.1 Quadrotor movement

We introduce here basic elements of quadrotor design and displacement, before describing its
complete model. More technical details, about the quadrotor used for experimental purposes,
its electronics, its micro-controllers, etc. will be given in the following dedicated chapter II.

A quadrotor is an unmanned aerial vehicle composed of four motors attached to a rigid
cross-shaped frame. The frame allows to embed electronics: a micro-controller, four motors
and a battery. The propellers {1 to 4} are mounted such as {1} and {3} are rotating anti-
clockwise and {2} and {4} are rotating clockwise, see Fig. I.1a for numbering disposition.
Driving the engines in the opposite direction cancels the induced torque of each motors to
turn the propellers. By piloting each motor individually and in a coordinated manner, desired
motion in the 3D space can be achieved: translations, rotations and combinations between
both.

In the following, we will consider an orthogonal frame defined by its vectors units {x⃗, y⃗, z⃗}.

For quadrotors, there exist two configurations for the heading direction:

• X4-configuration: the heading direction, along x⃗, is done between motors {1} & {2}
and axis y⃗ is between {2} & {3}.

• +4-configuration: the heading direction, along x⃗, is done in the direction of motor {1}
and axis y⃗ is along motor {2}.

In the remaining of the manuscript, we will consider the most used configuration, the X4-
configuration, as represented in Fig. I.1a.Heading direction

12

3 4
(a) X4-configuration

ℎ
𝑟𝑖 𝜔𝑖

𝑙

(b) Quadrotor side view

Figure I.1: Quadrotor general description.

I.1. Quadrotor movement 9

A quadrotor is an under-actuated system, it has 6 degrees of freedom, spatial and angular
positions, but only 4 actuators, the motors. However, by controlling the motors jointly one
can achieve motion in space. Possible motions are described in Fig. I.2. In this figure, a
lighter color represents a lower motor speed and reversely a darker color stands for a faster
motor speed.

We first described rotation motions, as they are at the basis of all quadrotor movements.
Rotations are performed by a differential of angular speed between two pairs of motors:

• For roll motion: between pairs of motors {1, 4} and motors {2, 3}, see Figs. I.2 - a,

• For pitch motion: between pairs of motors {1, 2} and motors {3, 4}, see Figs. I.2 - b,

• For yaw motion: between pairs of motors {1, 3} and motors {2, 4}, see Figs. I.2 - c.

The hovering flight is achieved when the total thrust force generated by all motors is
compensating the gravitational force. Translation vertically is done by applying more or
less thrust than the gravitational force: increasing or decreasing all angular speed in a
simultaneous way allows the quadrotor to go upward or downward, see Fig. I.2 - d.
Finally, horizontal motions (along x⃗ and y⃗) is accomplished by making first a rotation by
pitching or rolling and using a total thrust for maintaining it in the horizontal plane.

12
3 4

a + Pitch motionFoward motion

a − Pitch motionBackward motion12
3 4

12
3 4

b + Roll motionRight motion

12
3 4

b − Roll motionLeft motion

12
3 4

c + YawmotionClockwise

12
3 4

c − YawmotionAnticlockwise

12
3 4

d + Upward motion

d − Downward motion
12

3 4
Low − Speed Intensity High +

Figure I.2: X4 - Quadrotor motion description.

10 Chapter I. Quadrotor modeling

I.2 Frames and formalism

We define here the formalism of frames used to describe the motion of the rigid body. It will
be used for all the remaining of the manuscript. Let {x⃗, y⃗, z⃗} be the unit vectors of each axis
without linking them to a reference frame. Two important frames must be defined:

• The inertial frame: let {I} be the right-hand orthonormal inertial frame described by
its units vectors {i⃗1, i⃗2, i⃗3}. Thus in {I} one has i⃗1 = x⃗, i⃗2 = y⃗ and i⃗3 = z⃗.

• The body-fixed frame: let {B} be the right-hand frame attached to the rigid body,
described by its units vectors {b⃗1, b⃗2, b⃗3}. In {B} one has b⃗1 = x⃗, b⃗2 = y⃗ and b⃗3 = z⃗.

𝑐3

𝑐1 𝑐2
𝑅𝑧(𝜓) 𝑅𝑦(𝜃) 𝑅𝑥(𝜙)

𝑑3𝑏3
Inertial frame Intermediate frame Body − fixed frame

𝑏2

𝑏1 𝑑1
𝑑2𝜙

𝑑3

𝑑1
𝑑2𝜃

𝑐3

𝑐1
𝑐2

𝑖3
𝑖1 𝑖2

𝜓

Figure I.3: Illustration of the frames representation using Tait-Bryan angles. The inertial
frame on the left, intermediate frames in the middle and the body fixed frame, on the right.

The orientation of rigid-body frame {B} in the inertial frame {I} can be defined by the
rotation matrix R ∈ R3×3 and belongs to special orthogonal group SO(3). It can then be
written that: b⃗1 = Ri⃗1, b⃗2 = Ri⃗2 and b⃗3 = Ri⃗3. To model the rotation from {I} to {B} one
uses Euler formalism, using Tait-Bryan angles [GPS02]. The intrinsic Z-Y-X Euler formalism
is defined as follows:

• A first rotation is performed around z axis of the {I} frame. This rotation is defined
by the yaw angle ψ. A new intermediate frame is obtained.

• Secondly, a rotation of pitch, θ, around y⃗ axis of this intermediate frame is done, a
second intermediate frame is defined.

• Finally, the new frame is rotated thought roll angle, ϕ, about the x⃗ axis obtained.

I.2. Frames and formalism 11

It results in the body-fixed frame {B}. One can then define R matrix using Euler angles:

R = Rz(ψ)Ry(θ)Rx(ϕ),

=

cψ −sψ 0
sψ cψ 0
0 0 1

 cθ 0 sθ

0 1 0
−sθ 0 cθ

1 0 0

0 cϕ −sϕ
0 sϕ cϕ

,
R =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 ,
(I.1)

where cosines and sines are defined using following abbreviations: c· := cos(·) and s· := sin(·).

A relation between the time derivatives of the Euler angles and the angular velocities
Ω = [p , q , r]T can be drawn:

Ω =

ϕ̇0
0

+ RzΩ

0
θ̇

0

+ RzRy

0
0
ψ̇

.
The angular speed vector Ω can be expressed using Euler angles derivatives using the following
relation:

Ω = W −1

ϕ̇θ̇
ψ̇

, (I.2)

where matrix W ∈ R3×3 is called the Wronskian matrix. For Z-Y-X Euler convention it is
expressed as follows:

W = W (ϕ, θ, ψ) =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 , (I.3)

where tangent function is denoted as: t· = tan(·).

It can be noted that the Wronskian matrix is singular for θ = π/2+kπ for k ∈ Z. In fact, two
of the three axes are identical in that configuration. This issue is also known as gimbal lock.
To solve this problem other representations exist, in particular quaternions representation.
The quaternion formalism is not developed in this thesis, as the trajectory generation used
will not require acrobatic motions implying that condition. More details about quaternions
formalism can be found in the following technical report [BHD13] for instance.

12 Chapter I. Quadrotor modeling

I.3 Actuator model description

In this section, we present the model of the actuators mounted on a quadrotor: four three-
phases brushless motors linked to propellers. A brushless motor is a synchronous motor and
it is composed of a stator with electromagnets and a rotor built with permanent magnets.
Since it does not have commutators and brushes, it is needed to switch current in stator coils
to create a driving torque. In order to achieve it, commutation is made by an electronic unit.

I.3.1 Brushless motor model

The model presented here is an equivalent mono-phase model of the three-phases device, it
is represented in Fig. I.4. We associate to the motor i ∈ {1, 2, 3, 4} its rotation speed ωi and
its voltage supply as ui. 𝑅i 𝐿

𝑒𝑢𝑖 𝜔𝑖
Γ𝑚𝑜𝑡

𝐽𝑟𝐼
+
−

Figure I.4: Brushless motor equivalent mono-phase circuit.

The electrical equation (I.4) can be obtained:

L
dωi
dt

= ui −RiI − e(t), (I.4)

where following notations are used:

• e(t) = Keωi[V]: counter-electromotive force or back emf,

• I[A]: armature current,

• Ke[V/(rad/s)]: back emf constant or motor velocity constant, given by the manufacturer
or estimated via a no-load test,

• Ri[Ω], the internal resistance of a motor phase, given by the manufacturer or measured
at the terminals of a motor phase,

• L[H]: the internal inductance of a motor phase, given by the manufacturer or measured.

I.3. Actuator model description 13

Concerning the mechanical equation (I.5), we have:

Jr
dωi
dt

= Γmot − Γload, (I.5)

where following notations are used:

• Γmot = KmI[Nm]: motor torque,

• Km[Nm/A]: torque constant,

• Jr[kgm2]: inertia of rotating parts reduced to the motor axis: shaft, propeller, screw,

• Γload[Nm]: the load torque related to the motor axis. Here, the friction torque of the
blades in the air is given by Γload = cDωi|ωi|,

• ui[V]: voltage at the terminals of a motor phase limited by a maximum saturating
value. This maximum voltage corresponds to the maximum rotation speed.

As motors used are small, we can consider that the inductance L is very small. Also by
assuming that Km = Ke, the second order DC motor dynamics are approximated by the first
order equation given by eq. (I.6):

ω̇i = − K2
m

JrRi
ωi −

1
Jr

Γload + Km

JrRi
satui(ui). (I.6)

I.3.2 Forces generated by propellers

When the propeller is being driven by the motor, it generates a force perpendicular to its plane
of rotation, in the ideal case: with no apparent wind nor other disturbance. The steady-state
thrust generated by the i-th motor Fi along b⃗3, [Lei06] is given by:

Fi = Ti⃗b3 = CTρArir
2
i ω

2
i b⃗3, (I.7)

with following variables:

• CT [−]: thrust coefficient,

• ρ[kg.m−3]: air density,

• Ari[m2]: motor disk area,

• ri[m]: radius of the motor,

• ωi[rad.s−1]: angular speed of i.

14 Chapter I. Quadrotor modeling

In practice, we use cT coefficient such that:

Ti = cTω
2
i . (I.8)

This coefficient is a constant estimated from a static thrust test. The total thrust (I.9) applied
to the rigid-body is given by the sum of each motors individual thrust force term (I.8):

T =
N=4∑
i=1
|Ti|. (I.9)

The thrust force vector is then expressed by the total of individual thrust forces FTi = Tib⃗3:

FT =
N=4∑
i=1
|Ti|b⃗3 = T b⃗3. (I.10)

Illustration of the four forces generated and total thrust force is given in Fig. I.5.

𝑏3

𝑏1

𝐹2
𝐹3𝐹𝑇

𝐹1
𝐹4

𝜔1
𝜔4 𝜔3

𝑏2 𝜔2
Figure I.5: Illustration of the forces generated by the four propellers.

In next section, this thrust force vector will be detailed, considering flapping effect.

I.4 Quadrotor complete model

In this section, we present a comprehensive model of a general quadrotor given in the X4-
configuration. It will include main known effects that are well described in the literature,
[Man15]; [MKC12]; [Bou07], etc. This model will be referred as complete model in the fol-
lowing of this document. The complete modeling is obtained by making the balance of forces
and torques that are applied on the device.

The quadrotor center-of-mass position is denoted by ξ := [x , y , z]T ∈ {I}. Its linear
velocity, given in {I}, is v := [vx , vy , vz]T . The Euler angles vector is ζ := [ϕ , θ , ψ]T ,

I.4. Quadrotor complete model 15

whose components correspond to roll, pitch, and yaw angles, respectively. Ω := [p , q , r]T
denotes the angular velocity vector expressed in the body frame {B}. Let m be the total
mass of the quadrotor, including battery, and J be the inertia matrix expressed in the body
fixed frame {B}.

I.4.1 Balance of forces

In this subsection, we enumerate main known forces that are applied to the rigid-body, in
order to next give the model of quadrotor:

• Thrust force FT : It is the total thrust force vector induced by the sum of all forces
generated by propellers Fi (I.7), FT was given in previous section by eq. (I.10)

• Drag force Fv: It is the resistance force of the air across the surface of the quadrotor.
We can define it along each axis of the quadrotor i ∈ {x, y, z}, according to [Man15]:

F iv = −1
2ρCiAfi

|vi|B |vi|B , (I.11)

with:

– ρ[kg.m−3]: air density,

– Ci[m.−1]: drag coefficient,

– Afi
[m2]: fuselage area, projected on the plane orthogonal to the i-axis,

– vi|B [m.s−1]: velocity expressed in {B} along axis i.

Defining Kv = 1
2ρCiAfi

R, we can express the drag force vector, using (I.11) and v

given in {I}:
Fv = −Kv|v|v. (I.12)

• Weight force Fp: It is the force generated by gravity. Using g the free-fall acceleration,
it is expressed as (I.13):

Fp = −mgi⃗3. (I.13)

• External disturbance force Fext: It is an additional force term that includes external
forces, as wind force for instance, but it also includes non-modeled and unknown effects.
It is expressed in inertial frame.

There exist several external disturbances that affects the dynamic of the quadrotor and
particularly the thrust force: the ground effect and the blade flapping. We aim now at
explaining and describing the impact of these two effects on the system.

16 Chapter I. Quadrotor modeling

Ground effect: At low altitude, near ground surface, an additional effect is added to
the whole dynamic: the ground effect (see Fig. I.6). It is the result of a local increase in
air density due to the presence of the ground. Thrust of a horizontal propeller is thus
accentuated with the proximity of the ground. It greatly affects quadrotor behavior. The
ground effect is generally avoided by flying at high altitude but can be a real issue when
the quadrotor must get closer to the ground.

𝑏3
𝛼𝑔𝑇𝑖𝑏3

In Ground Effect 𝑇𝑖𝑏3
𝑏3

Out of Ground Effect
Ground Surface

Figure I.6: Illustration of the ground effect.

The ground effect is modeled here according to the work of [Che+55] and [Dan+15] by:

Tin
Tout

= 1− ρg
(

ri
z + h

)2

,

where Tin = T is the input thrust, Tout is the true thrust generated by the motors and with:

• ri, the radius of the i-th motor, z the distance from the center of mass of the quadrotor
to the ground and h the vertical distance from the motor plane to the center of mass of
the vehicle.

• ρg, a coefficient to adapt the ground effect from the quadrotor with respect to the
helicopter literature.

Then, the thrust is modified according to (I.14):

T gi = αg(z)Ti, (I.14)

with:

α−1
g (z) = 1− ρg

(
ri

z + h

)2

. (I.15)

It should be noted that when z is far away from zero, i.e. far from the floor, the coefficient
(I.15) becomes closer to one: the ground effect has no more influence.

I.4. Quadrotor complete model 17

Blade flapping effect: The blade flapping effect, illustrated in Fig. I.7, is the result
of the apparent wind effect during the motion of a motor-propeller assembly. The blade
moving forward into the wind faces an apparent wind which increases its lift, the blade
moving backward faces a tailwind which decreases its lift. Thus, the thrust, theoretically
perpendicular to the plane of the propeller, is applied a certain rotation, in particular
related to the flexibility of the propeller. On the quadrotor, this effect is accentuated
because it is present on the four propellers.

UAVframe𝜔𝑖

𝑏3 𝑹𝑖𝑓𝑙𝑎𝑝𝑇𝑖 𝑏3
αApparent Wind

Figure I.7: Illustration of the blade flapping effect.

Several attempts to model the blade flapping effect have been proposed, in the following
we will rely on the work of [Pro95] initially proposed for helicopters and the work of [Man15]
adapted for quadrotors. It can be modeled by a rotation matrix (I.16) applied to each motor,
given by:

Rflap = Rx(b1s)Ry(a1s),

=

1 0 0
0 c(b1s) −s(b1s)
0 s(b1s) c(b1s)

 c(a1s) 0 s(a1s)

0 1 0
−s(a1s) 0 c(a1s)

 , (I.16)

where a1s and b1s flapping angles [Pro95] are given by:

a1s =

(8
3θ0 + 2θ1

)
µ− CT

1− µ2

2

+

−16q
γωr

+ p

ωr

1− µ2

2

,

= a1µ + a1ω,

b1s =
4CT
3σ

1 + µ2

2

(2µγ
3a + σ

2µ

)
+

−16p
γωr

− q

ωr

1 + µ2

2

,

= b1µ + b1ω.

18 Chapter I. Quadrotor modeling

and with the following notations:

• θ0[◦]: pitch that the blade would have if extended to the center of rotation,

• θ1[◦]: is the twist angle,

• a[−]: slope of the lift curve per radian, assumed to be equal to 6,

• µ[−]: is the tip speed ratio,

µ = ∥Vh∥
ωrr

=

√
V 2
x,B + V 2

y,B

ωrr
,

• σ[−]: represents the motor solidity ratio:

σ = nbladec

πr
,

with nblade is the number of blades and c the width of the propeller (chord),

• γ[−]: is the Lock number,

γ = ρacr4

Ib
,

with Ib: the moment of inertia of the blade.

One can now express the thrust vector for each motor in the body frame. Individual thrust
force vector is modified as follows:

T flapi = Rflap
i Ti. (I.17)

Using (I.17), it results in a new expression of the total force (I.9) given by (I.18):

F flapT =
4∑
i=1

T flapi b⃗3 =
4∑
i=1

Rflap
i Tib⃗3. (I.18)

To conclude with the balance of forces, we can write the sum of forces including weight, drag
and thrust modified with the ground effect and the flapping effect, in the inertial frame:

∑
F = Fp + RF flapT g + Fv + Fext. (I.19)

Developing eq. (I.19), we obtain:

mv̇ = −mgi⃗3 + αgR
4∑
i=1

Rflap
i Tib⃗3 −Kv|v|v + Fext. (I.20)

I.4. Quadrotor complete model 19

I.4.2 Balance of torques

In this subsection, we introduce known torques that are applied to the rigid-body:

• Gyroscopic effect: Each motor may be considered as a rigid disc rotating around the
vertical axis, the body frame. The motor’s axis of rotation is itself moving with the
angular velocity of the frame. This leads to the following torque, Γgyro given by (I.21):

Γgyro =
4∑
i=1

Ir(Ω× b⃗3)ωi = Ir(Ω× b⃗3)
4∑
i=1

ωi, (I.21)

where Ir is the inertia matrix of a motor and × denotes for the cross product.

• Yaw torque: As the propeller is not perfect, it generates an additional drag (I.22). This
drag causes a counter-torque, opposite to the direction of rotation of the propeller. It
is not affected by the flapping effect.

ΓD =
4∑
i=1

(−1)i+1cQω
2
i b⃗3. (I.22)

• Inertial counter-torque: It is generated by the residual acceleration of each propellers,
due to individual rotation speed changes. It is given by (I.23):

Γres = Irω̇
2
resb⃗3, (I.23)

where ωres = −ω1 + ω2 − ω3 + ω4.

• Torque induced by thrust:

ΓT =
4∑
i=1

FTi × Pi, (I.24)

with P =

l′ l′ h

l′ l′ h

−l′ l′ h

−l′ −l′ h

,

where Pi refers to the i-th row of P , l′ =
√

2
2 l, l is the arm length and hrotor the height

of the propeller in relation to the center of gravity. Now taking into account the flapping
effect in (I.24), one gets the new expression (I.25):

ΓT =
4∑
i=1

(Rflap
i FTi × Pi) =

4∑
i=1

(cTω2
i R

flap
i b⃗3 × Pi). (I.25)

• Disturbance torque Γext that includes other external unknown disturbances. It can for
example include wind induce torque.

20 Chapter I. Quadrotor modeling

Considering first that there is no flapping effect, the torque vector can be calculated as:

Γ = ΓT + ΓD =

Γp
Γq
Γr

 =

−cT l
′ cT l

′ cT l
′ −cT l′

−cT l′ −cT l′ cT l
′ cT l

′

cQ −cQ cQ −cQ

ω2

1
ω2

2
ω2

3
ω2

4

 .

One recalls Euler’s rotation equation, in the inertial frame, using L the angular momentum
and the total applied torque ∑Γ:

dL
dt

∣∣∣∣
I

=
∑

Γ (I.26)

As L = JΩ is expressed in the body-fixed frame, and it is rotating at Ω, we use the transport
theorem to express (I.26) in the body frame:

dL
dt

∣∣∣∣
I

= dL
dt

∣∣∣∣
B

+ Ω×L = JΩ̇ + Ω×L =
∑

Γ (I.27)

To conclude with the balance of torques, we can sum up all contributions listed above and
using (I.27): ∑

Γ = JΩ̇ + Ω× JΩ = Γgyro + Γres + ΓT + ΓD + Γext. (I.28)

Let’s define Ω× the skew-symmetric matrix associated to Ω. It that satisfies, for all matrix
M ∈M3(R), M × Ω = MΩ×:

Ω× =

 0 p −q
−p 0 r

q −r 0

 . (I.29)

Developing all terms of eq. (I.28) and using notations (I.29), one gets:

JΩ̇ = −Ω×JΩ + Ir(Ω× b⃗3)∑4
i=1 ωi +∑4

i=1(ctω2
i R

flap
i b⃗3 × Pi)

+∑4
i=1(−1)i+1cQω

2
i b⃗3 + Irω̇

2
resb⃗3 + Γext.

(I.30)

Now that we have established the balance of forces and torques, we can derive the complete
model of the quadrotor.

I.5. Quadrotor simplified model 21

I.4.3 Complete quadrotor modeling

According to balances of forces and torques, respectively given in equations (I.20) and (I.30),
one can establish the complete model of the quadrotor dynamics.

Quadrotor complet model, using Newton-Euler formalism:

ξ̇ = v,

mv̇ = −mgi⃗3 + αgR
∑4
i=1 Rflap

i Tib⃗3 −Kv|v|v + Fext,

Ṙ = RΩ×,

JΩ̇ = −Ω×JΩ + Ir(Ω× b⃗3)∑4
i=1 ωi +∑4

i=1(ctω2
i R

flap
i b⃗3 × Pi)

+∑4
i=1(−1)i+1cQω

2
i b⃗3 + Irω̇

2
resb⃗3 + Γext.

(I.31)

This model includes as much as possible of known effect applied on the quadrotor. It is
highly nonlinear. It can be complicated to derive control algorithms from it. The quadrotor
complete model will be mainly used in simulation to firstly model the quadrotor and to test
control algorithms before experimenting real flights.

I.5 Quadrotor simplified model

In the previous section, we have tried to model the quadrotor as precisely as possible by
giving its complete model. This model is complex and requires the knowledge of many
parameters to completely describe the quadrotor’s motions. These parameters are often
difficult to obtain or estimate. It becomes difficult to derive control algorithm from (I.31).
This model is suitable for simulation purposes and testing control algorithm.

𝑏3

Inertial frame Body − fixed frame

𝑏2

𝑏1𝑖1 𝑖2

𝑖3 𝜉 𝑚𝑔

𝐹2
𝐹3𝐹𝑇

𝐹1
𝐹4

Figure I.8: Quadrotor mains forces after making assumptions.

22 Chapter I. Quadrotor modeling

To design a controller, a simpler, nonlinear, model is very often used. In order to obtain
the commonly used model in the literature, we must first make several simplifications and
assumptions. Basic assumptions and hypothesis done are as follows:

• Flying away from the ground: the ground effect no longer operates αg = 1,

• The quadrotor is no flying at high velocity: the drag force is lessen Fv = 0T3 , where
03 := [0, 0, 0],

• Motors are not flexible: the blade flapping is weak RF lap
i = 03,

• There is no residual acceleration: Γres = 0T3 ,

• The gyroscopic effect is negligible: Γgyro = 0T3 .

Before deriving the simplified model one can give the following relation:
T

Γp
Γq
Γr

 =

cT cT cT cT
−cT l′ cT l

′ cT l
′ −cT l′

−cT l′ −cT l′ cT l
′ cT l

′

cQ −cQ cQ −cQ

ω2

1
ω2

2
ω2

3
ω2

4

 . (I.32)

In equation (I.32), we notice the mixing matrix between the squared motor speeds and forces
& moments. This matrix depends on the drone configuration, here it is expressed for a
X4-configuration (I.1a).

The equations of quadrotor dynamics given in (I.31) are simplified using previously es-
tablished hypothesis and eq. (I.32). The standard model can be derived, as follows.

Quadrotor simplified model, using Newton-Euler formalism:
ξ̇ = v,

mv̇ = −mgi⃗3 + RT b⃗3,

Ṙ = RΩ×,

JΩ̇ = −Ω×JΩ + Γ.

(I.33)

This dynamical model is used by several authors such as Mahony et al.[MKC12], Bouab-
dallah et al.[BMS04] or Manecy [Man15]. It is very often used to model and design linear
and nonlinear controllers for quadrotors. As the mixing matrix is non-singular, we can chose
the thrust and torques as command inputs for the quadrotor system. Then, using computed
commands one can retrieve angular speed of each motor to achieve desired flights.

Now that the nonlinear models of the quadrotor are derived, the next chapter will give
more details about the experimental platform and the control architecture used to pilot it.

Chapter II

Experimental setup

This chapter presents the experimental setup used to assess flight performance of the
proposed algorithms. It introduces the quadrotor experimentally used and the motion
capture room. It then describes the structure commonly used for quadrotor piloting: the
cascaded architecture. It also gives more technical insights about the software used and how
data are collected and processed, using the communication protocols established with ROS.

Contents
II.1 Introduction . 24
II.2 The Holybro Kopis 2 quadrotor . 25
II.3 Motion capture room . 27
II.4 Robot Operating System . 28

II.4.1 General overview . 28
II.4.2 ROS topics for the controller node . 30

II.5 Quadrotor cascaded control architecture 32
II.5.1 PX4 controller architecture . 32

II.5.1.1 PX4 autopilot overview . 32
II.5.1.2 PX4 cascaded controller . 32

II.5.2 Implemented controllers architecture . 34
II.5.3 Angular rate PID tuning . 35
II.5.4 PX4 command . 36
II.5.5 PX4 mixer identification . 37
II.5.6 Smith predictor . 39

II.6 Data pre-processing . 40
II.6.1 Dealing with outliers . 40
II.6.2 Filtering with Savitsky-Golay . 40

II.7 Conclusion . 42

23

24 Chapter II. Experimental setup

II.1 Introduction

This chapter is a development of the experimental aspect of this thesis. It first introduces
the quadrotor used by describing its components and their uses in the section II.2. The
experimental motion capture room and the setup used for the experiments is then established
in section II.3.

After a brief explanation of the Robot Operating System (ROS) functioning, an explanation
of the communication system using topics and messages is given in section II.4.

Section II.5 is dedicated to the quadrotor cascaded control architecture. The control archi-
tecture used by PX4 is first introduced. It will allow us to recall the architecture scheme
commonly used for the control of quadrotor. Once done, one introduces the general architec-
ture used in the remainder of this manuscript and used for both simulation and experiment.
This chosen architecture is based on the previous one but presents some differences which will
be detailed. The selected architecture will rely on several PX4 elements. The latter performs
the low-level angular control. Thus, explanations of the essential components of PX4 are
given:

• Proposed solution will depend on the angular velocity loop. We will explain how we
have tuned the PID parameters for the angular velocities.

• We describe how our control command architecture communicates with PX4 low-level
control loop. A brief description of how computed commands are scaled and relayed to
the inner loop of PX4 is also given.

• PX4 uses a particular mixer, different from the mixer given in eq. (I.32). In order to
better understand and establish a simulator of the quadrotor used, we have identified
this block. Explanation of the identification is given here.

• Time pure delay can be observed in the loops. A solution to better handle it is the use
of smith predictor. Short explanations of it are provided.

Finally, some insights about data pre-processing are given in section II.6. Indeed, to per-
form control or learning, data coming from different sensors are used and can be very noisy.
Explanations on data filtering using Savitzky-Golay are given.

II.2. The Holybro Kopis 2 quadrotor 25

II.2 The Holybro Kopis 2 quadrotor

In order to experimentally test and validate the proposed flight controllers developed in the
following chapters, we have used a Holybro Kopis 2 quadrotor. A picture of the device is
given in Fig. II.1. It is a high-performance first-person view racing drone. Main specifications
of this drone are given in Table II.1. The quadrotor is powered by 3S LiPo (Lithium Polymer)
batteries.

Figure II.1: The Holybro Kopis 2 quadrotor.

