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Résumé

Dans ce travail de thèse, nous étudions par simulation numérique l’effet des charges
électriques sur la dispersion de particules transportées par un écoulement turbulent. Les
équations de Navier-Stokes sont résolues par Simulations Numériques Directes (approche
spectrale) couplées avec un solveur Lagrangien afin de calculer les trajectoires de chaque
particule. Un forçage stochastique permet d’obtenir des écoulements turbulents statistiquement
homogènes, isotropes et stationnaires. Dans la thèse, une méthode originale pour la prise en
compte des forces électrostatiques a été développée et validée sur des configurations élémentaires.
Dans cette méthode, les interactions à courte distance sont estimées via une somme des
interactions inter-particules à une distance de coupure et celles à longue distance via une
somme d’interactions de particules avec des paquets de particules qui, à une distance supérieure
à la distance de coupure, sont considérés comme des pseudo-particules. La convergence, la
précision et le coût de calcul de la méthode ont été étudiés en détail pour sa mise en œuvre
pour des domaines tri-périodiques. L’ensemble de ces développements a été réalisé dans un
code parallèle qui a permis d’effectuer des simulations sur un supercalculateur d’écoulements
gaz-particules contenant jusqu’à 2× 105 particules.

Dans un premier temps, l’analyse d’écoulements granulaires secs a permis de définir
une échelle de temps caractéristique de l’effet des charges électriques et de la relier aux
caractéristiques physiques des particules notamment le diamètre et leur agitation. Le mécanisme
de transformation de l’énergie potentielle électrique en énergie cinétique des particules est
analysé en fonction de cette échelle de temps. Dans un second temps, des simulations de
turbulence homogène isotrope transportant des particules chargées de même signe ont été
réalisées en faisant varier leur diamètre (nombre de Stokes dynamique) et leur charge (nombre
de Stokes électrostatique). Les simulations montrent que, pour un Stokes dynamique donné,
l’augmentation de la charge des particules conduit à une diminution de l’agitation de celles-ci
alors que les forces électrostatiques (répulsives) sont conservatives. L’analyse détaillée montre
qu’en fait, les forces électrostatiques conduisent à une destruction de la corrélation des vitesses
fluide-particules qui, selon la théorie de Tchen-Hinze, pilote l’agitation des particules.

Outre l’agitation, la distribution spatiale des particules est aussi considérablement modifiée
par les forces électrostatiques. En effet, les charges diminuent les valeurs de la fonction de
distribution de paire à courte distance ce qui signifie que le phénomène de concentration
préférentielle des particules est diminué. Dans le cas limite de fortes charges il est même com-
plètement éliminé puisque que les forces électrostatiques tendent à uniformiser la distribution
spatiale des particules. En effet, chaque particule a tendance à former une zone d’exclusion
autour d’elle en raison de la forte répulsion à courte distance. Les fonctions de distribution de
vitesse relative de paires de particules sont elles aussi affectées par la présence des charges.
Enfin, l’effet de la fraction volumique des particules est examiné, où il est montré que son
augmentation conduit à une densité d’énergie potentielle électrique du nuage des particules
chargées plus élevée qui conduit à une augmentation de l’agitation des particules.

Mots clés: interaction électrostatique, interaction particule-turbulence, théorie de Tchen-
Hinze, dispersion, concentration préférentielle



Abstract

In this work, we study by numerical simulation the effect of electric charges on the
dispersion of particles transported by a turbulent flow. The Navier-Stokes equations are solved
by Direct Numerical Simulations (spectral approach) coupled with a Lagrangian solver in
order to calculate the trajectories of each particle. A stochastic forcing scheme allows to
obtain statistically homogeneous, isotropic and stationary turbulent flows. In the thesis, an
original method to take into account electrostatic forces has been developed and validated
on elementary configurations. In this method, the short-range interactions are estimated via
a sum of the inter-particle interactions inside a cut-off distance and the long-range ones via
a sum of interactions of particles with groups of particles which, at a distance greater than
the cut-off distance, are considered as pseudo-particles. The convergence, the precision and
the computational cost of the method have been studied in detail for its implementation for
tri-periodic domains. The ensemble of these developments has been carried out in a parallel
code which allows to perform simulations on a supercomputer of gas-particle flows containing
up to 2× 105 particles.

Firstly, the analysis of dry granular flows allowed to define a characteristic time scale of the
effect of electric charges and to link it to the physical properties of the particles, in particular
their diameter and agitation. The mechanism of transformation of the electric potential energy
into particle kinetic energy is analyzed according to this time scale. Secondly, simulations
of homogeneous isotropic turbulence transporting like-charged particles were carried out by
varying their diameter (dynamic Stokes number) and their charge (electrostatic Stokes number).
The simulations show that, for a given dynamic Stokes, the increase in particle charge leads to
a decrease in their agitation since the electrostatic (repulsive) forces are conservative. The
detailed analysis shows that, in fact, the electrostatic forces lead to a destruction of the
fluid-particle velocity correlation which, according to the Tchen-Hinze theory, drives particle
agitation.

Besides agitation, the spatial distribution of particles is also considerably modified by
electrostatic forces. In fact, the charges decrease the short-range values of the particle pair
distribution function, which means that the phenomenon of preferential concentration of the
particles is attenuated. In the limit of strong charges, it is even completely eliminated since
electrostatic forces tend to uniformize the spatial distribution of the particles. This is because
each particle tends to form an exclusion zone around it due to the strong repulsion at short
distance. The relative velocity distribution functions of particle pairs are also affected by the
presence of charges. Finally, the effect of the particle volume fraction is examined, where it is
shown that its increase leads to a higher electric potential energy density stored the cloud of
charged particles which leads to an increase of particle agitation.

Keywords: electrostatic interaction, particle-turbulence interaction, Tchen-Hinze theory,
particle dispersion, preferential concentration
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Introduction

“ἀρχὴ γὰρ λέγεται μὲν ἥμισυ παντὸς
ἐν ταῖς παροιμίαις ἔργου

1”
- Plato, c. 427 – c. 347 BC

1.1 Context and motivation
The motivation for this work comes from numerous practical applications of turbulent particle-
laden flows where particles are electrically charged and the inter-particle electrostatic in-
teractions play an important role in the flow dynamics. The range of these applications is
quite vast, including geophysical (pyroclastic flow, sediments transport, volcano ashes disper-
sion) and atmospheric flows (cloud formation, rain enhancement, fog elimination), industrial
configurations(pneumatic conveying, olefin polymerization, Fluid Catalytic Cracking of oil,
silo discharge), nano-material science, aerospace applications (space exploration, propulsion),
biomolecular engineering (DNA charge clouds), chemical and pharmaceutical engineering
(protein structure, coating techniques). Depending on the application, these interactions can
be either an observed physical phenomenon or a choice of active/passive control of the flow.

Industrial applications

There are several industrial applications (pneumatic conveying, olefin polymerization, Fluid
Catalytic Cracking of oil, silo discharge, ...) for which the inter-particle collisions or the
particle-wall bouncing may lead the particles to accumulate electric charges which modify
the dynamic behavior of the particles. As for example in fluidized beds (Kolehmainen et al.,
2016, Rokkam et al., 2010), charges may lead the particles to form agglomerates Ciborowski &
Wlodarski (1962) that can change the fluidization regime or to adhere on the walls (see Fig.
1.2). In case of pneumatic conveying Joseph & Klinzing (1983) or solid entrainment Baron

Figure 1.1: Working principle of a dry electrostatic precipitator (Sarkar, 2015).
1For it is said in proverbs that the beginning is half of every work.

1
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et al. (1987), charges may also alter granular flow dynamics. Electrostatic forces may also be
important in colloids, particularly regarding deposition Li & Ahmadi (1993). In addition, as
far as dilute turbulent gas-particle flows are concerned, which are the specific kind of flows
examined in this PhD, there are several applications where electrostatic forces are actively
used for particle separation or removal. Notably, one of these is the electrostatic separator
(Matsusaka et al., 2002, Peukert & Wadenpohl, 2001), used for example in the mining industry
(Idres et al., 2016) or for plastic/metal separation in the reprocessing industry (Iuga et al.,
2001, Kim & Park, 2018, Messal et al., 2015) as well as in the recycling industry (Park et al.,
2008, Zeghloul et al., 2017). Another application is that of electrostatic precipitator (see Fig.
1.1) used in coal power plants in order to remove the fine particles from the gases leaving the
combustion chamber (Choi & Fletcher, 1998, Kallio & Stock, 1992, Yang et al., 2019).
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The presence of electrostatic charges in gas phase flu-
idized bed polyethylene reactors can significantly impact
reactor operation. Electrostatic charges are known to influ-
ence fluidized bed hydrodynamics, including bubble size
and shape, particle mixing rate, and fines elutriation. If the
electrostatic charge on particles in a fluidized bed exceeds a
critical value, the resultant electrostatic force causes the par-
ticles to adhere to the reactor wall. If the particles reside on
the reactor wall long enough in a reactive environment, they
can overheat and fuse together or melt due to the exother-
mic heat of reaction. Polymer particles that have fused or
melted together on a reactor wall are called “sheets”.

Significant reactor wall sheeting often causes plugging of
the reactor product discharge system or loss of fluidization.
Either consequence typically causes reactor down time to
remove the sheets from the reactor. The reactor operator in-
curs significant economic impact each time the reactor is
shut down, both in lost production and in additional main-
tenance costs to clean the reactor. Thus there is significant
economic incentive to prevent reactor wall sheet formation.

Despite the negative consequences of excess electrostatic
charge accumulation, the electrostatic charge generation,
dissipation, and mitigation mechanisms and the relationship
between the electrostatic charge level and incipient reactor
wall sheet formation are poorly understood. This paper re-
views the relationship between reactor wall sheeting and the
presence of excess electrostatic charges.

A description of reactor wall sheeting is first provided to
explain the consequences of excess electrostatic charging.
The mechanism of reactor wall sheet formation is then pro-
vided to relate sheet formation to electrostatic charge accu-
mulation. After that, various aspects of electrostatic charge
generation, electrostatic forces, electrostatic charge dissipa-
tion, and mitigation techniques are discussed. Finally, con-
clusions and areas for future research are discussed.

2. Sheeting characterization

In deep fluidized beds wall sheet formation typically oc-
curs near an elevation from 1/4 to 3/4 of the reactor diam-
eter above the fluidization gas distributor plate as illustrated
in Fig. 1. The bed circulation near the wall changes from
generally upward at lower elevations to generally downward
at higher elevations, resulting in a “stagnant” zone at this
elevation. Wall “scrubbing” action, or drag forces along the
reactor wall, is at a minimum in this “stagnant” zone, allow-
ing particles to more easily adhere to the reactor wall. Also,
Fujino et al. (1985) calculated the highest bed potential1 to

1 “Bed potential” is defined as the electrostatic potential in a fluidized
bed. The electrostatic potential is geometrically related to the electrostatic
charge distribution in the fluidized bed and to the electric field.

Fig. 1. Typical locations for fluidized bed sheeting.

occur near this elevation, indicating a stronger tendency for
particles to be attracted to the wall in the “stagnant” zone.

Two types of sheets have been described: “warm sheets”
which are orientedand“coldsheets” whicharesintered.2 The
“warm sheets” are formed when catalyst or catalyst-rich
fines adhere to the reactor wall. The heat of reaction causes
the wall temperature to initially increase. The wall tem-
perature then decreases as the sheet thickens and the reac-
tion front moves away from the wall. According to Fulks
et al. (1989) “warm sheets” are 0.5–1.5 cm thick and from
about 0.1 to over 0.5 m wide. The overall size is from a few
square centimeters to over several square meters. The “warm
sheets” contain a core composed of fused polymer and an
outer surface covered with granular polymer that has fused
to the core. The fused polymer is oriented in the long direc-
tion of the sheets and the edges have a “hairy” appearance
from the oriented strands of fused polymer. The orientation

2 In this context, “sintered” means that the particles have been heated
enough to adhere to each other but upon close examination the individual
particle appearance is evident.

Figure 1.2: Typical locations for fluidized bed sheeting due to electrostatic agglomeration
(Hendrickson, 2006).

Geophysical and atmospheric flows

Particulate flows have been studied extensively in the context of geophysical and atmospheric
flows, as there is a number of occasions when we need to be able to simulate the dispersion of
various particles in the atmosphere and accurately predict their flow characteristics so that we
can take effective action to our interest. National Oceanic and Atmospheric Administration
(2011) has looked into the Fukushima radioactive accident of 2011 in order to simulate in
real time the dispersion of radioactive aerosols around the globe. In the same context, in
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Figure 1.3: Fukushima Radioactive Aerosol Dispersion (National Oceanic and Atmospheric
Administration, 2011).

Fig. 1.4 one can observe a visualization of a computer simulation of the spreading of ash and
sulfur dioxide from a volcanic eruption conducted by NASA Goddard Space Flight Center
(2016). A model that represents accurately the physics involved can provide a variety of useful
information, such as the concentration of ash and SO2 as well as the aerosol extinction rate
for a given point in space and time.

Calbuco volcano, 2015

Figure 1.4: Spreading model for ash and sulfur dioxide from a volcanic eruption (NASA
Goddard Space Flight Center, 2016).
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More recently, another catastrophe whose monitoring required elaborate computational
skills, is that of the California wildfires of 2020. In Fig. 1.5 one can observe the visualization
of soot particle concentration using aerial images provided from the NASA Earth Observatory
(2020). These types of flows are very complex, in the sense that they are driven by multi-physics
mechanisms (particle-turbulence interaction, particle-particle interaction, heat/mass transfer,
chemical/radioactive interactions, etc.). One particularly complex physical interaction that is

Figure 1.5: Concentration of black carbon particles (soot) (NASA Earth Observatory, 2020).

usually neglected but can play a significant role in a range of such atmospheric/geophysical
flows is the presence of electric charges. Effects of charges on particle dynamics have been
identified in geophysical flows especially for dust emission Esposito et al. (2016) and for the
saltating motion of grains Schmidt et al. (1998), Zheng et al. (2006). A lot of research (James
et al., 2008, Lane et al., 2011, Miura et al., 1996) has also been conducted on the electrostatic
phenomena in volcanic eruptions (see Fig. 1.6) as well as the effect of triboelectrification
(Aplin et al., 2014, Harper & Dufek, 2016) electrostatic interactions on the flow of volcanic
ash (Genge, 2018, James et al., 2003).

 
 
 
 
 
 

The fallout of volcanic ash at measurement localities indicates that larger particles often have a net 
negative charge, but this polarity may vary between eruptions and volcanoes. Laboratory experiments 
have shown that the fracture of pumice generally produces ions of a net positive charge and ash 
particles of a net negative charge [7][8]. It is hypothesized that, over time, the large surface area 
presented by small particles scavenges more ions, leaving large particles more negatively charged than 
small particles on average. Gravitational separation then acts to produce the observed atmospheric 
potential gradients. 

5.  Volcanic lightning 
Volcanic lightning is the result of potential gradients exceeding the electrical breakdown strength of 
the atmosphere, a process that may also take place on other solar system bodies [10]. McNutt and 
Williams [11] provide a contemporary review of volcanic lightning. The mechanisms of electrification 
in plumes 1 - 4 km high may be attributed to fragmentation processes, whereas lightning in plumes 7 - 
12 km high may also involve electrification mechanisms seen in thunderclouds. Evidence for the 
involvement of freezing processes in the generation of lightning detectable by long range 
meteorological observation comes from the recent Eyjafjallajökull eruption of 2010 [12]. Thus there 
appear to be at least two mechanisms leading to lightning, namely magmatic mechanisms giving 
discharges near the vent and at temperatures above c. -20°C, and atmospheric mechanisms associated 
with water freezing below c. -20°C. 

 
 

Figure 1. Sakurajima volcano, Japan, with 
lightning (10th February 2010). The ballistic 
trajectories represent hot magma clasts, with the 
electric discharge following an apparently more 
random path. The close proximity of the electric 
discharge to the crater rim suggests that the 
charge separation mechanisms operating are 
different from those leading to larger-scale 
meteoric lightning (reproduced with the kind 
permission of Martin Rietze 
http://apod.nasa.gov/apod/ap100210.html). 

