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Introduction

L’objectif de cette thèse est d’utiliser les outils de l’informatique théorique pour
améliorer les algorithmes en pratique. Un algorithme est un ensemble d’instructions à
suivre pour répondre à une question à partir de certaines données d’entrée. Les algo-
rithmes sont généralement conçus pour les ordinateurs, mais les humains les utilisent
également. Prenons l’exemple de la méthode utilisée à l’école primaire pour additionner
deux grands nombres : notre prof a dit d’additionner les chiffres les plus à droite, d’écrire
les unités du résultat et de reporter la retenue si nécessaire ; puis de répéter l’opération
avec le chiffre suivant.

Le travail présenté dans ce manuscrit se concentre sur les algorithmes qui traitent les
données sous forme de graphes plutôt que d’entiers comme dans l’algorithme d’addition
ci-dessus. Un graphe est un objet mathématique qui représente des éléments en inter-
action ; un élément est appelé nœud ou sommet, et deux éléments qui interagissent sont
liés par une arête. La Figure 1.1 montre un exemple de graphe. L’informatique s’intéresse
depuis longtemps aux propriétés de ces objets et a conçu des algorithmes théoriques pour
des graphes arbitraires : vérifier si le graphe entier est connecté, trouver les chemins
les plus courts ou le plus grand ensemble de nœuds interconnectés, etc. Des modèles
de graphes aléatoires où les nœuds ont une certaine probabilité d’interagir ont aussi été
étudiés. Cependant, les graphes constituent également une structure simple pour décrire
un certain nombre de situations réelles : le commerce international, les embouteillages,
la collaboration scientifique... Les personnes expertes des domaines correspondants peu-
vent collecter ces données et les partager avec d’autres sous la forme d’un graphe. L’étude
de ces réseaux réels diffère de l’étude des modèles mathématiques de graphes : ils ont des
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Figure 1: Example of graph with 20 nodes (red) and 50 edges (black).

propriétés spécifiques dues à la situation dont ils sont issus, mais ces propriétés ne sont
pas connues à l’avance.

Le principal défi associé aux réseaux du monde réel est leur taille. Notre capacité
collective à collecter et à organiser des données permet de disposer de graphes de plus
en plus grands : les réseaux sociaux en ligne peuvent tracer des millions de membres et
leurs milliards d’interactions, des trillions de courriels sont envoyés chaque année entre
des milliards d’internautes, et les biologistes travaillent activement à cartographier les
1014 (cent mille milliards) de connexions synaptiques d’un cerveau humain.

Combien de temps faut-il à un algorithme pour traiter de tels graphes ? En d’autres
termes, est-il possible de concevoir des algorithmes qui passent à l’échelle des plus grands
réseaux réels ? La relation entre la taille du graphe et le temps d’exécution de l’algorithme
est appelée complexité en temps. Pour les grands graphes, l’objectif est d’avoir une complex-
ité linéaire, soit un temps à peu près proportionnel à la taille du graphe, où la taille est
le nombre de nœuds ou d’arêtes du graphe. Pour certaines questions classiques, la com-
munauté scientifique ne connaît malheureusement que des algorithmes qui répondent en
temps exponentiel dans le pire des cas. Le pire des cas est souvent étudié en algorithmique
pour qualifier la difficulté d’un problème. Cependant, commementionné précédemment,
les réseaux réels ont des propriétés spécifiques qui les distinguent du pire cas, à tel point
qu’il a été observé que de nombreux algorithmes ayant une complexité élevée dans le pire
cas se comportent de manière quasi linéaire sur les réseaux réels. D’où les contraintes
générales de cette thèse pour le passage à l’échelle : en termes de complexité, les algo-
rithmes doivent avoir une complexité théorique raisonnable (non exponentielle) sur les
classes de graphes considérées ; en termes de temps d’exécution, ils doivent évoluer de
manière quasi-linéaire et prendre moins de quelques heures pour traiter un graphe avec
des milliards d’arêtes sur un ordinateur portable standard (à condition qu’il y ait suff-
isamment de mémoire).

Pour résoudre le problème de passage à l’échelle, cette thèse propose d’ordonner les
nœuds. Ordonner les nœuds d’un graphe dans un ordre pertinent s’est avéré essentiel
pour résoudre divers problèmes dans les grands graphes. Pour nous convaincre de l’im-
portance de l’ordre, reprenons l’exemple des additions : si nous devons calculer men-
talement 19+7+3, dans quel ordre allons-nous le faire ? Commencer par 19+7 n’est pas
évident, alors que nous pouvons reconnaître directement 7+3=10, après quoi ajouter 19
est plus simple. Dans les deux cas, le résultat est 29 et nous parvenons à le trouver. Cepen-
dant, l’ordre dans lequel nous traitons les éléments a une influence sur le temps total de
l’algorithme. Le même phénomène se produit dans les algorithmes de graphes sur ordi-
nateur : le choix d’un ordre approprié des nœuds peut rendre l’exécution plus rapide ou
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le résultat plus précis. D’où la question qui nous guidera tout au long de ce manuscrit :

Comment l’ordre des nœuds
peut-il nous aider à passer à l’échelle

sur les grands réseaux réels ?

Pour répondre à cette question, la première étape consiste à identifier les problèmes
d’algorithmique de graphes qui peuvent bénéficier d’un réordonnancement des nœuds.
Les graphes représentent normalement des éléments en interaction de manière non or-
donnée : il n’y a pas de concept naturel de premier nœud dans un graphe. C’est pourquoi
la plupart des algorithmes de graphes ne semblent pas, à première vue, dépendre de l’or-
dre des nœuds. Toutefois, les algorithmes traitent les données une par une, ce qui fait
émerger un ordre implicite : il y a un premier nœud pour l’algorithme. Le défi est de
comprendre pour quels algorithmes cet ordre est important et quels gains peut apporter
un réordonnancement : temps, qualité, garantie mathématique...

Une fois qu’un problème pertinent a été identifié, la tâche principale consiste à con-
cevoir un ordre qui améliore les algorithmes correspondants. Il existe heureusement un
large répertoire d’ordres auxquels on peut faire appel, dont beaucoup ont été conçus en
tenant compte des contraintes de complexité. Parmi eux, le plus polyvalent est sans doute
l’ordre des degrés : les nœuds sont classés en fonction du nombre d’arêtes dans lesquelles
ils sont impliqués. De nouveaux problèmes peuvent réutiliser un tel ordre ou l’adapter
à leurs propres caractéristiques. Il est également courant de définir de nouveaux ordres,
auquel cas une attention particulière est portée au temps de calcul lorsqu’il s’agit d’appli-
cations pratiques.

Pour valider la pertinence d’un ordre, il est essentiel de disposer à la fois de preuves
mathématiques et de résultats expérimentaux. Les preuves mathématiques permettent
d’ancrer la méthode d’ordonnancement dans la théorie existante et de garantir le com-
portement des algorithmes en toutes circonstances : par exemple, prouver qu’un ordre
spécifique réduit la complexité temporelle d’un algorithme donne un nouvel aperçu du
problème, ce qui peut conduire à d’autres résultats théoriques. Les résultats expérimen-
taux mettent l’accent sur les cas d’utilisation où la méthode d’ordonnancement a un im-
pact quantitatif et indiquent des applications possibles dans le monde réel.

Résumé des contributions

Compte tenu de ces trois tâches que sont l’identification du problème, la conception de
l’ordre et la validation expérimentale, voici l’organisation dumanuscrit et nos principales
contributions :

Chapitre 2
Préliminaires
De la théorie des graphes à l'analyse des réseaux

Ce chapitre introduit les nations d’informatique et les notations utilisées tout au long
de la thèse. Il présente d’abord la théorie des graphes avec des notions de complexité
algorithmique et de structures de données. Il décrit ensuite les défis associés à l’étude des
graphes réels et présente les sources et les propriétés des jeux de données utilisés dans les
expériences. Il aborde également la question des fluctuations des mesures de temps dues
aux contraintes matérielles.



10

Chapitre 3
Revue des ordres existants

Ce chapitre est une revue desméthodes d’ordonnancement des nœuds existantes dans
un éventail de domaines d’application. La contribution est une liste étendue des ordres
qui apparaissent sous différents noms et formes dans la littérature, ainsi qu’une clas-
sification des principaux mécanismes qui requièrent des ordres et des méthodes algo-
rithmiques utilisées pour les calculer. Nous abordons également les cas où les ordres
représentent d’autres problèmes de la théorie des graphes. Nous examinons en outre des
considérations pratiques pour concilier le bénéfice des ordres et le coût de leur calcul.

Cet inventaire met en évidence la diversité des cas d’utilisation des ordonnancements
de nœuds tout en montrant des tendances communes dans l’intention sous-jacente :
placer les nœuds côte à côte s’ils sont connectés ensemble ou avec les mêmes nœuds,
s’assurer que les nœuds successifs dans l’ordre sont connectés dans le graphe, classer les
nœuds selon une notion d’importance, représenter les propriétés de connectivité pour
les groupes de nœuds, ou appliquer une contrainte sur l’emplacement relatif des nœuds
dans l’ordre. Nous identifions quatre méthodes communes utilisées par la plupart des
algorithmes pour calculer les ordres : l’optimisation d’une fonction mathématique, la
sélection des nœuds selon une notion de priorité, la réduction du graphe pour anal-
yser un graphe plus petit, ou le traitement successif des nœuds pour décider de leur
emplacement dans l’ordre.

Chapitre 4
Ordres pour accélérer les calculs
Réduire le taux de défaut de cache des algorithmes de graphe

Ce chapitre développe l’application des ordres de nœuds au problème de l’optimi-
sation du cache. La contribution est une réplication complète d’un article influent qui
compare divers ordres sur une sélection d’algorithmes. Nous fournissons également des
discussions supplémentaires sur les choix algorithmiques et sur la performance des dif-
férents ordres. Le projet inclut une implémentation open-source de tous les ordres et
algorithmes de l’article, ce qui manquait auparavant dans la littérature.

Les personnes ayant écrit l’article initial conçoivent une fonction mathématique qui
estime l’efficacité d’un système de cache pour un algorithme de graphe arbitraire, et elles
créent un nouvel ordre appelé Gorder afin d’optimiser cette fonction. En testant leur or-
dre pour une variété d’algorithmes de graphes, elles affirment que Gorder conduit à une
accélération moyenne de 20% par rapport à lorsque l’ordre initial du graphe est conservé.
Nos résultats confirment cette tendance et montrent que les performances de Gorder sont
dues à une meilleure utilisation du cache. Cependant, nous nuançons ce résultat en mon-
trant que d’autres ordres comme le parcours en largeur sont presque aussi performants,
alors qu’ils reposent sur des concepts algorithmiques plus simples, ont une complexité
temporelle plus faible et peuvent être calculés beaucoup plus rapidement. Le temps de
calcul de Gorder n’évolue pas linéairement quand les graphes grandissent, ce qui le rend
impraticable pour les grands graphes et souligne le compromis à trouver entre le temps de
calcul de Gorder et l’accélération substantielle qu’il apporte aux algorithmes de graphes
effectués ensuite. Par ailleurs, nous analysons un paramètre impliqué dans le calcul de
Gorder et montrons qu’il n’a pas autant d’impact sur la qualité de l’ordre que ce que l’on
pensait jusqu’à présent.
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Chapitre 5
Ordres pour réduire le nombre d'opérations
Énumérer les triangles d'un graphe non-orienté

Ce chapitre aborde une question importante de l’exploration des données : l’énuméra-
tion des triangles d’un graphe. La principale contribution est un ensemble de nouveaux
ordres qui accélèrent de manière significative les algorithmes d’énumération de triangles
existants. Dans le contexte des grands graphes réels, les algorithmes actuels les plus rapi-
des emploient des ordres de nœuds. Tout d’abord, les nœuds reçoivent des indices dans
un ordre spécifique. Ensuite, les arêtes sont dirigées des indices de nœuds inférieurs vers
les indices supérieurs : elles pointent toutes dans une direction spécifique. Au lieu de
balayer les arêtes jusqu’à ce que trois d’entre elles forment un triangle, l’algorithme suit
la direction des arêtes et les triangles sont identifiés plus rapidement. Pour simplifier, l’al-
gorithme explore des chemins de longueur deux : d’un nœud d’origine, en passant par
un nœud intermédiaire, jusqu’à un nœud de destination ; si l’origine et la destination sont
reliées par une troisième arête, un triangle a été trouvé. Le temps d’exécution de l’algo-
rithme dépend du nombre de chemins de longueur deux ; mais rappelons que les chemins
sont définis par la direction des arêtes, qui sont données par les indices des nœuds. Le
choix de l’ordre aura donc un impact sur le temps que l’algorithme met à trouver tous les
triangles.

Si les algorithmes de listage de triangles de la littérature utilisent cette technique pour
accélérer leur exécution, ils utilisent des ordres de base qui offrent des garanties math-
ématiques générales. Au contraire, notre travail étudie une fonction mathématique qui
représente le nombre d’opérations des algorithmes de listage de triangles standard en
fonction de l’ordre des nœuds. Après avoir prouvé que la recherche d’un ordre optimal
est computationnellement difficile, nous proposons différentes façons d’obtenir une so-
lution approximative, certaines se concentrant sur la qualité de l’ordre et d’autres sur la
vitesse de son calcul.

Ces nouveaux ordres comblent un vide dans la littérature : bien que deux algorithmes
avec des formules de complexité différentes aient été découverts, les ordres de nœuds
n’ont été conçus que pour le premier. Nos ordres sont spécifiquement adaptés au second,
ce qui permet d’accélérer le calcul. Nos expériences sur de grands réseaux réels con-
firment que les nouveaux ordres accélèrent de manière significative l’énumération des
triangles.

Chapitre 6
Ordres pour certifier la qualité
Certification de qualité pour des heuristiques de couverture par sommets

Ce chapitre aborde sur les réseaux réels le problème computationnellement difficile de
la recherche d’une couverture minimale par sommets. La contribution est une méthode
pour certifier la qualité d’une solution approximative lorsque la solution optimale n’est
pas disponible ou trop coûteuse à calculer. Bien que tous les algorithmes connus pour
résoudre le problème de la couverture par sommets aient une complexité exponentielle
dans le pire des cas, nous exploitons deux algorithmes qui s’exécutent en temps linéaire :
l’un trouve une solution approximative pour la couverture par sommets, et l’autre calcule
une limite inférieure de la solution optimale. Ensemble, ces deux résultats certifient que
la couverture approximative est proche de la solution optimale. Pour ce faire, nous ex-
ploitons des ordres de nœuds simples basés sur le degré des nœuds. Les algorithmes de
bornes sont basés sur d’autres problèmes de graphes importants, à savoir les problèmes
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de couplage maximum et de partition en cliques.
Nous effectuons des expériences approfondies sur un grand nombre de réseaux réels ;

la méthode de certification qui utilise les couvertures par sommets garantit que les cou-
vertures par sommets approximatives sont presque optimales sur tous les graphes. Cela
indique que les réseaux réels possèdent des propriétés qui facilitent le problème de la
couverture par sommets. Le principe de la méthode de certification est général et nous
en esquissons des extensions à quelques autres problèmes de graphes.

Chapitre 7
Science des réseaux
Profils de mobilité dans l'espace des connaissances scientifiques

Ce chapitre présente un travail conjoint avec une équipe de science des données et qui
ne concerne pas les ordres de nœuds et dépasse donc la ligne directrice de la thèse. Nous
étudions le réseau de collaboration donné par une collection d’articles scientifiques. La
contribution est une analyse des trajectoires des scientifiques dans l’espace de la connais-
sance au cours de leur carrière, qui montre des schémas communs avec les déplacements
humains sur le globe. Nous utilisons toutes les publications d’arXiv 1 pour créer un es-
pace à haute dimension qui représente les différents domaines scientifiques et les articles
correspondants. Nous dessinons la trajectoire des scientifiques, c’est-à-dire la séquence
des domaines dans lesquels ils ont publié leurs articles. En projetant cet espace en deux
dimensions, nous pouvons le comparer à la mobilité géographique.

Les résultats statistiques montrent que les flux de trajectoires entre deux lieux de con-
naissance sont compatibles avec unmodèle de gravité : les scientifiques peuvent s’éloigner
de leur domaine initial, mais seulement si le domaine de destination est très actif. Nous
identifions deux types de profils de mobilité individuels entre lesquels nous pouvons sé-
parer les personnes qui font de la recherche : les exploratrices, qui s’engagent dans la
recherche interdisciplinaire et ouvrent de nouveaux domaines, et les exploitantes, qui
restent dans leur domaine et développent une expertise.

Perspectives

Les contributions de cette thèse et la vaste littérature antérieure montrent que les or-
dres de nœuds sont un élément crucial des algorithmes de graphes. Pour cette raison,
nous pensons qu’une analyse plus systématique des ordres pourrait conduire à de nou-
veaux résultats. Tout d’abord, lorsque nous soupçonnons qu’un algorithme ou une tech-
nique est influencé par l’ordre des nœuds, nous pourrions tester systématiquement les
ordres existants afin de mieux comprendre quels sont les mécanismes qui fonctionnent
le mieux. La classification du chapitre 3 pourrait contribuer à cet objectif, ainsi que les
différents ordres que nos implémentations proposent (voir Introduction). Deuxième-
ment, les ordres définis par des fonctions objectives pourraient bénéficier d’une analyse
théorique plus approfondie : une façon classique de les traiter, que nous avons suivie dans
le chapitre 5, est de prouver leur difficulté, puis de concevoir des heuristiques dont on
pense intuitivement qu’elles améliorent la valeur de la fonction. Bien que les résultats ex-
périmentaux soient un moyen valable de prouver le succès de ces heuristiques, une base
mathématique plus solide du problème difficile initial est également importante. Dans
cette direction, la conception d’algorithmes ou de schémas d’approximation est intéres-
sante, de même que la recherche de classes de graphes ou de paramètres pour lesquels

1arXiv est une plateforme où les scientifiques partagent leurs articles en libre accès : https://arxiv.org.

https://arxiv.org
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le problème est abordable. La recherche de bornes pour l’optimisation est également une
piste intéressante à explorer, comme dans le chapitre 6 : les bornes révèlent à quel point
l’heuristique est proche de l’optimum, ce qui indique s’il vaut la peine de déployer des
efforts supplémentaires pour s’approcher de l’optimum.

Dans certains problèmes de graphes, l’ordre des arêtes peut être plus pertinent que
l’ordre des nœuds. Notez qu’il existe des moyens naturels de définir l’un à partir de
l’autre : étant donné un ordre de nœuds, on peut ordonner les arêtes selon le plus pe-
tit indice de leurs nœuds ; inversement, étant donné un ordre d’arêtes, on peut ordon-
ner les nœuds selon l’indice de la première arête dans laquelle ils apparaissent. Dans
cette thèse, nous nous concentrons sur l’ordre des nœuds en nous appuyant sur deux hy-
pothèses : le graphe est stocké sous forme de listes d’adjacence et la principale opération
atomique des algorithmes consiste à énumérer les voisins d’un nœud. Cependant, l’ordre
des arêtes s’avère pertinent dans d’autres contextes, lorsque les arêtes sont l’élément clef
au lieu des nœuds. La première hypothèse est invalidée lorsque le graphe est stocké sous
forme de liste d’arêtes, ce qui est un format standard pour partager des ensembles de don-
nées dans un fichier. La deuxième hypothèse est inexacte pour certains algorithmes basés
sur les arêtes, notamment l’algorithme gourmand de couplage décrit dans le chapitre 6.
De même, certaines méthodes de calcul du Pagerank et des centralités par vecteurs pro-
pres reposent sur l’énumération des arêtes, et l’ordre des arêtes peut donc influer sur la
vitesse de convergence de ces algorithmes. Dans unematrice d’adjacence, chaque élément
correspond à une arête ; l’énumération des arêtes suivant l’ordre des nœuds correspon-
dants revient à lire la matrice ligne après ligne. Cependant, il ne s’agit là que d’une des
nombreuses possibilités d’énumérer les arêtes, et d’autres ordres ont été proposés. L’un
d’entre eux est l’ordre des courbes bidimensionnelles de remplissage de l’espace : le tracé
d’une courbe qui traverse tous les éléments de la matrice d’adjacence fournit un ordre des
arêtes qui ne correspond pas à l’ordre des nœuds. Des recherches sur les ordres des arêtes
nous aideraient à comprendre comment les ordres des nœuds et des arêtes sont corrélés,
et quel type d’ordre est le mieux adapté à un problème de graphe particulier.

Les ordres constituent unmoyen caché de rendre les algorithmes plus rapides ou plus
efficaces et, à ce titre, ils pourraient être intégrés dans des systèmes de traitement des
graphes. Ces systèmes logiciels permettent généralement aux personnes utilisatrices de
stocker, de modifier et de consulter efficacement de grands graphes de manière parallèle
ou distribuée. Pour ce faire, ces systèmes nécessitent des algorithmes et des structures
de données spécialisés pour effectuer des opérations telles que la traversée de graphes, la
fouille de motifs ou la détection de communautés. Ordonner les nœuds d’une manière
spécifique pourrait aider à accélérer ces tâches en général, comme on l’a vu avec l’optimi-
sation du cache dans le chapitre 4. Il est même possible de maintenir plusieurs ordres de
manière transparente, de sorte que chaque type de requête puisse être traité avec un ordre
approprié. Par exemple, si le système maintient un ordre des nœuds basé sur leur degré,
il peut traiter plus efficacement les requêtes qui reposent sur le degré, comme l’énuméra-
tion des triangles dans le chapitre 5 ou d’autres tâches de fouille de motifs. Simultané-
ment, le système peut maintenir un ordre des nœuds avec un mécanisme de localité pour
améliorer les résultats des algorithmes qui tirent parti de cette propriété, comme le parti-
tionnement des graphes. Étant donné le nombre limité demécanismes d’ordonnancement
impliqués dans les domaines d’application, les systèmes de traitement des graphes pour-
raient faire face à une diversité de requêtes avec seulement quelques ordres à maintenir,
ce qui rendrait le surcoût de temps et d’espace raisonnable.

En outre, il est possible d’appliquer les techniques d’ordre à des modèles de graphes
plus sophistiqués, notamment les graphes temporels ou dynamiques. Pour un graphe
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qui évolue dans le temps du fait de l’ajout ou de la suppression de nœuds et d’arêtes, le
défi consiste à maintenir un ordre exact ou approximatif avec des propriétés spécifiques.
Si maintenir l’ordre des degrés est possible avec une file de priorité, ce n’est pas évident
pour des ordres plus élaborés tels que l’ordre par dégénérescence ou Slashburn. En effet,
ils sont basés sur une décomposition du graphe qui peut changer sensiblement par l’ajout
d’une seule arête. Une extension du problème de la maintenance consisterait à concevoir
des ordres robustes aux modifications du graphe. De tels ordres seraient les meilleurs
candidats pour résoudre le compromis du temps de calcul : on peut accepter de passer
plus de temps à calculer un ordre si l’on a la garantie qu’il peut être mis à jour en peu de
temps lorsque le graphe change.

Enfin, les ordres ne se limitent pas aux problèmes de graphes et peuvent également
être liés au problème algorithmique du plongement. Un plongement peut être considéré
comme une centralité multidimensionnelle qui recherche un placement optimal des élé-
ments pour satisfaire certaines contraintes, telles que le regroupement d’éléments ou le
maintien de la variabilité sur un petit nombre de dimensions. En explorant l’utilisation
des ordres dans ce problème qui ne concerne pas les graphes, nous pourrions découvrir
de nouvelles idées et techniques qui s’appliquent aux problèmes de graphes. Par exem-
ple, le concept de localité dans les ordres de nœuds peut être dérivé d’un plongement
de nœuds, comme suggéré dans le chapitre 7. Ainsi, les ordres peuvent servir d’outil
puissant pour traiter un spectre plus large de problèmes algorithmiques.
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22 Chapter 1. Introduction

The aim of this thesis is to use theoretical tools of computer science to improve algo-
rithms in practice. An algorithm is a set of instructions to follow in order to answer a
question starting from some input data. Algorithms are usually designed for computers,
but humans use them too. Consider as an example the primary school method to add two
large numbers: the teacher said, add up the rightmost digits, write down the units of the
result, and report the carry if necessary; then repeat with the next digit. As an illustration
for readers who are not familiar with algorithms, Algorithm 1, below, shows how such
a procedure can be formalised: it starts with two numbers x and y given by their digits,
and a resulting sum z that is initially zero (line 1). Reading the indices i from right to left
(line 2), it adds the i-th digits of x and y with the possible carry zi (line 3). The unit digit
of the result w corresponds to the i-th digit of the result (line 5), while the tens of w carry
to the next iteration of the loop (line 6). Once all digits have been treated, z contains the
result of the sum x+ y.

Algorithm 1 – Manually adding two numbers
Input: x and y two integers given in their decimal writing xaxa−1 . . . x1 and yaya−1 . . . y1.
Output: z = x+ y given in its decimal writing za+1za . . . z1.
1: define z by its digits z1 = z2 = · · · = za+1 = 0
2: for i going from 1 to a do
3: compute w = xi + yi + zi . xi, yi, zi are digits between 0 and 9 so w ≤ 27
4: write the two digits of w = w2w1 . w2 may be zero
5: set zi = w1 . final result for digit i
6: set zi+1 = w2 . carry for the next step

return z = za+1za . . . z1

The work presented in this manuscript focuses on algorithms that process data in the
form of graphs rather than integers like Algorithm 1. A graph is amathematical object that
represents interacting elements; an element is called a node or a vertex, and two elements
that interact are linked by an edge. An example of graph is displayed in Figure 1.1. Com-
puter scientists have long been interested in the properties of these objects, and they have
designed theoretical algorithms for arbitrary graphs: checking whether the whole graph
is connected, finding the shortest paths or the largest set of inter-connected nodes, etc.
They have also studied models of random graphs where the nodes have a certain proba-
bility of interacting. However, graphs are also a simple structure to describe a number of
real-world situations: international trade, traffic jams, scientific collaboration... Experts of
the corresponding fields can collect this data and share it to others as a graph file. Study-
ing these real-world networks differs from studying mathematical models of graphs: they
have specific properties due to the situation from which they arise, but these properties
are not known in advance.

Themain challenge associatedwith real-world networks is their gigantism. Our collec-
tive ability to gather and organise data makes increasingly large graphs available: online
social networks can track millions of users and their billions of interactions, trillions of
emails are sent every year between billions of internet users, and biologists are actively
working on mapping the 1014 (hundred thousand billion) synaptic connections of a hu-
man brain.

How long will an algorithm take to process such graphs? In other words, is it possible
to design algorithms that scale to the largest real-world networks? The relation between
the size of the graph and the execution time of the algorithm is called the time complexity.
For large graphs, the aim is to have a linear complexity, or a time roughly proportional to
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Figure 1.1: Example of graph with 20 nodes (red) and 50 edges (black).

the size of the graph, where the size is the number of nodes or edges of the graph. For
some standard questions, unfortunately, the scientific community only knows algorithms
that answer in exponential time in theworst case. Theworst-case scenario is often studied
in algorithmics to qualify the difficulty of a problem. Yet, as mentioned earlier, real-world
networks have specific properties that distinguish them from the worst case, so much that
many algorithms with high worst-case complexity have been observed to behave quasi-
linearly on real-world networks. Hence the general scalability constraints for this thesis:
in terms of complexity, algorithms should have a reasonable (not exponential) theoretical
complexity on the considered classes of graphs; in terms of execution time, they should
scale quasi-linearly and take less than a few hours to process a network with billions of
edges on a standard laptop (as long as it has enough memory).

To address the scalability issue, this thesis proposes to use node orderings. Sorting the
nodes of a graph in a relevant order has proved to be key for solving various problems
in large graphs. To convince ourselves that orderings matter, let us take the example of
additions again: if we need to mentally calculate 19+7+3, in which order will we do it?
Starting with 19+7 is not straightforward, while we may recognise 7+3=10 directly, after
which adding 19 is simpler. In both cases, the result is 29 and we manage to find it. Yet,
the order in which we process the elements can change the total time of the algorithm.
The same phenomenon arises in graph algorithms on a computer: choosing an appropri-
ate node ordering can make the execution faster or the result more accurate. Hence the
question that will guide us throughout this manuscript:

How can node orderings help us
design scalable algorithms
for real-world networks?

To answer this question, a crucial step is to identify which algorithmic graph problems
can benefit from node orderings. Graphs normally represent interacting elements in an
unordered way: there is no natural concept of first node in a graph. For this reason, most
graph algorithms do not seem to involve node orderings at first sight. On the other hand,
the fact that algorithms handle pieces of data one by one lets an implicit ordering emerge:
there is a first node for the algorithm. The challenge is to understand forwhich algorithms
this ordering matters and what gains a reordering may bring: time, quality, mathematical
guarantee...

Once a suitable problem has been identified, themain task consists in designing an or-
dering that enhances the corresponding algorithms. Fortunately, there is a large repertoire
of orderings that can be called upon, many of which were designed with scalability con-
straints in mind. Among them, the most versatile is perhaps the degree ordering: nodes



24 Chapter 1. Introduction

are ranked according to the number of edges in which they are involved. New problems
may reuse such an ordering or adapt it to their distinctive characteristics. It is also com-
mon to define new orderings, in which case a particular attention is paid to scalability
issues when it comes to practical applications.

To validate the impact of an ordering, both mathematical proofs and experimental ev-
idence are critical. Mathematical proofs are a way to ground the ordering method into
existing theory and to guarantee the behaviour of algorithms in any circumstance: for in-
stance, proving that a specific ordering reduces the time complexity of an algorithm gives
a new insight on the problem, which can lead to further theoretical results. Experimental
evidence emphasises use cases where the ordering method has a quantitative impact and
points towards possible real-world applications.

Considering these three tasks of problem identification, ordering design, and valida-
tion, here is the organisation of the manuscript and our main contributions:

Chapter 2 introduces the computer science concepts and notations used throughout the
thesis. It first presents a background on graph theory with notions of algorithmic com-
plexity and data structures. It then outlines the challenges of graph mining associated
with real-world networks and it presents the sources and properties of the datasets that
are used in the experiments. It also discusses the hardware issues related with fluctua-
tions in time measurements.

Chapter 3 reviews existing node ordering methods across a panel of application do-
mains. The contribution is an extensive list of orderings that appear under different names
and shapes in the literature, as well as a classification of the main mechanisms that call
for orderings and algorithmic methods used to compute them. Additionally, we discuss
cases where orderings can represent other problems of graph theory, and practical con-
siderations to balance the gain of orderings with the cost of computing them.

This review highlights the diversity of use cases for node orderings, while showing
common patterns in the underlying intention: placing nodes together if they are con-
nected together or with the same nodes, ensuring that successive nodes in the ordering
are connected in the graph, ranking the nodes according to a notion of importance, rep-
resenting connectivity properties for groups of nodes, or enforcing a constraint on the
relative location of nodes in the ordering. We identify four common methods used by
most of the algorithms to compute orderings: optimising a mathematical function, select-
ing nodes according to a notion of priority, reducing the graph to analyse a smaller graph,
or streaming the nodes to decide where to place them in the ordering.

Chapter 4 develops the application of node orderings to the problem of cache optimi-
sation. The contribution is a full replication of an influential paper that compares various
orderings over a selection of algorithms. We also provide additional discussions on the
algorithmic choices and on the performance of different orderings. The project includes
an open-source implementation of all the orderings and algorithms of the paper, which
was previously missing from the literature.

The authors of the initial paper design a mathematical function that estimates the effi-
ciency of a cache system for an arbitrary graph algorithm, and they create a new ordering
called Gorder to optimise this function. Testing their ordering for a variety of graph al-
gorithms, they claim that Gorder leads to an average speedup of 20% compared to keep-
ing the initial ordering of the network. Our results confirm this tendency and give evi-
dence that the performance of Gorder is due to a better use of the cache. Yet, we mitigate
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the result by showing that other orderings perform almost as well although they rely on
simpler algorithmic concepts, have a lower time complexity, and can be computed much
faster. Additionally, we analyse a parameter involved in computing Gorder and show that
it does not impact the quality of the ordering as much as what was previously thought.

Chapter 5 addresses an important question of pattern mining: enumerating the trian-
gles of a graph. The main contribution is a set of new orderings that significantly accel-
erate state-of-the-art triangle listing algorithms. We study a mathematical function that
represents the number of operations of standard triangle listing algorithms depending
on the node ordering. After proving that finding an optimal ordering is computationally
hard, we propose different ways to obtain an approximate solution, some that focus on
the quality of the ordering, and some that focus on the speed of its computation.

These new orderings bridge a gap in the literature: although two algorithms with
different complexity formulas have been discovered, node orderings have only been de-
signed for the first one. Our orderings are specifically tailored for the second one, which
leads to a speedup that we assess in experiments with a panel of large real-world graphs.

Chapter 6 tackles on real-world networks the computationally hard problem of find-
ing a minimum vertex cover. The contribution is a method to certify the quality of an
approximate solution when the optimal solution is unavailable or too costly to compute.
Although all the algorithms known to solve the vertex cover problem have an exponential
worst-case complexity, we leverage two algorithms that run in linear time: one that finds
an approximate solution for vertex cover, and one that computes a lower-bound on the
optimal solution. Together, these two results certify that the approximate cover is close to
the optimum. To do so, we exploit simple node orderings based on the degree of nodes.
The bounding algorithms are based on other important graph problems, namely themax-
imum matching and the clique cover problems.

We perform thorough experiments on a large panel of real-world networks; the certifi-
cation method that uses clique covers is able to guarantee that approximate vertex covers
are almost optimal on all the graphs. This indicates that real-world networks have prop-
erties that make the vertex cover problem easier. The principle of the certification method
is general and we sketch extensions of it to a few other graph problems.

Chapter 7 presents a joint work with a data science team that does not involve node
orderings and is thus beyond the main scope of the thesis. We study the collaboration
network given by a collection of scientific papers. The contribution is an analysis of the
trajectories of researchers in knowledge space across their career, which shows common
patterns with the movements of humans on the globe. We use all the publications of
arXiv 1 to create a high-dimensional space that represents the different scientific fields
and the corresponding papers. We draw the trajectory of researchers, which means the
sequence of fields in which they published their papers. Projecting this space in two di-
mensions, we are able to compare it with geographic mobility.

Statistical results show that the flows of trajectories between two knowledge locations
comply with a gravity model: researchers may jump far away from their initial field, but
only if the destination field is very active. We identify two types of researchers according
to their individual mobility patterns: explorers, who engage in interdisciplinary research
and open new fields, and exploiters, who stay within their field and develop an expertise.

1arXiv is a platform where researchers share their papers in open-access: https://arxiv.org.

https://arxiv.org
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In this chapter, we introduce themathematical concepts andnotations thatwill be used
throughout the manuscript. We begin by presenting key tools of graph theory, including
algorithmic complexity and graph data structures. We then expose the specifics of graph
mining problems when dealing with large real-world networks. Finally, we discuss the
hardware issues that can be faced while trying to accurately measure the execution time
of algorithms.

2.1 Graph theory and algorithmics

Graph theory is a branch of mathematics and computer science that studies objects
made of relations between elements. While these discrete objects have been studied for
centuries as pure mathematical constructions, they were originally devised to represent
real-world situations, which calls for applied methods and efficient algorithms.

2.1.1 Definitions and notations

Formally, a graph G is a pair (V,E), where V is a set of n elements called the nodes or
vertices of the graph, and E is a set of m elements of V × V called the edges or links of the
graph. In an undirected graph, an edge e ∈ E can be seen as a set of two distinct nodes
(e = {u, v}) or two symmetric pairs ((u, v) and (v, u)). We say that u and v are adjacent,
that e is incident to u and v, and that v is a neighbour of u (and conversely). The set of
neighbours of a vertex u is denoted Nu = {v, {u, v} ∈ E}, and its degree is the number of
neighbours du = |Nu|. In a directed graph, an edge or arc e ∈ E is a directed pair of distinct
nodes: e = (u, v). We say that e connects u to v, that u is a predecessor of v and v is a
successor of u. The set Nu of neighbours of u is partitioned into its predecessors N−

u and
successorsN+

u , which also defines the indegree d−u = |N−
u | and the outdegree d+u = |N+

u |;
their sum is d−u + d+u = du.

A subgraph of G is a graph G′ = (V ′, E′) made of a subset of nodes from the original
graph along with some of the edges that connect them. More precisely, V ′ is a subset of
V and E′ is a subset of E that only contains edges with both endpoints in V ′: V ′ ⊆ V
and E′ ⊆ E ∩ V ′ × V ′. If E′ = E ∩ V ′ × V ′, then G′ is an induced subgraph. Some
subgraphs are of particular interest in graph theory. A walk is a sequence of edges such
that an edge finishes on the node where the next edge in the sequence begins. A path is
a walk where all the nodes are distinct. A cycle is a walk of distinct edges (at least three)
that starts and ends at the same node. A triangle is a set of vertices {u, v, w} such that
{u, v}, {v, w}, {u,w} ∈ E (for an undirected graph). A k-clique is a set of k vertices that
are all fully connected, meaning that there is an edge between every pair of vertices in the
set; a triangle is thus a 3-clique.

Graph theory has specificmethods and algorithms for someparticular types of graphs.
A graph is considered connected if there exists a path between any two nodes, otherwise it
can be broken down into maximal connected subgraphs known as connected components.
A tree is a connected graph that contains no cycles, meaning that there is only one path
between any two nodes. A bipartite graph is a graph that has no cycle of odd length; its
nodes can be partitioned into two sets such that every edge connects a node of the first set
with a node of the second set, and there is no edge within a set. A graph is planar if it can
be drawn on a sheet of paper without any of its edges crossing.

In addition to these definitions, other attributes can be added to the structure of the
graph. In a weighted graph, a function w : E → R gives a numerical value to the edges
to represent their length or capacity. A labelled graph assigns a category or a value to its
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nodes in order to distinguish several types of nodes; node orderings are a type of node
labelling. Some graph models include loops, which are edges that connect a node to it-
self. A multigraph is a model of graph where the same pair of nodes can be connected by
multiple edges, in which case they may have distinct labels and represent different types
of links. Describing more complex relations sometimes require hypergraphs, which allow
edges to connect more than two nodes: an edge is a set of nodes with possibly more than
two elements.

2.1.2 Algorithmic complexity

In the field of algorithmics, the question of computational complexity consists in clas-
sifying problems and algorithms based on the resources required to solve them, namely
time and space. This classification involves two distinct aspects: the complexity of an al-
gorithm, which estimates the resources that it requires, and the complexity of a problem,
which represents the minimum resources necessary for an algorithm to solve it.

Time complexity of algorithms

The time complexity of an algorithm is a measure of the amount of time that an algo-
rithm takes depending on the size of the input. It represents an estimate of the number of
operations that an algorithm will perform, and is usually expressed as a function of the
input size. For graph algorithms, the size is mainly represented by the number of nodes
n and edges m, but it can sometimes be parametrised by the properties of the graph such
as the largest degree or the number of triangles.

Time complexity is often used to compare the efficiency of different algorithms that
solve the same problem, and to determinewhether a given algorithm can solve large-scale
problems. It is not an exact count of the number of operations that the algorithm makes,
rather a description of the evolution of this number when the size of the input increases.
To describe this evolution, we use the following asymptotic notations. For two functions
f and g, we write f = O(g)when there exist a factor k ∈ R+ and a threshold x0 such that,
for all x ≥ x0, f(x) ≤ k · g(x). We say that f is asymptotically bounded by g: for large
enough values of x, the function f is lower than g up to a constant factor. When we have
both f = O(g) and g = O(f), we write f = Θ(g): functions f and g are asymptotically
within a constant factor of each other. If this factor can be arbitrarily close to one, we say
that f and g are equivalent and write f ∼ g.

In the context of the complexity of graph algorithms, the function f represents the
number of operations that the algorithm needs. As for the function g, we will usually take
a simple mathematical function as a reference, for instance the square function x 7→ x2,
the logarithm x 7→ log(x), etc. If we take the number of edges m as the size of the graph,
we will say that an algorithm has linear complexity when its number of operations is in
O(m), quadratic for O(m2), exponential for O(2m), logarithmic for O(logm), and quasi-
linear for O(m logm). A polynomial complexity means that there is an exponent α ∈ R+

such that the algorithm needs O(mα) operations. A constant complexity O(1) or Θ(1)
means that the number of operations does not depend on the input size.

Let us stress that the time complexity does not necessarily reflect the time that an al-
gorithm takes. First, recall that the notation ignores multiplicative factors and dominated
terms, so that algorithms with m or 5m+ 2100 operations are both linear, and algorithms
with log2(m), log10(m) or lnm operations are all logarithmic. However, these factors and
terms influence the execution time of the algorithm.
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Second, the O notation represents a worst-case upper-bound. Take for instance an
algorithm that is cubic in the number of nodes, which corresponds to a complexityO(n3).
This notation means that the algorithm can process any graph of n nodes in at mostO(n3)
operations: there may be some graphs that require less operations, and there may be a
lower valid estimate of the complexity. To give a more precise indication of the scalability,
one possibility is to study the average-case complexity. Another option is to use the Θ
notation, which means that the algorithm needs this asymptotic number of operations for
any input. As we will see, the worst-case analysis partly explains why algorithms can
perform well on real-world graphs even though their time complexity is high: real-world
is not the worst.

Apart from time complexity, the question of space complexity of algorithms is also im-
portant: it represents thememory required by an algorithm to process an input of a certain
size. The same asymptotic notations can be used, with the same caveats. Importantly, the
space complexity is always lower than the time complexity, as filling thememory requires
time.

Computational complexity of problems

The complexity of an algorithmic problem can be seen as the lowest time complexity
among all the algorithms that solve the problem. The field of computational complexity
theory provides a detailed hierarchy of complexity for algorithmic problems, consisting
of hundreds of different classes 1. However, for the purpose of this thesis, we will focus
on a specific part of this hierarchy, namely the distinction between problems in P and NP.
These categories concern decision problems, which correspond to yes-no questions.

A decision problem is in P when there exists an algorithmwith polynomial time com-
plexity that solves it for any instance. The exponent of this polynomial, or the multiplica-
tive factors attached to it, can be arbitrarily high, which does not indicate that such an
algorithm can solve big instances in practice. Facing a P problem, we will be interested in
finding algorithms with low exponents, aiming at the ultimate goal of designing a linear
or quasi-linear algorithm.

A decision problem is in NP when its solution can be verified in polynomial time,
which includes problems in P. The open question of P versus NP stresses that it is still
unknownwhether all the problems ofNP are also in P; at themoment, manyNPproblems
have no known polynomial algorithm. SomeNP problems have been shown to be as hard
as any other NP problem, in the sense that solving them translates into a solution for the
other problems; they are called NP-complete. Facing a NP problem that is not known to
be in P, we will be interested in proving that it is NP-complete, and in finding subclasses
of instances for which the problem is in P. We are also interested in the FPT class (fixed-
parameter tractability) that contains the problems that become polynomial when a given
parameter of the instances is a constant.

