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RÉSUMÉ EN FRANÇAIS

Au cours des siècles passés, la société a connu des changements importants, grâce à des
percées majeures dans les domaines de la science et de l’industrie. Les nouvelles technologies
de la mécanique et de l’électronique ont permis de substituer la main d’œuvre humaine par
des machines automatisées. La standardisation de la robotique a pour vocation de porter cette
évolution à un niveau supérieur, en remplaçant l’intervention humaine dans le monde physique,
même dans des domaines de notre vie qui étaient autrefois considérés comme triviaux, tels que
la conduite automobile, le nettoyage et l’aménagement paysager. Les robots sont d’ores et déjà
exploités pour effectuer des tâches subalternes, physiquement ardues, répétitives et monotones.
En outre, ils peuvent également dépasser les capacités humaines en opérant dans des environne-
ments dangereux ou inaccessibles. D’un point de vue économique, le recours à la main-d’œuvre
robotique est avantageux, car les machines peuvent fonctionner en continu.

À mesure que les robots se répandent dans nos industries et dans notre vie quotidienne, ils
ont la capacité de transformer fondamentalement notre relation au travail. Toutefois, le plein
potentiel de la robotique dans la société n’est pas encore atteint et requiert une recherche, une
ingénierie et une innovation plus poussées, pour mieux comprendre et étendre ses applications.

L’un des défis majeurs des systèmes automatisés réside dans la nécessité de fonctionner dans
des conditions réelles, donc incertaines. Étant donné que les décisions des robots sont fondées
sur certains modèles, les décrivant eux-mêmes, ainsi que leur environnement, la perfection ma-
thématique de ces modèles est inévitablement limitée lorsqu’il s’agit de décrire la réalité. Un
problème courant est celui de l’incertitude paramétrique, qui peut se présenter lors de l’exé-
cution d’une tâche de mouvement, par exemple lorsque qu’un robot mobile doit atteindre un
endroit précis pour effectuer une tâche telle que la saisie d’un objet. Dans le cas où le modèle
employé est valide, mais alimenté par des paramètres erronés, la réalisation de la tâche peut
différer du comportement nominal attendu.

Pour surmonter ce problème fondamental inhérent à la robotique, la principale solution a été
de concevoir des contrôleurs qui le traitent spécifiquement tout en assurant un comportement
stable, même en cas de déviation des paramètres. Une première approche classique consiste
à développer des contrôleurs robustes, c’est-à-dire des lois de commande statiques qui garan-
tissent un certain degré d’insensibilité, pour une plage limitée d’incertitude paramétrique. Tou-
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tefois, ces lois doivent être spécifiquement adaptées au système en question. Les méthodes fon-
dées sur la passivité, qui peuvent également être incluses dans la commande robuste, exploitent
des propriétés énergétiques structurelles du système, et invariantes aux possibles déviations des
paramètres.

Une approche alternative consiste à effectuer une estimation en ligne des paramètres tout
en effectuant l’action de contrôle. Cette méthode implique la transmission d’une mise à jour
de la mesure à la commande, cette dernière intégrant une dynamique supplémentaire pour tenir
compte des changements. Toutefois, l’estimation des paramètres en ligne n’est pas une tâche ai-
sée, car elle nécessite d’exciter suffisamment la dynamique du robot, ce qui peut entrer en conflit
avec la tâche principale de navigation. En outre, la dynamique de l’estimation peut produire des
régimes transitoires indésirables, ce qui augmente les risques de compromettre la stabilité du
système couplé à l’estimation.

Dans les cas mentionnés précédemment, la robustesse est souvent obtenue au détriment de
la précision/performance de la tâche. En effet, un compromis est inévitable : soit on opte pour
un contrôleur parfait, qui assure une grande précision de la tâche de suivi, mais qui repose
sur une très bonne connaissance des paramètres du modèle (ce qui le rend très vulnérable aux
perturbations), soit on préfère un contrôleur qui garantit un certain degré de robustesse face aux
perturbations, mais qui ne permet souvent qu’une stabilisation pratique.

Un autre point de vue inverse la philosophie de conception en réponse aux incertitudes
paramétriques : plutôt que de se concentrer sur des commandes sophistiquées, le couple sys-
tème/contrôleur est laissé tel quel, avec ses avantages et ses inconvénients, et l’accent est mis
sur l’optimisation des trajectoires, afin d’améliorer les performances des systèmes incertains.
Dans cette optique, des travaux récents ont porté sur la génération de trajectoires dite feed-

forward, destinées à minimiser la sensibilité de l’état en ’boucle ouverte’ d’un système.

Plus récemment, ces travaux ont été étendus à la planification de trajectoires ayant une sen-
sibilité d’état minimale en ’boucle fermée’. Cette nouvelle recherche dite control-aware intègre
directement le couplage du système/contrôleur dans l’optimisation. Ainsi, un choix adéquat de
la forme de la consigne de mouvement permet d’assurer la robustesse de la navigation face
aux incertitudes paramétriques. Il est probable que cette approche soit bénéfique pour de nom-
breuses applications futures, et nous pensons qu’elle mérite d’être développée davantage.

À cet égard, l’objectif principal de cette thèse est d’explorer les possibilités et les limites
offertes par la génération de trajectoires robustes et control-aware, vis-à-vis des incertitudes
paramétriques. Le problème de recherche est énoncé en termes plus explicites comme étant la
conception (et l’implémentation) de nouveaux algorithmes de planification de trajectoire pour
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les quadricoptères. La validité des méthodes logicielles présentées est toujours évaluée empiri-
quement par des campagnes statistiques étendues de simulations.

Structure de la thèse

Cette thèse débute par l’introduction du contexte scientifique (Chapitre 1) qui justifie les
études menées dans les différentes contributions. Le Chapitre 2 vise à réaliser une revue de la
littérature scientifique sur la génération de trajectoires robustes pour des systèmes à paramètres
incertains. Dans un premier temps, nous examinons les différentes configurations mécaniques
de robots aériens, puis nous étudions la robustesse des stratégies de contrôle des quadrico-
ptères. Ensuite, l’intéret est porté sur l’estimation de l’état, puis des paramètres en tant que
sous-problème de l’estimation d’état. Après cela, nous nous concentrons sur la génération de
chemins, puis de trajectoires robotiques. Enfin, nous examinons les techniques de planification
de références robustes pour des systèmes à paramètres incertains. Après avoir revu l’état de l’art,
le Chapitre 3 se consacre à établir les fondamentaux mathématiques exploités tout au long du
manuscrit. En particulier, un modèle dynamique de quadricoptère 3D est détaillé. En disposant
de ces outils, nous sommes prêts à aborder les contributions présentées dans cette thèse.

Dans notre première contribution (Chapitre 4), nous proposons une extension des algo-
rithmes de planification de trajectoires à sensibilité minimale, en introduisant la sensibilité de
l’entrée, qui, une fois réduite, conduit à une prédiction accrue de l’entrée du système. Nous
formulons ensuite un problème d’optimisation qui combine les deux sensibilités en un objectif
unique. Nous avons également remplacé la représentation de la trajectoire par des courbes de
Bézier, qui offrent une meilleure stabilité numérique que les polynômes ordinaires. Pour évaluer
le bien-fondé de notre stratégie, nous réalisons une vaste campagne de simulations perturbées
(pour simuler le comportement incertain), appliquées à des trajectoires qui ont été optimisées
pour un quadricoptère planaire. Les résultats montrent que la minimisation des sensibilités de
l’état et de l’entrée s’avère efficace pour réduire les erreurs dans les espaces associés. Les tra-
jectoires obtenues forment un bon compromis entre celles qui minimisent un seul objectif.

Néanmoins, notre approche de sensibilité repose sur une hypothèse qui n’est que peu réa-
liste, à savoir que l’état est parfaitement connu lors de la tâche de contrôle. En effet, l’état étant
une estimation calculée à partir de toutes les mesures capteurs, il est donc incertain par essence.

Motivés par ce dernier point, nous avons travaillé en collaboration avec le groupe de re-
cherche ’Control of Networked Systems’ (Université de Klagenfurt, Autriche), qui étudie la gé-
nération de trajectoires dont le suivi améliore l’estimation de l’état et/ou des paramètres du sys-
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tème. Cela a permis de donner naissance à notre "control & observability-aware framework" :
dans notre deuxième contribution (Chapitre 5), nous proposons une tentative de combiner les
sensibilités de l’état et l’entrée en boucle fermée avec les métriques d’observabilité, pour des
plans de mouvement robustes et informatifs. Intuitivement, les objectifs sont opposés. Grâce à
la norme pondérée et augmentée de Chebyshev, nous avons pu inclure les deux objectifs dans
un seul problème. Dans ce chapitre, la représentation des trajectoires a été remplacée par des
courbes de Bézier par morceaux, car elle permet de réduire leur dimension. Notre approche
multi-étapes a ensuite été évaluée pour un quadricoptère 3D : dans une étude de cas simplifiée,
nous avons considéré les coefficients de portance et de traînée des hélices comme incertains.
Dans la section des résultats, nous avons montré que la sensibilité et l’observabilité sont sou-
vent en conflit, ce qui justifie notre approche. Sous les conditions décrites, les trajectoires mini-
misant les deux objectifs se sont révélées comme un bon compromis entre les références dites
control-aware et celles dites observability-aware.

Dans notre dernière contribution (Chapitre 6), nous définissons une nouvelle norme de la
sensibilité pour le coût de l’optimisation : en effet, la norme de Frobenius que nous avons ex-
ploitée dans les deux contributions précédentes, ne tire pas profit d’une éventuelle connaissance
des plages d’incertitude paramétriques. Avec cette information, il est possible de construire
l’ellipsoïde de la plus grande déviation dans l’espace des paramètres. Nous montrons ensuite
comment exploiter les sensibilités de l’état, de l’entrée et de la sortie, pour obtenir les ellip-
soïdes correspondants dans leurs espaces respectifs. À partir de cette théorie, nous exploitons
maintenant les ’tubes de déviation du pire cas’. Ceux-ci sont de la plus haute importance car
ils nous permettent maintenant de considérer de nouvelles contraintes, améliorant la sécurité de
la tâche. De plus, cela nous donne la possibilité de supprimer la sensibilité de l’entrée du coût,
et laisse maintenant toute la place aux sensibilités de l’état et de la sortie pour l’optimisation.
Dans cette contribution, nous avons étendu notre modèle de quadricoptère à un modèle dont le
centre de masse est décalé, ajoutant ainsi de nouvelles incertitudes à notre framework fondé sur
les tubes. La section des résultats permet de vérifier le plein fonctionnement des tubes d’incer-
titudes. Dans le contexte de la planification des mouvements robotiques, ces derniers peuvent
être exploités pour générer des références que nous assurons être dynamiquement rélisables et
sans collision (elles évitent les obstacles même les pires paramètres). L’approche est validée,
puisqu’elle permet d’améliorer la précision de la sortie du quadricoptère.

La piste de recherche que nous avons suivie dans cette thèse offre un aperçu intéressant du
potentiel de notre approche de planification de trajectoires robustes aux incertitudes paramé-
triques. Bien que le concept de sensibilité existe depuis longtemps, son application à un couple
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système/contrôleur en boucle fermée est récente. Nous avons demontré que le domaine de la
planification de trajectoire robuste peut tirer profit de nos métriques, et des nouvelles façons
de les exploiter pour résoudre des problèmes d’optimisation pertinents. Nous sommes convain-
cus que nous n’avons que survolé la surface de ce sujet et que des recherches ultérieures sont
nécessaires pour en explorer pleinement le potentiel.
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ENGLISH SUMMARY

Over the past centuries, society has undergone significant changes, thanks to major break-
throughs in science and industry. New mechanical and electronic technologies have made it
possible to replace human labour with automated machines. The standardisation of robotics is
intended to take this development to the next level, replacing human intervention in the physical
world, even in areas of our lives that were once considered trivial, such as driving, cleaning and
landscaping. Robots are already being used to perform menial, physically demanding, repetitive
and monotonous tasks. Besides, they can also exceed human capabilities by operating in dan-
gerous or inaccessible environments. From an economic standpoint, the use of robotic labour is
attractive, as machines can operate continuously.

As robots become more prevalent in our industries and daily lives, they hold the potential
to fundamentally transform our relationship to work. However, the full potential of robotics in
society is yet to be realised and requires further research, engineering and innovation to better
understand and expand its applications.

One of the major challenges of automated systems is the need to operate in real, and there-
fore uncertain conditions. Since robot decisions are based on models describing themselves
and their environment, the mathematical perfection of these latter is inevitably limited when it
comes to describing reality. A classical problem is that of parametric uncertainty, which can
arise when performing a motion task, e.g. when a mobile robot has to reach a specific location
to perform a task such as grasping an object. In the case where the model employed is valid,
but fed with erroneous parameters, the task performance may differ from the expected nominal

behaviour.

To overcome this fundamental problem inherent in robotics, the primary solution has been
to design controllers that specifically address the issue, while ensuring a stable behaviour, even
in the case of parameter deviations. A first, classical approach, is to develop robust controllers,
i.e. static control laws that guarantee a certain degree of insensitivity, for a limited range of
parametric uncertainty. However, these laws must be specifically adapted to the system at hand.
Passivity-based methods, which can also be included in robust control, exploit structural energy
properties of the system, invariant to changes in the parameters of the system.

Another approach is to perform online parameter estimation, while performing the control
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action. This method involves transmitting an update of the measurement to the controller, which
incorporates additional dynamics to account for the changes. However, online parameter esti-
mation is not an easy task, as it requires sufficient excitation of the robot dynamics, which may
conflict with the main navigation task. In addition, the dynamics of the estimation can produce
undesirable transients, which increases the risk of compromising the stability of the coupled
system/estimation.

In the aforementioned cases, robustness is often achieved at the expense of the accuracy or
performance of the task. Indeed, a trade-off is unavoidable: either one opts for a perfect con-
troller, which ensures a high accuracy of the tracking task, but which relies on a very good
knowledge of the model parameters (thus making it very vulnerable to disturbances), or one
prefers a controller that guarantees a certain degree of robustness against disturbances, but
which often only allows a so-called practical stabilisation.

Another point of view reverses the main design philosophy in response to parametric uncer-
tainties: rather than focusing on the design sophisticated controls, the system/controller pair is
left as it is, with its advantages and disadvantages, and the focus is on optimising trajectories
to improve the performance of systems with uncertain parameters. In this perspective, recent
work has focused on the generation of so-called feed-forward trajectories, adequately shaped to
minimise the ’open-loop’ state sensitivity of a system.

More recently, these works has been extended to the planning of trajectories with minimal
state sensitivity in ’closed-loop’. This new research, known as control-aware, directly integrates
the system/controller coupling into the optimisation. In this way, an adequate choice of the shape
of the motion setpoint ensures the robustness of the navigation task, even under parametric
uncertainties. This approach is likely to be beneficial for many future applications, and we
believe it deserves further development.

In this respect, the main objective of this thesis is to explore the possibilities and limitations
offered by robust, control-aware trajectory planning with respect to parametric uncertainties.
The research problem is stated in more explicit terms as the design (and implementation) of
novel trajectory planning frameworks for quadrotors. The validity of the presented software
methods is always empirically assessed through extensive statistical simulation campaigns.

Thesis structure

This thesis starts with the introduction of the scientific background (Chapter 1) which justi-
fies the studies carried out in the different contributions. Chapter 2 aims to review the scientific
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literature on the generation of robust trajectories for systems with uncertain parameters. First,
we examine the different mechanical configurations of aerial robots, and then we study the ro-
bustness of control strategies for quadrotors. Next, we focus on state estimation, and parameter
estimation as a sub-problem of estimation. After that, we study the generation of paths and then
robotic trajectories. Finally, we review robust reference planning techniques for systems with
uncertain parameters. After reviewing the state of the art, Chapter 3 focuses on establishing
the mathematical fundamentals exploited throughout the manuscript. In particular, a dynamic
model of a 3D quadrotor is detailed. With these tools at our disposal, we are ready to present
the contributions of this thesis.

In our first contribution (Chapter 4), we propose an extension of the minimum sensitivity
trajectory planning framework, introducing the closed-loop input sensitivity, which, when re-
duced, leads to an increased prediction of the system input. We then formulate an optimisation
problem that combines the two sensitivities into a single objective. We also replace the trajectory
representation with Bézier curves, which offer better numerical stability than plain polynomials.
To evaluate the appropriateness of our strategy, we perform an extensive campaign of perturbed
simulations (to simulate the uncertain behaviour), applied to trajectories that have been opti-
mised for a planar quadrotor. The results show that minimising the state and input sensitivities
is effective in reducing the errors in the associated spaces. The resulting trajectories are a good
trade-off between those that minimise a single objective.

Nevertheless, our sensitivity method relies on the unrealistic assumption that the state is
perfectly known during the control task. Indeed, as the state is an estimate that gets computed
from all sensor measurements, it is inherently uncertain.

Motivated by this last point, we have worked in collaboration with the research group ’Con-
trol of Networked Systems’ (University of Klagenfurt, Austria), which studies the generation
of trajectories whose tracking improves the estimation of the system state and/or parameters.
This led to the "control & observability-aware framework": in our second contribution (Chapter
5), we propose an attempt to combine the state and input closed-loop sensitivities with observ-
ability metrics, for robust and informative motion plans. Intuitively, the objectives are opposite.
Thanks to the augmented weighted Chebyshev method, we were able to include both objectives
in a single cost. In this chapter, the representation of trajectories was replaced by piece-wise
Bézier curves, as it allows to reduce their dimension. Our multi-step approach was then evalu-
ated for a 3D quadrotor: in a simplified case study, we considered the thrust and drag coefficients
of the propellers as uncertain. In the results section, we have shown that sensitivity and observ-
ability are often in conflict, which justifies our approach. Under the conditions described, the
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trajectories minimising both objectives proved to be a good compromise between the so-called
control-aware and observability-aware references.

In our last contribution (Chapter 6), we define a new sensitivity norm for the cost of optimi-
sation: indeed, the Frobenius matrix norm that we exploited in the two previous contributions,
does not take advantage of a possible knowledge of the parametric uncertainty ranges. With
this information, it is possible to construct the ellipsoid of the largest deviation in the parameter
space. We then show how to exploit the sensitivities of the state, input and output, to obtain the
corresponding ellipsoids in their respective spaces. From this theory, we now exploit the ’worst
case deviation tubes’. These are of utmost importance as they now allow us to consider new
constraints, improving the safety of the task. In addition, it gives us the possibility to remove
the input sensitivity of the cost, and now leaves all room for the state and output sensitivities to
be optimised. In this contribution, we have extended our quadrotor model to a new one with a
shifted centre of mass, thus adding new uncertainties to our tube-based framework. The results
section verifies the full functionality of the uncertainty tubes. In the context of robotic motion
planning, they can be exploited to generate reference motions that we ensure dynamically fea-
sible and collision-free (they avoid obstacles even with the worst parameters). The approach is
validated, since it improves the accuracy of the quadrotor output.

The research track we have pursued in this thesis provides an interesting insight into the
potential of our approach to robust trajectory planning under parametric uncertainties. Although
the concept of sensitivity has been around for a long time, its application to a closed-loop
system/controller pair is recent. We have shown that the field of robust motion planning can
benefit from our metrics, and from new ways of exploiting them to solve relevant optimisation
problems. We believe that we have only scratched the surface of this topic and that further
research is needed to fully explore its potential.
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All optimisations minimise their respective cost function, therefore, a decrease
below 1, highlighted by the dotted line, is an improvement of the respective
objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Quartile box plots showing the positional mean integral error norm over the
whole trajectory, average over n⊕ = 20 targets, with nper = 30 perturbed closed-
loop flights for each resulting reference. The two plots show the influence of
different perturbation amplitudes on kf and kτ . Note that since the sensitivity
is evaluated at p = pc, S/I-S and COP are most effective with small deviations
around the nominal values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Quartile box plots showing the IEKF’s uncertainty based on the state’s stds at
the end of the trajectory, for a total of n⊕ = 20 different targets. For each op-
timisation case, the closed-loop flights are ran with nest = 10 different initial
guesses at the start. The thrust force coefficient kf and torque coefficient kτ box
plots are depicted respectively on the left and right. As expected, the precondi-
tioned trajectories have the worst estimation performance, and the EELOG ones
have the best. COP optimised reference trajectories show a good compromise
for the estimation performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Illustration of how to obtain the radius rn(t) along any direction n. . . . . . . . 115
6.2 Schematic view of the space quadrotor, oriented by quaternions. Note that in

this contribution, there is a shift in the CoM, such that OBGB = gxxB+gyyB+
gzzB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Input tube along a reference trajectory a?Υ of T = 8 [s]. The nominal behaviour
is in green, the twenty perturbed behaviours are in dashed grey, the upper and
lower tubes are in blue, and the input saturations are in dashed red. . . . . . . . 129

6.4 y (left) and z (right) tubes along a reference trajectory a?Υ of T = 8 [s]. The
nominal behaviour is in green, the twenty perturbed behaviours are in dashed
grey, and the upper and lower tubes are in blue. . . . . . . . . . . . . . . . . . 129

xxii



LIST OF FIGURES

6.5 Display of the two 90 % confidence ellipsoids, for one target only, and divided in
two planes: (x, y) on the left, and (z, ψ) on the right. On each subplot, one can
observe the 2-dimensional final confidence ellipses resulting from the perturbed
simulations of trajectories au,⊕ (in grey) and a?Υ (in blue). We also displayed
the final output target yd(T) (in orange). . . . . . . . . . . . . . . . . . . . . . 130

6.6 Box-plots of the evaluated performances for the conducted statistical campaign
when comparing all the preconditioned au,⊕ (in grey) to the optimised trajec-
tories a?Υ (in blue) resulting from problem Eq. (6.32). From left to right, we
display respectively the distribution of the means and stds of the position error
Er, and then for the yaw error Eψ. . . . . . . . . . . . . . . . . . . . . . . . . 130

xxiii



LIST OF ACRONYMS

ACO Ant Colony Optimisation.

AI Artificial Intelligence.

APF Artificial Potential Fields.

APhI Aerial Physical Interaction.

AR Aerial Robot.

AU Actuation Unit.

AV Aerial Vehicle.

BLDC brush-less Direct Current.

CCW Counter-Clockwise.

CFD Computational Fluid Dynamics.

CHOMP Co-variant Hamiltonian Optimisation for Motion Planning.

COBYLA constrained optimisation by linear approximations.

CoG Centre of Gravity.

CoM Centre of Mass.

COP Control & Observability-aware Planning.

CW Clockwise.

DFL Dynamic Feedback Linearisation.

DoF Degree of Freedom.

EA Evolutionary Algorithms.

EELOG Expanded Empirical Local Observability Gramian.

EKF Extended Kalman Filter.

ESC Electronic Speed Controller.

ESDF Euclidean Signed Distance Field.

xxiv



List of acronyms

FCU Flight Control Unit.

FL Fuzzy Logic.

FPV First Person View.

GA Genetic Algorithms.

GPS Global Positioning System.

H∞ H-infinity.

IEKF Iterative Error-state Kalman Filter.

IMU Inertial Measurement Unit.

INDI Incremental Non-linear Dynamic Inversion.

INS Inertial Navigation System.

KF Kalman Filter.

LiPo Lithium Polymer.

LQR Linear Quadratic Regulation.

LSP Linear Scalarisation Problem.

MoCap Motion Capture.

MOOP Multi-Objective Optimisation Problem.

MPC Model Predictive Control.

NLOPT non-linear optimisation.

NN Neural Network.

ODE Ordinary Differential Equation.

OKF Optimal Kalman Filter.

PID Proportional Integral Derivative.

POMPD Partially Observable Markov Decision Process.

PRM Probabilistic Road-map Method.

RRT Rapidly-exploring Random Trees.

xxv



List of acronyms

s.t. subject to.

S/I-S State and Input Sensitivities.

SMC Sliding Mode Controller.

SNR Signal-to-Noise Ratio.

SOOP Single-Objective Optimisation Problem.

std standard deviation.

TO Trajectory Optimisation.

TSP Travelling Salesman Problem.

UAV Unmanned Aerial Vehicle.

UKF Unscented Kalman Filter.

VTOL Vertical Take-Off and Landing.

w.r.t. with respect to.

xxvi



Part I

Preliminaries

1





CHAPTER 1

INTRODUCTION

In the past centuries, society has undergone significant changes, due to major breakthroughs
in science and industry. New technologies in mechanics and electronics have allowed to in-
creasingly replace human labour with automated machines. In recent decades, this trend has
accelerated even further, as the democratisation of computers and the internet has led to many
tasks and decisions previously performed by humans being delegated to automated systems.
The standardisation of robotics is set to take this evolution to the next level, replacing human
intervention in the physical world, even in areas of our lives that were once considered mun-
dane, such as driving, cleaning and landscaping. Robots are already being utilised, to perform
tasks that are menial, physically demanding and repetitive. Furthermore, they may also surpass
human capabilities by operating in dangerous or inaccessible environments, such as the ocean
depths or space. From an economic standpoint, using robotic labour is attractive, as machines
can operate continuously. However, the interest in robotics goes beyond just economic consid-
erations, as seen by the growing use of robotics in the healthcare sector, for whom reliability
and precision are beneficial.

As robots become more prevalent in our industries and daily lives, they hold the potential
to fundamentally change our relationship with work. However, the full potential of robotics in
society is yet to be reached and requires further research, engineering, and innovation to fully
understand and expand its applications.

1.1 Aerial robotics

The term aerial robotics, see e.g., [Feron et al., 2008], has been popularised as a way to
describe a class of automated machines with flying capabilities. This field of technology mainly
aims at developing a broad range of systems, Unmanned Aerial Vehicles (UAVs), more com-
monly known as drones, that have the ability to manoeuvre in 3-dimensional space, without
human pilots on board. UAVs are conceived for different levels of autonomy: some may operate
fully under remote control by a human, when others have specific sensors and functions for
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piloting aid. The high levels of autonomy are reached with autopilot, computer control, or even
completely unsupervised flights with no human intervention. It is now a very common topic in
the industry as well as in the research community.

The history of aerial robotics can be traced back to the early 20th century, and is closely
tied to the history of flight itself. Likely, the high rate of deaths during early manned flight
tests convinced engineers that there was a need to explore the potential of unmanned aircrafts,
even before specific applications were identified. For this reason in particular, pioneers have
conducted the early unmanned flights at the beginning of the 20th century. Primarily, these latter
were performed to test wing designs, control surfaces, and in general, assess the capabilities
of their aircrafts. The early unmanned flights were important milestones in the development
of UAVs, as they allowed engineers to control the systems, and improve their designs before
putting human pilots on board. As a result, the first powered unmanned flight was achieved, and
has since sparked significant interest in the field of aerial robotics.

After the first trials, the following developments of UAVs have enabled to use them for
military purposes, see [Keane et al., 2013]. During World War I, they have not been widely
exploited, as the technology was not yet advanced enough to support their deployment on the
battlefield. However, there were some early attempts to take advantage of these systems for
reconnaissance, artillery spotting. The efforts were mostly unsuccessful, due to the limitations
of the technology at time. Two decades after, during World War II, UAVs began to be more and
more exploited, for reconnaissance missions, target acquisition, and as decoys for air defence
systems. Some drones were even used in combat: for instance, pulsejet-powered cruise missiles
were launched from a ramp, and guided by autopilot. In general at these times, the technology
was still in its infancy. Limitations such as short range and lack of autonomy made them less
effective than manned aircrafts. However, their successful use in reconnaissance missions laid
the foundation for further development and advancements in the field. In the post-World War II
period, UAVs continued to be developed and utilised for military purposes, with an emphasis
on reconnaissance and surveillance.

During the later part of the 20th century, the technological improvements in many fields,
e.g. mechanics, electronics and automation, have significantly improved the capabilities and
performance of Aerial Robots (ARs). Among the main advancements that have been beneficial
to aerial robotics, we can cite:

— the use of lightweight materials such as carbon fibre has allowed to reduce the total
weight of the designs;

— advanced aerodynamic designs, especially about the propellers, have led to the develop-

4



1.1. Aerial robotics

ment of small, more manoeuvrable systems;
— more performing, efficient motors, such as brush-less Direct Current (BLDC) motors,

which have been made viable by advances in permanent magnet materials;
— the manufacturing of batteries with higher energy density, such as Lithium Polymer

(LiPo) technology, that have been made more powerful, reliable, versatile and long-
lasting, allowed to increase flight times, thus improving the duration of drone missions;

— the integration of Global Positioning Systems (GPSs), Inertial Navigation Systems (INSs)
and computer vision have greatly enhanced the accuracy of location, hence of control,
allowing for precise and efficient operations;

— the development of advanced, small integrated sensors such as cameras, lidars, radars,
and other imaging devices have enabled to gather detailed and accurate data;

— the progress made in telecommunications has been a key factor in the expansion of UAVs
capabilities: the ability to transmit and receive data in real-time over extended distances
provides the ability to execute more complex tasks than before.

The aspects listed above have made it possible to improve the overall performance while re-
ducing the costs of systems, thus arising the interest in potential civilian applications, and
democratising the use of ARs beyond the traditional military roles. Subsequently in the past
decades, many Aerial Vehicles (AVs) have been developed, including multi-rotor UAVs. Owing
to the many implementations, it is now common to find a large range of commercial products,
for entertainment purposes and many professional applications. For the sake of understanding
why the society can benefit from the progress in the aerial robotic field, we now cite typical
usages of multi-rotor UAVs.

First, we can mention surveillance and reconnaissance, one of the major application of
multi-rotors. Equipped with cameras and other sensors, they capture images and valuable data
to provide the desired information. Therefore, they are useful for monitoring large areas, and
track movement of people, vehicles. Their small size and manoeuvrability allow them to navi-
gate easily in areas that are not accessible by manned aircrafts. Hence, the integration of ARs in
surveillance and similar operations has expanded the capabilities, in a very cost-effective way.

A similar application is external asset inspection and maintenance, which is performed on
many infrastructures, including power plants, bridges, power lines. UAVs equipped with cam-
eras remotely collect image-based data, and can also take advantage of specific advanced sen-
sors to detect and identify various types of defects, e.g. corrosion and structural issues, that may
be harmful to the integrity of facilities. Thanks to multi-rotors, the monitoring is safer, since
inspection teams can avoid potential danger by staying on the ground, and is also greatly sped
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up, thus ultimately much cheaper.

AVs are also employed to help in the construction industry, by conducting extensive imag-
ing of the sites. More precisely, specialised onboard sensors can be used to generate detailed
3-dimensional representations of the current structures, which facilitates the planning and exe-
cution of projects, with improved precision and efficiency.

Search and rescue operations greatly benefit from the use of drones, since they can be em-
ployed to quickly search for missing individuals in challenging areas, such as mountainous and
forested regions, that would be difficult to access by ground-based search teams. In the case of
disasters, they provide real-time situational awareness and assess the extent of damages, which
allow quicker, informed decisions from the emergency teams. Potentially, with drones, more
lives are saved during this kind of operations.

Many other applications exist, among which we can list:

— environmental monitoring and meteorological research, where AVs gather information,
monitor wildlife, help to study the environment, which for instance, led scientists to a
greater understanding of the Earth’s atmosphere and surface;

— agriculture, where drones equipped with cameras, tanks and sprayers can be quickly
deployed over fields to carry out the appropriate watering, give visual feedback to the
farmers, with additional data on crop health, pest level assessment: with all these tasks
performed at once, the savings in time and money are significant;

— film and photography, where multi-rotors have become a popular tool, since they open
up to stunning possibilities in terms of shooting: now, one can use them to produce high-
quality immersive videos, imitating bird’s-eye perspective, as popular these days with
First Person View (FPV) recordings;

— delivery of small packages, especially where traditional delivery methods are hindered
by factors such as terrain, traffic, or security concerns: here, they have proven to be a
valuable asset for delivering essentials, e.g. medical supplies or tools, respectively in
disaster areas or for construction/maintenance operations.

One can note that in all of the applications discussed thus far (apart from delivery), the
UAVs are mostly exploited as remote sensors. The main interest in these is to gather data,
without actively interacting with the environment. Besides free-flying, a recent trend is also in
Aerial Physical Interaction (APhI), which opens the door to a wider range of new and exciting
applications, expanding the already existing capabilities of multi-rotor UAVs. We mention some
topics of current interest in the literature, such as:

— tool/package delivery for maintenance operations, see [Suarez et al., 2022]: please note
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that as opposed to the previously mentioned delivery application, here, high proximity
with workers is considered;

— contact-based inspection, see e.g. [Alexis et al., 2016], as an extension of the previously
existing contact-free inspection tasks;

— assembly and construction of structures, e.g. in [Jimenez-Cano et al., 2013], and ex-
tended to co-working of ARs in [Muscio et al., 2017];

— human-robot interaction for co-working/manufacturing, see [Afifi et al., 2022; de-Dios
et al., 2020].

Of course, the subject is very vast, and we thus propose the reader to refer to [Ollero and Sicil-
iano, 2019; Ollero, Tognon, et al., 2021; Tognon and Franchi, 2020] as well as the references
therein, for more in-depth explanations on aerial manipulation, and APhI in general.

In any case, this emerging trend is not the subject of this thesis, as we limit ourselves to
contact-free flights. We mention this new concept because it allows us to illustrate the problems
that we address in this thesis with concrete examples, e.g. the ones in Fig. 1.1, discussed later.

1.2 Scientific context and main objectives

Adopting a general viewpoint, one of the major challenges for automated systems is the need
to operate in real (thus uncertain) conditions. As robot decisions are based on some models, of
themselves, of their environment, the mathematical perfection of these models is unavoidably
limiting for describing reality. To clarify, there is an infinitesimal chance that a mathematical
model takes into account all phenomena/effects that affect the behaviour of a robot, since it is
almost certain that some of them have not yet been identified. A classical example of what we
stated here-above is that of parametric uncertainty, in the context of execution of a motion task,
e.g. a mobile robot needs to reach a specific location, to perform a task such as grasping an
object. In the case of a valid model, but with wrong parameters feeding it, the realisation of the
task might differ from the nominal behaviour, which occurs when the accurate parameter values
are implanted inside the closed-loop system.

More specifically, systems such as multi-rotor UAVs are subject to uncertainties, in the
models and their parameters. A first example of that is the thrust exerted by the propellers,
whose model is derived from fluid dynamics, a disciplinary field for which the knowledge is
still limited, see, e.g. [Walters et al., 2002]. The intricacies of the turbulences in a fluid and
many other phenomena, often highly non-linear, are very hard to model properly. One can also
easily understand that even with an exhaustive description of the phenomena, the complexity of
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the models would explode, which is not desirable at all.