Figure 3. Lightning propagates within the eruption 
plume of Kirishima volcano, Japan. This suggests 
that the potential gradient required to cause 
electrical breakdown in the plume is less than that 
required for free air. This hypothesis would appear 
consistent with the presence of many charged 
particles and ions within the plume. The dominant 
charging mechanisms here are likely to be sourced 
in the fragmentation process, specifically 
fractoemission mechanisms during brittle fracture 
of magma. 
 

 
The reader can find many spectacular images of volcanic lightning online. Figure 3 shows lightning 

occurring during the Kirishima eruption in late January 2011. This image suggests that the lightning is 
here confined within the plume, implying that the electrical properties of the plume are more 
conducive to electrical breakdown than the surrounding atmosphere; the plume is acting as a lightning 
conductor. Large lightning strikes, very similar to those seen from thunderstorms, are also observed 
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Figure 1.6: Sakurajima volcano, Japan, with lightning (10th February 2010). The ballistic
trajectories represent hot magma clasts, with the electric discharge following an apparently
more random path (Lane et al., 2011).
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Furthermore, Su (2006) has studied numerically the electrostatic interactions between two
charged conducting droplets, aiming among other, to understand their role in cloud formation.
Interestingly, electrostatic interactions between droplets have also been studied (Khain et al.,
2004) for rain enhancement and fog elimination by seeding them with charged droplets. A
more recent computational study of the effect of charges on droplet-droplet collisions is that
of Shardt et al. (2016) which is illustrated in Fig. 1.7. This work showed that once electric
repulsion becomes comparable to the viscous shear force on the drops, the critical capillary
numbers decrease suppressing coalescence as droplets now slide at lower shear rates.

Figure 1.7: Simulations of charged and uncharged droplet collisions (Shardt et al., 2016).

Space exploration

Furthermore, at the dawn of the 2020’s decade, there is an augmented interest for further
Mars exploration (NASA, 2020) that demands the design and execution of more unmanned
missions to the red planet for the years to come. Most present and future missions to the
surface of Mars entail the use of solar power as the primary source of energy, therefore the use
of solar arrays. However, Mars atmosphere contains a significant load of suspended dust that
carries a considerable amount of electric charge due to the dry, low-pressure environment that
favors triboelectrification (Harrison et al., 2016, Landis, 1997). This atmospheric dust has
been shown to accumulate on the solar panel surface (see Fig. 1.8a) via various mechanisms
(saltation, wind lifting), gradually degrading the performance of the photovoltaic power system
due to both the decrease of the amount of sunlight hitting the surface and the shift of the
spectrum of the available sunlight.

(a) Dust accumulation on rover solar panels. (b) Dust removal due to wind events.

Figure 1.8: NASA’s Mars Exploration Rover Opportunity before and after a cleaning event
(JPL, 2014).
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Dust is expected to adhere to the panel by Van der Waals adhesive forces, which are
quite strong at the dust particle sizes expected. If the panel surface is insulating, it is possible
that they may also be subject to electrostatic adhesion, which may also be extremely strong.
Moreover, experimental studies on Viking landing sites by Gaier et al. (1994) have shown
that wind gusts on the surface of Mars are not strong enough to remove adequate amounts
of accumulated dust. Despite the observation of random cleaning events (see Fig. 1.8) due
to uncommon high gusts (∼ 35m/s), they conclude that long-duration missions may require
its periodic removal, especially unmanned ones. Consequently, it seems that dust deposition
on solar panels of an autonomous solar powered system Mars exploration system can be
detrimental for its lifetime, hence the longevity of the operation. Therefore, it is imperative
that we be able not only to understand and predict the effect of inter-particle electrostatic
interactions on such gas-particle flows on the surface of the red planet, but also to develop
dust removal techniques that will be capable of clearing efficiently the solar panel surface. It
has been proven (Landis, 2004) that the environment of Mars has been studied to be most
suitable for the use of electrostatic mechanisms to do so.

Disease transmission

An honorable mention to the unending list of applications of (turbulent, not necessarily
electrically charged) particle-laden flows, which is pertinent with the current global health
crisis of the COVID-19 pandemic, is that of the dispersion of sneeze clouds (see Fig. 1.9).
544 L. Bourouiba, E. Dehandschoewercker and J. W. M. Bush

20 cm 0.008 s 0.034 s 0.06 s 0.13 s

FIGURE 6. An image sequence of a sneeze cloud indicating the interaction between the
gas and fluid phases. The arrows illustrate the apparent circulation within the cloud. The
change in direction of the cloud is also shown by the shift in the direction of the arrows.
The total release time of this sneeze was 200 ms. Time since initial release is indicated
in each frame. The smallest mist droplets remain suspended until the end of the video,
over 1.35 s.
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FIGURE 7. Physical picture of the evolution of a cough or sneeze cloud emitted
horizontally. Negatively buoyant suspended droplets are circulated within the cloud until
they settle out (at a horizontal distance xfall) and reach a final position xmax, corresponding
to the range of contamination. The virtual origin is shown behind the sneezer source and
is computed by extrapolating the measured trajectory of the cloud. The cloud climbs in
response to its increasing buoyancy as the negatively buoyant droplets fall out.

of small, long-lived droplets from the cloud at speeds as low as 0.06 m s�1. This
settling speed and time to complete evaporation are consistent with pure water droplets
smaller than 50 µm diameter that have a settling speed of less than 0.068 m s�1 and
time to complete evaporation of less than 6 s (Holterman 2003). Smaller settling
speeds were also observed, but difficult to estimate owing to their irregular motion.

Figure 7 illustrates the physical picture that emerges from a synthesis of our flow
visualizations, prior work on cloud visualization using schlieren (e.g. Tang et al.
2009) and droplet sampling (e.g. Morawska et al. 2009b). Violent respiratory events
release droplet-bearing turbulent momentum puffs of moist, buoyant air ejected in a
direction that depends on the individual. As the buoyant momentum puff advances, it
entrains ambient air, its width increasing and its speed decreasing with distance from

Figure 1.9: Dispersion of a sneeze cloud (Bourouiba et al., 2014).

In fact, at the time of writing researchers all around the world are trying to study, analyze
and comprehend the underlying mechanisms of the generation and aerosolization of virus-laden
respiratory droplets from a host (Mittal et al., 2020). Part of this research is the study of
the dispersion and deposition of such droplets that are emitted out of the nasal cavities when
talking, shouting, singing and sneezing. The understanding of these mechanisms can lead to
the prediction of the travel distance and lifetime of aerosols formed in spaces where humans
interact with each other, as it is the main way of transmission of these type of corona-viruses.
Consequently, this would lead not only to correct government decisions of suitable preventative
measures such as the use of face masks, hand washing, ventilation of indoor environments and
social distancing for mitigating and eventually eradicating this disease, but also prepare us for
the reappearance of a similar one in the future.
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1.2 Background and state-of-the-art
The present study is dedicated to the dispersion of inertial charged particles in turbulent
flows. Several literature studies have been dedicated to charged particles transported by
Homogeneous Isotropic Turbulence (HIT) Di Renzo & Urzay (2018), Di Renzo et al. (2019),
Karnik & Shrimpton (2012), Lu & Shaw (2015), Lu et al. (2010), Yao & Capecelatro (2018)
or by turbulent channel flow Rambaud et al. (2002). These studies essentially focus on the
modification of preferential concentration in the case of charged particles.

Indeed, when solid non-charged particles are transported by a turbulent flow field, accord-
ing to their inertia, they may accumulate in low-vorticity regions of the turbulence Fessler
et al. (1994), Squires & Eaton (1991). Such a mechanism leads to large local concentrations
of particles that may modify the collision rate Reade & Collins (2000), Sundaram & Collins
(1997) or the coalescence rate if droplets are considered instead of solid particles Wunsch et al.
(2010). Furthermore, external forces may modify preferential concentration, as for example,
Fede & Simonin (2010) showed that inter-particle collisions enhance preferential concentration.
In addition, Dejoan & Monchaux (2013) investigated experimentally the effect of gravity on
preferential concentration. Karnik & Shrimpton (2012), Lu & Shaw (2015), Lu et al. (2010),
Yao & Capecelatro (2018) have also showed that preferential concentration decreases when
charges increase.

However, they do not investigate how particle dispersion, in terms of agitation, is modified
by electrostatic interactions. Basically, particles transported by stationary homogeneous
isotropic turbulence follow the Tchen-Hinze theory (Hinze, 1972, Tchen, 1947) that entails
that the particle kinetic energy is directly linked to the fluid agitation (Fede & Simonin, 2006,
Zaichik et al., 2003)) via fluid-particle velocity covariance. However, Laviéville (1997) and
later Fede et al. (2015) showed that when inter-particle collisions occur, particle agitation
decreases even for elastic collisions. The way that electrostatic forces act on the particles is
similar to collisions via the mechanism of Coulomb collisions typically found in cold plasma
(Callen, 2003).

1.3 Main objective
The main objective of this work is to study the effects of distance-dependent particle-particle
interactions, such as the electrostatic forces, in turbulent gas flows laden with like-charged
particles using an Euler-Lagrange simulation approach. The turbulent gas flow is accounted
for via Direct Numerical Simulation (DNS) to the Kolmogorov scale using a spectral method
to solve the Navier-Stokes (N-S) equations in a cubic computational domain with tri-periodic
Boundary Conditions (BCs). This flow simulation is coupled (one-way) with a Lagrangian
particle phase solver that performs particle trajectory tracking.

Electrostatic forces can be calculated using two different approaches. Firstly, the direct
method consists of a sum of all inter-particle interactions for all the particles of the com-
putational domain and their periodic images. However, this purely Lagrangian approach
is computationally costly for a large number of particles, therefore another approximative
approach is considered. According to it, one can estimate the short-range interactions via a
sum of inter-particle interactions within a cut-off distance and the long-range ones via a sum
of particle interactions with clusters of particles that, from a distance greater than the cut-off,
are "seen" as one pseudo-particle.

This method is further adjusted in order to accommodate periodic boundary conditions,
which are not trivial in the case of electrostatic interactions as periodicity entails an infinite
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number of periodic domain images that has to be truncated to a finite one. In order to
successfully represent these inter-particle electrostatic interactions, we give emphasis on the
convergence and isotropy of the particle-induced electric field and we study its transient
response which is different from the turbulent one. In addition, the mechanism of such
interactions is investigated and it is shown that since electrostatic forces are conservative,
they could be considered as elastic particle-particle collisions at a distance, namely Coulomb
collisions. Moreover, since the magnitude of these forces is inversely proportional to the square
of the inter-particle distance, a special effort has been made to secure their satisfactory time
resolution which has been proven to be very important for an accurate representation of the
described physics.

Simulations are then performed by varying the properties of the particles in terms of density
(Stokes number) and charge (electrostatic Stokes number). In order to extract information from
these simulations, a statistical analysis is performed in order to investigate how the dynamics
of the turbulent gas-particle flow are affected by such distance-dependent particle-particle
interactions, namely electrostatic forces. In order to obtain a full understanding of their effect,
the statistical measures that have been deployed range from one-point statistics (average
particle agitation, fluid-particle covariance, to fluid and particle autocorrelation functions, etc.)
to two-point statistics such as relative particle velocity, inter-particle distance, etc.).

Explaining the observations made out of these statistics, via physical analysis, we aim
to understand and interpret not only the effect of these interactions on the particle kinetic
situation, namely particle agitation and dispersion, but also their very nature (probability
density function, average and variance, etc.). A big emphasis is given on the characteristic time
scales of the turbulent flow, so both of the fluid and particle phases, their (one-way coupled)
interaction, but also of the particle-particle electrostatic interactions. Finally, a great focus
has been placed on the spatial distribution of the particles inside the flow. The phenomenon of
preferential concentration and its mitigation by the (repulsive) electrostatic forces is analyzed,
as well as their effect on the relative particle motion.

1.4 Outline of the thesis
The PhD thesis is organized in six different Chapters. Although it has been written with a
focus on coherence and continuity - hence the use of a global nomenclature and a throughout
respect on definitions and notations - each chapter serves a clearly different purpose. Except
for Chapters 1 and 6 which are the Introduction and the Conclusion, respectively, each of
Chapters 2-5 is structured as a standalone article that has an abstract, a main body and a
conclusion, as well as its own bibliography. This organization has been chosen in order to
allow the reader to study separately any part of the thesis that is of interest to them, and
facilitate the understanding of the presented physics.

To begin with, Chapter 1 provides the context for the subject of this PhD, as well as
the motivation for the examined physics. It also presents a background and state-of-the-art
for different aspects of the deployed numerical methodology and physical results. Finally, it
presents the outline of the thesis in order for the reader to navigate through it more easily.

Furthermore, Chapter 2 details the numerical tools (schemes, techniques) used for the
DNS of turbulent particle-laden gas flows. First, the fluid solver is presented along with
a description of the forcing scheme as well as the one-way coupling with the solid particle
phase. This is the chapter that deals with the configuration of the simulated turbulence, so
its basic characteristics are also defined. At this point, we deduce a stochastic model of fluid
acceleration based on a Langevin equation and we extend it for a double exponential form
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of the fluid autocorrelation function. Then, we present the configuration of the non-settling
charge-free reference case which inevitably makes use of several statistical quantities of the
flow for both the fluid and particle phase. Thus, several fundamental elements of statistical
analysis for turbulence are presented as well as characteristic length and time scales that define
the physics that will be examined.

Following, Chapter 3 deals with the investigation of the dispersion of charge-free inertial
particles transported by stationary homogeneous isotropic turbulence by means of statistical
analysis of the performed DNS. The spectral analysis of turbulent gas-particle flows is presented
that leads to the formulation of Tchen-Hinze theory. The latter is a theoretical framework
that allows for a prediction of particle agitation based on fluid agitation and characteristic
fluid/particle time scales, as well as a theoretical approach of particle dispersion. Following, the
detailed analysis of the transport equations of particle agitation and fluid-particle covariance
are used to explain the effect of particle inertia. The apparent term of fluid acceleration -
particle velocity covariance creates the need to devise a stochastic model for fluid acceleration
"seen" by the particles as an extension of the corresponding one for the fluid, presented in
Chapter 2. Finally, follows a detailed statistical analysis (one- and two-point statistics) of all
the aspects of particle dispersion that extends to the spatial distribution and relative motion
of particles.

Chapter 4 presents the fundamental problem of calculation of electrostatic forces in a
system of particles, the known N-body problem. Then it describes the intricate problem of
applying periodic boundary conditions in such systems, where a truncation of the infinite
periodic domain is proposed with a reasonable cut-off error. A scalable algorithm is presented
that allows for a rather fast and precise calculation of electrostatic forces in a tri-periodic
computational domain by separating them in long- and short-range parts, which are calculated
exactly and approximately, respectively. The approximation error, computational cost and
performance of the proposed algorithm are documented and thoroughly analyzed. The second
part of the chapter deals with dry like-charged granular flows where the fundamentals physics
of particle-particle electrostatic interactions are investigated via characteristic length and time
scales. An attempt is made to provide analytical estimations for several statistical quantities
which are compared to DNS measured values. Finally, the particle-induced electric field is
presented and its characteristics are related to particle motion.

Last but not least, Chapter 5 presents the results obtained from DNS of like-charged
particle-laden turbulent gas flows and their statistical analysis. At first the configuration
for the simulations is presented where an electrostatic Stokes number is defined. Then, we
examine the effect of electric charge on particle dispersion where the obtained results are
verified via the transport equations of particle agitation and fluid-particle velocity covariance.
The observed trends are interpreted physically using classical notions of particle-laden flows as
well as the concept of Coulomb collisions presented in Chapter 4. To deepen our understanding
of this effect, various statistics have been deployed such as autocorrelation functions of fluid
and particle velocity, mean square particle displacement, probability density functions of
particle velocities and electrostatic forces, etc. Following, we focus on the effect of (repulsive)
electrostatic interactions on the spatial distribution of particles and their relative motion via
the statistical measures of particle concentration and radial distribution functions as well as
the nearest-neighbor distance characteristics. Lastly, we are interested in the effect of particle
number density.