The hardware of the device consists of:

• A flight controller. It includes an internal Inertial Measurement Unit (IMU) and a
barometer. Here, it is a Kakute F7 controller running along PX4 firmware [MHP15];
[Noa]. It is used as low-level controller, it performs angular rates control using PID
for each component. The angular rate PID tuning is explained in section II.5.3. It
is also used for state estimation using an Extended Kalman Filter (EKF), the ECL
EKF2. Because of memory limitations, an additional on-board micro-controller has
been implemented on the quadrotor. It is a Orange-pi controller. One uses it to perform
proposed positions & velocity control and attitude control. This controller publishes
computed commands either in {rates+thrust} or in {angles+thrust} to the Kakute F7.
In the latter case, the attitude control is performed by PX4.
As we are using deep neural networks, real-time predictions are performed on this
controller. To do so, one uses TensorFlow Lite [Aba+15] which is known for fast on-
board neural predictions.

• An Electronic Speed Controller (ESC). It drives the four brushless motors of
the quadrotor. It receives the signals from the Kakute F7 controller and uses them
to adapt the power delivered to each motor. The protocol used is the Pulse Width
Modulation (PWM). For the Kopis quadrotor, these are open loop ESC: there is no
feedback to control rotational speed of the motors.

• Additional sensors. One can list: flow sensor, range sensor and a barometer.

• A WiFi module. Here, one uses the ESP32 WiFi module. It establishes a WiFi bridge

26 Chapter II. Experimental setup

between the ground station computer and the flight controller. It communicates with
the Kakute F7 using UART protocol.

• A Remote Control (RC) receiver. It is linked to a remote controller for manual
control. The remote controller allows to arm or disarm the device and to switch between
flight modes.

A schematic view of the hardware configuration is given in Fig. II.2.

𝐇𝐨𝐥𝐲𝐛𝐫𝐨 𝐊𝐨𝐩𝐢𝐬 𝟐

𝐆𝐫𝐨𝐮𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐨𝐧 WiFi

SBUSRC Receiver

𝐊𝐚𝐤𝐮𝐭𝐞 𝐅𝟕
IMU
mag

𝐎𝐫𝐚𝐧𝐠𝐞 𝐩𝐢 Range sensor
Flow sensor
Barometer

Power battery
Distribution boardBEC/ Alimentation board

𝐄𝐒𝐏𝟑𝟐
SPI
SPI IMUSPI

I2C
I2C
I2C𝐑𝐞𝐦𝐨𝐭𝐞 𝐂𝐨𝐧𝐭𝐫𝐨𝐥 𝐑𝐂 radio

UART

5V 5V PWM

𝐒𝐓𝐌𝟑𝟐

ESCs
𝐌𝐨𝐭𝐢𝐨𝐧 𝐂𝐚𝐩𝐭𝐮𝐫𝐞ETH

Figure II.2: The Holybro Kopis 2 hardware configuration.

For mission situations, the ground station sends the reference trajectories to the quadrotor.
The station uses the WiFi bridge established by the ESP32 to communicate. The commu-
nication exchanges are done at a frequency of 100Hz. The station also receives spatial and
angular positions information from the motion capture system installed in the experimental
room. The room is presented in the next section II.3. A schematic representation of the
entire experimental setup is shown in Fig. II.3. The trajectory generation is done before the
mission. The user chooses the type of trajectory that the quadrotor will perform: position
steps, circles, spirals, etc. Then, these instructions are generated and sent to the quadrotor.
The trajectory generation is performed at 50Hz.

II.3. Motion capture room 27

Attribute Value of the attribute
MCU STM32F745VGT6 32-bit processor
IMU MPU6000 (SPI)
Barometer BMP280
Weight (no battery) 325 grams
Battery 3S LiPo battery

Table II.1: The Holybro Kopis 2 specifications.

II.3 Motion capture room

All presented experimental tests are performed indoor using a Motion Capture (MOCA)
system. The room is equipped of twelve Vicon T40s cameras. They track markers attached to
the quadrotor. Spacial position and orientation of the device are then obtained. A dedicated
computer uses Vicon Tracker software to track the quadrotor position using all camera signals.
It communicates that computed position to the ground station computer through the Virtual
Reality Peripheral Network (VRPN) protocol. An illustration of the room is given in Fig. II.3
and some pictures are provided in Fig. II.4.

𝐕𝐢𝐜𝐨𝐧Position CaptationSystem

𝐌𝐨𝐭𝐢𝐨𝐧 𝐂𝐚𝐩𝐭𝐮𝐫𝐞 𝐑𝐨𝐨𝐦

𝐆𝐫𝐨𝐮𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐨𝐧Send Trajectory Reference 𝐑𝐞𝐦𝐨𝐭𝐞 𝐂𝐨𝐧𝐭𝐫𝐨𝐥On − board ModeAutonomousOff − board Mode

LivePosition

𝐅𝐥𝐢𝐠𝐡𝐭 𝐙𝐨𝐧𝐞

Security (𝐹𝑎𝑖𝑙𝑠𝑎𝑓𝑒)Manual ModeCommands
𝐇𝐨𝐥𝐲𝐛𝐫𝐨 𝐊𝐨𝐩𝐢𝐬 𝟐

Comands State

Figure II.3: Schematic representation of the motion capture room.

28 Chapter II. Experimental setup

For safety and security, a remote controller is used to switch between different flight
modes: arm/disarm, onboard/off-board mode. It is basically a remote control unit that
sends commands, thanks to a transmitter, to the quadrotor that receive them via a receiver.
The RC allows a manual retrieval of commands if there is a communication issue between the
station computer and the device.

(a) MOCA flight zone (b) MOCA ground station

Figure II.4: Pictures of the motion capture room.

II.4 Robot Operating System

II.4.1 General overview

Robot Operating System (ROS) [Qui+09] is a robotic middleware framework. It is a flexible
environment, open-source and free. It is composed of very useful libraries and tools for robot
applications. ROS provides several functionalities of which the main one is to allow commu-
nication between different processes and machines. For instance, in our case, ROS enables the
communication between the quadrotor, the ground station and the motion capture system. It
has a record structure, named rosbag, which contains exchanged data. Using rosbag, recorded
data can be analyzed or played back. ROS also integrates Gazebo, a simulation environment
[KH04].

ROS allows communication between different executable code distributed between computers
and robots. Main communication components used are:

• ROS nodes are executables that perform computations and tasks. They communicate
between them using ROS messages through topics. They can either publish or subscribe
to topics to send or receive information. A specific node type, called ROS Master, is used
to establish communication between node. It provides naming and registration services
to all nodes. The ROS Master helps nodes to find each other by tracking publishers
and subscribers to topics.

II.4. Robot Operating System 29

Publisher

ROSMaster
𝑁𝑜𝑑𝑒 𝑇𝑜𝑝𝑖𝑐

Advertise

Subscriber𝑁𝑜𝑑𝑒message

Subscribe

CallbackPublisℎ
Figure II.5: ROS publisher/subscriber communication mechanism. Nodes communicate a
message through a given topic. They can either subscribe or publish to topics. Nodes can do
both for multiple topics.

• ROS topics: are information buses that allow nodes communication. Data communi-
cated through topics are defined by ROS messages. A node can subscribe to a topic in
order to receive messages via subscribers. It can publish to a topic to send messages
via publishers.

• ROS messages: are data type. It exists a large variety of data including basic one as
float, string, boolean. Messages can be even more complex including headers and other
message types.

• ROS services: are an alternative way to communicate data between nodes. It allows
request / reply interactions for distributed systems. A ROS service is a synchronous
system and it is defined by a name and a pair of messages.

The publisher/subscriber communication mechanism of ROS is illustrated in Fig. II.5. It
represents a very simple communication process between two nodes: one publisher and one
subscriber. This is at the basis of ROS functioning.

ROS is developed in two languages: C++ and Python. As one uses deep neural networks and
because Python has a very well-developed, open-source, documented packages for learning,
we decided to develop our algorithms in Python.

A very important ROS package used for communication is mavros. It enables MAVLink
communication between the ground station computer and the quadrotor. MAVLink is a
lightweight communication protocol to communicate with drones or for internal drone com-
munication.

30 Chapter II. Experimental setup

II.4.2 ROS topics for the controller node

As previously stated, data messages are communicated through different topics. Our flight
controller will need information from different sensors, for instance, the state composed of
the quadrotor positions and velocities. It therefore needs information coming from different
topics in order to properly work. Thus, the control node will need to subscribe to different
topics, whose main ones are listed below:

• /mavros/local_position/odom. This topic contains the spatial pose (position and orien-
tation) and velocities of the quadrotor computed by the EFK2. Provided velocities are
given in the body frame.

• /mavros/vision_pose/pose. It allows to get spatial position of the quadrotor from the
Vicon cameras. Actually, it is a remap of the /vrpn_client_node/Kopis_pose/pose.
The VRPN client reads motion capture data and communicates it via this topic.

• /mavros/states_references. It contains the references trajectories computed on the
ground station and sent to the drone.

• /mavros/imu/data. It allows to communicate data collected by the IMU: angular ve-
locities, linear accelerations and orientation. This topic contains filtered data. A raw
version exists, providing original signals but consequently they are more noisy.

• /mavros/battery. It provides information on the battery status. A particularly interest-
ing information, that we will use later, is the battery voltage which is an image of the
state of charge of the battery.

Concerning the controller node, once the commands are computed, it will need to send
them to the flight controller for low-level control. It is thus needed to publish commands in
a dedicated topic. Here, mavros/setpoint_raw/attitude is the topic that makes it possible.
More details of how this topic is used are given in section II.5.4.

The data exchanged via rostopics can be saved and stored using rosbags. As ROS links
several nodes from different sources, the recorded data is saved at its own frequency. For
example, the position coming from the Vicons (/mavros/vision_pose/pose) is published at
100Hz whereas the battery status (/mavros/battery) is given at 5Hz. As far as learning
is concerned, this is an issue. Indeed, the database must contain a coherent data matrix
regarding temporal samples. To solve the problem, we propose to use data at the same
frequency using a personalized ROS message, called statecommand.msg and communicated
through a dedicated topic. An illustration of this custom message is given in Fig. II.6. It
contains all the measured and estimated variables necessary to the controller design of the
drone and to our learning approaches presented in this manuscript. This message is built
using information from previously mentioned topics:

• linear positions, from the Vicons and from the EKF,
• angular positions (quaternion) and Euler angles, from the EKF and the Vicon,

II.4. Robot Operating System 31

• expected linear positions1,
• references in positions and yaw,
• linear velocities from the EKF, in inertial and body frame,
• linear accelerations from the IMU,
• angular velocities,
• battery voltage,
• the commands send (thrust, angles or angular rates),

This message is filled within the controller node. For convenience, it is published at the
same frequency as the position and attitude control loop, at 100Hz. As everything is collected
at 100Hz, some data such as the state references or the battery voltage will be over-sampled.
Thus, each data coming from different topics will have the same number of elements. It will
be convenient for creating the training and validation database for the learning procedure.

𝐒𝐭𝐚𝐭𝐞𝐂𝐨𝐦𝐦𝐚𝐧𝐝
𝐇𝐞𝐚𝐝𝐞𝐫 header𝐟𝐥𝐨𝐚𝐭𝟔𝟒 positions𝐟𝐥𝐨𝐚𝐭𝟔𝟒 positions_ref𝐟𝐥𝐨𝐚𝐭𝟔𝟒 velocties_linear⋮𝐟𝐥𝐨𝐚𝐭𝟔𝟒 accelerations_linear𝐟𝐥𝐨𝐚𝐭𝟔𝟒 battery_voltage

⋮

𝐃𝐚𝐭𝐚 𝐟𝐫𝐨𝐦 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐬𝐨𝐮𝐫𝐜𝐞𝐬(imu, vicon, etc.)

timeValue
Value

Value
Value

Figure II.6: The statecommand.msg: a custom message to collect all the relevant data at the
same time stamps. It is built using message from all listed topics at each control step.

Now that overall ROS structure and data communication is explained, we can go deeper
in understanding the controller architecture that composes the quadrotor autopilot.

1The expected linear positions are computed according to a given linear model on which is based the linear
control. More details of this information will be given on next chapters.

32 Chapter II. Experimental setup

II.5 Quadrotor cascaded control architecture

This section gives the basis of the cascaded control architecture used for quadrotor control
applications. We will rely on PX4 autopilot which gives a first picture of such control scheme
for industrial multicopters. The proposed architecture in this manuscript will be greatly
inspired of it. A general overview of the control scheme adopted in the following of the present
work will be then given. Mathematical and theoretical details about proposed controllers will
be explained in each corresponding chapters (III, IV and V). Next, as we will rely on PX4 for
several features we will explain them. It deals with tuning angular loop, understanding used
mixers and how commands computed are provided to the low-level controller.

II.5.1 PX4 controller architecture

II.5.1.1 PX4 autopilot overview

PX4 autopilot is an open-source autopilot software for autonomous robots mainly focused on
aircraft systems. Quadrotor developed at GIPSA-lab are using it since it provides different
level of drone control and safety features. If something fails, it triggers a failsafe mode. For
example, a low battery level, an off-board loss, a position loss, etc. can trigger this mode. The
failsafe action can then be chosen such as a landing procedure, holding the current position
or return to home, the RTH mode.

II.5.1.2 PX4 cascaded controller

PX4 uses a very common control architecture: a cascaded P(ID) scheme to control successive
loops. It is composed of four cascaded controllers: position (P), velocity (PID), attitude (P)
and angular rate (PID) control loops, as represented in Fig. II.7. The gains of each loop must
be correctly tune to achieved desired performance for each component. It is also important
to notice that each inner loop must be fast enough with respects to its respective outer-loop
to work properly.

It should be noted that between velocity control and angle control a conversion block is
used in that scheme. This block links desired accelerations from the velocity controller to a
desired attitude for the angular control. A manner to design this conversion block is to use
linear accelerations equations from (I.33), to get a relation between variables of interest.

II.5. Quadrotor cascaded control architecture 33

𝜓𝑟𝑒𝑓

𝑣𝑟𝑒𝑓 𝑎𝑟𝑒𝑓𝜉𝑟𝑒𝑓 Accelerationand YawtoAttitude
PositionControl VelocityControl AngleControl AngularRateControl Mixer

𝑞𝑟𝑒𝑓 Ω𝑟𝑒𝑓

𝑇𝑟𝑒𝑓
Γ𝑟𝑒𝑓

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝐵𝑜𝑑𝑦 𝐹𝑟𝑎𝑚𝑒
𝜔𝑟𝑒𝑓

𝑷 𝑷𝑰𝑫 𝑷 𝑷𝑰𝑫

Figure II.7: Common cascaded control architecture for quadrotor.

Developing it on each axis, we get:

ẍ = T

m
(cϕsθcψ + sϕsψ),

ÿ = T

m
(cϕsθsψ − sϕcψ),

z̈ = −g + T

m
cϕcθ.

(II.1)

Assuming that the drone is moving with small angles, equations (II.1) can be expressed as:

ẍ = T

m
(θcψ + ϕsψ),

ÿ = T

m
(θsψ − ϕcψ),

z̈ = −g + T

m
cϕcθ.

(II.2)

From (II.2), a relation can be deduced between desired thrust, roll and pitch and the linear
accelerations:

θ = arctan
(
ẍcψ + ÿsψ
z̈ + g

)
,

ϕ = arctan
(
cθ
ẍsψ − ÿcψ
z̈ + g

)
,

T = m
z̈ + g

cϕcθ
.

(II.3)

Using expressions (II.3) is a way to implement that acceleration to attitude block. It is not
an exact relation but it works correctly for very common flights. Other solutions exist to
implement that conversion.

For more acrobatic flights or other applications, there exists many ways to perform attitude
and position control. Regarding our present study, we focus on the cascaded architecture,
shown above. We based our work on that architecture. However, we adapted it in order to
remove the conversion block and provide directly reference angles to the attitude loop.

34 Chapter II. Experimental setup

II.5.2 Implemented controllers architecture

The architecture chosen for our applications is directly inspired by the standard cascaded
control architecture presented as before. This choice comes from several reasons. First, to
keep the simplicity of tuning of such architecture. Second, to ease the adaptation of developed
controllers and learning solutions on any quadrotor. In that manner, it will be easier to
implement such algorithms in several standard quadrotors without the need of excessively
technical changes. Indeed, it is more straightforward to either change position/velocity or
attitude control blocks, without replacing everything.

For experimentation and implementation reasons, we developed our own position, velocity
and attitude controllers. We do not focus on angular rate algorithm design. However, to
correctly setup the quadrotor, it is required to obtain adequate gains of the PID piloting the
angular rates. The tuning process is explained in the next sub-section.

In the proposed scheme, we combined position and velocity control in a same control
loop. It provides references in thrust and angles to the attitude loop. The low-level con-
trol is performed by PX4. The general architecture we implemented is summarized in Fig. II.8.

𝜓𝑟𝑒𝑓
𝑣𝑟𝑒𝑓 𝜁𝑟𝑒𝑓
𝜉𝑟𝑒𝑓 Position & VelocityControl AngleControl

𝑇𝑟𝑒𝑓

𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝐹𝑟𝑎𝑚𝑒 𝐵𝑜𝑑𝑦 𝐹𝑟𝑎𝑚𝑒

𝑇𝑟𝑒𝑓
Ω𝑟𝑒𝑓 AngularRateControl MixerΓ𝑟𝑒𝑓 𝜔𝑟𝑒𝑓

𝑷𝑰𝑫

𝑇𝑟𝑒𝑓
PX4 Autopilot

Figure II.8: Proposed general control architecture.

A notable difference, compared to the previously presented architecture II.5.1.2, is that
we do not rely on a conversion block to convert accelerations to attitude. Indeed, this is an
inexact block, made with simplifying assumptions therefore adding some errors in the whole
scheme. In this manner, our position and velocity control directly provides desired angles
and thrust for the inner loop. More details about control laws, learning-based control and
observers will be given in corresponding chapters.

II.5. Quadrotor cascaded control architecture 35

II.5.3 Angular rate PID tuning

To pilot the pitch, roll and yaw rates to the desired values, PX4, like many industrial and
open-source solutions, uses PID controllers for each component. Before being able to set up
the outer-loops, it is necessary to have the inner-loop running faster and correctly. As we
will rely on that control architecture, a good tuning is crucial. Thus, the first step is to setup
each PID gains for fast and stable rate converge.

Let’s first introduce the PID controller in its standard form (II.4):

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t)
dt , (II.4)

where x is the measured value of the regulated variable and xref is the desired value for x
and where:

• kp: is the proportional gain,

• ki: is the integral gain,

• kd: is the derivative gain,

• e(t) = x(t)− xref (t): is the error term.

However, PX4 uses a slightly different PID form (II.5). Because of the derivative of the
reference, a large initial command peak can occur. That peak is also referred as derivative
kick or setpoint kick. A possible solution is to take the derivative term on the feedback value
instead of the error. It is a particular configuration of PID with setpoint weighting [ÅM21],
where the weighting factor is set to zero, see Fig. II.9. The expression of the PID used is
given by:

u(t) = k(kpe(t) + ki

∫ t

0
e(τ)dτ) + kkd

dx(t)
dt . (II.5)

This mathematical expression allows a mixed implementation of parallel and standard form
for that PID. The use of kp = 1 allows to get the standard form while k = 1 provides the
parallel form.

𝐻(𝑠)−+𝑟(𝑠) 𝜖(𝑠) 𝑈(𝑠) 𝑌(𝑠)
𝜕𝜕𝑡 𝑘𝑑

𝑘𝑖න
𝑘𝑝

+++ 𝐻(𝑠)−+
Plant𝑟(𝑠) 𝜖(𝑠) 𝑈(𝑠) 𝑌(𝑠)

𝑘 𝜕𝜕𝑡
𝑘

𝑘𝑑
𝑘𝑖න
𝑘𝑝

−++

PID standard form PID with Setpoint Weighting (𝛾 = 0)

Plant

Figure II.9: Different PID architectures. (Left) Standard PID form. (Right) PID with weight-
ing setpoint, the weighting is set to γ = 0, meaning the derivative operate only on the feedback.

36 Chapter II. Experimental setup

Here, one considers angular velocities given by Ω =
[
p, q, r

]T
. For each component is

associated a PID controller. Taking the standard form, setting k = 1, it results in the tuning
of nine gains. As angular rate loop tuning is not easy to perform in practice, we performed it
using Gazebo and Matlab simulation environments by doing step over each individual angular
rate. Indeed, performing true steps in angular velocity is a very risky and challenging task.
To perform it in an experimental manner, a test bench on which the quadrotor is attached
with non-slip bearings is needed.

There are several methods to adjust PID gains, we can cite the well known Ziegler-Nichols
method [ZN93], that can be used both for open-loop and closed-loop systems. This method
results in overshoots, that for our application we tend to cancel. Consequently, we have
chosen a manual adjustment of the PID gains. First kp is increased setting ki and kd to zero
or very small. It will speed up the system response but can lead to oscillations. Then tune ki
by increasing it to remove static error. It must not be too high because it causes oscillations
and can lead to instability. Finally, kd is used to attenuate oscillations but it will slower
the response. After several simulation and experimental adjustments, it results in the gains
provided in Table II.2.

Roll rate Pitch rate Yaw rate
k 1.0 1.0 1.0
kp 0.085 0.085 0.15
ki 0.32 0.32 0.1
kd 0.0008 0.0008 0.0

Table II.2: PID gains for PX4 angular rate loop.

II.5.4 PX4 command

The topic used to send command to the quadrotor is /mavros/setpoint_raw/attitude. The
message communicated through this topic is an AttitudeTarget message from Mavros. It
allows to either pilot desired angles or desired angular rates. If piloting in attitude, the
message requires desired quaternion, we recall the conversion to perform to get quaternions
from Euler angles, with (II.6):

q0
q1
q2
q3

des

=

cϕ/2cθ/2cψ/2 + sϕ/2sθ/2sψ/2
sϕ/2cθ/2cψ/2 − cϕ/2sθ/2sψ/2
cϕ/2sθ/2cψ/2 + sϕ/2cθ/2sψ/2
cϕ/2cθ/2sψ/2 − sϕ/2sθ/2cψ/2

des

(II.6)

The control mode selection, either angular or attitude control, is made via the use of a
mask included in the message. By selecting type_mask = 0b10000000 (128), PX4 controller
performs the angular control. The default mask, is automatically selecting the attitude control
mode.

II.5. Quadrotor cascaded control architecture 37

The thrust to be provided to PX4 must be scaled between 0 and 1, where 1 corresponds
to the maximum throttle that the quadrotor can deliver. An important parameter must be
determined before flying, here called hovercomp. It corresponds to the throttle value to get
the quadrotor hovering.

The normalization performed (II.7) is given by the following relation:

thrust = thrustref ·
hovercomp

mg
+ hovercomp · offsetlin, (II.7)

where offsetlin is equal to one if thrustref is computed around the equilibrium given by mg
or 0 otherwise.

II.5.5 PX4 mixer identification

The autopilot proposed by PX4 directly maps motor speeds wi to PWM values. As it is
difficult to explicitly control what is performed by the algorithm, we decided to carry out an
identification experiment to find the linear mapping used by PX4 between commands and
PWM values, of the form (II.8):

PWM = mixerPX4 · U + offsetPX4, (II.8)

where U is the command such that U =
[
Γp, Γq, Γr, T

]T
.

Let Y i =
[
PWM i

1, PWM i
2, . . . , PWM i

N

]
be N observations of the i-th PWM and X be

the regressor matrix:

X =

1 U1,1 U1,2 U1,3 U1,4
1 U2,1 U2,2 U2,3 U2,4
...

...
...

...
1 UN,1 UN,2 UN,3 UN,4

 .

Next, introducing ϵi as the error term vector for the i-th PWM, we need to solve for each i:

Y i = X

ai1
ai2
ai3
ai4,

+ ϵi,

where the error term is described as ϵi =

ϵi1
ϵi2
...
ϵiN .

.

To perform the identification, we first built the regressor matrix using data. One con-
sequently produces flight data and recorded them using rosbags. The data of interest is

38 Chapter II. Experimental setup

the command output from PX4 provided via the topic /mavros/target_actuator_control and
PWM values stored in /mavros/rc/out.

The least squares method can be used to find a solution. It is given by (II.9):

β̂ = (XTX)−1XTY i. (II.9)

One obtains the following mixer:

mixerPX4 =

−493.6 706.4 769.8 1000.5
494.0 −705.2 997.6 1001.3
494.8 705.2 −762.2 1001.9
−495.1 −706.4 −1003.1 997.0

 ,
and the following offset:

offsetPX4 =

999.3
999.1
998.9
1000.4

 ,
with the an R2 coefficient of 0.997.

Using this information, we were able to refine our Matlab/Simulink quadrotor simulator.
The idea behind this simulator is to reproduce PX4 and Gazebo within a unique simulation
structure that we totally master. By that, we are able to add effects modeled in chapter I.
It is also faster and easier to perform simulations using Matlab. In addition, the tuning gain
process is made faster.

II.5. Quadrotor cascaded control architecture 39

II.5.6 Smith predictor

The experimental implementation of the algorithms has highlighted the presence of a pure
delay in the WiFi communication. A manner to manage this delay is the use of a Smith
predictor. The idea behind this controller is to synthesize an initial controller for the process
without delay and then propose a controller adapted to the delayed system based on the first
one.

Let H(z) be the system model and z−k be the pure time delay. First considering only H,
one designs a controller C(z) giving expected closed-loop behavior:

HCL = C(z)H(z)
1 + C(z)H(z) .

The corrected controller that includes the pure time delay is given by:

Ck = C(z)
1 + C(z)H(z)(1− z−k) .

The structure of the Smith predictor filter is illustrated in Fig. II.10. To illustrate, the effect

𝐶0(𝑧)
1 − 𝑧−𝑘 𝐻(𝑧)

𝑧−𝑘𝐻(𝑧)−+−+
Smith Predictor Plantwith pure time delay𝑆(𝑧) 𝜖(𝑧) 𝑈(𝑧) 𝑌(𝑧)

Figure II.10: Smith predictor block diagram.

of the Smith predictor one considers the following system:

H(z) = 0.09516
z − 0.9048 .

Assuming it has a pure time delay of k = 10 samples. One considers the following PI
controller:

C(z) = z − 0.9
z − 1 .

It was designed to get a settling time around 0.3 s without overshoots to a step reference.
The results of the PI controller and the PI along with a Smith predictor are presented in
Fig. II.11. One can notice large overshoots and oscillations in the step response using the PI
controller. The PI along with a Smith Predictor allows to handle the delay. One retrieves the
desired response tuned with the PI delayed by k samples.

40 Chapter II. Experimental setup

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
V

al
ue

reference
PI
Smith

Figure II.11: Example of Smith predictor improvement.

II.6 Data pre-processing

As stated on multiple occasions, data is coming from several sensors. The obtained signals are
of varying quality according to the sensor. To perform analysis or learning on it, it might be
required to pre-process the data. Most of the time, we obtain usable data as it is. However,
it happens that outliers are obtained or the data is extremely noisy to be used.

II.6.1 Dealing with outliers

There are several ways to manage outliers values. As far as we are concerned, we deal with
temporal data. We have decided to replace the outlier values by the average of the two
surrounding values. For instance, an outlier can appear for one value of acceleration and
all other variable of interest can still be correct at this time step. Thus, instead of deleting
that outlier and all correct measures, we decided to replace it by that simple approximation.
Other methods to deal with outliers exist, but that occasional solution worked for considered
problems.

II.6.2 Filtering with Savitsky-Golay

For very noisy curves, here especially data coming from the IMU, it is often necessary to
smooth them before using them. We decided to use Savitsky-Golay [SG64] algorithm to filter
and smooth data. This filter is a method used in signal processing for smoothing a curve
and extracting its successive derivatives. The algorithm proposes a smoothing using local
least-squares polynomial approximations. Its two main parameters are:

II.6. Data pre-processing 41

• the windows size l,
• the polynomials order n.

On each considered window of size l, centered at i a polynomial of degree n is determined.
The value of the polynomial at this point is the point i of the filtered signal.

Examples of smoothing with Savitsky-Golay filter using IMU acceleration data is shown
in Fig. II.12.

6 8 10 12 14 16 18

Time (s)

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

A
cc

el
er

at
io

n
(m

/s
2
)

Filtering acceleration using Savitsky-Golay algorithm

raw signal

l = 21, n = 3

l = 151, n = 3

l = 51, n = 3

6 8 10 12 14 16 18

Time (s)

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

A
cc

el
er

at
io

n
(m

/s
2
)

raw signal

l = 51, n = 9

l = 51, n = 1

l = 51, n = 3

Figure II.12: Example of Savitsky-Golay filtering on acceleration IMU data.

The upper graphic in Fig. II.12 presents the influence of the window size on the filtering.
For a fixed polynomial order, the wider the window, the smoother the curve. The bottom
graphic in the same figure demonstrates the effect of the polynomial order on the filtering. It
is usually unnecessary to use order higher than three.