Figure 1.1 – Schemes of recent/future possible applications with Vertical Take-Off and Landing (VTOL)
UAVs. At the top, a quadrotor carrying a package for delivery (left), and a quadrotor with an articulated
gripper (right). At the bottom, four drones carry a large object attached by cables. For these three cases,
we highlight (in cyan) the additional elements that may lead to parametric uncertainties.

Other possible examples of uncertainties in the model parameters of an AR could be, e.g.
length properties, the total mass, inertia, or position of Centre of Mass (CoM). This can hap-
pen especially when carrying a package, tool, or any other object of uncertain dimensions (thus
inertia). Even with a good knowledge of the parameters of this object, the quality of the grip
itself may also be at stake, and have a significant impact on the measurement/estimation accu-
racy of the parameters involved in the system dynamics. Therefore, the challenges related to
parametric uncertainties have to be studied for multiple applications, as depicted in Fig. 1.1. At
the top left, one can observe a quadrotor carrying a package for delivery. In this context, the
uncertainties may occur on: the mass of the object to be delivered, its inertia (especially if the
package has moving parts inside of it), the position of its CoM, the total air drag coefficients
of the structure, etc. At the top right, one can observe an hexarotor with an articulated gripper.
For this system, the uncertainties occur on the same parameters than with the previous example,
but here the parameters of the complete structure can change if the gripper articulation angles
changes. Again, e.g. if a tool is gripped, the grasping quality might cause uncertainties. The last
example (at the bottom of Fig. 1.1) depicts four co-working quadrotors that move a large object
using cables. For this last example, the idea is the same than for the previous one: uncertainties
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can arise from the object to be moved itself, or from the relative positioning of the quadrotors
with respect to (w.r.t.) the other elements. Note that for the preceding examples, the parameters
are subject to variations w.r.t. time: in the scope of this thesis, even if we consider parameters
that may deviate from their nominal values, we always make the (strong) assumption that the
parameters are constant w.r.t. time (which, of course, may be wrong for certain parameters, e.g.
the thrust coefficient of the propeller might change if there is a high shift in temperature).

To tackle this fundamental problem of robotics, the primary solution has been to design con-
trollers that specifically address the issue (for the system at hand), and ensure a stable behaviour,
even in the presence of parametric uncertainties.

A first classical approach is that of designing robust controllers, which are typically static
control laws that ensure a certain degree of insensitivity to a bounded range of parametric un-
certainty, e.g. H-infinity loop shaping, or sliding mode controller. However, they need to be
specifically tailored to the system at hand, by exploiting the uncertainty upper bound. Passivity-
based methods, which can also be included in robust control, exploit structural energy properties
of the system, invariant to changes in the parameters of the system.

Another way is to estimate the parameters online, while performing the control action. An
update of the measurement is fed to a controller, which includes additional dynamics for con-
sidering the changes. But estimating parameters online is not easy, since it requires that the
system dynamics during the trajectory tracking are exciting enough, which might be in conflict
to the main task. Besides, the dynamics of the estimation might produce unwanted transitional
regimes that might compromise the stability of the coupled system/estimation, and therefore
hinder performance.

In the previously mentioned cases, robustness is often attained at the expense of the ac-
curacy/performance of the task. Indeed, a trade-off is always present: either we take a perfect
controller, that is able to perform the tracking task with utmost accuracy, but which relies on
good knowledge in the model parameters (and is subsequently very sensitive to perturbations),
or we rather make the choice of one that guarantees a degree of robustness even in the presence
of uncertainties, but which will not be able to perform the tracking very well, and often only
ensures a practical stabilisation.

Another point of view, which reverses the main design philosophy when seeking to counter
parametric uncertainties: instead of designing sophisticated controllers, the system/controller
pair is left as it is, with its advantages and drawbacks, and the goal is rather to focus on trajectory
optimisation, to improve the performance of a control task for uncertain systems. For instance,
recent works have put efforts in the generation of feed-forward/planned trajectories meant to
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minimise the state sensitivity of a system, but with the main limitation of remaining in open-

loop.

More recently, these works have been extended, to plan trajectories that have minimal
closed-loop state sensitivity. This new control-aware research takes into account the coupling
of the system/controller directly in the optimisation. In that way, the robustness is ensured by
choosing an adequate shape of the reference motion. We believe that this approach deserves to
be further developed, as it could prove useful for many future applications.

In that respect, the main objective of this thesis, see Fig. 1.2, is to explore the possibili-
ties and limitations offered by robust, control-aware trajectory planning with respect to (w.r.t.)
parametric uncertainties. The research problem is stated in more explicit terms as the concep-
tion (and implementation) of novel trajectory planning frameworks, for ARs, and more pre-
cisely quadrotor UAVs. The soundness of the presented software methods is always empirically
assessed through extensive statistical campaigns of simulations.

+
− Controller SystemTrajectory planner

Closed-loop model

opt. ref.

Figure 1.2 – Scheme of the main design philosophy of the robust, control-aware trajectory planning
framework that we develop in this thesis: we model the closed-loop system/controller pair, and use this
information to generate trajectories to be fed to the real closed-loop system. Here, the system has pa-
rameters (unknown, because of measure uncertainty), and the nominal parameters, which are implanted
inside the closed-loop model (measured value) might differ from reality, thus justifying our approach.

1.3 Thesis outline

This manuscript is organised in three main parts. To begin with, Part I (Chapters 1 and 3) in-
troduces the subject, and the concepts which are used throughout the thesis. The overview of the
current state of the literature of Chapter 2 allows us to enter in depth into the main topics of this
manuscript. First, a short study of existing multi-rotor ARs designs is proposed. Then, the rest
of the literature review focuses mostly on quadrotor UAVs. Hence, we present different types
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of control strategies for these latter, with an emphasis on the robustness of each w.r.t. model
parametric uncertainties. Next, we explore the state/parameter estimation trend, that seeks to
properly estimate various quantities of a system, so as to improve the performance of the full
feedback control system. The chapter continues with a focus on trajectory planning for AVs,
which is subsequently completed by our main topic of interest, i.e. robust trajectory planning
under model parameter uncertainties. By addressing this last point, we introduce for the first
time the concept of closed-loop state sensitivity, which is further used in the contributions. We
finish the preliminaries with the presentation of the main mathematical conventions and tools
for modelling the multi-rotor AVs and their controllers, in the subsequent chapters. In particular,
we detail the procedure to obtain the dynamics of a standard quadrotor therein.

Equipped with the tools of the modelling chapter, we next delve into the core of this thesis,
i.e. Part II (Chapters 4 and 6), and present an in-depth presentation of the contributions, i.e. the
evolution of our robust trajectory generation framework. After a generic formulation of the Tra-
jectory Optimisation (TO) problem, Chapter 4 defines the newly introduced closed-loop input

sensitivity, that complements the already existing closed-loop state sensitivity. We then exploit
these latter to generate the objective cost for the optimisation problem, which now considers ac-
tuator limitations, as non-linear constraints. Lastly, we validate the framework with an extensive
statistical set of simulations, applied to a planar quadrotor combined with a Dynamic Feedback
Linearisation (DFL) controller.

Chapter 5 seeks to combine control-aware trajectories, i.e. the ones that are obtained by
minimising the closed-loop state and input sensitivities, and observability-aware trajectories,
i.e. the ones that facilitate the most the state/parameter estimation. We formulate an optimisation
cost that incorporates the related metrics into a single index to be reduced. Then, we analyse the
soundness of the proposed method for a space quadrotor with a geometric tracking controller.
In particular, we discuss the cost behaviour regarding the two (seemingly opposite) objectives
and their combination. To finish, we validate the procedure by showing positive results in terms
of target reach precision, and parameter estimation performance.

In our last contribution, Chapter 6, we formulate an upgraded optimisation problem for
robust trajectory planning, thanks to a new norm definition for the closed-loop state/output
sensitivities. With this new methodology, and the knowledge of maximum parameter deviations,
one can now construct the worst case tubes in the state/input/output spaces. Thanks to this new
approach, we removed the closed-loop input sensitivity from the cost, and thus, we rather use
it to formulate new actuator constraints, with the uncertainty tubes. As for the two preceding
contributions, we validate the procedure with an extensive statistical campaign of simulations.
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For this last contribution, we consider an upgraded model of the space quadrotor with a possible
shift in the Centre of Gravity (CoG), compared to Chapter 5, and keep the same geometric
tracking controller.

Finally, in Part III, we propose an overall conclusion of the contributions. It summarises the
previously mentioned achievements and their limitations. Furthermore, we take a step back, and
give a general conclusive word on the applicability of our frameworks, including an overview
of the remaining challenges to be addressed, and perspectives opened by this thesis.

1.4 Thesis contributions

The work conducted throughout this thesis led to publications in international peer-reviewed
conferences.

Pascal Brault, Quentin Delamare, et al. [2021], « Robust Trajectory Planning with Paramet-
ric Uncertainties », in: IEEE International Conference on Robotics and Automation (ICRA),
pp. 11095–11101

Christoph Böhm, Pascal Brault, et al. [2022], « COP: Control & Observability-aware Plan-
ning », in: IEEE International Conference on Robotics and Automation (ICRA), pp. 3364–3370

Pascal Brault and Paolo Robuffo Giordano [2023], « Tube-Based Trajectory Optimisation
for Robots with Parametric Uncertainty », in: In preparation for the IEEE Robotics and Au-
tomation Letters (RA-L)
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CHAPTER 2

ROBUST TRAJECTORY PLANNING FOR

UNMANNED AERIAL VEHICLES: A

LITERATURE REVIEW

2.1 Introduction

This chapter aims to give an overview of the state of the art in relation to robust trajectory
planning for UAVs. To begin with, we present several designs of multi-rotor ARs, with their
capabilities and limitations. After reviewing several possible control strategies for such systems,
we highlight some common approaches for state and parameters estimation. We finally focus
on the main subject of this thesis, by first investigating customary methodologies of trajectory
generation for UAVs, and then focusing on advanced techniques for robust trajectory planning.

2.2 Multi-rotor aerial robot designs

The versatility of multi-rotor ARs is achieved through the multitude of mechanical configu-
rations available. Each design group possesses unique properties and capabilities, and therefore
the choice of configuration may depend on the desired application. This topic is largely cov-
ered in the input allocation-based taxonomy of [Hamandi et al., 2021]. Through the whole
manuscript, particular attention is given to AVs capable of VTOL, see [Y. Zhou et al., 2020].
Thanks to their ability to hover and take-off/land in a variety of environments, these latter offer
a wider range of applications compared to other AVs: on the one hand, they can navigate in
indoor environments such as offices, warehouses and other facilities, and on the other hand they
are able to operate outdoor in adverse areas like forests or cluttered urban environments. The
main components required for UAV actuation are first outlined, followed by a non-exhaustive
examination of various designs and their key features.
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2.2.1 Actuation unit components

A typical Actuation Unit (AU) for an AR consists of a motor and a propeller.

The vast majority of UAV designs utilise BLDC motors, see e.g., [Yedamale, 2003], due to
their advantageous properties, such as high torque-to-weight ratio, improved efficiency, reduced
noise, longer lifespan (since they have no brushes), etc. Proper selection of these electrome-
chanical conversion machines is achieved through characterisation, see [Gabriel et al., 2011],
and allows to design systems with high efficiency, well-suited for the desired tasks.

Downstream of the engine, the mechanical rotational energy is converted into aerodynamic
thrust by the propeller, which features several blades arranged in a helical spiral shape. The
blades generate thrust on a fluid medium, such as air, as they rotate, creating a pressure dif-
ferential between their upward and downward surfaces through Bernoulli’s principle. Recent
research in the field of propeller design for quadrotors can be found in [Patel et al., 2017],
which covers optimal design and stability features. The role of propeller aerodynamics in UAV
models is explored in [Bristeau et al., 2009], taking into account blade flexibility and the ef-
fects of disturbances on the CoM during forward flight. The aerodynamic characteristics of an
AR can be further evaluated through Computational Fluid Dynamics (CFD), as demonstrated
in [Christodoulou et al., 2019], leading to the identification of optimal propeller shapes for
quadrotor UAVs.

Based on these studies, one can make informed decisions when selecting components for an
AU, depending on the application. Note that this selection should be made taking into account
the overall design of the UAV. In the following subsection, we will therefore present various
drone configurations, emphasising their characteristics, depending on the number of AUs and
their arrangement (in space).

2.2.2 Collinear actuation unit axes

UAVs with fewer than four AUs are inherently unstable, and thus receive limited coverage
in literature. Nevertheless, studying such configurations is still valuable, as their control theo-
ries can be applied to naturally stable structures, in the event of one, or multiple AUs failures.
[Zhang et al., 2016] presents a unirotor’s dynamical model along with a relaxed hover solu-
tion. By nature, the vehicle can substantially only remain in a single position while its attitude
is non-zero, due to the propeller’s drag force. Typically, unirotors are only controllable in three
translational Degrees of Freedom (DoFs) and two attitude DoFs. They are classified as collinear
and coplanar since they are composed of a single actuation unit. [Sun, Wang, et al., 2020] also
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introduces an Incremental Non-linear Dynamic Inversion (INDI) control strategy for a quadro-
tor, with the loss of two opposing AUs, resulting in a similar flawed structure as a collinear
birotor. This configuration can only reach a relaxed hover solution, hovering in position while
spinning along the yaw axis. Similarly, collinear trirotors face hovering limitations due to un-
balanced torques, caused by an odd number of propellers, making a steady position and zero
yaw velocity incompatible, as seen in [Kataoka et al., 2011].

UAVs with four collinear AUs axes, commonly referred to as quadrotors, are the most preva-
lent design in the field. In fact, having at least four AUs is the minimum required condition to
be able to achieve complete hovering stability, i.e. all forces and torques applied to the structure
can balance, leading to motionlessness. With less than that, tilting an AU would be required to
gain this ability. In that respect, the simple mechanics and decoupled force and torque spaces
of collinear quadrotors have made them a popular choice for study. The literature on collinear
quadrotors, including works such as [Bouabdallah, Noth, et al., 2004; Bouabdallah and Sieg-
wart, 2005; Mahony et al., 2012; Pounds, Mahony, and Corke, 2010; Pounds, Mahony, Hynes,
et al., 2002], provides an in-depth understanding of the modelling and control problems. In
addition to the simple mechanics, as described in [Mistler et al., 2001], differential flatness is
a noteworthy property of quadrotors. In systems theory, flatness is a property that extends the
notion of controllability from linear systems to non-linear dynamical systems. By definition, a
system is considered flat if it has a flat output, from which one can explicitly express all states
and inputs, in terms of the flat output, and a finite number of its derivatives. Quadrotors with
collinear and coplanar AUs, evenly spaced around the geometric centre of the structure fea-
ture this nice property, which enables the use of DFL control laws, for very effective trajectory
tracking.

Figure 2.1 – Designs of UAVs with collinear and coplanar AUs axes: a quadrotor (left), an hexarotor
(middle) and an octorotor (right). Source: MikroKopter.

The properties of collinear quadrotors are shared with platforms that include six or even
eight collinear AUs, hence these are also widely documented in the literature. As for quadro-
tors, the vast majority of the designs is with coplanar propellers, regularly spaced around the
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geometric centre of the structure, and with maximum possible symmetry, as can be observed
in the designs of Fig. 2.1. These solutions are favoured for their mechanical simplicity, as well
as the ease of creating control laws. The collinearity of the propellers allows for maximum en-
ergy efficiency, as the thrust from each AU is directed towards the desired motion. Compared to
quadrotors, collinear hexarotors and octorotors have increased payload capacity, and can over-
come rotor faulty: e.g., [Baskaya et al., 2021] studies INDI on a hexarotor, thus capable of static
hovering, in the presence of rotor failure; [Marks et al., 2012] presents a redistributed pseudo
inverse method of control reallocation for fault tolerant control of an octorotor. The combination
of these strategies and the redundancy of the AUs on these platforms enhances their resilience,
which is crucial for safety, especially when operating in close proximity to humans. Other de-
signs with an odd number of AUs, such as pentarotors and heptarotors, lack symmetry and are
by nature much harder to control, resulting in their limited presence in the literature.

Beyond the interesting properties offered by the collinearity of the AUs, some weaknesses
arise directly from the design. The major issue is that the total thrust can only be produced
in one fixed direction w.r.t. the body frame, causing a strong coupling between position and
orientation control. This results in an under-actuated design, meaning that it is not possible to
fully control the AV state. For example, starting from a hovering position, the UAV must rotate
to orient the thrust toward a desired lateral direction. Conversely, the platform cannot tilt without
also moving. In fact, the only stable hovering orientation is with the AUs axis aligned with
the gravity acceleration vector. Furthermore, the yaw control is limited because the propellers
are coplanar. In configurations with an even number of rotors, one out of two propeller rotates
Clockwise (CW) and the other Counter-Clockwise (CCW): thus, the total torque around the yaw
axis arises from the difference in drag torques between the even propellers and odd propellers.

One can quickly deduce that this class of designs is inadequate for various challenges, in-
cluding APhI. In this context, we recall the reader that the AV must be capable of physically
engaging with its surroundings, by, e.g., exerting forces to objects in any desired direction, and
possibly while statically hovering.

2.2.3 Tilted actuation unit axes

To address the limitations of collinear designs, some studies have explored the capabilities
of structures with tilted AUs. These latter designs allow for a combination of individual thrust
vectors, each generated by a single propeller’s spin, resulting in the ability to exert a non-fixed
thrust orientation in the AR’s body frame. This versatility provides partial or full decoupling
of position and orientation control. As depicted in Fig. 2.2, the total thrust exerted by a tilted
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hexarotor UAV is compared to that of a collinear design, in different propeller rotation rate con-
figurations. On the top row, where propellers rotate at the same speeds, the total thrust vector
(in red) is aligned to the vertical axis of the body frame in both designs, with slightly lower
force applied to the tilted UAV: this highlights the reduced energy efficiency of the tilted de-
signs, when oriented towards a desired direction of motion. On the bottom row with different
propeller angular rates, the total thrust orientation changes in the tilted design, allowing for lat-
eral movement while maintaining standard hovering orientation, while for the collinear design,
it remains vertical: this emphasise the under-actuation of collinear designs, for which a change
in the body’s orientation is required to exert the total thrust in a different direction than when
hovering.

Figure 2.2 – Comparison of a collinear and coplanar AUs hexarotor (left) with a tilted AUs hexarotor
(right). The total exerted thrust force vector (in red) is visible for two configurations of the propellers
rotation speeds, respectively at the top and bottom rows.

Similarly to birotors and trirotors with collinear and coplanar propellers, designs for flying
robots with two or three tilting AUs have been proposed, but controlling the complex dynamics
is challenging, and static hovering is difficult to achieve, if achievable. Therefore, this subsection
focuses primarily on systems with four or more AUs, that inherently possess the ability to
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perform static hovering.

The article in [Zheng et al., 2020] describes a unique design for a quadrotor, where the AUs
can be controlled in unison, through a parallel mechanism powered by two linear actuators.
This prototype has the ability to hover, while tilting up to 30° due to its simple control allocator,
which decouples the platform’s position and orientation. Additionally, the prototype is capable
of tracking lateral position commands without tilting, through thrust vectoring. However, it
should be noted that this design has limited yaw control, because the AUs’s tilting is always
synchronised. Other studies have been conducted to enable quadrotors to fully track a 6-DoFs
arbitrary trajectory. For example, in [Ryll, Bülthoff, et al., 2014], a novel over-actuated design
of a quadrotor UAV was presented. This design enables the AUs to radially tilt independently,
with four additional actuators, allowing for improved interaction with objects, compared to
collinear and coplanar quadrotors. Despite this advantage, the design comes at the expense of
increased complexity in dynamics and control, as well as increased total mass and inertia, which
is inherently a limitation. The properties of robots with four tangentially tilting rotors have also
been explored, e.g., in [Badr et al., 2016; Devlin et al., 2018], which enables some decoupling
between translational and rotational dynamics. In [Şenkul et al., 2014], a quadrotor was tested
where all AUs could be inclined independently, both radially and tangentially. Equipped with a
cascaded Proportional Integral Derivative (PID) controller, this AR was able to accurately track
a 6-DoFs trajectory.

Without dynamic tilting, having six AUs is the minimum required condition for a UAV to
allow full actuation. However, as states in subsection Subsection 2.2.2, it is not possible to obtain
this feature with collinear and coplanar propellers. As well explained in [Hamandi et al., 2021],
the tilting angles of each AU have to be carefully chosen in order to achieve full actuation,
i.e. good force and torque decoupling, without sacrificing too much energy efficiency. Tilted
hexarotor designs, as explored in [Michieletto et al., 2017; Rajappa et al., 2015; Ryll, Muscio,
et al., 2017; Tognon, Chávez, et al., 2019], demonstrate excellent capabilities for APhI tasks.
Indeed, to a certain extent, such systems are able to apply forces on objects for various purposes.
Without a doubt, applying precise forces with a flying robot is very challenging, due to the
nature of thrust generation: usually, we only control the angular velocity of the propeller, which,
as explained is Subsection 2.2.1, converts the mechanical rotational energy into aerodynamic
thrust force. The complexity of aerodynamics and associated disturbances limit the accuracy of
force application, and thus the interaction.

While other tilted designs, such as pentarotors, heptarotors, and octorotors have been ex-
plored, the complexity of their models has resulted in increased difficulty in control. As a result,
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the flagship designs remain dominant in the literature.

2.2.4 Summary on multi-rotor designs

In this section, we have shed light on several possible designs of multi-rotors. With each con-
figuration possessing its own unique attributes and varying levels of intricacy, it becomes evi-
dent that the development of control algorithms is crucial, to allow AVs to operate autonomously
and safely.

Although the concepts discussed in this thesis can be applied to any multi-rotor ARs, through
the entire manuscript, the studies are primarily restricted to the classical quadrotors, with collinear
and coplanar AUs, evenly spread around the geometric centre.

2.3 Robust control techniques for quadrotors

A key challenge in robotics is to create autonomous systems that perform well in complex
environments. This requires implementing algorithms that allow for accurate and safe naviga-
tion. To achieve this, a feedback control system is often used, which involves monitoring the
system’s actual output using sensors, and then using a control law to compute inputs that bring
the real output closer to a desired reference signal. The machinery, as depicted in Fig. 2.3,
compares the actual output with the reference signal and calculates the necessary inputs to min-
imise the tracking error. When designed and configured correctly, a feedback control system
can effectively track desired trajectories.

+
− Controller System

Observer

tracking error input output

measured output

reference

Figure 2.3 – Classical scheme of a feedback control system.

In Subsection 2.2.2, we discussed the main features of conventional UAV designs, particu-
larly quadrotors with collinear and coplanar AU axes, evenly positioned around its geometric
centre (as seen in the left of Fig. 2.1). This design is under-actuated, as the collinearity of the
AU axes limits the total thrust force to a single direction w.r.t. the body frame. From a more
mathematical point of view, the under-actuation of a quadrotor arises from the four AUs being
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strictly inferior to the six DoFs of the UAV’s pose in space. As a consequence, it is not possi-
ble to fully control the AR’s state. This shortage induces challenges for stabilisation, trajectory
tracking, and disturbances rejection.

The coupling between the position and orientation of a standard quadrotor UAV makes its
dynamics highly non-linear. To address this, and improve the global performance of systems,
researchers have designed controllers with varying levels of complexity, see e.g., the reviews
of [Han et al., 2018; Mo et al., 2019; Nguyen et al., 2020; Zulu et al., 2016] and the refer-
ences therein. In this section, we review the main controllers that have been developed over the
past decades, categorised in three classes of algorithms: linear control, non-linear control and
adaptive/intelligent control.

As outlined in Section 1.2, the models of multi-rotor UAVs are based on the complex the-
ories of aerodynamics and fluid mechanics. The possible uncertainties in the model parameters
pose challenges for precise and reliable control. In the context of this thesis, for each class of
control strategies, we compare the level of achievable robustness.

2.3.1 Linear flight controllers

Linear control systems are widely known for their simplicity and versatility. These control
strategies have been effectively utilised in several applications, including the quadrotor UAVs
case, where they have been shown to perform well in maintaining stable hovering. In this sub-
section, we will review some of these linear control techniques in more detail.

2.3.1.1 Proportional integral derivative controller

The PID controller, see [Johnson et al., 2005; Visioli, 2006], is probably one of the most
popular algorithm. Due to its simplicity, it has been widely used to control mechatronic systems:
it is easy to implement, the gain parameters can be adjusted without difficulty, and the tracking
performance is consistent. The PID algorithm takes into account past, current, and future error
states to reduce control error, and does not require a good mathematical model of the system
being controlled.

However, when implementing a PID controller on a quadrotor, additional challenges arise,
due to the non-linear dynamics, caused by the under-actuation of the AR. Despite this issue,
many works have contributed to the development of this control strategy, see e.g. [Atheer et al.,
2010; Bouabdallah, Murrieri, et al., 2005; Bouabdallah, Noth, et al., 2004; J. Li et al., 2011;
Salih et al., 2010], and have demonstrated its ability to control the orientation angles, even in
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the presence of small perturbations. The results lead one to believe that even if a quadrotor is
inherently unstable, PIDs controllers are reliable enough for applications where the platform is
sufficiently close to hovering (i.e., the pitch and roll angles remain small enough).

In more recent developments [Hoffmann et al., 2007; H. Yang et al., 2017] in PID control,
several issues have been addressed, e.g. when operating at higher speeds (i.e. when the flight
regime cannot be approximated as near hovering), or in the presence of wind disturbances.

2.3.1.2 Linear quadratic regulation controller

As the field of optimal control is concerned with operating a dynamic system at minimum
cost, linear quadratic problems have been described as the association of a system’s linear dy-
namics and a quadratic cost function. It has been shown that the solution for this type of prob-
lem is provided by the Linear Quadratic Regulation (LQR) controller. Essentially, the algorithm
helps automating the search of an optimal controller, set by minimisation of the cost function,
which is often a function of measurement’s deviations from their desired values.

This technique has been effectively applied and tested for quadrotors in various studies,
including [Bouabdallah, Noth, et al., 2004; Cowling et al., 2007] and more recently in [Argentim
et al., 2013; Khatoon et al., 2014; Martins et al., 2019; Okyere et al., 2019]. It has been validated
through simulation and experiments, and has shown great capabilities for trajectory tracking,
even under external disturbances.

Note that for this kind of controller, a good model is needed, because otherwise the optimisa-
tion might output incorrect gains, and the system will not be able to deliver its best closed-loop
performance. This is the case for aggressive trajectories, for which the drone has to tilt a lot in
order to produce a high horizontal thrust, i.e. the near hovering linearised model is not a good
approximate of the UAV’s behaviour.

2.3.1.3 H∞ controller

In the context of robust tracking w.r.t. model parameter uncertainties, specific algorithms
have been developed to address the issue. In particular, the H-infinity (H∞) approach is widely
used for linear, time-discretised systems, and aims to provide controllers that have minimal
sensitivity, see e.g., [Vinnicombe, 2001].

Such algorithms are common in practice, because they guarantee the basic control per-
formance requirements, plus they are able to solve the modelling error. This optimal control
method seeks to find a stable classical dynamic feedback loop, that minimises the H∞ norm of
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the system between unwanted signals and output errors, thus minimising the worst-case sce-
nario effects of undesired signals, i.e. over all possible inputs. Therefore, it is considered a
robust control technique. H∞ controllers have been successfully implemented in various stud-
ies, e.g. [Araar et al., 2014; Hamza et al., 2022; Kang et al., 2015], and further validated by the
simulations and experiments therein.

However, it is important to note that this approach requires a high level of mathematical
understanding, and incurs significant computational costs.

2.3.1.4 Summary on linear controllers

The linear control policies discussed in Subsection 2.3.1 have successfully shown their abil-
ity to stabilise a quadrotor UAV and perform the tracking of a reference output trajectory. In
terms of robustness against deviations in the model parameters, they can be ordered from least
to most robust:

— the LQR controller is optimal in terms of tracking performance when the model param-
eters are known with utmost accuracy, but it is obtain through an optimisation procedure
that exploits the system’s dynamical model, and is thus not very robust against paramet-
ric uncertainties;

— the PID control policy does not require a good model of the system, and provides an
average robustness;

— as H∞ strategy is tailored to be robust, and places itself far ahead of the other two.

Nonetheless, linear controllers require the dynamics of the AR to be linearised, meaning that
they can only perform really well when the approximation is correct, i.e. when the system is near
hovering. Consequently, non-linear techniques are further examined to overcome this limitation.

2.3.2 Non-linear flight controllers

Non-linear control theory tackles complex systems that exhibit non-linear and/or time-
varying behaviours. Unlike in linear control theory, non-linear controllers can handle a broader
range of systems, which do not abide by the superposition principle. In reality, all systems pos-
sess non-linear characteristics, and their dynamics are thus often governed by sets of non-linear
differential equations. Classical quadrotors, due to their under-actuation, have highly non-linear
dynamics, and thus non-linear flight controllers are warranted for better performance. In this
subsection, we review some of the prominent non-linear algorithms that have been developed
for quadrotor UAVs.
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2.3.2.1 Dynamic feedback linearisation controller

As explained previously in Subsection 2.2.2, differential flatness is a property that allows
non-linear dynamical systems to be controlled in a manner similar to linear systems. Classical
quadrotors feature this interesting property, thus all states and inputs can be expressed in terms
of a suitable flat output (e.g., the Cartesian space position and the yaw angle) and a finite number
of its derivatives, as described in [Murray et al., 1995; Van Nieuwstadt et al., 1998]. This enables
the creation of a DFL control policy, which allows to generate smooth trajectories in the space
of the flat output, to be tracked by the under-actuated AR.

Therefore in [D. Lee et al., 2009; Mellinger and Kumar, 2011], the flatness property is
exploited to transform the non-linear dynamics into a linear equivalent. Then, based on the in-
verted dynamics, a DFL control law is proposed, to ensure the global exponential attractiveness
of the feedback control loop. While these studies have validated the potential of the strategy to
track references with utmost accuracy, they have also shown that the DFL algorithm is sensitive
to sensor noise because high degree of derivation needed to perform the linearisation, and it has
also very limited robustness against model parameter uncertainties.

2.3.2.2 Back-stepping controller

The back-stepping approach is a non-linear control method that has been explored for a
specific class of systems, as reported in studies [Fantoni et al., 2002; Sepulchre et al., 2012]. This
recursive method works by designing the control law for the innermost subsystem of a robot,
and then successively designing controllers for outer subsystems, until the external control is
reached.

If a quadrotor’s model is written in an appropriate form, e.g. divided into three subsystems
– an under-actuated subsystem, a fully actuated subsystem, and a propeller subsystem – this
technique can be applied, and a synthesis of the complete strategy can be described in several
steps, to ensure and asymptotically stable feedback control system.

Simulation studies, e.g. [Bouabdallah and Siegwart, 2005; Madani et al., 2006] have demon-
strated good performance in tracking the Cartesian position and heading angle of a quadrotor
UAV. To summarise, the back-stepping method is fast-converging, requires low computational
resources, and can handle disturbances effectively. However, as the construction of this algo-
rithm is highly model-dependent, its robustness against parametric uncertainties is limited.
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2.3.2.3 Geometric tracking controller

As the quadrotor UAV is an under-actuated system, it must first orient itself in a desired
direction before it can move towards it. Therefore, it is crucial for the orientation coding to be
as efficient as possible for control. For instance, Euler angles, that consist of pitch, roll, and yaw
angles, are often used to mathematically represent the orientation of a body in space, w.r.t. a
fixed frame. However, this three-gimbal solution is subject to a loss of degree of freedom when
the axes of two of the gimbals align, causing the system to be unable to rotate about one axis.

Recognising this well known issue, a geometric non-linear controller for a quadrotor was
proposed in [T. Lee, Leok, et al., 2010b]. This design expresses the system’s dynamics on
the configuration manifold of the special Euclidean group SE(3). The controller is capable of
stabilising six DoFs using the four thrust inputs, while tracking the drone’s linear position and
heading angle. The controller exhibits exponential stability, as long as the initial attitude error
is small. This design has shown excellent results in tracking fast and acrobatic manoeuvres for
a quadrotor, as demonstrated in [T. Lee, Leok, et al., 2010a].

More recently, the controller has been advanced to a more robust version. In [T. Lee, Leok,
et al., 2013], the authors demonstrated successful completion of complex flight manoeuvres
in numerical simulations, by switching between three control laws, with the assumption of
bounded and additive uncertainties in the quadrotor’s dynamical model. In [Gamagedara et al.,
2019], the geometric controller was updated, to take into account the mechanism of moment
generation in control law design, as the dynamics of the attitude angles were assumed to be
under-actuated. The improved control method in this version exhibits improved reliability and
consistency, with a longer response time around the yaw axis, but maintained close to zero
errors in critical pitch and roll angles for linear position tracking, resulting in superior position
tracking performance compared to the original [T. Lee, Leok, et al., 2010b] controller.

2.3.2.4 Modern predictive control

In the field of aerial robotics, the study of optimal control has been a longstanding focus.
This branch of control theory aims at minimising a specified cost function within a defined
domain. Model Predictive Control (MPC), as described in [Camacho et al., 2013], is a sophisti-
cated form of optimal control, that leverages the history of control inputs, to predict the future
actions of a robot.

Unlike LQR, MPC optimises the current control inputs over a finite horizon at successive
sampling instants, instead of generating a single optimal input over the entire time horizon.
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Although LQR has better stability properties compared to MPC, it lacks performance when
operating outside of the linearised model. MPC, on the other hand, can handle non-linear sys-
tems, as described in [Allgöwer et al., 2012], by considering the system dynamics and various
constraints and objectives, through local linearisation of the system’s non-linear dynamics, and
solving the optimisation problem at each sampling time over the receding horizon. While sta-
bility proofs of non-linear MPC have not been fully established, only being demonstrated for
unconstrained problems, the efficiency and robustness of this control approach have been em-
pirically demonstrated for non-linear systems.

In [Sun, Romero, et al., 2022], a comprehensive comparison between non-linear MPC and
DFL control was conducted, showing that MPC outperforms DFL in terms of robustness against
model uncertainties. In [Kamel, Burri, et al., 2017], the authors compare linear and non-linear
MPC for AVs, concluding that the non-linear version offers several advantages, including im-
proved disturbance handling and tracking accuracy, as well as faster computation speed.