Finally, Chapter 6 various conclusions drawn from the analysis conducted within the
scope of this PhD. In addition, it offers several perspectives which serve as pointers to the
directions of a possible continuation of this work.
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2
Numerical simulation of turbulent

particle-laden gas flows

“πάντα χωρεῖ καὶ οὐδὲν μένει καὶ δὶς ἐς
τὸν αὐτὸν ποταμὸν οὐκ ἂν ἐμβαίης

1”
- Heraclitus of Ephesus, c. 540 – c. 480 BC

Abstract
This chapter details the numerical tool (schemes, techniques) used for the DNS of turbulent particle-
laden gas flows. First, the fluid solver is presented along with a description of the forcing scheme as
well as the one-way coupling with the solid particle phase. Then, we present the basic characteristics
of the simulated stationary homogeneous isotropic turbulence, as well as a stochastic model for fluid
acceleration. The configuration of the non-settling charge-free reference case inevitably makes use of
several statistical quantities of the flow for both the fluid and particle phase. Thus, several fundamental
elements of statistical analysis are presented as well as characteristic length and time scales that define
the physics are under investigation.

2.1 Numerical simulation of particle-laden stationary HIT
The studied configuration is a stationary homogeneous isotropic turbulent gas flow carrying
mono-disperse inertial particles. The incompressible Navier-Stokes equations are solved by using
a pseudo-spectral method. Periodic BCs are applied on fluid and particle phase. Statistically
steady flow is achieved by using the forcing scheme proposed by Eswaran & Pope (1988). The
solid mass loading is sufficiently low for neglecting the turbulence modulation by the presence
of particles. The DNS are performed using gas-particle solver GASPART developed in IMFT.

In literature there is a handful of works that have been deployed for similar studies.
Notably, Deutsch et al. (1993) and Laviéville (1997) performed simulations of inertial particles
transported by stationary HIT taking into account monodisperse inter-particle collisions.
Furthermore, Février (2000) employed and validated a spectral method for gas-particle flows
using Finite Volume Method neglecting collisions, while Vermorel et al. (2003) investigated
the two-way coupling and Fede & Simonin (2006) studied collisions of mono- and bi-disperse
turbulent particle-laden flows.

2.1.1 Spectral method for the resolution of the Navier-Stokes equations
The governing equations for incompressible turbulent flow are

∂uf,i
∂xi

= 0 (2.1)

∂uf,i
∂t

+ uf,j
∂uf,i
∂xj

= − 1
ρf

∂p

∂xi
+ νf

∂2uf,i
∂xj∂xj

(2.2)

1All things flow and nothing remains still, and you cannot step twice into the same river.
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where uf = uf (x, t) and p = p(x, t) are the instantaneous fluid velocity and the pressure at
position x, respectively. Furthermore, ρf is the fluid density, while νf is the fluid kinematic
viscosity. Taking the divergence of the Navier-Stokes equations and Eq. (2.1) we obtain

− 1
ρf

∂2p

∂xi∂xi
= ∂2 (uf,iuf,j)

∂xi∂xj
. (2.3)

Following Canuto et al. (1988), Orszag (1969) and Vincent & Meneguzzi (1991), the fluid
velocity can be expressed in term of Fourier series as

uf,i (x, t) =
∫ ∞

−∞
ûf,i (κ, t) exp

(
îκ.x

)
dκ (2.4)

where î is the imaginary unit and ûf (κ) denotes the Fourier transform of the fluid velocity uf
at wavenumber κ. Applying the Fourier transform on fluid velocity (spatial) derivatives of
Eq. (2.2) gives

̂
uf,j

∂uf,i
∂xj

=
̂∂ (uf,iuf,j)
∂xj

= îκj ûf,iuf,j (2.5)

∂̂2uf,i
∂xj∂xj

= −κ2ûf,i (2.6)

with κ2 = κjκj = κ2
x + κ2

y + κ2
z and ûf,iuf,j the Fourier transform of the non-linear terms of

the N-S equations. Using Eq. (2.5) & (2.6) the Navier-Stokes equations can be written in the
spectral space as

κiûf,i = 0 (2.7)
∂ûf,i
∂t

+ N̂i = − 1
ρf
îκip̂− νfκ2ûf,i (2.8)

where N̂i = îκj ûf,iuf,j is the Fourier coefficient of the non-linear terms. In order to eliminate
pressure from Eq. (2.8) one can apply the Fourier transform on Eq. (2.3) that yields

− 1
ρf

∂̂2p

∂xi∂xi
=

̂∂2 (uf,iuf,j)
∂xi∂xj

p̂ = −ρf
κjN̂j

κ2

(2.9)

Finally, using Eq. (2.9), Eq. (2.8) can be written as

∂ûf,i
∂t

+ îκj ûf,iuf,j = î
κ2
iκj
κ2 ûf,iuf,j − νfκ2ûf,i

∂ûf,i
∂t

+
[
δij −

κiκj
κ2

]
îκiûf,iuf,j = −νfκ2ûf,i

∂ûf,i
∂t

+
[
δij −

κiκj
κ2

]
N̂j = −νfκ2ûf,i

(2.10)

where δij is the Kronecker delta. It is evident that the pressure acts like a projector onto
a basis where the incompressibility condition is satisfied. Equation (2.10) is not solved in
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numerical tool GASPART, as the divergence should always be satisfied during the computation.
Instead, it is chosen to solve the following system

∂û∗f,i
∂t

+ N̂∗i = −νfκ2û∗f,i (2.11)

and the velocity field û∗f is corrected such as

ûi = û∗f,i −
κiκj û

∗
f,j

κ2 . (2.12)

This approach ensures a free-divergence velocity field.

Turbulence forcing

In order to study particles carried by stationary homogeneous isotropic turbulence, one needs
to address the natural tendency of turbulence to decay, so as to ensure the stationarity of
the flow. Besides, equations that describe turbulence Eq. (2.1) & Eq. (2.2) are dissipative,
therefore it is necessary to artificially inject energy into the fluid so as to keep its kinetic
energy statistically steady. For this, there are two main methodologies from literature: the
deterministic and the stochastic approach.

i. The deterministic approach consists in resetting the spectrum of simulated turbulence for
each wavenumber based on a reference spectrum by Deutsch (1992) and Overholt & Pope
(1998). Generally, this reference spectrum is an analytical spectrum whose parameters are
adjusted to match a grid turbulence experiment. The drawback of this type of turbulence
forcing is that it cannot be used for simulations where the effect of the particles on the
fluid is taken into account (two-way coupling) (Boivin, 1996).

ii. The stochastic approach developed by Eswaran & Pope (1988) consists in applying a
random force at the level of the small wavenumbers of the energy spectrum. This type
of forcing was employed by Février (2000) because it makes it possible to control the
properties of the generated turbulence as well as the study of two-way coupling.

In this work, it is chosen to use the stochastic approach (Eswaran & Pope, 1988). It consists in
adding a random force â = â (κ, t) in the equation of momentum (2.10) in the Fourier space.
This force is applied on all the nodes of the Fourier space that are found inside a spherical
shell of internal radius κFmin and of external radius κFmax, where κFmin is the smallest simulated
wavenumber which corresponds to the size of the domain κFmin. Taking into account turbulent
forcing, the mass and momentum equation of the fluid are written in spectral space as

κiûf,i = 0 (2.13)
∂ûf,i
∂t

+
[
δij −

κiκj
κ2

]
N̂j = −νfκ2ûf,i + âi (2.14)

where âi corresponds to the Fourier transform of the stochastic force. To calculate the
components of the stochastic force, Eswaran & Pope (1988) use the stochastic procedure
Uhlenbeck-Ornstein that implies the construction of a random complex vector b̂ (κ, t)

R
(
b̂i
)

(t+ ∆t) =
(

1 + ∆t
TF

)
R
(
b̂i
)

+ ξ

√
2σ2

F∆t
TF

I
(
b̂i
)

(t+ ∆t) =
(

1 + ∆t
TF

)
I
(
b̂i
)

+ ξ

√
2σ2

F∆t
TF
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where R is the real part, I is the imaginary part, ξ is a random Gaussian variable, TF is
the time scale and σ2

F the variance of turbulent forcing. The stochastic procedure Uhlenbeck-
Ornstein entails the following properties for the vector field b̂.

〈b̂ (κ, t)〉 = 0 (2.15)
〈b̂i (κ, t) .b̂∗j (κ, t+ τ)〉

2σ2
F

= exp
(
− τ

TF

)
(2.16)

where the asterisk signifies the complex conjugate. Lastly, the stochastic force â (κ, t) is
constructed via random complex vector b̂ (κ, t) in order to satisfy the mass conservation in
the spectral space Eq. (2.13)

â (κ, t) = b̂ (κ, t)− b̂ (κ, t) .κ
κ.κ

κ . (2.17)

Finally, â is applied on a given range of wavenumbers [κFmin, κFmax] according to the following
transfer function by Overholt & Pope (1998) in order to add a level of filtering on the Fourier
space in order to obtain a more "regular" spectrum of turbulence.

f
(
κ, κFmax, ζ

)
= tanh

(
κFmax − κ
ζκFmax

)
H (κmax − κ)

where H is the Heaviside function and ζ = 0.2.
The aforementioned turbulence forcing scheme has three degrees of freedom: the range of

forced wavenumbers [κFmin, κFmax], the amplitude of the forcing σ2
F and the characteristic time

of the forcing TF . Therefore, the characteristics of the simulated turbulence depend on the
calibration of these three degrees of freedom of the forcing. However it is not easy to give a
physical criterion to evaluate the parametrization of turbulent forcing. Février (2000) proposes
as a parameter the ratio of Eulerian integral time scale of the fluid on the eddy turn-over time,
τE/Te. The latter is defined as

Te = Lf
u′f

(2.18)

where Lf is the Eulerian longitudinal integral length scale (see Eq. (2.32)) and u′f is the
characteristic turbulent velocity, determined as a function of the kinetic energy of the fluid
(see Eq. (2.29)). Since Lf depends on the range of forced wavenumbers [κFmin, κFmax], u′f on
the forcing variance σ2

F and τE on the forcing time scale TF , then it seems that ratio τE/Te
is significant for turbulent forcing. Février (2000) suggests τE/Te = 1 corresponding to a
turbulence where large scales move at velocity u′f (Taylor hypothesis). In the same work, an
extensive study of the influence of each of these parameters was carried out, leading to the
following conclusions:

i. The forcing wavenumber range [κFmin, κFmax] acts directly on the size of large vortices. The
comparison of spectra from two DNS whose forced wavenumber ranges are [0, 2

√
2κ0]

(where κ0 = 2π/L is the smallest resolved wavenumber for domain of length L) and
[2κ0, 6κ0], shows that small structures are not changed by this parameter. On the other
hand, the large flow structures are greatly modified by the addition of energy due to
forcing. Additionally, turbulence forcing carried out on [0, 2

√
2κ0] generates vortices of

size comparable to the dimension of the domain, which is not desirable. According to
the recommendations of Février (2000), for all of the conducted simulations, the range of
forced wavenumbers is [2κ0, 6κ0], which allows to have integral length scales about ten
times smaller than the size of the domain.
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ii. The variance of the forcing scheme σ2
F makes it possible to control the quantity of energy

injected and consequently the turbulent energy of the fluid.

iii. On one hand, the characteristic time scale of forcing TF acts directly on the Eulerian
integral time scale of the fluid τE . On the other hand, it has no significant effect on the
eddy turn-over time Te, nor on the Lagrangian integral time scale of the fluid τ tf . Lastly,
this study also shows that TF must be equal to Te.

All of the conducted numerical simulations have been configured to meet these criteria as
seen in Subsect. 2.2.2. This type of stochastic turbulence forcing has been used for numerous
studies (Boivin, 1996, Eswaran & Pope, 1988, Février, 2000, Sundaram & Collins, 1997, Yeung
& Pope, 1989). It should be noted here, in particular, that Eswaran & Pope (1988) have
shown that the small scales of turbulence are weakly "polluted" by forcing.

2.1.2 Particle tracking in a turbulent velocity field
The particles are considered as mono-disperse, spherical with diameter dp � ηK and inertial,
with density ρp � ρf . From a numerical point of view, particles are considered, under the
point-particle approximation, as dimensionless points of concentrated mass mp = ρpdp

3/6 that
corresponds to the mass of a sphere of diameter dp and density ρp.

The first studies on the hydrodynamic drag force exerted on a spherical solid particle that
is transported by a fluid flow were realised by Basset (1888), Boussinesq (1885), Oseen (1927),
Stokes (1851) for small values of particle Reynolds number. More recently, Maxey & Riley
(1983) and Gatignol (1983) calculated the exact forces exerted on a particles suspended in a
turbulent fluid flow whose diameter is less or equal to the Kolmogorov length scale and for low
particle Reynolds numbers. Their analysis allows to write these forces as a function of the
field of undisturbed fluid velocity at the particle position uf@p

2= uf (xp, t), where xp = xp(t)
is the particle position at time t.

In the case of solid particles, for a large particle-to-fluid density ratio (ρp/ρf > 1000) and
for a particle diameter that is smaller than the Kolmogorov length scale ηK , the force acting
on the particles is only the drag Fd(xp, t) and the gravitational force Fg(t), as demonstrated
by Desjonqueres et al. (1986) and later by Elghobashi & Truesdell (1993). Lastly, if the
particles are charged, then electrostatic force Fe(xp, t) is also considered, thus particle motion
is governed by the following equations of motion

dxp
dt

= up (2.19)

mp
dup
dt

= Fp (2.20)

where Fp(xp, t) = Fd + Fg + Fe is the total force exerted on a particle at position xp and time
t, while up = up (t) is the particle velocity at time t. The gravitational force Fg is defined as

Fg = −mpgk̂

where g is the gravitational constant and k̂ is the unitary vector of z-axis. In Eq. (2.20), the
fluid-particle drag force is calculated by

Fd = −up − uf@p
τp

mp (2.21)

2Symbol @ reads "at", thus uf@p signifies "fluid velocity at particle position"
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where τp is the non-linear particle relaxation time given by Schiller & Naumann (1935)

τp = ρpdp
2

18µf
1

1 + 0.15Rep0.687 (2.22)

where µf = ρfνf is the fluid dynamic viscosity and Rep the particle Reynolds number defined
as

Rep = dp
‖up − uf@p‖

νf
(2.23)

The definition of the total electrostatic force Fe exerted on a particle is given in Subsect. 4.1.2.

Undisturbed fluid velocity at particle position

Since the fluid velocity uf is computed over an Eulerian grid and the particle trajectories are
Lagrangian, one has to employ a Lagrange polynomial interpolation scheme to get the fluid
velocity at the particle position uf@p.

The Lagrange polynomial interpolation is performed by calculating a polynomial P (x) of
degree n ≤ N − 1 that passes through N points (xi, yi = f(xi)) , i = 1, 2, . . . , N .

P (x) =
N∑

i=1
f(xi)pi(x) with pi(x) =

N−1∏

j=1
j 6=i

x− xj
xi − xj

. (2.24)

In GASPART solver, the Eulerian grid is uniform so the interpolation scheme is based on the
relative distance to the first node which is defined as

α = x− x1
x2 − x1

= x− x1
∆x .

The base polynomials for increasing order of accuracy n are presented in Table 2.1. Detailed
calculations are found in Sect. A.2 of Appendices.

Table 2.1: Lagrange polynomials

pi 1st-order 2nd-order 3rd-order 4th-order
p1 1− α 1

2 (α− 1) (α− 2) −1
6 (α− 1) (α− 2) (α− 3) 1

24 (α− 1) (α− 2) (α− 3) (α− 4)
p2 α −α (α− 2) 1

2α (α− 2) (α− 3) −1
6α (α− 2) (α− 3) (α− 4)

p3
1
2α (α− 1) −1

2α (α− 1) (α− 3) 1
4α (α− 1) (α− 3) (α− 4)

p4
1
6α (α− 1) (α− 2) −1

6α (α− 1) (α− 2) (α− 4)
p5

1
24α (α− 1) (α− 2) (α− 3)

2.1.3 Time-integration and numerical schemes
Fluid and particle velocities are both time-advanced using an Adams-Bashforth 2nd order
scheme Eq. (A.1) coupled with an integrating factor (as shown in Sect. A.1). Basically it
means that for the fluid the viscous term is directly integrated before the discretization and
for the particle it is the dissipative part of the drag force.