This classification applies on decision problems, which are yes-no questions. When
it comes to optimisation problems such as finding the minimum of a function, it is com-
mon to obtain problems that are possibly harder than NP-complete problems, and we call
them NP-hard. Facing a NP-hard optimisation problem, we will seek algorithms of lower
complexity that solve it approximately 2.

Whenever the complexity of an optimisation problem is too high for practical applica-
tions, it is interesting to design a constant-factor approximation. For a minimisation prob-

1For a list of complexity classes and their interconnections, see https://complexityzoo.net
2For a list of approximation results, see https://www.csc.kth.se/~viggo/wwwcompendium/

wwwcompendium.html

https://complexityzoo.net
https://www.csc.kth.se/~viggo/wwwcompendium/wwwcompendium.html
https://www.csc.kth.se/~viggo/wwwcompendium/wwwcompendium.html
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Time complexity of operations

Data structure Space
complexity

Adjacency
checking

Neighborhood
listing Edge listing

Adjacency matrix Θ(n2) Θ(1) Θ(n) Θ(n2)
Edge list Θ(m) O(m) Θ(m) Θ(m)

Adjacency lists Θ(n+m) O(du) Θ(du) Θ(n+m)

Table 2.1: Graph data structures and their associated complexities. Bold font represents
the lowest complexity of a given column. In connected graphs, n ≤ m so Θ(n + m) =
Θ(m), which makes the edge list and adjacency lists equivalent for space complexity and
edge listing.

lem with minimum value x, an algorithm is said to be a k-approximation if it outputs a
solution of value y with the guarantee that x ≤ y ≤ kx. In other words, its solution can-
not be too far off the minimum 3. A problem that has a polynomial-time constant-factor
approximation is called approximable, and the class of these problems is noted APX. If
there exists a polynomial k-approximation for any k > 1, we say that the problem has an
approximation scheme and belongs to the class PTAS.

2.1.3 Data structures

This section presents data structures that are commonly used in graph algorithms.
To represent a graph itself, several data structures can be used in practice. The choice
of structure depends on the size of the graph, the available memory, the mathematical
representation of an algorithm, or the type of operations that one chooses to favour. We
will consider three graph operations to compare the pros and cons of the different data
structures: adjacency checking, which consists in findingwhether two nodes are adjacent,
neighbourhood listing, where all the neighbours of a given node are enumerated, and
edge listing, where all the edges of the graph are enumerated. Table 2.1 sums up the time
and space complexities of the three data structures that we describe hereafter.

The most natural structure to describe a graph is perhaps the adjacency matrix A.
Considering that the nodes have indices from 1 to n, this matrix of size n×n is defined as
follows: for nodes u and v, Auv is 1 if u and v are adjacent, 0 otherwise. The advantage of
this structure is that it allows for constant time adjacency checking. However, neighbour-
hood listing takes Θ(n) operations, and edge listing is in Θ(n2). The space complexity of
this structure is Θ(n2), which is problematic for large graphs as they may not fit in the
main memory of a standard computer. Mathematically, various graph problems are best
described with a matrix representation: the importance of a node can be determined with
the eigenvectors (the solutions x of equations of the form Ax ∝ x), graph embeddings
can be obtained from the Laplacian matrix (given by the difference between the diagonal
of degrees and the adjacency matrix: L = Diag(d1, . . . , dn)−A), etc.

Datasets that represent graphs are often shared as a file containing a list of edges. An
edge list e1, . . . , em takes onlyΘ(m) space and allows for an edge listing operation in time
Θ(m). However, neighbourhood listing also takes Θ(m) and adjacency checking takes
O(m). To counteract these inefficient complexities, one technique consists in sorting the
edges in a specific order so that the incident edges of a given node are grouped together.
Another interest of the edge list structure is that the names of nodes do not have to be

3Note that for a maximisation problem, the direction is reversed: a k-approximation with k ∈]0, 1[ yields
a solution y with kx ≤ y ≤ x.
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consecutive integers; instead, they can be the name of a person in a social network, or the
URL of a webpage in a webgraph.

In order to favour the neighbourhood listing operation, it is recommended to use ad-
jacency lists. This structure stores for each node u a list that represents its neighboursNu.
It takes Θ(n +m) space and allows for edge listing in time Θ(n +m). Listing the neigh-
bours of u is possible in optimal time Θ(du). Adjacency checking, or testing whether v is
a neighbour of u, takes O(du) operations. In practice, the adjacency lists are stored in the
Compressed Sparse Row (CSR) format, as described in Figure 2.1: all the neighbours are
stored contiguously in an array, and each node has a pointer to the beginning of its neigh-
bours in this array. This format is the one that we use throughout the thesis to describe
algorithms and to implement them.

(a) Adjacency list (b) Compressed Sparse Row (CSR)

Figure 2.1: Graph representations. An adjacency list stores a list of neighbours for each
node. In CSR, all the neighbours are stored in a shared array of length 2m, and each node
has a pointer to its first neighbour. As edges are stored in contiguous memory, this is an
equivalent but more compact format that allows for faster memory access.

While the graph itself is a non-hierarchical description of the data, all the data struc-
tures that are used to represent a graph imply an ordering on the nodes. Indeed, the
adjacency matrix requires to choose which node corresponds to the first line of the ma-
trix, the edge list orders the edges in a certain way that creates a hierarchy between them,
and adjacency lists imply orderings both in the array of pointers and within each neigh-
bourhood. For this reason, ordering the nodes of a graph is not just a possibility, but a
necessity. We will see that real-world networks are distributed with an associated node
ordering even though it is not always documented.

Other data structures are often used in algorithms to realise certain tasks. A crucial
one is the concept of priority queue: each node is given a priority that may evolve during
the execution of the algorithm, and the priority queue has to be able to provide the node
of highest priority at any point of the execution. There are three main operations in such
a data structure: inserting a node, updating its priority, and finding the highest-priority
node. In practice, we use here an implementation based on a binary heap: each node is
placed in the tree and can have two branches, which all contain nodes of lower priority.
If the tree is balanced, insertion and update take O(logn) time, and the priority node is
found in Θ(1) as it is at the root of the tree. Binary heap are efficient in practice, but they
imply a log factor that can be avoided with another structure: the bucket queue. When
the priority is a bounded integer, for instance a number between 0 and k, each node can be
placed in a bucket (a list) that corresponds to its priority, which takesΘ(1) operations. To
update its priority, it suffices to place it in another bucket, in time Θ(1) as well. A node of
highest priority can be found in timeO(k) in the highest non-empty bucket. This structure
is particularly important to sort the nodes and obtain, for instance, a degree ordering in
O(n) time (assuming that the degree of each node is known).
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2.2 Graph mining on real-world networks

Data mining consists in extracting specific patterns from a real-world dataset in order
to gain knowledge about the underlying mechanisms. At the intersection of graph theory
and data mining, the field of graph mining addresses problems such as analysing the
properties of a network or extracting subgraphswith given properties. Examples of graph
mining tasks include detecting communities, identifying central or important nodes, and
counting the occurrences of a specific subgraph. Such tasks can help uncover patterns and
structures in the networks, providing valuable insights for the fields that generated the
data. Graph mining is also interested in simulating real-world networks with synthetic
graphs that emulate some of their properties, in order to study their structure in a more
controlled way and give insights on problems such as epidemic propagation, cascading
failure or information diffusion.

Graph mining tasks are often related to theoretical problems, but they have to be
solved in practice on large graph instances. In this context, theoretical complexity is not
sufficient to describe the efficiency of an algorithm, as practical execution time is what
matters most. Therefore, it is interesting to design algorithms that follow an intuitive
design rather than mathematical properties. Such methods are called heuristics and are
known to perform well on real-world networks. One challenge of graph mining is to ex-
plain this success. Greedy algorithms, whichmake the locally optimal choice at each stage,
are a type of heuristic often used to tackle problems on real-world networks.

2.2.1 Properties of real-world networks

As mentioned previously, real-world networks have specific properties due to the sit-
uation that they represent. The first task of graph mining is to identify such properties.
Note that networks of interest tend to have one giant connected component containing
most of the nodes, and that isolated nodes with degree zero are generally ignored, en-
forcing m ≥ n− 1 for a connected graph.

First of all, real-world networks are usually sparse, which intuitively means that each
node is only connected to a small portion of the other nodes. In a social network for in-
stance, each individual knows a few hundred individuals amongmillions of them. Math-
ematically, sparsity corresponds to m �

(
n
2

)
, which means that the number of edges is

much smaller than themaximumpossible number of edges. This is the contrary of a dense
graph, where almost all the possible edges exist. Models of sparse graph generally con-
sider that number of edges is within a small multiplicative factor of the number of nodes,
noted m = Θ(n). Sparsity matters for algorithmic complexity: recall that adjacency lists
requireΘ(n+m) space, which for sparse graphs results in a linear spaceΘ(n), to be com-
pared with Θ(n2) for an adjacency matrix. For this reason, the adjacency matrix format
is not used in practice for large sparse graphs, even though it can be adapted with sparse
matrix representations.

Another commonproperty of real-world networks is their skeweddegree distribution:
a few nodes called hubs have many neighbours, while most of the other nodes have only
a few neighbours. In a scientific citation graph for instance, most articles have less than
a hundred citations, while the most famous articles can have tens of thousands of them.
Researchers like Clauset et al. [2009] have been interested in fitting the skewed degree
distribution on mathematical distributions such as a power law where the probability for
a vertex to have degree d is p(d) ∝ d−α.

Real-world networks often have a high level of clustering, meaning that even though
most nodes have only a few neighbours, these neighbours are often themselves intercon-
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nected. This feature makes the study of triangles particularly interesting for such graphs,
which is the topic of Chapter 5. An additional property of real-world networks is sim-
ilarity, whereby nodes tend to have similar neighbourhoods: if two nodes share some
neighbours, they are likely to share many. More generally, these networks tend to have a
community structure, which means that nodes can be grouped into communities so that
they have many neighbours within the community and few outside of it. In spite of their
sparsity, real-world networks have locally dense structures, but they are small: Danisch
et al. [2018] show that the densest subgraphs have a few thousand nodes even in graphs
with billions of edges, and that the largest cliques only contain a few dozens of nodes.

Watts and Strogatz [1998] and other researchers have observed that real-world net-
works exhibit a small-diameter property, meaning that the shortest path between any two
nodes typically does not require traversing a large proportion of the nodes of the network.
The related small-world property describes the average distance between two nodes in-
stead of the maximum distance. These properties are remarkable given that the sparsity
and clustering properties might suggest a more local organisation with a larger diameter.
The presence of hubs, which connect different regions of the network, can enhance this
small-diameter property.

2.2.2 Leveraging network properties

Algorithmic problems can be studied on different classes of graph and their complex-
ity may differ depending on that class. For instance, the minimum vertex cover problem,
which is covered in Chapter 6, is NP-complete for general graphs as well as planar graphs,
but is in P for bipartite graphs. This is where parametrised complexity comes in, as it ex-
amines the complexity of a problem not only in terms of the size of the graph, but also
based on certain of its properties.

The specific properties of real-world networks can trigger a reduced parametrised
complexity for a variety of graph mining problems. For the problem of listing the tri-
angles of a graph (presented in Chapter 5), Schank and Wagner [2005] point out that the
complexity is Θ(m1.5) in the general case, but that for a graph with largest degree dmax

there exist algorithmswith complexityO(m·dmax): in graphswith bounded degree, these
algorithms have linear complexityO(m). Similarly, the Bellman-Ford algorithm computes
the shortest paths from a node to all the other nodes in time O(n3), but a refined expres-
sion of the complexity is O(∆ · m) where ∆ is the diameter of the graph: for the class
of graphs with bounded diameter, this algorithm is linear. For the problem of maximal
clique enumeration, Eppstein et al. [2013] propose an algorithm that is polynomial if the
density of subgraphs is bounded, and show that it is scalable in practice. As a last ex-
ample, Brach et al. [2016] define a model of graphs with power-law degree distribution
for which several common algorithms have a lower complexity than in the general case;
in particular, they identify a class of graphs for which the NP-hard problem of finding a
maximum clique is in P.

For some other algorithms, parametrised complexity is not yet able to explain the un-
expected swiftness of their execution on real-world networks. For example, Danisch et al.
[2017] propose a cubic algorithm to find a densest subgraph but they observe that it runs
in linear time in practice. The famous community detection algorithm of Blondel et al.
[2008] also has cubic worst-case complexity, but it scales to the largest real-world net-
works. In Chapter 6, wewill see that even the exponential algorithm of Hespe et al. [2020]
is able to solve the vertex cover problem as fast as linear algorithms on some real-world
networks.
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Not only can real-world properties impact time complexity and execution time, they
can also improve the quality of the results. In the domain of graph compression, Boldi and
Vigna [2004] take advantage of the similarity between neighbourhoods to store a descrip-
tion of real-world networks with as little as 2 bits per edge. For the problem of finding
a densest subgraph, a linear-time algorithm introduced by Charikar [2000] is known to
be a 1

2 -approximation: it is guaranteed to identify a subgraph that is 50% as dense as the
densest, but Danisch et al. [2017] point out that it is often above 99% in practice. For the
vertex cover problem, Chapter 6 leverages the same type of phenomenon to certify the
quality of heuristic results.

2.2.3 Simulating network properties

To understand the interaction between real-world networks and graph algorithms, it
can be crucial to generate synthetic graphs that imitate real-world networks. There exist
different random models that fix certain properties and let the other ones vary. Letting a
parameter of synthetic graphs vary over a given range is a way to test how structural char-
acteristics affect an algorithm, in terms of execution time or result quality. With random
models, it is also possible to apply probability theory to compute average-case complexity
or expected results on the class of graphs that the model encompasses.

The most famous random graph model is the one of Erdős and Rényi [1960], where
only the number of nodes and the (expected) number of edges are fixed. Although this
model allows for preserving sparsity of real-world networks, it does not capture other im-
portant properties such as the presence of hubs, high clustering, and community struc-
ture. In fact, the degree distribution of the model is a bell curve, which forbids hubs, and
there is no preference for connecting nodes that share many neighbours, leading to a low
clustering.

Another classical model consists in fixing the degree distribution. To obtain a power-
law distribution, Barabási and Albert [1999] propose a generative process based on pref-
erential attachment. Themore general configurationmodel is able tomaintain any degree
distribution by randomising an initial graph while keeping its degree distribution; it has
been refined by Newman [2009] to preserve the clustering property and by Karrer and
Newman [2010] for the distribution of any other subgraphs. The model of Watts and
Strogatz [1998] preserves both a high clustering and the small-world property. In fact,
models have been proposed for arbitrary properties through the concept of exponential
random graphs (ERGM) [Snijders, 2011]. A review and classification of random models
is proposed by Drobyshevskiy and Turdakov [2020].

Apart from the properties that they preserve, random models are supposed to ran-
domise all the other properties. However, this randomisation is not necessarily uniform:
among the graphs that have the fixed properties, some are more likely to be generated
than others. For instance, the model of preferential attachment only generate trees when
it is executed with a specific parameter, even though other non-tree graphs have a simi-
lar power-law degree distribution. Tabourier et al. [2011] tackle this issue with a process
that repeatedly swaps a set of random edges: the process converges to a uniform distri-
bution over the graphs that preserve certain properties. Stanton and Pinar [2011] address
the joint degree distributions of adjacent nodes and Fosdick et al. [2017] study issues of
configuration in the configuration model. Van Koevering et al. [2021] propose a model
that preserves the core sequence, which is a description of the repartition of density in the
graph.
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2.2.4 Sources of real-world networks

Networks can be generated by a diversity of real-world situations, but the data is not
always easy to gather and organise, especially at the scale ofmillions of nodes inwhichwe
are interested here. In fact, the largest publicly available networks belong to the same few
categories. The most common category is that of webgraphs, where a node corresponds
to a webpage and a directed edge is a hyperlink from a webpage to another. As the entire
web contains tens of billions of pages 4, networks often represent a limited portion of it,
for instance the pages of a national domain such as .fr or the pages of a large website like
Wikipedia. Another category represents online social platforms: a node corresponds to
the account of a person and an edge can be directed to indicate followers or undirected to
indicate friendships.

The fact that these two types of networks are themost common is no coincidence. Web-
graphs and online platforms both live on the internet, which facilitates their collection and
analysis using computers. On the contrary, situations that appear in the physical world
can be more costly to turn into an abstract network. For instance, mapping the roads of a
continent requires to cross information from different national sources, and discovering
the brain network implies biological experiments with microscopic interventions.

Several repositories have been developed by researchers to centralise real-world net-
works. They also provide information about the source of the data and an analysis of its
properties such as the maximal degree, the diameter, the clustering coefficient, etc. In
our work, we used the following repositories 5: SNAP proposed by Leskovec and Krevl
[2014], Konect by Kunegis [2013], NetworkRepository by Rossi and Ahmed [2015] and
WebGraph by Boldi and Vigna [2004].

2.3 Measuring time in spite of hardware fluctuations

Measuring the execution time of an algorithm is not an exact problem as opposed to
the notions of mathematical complexity. Indeed, it is easy to see when an algorithm is
orders of magnitude faster than another, but time measurement can be misleading when
it comes to a small relative speedup. The issue is that repeating the exact same exper-
iment can lead to different runtimes: executing the same program with the same data
on the same machine, we observed variations as high as 50% depending on which other
processes run concurrently on other processors. These fluctuations impose to take precau-
tions before using time measurements to compare algorithms or implementations. As a
patch for this issue, the Python documentation recommends running the algorithm sev-
eral times and taking only the fastest execution into account, as opposed to the average
time: “the lowest value gives a lower bound for how fast your machine can run the given code
snippet; higher values [...] are typically [caused] by other processes interfering with your timing
accuracy” 6.

In order to accurately compare the execution time of different algorithms, it is im-
portant to take into account the architecture of the machine. Julien Sopena, a hardware
specialist from LIP6 7, explained that fluctuations can occur at each level of memoryman-
agement, both within the process and through interactions with concurrent tasks. This

4See current statistics on https://www.worldwidewebsize.com.
5The repositories can be found at http://snap.stanford.edu/data, http://konect.cc/networks, https://

networkrepository.com, and https://law.di.unimi.it/datasets.php.
6https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
7https://www.lip6.fr/actualite/personnes-fiche.php?ident=P1369

https://www.worldwidewebsize.com
http://snap.stanford.edu/data
http://konect.cc/networks
https://networkrepository.com
https://networkrepository.com
https://law.di.unimi.it/datasets.php
https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
https://www.lip6.fr/actualite/personnes-fiche.php?ident=P1369
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section summarizes the causes of these fluctuations and how they can be avoided. To
minimise the impact of fluctuations, the experiments of this thesis were conducted by
booking an entire computational node on the university cluster 8. This experimental set-
ting helped to reduce total fluctuations to a relative variation of less than 3% over repeated
experiments.

The memory of a shared computer is built on several levels that handle the data with
different objectives. The external memory (or disk storage) can store terabytes of data
and maintain it without electrical power. When a program uses data, it loads it in main
memory (or RAM), and it can duplicate parts of it in several levels of cache, which are
smaller and faster blocks of memory. Finally, the processor uses registers to handle the
variables needed in the computation.

Most often, the computer contains several processing units and runs several processes
simultaneously. Because the computer handles a variety of constraints such as load-
balancing between processors, fast access to crucial data, and conflicts between threads,
time fluctuations can appear at each level of memory and make it hard to measure a pre-
cise and consistent execution time for one particular program.

2.3.1 External memory fluctuations

The external memory is the largest type of memory in the machine, but it is also the
slowest: retrieving data from external memory implies a latency of several microseconds
compared to amainmemory access that takes nanoseconds. For this reason, if the running
processes do not use all the main memory available, part of what remains is used as a
page cache: data from external memory is duplicated in the remaining space of the main
memory in order to be accessed faster. In other words, the main memory is used as an
additional cache level for external memory data. This duplication is transparent to the
programs: read and write operations over files that are stored in external memory work
as usual, but they take much less time because they operate on the main memory.

Read operations. When running a graph algorithm, the corresponding program needs
to load the graph data from a file that is usually stored in external memory. At the time of
execution, it is however possible that the data is in fact stored in page cache, in particular
if another program has used the same graph data beforehand. Each operation can be
microseconds slower if the data is in external memory, due to the latency of such devices.
However, the page cache may not contain the appropriate data at each execution, as it can
be erased when other processes require more main memory.

To avoid this problem, it is preferable to measure the duration of the algorithm after
the page cache has been loaded. For instance, it is possible to run the same algorithm
twice: the first execution will serve to load the data from external memory to page cache,
and the second will allow for stable time measurement as the data will be read directly
from the page cache without as much fluctuations.

Write operations. The page cache is also involved in the writing operations, which are
used to output the result of an execution or to log its progression. Even when a file is
stored in external memory, a write operation temporarily puts its content in a file of the
page cache and only transfers it to the external memory when the page cache is full. If
the main memory is large, the page cache can hold several gigabytes of data: the external

8MeSU: https://hpcave.upmc.fr

https://hpcave.upmc.fr
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writing becomes a rare and costly action, which causes major fluctuations in time mea-
surements.

To prevent the sudden writing of all the page cache from disturbing the time mea-
surement of a program, it is possible to force the write operations to operate directly in
external memory. One option is to disable the page cache, and the other is to write sink
instructions, which force the page cache to flush its data into the external memory. In both
cases, limiting the fluctuations comes at the cost of a slower global execution.

Concurrent processes with shared external memory. The external memory is con-
nected to the main memory through cables that have a limited data transfer bandwidth.
This means that the total debit of read and write operations that can be performed is
limited for the whole computer. If another process is transferring large amounts of data
from or to the external memory, it limits the ability of other processes to do the same: the
latency is shared across processes.

To ensure that other processes do not have a major impact on the read and write oper-
ations of the process being timed, it is important to monitor the processes and cancel the
measurement if their amount of read andwrite operations represents a significant portion
of the available bandwidth. Some timemeasurement programs are also able to ignore the
latency caused by external memory reads or writes in order to focus on the in-memory
computation time.

2.3.2 Main memory fluctuations

To deal with large computational tasks, it can be necessary to use a computer cluster:
it is a set of computers called nodes that are linked to operate as a single system with large
memory and computational power. Physically, the mainmemory is distributed across the
nodes, but programs see it as one consistent block and cannot control where their data
is stored. This concept is called a non-uniform memory access (NUMA) and it causes
fluctuations: a node can access its data faster if it is stored nearby. Accessing data that
is stored in the main memory of other nodes causes a latency and faces another issue of
limited bandwidth.

Memory allocation strategies. Several strategies exist to decide where to allocate the
memory for a given process on a computer cluster. Some of these algorithms are part of
the operating system, while others are built into the hardware, in which case modifying
them requires to restart and reconfigure the cluster. In any case, these strategies have to
strike a balance between locality and uniformity. The general-use strategy called interleav-
ing favours uniformity: it consists in distributing the data evenly across all the physical
parts of the main memory; this strategy avoids the worst-case scenario when a process
has to retrieve its data from the most remote parts of the memory. On the contrary, the
first-touch strategy favours locality by allocating the sections of the main memory that are
closest to the node that owns the data.

Concurrent processes with shared main memory. Even when our process uses a first-
touch allocation strategy, the access time can still be influenced by other processes running
on different nodes of the computer cluster. First, these processes may use interleaving,
which can occupy memory blocks on our node. As a result, there may be less close mem-
ory available for our process, forcing it to store data in more remote parts of the shared
memory. Second, the bandwidth between nodes is shared by all the processes, thus the
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retrieval of data that is stored further away is impacted by the other processes that run
during our time measurements. Booking a full node to ensure that no other process runs
on it is not sufficient, as it does not specify where the data is stored. One way around is
to force our data to be stored in contiguous memory by activating huge-pages: the data is
split into pages of a given size (usually 4kB by default) that are scattered in different parts
of the memory; setting a larger page size (for instance 1GB) ensures that large amounts
of data are stored together and possibly closer to our node.

2.3.3 Cache fluctuations

While the main memory handles data pages of typical size 4kB, the cache handles
data lines of typical size 64B. When a process accesses a piece of data stored in a specific
address of the main memory, the corresponding data line is duplicated in an address of
the cache. The cache address is not chosen at random: it is generally computed from the
main memory address by applying a built-in hash function. If the hash function has a
certain periodicity, the process may repeatedly paste its data on the same cache address,
which hinders the cache efficiency. Other processes can also interfere if a level of cache is
shared across several processors.

Cache colouring is the research topic that focuses on reverse-engineering this hash
function to ensure that selected main memory areas will match certain reserved areas of
the cache. Issues due to concurrent processes can be avoided by booking all the processors
that share a level of cache, even if only one is used for computation.

2.3.4 Processor fluctuations

Hyperthreading. To increase the utilisation rate of a pipeline, processors use hy-
perthreading, which consists in executing several threads simultaneously on the same
processor. The expected time saving is around 30%. In practice, forcing this extra
computation increases the heat production, which requires to reduce the clock frequency
to maintain an acceptable temperature. The final time saving is therefore not controllable:
one could almost consider that the pace of operations depends on the weather. In
particular, if we use a single thread and another process takes another thread of our
processor, our execution timewill be disturbed. Wemust therefore book all the associated
processors even if we only use one. Doing this may require to know the topology of the
cluster and to book contiguous nodes.

False-sharing. Even on a completely isolated machine, instability can be observed be-
tween two identical executions. If twovariables are stored in the same cache line, changing
the value of one will require to reload the cache line for the other. In the case of a par-
allelised algorithm, this false-sharing induces unexpected competition between threads,
which depends on the architecture and the current state of the cache. This can be avoided
with padding, which consists in interposing unnecessary data to ensure that the useful
pieces of data do not share the same cache line.

Prefetching. One of the industrial secrets of processors is their prefetching algorithm.
This is the strategy used to predict the next accesses to data and thus anticipate their
retrieval in the nearest memory levels. For example, if an algorithm scans an array, the
processor will provide the first few rows of requested data and then anticipate the next
few rows to be fetched from memory and stored in a high cache level. This phenomenon
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also occurs for more complex operations such as traversing a chained list. It reinforces the
importance of grouping correlated data and may explain the difference in results from
one machine to another.
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Summary

The idea of ordering a graph goes against the intuitive concept of a graph. Indeed, a
graph represents a set of elements and relations that are not subject to any hierarchy: as
opposed to a geometric plane where there is a leftmost and a rightmost element, there
is no first or last node in a graph. This offers a lot of flexibility to describe real-world
interactions that are not bound to a physical space, such as friendships or citations.

However, the file that stores the description of a graph is ordered. The memory of
computers is made of sequences of bytes that represent data in a sequential way. To store
the graph in memory, a choice has to be made to decide which is the first node and which
is the last, which nodes are side-by-side and which are further apart. This unavoidable
ordering adds extra information to the graph structure, which has been used in a variety
of algorithmic tasks to improve performance, speed or quality.

The current chapter reviews the use of ordering methods in the literature for graph
algorithms. We identify the main applications that triggered discoveries of new graph or-
derings, and give a classification of the different underlying mechanisms and algorithmic
techniques. For practical purposes, we also discuss the trade-off between the time needed
to compute an ordering and its impact on the algorithm.

Ordering nodes to scale to massive real-world networks

4
Figure 3.1: Examples of different node orderings for the same graph. Node sizes rep-
resent their degree and help distinguishing them. The initial graph has no particular
ordering, the top ordering has been designed to minimise the length of edges, and the
bottom one maximises them.
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3.1 Introduction

A node ordering, also called vertex ordering, consists in defining a sequence in which
the nodes are organised from first to last, as opposed to the graph structure itself that
does not contain such information. Figure 3.1 shows a toy graph with seven nodes and
two possible orderings: the top one aims at bringing closer in the ordering the nodes that
have an edge in common; the bottom ordering does the opposite, which makes the edges
look longer. Here is the formal definition that we choose for a node ordering:

Definition 1 (Node ordering) Given a graph G = (V,E), a node ordering is a bijection π :
V → J1, nK. When V = J1, nK, π is a permutation over V . The index of a node u ∈ V in this
permutation is noted πu. It defines a total order ≺ over the nodes, given for nodes u, v ∈ V by
u ≺ v ⇐⇒ πu < πv.

When the graph is initially undirected, which is the case in this thesis if not stated
otherwise, then an ordering π creates an artificial orientation of the edges following the
values of π: an undirected edge {u, v} becomes a directed edge (u, v) if πu < πv, and
(v, u) otherwise. Now the neighbours Nu of u are partitioned into predecessors N−

u and
successors N+

u , and u has an in-degree d−u = |N−
u | and an out-degree d+u = |N+

u |.
This chapter is a review of influential node orderings that have been designed to im-

prove the algorithms for a variety of tasks. In Section 3.2, we propose a classification
of orderings according to the underlying mechanism (Section 3.2.1) and the algorithmic
method (Section 3.2.2). Section 3.3 presents the node orderings by analysing different
domains of application and showing the impact that orderings can have, and Section 3.4
points out standard graph problems that can be reformulated as an ordering problem.
We develop the issues related to the computation time of orderings in Section 3.5.

3.2 Classification of node orderings

In spite of their diverse application domains, node orderings share some principles
that this section aims to classify. On the one hand, orderings are inspired by a few under-
lying mechanisms, such as bringing nodes close in the ordering when they are close in
the graph, or placing important nodes at a specific position of the ordering. On the other
hands, the process of computing an ordering uses general algorithmic methods such as
optimisation or streaming designs. Table 3.1 presents the classification of all the orderings
that will be described in the following sections.

3.2.1 Underlying mechanisms of node orderings

Node orderings can be designed to enhance certain properties of consecutive nodes or
groups of nodes. While the applications and algorithms to obtain orderings are diverse,
we propose to classify ordering methods based on their underlying mechanism. These
definitions will be used to tag ordering methods, as summed up in Table 3.1.

The mechanism of locality aims at linking proximity in the ordering to proximity in
the graph. Two opposite implications may be desired in the design of orderings, and
they correspond to slightly different mechanisms: we call graph locality the mechanism
whereby neighbouring nodes have close indices in the ordering, and index locality the
mechanism where nodes with consecutive or close indices are likely to be neighbours in
the graph. Related to locality is the mechanism of similarity, which ensures that nodes
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Ordering name Mechanism Algorithmic method Section
Natural ? ? ? ? ? 3.3
Random 3.3

BFS X X 3.3
DFS X X 3.3
RCM X X X 3.3.4
Degree X 3.3.1

Closeness X 3.3.1
Betweenness X 3.3.1
Pagerank X X 3.3.1

Core X X X 3.3.2
Peeling X X 3.3.2

Density friendly X X X 3.3.2
Colouring X 3.3.3
Largest-first X X 3.3.3
Split-degree X X 3.3.3

Gscore X X X 3.3.4
Gorder X X X 3.3.4
Rabbit X X 3.3.4

Lightweight X X 3.3.4
Bandwidth X X 3.3.4
MinLinA X X 3.3.4
MinLogA X X 3.3.5

MinLogGapA X X 3.3.5
BiMinLogGapA X X 3.3.5

Shingle X X 3.3.5
Recursive bisection X X X 3.3.5

Slashburn X X 3.3.5
LLP X 3.3.5
Metis X X 3.3.6
LDG X X X 3.3.6
Fennel X X X 3.3.6
Vebo X X 3.3.6
Sheep X X 3.3.6

Personalised Pagerank X X 3.3.6
Balanced X X 3.3.7
Revorder X X 3.3.7

C++ and C+− X X Ch. 5
Neigh X Ch. 5
Check X X X Ch. 5

Table 3.1: Classification of node ordering methods. Mechanisms represent the prop-
erties that the ordering pursues, and they are described in Section 3.2.1. Algorithmic
methods are the way in which the ordering is obtained, as explained in Section 3.2.2.
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with close indices have similar neighbourhoods, even though theymay not be neighbours
themselves.

It is also possible to order the nodes according to a centrality measure, which is a
certain property that describes the importance of each node in the network. The mech-
anism of centrality consists in placing the nodes of high centrality in a specific position,
for instance at the beginning of the ordering. A usual technique is to rank all the nodes
according to their centrality, but other designs are possible such as ranking only the nodes
of highest centrality or placing them at either extremity of the ordering. To construct an
ordering π from a centrality measure c : V → R, two things have to be taken into account.
First, c takes values in R instead of J1, nK for orderings: the range and concentration of the
values of c is lost since the ordering only retains the rank of each node with respect to the
others. Second, several nodes may have the same centrality, which requires a tie-breaking
strategy. Usual strategies are to break ties at random, or following the natural ordering
given by initial node indices: πu < πv ⇐⇒

(
c(u) < c(v) or (c(u) = c(v) and u < v)

)
. The

tie-breaking strategy can be crucial in the case where many nodes have the same score.
The grouping mechanism consists in constructing an ordering from groups of nodes

with a given property. The groups can be defined as highly connected subsets of nodes, in
which case the literature on community detection can be leveraged, but other constraints
can be defined: imposing a size on the groups, taking group of independent nodes, etc.

Lastly, there exist orderings that constrain the number of predecessors and successors
of nodes in the ordering, which we call a precedence mechanism. An example of such
ordering is one that ensures that the number of successors of each node is bounded by a
constant.

3.2.2 Algorithmic methods to obtain node orderings

There are several ways to compute a node ordering, and researchers have developed
various algorithms to achieve this task. We can broadly classify these methods into four
categories based on their approach: objective function optimisation, priority selection,
graph reduction and node streaming. The choice of method depends on the specific prob-
lem at hand and it is not necessarily determined by the underlying mechanism or by the
application domain.

In the literature, node orderings are sometimes described as an objective function
that formalises the desired properties of the ordering. These functions are sometimes re-
ferred to as layout problems, as surveyed by Díaz et al. [2002]. Optimising these objective
functions leads to orderings that satisfy the properties, but it is often NP-hard to find such
an ordering. It is thus useful to design heuristics that improve the value of the objective
function even though they do not reach the optimum. For this reason, we distinguish
between the ordering defined as an optimum of the objective function and an ordering
obtained from a heuristic that addresses the optimisation. There exist approaches called
meta-heuristics that can in principle be used for any of these functions. For instance, Wei
et al. [2016] use simulated annealing, a meta-heuristic that starts from an ordering and
swaps the indices of random nodes with some probability. The probability is higher if the
swap improves the objective function, but it is still non-zero otherwise: intuitively, a bad
choice can be made in the hope that it later leads to a better solution.

Alternatively, an efficient way to obtain scalable approximations is to design a greedy
algorithm: such a procedure will gradually improve its solution by taking the most ben-
eficial step. For NP-hard optimisations, there is no guarantee that the result is optimum,
but the time complexity can be linear or quasi-linear. Greedymethods can be easier to de-
sign, to program, and to tune; as shown in Chapter 6, they can give fast and competitive
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results on real-world data, which is why they are often used in practice.
The algorithmic method of priority selection constructs the ordering by defining a

priority for each node, then selecting one of highest priority, and updating the priority of
the nodes that are still to be selected. This situation equates the ordering with a priority
function over the nodes ν : V → R that evolves during the execution of the algorithm.
The first examples of this type of ordering are graph traversals, where only one node is
visible at the beginning, and visiting it triggers an update of the visible graph and impacts
the subsequent order of nodes. Priority selection also arises as a variation of centrality
measures when the ordering is built by selecting a node of highest centrality, removing it
from the graph, and recomputing the centrality of remaining nodes. Such procedure is
also called peeling.

To process a graph and obtain an ordering, several papers use a graph reduction,
which consists in removing or merging nodes and edges to obtain a smaller graph. The
criteria for the reduction are diverse: keeping only the edges of a spanning tree, ignoring
the edges that cut a node partition, considering only the nodes of high centrality... The
ordering is then computed on the smaller graph, and later extended to include all the
original nodes.

Lastly, some node orderings are obtainedwith streaming algorithms: nodes are exam-
ined as a sequence and they have to be placed in the ordering with limited information on
the rest of the graph. Usually, such algorithms allow for a sub-linear amount of memory,
for instance O(1) or O(logn), and they specify the number of passes that are allowed. In
particular, one-pass algorithms can only read the sequence of nodes once before giving
their output. For graph algorithms, there may be extra information attached to the nodes
while reading it, such as their degree or their list of neighbours.

3.3 Node orderings and their application domains ↑ back to Table 3.1 ↑

Node orderings extend the graph data-structure and operate a link between the math-
ematical description and the hardware properties. For this reason, they are used in awide
range of contexts. In this section, wewalk through some of these application domains and
present node orderings that have been designed to tackle the corresponding problems.
The orderings are named in bold font for easier reference.

Let us start with the most notable types of ordering, which are used across all the do-
mains of application: the natural ordering obtained during the data collection, a random
ordering, and a graph search ordering.

Natural or original ordering. The natural ordering of a graph is the one that is provided
in the initial file: standard storage formats for graphs (adjacency list or matrix, incidence
matrix, edge list) need to give each node an identifier, which is usually an integer between
1 and n. These numbers are arbitrary in the sense that the dataset providers seldom reveal
which order they followed to scrap the data. Yet, it is not a random ordering, as their may
be an unknown underlying mechanism. Let us consider the use case where one wants
to create a dataset that represents a webgraph. Starting from a few seed webpages, a
crawler followshyperlinks to discovermore andmore pages. Inwhich orderwill the pages
be stored in the resulting graph? If they are stored according to their time of discovery,
then the ordering of the graph follows a traversal pattern as described further; if they
are stored in alphabetical order of their URL, nodes of consecutive indices are likely to
represent pages of the same website, and thus more likely to share an edge. The latter
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situation enables Boldi and Vigna [2004] to compress webgraphs without explicitly using
orderings.

Random orderings. A random ordering aims at erasing the information that may be
stored in the natural ordering of the network. Using randomised orderings as benchmark
is key to study order-dependant algorithms, because they reveal the behaviour of the al-
gorithm when no advantage is given by the ordering. Note also that drawing several
random orderings allows for measurements of the variance of the algorithm and other
statistical measures.

BFS and DFS orderings. Graph traversal algorithms consists in visiting all the nodes of
a graph in a given order [Cormen et al., 2009]. Breadth-first search (BFS) starts from a root
node, then visits all its neighbours, then all the neighbours of its neighbours, etc; it creates
successive levels in which all the nodes are at the same distance of the root node. Depth-
first search (DFS) starts from a root node and follows one path as far as possible before
backtracking. In both cases, the underlying mechanism is locality as nodes that are close
in the ordering are also close in the graph. The algorithmic method is a priority selection,
and it is possible to obtain multiple different orderings depending on the selection of the
root node and the priority among neighbours. These orderings come from standard graph
algorithms and can be used as benchmark to evaluate other methods. They are also likely
to correspond to the natural ordering when networks are discovered by following edges
from known nodes.

3.3.1 Network robustness against attacks ↑ back to Table 3.1 ↑

The idea of network robustness is to test the connectivity of the remaining network
after a number of nodes or edges have been removed. The removal process is called a
failure if the elements are removed at random, and an attack if the elements are removed
following a specific ordering, usually based on a centrality measure. In the case of an
attack, the ordering is always crucial, but the attack strategy also depends on the metrics
that is used to measure the connectivity of the remaining network: usual metrics are the
size of the largest connected component, the diameter of the graph, or the average length
of shortest paths. We are here interested in the orderings involved in attacks that remove
nodes; note that any type of centrality ranking can be used, several of which are studied
by Vigna and Boldi [2014].

Degree centrality. Sorting the nodes according to their degree is possibly the most
widespread type of node centrality. In robustness studies, it is quite natural to study the
resilience of a network where nodes of highest degree are removed. Albert et al. [2000]
find that scale-free networks are highly robust to random failures but vulnerable when it
comes to attacks on the nodes of high degree. Magnien et al. [2011] mitigate this result
highlighting the fact that removing nodes of higher degree boils down to removing
many edges; measuring the effort of attack in terms of edges instead of nodes makes the
difference between random failure and degree attack less significant.

Closeness centrality. The closeness of a node is the inverse of the average distance that
separates it from other nodes [Bavelas, 1950]. More formally, the closeness of a node u
is c(u) = n−1∑

v∈V d(u,v) , where d(u, v) is the minimum length of a path between u and v.
Iyer et al. [2013] test the robustness of synthetic and real-world networks against various
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types of centrality attacks. They find that degree attacks are the more damaging in the
context where the ordering is pre-defined and cannot be updated. On the other hand, in
a sequential attack where centralities are updated, all the attacks have the same efficiency
in random graph models, but the most efficient for real-world networks are the closeness
and betweenness attacks.

Betweenness centrality. The betweenness of a node is the proportion of shortest paths
(between two other nodes) that go through this node [Freeman, 1977]. Formally, the
betweenness of v is b(v) =

∑
u6=v 6=w

σuw(v)
σuw

, where σuw is the number of shortest paths
from u tow, and σuw(v) is the number of such paths that go through v. Holme et al. [2002]
analyse different types of networks and observe that a betweenness attack can be more
efficient than a degree attack, especially on real-world networkswhere the two centralities
do not show the correlation that they have for some random graph models. Another
factor is the update of the centrality: an attack is more efficient if, after each removal, the
centrality is re-computed in the remaining network. As this update can be costly in terms
of computation, doing it is also an experimental choice.

Eigenvector centrality and Pagerank. Eigenvector centrality has also been used as a
measure for robustness [Ellens and Kooij, 2013]. The centrality of all the nodes is given
by a vector x that satisfiesAx = λx, where λ is a constant andA is the adjacency matrix of
the graph. One famous variation of eigenvector centrality is the Pagerank introduced by
Page et al. [1999]. It represents the rate of visit of each node during a randomwalk with a
damping factor α, given by a vector x that results from the equation x = αxW +(1−α)y,
where W is the probability transition of the random walk and y is the constant vector
( 1n . . . 1

n). Bressan et al. [2018] propose a method to estimate the Pagerank of a node while
visiting only a fraction of the graph. In case of an evolving network, Pagerank has been
leveraged by Huynh et al. [2014] to create Liverank, a centrality measure that describes
how likely a node is to still exist in the graph.

3.3.2 Identification of dense subgraphs ↑ back to Table 3.1 ↑

Real-world networks are generally sparse but tend to have areas of high density due
to their skewed degree distribution and their clustering properties. Finding these dense
areas is a key algorithmic problem. Several definitions of density compete, and a variety
of orderings have been proposed as heuristics to find subgraphs of high density.