2.3.2.5 Sliding mode controller

The Sliding Mode Controller (SMC) theory, described in [Edwards et al., 1998; Young et
al., 1999], employs an algorithm that adjusts the dynamics of a non-linear system, and guides
the system states towards a specific surface, known as the sliding surface, in the state space.
The feedback control law is a discontinuous function of time, and alternates between various
continuous structures, based on the current state measurements. To design this controller, it is
necessary to choose an appropriate sliding surface, that meets the desired behaviour specifica-
tions, and then select the control law to attract the system state to the switching surface.

Sliding Mode Controllers (SMCs) offer several advantages, including the ability to cus-
tomise system behaviour through the design of the sliding function, and insensitivity to uncer-
tainties such as model parameter variations, external disturbances, and bounded non-linearities.
Researchers [Bensalah et al., 2019; Bouabdallah and Siegwart, 2005; Efe, 2007; Eltayeb et al.,
2020; Labbadi et al., 2019] have successfully implemented and tested the full closed-loop SMC
for quadrotor control, showing its ability to stabilise the UAV. The proposed control strategy
has also outperformed a DFL controller, in the presence of parametric uncertainties.

2.3.2.6 Summary on non-linear controllers

In this subsection, we have reviewed several non-linear control strategies, prominent in the
UAV community. Although each has its own characteristics, all are capable of performing track-
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ing tasks correctly. Regarding their robustness against deviations in the model parameters, we
can rank them as follows:

— the DFL controller offers superior tracking performance without parametric uncertain-
ties, however it clearly lacks robustness as it strongly relies on the model of the robot;

— the back-stepping control policy, which requires low computational resources, also relies
on the model, thus it is not very robust;

— the geometric tracking controller has an average robustness;
— MPC is quite robust, since it leverages the measurements and the previous predictions

to do the optimisation over a time window, thus adapting efficiently;
— the SMC offers great robustness against uncertainties in the model parameters, but re-

quires a more complex design and adjustment to avoid chattering.

In essence, these algorithms can be improved to address various issues: recent versions of the
geometric tracking controller have made it more robust, or MPC can be adapted to be more
robust, e.g. by adding unmeasured noise in the process, etc. Nonetheless, it would be interesting
to design controllers that could adapt, and handle a wide range of challenges, without prior
knowledge. In the next subsection, we examine the capabilities of various intelligent control
policies.

2.3.3 Intelligent flight controllers

Intelligent control algorithms are developed by emulating specific behaviours found in bio-
logical systems. The characteristics include adaptation, learning, planning under possible large
uncertainties, and handling large amounts of data. The recent advancements in computing tech-
nologies have allowed to evaluate the effectiveness of these advanced techniques.

2.3.3.1 Fuzzy logic controller

In control theory, a Fuzzy Logic (FL) controller, as described in [Passino et al., 1998], op-
erates by utilising mathematical systems, with logical variables that can take continuous values
between 0 and 1. Unlike conventional control methods, FL can handle non-linear systems and
uncertainty in data, while being highly modular. In a FL controller, measured errors are mapped
by fuzzy sets, in order to create linguistic representations, that can be understood by humans.
A set of if-then rules then guides an inference engine, to simulate human decisions from the
fuzzy variables, and output further fuzzy variables, which are eventually defuzzified, as system
inputs.
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A case study in [Santos et al., 2010] used FL for a quadrotor UAV control system, with
four strategies designed to track height, pitch, roll, and yaw references. An associated PID-like
controller was then defined for each possible motion, including a detailed height control law.
Simulated flight results were promising, with the authors highlighting the importance of param-
eter tuning, and the need for future experiments, to demonstrate the robustness and efficiency
of the control strategy.

In another study, [Coza et al., 2011] proposed an adaptive FL controller, for robust quadrotor
stabilisation, in the presence of wind disturbances. In comparison to SMC, which can result in
chattering of the control signal, the FL controller showed great stability in simulations.

2.3.3.2 Neural networks controller

Artificial Neural Networks (NNs), see e.g. [Abdi et al., 1999; C. M. Bishop, 1994], are
widely used to control systems nowadays, especially non-linear ones. In fact, the goal of a NN
is to replicate the abilities of the human brain, among which adaptability is the most sought after.
Thereby, NNs are originally inspired by the behaviour of a biological central nervous system, in
order to introduce the desired brain functionalities. Typically, a NN is a mathematical function
that maps a given set of inputs to a desired set of outputs. This tool is specifically designed and
then trained for a specific application, using a database of processing examples, which contain
a known input and the associated desired output. The training process is usually conducted by
successively computing the error between the output given by the NN for a specific input, and
the desired target output. At each iteration, and through the whole database, the network adjusts
its internal weights, according to the learning rule and the computed output error. If the database
is sufficiently large and includes enough variation in the inputs, the NN will tend to produce
outputs which are increasingly close to the target outputs. The great advantage of Artificial
Intelligence (AI) is that is can learn without the need of explicit programming, but rather by
providing database of examples associated with the target result. Then, a simple gradient descent
allows to adjust the parameters of the network, which optimises it for the sought application.

Of course, as NNs have been very popular in recent decades, works such as [Dierks et
al., 2009; T. Lee and Y. Kim, 2001] have implemented feedback control laws based on these
latter, in order to test their soundness for quadrotor UAVs. Even in the presence of unmodeled
dynamics and unknown bounded disturbances, the controllers have successfully tracked all six
DoFs. The virtual control structures allowed to obtain the desired translational velocities with
the correct attitude tracking of the UAV. Simulation results confirm the theoretical conjectures.
In [T. Lee and Y. Kim, 2001], the stability is analysed with Lyapunov theory. However, the
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major drawback of NNs is the high computational power required for training, with a suitable
training database, for the desired application.

2.3.4 Summary on flight controllers

It is clear that no single linear, non-linear, or intelligent control algorithm for quadrotors
can outperform the others, on all criteria. Researchers have attempted to overcome this chal-
lenge by developing hybrid controllers, which combine the principles of several control poli-
cies. Although some of these attempts have shown improved versatility and robustness, each
improvement from hybridisation also has a drawback, inherent in its design. As a result, even
with hybrid controllers, it is impossible for one controller to outperform all others. There are
too many performance characteristics to consider, such as robustness, speed, precision, ease of
tuning, adaptability, and computational cost, that a trade-off must always be made. The optimal
controller will depend on the specific application. Switching between controllers during flight
is possible, but it requires designing and implementing multiple controllers, as well as defining
the switching conditions.

Once a controller is designed or chosen, it can deliver a closed-loop performance that reflects
its characteristics. On the first hand, for many controllers, the control inputs are determined us-
ing a mathematical model of the quadrotor’s dynamics, which relies on accurate parameter
measurements. On the second hand, as one can see in Fig. 2.3, the tracking error is also in-
fluenced by the quality of the state measurement. Thus, regardless of the selected controller,
the overall performance of the feedback control system depends on the accuracy of the state
observer, and the measurement of model parameters.

2.4 State and parameter estimation

For robots to act autonomously, they must have the ability to determine their location at a
given instant, e.g., when reaching a target to carry a task. This understanding is achieved through
perception: as for any living organism, it consists of acquiring information through sensors. In
robotics, sensors are detection devices that convert physical inputs into electrical signals, that
can be further processed by the robot’s control system. However, the conversion process is not
perfect and can introduce errors, such as drift and measurement noise. This means that the
sensor readings are not always accurate representations of the actual physical data.

Moreover, as explained in Section 2.3, as parameters of the dynamic model are often im-
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planted inside the control algorithms, they must be accurately estimated. The parameters esti-
mates are made through measurements, which can range from simple methods, such as weigh-
ing the robot, to more complex experiments, such as measuring aerodynamic thrust coefficients
in a wind tunnel. The quality of these measurements directly impacts the accuracy of the pa-
rameters used in the control algorithm, with better quality measurements resulting in lower
parametric uncertainty, thus better performance of the feedback control system.

After a brief overview of traditional state estimation techniques for ARs, we will explore
methods that enable real-time parameter estimation.

2.4.1 State observers for aerial robots

A feedback control system, as illustrated in Fig. 2.3, requires measurement tools, to com-
pare the actual output of a system to the desired output. As already highlighted, through the
conversion process of sensors, drift and noise errors may be introduced in the measurements.
To address this issue, researchers have developed state estimation techniques that integrate data
from the various sensors available for the robot, to produce an estimate of the varying quanti-
ties of interest, namely the system’s state. Typically, most state observers exploit the system’s
dynamic model, known control inputs, and multiple sensor measurements, to compute an es-
timation of a state, that is likely to be more precise than the estimate obtained by using the
single measurement alone. Additionally, in most cases, the state of the system is larger than the
number of directly measured variables. However, if designed correctly, state observers can still
reconstruct and estimate the full state.

In control and estimation theory, Kalman Filter (KF), see [Welch et al., 1995], also referred
to as linear quadratic estimation, is a widely used algorithm. The filter produces more accurate
estimates of desired variables by exploiting a combination of system dynamics, measurement
data and sensor fusion, to mitigate uncertainties caused by measurement drifts and noise. As
shown in Fig. 2.4, the estimator calculates a weighted average of the current prediction and the
new measurement at each time sample, to update its estimate. The Kalman gain is chosen to
minimise the a posteriori covariance of the estimator. A study in [Wendel et al., 2006] focused
on the state estimation of a quadrotor UAV using two different KFs, with the primary sensor
being an Inertial Measurement Unit (IMU), as the INS, and also a secondary sensor being a
small GPS receiver. The aim was to achieve sufficient attitude accuracy for stability under vari-
ous operating conditions, including GPS outages (when the GPS was unavailable, a switch was
made between the two KFs). The study showed that, even in the absence of GPS measurements,
the attitude estimation was precise enough.
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Figure 2.4 – Architecture of a Kalman filter.

In [Xiong et al., 2015], an Optimal Kalman Filter (OKF) method was developed, to assess
the accuracy of full state vector estimation for a quadrotor UAV, in the presence of white Gaus-
sian process and measurement noise. The dynamics of the quadrotor were modelled as a discrete
time system through linear extrapolation. The performance of the full feedback control system
was tested through a series of simulations, which showed that the method effectively reduced
variance and improved estimation accuracy.

The original KF estimation algorithm can be adapted to produce an Extended Kalman Filter
(EKF), which incorporates the non-linear dynamics of the system into the estimation process.
As for the KF, the EKF is divided in two main components, the prediction and the correction
steps. The prediction step consists of propagating the states forward using the non-linear sys-
tem’s model, as well as the measurements model. Then, the correction step refines the estimates,
using the current available measurements and the predicted states. The performance of the EKF
has been evaluated in various studies, such as [Ascorti, 2013; Raja, 2017]. The filter was tested
using standard IMU sensors, consisting of accelerometer, gyroscope, and magnetometer. De-
spite the presence of biases and faults in the IMU sensors, the EKF was able to accurately
estimate the states of a quadrotor in real-time.

The estimation process is crucial, especially when performing aggressive manoeuvres, in
situations where onboard sensors can partially fail or in GPS-denied environments. [Goodarzi
et al., 2017] has improved upon previous works on the control of quadrotors [T. Lee, Leok,
et al., 2010a, 2010b, 2013], by formulating an EKF on the special Euclidean group SE(3).
The proposed filter showed desirable properties in numerical simulations, including accurate
estimation of translational velocity despite large initial error and high noise measurements, and

30



2.4. State and parameter estimation

effective operation without GPS data. Real experiments further validated the proposed method’s
capabilities, with angular velocity and attitude measured from an IMU, and position from a
Motion Capture (MoCap) system. The results showed that the EKF provided precise estimation,
in multiple scenarios.

As already explained several times, quadrotors are subject to aerodynamic forces, uncertain-
ties, and external disturbances. In that context, sliding mode observers are commonly used for
state estimation, and evaluation of external disturbances, such as wind and noise. As noted in
[Benallegue et al., 2008], these observers offer several benefits, including immunity to unknown
inputs, the ability to identify inputs, and finite-time convergence to the state vector. This study
combined a DFL controller with a high-order sliding mode observer, to control a the UAV. The
aim was to avoid complex non-linear control solutions. The observer was used to counteract
the non-linear effects of external disturbances, and simulations showed that accurate inner esti-
mations of these disturbances enabled the development of a stable and robust feedback control
system. The observer design successfully reconstructed unmeasured states.

Designing experiments that yield accurate state estimation requires careful consideration
of the control inputs that will drive the system. An effective approach is to generate specific
trajectories that maximise the observability of the system’s states. In this regard, the non-linear
observability metric provides insight into the observability of a system, and identifies control
inputs that can improve the accuracy of the estimates. The authors of [Hausman, J. Preiss, et
al., 2017] propose a framework for trajectory optimisation, that facilitates self-calibration of
UAVs. This framework, which is not tied to any specific state estimation method, focuses on
generating motions that render the state more observable. The authors use a Taylor expansion
to approximate the local observability Gramian, by integrating over the trajectory, and then
use this metric to define the cost function in the trajectory optimisation problem. A simulation
study involving a quadrotor UAV equipped with an EKF IMU/GPS state estimator demonstrates
the effectiveness of the observability-aware trajectory generation method, which is shown to
outperform standard methods such as minimum snap [Mellinger and Kumar, 2011].

Afterwards in [J. A. Preiss et al., 2018], the Expanded Empirical Local Observability Gramian
(EELOG) is defined as a suitable metric for evaluating the observability quality. As outlined in
[S. M. Weiss, 2012], a state is considered well observable if a marginal change in the state re-
sults in a significant change in the system’s output, while it is poorly observable if a large change
in the state causes only a small change in the output. The theory presented in [J. A. Preiss et al.,
2018] is supported by extensive simulations on a quadrotor UAV, that tend to demonstrate the
correlation between the minimised EELOG cost function value and the estimation accuracy. For
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a real AV, using calibration-aware trajectories leads to improved results (compared to heuris-
tic trajectories), thus validating the effectiveness of the framework, in terms of the IMU/GPS
position state estimation.

The objective of state estimation is to accurately determine a key variable of the system
being controlled. By exploiting the system’s dynamic model, state observers use available mea-
surements to reconstruct accurate data, for use in the control loop. Parameters of the model,
which are generally considered unknown but static values, can be estimated in a simpler man-
ner compared to the state variables.

2.4.2 Online parameter identification

Accurate knowledge of the parameters that describe the dynamics of robots is critical to
achieving high performance. This information is essential for setting the controller, in order
to optimise the navigation’s accuracy and reliability. Most of the time, system identification is
performed offline, prior to any control task. An alternative point of view, which stems from
adaptive control, see [Åström et al., 2013], is to provide an improved estimate of the parameter
values in real-time, through an online estimation process. By including estimation dynamics in
the controller, it is possible to update the model’s parameters, using available measurements.
This technique is commonly used in rocket launches, where the rapid consumption of fuel
requires accounting for changes in total mass during flight. It can also be used to improve
the accuracy of parameters that are assumed to be static, but are inaccurately measured during
offline system identification.

A possible approach for estimating the parameters of a quadrotor UAV is by using a state
observer. As the dynamics are highly non-linear, in [Abas et al., 2011] the Unscented Kalman
Filter (UKF) is introduced, since it offers a more accurate estimation than the EKF. Unlike the
EKF that constructs a linear approximation of the non-linear transformation function using a
first-order Taylor expansion, the UKF generates an approximation with multiple sigma points.
When the function to be estimated is highly non-linear, the UKF leads to higher resolution belief
and generally better results. The UKF method was applied to a quadrotor to estimate moments
of inertia at x, y, z-axes and rotor inertia. The simulation results indicate the effectiveness of the
UKF in real-time data analysis, when the model and identification data are suitable, showing
good convergence time and reliable estimations.

To determine unknown or inaccurate parameters in a non-linear dynamical system, the batch
least-square procedure is commonly used [Bar-Shalom et al., 2004]. The goal is to compare the
expected trajectory of the system with experimental measurements, for a given set of control
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inputs. This comparison is repeated multiple times, and the set of parameters that minimise
the least-square difference between the model and measurements is retained. If the model is
correct, the state observer is precise, and the initial parameters are in the neighbourhood of
the actual values, the estimated parameters will converge to the true values. Motivated by the
fact that delivery quadrotors can experience changes in properties during package grasping or
release, [Dhaybi et al., 2020] applied the recursive least-square estimation algorithm to such
UAVs, with covariance resetting. In this research, an experiment was designed to continuously
generate exciting inputs, ensuring the convergence of the estimated parameters towards the
actual values. The simulation and experimental results demonstrate the estimator’s accuracy,
efficiency, and convergence rate.

Based on the EELOG metric, see Subsection 2.4.1, a new research study presented in
[Böhm, G. Li, et al., 2020] aims to plan informative trajectories, for self-calibration of geo-
metric and inertial parameters of a quadrotor. The state vector of the UAV is extended with a
time-independent vector that includes mass, moments of inertia, position of the CoG, and poses
of the sensors in use. To maximise the quality of observability, as determined by the EELOG
metric, the researchers use an framework that optimises the EELOG cost function. The sound-
ness of the strategy is assessed through experiments on a real UAV, with an EKF as the state
observer.

The extensive research conducted on observability, see, e.g., [Böhm, G. Li, et al., 2020;
Hausman, J. Preiss, et al., 2017; J. A. Preiss et al., 2018], has led to further investigation. In
[Böhm, Scheiber, et al., 2021], the observability of the extended state was evaluated for various
multi-rotor UAV configurations, and four different sensor setups. The extended state estimation
included parameters such as the position and orientation of each AU, thrust and drag coefficients
of each propeller, mass of the AV, moments of inertia, and others. The estimation was performed
using an Iterative Error-state Kalman Filter (IEKF), and the generated trajectories, which were
produced by an aggressively tuned MPC, sufficiently excited all six DoFs. In this work, the
authors suggest to use the more elaborate observability-aware trajectories from [Böhm, G. Li,
et al., 2020], in order to improve even further the convergence of the estimates.

2.4.3 Summary on state/parameter estimation

In Subsection 2.4.1, we have examined various state estimations techniques that can be ben-
eficial for the control of ARs. These techniques provide a solid foundation for further extending
state observation, to include the estimation of system model parameters, as discussed in Sub-
section 2.4.2. The generic feedback control system depicted in Fig. 2.3 is composed of three

33



Chapter 2 – Robust trajectory planning for unmanned aerial vehicles: a literature review

key elements: the system, the controller that enables it to execute navigation tasks, and an ob-
server, that is responsible for providing accurate feedback information, and closes the control
loop. Although each of these components has been previously reviewed, successful autonomous
navigation of robots depends on the ability to generate well-designed reference motions.

2.5 Trajectory generation for aerial robots

Trajectory planning is of utmost importance in the field of modern robotics and automation.
Regardless of the mechanical structure, the completion of a given task is based on the execution
of specific movements imposed on the robot. This is particularly crucial for mobile systems such
as quadrotor UAVs, with recent, complex applications, that require operating in cluttered indoor
environments. Factors such as under-actuation, aerodynamic effects, external disturbances, ge-
ometric and actuation constraints, make the task even more challenging. Nevertheless, in recent
years, a great deal of effort has been put into developing frameworks that cater to the diverse
requirements of various applications. A review of many planning algorithms can be found in
[LaValle, 2006].

2.5.1 Path finding

As UAVs often encounter adverse conditions in both indoor and outdoor environments,
a competent path planner is necessary to chart a successful course for their mission. In this
subsection, we present an overview of various path planning approaches, serving as a foundation
for trajectory planning. For a comprehensive survey of the available algorithms, we refer to [L.
Yang et al., 2014].

Random sampling techniques, such as the Probabilistic Road-map Method (PRM) [Kavraki,
Kolountzakis, et al., 1998; Kavraki, Svestka, et al., 1996], can solve the problem of providing
effective paths for mobile robots. The path determination process is divided into two stages.
The first stage, which is completed offline, involves constructing a complete network graph of
the robot’s environment using available information. In the second stage, the graph is used to
connect the starting point of the AR to its destination. Once the global path is established, a
smoothing method can be applied to find the shortest path. In a study of a quadrotor UAV [Chen
et al., 2019], the PRM was combined with the Artificial Potential Fields (APF) method [Khatib,
1986]. The resulting algorithm generated a repulsive force field around obstacles and an attrac-
tive force field towards the target, resulting in a more efficient and improved strategy, compared
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to the traditional PRM. The authors acknowledge that their framework only considered static
environments, and that the dynamics of AVs should be addressed in future research.

The Rapidly-exploring Random Trees (RRT) algorithm [Hsu et al., 2002; Kuffner et al.,
2000] is a widely used random sampling strategy for path planning. It starts by growing a
tree from the initial point in state space, by using random samples in the search space. Each
generated sample is connected to the nearest point in the tree, and if the connection is feasible, it
is added to the tree as a new possible state. The growth of the tree can be guided by adjusting the
probability of generating samples in certain areas. In [Bouzid et al., 2017], an upgraded version
of the RRT is combined with the Travelling Salesman Problem (TSP) solved using a Genetic
Algorithms (GA) to generate optimal paths for a quadrotor in cluttered environments. This two-
stage approach balances the objective of avoiding collisions with obstacles while minimising
the energy consumption of the AV.

Dijkstra’s algorithm [Dijkstra, 1959] has been utilised for finding optimal paths, in a known
environment with obstacles or constraints. This procedure, which exists in many variants, de-
termines an adequate cost function, further used to optimise the path. For instance, [Gautam
et al., 2013] presents a framework that uses Dijkstra’s algorithm to plan a minimal distance and
obstacle-free path for a quadrotor, equipped with a self-tuning fuzzy logic controller.

Another trend to path planning involves drawing inspiration from biological systems. One
of the key advantages of these methods is that they do not require complex environment models.
For example, the efficacy of Evolutionary Algorithmss (EAs) for quadrotor path generation has
been demonstrated in studies like [Hasircioglu et al., 2008]. This optimisation approach uses
natural selection to identify the fittest individuals within a population. The best individuals are
chosen as parents to produce offspring for the next generation, and the population continues to
evolve towards an optimal solution, through repeated cycles of selection and reproduction. In
some applications, such as rescue operations, the speed of exploring an environment is critical.
To address this issue, [Cheng et al., 2009] developed an Ant Colony Optimisation (ACO) path
planner for a swarm of UAVs. The results of the simulation show that this cooperative method
can significantly enhance the overall coverage of the AV.

The primary distinction between path planning and trajectory planning is that the latter is
defined by time. Most path finding methods only focus on determining a geometric reference,
without taking temporal considerations into account. To guarantee that a navigation task is fea-
sible for an UAV, it is imperative to consider the limitations of its actuation system. Trajectory
planning, which encompasses path planning, consistently addresses this critical issue.
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2.5.2 Motion planning

In general, TO problems are formulated to minimise a cost function of interest, while sat-
isfying geometric, kinematic and actuation constraints, ensuring that the resulting reference
trajectory is suitable for the tracking. For quadrotors, as the capabilities continue to increase,
the problem has been addressed many times in order to maximise the potential of new applica-
tions. Moreover, a system that operates quickly is always preferred. Therefore, the challenges
brought to trajectory planning for UAVs require that the motion:

— is collision-free, and the drone safely avoids all obstacles, i.e. the tracking is accurate
enough;

— is dynamically feasible, i.e. the inputs never saturate;
— allows for minimum execution time of the task;
— is computationally efficient.

As for any robot, the performance of quadrotor is limited by their AUs, because the currents
of the BLDC motors are bounded, to avoid overheating. This highlights the importance of en-
suring that UAVs operate within the safe limits of their actuators. To address this issue, the work
of [Hehn et al., 2011] focuses on developing an algorithm that generates feasible trajectories for
drones. The input saturations are defined as non-linear constraints in an optimisation problem,
which generates a trajectory from a starting point to a final target, subject to kinematic limit
conditions. The effectiveness of this approach has been validated through experiments.

The pioneer work of [Mellinger and Kumar, 2011] presents a minimum snap algorithm for
aggressive flight. The authors aim to address the limitations of previous research, that used near
hovering flight controllers, and linearised dynamics under the assumption of small pitch and roll
angles. As this assumption is not suitable for all applications, the authors provide a trajectory
planning methodology based on the quadrotor’s differential flatness property (see Subsubsection
2.3.2.1), to design smooth motions that pass through key-frames of space position and yaw
orientation, at specified times. The optimisation problem minimises the integral of a weighted
combination of squared position snap and squared yaw acceleration, while ensuring continuity
between each piece, kinematic conditions at the start and end of the motion, and actuation limits.
Additionally, corridor constraints can be imposed to ensure that the motion follows a specific
path to reach a key-frame. The soundness of the method was verified through experiments on a
real-life quadrotor, demonstrating its ability to design reference motions for aggressive flights
in challenging environments.

In [Richter et al., 2016], the minimum snap algorithm was extended by combining it with the
geometric controller of [T. Lee, Leok, et al., 2010b]. This resulted in a polynomial TO frame-
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work that minimises the integral of the snap during the motion, while considering obstacle
avoidance, and input saturation constraints. A comparison was made between this framework
and RRT* with a polynomial steer function, which showed that the new method was faster and
more stable, in terms of generation speed and numerical stability. The differential flatness prop-
erty allowed for a low-dimensional search for the shortest path, which could then be translated
into a dynamically feasible trajectory.

The Co-variant Hamiltonian Optimisation for Motion Planning (CHOMP) procedure [Ratliff
et al., 2009] has evolved from traditional path planners (Subsection 2.5.1), and is used for the de-
sign of trajectories with dynamic and task-specific criteria. This efficient motion planning tech-
nique handles obstacle avoidance and optimal control simultaneously. As it was originally tested
on manipulators and quadrupedal robots, CHOMP served as an inspiration in [Oleynikova,
Burri, et al., 2016], which proposes a real-time TO framework, for quadrotor UAVs. The ap-
proach generates obstacle-avoiding trajectories using a piece-wise polynomial trajectory, sub-
ject to continuity conditions, and minimises a cost that includes the integral of the squared snap,
as well as collision metric. The optimisation procedure is put to use in an online re-planning
system that:

— updates mapping information to detect new obstacles during the exploration;
— finds a free point to generate a path toward the desired target with the new map;
— performs the trajectory re-planning to the new point with a function of Euclidean Signed

Distance Field (ESDF) as the collision map.

The soundness of the procedure has been validated in a forest environment for a quadrotor,
and compared to RRT* and standard CHOMP. The advantage with this new technique is the
representation of the trajectory, which is inherently compact. Besides, it is able to better control
the derivatives of the position, i.e. the snap. The use of the ESDF as the map representation
for the motion planning has a limitation, as it only provides binary information about the space
occupation. This becomes a problem when the sensors measurements are not dense enough,
leading to an over-estimation of occupied space, due to high uncertainties in the measurements.
To overcome this challenge, the method was improved in [Oleynikova, Taylor, et al., 2017],
resulting in an even more efficient framework.

The time it takes to complete a task is a critical factor in motion planning, as a shorter du-
ration is often more advantageous. To address this issue, [Gao et al., 2018] proposes a two-step
algorithm. First, it generates a smooth and safe spatial path, and then decides how a quadrotor
should move along this path, in order to minimise the time of the motion, while satisfying kin-
odynamic limits. The spatial path is represented by a piece-wise Bézier curve, generated with
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minimal spatial jerk and arc length, for curve regularisation. The motion planning problem is
set with the total time as the cost function, and is subject to continuity constraints between each
piece, input saturation constraints, and kinematic constraints at the starting and ending points.
The decoupled method has been shown to be effective in simulations and experiments, as it
allows for full utilisation of the quadrotor’s actuators. This issue has also been addressed in
[Penin et al., 2018], with the added consideration of state reconstruction, using an EKF that
integrates the measurements of standard onboard sensors and a camera, in cases where the state
is not directly available. For flat dynamic systems, this planner takes into account the perceptual
limitations, and provides minimum-time trajectories that are dynamically feasible.

UAVs consume a large amount of power, leading to limited flight endurance, even with
good batteries. Therefore, researchers have focused on energy-aware trajectory planning. For
instance, [Morbidi et al., 2016] presents (and validates the theory through numerical experi-
ments) an optimisation problem that exploits the electrical model of a BLDC motor, to design
trajectories that minimise energy consumption [Chamseddine et al., 2012] proposes a flatness-
based method for minimum-time/energy trajectory planning/re-planning, and demonstrates its
effectiveness for real-time applications.

2.5.3 Summary on trajectory generation

The path and motion planning methods discussed in Subsection 2.5.1 and Subsection 2.5.2
address a range of typical challenges faced in modern mobile robotics applications. This in-
cludes strategies for generating obstacle-free, dynamically feasible, smooth, and kinetically
constrained paths and motions, as well as minimising time or energy consumption. As pre-
viously established in Section 1.1, it is critical for systems to operate with high accuracy and
reliability, despite uncertainty in the dynamics model and actuation. However, none of the meth-
ods in Section 2.5 consider the effect of parameter uncertainty on the AVs tracking capabilities.
Some literature acknowledges the issue, but fail to provide a solution. In the next section, we
will examine the current state-of-the-art in robust trajectory generation for robotic systems.

2.6 Robust trajectory planning

This section presents the main corpus of works upon which this thesis is built. It focuses on
the study of robust trajectory generation. As previously mentioned, AVs and especially quadro-
tor UAVs are subject to model uncertainties. Therefore, the main challenge here is to overcome
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the impact of model uncertainties on the behaviour of the robot. Uncertain measurements of
the nominal values, e.g. of a propeller thrust and drag coefficients, can deeply affect the con-
trol action, and thus the general performance of the system. Classical control policies for UAVs
were reviewed in Section 2.3, but robust controllers often require increased hardware capacities,
and may not be desired for small, embedded systems. In Section 2.4, the trend of obtaining a
better estimate of the parameters while the robot operates was discussed, but online estimation
may introduce a coupling between the estimation and dynamics, which might not be optimal.
An alternative approach is to concentrate on finding feed-forward trajectories, whose very de-
sign makes them intrinsically robust against possible uncertainties in the system/environment
models and parameters, and statistically enhance the accuracy of the tracking task.

The authors in [Candido et al., 2010] conducted research by exploiting the belief road-map
method [Prentice et al., 2009], to tackle the challenge posed by the inherent noise in system
components, as well as the imperfect modelling of robots, sensors, and environments. This ap-
proach, which is based on probabilistic robotics [Thrun, 2002], involves modelling the system,
sensors, and environment as Partially Observable Markov Decision Process (POMPD) and us-
ing stochastic uncertainty propagation functions, to minimise the uncertainty along the path to
the desired target, in the output space. The proposed framework has the advantage of being
adaptable to a wide range of non-trivial robot models, with non-Gaussian processes and obser-
vation models for trajectory planning with minimum uncertainty. The strategy was put to the
test by comparing three path generation methods using a plane unicycle. The results showed
that the minimum uncertainty planning approach was able to identify paths that were unfeasi-
ble for tracking, due to potential collisions between obstacles. Moreover, the method was able
to choose better nominal references that would never result in a collision, even with perturbed
parameters, a superiority that sets it apart from other methods. An extension of this work was
further explored in [Candido et al., 2011], with the introduction of a particle filtering algorithm,
that tracks collision-free trajectories and estimates the probability of collision. This update re-
sulted in paths that have reduced uncertainties at the final goal, and minimised the probability
of collisions during the motion. The authors suggest that the framework could be improved by
adding sensitivity functions along the trajectory to compute tubes around the nominal motion,
which would help maintain the system within the desired bounds, with high likelihood.

A formulation of the sensitivity minimisation problem was carried out in [Kreindler, 1969],
with the aim of generating robust trajectories for linear closed-loop feedback systems. This
work laid the foundation for numerous advancements in the field of robotics over the years. In
[Byrne et al., 1976], the theory was extended by comparing several algorithms for the optimal
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linear regulator problem. The new algorithm was found to provide the greatest reduction in
sensitivity cost with the least increase in net energy cost, thus demonstrating the promising
potential for improved control of linear and time-invariant systems, through the integration of
both feed-forward and feedback elements.

However, the dynamics of quadrotors are highly non-linear, rendering the previously men-
tioned methods inapplicable. To tackle non-linear systems, [Singer et al., 1990] investigated
a method for shaping control inputs that result in vibration-free outputs, as well as being in-
sensitive to errors in the structural damping coefficient. This robust command approach was
tested on a space shuttle remote manipulator system with an uncertain natural frequency, and
the achieved vibration reductions showed the efficacy of the method.

The problem of generating feed-forward trajectories with minimum state sensitivity has
been recently addressed in [Ansari et al., 2013a, 2013b] and further expanded upon in [Ansari
et al., 2016]. The latter work presents a method to generate robust trajectories through an open-
loop optimisation routine, taking into consideration deviations in model parameters. Unlike
probabilistic approaches, this framework assumes the models are accurate, and seeks to show
that motions that minimise the first-order sensitivities result in reduced deviations around the
nominal state when the model parameters are inaccurate. The method starts by formulating an
optimal control algorithm, that minimises the state errors and control inputs. Then, using these
non-linear systems and control laws, a TO problem is formulated, to reduce the parametric open-
loop state sensitivity. The effectiveness of this procedure was demonstrated through tests on a
four-wheeled robotic vehicle with adjustable CoM, which showed significantly less deviation
from nominal motions when tracking control-aware optimised references (compared to heuristic
trajectories) under deviations in nominal expected friction.

The study [Robuffo Giordano et al., 2018] builds upon previous research in feed-forward tra-
jectory planning with minimum state sensitivity, by introducing the new concept of closed-loop

state sensitivity. The focus of the research is to develop a control-aware optimisation process,
that takes into account the coupling between the system and its controller when tracking a ref-
erence motion, and which is expected to provide trajectories, whose realisation by the tracking
controller is most insensitive against variations in the model parameters. The closed-loop state
sensitivity and its gradients are integrated to form a cost functional for the optimisation prob-
lem, which includes kinematic constraints at the start and end of the motion. The process is
demonstrated through two case studies, a plane unicycle and a plane quadrotor, both equipped
with a DFL controller. The uncertain parameters considered in the unicycle case study are the
radius of the wheels and the distance between the wheels, while the inaccuracies considered in
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the quadrotor case study include the thrust coefficient to mass ratio, the drag coefficient to iner-
tia ratio, and the body frame air drag coefficients along the horizontal and vertical directions. A
statistical analysis is performed for both systems, on a single trajectory for each, and the results
provide strong validation of the proposed optimisation scheme, under the described conditions.