Numerical solver GASPART is fully parallelized for both the fluid and the particles. For
the DNS, the Fast Fourier Transform (FFT) is performed by library P3DFFT (Pekurovsky,
2012). For the particle phase, with the help of Annaïg Pedrono from COSINUS, the particles
are distributed over the processors and at the end of each time-step the latter exchange the
particles crossing the CPU borders.
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2.2 Configuration of non-settling charge-free reference case
In this section, the configuration of the reference case study is presented. It consists of a
non-settling, charge-free particle-laden stationary HIT flow, where gravity and electrostatic
forces are neglected, hence Fg = Fe = 0. Electrostatic forces are taken into account in Chapter
4 and 5.

2.2.1 Statistically steady homogeneous isotropic turbulence
In order to simulate stationary homogeneous isotropic turbulence, one needs not only to
successfully calibrate turbulent forcing (3 degrees of freedom presented at Subsect. 2.1.1)
but also to ensure that the simulated turbulence is adequately resolved. In Fig. 2.1 the
algorithm for the successful calibration of forced turbulence is presented. At first, a preliminary
grid resolution Nx = Ny = Nz = N is chosen for a cubic computational domain of length
Lx = Ly = Lz = L that results in a space discretization ∆x = L/N . A time-step ∆t is
also chosen based on empirical knowledge. Furthermore, two degrees of freedom of forcing:
variance σ2

F and time scale TF are arbitrarily initialized, while [κFmin, κFmax] = [2κ0, 6κ0] as
explained in Subsect. 2.1.1. Having set those, a first simulation of turbulence is performed
and the Kolmogorov length scale ηK and turbulent Reynolds number ReLf are estimated from
equations Eq. (2.33) and .Eq. (2.34), respectively.

Then, the spatial resolution of the simulated turbulence is evaluated by checking if
ηK ≥ χ∆x, where χ ∈ N∗ is the desired number of grid points within ηK . If the simulated
turbulence is not well resolved, then σ2

F is decreased so as to lower turbulent intensity and the
simulation is re-launched. Otherwise, the eddy turn-over time Te is estimated from Eq. (2.18)
and is compared to that of TF and if Te � TF then TF is taken equal to Te to ensure that
RE ' e

− τ
τE according to Février (2000) and the simulation is re-launched. Otherwise τE is

calculated and its value is compared to that of Te in order to check if the Taylor hypothesis is
satisfied. If not, the value of TF is adjusted according to the following rule: if τE < Te then
TF is increased and if τE > Te then TF is decreased, and the simulation is re-launched.

Lastly, if all the above criteria are met, the spatial resolution of the simulated turbulence is
checked one last time via condition ηKκFmax ≥ χπ where κFmax = π/∆x is the largest simulated
wavenumber. If it is not the case, the spatial resolution has to be increased and re-launch the
simulation. Finally, the time-step is re-calibrated according to Pope’s criterion

∆t ≤ 1
20

∆x√
q2
f

. (2.25)

2.2.2 Turbulence of reference
In the Direct Numerical Simulations of this work, the computational domain has length L = 2π
and is discretized in N = 256 grid points. The turbulent Reynolds number ReLf is about
100 and according to ηKκFmax = 2.92 the small turbulent scales are well resolved. To satisfy
Pope’s criterion (see Eq. (2.25)) for this turbulent Reynolds number, the time-step has to be
∆t ≤ 6.9 × 10−3s. Figure 2.2 shows the turbulent energy spectrum for the aforementioned
configuration, where the achieved spatial resolution is observed. The random nature of the
physical quantities and the extent of the characteristic scales representing turbulent flows,
create the need for a statistical analysis of the data of the numerical experiments conducted in
this work. This analysis includes one-point statistical moments (average, standard deviation,
moment of order three, ...), two-point statistics (spatial and temporal velocity correlations). A
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Lx = Ly = Lz = L
Nx = Ny = Nz = N

∆t

[2κ0, 6κ0], σF , TF

simulation

ηK , ReLf

ηK
∆x ≥ χ

Te = Lf/u
′
f

TF ≈ Te

τE

T ′F ↗↘

T ′F = Te

σ′F < σF

N ′ > N

τE ∼ Te

ηKκ
F
max ≥ χπ

∆t ≤ 1
20∆x/

√
q2
f

moderate
resolution

cell size
∆x = L

N

HIT forcing
smallest

wavenumber
κ0 = 2π

L

χ number of
points in ηK

no

noRE ' e
− τ
τE

noTaylor
hypothesis

T ′F > TF if τE < Te
T ′F < TF if τE > Te

no
κFmax = π

∆x
ηK
∆x ≥ χ ⇒

ηKκ
F
max ≥ χπ

Pope’s
criterion

Figure 2.1: Flowchart for the calibration of resolved stationary HIT. Green color denotes
a choice/modification for the value of the corresponding variable, red denotes checking the
satisfaction of a criterion, black denotes the calculation of a statistic variable and blue the
simulation of turbulence.
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Figure 2.2: Turbulent energy spectrum for ReLf ' 100.

stochastic random variable q = q (x, t) can be decomposed into an average value 〈q〉 (x, t) and
a fluctuating value q′ (x, t) as

q (x, t) = 〈q〉 (x, t) + q′ (x, t) with 〈q′〉 = 0 .

The average operator 〈 . 〉 is defined as the arithmetic mean over a large number of independent
realizations Nf&p of the observed phenomenon, namely the two-phase flow as

〈 . 〉 = lim
Nf&p→∞


 1
Nf&p

∑

Nf&p

( . )


 (2.26)

and it verifies the Reynolds axioms:

• linearity: 〈αq + βr〉 = α〈q〉+ β〈r〉

• idempotence: 〈〈r〉q〉 = 〈q〉〈r〉

• commutativity with the derivation and integration operators

where q, r are stochastic variables and α, β are constants.
In this work, the statistical quantities are obtained by averaging in the directions of

homogeneity of space and stationarity of time, which are equivalent to the ensemble average of
Eq. (2.26) due to the ergodicity hypothesis of the stationary isotropic homogeneous turbulence.
Considering time averages, the accuracy of the statistics is conditioned by the averaging
duration with regard to the characteristic correlation time scales of the signal. In turbulence,
the largest time scale of the turbulent velocity field is of the order of the Eulerian integral
time scale τE . In principle, a statistical treatment over a duration of the order of 10τE
ensures a good precision of the statistic moments of order one. Similarly, convergence of the
statistical moments of order one, averaged over space, is obtained when the dimension of the
computational domain L is approximately of the order of 10Lf .

Fluid agitation q2
f is defined as the average of kinetic energy per unit mass

q2
f = 1

2〈u
′
f,iu
′
f,i〉f (2.27)
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where uf = uf (x, t) is the fluid velocity at position x and time t, while 〈 . 〉f denotes an
Eulerian average on the grid of the fluid phase defined as

〈 . 〉f = 1
V

∫

V
( . )dV .

Figure 2.3 shows the time evolution of fluid agitation, where two regimes can be observed:
an initial transient phase where q2

f increases until it reaches a stationary state where it is
statistically steady. When the fluid field reaches a stationary (statistically steady) state, the

0 2 4 6 8
τ {τ tf

0.000

0.005

0.010

0.015

0.020

0.025

0.030

q2 f

Figure 2.3: Fluid agitation with regard to normalized time. After an initial transient phase,
fluid agitation reaches a stationary regime.

level of viscous dissipation adjusts to that of turbulent energy production from forcing. In
stationary isotropic homogeneous turbulent, the equation for turbulent kinetic energy is written
as follows

d

dt
q2
f = P − εf (2.28)

where εf is the rate of turbulent dissipation defined as

εf = 1
2

〈(
∂uf,i
∂xj

+ ∂uf,j
∂xi

)2〉

f

and P is the rate of turbulence production imposed from forcing and can be measured simply
as P = dq2

f/dt+ εf . The evolution of the three terms of Eq. (2.28) are shown in Fig. 2.4 where
the stationary regime is observed.

Stationary regime

For the stationary regime, dq2
f/dt ∼ 0, hence in addition to spatial averaging (allowed by

homogeneity) one can perform time averaging (allowed by stationarity), therefore 〈 . 〉f operator
takes the form of a temporal average that due to the ergodicity property of HIT provides
higher statistical convergence

〈 . 〉f = 1
T

∫ 1
V

∫

V
( . )dV dt .
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Figure 2.4: Terms of Eq. (2.28). In the stationary state P ∼ εf and dq2
f/dt ∼ 0.

The characteristic turbulent velocity u′f , which is a measure of the mean velocity of eddy
translation in the flow, can be estimated from fluid agitation q2

f as

u′f =
√

2
3q

2
f . (2.29)

The Eulerian time autocorrelation function of the fluid velocity, RE is calculated in fixed
points randomly distributed in the domain at positions x as

RE(τ) =
〈u′f,i (x, t)u′f,i (x, t+ τ)〉

2q2
f (t)

which allows to calculate the Eulerian integral time scale of the fluid, τE as

τE =
∫ ∞

0
RE(τ)dτ . (2.30)

The autocorrelation time function RE can be seen in Fig. 2.5. In addition, the Lagrangian
autocorrelation function of the fluid velocity, Rf (τ) is calculated along the trajectories of fluid
elements xf (t) as

Rf (τ) =
〈u′f,i (xf (t), t)u′f,i (xf (t+ τ), t+ τ)〉

2q2
f (t)

which allows to calculate the Lagrangian fluid integral time scale, τ tf as

τ tf =
∫ ∞

0
Rf (τ)dτ . (2.31)

One of the ways to calculate the Eulerian longitudinal integral length scale Lf is from the
tri-dimensional turbulent energy spectrum E(κ) as

Lf = π

2u′f

∫ κFmax

κ0
κ−1E(κ)dκ (2.32)
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Figure 2.5: Autocorrelation functions of fluid velocity "seen" by motionless particles. Inte-
gration gives the Eulerian fluid integral time-scale τE.

where E(κ) can be obtained by the Fourier transform of the instantaneous fluid velocity field
defined as

E(κ) = 1
2

∑

|κ−κ0
2 |≤|κ̃|≤|κ+ κ0

2 |
ûf,i(κ̃)û∗f,i(κ̃)

where û∗f,i is the complex conjugate of ûf,i. The advantage of using E(κ) is that it is readily
available due to the spectral method used for the resolution of the Navier-Stokes equations
(presented in Subsect. 2.1.1). Based on the Eulerian longitudinal integral length scale Lf ,
Reynolds number ReLf can be defined as

ReLf =
Lfu

′
f

νf
. (2.33)

and in analogy one can define Reynolds number Reλ based on the turbulent Taylor length scale.
It should be noted here, that turbulent energy dissipates to heat at the smallest turbulent
structures that are found in the flow. These characteristic scales, namely the Kolmogorov
length scale ηK , the Kolmogorov time scale τK and the Kolmogorov velocity scale υK can
be estimated via relations that can be deduced by dimensional analysis which leads to the
following relations

ηK =
(
ν3
f

εf

) 1
4

(2.34)

τK =
(
νf
εf

) 1
2

(2.35)

υK = (νf εf )
1
4 . (2.36)

The fluid material properties and main turbulence statistics presented in this subsection are
gathered in Table 2.2.
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Table 2.2: Properties of the fluid and of the examined HIT

Parameters Symbol Value Units
Time-step ∆t 5× 10−3 s
Resolution ηKκ

F
max 2.95 -

Fluid kinematic viscosity νf 1× 10−3 m2/s
Fluid density ρf 1.0 kg/m3

Fluid kinetic energy q2
f 3.29× 10−2 m2/s2

Characteristic turbulent velocity u′f 1.55× 10−1 m/s

Turbulent Reynolds number ReLf 92.51 -
Taylor Reynolds number Reλ 42.86 -
Computational domain length L 2π m
Fluid longitudinal integral length scale Lf/L 0.99× 10−1 -
Kolmogorov length scale ηK/L 3.67× 10−3 -
Eddy turn-over time Te 4.21 s
Eulerian fluid integral time scale τE/Te 1.00 -
Lagrangian fluid integral time scale τ tf/Te 7.53× 10−1 -
Kolmogorov time scale τK/Te 1.26× 10−1 -

2.2.3 Stochastic models of fluid acceleration

Langevin (single exponential) model

The simplest stochastic Lagrangian equation on fluid acceleration in HIT is based on a Langevin
equation and presented by Pope (2002b) is

δu′f,i = −Du′f,iδt+BδWi (2.37)

where δu′f (t) = u′f (t+ δt)− u′f (t) is the infinitesimal increment of the fluctuating component
of fluid velocity which is given directly by

δu′f,i = a′f,iδt

and δW(t) is the infinitesimal increment of a vector-valued Wiener process which has the
properties 〈δW〉 = 0 and 〈δWiWj〉 = δtδij . We can directly deduce the equations both on the
variance of fluid velocity 〈u′f 2〉f = 〈u′f,iu′f,i〉f/3 and of fluid acceleration 〈a′f 2〉f = 〈a′f,ia′f,i〉f/3,
but also of the velocity-acceleration correlation 〈u′fa′f 〉f = 〈u′f,ia′f,i〉f/3. More specifically, one
can write the transport equations of these three terms as

∂〈u′f 2〉f
∂t

= 2〈u′fa′f 〉f
∂〈a′f 2〉f
∂t

= −2D〈u′f
2〉f +B2

∂〈u′fa′f 〉f
∂t

= 〈a′f
2〉f −D〈u′f

2〉f .

To better understand term 〈u′fa′f 〉f , one can develop it using Eq. (2.2) for af,i as

af,i = −uf,j
∂uf,i
∂xj

− 1
ρf

∂p

∂xi
+ νf

∂2uf,i
∂xj∂xj

. (2.38)
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Then under the homogeneity and incompressibility hypothesis, this is written as

〈u′fa′f 〉f = −νf 〈
∂uf,i
∂xj

∂uf,i
∂xj
〉f (2.39)

so it is clear that, in homogeneous and incompressible flow, term 〈u′fa′f 〉f represents turbulence
dissipation. In stationary homogeneous isotropic turbulence, we can show from the above
equations of the moments that the variance of velocity 〈u′f 2〉f and of acceleration 〈a′f 2〉f are
written according to the coefficients of the model in the form

〈u′fa′f 〉f = 0

〈u′f
2〉f = B2

2D
〈a′f 2〉f
〈u′f 2〉f

= D.

We can also show (Pope, 2002b) that the Lagrangian integral scale is given by the relation

τ tf = 1
D
.

So, we can draw from these relations the following equations for the model coefficients D and
B:

D =
〈a′f 2〉f
〈u′f 2〉f

B2 = 2
〈u′f 2〉f
τ tf

.

The Lagrangian autocorrelation function can be deduced from Eq. (2.37) as an exponential
function,

Rf (τ) = exp
(
− τ

τ tf

)

where the Lagrangian integral time scale τ tf can be written as

τ tf =
〈u′f 2〉f
〈a′f 2〉f

.

Double exponential model

First Sawford (1991) and later Pope (1994, 2002a) expanded the stochastic Langevin model
on fluid acceleration in HIT to the following form

δu′f,i = −Ca′f,iδt−Du′f,iδt+BδWi (2.40)

Using Eq. (2.40) one can write the transport equations of the three terms 〈u′f 2〉f , 〈a′f 2〉f and
〈u′fa′f 〉f as

∂〈u′f 2〉f
∂t

= 2〈u′fa′f 〉f
∂〈a′f 2〉f
∂t

= −2C〈a′f
2〉f − 2D〈u′fa′f 〉f +B2

∂〈u′fa′f 〉f
∂t

= 〈a′f
2〉f − C〈u′fa′f 〉f −D〈u′f

2〉f .
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In stationary homogeneous isotropic turbulence, we can show from the above equations that
the variance of velocity 〈u′f 2〉f , of acceleration 〈a′f 2〉f are written according to the coefficients
of the model in the form

〈u′fa′f 〉f = 0

〈a′f
2〉f = B2

2C

〈u′f
2〉f = B2

2CD .

We can also show (Pope, 2002b) that the Lagrangian integral scale is given by the relation

τ tf = C

D
.

So we can draw from these relations the following equations for the model coefficients D,C
and B

D =
〈a′f 2〉f
〈u′f 2〉f

C = τ tf
〈a′f 2〉f
〈u′f 2〉f

B2 = 2τ tf

[
〈a′f 2〉f

]2

〈u′f 2〉f
.