Given a graph G = (V,E), the general density problem consists in finding a subset of
nodes W ⊆ V that maximises the density ρ(W ) of the induced subgraph. Density func-
tions ρ are based on EW = E ∩ W × W , the set of edges within W . A first definition
consists in computing the ratio between the number of edges in EW and the maximum
possible number of edges among |W | nodes: ρ1(W ) = |EW |/

(|W |
2

)
. However, this metric

can be counter-intuitive as a set of two nodes with one edge achieves maximum density
ρ1 = 1. Another definition computes the ratio between the number of edges and the num-
ber of nodes: ρ2(W ) = |EW |/|W |. Goldberg [1984] provides a polynomial algorithm that
minimises ρ2 using max-flow algorithms, but numerous heuristics have been designed
for faster results, as surveyed by Lee et al. [2010] and Fang et al. [2022]. We are here
interested in the ones that involve node orderings.

Core ordering. The key idea of the core ordering is to remove nodes of low degree until
the remaining core is dense. This priority selection is also referred to as smallest-first or
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degeneracy ordering. Nodes are first ranked by their total degree, then the lowest-ranking
nodes are removed and the degrees and ranks are updated. The k-core is defined as the
first subgraph of the decompositionwhere all the nodes have degree at least k. The degen-
eracy of the graph is the highest value γ such that the γ-core is not empty; this subgraph is
called the core of the graph. The core ordering can be seen as a precedence mechanism as
it ensures that nodes have at most γ successors in the ordering. Asahiro et al. [2000] first
introduce this peeling heuristic to address the density problem with fixed size |W | = x in
weighted graphs: they remove nodes whose edges have low weight until exactly x nodes
remain. The procedure is then adapted to the ρ2-density problem by Charikar [2000],
who measures the density of the remaining subgraph at each step, and outputs the one
that had the highest density. This linear heuristic is proven to be a 2-approximation of
the densest subgraph problem, which means that the densest subgraph is at most twice
as dense as the resulting subgraph. Charikar also adapts the method to directed graphs
with a more general definition of density.

Generalised peeling orderings. The peeling procedure described for the core ordering
can be extended in two directions. First, instead of selecting the node of lowest degree
at each iteration, it is possible to use another centrality. In their review, Malliaros et al.
[2019] mention several centrality measures such as the number of neighbours at a given
distance, the number of cycles of fixed length, etc. In fact, Batagelj and Zaveršnik [2002]
prove that any function can be used as long as it is monotone, which means that its value
can only decrease for remaining nodeswhen one node is removed. Second, other patterns
may be taken into account to create the ordering. Themain example is the k-clique densest
subgraph problem by Tsourakakis [2015], which consists in finding a subset with asmany
k-cliques per node as possible. Interestingly, an efficient algorithm for this problem by
Danisch et al. [2018] uses the core ordering to accelerate its execution.

Density friendly ordering. After observing that the core of the graph is not necessarily
the densest subgraph of the core decomposition, Tatti and Gionis [2015] propose a differ-
ent procedure to correct this flaw. It starts by finding the exact densest subgraph using
a max-flow algorithm; then, it removes this subgraph and the edges that connected it to
the rest of the graph are transformed into self-loops; these steps are repeated until the
graph is empty. This algorithm creates an ordering that follows a density decrease: the
subgraph induced by a short prefix is denser than the subgraph induced by a longer pre-
fix. The mechanism is a priority selection, but Danisch et al. [2017] reformulate it as an
objective function in the form of a quadratic program. They provide a scalable algorithm
that computes the same ordering using convex optimisation, and they call it the density
friendly ordering.

3.3.3 Pattern mining ↑ back to Table 3.1 ↑

Patterns designate a subgraph of small size with a precise combination of edges; they
are also called motifs or graphlets. Problems of pattern mining can involve one specific
pattern, or all the patterns of a given size. The task differs whether the pattern has to
be an induced subgraph or not: an induced subgraph consists of a set of nodes and all
the edges that they share, while a general subgraph may ignore some edges. Beyond
the diversity of patterns, mining also encompasses several tasks: a counting algorithm
simply outputs the number of patterns found in the graph (possibly with an accepted
margin of error), a listing algorithm enumerates all the patterns with the nodes that are
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involved, and sampling algorithms yield a (possibly random) selection of patterns. Many
of these problems comes with a large body of literature. We study one of them in depth
in Chapter 5: the problem of enumerating induced triangles.

Node orderings are a key technique in pattern mining: processing the nodes in a spe-
cific order can help finding the patterns with less operations. The most widely used or-
derings are those that bound the out-degree of the nodes: the degree ordering [Chiba and
Nishizeki, 1985, Latapy, 2008, Ortmann and Brandes, 2013, Pinar et al., 2017, Arifuzzaman
et al., 2019] and the core ordering [Schank andWagner, 2005, Danisch et al., 2018, Turk and
Turkoglu, 2019, Pashanasangi and Seshadhri, 2021, Bressan and Roth, 2021]. They appear
in works on different types of graphs and on different patterns, as well as for other mining
tasks such as the enumeration of dominating sets [Kurita et al., 2018]. Other orderings
have been used for specific research questions:

Parallel core ordering. The core ordering requires to update the degrees of the remain-
ing nodes after each deletion of a node. This is problematic in a parallel execution, as
the processors will need much communication to share these updates. Shi et al. [2021]
propose a variation of the core peeling method: instead of removing the node of lowest
degree at each iteration, they remove a constant fraction of the nodes with lowest degree,
following an algorithm by Goodrich and Pszona [2011]. The resulting ordering method
is work-efficient, which means that its total asymptotic number of operations matches the
sequential algorithm, and has a logarithmic span, which means that its execution time is
logarithmic if there are enough parallel processors. Hu et al. [2021] use a similar ordering
for pattern counting on GPU.

Largest-first ordering. Core ordering is also called smallest-first because the peeling re-
peatedly removes the node of smallest degree. The largest-first ordering is the priority
selection that repeatedly removes the node of largest degree; also called smallest-last by
Matula and Beck [1983], it is not equivalent to reversing the core ordering. Bressan [2021]
propose an algorithm that samples patterns uniformly using this ordering to compute the
likelihood of a given pattern.

Colouring ordering. In their work on clique listing, Li et al. [2020] apply a pre-routine
where each node is coloured so that neighbours have distinct colours. Noticing that all of
the nodes of a clique have distinct colours, the authors are able to prune the search space
when too few colours are available; this accelerates the execution of the listing algorithm.
The colouring ordering follows a grouping mechanism where groups are independent
sets. It is obtained with a greedy colouring algorithm that is itself based on a degree or
core ordering as heuristics to obtain a small number of colours.

Split-degree ordering. In their study of the asymptotic cost of listing triangles, Xiao
et al. [2017] note that the choice of ordering depends on the choice of algorithm. Using
a model of random networks, they find that it is optimal to use a Round-Robin, or split-
degree ordering, that ensures that nodes of large degree are either at the beginning or at the
end of the ordering. This streaming algorithm based on degree centrality is one ordering
that we use in Chapter 5.
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3.3.4 Cache optimisation ↑ back to Table 3.1 ↑

Cache optimisation consists in adapting the data or the algorithms to benefit from the
cache architecture. Broadly speaking, a computer is made of memory units that store the
data and a processor that executes the instructions of an algorithm on this data. The loca-
tion of data is subject to a trade-off between access speed and storage space: the execution
is faster if the data is close to the processor, but there is not enough physical space near the
processor to store all the data. A cache system is a set of smaller memory units that are
located closer to the processor; contiguous blocks of data are duplicated in cache for faster
access. More details and a description of a cache system with several levels are given in
Chapter 4.

A graph algorithm benefits from cache systems when it processes several pieces of
data that are stored contiguously. In spite of their huge diversity, many graph algorithms
rely on the same basic operation: iterating over the neighbours of a node. For a graph that
is stored as adjacency lists, the cache system is most efficient when lists that are required
successively are stored contiguously. As an example, consider a subpart of a depth-first
search algorithm: starting from a node u, it reads a neighbour v ∈ Nu, and proceeds
with a neighbour w ∈ Nv. During the execution, the processor will first fetch the block
containing Nu from the main memory and store it into the cache; if Nu and Nv are stored
contiguously, it is likely thatNv is already in the cache, whichmakes the access tow faster.
Otherwise, there is a cache-miss and Nv also has to be retrieved in main memory, which
causes a delay. Ailamaki et al. [1999] measure that this delay takes more than half of the
total execution time of some database algorithms.

Node orderings with locality or similarity mechanisms can help to ensure that nodes
that are close in the graph are also close in memory. Several objective functions have been
proposed to represent these properties and Barik et al. [2020] propose an experimental
comparison of some of them. While the details of the cache architecture depend on the
manufacturer andmodel of the processor, the objective functions aremathematical guide-
lines to improve the locality, and with it the cache performance of any processor.

Bandwidth. The graph bandwidth problem consists in minimising the objective func-
tion max{u,v}∈E |πu − πv|; it is called bandwidth because it corresponds to the width of
non-zero values along the diagonal of the adjacency matrix. A small bandwidth means
that neighbour nodes are never too far in the ordering π, which corresponds to a mecha-
nism of graph locality andmay prevent cache-misses. Finding an orderingwithminimum
bandwidth is NP-hard [Garey et al., 1976].

RCMordering. The reversed Cuthill andMcKee [1969] ordering (RCM) is a linear-time
heuristic that addresses the bandwidth minimisation problem. It is a refined version of
breadth-first search where nodes of a given search level are ranked by their degree, and
thus belongs to the category of graph traversal algorithms.

MinLinA. The minimum linear arrangement problem consists in finding a node order-
ing π such that the objective function

∑
{u,v}∈E |πu−πv| is minimised. This is another way

to formalise the mechanism of locality: π ensures that neighbours have close indices on
average. Initially, Harper [1964] introduces this problem on hypercube graphs for error-
correction, and Garey et al. [1976] later show that it is NP-hard.



52 Chapter 3. Review of ordering methods

Gscore andGorder. To build an ordering that applies tomore general graph algorithms,
Wei et al. [2016] consider a directed graph and propose to optimise a cost that takes “sib-
ling” relationships as well as neighbourhood into account. Pairs of nodes (u, v) are given
a proximity score defined as S(u, v) = Ss(u, v) + Sn(u, v), where Ss(u, v) is the number
of times nodes u and v coexist in sibling relationships (number of common predecessors)
and Sn(u, v) is the number of times they are in a neighbour relationship (either 0, 1 or
2 since both directed edges u → v and v → u may exist). These two terms stand for
locality and similarity. The objective is defined as finding an ordering π that maximises
the objective function Gscore, defined by

∑
0<πu−πv≤w S(u, v), where w is a fixed param-

eter (window size): two nodes that are at distance less than w in π should have a high
proximity score. After proving that the maximisation is NP-hard, the authors propose a
greedy 1

2w -approximation to obtain an ordering that they call Gorder. It is obtained with
a priority selection heuristic, where each step selects the node that has the highest prox-
imity with the nodes of the window. The authors report a significant reduction in the
cache-miss rate; we reproduce their experiments in Chapter 4.

Rabbit ordering. Following the mechanism of grouping, Arai et al. [2016] base their
algorithm on community detection. Building upon the work of Blondel et al. [2008], they
use amodularity-based optimisation to obtain a hierarchical community structure. Trans-
forming this hierarchy into an ordering allows them to enhance each level of cache: the
higher cache level can store a few nodes that belong to a dense community and thus have
a high proximity, while lower levels store more nodes that belong to a sparser commu-
nity. This ordering claims a similar speedup to Gorder in the execution of various graph
algorithms, but with the major advantage of a faster and more scalable ordering proce-
dure. To keep the community structure while optimising the cache even further, Nguélé
et al. [2017] present a method that consists in applying Gorder to reorder nodes within
the communities.

Lightweight reordering. The performance gain that cache-friendly orderings cause
needs to be balanced with the time spent to compute this ordering, called overhead (more
about that in Section 3.5). Balaji and Lucia [2018] point out that the long ordering phase
of Gorder is only balanced if the algorithm is executed thousands of times. The overhead
of Rabbit is less deterrent, but it is still not negligible. Noting that a simple degree
ordering is efficient to reduce cache-misses, Balaji and Lucia design the HubSorting and
HubClustering orderings that consist in gathering the nodes of high degree (the hubs)
at the beginning of the ordering. Indeed, these nodes are often required in the execution
of an algorithm, and the cache can be more efficient if it already contains their associated
data. These two orderings are based on a centrality measure and they involve a graph
reduction where only nodes of high centrality are considered.

3.3.5 Graph compression ↑ back to Table 3.1 ↑

Node orderings have been identified as a powerful tool to reduce the storage space
of compressed structures that represent graph. The largest publicly available real-world
graphs have billions of nodes and tens of billions of edges, which makes their storage and
manipulation complicated on most computers; in particular, they can exceed the size of
the main memory. As an alternative to off-memory algorithms, which consist in loading
only one part of the graph at a time, it is possible to work with compressed structures that
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allow for specific graph operations without decompressing the full dataset. This tech-
nique relies on the observation that algorithms do not need the graph itself, rather the
ability to do some specific operations on this graph. Thus, after identifying these opera-
tions, the input graph can in principle be compressed into a lightweight structure. A thor-
ough review on lossless graph compression techniques is presented by Besta and Hoefler
[2019].

A famous compression framework has been proposed by Boldi and Vigna [2004]: ad-
jacency lists are compressed by several techniques that leverage the properties of real-
world networks, in particular webgraphs where nodes are webpages ordered according
to the lexicographic order of URLs. They observe a locality property, which allows them
to use a delta-encoding for adjacency lists: if node 50 has neighbours (51, 52, 53, 54, 55, 65),
this encoding stores only stores the gaps (5, 9), meaning that the neighbours are the next 5
indices and the next one comes after a gap of 9 nodes. The similarity property of the we-
bgraphs allows the authors to use references between adjacency lists: if two consecutive
nodes have the same neighbours, then only the first node stores them in its adjacency list,
and the second node only stores a pointer to that list. For webgraphs, the efficiency of the
compression is partly due to the fact that the natural ordering of datasets preserves these
properties.

On other types of real-world networks, in particular social networks, locality and sim-
ilarity are not as strong in the natural orderings, which hampers the compression scheme.
Apostolico and Drovandi [2009] suggest to apply a BFS ordering as a pre-routine in order
to obtain some locality. Chierichetti et al. [2009] show that a favourable ordering can be
constructed by optimising the following objective functions, MinLogA andMinLogGapA,
two variations of MinLinA with a locality mechanism.

MinLogA. The minimum logarithmic arrangement problem consists in finding a node
ordering π such that the objective function

∑
{u,v}∈E log |πu − πv| is minimised. The in-

terest of this formula is that the log stands for the number of bits needed to store an edge
in the compression framework; an ordering that minimises it is likely to lead to a better
compression rate. Safro and Temkin [2011] propose a generalisation of this problem to
edges with weight and nodes with volume. Chierichetti et al. [2009] show that MinLogA
is NP-hard and that orderings that minimise MinLinA do not necessarily minimise Min-
LogA.

MinLogGapA. To further align the minimisation problem with the details of the
delta-encoding, one can find an ordering π that minimises the objective function∑

u∈V
∑du−1

k=1 log |πuk+1
−πuk

|, where u1, . . . , udu−1 are the neighbours of u sorted accord-
ing to π. Though this minimisation problem reflect the characteristics of the compression
framework and could lead to high compression rates, finding an optimum ordering is
not realistic on large graphs as Dhulipala et al. [2016] proved that MinLogGapA is also
NP-hard.

Shingle ordering. Instead of pursuing the minimisation of MinLogA or MinLogGapA,
Chierichetti et al. [2009] propose a scalable heuristic based on similarity. For a random
permutation σ over the nodes, the shingle of a node u is s(u) = minv∈Nu σv, or the smallest
neighbour of u according to σ. The shingle ordering consists in sorting nodes according to
their shingle s(u); ties are broken with the second shingle, defined as the second smallest
neighbour according to σ. The probability that two nodes u and v have the same shingle
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is given by the Jaccard index J(u, v) = |Nu∩Nv |
|Nu∪Nv | : if u and v share a large portion of their

neighbourhood, they are likely to have the same shingle and hence to be close in the or-
dering. This algorithm can be seen as a graph reductionwhere only edges between a node
and its shingle are considered.

BiMinLogGapA. A generalisation of the reordering techniques for graph compression
is proposed byDhulipala et al. [2016]. They introduce the BiMinLogGapA objective func-
tion, that is similar to MinLogGapA except that it relies on a bipartite graph: using the
vocabulary of databases and inverted indexes, they distinguish the set of query nodes Q
and data nodes D. This is a usual way of representing an inverted index (a relation be-
tween a query word and all the documents that contain it) used in particular by web
browsers. The minimisation problem consists in finding an ordering π over D that min-
imises

∑
q∈Q

∑du−1
k=1 log |πqk+1

− πqk |, where q1, . . . , qdq are the neighbours of q sorted ac-
cording to π, which all belong toD as the graph is bipartite. While using bipartite graphs
seems like a special case, it is in fact a generalisation as any instance of either MinLogA
or MinLogGapA can be translated into an instance of MinLogGapA. This minimisation is
therefore NP-hard as well.

Recursive bisection. Dhulipala et al. [2016], who target networkswith billions of nodes,
propose the following heuristic to reduce the BiMinLogGapA cost. The bisection is a
graph reduction that consists in partitioning the data nodes of D into two sets D1 and
D2 of equal size while reducing the cost. The algorithm creates the partition with the
following steps. First, it initialises the partition at random or according to the shingle
ordering. Second, it computes for each node u ∈ D1 the gain g(u) for BiMinLogGapA if
u were in D2 instead; conversely for nodes in D2. Then, as long as there exist u ∈ D1 and
v ∈ D2 that have positive gains, it swaps them and thus decreases the BiMinLogGapA
cost. Finally, once all swaps have been performed, it pursues to the next step of recursion:
sets D1 and D2 are also partitioned into two. The recursion stops with sets of one node,
which amounts for logn recursive levels and an overall log-linear time complexity. While
this method only orders the data nodes to enhance the locality property, Danisch et al.
[2022] propose to adapt it to order the query nodes as well, thus favouring the similarity
property in bipartite graphs.

Slashburn ordering. If the graph is stored as an adjacency matrix of size n × n, that
consists of blocks of size b × b (with b < n that divides n), the compression problem
can be reformulated as finding a permutation of the row and column indices so that few
blocks have non-zero values. Bandwidth minimisation or recursive bisection orderings
tend to fill the blocks around the diagonal, but Lim et al. [2014] claim that exploiting
this type of community structure is not sufficient in real-world networks that lack small
cuts. Instead, they propose to leverage their skewed degree distribution to order hubs and
spokes (nodes of high and low connectivity) separately. Slashburn is a priority selection
where each iteration goes as follows: remove the k nodes of highest degree (hubs), place
them at the beginning of the ordering, and place at the end all the nodes that have been
disconnected from the main connected component (spokes). Using cost functions that
reflect the matrix encoding, the authors show that Slashburn ordering compresses better
than other orderings, although it may not be the case with another encoding such as the
one of Boldi and Vigna [2004].
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LLP ordering. To improve the compression rate of the webgraph framework when the
natural ordering has limited locality and similarity, Boldi et al. [2011] propose to use a
hierarchical community detection method and then apply the compression over the re-
sulting ordering of the nodes. They choose the label propagation algorithm of Raghavan
et al. [2007]: each node initially has a unique label, and at each iteration a node takes the
most frequent label of its neighbourhood, until labels converge to a stable assignment.
The ordering is obtained with a layered label propagation (LLP), which consists in apply-
ing the community detection algorithm with a range of resolution parameters so that the
ordering represents different scales of communities.

3.3.6 Graph partitioning ↑ back to Table 3.1 ↑

Graph partitioning consists in cutting the graph into a number of subgraphs such that
there are few connections between the subgraphs. Graph partitions are particularly use-
ful to process the graph with parallel or distributed systems, as each unit can process
one subgraph with limited need for communication between units. Graph partitioning
can be seen as a type of community detection, but a variety of specific techniques and
applications exist, as reviewed by Çatalyürek et al. [2023].

Formally, a graph partition of size k is a set {V1, . . . , Vk} where ∀i, j ∈ J1, kK, Vi ⊆
V, Vi 6= ∅, Vi ∩ Vj = ∅ and

⋃
i Vi = V . In general, two types of properties are sought

in such a partition. First, the subgraphs should have approximately the same number
of nodes, a property called balancing whose strictest form corresponds to |V1| = · · · =
|Vk| = n

k . Second, there should be few edges between the subgraphs. The main metric
for this property is the size of the edge cut, which is the number of edges that cross from
one subgraph to another:

∑
i 6=j |E ∩ Vi × Vj |. Another metric is the communication volume

defined by Bourse et al. [2014]: it is the sum over the nodes of the number of subgraphs
with which they have an edge, or

∑
i

∑
u∈Vi
|{j ∈ J1, kK, ∃v ∈ Nu ∩ Vj}| ; a low value is

desirable as it means that, on average, the nodes havemost of their neighbours in the same
few subgraphs.

Node orderings and graph partitions are tightly related concepts: a partition can be
obtained from an ordering by cutting it into regular blocks; conversely, an ordering can
be obtained from a partition by sequentially taking the nodes of each subgraph. The un-
derlying mechanism is grouping, as the desired properties apply on groups of nodes (the
subgraphs of the partition) rather than on individual nodes and neighbourhoods.

Metis orderings. Karypis andKumar [1998] follow a groupingmechanism andpropose
a general method in three phases to partition a large graph using graph reduction. The
coarsening phase consists in progressively merging nodes together to reduce the size of
the graph while keeping some of its properties. Then, the resulting smaller graph under-
goes a partitioning process. Finally, the uncoarsening phase restores all the initial nodes
into the corresponding subgraph. Several algorithms exist for each phase, but the authors
report after extensive experiments that the choice of algorithm does not significantly im-
pact the resulting cuts: rather, the performance of this scheme is due to themultiple scales
of the graph that are taken into account.

Personalised Pagerank. The personalised Pagerank is a variation of Pagerank (3.3.1)
that concerns a walk that starts on a particular node. The vector of scores p for each node
results from the followingmatrix equation: p = αpW+(1−α)v, whereW is the probability
transition matrix of the random walk and and v is the vector that identifies the starting
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node. Andersen and Chung [2007] rank the nodes according to their score in p, and prove
that there can be a sharp drop in the value of p. In that case, the nodes of high p score
form a subgraph of low conductance, which is a measure of the ratio between inner edges
and outer edges. A graph partition can be obtained by repeating this selection over the
other nodes. Other community detection methods may also be used in a similar way.

LDG ordering. Stanton and Kliot [2012] propose the linear deterministic greedy (LDG)
heuristic, a streaming algorithm that computes a partition during a single pass over the
nodes. When a node arrives, it is placed into the subgraph where most of its neighbours
belong. To prevent imbalance between the subgraphs, a multiplicative penalty is applied
to subgraphs that contain many nodes. This procedure takes linear time and terminates
with a balanced partition, and it is reported to be resilient to the stream order (the order
in which nodes arrive).

Fennel ordering. Addressing the one-pass streaming model as well, Tsourakakis et al.
[2014] propose a generalisation of LDG that optimises a trade-off between node balanc-
ing and partition quality. On the one hand, the subgraphs may have a slightly different
number of nodes if it improves the partition quality. On the other hand, this quality can
be measured not only by the edge-cut, but also for instance by the modularity [Newman,
2006], a measure of relative connectivity that is widely use for community detection.

Sheep ordering. Margo and Seltzer [2015] build the Sheep partitioning method as a
heuristic to minimise the communication volume over large distributed graphs. The al-
gorithm uses a graph reduction method: it first reduces the graph to an elimination tree,
defined as a rooted tree such that if two nodes are neighbours in the initial graph, then
one is an ancestor of the other in the tree. A partition process is applied on the tree and
then extended to the other edges of the initial graph. The partition depends on the initial
ordering of the nodes, and the authors show that an ordering minimising the depth of
the elimination tree is optimal. They note that a proxy for such an ordering is one that
attacks the graph efficiently (see Section 3.3.1), and they choose the degree ordering for
its scalability.

Vebo ordering. While classical graph partitioning aims at subgraphs that have a bal-
anced number of nodes, Sun et al. [2018] point out that the number of edges could be
balanced as well. Indeed, if subgraphs are processed in parallel, the total execution time
will benefit from subgraphs of even size, both in terms of nodes and edges. For the au-
thors, this load-balancing constraint is not straightforward in real-world networks: with
their skewed degree distribution, nodes can have a strongly different number of edges,
which means that node balancing does not guarantee edge balancing. The Vebo parti-
tioning strategy reads nodes in decreasing order of their degree and places them in the
subgraph that best realises the node and edge balance constraint. It follows a grouping
mechanism and can be considered as a streaming algorithm with several passes.

3.3.7 Other applications ↑ back to Table 3.1 ↑

Balanced ordering. Biedl et al. [2005] introduce the problem of finding an ordering
where nodes have the same number of predecessors and successors, which they call a
balanced ordering (to be distinguished from the balancing property of graph partitions
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mentioned in Section 3.3.6). This is a precedence problem that corresponds to the min-
imisation of the objective function

∑
u∈V |d+u − d−u |. On top of its applications in graph

drawing, this problem is interesting for its theoretical aspect: Biedl et al. present an in-
sightful proof ofNP-hardness and find approximation algorithms; Kara et al. [2007] study
the complexity of variations of the initial problem for different classes of graphs.

Revorder. The referenced vertex ordering consists in finding an ordering where each node
has at least a certain number U of predecessors, or references. The question that arises
is the minimum number K of nodes that break this rule. Omer and Mucherino [2021]
present hardness results for different values of U and K, an exact branch-and-bound al-
gorithm as well as greedy approximations, and experimental analysis. The underlying
mechanism is precedence, and the authors express the problem as the optimisation of an
objective function.

3.4 Algorithmic problems with ordering formalism ↑ back to Table 3.1 ↑

On top of their specific domains of applications, node orderings are sometimes sub-
ject to their own algorithmic problem. In fact, a variety of classical graph problems can be
reformulated as an optimisation over the set of node orderings. Bodlaender et al. [2012]
propose a unification that consists in finding an ordering π minimising an objective func-
tion of the form

∑
u∈V f(G, u,Πu) or maxu∈V f(G, u,Πu), where f is any function that

can be computed in polynomial time and Πu is the set of nodes that appear before u in π.
An exponential algorithm for the Travelling Salesperson Problem (TSP) is able to solve
these generic problems using polynomial space, which gives a direct way to solve any
problem that can be expressed with these formulas. In particular, the authors address the
MinLinA problem (3.3.4) and its directed version, as well as the problems of tree-width,
path-width, cut-width, fill-in, and feedback arc set that we do not define here.

Notably, the colouring problem can be understood as a node ordering optimisation.
Colouring a graph consists in giving to each node u a colour c(u) while ensuring that
neighbours have distinct colours. The colouring problem consists in finding a graph
colouring with as few colours as possible, or to minimise |c(V )|. This problem is one
of the classical NP-hard problems of Karp [1972]. A famous greedy algorithm is often
used to compute a colouring that is not necessarily minimum: using integers as colours,
the algorithm streams nodes in a given order, and colours each of them with the lowest
colour that is not taken by its neighbours. The choice of ordering matters, and Asik et al.
[2020] identify closeness centrality as a better strategy than degree at distance one, two
or three, Pagerank, clustering coefficient, or random. Mathematically, there even exists an
ordering that leads to optimal colouring: if nodes are sorted according to their colour in
a minimum colouring c, then the greedy algorithm is able to find the same colouring. In
other words, the problem of minimum colouring can be considered as an ordering prob-
lem.

The vertex cover problem, and its complementary independent set problem, also ad-
mit a formulation with orderings. A vertex cover is a subset of nodes that covers all the
edges of the graph, which means that each edge has at least one node in the subset. The
minimum vertex cover problem consists in finding a smallest subset with this property.
This NP-hard problem is studied in Chapter 6, where we present a method to certify the
quality of heuristics in practice. To reformulate it as an ordering problem, let us con-
sider a minimal vertex cover C ⊆ V . We define an ordering π in which nodes of C come
before the other nodes: ∀u ∈ C, v ∈ V \ C, πu < πv. Suppose that the out-degree of
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u ∈ C is zero, then all of its neighbours are also in C, so C is not minimal: necessarily
d+u > 0. On the other hand, all the neighbours of a node v ∈ V \ C have to be in C, so
d+v = 0. Thus, the size of the vertex cover is precisely the number of nodes that have a
positive out-degree, hence this node ordering formulation of the minimum vertex cover
problem: given an undirected graphG = (V,E), find the node ordering π that minimises
| {u ∈ V with d+u > 0} |.

The problem of ordering recovery consists in inferring the order in which nodes ap-
peared during the growth of the network. Turowski et al. [2020] study a model of growth
called duplication-divergence: a newly created node copies the adjacency of an exist-
ing node and applies random deletion and addition of edges. Assuming such a growth
model, they compute an approximate solution to the order recovery problem.

3.5 Overhead considerations ↑ back to Table 3.1 ↑

As we have seen, node orderings are used to improve algorithms in a variety of prob-
lems. One of theirmost interesting capability is to reduce the execution time of algorithms.
Yet, as soon as time measurements are made, the question of trade-off occurs: if using an
ordering spares some time in the execution, how long can we spend in computing the
ordering? We call overhead the pre-processing time spent to compute the ordering.

Distinct scenarios lead to different answers. First of all, one may consider the ordering
procedure as part of the general algorithm. In this situation, the gain of time caused by
the ordering has to be higher than the overhead. It is usually the case for orderings of
low complexity such as the degree ordering in O(n). When more complex orderings are
involved, this constraint is only possible for algorithms that have a high complexity, such
as clique enumeration or pairwise shortest paths computation. Overhead considerations
also raise the question of the parallelism of node orderings: if the main algorithm can run
in parallel on many processors, it is important that the ordering phase can also run in par-
allel. For instance, parallel versions have been developed for RCM ordering by Karantasis
et al. [2014] and for core ordering by Shi et al. [2021] in order to reduce the overhead in
the case of parallel execution.

At the other end of the spectrum, one may consider that the overhead does not matter.
Indeed, it is possible to compute an ideal ordering once, and then to relabel the nodes to
store the ordering in the graph file. If this file is distributed to other users or processed
many times, the overhead can be amortised. This is for instance the case in large database
systems, where queries have to be answered in a short time but an ordering algorithm
can run in the background. However, this situation can be paradoxical when the ordering
comes from the optimisation of an objective function that is as hard as the initial problem:
in some reformulated graph problems of Section 3.4, there exists an ordering that allows
a greedy linear algorithm to find an optimum solution. Thus, finding the ordering is as
hard as solving the problem. Moreover, the resulting ordering only solves this specific
problem and cannot necessarily be used for other tasks.

Most researchers imagine an intermediate situation where some overhead is tolerated
as long as the whole process is still scalable. The overhead may also be acceptable when
the benefit of orderings is not an acceleration: it can be a higher compression rate or a
smaller cut, in which case there is no clear rule as to how long to spend on the ordering
phase.
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Orderings for faster execution

Reducing the cache-miss rate of graph algorithms
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Summary

As explained in Chapter 2, the role of a cache system is to store pieces of data close to
the processor so that it can access it faster than if it were only available in main memory.
When an algorithm requires a piece of data at a point of its execution, it benefits from
this acceleration if the data is contained in a cache line; otherwise, it has to wait for it
to be retrieved in main memory, which is called a cache-miss. Avoiding cache-misses has
repercussions over the total execution time of the algorithm, as they sometimes amount for
more than half of the computation time. In order to reduce cache-misses for generic graph
algorithms, Wei et al. [2016] propose to reorder the nodes so that two nodes that will end
up on close in memory are also closely linked in the graph. They propose a new ordering
called Gorder that approximates this objective with a greedy procedure. This chapter is
a replication of their work with additional results and discussions on their contribution.
We implement ten existing ordering methods and measure the execution time of nine
standard graph algorithms on large real-world datasets. Monitoring cache performances
allows us to confirm that variations in the execution time are due to differences in the
proportion of cache-misses.

As the authors of the initial paper documented, Gorder leads to the fastest execution
in most cases. Yet, our results show that simpler orderings based on graph traversal are
almost as efficient in terms of cache-miss reduction, even though they are much faster
to compute. Our replication highlights that the problem of cache optimisation is subject
to concerns of overhead which, as explained in Section 3.5, require to think of ordering
methods as a trade-off between initial time investment and acceleration of subsequent
executions.

Contributions

∗ Replicate all the experiments of the paper of Wei, Yu, Lu, and Lin [2016].

∗ Implement all the orderings and algorithms in a unified open-source code.
https://github.com/lecfab/rescience-gorder

∗ Compare the benefits of orderings for a variety of algorithms and networks.

∗ Provide additional discussion on the performance of different orderings.

Publication

∗ [Replication] Speedup graph processing by graph ordering
Lécuyer, Danisch, and Tabourier [2021], ReScience.

https://github.com/lecfab/rescience-gorder
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4.1 Introduction

In graph algorithmics, various procedures use the same few atomic operations.
Among the operations described in Section 2.1.3 to motivate the choice of graph data
structures, neighbourhood listing is particularly important: accessing the neighbours of
a given node is key to problems such as computing shortest paths, finding connected
components, detecting communities etc.

Making this type of elementary operation faster would improve such algorithmswith-
out having to modify their implementation. That effect can be obtained by leveraging the
cache architecture of computers. Figure 4.1 illustrates the different layers of memory of a
standard computer, andmore information is given in Section 2.3. The graph data is stored
in main memory, but pieces of it are also duplicated in different levels of cache so that the
processor can access it faster. When the data is not available in cache, a cache-miss occurs:
the processor has to fetch it in main memory, which is up to twenty times slower depend-
ing on the machine. Ailamaki et al. [1999] and Cieslewicz and Ross [2008] show that the
cache stall, defined as the time lost in cache-misses, represents a significant share of the
computation time, which gives incentive to reduce it.

Reducing the cache-misses is an option of choice to accelerate elementary operations.
Specifically, two variables that are often accessed together by algorithms should be stored
side-by-side in memory so that they are duplicated together on a cache line. In a graph
stored as adjacency lists, it means reordering the nodes so that neighbours have close-
enough indices.

This chapter replicates the paper of Wei, Yu, Lu, and Lin [2016] which introduces
Gorder, a new procedure to order the nodes of a graph to reduce cache-misses, and com-
pares it to other standard orderings using typical algorithms and datasets as benchmarks.

Higher cache

Cache system

Main memory Lower cache

Processor

68

Figure 4.1: Representation of a cache system. Main memory (RAM) is large and cannot
be stored close to the processor; duplicates of data are stored in smaller, closer memory
units called cache levels. The execution of a program is faster when the data required by
the processor is in the cache.
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Testing a variety of graph algorithms favours orderings that affect elementary operations
that are used in most algorithms, as opposed to orderings that would be tailored for one
specific algorithm. The authors of the original paper claim an improvement of 10 to 50%
in runtime, due to lower cache-miss rate.

Wewere able to replicatemost of the experiments and confirm that ordering the nodes
according to Gorder makes the implementations 10 to 50% faster than without reorder-
ing. Section 4.2 presents the algorithms, orderings and datasets as well as issues faced
during the replication. Our results are presented in Section 4.3 and are compared to the
original results. Finally, Section 4.4 discusses the relevance of such an ordering compared
to simpler ordering methods that offer satisfactory performances.
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Figure 4.2: CPU execution and cache stall. Original ordering and Gorder are compared
for all algorithms on the sdarc dataset. Grey bars are time spent on CPU operations, black
bars represent time spent waiting for data retrieval. Times are normalised by the total
runtimes with the original ordering. Figure (a) shows the share of CPU execution and
cache stall for the original ordering, figure (b) shows them when the network has been
reordered following the Gorder procedure. While both need about the same CPU time,
the latter is significantly faster due to cache stall reduction. Compare to Figure 1 in Wei
et al. [2016].

4.2 Method

The original study ofWei et al. [2016]wasmotivated by the observation that cache stall
can take up to 70%of thewhole computation time, which is supported by the observations
reported in Figure 4.2. While researchers have addressed the issue for specific algorithms,
such as Then et al. [2014] for breadth-first search, Wei et al. propose a more general
approach that aims at optimising the data organisation to improve cache performance,
regardless of the algorithm or hardware specifications.

Gorder clusters nodes that are likely to be accessed simultaneously by any graph al-
gorithm. More precisely, let us consider a directed graph G = (V,E) with n = |V | nodes
and m = |E| edges. The proximity of two nodes u and v is measured by a score S(u, v)
that increases if they are neighbours and if they share many common predecessors. The
total score F is the sum of S(u, v) for all nodes u and v that have close indices, where the
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closeness is defined by a parameter called the window size w. The score F naturally de-
pends on the node ordering π, and Gorder aims at finding an ordering that maximises F .
A more formal definition of this optimisation problem is given in Section 4.2.3.

The authors prove that finding the optimal ordering π is a NP-hard problem and pro-
pose a heuristic with a theoretical approximation bound. They also present algorithmic
improvements that reduce the time complexity of the heuristic. Finally, they run extensive
experiments to compare Gorder to other standard orderings.

Although the theoretical results of the original paper are important to explain the ef-
ficiency of Gorder, we only focus here on the algorithms and experiments. Wei et al. pro-
vide an extensive analysis by comparing the runtimes for nine typical algorithms on eight
large datasets with nine possible orderings. The current section describes them all and
exposes the issues that we faced during our replication. All the codes and instructions for
this purpose can be found in our repository.

4.2.1 Algorithms

In the original paper, the authors selected typical graph algorithms to test the different
orderings. However, their implementation details were not fully documented and they
were unable to provide additional information upon request. As a result, we had to make
implementation choices that we detail below to ensure transparency and reproducibility.
Here are the nine algorithms that are executed by Wei et al. and in our replication.

Neighbour query (NQ). Listing the neighbours of a given node is a standard elemen-
tary operation in graph algorithmics. As defined by Wei et al. [2016], this operation
must “access the out-neighbours” of each node. To assess whether the cache benefits from
a favourable ordering, we need to ensure that each neighbourhood is duplicated in cache
at some point. To do so, we choose to execute an arbitrary operation over the set of neigh-
bours of each node: we compute for each node u the sum of degrees of its neighbours
qu =

∑
v∈Nu

dv.

Breadth and Depth-first search (BFS, DFS). BFS and DFS are standard graph traversal
algorithms [Cormen et al., 2009] that we adapted to the data structure detailed in Sec-
tion 4.2.2. Note that neighbours are selected in lexicographic order defined by the original
ordering of the network.

Strongly connected components (SCC). A strongly connected component is amaximal
subset of nodes such that there exists a path from any of its nodes to any other of its nodes.
Finding the SCCs of a graph is a classical problem for which a well-known algorithmwas
proposed by Tarjan [1972]. Our implementation of this algorithm is based on DFS.

Shortest paths (SP). As in the original paper, we use the Bellman-Ford algorithm [Cor-
men et al., 2009] to compute the minimum distance from a source node to any other node.
The time complexity after simple optimisations is in O(∆ ·m) where ∆ is the diameter of
the graph and m is the number of edges. As real-world networks are known to have rel-
atively small diameters (∆ � n), this algorithm works on the large networks presented
in Section 4.2.2. Note that for unweighted graphs, shortest paths can be computed in lin-
ear time and space using a BFS, but we keep the algorithm suggested by Wei et al. for
comparison purposes.
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Page rank (PR). Pagerank is the method presented by Page et al. [1999] to rank web-
pages. Based on random walks, it gives a score to each node according to its importance
in the network structure. As computing the exact Pagerank is not a scalable problem,
Wei et al. use a heuristic called the power iteration method. We implement this heuristic
and execute it with 100 iterations and a damping factor set to α = 0.85, which is a usual
configuration.

Dominating set (DS). A dominating set is a subset of nodes such that every node of
the graph either belongs to the subset or has a neighbour in it. The implementation is not
described in the original paper so we use a greedy approximation [Cormen et al., 2009]
made of two steps. First, we select the node with the most uncovered neighbours and
add it to the dominating set. Second, this node and all its neighbours are removed from
the graph because they are now covered. The two steps are then repeated among the
remaining nodes.

Core decomposition (Kcore). Described in Chapter 3, the graph peeling algorithm of
Batagelj andZaveršnik [2003] consists in recursively removing the node of smallest degree
until only a core of well-connected nodes remains. We use a priority queue structure
implemented as a binary tree to keep track of the degrees, leading to a quasi-linear time
complexity.

Diameter (Diam). The diameter of the graph is the longest distance between two nodes.
Efficient approximations with theoretical bounds exist, such as the ones based on BFS
presented by [Corneil et al., 2003]. Instead, Wei et al. [2016] run 5000 times the shortest
paths algorithm SP from a random node, and output the highest distance obtained. Even
though this method is not the most accurate and efficient to compute the diameter, it is
still interesting in this study where the goal is to compare the performances of different
orderings in terms of cache-misses.

4.2.2 Datasets and data structure

Eight real-world datasets are used as benchmarks in the work ofWei et al.. Their basic
features are reported in Table 4.1. As per usual with real-world graphs, these graphs
have specific properties described in Section 2.2.1: sparsity (m � n2), small diameter,
skewed degree distribution, etc. As shown in Table 4.1, their sizes range from 1.6 million
nodes and 30 million edges to almost 100 million nodes and two billion edges. In order
to facilitate further experiments, we attach the epinion dataset to the repository, a smaller
network on which our code can be tested quickly.

These networks are the same as in the original paper, and the table provides the URLs
where they can be downloaded. Wei et al. [2016] selected two main categories of real-
world networks: online social platforms, where a node is a user and a directed edge rep-
resents a social interaction, and web graphs, where a node is a web page and a directed
edge is a hyperlink.

The datasets are directed graphs given as lists of edges. In order to store large graphs
in main memory, an efficient data structure is needed. Libraries exist for that purpose,
but we develop our own light structure to have better control over the implementation
of the algorithms. A list of edges does not provide quick access to the list of neighbours
of a given node, which is the crucial operation for most of the above graph algorithms.
The data is therefore converted into a adjacency lists, where a node points to the list of its
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Dataset Size (Go) Nodes (106) Edges (106) Source Category
pokec 0.4 1.63 30.6 SNAP1 Social
flickr 0.4 2.30 33.1 Konect2 Social

livejournal 1.0 4.85 69.0 SNAP1 Social
wiki 6.7 13.6 437 Konect2 Web
gplus 7.3 28.9 463 Gong3 Social
pldarc 10 42.9 623 WDC4 Web
twitter 26 61.6 1470 Kaist5 Social
sdarc 34 94.9 1940 WDC4 Web

epinion
(added) 0.005 0.0759 0.509 SNAP1 Social

Table 4.1: General features of the datasets used in the experiments. The data can be
found in the following websites:
1Stanford Network Analysis Project: http://snap.stanford.edu/data/
2Koblenz Network Collection: http://konect.cc/networks/flickr-growth/ and http://konect.cc/networks/
wikipedia_link_en/
3Gong Research Group: http://gonglab.pratt.duke.edu/google-dataset
4Web Data Commons: http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
5Kaist Advanced Networking Laboratory: http://an.kaist.ac.kr/traces/WWW2010.html

neighbours. For efficient storage, we use the compressed sparse row format described in
Section 2.1.3.