For experimental purposes, we will use Savitsky-Golay for both smoothing and getting
second order derivatives of positions signals. Indeed, the used IMU produces very noisy data,
in particular acceleration data. This data is not usable as it is. The use of this filter allows to
obtain an estimation of the acceleration using precise position data from the motion capture
system. An example of acceleration estimation in z-component using position is presented in
Fig. II.13.

42 Chapter II. Experimental setup

0 10 20 30 40 50

Time (s)

0.2

0.4

0.6

0.8

1.0

1.2

P
os

it
io

n
in

z
(m

)
Acceleration estimation using position and Savitsky-Golay filter

0 10 20 30 40 50

Time (s)

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

A
cc

el
er

at
io

n
(m

/s
2
)

z-acceleration IMU (in inertial frame)

z-acceleration from Savitky-Golay filter

Figure II.13: Example of Savitsky-Golay filtering for getting second order derivative. The first
subplot is the z position of the quadrotor obtained from the VICON. It is used to obtained
the red curve in the second subplot.

II.7 Conclusion

This chapter focused on the experimental aspect of this thesis, presenting the quadrotor and
the experimental platform used. The experimental basis has been established and will be used
in the different chapters to come. The details of the control laws using the architecture and
the tools presented will be provided in the following. The experimental aspects, concerning
the test missions to validate the algorithms will be specified in the corresponding chapters.

Chapter III

Integration of learning into control
for linear behavior fitting

This chapter deals with the issue of easy controller design while maintaining expected linear
behavior fitting for tracking scenarios. After introducing the problem, the linear controller
used for tracking is presented. Using only this standard controller will certainly lead to
unexpected behavior of the quadrotor during tracking. We will instigate the derivation of a
deep neural network feedforward correction term to correct the flight tracking behavior. To
assess the performance of such an enhanced controller, both simulation and experimentation
are performed, including step flights, near ground motions and wind disturbance scenarios.

Contents
III.1 Introduction . 44

III.1.1 Motivations . 44
III.1.2 Proposed DNN-based solution . 46

III.2 Linear quadrotor model and control 47
III.2.1 Quadrotor linear model . 47
III.2.2 Quadrotor linear cascaded PD controller 49

III.2.2.1 Attitude controller . 49
III.2.2.2 Position and velocity controller 50

III.2.3 Quadrotor linear control results . 51
III.3 Error dynamics neural estimation . 53

III.3.1 Deep neural network architecture . 53
III.3.2 Deep neural network learning . 55

III.4 Neural enhanced controller . 55
III.4.1 DNN-based correction controller . 56
III.4.2 Stability analysis . 57

III.5 Simulation and experimental results 59
III.5.1 Training and validation database . 59
III.5.2 Gazebo simulations results . 61
III.5.3 Experimental results in MOCA room . 63

III.5.3.1 Steps flight scenario . 63
III.5.3.2 Near-ground flight scenario . 65
III.5.3.3 Wind rejection . 66

III.6 Conclusion . 68

43

44 Chapter III. Integration of learning into control for linear behavior fitting

III.1 Introduction

III.1.1 Motivations

As presented in the general introduction, quadrotor autopilot research has made many ad-
vances in recent years. An efficient autopilot for tracking purposes consists of two elements:
a fast trajectory generation [RBR16]; [BD18] and an effective controller [BM12]; [FFS18].

On one hand, a fast trajectory generation is a key component to have satisfactory flight
performance. It should be capable to face unexpected situations such as moving obstacles and
it must be fast enough to be implemented in real-time. [RBR16]; [BD18] propose a polynomial
path generation to get fast and feasible trajectories. It is low-cost in terms of computation
and complexity. In this manuscript, we will not focus on the trajectory generation part, but
it should be remembered that this is an axis of research that needs much attention as well.

On the other hand, the controller must be efficient to follow the proposed trajectory
generation. To do so, it must be reactive and capable to deal with all type of disturbances
that may occur during flights: for instance wind gust or disturbances generated by ground
effect. The complete modeling as presented in chapter I, can be a first step to design efficient
controllers. For instance, work of [BM12] presents a more accurate quadrotor model than
the commonly used model (I.33). It is next used in a nonlinear model predictive control
scheme and demonstrates flight performance improvement. The problem with using such
complex models, is that it leads to a more complex tuning (e.g. the gains of the MPC cost
function, optimizer parameters, etc.). It also increases the computational complexity as it
requires the implementation of non-linear solvers. Such proposed solutions therefore require
powerful controllers to be embedded in the device. A possible solution is a trade-off: the
modification of nonlinear algorithms solvers, to obtain a sub-optimal but acceptable solution.
Another solution is to use a simpler model, which will not require large computational tools.
A linear model is easier to handle, popular approaches often consist in linearizing a nonlinear
model to avoid complexity [MCO19]. However, obtained tracking performance might not be
as expected because simplifications were made.

In parallel to all of that, progress in artificial intelligence is breaking through in all ar-
eas. These are now extending into the world of systems, opening up whole new aspects of
modeling and control. It started with machine learning techniques that are now combined to
classical tools of modeling and control. The survey [Hun+92], presents possible combinations
between machine learning techniques and standard control approaches to improve systems
performance. Other works focus on hybrid approaches, mixing classical controller helped
with intelligent routines [Wan+15]; [Efe11]; [Li+16]; [Kau+19]; [Tor+21]. A good example
of such combination, is the use of neural network to tune PID gains [Wan+15] or non-integer
PIλDµ gains [Efe11]. These papers show the effectiveness of such combination. In [Tor+21],
Gaussian processes are used to model disturbances which are used to complete the quadrotor
dynamical model and it is then used along with a MPC. That solution allows to reduce track-
ing errors at high velocity. The authors of [Li+16] propose a DNN to determine a reference
trajectory. It demonstrates an improvement in trajectory tracking with smaller errors while

III.1. Introduction 45

using the standard PID controller. Finally, a predictive control for racing quadrotor is pre-
sented in [Kau+19]. The vehicle flies through moving gates. The spatial position of the gates
is predicted by a convolutional neural network and sent to the control. Using this approach,
the team was able to win in half the time of the second team.

Deep learning methods can be also used to model system dynamics, as presented in work
of [MW15]. The obtained model can be then used with a well chosen control law such as
model predictive control. Other studies [ACN10]; [PA15] demonstrate the interest of learning
method for modeling purposes, and especially complex aerodynamics difficult to model. In
that particular case, for a helicopter system, the commonly neglected vibration phenomena,
so as other complex aerodynamics, are learned with a ReLU network. Encouraged by these
results obtained on helicopters, the use of learning methods has progressively been integrated
in the modeling of such phenomena for UAVs and quadrotors. [Ban+16] uses shallow neural
network that aims at modeling whole quadrotor dynamics. In the more up-to-date research
of [Shi+19], deep neural network is used to model the complex ground effect disturbance.
They next used a model predictive control, coupled with this DNN to improve the landing
behavior of quadrotor.

The challenge of designing an efficient controller that fits a given expected behavior for
tracking can also be solved using reinforcement learning methods. RL algorithms for quadro-
tor control is developing a lot, as evidence of this the following works [Hwa+17]; [Lam+19];
[Pi+20]. Nevertheless, these contributions are unsatisfactory because they require a huge
amount of data. Moreover, the collected data must be relevant to correctly learn a controller.
It requires an extensive exploration process, often done randomly [SB18], using epsilon-greedy
exploration, for instance. Hence, for high-order systems as quadrotors, it necessitates a lot
of data and computation time. Secondly, such unsupervised approaches do not provide any
stability insurance for the closed-loop system. It can be very problematic for robotic appli-
cations.

According to all the above mentioned discussion, one notice two main issues in an efficient
autopilot design:

1. First, algorithms presented in research communities are becoming increasingly sophis-
ticated and are often not even implementable outside of the simulation scope. On the
other hand, we notice that in the industry the use of PID controllers is still widely done
[ACL05] and it is not an exception for UAVs and quadrotors. It is even the case for
open-source software such as PX4 [Noa] or Ardupilot [Ard18], that uses cascaded PID
controllers for piloting positions, velocities, attitude and angular rates.

2. Using standard controllers, such as PID, is often not enough to perform an efficient
tracking under disturbances. Indeed, the quadrotor non-linearities might become very
problematic or external disturbances might be difficult to handle. Many of new methods
using learning can help improving the trajectory tracking. Especially, using them to
model complex aerodynamics that are very often neglected or unknown and that are
applied to the quadrotor during flights.

46 Chapter III. Integration of learning into control for linear behavior fitting

III.1.2 Proposed DNN-based solution

To cope with previously stated issues, we propose a DNN-based controller. It is a mixed
solution between a standard cascaded controller and a deep neural network feedforward
corrective block. In order to reduce the design complexity and to preserve stability, a
linear cascaded control is used, here in it simplest form, a PD feedback control using
Linear-Quadratic Regulator (LQR) synthesis. A deep neural network is added to improve
the tracking by learning errors. It uses collected data to learn the error between the
linear model and the real system dynamics, both controlled with the linear cascaded
controller. Fitting an a priori linear behavior is particularly interesting in the case of
obstacle avoidance. Indeed, it is easier to predict the error between the reference and the
obtain behavior when the system behaves linearly. It also eases a fast trajectory generation.
The DNN will not only learn a complex and a nonlinear dynamic error, but will also
include parametric errors. The error modeled and identified by the DNN is next introduced
in the real-time command so that the quadrotor behavior fits to the linear expected dynamics.

𝐅𝐥𝐲𝐢𝐧𝐠 𝐗𝟒𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝐗𝟒 𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥ሶ𝑥 = 𝑨𝑥 + 𝑩𝑢
𝟏.𝐃𝐞𝐬𝐢𝐫𝐞𝐝 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞𝐬Choice of gains on linear model

𝟐. 𝐅𝐥𝐢𝐠𝐡𝐭 𝐝𝐚𝐭𝐚𝐛𝐚𝐬𝐞 𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧Tracking results with linear controller

𝐚. Choice of a 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 closed − loopdynamic for real X4 using:𝑢∗ = −𝑲 𝑥 − 𝑥𝑟𝑒𝑓 +𝑯 ሶ𝑥𝑟𝑒𝑓
𝐛. Specification of desired performancesover the linear model through (K, H)

ReferenceTimePositio
ntrack

ing

Desired linear tracking

ReferenceTimePositio
ntrack

ing

Desired linear trackingLinear controller

𝐚. Learning dynamical errors

………

𝐛. Feedforward neural correcction𝑢 = 𝑢∗ + Δ𝑢

𝟑. 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐥𝐢𝐠𝐡𝐭 𝐜𝐨𝐫𝐫𝐞𝐜𝐭𝐢𝐨𝐧

ReferenceTimePositio
ntrack

ing

Desired linear trackingLinear controllerDNN − based controller

𝟒. 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝 𝐟𝐥𝐢𝐠𝐡𝐭 𝐰𝐢𝐭𝐡 𝐃𝐍𝐍Tracking results with DNN− based controller

Figure III.1: The proposed methodology for quadrotor linear behavior fitting. It is a four steps
approach. Firstly, one designs a linear controller to reach desired linear behavior. Secondly,
we create a database of simulation/experimental flights. Thirdly, we learn a DNN network
using selected inputs, to predict the feedforward correction to be applied to the position and
velocity loop. Fourthly, after learning the neural network offline we can apply the DNN-
enhanced scheme.

III.2. Linear quadrotor model and control 47

The proposed methodology is summarized in Fig. III.1. It is composed of four main steps:

1. Choice of desired performance: Desired performance is chosen on a linear model
(section III.2) of the quadrotor using a cascaded architecture (section III.4). It is based
on LQR gains for position, velocity and attitude loops. All gains are tuned to get
an expected response with given settling time and limited overshoots for a step in all
components.

2. Database construction: With the designed controller, the quadrotor is able to track a
given trajectory reference in different mission situation. For instance, steps in position,
for abrupt changes, or near ground flights. The obtained behavior will not be as expected
on the linear model, due to the nonlinear dynamics. Thus, a data collection is made in
order to learn errors made during flights.

3. Learning the flight errors: The database can now be used to learn errors made
during the tracking. To that end, a deep neural network is built and trained (section
III.3). Once the learning done, it is integrated in the control via a feed-forward action
in the control command (section III.4).

4. Flight using the learn DNN: Finally, one can deploy the whole control scheme using
the DNN-based correction controller. Flights are performed in different tests cases
(section III.5): standard flight, near ground mission and in a windy condition. The
newly built controller allows to correct the tracking and fit the expect linear behavior
from step n°1.

III.2 Linear quadrotor model and control

As previously stated, a manner to easily setup controllers, is to use linear control tools, for
instance using PID controllers. Methods of adjustment without knowledge of the quadrotor
exist, but by using a model, even a linear one, one can design a controller that meets the
expectations in terms of desired performance: settling time, overshoot etc. without many
trials. One can refer to open-loop tests that are difficult to perform on quadrotor system.
Thus, using a simple knowledge of quadrotor, here a linear model, can help us setting up a
linear controller.

III.2.1 Quadrotor linear model

The linear model, used for control purposes, is obtained using the simplified model given by
(I.33) presented in chapter I. We extract from it the equations of interest to perform posi-
tion/velocity control and angular control. The system of equations to describe the quadrotor
is given by:

ξ̇ = v,

mv̇ = −mgi⃗3 + RT b⃗3,

ζ̇ = W (ϕ, θ, ψ)Ω.
(III.1)

48 Chapter III. Integration of learning into control for linear behavior fitting

In model (III.1), it should be noted that the third equation was replaced using (I.2).
We are directly using Euler angles instead of the rotation matrix formalism. Indeed, our
position and velocity controllers will provide reference angles to the attitude controller and
use it without conversions. A well known drawback of this representation is its singularity:
at θ = π/2 + kπ for k ∈ Z. But this will be avoided by carefully designing the trajectory
generation and by using angular saturation.

Let us define the state vector composed of positions, velocities and angles, and the com-
mand vector composed of thrust and angular velocities. They are denoted as follows:

X :=
[
ξT , vT , ζT

]T
,

U :=
[
T, ΩT

]T
,

with X ∈ R9 and U ∈ R4. An equilibrium point can be chosen at hover conditions. That is
to say at a given position in space, with no speed and zero angles. To simplify the problem,
we are assuming the yaw angle is here fixed to zero. Using (III.1), it is clear that at hover
only the gravitational force has to be compensated, which can be easily understood physically.
The equilibrium point is given by the equilibrium variables Xeq and Ueq as:

Xeq :=
[
ξTeq, 03, 03

]T
,

Ueq :=
[
mg, 03,

]T
.

As commonly done in system analysis and control, one will focus on variation of the quadrotor
around the chosen equilibrium. We introduce deviation variables using previously defined
equilibrium point, they are given by:

X̃ := X −Xeq,

Ũ := U − Ueq.

A linear model of the nonlinear quadrotor system from (III.1) can be obtained at (Xeq, Ueq).
It is given by the linear state space model (III.2):

˙̃X = AX̃ + BŨ , (III.2)

where Jacobian matrices A ∈ R9×9 and B ∈ R4×9 are defined as follows:

A = ∂fX4
∂X

(X,U)
∣∣∣∣
(Xeq ,Ueq)

,

B = ∂fX4
∂U

(X,U)
∣∣∣∣
(Xeq ,Ueq)

.

Developing (III.2) using expressions of A and B, and based on a first order Taylor expansion,

III.2. Linear quadrotor model and control 49

we get:

˙̃X =

03 I3 03
03 03 A2,3
03 03 03

 X̃ +

034
B2
B3

 Ũ , (III.3)

where 03 refers to the square null matrix of order 3, I3 is the identity matrix of order 3, 034
is a null matrix composed of 3 lines and 4 columns and where A2,3, B2 and B3 matrices are
expressed as follow:

A2,3 =

 0 g 0
−g 0 0
0 0 0

 ,B2 =

 0 0 0 0
0 0 0 0

m−1 0 0 0

 and B3 =

0 1 0 0
0 0 1 0
0 0 0 1

.

The system given the state space (III.3) is controllable, the controllability matrix is full
rank, rank(C) = 9. It is interesting to note that the state matrix A only depends on the
knowledge of g constant and B only depends on the total mass of the quadrotor m. Thus,
by knowing these two variables we are able to design a linear controller.

III.2.2 Quadrotor linear cascaded PD controller

The proposed general control scheme for quadrotor trajectory tracking is given in Fig. II.8.
One needs to design two linear cascaded controllers: the attitude loop and the position &
velocity control loop. The inner-loop, for angular control is first presented and is tuned to be
fast enough for the outer-loop. Then, the controller for position and velocity is derived. For
both controllers, model previously establish by the state space (III.3) is used.

III.2.2.1 Attitude controller

We are first interested in making Euler angles reach the reference angles. Angular references
ζref are provided by the position and velocity control. Using the third equation from (III.3),
it directly comes that ζ̇ = Ω. The Wronskian matrix (I.3) is equal to the identity according
to the assumptions made for linearization: angles are small. Then angular speeds are equal
to the derivative of angles. We can directly choose the command input Ω such that:

Ω = −Kζ

ϕθ
ψ

−
ϕθ
ψ

ref

 . (III.4)

Then, using (III.4), the desired closed-loop behavior can be achieved with Kζ . Where Kζ gain
can be obtained through a linear quadratic regulation synthesis and ζref =

[
ϕ, θ, ψ

]T
ref

is
the attitude target coming from the position and speed controller.

50 Chapter III. Integration of learning into control for linear behavior fitting

III.2.2.2 Position and velocity controller

Before establishing the linear controller used for position and speed loop, we reformulate
equation (III.2) using following notations. Let us define uζ := [ϕ̃, θ̃, T̃]T , ξ̃ := [x̃, ỹ, z̃]T
and ṽ := [ṽx, ṽy, ṽz]T . Then, the linear state space model (III.3) for position and velocity
subsystem is written as:

˙̃ξ = ṽ,

˙̃v =

 0 g 0
−g 0 0
0 0 m−1

uζ = Bζuζ .
(III.5)

Defining error variables η1 := ξ̃ − ξ̃ref and η2 := η̇1 := ˙̃ξ − ˙̃ξref = ṽ − ṽref , previous
equation (III.5) can be rewritten as:

η̇ =
[
03 I3
03 03

]
η +

[
03
Bζ

]
(uζ −B−1

ζ
˙̃vref), (III.6)

with A ∈ R6×6 and B ∈ R3×6 matrices defined as:

A =
[
03 I3
03 03

]
and B =

[
03
Bζ

]
.

Using defined model (III.6), we propose to use again a linear quadratic regulator to reach a
desired behavior. The state command vector expression is then given by:

u∗
ζ = −Kηη + B−1

ζ
˙̃vref , (III.7)

where Kη gain is chosen such that we minimize a quadratic cost expressed as follows:

J(uζ) =
∫ +∞

0
(ηT (t) Q η(t) + uTζ (t) Ruζ(t))dt.

The weighting matrices Q and R are tuned to obtain the desired tracking performance. In
practice, these matrices are chosen to obtain a given settling time and a given overshoot on
the linear model (III.6). The weights of these matrices are found manually, by using the same
principles as the PID tuning explained in the experimental chapter, in section II.5.3.

The additional term found in eq. (III.7), B−1
ζ

˙̃vref , is a feedforward term to anticipate the
reference in acceleration. As references are given in position and velocity, one can either get
or compute this term following the chosen trajectory generation algorithm.

It is important to note that the proposed initial controller does not include an integral
terms, here. Indeed on the linear model it is theoretically sufficient to reach desired behavior
only using proportional and derivatives terms. Obviously, static errors will appear in flight,

III.2. Linear quadrotor model and control 51

but it will be managed with the neural correction term. Here, we derived the minimal
controller to be tuned to get a functional controller.

III.2.3 Quadrotor linear control results

The Kη gain is chosen such as the linear system settling time is equal to 1s and such that
the step response does not present any overshoot on each axis. This obtained behavior of the
linear system described by (III.2) using linear command is referred as expected linear behavior.
Indeed, it corresponds to the perfect response of the quadrotor system if it behaves exactly
as its linear model. It is obvious that, when using the same controller, on the real quadrotor
system, obtained behavior will not exactly fit this expected linear behavior for several reasons.
First, the quadrotor will move away from the equilibrium then its behavior will not be exactly
as expected. Second, non-linearities and disturbances not taken into account will increase that
difference.

0 10 20 30 40 50 60 70 80

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
x

(m
)

Evolution of positions

0 10 20 30 40 50 60 70 80

−0.5

0.0

0.5

1.0

1.5

2.0

A
m

p
li
tu

d
e

of
y

(m
)

0 10 20 30 40 50 60 70 80

Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
z

(m
)

Reference Desired Position

Figure III.2: Tracking results for the linear cascaded controller in a Gazebo simulation test.

52 Chapter III. Integration of learning into control for linear behavior fitting

0 20 40 60 80

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
x

(m
)

Evolution of positions

0 20 40 60 80

−1

0

1

2

A
m

p
li
tu

d
e

of
y

(m
)

0 20 40 60 80

Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
z

(m
)

Reference Desired Position

Figure III.3: Tracking results for the linear cascaded controller in a real flight test.

The proposed cascaded linear controller using Kη gain is first tested in Gazebo simulation
environment. Obtained results are presented in Fig. III.2. The quadrotor is asked to perform
steps and a circle in space. Large statics errors can be observed on the position, due to the
lack of integrator. It also can be observed that the obtained behavior (red curve) is slower
and presents oscillations in comparison to the expected linear behavior (blue dashed curve).

The designed controller is also tested in real flights using the setup presented in chapter
II. The results are displayed in Fig. III.3 and confirm the difference between the expected and
obtained behavior. Here, static errors are more significant, especially in the z component.
On real flight tests, the battery discharge is also greatly affecting altitude over time. It adds
a linear decrease in the z-response. It becomes an exponential decrease at the end of battery
voltage, but it is not presented here in this scenario.

It is clear that for a concrete scenario such as delivery or other applications, such behavior
is not acceptable. The error between expected behavior and real behavior can be explained
by the fact that we exclusively use a simple controller, here a linear control, without including
disturbance or considering the robustness of the complete system in the control design. The
proposed controller must be adapted to deal with these error dynamics in order to get a real

III.3. Error dynamics neural estimation 53

behavior fitting the expected one. The proposed approach is to use a learning-based controller
to overcome this issue.

The next section is dedicated to the neural estimation of these error to next compensate
them. We will use data to learn as precisely as possible this term. Then, it will be handle in
the controller using a feedforward correction term to the linear control.

III.3 Error dynamics neural estimation

We can now formulate a new expression of the complete model (I.31) of the quadrotor using
the linearized model. It includes a linear part, from the linear model, and a nonlinear part,
representing all the error dynamics and the linearization errors:

Ẋ = AX̃ + BŨ + δX(X,U), (III.8)

where δX(X,U) = [03, δt(X,U)T , 03]T .

The following of this section presents the proposed structure for the deep neural network
used to describe the error dynamics defined by δt. It corresponds to the unknown dynamics
between the real quadrotor dynamics and the linear acceleration dynamics given by equation
(III.8). The deep neural network aims at modeling δt, it is denoted by δ̂t and is given according
to (III.9):

δ̂t ≡ v̇ − (A2,3ζ̃ + B2Ũ). (III.9)

In the following, we explain the choices made for the DNN architecture and training.
Some more general considerations about deep learning are given in the dedicated appendix
B. It provides more information on artificial neural network description, training algorithm,
etc.

III.3.1 Deep neural network architecture

According to the universal approximation theorem, given in B.4, we can build a feedforward
neural network composed of one hidden layer with a finite number of units to approximate
a continuous function. Here, we proposed to use a deep neural network to fit the data, it
was also proven that multilayer feedforward networks are universal approximators [HSW89].
Based on the nature of that problem, a regression of temporal data, the use of this type of
neural networks is well suited [GBC16].

Let first define all weights and bias used to build the DNN: A1 ∈ RNu,#xt , A2 ∈ RNu,Nu ,
A3 ∈ RNu,3 B1 ∈ RNu , B2 ∈ RNu and B3 ∈ R3. Where Nu is the number of units, #A
denotes the cardinal of A and xt denotes the neural network input at time t. The rectified
linear unit (ReLU) is used as activation function (h) for all hidden layers. Recalling that

54 Chapter III. Integration of learning into control for linear behavior fitting

ReLU is defined element-wise by h(·) = max(·, 0).

The expression of the proposed deep neural network is given by eq. (III.10) and an illustration
is given in Fig. III.4.

δ̂t(xt) = A3
Th(A2

Th(A1xt + B1) + B2) + B3 (III.10)

This architecture choice, using only fully connected layers, mainly comes from recent
promising modeling results from [Ban+16] and [Shi+19]. The number of layers and units was
experimentally chosen.

………

Fully Connected Layers

Input
Output

HL1 HL2𝑐𝜙𝑐𝜃

𝑇
𝑢𝑏𝑎𝑡𝑡

𝑠𝜃𝑠𝜃

…

Input Vectortime t
Figure III.4: The deep neural network structure: a feed-forward DNN, composed of Nl hidden
layers of Nu units, using ReLU as activation functions.

Concerning the choice of the input vector of the DNN, it is made considering the complete
linear acceleration dynamic from (I.31). Both sines and cosines of Euler angles are provided
to the input as they appear in (I.1), by developing the rotation matrix. To help the DNN
for modeling the drag force, we provide the three spatial linear velocities. The altitude z is
provided to help the network to model the ground effect. We do not provide position in x

and y as they do not appear in the complete model. Finally, battery voltage tension, ubatt, is
provided to better learn battery discharge profile. As the network will be train using different
batteries, it will learn the several discharge profile type. To summarize, the input state to
the DNN, at time t, x(t), is given by:

x(t) :=
[
cϕ, sϕ, cθ, sθ, vx, vy, vz, z, ubatt, T

]T
(III.11)

III.4. Neural enhanced controller 55

III.3.2 Deep neural network learning

To learn error accelerations dynamics, we seek to find the weights and bias minimizing the
Mean Squared Error (MSE) between predictions and observations. The predictions are
expected values obtained from the neural network model δ̂t and the observations are the
measurements values δmest . Accelerations measurements are collected using the IMU of the
quadrotor or using the estimation from Vicon system as explained in the experimental setup
description chapter, in section II.6.

Let’s define ϑ the optimization variable composed of all weights and biases of the DNN:

ϑ := {A1 A2 A3 B1 B2 B3}.

The training of the deep neural network (III.10) aims to solve the optimization problem
(III.12) over the training dataset:

min
ϑ
L(ϑ) = min

ϑ

1
N

N∑
k=1
∥δmest − δ̂t∥2, (III.12)

where N is the number of elements in the dataset and δmest are error dynamics computed by
taking measurements outputs and commands inputs. The objective function given by L is
also referred as the loss function. One aims at minimizing it. This can be done using well-
known gradient descent methods using back-propagated gradients optimizers, see B.3.3. For
that application, we use Nesterov-Accelerated Adaptive Moment (NADAM) to solve it. This
algorithm is explained in appendix B.3.2, algorithm 2. Before making this choice, we tested
several algorithms like SGD, Adagrad, Adam, etc. The NADAM optimizer showed good
results without spending too much time fine-tuning the learning rate, lr to get a suitable
solution. It also avoids falling in a local minimum, one of the weakness of the SGD algorithm.

All network parameters and hyper-parameters used for training (presented in section III.5)
are given in the following Table III.1.

III.4 Neural enhanced controller

The proposed DNN-based controller is composed of the linear controller described in section
III.2.2, based on the previously established linear model (III.2), and a feedforward neural esti-
mation term derived from (III.10). The solution is also referred as neural enhanced controller
in the following.

56 Chapter III. Integration of learning into control for linear behavior fitting

Parameter Value
Number of inputs #x 10
Number of hidden layers nl 2
Number of units nu 64
Collection time (s) 30
Batch 256
Epoch 800
Learning rate lr 0.002
µ 0.9
ν 0.9999

∗ see NADAM algorithm 2 for more precision.

Table III.1: Parameters selected for learning and for the architecture of the deep neural
network.

III.4.1 DNN-based correction controller

According to the equation (III.8), the real system dynamics can be modeled by adding an
error term to previously given linear model (III.6):

η̇ = Aη + B(uζ −B−1
ζ

˙̃vref + B−1
ζ δt). (III.13)

The acceleration error dynamics term δt is mainly coming from disturbances and linearization
and can be handle with the command input uζ to achieve expected linear behavior from linear
controller.