The Lagrangian autocorrelation function can be written using a double exponential function as

Rf (τ) =
exp

(
− τ
τ∞

)
− τ0

τ∞
exp

(
− τ
τ∞

)

1− τ0
τ∞

with

τ∞ = 1
2τ

t
f


1 +


1− 4τaτε

τ tf
2




1/2



τ0 = 1
2τ

t
f


1−


1− 4τaτε

τ tf
2




1/2



where τε is the characteristic time scale of turbulent energy dissipation defined as

τε = 3
2
〈u′f 2〉f
εf

(2.41)

and τa the characteristic time scale of turbulent fluid acceleration time scale which is determined
as

τa = 1
τε

〈u′f 2〉f
〈a′f 2〉f

.
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The characteristic times which appear in the integrals can be written as

τ tf = τ∞ + τ0

and
τa = τ∞τ0

τε
.

By definition of characteristic times, the coefficients of the stochastic model can be written
under the following form

D = 1
τετa

= 1
τ∞τ0

C =
τ tf
τετa

= τ∞ + τ0
τ∞τ0

= 1
τ∞

+ 1
τ0

B2 = 2〈u′f
2〉f

τ tf

[τaτε]2
=

2〈u′f 2〉f
τ∞τ0

[ 1
τ∞

+ 1
τ0

]
.

In practice, it is evident that we need to determine a characteristic time scale of the fluid, τ tf
and the product of two characteristic time scales τaτε. These two coefficients of the model
can be estimated directly from the autocorrelation function of the fluid measured along fluid
element trajectories. To calculate τ tf , we can use Eq.(2.31), while for τaτε the following relation
can be used:

τaτε = −
[

lim
τ→0

(
d2

dτ2Rf (τ)
)]−1

supposing that the short-term response of the autocorrelation function can be represented by
the oscillator function

lim
τ→0

Rf = lim
τ→0

(
1− 1

2
τ2

τaτε

)
.

Figure 2.6 shows the Eulerian and Lagrangian autocorrelation functions of fluid velocity and
the respective fluid time scales.
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Figure 2.6: Autocorrelation functions of fluid velocity "seen" by fluid elements. Integration
gives the Lagrangian fluid integral time-scale τ tf . A good agreement with the exponential
models is observed. The red dotted line denotes the oscillator function.
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Table 2.3 shows that the two models give estimations for τaτε, τ0 and τ∞ of the same order of
magnitude

Table 2.3: Fluid characteristic time scales for different models

model τaτε τ0 τ∞ τ tf

DNS - - -
3.18f

(
〈u′f 2〉f , 〈a′f 2〉f

)
2.05 0.899 2.28

lim
τ→0

Rf (τ) 1.57 - -

Subsequently, the Lagrangian stochastic equation of fluid acceleration can be put in the explicit
form

δa′f,i = −
[ 1
τ∞

+ 1
τ0

]
a′f,iδt−

1
τ∞τ0

u′f,iδt+

√√√√2〈u′f 2〉f
τ∞τ0

[ 1
τ∞

+ 1
τ0

]
δWi .

We can notice that when τ tf/τa � 1 we have in the first order approximation that τ0 → τετa/τ
t
f ,

which corresponds to the form of the model initially proposed by Sawford (1991). To close the
model, we find in the literature empirical forms of the variance of acceleration normalized by
the Kolmogorov scales as a function of the turbulent Reynolds number based on the Taylor
scale (see for example Zaichik et al. (2003)),

a0 =
〈a′f 2〉fτK

εf
= a1 + a0,∞Reλ

a2 +Reλ
, Reλ =

√√√√15〈u′f 2〉f
νf εf

with a1 = 11, a2 = 205 and a0,∞ = 7 where τK is the Kolmogorov time scale defined in
Eq. (2.35). Indeed, for any case of any stationary THI, if we know q2

f = 3〈u′f 2〉f/2, εf , νf and
τ tf , by using a correlation for the acceleration of the turbulence, the coefficients of the model
can be calculated.

2.2.4 Particle material properties
Numerical simulations have been performed with Np = 10, 000 particles in the computational
domain. The convergence of statistical moments is discussed at the end of Subsec. 2.2.5. In
order to characterize the particle density in such a flow, one can define the particle number
density np as the number of particles per unit volume

np = Np

L3 .

However, information on the volume occupied by the particles would be more insightful, thus
the solid volume fraction αp is defined as the total particle volume to the domain volume

αp = npdp
3

6 .

For the simulations presented here, αp = 2.64× 10−6 which is a level of solid volume fraction
that corresponds to a dilute particle phase, allowing for particle collisions and two-way coupling
to be neglected. Thus, the fluid velocity seen by the particles, uf@p, is computed by 3rd
order polynomial interpolation (see Subsect. 2.1.2) of the fluid velocity field. In addition, all
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particles have been considered of the same diameter so that ηK/dp = 4.56 but they differ by
density. Gravity and electrostatic forces are neglected for the case study presented in this
chapter, since we are interested on the effects of turbulence on particle motion.

In Table 2.4, particle density and two Stokes numbers are presented: a Stokes number
based on the Stokes drag and the Kolmogorov time scale, τStp /τK and a Stokes number based
on the particle relaxation time and the Lagrangian fluid integral time scale, τFfp/τ tf . The Stokes
particle time scale τStp is defined as

τStp =
ρpd

2
p

18µf
.

In addition, as we consider non-linear drag force (see Eq. (2.21)), the particle relaxation time
scale τFfp is introduced as

τFfp =
[
〈 1
τp
〉p
]−1

(2.42)

where 〈 . 〉p denotes a Lagrangian average on the particle phase defined as the arithmetic mean
on all the particles in the computational domain

〈 . 〉p = 1
Np

Np∑

n=1
( . )(n) .

Table 2.4: Material properties of particles

class ρp/ρf τStp /τK τFfp/τ
t
f

1 20, 000 53.8 7.57
2 10, 000 26.9 3.81
3 5, 000 13.4 1.92
4 2, 750 7.39 1.07
5 1, 500 4.03 0.594
6 750 2.02 0.303
7 400 1.08 0.165
8 200 0.538 0.0839

An essential quantity for the statistical description of turbulent particle-laden gas flows,
is the particle agitation q2

p defined as

q2
p = 1

2〈u
′
p,iu
′
p,i〉p (2.43)

which is a measure of the kinetic energy of the system of particles. Another important statistical
quantity is the fluid agitation "seen" at the positions of the particles q2

f@p defined as

q2
f@p = 1

2〈u
′
f@p,iu

′
f@p,i〉p (2.44)

which is a measure of the kinetic energy of the fluid seen by the particles. Lastly, to quantify
fluid-particle velocity correlation, one can calculate fluid-particle velocity covariance qfp as

qfp = 〈u′f@p,iu
′
p,i〉p . (2.45)
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Figure 2.7 illustrates the evolution of particle agitation with regard to time normalized by the
particle relaxation time τFfp (see Eq. (2.42)). It is evident that the gas-particle flow achieves
a stationary regime after several multiples of the particle relaxation time. Lighter particles
achieve this stationary regime later in terms of τFfp.
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Figure 2.7: Evolution of particle agitation for various Stokes numbers in the transient
regime. Stationarity is reached for every Stokes number after several multiples of τFfp.

Stationary regime

For the stationary regime, dq2
p/dt ∼ 0, hence in addition to spatial averaging (allowed by

homogeneity) one can perform time averaging (allowed by stationarity), therefore 〈 . 〉p operator
takes the following form

〈 . 〉p = 1
T

∫ 1
Np

Np∑

n=1
( . )(n)dt . (2.46)

In Fig. 2.8, it is shown particles with moderate inertia "see" a fluid agitation q2
f@p slightly

smaller than the actual value of fluid agitation q2
f . This is due to the phenomenon of preferential

concentration Fessler et al. (1994), Squires & Eaton (1991) as particles of moderate inertia
get trapped in regions of low vorticity and therefore "see" in average slightly lower levels of
fluid agitation. However, heavy particles tend to present the behavior of motionless observers,
while lighter particles "see" a fluid agitation slightly larger than the actual value. This happens
because lighter particles stay longer in certain zones of the turbulent flow that are more
energetic in average. In fact it would be very surprising to have this equality q2

f@p = q2
f

whereas the distribution of the particles is correlated with turbulent vorticity ω′f = ∇× u′f .
This is possible because u′f and ω′f are not very correlated in turbulence (especially at large
Reynolds).

2.2.5 Fluid and particle characteristic time scales
One statistic quantity that allows to acquire a better understanding of the turbulent gas-particle
flow, is the autocorrelation function of fluid and particle velocities. These functions enable
a qualitative analysis of the decorrelation of the aforementioned velocities in the turbulent
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Figure 2.8: Fluid agitation seen by the particles q2
f@p with regard to particle inertia.

flow (via their shapes), as well as a quantification of the rate of such a decorrelation (via their
integrals). The autocorrelation function of the fluid velocity measured at the position of the
particles, Rf@p(τ) is defined as

Rf@p(τ) =
〈u′f@p,i (xp(t), t)u′f@p,i (xp(t+ τ), t+ τ)〉p

2q2
f@p(t)

. (2.47)

The Lagrangian integral time scale of the fluid "seen" by the inertial particles, τ tf@p is defined
by

τ tf@p =
∫ ∞

0
Rf@p(τ)dτ . (2.48)

When motionless particles are considered, Eq. (2.47) & (2.48) allow to compute the Eulerian
time scale, τE and for fluid elements the Lagrangian fluid integral time scale, τ tf (see Fig. 2.6).
Using τ tf@p, one can define another particle Stokes number as τFfp/τ tf@p. In correspondence
with Eq. (2.47), one can define the Lagrangian autocorrelation function of particle velocity,
Rp(τ) as

Rp(τ) =
〈u′p,i(t)u′p,i(t+ τ)〉p

2q2
p(t)

.

The Lagrangian particle integral time scale, τ tp is defined by

τ tp =
∫ ∞

0
Rp(τ)dτ . (2.49)

The values of these characteristic time scales, for the particle classes used in the numerical
simulations of this work, are found in Table 2.5.
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Table 2.5: Characteristic time scales τ tf@p and τ tp and particle Reynolds number Rep

class τFfp/τ
t
f@p τ tp/τ

t
f Rep

1 6.39 8.36 1.09
2 3.49 4.64 1.02
3 1.82 2.82 0.909
4 0.969 2.09 0.777
5 0.502 1.71 0.616
6 0.245 1.46 0.429
7 0.134 1.31 0.282
8 0.0733 1.17 0.163

To achieve statistical convergence, statistical moments have been calculated over a
sufficiently long duration which is calculated as a multiple of the maximum characteristic
time scales of all the physical mechanisms involved, Tstat ≥ 5 × max{τ tf@p, τ

F
fp}. Also all

time-dependent statistics presented in this chapter (autocorrelation functions, etc...) have
been calculated as the average of 10 realizations that have been launched consecutively after a
sufficient time offset. Figure 2.9 shows autocorrelation functions Rf@p and Rp for various Stokes
numbers. It seems that inertia does not change considerably the shape of the autocorrelation
functions. However, that is not true for their integral which represents the Lagrangian integral
time scale of the fluid from the point of view of the particles, τ tf@p.
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Figure 2.9: Autocorrelation function Rf@p of fluid velocity "seen" at the particle positions
(left) and Rp of particle velocity (right) with regard to time normalized by corresponding
integral time scale for various Stokes numbers in the charge-free case.

Figure 2.10 illustrates the effect of particle inertia on τ tf@p. In fact, at the limit of very
heavy particles τFfp →∞, particles tend to behave as randomly distributed observers completely
decorrelated from the turbulent fluid flow, hence τ tf@p → τE . Inversely, at the limit of very light
particles τFfp → 0, particles tend to behave as fluid elements, hence τ tf@p → τ tf . This behavior
is captured by the semi-empirical model of Wang & Stock (1993) presented in Eq. (2.50), which
is plotted in Fig. 2.10 for comparison.

τ tf@p
τE

= 1−
(

1−
τ tf
τE

)
×
(

1 +
τFfp
τE

)−0.4
(

1+0.01
τF
fp
τE

)

. (2.50)
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For the range of Stokes numbers examined in this work, decreasing particle inertia leads to a
decrease of τ tf@p for heavy particles, a trend that follows the cited model. Then, particles of
moderate inertia exhibit a considerable increase that is followed by a decrease for lighter ones
towards the model’s curve. This can be explained if we consider the phenomenon of particle
preferential concentration. According to this phenomenon, particles of moderate inertia tend
to stay more in average in certain turbulent structures with longer lifetimes, thus they exhibit
this increase in the measured fluid integral time scale, τ tf@p. However, heavier particles do not
exhibit preferential concentration, hence they "see" a time scale close to the fluid Eulerian
integral time scale, τE , which is calculated via randomly distributed motionless observers (see
Eq. (2.30)). Finally, lighter particles do not also exhibit preferential concentration, hence they
"see" a time scale close to the fluid Lagrangian integral time scale, τ tf , which is calculated along
the trajectories of fluid elements (see Eq. (2.31)).
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Figure 2.10: Sensitivity of Lagrangian integral time scale of the fluid from the point of view
of the particles with regard to particle response time. Semi-empirical model of Wang & Stock
(1993) (see Eq. (2.50)) is also plotted for comparison.

2.3 Conclusion

To simulate a stationary homogeneous isotropic turbulence, which is the aim of this work,
one has to sustain the same level of turbulent kinetic energy of the fluid. In order to do that,
a turbulence forcing scheme needs to be deployed to counter balance turbulent dissipation.
Furthermore, when particles are transported by a turbulent fluid flow, one needs to carefully
consider the involved length scales. If the charged inertial particles are smaller than the
Kolmogorov length scale, they interact with rather large turbulent structures and the point-
particle approximation can be used. This along with the fact that the particles are considered
considerably more dense than the fluid, allows for a simplification of the forces exerted on
them: the hydrodynamic drag, the gravity force and the electrostatic forces. Finally, several
statistics have to be deployed that allow for the calculation of characteristic scales that are of
paramount importance in the understanding of the dynamics of such gas-particle flows.
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3
Dispersion of charge-free inertial

particles in stationary HIT

“πάντοτε ζητεῖν τὴν ἀλήθειαν1”
- Diogenes the Cynic, c. 404 – c. 323 BC

Abstract
This chapter deals with the investigation of the dispersion of non-settling charge-free particles in
stationary homogeneous isotropic turbulence by means of statistical analysis of the performed DNS.
First, the spectral analysis of turbulent gas-particle flows is presented that leads to the formulation of
Tchen-Hinze theory, a theoretical framework that allows for a prediction of particle agitation based
on fluid agitation and characteristic fluid/particle time scales, as well as a theoretical approach of
particle dispersion. Following, the detailed analysis of the transport equations of particle agitation
and fluid-particle covariance are used to explain the effect of particle inertia. The apparent term of
fluid acceleration - particle velocity covariance creates the need to devise a stochastic model for fluid
acceleration "seen" by the particles as an extension of the corresponding one for the fluid, presented
in Chapter 2. Finally, follows a detailed statistical analysis (one- and two-point statistics) of all the
aspects of particle dispersion that extends to the spatial distribution and relative motion of particles.

3.1 Tchen-Hinze theory for turbulent gas-particle flows
Tchen (1947) and later Hinze (1972) devised a theory to link the fluid and particle turbulent
spectra. In order to provide the fundamental elements of their theory, first one has to consider
the particle motion Eq. (2.20), which in case of non-settling charge-free particles, is written as

∂u′p,i
∂t

= −
u′p,i − u′f@p,i

τp
(3.1)

The particle velocity can be expressed in term of Fourier series as

u′p,i (t) =
∫ +∞

0
û′p,i (ω) exp

(
îωt
)
dω

where û′p,i is the Fourier transform of the particle velocity and ω = 2πf is the angular frequency.
That implies that the time-derivative of the particle velocity is given by

∂u′p,i
∂t

=
∫ +∞

0
îωû′p,i(ω) exp

(
îωt
)
dω .

Then particle equation (3.1) becomes:

îωû′p,i (ω) = −
û′p,i (ω)− û′f@p,i (ω)

τp

1Always seek the truth.