4.2.3 Orderings

We list below the different orderingmethods considered in the original study andused
as a benchmark for comparison with Gorder. In our replication, we added, modified or
removed some of them for practical reasons. An ordering is defined as a permutation π
where πu is the index of node u. See Chapter 3 for more details and context on these and
other ordering methods.

Original. Datasets are collected in a way that is not random but is rarely reported. The
original ordering is the one that is contained in the network file when we download it.

Random (added). The original paper did not include a random ordering. We include
it as a non-favourable benchmark for comparison to all other orderings. Our implemen-
tation obtains a random ordering by shuffling the indices of nodes.

MinLinA and MinLogA. Theminimum linear arrangement (MinLinA) and theminimum
logarithmic arrangement (MinLogA) problems have been presented in Chapter 3. The goal
is to find an ordering π of the nodes that minimises a given “energy” function. The energy
E is computed over the set E of edges in the following way:

EMinLinA =
∑

(u,v)∈E

|πu − πv| and EMinLogA =
∑

(u,v)∈E

log |πu − πv|

As both exact minimisations are NP-hard, a heuristic method is necessary. Wei et al.
[2016] use the meta-heuristic called simulated annealing: random swaps are achieved

http://snap.stanford.edu/data/
http://konect.cc/networks/flickr-growth/
http://konect.cc/networks/wikipedia_link_en/
http://konect.cc/networks/wikipedia_link_en/
http://gonglab.pratt.duke.edu/google-dataset
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
http://an.kaist.ac.kr/traces/WWW2010.html
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to decrease the energy E with some tolerance for swaps that increase it, while the tem-
perature goes down and reduces the tolerance for such bad swaps. The parameters of
simulated annealing are known to be hard to tune, and our implementation has two of
them: the number of steps S (how many random swaps are performed before stopping)
and the standard energy k (what typical tolerance is given to bad swaps). The tempera-
ture T decreases linearly so that, at step s, T (s) = 1 − s/S. At each step, two nodes are
picked at random. Swapping their indices in π leads to a variation δ of the total energy E .
If δ is negative, the swap is registered and the energy decreases. Otherwise, it is registered
with a probability p, inspired by statistical physics:

p(δ, T ) = exp
(
− δ

k · T

)
In Figure 4.3 we test a wide range of values of S and k on epinion. While we cover a

significant fraction of the parameter space, we are not able to find a combination of S and
k that outperforms a simple local search (k = 0, p = 0), where only the favourable swaps
are accepted. In our next experiments, we set S = m and k = m/n.

Figure 4.3: Tuning simulated annealing for MinLinA. The colour and the z-axis repre-
sent the energy of the best permutation π obtained for various values of the parameters
(standard energy k and number of steps S) on epinion. S ranges from n to m logn (log-
arithmic scale), which we consider to be the maximal acceptable time for the heuristic
implementation. Standard energy k ranges from 1/(mn) to mn (logarithmic scale). We
observe that a) the higher S, the lower the resulting energy, b) when k is high, the re-
sulting energy is at a maximum: all swaps are accepted regardless of their quality which
results in a random arrangement, c) any low value of k yields the same energy as k = 0
which corresponds to a local search, in particular k = m/n which we use afterwards.

RCM. The Reverse Cuthill and McKee [1969] ordering is a BFS ordering where nodes
of small degree have priority. It is meant to find an arrangement π that reduces the band-
width of a sparse graph, given by max(u,v)∈E |πu − πv|with πu the index of node u.

Degsort. As proposed in the original paper, we sort the nodes in descending order of
in-degree, breaking ties with the lexicographic ordering of the node indices.
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Chdfs. Wei et al. [2016] mention the children-depth first search traversal, which we assume
to be a usual DFS algorithm. In our implementation, the first node is chosen at random,
then the selection of children is made following the original ordering of node indices.

Slashburn (simplified). Slashburn is an iterative process that separates hubs (high-
degree nodes) from low-degree nodes connected to hubs. Our implementation creates
an ordering by iterating over an array of size n, initially empty. Each iteration divides
the array in parts A, B and C. Part A takes only one node, selected at random among
those with highest degree. Nodes that have no neighbour go to part C. Then this hub and
these isolated nodes are removed from the graph, which creates new isolated nodes, and
degrees are updated. Part B is filled by the next iteration until no node remains.

There are two differences between our implementation and the original Slashburn al-
gorithm introduced by Lim et al. [2014]. First, the official version fills part C with discon-
nected components instead of isolated nodes. Second, it puts r hubs in part A, and r is a
parameter that can be modified. As no precise information was given by Wei et al. [2016]
on their choice of parameters and algorithms to extract the main connected component,
we implement the simpler version described above instead.

LDG. The Linear Deterministic Greedy partitioning of Stanton and Kliot [2012] creates
n
k bins of size k and streams the nodes to put them in their preferred bin. Their preference
is defined by the number of their neighbours that belong to a given bin. Larger bins are
penalised in order to ensure that at the end of the process all bins have equal sizes (up to
one element). More precisely, a node u with a neighbourhood Nu is placed in a bin that
achieves

argmax
bin B

(
1 + |Nu ∩B|

)
×
(
1− |B|

k

)
At the end of the process, each bin contains about k nodes. Wei et al. [2016] choose k = 64
so that a bin can fit on a cache line. Indeed, common contemporary processors have L1
caches of a few dozen kilobytes (32kB in our case) made of lines of 64 bytes each.

Metis (removed). Metis is a powerful and extensive tool for graph partitioning. A c++
implementation is available 1 but it is not suitable for large graphs: the original paper
could only test it on the three smallest networks because of its excessive memory con-
sumption. Since this ordering does not scale, we do not test it in our experiments.

Gorder. Gorder is the ordering method proposed by Wei, Yu, Lu, and Lin. They give a
precise description of its implementation and release an open-source c++ implementa-
tion 2. As mentioned at the beginning of Section 4.2, the authors define the quality func-
tion F of an arrangement π by:

F (π) =
∑

0<πu−πv≤w

S(u, v) =
∑

0<πu−πv≤w

(
Ss(u, v) + Sn(u, v)

)
where w is the window size; Ss(u, v) is the number of times u and v coexist in sibling
relationships or their number of common predecessors; Sn(u, v) is the number of times
they are in a neighbour relationship, which is either 0, 1 or 2 since both directed edges
(u, v) and (v, u) may exist.

1http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
2https://github.com/datourat/Gorder

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://github.com/datourat/Gorder
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The greedy algorithm presented by Wei et al. creates the ordering π by recursively
inserting the node that has the highest proximity to nodes presently within the window.
Storing the proximity scores S requires a complex structure called unit heap, made of
a linked list and pointers to different positions. We took the functions provided in the
original code and adapted them to our data structure.

To choose the parameter w for the window size, Wei et al. [2016, Figure 8] create ver-
sions of Gorder for w ranging from 1 to 8. For each version of w, they run the PR algo-
rithm on the flickr dataset. The idea is to check which parameter allows for the fastest
runtimes in this particular example and to generalise it to other algorithms and datasets.
The fastest runtime is obtained with w = 5, so they use this value in their experiments.
However, there is only a small relative variation of runtime (3%) between the 8 versions.
In Figure 4.4 we compare a wider range of window sizes, asw could in theory be anything
between 1 and n. We find that setting w between 64 and 2048 gives a further 3% speedup
compared to w = 5. Note that our next experiments use w = 5 to ensure strict replication.
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Figure 4.4: Tuning window size. Versions of Gorder obtained for window sizes ranging
from w = 1 to w = 220 ' 106 are tested in Pagerank over flickr (that has n ' 2 ·106 nodes).
Median execution time and 90% confidence interval are shown for 100 repetitions. The
plateau from w = 64 to w = 211 = 2048 gives better results than w = 5. This figure can
be compared to Figure 8 in the paper of Wei et al. [2016]; note that the absolute runtimes
are different because of hardware differences.

For the purpose of replication, we also use w = 5 in the next experiments. Two other
factors make the choice of a small w relevant. First, the computation of Gorder is faster
when the window is narrow, because a candidate node has to compute its proximity score
S with all the nodes of the window. Second, the authors of the original paper show that
their heuristic is a 1

2w -approximation of the optimal score: reducing w makes this bound
tighter.

4.3 Results

4.3.1 Implementation hardware

To deal with bigger datasets and avoid the fluctuations of time measurements de-
scribed in Section 2.3, we run the experiments on an isolated cluster (SGI UV2000 Intel
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Xeon E5-4650L @2.6 GHz, 128GB RAM). Each processor has three levels of cache of re-
spective size 32kB, 256kB and 20MB. The hardware of Wei et al. has similar cache and
RAM storage but higher clock frequency, which can explain the differences in runtime (in
addition to programming techniques and optimisation). Note however that these differ-
ences should not modify the relative performance of different orderings.

4.3.2 Ordering time

Computing an ordering on a large network can be a long process, and some of the
ordering methods have limited scalability. As mentioned above, Metis has been removed
from the experiments for this reason. Table 4.2 reports the duration of the computation
of each ordering. For datasets that have less than a hundred million edges, they can all be
computed in a couple of minutes at most, with DegSort and ChDFS orderings requiring
less than a second.

When the number of edges rises however, the computation takes hours for MinLinA,
MinLogA, and Gorder. In the case of MinLinA and MinLogA, the number of steps is
chosen arbitrarily as described in Section 4.2.3. The process could thus be interrupted
earlier, at the cost of a less efficient resulting ordering. As for Gorder, it does not scale
linearly and its processing speed decreases as the number of edges increases. For example,
the algorithm processes 380k edges per second for pokec but only 60k edges per second
for sdarc, which requires a computation time of almost 9 hours. To speed up the process,
a smaller window size can be used, but this results in a slightly less efficient ordering, as
shown in Figure 4.4.

pokec flickr livejournal wiki gplus pldarc twitter sdarc
MinLinA 28 27 92 441 539 579 2956 4884
MinLogA 89 64 217 2169 1662 2258 10245 17168

RCM 3 5 10 60 49 63 158 406
DegSort 0.8 0.4 1 5 9 14 30 85
ChDFS 1 0.8 1 3 8 10 54 76

Slashburn 3 9 16 37 90 189 633 1066
LDG 6 7 13 68 101 144 673 798

Gorder w=5 79 110 118 988 3324 8783 25475 32488
Edges m 31M 33M 69M 437M 463M 623M 1.47G 1.94G

Table 4.2: Graphordering time. We indicate the time to compute each ordering in seconds
(in bold font when above 30 minutes). We also indicate the number of edges for each
dataset to help evaluating the scalability of a method. Comparing to Table 9 of Wei et al.
[2016] is possible for RCM, DegSort, ChDFS andGorder because the implementations are
alike: it shows that the hardware of Wei et al. is 2 to 5 times faster than ours. For the other
orderings, the implementations are likely too different to be compared.

4.3.3 Running time

The main purpose of Wei et al. [2016] is to assess whether the node orderings listed
lead to a faster execution of standard graph algorithms. For each combination of dataset,
ordering and algorithm,wemeasure the execution time. The speedup is defined as the ratio
between the execution time with a given ordering and the execution time with Gorder.
Figure 4.5 shows the performances of all the orderings compared to Gorder. The results
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Figure 4.5: Speedup ofGorder. For each algorithm and each dataset, we display the abso-
lute runtime for Gorder. Bars represent the relative time of all other orderings compared
to this reference. For readability, the y-axis is cut above factor 2, but values go as high as
3.7. This figure can be compared to Figure 9 in Wei et al. [2016]. Another visualisation is
show in supplementary figure 4.6.



4.3. Results 71

0.8

1.0

1.2

1.4

1.6

1.8

2.0
NQ

Dataset
epinion
pokec
flickr

livejournal
wiki
gplus

pldarc
twitter
sdarc

0.8

1.0

1.2

1.4

1.6

1.8

2.0
BFS DFS

0.8

1.0

1.2

1.4

1.6

1.8

2.0
SCC SP

0.8

1.0

1.2

1.4

1.6

1.8

2.0
PR DS

Orig
ina

l

Ran
do

m

MinL
inA

MinL
og

A
RCM

In
Deg

Sor
t

ChD
FS

Slas
hB

ur
n

LD
G

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Kcore

Orig
ina

l

Ran
do

m

MinL
inA

MinL
og

A
RCM

In
Deg

Sor
t

ChD
FS

Slas
hB

ur
n

LD
G

Diam

Figure 4.6: Speedup of Gorder grouped by ordering. For each algorithm and each or-
dering, bars represent the relative duration on each dataset compared to Gorder, taken as
a reference. For readability, the y-axis is cut above factor 2. This figure displays the same
information as Figure 4.5 but groups bars by ordering instead of dataset.
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are reported for each dataset and algorithm in the same way as Figure 9 of the original
paper. Additionally, we propose in Figure 4.6 another visualisation of the same results
but grouped by ordering instead of dataset, which emphasises the overall performance of
each ordering method.

A first few observations can be made from the raw results of the experiments. Like
Wei et al., we observe that Gorder almost always leads to the fastest execution times. The
y-axis of Figure 4.5 is limited to a speedup of 2 for clarity, but the the values reach up to 2.5
compared to the original ordering (for Diameter on sdarc) and 3.7 compared to a random
ordering (for Pagerank on wiki).

To helpmake sense of the results, wepropose an aggregated visualisation in Figure 4.7,
where each ordering is ranked according to its performance in comparison to the other
orderings through the 81 series of experiments reported in Figure 4.5. It shows in partic-
ular that Gorder is the best ordering method in half of the experiments, and second-best
in most other cases. Let us give a few comments on the performances of the different
ordering methods under examination.

Random is the worst and original is medium

The experiments show that the default ordering of networks performs better than
more elaboratemethods such asMinLinA or LDG, that have a high computation overhead
as shown in Table 4.2. This phenomenon was also observed by Wei et al.. This indicates
that the way in which datasets are constructed tends to give close indices to nodes that are
in the same neighbourhood, and that the original ordering is not a random ordering. In a
web graph for instance, if webpages are listed alphabetically by URL, it is likely that two
consecutive nodes have a hyperlink between them since they belong to the same website.
The random ordering is always the worst performer except for 6 experiments where it is
second-to-worst. It is not surprising as each of the other orderings tends to bring adjacent
nodes together, which should improve the cache efficiency and the algorithm runtime.

Some elaborate orderings perform poorly

Note however that LDG performs only slightly better than random, and that it is al-
most always the slowest in the experiments of Wei et al. too. In a quarter of the experi-
ments, the execution is more than twice as slow as with Gorder. These poor results lead
to think that either its parameter (the size of bins k = 64) is not optimal, or that its quality
function is not highly correlated to cache efficiency. MinLinA and MinLogA are always
faster than LDG but, except for the twitter dataset, they are slower than the original order-
ing. As reported in Figure 4.3, we could not find any parameters with better results than
local search, which is not ideal when the problem has local minima.

Degree-based orderings show medium performance

Both InDegSort and Slashburn use the degree of nodes as their main criterion. The ex-
periments show that they outperform the default orderings, especially for larger datasets.
For some algorithms such as BFS or NQ, they are less than 20% slower than Gorder. This
indicates that cache misses are reduced when nodes of similar degree are copied together
on a cache line. The original paper found similar results, though their implementation of
Slashburn did not perform as well; the fact that we implemented a modified version (see
Section 4.2.3) may be responsible for this discrepancy.



4.3. Results 73

Some orderings outperform Gorder on specific algorithms

We also notice that some orderings perform particularly well on specific algorithms,
and can even outperform Gorder. ChDFS ordering is the most efficient for DFS algorithm
on all datasets. This is due to the close relation between these twoprocesses: the algorithm
explores the graph in the exact same way as the ordering is created. Likewise, RCM is a
variation of a BFS that takes node degrees into account and it is themost efficient ordering
for BFS algorithm.

Both also outperform Gorder for algorithms that are not as blatantly related: ChDFS
is up to 10% more efficient for SCC on smaller datasets, and RCM is the most efficient for
Diameter and SP. More generally, Figure 4.7 shows that these two orderings are among
the three fastest ones in 75% of the experiments. The original paper has different results
on that matter: RCM and ChDFS are the best alternatives as well, but they are always 10
to 20% slower than Gorder.
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(b) Rankings in the experiments of Wei et al.

Figure 4.7: Rankings of orderingmethods in our experiments (left) and the experiments
of Wei et al. (right). For each series of experiments, we rank the runtime performance
of the orderings. This figure shows how many times an ordering ranks best (thickest,
lightest bar), second-best, …, to worst (thinnest, darkest bar). We have 81 experiments (9
algorithms times 9 datasets) and the original paper has 72, as it does not include epinion.
Besides, we add Random ordering and remove Metis. Rankings of Wei et al. are inferred
from their Figure 9, but speedups above 1.5 are not displayed so we consider them equal.
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4.3.4 Comparison to the original paper

Our purpose here is to detect if there are significant discrepancies in performance
between the original paper and our replication study. Figure 4.7 presents an aggregate
view of the results grouped by ordering method. For each series of experiments (i.e. a
given algorithm applied to a given dataset), we rank orderingmethods from best to worst
performance. The figures report how many times each ordering has been ranked in each
position. For instance Gorder is ranked first in 40 of our 81 series of experiments.

Results for Gorder

In both the original study and our replication, Gorder ranks first overall. This shows
that this ordering is the best choice in general. However, our study shows that Gorder is
outperformed by different orderings in half of the experiments, while it is only outranked
once in the original paper. Figure 4.7b thus leads us to think of Gorder as the perfect
choice whereas Figure 4.7a establishes RCM and ChDFS as relevant challengers, with 24
and 16 first places respectively. This difference between the two papers is probably due to
implementations: in our replication, ChDFS uses exactly the DFS algorithm. In particular,
the nodes are visited in the same order, which leads to a quick execution of DFS. The
original paper likely prevents this mechanism, for instance by shuffling the nodes at each
step of the search, but no detail was given to hint at such a precaution.

Ranking of other orderings

The three best orderings are evidently the same in both studies, but there are some
nuances for the other ones. Arguably, visualising these results does not always allow for
exact ranking: in Figure 4.7b, InDegSort hasmore second and third places than Slashburn
but fewer fourth and fifth places. There is no obvious way of deciding which is better,
while Figure 4.7a clearly indicates InDegSort. The same issue happens between Original
and MinLogA: we can say that their rank in the experiments of Wei et al. is equal.

The last nuance comes for the slowest orderings: in our study, LDG is only better than
Random while MinLinA competes with MinLogA and Original. For Wei et al. on the
other hand, LDG is better than MinLinA overall. This difference can be explained by the
fact that Figure 9 of the original paper hides the speedup above 1.5, which makes the
ranking unreliable for the poorest orderings.

In the end, both studies rank the orderings in a very similar way.

Limits of visualisation

The aggregate view of Figure 4.7 induces several approximations. First of all, there
are 72 experiments in the original study and 81 experiments in ours, as we add the epinion
dataset. This extra dataset is much smaller than the others and all its results in Figure 4.5
range in a 1.4 speedup, to be compared with more than 3 for the biggest datasets. Yet, the
ranking of ordering methods on epinion is consistent with other datasets.

The original study does not test random orderings. This does not disturb the results
as this method ranks last in most experiments. Similarly, our study omits Metis so we
ignore it in Figure 4.7b as well. Moreover, the original paper hides precise information
when a runtime exceeds 1.5 times the runtime of Gorder. We consider that all orderings
above this bound rank equally.

Themain issue of our visualisation is that it only shows the rank andhides the extent of
runtime variations. This information is only visible in Figure 4.5, where a gap separates
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two categories: faster orderings with Gorder, RCM, ChDFS, InDegSort and Slashburn,
from slower orderingswith the other ones. However, Figure 4.7 is useful to give an overall
grade to each ordering method. If original ordering is taken as a limit between faster and
slower orderings, we find the same gap again.

4.3.5 Cache miss

A cache-miss is a state of an execution when the data requested by the processor is
not found in the cache memory. The program has to fetch the data in further cache levels
or in main memory, which causes delays. Gorder capitalises on the intuition that if we
cluster nodes that are frequently accessed together, higher levels of cache will hold more
relevant data and thus make algorithms run faster.

To prove that the speedup associated to Gorder is due to cache-miss reduction, we
compute the proportion of the total computation time spent in data retrieval. We use
Unix perftools with the wrapper ocperf. It provides various hardware metrics such as the
number of CPU cycles, branch predictions, cache misses…3 Depending on the machine
architecture, different metrics are available.

Table 4.3 shows the cache-miss rates at different levels, just like the Tables 3 and 4 of the
original paper. The first column is the total number of L1-references which is the number
of times a piece of data was required by the processor. A proportion of this data is not
found (second column) and requested in intermediate levels of cache, until reaching L3
(third and fourth columns). The remaining data (last column) has to be retrieved inmain
memory. Note that each further level of cache roughly implies an extra factor 4 delay.

We observe that first-level cache references are similar for all orderings: the algorithms
run in the exact same way regardless of the ordering of the nodes so they need to access
the same amount of data (up to small fluctuations). However, the miss-rate in L1 reveals
important variations: with Gorder, only 10% of the data is not directly available in L1,
while it reaches 20% with Random or LDG orderings. The percentage of data requested
in L3 is even more scattered, from 5% with Gorder to 20% with Random or LDG on sdarc.
Finally, all the orderings have a low cache-miss rate (between 1.6 and 3.6%) on flickr and
RCM has the smallest. The gap is more striking on sdarc where Random and LDG have
9% of cache-miss, three times as much as Gorder. This ratio is the proportion of data that
had to be retrieved in main memory (RAM), which is about 60 times slower than the L1
cache 4.

In general, the ranking for cache-miss rates matches the ranking for runtime shown in
Figure 4.7a. Gorder has the best results and RCM and ChDFS are close behind. MinLinA,
MinLogA and Original orderings have high cache-miss rates for all levels. This shows
that the speedup is indeed due to cache-miss reduction. When compared to Original
ordering, Gorder reduces cache-miss rates to speed up the algorithms. Figure 4.2 shows
that the total runtime is reduced by 15 to 50% on sdarc, but the CPU execution time is
almost identical: it is the factor 3 reduction on cache stall that makes the algorithm faster.

3See https://perf.wiki.kernel.org. We select the following counters: the total time task-clock, cpu-cycles, L1-
dcache-loads and L1-load-misses to measure the efficiency of the first layer of data cache (we are not interested
in instruction cache here), LLC-loads and LLC-load-misses to measure the efficiency of the last cache layer, and
metrics specifically designed tomeasure the impact of cachemisses such as cycles-l1d-pending or cycles-l3-miss
in the cycle-activity category.

4With a clock frequency of 4GHz, a cycle takes c = 1/(4 · 109)s = 0.25ns, so latency is 4c = 1ns for L1
and 42c+ 51ns ' 62ns for RAM, with the formulas given at https://www.7-cpu.com/cpu/Skylake.html.

https://perf.wiki.kernel.org
https://www.7-cpu.com/cpu/Skylake.html
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Order L1-ref (109) L1-mr L3-ref (109) L3-r Cache-mr
Original 29 15.9 % 2.8 9.8 % 2.5 %
Random 30 20.2 % 4.1 13.6 % 3.6 %
MinLA 29 16.2 % 3.3 11.4 % 2.5 %

MinLogA 28 15.9 % 3.1 10.7 % 2.5 %
RCM 30 11.5 % 1.8 5.9 % 1.6 %

InDegSort 28 14.7 % 2.5 9.1 % 2.2 %
ChDFS 29 12.8 % 2.1 7.2 % 1.8 %

SlashBurn 28 14.8 % 2.6 9.3 % 2.2 %
LDG 30 19.2 % 3.7 12.4 % 3.2 %

Gorder 28 10.3 % 1.4 5.0 % 1.7 %
(a) On flickr dataset.

Order L1-ref (109) L1-mr L3-ref (109) L3-r Cache-mr
Original 1885 19.0 % 303 16.0 % 6.8 %
Random 1886 23.4 % 397 21.0 % 9.0 %
MinLA 1893 21.2 % 341 18.0 % 7.1 %

MinLogA 1885 20.7 % 330 17.5 % 6.9 %
RCM 1885 11.0 % 139 7.4 % 3.7 %

InDegSort 1779 15.0 % 198 11.1 % 6.0 %
ChDFS 1863 11.8 % 153 8.2 % 4.3 %

SlashBurn 1784 15.3 % 203 11.4 % 6.0 %
LDG 1886 22.9 % 387 20.5 % 8.8 %

Gorder 1816 9.3 % 104 5.7 % 3.1 %
(b) On sdarc dataset.

Table 4.3: Cache statistics measured for Pagerank algorithm. L1-ref (references): num-
ber of times a piece of data was required by the processor and searched in level 1 of cache.
L1-mr (miss-rate): proportion of data that was not found in L1. L3-ref: number of refer-
ences to the third (lowest) level of cache after data was not found in levels 1 and 2. L3-r
(ratio): proportion of data that was not found in L1 nor L2, then searched in L3. Cache-
mr: proportion of data that was not found in cache (L1, L2 or L3) and had to be retrieved
in main memory. Compare to Tables 3 and 4 in Wei et al. [2016].

4.4 Discussion

Our experiments replicate the ones proposed byWei et al. [2016] but some aspects are
not discussed in sufficient detail in the original paper to allow for immediate replication.
For instance, the algorithms NQ and DS only have a succinct description, which may
explain why their performances reported in our Figure 4.2 do not align perfectly with
Figure 1 of the original paper. Similarly, we were not able to tune the simulated annealing
procedure correctly, which questions the relevance of our experiments withMinLinA and
MinLogA. Nonetheless, most of these technical issues have been solved or circumvented
thanks to the answers of Hao Wei to our questions.

Above all, this study replicates the main observation of the original paper: Gorder re-
duces cache latency significantly and is the best performer among all the ordering meth-
ods under study, as shown in Figure 4.7. Its consistent efficiency on all algorithms and
datasets suggests that it could speed up other graph algorithms as well.

The only important difference with the original paper is that RCM and ChDFS follow
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closely behind Gorder and even outperform it in half of our experiments. These orderings
are based on graph searches that can be computed with simple and scalable algorithms,
leading to the very quick execution times reported in Table 4.2. On the other hand, com-
puting Gorder requires a complex procedure and a lot of time. It has been pointed out
by Balaji and Lucia [2018] that this high overhead can only be amortised if algorithms
are run thousands of times. In the case where networks evolve and require constant re-
computation of the node ordering, Gorder needs to be adapted to integrate the modifica-
tions without running thewhole process again. A parallel version of Gorder could reduce
this problem.

Beyond algorithm speed-up, the contribution of Wei et al. is an efficient framework
that could be used for other purposes. For example, Chapter 3 shows that graph compres-
sion also benefits from node orderings that cluster nodes with high proximity; Gorder
could be an input for such existing methods. It would also be interesting to investigate
howdifferent types of real-world datasets, as described byMilo et al. [2004], behavewhen
a new ordering is applied.

4.5 Conclusion

Our replication of the paper ofWei et al. [2016] shows that Gorder is an efficient cache
optimisation for various standard algorithms. We confirm its superiority for networks
ranging from 30 million to 2 billion edges, and the hardware measurement tools prove
that this is due to reduced cache stall. However, orderings such as DFS are among the best
performers in spite of their much simpler design. The fact that the computation of Gorder
does not scale linearly makes it impractical for larger graphs. Hence, there is a trade-off
between the overhead time required to compute Gorder and the substantial speedup that
it provides for subsequent graph algorithms.
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Summary

One crucial problem in graph mining is to identify specific structures within the net-
work. As explained in the introduction, the datasets that we use describe a network by its
nodes and its edges, which consist of two linked nodes. The occurrence of three linked
nodes, also called a triangle, is an important feature for data science tasks in various sci-
entific domains that use network data. Listing triangles is therefore a key task that has
been addressed widely in the literature. In the context of large real-world graphs, the cur-
rent fastest algorithms use node orderings. First, the nodes are given indices in a specific
order. Then, the edges are directed from lower to higher node indices: they all point in
one specific direction. Instead of scanning edges until three of them form a triangle, the
algorithm follows the direction of the edges, and triangles are identified faster. To sim-
plify, the algorithm explores paths of length two: from an origin node, through a middle
node, reaching a destination node; if the origin and the destination are connected by a
third edge, a triangle has been found. The execution time of the algorithm depends on
the number of paths of length two; but recall that the paths are defined by the direction
of edges, which are given by the indices of the nodes. The choice of ordering will thus
impact the time that the algorithm takes to find all the triangles.

While state-of-the-art triangle listing algorithms use this technique to accelerate their
execution, they use basic orderings that provide general mathematical guarantees. On
the contrary, our work studies the precise correlation between the choice of ordering and
the execution time of the algorithm. We define new orderings that exploit this correlation:
even thoughwe prove that finding optimal orderings is theoretically difficult, we propose
a trade-off between the time spent to compute the ordering and the time saved while
listing the triangles. Our experiments on large real-world networks confirm that the new
orderings significantly accelerate the listing of triangles.

Contributions

∗ Introduce cost functions that relate the node orderings to the running time of trian-
gle listing algorithms.

∗ Prove that finding an optimal ordering that minimises either of these costs is com-
putationally difficult (NP-hard).

∗ Expose a gap in the combinations of algorithm and ordering considered in the liter-
ature, and bridge it with three heuristics producing orderings with low costs.

∗ Showexperimentally that the resulting combinations of algorithmand ordering out-
perform state-of-the-art running times for the triangle listing task.

∗ Release an efficient open-source implementation of all considered methods.
https://github.com/lecfab/volt

Publications & talks

∗ Tailored vertex ordering for faster triangle listing in large graphs
Lécuyer, Jachiet, Magnien, and Tabourier [2023a], ALENEX.

∗ Presented at FRCCS’22, MLG’22, ALENEX’23.

∗ Seminars in Milan and Vancouver.

https://github.com/lecfab/volt


5.1. Introduction 81

5.1 Introduction

5.1.1 Motivation

Small connected subgraphs are key to identifying families of real-world networks, and
they are interchangeably called patterns, motifs or graphlets depending on the field of re-
search. Indeed, they are used for descriptive or predictive purposes across various fields
such as biology, linguistics, engineering or sociology, and a large amount of work ad-
dresses their efficient mining.

For Milo et al. [2002], knowing which patterns appear the most frequently gives away
the category to which a real-world network belongs: in their experiments, the frequent
patterns within information processing networks are the same even though they repre-
sent distinct situations such as protein regulation or electronic circuits, and they differ
from frequent patterns of energy processing networks such as food chains. Sporns and
Kötter [2004] suggest that the brain functionalities derive from the variety of subgraphs
(a subset of nodes with some of the edges that they share) within a limited number of
structural patterns, that they define as induced subgraphs (a subset of nodes with all the
edges that they share). Pržulj [2007] measures the similarity between networks by count-
ing their graphlets, and can then assess which synthetic graph model is more suitable
for which type of real-world network. Analysing the motifs of a network built upon the
co-occurrence of words in a sentence, Biemann et al. [2016] are able to infer the gram-
matical properties of the words, such as their part of speech or their syntactic function.
Looking at evolving networks, Valverde and Solé [2005] suggest that software architec-
tures emerge from a sequence of duplication and rewiring that create the same motifs as
in some biological networks.

In sociology, characterising networks with specific structural patterns has been a focus
of interest for a long time, as it is even present in the works of early 20th century sociolo-
gists such as Simmel [1908] on structural analysis [Wellman, 1988]. Consequently, it is a
common practice in social network analysis to describe interactions between individuals
using local patterns [Holland and Leinhardt, 1976, Wasserman et al., 1994]. The recent
ability to count and list small patterns efficiently allows for the characterisation of various

Figure 5.1: How many triangles are there? Answer: 4, 1 and 2. In our work, a triangle is
a set of three connected nodes. On the left, the outer triangle does not count because its
nodes are not connected; it looks like a triangle because the drawings of unrelated edges
are parallel. In the middle, it is a triangle even though it looks circular. On the right, the 3
small triangles do not count because one of their corners is not a node of the graph; they
look like triangles because the drawing of other edges cross.
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types of social networks on a large scale [Choobdar et al., 2012, Charbey and Prieur, 2019].
In particular, listing elementary patterns such as triangles and 3-motifs is a stepping stone
in the analysis of the structure of networks and their dynamics [Faust, 2010]. For instance,
the closure of a triplet of nodes to form a triangle is thought to be a driving force for the
evolution of social networks [Leskovec et al., 2008, Sintos and Tsaparas, 2014].

In spite of these numerous applications for the analysis of real-world networks, there is
one topic that is sometimes mistakenly associated with triangle listing: surface triangula-
tion, which consists in decomposing a two-dimensional surface in triangles. This process,
used for instance in 3D rendering, creates a graph full of triangles that we could then
count and list. However, this graph is more specific than the ones that we study in the
sense that its nodes are embedded in a metric space. Our nodes do not have coordinates,
so the triangle is an abstract triplet of neighbours as opposed to a geometric triangle that
can be drawn. The number of triangles is not influenced by parallel, curved or crossing
edges, whichmeans that the three graphs of Figure 5.1 contain four, one and two triangles
respectively.

5.1.2 Related works

In terms of algorithm, the task of listing triangles is rather simple: one needs to take all
sets of three nodes and check whether they are connected. Even supposing that checking
the adjacency of two nodes can be done in constant time, this strategywould requireΘ(n3)
operations and lead to an unacceptable execution time for large networks, as explained
in Chapter 1. Over around fifty years of research in this field of graph mining, more
sophisticated algorithms have been discovered, and they specialised into different ways
of finding triangles: some algorithms are designed to count the triangles, while other list
them; some do it with knowledge of the whole graph while other analyse subgraphs turn
by turn. Al Hasan and Dave [2018] provide a review of the different tasks of triangle
mining and the influential algorithms that exist for each of them.

When asking to find triangles, the first precision to give is whether the goal is to list
them or to count them. Our work focuses on the former, where the expected output is
a list of triplets. Yet, several methods have been designed for the latter, and Hu et al.
[2021] show that they can also benefit fromnode orderings. Counting triangles is an easier
problem than listing: having the list of triangles is sufficient to know howmany there are,
but the reverse is not true. In particular, counting benefits from the matrix representation
of graphs as described by Itai and Rodeh [1977]. Consider the adjacency matrix A where
Auv = 1 if there is an edge between nodes u and v, 0 otherwise. Multiplying A by itself
gives B = A2 and the value Buv counts the distinct paths of length two between u and
v. Two nodes share a triangle when they have both a path of length one and a path of
length two between them. Thus, once B is computed, the total number T of triangles is
the number of paths of length two (Buv) between nodes that are connected (Auv):

T =
∑

u,v∈V
Auv ·Buv

The sum is computed in time Θ(n2) or even Θ(m) depending on the data-structure, but
computing B is more costly: the complexity of matrix multiplication is noted O(nω),
where 2 ≤ ω ≤ 3. The best known theoretical algorithms have exponent under 2.4, but
practical implementations use exponents over 2.8, which makes the matrix multiplica-
tion method close to the Θ(n3) naive algorithm. However, matrix multiplication is the
speciality of Graphics Processing Units (GPU). These processors are designed to apply
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simple instructions over thousands of small pieces of data in parallel, as opposed to Cen-
tral Processing Units (CPU) that can apply complex instructions over a single large piece
of data [see TutorialsPoint]. Using GPUs, bigmatrices can bemultiplied by handling sub-
matrices in parallel, which speeds up the execution. This is one of the methods leveraged
by Wang et al. [2016] to compare competitive triangle counting algorithms on GPUs.

Another approach to triangle mining consists in prioritising speed over accuracy: in-
stead of reading the whole graph and determining the exact number of triangles, a sam-
pling procedure gives an estimate of this number without looking at all the nodes. The
approach of Seshadhri et al. [2014] consists in sampling wedges (paths of length two)
and checking whether they close into a triangle. Checking all the wedges gives a precise
triangle count, but checking only a small portion of them can provide a high accuracy in
much faster execution time. Turk and Turkoglu [2019] further reduce the sampling space
by directing the edges and only considering a wedge if its middle node is a predecessor
of the other two nodes. Edge directions are chosen to minimise the number of such di-
rected wedges, which is similar to optimising the function C++ described in Section 5.4.
Sampling procedures are backed by theoretical results in random walk theory [Bressan,
2021] and sampling complexity [de Lima et al., 2022] that guarantee a certain accuracy
for a given sample size.

Finally, the literature distinguishes triangle listing methods depending on their mem-
ory requirements. In our work, we consider large graphs that still fit in the main memory
(see the description of our hardware in introduction). On the other hand, specific meth-
ods exist for graphs that do not fit in main memory: they partition the graph into sub-
graphs that are loaded and processed in turns: Chu and Cheng [2011] focus on reducing
the costly I/O operations (reading andwriting in hardmemory), whileArifuzzaman et al.
[2019] address time and space efficiency. Alternatively, streaming approaches consider
that the edges can only be read sequentially, which requires to store previous informa-
tion in hash tables [Becchetti et al., 2008, Gou and Zou, 2021] or in more cache-friendly
structures [Tangwongsan et al., 2013].

As for in-memory exact triangle listing, the first effort to design efficient algorithms
appeared in Chiba andNishizeki [1985]. Based on the observation that real-world graphs
generally have a heterogeneous degree distribution, later contributions by Schank and
Wagner [2005] and Latapy [2008] showed how ordering vertices by degree or core value
accelerates the listing. Such orderings create an orientation of edges so that nodes that are
costly to process are not processedmany times. Unifying descriptions of thismethod have
been proposed alongside comparison of orderings, by Xiao et al. [2017] for asymptotic
random graphs and by Ortmann and Brandes [2013] for real-world graphs. Successful
extensions to cliques of arbitrary size were proposed by Uno [2012], Danisch et al. [2018],
Li et al. [2020]. However, only degree and core orderings have been exploited, although
their properties are not specifically tailored for the triangle listing problem. Since other
types of orderings benefit a variety of graph problems, as surveyed in Chapter 3, the main
purpose of this chapter is to find a general method to design efficient vertex orderings for
triangle listing.

5.1.3 Contributions and outline

In this chapter, we show how vertex ordering directly impacts the running time of
the two fastest existing in-memory triangle listing algorithms. First, we introduce cost
functions that relate the vertex ordering to the running time of each algorithm. We prove
that finding an optimal ordering that minimises either of these costs is NP-hard. Then, we
expose a gap in the combinations of algorithm and ordering considered in the literature,
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and we bridge it with three heuristics producing orderings with low corresponding costs.
Our heuristics reach a compromise between their running time and the quality of the
ordering obtained, in order to address two distinct tasks: listing triangles with or without
taking into account the ordering time. Finally, we show that our resulting combinations
of algorithm and ordering outperform state-of-the-art running times for either task. We
release an efficient open-source implementation 1 of all considered methods.

Section 5.2 presents state-of-the-art methods to list triangles. In Section 5.3, we prove
the NP-hardness of two minimisation problems over the set of orderings and discuss re-
laxations and approximations. In Section 5.4, we analyse the cost induced by a given or-
dering on these algorithms and propose several heuristics. The experiments of Section 5.5
show that our methods are efficient in practice and improve the state of the art.

5.2 State of the art

5.2.1 Triangle listing algorithms

Targeting nodes or edges

Ortmann andBrandes [2013] have identified two families of triangle listing algorithms
that rely on two basic graph operations: adjacency testing, and neighbourhood intersection.

The first family considers a triangle as a node with adjacent neighbours. Algorithms
tree-lister [Itai and Rodeh, 1977], node-iterator [Schank and Wagner, 2005] and forward
[Schank and Wagner, 2005] belong to this category. They sequentially consider each ver-
tex u as a seed, and process all pairs {v, w} of its neighbours; if they are themselves ad-
jacent, {u, v, w} is a triangle. The efficiency of this method depends on the complexity of
testing the adjacency of two nodes (v and w). More details on the different complexities
involved by a selection of data-structures are provided below.

In contrast, methods of the neighbourhood intersection consider a triangle as an edge
whose extremities share a neighbour. Algorithms edge-iterator [Schank and Wagner,
2005], compact-forward [Latapy, 2008] and K3 [Chiba and Nishizeki, 1985] belong to
this category, as well as some algorithms that list larger cliques [Makino and Uno, 2004,
Danisch et al., 2018, Li et al., 2020]. They sequentially consider each edge (u, v) as a seed;
each common neighbour w of u and v forms a triangle {u, v, w}. Here, the efficiency de-
pends on the complexity of computing the intersection of two lists of different size. The
impact of various data-structures is also presented below.

Node orderings avoid redundancy

In naive versions of both adjacency testing and neighbourhood intersection, finding
a triangle (u, v, w) does not prevent from finding triangle (v, w, u) at a later step. Several
techniques exist to avoid this unwanted redundancy. The K3 algorithm introduced by
Chiba andNishizeki [1985] removes a node from the graph once all the triangles compris-
ing it have been found; this prevents duplicates but requires a data-structure with linked
lists to update the graph, leading to extra space and time consumption. The forward algo-
rithm by Schank and Wagner [2005] uses extra storage for each node to remember which
of its neighbours have already been treated, thus ensuring that only one permutation of
each triangle is found.

1https://github.com/lecfab/volt

https://github.com/lecfab/volt
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u

v

w

S1

L

S2

Figure 5.2: Directed triangle with the unified notations proposed by Ortmann and Bran-
des [2013]. The edges are directed according to an ordering π such that πu < πv < πw.

Recent papers use a node ordering, explicitly or not, which is best described using the
framework developed by Ortmann and Brandes [2013]: a total ordering π is defined over
the vertices, and the triple (u, v, w) is only considered a valid triangle if πu < πv < πw.
This guarantees that each triangle is listed only once: as illustrated in Figure 5.2, vertices
in any triangle of the DAG Gπ appear in one and only one of 3 positions: u is first, v is
second, w is third; the same holds for edges: L is the long edge, and S1 and S2 are the first
and second short edges. This leads to three variants of adjacency testing (seed vertex v or
w instead of u) and of neighbourhood intersection (seed edge L or S2 instead of S1).

Data-structures influence complexity

The above classification reduces triangle listing to two algorithmic problems: adja-
cency testing requires to check the existence of an element x in a list L, and neighbour-
hood intersection requires to compute the intersection between two lists L1 and L2. The
existence and intersection problems have different complexities depending on their im-
plementation. The literature on trianglesmainly focuses on twomethods: standard search
and hash tables.