2.7 Summary of the literature review

In this chapter, we have presented an overview of the current state-of-the-art in robust tra-
jectory planning for UAVs. In Section 2.2, we have examined different designs of AVs. The
highlighted benefits and drawbacks of each mechanical configuration have allowed to under-
stand the challenges related to their automation. In Section 2.3, we presented robust control
algorithms for quadrotors, with a focus on those relevant to this thesis. Although some of these
techniques offer improved robustness, they may also have a higher computational demand than
standard controllers, making them unsuitable for embedded systems. In Section 2.4, another
point of view has been brought, that rather focuses on online parameter identification. As this
trend is strongly related to state estimation, both have been presented together. The last two
sections of this chapter have focused on the generation of feed-forward trajectories. Common
path and trajectory planning techniques for ARs have been examined in 2.5. Lastly, we focused
our interest on the planning of trajectories whose very design makes them robust against model
parametric uncertainties.

Building upon these rich works, this thesis is interested in defining a TO framework, that
provides trajectories with minimum closed-loop state sensitivity. We believe that our method
can significantly enhance uncertain robotics performances. Before presenting our main contri-
butions, we first introduce the notation and formalism related to the design, control and TO for
UAVs. These foundations will be needed for the development of our robust trajectory planning
algorithms in Chapters 4 to 6.
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CHAPTER 3

MODELLING

3.1 Introduction

Before delving into the core of this thesis, we provide some mathematical models that are
used throughout the thesis, and subject to modifications in the contributions. First, we set the
formalism with conventions, notations. After a brief discussion of the mathematical represen-
tations of orientation in space, a standard dynamical model of a quadrotor UAV is given. As
several control policies and trajectory representations are used in the manuscript, their equa-
tions will be detailed when convenient.

3.2 Conventions and notations

This section gives the mathematical writing conventions used throughout the manuscript.
All variables are written using Latin or Greek letters, with the following rules:

— normal font for scalars, e.g. s;
— small bold for vectors, e.g. v;
— capital bold for matrices or higher order tensors, e.g. M or T respectively.

The null and identity matrices of sizes n×m are respectively denoted On×m and In×m, and
can be simplified as On and In when square.

Sets are written using dedicated letters, e.g. R for real numbers, Q for quaternions, and
S for the unit quaternion sphere of Q. Besides, continuous intervals are written using single
straight brackets [a, b], while discrete sets are written using curly ones {a, b}, and lastly, sets of
successive integers are written using double straight brackets Ja, bK.

In Table 3.1, we present the main mathematical symbols that denote variables and parame-
ters used in the thesis.

A last point to mention is that, inside the developments of the manuscript, functions will be
defined, and further employed. All of the arguments, whether they are variables or parameters,
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Definition Symbol
State vector q
Input vector u

i-th rotor angular velocity wi
Output vector y
Linear position vector r
Linear velocity vector v
Linear acceleration vector γ
Rotation matrix R
Euler angles vector η

roll ϕ
pitch θ
yaw ψ

Orientation quaternion ρ
Angular velocity vector ω
Angular acceleration vector α
Earth gravity acceleration constant g
Mass m
Inertia tensor J
Propeller thrust coefficient kf
Propeller torque coefficient kτ
UAV arm length `
State sensitivity matrix Π
Internal state sensitivity matrix Πξ

Input sensitivity matrix Θ
Output sensitivity matrix Υ

Table 3.1 – Usual mathematical symbols used throughout the manuscript.

shall be explicitly stated in each of these definitions. Anyhow, after the first definition of a
function, in order to simplify the mathematical expressions, some arguments can be omitted
when further using the function, e.g. the time variable can be omitted when referring to the state.
Though, it can be possible that sometimes we write them explicitly, when judged convenient for
the understanding.

3.3 Mathematical representation of the world

A fundamental requirement in robotics is to be able to express positions and orientations,
of the different components and objects that exist in the world. This section clarifies the mathe-

44



3.3. Mathematical representation of the world

matical representation of the world.
We denote the world inertial frame FW = {OW , (xW , yW , zW)} where OW is its origin

and (xW , yW , zW) its canonical basis. The body frame attached to the system that navigates
in FW is denoted FB = {OB, (xB, yB, zB)}. OB is placed at the geometric centre of the AV,
and its coordinates are the Cartesian position, while (xB, yB, zB) is the canonical basis which
fluctuates in accordance with the orientation of the platform. For any other mobile solid S, we
attach the frame FS to it. For instance, FAUi denotes the frame attached to the i-th AU of the
UAV.

3.3.1 Positional information

The vector representation of the space translation, from frame F1 with origin O1 to frame
F2 with origin O2, is denoted as O1O2 =

[
x12 y12 z12

]T ∈ R3, where each component
represents the displacement along a specific direction, e.g. x12 = xO2 − xO1 . Basic vector
operations can be performed, as long as the points are expressed in the same frame, and the
vector can be written in any preferred basis. For example, the Cartesian position of a quadrotor
can be written as r =

[
x y z

]T ∈ R3. The transposition operator [•]T, which reflects the
elements of any A ∈ Rn×m matrix along its main diagonal is often used in writing vectors, as
it allows for column vectors to be written in rows, as shown above.

3.3.2 Orientation representations in space

While expressing position in the world space is straightforward, it is not so for orientation.
Indeed, space rotations constitute a Lie group, called the special orthogonal group SO(3). There-
fore, this non-euclidean group requires further definitions and operations. For a comprehensive
review on how to parameterise the attitude of an object in three-dimensional space, please refer
to the unified reference of [Diebel, 2006], and the references therein. Hereafter, we mention
important properties of the elements of SO(3), and detail some possible representations.

3.3.2.1 Rotation matrices

The fundamental and complete expression of a spatial rotation is that of a rotation matrix,
denoted as R ∈ SO(3). R is 3×3 matrix, and its columns are the coordinates of the unit vectors
of the canonical basis that it represents, as depicted in Fig. 3.1.

Furthermore, the rotation fromF1 toF2 is noted 2R1. For a point in space with coordinates
1x expressed in the basis of F1, 2R1 can be used to express the coordinates over the old basis
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R =




R11 R12 R13
R21 R22 R23
R31 R32 R33


 =

[
Rx Ry Rz

]
= Ry

Rz

Rx

Figure 3.1 – Visualisation of the components of a rotation matrix R, composed of Rx, Ry and Rz .

in term of the coordinates over the new basis of F2. As such, the change of basis formula is
2x = 2R1 · 1x, where · denotes the standard matrix multiplication.

For R to be a valid rotation and lie in SO(3), it must be orthonormal and consist of proper
rotation, i.e. it verifies respectively





RT ·R = R ·RT = I3

det(R) = det(RT) = 1
. (3.1)

Since rotation matrices are orthonormal, the inverse is equal to the transpose, R−1 = RT.
Moreover, the inverse of a rotation matrix corresponds to the opposite rotation, which can be
written

2R−1
1 = 2RT

1 = 1R2. (3.2)

Rotation matrices are linear applications, thus they can be composed via standard multipli-
cation in order to obtain new frame transformation, e.g.

3R1 = 3R2 · 2R1. (3.3)

Consequently, composing a rotation matrix with its inverse leads to the neutral element of
the SO(3) group, that is, the 3× 3 identity matrix I3 = 2R1 · 1R2 = 2R2.

From the definitions and properties above, we can note that rotation matrices preserve
lengths and angles between vectors, hence they are good candidates to denote the orientation of
rigid bodies of frame FB in the world inertial frame FW . As robotics studies the dynamics of
objects, the time derivative of a R is also of interest. With the knowledge of the angular rates
ω =

[
ωx ωy ωz

]T ∈ R3 of an object w.r.t. the world frameFW , the derivative can be written

Ṙ = R ·
[
Bω
]
×

=
[
Wω

]
×
·R, (3.4)

where Bω is the local expression in FB and Wω is the global one, in FW . Eq. (3.4) uses the
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skew-symmetric cross product operator of a vector, denoted [•]× and defined as

∀v =




x

y

z


 ∈ R3, [v]× =




0 −z y

z 0 −x
−y x 0


 ∈ R3×3. (3.5)

For the sake of completeness, we also denote [•]∨ as the operator that maps back a skew-
symmetric matrix to a vector, defined as

∀M =




0 −z y

z 0 −x
−y x 0


 ∈ R3×3, [M]∨ =




x

y

z


 ∈ R3. (3.6)

Skew-symmetric matrices are often used to represent cross products as matrix multiplica-
tions. Consider vectors (v, w) ∈ (R3)2, then the cross product between these can be written
v×w = [v]× ·w.

Nonetheless, the use of rotation matrices is not very convenient to represent the orientation
of a system. Indeed, each matrix R is defined by nine coordinates of which only four are in-
dependent, to encode a transformation of three DoFs. Furthermore, to compose two rotations,
the product of the two 3 × 3 corresponding matrices needs to be computed, thus requiring
twenty-seven multiplications and eighteen additions. Consequently, more concise orientation
representations have been proposed.

3.3.2.2 Euler angles

Euler angles is one of the most widely used attitude representation of a rigid body w.r.t. a
fixed coordinate system, to which frames FB and FW are attached respectively. It consists of
describing the angle of rotation as a series of three sequential rotations, each one around an axis
of the base frame. Since rotations are not commutative, the order in which they are performed
matters. Many conventions exist for Euler angles, among which we have selected the Z-Y-X
or 321 sequence, since it is a common representation of orientation in the aeronautical field. It
consists of first rotating about (OB, zW) by the yaw angle ψ, then rotate about the intermediate
axis (OB, y) by the pitch angle θ, and finally rotate about (OB, xB) by the roll angle ϕ. The
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Euler angles vector is defined as

η =




ϕ

θ

ψ


 | (ϕ, θ, ψ) ∈ × ]−π, π]×

]
−π2 ,

π

2

[
× ]−π, π] . (3.7)

This representation is very compact since η ∈ R3 requires only three angles to encode all spatial
rotations. It can be used to define the elementary rotation matrices about each axis, and their
combination yields a rotation matrix of SO(3). Let the matrices R1, R2 and R3 be respectively
the elementary rotation matrices about the x, y and z axes, defined as





R1 (ϕ) =




1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ


 ∈ SO(3)

R2 (θ) =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 ∈ SO(3)

R3 (ψ) =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 ∈ SO(3)

, (3.8)

then carrying out the matrix multiplication in the adequate order leaves us with the 321 Euler
angles sequence R1 (ϕ) ·R2 (θ) ·R3 (ψ) = R321(ϕ, θ, ψ) = BRW , that yields

BRW =




cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ


 . (3.9)

The above transformation matrix can now be applied to vectors expressed w.r.t. the inertial
frameFW , to obtain their expressions in the body frameFB. To get the inverse transformation,
going from the body frame to the inertial frame, simply transpose BRW , as it is orthonormal. To
obtain the Euler angles vector from a given orientation matrix, one can use the reverse mapping

48



3.3. Mathematical representation of the world

(see Fig. 3.1 for the matrix terms Rij definition)

η =




ϕ

θ

ψ


 =




arctan
(

R23

R33

)

arcsin (R13)

arctan
(

R12

R11

)




. (3.10)

The relationship between Euler angles rates and local body axis rates is given by the set of
non-linear Ordinary Differential Equations (ODEs)

η̇ =




ϕ̇

θ̇

ψ̇


 =




0
sinϕ
cos θ

cosϕ
cos θ

0 cosϕ − sinϕ

1 sinϕ tan θ cosϕ tan θ



· Bω = Eη · Bω. (3.11)

Nonetheless, the Euler angles representation suffers from drawbacks. First, there is a large num-
ber of different possible sequences, and because of this, practical applications that rely on Euler
angles must be consistent, or else non-trivial problems can appear. Secondly, the angles are
defined on finite intervals, hence discontinuities arise at π for roll and yaw angles. Lastly, the
Euler angles are subject to another singularity, commonly known as the gimbal lock. A gim-
bal lock refers to the loss of a DoF that happens when two axes of rotation align during the
three successive transformations, i.e. when the pitch angle θ ≡ π

2 mod 2π. Such angles are not
properly defined, as observed in Eqs. (3.11) and (3.10).

As this representation is limited by its singularities, other representations have been used to
prevent these inconveniences.

3.3.2.3 Axis-angle representation

Another common representation is the axis-angle, which provides the advantages of being
minimal while avoiding singularities. It consists of the Euler vector ra-a = θaua, where ua ∈ R3

is a unit vector used to describe the axis around which to rotate, while θa ∈ [0, π[ is the magni-
tude of the rotation around the axis, in radians. This parameterisation is tightly linked to rotation
matrices: the latter are members of the SO(3) group, while the former are an expression of the
so(3) Lie algebra. The relationship between the two can be expressed in terms of exponential
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and logarithmic maps. The logarithmic map is defined as

log : SO(3)→ so(3)

R 7→ ra-a = θaua |





θa = arccos
(

Tr(R)− 1
2

)

ua = 1
2 sin θa




R32 − R23

R13 − R31

R21 − R12




,
(3.12)

where Tr(•) is the trace operator. The exponential map is the following Taylor expansion:

exp: so(3)→ SO(3)

ra-a 7→ R =
+∞∑

i=0

[θaua]i×
i!

, (3.13)

which also has a closed-form solution, using Rodrigues’ rotation formula:

R(θa,ua) = I3 + sin θa [ua]× + (1− cos θa) [ua]2× . (3.14)

This representation is very intuitive and minimal since it requires four real numbers to encode
all rotations, namely three coordinates and one angle. It is preferred compared to Euler angles
as it avoids singularities.

3.3.2.4 Unit quaternions

In mathematics, quaternions are an extension of complex numbers to the three-dimensional
space. They are parameterised as ρ = ρw+ρxi+ρyj+ρzk ∈ Q where (ρw, ρx, ρy, ρz) ∈ R4 and
i, j and k are the basic quaternions such that i2 = j2 = k2 = ijk = −1. The quaternion space Q
is homeomorphic to R4 as the complex plane C is homeomorphic to R2. For a thorough study on
these hyper-complex numbers, please refer to [Sola, 2017] and the references therein. Anyhow,
here we present some important definitions and properties of quaternions. A quaternion ρ can
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be conveniently written in the vector form

ρ =




ρw

ρx

ρy

ρz



∈ R4. (3.15)

Alternative conventions exist to write quaternions, for instance when placing the scalar ρw
as the last component of ρ. Hereafter, all the formula that we present use the convention from
Eq. (3.15).

The Hamilton product ⊗ is defined on Q as the multiplicative operator, and is such that

ρ1 ⊗ ρ2 =




ρw1ρw2 − ρx1ρx2 − ρy1ρy2 − ρz1ρz2

ρw1ρx2 + ρx1ρw2 + ρy1ρz2 − ρz1ρy2

ρw1ρy2 − ρx1ρz2 − ρy1ρw2 + ρz1ρw2

ρw1ρz2 + ρx1ρy2 − ρy1ρx2 + ρz1ρw2



. (3.16)

From the Hamilton product of Eq. (3.16) it can be derived that

‖ρ1 ⊗ ρ2‖ = ‖ρ1‖‖ρ2‖. (3.17)

Unit quaternions, such that ‖ρ‖ = 1, provide a mathematical notation for representing spa-
tial orientations and rotations of elements in the three-dimensional space. More precisely, they
encode information about an axis-angle rotation around an arbitrary axis. Nowadays, they are
greatly used for many applications such as computer graphics, computer vision, robotics, flight
dynamics, and so forth. When used to represent rotation, unit quaternions are also commonly
called as rotation quaternions. Starting from the earlier defined Euler vector ra-a = θaua of a
rotation, the associated rotation quaternion is defined as

ρ(ra-a) =




cos
θa

2

ua sin
θa

2



∈ S, (3.18)

which satisfies ‖ρ‖ = 1. S = {ρ ∈ Q | ‖ρ‖ = 1} is the unit quaternion sphere of Q. One
can obtain an orientation matrix from a unit quaternion ρ =

[
ρw ρx ρy ρz

]T ∈ S with the
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mapping

R(ρ) =




2(ρ2
w + ρ2

x)− 1 2(ρxρy − ρwρz) 2(ρxρz + ρwρy)
2(ρxρy + ρwρz) 2(ρ2

w + ρ2
y)− 1 2(ρyρz − ρwρx)

2(ρxρz − ρwρy) 2(ρyρz + ρwρx) 2(ρ2
w + ρ2

z)− 1


 ∈ SO(3). (3.19)

Combining the Rodrigues’ rotation formula of Eq. (3.14), the Hamilton product of Eq. (3.16)
and the rotation quaternion definition of Eq. (3.18), it can be shown that the rotation action of a
unit quaternion ρ on a given vector v is:

∀v ∈ R3,


 0
Rv


 = ρ⊗


0
v


⊗ ρ∗ ∈ S, (3.20)

where R and ρ are respectively the rotation matrix and unit quaternion that encode the same
rotation, see Eq. (3.19), and ρ∗ is the conjugate quaternion of ρ, defined as

ρ∗ =




ρw

−ρx
−ρy
−ρz



∈ S. (3.21)

Unit quaternions inverse and conjugate are equal, since the inverse is defined as ρ−1 = ρ∗

‖ρ‖2 .

Therefore in the literature, ρ∗ is sometimes replaced by ρ−1 in Eq. (3.20).

From Eq. (3.18) it can be observed that unit quaternions perform a double coverage of the
rotation set, as illustrated in Fig. 3.2. This implies that the unit quaternions ρ ∈ S and −ρ ∈ S
encode the same spatial rotation, which can be established easily with standard trigonometric
formulas. This, of course, has an impact on the proper definitions of quaternion metrics.

Eq. (3.17) shows that S is stable through the Hamilton product, which acts as a composition
for rotation quaternions. Starting from Eq. (3.20), let R1 and R2 be the matrices that represent
two space rotations, and let respectively ρ1 and ρ2 be the associate rotation quaternions, it can
be shown that they verify

∀v ∈ R3,


 0
R1R2v


 = ρ1 ⊗ ρ2 ⊗


0
v


⊗ ρ∗2 ⊗ ρ∗1 ∈ S. (3.22)

Rotation quaternions provide a minimal singularity-free representation of orientations. As they
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ua

v
θa

v(ra-a)

uρ
v

2θρ

v(ρ)

Figure 3.2 – Left: rotation of a vector v with the Euler vector ra-a = θaua (in blue). Right: rotation of
vector v with a unit quaternion ρ of internal angle θρ = θa (in red).

do not require to be transformed into rotation matrices to perform the rotation action, they are
convenient.

The derivative of a rotation quaternion can be expressed in terms of the locally or globally
defined body axis rates, giving the set of ODEs

ρ̇ = 1
2 ρ⊗


 0
Bω


 = 1

2


 0
Wω


⊗ ρ. (3.23)

The compactness of quaternions, which needs four components to encode all rotations,
makes them easier to handle compared to rotation matrices. Therefore, controllers based on
quaternions have been recently designed for UAVs [Carino et al., 2015; Fresk et al., 2013].
Nevertheless, a common issue regarding unit quaternions is that their numerical integration us-
ing Eq. (3.23) tends to not necessarily remain inside of S. This issue has been tackled in [Rucker,
2018], which proposes a mapping from Q to S, such that the quaternions are stable numerically.

The aforementioned orientation representations are commonly used in the literature. Through-
out this manuscript, we mostly encode spatial rotations with quaternions, which may be con-
verted to rotation matrices or Euler angles when needed, the latter conversion being mostly used
to compute the yaw of the UAV.

3.4 Standard 3D quadrotor model

In this section, we provide a standard dynamical model of a space quadrotor, the orien-
tation of which is represented by unit quaternions of S, as this is a compact, singularity-free
representation. This model will be further used as a basis, and modified if necessary.
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3.4.1 Definitions

Let FW = {OW , (xW , yW , zW)} be the world inertial frame, with OW its origin and
(xW , yW , zW) the canonical basis. The body frame attached to the quadrotor UAV is denoted
FB = {OB, (xB, yB, zB)}, and zB is aligned with the thrust of the four AUs. As depicted
in Fig. 3.3, OB is placed at the geometric centre of the AV, and is coincident with the CoM.
The state vector q consists of its linear position r = OWOB =

[
x y z

]T ∈ R3 and velocity

v = ṙ =
[
vx vy vz

]T ∈ R3, both expressed in the world frame FW . The body orientation is

expressed through the unit quaternion ρ =
[
ρw ρx ρy ρz

]T ∈ S, which can also be mapped
to the orientation matrix R (ρ) ∈ SO(3), see Eq. (3.19), such that, e.g., zB = R (ρ) ·zW . Lastly,
the angular velocity is denoted as ω =

[
ωx ωy ωz

]T ∈ R3, and is always expressed locally in

the body frame FB. Therefore, we take q =
[
rT vT ρT ωT

]T ∈ R3 × R3 × S× R3 as the
state vector.

q =
[
rT vT ρT ωT]T

OW

xW

yW

zW

w3

w4

w1

w2

OB

xB

yB

zB

Figure 3.3 – Standard quadrotor model, oriented with unit quaternion. Notice that the odd numbered AUs
have their propellers spinning CCW while the even number ones have their propellers spinning CW.

As described in Subsection 2.2.1, each AU of the UAV is able to exert aerodynamic thrust
through the conversion of electrical energy into mechanical rotational energy of the propeller,
whose geometry makes it possible to generate a pressure gradient in the air. The first AU is on
the positive xB-axis, the second on the positive yB-axis, the third on the negative xB-axis, and
the fourth on the negative yB-axis. Let f be the total aerodynamic thrust, carried by zB, and
let τ =

[
τx τy τz

]T ∈ R3 be the total torque vector, expressed in the body frame FB. The
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fictitious inputs, namely the total external thrust and torque
[
f τT

]T ∈ R4 applied to the AV,

can be linked to the real input vector u =
[
w2

1 w2
2 w2

3 w2
4

]T ∈ R4, that contains the squared
versions of the propeller angular velocities. These are related by the well-known input mapping
matrix S, such that




f

τx

τy

τz




= kf




1 1 1 1
0 ` 0 −`
−` 0 ` 0
kτ −kτ kτ −kτ







w2
1

w2
2

w2
3

w2
4




= Su, (3.24)

where kf , kτ are, in first approximation, calibration parameters that depend on the propeller
characteristics, namely the thrust and torque aerodynamic coefficients, and ` is half the distance
between two opposite AUs. We take u =

[
w2

1 w2
2 w2

3 w2
4

]T ∈ R4 as the space quadrotor
control inputs throughout the manuscript.

3.4.2 Quadrotor dynamics

Let m be the mass of the UAV and J = JOB its inertia tensor. As the quadrotor has two
planes of symmetry, that are (OB, xB, zB) and (OB, yB, zB), the inertia, defined in the body
frame FB as

JOB =




Jxx 0 0
0 Jyy 0
0 0 Jzz


 ∈ R3×3, (3.25)

is diagonal and also minimal, since in this model, the CoM is coincident to the geometric centre
OB of the platform.

The external forces applied to the body of the quadrotor are its weight plus the total acting
thrust and torques, that are generated by the propellers. Therefore, we can write the Newton-
Euler equations of motion at OB, in the matrix form


R(ρ) · f(u)zW −mgzW

τ (u)


 =


mI3 03

03 J




γ(t)
α(t)


+


 0

[ω]× · J · ω


 , (3.26)

where γ(t) is the body acceleration expressed in FW and α(t) is the angular acceleration, in
FB. Here, g is the Earth gravity acceleration constant. The orientation matrix R(ρ) = BRW is
expressed through the unit quaternion ρ ∈ S, see Eq. (3.19). Now, Eq. (3.26) can be rewritten
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to express the linear acceleration γ and the angular acceleration α, which yields


γ(t)
α(t)


 =




f(u)
m

R(ρ) · zW − gzW

J−1 ·
(
τ (u)− [ω]× · J · ω

)


 . (3.27)

From Eq. (3.27), it is now possible to write the quadrotor complete state-space model

q̇(t) =





ṙ(t) = v(t)

v̇(t) =
f(u)
m

R · zW − gzW

ρ̇(t) =
1
2
ρ⊗


0
ω




ω̇(t) = J−1 ·
(
τ (u)− [ω]× · J · ω

)

, (3.28)

where ṙ and v̇ = γ(t) are expressed in FW , also ρ̇ and ω̇ = α(t) are expressed in FB. Note
that:

— the expression of R(t, ρ) = BRW can be found in Eq. (3.19);
— the expressions of f(t, u) and τ (t, u) can be found in Eq. (3.24), which maps these

latter to the real input vector u.

Now, let vector p =
[
m Jxx Jyy Jzz kf kτ ` g

]T ∈ R8 contain the parameters
involved in the state-space model, we define the quadrotor dynamics f , such that

q̇(t) = f(q(t), u(t), p). (3.29)

The dynamics f is the function associated to the state-space model defined just above, in
Eq. (3.28).

3.5 Summary

In this thesis, we focus on generating trajectories that are robust to possible uncertainties in
the model parameters of dynamic systems, such as a quadrotor. In this chapter, we have detailed
the main mathematical tools and conventions that are further employed in the manuscript. In
particular, we have detailed how to obtain the dynamics of a standard space quadrotor, oriented
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with unit quaternions.

In our first contribution, Chapter 4, we limit ourselves to a case study of a planar quadrotor
(for ease of computation). Thus, the dynamic model in the plane will be detailed in Subsec-
tion 4.5.1. Later in the second contribution, Chapter 5, we extend the level of complexity, and
make the dynamic study of the space quadrotor. Therefore, we exploit the model detailed just
above, of Section 3.4. In the last contribution, Chapter 6, we derive a new dynamic model of
the quadrotor in space, for which we consider that the CoM can be shifted from the geometric
centre OB. This implies a rewriting of the Newton-Euler equations, with an additional coupling
between the linear and angular accelerations. This model will be further detailed in Subsection
6.5.1.

Now, we can proceed to the presentation of the main ideas that we support in this thesis,
through the principal contributions.
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Uncertainty-aware trajectory planning for
unmanned aerial vehicles
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CHAPTER 4

ROBUST TRAJECTORY PLANNING WITH

PARAMETRIC UNCERTAINTIES

4.1 Introduction

In this first contribution, we propose an extension of the base closed-loop sensitivity frame-
work [Robuffo Giordano et al., 2018], aiming at robust trajectory generation under parametric
uncertainties. In this chapter, we introduce the concept of first-order closed-loop input sensitiv-

ity to that of the state, and show how to exploit it in our TO framework. The method allows to
generate optimal reference trajectories that minimise the state and input sensitivities, thus pro-
viding intrinsically robust motions plans. We parameterise the reference trajectories with Bézier
curves, and also discuss how to consider linear and non-linear constraints in the process (e.g.,
input saturation). Then, the whole machinery is validated via an extensive statistical campaign
that clearly shows the interest of the proposed strategy. The key components of our method are:

— rather than only considering the first-order closed-loop state sensitivity [Robuffo Gior-
dano et al., 2018], we also exploit the closed-loop input sensitivity in the cost objec-
tive, and seek to minimise a combination of both indexes, to better ensure the feasibil-
ity/safety of the robotic task. We formulate a new weighted optimisation problem with
both metrics;

— compared to [Robuffo Giordano et al., 2018] that used plain polynomials, we switched
to Bézier curves for representing the reference trajectories, since this class of curves
allows for better stability, and presents other interesting properties (e.g., the trajectory
remains within the complex envelope of the control points);

— we added the consideration of input saturations as non-linear constraints. It is indeed
essential to ensure the feasibility of the task;

— the soundness of the approach is assessed through an extensive campaign of perturbed

simulation, for many output targets.

This chapter is structured as follows: after defining the generic problem in Section 4.2, in
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Section 4.3 we derive the closed-loop sensitivity metrics w.r.t. parameters. Then, in Section 4.4,
we explain how one can minimise these metrics by defining several linear and non-linear con-
strained optimisation problems. Our framework is tested for a planar quadrotor equipped with a
DFL controller (Section 4.5) in an extensive campaign of perturbed simulations, in Section 4.6:
the analysis of the results gives a validation of the improvements in closed-loop performance,
when minimising the sensitivities along the trajectories. Section 4.7 concludes the contribution,
and opens to further perspectives.

This chapter was published in the research community, and then presented at ICRA 2021:

Pascal Brault, Quentin Delamare, et al. [2021], « Robust Trajectory Planning with Paramet-
ric Uncertainties », in: IEEE International Conference on Robotics and Automation (ICRA),
pp. 11095–11101

4.2 Problem definition

In this section, we provide a generic definition of the problem linked to the closed-loop
sensitivities. We first provide the main equations characterising an autonomous system whose
performance we want to improve. Then, consider a general non-linear dynamical model for
representing a robot behaviour





q(0) = q0

q̇(t) = f(q(t), u(t), p)
, (4.1)

where q(t) ∈ Rnq is the state of the system, u(t) ∈ Rnu is the input vector that are fed into
the plant, and p ∈ Rnp is the model parameters vector that directly affect the dynamics f . This
parameters vector can include information such as the mass, lengths, actuation properties, and
so forth. In this framework, we always assume that p is constant w.r.t. time, since we only work
with systems and parameters for which the assumption seems correct. In fact, for almost all
parameters, their values are not constant w.r.t. time, but the variations remain small enough,
which allows us not to model them (otherwise the complexity of the models would explode).

Now, let yd(a, t) ∈ Rny , defined on the time interval t ∈ [0, T] = T ⊂ R, be some de-
sired output trajectory. This reference is tracked by some variables of interest of the system,
represented by the output function y(q(t)) ∈ Rny , such that ny 6 nq. Vector a ∈ Rna contains
the parameters that shape the reference trajectory, for the chosen class of curves. For instance,
plain polynomials were used in [Robuffo Giordano et al., 2018], but other representations are
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possible, such as Bézier curves, or even piece-wise curves. Note that for this kind of parame-
terisation with finite dimension na, the represented references form only a subset of all possible
trajectories, i.e. only the smooth ones, that are infinitely differentiable, also denoted class C∞.

We assume that the robot is equipped with a control law able to correctly perform the track-
ing task, i.e. it computes the appropriate input u ∈ Rnu that are fed to the system. For generality
we consider possible internal states ξ ∈ Rnξ that may represent, e.g., an integral action, or
dynamic extensions. Thereby, we define the control law as





ξ(0) = ξ0

ξ̇(t) = g(ξ(t), q(t), yd(a, t), pc, kc)
u(t) = h(ξ(t), q(t), yd(a, t), pc, kc)

, (4.2)

where kc ∈ Rnkc is the controller gains vector and pc ∈ Rnp is the nominal parameters vector:
most of the time, there is little chance that the control loop parameters, i.e. pc, match the ’real’
parameters, i.e. p, since the accuracy of the system model is limited.

Knowing Eqs. (4.1) and (4.2) and by using the same reasoning as in [Robuffo Giordano
et al., 2018], we can now define and compare two different cases which highlight one of the
typical issues in robot control:

— on the first hand, in the nominal case where p = pc, the controller is able to perform the
tracking task with utmost accuracy, delivering its best distributions-loop performance,
with the smallest error possible e(t) = yd(a, t)− y(q(t));

— on the other hand, in the perturbed case where p 6= pc, the dynamics given to the
controller f(q(t), u(t), pc) differs from f(q(t), u(t), p) and the tracking task is done
on a system that does not match the reality. With this lack of knowledge, the closed-loop
behaviour will perform worse, resulting in a tracking error e(t) that might be larger than
in the previous nominal case.

For optimal navigation efficiency and safety in systems, it is crucial to have a minimal deviation
in behaviour between the two scenarios. This can be achieved by generating optimal reference
trajectories, the tracking of which is intrinsically robust to variations in the model parameters.
By doing so, the robot in ensured to remain reliable and efficient, even in the event of a pertur-
bation, i.e. when p 6= pc. In the subsequent section, we shall delve into the process of assessing
the alterations in the performance of systems, by defining the relevant metrics. In the context
of robust TO in particular, we will show how to obtain these quantities along any reference
trajectory, as well as their gradients.
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Chapter 4 – Robust trajectory planning with parametric uncertainties

4.3 Closed-loop sensitivity metrics

In this section, we explain how to compute the key metrics that quantify the changes in a
system’s behaviour w.r.t. the variation in its model parameters. The computation of the closed-

loop sensitivities is required for the optimisation process, and exploited in the cost function. We
also show how the associated gradients w.r.t. the optimisation vector a can be obtained.

4.3.1 Definitions

First, let us define the closed-loop state sensitivity

Π(t) = ∂q(t)
∂p

∣∣∣∣∣
p=pc

∈ Rnq×np (4.3)

which represents the evolution of the state w.r.t. variations in the parameter vector p, and is
evaluated on the nominal value p = pc. This quantity has already been introduced in [Robuffo
Giordano et al., 2018], thereby we shortly recall its use for this work. To improve the system
behaviour in presence of parameter inaccuracies, one can minimise some norm of Π(t) w.r.t.
the optimisation variables a. An optimal shape of the trajectory yd(a?, t) with a minimal state
sensitivity would make the closed-loop state evolution q(t) in the perturbed case as close as
possible to its evolution in the nominal case. We illustrate this in Fig. 4.1, for a specific instant
of the trajectory t ∈ T. Let qi(t) ∈ q(t) | i ∈ J1, nqK be one of the state variables and
pj(t) ∈ p(t) | j ∈ J1, npK be one of the parameters, we display the variation in the state
∆qi(t) = qi(t) − qci(t) w.r.t. the variation in the parameter ∆pj = pj − pcj , where qci(t) is
the nominal state, obtained for ∆pj = 0⇔ pj = pcj . From the optimisation, we expect that the
reduction in one component of the state sensitivity Πij(a?, t) < Πij(a, t) brings the perturbed
state qi(t) closer to its nominal qci(t). Note that this figure only gives a general trend of what
is expected. Indeed, minimising the state sensitivity will guarantee a smaller deviation ∆qi(t),
only around the nominal case pj = pcj , thus when ∆pj remains small enough (close to the
origin).

In this chapter, we introduce the novel notion of closed-loop input sensitivity

Θ(t) = ∂u(t)
∂p

∣∣∣∣∣
p=pc

∈ Rnu×np (4.4)

which quantifies the amount of variations that would occur on the inputs w.r.t. deviations in
the model parameters p, and is also evaluated at the nominal p = pc. We strongly think that
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pj = pcj

∆qi(a)

∆qi(a?)