39
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that eventually gives
û′p,i (ω) = 1

1 + îωτp
û′f@p,i (ω) . (3.2)

On the other hand, the Lagrangian turbulent particle spectrum Ep(ω) can be defined as

Ep(ω) = 1
2 û
′
p,i(ω̃)û′∗p,i(ω̃)

where û′∗p,i(ω̃) is the complex conjugate of Fourier particle velocity. Following, one can write

Ep(ω) = 1
2

1[
1 + îωτp

] [
1 + îωτp

] û′f@p,i(ω̃)û′∗f@p,i(ω̃) .

So finally Ep(ω) is a function of Ef@p(ω) such that

Ep (ω) = 1
1 + ω2τp2Ef@p (ω) . (3.3)

3.1.1 Single exponential model
To begin with, the average value of the square of particle velocity is defined as

〈u′p
2〉p =

∫ +∞

0
Ep (ω) dω . (3.4)

Here 〈 〉p is rather the time average along the trajectory of a unique particle, however for
a stationary homogeneous isotropic turbulence the property of ergodicity entails that it is
equivalent with definition of Eq.(2.46). Assuming that the autocorrelation function of fluid
velocity "seen" at the positions of the particles can be modeled by the following exponential
function

Rf@p(τ) = exp
[
− τ

τ tf@p

]
(3.5)

and the Lagrangian fluid turbulent spectrum is defined by

Ep(ω) =
〈u′f@p

2〉p
2π

∫ +∞

0
Rf@p(τ)

(
−îωτ

)
dτ . (3.6)

The integration2 leads to

Ef@p(ω) = 1
π

τ tf@p

1 + ω2τ tf@p
2 〈u′f@p

2〉p .

Now the particle velocity spectrum takes the following form

Ep(ω) = 1
π

1
1 + ω2τFfp

2
τ tf@p

1 + τ tf@p
2
ω2
〈u′f@p

2〉p

and the integration of this equation leads to
∫ +∞

0
Ep (ω) dω =

τ tf@p
τ tf@p + τFfp

〈u′f@p
2〉p .
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Combining this result with Eq. (3.4) leads to the following relation:

〈u′p
2〉p =

τ tf@p
τ tf@p + τFfp

〈u′f@p
2〉p . (3.7)

Fluid-particle velocity covariance

It is possible to perform the same analysis for the fluid-particle covariance. Indeed, the
fluid-particle energy spectrum reads

Efp(ω) = 1
2
[
û′p,i(ω̃)û′∗f@p,i(ω̃) + û′

∗
p,i(ω̃)û′f@p,i(ω̃)

]
.

Then via Eq. (3.2) one can rewrite it as

Efp(ω) = 1
1 + ω2τ2

p

û′f@p,i (ω) û′∗f@p,i (ω) .

Finally, the fluid-particle covariance spectrum has the same form as Eq. (3.3). So by performing
all integrations as shown previously and knowing that

〈u′f@pu′p〉p =
∫ +∞

0
Efp (ω) dω

the following relation can be deduced

〈u′f@pu′p〉p =
τ tf@p

τ tf@p + τFfp
〈u′f@p

2〉p . (3.8)

Combining Eqs. (3.7) and (3.8) and using the definitions of Eqs. (2.43)-(2.45) allow for an
apriori prediction of particle agitation that gives

2q2
p = qfp = 2q2

f@p
τ tf@p

τ tf@p + τFfp
. (3.9)

If we apply the Tchen hypothesis for small Stokes numbers q2
f ' q2

f@p, then we can obtain the
following equation as well

2q2
p = qfp = 2q2

f

τ tf
τ tf + τFfp

. (3.10)

Equations (3.9) and (3.10) constitute a theoretical framework hereafter called Tchen-Hinze
theory (Hinze, 1972) and they are quite insightful in that they provide a prediction of
particle agitation based on fluid agitation (actual or "seen" by the particles) and characteristic
fluid/particle time scales. Figure 3.1 shows the comparison between particle agitation measured
by DNS data and theoretical particle agitation provided by Eqs. (3.10) and (3.9). Numerical
simulations are in agreement with theoretical predictions, while small discrepancies are observed
for particles with small relaxation time scale. This is due to the assumption of an exponential
autocorrelation function for the fluid velocity measured along the particle trajectory, Rf@p
that is too crude (see Fig. 3.8).

2The analytical integration of (3.6) with (3.5) is done using
∫ +∞

0 exp (−α|t|) exp
(
−̂iωt

)
dτ = 2α

α2+ω2
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Figure 3.1: Particle agitation with regard to the inverse of the Stokes number. The dashed
line corresponds to the Tchen-Hinze theory given by Eq. (3.10) (left) and its extension given
by Eq. (3.9) (right). A good agreement of the DNS data with the two equations is observed.

It is evident that particle agitation as well as fluid-particle velocity covariance increases
for light particles up to a saturation level which is effectively fluid agitation. That means that
as particle inertia decreases, particles behave asymptotically as fluid elements, while as particle
inertia increases, particles tend not to be affected by fluid agitation.

3.1.2 Dispersion coefficient of a particle cloud
Here, we try to describe the characteristics of the expansion of a particle cloud that is agitated
by a homogeneous isotropic turbulent flow. The first studies of turbulent dispersion date back
to 100 years and focused on the problem of turbulent diffusion of fluid elements. Taylor (1921)
used a one-dimensional Lagrangian approach to describe the expansion of fluid elements emitted
from a point source, while later Batchelor (1960) expanded this theory to the tri-dimensional
case. Laviéville (1997) has provided a detailed theoretical analysis that describes how the
theory of molecular diffusion gave birth to turbulent diffusion and then particle dispersion.

Turbulent diffusion

Before we proceed with the Tchen-Hinze theory of particle dispersion, it is important and
helpful to set the fundamental elements of the theory of turbulent diffusion based on molecular
diffusion. The displacement of a fluid element lf (t) is defined as the integral of its velocity
over time t.

lf (t) =
∫ t

t0
uf (xf (t), t)dτ (3.11)

The variance of the displacement of fluid elements is directly linked to the Lagrangian
autocorrelation function of the velocities of fluid elements as

〈lf 2(t)〉 =
∫ t

t0
(t− τ) 〈uf (xf (t), t)uf (xf (t− τ), t− τ)〉dτ . (3.12)

where 〈.〉 is here the ensemble average operator along the trajectories of fluid elements.
Batchelor (1960) observes two asymptotic behaviors based on Eq. (3.12) which constitute the
basis of the theory of turbulent diffusion:
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i. If t→ t0 then

〈uf (xf (t), t)uf (xf (t− τ), t− τ)〉 ' 〈u2
f 〉 ⇒ 〈lf 2(t)〉 ' 〈u2

f 〉t2 (3.13)

ii. If t→∞ then
∫ ∞

t0
〈uf (xf (t), t)uf (xf (t− τ), t− τ)〉dτ ' 〈u2

f 〉τ tf ⇒ 〈lf 2(t)〉 ' 2〈u2
f 〉τ tf t (3.14)

Following the analysis of molecular diffusion, Batchelor (1960) assumes that the correlation of
the concentration of fluid elements Cf (x, t) and the velocity fluctuation follows a Fick-type
law in the form

〈Cfu′f,i〉 = −Dt
f

∂Cf
∂xi

(3.15)

where Dt
f is the turbulent diffusion coefficient. Considering the contribution of molecular

diffusion negligible, one can write an Eulerian transport equation of the average concentration
as

∂

∂t
〈Cf (x, t)〉 = ∂

∂xi

[
Dt
f

∂

∂xi
〈Cf (x, t)〉

]

which has the form of the transport equation of molecular diffusion. However, the transitional
probability p (x, t|x0, t0) defined as the probability of a fluid element xf in position x0 at time
t0 to be displaced in position x at time instant t, satisfies the same equation as 〈Cf (x, t)〉 since
〈Cf (x, t)〉 =

∫
p (x, t|x0, t0) 〈Cf (x0, t0)〉 dx0, thus

∂

∂t
p = ∂

∂xi

(
Dt
f

∂

∂xi
p

)

p (x, t0|x0, t0) = δ (x− x0)
(3.16)

where δ (x− x0) is a Dirac function defined as

δ (x− x0) =
{

1, if x = x0

0, otherwise.
(3.17)

If Dt
f is considered to be constant, the solution of Eq. (3.16) follows a normal probability law

since it can be written as

p (x, t|x0, t0) = [4π (t− t0)]−3/2 exp
[
− (x− x0)

4Dt
f (t− t0)

]
(3.18)

that allows to rewrite the displacement variance as

〈lf 2(t)〉 =
∫

(x− x0)2 p (x, t|x0, t0) dx = 6Dt
f (t− t0) (3.19)

Equations (3.19) and (3.14) allow to deduced the turbulent diffusion coefficient as

Dt
f = 1

6
d

dt
〈lf 2(t)〉 = 2

3q
2
fτ

t
f (3.20)
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Particle dispersion coefficient

Gouesbet et al. (1984), Hinze (1972), Tchen (1947) provided a general framework for the
study of dispersion of particles transported by stationary homogeneous isotropic turbulence by
generalizing the theoretical results of Batchelor (1960) for turbulent diffusion. The particle
displacement vector lp(t) is defined similarly to Eq. (3.11) as

lp(t) =
∫ t

0
up(t)dτ . (3.21)

If we suppose that the components of lp(t) exhibit a normal probability density, which is
the hypothesis made for fluid elements by Batchelor (1960), we can finally derive particle
dispersion coefficient Dt

p in analogy with Dt
f as

Dt
p = 1

6
d

dt
〈lp2(t)〉 = 2

3q
2
pτ

t
p (3.22)

where the Lagrangian particle integral time scale τ tp appears, which is defined by Eq. (2.49).
However, there is a link between turbulent diffusion/particle dispersion and the fluid/particle
turbulent spectrum, respectively as the former can be obtained from the Fourier transforms of
the derivative of the variance of the respective displacements, so for both Dt

f and Dt
p we have

Dt
f,p(t) =

∫ t

0
Ef,p(ω)sin(ωt)

ω
dω

which means that for t → ∞ particles and fluid elements exhibit the same dispersion and
diffusion, respectively. Hence

lim
τ→∞

Dt
p = lim

τ→∞
Dt
f = π

2Ep(0) = π

2Ef (0)

Moreover, combining Eqs. (3.20) and (3.22), one can deduce the following relation for the
Lagrangian characteristic time scales of fluid and particles

τ tp =
q2
f

q2
p

τ tf .

This is a very meaningful result, as it states that for increasing particle inertia, the decrease of
particle agitation entails an equivalent increase of the Lagrangian integral particle time scale,
which is a measure of particle "memory" via inertia. Therefore, heavy particles exhibit low
levels of agitation but high memory and conversely, lighter particles high levels of agitation and
low memory effect. Now if we consider an exponential form for the Lagrangian autocorrelation
function of the fluid (see Sect. 3.1), then using Eq. (3.10) we obtain

τ tp = τ tf + τFfp . (3.23)

Based on Eq. (3.1), Deutsch (1992) deduces an equivalent relation for the particle dispersion
coefficient based on the Lagrangian time scale of the fluid "seen" at the particle positions as

Dt
p = 2

3q
2
f@pτ

t
f@p (3.24)

that he extended to study the anisotropy of the particle dispersion coefficient in the parallel
and perpendicular directions of crossing particle trajectories, however this is beyond the scope
of the work conducted in this PhD thesis. In analogy with Eq. (3.23), using Eq. (3.9) one can
obtain

τ tp = τ tf@p + τFfp . (3.25)
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3.2 Statistical analysis of particle dispersion

In this section, we focus on analyzing by means of suitable statistics the dispersion of inertial
charge-free particles transported by a stationary homogeneous isotropic turbulent flow. Al-
though this type of flows have been already studied thoroughly in the past, such an analysis is
deemed useful not only to get familiar with the different notions presented but also to establish
the charge-free case study as a reference when electrostatic forces come into play in Chapter 5.

3.2.1 Kinetic energy transfer from turbulence to particles

In turbulent particle-laden gas flows, particles move due to the hydrodynamic drag forces that
are exerted on them from the fluid turbulent velocity field. More specifically, there are two
mechanisms that dictate the particle motion: a particle accelerates due to the drag force while
at the same time its kinetic energy is dissipated due to viscosity via the same force.

Particle agitation

In the pdf framework for gas-particle flows presented by Simonin (2000) one can obtain the
following transport equation for the particle agitation

∂

∂t
q2
p = 1

mp
〈F′pu′p〉p (3.26)

while for Fg = Fe = 0 the total force exerted on a particle is

F′p = −mp

u′p − u′f@p
τp

. (3.27)

Thus, under a linear approximation for the drag force, which implies τp defined in Eq. (2.22) is
constant, one can write

∂

∂t
q2
p = qfp

τFfp
− 2q2

p

τFfp
. (3.28)

The left hand side of Eq.(3.28) represents the rate of specific kinetic energy of the particles
and the right hand side the specific power associated with the drag force. Essentially, the
specific drag force power can be decomposed in two parts: the first term corresponds to the
viscous dissipation of kinetic energy due to drag force (hence negative), and the second term
to the production of particle kinetic energy (hence positive). The evolution of all three terms
of Eq. (3.28) is shown by Fig. 3.2 and the balance of the equation is verified in the transient
regime for the charge free case corresponding to a Stokes number of τFfp/τ tf@p = 1.82.
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Figure 3.2: Terms of Eq. (3.28) in transient regime for τFfp/τ tf@p = 1.82 in the charge-free
case. A very good agreement with the theoretical equation is observed.

In case of stationary flow, ∂q2
p/∂t = 0 therefore Eq. (3.28) becomes

q2
p = 1

2qfp (3.29)

which shows the direct link of particle agitation q2
p to the fluid-particle velocity covariance qfp

as verified by Fig. 3.3.
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Figure 3.3: Verification of Eq. (3.29) with regard to particle Stokes number in the charge-free
case. A very good agreement with the theoretical equation is observed.
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Fluid-particle velocity covariance

Since it has been established that fluid-particle velocity covariance drives particle agitation, in
order to better understand the latter, it would be useful to have an equation that defines the
time evolution of the former. The transport equation of the fluid-particle velocity covariance
can be derived from the joint-fluid-particle pdf equation in the kinetic theory framework
(Simonin, 2000) that gives

∂

∂t
q2
p = 〈a′f@pu′p〉p + 1

mp
〈F′pu′f@p〉p . (3.30)

Using (3.27) under a linear approximation for the drag force, which implies τp = const., one
can write

∂

∂t
qfp = 〈a′f@pu′p〉p +

2q2
f@p
τFfp

− qfp
τFfp

(3.31)

The first term of the right hand side is the fluid acceleration - particle velocity covariance
〈a′f@pu′p〉p which in homogeneous incompressible flow, in analogy with term of turbulence
dissipation 〈a′fu′f 〉f seen in Subsect. 2.2.3, acts as a dissipative term, in the sense that it is a
destruction term for fluid-particle correlation. It is written in terms of the fluid acceleration
measured at the particle positions a′f@p(xp, t) = ∂u′f@p/∂t. The second and third term are
related to the specific power associated with the drag force which can be decomposed in two
parts: the second term corresponds to the fluid kinetic energy "seen" by the particles (hence
positive), and the third term to the decorrelation of fluid-particle velocity (hence negative).
The evolution of all four terms of Eq. (3.31) is shown by Fig. 3.4 and the validity of the
equation is verified in the transient regime for the charge-free case corresponding to a Stokes
number of τFfp/τ tf@p = 1.82.
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Figure 3.4: Terms of Eq. (3.28) in transient regime for τFfp/τ tf@p = 1.82. A very good
agreement with the theoretical equation is observed.

In case of stationary flow ∂qfp/∂t = 0, therefore Eq. (3.28) becomes
qfp = τFfp〈a′f@pu′p〉p + 2q2

f@p . (3.32)
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The second term of the right hand side of Eq. (3.32) is the fluid agitation measured at particle
positions (see Fig. 2.8). To acquire a better understanding of the physical meaning of the
first term τFfp〈a′f@pu′p〉p, one has to examine how it behaves with regard to particle inertia.
Figure 3.5a shows that it decreases to zero (in terms of absolute value) as particle inertia
decreases τ tf/τFfp →∞. However, this term contains both the effect of turbulent dissipation
via 〈a′f@pu′p〉p and of particle inertia via the drag term τFfp, so it is difficult to understand the
underlying mechanism. Indeed, Fig. 3.5b shows that the effect of particle inertia on qfp is
predominant.
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(a) First term of left-hand side of Eq. (3.32).
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(b) Fluid acceleration - particle velocity covariance.