The proposed neural enhanced controller is designed as follows:

uζ = u∗
ζ + ∆uζ , (III.14)

where u∗
ζ is the linear quadratic control (III.7) and ∆uζ is the feedforward correction term

based on the deep neural network estimation of error dynamics. The closed-loop form of the
system described by (III.13) using (III.14) is given by:

η̇ = (A−BKη)η︸ ︷︷ ︸
Closed-loop linear behavior

+ B(∆uζ + B−1
ζ δt).︸ ︷︷ ︸

Term to minimize
(III.15)

According to equation (III.15), the quadrotor closed-loop behavior is the sum of two dynamic
terms. The first one describes the desired closed-loop linear behavior. This behavior is fully
controlled by the proposed linear controller. The second term, composed of error dynamics,
needs to be canceled or at least minimized to get the system response closer to the expected
linear behavior. This term cancellation outlines a classical minimization problem stated as
follows:

min
∆uζ

∥f(δu)∥2 = min
∆uζ

∥∥∥∆uζ + B−1
ζ δt(∆uζ)

∥∥∥2
(III.16)

III.4. Neural enhanced controller 57

It is possible to solve it by replacing the error dynamics described by the neural approximation
δ̂t in (III.16). The following problem has to be solved:

min
∆uζ

∥∥∥∆uζ + B−1
ζ δ̂t(∆uζ)

∥∥∥2
. (III.17)

The neural estimation δ̂t is a function of ∆uζ , the correction. It is depending on δ̂t according
to (III.17), thus it is a nonlinear minimization problem. Such problem can be solved using
nonlinear programming. However, it will probably be time consuming to find a suitable
solution and will not be implementable for real-time application. To deal with it, a proposed
approach is to replace uζ by u∗

ζ , assuming that the correction to be made is small in comparison
to the command: uζ ≪ u∗

ζ . By removing the correction term from the DNN input, we can
directly deduce the solution:

∆uζ = −B−1
ζ δ̂t(u∗

ζ). (III.18)

The knowledge of B−1
ζ matrix, allows to deduce the correction (III.18) to be applied to the

thrust reference Tref and to the two angular reference positions ϕref and θref to get closer
to the linear behavior. The complete control architecture is summarized in Fig. III.5. The
correction proposed is only done in the position and velocity loop.

𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐕𝐞𝐥𝐨𝐜𝐢𝐭𝐲 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 𝐗𝟒 𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐦𝐨𝐝𝐞𝐥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠𝐀𝐭𝐭𝐢𝐭𝐮𝐝𝐞 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫
𝐅𝐥𝐲𝐢𝐧𝐠 𝐗𝟒𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠𝜙𝑟𝑒𝑓𝜃𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

𝑇
𝑲𝜼

𝑲𝜻 𝑝𝑞𝑟
+
-

+
+ 𝑇

𝜁

ሶ𝑥 = 𝑨𝑥 + 𝑩𝑢

Learning error dynamics(𝑜𝑓𝑓𝑙𝑖𝑛𝑒)
Error dynamics prediction(𝑜𝑛𝑙𝑖𝑛𝑒)

… …… …

+

𝜉𝑣
𝜉𝑟𝑒𝑓𝑣𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

መ𝛿𝑡 x𝒌
𝛿𝑡

𝐓𝐫𝐚𝐣𝐞𝐜𝐭𝐨𝐫𝐲𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑦𝑎𝑤
𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑠

𝑩𝜻−𝟏

𝑩𝜻−𝟏𝑎𝑟𝑒𝑓
+

Δ𝑢𝜁

-

Fully connected deep neural network

-
+

𝜉𝑣𝜁
x𝑘
ሶ𝑣
ሶ𝑣𝑙𝑖𝑛

Figure III.5: DNN-enhanced linear controller architecture

III.4.2 Stability analysis

This section focuses on the analysis of the stability of closed-loop system, using the previously
established neural controller. First, we consider a candidate linear Lyapunov function given
by (III.19):

V(t) = 1
2 ∥η(t)∥2 . (III.19)

58 Chapter III. Integration of learning into control for linear behavior fitting

Next, we define the deep neural network prediction error as eη = δt − δ̂t. Introducing the
minimum eigenvalue of the closed-loop linear system matrix: λ = λmin(A−BKη), it can be
written that:

V̇(t) = ηT (A−BKη)η + ηT eη, (III.20)

Considering now inequality, by using the norm operator on (III.20):

V̇(t) ≤ ληT η + ∥η∥ · ∥eη∥ . (III.21)

Using the definition of V in (III.21), one obtains:

V̇(t) ≤ 2λV +
√

2V ∥eη∥ . (III.22)

We now introduce a new variable, being the square root of the previously established Lyapunov
function candidate, W =

√
V, a time derivation of W gives:

Ẇ = V̇
2
√
V
. (III.23)

Making the assumption that ∥eη∥ is bounded by a constant given by εη and using eq. (III.23),
the inequality in (III.22) becomes:

Ẇ ≤ λW + εη√
2
. (III.24)

Given the initial condition on W(0) = η0√
2 , the solution to (III.24) is established by (III.25):

W(t) ≤ 1√
2

(
εη
λ

+ ∥η0∥
)
eλ(t−t0) − εη√

2λ
. (III.25)

The tracking error η can be then bounded by:

∥η(t)∥ ≤ ∥η0∥ eλ(t−t0) + εη
λ

(
eλ(t−t0) − 1

)
. (III.26)

As a result, the tracking error exponentially converges to a ball, centered at the initial η0 and
with a radius of εη

λ , according to (III.26). One notices that the radius is directly proportional
to the prediction error made by the deep neural network and inversely proportional to the
eigenvalues of the closed-loop linear system. It must be noticed that the assumption stating
a bound on the absolute value of the prediction error is valid for values in the database used
for training. However, experimentally during flight, one may encounter values not present in
the database. It is then needed to have a sufficiently large enough database which is close
enough to all desired flights to unsure stability of the quadrotor with this neural controller.
The following chapter IV proposes a solution to better handle the closed-loop stability during
flights.

III.5. Simulation and experimental results 59

III.5 Simulation and experimental results

In this section, training and validation phases of the deep neural network are first explained.
Previously proposed controllers, the linear controller and the DNN-enhanced controller, are
then tested in the ROS/Gazebo simulation environment and in experimental flights using the
motion capture room described in section II.3.

III.5.1 Training and validation database

To obtain the proposed deep neural enhanced controller, it is first needed to train the DNN
presented in equation (III.10). The training process is done using a flight database, also
called training dataset. The database (xmes, δmes

t) is composed of measured input values
and linear acceleration errors δmest computed between measured accelerations and estimated
expected linear behavior. As explained, in section II.4.2, measured values are necessary to
create the database. They are stored using a personalized ROS message. Values of interest
are then selected to create (xmes, δmes

t). Two different neural networks are trained: one for
simulations and one for experimental tests, each one is trained with its respective dataset.

For both simulation and experimental tests, the database is composed of data collected
using the initial cascaded linear control architecture presented in section III.2.2 or equivalently,
using the DNN-enhanced controller by setting the DNN contribution to zero, ∆uζ = 0T3 . It
is composed of numerous basic movements in the 3D space, restricted to the flight zone
area and capabilities of the initial controller (i.e: no acrobatic movements are performed
nor included in database). The training dataset is including translations in all planes (x,
y, z, individual and combined), steps in all individual directions and coupled steps. It also
includes rotations with circles, spiral motions or lemniscate motions. Those motions are
done at different altitude, including being close to the ground to learn the ground effect (see
section I.4.1, for more information on that effect). It must be noted that for simulation
database construction, the ground effect is not modeled through the environment used in
Gazebo, hence the neural network does not learn that effect in this particular case. Some
examples of training displacement are shown in Fig. III.6.

The idea behind building a complete database, is to cover a maximum the possible actions
that the quadrotor can perform, to better learn the whole dynamic of the device, and thus
better predict and correct the errors done during flights. Finally, we restrict the velocity of
the generated references up to 3m/s, and cover several speed in between.

We propose to cover more an hour of flight, with the previously described motions. It
is sufficient enough to cover all that motions, without including redundant data in order to
correctly and quickly learn the deep neural network. As stated in section III.3.2, NADAM
algorithm is used to train the DNN using hyper-parameters in Table V.1. In addition, dur-
ing training procedure elements are shuffled, to get as much as possible independent data.
The learning rate lr is decreased by means of a multiplication factor of 2

3 when there is no
improvement on the loss function after a given number of epochs. Finally, one-third of the

60 Chapter III. Integration of learning into control for linear behavior fitting

0.0

0.5

1.00.0
0.5

1.0

0.5

1.0

1.5

−1

0

1
0

1

2

0.5

1.0

1.5

−1

0

1

−1

0

1

0.5

1.0

1.5

−1

0

1

0

1

0.0

0.5

1.0

Figure III.6: Example of trajectories: step, circles, spirals, etc. that are included in the
database. Distances are in meters.

created database is used as validation dataset. That set is used to validate the training and
to help making a choice of a deep neural network. It must be sufficiently correctly learned
and it must not overfit to the training data.

All those parameters choices were done empirically in order to get a satisfying compromise
between speed and convergence of the algorithm. A deeper study should be carried out to
get a more optimal compromise. But for this application, choices and results were sufficiently
convincing to assess the effectiveness of the proposed methodology.

The training is performed on a Intel® Core™ i7-8665U CPU and is taking around 20
minutes to perform all epochs.

III.5. Simulation and experimental results 61

III.5.2 Gazebo simulations results

In this section, we present results of the cascaded linear controller and its DNN-enhanced
version in simulation. Indeed, before testing the proposed approach in experimental tests,
using the experimental platform, we must validate it and test the DNN-enhanced controller
in simulation environment. To get result close to the real-world tests, we performed it on
Gazebo simulation environment.

As it is well known in the deep learning community, a third dataset is used to test and
assess the choice of the selected deep neural network: the test dataset. We thus used an unseen
scenario to test the DNN-based controller. This scenario is neither part of the training set
nor part of the validation set, see Fig. III.7. It is composed of trajectory in a random selected
order at a random velocity speed for trajectory generation.

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.2

0.4

A
m

p
li
tu

d
e

of
x

(m
)

Evolution of positions

0 5 10 15 20 25 30 35 40
Time (s)

0.00

0.25

0.50

0.75

1.00

A
m

p
li
tu

d
e

of
y

(m
)

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
z

(m
)

Cascaded Linear Controller

Cascaded Linear Controller with integrator

Linear Expected Behavior

DNN Enhanced Linear Controller

Figure III.7: Evolution of the quadrotor spatial positions for the three controllers in
ROS/Gazebo simulation environment, for the test case scenario.

62 Chapter III. Integration of learning into control for linear behavior fitting

For comparison purposes, a third controller, a cascaded linear controller with an integral
action, is implemented and also tested. In order to be correctly compared with the linear cas-
caded controller and with the DNN-enhanced cascaded controller, the gains of this additional
controller with integral action are chosen so that the closed-loop behavior approaches the
ideal behavior without integrator. That is to say, to get the expected perfect behavior of the
LQR controller on the linear model. Thus, the proportional, integral and derivative gains are
selected so that the mean squared error between the integral LQR and the non-integral LQR
on the linear model is the lowest. To obtain these gains an optimization must be performed.
Here a brute force approach is used but requires several hours of computations.

The results of the three stated controllers are presented in Fig. III.7. The expected linear
behavior is represented in a green dashed curve. For the cascaded linear controller, represented
with a continuous blue line in the figure, the same remark as in the analysis section III.2.3
can be done. It reveals very high tracking errors and slower response time compared to the
linear expected behavior. Again, here the gazebo model does not include battery discharge
model, and its impact is thus not visible. The tracking errors are obviously explained be
the lack of integrator in the position loop. Moreover the slow response time is due to the
linear controller on the nonlinear model. On that test case scenario, tracking errors with
the linear cascaded controller are around 7cm on x and y axis and for z axes it is up to
25cm. As previously stated, we expected none of those undesired effects if the quadrotor
behaves exactly as its linear model. Those undesired errors, due to nonlinear dynamics of
the quadrotor, aerodynamic effects, coupling and unmodeled actuator dynamics are mostly
overcome using the proposed DNN-enhanced linear cascaded controller, represented with a
red continuous line in the Fig. III.7.

Baseline linear
controller

Baseline linear
controller

DNN-enhanced
controller

(without integrator) (with integrator)
MSE x-axis 0.0049 m2 0.0021 m2 0.00029 m2

MSE y-axis 0.0032 m2 0.0030 m2 0.00022 m2

MSE z-axis 0.0477 m2 0.0259 m2 0.00073 m2

Table III.2: Mean squared errors on each axis, between the expected linear behavior and the
response of the three presented controllers, in simulation environment.

The simulation demonstrates that the quadrotor behavior, using the DNN-enhanced con-
troller, is much more closer to the expected linear one, compared to the two other controllers.
The deep neural network term has significantly decreased tracking errors. It also has sped-up
the response of the quadrotor to better fit the expected response time. The integral controller,
tuned to be as close as possible to the linear quadratic controller, also corrects the behavior,
by removing the static error but presents a slower response time compared to the DNN ver-
sion. To better quantify the improvement, MSE on this test trajectory are computed between
each controller responses and the linear expected one. All computed MSE are summarized in
Table III.2 for each axis. The obtained results confirm that the DNN-enhanced controller is
the solution that fits the best the expected linear behavior on all components.

III.5. Simulation and experimental results 63

III.5.3 Experimental results in MOCA room

Now that we are ensured that the simulations on Gazebo environment are performing correctly
and as expected, one can test and validate the approach on the experimental platform. We
recall that the complete setup was described in chapter II. To experimentally assess the
effectiveness of the DNN-enhanced controller, we performed three different test case flight:
a classical steps scenario in sub-section III.5.3.1, such as in simulation, a near-ground test
scenario in sub-section III.5.3.2 and a windy scenario in sub-section III.5.3.3.

III.5.3.1 Steps flight scenario

First, as stated in section III.5.1, we created a database of flights using the quadrotor and the
initial linear cascaded controller. In comparison to simulation, the battery discharge is now
greatly modifying the final behavior. Thus, we decided to collected data over several scenarios
using different batteries. We included several batteries to better cover their discharge profiles,
as for the old battery, the battery’s discharge is completely different.

After the DNN training, we test all three controllers on an unseen scenario, not presented
in the database, see Fig. III.8. To better see the impact of the battery discharge profile, on
all controllers, we start each time with hall-full capacity battery and with the same battery
for all tests. Obtained experimental results are shown in Fig. III.8.

The blue continuous line represents the linear cascaded controller without correction nor
integrator. As for simulation tests, the behavior using that controller presents tracking errors
and slower response time. During the flight test, the cascaded linear controller has difficulty to
handle the impact of the battery discharge. That discharge is directly impacting the tracking
error, especially on z axis. At the beginning of the scenario, the tracking error is nearly equal
to 30% and it is increased up to 35% at the end. Finally, undesired oscillating behavior on y
axis can be noted. It is particularly visible after t = 50s. It is due to the motion coupling,
not correctly handle with the linear controller.

The linear cascaded controller including an integral action is represented in yellow in the
same figure. It performs better but does not well fit the expected linear behavior. As for
the DNN-enhanced controller, in red line, it also completely removed tracking errors. It has
learn the battery’s discharge profile, thanks to the input of ubatt provided to the deep neural
network. It is perfectly able to correct the thrust necessary to get to the desired reference.
It has also increased the quadrotor velocity on the test scenario and removed undesired
oscillations on y axis.

Thus, the quadrotor experimental behavior using the deep neural enhanced controller is
much more closer to the expected desired linear one. As for simulation results, the proposed
controller is faster and closer to the linear expected behavior compared to the integral con-
troller. Mean squared error are also computed for this experimental test trajectory. They are
presented in Table III.3. It confirms the performance of the proposed DNN-based controller.

64 Chapter III. Integration of learning into control for linear behavior fitting

0 10 20 30 40 50 60 70
Time (s)

0.0

0.5

1.0

1.5
A

m
p
li
tu

d
e

of
x

(m
)

Evolution of positions

0 10 20 30 40 50 60 70
Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
y

(m
)

0 10 20 30 40 50 60 70
Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
z

(m
)

Cascaded Linear Controller

Cascaded Linear Controller with integrator

Linear Expected Behavior

DNN Enhanced Linear Controller

Figure III.8: Evolution of the quadrotor positions for each controller, in real flight test using
our motion capture room.

Baseline linear
controller

Baseline linear
controller

DNN-enhanced
controller

(without integrator) (with integrator)
MSE x-axis 0.0060 m2 0.0150 m2 0.0016 m2

MSE y-axis 0.0815 m2 0.0125 m2 0.0017 m2

MSE z-axis 0.0380 m2 0.0198 m2 0.0046 m2

Table III.3: Mean squared error on each axis, between the expected linear behavior and
response of the three presented controllers, for the experimental steps flight scenario.

A video of the experimental results is available via the following link: youtu.be/c70nlsMVi9M

https://youtu.be/c70nlsMVi9M

III.5. Simulation and experimental results 65

III.5.3.2 Near-ground flight scenario

To assess improvements of the DNN-enhanced linear cascaded controller with respect to
external disturbances, we tested it in a near-ground flight, see Fig. III.10. The quadrotor
is asked to track a lemniscate at 15cm from the ground. At this altitude, ground effect is
strongly impacting the flight behavior. It is difficult to handle that effect using only the linear
cascaded controller. Without integral action, it is very difficult to perform the task, as the
battery discharge and the high tracking error in z, may prevent the quadrotor from take-off.

Figure III.9: Evolution of quadrotor positions for the linear cascaded controller versus the
DNN-enhanced linear controller in a near -ground scenario.

The same deep neural network is used for testing the DNN-based controller. Indeed, it

66 Chapter III. Integration of learning into control for linear behavior fitting

was trained on many different scenarios including near ground flights. We present in Fig. III.9
the results of that experiment for the cascaded linear controller with integrator and for the
DNN-enhanced linear controller.

As expected, the neural controller is able to correct the behavior and gets closer to the
linear expected behavior in that highly disturbed situation. Here, the integral controller is
not well rejecting ground effect disturbance, as ground effect is not a constant disturbance.
The neural term is able to learn those dynamical disturbances. The proposed DNN-enhanced
controller performs better than the integrator in all three axes.

Figure III.10: A picture of the quadrotor flying close to the ground.

III.5.3.3 Wind rejection

Finally, some tests were performed to observe the effectiveness of the proposed DNN-based
controller under windy condition. To achieve it, a complement of a database was collected.
The approach focuses on a front wind to the quadrotor. It is asked to perform back and forth
in front of a constant wind. First, we collected additional data by doing several flights using
different wind intensity. The previously established database has then been extended with
those tests.

Another deep neural network is learned using this new database, with the same hyper-
parameters presented in Table III.1. Then, we applied it to a test case scenario with an
unseen intermediate wind gust.

The results are presented in Fig. III.11. Without, correction one remarks that the wind
pushes the quadrotor away from it setpoint. In addition, the wind create an additional lift that
pushes the quadrotor over its altitude reference. Concerning, the DNN-enhanced controller
one notices that the wind disturbance is correctly rejected in these components. It confirms
that the DNN-based controller is able to overcome external disturbances.

III.5. Simulation and experimental results 67

Figure III.11: Evolution of positions under a constant wind.

Those results are preliminary results, a deeper comparison between controllers including
observer will be made in the following chapter.

68 Chapter III. Integration of learning into control for linear behavior fitting

III.6 Conclusion

Let us recall the initial problem, which was the development of an efficient and easy to setup
controller. The solution proposed by the DNN-enhanced cascaded controller, largely fulfills
its requirements. Beforehand, it is based on the commonly used cascaded control architecture
used in industrial and open-source quadrotors. To simplify the implementation and the tuning
of the controller, it is based on a linear cascaded controller. The gains are tuned on a linear
model. This reduces the problem to a choice of performance criterion on an ideal linear
model of the quadrotor: meaning choosing settling time, overshoots, etc. A pole placement,
is a possible solution. As for the rest, the deep neural network is in charge of learning the
correction to be brought to the established linear controller so that it respects the specified
requirements.

The obtained results confirm the methodology, both in simulation and in real-world ex-
perimentation. The proposed DNN-based controller allows to correct tracking. It overcomes
model errors whether there are internal or external disturbances, such as ground effect or
wind disturbance. The addition of the corrective term from the DNN allows to efficiently
learn these effects. Hence, the DNN-enhanced controller fits the expected linear dynamic
from the initial linear controller on the linear model.

However, the presented method has some disadvantages, some of which have already been
stated:

• The presented approach is based on an offline learning of quadrotor dynamics. Thus, it
is first needed to get a collection of relevant flights, before learning and then correcting
the quadrotor behavior.

• The deep neural network is here dependent on the initial linear cascaded controller.
Indeed, it is learning a dynamical error between obtained behavior and expected one
with this initial controller. It is necessary to be able to flight with that initial controller
on the given conditions.

• The closed-loop stability guarantees are limited. Indeed, it has been shown that pro-
posed approach is working for test scenarios that are close to the training set. However,
nothing ensures the stability for an unexpected case scenario completely different from
the database. For instance, a trajectory generation that demands higher tracking ve-
locity.

• It relies on accurate state estimation and acceleration of the quadrotor. Work must be
carried out to better handle a bad estimation of these variables.

These disadvantages are opportunities to improve the proposed approach. In the next
chapter, we handle some of these issues. In particular, including the closed-loop stability
guarantee while learning online a deep neural network to correct the tracking.

Chapter IV

Towards an online implementation:
event-based neural learning

This chapter is about improving the previously studied approach and adapting it to an
online implementation requirement. After a brief introduction and a reminder of the models
used, the event-based learning strategy is presented. Simulations are first performed to
demonstrate the effectiveness of the criteria that compose it: stability and performance.
Finally, flight experiments are performed to validate the strategy.

Contents
IV.1 Introduction . 70

IV.1.1 Motivations . 70
IV.1.2 Proposed event-based solution . 71

IV.2 Recall and changes introduced . 72
IV.2.1 Initial cascaded controller . 72
IV.2.2 Error dynamics learning modifications 73

IV.3 The event-based neural learning strategy 74
IV.3.1 DNN-based controller . 75
IV.3.2 The event-based strategy . 76

IV.3.2.1 Stability criterion . 77
IV.3.2.2 Performance criterion . 79

IV.4 Simulation and experimental results 79
IV.4.1 Simulations results . 80

IV.4.1.1 Performance criterion analysis: scenario (I) 80
IV.4.1.2 Stability criterion analysis: scenario (II) 81

IV.4.2 Experimental results . 82
IV.5 Conclusion and perspectives . 86

69

70 Chapter IV. Towards an online implementation: event-based neural learning

IV.1 Introduction

IV.1.1 Motivations

As already mentioned, data-driven techniques have already largely demonstrated their effec-
tiveness. However, multiple problems are still raised concerning their applications in robotics.

First, such solution are often resource intensive algorithms. For instance RL [Str+06] is
needing efficient data collection and large computation time. Indeed, such approaches when
dealing with uncertain systems enforce the curse of dimensionality [BM03]. The number of
parameters to learn become exponential with the size of the state. Solutions such as presented
in [DO16], attempt to solve the problem. Concerning the efficient data collection solutions
are also emerging as [Gle+22].

The second problem is the stability of the closed-loop system with such learning tech-
niques. To overcome this issue, different techniques are currently studied. Some methods
like [WZ21], rely on the use of safety filters. Thus, the control, whether it comes from a
traditional approach or from a RL algorithm, is filtered by a module which guarantees that
the system remains in a safe zone and so that the proposed controller does not destabilize or
enter a zone considered as dangerous. Others integrate a safety layer to the learning process.
In [Kol+19], proposed method guarantees the existence of trajectories leading to a safe region
by estimating a statistical model of the uncertainties. The safety framework proposed by
[Fis+17] is a mixed solution between model-based control and data-driven methods. It uses
the knowledge of the dynamics to guarantee the satisfaction of the constraints. However, it
still suffers from the curse of dimensionality.

Some solutions are more control oriented. For instance, the use Lyapunov function
[Cho+18] or of Control Lyapunov Function to deal with uncertainties [Tay+19]. In [Tay+19]
both parametric errors and unmodeled dynamics from Lyapunov function are learned via an
episodic learning. It results in an improvement of the controller. Other approaches focus
on Control Barrier Function [Cho+20]; [Wan+20], to handle the safe learning. They rely on
learning dynamics or uncertainties presented in barrier functions. In [GT12], the authors uses
reachability analysis to provide a safe learning framework. It is experimentally validated in a
target tracking using a quadrotor.

Thus, a lot of solutions are emerging and proposing frameworks to ensure a safe learning.
Concerning our approach, we decided to use the Lyapunov stability framework to guarantee
stability of the closed-loop system, including the neural-based correction.

IV.1. Introduction 71

IV.1.2 Proposed event-based solution

To attempt to overcome aforementioned issues, we propose a mixed solution between standard
control algorithm and learning approach, in an event-based manner. The proposed solution,
named event-based neural learning strategy, is an in-flight learning algorithm based on the
standard cascaded architecture. It is built upon a cascaded PD controllers easy to tune on
any quadrotor. Once the traditional tuning step done, the proposed controller will automat-
ically learn the corrections to be made to overcome the effects of encountered disturbances
during the flight. This approach is avoiding the implementation of disturbance observers that
needs a model of the disturbance and needs to be well tuned to achieve good tracking perfor-
mance. The event-based learning strategy relies on a succession of data collection, learning
and corrections phases. The correction is done by a deep neural network. During the learning
time, the previously applied controller is still used to continue the mission without landing.
Two criteria are implemented to ensure stability and tracking performance. The first one,
the stability criterion, is based on Lyapunov and ensures that the DNN is not destabilizing
the closed-loop system. The second one, the performance criterion, proposes updates to the
DNN to continuously improve the tracking.

𝐂𝐚𝐬𝐜𝐚𝐝𝐞𝐝 𝐋𝐢𝐧𝐞𝐚𝐫 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐂𝐚𝐬𝐜𝐚𝐝𝐞𝐝 𝐋𝐢𝐧𝐞𝐚𝐫 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫+𝐃𝐍𝐍 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐢𝐨𝐧

𝐒𝐰𝐢𝐭𝐜𝐡

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞𝐂𝐫𝐢𝐭𝐞𝐫𝐢𝐨𝐧𝐑𝐞 − 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠

𝐃𝐞𝐞𝐩 𝐍𝐞𝐮𝐫𝐚𝐥 𝐍𝐞𝐭𝐰𝐨𝐫𝐤

………

𝐒𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲𝐂𝐫𝐢𝐭𝐞𝐫𝐢𝐨𝐧

𝐃𝐞𝐩𝐥𝐨𝐲

𝐂𝐡𝐞𝐜𝐤

𝐂𝐡𝐞𝐜𝐤

𝐍𝐞𝐰 𝐝𝐚𝐭𝐚 𝐜𝐨𝐥𝐥𝐞𝐜𝐭𝐢𝐨𝐧

𝐃𝐚𝐭𝐚 𝐜𝐨𝐥𝐥𝐞𝐜𝐭𝐢𝐨𝐧

Figure IV.1: The proposed event-based neural learning strategy. At starting, an initial cas-
caded linear controller is used. It is enhanced with DNN learning after data collection. Two
criteria are used to ensure both stability and flight tracking performance. If the stability is
faulty, the control is switched to the initial controller.

The proposed event-based neural learning methodology is summarized in Fig. IV.1. It is
composed of the following elements:

• Initial setup: Before flying, the initial cascaded controller is designed according to
specified linear expected behavior.

• Data collection and iterative learning: After a given flight time duration and
a specified number of data to be collected, a first DNN is trained. It learns errors

72 Chapter IV. Towards an online implementation: event-based neural learning

made during the flight. It is integrated in the control scheme to correct the flight
behavior at the end of its learning. During, the learning time the previous controller
is still running and collecting data. The DNN is iteratively trained according to the
performance criterion.

• Performance criterion: If the trajectory tracking using the given DNN is not satisfac-
tory in term of trajectory tracking, the DNN is improved by re-learning. The strategy
will refine the DNN gains using the newly collected data. The relearning is triggered
when the criterion on all three spatial positions is exceeded.

• Stability criterion: If the proposed DNN is not safe according to an established
Lyapunov-based criterion, the strategies switches to the initial controller. It then collects
and learns another DNN using newly collected data.

In the following, we first recall the initial cascaded controller and the different changes
made in comparison to the previous chapter in section IV.2. The event-based neural learning
strategy is explained in section IV.3. Then, it is tested and validated in simulation and
experimentally in section IV.4.