A standard search consists in consecutively checking all the elements of a list L. For the
existence problem, it takes O(|L|) operations. For the intersection problem, each element
of L1 needs to be searched through L2, which corresponds to a complexity O(|L1| · |L2|).
If the lists are sorted, it reduces to O(|L1|+ |L2|) because an element of L1 cannot appear
in L2 after larger elements. This method is used in compact-forward [Latapy, 2008] with
seed edge S2, leading to the following complexity for triangle listing:

O
(
m+

∑
v∈V

dv · d−v
)

This quantity is known to be minimised by the degree ordering, as Arifuzzaman et al.
[2019] demonstrate in their Theorem 4.3. Note that a binary search, which also requires
the lists to be sorted, would lead to an existence checking in log2 |L| steps and an intersec-
tion in O(|L1| · log |L2|) assuming |L1| ≤ |L2|, but the sorted standard search is preferred
in the literature.

A hash table allows to check in constant time whether x belongs to L, or to compute an
intersection in time O(min(|L1|, |L2|)) by going through the values of the shorter list and
checking (in constant time) if they also belong to the longer list. Storing all the edges of a
graph in a hash table requires Θ(m) space but allows to find the triangles (for seed edge
L) in:

O
(
m+

∑
(u,v)∈E

min(d+u , d−v )
)

Considering complexity only, hash tables seem to be the most efficient option, and
Schank andWagner [2005] indeed show that the edge-iterator-hashed and forward-hashed
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methods achieve the smallest number of algorithmic operations. However, it is estab-
lished that such implementations are the least efficient in practice, as Schank and Wagner
[2005] point out: “they require advanced data structures which experimentally result in a high
constant overhead”. In our experiments on small datasets, we confirmed that this method
was up to 50 times slower than the sorted standard search. The randomised location of
data in hash tables makes the cache system inefficient, which may explain the slow access
(see Section 2.3 and Chapter 4).

Besides, standard search can be made very efficient for neighbourhood intersection
with the use of a boolean table. We present this strategy in Algorithms 2 and 3 with the
notations of Figure 5.2 for the vertices. They initialise the boolean array B to false (line
1), consider a first vertex (line 2) and store its neighbours in B (line 3); then, for each of
its neighbours (line 4), they check if their neighbours (line 5) are in B (line 6), in which
case the three vertices form a triangle (line 7). B is reset (line 8) before continuing with
the next vertex.

Algorithm 2 – A++ (or L+n)
1: for each vertex v do B[v]← False
2: for each vertex w do
3: for v ∈ N−

w do B[v]← True
4: for u ∈ N−

w do
5: for v ∈ N+

u do
6: if B[v] then
7: output triangle{u, v, w}
8: for v ∈ N−

w do B[v]← False

Complexity:

Θ
(
m+

∑
(u,w)∈Eπ

d+u

)
= Θ

(∑
u∈V

d+u
2
)

Algorithm 3 – A+– (or S1+n)
1: for each vertex w do B[w]← False
2: for each vertex u do
3: for w ∈ N+

u do B[w]← True
4: for v ∈ N+

u do
5: for w ∈ N+

v do
6: if B[w] then
7: output triangle{u, v, w}
8: for w ∈ N+

u do B[w]← False

Complexity:

Θ
(
m+

∑
(u,v)∈Eπ

d+v

)
= Θ

(
m+

∑
v∈V

d+v d
−
v

)

Boolean tables can provide constant-time adjacency testing when triangle listing algo-
rithms search through the same list several times. If we look at Algorithm 3, the neigh-
bourhood N+

u of a node u is consecutively intersected with the neighbourhoods N+
v of

different nodes v. Registering the elements of N+
u in the boolean array allows for check-

ing in constant time if a neighbourw of v is also a neighbour of u. Maintaining this register
amounts forΘ(d+u ) for each node u, which isΘ(m) in total. TheK3-algorithmof Chiba and
Nishizeki [1985] uses this method, which is called +n by Ortmann and Brandes because
storing the boolean array requires an extra Θ(n) space. The fastest methods reported by
Ortmann and Brandes [2013] and Danisch et al. [2018] use a boolean table.

In the rest of this chapter, we therefore only consider triangle listing algorithms that
use neighbourhood intersection and a boolean array. Algorithm 2 corresponds to L+n of
Ortmann and Brandes; we call it A++ because of the two “+” (referring to out-degrees)
involved in its complexity. Algorithm 3 corresponds to S1+n of Ortmann and Brandes;
we call it A+– 2. Their complexities are given in Property 1; since they depend on the
in- and out-degree of vertices, the choice of ordering will impact the running time of the
algorithms.

2A third natural variant exists: A– – or S2+n. We ignore it here since its complexity is equivalent to the
one of A++ upon reversing ordering.



5.3. Hardness of cost minimisation 87

Property 1 (Complexity of A++ and A+–) The time complexity of A++ is Θ(
∑

u∈V d+u
2
).

The time complexity of A+– is Θ
(
m+

∑
v∈V d+v d

−
v

)
.

Proof: In both algorithms, the boolean tableB requires n initial values,m set andm reset
operations, which is Θ(m) assuming that n ∈ O(m). In A++, a given vertex u appears in
the loop of line 4 as many times as it has a successor w; every time, a loop over each of its
successors v is performed. In total, u is involved in Θ(d+u

2
) operations. Similarly, in A+–,

a given vertex v appears in the loop of line 4 as many times as it has a predecessor u; every
time, a loop over each of its successors w is performed. In total, v is involved in Θ(d+v d

−
v )

operations. Using the boolean table B, line 6 of both algorithms takes constant time. The
term m is omitted in the complexity of A++ as

∑
u∈V d+u

2 ≥
∑

u∈V d+u = m, but not in
A+– as

∑
v∈V d+v d

−
v can be lower than m. �

5.2.2 Node orderings and complexity bounds

Ortmann and Brandes [2013] order the vertices by non-decreasing degree or core
value. In their experimental comparison, they test several algorithms as well as A++
and A+–, each with degree ordering, core ordering, and with the original ordering of the
dataset. They conclude that the fastest method is A++ with core or degree ordering: core
is faster to list triangles when the ordering is given as an input, and degree is faster when
the time to compute the ordering is also taken into account.

Danisch et al. [2018] also use core ordering in the more general problem of listing k-
cliques. For triangles (k = 3), their algorithm is equivalent to A+–, and they show that
using core ordering outperforms themethods of Chiba andNishizeki [1985], Makino and
Uno [2004] and Latapy [2008].

With these two orderings, it is possible to obtain upper-bounds for the time complex-
ity in terms of graph properties. Chiba and Nishizeki [1985] show that K3 with degree
ordering has a complexity in O(m · α(G)), where α(G) is the arboricity of graph G. With
core ordering, node-iterator-core [Schank and Wagner, 2005] and kClist [Danisch et al.,
2018] have complexityO(m·c(G)), where c(G) is the core value of graphG. These bounds
are considered equal by Ortmann and Brandes [2013], following the proof by Zhou and
Nishizeki [1994] that α(G) ≤ c(G) ≤ 2α(G)− 1. However, we focus in this chapter on the
complexities expressed in Algorithms A++ and A+– as we will see that they describe the
running time more accurately.

5.3 Hardness of cost minimisation

In this section, we study the hardness of different problems related to triangle listing.
For this purpose, we introduce the following costs that appear in the complexity formulas
of Algorithms 2 and 3. Recall that the initial graph is undirected and that the orientation
of the edges is given by the ordering π, which partitions neighbours into successors and
predecessors.

Definition 2 (Cost induced by an ordering) Given an undirected graph G, the costs C++

and C+− induced by a vertex ordering π are defined by:

C++(π) =
∑
u∈V

d+u d
+
u C+−(π) =

∑
u∈V

d+u d
−
u
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In order to speed up the execution of these algorithms, we wish to obtain orderings
that minimise these quantities, which are the term of their complexity that depends on
orderings. However, we will see that obtaining exact minimum solutions is hard, and we
will discuss approximability and relaxations of the problem from orderings to orienta-
tions.

5.3.1 NP-hardness of the C+− problem

To prove that it is NP-hard to find an ordering that minimises C+−, we will use the
equivalent notation of a total order ≺ instead of the permutation π: given a graph G and
an order ≺ on the vertices of G, we define succ≺(u) (respectively pred≺(u)) as the set of
neighbours v of u such that u ≺ v (resp. v ≺ u). For any subset of vertices W , we note
C+−
≺ (W ) =

∑
u∈W |succ≺(u)|·|pred≺(u)|. Using this definitionwe formalise the following

problem:

Problem 1 (C+−) Given an undirected graph G = (V,E) and an integer K, is there an order
≺ on the vertices such that C+−

≺ (V ) ≤ K?

Let us introduce the NAE3SAT+ problem, known to be NP-complete by Schaefer
[1978]’s dichotomy theorem. We will show that this problem can be reduced to the C+−

problem, thus proving that C+− is NP-hard. Note that a sketch of proof was given online
by Rudoy [2017] but, as far as we know, it has never been published. This section gives a
new simpler proof of Theorem 1 below.

Problem 2 (NAE3SAT+) Not-All-Equal Positive Three-Satisfiability. Given a formula φ =
c1 ∧ · · · ∧ cm in conjunctive normal form where each clause consists in three positive literals, is
there an assignment to the variables satisfying φ such that in no clause all three literals have the
same truth value?

Theorem 1 C+− is NP-hard.

Definition 3 Let φ be an instance of NAE3SAT+ with variables x1, . . . , xn and clauses
c1, . . . , cm, where clause cj is of the form l1j ∨ l2j ∨ l3j . We define a graph Gφ by creating three
connected vertices L1

j , L
2
j , L

3
j representing the literals of each clause cj ; additionally, a vertex

Xi is created for each variable xi and connected to all the La
j such that laj = xi. More formally,

Gφ = (Vφ, Eφ) with:

∗ Vφ = {Xi | i ∈ J1, nK} ∪ {L1
j , L

2
j , L

3
j | j ∈ J1,mK}

∗ Eφ =
{
{L1

j , L
2
j}, {L1

j , L
3
j}, {L2

j , L
3
j} | j ∈ J1,mK

}
∪
{
{Xi, L

a
j} | xi = laj

}

L1
j

L2
j

L3
j

. . . Xi1

. . . Xi2

Xi3 . . .

Figure 5.3: Gadget included in Gφ for each clause cj of an instance φ of NAE3SAT+.

Proposition 1 (=⇒) Given an instance φ of NAE3SAT+ with m clauses and the associated
graph Gφ, if φ is satisfiable then there exists an order ≺ on Vφ such that C+−

≺ (Vφ) ≤ 2m.
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Proof: Let φ be a satisfiable instance of NAE3SAT+ with the above notations. Take a
valid assignment and let us note k the number of variables set to true. There exist indices
i1, . . . , in such that xi1 , . . . , xik = true and xik+1

, . . . , xin = false, and for each clause cj ,
there are indices tj , aj , fj ∈ {1, 2, 3} such that ltjj = true, lfjj = false and l

aj
j has any value.

Now construct the following order on Vφ, so that true variables come first, then in each
clause the false literal comes before the true one, and the false variables are at the end:

X1 ≺ · · · ≺ Xk True variables

≺ Lf1
1 ≺ · · · ≺ Lfm

m False literals
≺ La1

1 ≺ · · · ≺ Lam
m Other literals

≺ Lt1
1 ≺ · · · ≺ Ltm

m True literals
≺ Xk+1 ≺ · · · ≺ Xn False variables

If a given variable xi is true, the associated vertexXi has only successors, if it is false it
has only predecessors, so in both cases C+−

≺ ({Xi}) = 0. For a given clause cj , the variable
l
fj
j is false so the correspondingXi is a successor ofLfj

j , which also has successorsLaj
j and

L
tj
j , but no predecessor. Similarly, Ltj

j has no successor; thus C+−
≺ ({Lfj

j , L
tj
j }) = 0. Now

L
aj
j has one predecessorLfj

j , one successorLtj
j , and one neighbourXi that is a predecessor

if xi is true, otherwise a successor; in both cases, C+−
≺ ({Laj

j }) = 2. The only vertices with
a non-negative cost are the Laj

j , so the sum over all m clauses gives C+−
≺ (Vφ) = 2m. �

Proposition 2 (⇐=) Given an instance φ of NAE3SAT+ with m clauses and the associated
graph Gφ, if there exists an order ≺ on Vφ such that C+−

≺ (Vφ) ≤ 2m then φ is satisfiable.

Proof: Conversely, consider an order ≺ on Vφ such that C+−
≺ (Vφ) ≤ 2m. For all j, define

fj , aj , tj ∈ {1, 2, 3} such thatLfj
j ≺ L

aj
j ≺ L

tj
j ; thenL

aj
j has one successor, one predecessor,

and one other neighbourXi, so its cost is 2. AsGφ containsm such independent triangles,
C+−
≺ ({La1

1 , . . . , Lam
m }) = 2m. To ensure C+−

≺ (Vφ) ≤ 2m, all the other vertices must have
either only predecessors or only successors. If vertex Xi has successors only, assign xi to
true; if Xi has predecessors only, assign xi to false. For all j, Lfj

j has at least 2 successors
(Laj

j and L
tj
j ) so its correspondingXi has to be a successor, which means xi = l

fj
j is false;

similarly, ltjj is true. Each clause thus has one true and one false literal, so φ is satisfied. �

5.3.2 NP-hardness of the C++ problem

To prove the NP-hardness of the C++ problem, we will introduce a generalisation of
this problem to weighted vertices. Then, we will find criteria for optimum orderings for
this weighted problem. Wewill show that that the weighted problem is reducible toC++,
and finally that the NP-hard problem of Set Cover is reducible to the weighted problem.

TheC++ problem consists in finding a permutation π thatminimises the induced cost.
Equivalently, we will be looking for a total order ≺ over the vertices that minimises the
cost function of interest. Intuitively, we can think of ≺ as the order in which we eliminate
vertices: each time we eliminate a vertex with an out-degree d we pay a cost of d2 and
the cost of an order is the cost of eliminating all vertices. For each vertex u, we will note
succ≺(u) its number of successors, which is the number of its neighbours appearing after
u in the order ≺. When u is eliminated, we pay a cost |succ≺(u)|2, which leads to the
following reformulation of the C++ problem:
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Problem 3 (C++) For a given undirected graph G = (V,E) and an integer K, does there exist
an order ≺ of the vertices such that

∑
u∈V |succ≺(u)|2 ≤ K?

Theorem 2 C++ is NP-hard.

Generalisation of C++ to weighted vertices

As an intermediate step for the reduction between the Set Cover problem andC++, we
will use a generalisation ofC++ to weighted vertices: this is the weighted-C++, presented
below:

Problem 4 (weighted-C++) Given an undirected graph G = (V,E), a vertex-weighting
function w : V → N and an integer K, does there exist an order ≺ of the vertices such that∑

u∈V (|succ≺(u)|+ w(u))2 ≤ K?

Given a graph G with the vertex weighting function w and an order ≺, the cost is the
function

∑
u∈V (|succ≺(u)|+w(u))2 applied to the graph with that order. The optimal cost

of a graph is the minimal cost achievable by any order. Notice that the C++ problem is a
special case of the weighted-C++ problem where weights are all zero.

Optimality criteria for orders

This section aims to show the specific properties of an ordering that induces an optimal
cost. We define the notion of multiset of costs that will help expressing optimality criteria
for orders.

Definition 4 (Multiset of a cost) Given a graph G = (V,E) and an order ≺ over V , the mul-
tiset of costs MC(G,≺) is the multiset composed of the values (|succ≺(u)|+ w(u)) for each ver-
tex u ∈ V . Its size is defined as the number of its elements: |M | = |V |. Its linear cost is
the sum of elements in the multiset: c1(M) =

∑
c∈M c. Its squared cost (or simply cost) is

c2(M) =
∑

c∈M c2.

Property 2 For a graphG (weighted or not) the size and the linear sum of themultisetMC(G,≺)
do not depend on the order ≺. Thus we can note c1(G) the linear cost of a multiset for G with any
order.

Proof: Take M = MC(G,≺). By definition, |M | = |V | does not depend on ≺. As for
the linear cost, c1(M) =

∑
c∈M c =

∑
u∈V |succ≺(u)|+ w(u) = |E|+

∑
u∈V w(u) does not

involve ≺ either.
�

Property 3 When there exists some d ∈ N such that MC(G,≺) contains only the values d and
d+ 1 then the order ≺ is optimal.

Proof: Suppose that a multiset M contains two elements x, y such that x+ 1 < y. Then
consider the multiset M ′ that is identical to M except that x is replaced by x+ 1 and y is
replaced by y − 1. The linear costs of M and M ′ are equal, but the squared cost of M ′ is
strictly lower: c2(M)− c2(M

′) =
(
x2 + y2

)
−
(
(x+ 1)2 + (y − 1)2

)
= 2 (y − x− 1) > 0. So

the multiset with lowest squared cost has only values c and c + 1. Now consider such a
multiset that has k values d and ` values d + 1. Its linear cost is c1(G) = kd + `(d + 1) =
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(k+ `)d+ ` = |V |d+ `. Necessarily, d is the quotient of the Euclidean division of the linear
cost: d = b c1(G)

|V | c. Then ` is the remainder of this division, and k is given by |V | − `. Thus,
the values d, k, ` are uniquely determined by G, independently of the order ≺.

�
While the property above is true for any graph (weighted or not) it is not relevant for

weightless graphs: in a weightless graph, the last vertex u of the elimination order ≺ has
|succ≺(u)| = 0, and more generally the vertex ui that is ordered in the i-th position from
the end has |succ≺(ui)| < i. The following property handles this case:

Property 4 For a weightless graph, when there exists d ∈ N such that MC(G,≺) contains all
integers from 0 to d+ 1 and at most once the integers 0 to d− 1, then ≺ is an optimal order.

Proof: The proof of optimality is similar to the proof of property 3: when the property
does not hold, we can find two elements x and y with x+ 1 < y and we can diminish the
squared cost by replacing x by x+ 1 and y by y − 1.

�
Finally, let us introduce the notion ofmarginal cost for amultiset, tomeasure howmuch

a multiset deviates from the optimal repartition (as given in property 3).

Definition 5 (Marginal cost) Given a multiset M of size n, we can compute d such that the
linear cost of M is n× d+ v where 1 ≤ v ≤ n. The marginal cost cm ofM is defined as:

cm(M) =
∑
u∈M

max
(
0, u− (d+ 1)

)
Note that we can equivalently define themarginal cost ofM as c1(M)−

∑
u∈M min(d+

1, u). We know from property 3 that the multiset that minimises the cost with the same
linear cost and the same size only contains d and d+1 (with at least one d+1 since v > 0).
In other words the marginal cost counts the excess of values over the average cost: if the
multiset has an element d+2, its marginal cost increases by 1; if it has a d+5, the marginal
cost increases by 4, etc.

Note that the marginal cost cannot be used directly to decide if an order is optimal.
Indeed, consider the two followingmultisets: M composed of nine times the value 10 and
one time the value 11 andM ′ composed of nine times the values 11 and one time the value
2. They have the same size, the same linear cost and the same marginal cost (which is 0)
but M has a lower squared cost than M ′.

The following property describes the minimal cost among all the multisets with the
same size, the same linear cost and the same marginal cost:

Property 5 Among all the multisets that have a size n, a linear cost of d× n+ v with 1 ≤ v ≤ n
and a marginal cost of at least k (with 2k < v), then the ones achieving the minimal squared cost
are composed of k times the value d + 2, v − 2k times the value d + 1 and (n − v + k) times the
value d.

Proof: Take such a multiset M with size n, linear cost of d× n+ v and marginal cost of
at least k, satisfying 2k < v. Suppose that M contains a value d− i with i > 0. There are
two cases: if M contains a value d + 1, then replacing d − i by d − i + 1 and d + 1 by d
reduces the squared cost and does not change the marginal cost cm(M).

Otherwise, M contains a value d + j with j > 0 since the linear cost of M is strictly
larger than d×n. By definition of the marginal cost,M contains at most cm elements that
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are larger than d+1; all other elements are at most dwith at least one at d− i < d. So, we
have

∑
u∈M min(d + 1, u) < nd + cm. Using cm(M) = c1(M) −

∑
u∈M min(d + 1, u), we

find that

cm > nd+ v − (nd+ cm)⇒ 2cm > v

By assumption, v > 2k, so cm > k. Consequently, replacing d − i by d − i + 1 and d + j
by d+ j− 1 reduces the squared cost while keeping the marginal cost above k. Hence the
fact that the values of a multiset with minimal squared cost are greater or equal to d.

�

This property can then be used to compare multisets and is summarised by the fol-
lowing property:

Property 6 When M has a marginal cost of k then the cost of M is at least 2k larger than the
balanced distribution (as given by property 3). This 2k bound is reached for the optimality criterion
described in property 5.

Proof: As seen before the optimal can be reached by taking two values x, y ∈ M with
x + 2 ≤ y and changing them to x + 1 and y − 1. This balancing operation can reduce
by at most 1 the marginal cost but reduces the squared cost by 2(y − x − 1) ≥ 2, which
is exactly 2 when x + 2 = y. Starting from a marginal cost of k, reaching the optimal
requires at least k such balancing operations, which goes with a reduction of at least 2k
of the squared cost. Notice that when dealing with an optimal multiset in the sense of
property 5 we only combine a d with a d+ 2 which gives us the exact bound. Conversely
if we are not in the case of 5 wewill have to combine something below (or equal to) dwith
something larger than d+3 or do a combination that does not diminish the marginal cost
(such as combining d+ 1 and d+ 3).

�

Reducing weighted-C++ to C++

Any instance of C++ can be seen as an instance of weighted-C++ where the weights
are set to zero. On the other hand, this section proves that solvingC++ is as easy as solving
weighted-C++ in terms of complexity classes. We propose a polynomial reduction where
the cost w(u) of a vertex u is converted into w(u) new successors of u. To ensure that
these new neighbours are indeed successors for any optimal order, they are attached to a
gadget. The family of gadgets Ld is depicted on Figure 5.4 and defined as:

Definition 6 (Ld family of graphs) For d ∈ N, the graph Ld consists of 2(d + 1) vertices ed,
vd1 . . . v

d
d , Kd

0 . . .K
d
d such that Kd

0 . . .K
d
d form a clique of d + 1 vertices, and each vertex V d

i is
connected to ed and to each vertex Kd

j .
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ed

vd1

...
vdi

...
vdd

Kd
0

Kd
1

. . .

Kd
j

Kd
d

Figure 5.4: Gadget Ld used to convert vertex weights into new successors.

Property 7 (Minimum cost for Ld) In the weightless case, the minimum cost Cd for Ld is in-
duced by the order that starts with ed followed by the vdi vertices and finally by the Kd

i vertices.

Proof: With this order, the cost is d2 for ed, (d+1)2 for each vdi and i2 forKd
i (supposing

we start with Kd
d and end with Kd

0). This is optimal by virtue of property 4.
�

Property 8 (Minimum cost for Ld with a weight 1 on ed) In the weighted case, suppose
that ed has weight 1 and the other vertices have weight 0. Then the minimum cost Cd for Ld is
induced by the order that starts with ed followed by the vdi vertices and finally by the Kd

i vertices.

Proof: Let us prove that there is an optimal order starting with ed. For that, consider any
order ≺ and let us show that ≺ can always can be improved to an order that places the
vertex ed in first position. The order ≺ ranks three types of vertices: ed, V vertices and K
vertices, according to the description above. Let us first suppose that there is a vertex of
type K before a vertex of type V , itself before the single vertex of type E. In that case the
first i vertices are of type V (we can have i = 0), then we have j + 1 vertices of type K
and then one vertex of type V . We note this sequence V iKjKV . Let us compute the cost
variation ∆C if we exchange this last K with this last V to obtain a sequence V iKjV K.
The cost only changes for the V and K: it increases from (d − j)2 to (d − j + 1)2 for V ,
whereas it decreases from (2d− i− j)2 to (2d− i− j − 1)2 for K. Overall,

∆C =
(
(2d− i− j)2 − (2d− i− j − 1)2

)
+
(
(d− j)2 − (d− j + 1)2

)
= 2(d− i− 2)

Therefore, unless i = d− 1, the cost decreases which means that we can always move the
V vertices at the beginning except formaybe one to reduce the cost of the order. In the end
we have that the beginning of an optimal sequence can be restricted to the form V iK lE
or V d−1K lV E. In the first case, transforming V iK lE into EV iK l decreases the score by
i2 + i ≥ 0. In the second case, transforming V d−1K lV E into EV d−1K lV decreases the
score by d2 + d− 2l ≥ 0 since l ≤ d. Thus, in all cases, moving ed to the beginning of the
order reduces the related cost.

We have proved that the minimum cost can be achieved by placing ed at the beginning
of the order. The additional weight on ed causes a 2d + 1 cost, but the rest of the order
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is not affected by the cost. Starting from the minimum cost Cd of the weightless case of
property 7, the minimum cost for weight 1 on ed is therefore Cd + 2d + 1, achieved with
the same order.

�
The fact that minimum costs are obtained when ed is at the beginning of the order in

Ld means thatLd is a gadget that forces ed to have d successors. Before using this property
to bridge C++ to weighted-C++, let us see how several gadgets interact together.

Let us consider a graphG composed of two subgraphsG1 andG2 plus exactly one edge
{e1, e2} with e1 ∈ V1 and e2 ∈ V2. The cost induced by an order ≺ on V only depends
on the order over V1, the order over V2, and the order between e1 and e2. Therefore, an
optimal order for G can be seen as either an optimal for G1 and an optimal order for G2

where we add a weight of 1 on e2 (if e2 ≺ e1), or an optimal order for G2 and an optimal
order for G1 where we add a weight of 1 on e1 (if e1 ≺ e2). As a result, we obtain the
following property:

Property 9 (Cost of a partition) If adding a weight 1 on e1 in G1 increases the minimum cost
of G1 by x and if adding a weight 1 on e2 increases the minimum cost of G2 by y ≤ x, then the
minimum cost of G is equal to the minimum cost of G1 plus the minimum of G2 where we add a
weight of 1 on e2.

Using the Ld gadget and the property of the cost of a partition, we will show that
there is a polynomial reduction from weighted-C++ to C++. Thus, if the weighted-C++

problem is strongly NP-hard, then the C++ problem is also NP-hard.

Property 10 Let (G,K) be an instance of the weighted problem, we can compute an equivalent
instance of the weightless problem in a time polynomial in the number of edges and vertices in G
plus the sum of weights in G.

Proof: If all the weights in G are zeros, the instance of weighted-C++ is already an in-
stance of C++. Suppose that there is a vertex u with a weight w > 0 and a degree d − w.
Let us create the graph G′ as a copy of G where u has weight w − 1 and is linked to the
vertex ed of a Ld graph. We claim that the minimum cost ofG′ is lower thanK+Cd if and
only if the minimum cost of G is lower than K.

Recall that, by property 8, adding a weight 1 on ed increases the minimum cost of the
graph Ld from Cd to Cd + 2d+ 1. Besides, the sum of the degree of u plus its weight is d,
so adding a weight 1 on u increases the cost of any order ≺ by at most 2d+ 1. Now let us
apply property 9 with G2 = G and G1 = Ld. Adding a weight of 1 to one of the handles
e2 = u and e1 = ed gives a maximum cost increase x = 2d + 1: the minimum cost of G′

is the minimum cost of G where vertex u has a weight increased by 1. In other words, it
is equivalent in terms of minimum cost to handle the graph G or to handle the graph G′

where the weight of vertex u has been decreased by 1 unit.
By applying

∑
uw(u) times this propertywe obtain an instance (G∗,K∗) of theweight-

less problemwhich is equivalent to the instance of theweighted problem (G,K). This new
instance has

∑
uw(u) × |Ldu+w(u)| more vertices than the original one, which is polyno-

mial in the size ofG plus the sum of weights, and the resulting instance can be computed
in polynomial time.

�
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Reducing Set Cover to weighted-C++

Our reduction for the weighted case will be a strong reduction, meaning the version of
the problem where the weights are polynomial in the size of the graph is still NP-hard.
It will be based on the Set Cover problem, a NP-complete problem that figures among the
famous list by Karp [1972]. We recall here the definition of this problem:

Problem 5 (Set Cover) Given two integers n, k, we denoteU the set of elements {1, . . . , n}. Let
P be a set of sets of elements ofU , does there exist a subsetP ′ ⊂ P of size k such that∪S∈P ′S = U?

Let us fix an instance SC = (P, n, k) of the Set Cover problem asking whether we
can find k sets S1, . . . , Sk in P such that S1 ∪ · · · ∪ Sk = U . We suppose, without loss of
generality, that the instance is not trivial in the sense that |P | ≥ k (there are at least k sets
in P ), ∪S∈PS = U (each integer in U is contained in at least one S ∈ P ) and that all sets
S ∈ P are such that S ⊆ U .

Let us exhibit a weighted graphG and a value V such that minimum cost forG is less
than V if and only if SC is feasible, meaning that {1, . . . , n} can be covered with k sets
from P . This graph is depicted on Figure 5.5 and defined as:

Definition 7 (Weighted graph G(SC) of a Set Cover instance) Given a Set Cover instance
SC = (P, n, k), let us construct the graph G(SC) with:

∗ vertices: a special vertex A, n vertices e1, . . . , en for the elements of U , ` vertices s1, . . . , s`
for the sets of P , and three vertices aij , bij , cij for each i ∈ Sj .

∗ edges: A is linked to all vertices of the form sj or ei; for a pair (i, j) with i ∈ Sj , both aij and
bij have an edge with sj and cij ; in turn cij has an edge with ei.

∗ weights: for some parameter d, w(A) = d + 1 + k − ` and w(cij) = d, while each other
vertex u has weight d+ 2− du.

Parameter d. The weights of vertices are given so that the cost of each vertex reaches a
specific value. Recall that the cost of a vertex is the sum of its degree and its weight. In
G(SC), we want the cost of each vertex to be d + 2, except for the cij that have a cost of
d+3, and forA that has a cost of d+1+n+k. Parameter d can be any integer, but it needs
to be large enough so that all weights are positive. This is not constraining for vertices aij ,
bij and cij , as their degree is fixed. Vertex sj is linked toA and to aij and bij for each element
i in Sj , so its degree is 1 + 2 × |Sj |: to ensure that w(sj) ≥ 0, it suffices that d > 2 × |Sj |.
Vertex ei is linked to A and to cij for each set Sj that contains i, so its degree is at most
1 + `. Vertex A has degree ` + n. Having the additional condition d > ` is sufficient to
guarantee the constraint on A and ei vertices.

Value of V . As we will show, when there is a Set Cover with k sets then we have an
order ≺ for G such that MC(G,≺) contains k times the value d + 2 (corresponding to
the k selected sets),

∑
S∈P |S| − n times the value d and all the other values are d + 1. It

implies that the cost V = k(d+2)2+(
∑

S∈P |S| −n)d2+ r(d+1)2, where r is the number
of vertices in G minus k and minus (

∑
S∈P |S| − n).

Note that, per property 5, this value V corresponds to the minimal cost for an order
that has a marginal cost of k. Conversely, we will show that if there is a solution with a
marginal cost of k or less then there is a Set Coverwith k sets, proving that it is a reduction.



96 Chapter 5. Orderings for reduced operations

A

s1 . . . sj . . . s`

aij bij

cij
...

...

e1 . . . ei . . . en

Figure 5.5: An instance SC of Set Cover is converted to this graph G(SC).

Note that this converse direction is stronger than what is needed as there exists multisets
with a marginal cost of k that do not match the minimal cost.

The general intuition underlying the equivalence between a solution (if any) of the
Set Cover problem and a solution of the corresponding weighted-C++ problem is the
following. The first k vertices sj selected in the elimination order correspond to the Sj

sets that cover U . Indeed, each of these vertices generates exactly a marginal cost of 1 and
all other vertices according to the elimination order will not generate any marginal cost if
we can eliminate all ei vertices without adding any marginal cost. This condition is met
if deleting the k first sj vertices allows to decrease the cost of all ei vertices by (at least) 1
unit, which means that we have deleted at least one triplet aij , bij , cij related to vertex ei. If
so, we have found an elimination order with cost V as well as k sets S1 . . . Sk ∈ P which
cover U .

Proposition 3 (solution to Set Cover =⇒ solution to weighted-C++) Given an instance
SC of Set Cover and the associated graph G(SC), if all the elements of U can be covered with at
most k sets then there exists an order ≺ on the vertices of G(SC) that has a cost V .

Proof: Suppose that we have a solution to Set Cover with the sets Sj1 , . . . , Sjk . Let us
prove that our graphG has an elimination order where the cost of each vertex is d or d+1
or d+ 2 but with only k vertices with cost d+ 2.

The elimination order can be built by having j going through j1, . . . , jk. For each j
value, we eliminate first sj for a cost of d+2, then we go through i ∈ Sj and eliminate the
corresponding aij and bij vertices (both at cost d+ 1 once sj has been removed). Then we
eliminate cij (for a cost of d if ei is already eliminated and d + 1 otherwise). Finally, if ei
has not yet been eliminated by a previous j value, we eliminate it for a cost of d+ 1.
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After this, the vertex A has lost k + n neighbors: all the ei and the k vertices sj were
selected. Its remaining cost is d + 1 so we eliminate it, which in turn means that all the
remaining sj have a cost of d + 1 and we can eliminate them all (with their aij , bij and cij
attached).

Overall the cost of this elimination order is exactly V .
�

Proposition 4 (solution to Set Cover⇐= solution to weighted-C++) Given an instance
SC of Set Cover and the associated graph G(SC), if there exists an order ≺ on the vertices of
G(SC) that has a cost at most V , then all the elements of U can be covered with at most k sets.

Proof: Suppose that we have an order ≺ such that the total cost is below V . Since V is
the optimal cost for a marginal cost of k, by property 6 the marginal cost of ≺ is at most
k. We now extract a solution to the corresponding Set Cover instance.

First we notice thatwhenA is eliminated, its cost is d+1+k−Es+En+Rn whereEs the
number of si eliminated, and Rn is the number of ei remaining. However, as long as A is
not eliminated,Es is less than (or equal to) the marginal cost of all the vertices eliminated
before A. Indeed, if sj is eliminated while A is still present it is because we have paid a
marginal cost at least 1 to eliminate directly one of sj or aij or bij or cij for i ∈ Sj . That is
true because if A is present, then all those vertices have a cost of d+ 2 (except cij that has
a cost d+ 3 if ei is not eliminated yet).

Overall when we eliminate A, we pay a marginal cost of (k −Es) +Rn. The marginal
cost of ≺ is at least the marginal cost of all vertices eliminated before A (which is at least
Es) plus the marginal cost for A. Hence a marginal cost larger than Es + (k−Es) +Rn =
k + Rn. Assuming this marginal cost is k means that Rn = 0; in other words, all vertices
ei corresponding to integers {1 . . . n} have been eliminated before A.

Note that if a vertex ei is directly eliminated without eliminating first a vertex sj and
a triplet aij , bij , cij then we have to add a marginal cost of 1 specifically for this vertex ei.
But in that case, it means that the marginal cost of all vertices before A includes the cost
of removing this ei which means that we cannot have an overall marginal cost of k.

Combining everything we get that if we have an order that has a marginal cost of k
and thus a cost of at most V , then we have k sets Si1 , . . . , Sik covering all integers in U .

�
We proved that Set Cover is NP-complete, that Set Cover reduces to weighted-C++,

and thatweighted-C++ reduces toC++. In conclusion,C++ is NP-complete in its decision
version; the minimisation version is therefore NP-hard.

5.3.3 Relaxations, bounds and approximations

Relaxing the constraint of acyclic orientation

Whilewe focused until here on node orderings, the complexities of Algorithms 2 and 3
depend more precisely on an edge orientation. Node ordering is one way to orient the
edges, from low to high indices. The resulting directed graph is of a particular type: it is
acyclic, which means that there is no directed path that starts and ends on the same node.
This absence of cycles allows the algorithms to avoid redundancy while listing triangles,
but any orientation without cyclic triangles would have the same effect, regardless of the
existence of longer cycles. It is thus interesting to relax the acyclic constraint and to know
what happens to the C++ and C+− problems when they are considered as minimisation



98 Chapter 5. Orderings for reduced operations

problems over the full set of edge-orientations. Let us refine their definition so that they
adapt to any edge-orientation.

Definition 8 (Cost induced by an edge-orientation) Given an undirected graphG, an edge-
orientation is a function η : E → V 2 that indicates for each undirected edge {u, v} ∈ E a
directed edge (u, v). The set of directed edges is noted Eη. The costs C++ and C+− induced by an
orientation η of the edges are defined by:

C++(η) =
∑

(u,w)∈Eη

d+u C+−(η) =
∑

(u,v)∈Eη

d+v

With this generalisation of the C++ and C+− problems, more open problems arise.
Table 5.1 shows the known results for both problems and both types of constraint on the
edge-orientations; it also sums up approximability results from the literature. Each of
these additional results are discussed below, and their demonstrations are briefly pre-
sented.

Orientation without cycle Arbitrary orientation

Cost C++ NP-hard (Section 5.3.2) PolynomialThere exists a 2-approximation

Cost C+− NP-hard (Section 5.3.1)
Best known approximation O(

√
logn)

Table 5.1: Complexity and approximability of C++ and C+− minimisation problems
depending on the constraint of edge-orientations.

Additional results for C+−

C+− is NP-hard for any edge-orientation. The proof of NP-hardness forC+− presented
in Section 5.3.1 is based on a reduction from a satisfiability problem. From a specific
instance of NAE3SAT+, it creates a graph where the minimum C+− value is as low as a
threshold if and only if the instance is satisfiable.

Interestingly, the minimum cost obtained among node orderings is also minimum
among all the edge-orientations. Indeed, the minimum C+− cost for a satisfiable instance
of m clauses is 2m. This value comes from the triangle of Figure 5.3 that exists for each
clause gadget: a triangle {u, v, w}where each node has an additional neighbour. For such
a pattern, any node ordering π gives a C+− cost at least 2: assume πu < πv < πw, then
u may have no predecessor and w may have no successor, but v has one of each plus its
additional neighbour: C+−(π) ≥ d+v · d−v = 2. General edge-orientations would allow
for one other situation η, where the edges of the triangle are a cycle (u, v), (v, w), (w, u).
In this case, each node has exactly one predecessor and one successor plus its additional
neighbour, which leads to C+−(η) = 6 for each clause (and possibly extra cost for the
literals).

Thus, minimisingC+− is NP-hard, whether over the set of edge-orientations or the set
of node orderings (or even the set of edge-orientations without 3-cycle).

C+− can be as low as zero. While trying to minimise C+− is hard on general graphs,
it is straightforward if they have a certain property: on bipartite graphs, there is a node
ordering such that the C+− value is zero. Consider a bipartite graphG = (A∪B,E) such
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that edges are only between A and B. Define an order ≺ such that a ≺ b for any a ∈ A
and b ∈ B (for instance a1 ≺ · · · ≺ a|A| ≺ b1 ≺ · · · ≺ b|B|). Then any a ∈ A has d−a = 0 so
it does not contribute to C+−. Similarly, for all b ∈ B, d+b = 0. In total, C+−(≺) = 0.

C+− does not have constant-factor approximations. On a scientific forum,Makarychev
[2020] shows that C+− is linked to the Max-Cut problem and to its complementary Min-
Uncut. All three problems intuitively describe how far from bipartite a graph is. Indeed,
when the graph is bipartite, we saw just above that C+− can be zero; the maximum cut of
such a graph contains all the edges, and the minimum uncut contains no edge at all.

Using this tight link Makarychev shows that the following properties, that have been
previously proven byAgarwal et al. [2005] for theMin-Uncut problem, also apply toC+−.
First, there exists a polynomial time O(

√
logn)-approximation. Second, it cannot be ap-

proximated in polynomial time within a constant factor, unless the Unique Game Conjec-
ture of Khot [2002] is wrong.

This strong statement of inapproximability is an incentive to design heuristics to ad-
dress the C+− problem instead of using algorithms with mathematical guarantees. Dif-
ferent heuristics are presented in Section 5.4 and tested in Section 5.5.

Additional results for C++

C++ is in P for general edge-orientations. The proof of Section 5.3.2 shows that C++ is
NP-hard to minimise over the set of vertex orderings. However, Young and Jachiet [2020]
have given independent proofs that the minimisation over the set of edge-orientations is
polynomial.

First of all, a naive greedy algorithm does not reach the minimum solution. Starting
from any edge-orientation, such an algorithm takes an edge and inverts it if it reduces the
total C++ cost. Yet, the counter example of Figure 5.6 shows a situation where C++ is not
minimum, but no single edge inversion reduces it. In that example, the way to obtain a
lower C++ is to invert a path of three edges: the path inversion only impacts the starting
and ending nodes, whose contribution goes from 0 to 1 and from 4 to 1 respectively. This
hints at a first type of polynomial algorithm.

The method of Jachiet to reach the minimum C++ value is a path inversion. If we can
find a path whose starting node has a higher out-degree than the ending node, the path
is inverted and C++ decreases. Intermediate nodes of the path are not impacted, as they
gain one predecessor on one side and lose it on the other. An interesting proof then shows
that in the absence of invertible path, C++ is minimum, thus sketching a polynomial time
algorithm for the optimisation over edge-orientations.

The main method of Young consists in reducing the problem to the minimum-weight
bipartite matching problem, which is known to be polynomial [Kleinberg and Tardos,
2006]. The reduction starts from an instance of C++ and creates a bipartite graph with
specific weights on the edges. The proof then shows that finding a matching of minimum
weight in this new graph also yields an edge-orientationwithminimumC++ in the initial
graph.

Finally, Young presents sketches of proofs with linear programming and randomised
rounding methods. They consist in reformulating the C++ problem in a set of variables
with constraints, and then using the polynomial time algorithms for such standardised
problems.
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Figure 5.6: Counter example for the greedy algorithm of C++ over edge-orientations.
The numbers indicate the contribution of each node u to the C++ cost, which is (d+u )2. On
the left, the cost is 13 and cannot be lowered by any single edge inversion. On the right,
the simultaneous reversion of the three double-edges gives an orientationwithC++ = 11.

Lower-bounds exist for C++. The C++ problem can be reformulated as a minimisation
of S =

∑n
i=1 x

2
i where x1, . . . , xn are integers of sum m. According to Jensen’s inequality,

S is minimised if x1 = · · · = xn = m
n , in which case S = m2

n . This gives a first theoret-
ical lower-bound for C++, that is minimised if all nodes have the same out-degree: any
ordering π satisfies C++(π) ≥ m2

n . Further refinements are possible, as m
n is not always a

correct value for the out-degree. First, m
n may not be an integer. If we note m = qn + r

with 0 < r < n, then the minimum is achieved if r nodes have out-degree q + 1 and the
others have out-degree q: C++(π) ≥ (n− r)q2 + r(q+1)2 = m2

n + r(1− r
n). Second, some

nodes cannot have an out-degree as high as q, either because they are at the end of the
ordering (the i-th last node has out-degree at most i− 1), or because their total degree is
lower. This leads to Algorithm 4 that computes a lower-bound for C++.