Figure 3.5: Effect of particle inertia on fluid acceleration - particle velocity covariance
〈a′f@pu′p〉p for two different normalizations in the charge-free case.

In fact, term 〈a′f@pu′p〉p in homogeneous incompressible turbulent flow, acts as a destruction
term on the correlation of fluid-particle velocity that eventually results in a decrease of particle
agitation (hence negative). Heavier particles are subject to lower levels of fluid turbulent
dissipation, so the effect of this term on qfp is negligible as they do not react promptly to
the local modifications of the turbulent velocity field due to inertia. The term becomes
important for particles of moderate Stokes numbers and then again becomes weak for very
light particles. To better understand this effect of turbulent dissipation, one could introduce a
new characteristic time scale τafp as

τafp = − qfp
〈a′f@pu′p〉p

that denotes the destruction rate of fluid-particle covariance qfp by the fluid acceleration -
particle velocity covariance 〈a′f@pu′p〉p. This time scale is identical to τ tf@p for the Langevin
model of fluid acceleration that is presented in Subsect. 3.2.2. In Fig. 3.6, it is evident that this
time scale increases for decreasing particle inertia, which essentially means that qfp dissipates
in lower rates, resulting to its increase.
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Figure 3.6: Time scale of turbulent destruction of fluid-particle correlation with regard to
particle inertia in the charge-free case.

At this point, it would be interesting to examine the effect of inertia on the variance of
fluid acceleration "seen" at the particle positions 〈a′f@p

2〉p. Figure 3.7 shows that for decreasing
inertia there is a slight increase of 〈a′f@p

2〉p up to moderate particle inertia τ tf/τFfp ∼ 1 and
then a significant decrease for lighter particles τ tf/τFfp → 0. This essentially means that
smaller particles "see" a fluid acceleration that is smaller than the average fluid acceleration
〈a′f 2〉f = 〈a′f,ia′f,i〉f/3 due to the fact that they interact more in average with less energetic
turbulent structures of the flow due to preferential concentration (low-vorticity zones). This
explains why it takes more time for turbulent dissipation to decorrelate fluid-particle velocities
for lighter particles.
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Figure 3.7: Fluid acceleration at particle position 〈a′f@p
2〉p with regard to particle inertia.
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3.2.2 Stochastic models of fluid acceleration - particle velocity covariance
Stochastic Lagrangian models for the fluid acceleration have been addressed in Chapter 2 and
at this point we are interested in such models for the particle motion.

Langevin (single exponential) model

In analogy to the stochastic Lagrangian model for the fluid acceleration presented in Subsect.
2.2.3, one can extend it for the fluid acceleration measured along the particle trajectories. At
a first order approximation, Simonin et al. (1993) adjusted the Langevin model of Eq. (2.37)
to the following

δu′f@p,i = −Du′f@p,iδt+BδWi . (3.33)
where δu′f@p = u′f@p (t+ δt)− u′f@p(t) is the infinitesimal increment of the fluctuating compo-
nent of the fluid velocity "seen" at the particle positions, which is given directly by

δu′f@p,i = a′f@p,iδt

Of course, these equations are coupled with the equation of particle trajectory Eq. (3.1). The
equations of the variance of particle velocity 〈u′p2〉p = 〈u′p,iu′p,i〉p/3, the fluid-particle velocity
covariance 〈u′pu′f@p〉p = 〈u′p,iu′f@p,i〉p/3 and the velocity-acceleration correlation 〈u′pa′f@p〉p =
〈u′p,ia′f@p,i〉p/3 take the following forms

∂〈u′p2〉p
∂t

= 2
τFfp

[
〈u′pu′f@p〉p − 〈u′p

2〉p
]

∂〈u′pu′f@p〉p
∂t

= 〈u′pa′f@p〉p −
1
τFfp

[
〈u′pu′f@p〉p − 〈u′f@p

2〉p
]

∂〈u′pa′f@p〉p
∂t

= − 1
τFfp

[
〈u′pa′f@p〉p − 〈u′f@pa′f@p〉p

]
−D〈u′pu′f@p〉p

where 〈u′f@pa′f@p〉p = 0. For stationary flows, these equations give the relations of Tchen
equilibrium in the form

〈u′p
2〉p = 〈u′pu′f@p〉p

〈u′pu′f@p〉p = 〈u′f@p
2〉p + τFfp〈u′pa′f@p〉p

〈u′pa′f@p〉p = −τFfpD〈u′pu′f@p〉p .

Combining the last two equations, let the new form for the fluid-particle velocity covariance be

〈u′pu′f@p〉p = 〈u′f@p
2〉p
[
1 + τFfp

2
D
]−1

.

Therefore, inspired from the Langevin stochastic model of the fluid velocity (see Subsect.
2.2.3), using the expression

D =
〈a′f@p

2〉p
〈u′f@p

2〉p
(3.34)

the Lagrangian autocorrelation function of the fluid velocity "seen" at the particle positions
can be deduced from Eq. (3.33) as an exponential function,

Rf@p(τ) = exp
(
− τ

τ tf@p

)
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where the Lagrangian integral time scale τ tf@p can be written as

τ tf@p = 1
τFfp

〈u′f@p
2〉p

〈a′f@p
2〉p

.

Thus, we can write the fluid acceleration - particle velocity covariance in the form

〈u′pa′f@p〉p = − qfp
τ tf@p

(3.35)

and the fluid-particle velocity covariance in the form

〈u′pu′f@p〉p = 〈u′f@p
2〉p

τ tf@p
τ tf@p + τFfp

. (3.36)

Hence, we find the classic theoretical relation of Tchen-Hinze theory Eq. (3.9) for an exponential
function of the fluid turbulence "seen" at the particle positions. This is a result that has been
also found in literature, such as the work of Zaichik et al. (2003), which essentially means
that the time scale of turbulent dissipation of qfp by 〈a′f@pu′p〉p is chosen to be equal to the
Lagrangian integral time scale of the fluid "seen" at the particle positions, hence τafp ' τ tf@p.

Double exponential model

In analogy with Subsect. 2.2.3, we simply assume that we can apply the stochastic Lagrangian
model for the fluid velocity derivative measured along the trajectory of the particles as it is.

δu′f@p,i = −Ca′f@p,iδt−Du′f@p,iδt+BδWi .

Of course, these equations are coupled with the equation of particle trajectory Eq. (3.1). The
equations of the variance of particle velocity 〈u′p2〉p, the fluid-particle velocity covariance
〈u′pu′f@p〉p and the velocity-acceleration correlation 〈u′pa′f@p〉p take the following forms

∂〈u′p2〉p
∂t

= 2
τFfp

[
〈u′pu′f@p〉p − 〈u′p

2〉p
]

∂〈u′pu′f@p〉p
∂t

= 〈u′pa′f@p〉p −
1
τFfp

[
〈u′pu′f@p〉p − 〈u′f@p

2〉p
]

∂〈u′pa′f@p〉p
∂t

= − 1
τFfp

[
〈u′pa′f@p〉p − 〈u′f@pa′f@p〉p

]
− C〈u′pa′f@p〉p −D〈u′pu′f@p〉p .

For stationary flows, these equations give the relations of Tchen equilibrium in the form

〈u′p
2〉p = 〈u′pu′f@p〉p

〈u′pu′f@p〉p = 〈u′f@p
2〉p + τFfp〈u′pa′f@p〉p

〈u′pa′f@p〉p = −〈u′pu′f@p〉pDτFfp
(
1 + CτFfp

)−1
.

The Lagrangian autocorrelation function of the fluid "seen" at the particle positions can be
written using a double exponential function (see Fig. 3.8) as

Rf@p(τ) =
exp

(
− τ
τ∞

)
− τ0

τ∞
exp

(
− τ
τ∞

)

1− τ0
τ∞

(3.37)
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with

τ∞ = 1
2τ

t
f@p


1 +


1− 4τa@pτε

τ tf@p
2




1/2



τ0 = 1
2τ

t
f@p


1−


1− 4τa@pτε

τ tf@p
2




1/2



where and τε is the characteristic time scale of turbulent energy dissipation defined in Eq. (2.41)
and τa@p is the characteristic time scale of fluid turbulent acceleration "seen" at the particle
positions defined as

τa@pτε =
〈u′f@p

2〉p
〈a′f@p

2〉p
. (3.38)

The characteristic times which appear in Eq. (3.37) can be written as

τ tf@p = τ∞ + τ0

and
τa@p = τ∞τ0

τε
.

By definition of characteristic times, the coefficients of the stochastic model can be written
under the following form

D = 1
τa@pτε

= 1
τ∞τ0

C =
τ tf@p
τa@pτε

= τ∞ + τ0
τ∞τ0

= 1
τ∞

+ 1
τ0

.

Let the new form for the fluid-particle velocity covariance be

〈u′pu′f@p〉p = 〈u′f@p
2〉p
[
1 + τFfp

2
D
(
1 + CτFfp

)−1
]−1

.

Therefore, using the expressions

D =
〈a′f@p

2〉p
〈u′f@p

2〉p
= 1
τa@pτε

(3.39a)

C = τ tf@pD (3.39b)

we can write the fluid acceleration - particle velocity covariance in the form

〈u′pa′f@p〉p = −qfp
τFfp

τa@pτε + τ tf@pτ
F
fp

(3.40)

and the fluid-particle velocity covariance in the form

〈u′pu′f@p〉p = 〈u′f@p
2〉p


1 +

τFfp
2

τa@pτε + τf@pτ
F
fp


 . (3.41)
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Figure 3.8: Autocorrelation functions of fluid velocity "seen" at the particle positions.
Integration gives the Lagrangian fluid integral time-scale τ tf@p. A good agreement with the
exponential models is observed. The red dotted line represents the oscillator function.
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By definition, τ tf@p and τε are of the same order of magnitude and bigger than τa@p for high
Reynolds turbulent flows, τa@p � τε. For high Stokes numbers we have τFfp � τ tf@p > τa@p,
thus Eq. (3.41) can be written in the following form

〈u′pu′f@p〉p = 〈u′f@p
2〉p
(

1 +
τFfp
τ tf@p

)−1

.

Hence, we find the classic theoretical relation of Tchen-Hinze theory Eq. (3.9) for an exponential
function of the fluid turbulence "seen" at the particle positions. In analogy with what has been
discussed in Subsect. 2.2.3, we need to determine a characteristic time scale of the fluid "seen"
τ tf@p, and the product of two time scales, τa@pτε. These two parameters of the model can
be estimated directly from the autocorrelation function of the fluid measured along particle
trajectories (see Fig. 3.8). Equation (2.48) gives τ tf@p, while for τa@pτε, except for Eq. (3.39a)
we can also use:

τa@pτε = −
[

lim
τ→0

d2

dτ2Rf@p(τ)
]−1

(3.42)

supposing that the short-term response of Rf@p can be represented by the oscillator function

lim
τ→0

Rf@p = lim
τ→0

(
1− 1

2
τ2

τa@pτε

)
.

Table 3.1 shows the estimations for τa@pτε of the two aforementioned models and their relation
with τFfp and τ tf@p. Once these characteristic time scales have been calculated, one can compare
the aforementioned models of the fluid acceleration - particle velocity covariance with DNS
data.

Table 3.1: Characteristic time scales of the fluid "seen" at the particle position for various
levels of particle inertia and two different models

class τa@pτε τa@pτε τFfp τ tf@p
−
[

lim
τ→0

d2

dτ2Rf@p(τ)
]−1

〈u′f@p
2〉p/〈a′f@p

2〉p
1 1.82 1.86 24.03 3.76
2 1.75 1.81 12.09 3.47
3 1.21 1.76 6.11 3.36
4 3.02 1.76 3.40 3.51
5 2.16 1.84 1.89 3.76
6 1.19 2.09 0.96 3.94
7 4.92 2.42 0.52 3.89
8 2.94 2.64 0.27 3.64

Figure 3.9 shows the predictions of Eq. (3.35) and of Eq. (3.40) (for both models of τf@pτε).
It seems that the former is not accurate for light particles which confirms the observation made
in Fig. 3.1 that the classic Tchen-Hinze Eq. (3.9) slightly underestimates the fluid-particle
agitation for light particles. However, the model of Eq. (3.40) seems to predict the DNS
measurements rather accurately, especially using Eq. (3.39a) instead of Eq. (3.42) for τa@pτε.
The discrepancies for the latter, may also come from the numerical calculation of this limit
which is sensitive to the selection of the short-term part of the Rf@p(τ) time series, to which
we fit a quadratic equation.
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Figure 3.9: Comparison between DNS results ( ) and the predictions of the Langevin model
( ) as well as of the introduced stochastic model ( , ) of 〈a′f@pu′p〉p with regard to particle
Stokes number.

3.2.3 Particle dispersion coefficient
To quantify particle dispersion, one can calculate the Mean Squared Displacement (MSD) for
particle positions, here denoted as D as

D (τ) = 1
3
〈

[lp(t+ τ)− lp(t)]2
〉
p

where lp(t) is the particle displacement defined in Eq. (3.21) which is calculated as

lp = xp + Lbp

where bp = bp(t) ∈ Z3 is a counter vector, bp(0) = 0 that tracks the times a particle passes
the periodic borders defined as

bp,i =
{
bp,i + 1 if xp,i ≥ L
bp,i − 1 if xp,i ≤ 0 .

In Fig. 3.10, one can observe the evolution of D(τ) and how it is modified by inertia. In fact,
inertial particles transported by HIT tend to disperse further away from their initial positions,
however it takes less time in terms of their relaxation time τFfp for heavier particles to reach
the same value. Furthermore, at first evolution of D(τ) is non-linear, but it seems to become
rather linear after several multiples of τFfp, which physically means that the growth rate of
particle MSD becomes constant in the stationary regime.

The coefficient of particle dispersion Dt
p is directly associated to the particle MSD growth

rate as
Dt
p = lim

τ→∞
1
2
d

dτ
D (τ) . (3.43)

Figure 3.10 shows the time evolution of particle dispersion for various particle Stokes numbers.
Time evolution of dD/dτ has been calculated by numerical differentiation of particle MSD
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time-series using Savitzky-Golay filtering to remove numerical noise. Lighter particles need
more time in terms of τFfp in order to reach a stationary growth rate of particle MSD. It is
evident that time derivative dD/dτ is needed to calculate particle dispersion coefficient Dt

p.
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Figure 3.10: Mean squared particle displacement (left) and particle dispersion (right) with
regard to time normalized by particle relaxation time scale for various Stokes numbers.

This is best estimated by performing a Linear Regression (LR) to the stationary part of the
D− τ/τFfp curve that seems to be rather linear, an assumption that is verified by the negligible
LR residual R2 as shown by Figure 3.11.
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Figure 3.11: Mean squared particle displacement D (τ) with regard to τ/τFfp for two Stokes
numbers. A non-linear short-term and a linear long-term evolution is observed.

In Fig. 3.12 one can examine the particle dispersion coefficient, defined in Eq. (3.43), for
various Stokes numbers calculated using data from DNS following the aforementioned procedure.
We observe that in the limit of very heavy particles and very light particles particles exhibit a
dispersion coefficient close to that of fluid elements, Dt

f defined by Eq. (3.20). The increase
for intermediate Stokes numbers, τ tf/τFfp ∈ [0.5, 5] has been also observed experimentally and
numerically in shear flows in the work of Chung & Troutt (1988), Crowe et al. (1985), Longmire
& Eaton (1992), Lázaro & Lasheras (1992) with the appearance of strong particle concentration
zones. However, as noted by Février (2000), these flows are far from a HIT case like the one
used here, so there is an argument that this increase could be an artifact of the turbulence
forcing scheme as particle dispersion is driven by the large turbulent scales that are sensitive to
the effects of the stochastic forcing scheme. However, Dt

p seems to follow closely the behavior



3.2 Statistical analysis of particle dispersion 57

10´2 10´1 100 101 102

τ tf{τFfp

1.0

1.1

1.2

1.3

D
t p
{D

t f

Figure 3.12: Particle dispersion coefficient with regard to particles Stokes number.

of the Lagrangian integral time scale of the fluid measured at the particle position, τ tf@p shown
by Fig. 2.10. This can be explained by examining the theoretical prediction for the particle
dispersion coefficient demonstrated in Subsect. 3.1.2 that gives for the charge-free case

Dt
p = 2

3q
2
pτ

t
p '

2
3q

2
f@pτ

t
f@p . (3.44)

Figure 3.13 draws a comparison between the values of particle dispersion coefficient measured
by DNS calculations and Eqs. (3.44) derived from the Tchen-Hinze theory. In fact, it seems
that the theoretical relations of the particle dispersion coefficient and the values measured from
the DNS calculations, present a very good agreement. The last equality of Eq. (3.44) links Dt

p
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Figure 3.13: Models for particle dispersion coefficient with regard to particle Stokes numbers.

with the fluid agitation measured at particle position, q2
f@p and the Lagrangian integral time

scale of the fluid measured at the particle position, τ tf@p. Since q2
f@p does not vary greatly
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(< 5%) for increasing particle inertia as seen in Fig. 2.8, we can conclude that Dt
p ∼ τ tf@p.