∆pj = pj − pcj

∆qi = qi − qci

Πij(a)

Πij(a?)

•

Figure 4.1 – Visual representation of the impact of reducing a component of the state sensitivity Π(t),
for all t ∈ T. On the graphic, we observe the gap ∆qi(t) = qi(t) − qci(t) in the i-th component of
the states q, w.r.t. the variation in the j-th component of the parameters p, ∆pj = pj − pcj , where
(i, j) ∈ J1, nqK × J1, npK. We show the gap of behaviour between ∆qi(a) before the optimisation, in
red, and ∆qi(a?) after optimising, in green. At the origin (also at the nominal pj = pcj ), we observe the
reduction of the slope, corresponding to the reduction of the state sensitivity, i.e. Πij(a?, t) < Πij(a, t).
Note that on the graphic, the time dependencies have been removed to minimise writing.

both state and input sensitivities should me minimised in order to ensure the best performance
possible. Illustrating the necessity of the input sensitivity minimisation, consider the example
of a mobile robot executing pick-up and drop-off operations in a factory. In the ideal scenario
where we have a complete knowledge of the system, represented by the nominal case p = pc,
it is possible to choose a reference motion that can be physically executed by the actuators.
However in the perturbed case, when the parameters deviate from their nominal values, i.e. p 6=
pc, the discrepancy in inputs can lead to significant tracking errors. If the input gap is too large, it
becomes impossible for the controller to correct the state, once the actuation limits are reached.
Moreover, even if the actuation limits are not reached, the increased tracking errors can result in
excessive inputs from the tracking controller over a cycle, leading to overloading of the actuators
over time. This could cause damage to the motors, and ultimately compromise the integrity of
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the entire system in the long run. By understanding how security could be jeopardised because
of an undesired shift in the inputs, we find it very important to plan reference trajectories, also
with minimum input sensitivity, so that the inputs become as predictable as possible. Therefore,
we will formulate an optimisation problem that makes it possible to minimise both metrics at
once, thus ensuring an improvement in performance while guaranteeing the dynamic feasibility.
To summarise, the main motivation for considering this metric is that the discrepancy between
the control parameters pc and the true ones p may result in some undesired inputs variation: in
any system, actuators are specifically chosen for the desired application, hence they need to be
operated as close as possible to the conditions they were designed for.

Now that we have defined the state and input sensitivities Π(t) and Θ(t), we show how to
obtain them along a reference trajectory yd(a, t) by forward integration.

4.3.2 Numerical integration

In the general case, it is not possible to compute a closed-form of Π(t), however it is possible
to differentiate Eq. (4.3) over time, which yields





Π(0) = Π0 = 0nq×np

Π̇(t) = ∂f
∂q ·Π + ∂f

∂u ·Θ + ∂f
∂p

, (4.5)

where f is the system dynamics of Eq. (4.1).

Integrating Eq. (4.5) is not obvious because Θ(t) is not known a priori. However, using the
expression of u(t) in Eq. (4.2), we can rewrite Eq. (4.4) as

Θ(t) = ∂h
∂q ·Π + ∂h

∂ξ
· ∂ξ
∂p . (4.6)

There is still an unknown term, the internal state sensitivity that we denote as

Πξ(t) = ∂ξ

∂p

∣∣∣∣∣
p=pc

∈ Rnξ×np . (4.7)
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Derivation of Eq. (4.7) leads to





Πξ(0) = Πξ0 = 0nξ×np

Π̇ξ(t) = ∂g
∂q ·Π + ∂g

∂ξ
·Πξ

. (4.8)

Eq. (4.5), Eq. (4.6) and Eq. (4.8) can be regrouped in one single set of differential equations,
which allows to compute the state and input sensitivities. For the sake of readability, we intro-
duce the notation x,y in order to refer to the jacobian of a vector function x w.r.t. one of its
arguments y. With this shorthand, the set of differential equations becomes





Π(0) = Π0 = 0nq×np

Πξ(0) = Πξ0 = 0nξ×np

Π̇(t) = f ,q ·Π + f ,u ·Θ + f ,p
Π̇ξ(t) = g,q ·Π + g, ξΠξ

Θ(t) = h,q ·Π + h, ξΠξ

. (4.9)

Thereby, given a reference trajectory yd(a, t), one can obtain the evolutions of Π, Πξ and
Θ for the whole time window T . Since the real parameters of the system p are not known, it
is impossible to integrate this set of differential equations to evaluate the sensitivities w.r.t. the
true parameters. That being said, one can evaluate these quantities at pc instead. Π(pc), Πξ(pc)
and Θ(pc) are still close enough from Π(p), Πξ(p) and Θ(p) respectively, as we assume that
pc is a good approximation of p, and, indeed, the validity of this assumption will be confirmed
in the extensive tests of Section 4.6.

4.3.3 Gradient derivation

As in [Robuffo Giordano et al., 2018], we now show how to obtain ∂Π/∂a and ∂Θ/∂a that
are respectively, the gradients of Π and Θ w.r.t. the optimisation variable a. This subsection is
an updated version of the gradients computation, in which ∂Θ/∂a is also treated. Since Π and
Θ are matrices, their gradients are tensors: for simplicity, we express each component of the
gradient ∂Π/∂ai w.r.t. each individual i-th component of ai. Let then

Πai(t) = ∂Π(t)
∂ai

∣∣∣∣∣
p=pc

∈ Rnq×np , (4.10)
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Πξai
(t) = ∂Πξ(t)

∂ai

∣∣∣∣∣
p=pc

∈ Rnξ×np , (4.11)

Θai(t) = ∂Θ(t)
∂ai

∣∣∣∣∣
p=pc

∈ Rnu×np (4.12)

be the gradients (matrices) of respectively Π, Πξ and Θ w.r.t. ai. Analogously to Πξ, the quan-
tity Πξai

is introduced to evaluate Πai . We also define

qai(t) = ∂q(t)
∂ai

∣∣∣∣∣
p=pc

∈ Rnq , (4.13)

ξai(t) = ∂ξ(t)
∂ai

∣∣∣∣∣
p=pc

∈ Rnξ , (4.14)

uai(t) = ∂u(t)
∂ai

∣∣∣∣∣
p=pc

∈ Rnu (4.15)

respectively as the gradients of the system state q, the controller internal states ξ and the inputs
u w.r.t. changes in ai, which are also necessary to evaluate Πai , Πξai

and Θai . It is possible
to compute these quantities along the whole trajectory by the same reasoning as in Eq. (4.9),
resulting in 




qai(0) = qai0
= 0

ξai(0) = ξai0
= 0

q̇ai(t) = f ,q · qai + f ,u · uai

ξ̇ai(t) = g,q · qai + g, ξ · ξai + g, ai
uai(t) = h,q · qai + h, ξ · ξai + h, ai

, (4.16)

which allows us to compute qai , ξai and uai by forward integration.

Let now x,y, z be the third order tensor that refers to the second order jacobian of the jacobian
matrix x,y w.r.t. one of its arguments z. Also let T ∈ Rn1×n2×n3 be a tensor and v ∈ Rn3 be a
vector, we define

(T ◦ v)i, j =
n3∑

k=1
Ti, j, kvk, ∀(i, j) ∈ J1, n1K× J1, n2K. (4.17)
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Differentiating Eq. (4.9) w.r.t. ai with these notations yields





Πai(0) = Πai0 = 0nq×np

Πξai
(0) = Πξai0

= 0nξ×np

Π̇ai(t) =
(
f ,q,q ◦ qai(t) + f ,q,u ◦ uai(t)

)
·Π(t) + f ,q ·Πai(t) +

(
f ,u,q ◦ qai(t) + f ,u,u ◦ uai(t)

)
·Θ(t) + f ,u ·Θai(t) +

(
f ,p,q ◦ qai(t) + f ,p,u ◦ uai(t)

)

Π̇ξai
(t) =

(
g, ξ, ξ ◦ ξai(t) + g, ξ,q ◦ qai(t) + g, ξ, ai

)
·Θ(t) +

(
g,q, ξ ◦ ξai(t) + g,q,q ◦ qai(t) + g,q, ai

)
·Π(t) +

g, ξ ·Πξai
(t) + g,q ·Πai(t)

Θai(t) =
(
h, ξ, ξ ◦ ξai(t) + h, ξ,q ◦ qai(t) + h, ξ,ai

)
·Πξ(t) +

(
h,q, ξ ◦ ξai(t) + h,q,q ◦ qai(t) + h,q,ai

)
·Π +

h, ξ ·Πξai
(t) + h,q ·Πai(t)

. (4.18)

To sum up, with the equations of this section, one can compute Πai(t), Πξai
(t) and Θai(t),

that are the gradients of respectively the state, the internal state, and the input sensitivities w.r.t.
the optimisation variables ai∈J1, naK. These can be fed to an appropriate optimisation routine, by
forward integrating both Eq. (4.16) and Eq. (4.18), in order to obtain qai(t), ξai(t) and uai(t),
then Πai(t), Πξai

(t) and Θai(t) along the trajectory. Computing Π(t), Πξ(t) and Θ(t) with
Eq. (4.9) gives the current values of the sensitivities, and the gradients indicate the direction
ensuring a reduction of the metrics through the steps of the optimisation process.

The metrics that are modified by the optimisation process are parameters that describe the
shape of the trajectory, for the chosen class of curves. Therefore, in the following subsection,
we detail the selected representation.

4.3.4 Trajectory representation

Compared to [Robuffo Giordano et al., 2018], in which plain polynomials were used to
represent the trajectories, we now adopt Bézier curves, see e.g., [F. Zhou et al., 2011], to specify
the shape of the reference motions.

Let P0, P1, . . . , PdB be the na/ny = dB + 1 control points of the reference to be tracked,
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and also let s = t/T ∈ [0, 1] be the normalised time, then the associated Bézier curve is the set
of points defined by the parametric representation

C(s) =
dB∑

i=0
BdB
i (s)Pi, (4.19)

where BdB
i (s) is a Bernstein polynomial of degree dB, and Pi ∈ Rny | i ∈ J0, dBK is the i-th

control point of the curve. The dB + 1 Bernstein polynomials, which are the base function in
the Bézier curve expression, are defined by

∀(i, s) ∈ J0, dBK× [0, 1] , BdB
i (s) =

(
dB
i

)
si(1− s)dB−i. (4.20)

The Bernstein basis polynomials of degree dB form a basis for the vector space RdB [X] of
polynomials of degree at most dB. Besides, they also form a partition of unity. Hence, a Bézier
curve of degree dB is completely defined as

∀s ∈ [0, 1] , C(s) =
dB∑

i=0

(
dB
i

)
si(1− s)dB−iPi. (4.21)

Eq. (4.21) can be differentiated w.r.t. time, which yields

∀s ∈ [0, 1] , Ċ(s) = dB
T

dB−1∑

i=0

(
dB − 1
i

)
si(1− s)dB−1(Pi+1 −Pi). (4.22)

In particular, we have





Ċ(0) = Ċ(t = 0) =
dB(P1 −P0)

T

Ċ(1) = Ċ(t = T ) =
dB(PdB −PdB−1)

T

. (4.23)

This latter relation can be useful to formulate linear constraints on the reference trajectory, such
as kinematic limit conditions. Of course, Eq. (4.21) can be differentiated w.r.t. time as many
times as needed, to add more constraints on the curve, e.g. on the acceleration, jerk, and so
forth.

Even if this representation is a bit more complex (mathematically) than plain polynomials,
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Figure 4.2 – Comparison of the change in shape when modifying one parameter of a cubic curve (on
each graphic, the original curve is in black). The plain polynomial representation is displayed on the left
column (shades of black to red), while the Bézier curves are on the right (shades of black to blue). In each
line, we can observe successively the influence of the offset of the first, second, third and last parameter
on the whole curve. Note that here, the offset is applied only in th y-direction, and by ±k/10 [m], where
k ∈ J1, 5K.

it confers interesting properties, among which we mention:

— the curve begins at P0 and ends at PdB ;
— the curve is tangent to the control polygon at its endpoints;
— the entire curve is contained within the convex hull of the control points, which e.g., can
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be useful for collision avoidance;
— the partition of unity property of the Bernstein polynomials ensures that the shape of the

Bézier curve remains the same under translation/rotation of all of its control points.

Moreover, the Bézier curve representation has the advantage of being numerically more sta-
ble than simple polynomials, as illustrated in Fig. 4.2. Indeed, the different graphics show that
the coefficients of the plain polynomials have unbalanced influence on the whole curve: for in-
stance, modifying the coefficient of lowest degree only translates the curve, see Fig. 4.2 at the
top left, while coefficients with higher degree have gradually less influence at the beginning of
the curve. Conversely, the control points Pi of the Bézier curve have a balanced/local influence
on the trajectory: one can observe on the right row at each line, that the variation of a control
point impacts the curve locally, in a more balanced manner. Hence, the displacement of a con-
trol point in its admissible space will ensure a better overall behaviour during the TO process,
compared to simple polynomials.

To summarise, with na = ny(dB + 1), the parameter vector a ∈ Rna shapes the reference to
be tracked by the system, and contains the information of all control points. Now that we have
detailed the trajectory representation that we exploit in this contribution, we formulate the TO
problem.

4.4 Trajectory planning

To enhance the global performance of the system at hand, we consider a TO problem: know-
ing our system dynamics f , referring to Eq. (4.1), a reference trajectory yd(a, t) defined over
the time interval T (parameterised by the class of curves studied in Subsection 4.3.4), the con-
troller internal dynamics g and its input function h, both defined in Eq. (4.2), the optimisation
consists in finding the optimal vector a?, such that

a? = arg min
a∈A

(
w1‖Π(T)‖2 + w2

∫ T

0
‖Θ(τ)‖2 dτ

)
, (4.24)

where ‖•‖ is a suitable norm for Π and Θ, w1 and w2 are suitable weights for the optimisation,
whose use is described afterwards (other possibilities exist, such as Pareto optimality [I. Y. Kim
et al., 2005]), and A is the admissible set of a. The problem of Eq. (4.24) aims at:

— minimising the closed-loop state sensitivity Π at the final time T, such that the final
(possibly perturbed) state q(T) is as close as possible to its nominal qc(T);

— reducing the integral of the closed-loop input sensitivity Θ, in order to minimise the de-
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viation between the (again, possibly perturbed) input u(t) and its nominal uc(t), which
would enhance the predictability of the inputs This consideration allows the system to
follow optimal paths, during which the inputs result less perturbed if p deviates pc.
Therefore, the actuators would be less likely to, e.g. approach their saturations umin and
umax. Note that f we seek to reduce ‖Π‖ only, then ‖Θ‖ might be greater after the op-
timisation process. Thereby, there would be higher probability to get a bad behaviour
from this ’optimised’ motion. To avoid that, we also consider the input sensitivity in the
TO problem.

Eq. (4.24) is relevant when needing to reach an accurate pose at final time, while ensuring that
the inputs remains close to their nominal. Note that problem

a? = arg min
a∈A

(
w1

∫ T

0
‖Π(T)‖2 dτ + w2

∫ T

0
‖Θ(τ)‖2 dτ

)
, (4.25)

which seeks at minimising the norm of the state sensitivity Π during the whole trajectory dura-
tion, could also be of interest, if one wants to improve the predictability of the state evolution
q(t), ∀t ∈ T. This can be relevant, e.g. when needing to avoid obstacle collisions throughout
the navigation. In this chapter, we only consider the problem of Eq. (4.24), but in Chapter 5 we
will consider the minimisation of Eq. (4.25).

For the sake of finding a motion that will guarantee better performance of the system,
we chose to break down problem Eq. (4.24) into several related sub-problems defined by the
weighting vector Ω = (w1, w2), used as follows:

— ΩΠ = (1, 0) allocates the whole optimisation for the state sensitivity, and outputs a?Π;
— ΩΘ = (0, 1) aims at minimising the input deviation, and outputs a?Θ;
— ΩW =

(
1

‖Πopt‖ ,
1

‖Θopt‖

)
allows the optimiser to reduce both the state and input sensitivities

at once: it normalises both ‖Π‖ and ‖Θ‖ costs, that are not similar metrics by nature,
and also grants more weight to the sensitivity that has the lowest value after its first
minimisation. This way, the last case should be the one that will give overall the smallest
errors for both the state and input. This optimisation outputs a?W.

Summarising, the described constrained minimisation problems can be solved by any suit-
able optimiser. Since we are able to compute the gradients of the metrics studied in Section 4.3,
a gradient descent algorithm with linear and non-linear constraints will be used.

Let us consider a case where the initial and final values of yd(a, t) and their needed time
derivatives are given to the optimiser, these linear constraints impose the admissible set A such
that MC · a = b. Here, MC is constructed by derivating the Bézier curves of Eq. (4.21), and

73



Chapter 4 – Robust trajectory planning with parametric uncertainties

b contains the motion limit conditions. Moreover, the robot is necessarily subject to actuation
limits, i.e. umin and umax, and these physical capabilities must be considered as non-linear
constraints. Vector a can then be optimised with any constrained non-linear optimisation routine
(for instance, we used the well-known ’fmincon’ function in Matlab), starting from an initial
guess a0 satisfying both the linear and non-linear constraints, e.g., subject to (s.t.)

MC · a0 = b,
∀t ∈ T, umin 6 uc(t) 6 umax.

(4.26)

Later, the optimisation routine can be halted with standard termination criteria, e.g. based on
the gradient norms. Note that since problem Eq. (4.24) is in general non-convex in a, the opti-
misation algorithm can only guarantee convergence towards a local minimum.

Since we need to evaluate the costs ‖Π‖ and ‖Θ‖, a suitable norm choice needs to be made.
In this context, we chose the Frobenius matrix norm, which derives from the scalar product
associated with the matrix space, i.e., for a matrix M ∈ Rm×n,

‖M‖F =
√

Tr
(
MT ·M

)
=
√∑

i, j

M2
i, j, (4.27)

but we will discuss in Chapter 6 a better norm choice for the sensitivity metrics.

With the settings described before, the complete closed-loop state/input sensitivities TO
problem is written

a?{Π,Θ,W} = arg min
a∈A

(
w1‖Π(T)‖2

F + w2

∫ T

0
‖Θ(τ)‖2

F dτ
)

s.t.





MC · a = b
umin 6 uc(t) 6 umax, ∀t ∈ T = [0, T]

, (4.28)

where a is the optimisation vector that shapes the reference trajectory, and which always re-
mains within its admissible set A. The problem of Eq. (4.28) aims at minimising the final state
error and the integral (through time) of the input error, between the perturbed and the nominal,
while verifying kinematic limit conditions (linear equality constraints), and input saturations
(non-linear inequality constraints). Therefore, this problem should output reference trajectories
whose tracking is intrinsically robust to deviations in the parameters p, provided these latter are
not too large. Other formulations of this problem are possible, e.g. with an integral cost of the
state sensitivity Π, see Eq. (4.25), but in this contribution, we only seek that the system reaches
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4.5. Application to a 2D quadrotor

the final point accurately, and thus give full room for this objective.

4.5 Application to a 2D quadrotor

Let us now detail the dynamics and controller equations of a planar quadrotor, in order to
get the expressions of Eqs. (4.1) and (4.2).

Let FB = {OB, (xB, zB)} be the body frame attached to the the quadrotor CoM, with zB
aligned with the thrust direction, see Fig. 4.3. For the planar quadrotor, the state consists of
the Cartesian position r =

[
x z

]T ∈ R2 as well as its first time derivative, the linear velocity

v =
[
vx vz

]T
=
[
ẋ ż

]T ∈ R2, both expressed in the world frame FW = {OW , (xW , zW)},
and of the body orientation θ = (zW , zB) as well as the angular velocity ω = θ̇. Thus, the state
vector of the planar quadrotor is written q =

[
rT vT θ ω

]T ∈ R2 × R2 × R× R.

Let
[
f τ

]T ∈ R2 be respectively the total thrust and torque of the quadrotor, we can distin-

guish these effective inputs and the actual input vector u =
[
w2

R w2
L

]T ∈ R2, that contains the
squared versions of the left and right propeller angular rates. These four values are related by



f

τ


 =



kf kf

kf` −kf`






w2

R

w2
L


 = S



w2

R

w2
L


 , (4.29)

where kf is the thrust aerodynamic coefficient that characterises the propeller used in the AU,
see e.g. [Mahony et al., 2012], and ` is the arm length.

OW xW

zW

wR

wL

q =
[
rT vT θ ω

]T

OB

xB

zB

Figure 4.3 – Illustration of the main quantities characterising the planar quadrotor model.
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4.5.1 Dynamics in the plane

Letm be the mass of the planar quadrotor and J = JOB its scalar inertia. The external forces
applied to its body are the weight and the total acting thrust f and torque τ , that are exerted by
the two propellers. Thus, the Newton-Euler equations in the plane yield




f(u)zB −mgzW = mγ(t)

τ(u) = Jα(t)
, (4.30)

that is equivalent to 



γ(t) =
f(u)
m

R · zW − gzW

α(t) =
τ(u)

J

, (4.31)

where γ(t) =
[
ẍ z̈

]T ∈ R2 is the UAV linear acceleration, expressed in the world frame
FW , and α(t) = θ̈ is its angular acceleration, expressed in the body frame FB. As the body
orientation is encoded by θ = (zW , zB), the associate rotation matrix R = BRW is defined as

R =

 cos θ sin θ
− sin θ cos θ


 ∈ SO(2), (4.32)

such that zB = R · zW . Now, we can write the state-space model of the plane quadrotor

q̇(t) =





ṙ(t) = v(t)

v̇(t) =
f(u)
m


− sin θ

cos θ


+


 0
−g




θ̇(t) = ω(t)

ω̇(t) =
τ(u)

J

(4.33)

where ṙ and v̇ = γ(t) are expressed in the world frame FW , whereas θ̇ and ω̇ = α(t) are
expressed in the local frameFB. Note that even if the input u of the quadrotor are not explicitly
in Eq. (4.33), they affect the values of

[
f τ

]T
through Eq. (4.29). Therefore, kf , `, m, J and

g are the parameters that affect the state-space model. In this contribution, we consider that
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4.5. Application to a 2D quadrotor

the mass, the inertia, the aerodynamic thrust coefficient and the arm length measurements are
uncertain. Of course, the Earth gravity acceleration constant g value is known with very good
precision. Consequently, in this framework we consider p =

[
m J kf `

]T ∈ R4 as the
parameter vector from which we derive the state and input sensitivity matrices, as well as their
gradients.

To summarise, the plane quadrotor main quantities are:

— its state vector q =
[
rT vT θ ω

]T ∈ R6;

— its input vector u =
[
w2

R w2
L

]T ∈ R2;

— its parameter vector p =
[
m J kf `

]T ∈ R4, where g is omitted.

From these vectors, we can define the dynamics of the quadrotor as q̇(t) = f(q, u, p), as a
combination of the state-space model of Eq. (4.33) and the input map Eq. (4.29). As detailed in
Section 4.3, the state dynamics function f is required to obtain the state sensitivity by forward
integration, see Eq. (4.9). In the next subsection, we complete the missing information by giving
the expressions of the controller internal state dynamics function g and inputs function h, that
are also needed for the computations of the internal state and input sensitivities.

4.5.2 Dynamic feedback linearisation controller

The chosen control task is that of letting the quadrotor output y(q) = r =
[
x z

]T
track

a desired motion yd(a, t) ∈ R2. This is done by implementing a DFL controller with integral
term for the best performance in the nominal case pc = p, see, e.g. [Mistler et al., 2001].
Differentiating once the linear acceleration of the planar quadrotor w.r.t. time yields the jerk

j(t) = ḟ

m


− sin θ

cos θ


− fω

m


cos θ

sin θ


 , (4.34)

and doing it once more yields the snap

s(t) = f̈

m


− sin θ

cos θ


− 2ḟω

m


cos θ

sin θ


+ fω2

m


 sin θ
− cos θ


− fω̇

m


cos θ

sin θ


 , (4.35)
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where we recognise the term ω̇ = τ/J of Eq. (4.33), which allows us to rewrite the snap (at the
nominal p = pc) as

s(t) =




−
sin θ
mc

−
ξf cos θ

Jc

cos θ
mc

−
ξf sin θ

Jc




︸ ︷︷ ︸
MDFL(q, ξ,pc)

·



f̈

τ


+ ω

mc




ξfω sin θ − 2ξḟ cos θ

−ξfω cos θ − 2ξḟ sin θ




︸ ︷︷ ︸
vDFL(q, ξ,pc)

, (4.36)

where, ξ =
[
ξf ξḟ ξx ξz

]T ∈ R4 denotes the controller internal states vector. Here, ξf , ξḟ
are the dynamic extensions of respectively f , ḟ , and ξx, ξz are the states of the integral action
for the linear position. From yd(a, t) and its derivatives w.r.t. time, let us define rd, vd, γd, jd

sd, as the reference position, velocity, acceleration, jerk and snap respectively. Then, we define





γξ(t) = ξf

mc


− sin θ

cos θ


+


 0
−g




jξ(t) =
ξḟ
mc


− sin θ

cos θ


− ξfω

m


cos θ

sin θ




ξxz(t) =
[
ξx ξz

]T

νDFL(t) = sd + kj(jd − jξ) + kγ(γd − γξ) + kv(vd − v) + kr(rd − r) + kiξxz

, (4.37)

where kc =
[
kj kγ kv kr ki

]T ∈ (R+
∗ )5 are suitable control gains. Now, the dynamics of

the controller internal states and the quadrotor control inputs can be written as





ξ̇(t) =





ξ̇f (t) = ξḟ

ξ̇ḟ (t) =
[
1 0

]
·M−1

DFL · (νDFL − vDFL)

ξ̇xz(t) = yd(a, t)− y(q)

u(t) = S−1
c ·




ξf
[
0 1

]
·M−1

DFL · (νDFL − vDFL)




, (4.38)
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and gives us the sought expressions for Eq. (4.2). We recall that in Eq. (4.38), Sc is the input
mapping matrix evaluated at the nominal parameters pc.

To summarise this section, we now have detailed the expressions of Eqs. (4.1) and (4.2),
which allows us to compute the evolutions of the state, internal state and input sensitivities, as
well as their gradients, see Eqs. (4.9) and (4.18). To perform the robust TO described by the
problem of Eq. (4.28), one can perform the numerical integration along any reference trajectory
yd(a, t) represented by the Bézier curves of Eq. (4.21).

4.6 Statistical analysis

In order to test the effectiveness of the previously described method, we conducted a sta-
tistical analysis of larger scale than in [Robuffo Giordano et al., 2018], which aims at testing
the soundness of Eq. (4.28) when applied to various trajectories. The idea of this analysis is
to generate a set of n⊕ output targets on which we would like to test the framework, and the
corresponding a?Π, a?Θ and a?W. Then, we seek to evaluate the resulting performance for each tra-
jectory case, by means of statistical analysis of the dynamical behaviour against nper parameter
perturbations.

4.6.1 Settings

Concretely, the first phase of trajectory generation is done by picking a random final output
target: as there is a spatial symmetry of the quadrotor dynamics w.r.t. the initial position, we
take it in a right half disc, thus

yd(a, T) = r⊕


cos θ⊕

sin θ⊕


 | (r⊕, θ⊕) ∈ [1, 3]×

[
−π2 ,

π

2

]
, (4.39)

where r⊕ is in [m] and θ⊕ is in [rad]. Both of these values are randomly drawn from a uni-
form distribution within their respective admissible intervals. The kinematic limit conditions in
velocity, acceleration and jerk are set to zero, so that the motion is rest-to-rest. Therefore, the
linear constraints vector b is written as a vertical concatenation of the initial and final positions,
velocities, accelerations and jerks for each dimension, namely x and z, which yields

b =
[
0 r⊕ cos θ⊕ 01×6
︸ ︷︷ ︸

x information

0 r⊕ sin θ⊕ 01×6
︸ ︷︷ ︸

z information

]T ∈ R16, (4.40)
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where 01×6 contains the information of initial and final velocities, then accelerations, and then
jerks. Note that matrix MC from Eq. (4.28) can be easily constructed from the Bézier curve, by
deriving it to the jerk at the start and end of the time window T.

We also consider actuation constraints on the total thrust f exerted by the quadrotor, such
that 0 < f < 2mcg, translated into propellers rotation rates with the inverse mapping of
Eq. (4.29). The lower limit condition originates from the DFL controller structure, which is
singular for ξf = 0: indeed, inverting matrix MDFL in Eq. (4.38) is not possible for this spe-
cific value. Besides, the upper limit keeps the inputs below some saturation, that represents a
maximum propeller speed.

For each initial guess a0 generated according to these rules, the optimiser outputs the as-
sociated reference trajectories a?Π, a?Θ and a?W. Afterwards, and for each of these reference
trajectories, we run:

— a single nominal simulation where p = pc, that serves us as the reference;
— nper = 500 perturbed simulations of the quadrotor tracking these four trajectories, while

randomly drawing all the parameters p from a uniform distribution with a perturbation
of δp = ±10 %.

From these 4(1 + nper) simulations, we can measure the final output error square norm

Ey = ‖y(T)− yc(T)‖2 (4.41)

and the average input error square norm

Eu =
∫ T

0
‖u(τ)− uc(τ)‖2 dτ. (4.42)

Note that in Eq. (4.41), yc(T) could be replaced by yd(T), since the DFL controller has perfect
tracking in the nominal case. For other control policies, it is not the case in general.

Then, on each of these eight resulting sets of error values, we compute the mean and the
standard deviation. As a synthesis, starting from a single non-optimised trajectory we end up
with sixteen numbers, namely the means µ{Ey,Eu} and the standard deviations σ{Ey,Eu} of the
output and the input errors, for the four optimisation cases (a0, a?Π, a?Θ and a?W).

Finally, we aggregate these numbers over the whole set of n⊕ targets, by computing the
box-plot characteristics of these means and standard deviations. In other words, for every initial
trajectory, we compute the median, the first and third quartiles, and the first and last centiles of
the n⊕ error means, and standard deviations, for all four non-optimised and optimised trajecto-
ries.
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We have done this whole campaign of optimisations and perturbed simulations for two con-
troller cases: one set with no integral term (ki = 0) and a second one with an integral term
(ki > 0). Anyhow, the control gains kc of the DFL controller have been chosen in order to give
real and negatives closed-loop poles.

4.6.2 Results with no integral term

Fig. 4.4 shows the resulting boxplots of a full campaign of nper = 500 perturbed simulations
for n⊕ = 30 initial targets for the DFL with no integral term (ki = 0), displaying only µ{Ey,Eu}.
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Figure 4.4 – Box-plots of the evaluated performances for the conducted statistical campaign when com-
paring all the initial guesses a0 (in black) to their associated optimised trajectories of problem Eq. (4.24),
respectively a?Π (in blue), a?Θ (in yellow) and a?W (in light green), when the DFL controller has no in-
tegral term (ki = 0). On the left, we display the distribution of the final output error means, and the
distribution of the input error means on the right.

In the left graphic of Fig. 4.4, we can see a slight improvement of the error means height
when comparing a?Π to a0. However, we can see in right graphic that the box-plot of the input
tracking error means for a?Π is higher and spreads way more than the initial guess: this means
that the generation of a minimal state sensitivity trajectory that will statistically reduce the
output tracking error can also have the side effect of making the input less predictable, and
more subject to variations due to parameters error. Comparing now a?Θ to a0, we observe a
very strong decrease in the input error means (right), while the final output error means (left)
increase, which is the reverse case, and leads to the same conclusions. One can now observe
that a?W displays improvements on the two error means, which is what we seek: getting a?Π
and a?Θ and their respective costs is useful determine ΩW, see Section 4.4, in order to decrease
both sensitivities in one adequate optimisation. As we stressed in the previous sections, the
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Chapter 4 – Robust trajectory planning with parametric uncertainties

trajectories that are fed to the system have to be minimal in both sensitivities, for accuracy and
security. In that way, the reduced errors after optimising for a?W demonstrate the effectiveness
of the method, at least in the conditions we described.

4.6.3 Results with an integral term

Let us now analyse the results for one specific trajectory, extracted from the second cam-
paign of simulations for the DFL with an integral term (ki > 0). In Fig. 4.5 we can observe the
initial guess and its associated optimised trajectories in the output plane. For the nominal case,
the quadrotor exactly follows the references with no tracking errors. However, we want to assess
the performance of each trajectory in the perturbed case. For this specific motion, after running
the nper perturbed simulations for the four trajectories, we collect all final outputs which gives a
cloud of nper output points for a0, a?Π, a?Θ and a?W. Then we chose to plot, for each point cloud,
the associated 90% confidence ellipse, as shown in Fig. 4.5, which allows us to easily assess the
statistical performance obtained by tracking the reference trajectories of each optimisation.
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Figure 4.5 – Display of a0 (in black), a?Π (in blue), a?Θ (in yellow) and a?W (in light green) for problem
Eq. (4.24). For each optimisation case, we show the 90% confidence ellipse (dashed lines) associated to
the cloud point of the final outputs yi(T)i∈J1, nperK, with δp = 10%.

We can see that a?Π and a?W are showing both very good results in term of final output errors
mean and dispersion. a?Θ gives a smaller ellipse than the initial guess. Note that, interestingly,
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conversely to the previous statistical analysis, where Π was shown to increase when minimising
Θ, it is not the case for these specific conditions. From these results, we draw the conclusion
that the optimised trajectories give lower state errors, with the lowest ones occurring for a?Π and
a?W. Therefore, these two optimisation cases are good references if we need the plan quadrotor
to reach the final output target accurately.

Lastly, Fig. 4.6 shows the resulting boxplots of the initial guess a0 and a?W, for a full cam-
paign of perturbed simulations, when the DFL has an integral term (ki > 0). We chose to only
display the results of a?W, since these reference trajectories are the ones which are the most
accomplished in terms of performance improvement. Anyway, the results for the two other op-
timisations for this case have the same trend.
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Figure 4.6 – Box-plots of the evaluated performances for the conducted statistical campaign when com-
paring all the initial guesses a0 (in black) to their associated trajectories resulting from the weighted
optimisation of problem Eq. (4.28), a?W (in light green), when the DFL controller has integral term
(ki > 0). At the top, distribution of the final output error means (left) and standard deviations (right); at
the bottom, distribution of the input errors means (left) and standard deviations (right).