IV.2 Recall and changes introduced

This first section has two main purposes. Firstly, we recall the initial position and velocity
controller used for the proposed strategy. It lies on the previously established controller but
it includes some adjustments. It is presented in the subsection IV.2.1. Secondly, we explain
the changes made to the DNN architecture. We also present modifications brought to the
DNN learning. It is done in the subsection IV.2.2.

The changes concerning the event-based neural learning strategy using these elements,
initial controller and DNN, will be done in the following section IV.3.

IV.2.1 Initial cascaded controller

As for the solution presented in previous chapter III, the initial controller is based on the
standard cascaded architecture for position, velocity and attitude. That controller does not
include yet a neural feedforward term. Again for simplicity of tuning, we decided to keep the
PD controller for the position and velocity control.

The proposed initial position and velocity controller has the same structure as (III.7). We
recall here the expression of the control command:

u∗
ζ = −Kηη + B−1

ζ
˙̃vref , (IV.1)

IV.2. Recall and changes introduced 73

where:

• η is the state error variable composed of position and speed errors,

• u∗
ζ is the command input composed of desired thrust, desired pitch and roll angles.

That command is send to the inner attitude controller, it is kept unchanged (see III.4).

• B−1
ζ

˙̃vref is a term to compensate acceleration from the trajectory generation,

• Kη is a matrix gain to achieve desired behavior on position and velocity tracking.

The gain Kη was previously designed using a linear quadratic regulator synthesis. This
is no longer the case here, it is given by the solution of a Ricatti equation, to match expected
requirement on stability. It is latter explained in section IV.3.2 and given by (IV.12).

IV.2.2 Error dynamics learning modifications

This section presents the proposed structure for the neural estimation of δt. Is is based on
previously explained architecture III.3. Some modifications were brought:

The architecture of the neural network remains unchanged compared to (III.10)
but the number of units that compose its hidden layers has been reduced. Here, the number
of intermediate neurons has been reduced to 32. The motivation for this change is threefold.
Firstly, the dynamics of the quadrotor alone can be correctly learned with 32 units per layer
using the approach presented in the previous chapter. The second motivation comes from the
fact that the databases on which the error dynamics will be learned are smaller. Thirdly, it
will allow a faster learning for the online application.

Modification of the input of the neural network: We modified the input of the
neural network compared to previously established network (III.11). It is now given by:

xt =
[
cϕ, sϕ, cθ, sθ, v2

x, v2
y , v2

z , ubatt, T
]T

(IV.2)

Two modifications were brought: first we provided squared velocities indeed it appears in the
drag force (I.12). It will be easier to learn it providing directly squared velocities instead
of simple one. Next, we removed z component which was introduced to help the learning
of ground effect. It is mainly motivated as we don not focus on learning ground effect,
and maintaining it makes the learning more complex: slower convergence for same hyper-
parameters.

The learning is now done online during flights. It is done over several small
databases collected and created during the quadrotor’s flights. The collection and learn-
ing procedures are ruled by the proposed event-based neural learning strategy explained in
section IV.3. During the learning, the current DNN-based controller is used. At the end of
the training, it switches to the new one. Each training set includes thirty seconds of collected

74 Chapter IV. Towards an online implementation: event-based neural learning

data (xk,yk). In the following sections, δ̂kt will denote the k-th DNN learned. It means the
k-th update of the network using the newly collected database. Thus, the (k+ 1)-th network
has the same structure as the k-th one, but with newly learned weights and biases. These
new parameters are estimated from k-th weights and biases and are refined using the new
database.

The loss function and the optimizer remain unchanged. The MSE is still used as
loss function. Again, NADAM algorithm is used but with some parameters adjustments. The
batch size, number of epochs and learning rate are empirically modified to achieve a fast and
good learning of δt in the considered situations. The list of parameters and hyper-parameters
are summarized in Table IV.1.

Parameter Value
Number of inputs #x 9
Number of hidden layers nl 2
Number of units nu 32
Collection time (s) 30
Batch 128
Epoch 250
Learning rate lr 0.005
µ 0.9
ν 0.9999

Table IV.1: List of parameters and hyper-parameters selected for the DNN and its training.

Having outlined the initial controller and the modifications made to the learning, the
event-based neural learning strategy can now be presented.

IV.3 The event-based neural learning strategy

This section aims to present the event-based neural learning strategy. The objectif of this
strategy is to continuously learn and adapt the control in order to track a reference trajec-
tory while facing internal and external disturbances. It is based on the previously presented
cascaded architecture to achieve position & velocity control. First, the DNN-based correction
term, which is used to improve the initial controller, is presented in section IV.3.1. Next, the
event-based neural learning strategy, which is designed to ensure stability and improve track-
ing performance, is then discussed in section IV.3.2. This strategy initiates a new learning
process when tracking errors exceed a certain threshold: it is the first event, defining the cri-
terion named performance criterion. It switches the controller if the DNN destabilize the
quadrotor. The second event is based on the crossing of a criterion on a Lyapunov function,
it is referred as stability criterion.

IV.3. The event-based neural learning strategy 75

IV.3.1 DNN-based controller

The real system dynamics, including the notation from chapter III, are revisited here:

η̇ = Aη + B(uζ −B−1
ζ

˙̃vref + B−1
ζ δt). (IV.3)

This model has a linear and a nonlinear part. The nonlinearity term includes internal and
external disturbance via δt dynamics. In order to cancel the nonlinearities, the proposed
DNN-based controller used is given by:

uζ = u∗
ζ + ∆ukζ , (IV.4)

where u∗
ζ is the linear control term (IV.1) and ∆ukζ is the feed-forward correction term based

on the k-th learned deep neural network.

The expression of the closed loop dynamics, using proposed controller can now be devel-
oped using (IV.3) and (IV.4):

η̇ = (A−BKη)η︸ ︷︷ ︸
Closed-loop linear dynamics

+ B(∆ukζ + B−1
ζ δt)︸ ︷︷ ︸

Term to cancel

. (IV.5)

The closed-loop dynamics is the sum of two terms:

1. The closed-loop linear behavior also referred as desired behavior. It is determined by
Kη designed to achieved performance specifications using a Ricatti equation.

2. An additional nonlinear term that can be handle via ∆ukζ . As the whole term vanishes,
the closed-loop dynamics approaches the desired linear behavior.

To cancel the second term, an optimization problem must be solved, it is given by the follow-
ing:

min
∆uk

ζ

∥∥∥∆ukζ + B−1
ζ δt

∥∥∥2
(IV.6)

Since the non-linearity term is unknown in (IV.6), it can be replaced by its current estimate
from the DNN δ̂kt :

min
∆uk

ζ

∥∥∥∆ukζ + B−1
ζ δ̂kt (xt)

∥∥∥2
(IV.7)

The minimization problem given in equation (IV.7) is a nonlinear optimization since
xt = f(uζ) = f(u∗

ζ + ∆ukζ). Indeed, the input xt depends on the DNN correction
term ∆ukζ which is a function of the error estimate δ̂kt . Finding the solution to this nonlinear
and non-convex minimization problem can be time-consuming and may have multiple local
minima.

The proposed solution involves providing the neural estimate with only the linear control
input, as in previous chapter. It corresponds to replace uζ by u∗

ζ in the DNN input in

76 Chapter IV. Towards an online implementation: event-based neural learning

eq. (IV.7). By removing the correction term from the DNN input, the solution can be directly
obtained:

∆ukζ = −B−1
ζ δ̂kt (u∗

ζ). (IV.8)

Thus, as B−1
ζ matrix is fully known and as the quadrotor total mass is known, the correction

to be applied to the thrust T , ϕref and θref angles references can be quickly computed. The
complete cascaded architecture proposed is summarized in Fig. IV.2.

𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐕𝐞𝐥𝐨𝐜𝐢𝐭𝐲 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 𝐗𝟒 𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠𝐀𝐭𝐭𝐢𝐭𝐮𝐝𝐞 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫
𝐅𝐥𝐲𝐢𝐧𝐠 𝐗𝟒𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠𝜙𝑟𝑒𝑓𝜃𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

𝑇
𝑲𝜼

𝑲𝜻 𝑝𝑞𝑟
+
-

+
+ 𝑇

𝜁

ሶ𝑥 = 𝑨𝑥 + 𝑩𝑢

Train… … …

+

𝜉𝑣

𝜉𝑟𝑒𝑓𝑣𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

-
+

y𝑘 = 𝛿𝑡𝑘

𝜉𝑣𝜁

𝐓𝐫𝐚𝐣𝐞𝐜𝐭𝐨𝐫𝐲𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑦𝑎𝑤
𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑠

𝑩𝜻−𝟏𝑎𝑟𝑒𝑓
+

Δ𝑢𝜁

-

Deep Neural Network
0
𝑩𝜻−𝟏 Collected data(𝐱𝒌, 𝐲𝒌)መ𝛿𝑡

x𝑘

Criteria: 𝐬𝐭𝐚𝐛𝐢𝐥𝐢𝐭𝐲 and 𝐩𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞𝜀𝜂 = መ𝛿𝑡𝑘 − 𝛿𝑡𝑘

𝐄𝐯𝐞𝐧𝐭 − 𝐛𝐚𝐬𝐞𝐝 𝐧𝐞𝐮𝐫𝐚𝐥 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐬𝐭𝐫𝐚𝐭𝐞𝐠𝐲
Predict

Re−Train Trigger
Switch

ሶ𝑣
ሶ𝑣𝑙𝑖𝑛

𝛴𝜂 = න𝑡0𝑡 𝜂(𝜏) − 𝜂𝑙𝑖𝑛(𝜏) 𝑑𝜏
Figure IV.2: The event-based neural learning strategy: cascaded control architecture.

One needs to highlight the fact that the correction is only computed for position and
velocity loop. The attitude loop corresponds to the frame rotations and does not involve any
disturbances that need to be estimated.

With the control input now fully defined, the event-based neural learning strategy can
be introduced. It decides to learn or re-learn δ̂kt , according to stability and to performance
criteria.

IV.3.2 The event-based strategy

As previously noted, the DNN-based control term given in (IV.4) depends on the estimate
of δ̂kt . Therefore, the accuracy of this estimation is crucial for maintaining the stability
and performance of trajectory tracking. This estimate needs to be updated regularly. To
achieve this, updates are performed using small dataset collected during the flight. Since the
quantity of data is limited and may not contain sufficient information for an accurate global
approximation, this term must be updated frequently using different criteria.

IV.3. The event-based neural learning strategy 77

If the DNN learning is not accurate, the quadrotor may not perform as expected. Two
main events can be expected, defining two criteria:

1. Stability criterion: if the estimate δ̂kt is not sufficiently accurate, it may compromise
the stability of the closed-loop system. It is necessary to first detect this critical situation
using a stability criterion. The proposed solution in this case is to immediately switch
to the initial linear controller, without any correction term by applying ∆ukζ = 0T3 .
Afterwards, a new data collection procedure is performed in order to estimate a more
accurate DNN. The design of the stability criterion is explained in the sub-section
IV.3.2.1.

2. Performance criterion: even if the predictions of the DNN are not as accurate as de-
sired, it may not cause any stability issues and not be detected using previous criterion.
For instance, a static error in tracking. To deal with these situations, the proposed
solution is to re-learn δ̂kt getting a new and more accurate estimate: δ̂k+1

t . After the
training and update of the network, the DNN-based correction term applied is given
by ∆uk+1

ζ = −B−1
ζ δ̂k+1

t (u∗
ζ). The performance criterion is explained in the sub-section

IV.3.2.2.

The global scheme of the event-based neural learning approach is summarized in Fig. IV.2
and the overall methodology in Fig. IV.1. In the following, detailed explanations of both
stability and performance criterion are given.

IV.3.2.1 Stability criterion

In order to establish a switching criterion based on stability, it is needed to evaluate the
overall closed-loop stability of the quadrotor. We use Lyapunov’s stability definition to assess
the stability of the system.

Let V be the candidate Lyapunov function:

V := ηTP η, (IV.9)

where P is the solution of the following Riccati equation:

Ā
T

P + P Ā− 2P B̄B̄
T

P = −αP . (IV.10)

The equation (IV.10) can be equivalently written as:(
Ā + α

2 I

)T
P + P

(
Ā + α

2 I

)
− 2P B̄B̄

T
P = 0. (IV.11)

Let Kη be given by:
Kη := B̄

T
P , (IV.12)

78 Chapter IV. Towards an online implementation: event-based neural learning

Replacing (IV.1) in (IV.3), it gives:

η̇ = Aη + B(−Kηη + ∆ukζ + B−1
ζ δt). (IV.13)

Using (IV.8) and defining εη := δt − δ̂kt , from (IV.13) it follows that:

η̇ = (A−BKη)η + BB−1
ζ εη. (IV.14)

The time derivative of the Lyapunov function is then given by:

V̇(t) = η̇TP η + ηTP η̇. (IV.15)

Replacing the dynamics (IV.14) in (IV.15), one obtains the following expression:

V̇(t) = ηT
(
(Ā− B̄Kη)TP + P (Ā− B̄Kη)

)
η + 2ηTP B̄B−1

ζ εη. (IV.16)

From (IV.16), we finally obtain the expression:

V̇(t) = −αV + 2ηTP B̄B−1
ζ εη. (IV.17)

Let P
1
2 denote the square matrix such that P

1
2 P

1
2 = P . It should be noted that because the

system is controllable, P is symmetric positive definite. Thus, P
1
2 always exists and can be

chosen to be also symmetric positive definite. We thus introduce w := P
1
2 η, then eq. (IV.17)

becomes:
V̇ = −αwTw + 2wTP

1
2 B̄B−1

ζ εη. (IV.18)

Using the norm operator on (IV.18), we have:

V̇ ≤ −α ∥w∥2 + 2λmax(P
1
2 B̄B−1

ζ) ∥w∥ ∥εη∥ . (IV.19)

Therefore, as long as the norm of εη is sufficiently small, the Lyapunov function will be
decreasing. More precisely, since ∥w∥ =

√
V, one can write (IV.19):

∥εη∥ <
α

2λmax(P 1
2 B̄B−1

ζ)

√
V. (IV.20)

If (IV.20) is satisfied, then V will be strictly decreasing. A threshold variable (IV.21) can be
defined:

εm = α

2λmax(P 1
2 B̄B−1

ζ)

√
V. (IV.21)

Then if, we get this matching condition:

∥εη∥ − εm ≥ 0, (IV.22)

the controller is switched to the initial one, given in eq. (IV.1) since the defined Lyapunov
function (IV.9) is not guaranteed to decrease anymore. In practice, switching the controller
is done by applying ∆ukζ = 0T3 . Afterwards, a new data collection is performed using this

IV.4. Simulation and experimental results 79

linear controller. When a sufficient amount of data has been collected, a new DNN is trained
and then applied using equation (IV.8). This event is based on the evolution of ∥εη∥, it is
computed thanks to the output of the DNN and the acceleration value obtained from the
IMU. The process is then repeated until the stability criterion is triggered again, indicating
that the newly learned DNN is unable to guarantee stability in the sense of Lyapunov.

IV.3.2.2 Performance criterion

It is possible that errors resulting from an inaccurate estimation of δ̂kt may not compromise
the stability of the quadrotor. Therefore, a second criterion must be defined to address this
type of scenario. Indeed, the first criterion given in (IV.22) may not be triggered while the
tracking performance is not satisfactory. For instance, in the presence of a static error not
corrected by the neural network: the output of the DNN is constant and is not triggering
the stability threshold. Then, the quadrotor will continue to displace with poor a tracking
performance. To overcome this problem, it is proposed to use a performance criterion based
on the cumulative error to the linear model:

Ση(t) =
∫ t

ts
∥η(τ)− ηlin(τ)∥2 dτ (IV.23)

Then a new learning is triggered when:

Ση(t) > Σm. (IV.24)

where Σm is a threshold experimentally chosen so as to trigger a new learning when there
is enough error to be corrected. This criterion is coupled with the fact that sufficient data
must also be collected. To prevent catastrophic forgetting [Rob95], meaning the complete
forgetting of previously learned tasks, a small part of the previously built database is kept
and injected in the new one. That procedure is called rehearsal. Moreover, the learning rate
can be decreased using a multiplying factor at each new re-learning trigger.

In the next section, we illustrate the event-based neural learning strategy. It is tested in
simulation environment and then on real flights tests.

IV.4 Simulation and experimental results

In this section, the proposed strategy is first validated in the Gazebo simulation environment
in section IV.4.1. The two previously defined criteria are tested and analyzed. Next, the
event-based neural learning strategy is tested in real-world in section IV.4.2. The details
about the experimental setup is still unchanged and given in the dedicated chapter II.

80 Chapter IV. Towards an online implementation: event-based neural learning

IV.4.1 Simulations results

The simulations are performed using Gazebo environment. In order to validate the proposed
strategy, two independent scenarios are proposed:

• (I) - A first scenario: it involves repeating a series of circles in x/y plane,

• (II) - A second scenario: it requests the quadrotor to first perform several circles in x/y
plane and next to perform steps in y/z plane.

For both tests, no external disturbances are included to the simulation environment. Thus,
in these test case scenarios, errors are mainly cause because of the initial linear cascaded
controller (IV.1). Indeed, there is no integral action in this controller, to keep simplicity of
tuning but also because in the perfect linear case it should be sufficient enough. Throughout
the different scenarios, the quadrotor will learn to adjust its behavior adopting the proposed
strategy.

IV.4.1.1 Performance criterion analysis: scenario (I)

0 50 100 150 200 250 300

-1.0

0.0

1.0

x
(m

)

0 50 100 150 200 250 300
0.0

1.0

2.0

3.0

y
(m

)

0 50 100 150 200 250 300
0.0

0.5

1.0

z (
m

)

0 50 100 150 200 250 300
Time (s)

0.0

2.0

4.0

Σ η

Event-based Neural Strategy Expected Linear Behavior

160 180 200 220 240 260 280 300
0.95

1.00

1.05

Figure IV.3: Simulation scenario (I): circles motions. This scenario illustrates the performance
criterion. Red areas represent learning and re-learning processes.

IV.4. Simulation and experimental results 81

A first scenario, that consists in successive circle motions is firstly performed to assess
the performance criterion. The simulations results of this scenario (I) are given in Fig. IV.3.
The first three plots represent the spatial motions along x, y and z. The fourth graph is
representing the cumulative error representing the tracking performance (IV.23). Learning
procedures are represented in pink bands. The performance criterion is reset after each re-
learning.

At starting, major static errors can be noted in all three spatial positions. It is justified
by the lack of integrator in the position controller. A first data collection, together with a
first DNN, is proposed after few seconds of flight. It corrects the tracking and brings the
quadrotor closer to the linear desired behavior, represented in blue dashed dot. The tracking
error is smaller, but it can still be improved since the deep neural network has not yet fully
learned the dynamics to be corrected. The cumulative error, (IV.23), is directly increasing
after deploying the new DNN. After a second data collection and when the performance
threshold has been exceeded, a re-learning procedure is initiated. A second DNN, improved
version of the first proposed DNN, is then applied around t = 90s. The tracking performance
is improved and the criterion is increasing slower. At t = 180s, the trajectory generation
requires the quadrotor to perform larger circles. These motions were not part of the previous
training scenario, resulting in a less accurate tracking. However, it is worth noting that main
static errors of the initial controller are corrected. The learning procedure is triggered once
more and refines the DNN proposed and so forth. At the end, the quadrotor behavior is
significantly closer to the expected linear behavior.

IV.4.1.2 Stability criterion analysis: scenario (II)

A second test scenario (II) is proposed to validate the stability criterion. Results are given
in Fig. IV.4. Here, the procedure is restarted from scratch, where only the initial linear
cascaded controller is used at starting and no DNN is proposed yet. For experimental reasons,
the criterion given in eq. (IV.22) is implemented with a time-triggering threshold. Indeed,
in order to avoid possible unwanted and unnecessary switching due to noise, the controller
switch is activated if the stability criterion is activated during ten time steps. The first three
plots illustrate the displacement on x, y and z. The second one is representing the cumulative
error (IV.23) and the last curve represents the stability criterion (IV.22).

This new test scenario is composed of eight circles motions in x/y plane followed by six
steps in y/z plane after t = 160s of flight. As for the previous scenario, the quadrotor starts
with large static errors that are next corrected using successive improvements of δ̂1

t obtained
by the previously studied performance criterion. The DNN is re-learned up to δ̂4

t . After
t = 160s, the quadrotor is asked to perform a succession of steps. Such test cases were
not part of the training dataset of the neural controller. It starts to well behave, however,
at t = 180s, the stability criteria (IV.22) is triggered. It means that the lastly proposed
DNN, δ̂4

t , is destabilizing the closed-loop system according to our criterion. The initial linear
cascaded controller is immediately used to maintain the stability and collect new pertinent
data to learn a novel DNN. After that training, the proposed DNN, δ̂′0

t , is correcting the

82 Chapter IV. Towards an online implementation: event-based neural learning

0 50 100 150 200 250 300

-1.0

0.0

1.0

x
 (

m
)

0 50 100 150 200 250 300

-2.0

0.0

2.0

y
 (

m
)

0 50 100 150 200 250 300

0.0

1.0

2.0

z
 (

m
)

0 50 100 150 200 250 300
Time (s)

0.0

10.0

20.0

Σ η

0 50 100 150 200 250 300
Time (s)

0.0

2.5

5.0

||
ε η

||
−
ε m

Expected Linear Behavior Event-based Neural Strategy

Triggering

Stability Criterion

Figure IV.4: Simulation scenario (II): circles followed by steps motions. This scenario il-
lustrates stability and performance criteria. Red areas represent learning and re-learning
processes.

tracking to fit the linear behavior correctly without destabilization during the step motions.

The choice to switch to the initial controller instead of the previously learned DNN was
motivated by the fact that when testing that other solution, the proposed strategy was suc-
cessively switching the DNN controllers, δ̂Nt to δ̂0

t , till the initial controller. Indeed, if the
lastly learned deep neural network is not able to well behave, there is a high possibility that
the previous DNN has not learn this information.

Now, as the proposed learning strategy and its two criteria were validated in simulation,
one can deploy it in real tests, in the next section.

IV.4.2 Experimental results

In order to experimentally validate the contribution of the event-based neural learning strat-
egy, we performed experimentation under external disturbances. Here, experimental tests
are performed in a windy environment generated by a wind indoor tunnel. The quadrotor is
asked to face a sinusoidal wind doing back and forth motions, as illustrated in Fig. IV.5. We

IV.4. Simulation and experimental results 83

recall that other experimental aspects are given in chapter II.Wind Tunnel

Variable Wind

Back and forth motion

Figure IV.5: Experimental test illustration: back and forth motions in front of a sinusoidal
varying wind.

Following results are compared to a well tuned PID controller coupled with a disturbance
observer. That controller was previously tuned in order to fit the desired expected linear
closed-loop behavior given by the PD controller without DNN correction (IV.4) in the windy
condition. The experimental results are provided in Fig. IV.6. The four first plots respectively
represent, x, y and z positions, performance criterion and stability criterion. The last curve
is representing the intensity of the wind applied, it is given in meter per second. It is an
approximate value calculated from the maximum speed of the wind generated by the wind
indoor tunnel and the transmitted value in PWM. Applied disturbance is a sinus whose
frequency is around 0.046Hz starting at t = 10s. It is important to notice that the wind
frequency is not synchronized with the back and for motion of the quadrotor.

When the wind begins, in part n°0 in the figure, the proposed controller is not able to
correctly reject the disturbance. it hence large errors compared to the PID cascaded controller
along with the disturbance observer. After a collection time, and a learning, the first DNN
mainly overcomes the wind disturbance effect, in part n°1. In part n°2, the quadrotor has
re-learned the deep neural network, but it still presents difficulty in z component compared
to the other controller. Indeed, the battery discharge is not yet well learned.

A change of amplitude and offset intensity of the wind is operate at t = 145s, at the end of
part n°2. It can be noted that the proposed controller with the previously learned controller
has difficulty to reach its desired target point. Indeed the intensity of the wind is stronger
and was not previously learned. After a new collection and re-learn process, the quadrotor is
able to get closer to the linear desired behavior in part n°4 and n°5.

It is worth noting that when applying the same DNN, the behavior between each steps
is not always the same. Indeed, conditions are varying at each step: the de-synchronized
wind, the increased battery discharge, the wind disturbance generated in the whole room,
etc. Thus, the output of the network is not exactly the same each step iteration and the
correction proposed by the controller is consequently slightly different, leading to a different
behavior at each new step. The Root Mean Squared Error (RMSE) of all parts [0 to 5]

84 Chapter IV. Towards an online implementation: event-based neural learning

-0.2

0.0

0.2

x
 (

m
)

0.0

1.0

y
 (

m
)

0.0

0.5

1.0

z
 (

m
)

0.0

0.5

1.0

Σ η

0.0

0.5

1.0

||
ε η

||
−
ε m

0 50 100 150 200 250 300
Time (s)

1

2

W
in
d

(m
/s

−1
)

 ① ① ② ③ ④ ⑤0

Figure IV.6: The event-based neural learning strategy experimental test: back and forth
motions in front of a sinusoidal varying wind. Red areas represent learning and re-learning
process. For x, y and z, the red curve is the result with the event-based neural learning
strategy. The green curve is the obtained result with the PID along with disturbance observer.
The blue one is the expected linear behavior with the linear PD controller only.

Figure IV.7: The Kopis quadrotor facing the wind indoor tunnel.

IV.4. Simulation and experimental results 85

presented in the figure are computed for both controllers compared to the linear expected
behavior with PD controller in a perfect non windy case. RMSEs are provided in Table IV.2.
The RMSE general formula is recalled in eq. eqIV.25.

RMSE =

√√√√Ns∑
i=1

(xi − yi)2

Ns
(IV.25)

where Ns is the number of sample considered, xi the expected value and yi the obtained one.

Event-based PID+Observer
Neural Learning

Part x y z x y z
0 0.054 0.323 0.02 0.023 0.046 0.072
1 0.031 0.098 0.021 0.015 0.061 0.006
2 0.012 0.065 0.053 0.013 0.058 0.006
3 0.011 0.114 0.018 0.012 0.06 0.007
4 0.011 0.059 0.027 0.012 0.064 0.007
5 0.013 0.059 0.015 0.016 0.064 0.064

Table IV.2: RMSE (m) in each components during the wind scenario for each controller.

A global improvement of RMSE through flights, can be observed with the proposed event-
based neural learning strategy. It assess a continuous improvement of the tracking. The
behavior in z-component of the PID along with the disturbance observer is globally better
than the proposed solution. Indeed, the proposed strategy does not include integral action
and is progressively learning the battery discharge profile. It needs more time to better learn
the correction. However, at the end of the scenario, it is improved as more data as been used
and introduced in the lastly proposed DNN. Also, the PID controller along with the observer
produces more low frequency oscillations during whole scenario in each component. Finally,
it is worth noting that the stability criteria is very noisy, but via the filtered procedure, it is
not triggered during the proposed scenario.

Finally, one presents in Fig. IV.8 an example of stability triggering in an experimental
test. The quadrotor was asked to perform back and forth motion in front of the wind
indoor tunnel, with a stronger initial wind. Few seconds after the first learning, the strategy
switches to the initial controller because the threshold on stability has been crossed. A new
data collection is performed and then the strategy proposes a new DNN. Next, the con-
troller corrects the trajectory tracking using the performance criterion, as in the previous test.

A video of the experimental results is available via the following link: youtu.be/S4I2dlPDCJY

https://youtu.be/S4I2dlPDCJY

86 Chapter IV. Towards an online implementation: event-based neural learning

-0.2

0.0

0.2

x
 (

m
)

Expected Linear Behavior PID+observer Event-based Neural Strategy

0.0

1.0

y
 (

m
)

0.0

0.5

1.0

z
 (

m
)

0.0

2.5

5.0

Σ η

0.0

1.0

||
ε η

||
−
ε m

0 25 50 75 100 125 150 175 200
Time (s)

1

2

W
in
d
(m

/s
−1

)

Triggering

Stability Criterion

Figure IV.8: The event-based neural learning strategy experimental test: illustration of the
stability criterion.

IV.5 Conclusion and perspectives

In this chapter, a solution to deal with an online DNN-based controller was proposed to
overcome both internal and external disturbances. The design of that controller was subject
to several constraints. First, to allow an easy implementation on standard controller while
maintaining efficient trajectory tracking. Second, to keep the closed-loop system stable under
the DNN-correction. Third, the solution has to be implemented online avoiding an offline
learning.