Algorithm 4 – Computing a lower-bound for C++

Input: graph G(V,E), ascending degree ordering δ
1: n← |V |, m← |E|
2: for each vertex u in order δu do
3: xu = min(u, du, bmn c)
4: n← n− 1
5: m← m− xu

return S =
∑

u∈V x2u

Core ordering is a 2-approximation of C++. Core ordering is one of the standard node
orderings used in the literature of pattern mining, in particular for triangles, as explained
in Section 5.2. In their work on triangle sampling, Turk and Turkoglu [2019] are interested
to minimise the cost C(π) =

∑
u∈V

(
d+u
2

)
over node orderings π. This quantity is related to

C++ in the following way:

C(π) =
C++(π)−m

2
or C++(π) = 2 · C(π) +m

This formula indicates that an order π∗ that minimises C also minimises C++. Turk and
Turkoglu show in Theorem 2 that the core ordering γ is a 2-approximation of such an
optimum ordering: C(γ) ≤ 2 · C(π∗). This result directly translates for C++:

C++(γ) = 2 · C(γ) +m ≤ 4 · C(π∗) +m ≤ 2
(
2 · C(π∗) +m

)
= 2 · C++(π∗)

Hence the fact that the core ordering is a 2-approximation for C++.
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Chosen algorithm
Ordering strategy A++ (cost C++) A+– (cost C+−)

Reducing C++ Degree or core ordering Core ordering
Ortmann and Brandes [2013] Danisch et al. [2018]

Reducing C+− – our contributions
Section 5.4.3

Table 5.2: Combination of orderings and algorithms. The literaturemisses combinations
of A+– algorithms with ordering strategies that specifically reduce C+−.

5.4 New orderings to reduce the cost of triangle listing

In this section, we discuss how to design vertex orderings to reduce the cost of trian-
gle listing algorithms. Recall that for an ordering π, the costs of interest are C++(π) =∑

u∈V d+u d
+
u and C+−(π) =

∑
u∈V d+u d

−
u . They correspond to the influence of node order-

ing on the number of operations of Algorithms 2 (A++) and 3 (A+–) respectively.
The fastest triangle listingmethods identified in the literature present an inconsistency

between the choice of ordering and the choice of algorithm, as shown in Table 5.2. In the
experiments of Ortmann and Brandes [2013], the fastest method identified is to run algo-
rithm A++ with core or degree ordering. For Danisch et al. [2018], the fastest is algorithm
A+– with core ordering. The intuition behind both orderings is that high degree vertices
are ranked after most of their neighbours in π so that their out-degree inGπ is lower. This
reduces the cost C++, which in turn reduces the number of operations required to list all
the triangles as well as the actual running time of A++. The fact that A+– also performs
well with core ordering is considered as a side effect by Ortmann and Brandes.

This chapter aims at bridging the gap in Table 5.2. To our knowledge, no previouswork
has designed orderings with a low C+− cost and used them with A+–. As Theorem 1 of
Section 5.3 proves that finding an ordering that minimises C+− is NP-hard, this section
will focus on efficient heuristics to reduce the C+− cost. The experiments of Section 5.5
will then show that such orderings can lower the computational cost further than the
usual degree and core orderings.

5.4.1 Comparing the costs C+− and C++

While the formulas ofC+− andC++ are similar, their intuitive meanings are different.
To reduce C++, the goal is to find an ordering where the out-degree is uniform across
all nodes: the non-decreasing degree ordering will place nodes with low total degree at
the beginning so that all their neighbours are successors; the high-degree nodes will be
towards the end of the ordering to ensure that most of their neighbours are predecessors.
To reduceC+−, the goal is to find an orderingwhere each node hasmost of its neighbours
on only one side, either predecessors or successors.

Several facts hint that, on a given graph, C+− may reach lower values than C++. First,
the fast implementation provided by Danisch et al. [2018] suggests that A+– algorithm
can be faster that A++ even when the ordering is designed to reduce C++; it could fur-
ther accelerate with an ordering that reduces C+−. Second, all bipartite graphs have an
ordering where C+− = 0, while any graph with m edges has C++ ≥ m. Finally, if we
consider a fully connected graph, C+− is smaller than C++ regardless of the ordering:
in a triangle for instance, any ordering gives an out-going degree distribution (0, 1, 2), so
C++ = 02 +12 +22 = 5 and C+− = 0× 2+ 1× 1+ 2× 0 = 1. Table 5.3 indicates the costs
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Graph Cost C++ Cost C+−

Edge 1 0
Triangle 5 1
4-clique 14 4
k-clique 1

6k(k − 1)(2k − 1) 1
6k(k − 1)(k − 2)

k →∞ ∼ k3/3 ∼ k3/6

Table 5.3: Values of C++ and C+− in a fully connected graph for any ordering.

for bigger cliques and shows that the asymptotic cost for cliques is twice as high for C++

as for C+−.
The advantage of C+− over C++ is also visible in a random graph model. Let us com-

pute their expected values over the set of Erdős and Rényi [1960] graphs, noted ER(n, p)
for graphs of n nodes where each edge exists with probability p.

Proposition 5 (C++ and C+− in random graphs) In a ER(n, p) random graph, for a ran-
dom ordering π, the cost C++ is more than twice the cost C+− in asymptotic expectation:

E
(
C++(π)

)
∼

n→+∞
2 · E

(
2C+−(π)

)
+ E(m)

Proof: Consider a graph ER(n, p) with a random ordering π. Without loss of gener-
ality, we assume that node u ∈ J1, . . . , nK is in position πu = u. Its number of succes-
sors su follows a binomial law B(n − u, p): the number of successors is higher if u is at
the beginning of the ordering. This law has expectation E(su) = (n − u)p and variance
V(su) = (n− u)p(1− p). Hence the following expectation for C++:

E
(
C++(π)

)
=

∑
u∈V

E(s2u) =
∑
u∈V

V(su) + E(su)2 as V(X) = E(X2)− E(X)2

=

n∑
u=1

(n− u)p(1− p) + (n− u)2p2 as u ∈ J1, . . . , nK

=

n−1∑
v=0

vp(1− p) + v2p2 = p(1− p)

n−1∑
v=0

v + p2
n−1∑
v=0

v2 with v = n− u

= p(1− p)
n(n− 1)

2
+ p2

n(n− 1)(2n− 1)

6

= 2p2
(
n

3

)
+ p

(
n

2

)
∼

n→+∞
p2

n3

3
+ p

n2

2
when n >> 1

In large graphs, C++ is at least 1
3p

2n3, plus the term p
(
n
2

)
that corresponds to the ex-

pected number of edges. Similar equations show that it is only 1
6p

2n3 for C+−: the expec-
tation ofC+− involves the random variable su for the successors, and for the predecessors
du−su that follow a law B(u−1, p). For a given node, these two variables are independent
because all edges are drawn independently.
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E
(
C+−(π)

)
=

∑
u∈V

E (su(du − su))

=
∑
u∈V

E(su) · E(du − su) as variables are independent

=
n∑

u=1

(n− u)p · (u− 1)p =
n−1∑
v=0

p2v(n− v − 1) with v = n− u

= p2(n− 1)
n(n− 1)

2
− p2

n(n− 1)(2n− 1)

6

= p2
(
n

3

)
∼

n→+∞
p2

n3

6
when n >> 1
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Figure 5.7: Ratio C++

C+− for 9 datasets with a random ordering.

As for real-world networks, we also measure the values of C++ and C+− obtained for
a random ordering on some of the datasets later presented in Table 5.4. Figure 5.7 shows
that the C+− cost is always between 1.3 and 2.3 times lower than C++, which relates to
the asymptotic limit for cliques reported in Table 5.3: C++ ∼ 2C+−.

These numerous examples could let us think thatC+− can always go lower thanC++.
Let us show that this is not the case, or in other words, that there exists a graph and an
orderingπ such that any ordering ν satisfiesC+−(ν) > C++(π). Figure 5.8 shows one such
graph: it comprises a clique of k = 7 nodes, each of which is attached to 30 extra nodes of
degree one. For C++, let us build π that first orders the extra nodes and then the nodes of
the clique. Each extra node has a contribution of 1, and the nodes of the clique together
contribute 1

6k(k − 1)(2k − 1) = 91, amounting for a total C++(π) = 91 + 7 × 30 = 301.
For C+−, let us build an optimum ordering ν. The extra nodes can go either before or
after their unique neighbour without contributing any cost. Each node of the clique can
therefore choose how many of its extra neighbours are predecessors and successors. The
first node of the clique has 6 successors within the clique and chooses to have 30 extra
successors, and thus contributes zero. The second node has one predecessor within the
clique and chooses 35 successors, hence a contribution of 1 × (5 + 30) = 35. The third
node of the clique has two predecessors, 4 successors in the clique and 30 extra successors,
which is a contribution of 2× (4+30) = 68. The fourth contributes 3× (3+30) = 99. The
fifth, sixth and seventh nodes of the clique symmetrically contribute 68, 35 and zero. In
total, C+−(ν) = 305.



104 Chapter 5. Orderings for reduced operations
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Figure 5.8: Example of graph where C++ can be lower than C+−. Each of the nodes of a
7-clique are connected to 30 nodes of degree 1 (not all represented on this figure). Placing
black nodes before white nodes gives C++ = 301 while for any ordering C+− ≥ 305.

All the examples above show that costs C+− and C++ have different behaviours de-
pending on the type of graph. The value of C+− is lower in various toy examples as well
as random graphs or real-world networks with random ordering. Besides, the current
fastest implementation, by Danisch et al. [2018], use the algorithm A+–. These are moti-
vations to investigate orderings that targetC+− and to seewhether the cost can be reduced
beyond what the core or degree orderings achieve.

5.4.2 Distinguishing two tasks for triangle listing

Triangle listing typically consists of the following steps: loading a graph, computing
a vertex ordering, and listing the triangles. To determine the speed of a method, it is first
necessary to decide which of these steps matter. Unfortunately, the literature does not
agree on this matter. On the one hand, time measurements by Latapy [2008], Danisch
et al. [2018], Li et al. [2020] only take into account the execution time of the triangle list-
ing algorithm: loading and ordering time are excluded. On the other hand, Schank and
Wagner [2005], Ortmann and Brandes [2013] measure the whole execution, starting from
an unordered graph in external memory.

To be able to compare our contribution with all the existing literature, we tackle two
distinct tasks in our study: we call mere-listing the task of listing the triangles of an al-
ready loaded graph with a given vertex ordering; we call full-listing the task of loading a
graph, computing a vertex ordering, and listing its triangles. In the rest of the chapter, we
use the notation task-order-algorithm: for instance, mere-core-A+– refers to the mere-listing
taskwith core ordering and algorithm A+–. Using this notation, the fastestmethods iden-
tified in the literature are mere-core-A+– for Danisch et al. [2018], mere-core-A++ and
full-degree-A++ for Ortmann and Brandes [2013]. We use all three methods as bench-
marks in our experiments of Section 5.5.

Studying both tasks gives a better understanding of the phenomena at play in the
speed of triangle listing. On the practical side, full-listing represents the runtime for one
execution: it favours quickly obtained orderings even if their induced cost is not the low-
est. From an algorithmic point of view, mere-listing shows the impact that orderings can
have on the cost of triangle listing. As the ordering time is not taken into account, a long
time can be spent on finding an ordering with low cost. This time measurement favours
situations where the ordering is distributed to other users or used several times. For ex-
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ample, a network that is about to be shared to many end users can be ordered once by its
owner; there is an incentive to spend significant time in the ordering phase if it reduces
the listing time for each end user. Similarly, in a recommendation system that requests
graph motif enumeration on the fly, finding an efficient ordering once accelerates each
subsequent query. Another situation may arise frequently with large networks: while we
limit ourselves to networks that fit in main memory, the list of triangles may be orders
of magnitude larger than the list of edges, thus reaching the limit of the memory. With
an appropriate ordering, regenerating the list of triangles is fast so it does not need to be
stored.

These differences between full-listing and mere-listing indicate that both tasks are
worth studying, and they lead to a time-quality trade-off for cost-reducing heuristics:
depending on the application, one may be keen on spending more or less time on the
ordering phase.

5.4.3 Reducing C+− along a time-quality trade-off

Recall that two efficient algorithms are identified in the literature for triangle listing
(Algorithms 2 and 3). Their number of operations respectively depend on the costs C++

and C+− induced by the node ordering. However, the orderings that have been consid-
ered (degree and core) induce a low C++ cost, but not necessarily a low C+− cost.

Our goal here is therefore to design a procedure that takes a graph as input and pro-
duces an ordering π with a low induced cost C+−(π). In the classification of Chapter 3,
this belongs to the mechanism of precedence with an objective function. Because of Theo-
rem 1, finding an optimal solution to this function is not realistic for graphs with millions
of edges. Moreover, the time allocated to the ordering phase should be adaptable to the
choice of full-listing or mere-listing task. We therefore present three heuristics aiming
at reducing the C+− value, exploring the trade-off between quality in terms of C+− and
ordering time.

Neigh heuristic

Presentation. We define the neighbourhood optimisation method, a greedy reordering
where each vertex is placed at the optimal index with respect to its neighbours, as
illustrated in Figure 5.9. It is based on the observation that the contribution of a node u
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Figure 5.9: Example of update in the Neigh heuristic: vertex a is moved to a position
among its neighbours that induces the lowest cost. The tables shows how the ordering
is updated. Edges that changed orientation with the new ordering are represented with
double lines. The initial ordering of this example has C+− = 9 while the final ordering
has C+− = 6. The optimal C+− cost for this graph is 3 (with ordering e, g, f, a, c, d, b).
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to C+− (or C++) only depends on its relative position to its neighbours. In other words,
changing the index πu only affects C+−(π) if the position of u with respect to at least
one of its neighbours changes; otherwise the in- and out-degrees of all vertices remain
unchanged.

Starting from any ordering π, the algorithm described in Algorithm 5 considers each
vertex u one by one (line 3) and, for each possible position p ∈ J1, duK, it computesC+−(p),
the value of C+− when u is just after its p-th neighbour in π, as well as C+−(0) when u is
before all its neighbours. The position p∗ that induces the lowest value of C+− is selected
(line 5) and the ordering is updated (line 6). The process is repeated until C+− reaches a
local minimum, or until the relative improvement is under a threshold ε (last line). The
resulting π induces a low C+− cost.

Algorithm 5 – Neighbourhood optimisation (Neigh heuristic)
Input: graph G, initial ordering π, threshold ε ≥ 0
1: repeat
2: C0 = C+−(π)
3: for each vertex u of G do
4: sort Nu according to π
5: p∗ = argminp∈J0,duK

{C+−(p)}
6: update ordering π to put u in position p∗

7: while C+−(π) < (1− ε) · C0

Complexity. Computing the best position of u among its neighbours is not straightfor-
ward. Indeed, summing the d+d− values of all the nodes of the neighbourhood and for
each position would imply a complexity Θ(d2u), which is equivalent to the complexity of
listing the triangles that involve u. Instead, we reach a complexity Θ(du) by first comput-
ing C+−(0) and updating it for each successive position. If v is the (p+1)-th neighbour of
u according to π, then C+−(p+1) only differs from C+−(p) because the contributions of u
and v change. By swapping u and v in π, u gains one predecessor and loses one successor,
and vice versa for v:

C+−(p+ 1)− C+−(p) =
(
(d+u − 1)(d−u + 1) + (d+v + 1)(d−v − 1)

)
−
(
d+ud−u+ d+ud−u

)
= d+u − d−u + d−v − d+v − 2

Maintaining the values d+ and d− implies a constant time, which gives Θ(1) operations
for each position.

Altogether, each iteration of the Neigh heuristic has a time complexity Θ(m): find-
ing the best position p∗ takes Θ(du), and π is updated in constant time using a linked
list; adding this over all the nodes gives Θ(m + n) which is Θ(m) if there are no isolated
nodes. If the improvement threshold ε is reached after I iterations, the overall complexity
is Θ(Im); as we will see in Section 5.5, the process reaches a threshold ε = 10−2 after
I < 10 iterations on all the networks.

Discussion. This heuristic has several strong points: it is adaptable to other objective
functions, for instance C++; it is greedy, so the cost keeps improving until the process
stops; if the initial ordering already induces a lowC+− cost, the heuristic can only improve
it; it is stable in practice, which means that starting from several random orderings give
similar final costs;and we show in Section 5.5 that it allows for the fastest mere-listing.
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1 n

Degree ordering
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Split ordering

Figure 5.10: Illustration of Degree and Split orderings. Each bar represents a node, the
height corresponds to its degree and the colour to its parity. On the left, nodes are ordered
according to their degree. On the right, nodes split into two groups so that high degrees
are at the beginning or at the end of the ordering.

The Neigh heuristic also has an important downside when it comes to the full-listing
task: in spite of its linear complexity, it can in practice take longer than the triangle listing
step. We therefore propose the following faster heuristics for the full-listing task.

Check heuristic

This heuristic is inspired by core ordering, where vertices are repeatedly selected ac-
cording to their current degree [Batagelj and Zaveršnik, 2003]. Its mechanisms are prece-
dence and (degree) centrality, with a streaming algorithm.

It considers all vertices by decreasing degree and checks whether it is better to put a
vertex at the beginning or at the end of the ordering. More specifically, π is obtained as
follows: before placing vertex u, let Vb (resp. Ve) be the vertices that have been placed
at the beginning (resp. at the end) of the ordering, and V? those that are yet to place.
The neighbours of u are partitioned in Nb = Nu ∩ Vb, Ne = Nu ∩ Ve and N? = Nu ∩ V?.
We consider two options to place u: either just after the vertices in Vb (πu = |Vb| + 1),
or just before the vertices in Ve (πu = n − |Ve|). In either case, u has all vertices of Nb as
predecessors, and all vertices of Ne as successors. In the first case, vertices in N? become
successors, which induces a C+− cost Cb = |Nb| · (|Ne| + |N?|). In the second, the cost is
Ce = (|Nb|+ |N?|) · |Ne|. The option with the smaller cost is selected. Sorting the vertices
by degree requires Θ(n) steps with bucket sort. Maintaining the sizes of Nb, Ne, N? for
each vertex requires one update for each edge. Therefore, the complexity is Θ(m+ n), or
Θ(m) assuming that n ∈ O(m).

Split heuristic

Finally, we propose a heuristic that is faster to achieve but compromises on the quality
of the resulting ordering. Degree ordering has been identified as the best solution for
mere-listing with algorithm-A++ by Ortmann and Brandes [2013]. We adapt it for C+−

by splitting vertices alternatively at the beginning and at the end of the ordering π, as
shown on Figure 5.10. More precisely, a non-increasing degree ordering δ is computed,
then the vertices are split according to their parity: if u has index δu = 2i + 1 then πu =
i + 1; if δu = 2i, then πu = n + 1 − i. Thus, high degree vertices will have either few
predecessors or few successors, which ensures a lowC+− cost. On the graph of Figure 5.9,
the non-decreasing degree ordering (e, b, g, a, f, d, c) has C+− = 7 and the Split method
leads to (e, g, f, c, d, a, b), which has C+− = 4. The complexity of this method is in Θ(n)
like the degree ordering. It is a streaming algorithm based on a centrality mechanism, as
described in Section 3.3.3.

While the split procedure can be applied to any ordering, let us see at which condi-
tion the resulting cost will be lower. We can consider that the initial ordering π is such
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that πu = u for each node u. If V0 are the even nodes and V1 the odd nodes, the ordering
Split(π) will first contain the nodes of V0 in descending order, then the nodes of V1 in
ascending order. Take a node u ∈ V0 that has d neighbours including d− predecessors
and d+ successors; let us assume that they are evenly distributed among V0 and V1. Af-
ter splitting, its d

2 neighbours in V1 become successors; in V0, its d−

2 predecessors become
successors because of the reversion of V0 in Split(π), and its d+

2 successors become prede-
cessors. The contribution of u to C+− (Split(π)) is thus (d2 + d−

2 ) · d+2 = 1
2d

+d− + 1
4d

+d+.
Assuming that the degree of a node is not correlated to the parity of its index in π, the
same result holds for nodes of V1. Summing over all the nodes, we get

C+−
(
Split(π)

)
=

1

2
C+−(π) +

1

4
C++(π)

The split procedure is useful when the resulting C+− cost is lower than both the initial
C+− and C++ costs. This is a case when C+− (Split(π)) < min (C+−(π), C++(π)), which
is equivalent to 1

2C
++(π) < C+−(π) < 3

2C
++(π) given the above equality. In other words,

any ordering π for which the cost C+− is similar (between 0.5 and 1.5 times) to the cost
C++ can be improved using the split procedure. Experimentally, the degree ordering
satisfies this double inequality, which explains why splitting it leads to a lower C+− cost.

5.5 Experiments

5.5.1 Experimental setup

Datasets

We use the 12 real-world graphs described in Table 5.4. As this chapter focuses on
in-memory triangle listing in large graphs, we selected networks that have between ten
million and two billion edges and can therefore be loaded in the RAM of a standard ma-
chine. These datasets are standard for evaluating graph algorithms on real-world data:
most of them appear in the experiments of Ortmann and Brandes [2013], Danisch et al.
[2018] and come from widely-used graph collections [Leskovec and Krevl, 2014, Rossi
and Ahmed, 2015], while larger webgraphs are provided by Boldi and Vigna [2004]. All
the tested networks are included in the experimental results below. Loops have been re-
moved and the directed graphs have been transformed into undirected graphs by keeping
an edge when one existed in either or both directions.

Software and hardware

We release a uniform open-source implementation 3 of A++ and A+– algorithms, as
well as the different ordering strategies that we discussed in Section 5.4. The code is in
c++ and uses an integer representation that adapts to the size of the graph, allowing for
graphs with up 264 edges in principle. It is compiled with gnu make 4 and g++ 8.2 with
optimisation flag Ofast and openmp for parallelisation. We run all the programs on an
isolated node of a computing cluster to ensure that time measurements are not affected
by other processes. The machine is a sgi ub2000 intel xeon e5-4650L @2.6 GHz, 128Gb
ram with linux suse 12.3.

3https://github.com/lecfab/volt

https://github.com/lecfab/volt
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Dataset (source) Nodes Edges Triangles
skitter F (a) 1,696,415 11,095,298 28,769,868
patents � (a) 3,774,768 16,518,947 7,515,023
baidu F (b) 2,141,301 17,014,946 25,207,196
pokec N (a) 1,632,804 22,301,964 32,557,458
socfba N (b) 3,097,166 23,667,394 55,606,428

LJ N (a) 4,036,538 34,681,189 177,820,130
wiki F (a) 2,070,486 42,336,692 145,707,846
orkut N (a) 3,072,627 117,185,083 627,584,181

it F (c) 41,291,318 1,027,474,947 48,374,551,054
twitter N (c) 41,652,230 1,202,513,046 34,824,916,864

friendster N (a) 124,836,180 1,806,067,135 4,173,724,142
sk F (c) 50,636,151 1,810,063,330 84,907,041,475

Table 5.4: Datasets used for the experiments, ranked by number of edges. They represent
either web networks F, social networks N or citation networks �. The sources are (a)
Leskovec and Krevl [2014], (b) Rossi and Ahmed [2015], and (c) Boldi and Vigna [2004].

Our implementation of either triangle listing algorithm can run in parallel because
each iteration of the main loop is independent from the others. Among orderings how-
ever, only degree and Split are easily parallelisable; to be consistent, we use a single thread
to compare the different methods. Moreover, the goal of this work is to evaluate the im-
pact of different methods on the speed of triangle listing, which is more straightforward
to observe with a single thread.

Regarding the state of the art, themost competitive implementation available for trian-
gle listing is kClist by Danisch et al. [2018], which has already been shown to outperform
the previous programs of Makino and Uno [2004] and Latapy [2008]. It uses a recur-
sive algorithm that is equivalent to A+– when k = 3. Its data-structure allows to store
graphs up to 232 ' 4 billion edges. Besides, Ortmann and Brandes [2013] do not provide
the implementation that they used to identify core-A++ and degree-A++ as the fastest
methods.

To compare our implementation to the reference implementation of Danisch et al.
[2018], we run the following experiment. For each dataset (we limit ourselves to the
datasets with under a billion edges in order to obtain indicative results in a short time), we
generate various orderings: core, degree, our heuristics, but also depth-first or breadth-
first search, random and original orderings, and other variations. For each of them, we
then measure the runtime of triangle listing with the program of Danisch et al. and with
ours. Out of 136measures (17 orderings times 8 datasets), our program is faster 131 times,
with an average speedup of 1.18, presumably because it does not use recursion.

This result shows that our implementation itself is faster than the existing ones. There-
fore, we only use our own implementation of A+– and A++ in the next sections: we
exclusively focus on the speedup caused by the vertex ordering, separating it from the
speedup originating from the implementation.

5.5.2 Cost and running time are linearly correlated

The aimof this section is to show that the cost functionsC++ andC+−, which originate
from the complexity of A++ and A+–, are accurate estimates of the running time of these
algorithms. To do so, we measure the correlation between the running time of mere-
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Figure 5.11: Correlation between execution time and the cost induced by the ordering.
Each mark represents an ordering: circles are for cost C+− and algorithm A+–, squares
are for costC++ and algorithm A++ (shades are due to transparency and superposition).
Each plot represents a dataset: the line of a linear regression shows the proportionality
between cost and time, along with the associated correlation coefficient r and the slope s.
Note that the log-scale explains why the lines are curved.
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listing with either A++ or A+– and the corresponding cost induced by various orderings
(core, degree, our heuristics, but also breadth- and depth-first search, random ordering,
etc). In Figure 5.11, we see that the running time for a given dataset correlates almost
linearly to the corresponding cost: the lines represent linear regressions. The correlation
is above 0.85 on all the datasets, with amedian of 0.988. Note that the imperfect correlation
of running times across the executions may be caused by the same hardware fluctuations
thatwere investigated in Section 2.3). Note that the slope vary fromone dataset to another,
the cause of which remains an open question.

Ultimately, the execution time of a listing algorithm is almost a linear function of the
cost induced by the ordering, independently of the choice of algorithm: for a given net-
work and ordering π, the execution time of algorithm A++ will be linked to C++(π) and
the execution time A+– will be linked to C+−(π). For this reason, reducing the costs ac-
tually improves the running time, as we will see in the next experiments.

5.5.3 Assessing the Neigh heuristic

Among our three heuristics to lower the C+− cost, Neigh is the one where we expect
the best results in terms of C+−, while the others focus on a short ordering time. For this
reason, we need to assess the efficiency and stability of Neigh.

Convergence. The Neigh heuristic consists in I iterations of a loop over all the nodes of
the graph. The process stops when a given improvement threshold is reached, but there
is no guarantee that this will happen in reasonable time. In practice, Figure 5.12a shows
that even for the biggest datasets, the threshold is reached in a few iterations.
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(a) Convergence of Neigh heuristic for cost
C+− on the biggest datasets. Each line shows
the relative reduction of C+− after a certain
number of iterations. They stop when relative
improvement is under 10−2.
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Figure 5.12: Assessing the Neigh heuristic. Convergence happens after a few iterations
and reaches a C++ cost that has a comparable quality with degree or core orderings.
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Stability. Neigh is based on the search of a local minimum, which depends on the initial
ordering. Mathematically, it is possible that some initial orderings lead to a very low cost
while some other lead to a poor local minimum. To show that this is not the case in prac-
tice, we take the orkut dataset and apply the heuristic on 100 distinct random orderings.
The best cost obtained for C+− is 42.1×m. The worst result is only 2.9% higher, and the
relative variation over 100 iterations is 0.7%. This result means that the method is stable
and that many local optima have close C+− costs.

Test for C++. Our final objective with the Neigh heuristic is to reduce the C+− cost.
As there is no benchmark for this cost, we propose to test the relevance of the Neigh op-
timisation procedure on the objective function C++, for which core and degree order-
ings can be taken as benchmarks. We run the Neigh heuristic with the objective function
C++ and compare the resulting ordering π to degree and core orderings, δ and γ. In
Figure 5.12b, we observe that C++(π) is on average only 2.3% higher than C++(γ), and
7% lower than C++(δ). To give an idea of the improvement compared to a random node
ordering, C++(π) is also 17 times lower than C++(rand).

This comparison highlights two things: first, although previousworks did not attempt
to reduce C++ explicitly, they selected the core and degree orderings for A++ because
their C++ costs are much lower than random. Second, our Neigh heuristic reaches com-
parable values, which indicates that its principles work well: we can thus be confident
that the same heuristic applied on C+− will reduce the number of operations of A+–.

5.5.4 The new orderings outperform previous listing methods

We compare our methods (Neigh, Check and Split with A+–) to the state of the art for
mere-listing (core-A+– for Danisch et al. [2018] and core-A++ for Ortmann and Brandes
[2013]) and for full-listing (degree-A++ for Ortmann and Brandes). Recall that we only
use our implementation to ensure that the results describe the influence of node orderings,
and not the implementation techniques.

Figure 5.13 gives an overview of the performance of all the methods. The top charts
present the running times of the three state-of-the-artmethods for all datasets. The bottom
charts show the speedup of our methods compared to the fastest existing one: we take for
each dataset the fastest of the three existing methods as a reference, and the speedup is
defined as the duration ratio between this reference and our method. In each case, we
distinguish the mere-listing task (left) from the full-listing task (right). Exact runtimes
of the best existing and of the methods proposed in this chapter are reported in Table 5.5.

Neigh outperforms previous mere-listing methods

Let us first consider the mere-listing task. Regarding existing methods, we can see
at the top left of Figure 5.13 that there is no clear winner for mere-listing: the durations
of both A++ methods are very close, but core-A+– can be between 1.4 times faster and
2.4 times slower depending on the dataset. This may explain why Ortmann and Brandes
[2013] and Danisch et al. [2018] did not agree on the fastest method.

For our methods, the main result is that Neigh-A+– is always faster than the best pre-
viousmethod. Looking at the bottom left of Figure 5.13, we see that the speedup is 1.38 on
average and ranges from only 1.02 on twitter to 1.71 on the it dataset. Check-A+– performs
almost as well, with a 1.32 average speedup ranging from 1.10 to 1.60; it is even faster than
Neigh-A+– on two of the datasets. Split-A+– is a little slower, which is expected because
this ordering is designed to be obtained quickly and does not reduce C+− as efficiently as
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Figure 5.13: Comparison of state-of-the-art methods and speedup of our methods. The
top charts show the runtime of the three state-of-the-art methods; depending on the
dataset, the fastest method is not always the same. The bottom charts show the speedup
of our three methods against the fastest existing method of each dataset. On the left, for
mere-listing, we see that our three heuristics consistently outperform the three state-of-
the-art methods, and thatNeigh or Check are the fastest. On the right, for full-listing,Neigh
is not efficient but Split is always faster than existingmethods and Check is faster on bigger
datasets.
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mere-listing full-listing
dataset state of the art this work state of the art this work
skitter 1.00s 0.71s 1.91s 1.75s

patents 2.40s 1.67s 5.71s 5.15s
baidu 3.68s 2.87s 6.38s 5.77s
pokec 4.87s 3.44s 7.91s 7.21s
socfba 5.52s 3.98s 8.92s 7.79s

LJ 6.23s 4.79s 10.91s 9.88s
wiki 10.82s 8.22s 16.23s 15.65s
orkut 42.11s 33.09s 57.47s 51.60s

it 3m13 1m53 4m09 2m45
twitter 12m31 11m20 15m21 14m08

friendster 42m36 30m31 55m47 48m13
sk 5m10 3m06 6m47 4m31

Table 5.5: Duration of triangle listing of existingmethods against ourmethods. For each
dataset, we compare the fastest state-of-the-art method against the fastest of our methods.
Recall that mere-listing only takes into account the runtime of the listing algorithm (A++
or A+–) while full-listing also counts the graph loading time and the ordering time.

our other heuristics. However it still consistently outperforms all the previous methods,
with a 1.20 average speedup. The conclusion is that our heuristics Neigh, Check and Split
manage to produce orderings that induce significantly lower C+− costs, which translates
directly into short running times for mere-listing with A+–.

Split outperforms previous full-listing methods

For full-listing, the top right chart of Figure 5.13 shows that degree-A++ is the fastest
for nine of the twelve datasets. This result is consistent with the result reported by Ort-
mann and Brandes [2013], who specifically addresses full-listing. Yet for bigger datasets,
whichwere not studied in previousworks, the result is not as clear: core-A++ yields close
running times to degree-A++, and core-A+– outperforms both on two instances.

As for our methods, the main result is that Split-A+– is always faster than previous
methods. The speedup compared to existing methods is 1.16 on average, and it ranges
from 1.04 on wiki to 1.50 on sk dataset. Check also gives very good results: on medium
datasets, it is a bit slower thandegree-A++, but it outperforms all state-of-the-artmethods
on large datasets (it, twitter, friendster, sk), and it even beats Split on three of them. This
hints at a transition effect: the Check ordering has a lower C+− value but it takes Θ(m)
steps to compute, while Split only needsΘ(n); for larger datasets, the listing step prevails,
so the extra time spent to compute Check becomes profitable. Note that theNeigh heuristic
is not competitive here (speedup under one) since it has a long ordering time compared
to other methods.
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5.6 Conclusion

In this chapter, we address the issue of in-memory triangle listing in large graphs. We
formulate explicitly the computational costs of the most efficient existing algorithms, and
investigate how to order vertices to minimise these costs. After proving that the optimisa-
tion problems are NP-hard, we propose scalable heuristics that are specifically tailored to
reduce the costs induced by the orderings. We show experimentally that these methods
outperform the current state of the art for both the mere-listing and the full-listing tasks.
The Check heuristic offers a good compromise for either task, and we set it as default in
our open-source implementation.

Preliminary investigations indicate that the mere-listing step takes more importance
as graphs grow larger, which hints that our listingmethodswould be all themore efficient
for future, larger datasets. Moreover, full-listing includes the time spent to load the graph
and to compute the ordering; these two tasks can hardly be accelerated, as the complex-
ity of Split is linear in the number of nodes of the graph. For this reason, we think that
improving triangle listing will require to find orderings that are fast to compute and that
further accelerate the mere-listing step. Modifications of the standard algorithms using
more elaborate data-structures to compute list searches and intersections may also come
into play, which would involve new complexity costs and new orderings.

The method of this chapter could in principle extend to other problems. We give be-
low our insights into some of them and we detail the issues that we faced. One natural
extension is to use similar vertex ordering heuristics in the more general case of clique
listing. This has been done by Danisch et al. [2018] using core ordering, and refined by
Li et al. [2020] using a pruning technique involving graph colouring. These methods use
broad bounds of complexity and could be improved with a tighter study of the cost of
clique listing algorithms. Yet, formulating appropriate cost functions like C++ and C+−

is not straightforward for cliques: while the existence of a triangle is checked from a path
of length two, the existence of a k-clique derives from a (k − 1)-clique with an out-going
edge, and this clique itself depends on a (k − 2)-clique etc. The costs that we obtain are
too specific to run an efficient optimisation procedure, and they involve to rank nodes not
by their degree or degeneracy, but by the number of times they participate in a precise
type of pattern; this count is costly to find, which hinders any acceleration to the overall
clique listing algorithm.

Beyond cliques, we also considered the listing of general k-motifs, which consists in
finding all the instances of a given connected subgraph of k nodes. Two issues rule out the
methods that we applied to triangles. First, the technique to avoid redundancy by orient-
ing the edges does not work for arbitrary motifs: consider k = 3 and an open wedgemotif
(edges u, v and v, w forming a ∨ shape). As in the case of triangles, each wedge could
be counted twice: (u, v, w) and (w, v, u). If edges are oriented, however, some wedges are
not counted at all. To avoid missing motifs, either the algorithm has to take all the possi-
ble orientations into account, or the orientation of the edges has to be more constrained.
Second, the number of possible motifs increases dramatically with k. Pinar et al. [2017]
break motifs into smaller ones to mitigate this increase, which requires to specialise the
listing algorithm even further.

For the related problem of triangle sampling, Turk and Turkoglu [2019] use the core
ordering because it reduces the number of low-hinge wedges. It is the equivalent of using
algorithms with cost C++ for triangle listing, and we could suggest to use C+− with Split
ordering instead. But their wedge sampling procedure relies on checking each pair of out-
neighbours: the corresponding cost is more precisely

∑
u∈V

(
d+u
2

)
= C++

2 −m. As hinted
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by the expected values of these costs for random graphs in Proposition 5, this new cost is
closer to C+− on random graphs. There is therefore little to gain by using the methods of
this chapter.

Finally, our contributionmay improve thework of Pashanasangi and Seshadhri [2021]
on triangle counting in temporal graph. They use degeneracy ordering to list the static
triangles, after which they include the temporal information of edges to count the occur-
rences of the corresponding dynamic triangles within a predetermined timewindow. The
dynamic part is independent of the choice of ordering and thus cannot be impacted by
our methods. The static enumeration, on the other hand, could be accelerated by using
Neigh, Check or Split ordering and a variation of algorithm A+–. Our efforts in this direc-
tion show that the time spent for the static enumeration is negligible compared to the time
for dynamic counting, which means that the gain would be positive, but insignificant.

In summary, our work shows a situation where studying the precise cost of an algo-
rithm instead of its asymptotic complexity allows us to design specificmethods to acceler-
ate its execution. A variety of algorithmsmay benefit from this approach even though the
result does not extend automatically to other mining problems. In the case of triangle list-
ing, the node ordering operates the link between the mathematical cost and the running
time, which leads to a significant speedup when using tailored orderings.
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Orderings for quality certification

Certifying the quality of vertex cover heuristics
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Summary

While there is a demand for scalable algorithms with the ever-increasing access to
large datasets, some algorithmic problems are hard to solve on large real-world instances.
Part of them, such as the vertex cover problem, have a k-approximation algorithm: the
result is guaranteed to be within a factor k of the optimum one. But even then, real-world
applications obtain better results with fast algorithms that have no theoretical guarantees,
called heuristics. There is however no indication on how far these heuristic results are
from optimum.

To address this issue, we propose a method to certify the quality of a heuristic on a
given instance. The quality certification consists in comparing the experimental result to a
bound of the optimum value, obtained through a different heuristic. We show two ways
of obtaining bounds for the vertex cover problem: one with a bound that is specific to
that problem, and one using a k-approximation algorithm, that may generalise to other
problems.

We test our approach on 114 real-world networks with up to three billion edges. The
experiments show that the certified quality is within 1.11 for all tested instances and 1.01
for 78 of them. It means that there is a proof that the vertex covers found with heuristics
are at most 1.11 times larger than the minimum one. In conclusion, our method provides
valuable quality certificates for existing heuristics on specific instances, without loosing
on scalability. As it generalises to algorithmic problems with a k-approximation, it opens
a door for further research and for deployment in real-world applications.

Contributions

∗ Propose a quality certification framework using heuristics and lower-bounds.

∗ Adapt it to the vertex problem using existing heuristics with two types of lower-
bounds.

∗ Present scalable greedy algorithms to address both aspects of the certification.

∗ Give empirical evidence that the certified quality is good on real-world datasets.

∗ Release an efficient open-source implementation of all considered methods.
https://github.com/lecfab/certifVC

Publications & talks

∗ Vertex cover quality certification on real-world networks
Lécuyer, Tabourier, and Magnien [2023b], submitted ESA.

∗ Presented at JGA’22, FRCCS’23.

∗ Seminar in Milan.

https://github.com/lecfab/certifVC
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6.1 Introduction

The curse of applied algorithmics is that many of the most crucial problems are NP-
hard, which generallymeans that exact algorithms cannot scale tomassive datasets. Some
exceptions exist, like the problem of enumerating maximal cliques for which Eppstein
et al. [2013] show an exact algorithm that handles real-world networks with million of
nodes despite its exponential complexity. Yet, in general, there is a split between exact
methods that push the scalability further and further, and quickmethods called heuristics
that get closer and closer to optimum results. The latter is particularly efficient on real-
world instances such as social networks, web graphs or biological networks, which rarely
resemble worst-case scenarios and allow heuristics to give excellent results. However,
while heuristic results can be compared to one another, it is not possible to measure how
far they are from optimal.

Thiswork introduces amethod to certify the quality of a result on a specific instance. It
combines a heuristic for the initial problem with another heuristic that gives an instance-
specific bound of the optimal solution. Together, the approximate result and the bound
allow us to compute a practical approximation ratio for a given instance. We call this
approach a quality certification. We showcase it on the the minimum vertex cover prob-
lem, a famous NP-complete graph problem that has applications in network robustness
[Sáenz-de Cabezón and Wynn, 2014], wireless communication [Yigit et al., 2021], virus
transmission [Sander et al., 2008] and image rendering [Boros and Gurvich, 2007].

When addressing a hard problem such as vertex cover, one faces a trade-off between
speed and guarantee of quality. On the one hand, fast heuristics such as the ones of Cai
et al. [2017] obtain results that are close to the optimum solution, as confirmed by Gomes
et al. [2006] when the optimum is known. Yet, in the more interesting case when the
optimum is unknown, it is not possible to measure how accurate the heuristic result is.
On the other hand, exponential algorithms for exact solutions can be extremely fast on
real-world networks: the 2019 PACE challenge [Dzulfikar et al., 2019] fostered efforts to-
wards quick and exact algorithms for vertex cover, and the laureate implementation by
Hespe et al. [2020] solves some graphs of millions of nodes in a few seconds. Still, our
experiments show that it fails to solve the problem in reasonable time for larger or more
complex graphs.

A quality certification helps with this trade-off: it takes a dataset and gives both an
approximate result and a certificate of its quality, defined as the ratio between the heuristic
result and a bound on the optimum value. For example, the shortest path between two
cities is lower-bounded by the distance as the crow flies; the certified quality of a path is
then given by the ratio between its length and the lower-bound. Such bounds are hard to
obtain in general. The key insight of this chapter is that multiple problems of interest can
be bounded empirically, using heuristics to obtain a high lower-bound – or a low upper-
bound – on a specific instance. We propose two practical bounds for the minimum vertex
cover and we show that they enable us to give precise quality certificates.

The rest of the paper is organised as follows. Section 6.2 introduces the definitions
and notations used in the study. Section 6.3 reviews related works on exact and approxi-
mate solutions for the vertex cover problem, as well as on notions related to certification.
Section 6.4 describes the proposed quality certification approach and its specifics in the
case of the vertex cover problem. Finally, Section 6.5 presents experimental results that
demonstrate the relevance and scalability of the method on more than a hundred real-
world networks.
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6.2 Background and notations

We consider an undirected unweighted simple graphG = (V,E)with n = |V | vertices
and m = |E| edges. The set of neighbours of a vertex u is denoted Nu = {v | {u, v} ∈ E},
and its degree is du = |Nu|. The edges incident to a subset W ⊆ V are all the edges
with at least one extremity in W . A solution is optimal when it cannot be modified into
a better solution by adding or removing an element, and optimum if it is as good as any
other solution.