On the left we can observe the error means for the output (top) and the inputs (bottom),
with significant improvements in both. On the right we can also observe the standard deviation
means for the output (top) and the inputs (bottom). We can easily verify that the errors after
the simulations were significantly reduced: in average, the state error means and standard devi-
ations were decreased by a factor two, which is very good, and we also see clear improvements

83



Chapter 4 – Robust trajectory planning with parametric uncertainties

concerning the inputs. In our opinion, these results strongly demonstrate the effectiveness of the
method.

4.7 Conclusion

In this chapter, we gave a novel constrained optimisation problem for robust trajectory plan-
ning under parametric uncertainties. After defining the associated generic robotic problem, we
have introduced the closed-loop input sensitivity, which complements the state sensitivity. We
further incorporate it in the objective cost of our TO problem. The methodology for determining
the sensitivities and their gradients is described in detail in Section 4.3.

To overcome the stability issues faced by previous contributions that utilised plain polyno-
mials, we adopted a new class of curves, i.e. Bézier curves, to represent the planned motions.
These offer numerous advantages while ensuring stability, given that their degree remains rela-
tively low. With this new representation, we have defined the state/input sensitivity minimisation
problem, under linear and non-linear constraints (respectively for kinematic limit conditions
and input saturations). This formulation results in reference trajectories, whose tracking is (by
construction) robust against deviations in the model parameters. The cost objective allows to
minimise the Frobenius norm of the state sensitivity at the final time, to reach the final output
target with enhanced precision, and also allows to reduce the integral of the input sensitivity dur-
ing the whole motion. This ensures a minimisation of the input deviation (around its nominal),
in leads to more predictability in the perturbed cases.

The validity of the proposed optimisation framework was tested using a planar quadrotor
equipped with a DFL controller. To this end, an extensive statistical campaign of simulations
was conducted to evaluate the performance of the method under uncertain robotic conditions,
for multiple output targets. From our point of view, the result section demonstrates that the
proposed sensitivity reduction method can significantly enhance the accuracy and safety of
systems.
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CHAPTER 5

COP: CONTROL &
OBSERVABILITY-AWARE PLANNING

5.1 Introduction

In this chapter, we aim to combine two trajectory generation methods: the first, introduced
in [Robuffo Giordano et al., 2018] and later extended in Chapter 4, generates control-aware tra-
jectories that are robust to parametric uncertainties of the system’s model; the second, studied
in [Böhm, G. Li, et al., 2020; Hausman, J. Preiss, et al., 2017; J. A. Preiss et al., 2018], results
in observability-aware trajectories that enhance the online estimation process of the system’s
state/parameters. Therefore, in this second contribution we aim to answer the question: how to
combine control-aware with observability-aware trajectory planning ? These possibly opposite
optimisation objectives could be exploited together to improve trajectory tracking and, at the
same time, estimation performance. In particular, we show how to exploit all the related metrics
in a single objective cost, and formulate a new constrained TO problem, to generate trajecto-
ries that have minimal State and Input Sensitivities (S/I-S), and which facilitate the parameter
estimation process.

5.1.1 Motivation

A single metric may not fully capture the complexity of a task, or the various factors that
contribute to successful execution. By combining multiple metrics, it is possible to identify
multiple areas for improvement, and generate trajectories that can mitigate the potential biases
and limitations of those who are obtained using a single objective. This can be illustrated by the
following: for instance in Section 4.6, we have observed that reducing the state sensitivity alone
could lead to an increase of the input sensitivity, and vice versa. This highlights the possible
disadvantages of reducing a single metric in an optimisation: even if it ensures better behaviour
w.r.t. the corresponding criterion, it could result in a trajectory that makes other aspects perform
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much worse, compared to non-optimised motion. Hence, any trajectory planning framework is
subject to drawbacks.

5.1.2 Observability-aware trajectories

State estimation with proper system modelling, see [Böhm, Scheiber, et al., 2021], relies on
the design of sufficiently informative system input for accurate and fast estimate convergence.
The works in [Ansari et al., 2016; Böhm, G. Li, et al., 2020; Hausman, J. Preiss, et al., 2017;
Ponda et al., 2009; J. A. Preiss et al., 2018; Van Den Berg et al., 2011; Wilson et al., 2014]
show that taking the estimation or parametric uncertainty into account drastically improves
system parameter estimation results while allowing task execution. However, these informative
trajectories might show poor robustness against uncertainties in the robot model, for the tracking
controller that executes them, e.g. [Kamel, Stastny, et al., 2017; T. Lee, Leok, et al., 2010a,
2010b].

5.1.3 Control-aware trajectories

To address this issue, the notion of closed-loop state sensitivity has been recently introduced
in [Robuffo Giordano et al., 2018] and also extended to closed-loop S/I-S in Chapter 4, as
suitable metrics to be optimised. Minimising some appropriate norm of the S/I-S results in
trajectories, whose tracking is minimally sensitive to model uncertainties of the robot state and
input. This is important as it increases the robustness and accuracy of the trajectory tracking
while improving the repeatability of the control inputs under uncertain robotic tasks. However,
the S/I-S method is based on the assumption that the state is fully known during the tracking
task, which, of course, is impossible. This knowledge of the actual robot state and nominal
values of the model parameters, which may not be directly available, can be provided by state
estimation.

5.1.4 Link and combination

Therefore, a link between observability-related metrics and S/I-S metrics exists, since the
evaluation of S/I-S needs a good knowledge of states and parameters, and the tracking of max-
imally observable trajectories benefits from increased robustness in the trajectory execution.
That fact motivates our study on how to combine both methods in a unified trajectory optimi-
sation problem, taking into account that these two objectives can conflict among themselves, as
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confirmed in Section 5.4.

5.1.5 Contributions

In this context, the essential elements of our approach are:

— we propose Control & Observability-aware Planning (COP) as a way to balance two
possibly contradicting optimisation problems: planning trajectories whose execution is
minimally sensitive to model uncertainties, and generating trajectories that can be suffi-

ciently informative for accurate state/parameter estimation;
— we leverage previous contributions, and combine the metrics in the formulation and

resolution of a Single-Objective Optimisation Problem (SOOP) based on the augmented
weighted Chebyshev method;

— we replace the (high-order) Bézier curves of Chapter 4 by piece-wise Bézier curves, for
dimension reduction;

— for the first time within the sensitivities framework, we examine a quadrotor UAV that
navigates in a full three-dimensional space (oriented with unit quaternions), striving to
mimic reality as closely as possible;

— we also replace the previously used DFL controller (Subsubsection 4.5.2) with a geo-
metric tracking controller, better suited to real-world scenarios due to its simplicity, and
widely utilised in the field of multi-rotor aerial robotics.

This chapter is structured as follows: first, we detail the model of a space quadrotor, equipped
with a geometric tracking controller (Section 5.2). Then in Section 5.3 we detail the COP
method, by giving the objectives for the TO problem, showing how to combine them with the
augmented weighted Chebyshev method, and detailing the multi-steps optimisation procedure.
In a case study (Section 5.4, considering the robust trajectory tracking and parameter estimation
for the system at hand, we discuss the statistical results of a realistic simulation campaign that
validates the potential of the proposed framework. Finally, Section 5.5 concludes this contribu-
tion.

The study of this chapter was conducted in collaboration with the research group ’Control of
Networked Systems’, located at the University of Klagenfurt. This contribution was published
in the research community, and then presented at ICRA 2022:

Christoph Böhm, Pascal Brault, et al. [2022], « COP: Control & Observability-aware Plan-
ning », in: IEEE International Conference on Robotics and Automation (ICRA), pp. 3364–3370
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5.2 Preliminaries

This section serves the purpose of detailing the system at hand for this study, i.e. a space
quadrotor oriented with unit quaternions, and equipped with a geometric tracking controller.

We have made the choice of representing attitude through the unit length quaternions of S,
see Subsubsection 3.3.2.4, to avoid the singularities induced by the gimbal lock of Euler angles
(Subsubsection 3.3.2.2). Thus, the encoding of the orientation is not minimal, as we require four
values instead of three for orienting the platform in its space of navigation. This contribution
marks the first use of a space quadrotor model with the S/I-S framework. Of course, we avoid
the use of rotation matrix since nine values instead of three or four would be required in the
state vector q. This would make the complexity of the sensitivity derivations explode and is not
welcome at all.

Besides, as the DFL controller is complex to implement in practice, i.e. it requires to de-
rive the dynamics to the snap, see Subsection 4.5.2, Eqs. (4.35) and (4.36), especially when
switching to a space model, again, the complexity is too high. Therefore, we discard it in this
contribution, and switch to the much simpler geometric controller of [T. Lee, Leok, et al., 2010a,
2010b], that we adapted to the quaternion representation. The advantages and inconvenients of
this control policy will be further studied when detailing the equations.

5.2.1 3D quadrotor dynamics

The state-space model of the quadrotor oriented with unit quaternions, has already been
completely derived in Chapter 3. Therefore, we refer to Section 3.4 for detailed information.

5.2.2 Geometric tracking controller

We now present the controller that equips the quadrotor to perform the reference motion
tracking. The chosen control task is to let the system output y(q) =

[
x y z ψ

]T ∈ R4 track
a desired motion yd(a, t) ∈ R4, where ψ is the heading angle of the quadrotor, and can easily be
linked to the quaternion ρ, using successively Eqs. (3.19) and (3.10). In [Robuffo Giordano et
al., 2018] and Chapter 4, a DFL controller with integral term was used as a the planar quadrotor
tracking controller. This control policy is able to perfectly track any desired motion, in the
absence of input constraints and uncertainties in the states and parameters. However, the DFL
strategy is rarely used in practice because of its complexity, since it requires additional internal
states with complex dynamics, and has a poor robustness against model uncertainties. Therefore,
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we chose to use the geometric tracking controller of [T. Lee, Leok, et al., 2010a, 2010b], which
performs slightly worse in an ideal case compared to the DFL, but it is much less complex
to implement and tune. Indeed, the use of this controller and variants is widespread in the
community. Although we implemented the same structure of the controller as in [T. Lee, Leok,
et al., 2010a, 2010b], we added some minor changes in order to match the dynamics of the
space. We now detail our adaptation of this control law.

First, from yd(a, t) and its derivatives, we define rd, vd, γd, as the reference linear position,
velocity and acceleration respectively. Then, let

er(t) = r(t)− rd(a, t) ∈ R3 (5.1)

be the linear position error of the AV, and also let

ev(t) = v(t)− vd(a, t) ∈ R3 (5.2)

be the linear velocity error. Moreover we define

ξ(t) =




ξx

ξy

ξz


 =

∫ t

0
er(τ) dτ ∈ R3 (5.3)

as the linear position integrator, and which corresponds to the internal states vector. We chose
the control gains vector kc =

[
kT
x, y, z kT

vx, vy , vz kT
ξx, ξx, ξx kT

ϕ, θ, ψ kT
ωx, ωy , ωz

]T ∈ R15 such
that the geometric controller delivers the best overall tracking performance. It is time-independent,
and defines the diagonal matrices (Kr, Kv, Kξ, KR, Kω) ∈ (R3×3)5. Now, we exploit the lin-
ear position, velocity errors, and position integrator, as well as the control gains vector to define
the desired third body-fixed frame canonical basis vector

r3d = −Kr · er −Kv · ev −Kξ · ξ +m(gzW + γd)
‖−Kr · er −Kv · ev −Kξ · ξ +m(gzW + γd)‖ ∈ R3. (5.4)

The desired heading vector is defined using the desired yaw ψd = ψd(a, t), as

xψd =




cosψd

sinψd

0


 ∈ R3 (5.5)
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and further used to define the second body-fixed frame canonical basis vector

r2d =
[r3d ]× · xψd

‖[r3d ]× · xψd‖
∈ R3. (5.6)

Lastly, we obtain the first body-fixed frame canonical basis vector

r1d = [r2d ]× · r3d ∈ R3. (5.7)

From these computations, we are able to define the desired rotation matrix

Rd(a, t) =
[
r1d r2d r3d

]
∈ SO(3). (5.8)

Now, we can define the attitude error

eR(t) = 1
2
[
RT

d (a, t) ·R(ρ, t)−RT(ρ, t) ·Rd(a, t)
]∨ ∈ R3 (5.9)

where R(ρ) is the rotation matrix that encodes the same rotation as the unit quaternion ρ, see
Eq. (3.19), and lastly the angular velocity error

eω(t) = ω(t)− ωd(t) = ω(t) ∈ R3 (5.10)

where we make the choiceωd(t) = 0, to reduce the overall complexity of the controller. Indeed,
computing Rd(a, t) is already quite heavy. The resulting fictitious control inputs are then




f(t) = [−Kr · er −Kv · ev −Kξ · ξ +m(gzW + γd)]T · (R(ρ) · zW)
τ (t) = −KR · eR −Kω · eω

. (5.11)

As defined before in Eqs. (5.1) and (5.10), er, ev, eR and eω denote respectively the linear
position, linear velocity, attitude, and angular velocity errors. We then compute the real control
inputs u(t) of the quadrotor, via the inverse of the input mapper of Eq. (3.24), that yields

u(t) = S−1
c ·


f(t)
τ (t)


 ∈ R4. (5.12)

In this controller, we made the choice to fix the desired angular velocity to zero, which can-
cels terms in the tracking error of the angular velocity, and also in the input torque. Another
adaptation has been made to match the orientation of the frames which is different in this con-
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tribution, see Fig. 3.3, with zB = R(ρ, t) · zW oriented up, and not down as in [T. Lee, Leok,
et al., 2010a, 2010b].

5.2.3 Piece-wise Bézier curves

The controller is designed to let the quadrotor follow a reference trajectory yd(a, t), where
a is the parameter vector for the chosen class of curve. In [Robuffo Giordano et al., 2018], plain
polynomials were used, but not optimal since the influence of each coefficient was unbalanced.
Thereby in Chapter 4 we switched to the use of Bézier curves, since, in this case, adjusting a
control point in its admissible space during the optimisation is in general quite stable, from a
numerical point of view.

In this work, we go one step further, and provide an even more intuitive and flexible trajec-
tory representation. We adopted piece-wise Bézier curves, see Fig. 5.1, instead of only a single
one of high degree as in Chapter 4. In this new implementation, the parameters are not the con-
trol points, but way-points along this curve, that set the limit conditions at the beginning and
the end of the whole trajectory, as well as between two pieces. The trajectory passes through
the way-points with desired velocities and accelerations, and even higher derivatives if needed.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x [m]

0.0

0.2

0.4

0.6

0.8

1.0

y
[m

]

(t0, W0)

(t1, W1)

(t2, W2)

(t3, W3)

C1 C2

C3

Figure 5.1 – Simple example of a trajectory represented by piece-wise Bézier curves. Here, the number
of outputs is ny = 2 (x and y), the curve has np = 3 pieces, each of degree dB = nc.p. − 1 = 5, thus the
continuity is ensured in position, speed and acceleration (nj.c. = 3).

We now give some details about this representation, and show how to translate the limit
conditions into Bézier curves. Let Ci∈J1, npK, with np > 1 the number of pieces, be the Bézier
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curve of degree dB > 2 shaping the trajectory, see Eq. (4.21), then CdB−1 continuity is assured
between each piece. In total, there are np+1 way-points (ti, Wi), where ti is the time associated
to the point Wi ∈ Rny × nj.c., with ny the number of dimensions of the trajectory, e.g. for the
space quadrotor, x, y, z, and the yaw/heading angle ψ, and nj.c. the number of joining conditions,
e.g., nj.c. = 1 for position only, which means every Bézier curve piece would be a straight line
segment. The degree dB of the Bézier curve, the number of joining conditions nj.c. and the
number of control points nc.p. are linked by

dB = 2nj.c. − 1 = nc.p. − 1. (5.13)

With the conditions mentioned above, it is possible to use the derivatives of the Bézier curve,
see e.g. the velocity in Eq. (4.22), to construct all the joining conditions. Then, one can define
the linear system of equations which allows to obtain the control points of each piece from its
limit conditions. The solution of this system outputs the trajectory as an object that contains
the tensor of all way-points (of dimension nynj.c.(np + 1)) and the vector of the times of each
way-point ti∈J0,npK. Therefore, with na = (nynj.c. + 1)(np + 1), the parameter vector a ∈ Ra

contains the information of way-points and the associate times, and shapes the reference to be
tracked by the system at hand.

5.3 Control & observability-aware planning

In this section, we detail how to obtain trajectories that have minimal S/I-S and maximum
observability.

5.3.1 Objectives for trajectory optimisation

A trajectory yd(a, t) parameterised by the coefficient vector a, Subsection 5.2.3, can be
optimised for different goals, by changing its shape. We represent this goal by the so-called
utility function U(a) which, in our case, is a scalar cost to be minimised, subject to constraints

minimise
a∈A

U(a)

s.t. Ceq. = 0nCeq.

Cineq. 6 0nCineq.

, (5.14)
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whereA is the admissible set for the optimisation vector a, Ceq. designs the equality constraints,
and Cineq. the inequality constraints.

5.3.1.1 Closed-loop state sensitivity objective

As the closed-loop state sensitivity has already been defined, and its computation/use has
been fully detailed in Chapter 4, please refer to Sections 4.3 and 4.4 for more details.

In this contribution, we are interested in generating trajectories, whose tracking is most
insensitive to deviations in the model parameters. In particular, we desire that the (possibly
perturbed) state q(t) | t ∈ T remains close to its nominal qc(t) throughout the navigation task,
to ensure a better estimation of the state/parameters. Hence, we consider the integral norm of
the state sensitivity over the whole time window T, thus

UΠ(a) =
∫ T

0
‖Π(τ, a)‖2

F dτ, (5.15)

where ‖•‖2
F designs the Frobenius norm, see Eq. (4.27).

5.3.1.2 Closed-loop input sensitivity objective

The input state sensitivity was also introduced and detailed in Chapter 4, again please refer
to Sections 4.3 and 4.4.

As in Chapter 4, we are interested to improve the input prediction in the perturbed case
p 6= pc. We take the integral of its norm, which yields the objective function

UΘ(a) =
∫ T

0
‖Θ(τ, a)‖2

F dτ, (5.16)

that can be used to generate a trajectory, of which the tracking is intrinsically robust, in terms
of control inputs, against uncertainties in the model parameters.

The evaluation of Π(t) and Θ(t) is done by leveraging both the dynamical model of the
robot f and the control law (g, h), see Section 4.2, Eqs. (4.1) and (4.2), so that any strength/weakness
of the chosen control action is correctly taken into account. Brought together for trajectory plan-
ning, both these objectives provide the ability to generate the so-called control-aware trajecto-
ries. We recall the reader that one of the main hypothesis in the sensitivities framework is to
consider that the state of the actual system is fully known during the tracking task. Of course,
this is not the case as we only have an approximation of the state through the estimators, e.g.
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KFs. Thereby, ensuring that the state is best known is one of the key remaining aspects that
needs to be solved for this kind of trajectory planning.

5.3.1.3 Observability objective

Online state estimation is one way of making the state q and parameters p available at run-
time, see [Böhm, Scheiber, et al., 2021; Hausman, S. Weiss, et al., 2016; S. Weiss et al., 2012].
This is possible through the state-space model f and the comparison of sensor measurements
with system state-based measurement models m(q, u, p) ∈ Rnm .

How well such estimates perform depends on the accuracy of the system model and sensors
used, but the reliability of the control inputs fed to the plant are equally important. The EELOG
[Hausman, J. Preiss, et al., 2017; J. A. Preiss et al., 2018] works on the idea of the quality of
observability, proposed in [Hermann et al., 1977; Krener et al., 2009], which evaluates it over
a whole trajectory yd(a, t) defined on the time window T = [0, T]. It uses a n-th order Taylor
expansion to approximate the jacobian matrix that models the sensitivity of the measurements
with respect to the control inputs, the state and its changes on a small time horizon Ht, see
W̃t0,Ht(a) in [J. A. Preiss et al., 2018]. Summing all these quality measure segments along the
trajectory yd(a, t) yields the EELOG

W̃O(a) =
ns∑

k=0
W̃k∆t,∆t(a) ∈ Rnq×nq | ∆t = T

ns
, (5.17)

where the fixed parameter ∆t denotes the number of trajectory segments, and is usually set
as high as possible, while being aware of the impact on the computation times. It is chosen
empirically, such that it allows to observe the effects of the system dynamics, while maintaining
a reasonable approximation error in the Taylor expansion.

The optimisation objective is to improve the observability of the least sensitive state, or
combination of states, quantified through the smallest eigenvalue of W̃O(a). Adding a minus
to the smallest eigenvalue makes it usable in a minimisation problem as the objective function

UW̃O
(a) = −min

(
λW̃O, i

)
= −λW̃O,min | i ∈ J1, nqK. (5.18)

The result is a trajectory with optimum observability properties, which intrinsically im-
proves the convergence for the states by lowering the uncertainties and increasing the overall
accuracy.

The estimator and, therefore, the derivation of the observability-aware TO for the quadro-
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tor UAV case study in Section 5.4 is based on the IEKF implementation presented in [Böhm,
Scheiber, et al., 2021], and is new for rigid body dynamics based system models.

5.3.2 Multi-objectives optimisation problem

The problem presented in this work is an example of a Multi-Objective Optimisation Prob-
lem (MOOP) trying to optimise for different objectives with constraints.

5.3.2.1 Pareto optimality

Ideally, one would try to find the non-dominated set in the entire feasible set A for the pa-
rameter vector a, a Pareto optimal set, or Pareto front, see, e.g., [Dächert et al., 2010; Emmerich
et al., 2018; Holzmann et al., 2018; Marler et al., 2004; Steuer et al., 1983; Wierzbicki, 1995].
The term non-dominated or optimal means that the current set does not improve one objec-
tive while worsening another. We compute only one point in the Pareto optimal set due to the
complexity of the objective functions and the resulting computation times.

In Chapter 4, Linear Scalarisation Problem (LSP) was chosen as a method because it achieved
good results in balancing the S/I-S of the plane quadrotor. LSP, see Section 4.4, combines ob-
jective functions to a single cost through a linear weighting of each objective, to allow for a
single-objective constraint optimisation. This is only a feasible option if the set of all optimal
solutions, namely the Pareto front, is convex. LSP comes with its drawbacks as well, often
caused by the individual objective functions not building a convex front. To be more specific, in
the case of concave Pareto fronts, LSP tends to converge towards extrema solutions, an optimal
solution for only one of the objectives. Evenly distributed weights do not produce an evenly
distributed representation of the Pareto optimal set. The addition of the observability-awareness
through the EELOG as a third objective is the natural evolution of the approach to improve
estimation performance, however, non-convexity or concavity, is possible with this addition.

5.3.2.2 Augmented weighted Chebyshev method

To solve the LSP issues, we use the augmented weighted Chebyshev method to balance all
three objectives or any combination, compared to Chapter 4. This is done by computing each
objective’s distance between its current value Ui(a) and an aspiration point ∪i ∈ R, such that
each objective is selected by i ∈

{
Π, Θ, W̃O

}
. In this framework, the aspiration point ∪i is

the individual objective’s minimal value from Eq. (5.14), also called the utopia point, therefore
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defined as

∪
i∈{Π,Θ,W̃O} = Ui

(
aiopt

)
←





min
a∈A

Ui(a)

s.t. Ceq. = 0nCeq.

Cineq. 6 0nCineq.

. (5.19)

Basically, the utopia point memorises the smallest possible cost value for each objective, op-
timised as individual. Another important point in the Pareto set is the nadir point, defined for
each objective as

∩i = max
j

Ui

(
aiopt

)
∈ R | (i, j) ∈

({
Π, Θ, W̃O

})2
, (5.20)

which memorises the largest cost of each objective w.r.t. the j-th utopia point. To facilitate
comprehension, we schematise in Fig. 5.2 the main quantities of a bi-objective optimisation
(the principles can be extended to more than two objectives).

U1(a)

U2(a)

Feasible set Af

Pareto front AP

•a?1∩2

•
a?2∪2

∪1 ∩1

•
Ideal point

◦
◦

◦

◦

◦

◦

Figure 5.2 – Visualisation of a (possibly) non-convex Pareto front AP (in blue) of a bi-objective opti-
misation, where U1(a) and U2(a) are the two objectives (lower is better). The ideal point (in green),
which minimises both objectives, is infeasible. The feasible set Af ⊂ A is the subset of A for which the
constraints are verified. a?1 ∈ AP minimises the value of U1(a) such that U1(a?1) = ∪1, and defines the
nadir point ∩2. a?2 ∈ AP minimises the value of U2(a) such that U2(a?2) = ∪2, and defines the nadir
point ∩1. The Pareto front AP dominates the other solutions within Af (in red).
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Now let us define the COP utility function as

UCOP(a) = max
i

{
wi|Ui(a)− ∪i|
|∩i − ∪i|

}
+ ρCOP

∑

j

|Uj(a)− ∪j|, (5.21)

where again, (i, j) ∈
({

Π, Θ, W̃O
})2

are used to include all objectives. Every point on a
Pareto front is a minimum of the Chebyshev function of Eq. (5.21) and achieves Pareto optimal-
ity of the solution. Here, the left term contains the user preference weight wi of one objective,
which allows to select one biased solution from the possible set of Pareto optimal solutions, and
of course, is such that

∑

i

wi = 1 | i ∈
{
Π, Θ, W̃O

}
. (5.22)

This weight is multiplied to the distance between the actual value of the objective and the
utopia point ∪i. The denominator of the left term is the distance from the nadir point to the
utopia point of each objective, and is used to normalise the Chebyshev function to the interval
[0, 1]. According to [Steuer et al., 1983], ρCOP values should be selected between 0.0001 and
0.01. We refer the reader to [Emmerich et al., 2018; Marler et al., 2004; Wierzbicki, 1995] for
deeper information on value choice for this parameter.

The augmented weighted Chebyshev method allows to reduce the original MOOP into a
SOOP under constraints. We further discuss how to use the utility function of Eq. (5.21) in
Subsubsection 5.3.3.3 and Subsubsection 5.3.3.4.

5.3.3 Implementation

COP uses a multi-step approach to the trajectory optimisation, as the utopia point ∪i and
nadir point ∩i of each objective

{
Π, Θ, W̃O

}
need to be known before combining objec-

tives, see Subsubsection 5.3.2.2. The framework is implemented in Python and uses a local
derivative-free optimisation routine, namely constrained optimisation by linear approximations
(COBYLA) of the open-source library non-linear optimisation (NLOPT). The numerical in-
tegration method ’dopri5’ of SciPy allows us to compute the individual costs of Eq. (5.15),
Eq. (5.16), and Eq. (5.18), during each iteration of the optimisation. Fig. 5.3 gives a graph-
ical overview of the COP method, and one can observe that our strategy returns all possible
optimisation cases.
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Pick a random target (T, WT), and interpolate multiple way-points a0

Precondition a0 with constraints Ceq. and Cineq. au,⊕

Individual Objectives

Minimise UΘ(a)Minimise UΠ(a) Minimise UW̃O
(a)

Combined Objectives

Minimise US/I-S(a) with ΩS/I-S, see Eq. (5.24) a?S/I-S

Minimise UCOP(a) with ΩCOP, see Eq. (5.25) a?COP

a?Π a?Θ a?
W̃O

Figure 5.3 – Graphic overview of the multi-step SOOP solved with COP, where a0 is the initial inter-
polated trajectory, au,⊕ is the preconditioned trajectory, i.e. it is dynamically feasible and reaches the
target accurately in the nominal case p = pc. The optimisations for the individual objectives Π, Θ
and W̃O output respectively a?Π, a?Θ, and a?

W̃O
. Then, the optimisations are achieved for the combined

objectives. a?S/I-S is the output parameter vector that shapes the S/I-S optimised reference, and lastly the
COP method outputs the parameter vector a?COP. Note that, of course, all optimisations are done under
constraints, i.e. Ceq. and Cineq..

5.3.3.1 Preconditioning

Preconditioning is the first and necessary step in the trajectory generation framework, to
ensure that the initial references are dynamically feasible, and let the system reach the final
target accurately. Typically, it starts with the selection of a random output target yd(T), and
its time derivatives ẏd(T) = 0ny and ÿd(T) = 0ny (null for rest-to-rest motion), all stored in
way-point WT, at time T. Then, we simply interpolate additional way-points between the initial
and the final, which gives us the initial set of way-points and times a0, see Subsection 5.2.3 for
more precision. All way-points between the initial and target represent the decision variables
of the optimisation, and a ∈ Rna can be chosen freely within the admissible set A. Then,
dynamical constraints are applied to the trajectory through a short optimisation, i.e. minimum
and maximum propeller angular rates (equivalent to minimum and maximum thrust).
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x [m]

y
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(0,W0)

yd(T)

yd(T) yc(au,⊕, T)
Wa0,T

Wau,⊕,T

yc(a0, T)

Figure 5.4 – Illustration of the target reach constraint during the preconditioning. The interpolated initial
reference a0 goes to the desired target, such that WT = Wa0,T. However, when looking at the zoomed
part of the figure on the right, one can observe that the real motion of the system (dashed black line)
differs from its reference a0 (as the controller does not ensure a perfect tracking in the nominal case).
Therefore, yc(a0, T) 6= yd(T), the target is not accurately reached. After the preconditioning, the ref-
erence becomes au,⊕, and one can observe that its last way-point Wau,⊕,T

is not centred at the target
anymore. This is expected, as the target reach constraint was made such that the robot actually reaches
the final target in the nominal case (grey dashed line), i.e. yc(a0, T) = yd(T).

As the geometric controller of Subsection 5.2.2 does not guarantee perfect tracking in the
nominal case (as opposed to the DFL controller of Subsection 4.5.2), the preconditioning in-
cludes this consideration directly in the linear equality constraints. In fact, we do not want the
last way-point to be the target, but rather we seek that the UAV actually ends its navigation task
exactly at the desired target (in the nominal case p = pc). Now, W0 = b0 only contains the
information of the beginning of the motion: indeed, as the system has not moved at initial time,
even if the controller is not perfect, this equation works correctly for the first Bézier curve.
Therefore, this small optimisation outputs a reference trajectory for which the last way-point
may differ from the real target, see Fig. 5.4, thus, different from WT. Thereby, the tracking of
this new trajectory ensures that the system reaches the final target accurately when the parame-
ters are correct.
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The cost for the preconditioning is chosen to minimise the total curve length and its max-
imum curvature (or increase its minimum curvature radius), for regularisation of the curve.
Hence, the complete optimisation problem can be written

au,⊕ = arg min
a∈A



κ`C

∫ T

0
‖ṙc(τ)‖ dτ

︸ ︷︷ ︸
curve length

+κCmax
t∈T

{‖[ṙc(t)]× · r̈c(t)‖
‖ṙc(t)‖3

}

︸ ︷︷ ︸
maximum curvature




s.t.





W0 = b0

yc(a, T) = yd(T)
ẏc(a, T) = ẏd(T)
ÿc(a, T) = ÿd(T)
umin 6 uc(t) 6 umax, ∀t ∈ T = [0, T]

, (5.23)

where (κ`C , κC) = (5, 0.01) are suitable gains for the preconditioning cost. The first line of
the constraints concerns the linear kinematic constraints at the beginning of the motion, and are
applied to the first way-point W0, with initial limit conditions b0.

The resulting preconditioned trajectory is parameterised by vector au,⊕, and serves as a
baseline in the latter evaluation in Section 5.4. Indeed, as the reaching of the target is not ensured
by a0 (plus it is may be dynamically unfeasible), it would be unfair to do the comparison with
the Π, Θ and W̃O optimised references.

5.3.3.2 Optimising for individual objectives

As mentioned before, to allow the combination of multiple objectives, one needs to compute
∪i and ∩i of each objective first. We do the minimisation of each objective UΠ, UΘ, and UW̃O

,
defined in Eq. (5.15), Eq. (5.16), and Eq. (5.18) respectively, along with Eq. (5.14) to get those
needed extrema points. Of course, the optimisations are conducted under the same constraints
than for the preconditioning, Eq. (5.23). From each of these optimisations, we obtain the utopia
point and resulting reference trajectory, i.e. (∪Π, a?Π) ∈ R × Rna for the state sensitivity min-
imisation problem, (∪Θ, a?Θ) ∈ R × Rna for the input sensitivity minimisation problem, and

lastly
(
∪W̃O

, a?
W̃O

)
∈ R × Rna for the EELOG maximisation problem. We further use the

generated trajectories to compute the nadir points
(
∩Π, ∩Θ, ∩W̃O

)
∈ R3, see Eq. (5.20).
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5.3.3.3 State and input sensitivities optimisation

A first example for the use of Eq. (5.21) is the computation of the S/I-S optimised reference
motion. The balancing of state and input sensitivities, similar to Chapter 4, is possible by setting
the weight

ΩS/I-S =

1

2
1
2

0



T

∈ R3, (5.24)

and using the utopia and nadir points of UΠ and UΘ for normalisation. The rationale behind
ΩS/I-S is as follows:

— Eq. (5.15) aims at minimising the state sensitivity over the whole trajectory, so that the
tracking accuracy of yd(a?S/I-S, t) is made most insensitive to uncertainties in the model
parameters;

— Eq. (5.16) aims at minimising the input sensitivity over the whole trajectory, in order
to obtain control inputs that are most insensitive, i.e., with minimal deviations, against
variations of the robot parameters.

For this optimisation, we chose ρS/I-S = 0.0001 in Eq. (5.21) and obtain the utopia point and
reference trajectory (∪S/I-S, a?S/I-S) ∈ R× Rna . The reduction of both sensitivity indexes in this
SOOP provides the ability to generate control-aware trajectories.

5.3.3.4 Control & observability-aware optimisation

The possible antagonistic nature of the S/I-S and EELOG needs utility functions like Eq. (5.21)
to be balanced successfully. We weight all three objectives equally, thus we chose the weight

ΩCOP =

1

3
1
3

1
3




T

∈ R3, (5.25)

with ρCOP = 0.0001. This makes the combination of state and input sensitivity-based with
observability-aware trajectory planning possible. This final step gives (∪COP, a?COP) ∈ R×Rna .
Note that in practice, the even distribution of weights might not result in equally improved ob-
jectives, due to the possible skewed normalisation from the approximation of nadir and utopia
points. To ensure that we get proper trajectories that reduce all indexes, we apply a filtering
based on the costs history available from each optimisation run with the posterior preferences
US/I-S (a?COP) < US/I-S

(
au,⊕

)
and UW̃O

(a?COP) < UW̃O

(
au,⊕

)
. Therefore, the COP frame-

work rejects trajectories that do not fulfil these requirements.
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5.4 Statistical results and analyses

In this section, we show how the proposed COP approach, i.e. the combination of state and
input sensitivities with observability-awareness, can be used to generate trajectories that are
less sensitive to changes in the model parameters on the control side, and also favour certain
states/parameters in the estimation. As a first, simple case study, we only focus on the thrust
and torque coefficients kf and kτ of the space quadrotor, thus p =

[
kf kτ

]T ∈ R2, see 5.2.1
for more details. These parameters were chosen because they have a significant impact on the
tracking performance and are naturally hard to estimate. Furthermore, we only focus on the
linear position r =

[
x y z

]T ∈ R3 of the UAV as the state of interest, without considering
the other states in the sensitivity evaluation.