The proposed controller is an event-based solution that is iteratively learning a DNN
to correct the tracking. It is based on successive data collection and learning procedures.
The event-based strategy allows the quadrotor to flight while learning or relearning a new
controller. In that manner, it avoids landing before testing a new DNN. The strategy relies on
two criteria. A performance criterion is employed to evaluate the tracking performance and
triggers a DNN re-learning if the tracking performance is unsatisfying. A stability criterion
is included in order to evaluate the closed-loop stability of the quadrotor. It switches to the
initial controller in case of instability due to the imprecise learning of the DNN. The proposed
strategy is working both in simulation and experiment. It demonstrates its effectiveness in
case of external disturbances such as sinusoidal wind.

IV.5. Conclusion and perspectives 87

Some improvements can already be stated. Indeed, the initial controller does not include
integral term for two reasons: first because in the case of a "perfect" linear behavior it is not
needed. Also because of the tuning simplicity to reduce the number of gains to be tuned. A
first step would be the adaption of the proposed strategy using an integral term. It might be
need to give the integral action to the network input. In addition, both controllers must be
adapted so that they can interact correctly without trying to correct each other.

The solution proposes to switch to the initial controller in case of lack of stability insurance.
After that, a new learning is proposed. It needs to learn a new DNN. Thus, previously learned
knowledge must be relearned, and it can represent a waste of time. Some work must be carried
out in order to validate and definitely confirm a learning. A possible solution might be the
use of several parallel networks used in different situations, a type of "DNN scheduling".

Chapter V

Neural controller for unknown
payload transportation

This chapter focuses on the unknown suspended payload transportation problem. This task
requires a more sophisticated controller to be correctly handled. The proposed controller is
a DNN-assisted exact linearization After an introduction of the problematic, the proposed
nonlinear controller is described. Then, the payload dynamics estimation using a DNN is
exposed. Finally, experimental transportation is performed to validate the solution.

Contents
V.1 Introduction . 90

V.1.1 Delivery application solutions . 90
V.1.2 Proposed solution . 92

V.2 Reminder: quadrotor dynamics without payload 93
V.3 The nonlinear controller . 94

V.3.1 Nonlinear attitude controller . 94
V.3.2 Nonlinear position and velocity controller 95

V.3.2.1 Exact linearization principle . 96
V.3.2.2 Exact linearization derivation . 97
V.3.2.3 Control of the exact linearized system 98
V.3.2.4 Summarizing . 99

V.4 Neural payload estimation . 99
V.5 Experimental results . 102

V.5.1 Baseline controller comparison . 103
V.5.2 Controller with high-gain observer comparison 105
V.5.3 Discussion on learning . 106

V.6 Conclusions and perspectives . 109

89

90 Chapter V. Neural controller for unknown payload transportation

V.1 Introduction

In the two previous chapters, we focused on learning external dynamics such as wind distur-
bance or ground effect. Both presented control scheme still present issues. The first one is the
linear initial controller that limits the flight possibilities. With higher velocities, the linear
controller might become in adapted. Indeed, some of the neglected effects are no longer small
enough, the quadrotor is moving from its equilibrium. The second one, is that the proposed
solutions are not suitable for more concrete application cases such as load transportation
scenarios. In such cases, internal disturbances generated by the payload can be very difficult
to handle with previous presented controllers. Thus, a new controller must be developed.

V.1.1 Delivery application solutions

Quadrotor payload transportation is used for many delivery applications, from simple home
delivery through first aid deployment to rescue at sea, by bringing a rescue buoy. These
uses of the quadrotor are increasingly employed because it allows: a saving in delivery time,
access to hard-to-reach areas or even reduction of emissions. Payload transportation can be
achieved by several ways. First, the package can directly be attached to the frame of the
device employing fastener. Another way, to perform it, is to use a robotic arm attache to the
quadrotor for precise manipulation. Finally, it can be hooked to a suspended cable attached
to the frame of the quadrotor, compared to the first one it reduces the disturbances locally
generated by the proximity of the load from the motors. However, the additional suspended
payload is acting as a pendulum attached to the device. This is a very challenging area of
research, as modeling and control become even more complicated. Actually, the suspended
payload is generating additional disturbances to the device. Notably during acceleration or
deceleration, it can generate oscillations that can damage the package, or even worth, the
whole system stability. Consequently, the influence of this package on the system dynamics
can disrupt classical controllers, not originally pre-designed for this type of applications:
particular control solutions must be applied.

Initiated for helicopters [BK09]; [BCHB10], the study and design of controllers adapted
to load transportation has been investigated. Different control strategies have been explored
for quadrotors, such as the application of sliding mode control [Zho+16], passivity-based
control [Gue+15], adaptive control [DLB14] and nonlinear geometric control [ZS19]. Other
methods focus on motion planning by generating trajectories that aim at minimizing the load’s
tracking errors [Zen+20]; [Foe+17]; [UE20]. Palunko, Fierro, and Cruz in [PFC12]; [PCF12]
propose a solution based on dynamic programming which provides oscillation-free trajectory
tracking. In a recent work [Yu+22], aggressive load-swing trajectories are obtained by having
the constraints for load cable direction included into the trajectory generation via constraints
on the load acceleration. Alternative works [Guo+20]; [ACC21] concentrate on modeling the
payload as a disturbance and which is rejected by the control. For instance, in [ACC21] the
load oscillations are attenuated using an extended high-gain observer for modeling payload
disturbances.

V.1. Introduction 91

Figure V.1: An example of a suspended payload transportation using a quadrotor.

The aforecited research approaches frequently rely on the exact knowledge of the sus-
pended load model and have shown good robustness to unmodeled dynamics. However, in
addition to model errors that may appear during controller design phase, some assumptions
on the system are often taken: known mass load, load movement in the plane, load linked
with a rigid cable, the hang point at the center of mass of the UAV, etc. These assumptions
over-simplifies the problem and can become problematic in concrete implementations of these
methods. To solve this type of hypotheses, data-oriented methods have been tested in recent
years to improve the trajectory generation, the modeling and the control using data flight
sets. Solutions have been proposed to generate minimal oscillation trajectories by motion
generation, as in [Fau+13] using learning or [LZH21]; [Hua+22]; [Fau+17] using reinforce-
ment learning. For modeling and control purposes, one can cite [DLB14] which has designed
a learning-based control scheme for piloting a quadrotor under coupling uncertainties. These
learning methods, on the other hand, are extremely time consuming and require collecting
a lot of relevant data to learn the controller. This process, often done by trial and error,
can only be applied in ideal simulation environment and the controller implementation to
real-world experimentation can be a hazardous procedure.

In the case of a controller designed over a nominal model without any modeling of the
load itself, the latter will induce disturbances over control performance as an unmodeled
dynamics. In the case of a model-based control taking into account the dynamics of the load
itself, flight tracking performance is heavily dependent on the model reliability. Therefore,
changing parameters would require a new tuning design effort to adapt the gains of the
controller. Moreover, the modeling itself of the suspended payload is a risky task: in the
later described application, the load is attached to the quadrotor frame by a four point string
structure. To cite a few, payload and cable wind resistance or cable flexibility are also two
huge obstacles to exhaustive modeling.

92 Chapter V. Neural controller for unknown payload transportation

V.1.2 Proposed solution

In this chapter, we present a hybrid control method, combining an exact feedback linearization
and a windowed deep neural network. It is used to perform quadrotor unknown payload
transportation. The proposed control strategy is based on an exact linearization designed
on a payload-free model of the quadrotor. All unknown dynamics, mainly generated by the
payload during the mission, are first learned using a windowed DNN. It is next integrated
in the exact linearization to correct the payload disturbed tracking. The proposed network
is trained after collecting data, it is done offline in comparison to the previous chapter. It
is then used to predict, in real-time, the disturbances generated by the additional load. It
allows to correct the quadrotor tracking under the payload disturbances. In comparison
to the previously mentioned learning methods, the DNN provides a fast learning and an
easy implementation. The complete control scheme, using the proposed DNN, results in an
exact linear behavior of the closed-loop disturbed system with improved trajectory tracking
performance and payload oscillations attenuation.

𝟏.𝐍𝐨𝐧𝐥𝐢𝐧𝐞𝐚𝐫 𝐜𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫 𝐝𝐞𝐬𝐢𝐠𝐧

𝟐.𝐃𝐚𝐭𝐚𝐛𝐚𝐬𝐞 𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧Tracking results with the payloadusing the nonlinear controller

𝐚. Nonlinear linearizing𝒯 − transformation𝑓𝑋4 + 𝛿𝑡 ∘ 𝒯 𝑢 = 𝑢

ReferenceTimePositio
ntrack

ing

Desired linear tracking

ReferenceTimePositio
ntrack

ing

Desired linear trackingNonlinear controller

𝟑. 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐩𝐚𝐲𝐥𝐨𝐚𝐝 𝐝𝐲𝐧𝐚𝐦𝐢𝐜𝐬

ReferenceTimePositio
ntrack

ing

Desired linear trackingNonlinear controllerDNN − assisted controller

𝟒. 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝 𝐟𝐥𝐢𝐠𝐡𝐭 𝐰𝐢𝐭𝐡 𝐃𝐍𝐍Tracking results with theDNN − Assited Controller
𝐛. Desired linear performances𝑢 = −𝐾 𝑥 − 𝑥𝑟𝑒𝑓 + 𝐻 ሶ𝑥𝑟𝑒𝑓

𝐗𝟒 𝐧𝐨𝐧𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥ሶ𝑥 = 𝑓𝑋4

𝐗𝟒 𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥ሶ𝑥 = 𝑢

𝐅𝐥𝐲𝐢𝐧𝐠 𝐗𝟒with unknown suspended payload

………

𝑢 = 𝒯 𝑢, መ𝛿𝑡

𝐖𝐢𝐧𝐝𝐨𝐰𝐞𝐝 𝐃𝐍𝐍
መ𝛿𝑡

Figure V.2: The proposed methodology: DNN-assisted nonlinear feedback linearization for
quadrotor unknown payload transportation.

The proposed methodology is summarized in Fig. V.2. It is composed of four main steps:

1. Design of the initial nonlinear controller: A nonlinear controller is firstly design
to achieve trajectory tracking under payload transportation. It is an exact nonlinear
feedback linearization. The desired performance is chosen on the exact linear model

V.2. Reminder: quadrotor dynamics without payload 93

obtained after the transformation.

2. Database construction: Using the previously designed nonlinear controller, one can
perform unknown suspended payload transportation. A data collection is done to learn
the payload dynamics in mission situation.

3. Learning the unknown payload dynamics: The database is used to learn the
payload dynamics. A windowed deep neural network is created and trained (section
III.3). After completing the learning, it is integrated to the nonlinear transformation.

4. Flight using the DNN-based controller: Finally, one can deploy the whole control
scheme using the DNN-based correction controller. Flights are performed in tests cases
scenarios (section III.5). The newly built controller allows to correct the tracking and
fits the expect linear behavior from step n°1.

After quickly recalling the model used for control design in section V.2, the nonlinear
controller is introduced in section V.3. The windowed DNN architecture is next presented
in section V.4. Finally experimental payload transportation are carried out and analyzed in
section V.5.

V.2 Reminder: quadrotor dynamics without payload

The main objective is here to perform the quadrotor trajectory tracking under payload trans-
portation. The difficulty lies in the fact that we assume having no information about the
payload used for the transportation task. In this manner, one has no knowledge on the cable
length, rigidity nor the payload mass. Although modeling exists, the lack of knowledge of
these parameters does not allow the model to be parameterized correctly and the controller
to be accordingly adapted. Consequently, we chose to consider the disturbance generated
by the payload as an unknown dynamic term for the quadrotor dynamics that will latter
be learned. The model of the quadrotor used for the controller design is thus the standard
model with a disturbance term essentially ruled by the payload. To design the controller, an
exact feedback linearization, we will consider that the quadrotor, to which is attached the
suspended payload, has the following model, adapted from the chapter I:

ξ̇ = v,

v̇ = −gi⃗3 + 1
m

RT b⃗3 + δt,

Ṙ = RΩ×,

Ω̇ = −J−1Ω×JΩ + J−1Γ + δr.

(V.1)

In (V.1), the additional terms corresponding to the unknown suspended payload disturbances
are included via δt and δr. These terms also include non-modeled dynamics such as those
presented in section I.4.3 as gyroscopic effect, blade flapping and also include non-modeled
dynamics such as battery discharge and the unknown payload effect on the quadrotor dynam-

94 Chapter V. Neural controller for unknown payload transportation

ics. They are denoted by δt and δr for respectively translational and rotational disturbance
dynamics.

As for previous chapter, for experimental implementation purposes, it is assumed that the
angular rate control loop is already implemented and has a sufficiently fast converging time.
The dynamics considered in the following of the chapter is then given by (V.2):

ξ̇ = v,

v̇ = −g⃗i3 + 1
m

RT b⃗3 + δt,

ζ̇ = W Ω,

(V.2a)

(V.2b)

(V.2c)

To pilot the quadrotor with its suspended payload, we will use a nonlinear cascaded con-
troller, using previously established model. Compared to chapters III and IV, this control
will allow a more accurate tracking and will enable to get higher velocities than the linear cas-
caded controller. The overall control cascaded architecture remains unchanged: we still use
position, velocity, attitude and angular rate control loops. We recall here the basis cascaded
architecture was presented in section II.5.2.

V.3 The nonlinear controller

In this section, the nonlinear cascaded controller is presented. It aims at tracking a given
trajectory reference for the quadrotor and its unknown suspended load. The global control
architecture is two nonlinear cascaded for position& velocity and attitude controller. The
angular rate control is still achieved with PIDs. The architecture is summarized in Fig. V.3.
Here, we propose to use an exact linearizations as nonlinear control. They are performed on
both position & velocity loops and on the angular loop.

After performing the linearization, a full state feedback using a linear quadratic regulator
is used on the linear model obtained. The states used are estimated from the extended
Kalman filter. Concerning the unknown suspended payload dynamics, they are learned via a
deep neural network in section V.4. Using that estimation, a feedforward term is deduced to
correct the exact linearization of the position & velocity loop, disturbed by the load.

V.3.1 Nonlinear attitude controller

An exact feedback linearization is used to achieve attitude control. We first recall here the
equation that links Euler angles to angular rates and Euler:[

ϕ̇, θ̇, ψ̇
]T

= WWW
[
p, q, r

]T
(V.3)

V.3. The nonlinear controller 95

𝐍𝐨𝐧𝐥𝐢𝐧𝐞𝐚𝐫 𝐅𝐞𝐞𝐝𝐛𝐚𝐜𝐤 𝐋𝐢𝐧𝐞𝐚𝐫𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐏𝐨𝐬𝐢𝐭𝐢𝐨𝐧 & 𝐕𝐞𝐥𝐨𝐜𝐢𝐭𝐲 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫

Transfo
rmatio

n

𝐗𝟒 𝐥𝐢𝐧𝐞𝐚𝐫 𝐦𝐨𝐝𝐞𝐥𝑓𝑟𝑜𝑚 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐍𝐨𝐧𝐥𝐢𝐧𝐞𝐚𝐫 𝐀𝐭𝐭𝐢𝐭𝐮𝐝𝐞 𝐂𝐨𝐧𝐭𝐫𝐨𝐥𝐥𝐞𝐫
𝑢 Inversion 𝐅𝐥𝐲𝐢𝐧𝐠 𝐗𝟒𝑤𝑖𝑡ℎ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝜙𝑟𝑒𝑓𝜃𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

𝑇
𝑲

𝑲𝜻 𝑝𝑞𝑟
መ𝛿+

-
+
+ 𝑇

𝜁

𝜉𝑙𝑖𝑛𝑣𝑙𝑖𝑛𝜁𝑙𝑖𝑛ሶ𝑥 = 𝑢

Learning error dynamics(𝑜𝑓𝑓𝑙𝑖𝑛𝑒)
Error dynamics prediction(𝑜𝑛𝑙𝑖𝑛𝑒)

… …… … Temporal Window(𝐵𝑢𝑓𝑓𝑒𝑟)

+
-

𝜉𝑣

𝜉𝑟𝑒𝑓𝑣𝑟𝑒𝑓

𝜓𝑟𝑒𝑓

-
+

መ𝛿 x𝒌
𝛿𝑎

x𝒘

𝜉𝑣𝜁

𝐓𝐫𝐚𝐣𝐞𝐜𝐭𝐨𝐫𝐲𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑦𝑎𝑤
𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑠

Figure V.3: The DNN-assisted nonlinear cascaded control to perform trajectory tracking with
an unknown suspended payload.

The command variable is desired angular velocity denoted as uΩ = Ω =
[
p, q, r

]T
. As

the attitude can be estimated with a high precision using the EKF, one can compute the
Wronskian matrix. That operation can be done sufficiently quickly to be performed online.
One can then linearize and stabilize the loop, using the following control (V.4):

uΩ = −WWW−1(ζ)KKKζ(ζ − ζref), (V.4)

where KKKζ is a matrix gain tuned for tracking performance of the Euler angles ζ. Desired
angle references, ζref := uζ , is obtained by the position & velocity loop, presented in next
section V.3.2.

V.3.2 Nonlinear position and velocity controller

We present here the position and velocity controller. It aims at reaching a given reference
trajectory for the quadrotor. It provides to the inner loops the desired angles and thrust
to achieve it. The proposed nonlinear controller is based on the exact linearization of the
quadrotor.

First, one makes the assumption that ψ ≈ 0, assuming the quadrotor is not performing
yaw motion. It will be later achieve by a rotation of the computed commands. The second
equation (V.2b) of the dynamical model of the quadrotor can then be simplified by (V.5),
expressed on each axis:

96 Chapter V. Neural controller for unknown payload transportation

ẍ = cos(ϕ) sin(θ) T
m

+ δxt ,

ÿ = − sin(ϕ) T
m

+ δyt ,

z̈ = −g + cos(ϕ) cos(θ) T
m

+ δzt .

(V.5)

It must be noted that now δt =
[
δxt , δyt , δzt

]T
now includes nonlinear terms from ψ ≈ 0 hy-

pothesis to maintain the exact equivalence between (V.2b) and (V.5). To summarize quadro-
tor position & velocity model, we recall the following state variables as:

ξ :=
[
x, y, z

]T
and v :=

[
vx, vy, vz

]T
.

The command variable is expressed as:

uζ :=
[
θ, ϕ, T

]T
.

The model used for the controller design can be written as the following state space repre-
sentation: {

ξ̇ = v,

v̇ = fX4(uζ) + δt,
(V.6)

where:

fX4(uζ) =

fxX4

fyX4

fzX4

 =

cos(ϕ) sin(θ) T

m

− sin(ϕ) T
m

−g + cos(ϕ) cos(θ) T
m

 . (V.7)

The model given by (V.6) is composed of nonlinear known function fX4 dependent of the
chosen command and a nonlinear unknown function δt mainly ruled by the unknown payload
dynamics.

V.3.2.1 Exact linearization principle

For control purpose, we propose to exactly linearize the model (V.6), that includes the un-
known suspended payload. Here we rely on the work of [Voo09] to establish the linearization.
In a first step, we assume the complete knowledge of δt. In the following section V.4, ex-
planations concerning the learning of this disturbance term is given. Here, we are defining
T -transformation such that:

(fX4 + δt) ◦ T (u) = u. (V.8)

V.3. The nonlinear controller 97

By taking input uζ = T (ũζ), the system (V.6) can be written in a linear form:{
ξ̇ = v,

v̇ = ũζ .
(V.9)

It is then easy to design a controller for this linear system (V.9) using standard control tools.

V.3.2.2 Exact linearization derivation

Before performing the linearization, let us define the three following input variables ũx, ũy
and ũz such as:

v̇x = ũx = fxX4(ϕ, θ, T, δx) + δxt ,

v̇y = ũy = fyX4(ϕ, T, δy) + δyt ,

v̇z = ũz = fzX4(ϕ, θ, T, δz) + δzt .

(V.10)

By defining, α = sin(ϕ) and β = sin(θ), the following properties can be used:

cos(ϕ) = ±
√

1− α2 and cos(θ) = ±
√

1− β2 (V.11)

Then, substituting (V.11) in (V.10), on obtains the following system of equations:
ũx = ±

√
1− α2β

T

m
+ δxt ,

ũy = −α T
m

+ δyt ,

ũz = −g ±
√

1− α2
√

1− β2 T

m
+ δzt .

(V.12)

We now isolate T , α and β variables from (V.12). To do so, we first assume that ũx ̸= δxt , we
obtain:

β = ±
[

(ũz + g − δzt)2

ũx − δxt
+ 1

]−1/2

,

T = ±m
√

(ũx − δxt)2

β2 + (ũy − δyt)2,

α = −(ũy − δyt)m
T
.

(V.13)

Now, we need to define the sign of these variables in (V.13). First, thrust is always positive
by definition. Knowing that ϕ is defined in the range [−π/2;π/2] and using equations (V.5),
we deduce that θ has the same sign as ũx − δxt . We can then define the exact linearizing
T -transformation by uζ =

[
ϕ, θ, T

]T
= T (ũx, ũy, ũz). We have to distinguish several cases

according to the values of input variables ũx, ũy and ũz.

98 Chapter V. Neural controller for unknown payload transportation

For ũxt ̸= δx, we obtain the following expressions:

T = m

√
(ũx − δxt)2

β2 + (ũy − δyt)2,

ϕ = arcsin
(
−(ũy − δyt)m

T

)
,

θ = sign(ũx − δxt) arcsin

± [(ũz + g − δzt)2

ũx − δxt
+ 1

]−1/2
 .

(V.14)

For ũx = δxt , we have four cases:

1. If ũy = δyt and ũz = δzt : the quadrotor is not moving nor it is hovering. We then just
need to compensate for the gravity by using following input

[
T, ϕ, θ

]
=
[
mg, 0, 0

]
.

2. If ũy ̸= δyt and ũz ̸= δzt : the quadrotor is not moving along x axis. We thus need to
maintain θ = 0, to avoid pitching. The transformation is then given by:

T = m
√

(ũz + g − δzt)2 + (ũy − δyt)2,

ϕ = arcsin
(
−(ũy − δyt)m

T

)
,

θ = 0.

3. If ũy = δyt and ũz ̸= δzt : the quadrotor is only moving along z axis. Both angles need to
be maintained at 0, and the only variable to be controlled is the thrust, using following
expression:

T = m
√

(ũz + g − δzt)2,

ϕ = 0,
θ = 0.

4. If ũy ̸= δyt and ũz = δzt . This case is obtained when ϕ = 90°. It is experimentally
avoided using an adapted trajectory generation, not requiring high angles to move the
quadrotor. It is also prevented using saturation on Euler angles.

We now have the complete expression of the T -transformation that allows us to exactly
linearize the nonlinear position & velocity system. We can focus on the control of the obtained
linear model.

V.3.2.3 Control of the exact linearized system

The system {quadrotor+load}, after applying the T -transformation, is now given by linear
state space representation (V.9). To control, this linear system, several solutions exist. Here,

V.4. Neural payload estimation 99

we have decided to design a state feedback using a linear quadratic regulator, as we have good
estimate of the full state. The selected controller is given by (V.15):

ũ = −Kξ(ξ − ξref)−Kv(v − vref) + v̇ref (V.15)

where the command ũ =
[
ũx, ũx, ũx

]T
and matrices gains Kξ and Kv are chosen by

minimizing the following quadratic cost (V.16):

J =
∫ +∞

0
[(ξ − ξref)TQξ(ξ − ξref) + (v − vref)TQv(v − vref) + ũTζ (t)Rũζ(t)]dt (V.16)

The weight matrices denoted Qξ, Qv and R are tuned to get the desired tracking perfor-
mance making compromise between state convergence and command usage. Here, they are
chosen empirically to a step response in each axes. We desire a fast response while avoiding
overshoots and oscillations. To tune the gains it is first performed in simulation. Next, we
fine-tuned manually these gains with experimental tests. No suspended payload is used to
set and tune the gains.

V.3.2.4 Summarizing

The exact linearization of the nonlinear quadrotor system is achieved via the T -transformation
uζ = [θ, ϕ, T]T = T (ũx, ũy, ũz, δxt , δ

y
t , δ

z
t). It allows to control a linear model and achieve

tracking in position for the quadrotor with its suspended payload. The command uζ is then
given as a reference for the previously established attitude control loop.

Remembering the assumption of the knowledge of all non-linearities, it is necessary to get
the δt to correctly perform the linearization. It is consequently needed to get information
on disturbances generated by the payload. It exists several methods to estimate such distur-
bances, for instance high-gain observers can be used. However, that type of observer generally
needs a model of the disturbance to estimate it. It might by a long and complicated process.
To avoid tuning complexity and correctly learn a controller without any information about
the payload, we choose to use a deep neural network, as in previous chapters. Its architecture
and training are given in the next section V.4.

V.4 Neural payload estimation

In this section, we explain how error dynamic δt, including the suspended unknown load
disturbances, is learned using a windowed deep neural network. It will next be used to
estimate δt in real-time and allow the exact linearization for the position & velocity control
loop V.3. The neural network training and validation are performed offline after collecting a
sufficiently large amount of flight data. The DNN is trained to predict δt = v̇− fX4, where v̇
is the vector of measured accelerations.

100 Chapter V. Neural controller for unknown payload transportation

…………

𝑛𝑤 = 50

𝑐𝜙
𝑐𝜃
𝑇
𝑢𝑏𝑎𝑡𝑡

𝑘 – 𝑛𝑤
𝑘

Time
Fully Connected Layers

Temporal Window

50×10

Input
Output

HL1 HL2

Flattening

Figure V.4: The windowed deep neural network architecture.

The chosen network is a deep feed-forward network, composed of two hidden layers of
64 units, with ReLU function as activation. The DNN input corresponds to a windowed
temporal sequence containing nw = 50 samples of past selected data inputs.

The windowed deep neural network is denoted by δ̂t and is given by (V.17), see Fig. V.4:

δ̂t(xw, ϑ) = W3
Th(W2

Th(W1xw + B1) + B2) + B3, (V.17)

where following notations are used:

• ϑ is the vector composed of weights and biases of the different layers:

ϑ = {W1 W2 W3 B1 B2 B3}

• xw is a vector resulting from the concatenation of a time window on the selected inputs
xk of the network, given in (V.18). The temporal length of that window is denoted as
nw.

xw =
[
xT1 , xT2 , . . . , xTnw−1, xTnw

]T
.

• h is the element-wise rectified linear unit (ReLU) activation function. It is used for the
hidden layers. We recall its definition as: h(·) = max(·, 0).

The windowed inputs xk are selected based on the dynamics of the quadrotor and from
previous chapter experience (III and IV). We still provide sines and cosines of angles, thrust

V.4. Neural payload estimation 101

command, battery tension and squared velocities. No further information is provided, there-
fore the DNN has no additional information about the unknown payload.

xk =
[
cϕ, sϕ, cθ, sθ, v2

x, v2
y , v2

z , ubatt, T, z
]T

(V.18)

For that application, we decided to work using a windowed input for the deep neural
network. Other solutions using recurrent neural networks or long short-term memory [She20]
exist and we considered them to model the disturbance. However, several choices have moti-
vated the choice of the windowed solution:

1. The use a simple structure that we understand,
2. Some preliminaries tests have shown equivalent results in terms of modeling,
3. As already mentioned, DNN are able to learn such disturbances, the window is here to

help and improve the learning in a simple way.

The loss function used for the training process is the Mean Squared Error (MSE) between
true measured values δt and predictions δ̂t (V.19):

min
ϑ
L(ϑ) = min

ϑ

1
N

N∑
k=1
∥δt − δ̂t∥2, (V.19)

The optimizer solver used is Nesterov-Accelerated Adaptive Moment optimizer (see B.3.2,
algorithm 2). The hyper-parameters used for the training and the information on the DNN
architecture are summarized in Table V.1. The values of the training parameters are deter-
mined through practical experimentation to ensure efficient and satisfactory convergence of
the DNN. The window length given by nw is chosen based on the frequency of oscillations
caused by the unknown payload during a flight and represents half of an oscillation period.
A brief study of the variation of the number of units nu and layers nl led us to the selection
of these parameters.

The DNN training is here performed offline using a previously created database of payload
transportation flights. There were done using the nonlinear controller described in section
V.3 and considering no error disturbances δt = 0T3 for the T -transformation. The training set
is covering 45 minutes of data and validation set is about a 15 minutes. It includes different
starting positions of the payload around the quadrotor, see Fig. V.5. Initial conditions allows
to generate differently oriented oscillations at takeoff. The database is composed of different
motions in space at different velocities. It includes steps in different directions, circles, spiral
motions, etc. Takeoff and landing phases are also added to the database.
The effectiveness of the learning is validated using the exact linearization controller with
the DNN estimation for the transformation. The results are experimentally obtained and
presented in next section V.5.