We now present the definition of the vertex cover problem, at the core of this work.

Definition 9 (Vertex cover, minimal, minimum) A vertex cover is a set of nodes C that is
incident to every edge of the graph: ∀{u, v} ∈ E : u ∈ C or v ∈ C. To simplify, it can be referred
to as a cover. A vertex coverC isminimal if removing any node uncovers an edge: ∀v ∈ C, C\{v}
is not a cover. It is minimum if it is as small as any other vertex cover.

Knowing if there exists a vertex cover of a given size is NP-complete, thus finding a
minimum vertex cover is NP-hard, as well as the complementary problem of finding a
maximum independent set. Both problems figure in the 21 NP-complete problems de-
scribed in 1972 by Karp [1972] 1. They are complementary to each other, since the nodes
that are not in a vertex cover form an independent set. The minimum vertex cover has a
2-approximation algorithm based on a maximal matching:

Definition 10 (Matching, maximal, maximum, minimum maximal) A matching M is a
set of independent edges: ∀e, f ∈ M, e ∩ f = ∅. A matching M is maximal when all the edges
of the graph are incident to its nodes: ∀e ∈ E, ∃f ∈ M, e ∩ f 6= ∅. A maximum matching
is a maximal matching that has the largest possible size. A minimum maximal matching is a
maximal matching that is as small as any other matching.

Definition 11 (Cover of a matching) The nodes of any maximal matching M form a vertex
cover noted CM and called the cover of the matching:

CM =
⋃

{u,v}∈M

{u} ∪ {v} ⊆ V.

Property 11 (Cover approximation) For any maximal matchingM , the vertex coverCM is at
most twice as large as any cover. For a minimum cover C∗ in particular, 1

2 |CM | ≤ |C∗| ≤ |CM |.

Proof: The edges ofM are independent. For each of them, CM contains 2 nodes, but C∗

must contain at least 1 node in order to cover this edge.
�

Let us also define the concept of clique cover, that we later use to obtain lower-bounds
for the minimum vertex cover:

Definition 12 (Clique cover, minimal, minimum) A clique cover of size p is a partition of
the nodes into cliques P = K1, . . . ,Kx: K1 ∪ · · · ∪ Kx = V , if i 6= j then Ki ∩ Kj = ∅, and
∀u, v ∈ Ki, {u, v} ∈ E. The clique cover P is minimal if no pair of its elements form a larger
clique together: ∀K,K ′ ∈ K, ∃u ∈ K, v ∈ K ′, (u, v) /∈ E. It is minimum if it is as small as any
clique cover.

1The list contains Node Cover (another name for Vertex Cover), and Set Packing which is equivalent to
Independent Set and shares its approximation properties.
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Algorithm 6 – Edge-greedy 2-approximation for vertex cover
Input: priority function η : E → Z
1: start with empty cover: CM ← ∅
2: while there are uncovered edges do
3: take uncovered edge {u, v}with highest priority η({u, v})
4: add u and v to cover: CM ← CM ∪ {u} ∪ {v}
5: return CM

6.3 Related Work

6.3.1 Solutions, approximations and heuristics for vertex cover

Hardness of the vertex cover problem

On top of the hardness results for vertex cover and independent set, let us see some
other approximability results. For vertex cover, the approximation ratio due to maximal
matchings can be lowered to 2− o(1)with the more sophisticated methods of Karakostas
[2005], but it is thought that no lower constant ratio can be achieved [Khot and Regev,
2008, Bazzi et al., 2018] and proven impossible to fall under 1.36 unless P=NP [Dinur and
Safra, 2005]. As for the independent set problem, it is hard to approximate within any
constant factor on general graphs; on line graphs, it is equivalent to maximum matching
and therefore has a polynomial time algorithm.

Tighter approximation ratios exist for graphs that have typical properties of real-world
networks, such as bounded degrees [Halldórsson and Radhakrishnan, 1997, Avis and
Imamura, 2007], high clustering [Bläsius et al., 2020], or a power-law degree distribution
[Gast and Hauptmann, 2014]. Reduction and kernelisation rules, surveyed by Fellows
et al. [2018], diminish the instance size and can lead to better approximation guarantees
[Asgeirsson and Stein, 2007] or faster executions [Hespe et al., 2020] on specific instances.

The two problems have been generalised to weighted graphs [Cai et al., 2018, Xiao
et al., 2021], dynamic networks [Akrida, 2020, Assadi et al., 2018] or partial coverage
[Hochbaum, 1998], and analysed in the quadratic programming [Pandey and Punnen,
2018] and massively parallel settings [Ghaffari et al., 2018].

2-approximation by matchings

To obtain a small vertex cover, it is possible to use matchings. Indeed, we have seen
in Section 6.2 that the cover of a matching provides a 2-approximation for vertex cover,
which is the best known constant-factor approximation on general instances. It is NP-hard
to find a maximal matching of minimum size, but a maximum matching can be found in
polynomial time, for instance with the blossom algorithm of Edmonds [1965].

Algorithm 6 builds a vertex cover by repeatedly adding both extremities of an uncov-
ered edge to the cover until all edges are covered. In this algorithm, we use a function η
that yields an ordering of the edges of the graph, and call it a priority function. We will
choose priority functions that makes the complexity of this heuristic linear. As all edges
are covered at the end of the execution, the algorithm creates the cover of a matching and
thus provides a 2-approximation of theminimumvertex cover. The left andmiddle exam-
ples of Figure 6.1 illustrate two such maximal matchings obtained with different priority
functions on the same toy graph.
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Algorithm 7 – Node-greedy heuristic for vertex cover
Input: priority function ν : V → Z
1: start with empty cover: C ← ∅
2: while there are uncovered edges do
3: take node u with highest priority ν(u)
4: add u to cover: C ← C ∪ {u}
5: return C

Heuristics without constant-factor approximation guarantee

While a matching can be used to find a vertex cover of small size, other heuristics
without constant-factor approximation guarantees sometimes result in smaller covers in
practice. A lot of attention has been given to the design of such heuristics, among which
FastVC the one of Cai et al. [2017] is considered as the state of the art. A well-known
example, that we call node-greedy, is described in Algorithm 7. It has a similar structure
to Algorithm 6, but only one node is added at each iteration instead of two. Therefore,
the associated priority function ν is defined over the nodes. A standard high-degree first
priority translates as νhigh(u) = xu, with xu the number of neighbours of u that are not
in the cover at a given step. In that case, the heuristic provides an approximation ratio in
O(log(∆)), where ∆ is the maximum degree of a node in the graph [Avis and Imamura,
2007]. We illustrate this strategy on the right example of Figure 6.1.

In terms of complexity, themain loop of Algorithm 7 achieves at most n iterations, and
updating the priority function ν depends on its definition. νhigh priority function needs
O(m)updates, and each of those can bedone inΘ(1)with a bucket implementation, which
leads to an overall complexity in O(n+m).

To ensure that the cover is minimal, a post-processing removes the nodes that have all
their neighbours in the cover, without affecting the asymptotic complexity. Such greedy
algorithms are known to be scalable and to give small covers [Gomes et al., 2006, Angel
et al., 2012], and they become highly accurate when extra reduction rules and local search
heuristics are added [Cai et al., 2017].

6.3.2 Quality certification

Suppose that a cover has been obtained using a given heuristic, then only theoretical
guarantees, if they exist, give indication about how far this cover is from optimality. In
Section 6.4, we will detail our approach that consists in combining a heuristic cover with
lower bounds of the minimum value. Together, the two values lead to an experimental
approximation factor which is consistently much lower than the theoretical guarantees.

Similar approaches have been successfully applied on a variety of algorithmic prob-
lems. A method has been proposed by Dolev and Sadetsky [2009] for algorithms that
have a k-approximation or an approximation scheme, and supported with some experi-
ments for the problems of knapsack, max 3-sat, and maximum bounded 3-dimensional
matching. They define a heuristic certificate as the ratio between the value of a heuris-
tic result and a lower-bound on the minimum value for a given instance. However, the
paper presents limited evidence of the efficiency of the method. Our work extends the
method to address the vertex cover problem and highlights its relevance with thorough
experiments.

The problem of finding the diameter of a graph, defined as the maximum distance
between two nodes, can be solved exactly in polynomial time by computing the shortest
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Figure 6.1: Greedy heuristics for vertex cover. On a toy example, we show the vertex cov-
ers obtained from different greedy heuristics. In all cases, the numbers indicate the step at
which a node has been selected by the corresponding algorithm. On the left and middle
cases, the red double lines indicate the matching that produced the cover. Left: edge-
greedy (Algorithm 6) with low-degree first ηlow leads to a maximum matching. Middle:
edge-greedy with high-degree first ηhigh gives a matching with 4 nodes. Right: node-
greedy (Algorithm 7) with high-degree first νhigh gives a cover of 3 nodes; it is optimum
because the left cover has 6 nodes and is a 2-approximation.

path between any pair of nodes. Yet, the running time of such a procedure is deterrent in
practice on large networks. Several upper- and lower-bounds have been devised to obtain
a fast guarantee on the diameter Magnien et al. [2009]. On the one hand, the eccentricity
of any node, defined as the longest distance found by running a breadth-first search from
this node, gives a lower-bound on the diameter; various heuristics exist as to how to select
a node of high eccentricity and obtain a large lower-bound empirically. On the other hand,
the diameter of the graph is lower than the diameter of a subgraph obtained by removing
edges, for instance in a spanning tree. These bounds have been adapted for exact algo-
rithms to only explore the paths that can make them tighter, leading to algorithms that
scale linearly in practice [Takes and Kosters, 2011, Crescenzi et al., 2013]. A definition of
certificate has been proposed for this problem by Dragan et al. [2018]: to prove that the
diameter of a graph is a value D, a certificate is a pair made of a node of eccentricity D
used as a lower-bound, and a set of nodes that acts as an upper-bound by proving that all
other nodes have eccentricity at most D.

Other works mention bounds to the optimisation problems that they address. For
instance, Rossi and Ahmed [2014] test various heuristics for the graph colouring problem
empirically, and use a greedy algorithm to find a large clique, which acts as a lower-bound
on the minimum number of colours. For the densest subgraph problem, the quadratic
optimisation algorithm of Danisch et al. [2017] converges towards an exact solution and
indicates an upper-bound on the maximum density.

6.4 Quality certification of the vertex cover problem

This section develops the general method of quality certification and shows how to
apply it to the minimum vertex cover problem.
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6.4.1 Principle and formulation for the vertex cover problem

The key insight of this work is that coupling the heuristic for a hard problem with
another heuristic that gives a complementary bound on the optimum value can result in
strong guarantees on a specific instance. The quality certification is then defined as the
ratio between an approximate value and the bound on the optimum value. Let us now
formulate this principle more formally for the vertex cover problem.

Consider a graph whose unknown minimum value for vertex cover is c∗. As we have
seen, heuristics have been designed to obtain an approximate value s ≥ c∗, with the goal
of being as close to c∗ as possible; we call such a heuristic a solution-heuristic. Now suppose
that another algorithm, thatwe call lower-bound-heuristic, produces a positive lower-bound
b ≤ c∗ for this problem. It means that the unknown value c∗ satisfies c∗ ∈ [b, s]. This
implies that c∗ ≤ s ≤ s

bc
∗. So, by definition, the value s is a s

b -approximation of the
optimal value c∗ for this instance. A natural goal is then to reduce the interval [b, s] by
finding a solution-heuristic with a low value s and a lower-bound-heuristic with a high
value b.

6.4.2 Certification of the vertex cover problem with a 2-approximation

In this section, we use the counter-intuitive idea that an appropriate lower-bound-
heuristic can be found by designing a poor approximation: if a solution-heuristic is proven
to be a k-approximation, its result s satisfies s ≤ k · c∗, which also provides a lower bound
b = s

k . While solution-heuristics are usually designed to output low values s, we propose
to adapt them and favour high values, which translate into tighter lower-bounds.

The poor approximation strategy can be used to turn the 2-approximation algorithm
for vertex cover into both a solution-heuristic and a lower-bound-heuristic. As discussed
in Section 6.3, a maximal matching provides a 2-approximation CM of the vertex cover
problem, which means that Algorithm 6 can be used as a lower-bound-heuristic: its out-
put CM always satisfies 1

2 |CM | ≤ |C∗|. Following this idea, the poor approximation strat-
egy consists in makingCM as large as possible: this increases the lower-bound, and hence
certifies a better quality ratio. Note that this strategy can be related to a primal-dual op-
timisation, as maximum matching is the dual linear program of vertex cover. We define
the notion of vertex cover certificate by matching:

Definition 13 (Vertex cover certificate by matching) Given a graph, a vertex cover certifi-
cate by matching is a couple (C+

M , C−), where C+
M is the cover of a matching vertex containing 2b

nodes, and C− is a vertex cover of s nodes. C− is certified to be within a factor s
b of the minimum

cover size and the ratio s
b is called the certified quality by matching.

Priority functions for lower-bound-heuristics

We should look for large matchings associated to large covers in order to obtain high
lower-bounds. Selecting nodes with low degree is likely to result in a large cover C+

M , as
more edges can intuitively be packed if their nodes have small degree. Thus, we define the
low-degree first priority function ηlow({u, v}) = −min(xu, xv), where xu is the number of
neighbours of node u that are not in the cover at the current step.

Ties are brokenwith the x value of the other node, namely−max(xu, xv). We illustrate
this strategy on the left example of Figure 6.1.

Instead of a maximal matching obtained with a greedy heuristic, it is also possible to
look for an exact maximum matching. The maximum matching problem can be solved
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with the blossom algorithm of Edmonds [1965] in polynomial time O(n2m). Other algo-
rithms have a lower complexity in O(

√
nm) [Micali and Vazirani, 1980, Blum, 1990] and

a linear-time approximation scheme exists [Duan and Pettie, 2014].

Defining solution-heuristics

It is possible to use Algorithm 6 as a solution-heuristic aiming for a small cover. The
intuition is that a small cover C−

M may be obtained by selecting nodes with high degree,
because they will cover more edges. With xu defined similarly as above, the high-degree
first priority function is ηhigh({u, v}) = max(xu, xv). This is the method illustrated in the
middle example of Figure 6.1. However, we observe in practice that this method is not as
efficient as other heuristics.

Indeed, any heuristic producing a small cover can be used as a solution-heuristic even
if it is not a 2-approximation, and in practice Algorithm 6 outputs larger covers than the
node-greedy method of Algorithm 7 with νhigh priority function. These heuristics are
linear. We will see that the FastVC heuristic [Cai et al., 2018], as expected, performs best,
at the cost of a higher computation time.

6.4.3 Improving the certification for vertex cover

In some cases, we can expect that the certified quality by matching will not improve
on the theoretical guarantee. Indeed, consider the case of a clique of size k: the matching-
based lower-bound-heuristic provides amaximummatching containing all k nodes of the
graph, thus the lower-bound is k

2 (we consider that k is even for simplicity). Although
the minimum vertex cover has k − 1 nodes, the certified quality by matchings is 2(k−1)

k ,
which tends to 2 for high values of k.

Based on this observation, we propose another bounding strategy that overcomes this
issue. In any clique of k nodes, a vertex cover requires at least k − 1 nodes. Thus, if we
partition the nodes of the graph into p cliques of sizes k1, . . . , kp, the vertex cover requires
at least

∑p
i=1 ki − 1 = n − p nodes. So the lower p is, the higher the lower-bound, which

suggests to look for a partition of the graph into a small number of cliques. Note that a
matching can be interpreted as a special case of clique partition: a matching with b edges
is equivalent to partitioning the graph into b cliques of size 2, and n − 2b cliques of size
1. In this case, we have p = n − b cliques, hence a lower bound b = n − p as established
above.

We are thus driven to look for a minimum clique cover of the graph. Knowing if
there exists a clique cover of a given size is NP-complete [Karp, 1972], finding aminimum
clique cover is thus NP-hard. Note also that it is NP-hard to approximate the size of a
minimum clique cover by a constant factor. Consequently, we resort to heuristics and
propose Algorithm 8 as a scalable, greedy one. In short, at each step of the construction
of one specific clique, we select a node with the highest priority according to the function
ν among candidate nodes. At the first step, any node that is not part of the cover is a
candidate, then the candidates must be part of the neighbourhood of all the nodes that
have been selected in this particular clique. When no more candidates are available, the
clique is maximal: it cannot be extended, so it is added to the partition.

Again, the choice of the priority function ν is critical. We follow a low-degree first
strategy, denoted νlow and defined by νlow(u) = −xu, with xu the number of neighbours
of u that are not in the partition at a given step. The underlying idea is that low-degree
nodes are more likely to be grouped together, which reduces the total number of cliques.
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Algorithm 8 – Node-greedy heuristic for clique cover
Input: priority function ν : V → Z
1: P ← ∅ . initialise partition
2: R← V . initialise remaining nodes
3: while R 6= ∅ do
4: K ← ∅ ; C ← R . initialise clique and candidate nodes
5: while C 6= ∅ do
6: select u ∈ C with highest priority ν(u)
7: K ← K ∪ {u} ; C ← C ∩Nu . update clique and candidate nodes
8: P ← P ∪ {K} ; R← R \K . update partition and remaining nodes
9: return P

The complexity of Algorithm 8 is O(n +m). Indeed, there are at most n iterations of
the main loop. Every time a node u is added to the cover K, each of its edges {u, v} with
a remaining node v leads to two updates: the priority ν(v) is updated in constant time,
and the belonging of v to candidates C is also checked in Θ(1).

We can now improve the quality certification using the lower bound given by the
smallest clique partition P− obtained with Algorithm 8. This leads to the following in-
equality:

n− |P−| ≤ |C∗| ≤ |C−
H |,

where C−
H is the smallest cover obtained among all solution-heuristics. As any certificate

by matching can be rephrased as being obtained from a partition, the following definition
is a generalisation of Definition 13:

Definition 14 (Vertex cover certificate) Given a graph, a vertex cover certificate is a couple
(P−, C−), where P− is a partition of the nodes into p cliques, and C− is a vertex cover of s nodes.
C− is certified to be within a factor s

n−p of the minimum cover size and the ratio s
n−p is called the

certified quality.

6.5 Experiments

To evaluate the effectiveness of the quality certification method, we apply it to a col-
lection of real-world networks. The measurements in which we are interested for each
network are the certified quality and the execution time needed to obtain them.

6.5.1 Experimental setup

Software and hardware

Regarding state-of-the-art programs, we use the implementation of Hespe et al. [2020]
that won the PACE 2019 challenge for exact solutions to the minimum vertex cover prob-
lem and call it ExactVC. For an approximate solution, we use FastVC proposed by Cai
et al. [2017]. For the certification method, we run our implementation of the following
greedy heuristics, that we release as an open-source c++ repository 2.

We call GreedyVC our implementation of node-greedy (Algorithm 7) with highest-
degree first priority function, thatwe use to obtain a small vertex cover. For lower-bounds,

2https://github.com/lecfab/certifVC

https://github.com/lecfab/certifVC
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we call MatchLB our implementation of edge-greedy (Algorithm 6) with lowest-degree
first priority function, and CliqueLB our implementation of the node-greedy heuristic
for clique cover (Algorithm 8), both with low-degree first priority functions. All these
programs are run on a sgi ice-xa intel xeon e5-2670v3 @2.7 GHz running linux suse 12.3
with 128GB of memory.
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Figure 6.2: Duration of all considered algorithms with respect to the graph size. Net-
works are sorted by increasing size, defined as the sum of their number of nodes and
their number of edges (n+m). Executions that take more than six hours or that run out
of memory are represented in the top grey zone, while executions that take less than ten
milliseconds are considered instantaneous and represented in the bottom grey zone.

Datasets and exhaustive results

To measure the performance of the quality certification method, we apply it on so-
cial networks, such as blogs, subgraphs of online social platforms, web graphs such as
wikipedia pages, webpages of a linguistic region or top-level domains. More precisely,
we use the 114 networks reported in Table 6.1. For comparison purposes, this includes all
the undirected graphs of the Network Repository of Rossi and Ahmed [2015] analysed
by [Cai et al., 2017], which also includes other types of real-world networks (biological,
citation, infrastructure). To test the limits of the different algorithms, we add 10 networks
of the massive category of Rossi and Ahmed [2015], and two networks of the Webgraph
project of Boldi and Vigna [2004]: their names in the table start with a +.

Table 6.1 gives the name of the network and its number of nodes and edges. The next
columns display the results of the lower-bound-heuristics CliqueLB and MatchLB, the
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Table 6.1: Results of the experiments on various categories of real-world networks,
sorted by number of edges within each category. The table spans across two pages.

Lower-bounds Opt Approximate values Certified
Network Nodes n Edges m CliqueLB MatchLB ExactVC FastVC GreedyVC quality

bio-diseasome 516 1,188 285 228 285 285 286 1
bio-yeast 1,458 1,948 456 448 456 456 460 1

bio-celegans 453 2,025 249 224 249 249 256 1
bio-dmela 7,393 25,569 2,628 2,627 2,630 2,632 2,666 1.002

ca-netscience 379 914 214 176 214 214 214 1
ca-CSphd 1,882 1,740 550 550 550 550 556 1

ca-Erdos992 5,094 7,515 461 461 461 461 461 1
ca-GrQc 4,158 13,422 2,207 1,858 2,208 2,208 2,219 1.0005

ca-CondMat 21,363 91,286 12,477 10,121 12,480 12,480 12,510 1.0002
ca-HepPh 11,204 117,619 6,553 5,252 6,555 6,555 6,568 1.0003
ca-AstroPh 17,903 196,972 11,472 8,750 11,483 11,483 11,509 1.001
ca-dblp-2010 226,413 716,460 121,961 99,262 121,969 121,969 122,180 1.0001
ca-citeseer 227,320 814,134 129,188 101,646 129,193 129,193 129,344 1.00004

ca-MathSciNet 332,689 820,644 139,913 128,751 139,951 139,951 140,605 1.0003
ca-dblp-2012 317,080 1,049,866 164,928 137,185 164,949 164,949 165,229 1.0001

ca-coauthors-dblp 540,486 15,245,729 472,090 269,867 472,179 472,179 472,362 1.0002
ca-hollywood-2009 1,069,126 56,306,653 863,973 533,909 864,052 864,052 864,219 1.0001

ia-enron-only 143 623 83 70 86 86 87 1.036
ia-infect-hyper 113 2,196 85 56 90 90 93 1.059
ia-infect-dublin 410 2,765 288 205 293 294 296 1.021
ia-email-univ 1,133 5,451 584 547 594 594 603 1.017
ia-fb-messages 1,266 6,451 574 572 578 578 594 1.007

ia-reality 6,809 7,680 81 81 81 81 81 1
ia-email-EU 32,430 54,397 820 819 820 820 820 1

ia-enron-large 33,696 180,811 12,771 10,777 12,781 12,781 12,806 1.001
ia-wiki-Talk 92,117 360,767 17,288 17,263 17,288 17,288 17,417 1
inf-power 4,942 6,548 2,185 2,179 2,186 2,187 2,255 1.001

inf-roadNet-PA 1,087,562 1,541,514 535,759 523,223 † 555,290 584,931 1.036
inf-roadNet-CA 1,957,027 2,760,388 965,008 941,868 † 1,001,279 1,054,981 1.038
inf-road-usa 23,947,347 28,854,312 11,261,882 11,142,934 † 11,529,731 12,092,364 1.024
rec-amazon 91,813 125,704 47,414 42,838 47,605 47,607 49,005 1.004
rt-retweet 96 117 32 32 32 32 33 1

rt-twitter-copen 761 1,029 237 233 237 237 239 1
rt-retweet-crawl 1,112,702 2,278,852 81,040 81,037 81,040 81,048 81,345 1.0001

sc-nasasrb 54,870 1,311,227 50,772 27,434 † 51,258 51,657 1.010
sc-shipsec1 140,385 1,707,759 112,486 70,189 † 117,341 119,590 1.043
sc-shipsec5 179,104 2,200,076 142,864 89,520 † 147,170 148,882 1.030
sc-pkustk11 87,804 2,565,054 83,886 43,902 83,911 83,913 84,155 1.0003
sc-pkustk13 94,893 3,260,967 88,540 47,445 † 89,230 89,690 1.008
sc-pwtk 217,891 5,653,221 207,279 108,945 † 207,725 208,478 1.002

sc-msdoor 404,785 9,378,650 381,408 202,379 381,558 381,559 382,142 1.0004
sc-ldoor 909,537 20,770,807 856,631 454,742 856,754 856,758 858,166 1.0001

web-polblogs 643 2,280 243 240 244 244 246 1.004
web-google 1,299 2,773 498 405 498 498 498 1
web-edu 3,031 6,474 1,451 1,410 1,451 1,451 1,563 1

web-BerkStan 12,305 19,500 5,248 4,709 5,384 5,389 5,483 1.027
web-webbase-2001 16,062 25,593 2,645 2,325 2,651 2,652 2,684 1.003

web-spam 4,767 37,375 2,275 2,126 2,297 2,298 2,331 1.010
web-indochina-2004 11,358 47,606 7,300 5,121 7,300 7,300 7,395 1

web-sk-2005 121,422 334,419 57,503 44,022 58,173 58,176 58,510 1.012
web-arabic-2005 163,598 1,747,269 114,383 70,119 114,420 114,430 115,316 1.0004

web-wikipedia2009 1,864,433 4,507,315 645,457 626,961 † 648,343 658,411 1.004
web-it-2004 509,338 7,178,413 414,492 227,286 414,507 414,676 415,137 1.0004
web-uk-2005 129,632 11,744,049 127,774 64,590 127,774 127,774 127,774 1
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Lower-bounds Opt Approximate values Certified
Network Nodes n Edges m CliqueLB MatchLB ExactVC FastVC GreedyVC quality
soc-karate 34 78 14 13 14 14 14 1

soc-dolphins 62 159 34 30 34 34 35 1
soc-wiki-Vote 889 2,914 404 401 406 406 413 1.005
soc-epinions 26,588 100,120 9,752 9,545 9,757 9,757 9,847 1.001
soc-brightkite 56,739 212,945 21,174 20,765 21,190 21,190 21,448 1.001
soc-douban 154,908 327,162 8,685 8,685 8,685 8,685 8,695 1
soc-slashdot 70,068 358,647 22,368 22,160 22,373 22,373 22,604 1.0002

soc-twitter-follows 404,719 713,319 2,323 2,323 2,323 2,323 2,323 1
soc-gowalla 196,591 950,327 83,988 81,089 84,222 84,224 85,252 1.003
soc-delicious 536,108 1,365,961 85,290 85,278 85,298 85,999 87,634 1.008
soc-youtube 495,957 1,936,748 146,306 144,725 146,376 146,376 148,004 1.0005

soc-BlogCatalog 88,784 2,093,195 20,748 20,647 20,752 20,752 20,951 1.0002
soc-LiveMocha 104,103 2,193,083 43,396 43,294 43,427 43,429 44,060 1.001
soc-buzznet 101,163 2,763,066 30,477 30,138 30,613 30,626 30,993 1.005

soc-youtube-snap 1,134,890 2,987,624 276,916 274,303 276,945 276,945 278,998 1.0001
soc-flickr 513,969 3,190,452 153,048 148,997 153,271 153,272 154,384 1.001

soc-FourSquare 639,014 3,214,986 90,099 89,800 90,108 90,110 90,570 1.0001
soc-lastfm 1,191,805 4,519,330 78,688 78,668 78,688 78,688 78,962 1
soc-digg 770,799 5,907,132 103,230 102,898 103,234 103,246 104,337 1.0002

soc-flixster 2,523,386 7,918,801 96,317 96,298 96,317 96,317 96,439 1
soc-pokec 1,632,803 22,301,964 821,754 780,762 † 843,444 856,756 1.026

soc-livejournal 4,033,137 27,933,062 1,858,242 1,775,169 1,868,903 1,869,052 1,890,878 1.006
soc-orkut 2,997,166 106,349,209 1,953,415 1,485,585 † 2,170,950 2,208,766 1.111

socfb-CMU 6,621 249,959 4,735 3,301 † 4,987 5,049 1.053
socfb-MIT 6,402 251,230 4,436 3,187 † 4,658 4,723 1.050

socfb-UCSB37 14,917 482,215 10,576 7,449 † 11,266 11,442 1.065
socfb-Duke14 9,885 506,437 7,195 4,931 † 7,685 7,794 1.068
socfb-Stanford3 11,586 568,309 8,087 5,764 † 8,518 8,602 1.053
socfb-UConn 17,206 604,867 12,305 8,592 † 13,235 13,436 1.076
socfb-UCLA 20,453 747,604 14,299 10,208 † 15,230 15,460 1.065
socfb-OR 63,392 816,886 35,593 30,930 † 36,553 37,131 1.027

socfb-Wisconsin87 23,831 835,946 17,175 11,904 † 18,396 18,665 1.071
socfb-Berkeley13 22,900 852,419 16,146 11,426 † 17,221 17,488 1.067
socfb-UIllinois 30,795 1,264,421 22,505 15,379 † 24,103 24,475 1.071
socfb-Indiana 29,732 1,305,757 21,599 14,852 † 23,323 23,664 1.080
socfb-Penn94 41,536 1,362,220 29,137 20,743 † 31,176 31,669 1.070

socfb-UF 35,111 1,465,654 25,483 17,546 † 27,319 27,745 1.072
socfb-Texas84 36,364 1,590,651 26,011 18,169 † 28,186 28,585 1.084
socfb-B-anon 2,937,612 20,959,854 303,048 302,989 303,048 303,049 303,574 1.000003
socfb-A-anon 3,097,165 23,667,394 375,230 375,086 375,230 375,233 376,158 1.00001
socfb-uci-uni 58,790,782 92,208,195 866,766 866,765 866,766 866,768 867,207 1.000002
tech-routers-rf 2,113 6,632 795 782 795 795 806 1

tech-as-caida2007 26,475 53,381 3,683 3,679 3,683 3,683 3,694 1
tech-WHOIS 7,476 56,943 2,281 2,193 2,284 2,284 2,298 1.001

tech-internet-as 40,164 85,123 5,699 5,685 5,700 5,700 5,716 1.0002
tech-p2p-gnutella 62,561 147,878 15,682 15,682 15,682 15,682 15,727 1
tech-RL-caida 190,914 607,610 74,320 73,030 74,593 74,936 75,596 1.008
tech-as-skitter 1,694,616 11,094,209 523,872 511,379 525,022 527,186 529,663 1.006
+tech-p2p 5,792,297 147,829,887 301,717 301,716 301,717 301,718 304,450 1.000003

+web-indochina-2004-all 7,414,758 150,984,819 2,687,877 2,202,789 † 2,720,219 2,757,123 1.012
+soc-sinaweibo 58,655,849 261,321,033 223,000 223,000 223,000 223,000 223,171 1
+web-uk-2002-all 18,483,186 261,787,258 6,533,448 5,621,934 † 6,627,415 6,684,896 1.014
+soc-twitter-2010 21,297,772 265,025,545 7,613,876 7,415,374 7,645,886 7,646,009 7,737,666 1.004
+web-uk-2005-all 39,454,463 783,027,125 15,624,892 12,692,243 † 15,854,309 15,952,280 1.015

+web-webbase-2001-all 115,554,441 854,809,761 37,941,623 33,519,632 † 38,558,811 38,896,967 1.016
+web-it-2004-all 41,290,648 1,027,474,947 15,555,070 13,091,060 † 15,815,492 15,988,487 1.017
+soc-friendster 65,608,366 1,806,067,135 28,938,176 28,075,409 † 29,304,576 29,614,049 1.013
+web-sk-2005-all 50,636,059 1,810,063,330 19,535,660 16,381,409 † 20,447,574 20,353,317 1.042

+webgraph-twitter-2010 41,652,230 1,202,513,046 12,828,884 12,449,801 † 12,906,788 13,065,672 1.006
+webgraph-uk-2007-05 105,153,952 3,301,876,564 38,243,390 32,147,185 † † 39,395,634 1.030
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exact size of a minimum vertex cover foundwith ExactVC, and the results of the solution-
heuristics FastVC andGreedyVC. The symbol †marks executions that did not finish in the
allocated 6 hours. The last column shows the certified quality (see Definition 14), which
is the ratio between the lowest result of solution-heuristics and the highest result of lower-
bound-heuristics; it is between 1 and 2, where 1 is a desired proof of optimality while 2 is
the worst-case theoretical guarantee.

6.5.2 Scalability

Figure 6.2 shows the runtime of the heuristics listed above aswell as the exact solution.
Note that we impose a 6 hours time limit for all experiments.

We report several observations. First, the running of GreedyVC, MatchLB and
CliqueLB is almost linear as expected, and these heuristics appear to be the fastest among
all studied methods.

Second, we observe that ExactVC cannot always find a solution within the allowed
time limit (6 hours). It does on 79 network instances, that we then call solved networks
(several of which have millions of nodes) but fails on 35 unsolved networks, where the op-
timum remains unknown. For solved networks, ExactVC runs almost as fast as GreedyVC
and seems to scale linearly. Third, the FastVC heuristic, which is the best solution heuris-
tic available, is able to find a solution within the allocated time for all networks except
one (where it runs out of memory). Notice that it is significantly slower than the other
algorithms, though it does manage to find an approximate solution in most cases where
ExactVC does not.

For the sake of completeness, we also ran experiments for the blossom algorithmusing
the implementation of the boost3 c++ library.

These experiments showed that the lower bounds obtained with blossom are only
slightly better than the ones obtainedwithMatchLB, and farworse than the ones obtained
with CliqueLB, which makes this heuristic irrelevant for the purpose of this work, thus
we do not report these results.

6.5.3 Practical certification of the minimum vertex cover

We present the results of the certification obtained by using MatchLB as a lower-
bound-heuristic, and the solution-heuristics which performs best in Figure 6.3. We ob-
serve that the certifications obtained are good for a significant number of networks, in
the sense that for approximately half of them, our approach is able to guarantee that the
obtained value is within a factor 1.1 of the optimal value. However, the certification re-
mains quite poor in some cases, and can even be as bad as the factor 2 which corresponds
to the worst-case theoretical guarantee. In those cases, using a large matching as a lower
bound does not bring additional insight on the quality of the results. As explained in Sec-
tion 6.4.3, this is due to the fact that this approach is inefficient when a network contains
many large cliques.

To verify this, we also indicate in Figure 6.3 the improvement of the bound obtained
when the clique cover heuristics is used for the lower bound instead. We can see that this
lower bound provides much better results than large matching. Also, when comparing
the results on the solved instances to the ones that are not, we can see that in general the
certifications obtained for networks which are not solved exactly tend to be of slightly
lower quality.

3https://boost.org/doc/libs/1_80_0/libs/graph/doc/maximum_matching.html

https://boost.org/doc/libs/1_80_0/libs/graph/doc/maximum_matching.html
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Figure 6.3: Certifed quality for vertex cover. We show the certified quality for solution-
heuristics GreedyVC and FastVC, as well as ExactVC when available, for solved (left
charts) and unsolved networks (right charts). The lower-bound-heuristic used for the
quality certification is either MatchLB (top charts) or CliqueLB (bottom charts). In each
column, networks are sorted according to their certified quality with MatchLB, which al-
lows to see the improvement provided by the CliqueLB lower-bound.

To have a better view of the quality certifications obtained using the best solution-
heuristic (which is either FastVC or GreedyVC) and the best lower-bound-heuristic
(which is always CliqueLB), we show them on another vertical scale in Figure 6.4 (left).
The certified quality is under 1.11 for all networks, and under 1.01 for 79 of them. Note
that even among unsolved networks, 15 of them have a certified quality under 1.03: while
the exact minimum is unknown, a solution-heuristic found a cover that is guaranteed to
be at most 3% larger than the minimum, thanks to a lower-bound found by CliqueLB.
Altogether these results indicate that the quality certification method is an efficient way
to prove that the results of solution-heuristics are very close to the optimum.

Still, we are interested in knowing where there is room for improvement. In Figure 6.4
(right), we represent for the solved networks the ratio between the upper-bound obtained
with the best solution-heuristic and the exact result, and the ratio between the lower-
bound obtained with the best lower-bound-heuristic and the exact result. We can see that
the ratio of the upper-bound to the exact result is strikingly close to 1 in nearly all cases.
This means that in a majority of cases, the quality of the certification method is limited
by the lower-bound-heuristic, which could be expected, as much more effort has been
made to create efficient solution-heuristic in the literature. So, we think that there is the
potential to enhance the certification by improving the lower-bound-heuristic.

In any case, CliqueLB is a fast and scalable method that can be used for quality certi-
fication with low extra computational cost.
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Figure 6.4: Left: Certified quality for vertex cover the using best performing solution- and
lower-bound-heuristics. Right: Certified quality for solved networks, shownwith the gap
due to solution-heuristics (ratio between the smallest solution-heuristic result and the
exact result) and the gap due to lower-bound-heuristics (ratio between the largest lower-
bound-heuristic result and the exact result).

6.6 Certifying related problems

While the focus of this work is on the quality certification of vertex cover, other prob-
lems can be certifiedwith the same results. Let us first consider theminimumclique cover.
As mentioned in Section 6.3, it is NP-hard to obtain an exact solution or even to approx-
imate it within a constant-factor. However, we have seen that the following inequality
stands:

n− p ≤ n− p∗ ≤ c∗ ≤ h

where n is the number of nodes, p is the size of a partition of the nodes into cliques and p∗

the minimum size (or the result of the minimum clique cover problem), h is the size of a
vertex cover found by a solution-heuristic and c∗ is theminimum size of a vertex cover. As
p and h can be obtained experimentally, we obtain a certification by rewriting the previous
inequality into n−h ≤ p∗ ≤ p. In other word, it gives a certified quality ratio for the clique
cover p:

p ≤ p

n− h
p∗

Another problem that benefits from this certification is the maximum independent set
problem. As the complement set of a vertex cover is an independent set, the solution s∗ for
the independent set problem satisfies s∗ = n− c∗. The above inequality can be rewritten
n− p ≤ n− p∗ ≤ n− s∗ ≤ n− s where s is the size of the largest independent set found
by heuristics. Thus, p ≥ s∗ ≥ s, which gives a certified quality ratio for the independent
set s:

s ≤ s

p
s∗

Note that this ratio is between 0 and 1 as independent set is a maximisation problem.
More generally, the quality certification can apply on all problems that have a constant-

factor approximation – like vertex cover – or that can be expressed as a transformation of
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problems that have one – like independent set, but also on problems that have theoret-
ical and empirical bounds. Experimental studies are necessary to assess whether these
bounds give valuable certificates on real-world instances.

6.7 Conclusion

This work proposes a practical method to certify the quality of approximate solutions
to optimisation problems. It consists in using jointly a heuristic to approach the optimum,
and another to provide a bound of the optimum. We illustrate on the NP-hard problem of
finding a minimum vertex cover, for which we propose an adequate choice of heuristics:
one is a state-of-the-art implementation that finds a small vertex cover, and the other is a
greedy algorithm for finding a small clique cover. The resulting certified quality is much
better than the best existing theoretical factor 2, even on networks with billions of edges
where obtaining an exact solution is costly or unfeasible.

As we suggested in Section 6.5.3, designing better lower-bound-heuristics would al-
low for further improvements of the vertex cover certification. Beyond vertex cover, we
believe that many other problems could benefit from the certification method and hope
that this work will incentivise efforts in this direction. A first direction could consist in
applying a quality certification on the heuristics of Chapter 5: Algorithm 4 provides a
lower-bound for the cost C++, which can serves to certify the quality of a heuristic such
as core ordering. Designing tighter bounds or more efficient heuristics, and addressing
the exact optimisation of the cost, may give better insights on these problems.
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Summary

This chapter is an addition to the thesis and does not involve node orderings. It is a
joint work with the Interaction Data Lab 1, whose researchers use network approaches on
large datasets to study collaboration in various contexts: the evolution of science through
publications, the development of open-source programs with thousands of contributors,
or the projects of citizen science. The aim of this collaboration was to apply the algorith-
mic tools studied in the rest of the thesis to concrete questions of data analysis. Network
science seemed like an ideal field to apply concepts of experimental graph algorithmics.
Integrating this team was a crucial experience of inter-disciplinary collaboration, and it
led to interesting discussions while confronting the views of people with different back-
grounds. In the end, we chose to set aside the graph description of our dataset in order
to work with embeddings, a more usual tool in the science of science domain.

We address the following question: considering knowledge as a vast space to explore,
howdo researchersmove throughout their career? To answer it, we use formalmethods to
systematically examine patterns of scientific knowledge mobility. First, we create a model
of the knowledge space: based on more than one million papers shared on the arXiv plat-
form, we define a high-dimensional space that indicates the scientific field of each paper,
and we project it into two dimensions using embedding techniques. Second, we analyse
the publication history of each individual researchers as a trajectory in the knowledge
space and find that their mobility patterns closely resemble physical mobility patterns:
mobility flows are well described by a gravity model, where researchers are more likely
to move towards areas of high density and less likely to travel longer distances. Finally,
we identify two types of researchers based on their individual mobility patterns: explor-
ers, who tend to explore wider portions of the space and develop new research areas, and
exploiters, who focus on the exploitation of one zone to develop expertise. Our findings
suggest that spatial mobility analysis is a valuable tool for understanding how knowledge
evolves over time, and how researchers navigate and contribute to this evolution.

Contributions

∗ Build a representation of the knowledge space using a low-dimensional embedding
of arXiv dataset.

∗ Exploit metrics derived from human mobility to describe research trajectories.

∗ Show that scientific mobility in the knowledge space follows a gravity model, a par-
allel with what is observed in spatial mobility.

∗ Categorise researchers between explorers and exploiters.

Publication

∗ Charting mobility patterns in the scientific knowledge landscape
Singh, Tupikina, Lécuyer, Starnini, and Santolini [2023], submitted EPJ DataScience.

1https://interactiondatalab.com

https://interactiondatalab.com
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7.1 Introduction

Quantifying the evolution of knowledge is crucial to understanding the past and
predicting future innovations [Belikov et al., 2022], which ultimately leads to societal
progress. At the forefront of scientific innovation are researchers recombining ideas to
push the boundaries of the known [Iacopini et al., 2018, Ferreira et al., 2020]. With the
exponential growth in the number of authors and publications [Bornmann et al., 2021,
Fortunato et al., 2018], novel methods are needed to represent and provide insights into
knowledge development.