5.4.1 Setup and evaluation method

The system model of Subsection 5.2.1, the geometric control law of Subsection 5.2.2, and
the optimisation problem of Section 5.3 were implemented in Python. [Böhm, Scheiber, et al.,
2021] shows that it is possible to estimate parameters kf and kτ . The estimation only needs
propeller angular rates, position sensor and IMU measurements, as well as a few a priori mea-
surements of the quadrotor. In this first try of fusing both S/I-S and observability in one single
framework, remaining in simulation only allows for better repeatability of the experiments, and
avoids the introduction of other artefacts due to uncertainties of the real system.

In this empirical evaluation, we compare four versions of the optimised trajectories, for each
of all targets:

— the preconditioned trajectory, au,⊕, that is dynamically feasible and reaches the target
accurately;

— the trajectory optimised for Π and Θ, a?S/I-S;
— the EELOG objective optimised trajectory a?

W̃O
;

— the new COP trajectory, a?COP, which is optimal in Π, Θ and W̃O.

As stated before, the preconditioned reference au,⊕ serves as baseline for all other trajectories.
Each motion task is rest-to-rest, has a duration of t = 20 s, and is represented by a a piece-wise
Bézier curve of five pieces. Each final position target is generated randomly, such that

yd(a, T) =




x⊕

y⊕

z⊕


 ∈ [2, 5]× [2, 5]×


−

1
2
, 1

 , (5.26)
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where x⊕, y⊕ and z⊕ are in [m]. These three values are drawn with uniform distribution, within
their respective admissible intervals.

In total, the multi-steps optimisation approach has been completed for n⊕ = 20 targets,
in order to make the results statistically meaningful. The individual cost functions evolutions,
positional mean integral error norms, and estimation uncertainties are evaluated from this set of
trajectories. It needs to be mentioned that for the positional mean integral error norm evalua-
tion, we chose to randomly perturb the parameters kf and kτ , in the ranges of δper, 1 % = ±1 %
and δper, 5 % = ±5 %, and fulfil nper = 30 closed-loop perturbed flights, where kf and kτ

are randomly drawn within their respective possible intervals, with uniform distribution. Per-
turbations above 5 % are not considered as such deviations from the nominal values might
hint at problems at the parameter identification/estimation. The estimation uncertainty results
are based on nest = 10 runs, for each trajectory, and with randomly chosen incorrect initial
guesses at the beginning of the motion, in the range δest, 30 % = ±30 %, from ground truths
kfc = 3.375× 10−4 [N.rad2.s−2] and kτc = 0.016 [m].

5.4.2 Discussion

In this subsection, we discuss the performance of the framework in terms of costs evolutions
during the different optimisation steps, tracking errors, and parameter estimation errors.

5.4.2.1 Cost functions behaviour

We recorded each objective cost evolution, i.e. US/I-S(a), UW̃O
(a), and UCOP(a), at all it-

eration steps, during each optimisation run. We then evaluate the behaviour of the costs by
averaging all runs.

As EELOG and S/I-S have different orders of magnitudes, a normalisation was performed
by dividing the cost evolution by its initial value, i.e. the first cost of the optimisation process.
Therefore, we note the normalised cost evolutions

Ûi(a) = Ui(an)
Ui(an=0) ∈ R | i ∈

{
W̃O, S/I-S, COP

}
, (5.27)

where n is the step of the current optimisation process. In addition, to ensure that the values of
the EELOG, potentially growing unbound, remain in a comparable range, we depict its inverse
value. A decrease (< 1) means an improvement, while an increase (> 1) indicates a decline
in the performance of the respective objective. As the optimisation routine uses a gradient-free
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method, the average shows some spikes: this could be addressed in future works, by adopting a
gradient-based approach.
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Figure 5.5 – Overview of the normalised cost functions evolutions during the optimisations, depicted
by averages and 1σ standard deviations (stds) over n⊕ = 20 different initial targets. At the top row,
the left graphic is obtained when minimising the S/I-S, which outputs a?S/I-S, and the right graphic is
obtained when optimising for the EELOG, which outputs a?

W̃O
. The bottom row graphics are obtained

during the last optimisation, which outputs a?COP. The normalised S/I-S cost ÛS/I-S(a) is in light green, the
EELOG ÛW̃O

(a) in dark orange and the COP ÛCOP(a) cost is in purple. All optimisations minimise their
respective cost function, therefore, a decrease below 1, highlighted by the dotted line, is an improvement
of the respective objective.

Fig. 5.5 presents the results of the n⊕ = 20 individual COP runs. The top left plot shows the
average and 1σ standard deviation of the S/I-S-based optimisation, Subsubsection 5.3.3.3, with
its cost in light green and the EELOG’s cost in dark orange. One can see the decrease in the
sensitivity cost, meaning that the state and input sensitivities are minimised, as expected. This
comes, however, at the expense of the overall quality of observability, indicated by the increase
of the inverse EELOG cost. Therefore, these results seem to indicate that S/I-S and EELOG
can be two conflicting objectives. On the top right are both costs, depicted for the quality of
observability optimisation, Subsubsection 5.3.3.2. As we chose the inverse here, a decrease is
equal to an improvement of the EELOG. Once again, we see the behaviour of the left plot

104



5.4. Statistical results and analyses

reflected in this optimisation as well. From those two plots, one can infer that if one objective
improves, it is most likely that the other gets worse.

The two plots at the bottom of Fig. 5.5 are the results of the final optimisation runs, based on
the COP objective, see Subsubsection 5.3.3.4. We can see that the even distributed weights can
still result in slightly skewed solutions, caused by the approximation of the individual utopia
and nadir points, respectively ∪i and ∩i. The solutions themselves are Pareto optimal, and the
straightforward filtering ensures an overall decrease of all considered objectives. This indicates
that COP can balance, and decrease all objectives.

5.4.2.2 Output tracking error

The evaluation of the tracking performance of the system with its controller is based on
the aforementioned set of trajectories, and is done by considering the integral error norm of
position, between the nominal and the perturbed simulations, defined as

Er =
∫ T

0
‖r(τ)− rc(τ)‖2 dτ. (5.28)
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Figure 5.6 – Quartile box plots showing the positional mean integral error norm over the whole trajectory,
average over n⊕ = 20 targets, with nper = 30 perturbed closed-loop flights for each resulting reference.
The two plots show the influence of different perturbation amplitudes on kf and kτ . Note that since the
sensitivity is evaluated at p = pc, S/I-S and COP are most effective with small deviations around the
nominal values.

The results are depicted in Fig. 5.6, where we can observe the box plots from the statisti-
cal data. As already mentioned, each trajectory is flown in simulation nper = 30 times with a
perturbed set of parameters p for each flight.
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The quartile boxplots of Fig. 5.6 show the average tracking performance of each optimisa-
tion case, with different amplitudes of perturbations, represented by the mean of the integral
of the squared error norm. The median of the S/I-S optimised trajectory performs the best and
the EELOG one the worst, with COP performing between those two, which confirms the costs
of Fig. 5.5, and therefore our expectations. Of course, COP optimised shapes cannot reach the
same performance level as the S/I-S optimised ones, because of the balancing in Eq. (5.21).
However, we can improve the estimation performance at the same time, see Fig. 5.7. The re-
sults for au,⊕ highlights the fact that the initial, not optimised trajectories can lead to greater
tracking errors, if the parameters of the UAV deviate too much from the values that are im-
planted inside the controller. Looking at the comparison between the left figure of boxplots,
where δper, 1 % = ±1 %, and the one on the right, where δper, 5 % = ±5 %, one can see that the
farther away p gets from it nominal value pc, the less difference is between each objective.
This is also expected, as the optimisation evaluates the state and input sensitivities, Π and Θ
respectively, at the nominal values of the model parameters, see Eq. (4.3) and Eq. (4.4). Ac-
cording to these insights, one might start with estimation-aware trajectories, in order to get p
as close as possible to p, and then maybe switch to control-aware ones, for improved tracking
performance, as well as feasibility/security.

5.4.2.3 Estimation error

We used the IEKF implementation of [Böhm, Scheiber, et al., 2021], in Matlab, in order
to evaluate the influence of each optimisation case on the estimation of kf and kτ , since it has
already proven to be good at estimating these parameters. The trajectory optimisation is used to
generate artificial position sensor and IMU measurements together, with propeller angular rates
for each trajectory. As stated before, each of these recordings has been tested using the IEKF,
with initial guesses of values kf and kτ , perturbed randomly by δest, 30 % = ±30 %, nest = 10
times. Note that both parameters are poorly observable. To visualise the influence of each op-
timisation case on the estimation performance, we once again use quartile box plots. Fig. 5.7
shows on the left plot the quartile box plot of kf and on the right for kτ . The estimation perfor-
mance is evaluated by the reduction of uncertainty, represented by the std σ{kf , kτ} at the end of
the trajectory, i.e. when t = T.

On Fig. 5.7, one can observe that the S/I-S optimised references perform slightly better than
the initial ones. This is probably because we already gain more motion and excitation from the
optimisation objective. As expected, based on the optimisation data, the EELOG optimised tra-
jectories perform best, and the results of the COP optimised motions are in between. This could
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Figure 5.7 – Quartile box plots showing the IEKF’s uncertainty based on the state’s stds at the end of
the trajectory, for a total of n⊕ = 20 different targets. For each optimisation case, the closed-loop flights
are ran with nest = 10 different initial guesses at the start. The thrust force coefficient kf and torque
coefficient kτ box plots are depicted respectively on the left and right. As expected, the preconditioned
trajectories have the worst estimation performance, and the EELOG ones have the best. COP optimised
reference trajectories show a good compromise for the estimation performance.

have been anticipated: due to the balancing of two objectives, we are not able to perform as well
as a single objective optimised trajectory. These results were already indicated in Fig. 5.5.

All the presented results support our claim that our proposed COP objective can balance
two possibly opposing objectives, while maintaining good performance in estimation, tracking
accuracy, and security.

5.5 Conclusion

In this chapter, the COP framework proposes an attempt to combine the closed-loop state
and input sensitivities with the observability metrics, for robust and informative trajectory plan-
ning. We have made an evaluation of our strategy in a statistical evaluation of tracking/estimation
performances.

Intuitively, taking state and input sensitivities into account during the trajectory generation
might result in non-informative trajectories for state/parameter estimation. However, informa-
tive motions for the estimation process are often difficult to control and likely cause higher
tracking errors. Our statistical case study of the space quadrotor UAV, equipped with a mod-
ified version of the geometric controller, focused on parameters that have a significant impact
on the tracking error, and are poorly observable. It provided insights into the negative correla-
tion between the control-aware and observability-aware trajectory planning. Indeed, we were
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able to show that both objectives are often conflicting, meaning that while one can improve, the
other has high probability to get worse. Applying the augmented weighted Chebyshev method
in our multi-step approach to such a MOOP allows to balance both in a SOOP, resulting in
optimal reference motions, for trajectory tracking, security, and at the same time, estimation
performances.

To summarise, we have successfully shown that it is important to consider both objectives
as they correlate with each other. The insights and results give a motivation to go forward with
more sophisticated MOOP approaches. Further research should be conducted towards a real-
world closed-loop flight using the estimation in the optimisation as feedback.

Our novel COP framework is the first that uses these possibly opposing objectives in a SOOP
based on the augmented weighted Chebyshev method to perform the balancing of them and
generation of piece-wise Bézier curve-based trajectories. Statistically relevant simulations for a
space quadrotor UAV case study produce results that support our claims and show the negative
correlation between both objectives. We were able to reduce the positional mean integral error
norm as well as the estimation uncertainty with the same trajectory to comparable levels of the
trajectories optimised with individual objectives.
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CHAPTER 6

TUBE-BASED TRAJECTORY

OPTIMISATION FOR ROBOTS WITH

PARAMETRIC UNCERTAINTIES

6.1 Introduction

In this last contribution, we detail a new version of our robust trajectory generation frame-
work, which extends the approaches of [Robuffo Giordano et al., 2018], Chapters 4 and 5, by
providing a new possible norm for the sensitivity metrics, which, from our point of view, en-
sures even more security than with the previously used Frobenius matrix norm. Thanks to this
upgrade, we now only exploit the input sensitivity in the constraints of the optimisation problem,
in a way which forces the inputs inside the actuation limits, even with the worst perturbations.
Therefore, full space is available in the optimisation cost for the state/output sensitivity. As in
[Böhm, Brault, et al., 2022], we also use piece-wise Bézier curves to represent the reference
trajectory to be tracked. For a space quadrotor model with a shift in the CoG, and equipped
with a geometric tracking controller, we optimised a set of trajectories, and conducted an exten-
sive campaign of simulations, that aims at evaluating the relevance of this new norm. The key
elements of this contribution are:

— we define the first-order closed-loop output sensitivity, detail its relationship to the state
sensitivity, and show how to obtain it by forward integration (as in Chapter 4);

— we use the knowledge of the parameters ranges of uncertainty in order to construct a
new norm for the sensitivities, that has a meaning in the state/input/output spaces, and
further use it to formulate a new optimisation problem, that aims at minimising this new
norm of the state/output sensitivities;

— thanks to this new norm formulation, we now use the input sensitivity to construct the
worst deviation tubes around the nominal inputs, which, compared to Chapters 4 and 5,
allows us to remove it from the cost: now, we rather express the input saturation con-
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straints with the worst deviation tubes, instead of the nominal inputs: this guarantees the
dynamic feasibility of the motion task, even with the most disadvantageous deviations
of the parameters (provided they remain within the uncertainty ranges);

— for the case study, we now consider a space quadrotor with a possible shift in the CoM,
still oriented through unit quaternions;

— we validate the approach through a statistical campaign of perturbed simulations.

This chapter is structured as follows: in Section 6.2 we first refer to the main notions and
equations needed to compute the different sensitivity metrics. The upgrades on the sensitivity
norm and the updated optimisation problem that are presented in Section 6.3 and Section 6.4, are
then tested in an extensive campaign of perturbed simulations Section 6.6, for an upgraded space
quadrotor model, see Section 6.5: the analysis of the results demonstrates the improvement in
closed-loop performance when minimising the sensitivity indexes. Section 6.7 concludes this
contribution, and opens to further perspectives.

This chapter will be submitted soon in the research community:

Pascal Brault and Paolo Robuffo Giordano [2023], « Tube-Based Trajectory Optimisation
for Robots with Parametric Uncertainty », in: In preparation for the IEEE Robotics and Au-
tomation Letters (RA-L)

6.2 Essentials

This section serves the purpose of building upon the main notions that were already pre-
sented earlier in Chapter 4. In particular, we define the novel closed-loop output sensitivity and
show how to obtain it by numerical integration.

As the fundamental generic problem that motivates this thesis has already been defined in
Section 4.2, we refer the reader to this section for complete information. In the same manner,
the metrics that we use to tackle this problem (namely the state and input sensitivities) were
already defined in Section 4.3, please refer to this section for full details.

As already established in Chapters 4 and 5, the reference yd(a, t) ∈ Rny is to be followed by
some quantity of interest of the system at hand, that is often, its output y(q) ∈ Rny . Therefore,
it is fairly common that we do not desire the whole state to be more predictable, but rather
only the output: e.g. in Chapter 4 we only considered the linear position in the plane (of the
plane quadrotor), and in Chapter 5 the linear position in space (of the space quadrotor). We now
wish to take into account the whole output in the optimisation process, thus we introduce the
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closed-loop output sensitivity

Υ(t) = ∂y (q(t))
∂p

∣∣∣∣∣
p=pc

∈ Rny×np (6.1)

which, like the other sensitivities, is evaluated at the nominal p = pc, along the closed-loop
trajectories of Eqs. (4.1)-(4.2). This new metric can be easily obtained from the state sensitivity
Π, as y(q) is a function of the state. Hence, it is more appropriate to write Υ as

Υ(t) = ∂y (q)
∂q · ∂q(t)

∂p = ∂y
∂q ·Π(t), (6.2)

where the jacobian in front of Π is a new quantity to be computed: if a variable of the output
is not contained in the state vector (e.g. for a space quadrotor oriented with unit quaternions,
the yaw ψ is not present in the state, but is the last component of the output), then this jacobian
contains the information that links it to the state vector q; otherwise, the output is completely
contained in the state, meaning that the jacobian is trivial, and simply selects the appropriate
rows of Π(t). As for the state sensitivity, we recall that generating an optimised reference
yd(a?, t) for which some norm of Υ(t) is minimised should render the closed-loop output y(t)
as close as possible to its nominal yc(t), and result in a statistically enhanced performance of
the system.

The evaluation of the state/input/output sensitivities is done by forward integration of





Π(0) = Π0 = 0nq×np

Πξ(0) = Πξ0 = 0nξ×np

Π̇(t) = f ,q ·Π + f ,u ·Θ + f ,p
Π̇ξ(t) = g,q ·Π + g, ξΠξ

Θ(t) = h,q ·Π + h, ξΠξ

Υ(t) = y,q ·Π

, (6.3)

along the reference trajectory yd(a, t), and for the chosen robot/controller pair of Eqs. (4.1)-
(4.2). From these metrics, one can formulate an optimisation problem under constraints, e.g.
limit conditions and actuator limits, that aims at minimising a norm of Π and/or Υ, and outputs
the optimal shape parameter a?. This way, the tracking of the optimised reference yd(a?, t) will
be intrinsically robust w.r.t. uncertainties in the parameters p, at least in the neighbourhood of
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the nominal pc.

6.3 Evaluation of uncertainty tubes

We now discuss how one can exploit the notions of state/input/output sensitivities for evalu-
ating the uncertainty tubes from a given model of parametric uncertainty. The theory presented
in this section is detailed at a specific time point t ∈ T = [0, T]. Of course, when applying this
theory for all time points, we obtain the desired uncertainty tubes along the whole trajectory.

6.3.1 State, input and output ellipsoids

Let us assume that each parameter pi∈J1, npK can take values in a given interval defined by
the range δpi ∈ R, centred at the nominal pci , defined by

∀i ∈ J1, npK, pi ∈ [pci − δpi, pci + δpi] . (6.4)

For instance, these uncertainty ranges can be defined if we know the measurement capabilities
(and therefore the uncertainties) of the different parameters involved in our dynamic model. We
then use these ranges to define the diagonal weight matrix

Wδ =




δ2
p1

. . .

δ2
pnp


 ∈ Rnp×np . (6.5)

Now, letting ∆p = p− pc, the equation

∆pT ·W−1
δ ·∆p = 1 (6.6)

represents an ellipsoid in the parameters space, centred at the nominal pc, and with semi-axes
of lengths δpi | i ∈ J1, npK.

Then, by taking advantage of the closed-loop state sensitivity definition of Eq. (4.3), one
can obtain the corresponding ellipsoid in the state space, by following a procedure similar to
the derivation of the manipulability ellipsoid for robot manipulators, see, e.g., [Sciavicco et al.,
2001]. To this end, let ∆q(t) = q(t)−qc(t), where qc(t) represents the nominal state evolution
of the closed-loop system for the robot/controller of Eqs. (4.1)-(4.2), therefore at p = pc. For a
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small enough ∆p, one has
∆q(t) ≈ Π(t) ·∆p. (6.7)

We recall that as written just above, the discrepancy from p to pc has to remain small: indeed,
as the closed-loop state sensitivity is a first-order jacobian of the state q w.r.t. the parameters p,
and is evaluated at the nominal pc, if p deviates too much from pc, it may be the case that the
approximation of Eq. (6.7) becomes wrong.

Let us now invert Eq. (6.7), and plug it into Eq. (6.6), this yields

∆qT(t) ·Π+T(t) ·W−1
δ ·Π+(t) ·∆q(t) = 1, (6.8a)

(6.8a)⇐⇒∆qT(t) ·
[
Π(t) ·Wδ ·ΠT(t)

]−1 ·∆q(t) = 1, (6.8b)

where M+ denotes the Moore–Penrose generalised inverse of matrix M ∈ Rm×n, see [Penrose,
1955]. Eqs. (6.8a) and (6.8b) represent an ellipsoid in state space, centred at qc(t), and with a
symmetric and positive semi-definite state sensitivity kernel matrix

KΠ, δ(t) = Π(t) ·Wδ ·ΠT(t) ∈ Rnq×nq . (6.9)

We then inject Eq. (6.9) into Eq. (6.8b), to rewrite the ellipsoid in terms of KΠ, δ(t), that yields

(6.8b)⇐⇒ ∆qT(t) ·K−1
Π, δ(t) ·∆q(t) = 1. (6.10)

Let ∆u(t) = u(t) − uc(t) and ∆y(t) = y(t) − yc(t), where uc(t) and yc(t) represent
respectively the nominal input and output evolutions of the closed-loop system. We take advan-
tage of the closed-loop input sensitivity definition of Eq. (4.4), and closed-loop output sensitiv-
ity definition of Eq. (6.1), to define the symmetric and positive semi-definite input and output
sensitivities kernel matrices

KΘ, δ(t) = Θ(t) ·Wδ ·ΘT(t) ∈ Rnu×nu , (6.11)

and
KΥ, δ(t) = y(t) ·Wδ · yT(t) ∈ Rny×ny , (6.12)

and use analogous arguments to those that allowed us to write Eqs. (6.4)-(6.10), but replace
∆q(t) by ∆u(t) and ∆y(t), Π(t) by Θ(t) and Υ(t), and KΠ, δ(t) by KΘ, δ(t) and KΥ, δ(t).
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Therefore, we also obtain two ellipsoids, in the input space

∆uT(t) ·K−1
Θ, δ(t) ·∆u(t) = 1 (6.13)

and output space
∆yT(t) ·K−1

Υ, δ(t) ·∆y(t) = 1 (6.14)

respectively.

The ellipsoids of Eq. (6.10), Eq. (6.13) and Eq. (6.14) represent the tube, or envelope, of re-
spectively the most perturbed state, input and output trajectories. Indeed, if the parameter p lie
inside the volume of the ellipsoid of Eq. (6.6), with semi-axes of lengths δpi | i ∈ J1, npK, the
state q(t) will lie inside the ellipsoid of Eq. (6.10), whose semi-axes are of lengths

√
λKΠ, i(t) |

i ∈ J1, nqK, where λKΠ, i(t) ∈ R are the eigenvalues of KΠ, δ(t). Analogously, for the same
conditions on p, the input/output remain inside the ellipsoids of Eq. (6.13) and Eq. (6.14) re-
spectively.

Therefore, the eigenvalues λKΠ, i of KΠ, δ, λKΘ, i of KΘ, δ and λKΥ, i of KΥ, δ, quantify
respectively the largest state, input and output deviations, along the principal axes of the cor-
responding ellipsoids, see, Eq. (6.10), Eq. (6.13) and Eq. (6.14). However, one may also be
interested in obtaining the largest deviation in the state/input/output space, along any direction
of interest, thus not necessarily aligned with one of the principal axes of the different ellipsoids.

6.3.2 Largest deviation along any direction

We now detail a general procedure for addressing this latter point, of computing the largest
deviation in the state/input space, along any direction of potential interest. Let us consider,
for the sake of illustration, the state space ellipsoid of Eq. (6.10) (the input/output cases are
equivalent), and let n ∈ Rnq be a unit-norm direction in the state space. We are interested in
finding the radius rn(t) ∈ R+ of the ellipsoid of Eq. (6.10), which allows to obtain the bound
for the perturbed states along the given direction n

nT · q(t) ∈
[
nT · qpc

(t)− rn(t), nT · qpc
(t) + rn(t)

]
. (6.15)

We recall the reader that in Eq. (6.15), nT · q(t) = 〈n , q(t)〉 is a scalar product.

As illustrated later in Section 6.4, this can be relevant when, for instance, n represents
one of the state-space Cartesian directions, so that Eq. (6.15) can be used to bound individual
components of the state vector q(t).
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Plugging vector rn(t)n in Eq. (6.10) results in

r2
n(t)nT ·K−1

Π, δ(t) · n = 1 =⇒ rn(t) = 1√
nT ·K−1

Π, δ(t) · n
. (6.16)

Eq. (6.16) is, unfortunately, valid only if the direction n belongs to the range space of the kernel
matrix KΠ, δ(t) (we recall that KΠ, δ(t) and K−1

Π, δ(t) have the same range space). This is never
an issue if KΠ, δ(t) is full rank but, in our context, KΠ, δ(t) can easily be rank-deficient. For
example, if the number of states is larger than the number of parameters, i.e. nq > np, then the
state sensitivity Π(t) is rectangular high and, thus, KΠ, δ(t) = Π(t) ·Wδ ·ΠT(t) results rank
deficient by construction. Consequently, we now have to discuss a generalisation of Eq. (6.16),
that remains valid also when the direction n does not belong to the range of KΠ, δ(t).

rnn

x

y
E

rn

rnn

r?n

r?nn?

n?

z

n

Figure 6.1 – Illustration of how to obtain the radius rn(t) along any direction n.

As illustration, one could think of this analogy: let KΠ, δ(t) be a 3 × 3 matrix with rank 2,
thus representing a 2-dimensional ellipse E , oriented arbitrarily in a 3-dimensional space. The
notion of radius rn of the 2-dimensional ellipse along the direction n is well-defined only if n
to the plane of E . Otherwise, see Fig. 6.1, one should:

(i) project the direction n onto the plane of the 2-dimensional ellipse E , in order to obtain a
feasible direction n?(t);

(ii) compute the radius r?n(t) of the 2-dimensional ellipse E , along the feasible direction n?(t);

(iii) re-project orthogonally the vector r?n(t)n?(t) on n, in order to obtain the resulting length
rn(t) along the original direction.

Finally, this procedure should, of course, yield the same result as Eq. (6.16) when KΠ, δ(t)
is full rank, or when n happens to belong to the range space of KΠ, δ(t).
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We now detail how to implement this procedure, in the general case. Let

U(t) ·Λ(t) ·UT(t) = KΠ, δ(t) (6.17)

be the eigenvector decomposition of KΠ, δ(t), with

Λ(t) =




λKΠ, 1(t)
. . .

λKΠ, nq(t)


 ∈ Rnq×nq . (6.18)

We emphasise that in the general case, some λKΠ, i(t) could be zero, if KΠ, δ(t) is not full rank.
Therefore, the generalised inverse of KΠ, δ(t) is

K†Π, δ(t) = U(t) ·Λ†(t) ·UT(t), (6.19)

in which

Λ†(t) =




`1(t)
. . .

`nq(t)


 ∈ Rnq×nq ,

∣∣∣∣





`i(t) =
1

λKΠ, i(t)
if λKΠ, i(t) > ε,

`i(t) = 0 otherwise

, (6.20)

where ε is a user-defined small threshold, for deciding whether an eigenvalue is considered null
or not. Now, let dλ(t) ∈ J1, nqK be the number of non-zero λKΠ, i(t). We exclude the case
where dλ(t) = 0, since it would mean that K†Π, δ(t) = 0nq . Also, note that as dλ(t) is a function
of Π(t), it is time-dependant, i.e. at each time t ∈ T, by construction, the number of non-zero
eigenvalues can change. Then, let vλ, i(t) ∈ Rnq be the eigenvector that corresponds to the non-
zero eigenvalue λKΠ, i(t), that is the i-th column of U(t), see Eqs. (6.17) and (6.19). Hence, the
dλ-dimensional range space of KΠ, δ(t) is spanned by the vectors

{
vλ, 1(t), . . . , vλ, dλ(t)

}
,

and thus

P⊥(t) =
[
vλ, 1(t) · · · vλ,dλ(t)

]
·
[
vλ, 1(t) · · · vλ, dλ(t)

]T ∈ Rnq×nq (6.21)

is an orthogonal projector onto this range space, such that P⊥(t) = PT
⊥(t), and also projecting
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twice is the same as projecting once, i.e. P⊥(t) ·P⊥(t) = P⊥(t). We can then define

n?(t) = P⊥(t) · n ∈ Rnq (6.22)

as the orthogonal projection of the direction n onto the range of KΠ, δ(t), which allows using
Eq. (6.16) to obtain the radius r?n(t) of the ellipsoid along the feasible direction n?(t), that is

r?n(t) = 1√
n?T(t) ·K†Π, δ(t) · n?(t)

. (6.23)

Since K†Π, δ(t) can be expanded from Eq. (6.19) as

K†Π, δ(t) =
dλ(t)∑

i=1

vλ, i(t) · vT
λ, i(t)

λKΠ, i(t)
, (6.24)

it follows that

n?T(t) ·K†Π, δ(t) · n?(t) =
dλ(t)∑

i=1

[
vT
λ, i(t) · n?(t)

]2

λKΠ, i(t)
(6.25a)

(6.25a)⇐⇒ n?T(t) ·K†Π, δ(t) · n?(t) =
dλ(t)∑

i=1

[
vT
λ, i(t) ·P⊥(t) · n

]2

λKΠ, i(t)
(6.25b)

(6.25b)⇐⇒ n?T(t) ·K†Π, δ(t) · n?(t) =
dλ(t)∑

i=1

[
vT
λ, i(t) · n

]2

λKΠ, i(t)
, (6.25c)

where we used the fact that P⊥(t) · vλ, i(t) = vλ, i(t), since by construction, vλ, i(t) belongs to
the range space of KΠ, δ(t). Therefore, we finally have that

r?n(t) = 1√√√√√
dλ(t)∑

i=1

[
vT
λ, i(t) · n

]2

λKΠ, i(t)

. (6.26)

The last step consists of obtaining the corresponding length rn(t) along the original direction
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n, which can be done by projecting vector r?n(t)n onto n, i.e.,

rn(t) = r?n(t)n?T(t) · n (6.27a)

(6.27a)⇐⇒ rn(t) = r?n(t)nT ·P⊥(t) · n (6.27b)

(6.27b)⇐⇒ rn(t) = nT ·P⊥(t) · n√√√√√
dλ(t)∑

i=1

[
vT
λ, i(t) · n

]2

λKΠ, i(t)

. (6.27c)

Therefore, Eq. (6.27c) is a generalisation of Eq. (6.16), for the arbitrary unit-norm direction
n in the state space, which does not necessarily belong to the range of KΠ, δ(t). Furthermore,
we highlight that:

— if KΠ, δ(t) is full rank, then the projector P⊥(t) of Eq. (6.21) is just the identity matrix,
P⊥(t) = Inq;

— if KΠ, δ(t) is not full rank, but the direction n happens to belong to its range space, then
P⊥(t) · n = n.

As such, in both of these cases, Eq. (6.27c) reduces to Eq. (6.16), as expected.
We now briefly recall the main steps of the preceding theory, to maximise the ease of under-

standing. The method exploits the sensitivities definitions, in order to construct the maximum
uncertainty tubes rn(t) of the state/input/output, along a reference trajectory. The complete pro-
cedure for the state (starting at t = 0) can be summarised by the following points:

(i) consider a possible range of deviation δpi for each uncertain parameter pi, see Eq. (6.4);

(ii) construct the associated weight matrix Wδ of all ranges, see Eq. (6.5);

(iii) let ∆p = p − pc, and construct the ellipsoid of the largest possible deviation on p (thus
in the parameter space), centred at pc, see Eq. (6.6);

(iv) let ∆q(t) = q(t) − qc(t), and then exploit the state sensitivity definition, see Eq. (4.3),
such that for small enough ∆q(t) one can construct the corresponding ellipsoid of the
largest possible deviation on q(t) (thus in the state space), centred at qc(t), see Eq. (6.10);

(v) therefore, if the parameter p lies into the parameter ellipsoid of Eq. (6.6), then the state
q(t) lies within the state ellipsoid of Eq. (6.10);

(vi) as one might want to compute the largest deviations along any direction n of interest, and
not only along the principal axes of the state ellipsoid, Eq. (6.27c) gives a generalisation
of Eq. (6.16), to compute the radius rn(t) along this direction.
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(vii) one can now proceed through all these steps, for the state q(t), for the input u(t) and
for the output y(t), from t = 0 to t = T, so as to obtain the complete evolution of the
maximum state/input/output uncertainty tubes rn(t), along any direction n.

Thanks to this theory, and by exploiting the ranges of parametric uncertainties as well as
the state/input/output sensitivities, we now have the capacity to compute the worst deviations
that might occur to the state/input/output (given that the parameters remain in their ranges of
deviations), along a given reference trajectory. With that in mind, we further seek to provide an
upgraded version of our sensitivity minimisation problems.

6.4 A novel trajectory optimisation problem

In this section, we discuss how one can exploit the results of the previous section, in order
to define a new optimisation problem for the planning of trajectories that are robust to para-
metric uncertainties. First, we recall the formulation used until then, and we continue with the
definition of the new TO problem.

Reminders of Chapter 4, Section 4.4: robust TO problem.

In our previous works so far, i.e. [Robuffo Giordano et al., 2018] and Chapter 4, see Sec-
tion 4.4, we have considered the following general formulation (modulo minor variations)
for the state and input sensitivities TO problem

a? = arg min
a∈A

(
w1‖Π(T)‖2

F + w2

∫ T

0
‖Θ(τ)‖2

F dτ
)

s.t.





MC · a = b
umin 6 uc(t) 6 umax, ∀t ∈ T = [0, T]

, (6.28)

where a designs the optimisation vector which shapes the reference trajectory to be
tracked by the robot/controller pair, A is its admissible set, (w1, w2) ∈ ([0, 1])2 are
suitable weights (again, see the possible values for these in Section 4.4), the first line of
constraints represents given initial/final values for the trajectory yd(a, t) and its deriva-
tives (linear equality constraints), and the second line imposes bounds on the inputs (non-
linear inequality constraints). So far, we used the Frobenius matrix norm to define our TO
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problems, i.e.

∀t ∈ T, ‖Π(t)‖F =
√

Tr
(
ΠT(t) ·Π(t)

)
=
√√√√

nq∑

i=1

np∑

j=1
Π(t)2

i, j , (6.29)

and analogously for ‖Θ(t)‖F. The rationale of the chosen cost is to minimise a norm of
the sensitivity of the state at the final time T, for accuracy in reaching a desired final state,
and a norm of the sensitivity of the inputs over the whole trajectory, for minimising the
deviations in the perturbed inputs.
We now discuss how one can exploit the results of the previous section, to define an
improved TO algorithm, w.r.t. Eq. (6.28).