In the following, the nonlinear controller using DNN estimation is referred as DNN-assisted
feedback linearizing cascaded controller.

102 Chapter V. Neural controller for unknown payload transportation

Parameter Value
Number of inputs 10
Number of hidden layers nl 2
Number of units nu 64
Window size nw 50
Total input size 500
Batch 256
Epoch 800
Learning rate lr 0.002
µ 0.9
ν 0.9999

Table V.1: Parameters selected for the windowed DNN and hyperparamters for its learning
process.

Figure V.5: Initial load position in database construction.

V.5 Experimental results

To evaluate the performance of the proposed nonlinear neural controller, we conduct payload
transportation experimentation. Most of the experimental setup remains unchanged com-
pared to the previous chapters. It should be recalled that the chapter II provides a lot of
information about MOCA room, software, etc. used in the experiment.

The unknown payload is connected to the quadrotor via a non-rigid wire, as it can be
noted in Fig. V.1. The payload mass is 180g. Four reflectors are attached to the payload to
track its spatial position.

V.5. Experimental results 103

In the following, we start by validating the nonlinear neural controller in comparison to
the initial nonlinear controller using integral action in sub-section V.5.1. It is next compared
to the initial controller using a high-gain observer in sub-section V.5.2.

V.5.1 Baseline controller comparison

Real-world experiments are conducted to confirm the effectiveness of the proposed DNN-
assisted feedback linearizing cascaded controller.

First, experimental tests without the DNN estimation are performed to collect payload
transportation data and learn δt as explained in the dedicated section V.4. After completing
offline training, the model is used online for predictions.

The proposed controller is tested on an unseen transportation scenario, referred to as the
test scenario. This proposed scenario includes:

• a take-off phase,
• successive steps along x, y and z directions,
• two circular motions,
• and a landing procedure.

Here, we performed twice this experimentation: one using the DNN-assisted feedback lin-
earizing cascaded controller and a second time using the nonlinear cascaded controller with an
integral action but without a disturbance observer. It is done to first assess the improvement
of the DNN payload estimation. It is important to note that the initial conditions for the
quadrotor and the payload are the same in both scenarios.

The obtained position tracking results over the test scenario are presented in Fig. V.6.
The three plots represent quadrotor x, y and z positions over the time. The green dashed-
line represents the expected linear behavior of the quadrotor without any disturbance. It
represents the behavior obtained after the exact linearization without disturbances generated
by the payload and the other neglected effects: the battery discharge, etc. The closer the
controller used is to this value, the better the tracking performance.

It is clear that both controllers are able to successfully complete the task. However, as
expected, the controller without DNN estimate has two drawbacks. First, it exhibits a slower
response time, which is particularly noticeable during step tracking phases in all three axes.
Second, it presents small oscillations over x and y axes. These oscillations are mainly due to
the unexpected movements of the load during acceleration phases. Since the disturbances are
not constants, the nonlinear controller shows poor performance.

On the other hand, the DNN controller effectively cancels or minimizes these undesirable
oscillations in all axes. This is made possible by the DNN, which takes into account the
oscillations generated by the payload and applies corrections to the linearization of the model.

104 Chapter V. Neural controller for unknown payload transportation

0 20 40 60 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
x

(m
)

Evolution of positions

0 20 40 60 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
y

(m
)

0 20 40 60 80
Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
z

(m
)

Expected Linear Behavior (without load)

Nonlinear Feedback Linearizing Cascaded Controller with integrator

DNN Assisted Feedback Linearizing Cascaded Controller

Figure V.6: The spatial position of the quadrotor with the unknown suspended payload over
the experimental test scenario.

A way to evaluate performance of such approach is to compute the root mean squared
error between the expected linear behavior without load and the obtained results considering
both controllers. The RMSEs computed over the transportation scenario are given in Table
V.2. One can notice a factor two between the controllers. It assesses the great interest of
using the DNN-assisted feedback linearizing cascaded controller.

Another way to assess the impact of using the DNN-assisted controller is to examine the

V.5. Experimental results 105

Baseline controller DNN-assisted
(with integrator) controller

RMSE x-axis 0.09 m 0.045 m
RMSE y-axis 0.098 m 0.050 m
RMSE z-axis 0.077 m 0.046 m

Table V.2: Root mean squared errors on each axes for transportation scenario, computed for
both controllers with respect to the expected linear behavior.

temporal evolution of the payload positions. Indeed, reflectors placed on the payload allow
us to get this information. The spatial position in x and y axes are displayed in Fig. V.7 on
the given test scenario for both controllers.

The payload is strongly oscillating during the scenario with the nonlinear controller with-
out DNN assistance. Whereas in the DNN assisted scenario the fluctuations are reduced.
Indeed, a better tracking in position for the quadrotor implies a less oscillating scenario for
the payload. The oscillations of the payload, with a frequency at 0.8Hz, are attenuated by
more than 20dB with the DNN controller. The Discrete Fourier Transform (DFT) of the
signals around load additional oscillations are presented in Fig. V.7 and confirm this obser-
vation.

V.5.2 Controller with high-gain observer comparison

This section present the comparison of the proposed approach compared to the nonlinear
controller with a high-gain observer used as payload disturbance observer, such as presented
in the work [ACC21]. In practice, the disturbance observation from the high-gain is injected
in the nonlinear controller presented before in section V.3.1. More details about high-gain
observers is given in the appendix A.

The results on the same payload transportation test scenario are given in Fig. V.8. Initial
conditions are kept identical. Both controllers demonstrate improved tracking performance
compared to the baseline controller. Indeed, for both controller, oscillation reduction can be
noted, particularly along x and y axes. The controller with the high-gain observer is slower
in x and y axes compared to the DNN-assisted one. Some overshoots during the circle phase
can also be observed.

As for previous comparison, the load positions can be analyzed on the same transportation
scenario. They are represented in Fig. V.9. The controller with the high-gain observer still
presents the payload oscillations, with a high amplitude during acceleration phases. These
oscillations take more time to be attenuated at hover. Here, one can assess that the DNN
solution better models the payload dynamics in comparison to the observer. It thus allows a
better disturbance rejection. The DFT of the signals around payload additional oscillations
supports this observation.

106 Chapter V. Neural controller for unknown payload transportation

0 20 40 60 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
x

(m
)

Evolution x/y positions of the load

0 20 40 60 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
y

(m
)

Nonlinear Feedback Linearizing Cascaded Controller with integrator

DNN Assisted Feedback Linearizing Cascaded Controller

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Frequency (Hz)

0

50

100

150

200

250

300

350

400

D
F
T

A
m

p
li
tu

d
e

al
on

g
x

DFT of the load positions

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Frequency (Hz)

0

50

100

150

200

250

300

350

400

D
F
T

A
m

p
li
tu

d
e

al
on

g
y

Nonlinear Feedback Linearizing Cascaded Controller with integrator

DNN Assisted Feedback Linearizing Cascaded Controller

Figure V.7: Load positions during transportation test flight and DFT (modulus) of the signals
around load oscillations.

Another aspect that can be highlighted between the two methods is the whole tuning time.
It is often forgotten to specify the time that can take the implementation and tuning of such
methods. In that particular case, finding efficient gains for the high-gain observer is a long and
complicated process. Indeed, simulations are essential to find first acceptable observer gains.
Assuming we have a rather accurate quadrotor with a suspended payload simulator, which is
not the case here. Then, these gains must be refined by carrying out several experimentation
with the payload. To summarize, it is needed a model of the disturbance, a simulator of the
whole system, a first gain set and next to refine obtain gains in experiment. It takes a lot of
time to be able to correctly flight with a payload. On the other hand, the proposed approach
with the windowed deep neural learning requires flights with the baseline controller, which is
easy to design. The complexity is reduced to the selection of hyper-parameters for the DNN.
After that, the DNN-assisted controller can be directly used on the scenario.

V.5.3 Discussion on learning

In the following, we provide some discussions concerning the DNN training and generalization.

V.5. Experimental results 107

0 20 40 60 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
x

(m
)

Evolution of positions

0 20 40 60 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
y

(m
)

0 20 40 60 80
Time (s)

0.0

0.5

1.0

1.5

A
m

p
li
tu

d
e

of
z

(m
)

Expected Linear Behavior (without load)

Nonlinear Feedback Linearizing Cascaded Controller with integrator and observer

DNN Assisted Feedback Linearizing Cascaded Controller

Figure V.8: The position of the quadrotor with the unknown suspended payload over the test
scenario. It is a comparison between the nonlinear controller using a high-gain observer and
the DNN-assisted feedback linearizing cascaded controller.

The training is done over a relatively small dataset compared to classical databases uses
for deep learning in vision, for instance. However, it contains enough data considering this
regression application: learning the payload dynamics on a given environment. It is composed
of basics movements such as circles and steps at different velocities. The learning is done in
a way that it does not over-fit the data set using validation set for model selection. The
selected deep neural network is finally tested it the presented test case that is not present in
the given database. However, as motions are similar (steps or circle) it is achieved with various
amplitudes and in a various order. Selected scenario velocities are done between minimum

108 Chapter V. Neural controller for unknown payload transportation

0 10 20 30 40 50 60 70 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
x

(m
)

Evolution x/y positions of the load

0 10 20 30 40 50 60 70 80
Time (s)

−1.0

−0.5

0.0

0.5

1.0

A
m

p
li
tu

d
e

of
y

(m
)

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Frequency (Hz)

0

50

100

150

200

250

300

350

400

D
F
T

A
m

p
li
tu

d
e

al
on

g
x

DFT of the load positions

0.60 0.65 0.70 0.75 0.80 0.85 0.90
Frequency (Hz)

0

50

100

150

200

250

300

350

400

D
F
T

A
m

p
li
tu

d
e

al
on

g
y

Nonlinear Feedback Linearizing Cascaded Controller with integrator and observer

DNN Assisted Feedback Linearizing Cascaded Controller

Figure V.9: Experimental payload positions during transportation test flight and DFT (mod-
ulus) of the signals around load oscillations.

and maximum trajectory speed on the database.

Testing the DNN-assisted controller in a completely different scenario, for instance in
another environment presenting wind, without including it in the learning database is a
nonsense that will fatally lead the DNN-assisted to provide significant errors and potentially
led the quadrotor to a crash. In the same way, the presented work is carried out with an un-
known payload and a non-rigid wire length. To better generalize over several payload weights
or cable lengths, data should be added to the training database considering those parameters
(that could either be included as input to the DNN or not). The DNN should be able
to generalize over those parameters, and it constitutes a way to enhance the proposed method.

A video of unknown payload transportation using proposed controller is available via the
following link: youtu.be/MtCwAlrSIxo

https://youtu.be/MtCwAlrSIxo

V.6. Conclusions and perspectives 109

V.6 Conclusions and perspectives

Transporting a suspended load with a quadrotor is a challenging task. Indeed, the distur-
bances caused by the oscillating payload during maneuvers can default the controller. The
design of an efficient autopilot is a tedious process as it may require an accurate modeling of
the payload and is dependent on the mechanical characteristics of the payload: cable, weight,
etc. Using an observer to estimate the unknown dynamics is a useful and common technique
for estimating disturbances. However, in practice, synthesizing an observer, for this type
of very complex nonlinear system can be hard and may take a long time before achieving
satisfactory results.

The proposed solution to handle the problem and reduce the implementation complexity,
is a deep neural learning of the payload dynamics. By performing flights with an initial
satisfactory controller, one can learn the disturbances generated by the suspended payload.
Proposed neural structure is a windowed DNN, to well predict the behavior. Afterwards,
the learned dynamics can be introduced in the nonlinear transformation to achieve a better
trajectory tracking. One advantage of this method is that it does not require an explicit
model of the payload dynamics. The learning is done through collected data. The obtained
results demonstrate an improved tracking of the initial controller under payload disturbances.
It also results in a diminution of the oscillation of the payload during the flight. This side
effect is even more beneficial as it reduces the potential damage of the payload. It also
presents a more desirable behavior than that of a linearizing control with an integral action
and high-gain observer.

A logical extension of this work would be to implement the learning process online. Indeed,
it will avoid landing before applying the DNN estimation to the linearizing transformation. A
possible way to perform could be inspired from the previous chapter. As previously discussed,
another extension of this work should be the management of a broader set of different cable
lengths and payload weights within a unique learning structure. Both the database and the
structure of the DNN should be refined to address this issue.

Conclusion and perspectives

V.7 General overview

This thesis was carried out in a research team which develops algorithms for automatic piloting
of quadrotors. The objective is to propose efficient flight algorithms in mission situations.
Here, we focus on trajectory tracking accuracy. The developed algorithms must be efficient
to rapidly respond to unforeseen events such as the appearance of external disturbances,
like wind gusts. These algorithms must be efficient and easily implementable in order to be
deployed in a large variety of quadrotor models.

The main motivation of this work is to bring together two worlds: control and learning in
order to improve the flights tracking performance of a quadrotor. This thesis brings contribu-
tions in various forms, indeed both theoretical and methodological contributions are proposed.
In addition, it also include a large experimental contribution, since many efforts have been
made to ensure that all proposed solutions work in practice in the GIPSA-lab experimental
room.

We proposed a first architecture to combine learning and a standard control approach in
chapter III. It is based on the frequently employed cascaded architecture for piloting quadro-
tors. It is easy to tune as it is based on cascaded loops, independently built. The proposed
solution is a DNN-based controller in position loop. That DNN is learned using flights data
from previously performed missions, including as much possible movement of the quadrotor
in different situations. After the offline learning of the DNN, it is deployed in the position
control loop. It acts by correcting the command input to get closer to the initial desired
linear behavior. It results in a better tracking of the quadrotor position under internal model
errors but also with external disturbances. This approach is firstly validated in simulation
environment such as Gazebo. It is next tested in real-world flights using a motion capture
room. The advantage of this method is that the flight of the quadrotor is ensured by the
standard cascaded control architecture and is enhanced by the learning capability of deep
neural networks. This method suffers two principal disadvantages. The first one is the offline
learning, requiring first to perform a considerable number of flights with the initial controller,
in a degraded mode, before getting a more precise and reactive tracking. The second one is
the stability limited to experiments close to the firstly built database.

To address the two major concerns of the previous approach, we proposed a novel solution.
This second algorithm is an event-based neural learning strategy. It is based on the previous
approach keeping the cascaded architecture of the quadrotor. It learns a deep neural network
iteratively based on two criteria. A first criterion which ensures the stability of the closed-loop
system with the deep neural network correction. A second criterion focuses on the tracking
performance during flight. The events are based on these two criteria. The strategy switches
to the initial controller, in case of instability, or re-learn the DNN, in case of inaccurate

111

112 Conclusion

learning. The re-learning is based on a new data collection and consists in an improvement
of the previously found network weights. This strategy demonstrates a good effectiveness in
both simulation and experimental test, even under external disturbances.

Finally, we have studied another autopilot algorithm that focuses on the transportation
of an unknown suspended payload. The developed algorithm is based on a nonlinear control
coupled with a windowed deep neural network. Indeed, the load transport being a more
delicate problem, a more precise and efficient initial algorithm is necessary before performing
tracking with the unknown payload. The nonlinear controller allows to have a more reactive
control than the linear control previously proposed. It allows to realize an exact linearization
of the system by using the learning of the window deep neural network. It is used to predict
the errors generated by the unknown suspended payload by learning it from previous flights.
The coupling of the nonlinear control and the windowed deep neural network allows to correct
the trajectory and to reduce the oscillations generated during flight.

All the proposed solutions are combining the advantages of both standard controller and
learning methods. The standard control solution is used to bring a first basis for the quadro-
tor auto-piloting in a secured manner from a stability point of view. The learning approach is
proposed to improve the performance by learning the error made between the expected trajec-
tory and the obtained or by learn the payload dynamic in case of the payload transportation.
It learns internal errors: simplifications, software offsets, unknown payload attached to the
device and external disturbance such as ground effect or wind gusts.

V.8 Perspectives

The developed algorithms have been iteratively designed to improve the previous approaches
by trying to correct the main weaknesses of the previous ones. However, the studies and
experiments carried out have highlighted perspectives of work and avenues for improvements.

To start, we focus on a common point to all the presented algorithms. All the considered
approaches inevitably require to learn a correction of an initial controller, in order to next
being improved. This presents advantages on initial tuning simplicity. However, this has two
disadvantages: the first is that we are dependent on the choice of this initial controller to
flight and learn. It is therefore necessary to have a controller that works well enough in a
lot of situations including difficult situations: for instance in a windy environment or under
additional payload disturbances. The second drawback is a consequence of the previous one,
which makes the proposed neural network dependent on the initial controller.

The first perspective could be to study the combination of the DNN with other types of
initial controllers. For example, combining it with MPC. The use of the neural network could
help to improve the prediction on the chosen horizon while reducing the computations. An
alternative perspective considered, but not studied here, is a learning of the dynamics of the
quadrotor in an independent way of the flight controller. For example, learning the functions
f and g which constitute the quadrotor simplified dynamics ẋ = f(x) + g(x)u.

V.8. Perspectives 113

Another interesting research perspective is the deployment of outdoor flight algorithms.
Indeed, the flight conditions are quite different in outdoor situations and an adaptation of
the controller has to be expected. The GPS data is less accurate than that obtained from
the motion capture room. More robust algorithms to estimate the position must be studied
to perform these missions. In addition, the communication is probably much more disrupted
in outdoor environment. It will require a more thorough study of possible delays and packet
losses, in order to keep an efficient tracking.

An improvement of the approach would be to have a deep neural network that adapts to
the quadrotor used. Indeed, the algorithms have been tested on a specific model of quadrotor.
Thus, we can not use a network already learned into another quadrotor controller without
relearning or re-adaptation beforehand. One way to consider generalization would be for
example to increase the number of inputs of the neural network. It could take as parameter
the ID of the considered device. However, this method would probably require a lot of flight
data and a larger neural network to learn the differences between each model.

Some work can also be done using Reinforcement Learning algorithms. This approach
constitutes a very interesting research axis. Indeed, finding RL solutions that can safely
learn a controller without spending to much computation and parameter tuning is a very
challenging task.

Finally, some work done during my thesis, but not presented in this manuscript, focused
on the piloting of swarm of quadrotors. The work presented here could be applied and adapted
to this particular case where disturbances between each drone are added.

Appendix A

Disturbances observers

A.1 Linear disturbances observer

Let’s consider the system described by (A.1):{
ẋ(t) = Ax(t) +Bu(t) +Dd(t),
y = C(t)x(t), (A.1)

with state x(t) ∈ Rn, command input u(t) ∈ Rm, measured signal y(t) ∈ Rp and disturbances
d(t) ∈ Rq A ∈Mn, B ∈M(m×n), C ∈M(n×p), D ∈M(q×n)

Let’s assume a model for disturbance d:

ḋ(t) = Add(t),

Defining an extended state as:
X(t) =

[
x(t), d(t)

]T
.

One has the following extended system:

Ẋ(t) =

[
A D

0 Ad

]
X(t) +

[
B

0

]
u(t),

y(t) =
[
C 0

]
X(t).

(A.2)

By making the assumption that the system given in (A.2) is observable. The extended state
observer is given by (A.3):

˙̂
X(t) = AeX(t) +Beu(t) + Lobs(y(t)− CeX̂(t)), (A.3)

where:
Ae =

[
A D

0 Ad

]
, Be =

[
B

0

]
, and Ce =

[
C 0

]
.

By denoting the observer error by e(t) = X(t) − X̂(t), the dynamic of observation error is

115

116 Appendix A. Disturbances observers

given by (A.4):
ė(t) = (Ae − LobsCe)e(t). (A.4)

Then one can correctly chose the observer gain Lobs such that the observer error exponentially
converges to 0.

Then one can get an estimation of d, that can be used as a feedforward term to cancel or
at least minimize d̂− d.

A.2 High-gain observer

In this appendix, we present high gain observer generalities. Equations and results mainly
come from [Kha08]. Here we adapted the system model to fit our specific case Let’s consider
the nonlinear system given by (A.5):{

ẋ1(t) = x2(t),
ẋ2(t) = g(x(t), u(t)) + d(t), (A.5)

Defining an extended state x3(t) = d(t) including disturbances, one has the following extended
system (A.6):

ẋ1(t) = x2(t),
ẋ2(t) = g(x(t), u(t)) + x3(t),
ẋ3(t) = ξ(t).

(A.6)

The function ξ is unknown, however thanks to the robustness of high-gain observers, one can
estimate the extended state including disturbances. The extended high-gain observer can be
taken as (A.7):

˙̂x1(t) = x̂2(t) + κ1
ϵ

(x1(t)− x̂1),
˙̂x2(t) = g(x̂(t), u(t)) + x̂3(t) + κ2

ϵ2
(x1(t)− x̂1),

˙̂x3(t) = κ3
ϵ3

(x1(t)− x̂1).
(A.7)

where κ1, κ2 and κ3 are taken such as: the polynomial p3 + κ1p
2 + κ2p+ κ3 is Hurwitz.

Appendix B

Deep Learning generalities

B.1 Introduction

This appendix focus on giving some generalities on Deep Learning and more particularly on
deep feed-forward networks also known as multilayer perceptrons (MLPs).

Deep Learning is a branch of machine learning that uses artificial neural networks. It gath-
ers different methods to model data combining complex architectures and nonlinear functions.
The basis structure is the artificial neural network. Combining together several artificial neu-
rons gives a deep neural network. It is directly inspired by human brain neurons, mimicking
inter-neuronal communication. Deep neural network are composed of several layers inter-
connected in different ways, each layer receive and process data from previous to next layer.
Deep Learning combined with large data allowed major advances in image, video and sound
processing such as pattern recognition, image and text classification or natural language pro-
cessing. These fields of application have since been widely developed in other fields including
medicine, finance or robotics.

B.2 Deep neural networks

The aim of a feed forward neural network is to approximate some function f∗, it can be used
either for classification and regression. It defines a nonlinear mapping between an input x
to an output y = f(x, ϑ) and learns ϑ, the neural network parameters, to approximate the
function f∗. To learn ϑ parameters, an optimization is performed using a training database
(xtrain,ytrain). A deep neural network is composed of several layers basically built up with
successive artificial neurons: the perceptrons.

B.2.1 Perceptrons description

The perceptron is the simplest artificial neural network at the basis of deep learning. It is a
linear classifier, a function f of the input x = [x1, ..., xn]T , weighted by w = (wij)1≤m,1≤n,
with a bias b = [b1, ..., bm]T . It is schematically represented as in Fig. B.1 and described by
equation (B.1):

y = f(x) = σ(wx+ b) (B.1)

117

118 Appendix B. Deep Learning generalities

𝜔1𝑗

Bias
𝜔2𝑗

𝜔𝑖𝑗
Activation function𝜎(⋅) OutputSum

𝑥1
𝑥2
𝑥𝑖

𝑥𝑛

…
… 𝜔(𝑛−1)𝑗

𝜔𝑛𝑗
𝑥𝑛−1

…
…

𝑦𝑗

𝑏

Figure B.1: Illustration of an artificial neural network

The nonlinear function σ is called activation function. It exists a lot of different activation
functions in the deep learning literature. One can list few of them:

• Sigmoid: σ(x) = 1
1 + exp(−x) ,

• Hyperbolic tangent (tanh): σ(x) = ex − e−x

ex + e−x ,

• Rectified linear unit (ReLU): σ(x) = max(0, x),

• Leaky rectified linear unit (Leaky ReLU): σ(x) =
{

0.01x if x < 0,
x if x ≥ 0,

• Parametric rectified linear unit (Parametric ReLU): σ(x) =
{
αx if x < 0,
x if x ≥ 0,

• Gaussian Error Linear Unit (GELU): σ(x) = 1
2x(1 + erf(x√

2
)).

The presented activation functions are illustrated in Fig. B.2.

B.2. Deep neural networks 119

-5 0 5

0

0.2

0.4

0.6

0.8

1

Sigmoid

-5 0 5

-1

-0.5

0

0.5

1

Hyperbolic tangent

-1 0 1

0

0.2

0.4

0.6

0.8

1
ReLU

-10 0 10

-2

0

2

4

6

8

10
Leaky ReLU

-10 0 10

-5

0

5

10
Parametric ReLU

-5 0 5

0

1

2

3

4
GELU

Figure B.2: Some activation functions for neural networks.

B.2.2 Multilayer perceptrons

A multilayer perceptron is built with a succession of layers. It can be represented as in
eq. (B.2):

f(x) = fNl(fNl−1(...f1(x))) (B.2)

where Nl is the number of layers of the network. It means the number of nonlinear mappings.
The first layer is called input layer and the last layer is called the output layer, here fNl . All
other intermediate layers are called hidden layers (HL). An example of deep neural network
structure is given in Fig. B.3.

It exists a lot of various neural network architectures. Here, we just provide some general
insight of Deep Learning, and we will not go further into explaining them. It is worth
mentioning: the convolutional neural networks, the recurrent neural networks, the generative
adversarial networks, etc.

120 Appendix B. Deep Learning generalities

……

Input OutputHidden Layer

Figure B.3: An example of basic deep neural network.

B.3 Learning neural network parameters

The choice of the neural network constitute the first step in learning process. Next, all
weights and biases of each layers, gathered in ϑ parameter, need to be estimated. To do so,
an optimization problem is basically set, using a cost function called the loss function.

B.3.1 Loss function

The loss function is the quantity that the optimizer tends to minimize via ϑ parameter. It is
very common to use the maximum likelihood estimation to find the best statistical parameters
from a training dataset. The expected loss function is then given by:

L(ϑ) = E(X,Y)∼P (log(pϑ(Y |X)). (B.3)

For Gaussian model, minimizing eq. (B.3) is equivalent to minimize a quadratic loss:

L(ϑ) = E(X,Y)∼P (∥Y − f(X,ϑ)∥2). (B.4)

One can then derive an estimator of (B.4): the mean squared error. It is computing the
average of the squared difference between the estimated and actual values:

L(ϑ) = MSE(ϑ) = 1
N

N∑
i=1

(yi − ỹ)2, (B.5)

where ỹ = f(X,ϑ) is the predicted value.

As for activation functions, it exists plenty different loss functions according the problem
we are trying to deal with: regression, binary or multi-class classification.

B.3. Learning neural network parameters 121

B.3.2 Gradient descent algorithm

In order to minimize the loss function given by B.5, for multilayers perceptrons, gradient
methods are used. The most popular way to perform it, is to use the stochastic gradient
descent algorithm Stochastic Gradient Descent (SGD). Its batch version is presented in
algorithm 1.

Algorithm 1 Stochastic Gradient Descent
Require: Set hyper-parameters: η

Initialize ϑ = ϑ0
while Convergence criteria (epoch, gradient, etc.) do

ϑi+1 ← ϑi − η
1

#B
∑
j∈B∇ϑL(f(Xj , ϑi), Yj)

end while

In this algorithm, B is a subset of the dataset (xtrain,ytrain), called a batch. An iteration
over the whole dataset is called an epoch, it is a parameter to be fixed at the beginning of
optimization.

Improved optimizers haven been explored, based on SGD. One can cite Nesterov-
Accelerated Adaptive Moment Algorithm, refereed as NADAM, [Doz16]. This algorithm
uses a momentum to move to an optimum, achieving faster convergence than SGD.

Algorithm 2 Nesterov-Accelerated Adaptive Moment
Require: Set hyper-parameters: µ, ν and lr

Initialize ϑ = ϑ0
Initialize m = m0 and v = v0
while ϑi do

gi ← ∇ϑL(ϑi−1)
Compute µk for k = i and k = i+ 1
µk = µ(1− 0.5 · 0.96k/250)

mi ← µmi−1 + (1− µ)gi ▷ Update first momentum
vi ← νvi−1 + (1− ν)g2

i ▷ Update second momentum

m̂i ← µi+1mi/(1−
i+1∏
j=1

µj) + (1− µi)gi/(1−
i∏

j=1
µj)

v̂i ←
vi

1− νt

ϑi ← ϑi−1 − lr
m̂i√
v̂i + ϵ

▷ Update optimization variable
end while

More optimizers can be found in the following review [Rud16].

122 Appendix B. Deep Learning generalities

B.3.3 Computing gradient

As can be seen in the algorithms 1 and in algorithm 2, the knowledge of the gradient of the
loss function with respect to ϑ parameter is needed: ∇ϑi

L(ϑi). To do so, the back-propagation
algorithm is used. Actually, it is a two phases process:

1. First a forward pass is performed to compute the output of the network and all inter-
mediate values of each layers for the given ϑ.

2. Second a backward pass is using all the previously stored values to compute the inter-
mediate values necessary to compute gradient of loss function.