The increasing access to large-scale publication datasets has provided opportunities
to quantify the choices made by researchers and examine the factors governing the evolu-
tion of knowledge. By studying the citation patterns of researchers in their publications,
studies have measured how conflicting ideas are pursued by researchers before they con-
verge to a common consensus [Shwed and Bearman, 2010] or give way to new ideas [Lin
et al., 2022]. Other studies have focused on identifying “hot topics” in research [Liu et al.,
2018], quantifying knowledge flow patterns [Sun and Latora, 2020] and memory effects
in the evolution of knowledge [Yin andWang, 2017, Pan et al., 2018], or predicting the ul-
timate impact of a researcher [Wang et al., 2013, Sinatra et al., 2016]. Similarly, keywords
and phrases from publications can be leveraged to track the evolution of scientific ideas
and fields [Chavalarias and Cointet, 2013, Battiston et al., 2019] or quantify how scien-
tists choose and shift their research focus over time [Jia et al., 2017, Zeng et al., 2019]. For
example, the Physics and Astronomy Classification Scheme (PACS) used in articles pub-
lished by the American Physical Society can be exploited to study the “essential tension”

Physics

Mathematics

Computer science

Quantitative biology

Statistics       

Economics 

Quantitative finance

Figure 7.1: Construction of the knowledge space. We use the metadata from 1.45million
articles posted on the arXiv, corresponding to the article field tags, authors, and times-
tamp. We build a high-dimensional 175 space where each article is uniquely mapped
through field tags corresponding to orthogonal dimensions. This high-dimensional space
is finally embedded within a 2-dimensional knowledge space using the tSNE algorithm.
Each point represents an article. Colours correspond to major academic fields in arXiv
based on the first tag (i.e primary field) of the articles.
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between exploring the boundaries of a research area and exploiting previous work [Aleta
et al., 2019]. Finally, scientific credit among researchers and theirmutual scientific interest
(quantified by citations between papers and keywords, respectively) can be combined to
improve the prediction of new scientific collaborations [Tuninetti, Marta et al., 2021].

Therefore, studying the publication trajectories of researchers can help identify the
multifaceted and complex processes underlying the evolution of knowledge. Such trajec-
tories are often talked aboutmetaphorically, for examplewhen referring to some scientific
advances as “great leaps” [Holden, 1974]. Here, we aim to explore the parallel between
scientific and human mobility more formally, by leveraging insights from human mo-
bility studies. Using large-scale real-world data on human trajectories, previous studies
have indeed uncovered several laws underlying human mobility. Despite heterogeneity
in their movement, humans exhibit recurring patterns in their mobility [Wu et al., 2021,
Ubaldi et al., 2021]. These patterns have been shown to give rise to scaling laws for the
travel distance distribution [Barbosa et al., 2018]. At the macroscopic level, the resulting
flows between two locations follow a gravity model [Schläpfer et al., 2021], mimicking
the Newtonian law of attraction between two masses at a given distance. Beyond jump
distance, individuals show reproducible properties at the whole trajectory level. For ex-
ample, individuals can be categorised into two classes, returners and explorers, depending
on their propensity to come back to the same location or explore new ones [Pappalardo
et al., 2015]. More generally, studies on both individual and collective mobility datasets
have proposed various quantitative models explaining the dynamics of human mobility
[Simini et al., 2021, Alessandretti et al., 2020, Barbosa et al., 2018, Schneider et al., 2013,
Simini et al., 2012, Wilson, 1967]. Crucially, these reproducible patterns are not unique to
human mobility [Hills et al., 2015]. Multiple studies across disciplines have found strik-
ing similarities between humanmobility in geographic space and animals foraging [Hills,
2006], insects swarms [Bonabeau et al., 1999], search methods in abstract environments
such as memory space [Hills et al., 2012], organisational learning [March, 1991], and cy-
berspace [Zhao et al., 2014, Hu et al., 2018, Barbosa et al., 2016].

In the context of knowledge evolution, tools and data sources now abound for spatial
representations. Natural language processing and embedding methods with metadata
from publications such as citations, keywords, or abstracts, can be combined to exploit
similarities between research publications and derive a low-dimensional representation
of the scientific landscape. Such representations have been used to quantify the extent of
ideas explored by researchers [Milojević, 2015,Milojević et al., 2011] and the structuration
of journals [Peng et al., 2021], giving insights into the structure of knowledge.

In thiswork, we solidify these intuitions into a quantitative framework to represent sci-
entific knowledge and exploit metrics derived from human mobility to describe research
trajectories. We use embedding methods on publication metadata from arXiv pre-prints
to build a low-dimensional knowledge space [Ying et al., 2015]. We then track themobility of
disambiguated authors in this space using their publication records. We find that knowl-
edge exploration shows striking similarities with humanmobility in physical space. First,
we show that scientific mobility in the knowledge space follows a gravity model, with
jumps more likely to occur in areas of high density and less likely to occur over longer
distances. Second, we retrieve a dichotomy in knowledge exploration between interdisci-
plinary scientific explorers – more likely to disrupt and pioneer new fields – and exploiters,
who tend to exploit a particular area of expertise, mirroring what is observed in spatial
mobility between explorers and returners. Finally, we discuss the usefulness of knowl-
edge mobility analyses for the study of science and innovation, and discuss limitations
and implications for future works.
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7.2 Results

7.2.1 Scientific trajectories in the arXiv knowledge space

To build the knowledge space, we leverage the arXiv dataset, encompassing 1, 456, 403
scientific articles published online between 1992 and 2018 (see Methods and the previous
work of Singh et al. [2022]). Our interest in this dataset is two-fold. First, it has a clear and
stable ontology for field tags, which are used by authors to specify the relevant research
area(s) covered by their articles. There is a strong incentive for authors to document these
tags as precisely as possible, in order for their article to appear in the right arXiv section
searched by the target scientific community, and in the relevant daily email digest that
interested scientists can subscribe to. Second, as a pre-print server, it has no editorial
barrier or publication cost, creating a low threshold for publication. This allows us to
track the publication history of an author in a fine-grained manner, at the time they are
considered finished, and irrespective of their perceived novelty. As such, arXiv pre-prints
can be thought of as tracking knowledge steps to a high resolution, without requirements
for novelty thresholds to be met.

We first build a spatial representation of the knowledge space formed by arXiv pre-
prints (Figure 7.1). The structure of this space is determined by the 175 tags used by sub-
mitting authors to assign scientific sub-fields to articles. Articles can be assignedwith one
or more tags. For instance, an article can be taggedwith Social and Information Networks
(cs.si) and Physics and Society (physics.soc-ph). An article can thus be represented as a
binary vector X = (0, 0, 1, 0, 1, ..., 0) in the high dimensional 175 sub-fields space, with
Xi = 1 if the article has the tag corresponding to scientific field i.

Since articles rarely combine more than a few tags (see Figure 7.2), the knowledge
space is sparsely populated. Moreover, some tags co-occur frequently, creating redun-
dant information [Singh et al., 2022]. Following these observations, we reduce the dimen-
sionality of this initial space by embedding it into a low-dimensional space via the tSNE
algorithm [Van der Maaten and Hinton, 2008, Van der Maaten, 2009] (see Methods). In
this study, we focus on a two-dimensional embedding to match traditional studies of hu-
man geographical mobility. In addition, we discuss the stability of the results with other
embedding approaches in the Methods section. Figure 7.1 shows the resulting knowledge

sparsity of 
initial space

Figure 7.2: Sparsity of the high dimensional space. Number of articles in arXiv with a
given number of tags. Most papers have less than 10 tags, which is much less than the
dimension of the space (N = 175): most possible locations in the space are not populated.
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Figure 7.3: Scientific mobility in the knowledge space. a. The sequence of arXiv pre-
prints of each researcher identifies a unique scientific trajectory in the knowledge space.
b.We show two example trajectories indicating different behaviours of researchers. c.Dis-
tribution of consecutive jump distances for authors with at least 10 publications (N =
11, 826). The dashed black line is a guide for the eye indicating a power-law behavior.
The gray line corresponds to the distribution of jump distances obtained when locations
are selected at random across all possible visited locations, for each author.

space, where articles are represented as points coloured according to their primary (first)
field tag. We observe that articles belonging to the major fields from arXiv cluster into
distinctive well-defined regions of the space, with interdisciplinary fields such as Quan-
titative Biology (q-bio) or Quantitative Finance (q-fin) located at the interface between
related disciplines.

The chronological sequence of articles published by an author defines a sequence of
locations in the knowledge space, tracing their scientific trajectory (Figure 7.3a-b). In order
to obtain high-quality trajectories, we select a sample of 11, 826 from a total of 50, 402 dis-
ambiguated researchers forwhichwe have a uniqueORCID identifier, andwho published
at least 10 articles. Within a trajectory, two consecutive articles constitute a jump, with a
length equal to the (euclidean) distance computed in the embedding, and duration equal
to the number of days elapsed between the two articles. If the authors were randomly
jumping across all possible locations in the space, the jump distribution would follow a
bounded distribution around a typical, large step size (Figure 7.3c, gray line), according
to a pure diffusive process. Instead, Figure 7.3c shows that the jump distance distribution
is compatible with a power-law functional form, with a cut-off at large distances due to
the finite size of the space, differing significantly from a diffusive process. Importantly,
we observe that this feature is robust with respect to different embedding techniques, see
Figure 7.12. This indicates that, while the majority of jumps are small, with researchers
orbiting relatively close to a particular research interest, a small fraction of jumps extend
far into the knowledge space, standing for researchers crossing fields. In the next sec-
tion, we investigate whether simple models of human mobility can be compatible with
the observed behaviour.

7.2.2 A gravity model of scientific mobility

The observed fat-tail form (with a cut-off) of the jump size distribution is reminiscent
of the inverse relation with distance observed in humanmobility flows between two loca-
tions. This observation led to a simple and intuitive model in humanmobility studies, the
gravitation model, where the flux Fij between two locations i and j is proportional to the
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Ng

Figure 7.4: A gravity model for scientific mobility. a. By dividing the projected space
into a grid, we can calculate aggregated densities and study their effect on flow patterns
between grid elements. The resolution of the grid is fixed by the number of cells along
any dimension Ng. b. Fitted exponents from Eq. (7.1) for different grid resolution levels
Ng = 10, 25, 50, 75, 100. c. Comparison between predicted and observed mobility flows
at a grid size resolution Ng = 10.

population sizes at i and j and inversely proportional to the distance dij between them.
Earlier works on spatial distribution models and urban modelling [Wilson, 1967, Senior,
1979,Wilson, 2013] have shown that such amodel can be functionally derived from statis-
tical mechanics insights and empirical laws such as Zipf’s law [Ribeiro and Rybski, 2021].
When considering population-scale mobility in an origin-destination setting such as ours,
the gravity model naturally emerges as the expectation of the distributionmaximising the
entropy of mobility between two locations [Wilson, 1967].

Much like the urban vs rural landscape, where populations conglomerate into
a few, dense regions corresponding to urban areas, there are denser regions in the
low-dimensional knowledge space, corresponding to more investigated areas. However,
unlike cities and administrative areas, we do not have a clear definition of boundaries in
the knowledge space. Here, we use a simple box/container model by defining a grid of
size Ng × Ng covering the knowledge space, where Ng is a parameter quantifying the
resolution level, and population counts are aggregated at the grid level (Figure 7.4a). We
then define a gravity model to predict the observed flow Fij between two grid locations
i and j in the knowledge space, defined as the number of scientists jumping from grid
location i to location j, by using a rolling time window of 5 years:

F̃ij = G
V αs
i V αd

j

dγij
, (7.1)

where F̃ij is the predictedflowbetween locations i and j,G is a normalisation constant,
dij is the distance between locations i and j, and Vi and Vj (visits) are the numbers of
authors who have published an article in locations i and j during the 5 previous years.
The exponentsαs, αd, and γ introduce non-linear scalings, such as crowding effects for the
number of visits, where higher densities lead to sublinear (α < 1) or superlinear (α > 1)
increase in flow.

Figure 7.4b shows the values of the exponents obtained by fitting Eq. (7.1) to the em-
pirical flows Fij at different resolution levels Ng (see Methods). Overall, we find a re-
markable stability across grid sizes, with coefficients close to 1. The quality of fit is shown
in Figure 7.4c, comparing predicted flowswith observed flows, with a Pearson correlation
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Figure 7.5: Explorers and exploiters in the knowledge space. a.Comparison of the radius
of gyration R2

g, with the centre of mass computed from the 2 most visited locations, with
the full radius of gyration Rg (see Methods). We find a dichotomy between exploiters
(orange) and explorers (blue), using the bisector method to classify them [Pappalardo
et al., 2015]. b. Distribution of S2 = R2

g/Rg, further highlighting the dichotomy as a
bimodality of exploiters (close to 1) and explorers (close to 0). c. Comparison of the
mean squared displacement as a function of time since their first article for explorers and
exploiters.

value of r = 0.58, indicating that the model explains r2 = 33.6% of the variance of the
mobility flows in the knowledge space. We note that the observed correlation is larger
than the ones observed for real-world mobility (with r between 0.03 − 0.49, see [Simini
et al., 2021]). Finally, we find that beyond tSNE, the gravity model is able to represent
flows of scientific mobility for different embedding techniques, with qualitatively similar
exponents (see Figure 7.13).

7.2.3 Scientific explorers vs exploiters

When jumping to their next article, researchers canmove to a novel region of the space,
or return to a previous one. That is, in our framework, researchers choose between explor-
ing a new scientific field or exploiting the previous knowledge that they built. While such
behaviours can lead to similar jump distribution patterns, they will impact more general
statistics about the full trajectory, such as the extent of spatial territory covered. Previous
studies have uncovered such a heterogeneity between individual trajectories in human
mobility patterns, highlighting a dichotomy between returners, who gravitate around a
small number of locations, and explorers, who rather move to new locations. These re-
sults have been found to hold both for spatial [Pappalardo et al., 2015], as well as virtual
[Barbosa et al., 2018] contexts. Here, we explore whether such a heterogeneity exists in
the context of knowledge exploration.

To assess the extent of territory covered by a trajectory, we study the radius of gyra-
tionRg, defined as the average distance of visited locations to their centre of mass (see Eq.
(7.3) in Methods). By limiting to the top k most visited locations, one can define the cor-
responding radius of gyration Rk

g (Eq. (7.4)) and compare it with the full Rg to evaluate
the extent to which the trajectory returns to k locations. Figure 7.5a shows the comparison
of the total radius of gyration Rg and R2

g across researchers. We find that researchers can
be roughly grouped into two main classes: exploiters, whose R2

g value is comparable to
Rg (points along the diagonal), and explorers whose R2

g is considerably smaller than total
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Figure 7.6: Explorers and exploiters for larger values of k. Top row: same as Figure
7.5a, for k = 2, 3, 4. The red line corresponds to Rk

g - Rg/2 = 0, with points above the line
(orange) corresponding to exploiters, and points below the line (blue) corresponding to
explorers. Bottom row: same as Figure 7.5b, for k = 2, 3, 4. The bimodality observed for
k = 2 vanishes for larger values of k.

Rg (points closer to the x-axis). The two classes are more evident when considering the
distribution of S2 = R2

g/Rg, showing two peaks corresponding to the two populations
of explorers and exploiters (Figure 7.5b). This bimodality disappears when considering
larger values of k (Figure 7.6), supporting the use of k = 2 to distinguish the two classes.

By design, the difference between explorers and exploiters will affect the research
space spanned by scientific trajectories over time. While the radius of gyration consid-
ers the gravitation of a researcher around a particular centre of attraction (the centre of
gravity), other measures focus on the dynamics of departure from an original starting. In
mobility analysis, this is typically quantified by the mean squared displacement (MSD)
[Klafter and Sokolov, 2011], a quantity that tracks the average distance travelled from the
starting location over time (see Methods). The particular interest in MSD stems from the
fact that simple diffusion processes in homogeneous spaces observe a functional scaling
with time, MSD(t) ∼ tβ , with the exponent β indicating a super- or sub-diffusive pro-
cess. In our case, we find that, while both classes make jumps of similar size and duration
(Figure 7.7) and have a similar sublinear MSD growth, explorers span a larger fraction of
the knowledge space early in their career, as indicated by a faster MSD growth between
5 and 15 years (Figure 7.5c). This difference decreases in the later phase of their career
(around 20 years), indicating that researchers tend to explore mostly in the middle of
their academic life, while senior scientists tend to exploit more their previous research.
This finding comforts prior observations that scientists become less disruptive and more
critical of emerging work as they age [Cui et al., 2022].

Lastly, beyond differences in mobility patterns, we ask whether there are other char-
acteristics that distinguish exploiters and explorers. To answer this question, we perform



144 Chapter 7. Network science

Figure 7.7: Comparing jump distributions between explorers and exploiters. The jump
distance (left) and jump duration (right, in days) distributions are similar between ex-
plorers and exploiters (log-log plots).

a logistic regression to predict if an individual researcher is an explorer as a function of
several attributes. To account for different trajectory lengths and field-specific behaviour,
we control for the total number of articles published and the area of interest (Figure 7.1) in
which the author has published the most. Figure 7.8 shows that, in line with the previous
observation, explorers navigate broader regions of space, as measured by their maximum
MSD achieved throughout their career, while exploiters tend to remain at the same loca-
tion, measured by the proportion of their jumps being of distance 0.

Moreover, explorers cover more disciplines both within and across articles, and these
disciplines tend to be cognitively distant, i.e. they are far in the field tag co-occurrence net-
work [Singh et al., 2022]. When considering the association with specific developmental
stages of scientific fields, we find that explorers publish in the earlier stages of the evo-
lution of a field, a marker of pioneering activity and innovative work. Comforting this
observation, we find a slightly higher disruptiveness for explorers (p = 0.04), a quantita-
tive marker of innovative works quantifying the extent to which articles citing an article
of interest also cite its sources (low disruptiveness) or not (high disruptiveness) [Park
et al., 2023], measured here by the percentile of their most disruptive article. Finally, we
observe that explorers and exploiters show similar impact, measured by the maximum
citations obtained in one of their articles, and yearly productivity. We note however that
results for the citation-based metrics are to be taken with care, as the citation network is
only considering within-arXiv citations, and is therefore very incomplete [Clement et al.,
2019] and subject to field-specific habits.

7.3 Discussion

In this study, we show that methods from mobility analysis applied to a low-
dimensional representation of a knowledge space can help understand the scientific
mobility of researchers. Using data from 1.5M articles from the pre-print repository arXiv
across 30 years, we find that the mobility patterns of researchers resemble those found in
human mobility studies. Flows between different regions of the knowledge space follow
a gravity model, with an inverse relation to distance. This result is not an artefact from a
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Exploiters Explorers

Figure 7.8: Characteristics of explorers. We compute a logistic regression of a binary
variable y indicating whether an individual is an explorer (y = 1) or an exploiter (y = 0),
for different characteristics of the researchers. For each attribute (further defined inMeth-
ods), we show the estimate and 95% confidence interval of the standardised coefficient
of the regression, controlling for the number of articles and the main field of interest of
the researcher. The differences between the two classes are all significant with p-values
smaller than 10−5, except for disruptiveness (p = 0.04), citations and productivity which
are non-significant (p > 0.05). Repeat locations correspond to the proportion of jumps of
size 0. Multidisciplinarity is the total number of unique field tags used across articles, and
interdisciplinarity is the average number of field tags per article. Cognitive distance is the
maximum disciplinary distance spanned by the researcher, and Field age is the minimum
normalised age of the fields across articles published by a researcher, both quantities be-
ing defined by Singh et al. [2022]. MSD denotes themaximummean square displacement
achieved through the career of researchers. Disruptiveness is the maximum percentile
of disruptive index achieved by researchers across their articles, when compared to the
whole of arXiv. Citations correspond to the logarithm of the maximum number of cita-
tions received by the articles of the researcher. Finally productivity is the average yearly
number of articles of the researcher.
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particular representation, as it holds across various embedding parameters and methods
(see Figures 7.12 and 7.13). Furthermore, the model accuracy outperforms empirical
results from human mobility studies [Simini et al., 2021], showing that despite its sim-
plicity, this model is a promising foundation for future work. In addition, by analysing
individual trajectories, we find that researchers can be categorised into exploiters, whose
trajectories are bound to a particular area of the knowledge space, and explorers, who
jump across boundaries and pioneer novel fields. This dichotomy is reminiscent of the
“essential tension” between tradition and innovation in scientific research, where the
desire to explore new promising areas is counterbalanced by the need to capitalise on the
work done in the past [Kuhn, 1979, Aleta et al., 2019]. Here we identify this tension by
uncovering two types of knowledge mobility patterns through the bimodality observed
in R2

g/Rg.
When considering the properties of scientific trajectories in the knowledge space, we

observe that themobility patterns of explorers and exploiters show sub-diffusive regimes.
Theoretically, when considering the mobility of an individual in a homogeneous space,
such as the initial hypercube or a regular lattice, the MSD follows a linear regime if the
second moment of the step size distribution and the first moment of the waiting-time
probability distribution are finite [Klafter and Sokolov, 2011]. In our case, the observed
deviation from a linear MSD (Figure 7.5) may be due to the heavy-tailed waiting time
probability distribution of the two groups of researchers (Figure 7.7). Another possi-
bility is that the multi-scale nature of the knowledge space, as a complex and evolving
cognitive construct, may be responsible for this trapped-like behaviour. Further investi-
gation is needed to determine which of these approaches is more suitable for explaining
the observed non-linearity in MSD behaviour.

We assumed stable categories of exploiters and explorers using the full trajectory of
researchers, yet there can be variation throughout their career. For example, we observed
ageing patterns within trajectories, with MSD of explorers and exploiters showing sim-
ilar values within the first 5 years after their first publication, after which MSD values
for explorers are significantly larger (Figure 7.5c). This could indicate that explorers go
through two phases: a first phase where they are staying within a few most visited loca-
tions, followed by an exploratory behaviour towards other locations. Such a behaviour
could be formally captured using the concept of “intermittent behaviour” from stochastic
processes [Lanoiselée and Grebenkov, 2017]. Future work could investigate such tempo-
ral patterns across research trajectories, for example by using time windows or the convex
hull method to analyse dynamic profiles at a finer scale, and assess whether phases might
correspond to institutional constraints, with some environment fostering the individual
development towards more exploratory patterns.

Our framework relies on the method used to define the knowledge space. There is no
ground truth in the use of embeddingmethods, and each can bias results towards specific
idiosyncratic properties. However, we have shown that a variety of parametric (tSNE)
and non-parametric (UMAP, PaCMap) methods yield qualitatively similar results, both
in terms of long-tailed jump distribution (Figure 7.12) and gravitymodel fit (Figure 7.13).
This indicates that, despite some variations coming from the structure of the space itself,
the general mobility patterns uncovered here are not space representation artefacts.

Our work is focused on a dataset of arXiv pre-prints. This dataset provides a high pre-
cision for the identification of subfields, which is useful for both the construction of the
knowledge space and the computation of features such as field age [Singh et al., 2022].
Yet, it does not contain all the research articles or fields and its citation network is in-
complete. It is therefore yet unclear how our findings generalise to other disciplines, for
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Figure 7.9: Growth in the number of articles submitted to the major fields of arXiv
between 1992 and 2018. We show the cumulative number of articles over time for the
9 major fields in arXiv, totalling 1, 456, 403 articles. Fields consist of: Quantitative Biol-
ogy (bio), Computer Science (cs), Economy (econ), Electrical Engineering and Systems
Science (eess), Quantitative Finance (fin), Mathematics (math), Physics (physics), and
Statistics (stat). We use a log-scaling for an easier visualisation of the more recent fields.

example when considering the humanities or social sciences. Future work should explore
the reproducibility of our findings across larger and diverse datasets, leveraging other
field identification methods, such as the ones using Natural Language Processing [Belt-
agy et al., 2019].

While our study is focused on the description of individual trajectories, most articles
are team-authored [Wuchty et al., 2007], and chaperoning patterns are fundamental to
scientific careers [Sekara et al., 2018]. Therefore, future works could study the coupling
between individual trajectories, leading to correlated patterns and ultimately collective
flows. In addition, the gravity model could be extended to incorporate variables corre-
sponding to local attributes, such as impact (e.g. through citations), field age, funding,
etc. These features might act as biasing forces shaping collective flows towards certain
areas of the knowledge space. On a macroscopic level, these fields can affect mobility, in
the sameway that force fields affect the trajectories of particles in physics. Novel methods
based on deep learning, such as a Deep Gravity Model [Simini et al., 2021], coupled with
more extensive data on citations and funding, could help extend our work.

Overall, the insights gained from leveraging a mobility analysis in the knowledge
space could help study the effect of policies on knowledge exploration and exploitation,
with applications for funding agencies and more generally the evaluation of research.

7.4 Methods

7.4.1 Overview of the arXiv dataset

In our studywe use a previously published dataset consisting of article metadata from
the arXiv preprint repository [Singh et al., 2022]. The dataset consists of 1, 456, 403 articles
published between 1992 and 2018, coveringmainly the fields of physics, mathematics and
computer science, and to a lesser extentQuantitative Biology, Statistics, Finance, Economy,
and Engineering. We note in particular the important rise of Computer Science articles in
the past decade, with a published rate bound to soon outweigh the physics field, which
was at the core of the early arXiv usage (Figure 7.9).
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When uploading an article, the submitting author selects amain, primary tag identify-
ing the core discipline, along with secondary tags if needed. In most cases, arXiv require
authors who are submitting papers to a subject category for the first time to get an en-
dorsement from an established arXiv author, as a quality control mechanism. The tags
span 175 predefined subfields, such as Quantum Algebra (math.QA) or Signal Process-
ing (eess.SP), all indicated on the website’s main page. These subfields have remained
relatively stable in time [Singh et al., 2022]. Moreover, there is a strong incentive for au-
thors to select appropriate fields, as arXiv proposes a subscription service to a daily digest
email system to automatically receive novel submitted articles containing a specific field
tag. As such, the tag system is directly tied to a relevant audience for the publishing in-
dividual, which incentivises for an accurate self-report.

7.4.2 Low dimensional embeddings

To reduce the dimensionality of the initial 175-dimensional field space, we use the
tSNE algorithm, an unsupervised, parametric dimensionality reduction technique that
retains the local data structure in the latent space [Van der Maaten and Hinton, 2008,
Van derMaaten, 2009]. The tSNEmethod capturesmuch of the local structure of the high-
dimensional data, while also revealing global structure such as the presence of clusters
at different scales. The visualisation of the resulting embedding of the arXiv knowledge
space into a two dimensional space is shown in Figure 7.1. Each point corresponds to
one of the 49, 575 observed combinations of field tags within arXiv articles. We note that
permutations of tags map to the same point, so that our analysis does not depend on the
order of tags.

For the implementation of the tSNE algorithm we use the scikit-learn package [Pe-
dregosa et al., 2011]. The dimension of the embedded space is set to 2. The main pa-
rameters of the embedding method, such as learning rate, number of iterations and early
exaggeration parameters are set to default values. In order to test the robustness of the
tSNE embedding to varying parameters, we generated tSNE mapping for different per-
plexity levels p (signifying the nearest neighbours) and learning rate parameters LR of
the algorithm, and plotted the pairwise distance distribution between randomly sampled
points across different settings (Figure 7.10). We find remarkable stability across vari-
ous parameters of the tSNE suggested in [Wang et al., 2021], including perplexity levels,
indicating that choosing different tSNE parameters would not strongly affect the results.

7.4.3 Fitting procedure for the gravity model

In order to fit the gravity model, we used a linear regression of log-transformed vari-
ables. For each resolution level, we first computed for each year starting in 1997 the num-
ber of jumps between a source cell i and a target cell j (with i 6= j) and the number of
articles published in each cell in the 5 preceding years. In order to account for low sample
size, we used a pseudo-count of 1 added to raw visit counts: Vi ← Vi + 1. We then com-
puted the natural logarithm of all quantities, and used these log-transformed values for
the regression analysis. Since there is a much larger number of small flow values compare
with large flow values (Figure 7.4), we used a binning technique to avoid over-fitting our
model to low flow values. For this, we cut the obtained log-flow values into 100 bins con-
taining an equal number of points, and merged bins with the same breakpoints, resulting
in 42 final bins. We then averaged the log-transformed features (flow, visits, distance)
within these bins, and used these average values to fit the gravity model, using the lm
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Figure 7.10: Comparison of pairwise distance distributions across various tSNE param-
eters. Density distributions of the distance between randomly sampled pairs of points in
different tSNE embeddings, with parameters shown in legend.

function from R 4.2.2. Figure 7.11 shows that the residuals of the model correspond to a
normally distributed noise.

7.4.4 Radius of gyration

The radius of gyration measures the typical size of the territory spanned by the trajec-
tory of an individual. To compute it, we first define the centre ofmassRcm of the trajectory
across locations i = 0, 1, . . . , n:

Rcm =

∑n
i=1MiRi∑n
i=1Mi

, (7.2)

where Mi is the frequency of visitation of each location i, i.e. the number of times
location i is visited by the individual, andRi is the radius vector characterising the location
in the knowledge space with respect to the chosen centre of coordinates. The radius of
gyration is then defined as the characteristic distance from the centre of mass:

Rg =

√∑n
i=1Mi(Ri −Rcm)2∑n

i=1Mi
. (7.3)

In order to estimate the influence of a few locations over the trajectory, we define the
k-th radius of gyration by considering only the top k most visited location:

Rk
g =

√∑k
i=1Mi(Ri −Rk

cm)2∑k
i=1Mi

, (7.4)

where Rk
cm is the centre of mass using the top k most visited locations.

7.4.5 Mean squared displacement

The mean squared displacement (MSD) at time t for a trajectory is defined as the
deviation of the position of a walker (in our case, a researcher) with respect to a reference
position over time:

MSD(t) = 〈|x(t)− x(0)|2〉 (7.5)
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a
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Figure 7.11: Residual plots for the gravity model. We test that the assumption of nor-
mality of residuals hold in our regression analysis. a. Value of residuals as a function of
the fitted (log) flow values. We find that very low flow values are slightly over-estimated,
whichmight stem from the pseudo-countingmethod used. b.Histogram of the residuals.
c. The residuals are normally distributed, as can be assessed using a Q-Q plot.

where x(t) stands for the position of researcher at time t since the first article, and x(0)
stands for the starting point of the trajectory.

7.4.6 Logistic regression for explorers vs. exploiters

In order to explore the characteristics associated with explorers in Figure 7.8, we com-
pute a logistic regressionwith dependent variable yi, a binary variable indicatingwhether
an individual i is an explorer (yi = 1) or an exploiter (yi = 0), and independent variables
for various individual features xi. We control for the main field Fi in which the author
has published (given by the most represented field tag across their articles), as well as the
number of articles Ni of the researcher. The fields were encoded as factors. We used the
glm function in R to fit the model yi ∼ xi +Ni +Fi, with parameter family = binomial set
to a logistic regression. Regression summaries were obtained using the summ function
from the jtools package in R, with parameters scale=T to standardise the regression coef-
ficients by scaling andmean-centring input data, and confint=T to obtain 95% confidence
intervals.

7.4.7 Innovation, disruptiveness and impact

To measure the innovative level of a work, we used two methods. First, we computed
for each article how early it occurs within the fields that it mentions. To do so, we com-
puted the minimum rescaled time (RT) across its associated field tags, using the method
described by Singh et al. [2022]. The rescaled time is a normalised quantity that allows us
to associate an article to a developmental stage of a field (early, peak, or late phase) even
when fields have drastically different rise and fall durations. We then computed for each



7.4. Methods 151

a b

Figure 7.12: Comparison of jump distributions across embeddings methods. a. We
show the variation of the jump distribution when using different parameters for the tSNE
embedding (p is perplexity, and LR is Learning Rate) as well as other embedding meth-
ods (PaCMap and UMAP). In order to compare between the different embeddings, the
Jump distance is normalised by the maximum distance for each embedding. b. For each
author, we select random locations across all accessible points in the embedding (i.e.
unique existing locations in the dataset) and plot the corresponding randomised jump
distributions across embeddings.

researcher the minimum RT value achieved across their articles, defining the “Field age”.
Second, we used another independentmethod to assess the innovative potential of the

articles. This method evaluates how disruptive an article is by comparing the attention it
receives to the articles it cites. Citation data was obtained from Clement et al. [2019]. The
disruptive index (DI) was then computed using the method of Wu et al. [2019] for each
article. For each author, we computed the maximum DI across their articles. Finally, we
computed the percentile of the obtained value across articles to compute the disruptive-
ness of an author.

Finally, for each author i, we computed the maximum number of citations ĉi received
by any of their articles across their career. Since citation counts are distributed with a
heavy-tailed function, we used the transformation log(ĉi + 1) to quantify the impact.

7.4.8 Cognitive Distance

We observe in Figure 7.8 that compared to exploiters, explorers use a larger number of
field tags per article, as well as a larger number of unique tags across their articles. How-
ever some tags might be more closely related than others in terms of research area, which
the simple measure for linear estimate of tags used does not differentiate. To account for
this effect, we use the network based cognitive distance measure from Singh et al. [2022],
where the cognitive distance Cij between field tags i and j is the weighted distance along
the shortest path between tags i and j in the tag co-occurrence network.
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7.4.9 Robustness with respect to the embedding method

In order to assess the robustness of our results, we tested the impact of different em-
bedding methods, parameters, as well as subsamples of the data on the jump distribution
(Figure 7.12). Beyond tSNE, we evaluated the robustness of our analysis using PaCMAP
and UMAP embeddings.

The UniformManifold Approximation and Projection (UMAP) [McInnes et al., 2018]
has its theoretical foundations in manifold theory and topological data analysis. At a
macroscopic level, UMAP uses local manifold approximations and fuzzy simplicial sets
to construct topological representations of data in high and low dimensions. It then min-
imises the cross-entropy between the two topological representations to find an optimal
lower-dimensional representation. UMAP can also be understood as a k-neighbour based
graph learning algorithm that finds the best representation of weighted graphs in lower
dimensions.

The Pairwise ControlledManifold Approximation (PaCMAP) algorithm [Wang et al.,
2021] is also a graph-based technique that identifies three sets of pairs, namely neighbour
pairs, mid-near pairs and further pairs. It then systematically optimises its loss function
using a custom gradient descent algorithm to find a lower dimensional representation
that preserves both local and global structures.

We find that the jump distance distributions shows a similar long-tail decay for both
methods (Figure 7.12a). In addition, we find that the gravity model has stable results in
UMAP and PaCMAP (Figure 7.13) contexts, though we find an overall smaller exponent
for the distance, closer to γ ' 0.5.
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Figure 7.13: Results of the fit of the gravity model for embeddings UMAP (top) and
PaCMAP (bottom). a-b. Same as Figure 7.4b-c. c-e. Same as Figure 7.11.





Conclusion

Summary

This thesis aimed at taking advantage of node orderings to improve algorithms in prac-
tice on large real-world networks. Chapter 1 introduced the topic for a general audience
and Chapter 2 exposed the notations and concepts involved in the subsequent chapters.
In particular, we presented some key ideas of graph theory and algorithmic complexity,
as well as the specific challenges of real-world networks and effective timemeasurements.

In Chapter 3, we reviewed existing works of the literature involving node orderings.
We proposed a classification with three aspects. First, orderings are created with a certain
mechanism in mind, such as giving close indices to nodes that are close in the graph.
Second, orderings are obtained with an algorithm that follows one of few patterns, such
as optimising an objective function or reducing the graph to obtain a more manageable
subgraph. Third, orderings arise in various application domains of graph algorithmics,
like compression, mining or robustness, to name a few. We also showed a reformulation
with orderings for some theoretical graph problems. Finally, we discussed the overhead
issue of orderings, which implies to decide on the balance between the cost of finding
orderings and the benefits that they yield.

Chapter 4 illustrated a first way in which orderings can improve algorithms in prac-
tice: they can reduce the rate of cache-misses. A cache-miss happens when the data re-
quired by an algorithm is not stored in the cache, which requires to fetch it further in
the memory and incurs an additional waiting time. Orderings are able to mitigate this
issue by bringing together in memory the nodes that graph algorithms will likely need
at the same. One major interest of this method is that it accelerates operations that are
key to most graph algorithms, thus benefiting them regardless of their precise objective
or implementation. We replicated a paper that proposes an objective function and a prac-
tical ordering algorithm for the cache optimisation problem, and confirmed that it leads
to a significant acceleration for a selection of standard graph algorithms. However, we
found that some simpler and more scalable methods are competitive, highlighting the
previously mentioned issue of overhead.

A secondway of improving algorithmswith orderingswas shown in Chapter 5, where
we saw that the number of operations in triangle listing algorithms explicitly depends on
the ordering. We proved the hardness of finding optimal orderings, and gave additional
results for approximation and relaxation. Given these proofs and the objective of scaling
to large real-world networks, we proposed three heuristics to obtain orderings that are
efficient although not optimal. They offer a range of options depending on the tolerance
for overhead: one favours ordering quality, another favours ordering time, and the last
one is an intermediate option that we set as default in our open-source implementation.
Experiments showed that our set of heuristics outperforms existing methods in different
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settings. Overall, our results pointed at the power of orderings to address a specific algo-
rithm to make it faster or more scalable by reducing its number of operations.

In Chapter 6, we gave a last example of the value of orderings for improving algo-
rithms. We focused on the minimum vertex cover problem, which is notoriously diffi-
cult in theory but has efficient practical heuristics for large graphs. We proposed a sim-
ple and effective method using greedy algorithms with appropriate priority functions
that correspond to a node ordering. To certify the quality of a heuristic result, we ob-
tained instance-specific lower-bounds and measured how close the heuristic result is to
the bound. Through extensive experiments, we demonstrated that the certified quality
was excellent for all the networks that we examined. This underlines both the efficacy
of existing heuristics for vertex cover and the relevance of the certification method using
these lower-bounds.

Chapter 7 left the scope of node orderings to focus on the network science question of
scientific mobility. We processed a dataset of papers tagged with dozens of different sci-
entific branches and fields to create a two-dimensional space representing knowledge. On
this space, we analysed the trajectory of individual researchers throughout their career,
and found that their collective movement is consistent with a gravity model, where the
number of papers in a field is the driving force, and the cognitive distance causes a decay.
We also reported a split in the population between exploiters, who deepen the knowledge
in a small area of the space, and explorers who travel long distances for interdisciplinary
research.

Perspectives

The contributions of this thesis and the vast anterior literature give evidence that node
orderings are a crucial element of graph algorithms. For this reason, we believe that a
more systematic analysis of orderings could lead to new results. First of all, when we
suspect that an algorithm or a technique is impacted by node orderings, we could test ex-
isting orderings systematically to gain insight on which mechanisms work best. The clas-
sification of Chapter 3 could contribute to this purpose, as well as the various orderings
that our repositories implement (see Introduction). Second, orderings defined by objec-
tive functions could benefit from a deeper theoretical analysis: a classical way to handle
them, which we followed in Chapter 5, is to prove their hardness, then to design heuris-
tics that are intuitively believed to improve the value of the function. While experimental
results are a valid way to give evidence of the success of such heuristics, a stronger math-
ematical grounding of the initial hard problem is also important. In this direction, it is
interesting to design approximation algorithms or schemes, and to find classes of graphs
or parameters for which the problem is tractable. Finding bounds for the optimisation
is also an interesting track to explore as in Chapter 6: bounds reveal how far heuristics
are from optimal, which indicates whether stronger efforts to approach the optimum are
worthwhile.

In some graph problems, the edge orderingmay bemore relevant than the node order-
ing. Note that there are natural ways to define one from the other: given a node ordering,
one can order the edges according to the smaller index of their nodes, breaking ties with
the second node; conversely, given an edge ordering, one can order the nodes by the in-
dex of the first edge in which they appear. In this thesis, we focused on node orderings
based on two assumptions: that the graph is stored as adjacency lists, and that the main
atomic operation of algorithms is listing the neighbours of a node. However, edge order-
ings prove relevant in other contexts, when edges are the key element instead of nodes.
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The first assumption is invalidated when the graph is stored as a list of edges, which is a
standard format to share datasets in a file. The second assumption is incorrect for some
edge-based algorithms, among which the greedy matching algorithm described in Chap-
ter 6. Likewise, the power iteration method for Pagerank and eigenvector centralities rely
on edge enumeration, and the edge ordering may impact their convergence rate. In an
adjacency matrix, each element corresponds to an edge; enumerating the edges following
their corresponding node ordering boils down to reading the matrix row after row. Yet,
this is just one of many options to enumerate the edges, and other orderings have been
proposed. Among them is the ordering following two-dimensional space-filling curves:
drawing a curve that crosses all the elements of the adjacency matrix provides an order-
ing of the edges that does not correspond to a node ordering. Research on edge orderings
could help us understand how node and edge orderings relate, and which type of order-
ing is best suited for a particular graph problem.

Orderings can be seen as a hidden way to make algorithms faster or stronger and, as
such, could be integrated in graph processing systems. Such software systems typically
allow users to store, update and query large graphs efficiently in a parallel or distributed
manner. To do so, they need specialised algorithms and data structures to perform op-
erations such as graph traversals, pattern mining or community detection. Ordering the
nodes in a specific way could help accelerating these tasks in general, as seen with the
cache optimisation in Chapter 4. It is even possible to maintain several orderings in a
transparent manner, so that each type of query is ready to be processed with an appro-
priate ordering. For example, if the systemmaintains an ordering of nodes based on their
degree, it can process more efficiently the queries that rely on degree, like triangle listing
in Chapter 5 or other pattern mining tasks. Simultaneously, the system can maintain a
node ordering with locality mechanism to improve the results of algorithms that bene-
fit from this property, such as graph partitioning. Given the limited number of ordering
mechanisms involved across application domains, graph processing systems could face a
diversity of queries with only a few orderings to store, making the time and space over-
head reasonable.

Furthermore, there are opportunities to apply ordering techniques to more sophisti-
cated graph models, including temporal and dynamic graphs. For a graph that evolves
over time due to node and edge additions or deletions, the challenge is to maintain an
accurate or approximate ordering with specific properties. While maintaining the degree
ordering is feasible with a priority queue, it is not straightforward for more elaborate or-
derings such as the core ordering or Slashburn. Indeed, they are based on adecomposition
of the graph that can change dramatically by the addition of a single edge. An extension
to the maintenance problem could consist in designing orderings that are robust to graph
modifications. Such orderings would be top candidates to address the overhead issue:
one can accept to spend more time in computing an ordering if there is a guarantee that
it can be updated in little time when the graph changes.

Finally, orderings are not limited to graph problems and can also relate to the algo-
rithmic problem of embedding. Embedding can be seen as a multi-dimensional central-
ity that seeks an optimal placement of the elements to satisfy certain constraints, such as
clustering elements or keeping the variability on few dimensions. By exploring the use of
orderings in this non-graph problem, we may discover new insights and techniques that
transfer to graph problems. For example, the concept of locality in node orderings can be
derived from a node embedding, as hinted in Chapter 7. In this way, orderings can serve
as a powerful tool to address a broader spectrum of algorithmic problems.
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