First of all, we note that the Frobenius norm of Eq. (6.29) does not take advantage of the
possible prior knowledge of the uncertainty ranges δpi for the parameter vector p ∈ Rnp , an
information that is typically available in many cases. Instead, one can exploit these quantities
for defining a more informative matrix norm: in particular, in this work, we have made the
choice to replace the Frobenius norm with a norm of the kernel matrix KΥ, δ(t) such as, for
instance, its largest eigenvalue max (λKΥ, i(t)) = λmax,y(t) | i ∈ J1, nqK, which represents the
largest (worst-case) deviation in the output space, given the parametric uncertainty model of
Eq. (6.4). We then define a norm of Υ(t) as

‖y(t)‖δ = λmax,Υ(t) (6.30a)

Eq. (6.30a)⇐⇒ ‖Υ(t)‖δ ≈ p

√√√√
ny∑

i=1
λpKΥ, i(t) (6.30b)

where, for numerical reasons, the max(•) operation is replaced by a smooth approximation,
here, namely the p-norm, with a large enough p. As such, minimising ‖Υ(t)‖δ is equivalent
to approximately minimising the length of the largest semi-axis of the ellipsoid of Eq. (6.14),
which explicitly takes into account the uncertainty model, Eq. (6.4). Other metrics could have

been considered, such as the trace Tr (KΥ, δ(t)) =
nq∏

i=1
λKΥ, i(t), of the kernel matrix KΥ, δ(t),

that is proportional to the volume of the ellipsoid in the output space. However, this metric is
not ideal, since it may happen that all the eigenvalues λKΥ, i(t) become very small while one re-
mains large: consequently, this norm could decrease to very low values during the optimisation,
while the bound in the direction of the (still) large λKΥ, i(t) could remain high, which does not
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guarantee that the perturbed output y(t) is getting constrained in an enough shrinking space.
On the contrary, the norm of Eq. (6.30b) does, since one λKΥ, i(t) remains large compared to
the others, the optimisation should decrease it, until it get smaller than another. This ensures
that the volume of the ellipsoid that bounds the perturbed state y(t) always decreases when the
cost objective decreases, but in a more selective, hence preferred way, i.e. by reducing only the
largest semi-axis of the ellipsoid.

Concerning the inputs, we can exploit Eq. (6.27c), so as to obtain the uncertainty bounds
on each component of the inputs u(t), by letting the direction n be any of the Cartesian di-
rections in Rnu . Letting rnui

(t) | i ∈ J1, nuK be the radius obtained from Eq. (6.27c), for the
i-th Cartesian direction, then, one has that the envelope of perturbed inputs lies in the interval[
uc, i(t)− rnui

(t), uc, i(t) + rnui
(t)
]
. This can be exploited to replace the input constraints in

Eq. (6.28), by the following two constraints

∀ (i, t) ∈ J1, nuK× [0, T]




umin 6 uc, i(t)− rnui
(KΘ, δ(t))

uc, i(t) + rnui
(KΘ, δ(t)) 6 umax

, (6.31)

where we explicitly write that the computed radius rnui
(KΘ, δ(t)) is a function of KΘ, δ(t),

therefore it is also a function of the input sensitivity Θ(t), as well as the maximum ranges of
deviation δpi | i ∈ J1, npK. Here, uc, i(t) denotes the i-th component of the nominal input vector
uc(t), thus when p = pc. Eq. (6.31) formulates new input constraints, that are considering the
worst case deviation of the parameter p, when it is at the limit of the ellipsoid in the parameter
space, Eq. (6.6). The advantage of this choice is that enforcing Eq. (6.31) will guarantee the
feasibility of the tube of perturbed inputs for any value of the parameters within the ellipsoid
of Eq. (6.6), whereas the original formulation, see Eq. (6.28), could only guarantee feasibility
in the nominal/unperturbed case p = pc. Note that in Subsection 6.3.1, we highlighted the
fact that since the state/input/output sensitivities are defined as the first order jacobians of the
state/input w.r.t. the parameter, the approximation of Eq. (6.7) is only usable when ∆p remains
small enough. Otherwise, the approximation becomes wrong, and therefore the feasibility, even
with the tubes of maximum perturbations, may be compromised.

We can now formulate a new optimisation problem with the constraints of the tubes of
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perturbed inputs, that is

a?Υ = arg min
a∈A

(
w1‖Υ(T)‖δ + w2

∫ T

0
‖Υ(τ)‖δ dτ

)

s.t.





Ceq. = 0nCeq.

umin 6 uc, i(t)− rnui
(KΘ, δ(t))

uc, i(t) + rnui
(KΘ, δ(t)) 6 umax



 ∀ (i, t) ∈ J1, nuK× [0, T]

, (6.32)

where we do not write explicitly Ceq. that might change depending on what controller is used: as
seen in Chapter 5, when using the geometric controller, we had to relax the kinematic constraints
at the end of the motion, to replace them by the target reach constraint, i.e. the system has to go
to the target (and the desired might go a bit off the real target for this to happen).

In Eq. (6.32), we aim at minimising the tube of perturbed outputs y(T) at the final time
T and/or during the trajectory (depending on the values chosen for the weights w1 and w2),
with the (usual) initial/final constraints on the states and its derivatives, and the (new) feasibility
constraints on the envelope of perturbed inputs. Note that, in this problem formulation, the
input sensitivity Θ(t) is now used in the constraints for evaluating the radius rnui

(KΘ, δ(t)), for
each component of the inputs. Consequently, this upgrades grants full room to any combination
of the final/integral output sensitivity in the cost to be decreased. Of course, if relevant for a
task, one could choose to replace the output sensitivity Υ by the state sensitivity Π, in the cost
of Eq. (6.32). We also wish to emphasise that, conversely to Eq. (6.28), where we sought to
minimise some norm of the input sensitivity, Eq. (6.32) does not consider this reduction at all,
and could even raise it. Nonetheless, even if that occurs, the new constraints formulation ensures
that the reference trajectory remains dynamically feasible.

6.5 3D quadrotor model

6.5.1 Dynamics with a shift in the centre of gravity

As case study for validating our approach we consider the tracking task for a space quadro-
tor, for which the CoG is not aligned with the geometric centre of the UAV. In this contribution,
we build our space quadrotor model upon the one that was already detailed in Chapter 3, see
Section 3.4. The state and inputs have already been defined there, thus we refer the reader to
this section for more details.
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We recall that by construction, a space quadrotor is a trivially under-actuated platform, since
it has only four (non-tilted) propellers, while moving in a six DoFs space. In reality, it is pretty
obvious that it must tilt in order to move in xW or yW directions, and can only hover if the
pitch and roll angles are null. Therefore, the output y(q) consists of the linear position r and
the heading/yaw angle ψ, thus y(q) =

[
rT ψ

]T ∈ R3 × R. Since the orientation of the drone
is not directly given by Euler angles, but rather by the quaternion ρ, we recall the relation

ψ(q) = atan2
(
2ρwρz + 2ρxρy, 2ρ2

w + 2ρ2
x − 1

)
, (6.33)

which is needed to get the jacobian in Eq. (6.2), and compute the closed-loop output sensitivity
Υ(t).

q =
[
rT vT ρT ωT]T

OW

xW

yW

zW

w3

w4

w1

w2

GB
OB

xB

yB

zB

Figure 6.2 – Schematic view of the space quadrotor, oriented by quaternions. Note that in this contribu-
tion, there is a shift in the CoM, such that OBGB = gxxB + gyyB + gzzB.

In this contribution, we also consider that the CoG GB is not coincident with the geometric
centre OB, but it is displaced at an offset rC = OBGB =

[
gx gy gz

]T ∈ R3, expressed inFB,
see Fig. 6.2. Indeed, this can often happen because of unavoidable asymmetries in the quadro-
tor mass distribution, especially when considering onboard sensors, e.g. cameras, batteries or
processing units. The parameters considered uncertain for the space quadrotor model are then
the two aerodynamic coefficients kf , kτ , and the location of the CoG rC. Therefore, we set our
uncertain parameters vector as p =

[
kf kτ gx gy gz

]T ∈ R5.

We then now detail how one can derive the quadrotor dynamics under this assumption. In
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the case under consideration of a non-negligible displacement between the geometric centre and
the CoM, the equations of motion can be obtained as follows, see, e.g. [Featherstone, 2014]. Let
g be the Earth acceleration magnitude, m be the mass of the UAV and J its inertia tensor: since
we consider the shift in the CoG, the inertia at OB, namely JOB , can be linked to the (always
minimal) inertia JGB by the Huygens-Steiner theorem, that is, in its generalised second-order
tensor form,

JOB =




Jxx 0 0
0 Jyy 0
0 0 Jzz




︸ ︷︷ ︸
JGB

+m




g2
y + g2

z −gxgy −gxgz
−gxgy g2

x + g2
z −gygz

−gxgz −gygz g2
x + g2

y




︸ ︷︷ ︸
additional inertia, due to rC

. (6.34)

However, for the (later) considered ranges δ{gx, gy , gz} = 0.03 [m] of the CoM shift, and the orig-
inal values of JGB , the changes in the new inertia JOB are negligible. Hence, for computation
purposes, we do not take this phenomena into account, since it would require three additional
parameters in the sensitivity derivations, and an even more complex model. Therefore, here we
take J = JOB ≈ JGB .

Now, the external forces and torques applied to the body of the quadrotor are its weight,
plus the total acting thrust and torques exerted by the four AUs. Because of the displacement
rC, the Newton-Euler equations of motion differ from the usual, see e.g. [Mellinger, Lindsey,
et al., 2011; Palunko et al., 2011]: there is now a coupling between the linear and angular
accelerations. Therefore, we can write the Newton-Euler equations of motion at OB, in the
matrix form

 f(u)zW −mgRT(ρ) · zW
τ (u)−mg [rC]× ·RT(ρ) · zW




︸ ︷︷ ︸
Fext

=

 mI3 −m [rC]×
m [rC]× J




︸ ︷︷ ︸
Sm,J

·

γ(t)
α(t)


+


m [ω]× · [ω]× · rC

[ω]× · J · ω




︸ ︷︷ ︸
Ffict

,

(6.35)

where Fext ∈ R6 denotes the external forces and torques, Sm,J ∈ R6×6 denotes the so-called
spatial inertia matrix, and Ffict ∈ R6 denote the external fictitious forces and torques. We recall
that γ(t) ∈ R3 and α(t) ∈ R3 are respectively the UAV linear and angular accelerations. We
also emphasise that in Eq. (6.35), the forces are expressed in the body frame FB this time,
as opposed to what was done in the two previous contributions. We can now invert the latter
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equation, and express γ(t), α(t) as functions of the other terms, yielding


γ(q, u, p)
α(q, u, p)


 = S−1

m,J(p) · [Fext(q, u, p)− Ffict(q, u, p)] . (6.36)

With all the settings and conditions described above, one can now obtain the state-space
model of the space quadrotor

q̇(t) =





ṙ(t) = v(t)
v̇(t) = γ(q, u, p)

ρ̇(t) =
1
2
ρ⊗


0
ω




ω̇(t) = α(q, u, p)

, (6.37)

which gives us the sought dynamics q̇(t) = f(q, u, p), further exploited to derive the state/output
sensitivities, for the TO problem.

6.5.2 Geometric tracking controller

As motion task, we consider the tracking of reference trajectory for the well-known quadro-
tor flat outputs. We then seek that the output function y(q) of the space quadrotor, defined in
the previous section, tracks a desired trajectory yd(a, t). To this end, as in Chapter 5, we make
use of the popular geometric controller, see [T. Lee, Leok, et al., 2010a, 2010b], with an integral
term on the position. Again, we refer the reader to Subsection 5.2.2 for full details.

6.5.3 Trajectory representation

The chosen class of curves for representing our trajectories is the same as in Chapter 5. Once
again, we refer the reader to Subsection 5.2.3 for more insights on piece-wise Bézier curves.

6.6 Extensive statistical campaign of simulations

In this section we discuss the results of an extensive statistical analysis, in order to validate
the theory presented beforehand, i.e. to assess the capabilities of problem Eq. (6.32), with the
weights w1 = 1 and w2 = 0, when aiming to reach accurately the final output target.
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Chapter 6 – Tube-based trajectory optimisation for robots with parametric uncertainties

6.6.1 Settings and procedure

The procedure consists of generating a set of n⊕ = 30 non-optimised trajectories au,⊕ and
corresponding a?Υ to compare their performances against nper = 30 parameter perturbations,
when tracked by the geometric controller of the space quadrotor. For this campaign, the nominal
parameters (implanted inside the controller) are:

— kfc = 6.5× 10−4 [N.rad2.s−2]; kτc = 7.7× 10−2 [m];
— gxc = 0 [m]; gyc = 0 [m]; gzc = 0 [m].

Each output target yd(T) is randomly selected according to a uniform distribution pattern
where the bounds are

yd(T) =




x⊕

y⊕

z⊕

ψ⊕



∈ [1, 4]×


1

2
, 2

×


−

1
2
,

1
2


× [−π, π] . (6.38)

The final desired output velocities and accelerations are set to zero, since we desire a rest-to-
rest motion to the output target. As this conditions are quite hard to reach in reality, because
the geometric controller does not guarantee a perfect tracking of the reference, as in Chapter 5,
Subsubsection 5.3.3.1, see Eq. (5.23) and Fig. 5.4, we relaxed the equality constraints on the
trajectory itself, and replaced them with constraints that force the system to go to the desired
target in the nominal case (by tweaking the reference motion as needed). We consider actuation
constraints on the total thrust f exerted by the quadrotor, such that 0 < f < 2mg, translated
into propellers rotation rates with the inverse mapping of Eq. (3.24). We recall to the reader
that these constraints are constructed with the tubes in the input space, and fed to the optimiser,
to ensure that the actuation limits are not reached, even in the most disadvantageous perturbed
case, i.e. when the deviation ∆p is at the boundary of the parameter ellipsoid of Eq. (6.6). In
this contribution, we also switched the preconditioning cost to the well known minimum snap
algorithm of [Mellinger and Kumar, 2011], only with the linear snap in the cost. As such, the
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preconditioning optimisation problem can be written

au,⊕ = arg min
a∈A

(∫ T

0
‖sc(τ)‖ dτ

)

s.t.





Ceq. = 0nCeq.

umin 6 uc, i(t)− rnui
(KΘ, δ(t))

uc, i(t) + rnui
(KΘ, δ(t)) 6 umax



 ∀ (i, t) ∈ J1, nuK× [0, T]

,

(6.39)
where s is the snap (fourth derivative of the linear position w.r.t. time) and Ceq. are the same
equality constraints as the ones in Eq. (5.23), but now for the complete output y. As au,⊕
satisfies all the constraints and reaches the target accurately, we do the statistical evaluation by
comparing au,⊕ and a?Υ (obtained with the cost of Eq. (6.32)).

For each target yd(T) and associated trajectories au,⊕ and a?Υ, we achieved nper simulations,
while drawing ∆p according to a uniform distribution, see Eq. (6.4). As such, in general there
is no guarantee that the drawn perturbation ensures that p remains inside the bounds of the
parameter ellipsoid of Eq. (6.6). Let

∆TpW−1
δ ∆p = r (6.40)

for a given perturbation vector ∆p. If r > 1 then ∆p lies outside of the ellipsoid, we address
this problem by re-scaling it

∆p← ∆p√
r . (6.41)

Then, for kf and kτ which have non-zero nominal values, the range is δ{kf , kτ} = ±10 %.
For gx, gy and gz, for which the nominal value is null, δ{gx, gy , gz} = ±3× 10−2 [m] is the consid-
ered uncertainty range. With these settings, we can randomly draw the nper = 30 perturbations,
and re-scale with Eq. (6.41) if necessary.

From each run of all perturbed simulation runs, for au,⊕ and a?Υ, we measure each final
linear position error norm to the desired final position target

Er = ‖r(T)− rd(T)‖ (6.42)

and each yaw error norm to the desired final yaw

Eψ = ‖ψ(T)− ψd(T)‖. (6.43)
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Then, on each of these four (two for au,⊕ and two for a?Υ) resulting sets of error values, we
compute the mean and the standard deviation. As a synthesis, starting from a single target, we
end up with eight numbers, namely the means µ{Er,Eψ} and the standard deviations σ{Er,Eψ}
of the final error norms for au,⊕ and a?Υ.

Finally, we aggregate these numbers over the whole set of n⊕ final output targets, in order
to compute the box-plot characteristics of these means and standard deviations. More precisely,
for each set of values, we compute the median, the first and third quartiles, and the first and last
centiles of the n⊕ output error means and standard deviations.

6.6.2 Results for a single target

Before discussing the statistical results for all targets, we study the results for one single
target. In particular, we focus on the tubes on the inputs and output, and then we also analyse
the final output trust ellipsoid for this target.

6.6.2.1 Tubes analyses

On Fig. 6.3, we display one of the inputs that was obtained by forward integration along the
reference a?Υ. We chose the second direction of the inputs u, thus taking n =

[
0 1 0 0

]T
for

computing the tube. Therefore, the resulting lower and upper tubes are centred at the nominal.
To show that our theory works correctly, we also display twenty perturbed inputs, and we verify
that they remain inside the tubes. The input saturations are also displayed (in red), and one can
now visualise the importance of considering the tubes in our optimisation problem: since the
tubes correspond to the worst deviation within the parameter ellipsoid (i.e. at the edge of it),
using these quantities for the saturation constraints ensure that we remain inside the bounds of
the inputs for any considered deviation.

Even if we do not take advantage of it in this chapter, we display two of the state/output
variables in Fig. 6.4, namely y and z, respectively on the left and right. Again, for each of these
variables, the resulting lower and upper tubes are centred at the nominal. Now, imagine that
one needs to plan a motion for a system, that safely avoids collisions, but under parametric
uncertainties: with the uncertainty ranges knowledge, one can now exploit the state/output sen-
sitivities to generate motion that will ensure a safe, collision-free behaviour of the robot, even
for the worst case scenarios.

In our opinion, with the graphics that we display, the new theory is clearly justified in the
context of safe motion planning under parametric uncertainties, and had great potential for
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Figure 6.3 – Input tube along a reference trajectory a?Υ of T = 8 [s]. The nominal behaviour is in green,
the twenty perturbed behaviours are in dashed grey, the upper and lower tubes are in blue, and the input
saturations are in dashed red.
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Figure 6.4 – y (left) and z (right) tubes along a reference trajectory a?Υ of T = 8 [s]. The nominal
behaviour is in green, the twenty perturbed behaviours are in dashed grey, and the upper and lower tubes
are in blue.

future robotic applications.

6.6.2.2 Final output confidence ellipsoid

We now display the results for one specific target: from the nper = 30 perturbed runs for
au,⊕ and a?Υ, we stored the final outputs of the quadrotor in four different clouds, each of
size nper × ny. Of these latter, we have computed the two corresponding 4-dimensional 90 %
confidence ellipsoids.

On Fig. 6.5, one can observe the corresponding 2-dimensional confidence ellipses, in plane
(x, y) on the left, and in plane (z, ψ) on the right. With this two subplots, one can now assess the
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Figure 6.5 – Display of the two 90 % confidence ellipsoids, for one target only, and divided in two
planes: (x, y) on the left, and (z, ψ) on the right. On each subplot, one can observe the 2-dimensional
final confidence ellipses resulting from the perturbed simulations of trajectories au,⊕ (in grey) and a?Υ
(in blue). We also displayed the final output target yd(T) (in orange).

tracking performance improvements, when reducing the final output sensitivity, for one target
alone. On both planes, we can see that the ellipse corresponding to the optimised a?Υ is smaller
than the preconditioned one, au,⊕. This means that the statistical spread of the perturbed final
output is smaller after optimising the reference motion.

6.6.3 Statistics

We now show the complete statistical results, thus for all targets.
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Figure 6.6 – Box-plots of the evaluated performances for the conducted statistical campaign when com-
paring all the preconditioned au,⊕ (in grey) to the optimised trajectories a?Υ (in blue) resulting from
problem Eq. (6.32). From left to right, we display respectively the distribution of the means and stds of
the position error Er, and then for the yaw error Eψ.
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6.7. Conclusion

On Fig. 6.6, we display four graphics that show the distributions (from left to right) of
respectively the distribution of the means and stds of the position error Er, and then the same
for the yaw error Eψ. These are the results of a full campaign of nper = 30 simulation runs for
n⊕ = 30 random output targets. As all graphics highlight a reduction of the means or stds for
the linear position error norm, and the yaw error norm when comparing a?Υ to au,⊕, we draw
the conclusion that with the cost formulation, with the new output sensitivity norm allows for
statistical reduction of the error (in linear and angular spaces).

From these results, we strongly believe that the effectiveness of Eq. (6.32) is proven, at least
in the conditions we described, i.e. for the space quadrotor with a shift in the CoG equipped with
the geometric tracking controller. Consequently, one can understand that generating optimised
trajectories for which the output sensitivity norm is smaller than for non-optimised shapes al-
lows to statistically increase the output predictability, and therefore results in a less hazardous
dynamical behaviour when p 6= pc: the performance of the system is enhanced overall, and this
ensures an improvement in security during the control task.

6.7 Conclusion

As a conclusion, in this chapter we have provided a new version of our robust trajectory
planning framework. This new, tube-based approach, allows to leverage the information con-
tained in the state/input/output sensitivities, in order to compute the worst case deviation tubes
around the nominal state/input/output. Thanks to the uncertainty ranges, we were able to provide
an improved, informative norm, that is directly linked to the deviations in the state/input/output
spaces.

We have applied this new problem for an improved space quadrotor model, that may have a
shift in its CoM. From the analyses and observations made in the result section, the benefits of
this framework are numerous: this formulation allows for to generate robust trajectories w.r.t.
parametric uncertainties, that statistically enhance the performance of our systems, and which
do that in a very safe and reliable way. We can mention the ability to plan motions that will
ensure the dynamic feasibility even with the most disadvantageous deviations (thanks to the
input tubes), and that can also avoid collisions efficiently (thanks to the state/output tubes).
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Part III

General conclusion and perspectives
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CONCLUSION

In this thesis, we defended the idea that the generation of robust, control-aware trajectories
is a promising tool to plan robotic tasks under parametric uncertainties. We showed that an
adequate use of our ’closed-loop sensitivities framework’ yields better performance than trivial,
non-optimised motion plans. Throughout our contributions, we highlighted the fact that each
sensitivity (state, input and output) has its own function, and that one can exploit any to enhance
the performance of the system at a specific time, or during all the robotic task, so as to minimise
the gap of behaviour (in the space of interest) between the nominal and perturbed cases. In
particular, in the context of free-flying aerial robotics with uncertain parameters, we have shown
multiple times, with different versions of our framework, that tracking our robust motion plans
leads to statistical performance improvements, and ensures a better predictability of a quadrotor
UAV behaviour.

6.8 Our contribution

In Chapter 4 we proposed a first extension of the already existing sensitivity framework,
with the addition of the newly introduced input sensitivity, which, if minimised, leads to in-
creased input predictability. After deriving the state and input sensitivities, we have shown how
to obtain them and their gradients (w.r.t. the optimisation variables) along any reference motion.
We then formulate an optimisation problem that combines both the state and input sensitivities
in a single cost objective, and seeks to minimise the state error at the end of our motion, plus
that guarantees a better prediction of our inputs. This problem is solved under constraints, i.e.
kinematic limit conditions and the (newly introduced) input saturations. In this chapter, com-
pared to what was done beforehand, we replaced the trajectory representation by Bézier curves,
which offer more numerical stability than ’plain polynomials’. We then assessed the soundness
of the proposed strategy, with the realisation of an extensive statistical campaign of perturbed
simulations (to simulate the uncertain behaviour of our robot) applied to trajectories that were
optimised for a planar quadrotor, equipped with a ’perfect’ (in the nominal case) DFL con-
troller. The campaign has shown performance improvements for two versions of the controller.
The results demonstrate that both the state and input sensitivities prove useful to reduce the
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errors in their respective spaces. We also highlight that both objectives have been combined in a
single optimisation. The corresponding trajectories have shown to be a good trade-off between
those minimising a single index. However, we recall that our method relies on the hypothesis
that the state is fully known during the control task (to perform the sensitivity computations),
which, of course, is wrong: as the state (continuous) is an estimate that gets computed from all
the (discrete) measurements, by nature, it is uncertain.

Motivated by this last point, we collaborated with the research group ’Control of Networked
Systems’ (University of Klagenfurt), which studies the planning of trajectories whose track-
ing renders the system’s state and/or parameters well observable. This lead to our ’control &
observability-aware planning framework’: in Chapter 5, we propose an attempt to combine the
closed-loop state and input sensitivities with the observability metric, for robust and informa-

tive motion plans. Intuitively, the objectives are opposite. Thanks to the augmented weighted
Chebyshev method, we were able to balance both objectives in a single problem. In this chapter,
the trajectory representation has been extended to piece-wise Bézier curves, as it allows for di-
mension reduction. Our multi-step approach was then assessed for a space quadrotor equipped
with a geometric controller (imperfect in the nominal case): in a simplified case study, we con-
sidered the thrust and drag coefficients of the propellers as uncertain. Indeed, a more thorough
study would require to consider other uncertain parameters, and of course, the state as uncertain
(as it is linked to the ’state knowledge’ hypothesis). Anyhow, a comparison was done between
the preconditioned, and the S/I-S, the EELOG, the COP optimised references. As our controller
is not perfect in the nominal case, we had to relax the constraints at the end of the trajecto-
ries, and replace them by constraints that ensure that our system actually goes to the desired
target (in the nominal case). This allows to fairly compare the non-optimised references to the
optimised ones. In the results section, we have shown that the sensitivity and observability
are often conflicting, which completely justifies our approach. In the described conditions, the
COP optimised motions have shown to be a good compromise between the control-aware and
observability-aware trajectories.

In Chapter 6, we have been concerned with finding a good norm for our cost objective: in-
deed, the Frobenius matrix norm that we exploited in the two preceding chapters, does not take
advantage of a possible knowledge of the parametric uncertainty ranges. One can agree that for
each parameter of our models, we always have a good idea of the measure uncertainty. With
this information, it is possible to construct the largest deviation ellipsoid in the parameter space.
We then show how to exploit the state/input/output sensitivities to obtain the corresponding el-
lipsoids in their respective spaces. From this theory, we now exploit the ’worst-case deviation
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tubes’. These are of utmost importance as they allows us to now consider new constraints for
the input saturation: we replace the old constraints by the tubes, and ensure that the trajectory
remains dynamically feasible (even with the worst deviation). Moreover, this grants us the abil-
ity to remove the input sensitivity from the cost, and now gives full room to any combination of
the final/integral state/output sensitivities. Besides, we updated the cost with a new matrix norm
of the output sensitivity kernel matrix (i.e., its largest eigenvalue). This new norm represents
the worst-case deviation in the output space, given the parametric uncertainty model. In this
chapter, we extended our quadrotor model to one that has a shift in its CoG, thus adding new
uncertainties to our tube-based sensitivity framework. The results section leads one to believe
that the tubes work correctly on the state/input/output. In the context of motion planning, these
can be exploited to generate motions which we ensure dynamically feasible and collision-free.
The approach is validated, since we are able to enhance the final quadrotor output precision.

The research track that we pursued in this thesis provides good insights about the potential of
our robust and control-aware trajectory planning approach. The concept of sensitivity is already
quite old, but its consideration for a closed-loop system/controller pair is recent. We showed
that the field of robust trajectory planning can benefit from our metrics, and the novel ways to
exploit them for relevant optimisation problems. We believe that we have only scratched the
surface of this topic, and it should greatly benefit from further exploration.

6.9 Limits and research perspectives

Three years (almost four) is a short period on the timescale of research. We limited our-
selves to "simple" tasks, and applied them on a unique quadrotor. However, in order to convince
other researchers and engineers in the field of robotics that our contribution is worth it, further
validation is required.

Overall, the framework is very slow. Even if it has been improved a lot (e.g., the compilation
of the sensitivity and gradients took weeks for a space quadrotor, equipped with a geometric
controller using ’matlabfunction’ of Matlab) by switching to Python (using ’JiTCODE’, which
allowed to reduce the time to minutes, then seconds), the optimisation still require too much
time, and we are quite far from generating at real-time. As such, we advice to explore the
use of learning NNs to provide estimates of the sensitivity cost itself, to fasten the process.
The potential of NNs is already proven in the scientific community, and could, if well used in
the context of our sensitivity framework, enable high-speed, real-time generation/planning/re-
planning.
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The optimisation routines that we have chosen were always gradient-descent algorithms (or
close). We think that this is very limiting, as it does not allow for efficient exploration of the
trajectory space. Therefore, we suggest to try implementing population-based algorithms (e.g.
GAs) for the planning process.

Throughout the manuscript, we find an optimal shape of the trajectory, and leave the sys-
tem/controller pair unchanged. Well, we believe that besides the curve parameterisation, one
could formulate an optimisation problem that automatically tunes the controller gains for each
trajectory shape, which would certainly lead to even better sensitivity reduction. One could also
compare the benefits from our method for control policies with different levels of robustness:
can we improve the performance of a closed-loop system that includes an already robust con-
troller?

We also mention that in the statistical campaigns of Chapters 4 and 6, we searched accurate
positioning at the end of the navigation. This is quite limiting in terms of results interpreta-
tion, as we never tried to enhance the performance while the system is moving. Besides in our
evaluations the motion tasks were limited to rest-to-rest. We believe that in these chapters, the
improvements that we see are the hardest to obtain (compared to what could arise from a mov-
ing system), since when the motion goes back to rest, then the controller has "time" to correct
for all the errors, i.e. the tracking error, and the one that is caused by parametric uncertainties.
Therefore, it would be really interesting to see what happens when optimising at a time point for
which the system is at great speed. We expect that the difference in performance when tracking
a non-optimised motion and a robust one would be even larger. If this hypothesis is verified,
optimising for precision at a specific time point could, e.g., have potential for planned drone
racing.

As stated in Chapter 1, we think that our robust motion planning algorithms are promising
for a wide range of applications, and would like to see how our research can be used for other
objectives than contact-free flying. We believe that APhI, and other fields of research could
benefit from our ideas (and their future extensions). For instance, one could imagine testing our
method with other systems, such as aerial manipulators, e.g. a fully actuated tilted hexarotor,
equipped with a relevant end effector. Our approach should be tested for standard manipulators,
e.g. for tasks such as tossing an object with good precision (where the object to be tossed is
uncertain).

In our opinion, another limiting factor for evaluating the benefits of our method is that we
always test it on already quite sophisticated systems. It could be really interesting to see the
outcomes of trying our strategy with very simple, small (or micro) robots, that, by nature, have
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limited hardware and are inherently subject to parametric uncertainties.
A series of real experiments has already been conducted in the past for our framework (with

positive results) on a unicycle robot. We would like to perform these experiments on a real-
world quadrotor, since this validation lacks as of today. Then, if the results are also positive,
this validation should be extended with specific tasks runs, mimicking relevant possible appli-
cations.

To close this thesis, we firmly believe that our work is a stepping stone on the path to robust,
control-aware trajectory planning for robotic tasks under parametric uncertainty. We hope that
we have convinced other researchers in the field to invest time and energy on our topic, so that
novel, efficient closed-loop sensitivity planning algorithms can see the light in the near future.
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Titre : Algorithmes de planification de trajectoires robustes pour des tâches robotiques en
présence d’incertitudes paramétriques

Mot clés : robotique aérienne, incertitudes paramétriques, planification de trajectoires

Résumé : L’un des défis majeurs des sys-
tèmes automatisés réside dans la nécessité
de fonctionner dans des conditions réelles,
donc incertaines. L’incertitude paramétrique
est un problème courant, et se présente lors
de l’exécution de tâches robotiques diverses.
Dans cette thèse, nous explorons les possi-
bilités apportées par la planification de tra-
jectoires, dont le suivi est intrinsèquement
robuste aux incertitudes. Dans la première
contribution, nous étendons les algorithmes
de planification de trajectoires à sensibilité mi-
nimale en introduisant la sensibilité de l’en-
trée, qui, une fois réduite, conduit à une pré-
diction accrue de l’entrée du système. Ce pro-
blème, bien que traité pour de la robotique
aérienne, est généralisé pour tout système.

Le problème de sensibilité reposant sur l’hy-
pothèse de connaissance parfaite de l’état,
dans la seconde contribution nous combinons
les algorithmes control-aware et observability-
aware grâce à la méthode de Chebyshev, afin
de générer des trajectoires robustes aux in-
certitudes, et assurant une meilleure estima-
tion des variables/paramètres du système. En-
fin, dans la dernière contribution, nous déve-
loppons une théorie qui exploite les données
d’incertitude paramétrique, afin de construire
les tubes de déviations du pire cas autour des
variables nominales du système. Cette nou-
velle expression du problème permet d’aug-
menter la fiabilité des systèmes, car nous as-
surons la faisabilité, même pour les plus fortes
déviations paramétriques.

Title: Robust trajectory planning algorithms for robotic tasks with parametric uncertainties

Keywords: aerial robotics, parametric uncertainties, trajectory planning

Abstract: One of the major challenges of au-
tomated systems is the need to operate under
real-world, thus uncertain conditions. Para-
metric uncertainty is a common problem, and
arises when performing various robotic tasks.
In this thesis, we explore the possibilities pro-
vided by the planning of trajectories, whose
tracking is inherently robust to uncertainties.
In the first contribution, we extend minimum
sensitivity trajectory planning algorithms by in-
troducing the input sensitivity, which, when re-
duced, leads to an increased prediction of the
system input. This problem, although treated
for aerial robotics, is generalised for any sys-
tem. As the sensitivity problem relies on the

assumption of perfect knowledge of the state,
in the second contribution, we combine the
control-aware and observability-aware algo-
rithms thanks to the Chebyshev method, in or-
der to generate trajectories robust to uncer-
tainties, that also ensure a better estimation
of the system’s variables/parameters. Finally,
in the last contribution, we develop a theory
that exploits the parametric uncertainty data,
and construct the worst case deviation tubes
around the nominal system’s variables. This
new expression of the problem increases the
reliability of systems, as we ensure feasibility
even for the largest parametric deviations.
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