B.4 Universal approximation theorem

The universal approximation theorem states that any continuous function on a compact of
Rn can be approximated with a single layer network with a finite number of neurons. This
result was first derived by Cybenko, for sigmoid activation.

Notations: Let In = [0, 1]n denotes the n-dimensional unit cube C(In) denotes the space
of continuous functions on In. B space of finite, signed regular measures on In

Definition B.1
σ is said discriminatory if for a measure µ ∈ B(In),:∫

In

σ(aTx+ b)dµ(x) = 0

for all y ∈ Rn, b ∈ R implies µ = 0

Theorem B.1 (From Cybenko, [Cyb89])
Let σ be a continuous discriminatory function. The finite sum F of the following form:

F (x) =
N∑
i=1

αiσ(ωTi x+ βi),

where ωi ∈ Rn, αi ∈ R, βi ∈ R are dense in C(In).

Other formulation: Given any f ∈ C(In) and ϵ > 0, there is a sum F (x), of the above
form, for which:

|F (x)− f(x)| < ϵ for all x ∈ In

It was then showed by Hornik, it is not specific to sigmoid. For multi-layers network, it
was later proved by Zhou Lu et al. [Lu+17].

Bibliography

[Aba+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015 (cit. on p. 25).

[ACC21] Jorge M. Arizaga, Herman Castaneda, and Pedro Castillo. “Payload Swing Atten-
uation of a Fully-Actuated Hexacopter via Extended High Gain Observer Based
Adaptive Sliding Control.” In: 2021 International Conference on Unmanned Air-
craft Systems (ICUAS). IEEE, June 2021 (cit. on pp. 90, 105).

[ACL05] Kiam Heong Ang, G. Chong, and Yun Li. “PID control system analysis, design,
and technology.” In: IEEE Transactions on Control Systems Technology 13.4
(July 2005), pp. 559–576 (cit. on p. 45).

[ACN10] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. “Autonomous Helicopter
Aerobatics through Apprenticeship Learning.” In: The International Journal of
Robotics Research 29.13 (June 2010), pp. 1608–1639 (cit. on p. 45).

[ÅM21] Karl Johan Åström and Richard M Murray. Feedback systems: an introduction
for scientists and engineers. Princeton university press, 2021 (cit. on p. 35).

[Ard18] Ardupilot. “ArduPilot Open Source Autopilot.” In: (2018) (cit. on p. 45).
[Ban+16] Somil Bansal et al. “Learning quadrotor dynamics using neural network for flight

control.” In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
Dec. 2016 (cit. on pp. 45, 54).

[BCHB10] Morten Bisgaard, Anders la Cour-Harbo, and Jan Dimon Bendtsen. “Adaptive
control system for autonomous helicopter slung load operations.” In: Control
Engineering Practice 18.7 (July 2010), pp. 800–811 (cit. on p. 90).

[BD18] Dario Brescianini and Raffaello D'Andrea. “Computationally Efficient Trajectory
Generation for Fully Actuated Multirotor Vehicles.” In: IEEE Transactions on
Robotics 34.3 (June 2018), pp. 555–571 (cit. on p. 44).

[BHD13] Brescianini, Dario, Hehn, Markus, and D’Andrea, Raffaello. Nonlinear Quadro-
copter Attitude Control: Technical Report. en. Tech. rep. 2013 (cit. on p. 11).

[Bir+11] Andreas Birk et al. “Safety, Security, and Rescue Missions with an Unmanned
Aerial Vehicle (UAV).” In: Journal of Intelligent & Robotic Systems 64.1 (Jan.
2011), pp. 57–76 (cit. on p. 1).

[BK09] M. Bernard and K. Kondak. “Generic slung load transportation system using
small size helicopters.” In: 2009 IEEE International Conference on Robotics and
Automation. IEEE, May 2009 (cit. on p. 90).

[BM03] Andrew G. Barto and Sridhar Mahadevan. In: Discrete Event Dynamic Systems
13.4 (2003), pp. 341–379 (cit. on p. 70).

[BM12] Moses Bangura and Robert Mahony. “Nonlinear dynamic modeling for high per-
formance control of a quadrotor.” In: Proc. of the Australasian Conference on
Robotics and Automation. Dec. 2012 (cit. on p. 44).

123

124 Bibliography

[BM14] Moses Bangura and Robert Mahony. “Real-time Model Predictive Control for
Quadrotors.” In: IFAC Proceedings Volumes 47.3 (2014), pp. 11773–11780 (cit.
on p. 1).

[BMS04] S. Bouabdallah, P. Murrieri, and R. Siegwart. “Design and control of an indoor
micro quadrotor.” In: IEEE International Conference on Robotics and Automa-
tion, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004 (cit. on p. 22).

[Bou07] Samir Bouabdallah. Design and control of quadrotors with application to au-
tonomous flying. Tech. rep. Epfl, 2007 (cit. on p. 14).

[BS] S. Bouabdallah and R. Siegwart. “Backstepping and Sliding-mode Techniques
Applied to an Indoor Micro Quadrotor.” In: Proceedings of the 2005 IEEE Inter-
national Conference on Robotics and Automation. IEEE (cit. on p. 1).

[Che+55] I. C. Cheeseman et al. The effect of ground on a helicopter rotor in forward flight.
Tech. rep. 1955 (cit. on p. 16).

[Cho+18] Yinlam Chow et al. A Lyapunov-based Approach to Safe Reinforcement Learning.
2018 (cit. on p. 70).

[Cho+20] Jason Choi et al. Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions.
2020 (cit. on p. 70).

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal function.” In:
Mathematics of Control, Signals, and Systems 2.4 (Dec. 1989), pp. 303–314 (cit.
on p. 122).

[DAL13] Zachary T. Dydek, Anuradha M. Annaswamy, and Eugene Lavretsky. “Adaptive
Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations.” In:
IEEE Transactions on Control Systems Technology 21.4 (July 2013), pp. 1400–
1406 (cit. on p. 1).

[Dan+15] Li Danjun et al. “Autonomous landing of quadrotor based on ground effect mod-
elling.” In: 2015 34th Chinese Control Conference (CCC). IEEE, July 2015 (cit.
on p. 16).

[DLB14] Shicong Dai, Taeyoung Lee, and Dennis S. Bernstein. “Adaptive control of a
quadrotor UAV transporting a cable-suspended load with unknown mass.” In:
53rd IEEE Conference on Decision and Control. IEEE, Dec. 2014 (cit. on pp. 90,
91).

[DO16] Jérôme Darbon and Stanley Osher. Algorithms for Overcoming the Curse of Di-
mensionality for Certain Hamilton-Jacobi Equations Arising in Control Theory
and Elsewhere. 2016 (cit. on p. 70).

[Doz16] Timothy Dozat. “Incorporating nesterov momentum into adam.” In: (2016) (cit.
on p. 121).

[Dur+18] Sylvain Durand et al. “Event-Based PID Control: Application to a Mini Quadro-
tor Helicopter.” In: Journal of Control Engineering and Applied Informatics 20.1
(Mar. 2018), pp. 36–47 (cit. on p. 1).

Bibliography 125

[Efe11] Mehmet Önder Efe. “Neural Network Assisted Computationally Simple
PI$ˆ\lambda$D$ˆ\mu$ Control of a Quadrotor UAV.” In: IEEE Transactions
on Industrial Informatics 7.2 (May 2011), pp. 354–361 (cit. on pp. 2, 44).

[Fau+13] Aleksandra Faust et al. “Learning swing-free trajectories for UAVs with a sus-
pended load.” In: 2013 IEEE International Conference on Robotics and Automa-
tion. IEEE, May 2013 (cit. on p. 91).

[Fau+17] Aleksandra Faust et al. “Automated aerial suspended cargo delivery through
reinforcement learning.” In: Artificial Intelligence 247 (June 2017), pp. 381–398
(cit. on p. 91).

[FFS18] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. “Differential Flat-
ness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of
High-Speed Trajectories.” In: IEEE Robotics and Automation Letters 3.2 (Apr.
2018), pp. 620–626 (cit. on p. 44).

[Fis+17] Jaime F. Fisac et al. A General Safety Framework for Learning-Based Control in
Uncertain Robotic Systems. 2017 (cit. on p. 70).

[Foe+17] Philipp Foehn et al. “Fast Trajectory Optimization for Agile Quadrotor Maneu-
vers with a Cable-Suspended Payload.” In: Robotics: Science and Systems XIII.
Robotics: Science and Systems Foundation, July 2017 (cit. on p. 90).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016 (cit. on p. 53).

[GC+11] J.F. Guerrero-Castellanos et al. “Bounded attitude control of rigid bodies: Real-
time experimentation to a quadrotor mini-helicopter.” In: Control Engineering
Practice 19.8 (Aug. 2011), pp. 790–797 (cit. on p. 1).

[Gle+22] James Gleeson et al. Optimizing Data Collection in Deep Reinforcement Learn-
ing. 2022 (cit. on p. 70).

[GPS02] Herbert Goldstein, Charles Poole, and John Safko. Classical mechanics. American
Association of Physics Teachers, 2002, p. 154 (cit. on p. 10).

[GT12] Jeremy H. Gillula and Claire J. Tomlin. “Guaranteed Safe Online Learning via
Reachability: tracking a ground target using a quadrotor.” In: 2012 IEEE In-
ternational Conference on Robotics and Automation. IEEE, May 2012 (cit. on
p. 70).

[Gu+20] Weibin Gu et al. “Autonomous Wind Turbine Inspection using a Quadrotor.” In:
2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE,
Sept. 2020 (cit. on p. 1).

[Gue+15] M. E. Guerrero et al. “Passivity based control for a quadrotor UAV transporting
a cable-suspended payload with minimum swing.” In: 2015 54th IEEE Conference
on Decision and Control (CDC). IEEE, Dec. 2015 (cit. on p. 90).

[Guo+20] Kexin Guo et al. “Multiple observers based anti-disturbance control for a quadro-
tor UAV against payload and wind disturbances.” In: Control Engineering Prac-
tice 102 (Sept. 2020), p. 104560 (cit. on p. 90).

126 Bibliography

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators.” In: Neural Networks 2.5 (Jan. 1989),
pp. 359–366 (cit. on p. 53).

[Hua+22] Hean Hua et al. “A Time-Optimal Trajectory Planning Strategy for an Aircraft
With a Suspended Payload via Optimization and Learning Approaches.” In: IEEE
Transactions on Control Systems Technology 30.6 (Nov. 2022), pp. 2333–2343
(cit. on p. 91).

[Hun+92] K.J. Hunt et al. “Neural networks for control systems—A survey.” In: Automatica
28.6 (Nov. 1992), pp. 1083–1112 (cit. on p. 44).

[Hwa+17] Jemin Hwangbo et al. “Control of a Quadrotor With Reinforcement Learning.”
In: IEEE Robotics and Automation Letters 2.4 (Oct. 2017), pp. 2096–2103 (cit.
on pp. 2, 45).

[Kau+19] Elia Kaufmann et al. “Beauty and the Beast: Optimal Methods Meet Learning for
Drone Racing.” In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE, May 2019 (cit. on pp. 2, 44, 45).

[KCK13] Suseong Kim, Seungwon Choi, and H. Jin Kim. “Aerial manipulation using a
quadrotor with a two DOF robotic arm.” In: 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. IEEE, Nov. 2013 (cit. on p. 1).

[KH04] N. Koenig and A. Howard. “Design and use paradigms for gazebo, an open-
source multi-robot simulator.” In: 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). IEEE, 2004
(cit. on p. 28).

[Kha08] Hassan K. Khalil. “High-gain observers in nonlinear feedback control.” In: 2008
International Conference on Control, Automation and Systems. IEEE, Oct. 2008
(cit. on p. 116).

[Kol+19] Torsten Koller et al. Learning-based Model Predictive Control for Safe Exploration
and Reinforcement Learning. 2019 (cit. on p. 70).

[Lam+19] Nathan O. Lambert et al. “Low-Level Control of a Quadrotor With Deep Model-
Based Reinforcement Learning.” In: IEEE Robotics and Automation Letters 4.4
(Oct. 2019), pp. 4224–4230 (cit. on pp. 2, 45).

[Lei06] Gordon J Leishman. Principles of helicopter aerodynamics with CD extra. Cam-
bridge university press, 2006 (cit. on p. 13).

[Li+16] Qiyang Li et al. “Deep Neural Networks for Improved, Impromptu Trajectory
Tracking of Quadrotors.” In: IEEE Int. Conf. on Robotics and Automation
(ICRA). 2016. arXiv: 1610.06283 [cs.RO] (cit. on p. 44).

[Lu+17] Zhou Lu et al. The Expressive Power of Neural Networks: A View from the Width.
2017 (cit. on p. 122).

[LZH21] Xiaoxuan Li, Jianlei Zhang, and Jianda Han. “Trajectory planning of load trans-
portation with multi-quadrotors based on reinforcement learning algorithm.” In:
Aerospace Science and Technology 116 (Sept. 2021), p. 106887 (cit. on p. 91).

https://arxiv.org/abs/1610.06283

Bibliography 127

[Man15] Augustin Manecy. “Stratégies de guidage visuel bio-inspirées : application à la
stabilisation d’un micro-drone et à la poursuite de cibles. (Bio-inspired visual
strategies: application to stabilization of a micro UAV and to traget tracking).”
PhD thesis. University of Grenobles, France, 2015 (cit. on pp. 14, 15, 17, 22).

[MCO19] Luís Martins, Carlos Cardeira, and Paulo Oliveira. “Linear Quadratic Regulator
for Trajectory Tracking of a Quadrotor.” In: IFAC-PapersOnLine 52.12 (2019),
pp. 176–181 (cit. on p. 44).

[MHP15] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. “PX4: A node-based
multithreaded open source robotics framework for deeply embedded platforms.”
In: 2015 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2015 (cit. on p. 25).

[MKC12] Robert Mahony, Vijay Kumar, and Peter Corke. “Multirotor Aerial Vehicles:
Modeling, Estimation, and Control of Quadrotor.” In: IEEE Robotics & Automa-
tion Magazine 19.3 (Sept. 2012), pp. 20–32 (cit. on pp. 14, 22).

[MW15] Nima Mohajerin and Steven L. Waslander. “Modelling a Quadrotor Vehicle Us-
ing a Modular Deep Recurrent Neural Network.” In: 2015 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE, Oct. 2015 (cit. on p. 45).

[Noa] PX4/PX4-Autopilot software. May 4, 2021 (cit. on pp. 25, 45).
[PA15] Ali Punjani and Pieter Abbeel. “Deep learning helicopter dynamics models.” In:

IEEE Int. Conf. on Robotics and Automation (ICRA). 2015, pp. 3223–3230 (cit.
on p. 45).

[PCF12] Ivana Palunko, Patricio Cruz, and Rafael Fierro. “Agile Load Transportation :
Safe and Efficient Load Manipulation with Aerial Robots.” In: IEEE Robotics &
Automation Magazine 19.3 (Sept. 2012), pp. 69–79 (cit. on p. 90).

[PFC12] Ivana Palunko, Rafael Fierro, and Patricio Cruz. “Trajectory generation for
swing-free maneuvers of a quadrotor with suspended payload: A dynamic pro-
gramming approach.” In: 2012 IEEE International Conference on Robotics and
Automation. IEEE, May 2012 (cit. on p. 90).

[Pi+20] Chen-Huan Pi et al. “Low-level autonomous control and tracking of quadrotor
using reinforcement learning.” In: Control Engineering Practice 95 (Feb. 2020),
p. 104222 (cit. on p. 45).

[Pro95] Raymond W Prouty. Helicopter performance, stability, and control. 1995 (cit. on
p. 17).

[Qui+09] Morgan Quigley et al. “ROS: an open-source Robot Operating System.” In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5 (cit. on
p. 28).

[RBR16] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning
for Aggressive Quadrotor Flight in Dense Indoor Environments.” In: Springer
Tracts in Advanced Robotics. Springer International Publishing, 2016, pp. 649–
666 (cit. on p. 44).

128 Bibliography

[Rob95] Anthony Robins. “Catastrophic Forgetting, Rehearsal and Pseudorehearsal.” In:
Connection Science 7.2 (June 1995), pp. 123–146 (cit. on p. 79).

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016
(cit. on p. 121).

[Sal+10] Atheer L. Salih et al. “Modelling and PID controller design for a quadrotor
unmanned air vehicle.” In: 2010 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR). IEEE, May 2010 (cit. on p. 1).

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement Learning. 2nd ed. Adap-
tive Computation and Machine Learning series. Cambridge, MA: Bradford Books,
Nov. 2018 (cit. on p. 45).

[Sch20] David Schneider. “The delivery drones are coming.” In: IEEE Spectrum 57.1 (Jan.
2020), pp. 28–29 (cit. on p. 1).

[SG64] Abraham. Savitzky and M. J. E. Golay. “Smoothing and Differentiation of Data
by Simplified Least Squares Procedures.” In: Analytical Chemistry 36.8 (July
1964), pp. 1627–1639 (cit. on p. 40).

[Sha+19] Hazim Shakhatreh et al. “Unmanned Aerial Vehicles (UAVs): A Survey on Civil
Applications and Key Research Challenges.” In: IEEE Access 7 (2019), pp. 48572–
48634 (cit. on p. 1).

[She20] Alex Sherstinsky. “Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) network.” In: Physica D: Nonlinear Phenomena
404 (Mar. 2020), p. 132306 (cit. on p. 101).

[Shi+19] Guanya Shi et al. “Neural Lander: Stable Drone Landing Control Using Learned
Dynamics.” In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE, May 2019 (cit. on pp. 2, 45, 54).

[Sil+21] Giuseppe Silano et al. “A Multi-Layer Software Architecture for Aerial Cognitive
Multi-Robot Systems in Power Line Inspection Tasks.” In: 2021 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, June 2021 (cit. on
p. 1).

[Str+06] Alexander L. Strehl et al. “PAC model-free reinforcement learning.” In: Proceed-
ings of the 23rd international conference on Machine learning - ICML '06. ACM
Press, 2006 (cit. on p. 70).

[Tay+19] Andrew J. Taylor et al. “Episodic Learning with Control Lyapunov Functions for
Uncertain Robotic Systems.” In: (2019) (cit. on p. 70).

[TG+17] Arturo Torres-González et al. “A Multidrone Approach for Autonomous Cin-
ematography Planning.” In: ROBOT 2017: Third Iberian Robotics Conference.
Springer International Publishing, Nov. 2017, pp. 337–349 (cit. on p. 1).

[Tor+21] Guillem Torrente et al. “Data-Driven MPC for Quadrotors.” In: IEEE Robotics
and Automation Letters (2021) (cit. on p. 44).

[UE20] J B Ubbink and J A A Engelbrecht. “Sequence-Constrained Trajectory Plan-
ning and Execution for a Quadrotor UAV with Suspended Payload.” In: IFAC-
PapersOnLine 53.2 (2020), pp. 9405–9411 (cit. on p. 90).

Bibliography 129

[Voo09] Holger Voos. “Nonlinear control of a quadrotor micro-UAV using feedback-
linearization.” In: 2009 IEEE International Conference on Mechatronics. IEEE,
2009 (cit. on p. 96).

[Wan+15] Yaonan Wang et al. “Fuzzy radial basis function neural network PID control
system for a quadrotor UAV based on particle swarm optimization.” In: 2015
IEEE International Conference on Information and Automation. IEEE, Aug.
2015 (cit. on pp. 2, 44).

[Wan+20] Chuanzheng Wang et al. Learning Control Barrier Functions with High Relative
Degree for Safety-Critical Control. 2020 (cit. on p. 70).

[WZ21] Kim Peter Wabersich and Melanie N. Zeilinger. “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems.” In: Auto-
matica 129 (July 2021), p. 109597 (cit. on p. 70).

[Yu+22] Gan Yu et al. “Aggressive maneuvers for a quadrotor-slung-load system through
fast trajectory generation and tracking.” In: Autonomous Robots 46.4 (Mar. 2022),
pp. 499–513 (cit. on p. 90).

[Zen+20] Jun Zeng et al. “Differential Flatness Based Path Planning With Direct Collo-
cation on Hybrid Modes for a Quadrotor With a Cable-Suspended Payload.” In:
IEEE Robotics and Automation Letters 5.2 (Apr. 2020), pp. 3074–3081 (cit. on
p. 90).

[Zha+22] Dingqi Zhang et al. A Zero-Shot Adaptive Quadcopter Controller. 2022 (cit. on
p. 2).

[Zho+16] Xu Zhou et al. “Stabilization of a Quadrotor With Uncertain Suspended Load
Using Sliding Mode Control.” In: Volume 5A: 40th Mechanisms and Robotics
Conference. American Society of Mechanical Engineers, Aug. 2016 (cit. on p. 90).

[ZN93] J. G. Ziegler and N. B. Nichols. “Optimum Settings for Automatic Controllers.”
In: Journal of Dynamic Systems, Measurement, and Control 115.2B (June 1993),
pp. 220–222 (cit. on p. 36).

[ZS19] Jun Zeng and Koushil Sreenath. “Geometric Control of a Quadrotor with a Load
Suspended from an Offset.” In: 2019 American Control Conference (ACC). IEEE,
July 2019 (cit. on p. 90).

Résumé — Ces dernières années ont vu l’attrait des drones croître exponentiellement grâce
à leur facilité de construction et leur grande efficacité en vol. Cette technologie, ainsi que ses
applications, ne cessent d’évoluer depuis. La réalisation d’autopilotes efficaces est ainsi une
source de recherche très active. En effet, le drone doit être capable de réagir à de nombreuses
sources de perturbations possibles. Avec les succès récents de l’intelligence artificielle dans
de nombreux domaines, la réalisation de tels algorithmes de vol prend une toute nouvelle
dimension, permettant ainsi une meilleure intégration de ces perturbations.

L’objectif de cette thèse consiste en la réalisation d’algorithmes d’autopilote intelligent de
drones, en particulier pour des quadrirotors. L’idée principale de ces travaux est de mixer les
approches standards de contrôle et les méthodes d’apprentissages pour améliorer l’efficacité et
la performance des vols de drone quadrirotors. Cette amélioration passe par l’apprentissage
des différentes perturbations externes ou internes que le système subit en vol. Elles sont
ensuite estimées et compensées dans la commande. Par ailleurs, l’objectif est de proposer
des algorithmes d’apprentissage facilement implémentables sur des contrôleurs standard de
drone.

La première solution proposée est basée sur le couplage d’un réseau de neurones profond et
d’une architecture de PID en cascade. Le réseau de neurones a pour objectif d’apprendre les
erreurs à un modèle linéaire du quadrirotor. Ce modèle linéaire est utilisé pour l’établissement
des performances désirées. Ces erreurs contiennent les effets non pris en compte dans le con-
trôleur initial, les erreurs de linéarisation, mais également les erreurs liées aux perturbations
externes. Une fois l’apprentissage fait et intégré au contrôleur de vol, le comportement du
quadrirotor se rapproche du comportement initialement désiré. Cette approche est ensuite
améliorée afin de proposer une solution en ligne, basée sur événements. Elle tente d’améliorer
deux aspects de la précédente : les conditions de stabilité limitées et l’apprentissage hors ligne
du réseau de neurones. Elle repose sur des critères de performance et de stabilité du système en
boucle fermée. La solution proposée se base sur une succession de collecte et d’apprentissage
en vol, pour améliorer l’efficacité du vol en continu. Enfin, le cas du transport de charge
suspendue inconnue est abordée. Cette tâche génère des perturbations internes importantes
complexe à maîtriser. Ainsi, un algorithme de linéarisation du système non-linéaire, assisté
par un réseau de neurones fenêtré, est proposé pour réaliser cette mission. L’algorithme pro-
posé permet un suivi de trajectoire amélioré et moins oscillants lors du transport de la charge
suspendue.

Tous les contrôleurs proposés sont validés en simulation et testés expérimentalement dans
la plateforme expérimentale de motion capture du GIPSA-lab.

Mots clés : quadrirotor, suivi de trajectoire, contrôle basé sur modèle, apprentissage
profond, rejet de perturbations

Abstract — The last couple of years have seen the interest in drones grow exponentially
due to their ease of construction and high flight efficiency. This technology, as well as its
applications, have been evolving ever since. The development of efficient autopilots is thus a
very active source of research. Indeed, the drone must be able to be reactive to many possible
sources of disturbances. With the recent success of artificial intelligence in many domains,
the development of such flight algorithms takes a whole new dimension, allowing a better
handling of these disturbances.

The objective of this thesis is the development of intelligent autopilot algorithms for UAVs,
in particular for quadrotors. The main idea of this work is to merge standard control ap-
proaches and learning methods to improve the efficiency and performance of quadrotor flights.
This improvement is achieved by learning the different external or internal disturbances that
the system experiences during flights. They are then estimated and compensated within
the command. Moreover, the objective is to propose learning algorithms that can be easily
implemented on standard controllers.

The first proposed solution is based on the coupling of a deep neural network and a cascade
PID architecture. The neural network aims at learning errors to a linear model. This linear
model is used for tuning the desired tracking performance. Learned errors include effects not
taken into account in the initial controller, the linearization errors, but also errors related
to external disturbances. Once the learning is done and integrated in the flight controller,
the quadrotor better fits the initially desired behavior. This approach is then improved to
propose an online event-based solution. This second solution tries to correct two aspects of
the previous one: the limited stability insurance and the offline learning of the deep neural
network. It is based on performance and stability criteria of the closed-loop system. The
proposed solution relies on a succession of in-flight data collection and learning, in order
to continuously improve the quadrotor behavior. Finally, the case of unknown suspended
payload transport is addressed. This task generates significant internal disturbances that are
complex to handle. Thus, a linearization algorithm of the non-linear system, assisted by a
windowed deep neural network, is proposed to achieve it. The algorithm allows an improved
and less oscillating trajectory tracking while transporting the suspended payload.

All the proposed controllers are validated in simulation and tested experimentally in the
experimental motion capture platform of GIPSA-lab.

Keywords: quadrotor, trajectory tracking, model-based control, deep learning, distur-
bance rejection

GIPSA-Lab, 11 rue des Mathématiques
38400 Saint-Martin d’Hères, France

	Acknowledgements
	List of Figures
	List of Tables
	Table of abbreviations and acronyms
	Introduction
	General introduction
	Thesis scope
	Structure of the manuscript
	Publications

	Quadrotor modeling
	Quadrotor movement
	Frames and formalism
	Actuator model description
	Brushless motor model
	Forces generated by propellers

	Quadrotor complete model
	Balance of forces
	Balance of torques
	Complete quadrotor modeling

	Quadrotor simplified model

	Experimental setup
	Introduction
	The Holybro Kopis 2 quadrotor
	Motion capture room
	Robot Operating System
	General overview
	ROS topics for the controller node

	Quadrotor cascaded control architecture
	PX4 controller architecture
	Implemented controllers architecture
	Angular rate PID tuning
	PX4 command
	PX4 mixer identification
	Smith predictor

	Data pre-processing
	Dealing with outliers
	Filtering with Savitsky-Golay

	Conclusion

	Integration of learning into control for linear behavior fitting
	Introduction
	Motivations
	Proposed DNN-based solution

	Linear quadrotor model and control
	Quadrotor linear model
	Quadrotor linear cascaded PD controller
	Quadrotor linear control results

	Error dynamics neural estimation
	Deep neural network architecture
	Deep neural network learning

	Neural enhanced controller
	DNN-based correction controller
	Stability analysis

	Simulation and experimental results
	Training and validation database
	Gazebo simulations results
	Experimental results in MOCA room

	Conclusion

	Towards an online implementation: event-based neural learning
	Introduction
	Motivations
	Proposed event-based solution

	Recall and changes introduced
	Initial cascaded controller
	Error dynamics learning modifications

	The event-based neural learning strategy
	DNN-based controller
	The event-based strategy

	Simulation and experimental results
	Simulations results
	Experimental results

	Conclusion and perspectives

	Neural controller for unknown payload transportation
	Introduction
	Delivery application solutions
	Proposed solution

	Reminder: quadrotor dynamics without payload
	The nonlinear controller
	Nonlinear attitude controller
	Nonlinear position and velocity controller

	Neural payload estimation
	Experimental results
	Baseline controller comparison
	Controller with high-gain observer comparison
	Discussion on learning

	Conclusions and perspectives

	Conclusion
	General overview
	Perspectives

	Disturbances observers
	Linear disturbances observer
	High-gain observer

	Deep Learning generalities
	Introduction
	Deep neural networks
	Perceptrons description
	Multilayer perceptrons

	Learning neural network parameters
	Loss function
	Gradient descent algorithm
	Computing gradient

	Universal approximation theorem

	Bibliography