Now, if we examine the behavior of τ tf@p in Fig. 2.10, we observe that it peaks for particles of
moderate-to-low inertia. This happens exactly because these particles concentrate preferentially
in low-vorticity zones, so they tend to correlate with turbulent structures of greater lifetimes,
hence greater values of τ tf@p. This means that particles that exhibit preferential concentration
also exhibit higher values of dispersion coefficient.

3.2.4 Spatial distribution of particles

Figure 3.14 shows instantaneous snapshots of the turbulent vorticity field and the particle
distribution for various levels of inertia, where one can observe the phenomenon of preferential
concentration. This phenomenon occurs when solid non-charged particles are transported by
a turbulent flow field. According to their inertia, they tend to accumulate in low-vorticity
regions of the turbulence Fessler et al. (1994), Squires & Eaton (1991).

(a) τF
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t
f@p = 0.0733

Figure 3.14: Instantaneous snapshots of the turbulent vorticity field and the particle distri-
bution for various levels of inertia for ∆x = Lf .

Preferential concentration of particles by turbulence

To quantify preferential concentration, a first simple statistic would be the PDF of particle
concentration f(Cp), as it constitutes a very intuitive and straightforward to calculate quantity
that is usually found in similar studies of the relevant literature (Fede, 2004, Fessler et al.,
1994, Février, 2000). In order to calculate such a statistical measure, first the computational
domain Ω of volume L3 is partitioned in Nc cells Ωc that occupy volume Vc = L3/Nc. In this
way, the particle concentration Cp inside cell Ωc is calculated as

Cp =
N c
p

Vc
(3.45)

where N c
p is the number of particles inside cell Ωc at a given time. From these Nc values of

Cp we can evaluate the PDF f(Cp). When the particles are distributed randomly (uniformly)
inside the flow (i.e. fluid elements), f(Cp) should follow the Poisson distribution given by:

f(Cp) = nCp exp (−n)
Cp!

(3.46)
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where n is the average particle number in a cell Ωc, given by n = Np/Nc. Figure 3.15 shows
that indeed fluid elements follow the Poisson distribution, which is expected as they follow
turbulent trajectories which are inherently random (uniform) and independent.
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Figure 3.15: PDF of particle concentration for fluid elements. There is a perfect agreement
with the Poisson distribution of Eq.(3.46) as their distribution is uniform.

If all cells have n particles, then the probability density function collapses to a Dirac
distribution at the particle number density, np defined as

f(Cp) = δ (Cp − np) . (3.47)

For the following analysis we use Nc = 83 = 512. In Fig. 3.16 we observe that inertial particles
exhibit particle concentration distributions very different from the Poisson distribution, which
imply the presence of preferential concentration.
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Figure 3.16: PDF of particle concentration for inertial particles of different levels of inertia
in the charge-free case. Particles of moderate inertia do not follow the Poisson distribution.
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Global particle accumulation

To further quantify particle distribution, one can define a measure of global particle accumula-
tion, Σp as the relative difference of the standard deviation, σCp =

√∑
Cp (Cp − n)2 f(Cp) of

the particle distribution f(Cp) with that of the Poisson distribution σP =
√
n as

Σp =
σCp − σP

n
. (3.48)

Figure 3.17 shows the evolution of global particle accumulation for different levels of particle
inertia, where it is clear that preferential particle concentration is more pronounced for particles
of moderate-to-high inertia. However, it should be noted here that evidently, Σp depends
on the size of cells Ωc (Fessler et al., 1994). This means that there is a cell size for which
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Figure 3.17: Global particle accumulation for various levels of particle inertia. Particles of
moderate inertia present higher levels of accumulation as they concentrate preferentially.

Σp is maximum and Février (2000) proposes that this be the representative value for global
accumulation of particles in the flow. Therefore, it would be very useful to examine another
statistical quantifier of particle accumulation.

PDF of nearest-neighbor particle distance

Therefore, one can examine the PDF of the nearest-neighbor particle distance dnp. This is the
minimum distance between a particle and all of its neighboring particles defined as

dnp = min
p,q∈Ω

{‖rpq‖} (3.49)

where rpq = xp − xq is the distance vector between particles p and q. The PDF of the
nearest-neighbor particle distance for a uniform distribution has been derived theoretically,
initially by Hertz (1909) and then by Chandrasekhar (1943) as

f(dnp) = 4πnpdnp2 exp
[
−4πnpdnp3

3

]
. (3.50)

In addition, the average value of such a distribution has been derived analytically by Chan-
drasekhar (1943) for a uniform particle distribution as 〈dnp〉p =

∫∞
0 dnpf(dnp) ddnp ≈
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0.5539np−1/3, while the variance 〈d′np2〉p ≈ 0.040535np−2/3. Figure 3.18 shows that the
PDF of this statistical measure for fluid elements is a perfect Hertz-Chandrasekhar distribution
as they are distributed randomly (uniformly) in the computational domain.
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Figure 3.18: Nearest-neighbor particle distance normalized by the equidistant distribution
distance np−1/3 for fluid elements. There is a perfect agreement with the Hertz-Chandrasekhar
distribution of Eq.(3.50) as their distribution is uniform in HIT.

However, in Fig. 3.19 we observe that inertial particles tend to have more neighbors at
very short distances, but also at distances that are greater than the corresponding values of the
Hertz-Chandrasekhar distribution due to the phenomenon of preferential concentration. This
technique appears to yield results that are very similar to those of Voronoi tessellation, which
can then be used to extract information about the length scale of particle clusters and voids
(Manish & Sahu, 2018, Monchaux et al., 2010). Furthermore, Fig. 3.20 shows that the average
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Figure 3.19: Nearest-neighbor particle distance normalized by the equidistant distribution
distance np−1/3 for various levels of particle inertia in the charge-free case.

nearest-neighbor particle distance, 〈dnp〉p slightly decreases for decreasing particle inertia while
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its variance, 〈d′np2〉p increases. Both statistics approach asymptotically the corresponding
theoretical values for uniform particle distribution in the case of very heavy particles. This
is because the latter do not exhibit any preferential concentration as they are decorrelated
from the turbulent velocity field. The same asymptotical behavior is also to be expected for
very light particles, as in their case, they would follow perfectly the independent trajectories
of fluid elements, which are distributed uniformly in a HIT flow. The peak is found for a
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Figure 3.20: Average (left), and variance (right) of the nearest-neighbor particle distance
normalized by the equidistant distribution distance np−1/3 in the charge-free case. The dashed
line denotes the theoretical values derived by Chandrasekhar (1943) for a random distribution.

bigger Stokes number than Fig. 3.17 as Σp depends on the size of the selected control volumes,
making this statistical measure more reliable. One can observe that the particle class for which
particle accumulation is maximum (τ tf@p/τ

F
fp ' 7.46) coincides with the one for which particle

dispersion coefficient is maximum (see 3.12). This can be explained using the observation
made in Subsect. 3.2.3, where it is argued that Dt

p ∼ τ tf@p, therefore particles that exhibit
preferential concentration present higher values of Dt

p.

Radial distribution function

To further deepen our understanding of the spatial distribution of particles we deploy another
important statistical measure: the radial distribution function (RDF). This is defined as the
number of particle pairs found at a given separation normalized by the expected number of
pairs found in a homogeneous distribution and is denoted as g(r). For a test particle p, the
RDF g(r) is calculated by finding the separation distance ‖rpq‖ between it and each other
particles q around it. Each particle pair, according to their separation distance, is located in
an annular shell of thickness ∆r, centered on the test particle p. Hence, if Nr is the number of
particle pairs separated by distance r ±∆r/2, ∆Vr is the volume of the shell with thickness
∆r located at separation distance r and Npq = Np (Np − 1) /2 is the total number of pairs in
the computational volume L3. Then, the radial distribution function, g(r) is defined as

g(r) = Nr/∆Vr
Npq/L3 . (3.51)

This is a very meaningful statistical measure as g(r) = 1 represents a homogeneous distribution
of particles, while g(r) > 1 denotes particle clustering. In Fig. 3.21 we observe the evolution
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of the RDF of inertial particles which exhibit clustering at small separation distances r < Lf ,
which is expected in case of inertial particles transported by HIT. This RDF is obtained
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Figure 3.21: RDF of inertial particles for different levels of inertia in the charge-free case.

by averaging the RDFs of 64 test particles for 15, 000 time-steps each. For each of the
test particles, its RDF has been calculated using rmin = dp and rmax = L/2 so that ∆r =
(rmax − rmin) /100 ' 3.137 × 10−2m. As the separation distance increases, the distribution
around the particles becomes gradually homogeneous and at r = Lf the particle number
density found in the annular shell reaches the homogeneous value. This is an interesting
result that shows that particles are not clustering in distances greater than the size of biggest
turbulent eddies in the flow, which is the Eulerian longitudinal integral length scale, Lf .
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Figure 3.22: RDF at separation distance r = dp in the charge-free case.

Furthermore, in Fig. 3.22 we observe more clearly the evolution of particle clustering
at separation distance r = dp for increasing Stokes number. This clustering seems to peak
for particles of low-to-moderate inertia τfp/τ tf@p ∈ [5, 10], as they concentrate preferentially.
Then, it decreases for heavier particles as they are less affected by hydrodynamic forces, hence
do not exhibit clustering. It should be noted here, that the Stokes of the peak of accumulation
agrees with the results presented in Fig. 3.20. Chun et al. (2005) has showed that particles
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having small Stokes number τFfp/τK appear to be clustering at distances smaller than the size
of the smallest eddy, thus smaller than the Kolmogorov length scale r < ηK . For those, a
theoretical relation for their RDF in the dissipative turbulent length range is derived as

g(r) = c0

(
ηK
r

)c1

(3.52)

where c0 and c1 can be obtained from the theory of inertial particle clustering provided in
Chun et al. (2005), where it is shown that c1 scales as the square of the particle Stokes number
in the small Stokes number limit. In this work, we calculate the coefficients by fitting this
power law to the obtained DNS data for r ≤ 25ηK , due to lack of sufficient data points in the
r ∈ [dp, ηK ] interval (see Table 3.2). We are aware that this is an approximation beyond the

Table 3.2: Coefficients c0 and c1 for the model of Eq. (3.52) (Chun et al., 2005)

class τFfp/τK c0 c1

1 46.50 1.049 0.009996
2 23.40 1.098 0.02024
3 11.82 1.229 0.05139
4 6.582 1.457 0.1003
5 3.650 2.018 0.2105
6 1.864 3.172 0.3803
7 1.013 4.126 0.5147
8 0.5160 3.169 0.4235

limits of the aforementioned model, albeit close. Figure 3.23 shows the RDFs for the particles
with the three lowest Stokes numbers examined in this work. We can see that the model fits
better the RDFs of particles of the lowest inertia.
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Figure 3.23: RDFs of inertial particles having low Stokes numbers, τFfp/τK . The red dashed
line corresponds to Eq. (3.52) that has been fitted via non-linear least squares optimization.

3.2.5 Inter-particle relative motion

Radial relative particle velocity

To further analyze the dynamic structure of the particle distribution in the domain, we are
interested in the relative motion of neighboring particles. In Fig. 3.24, the various notations
used to describe inter-particle relative motion are presented. For two particles p and q, one
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can define the relative particle velocity wpq = up − uq and its radial projection wr as

wr = wpq · rpq
‖rpq‖

If wr > 0, then particles are approaching, while if wr < 0, particles are departing from each
other. The angle of particle relative motion θpq as the absolute angle between relative velocity
wpq and distance vector rpq, that is given by

θpq = wpq · rpq
‖wpq‖‖rpq‖

= wr
‖wpq‖

.

p

q

up
uq

up

uq
wpq

wpq
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Figure 3.24: Notations for inter-particle relative motion.

The resulting effect of particle motion due to turbulence is the phenomenon of preferential
concentration, that can be ascribed to two very different mechanisms that bring particles close:

i. independent particle trajectories intersect in privileged zones, while they are simply
deviated by the turbulence

ii. particles stay together longer (in average) in low-vorticity zones, they are "captured" in
those turbulent clusters and stay a certain time within them.

The second effect could be characterized by the relative velocity between the particles. More
specifically, it is a consequence of the divergence of the correlated velocity field and, conversely,
the decorrelated velocity tends to reduce the mechanism. Figure 3.25 shows the radial
distribution function of the average radial relative velocity in the charge-free case.

One can observe that for high Stokes numbers, |wr| does not vary as particle velocities are
decorrelated, while for low Stokes, it varies greatly as particle velocities are strongly correlated.
Moreover, it seems that the general trend is that as particle separation distance increases,
radial relative velocity increases. Particles close to each other see the same flow field and
they stay together for longer time intervals, while particles away from each other have rather
independent velocities and they stay at this distance for shorter time intervals. This explains
why for short inter-particle distances r < Lf , light particles exhibit zero relative particle
velocity (as they follow promptly fluid velocity modifications), while heavier particles present
non-zero relative particle velocity, as their velocity is decorrelated from fluid velocity due to
inertia.
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Figure 3.25: RDF of average radial relative particle velocity in the charge-free case.

For fluid elements and at the limit of very low Stokes numbers, Saffman & Turner (1956)
have provided a model for the radial relative velocity as a Gaussian random variable with
variance σ2 equal to

〈w′r
2〉p = εf

15νf
r2 = σ2 (3.53)

that is valid in the dissipative turbulent length range r < ηK . For isotropic Gaussian turbulence,
the average value of the radial relative velocity can be deduced as

〈|wr|〉p =
√

2
π
σ . (3.54)

Indeed, in Fig. 3.26 it seems that this model predicts rather accurately the radial relative
velocity of fluid elements at the limit of the dissipative turbulent length range ηK < r < 10ηK .
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Figure 3.26: RDFs of the average radial relative velocity for fluid elements compared with
Saffman & Turner (1956) model of Eq. (3.54).

If we try to extend this model to predict the average value of the radial relative velocity
for inertial particles of relatively small Stokes numbers, we see in Fig. 3.27 that at the limit
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of the dissipative turbulent length range ηK < r < 10ηK and only for small particle Stokes
numbers it can give a surprisingly good prediction, since the model was designed for distances
smaller than that of the Kolmogorov length scale.
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Figure 3.27: RDFs of the average radial relative particle velocity for particles with the
smallest Stokes number compared with Saffman & Turner (1956) model of Eq. (3.54).

Finally, Fig. 3.28 shows the effect of particle inertia on the average and variance of the
radial relative particle velocity. Interestingly, its average value seems to be rather constant at
〈|wr|〉p ∼

√
2q2
f@p/3, unaffected by particle inertia, while its variance exhibits a slight increase

for heavier particles.
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Figure 3.28: Average (left), and variance (right) of radial relative velocity normalized by
2/3q2

f@p in the charge-free case.

PDF of particle velocities

Figure 3.29 shows the PDFs of the three components of particle velocities, for various levels of
inertia. It can be deduced that, since the PDFs overlap, both the distribution of actual and
relative particle velocities is isotropic as orientation does not modify the shape of the PDFs.
This is in agreement with the isotropic properties of the simulated turbulence. In order to
obtain a more precise idea of the form of the PDF of up,i, exponential and Gaussian functions
are also plotted that are obtained by the following relation (Wang et al., 2000)

f(x) = n

2p3Γ(3/n) exp
[
−
( |x|
p

)n]
, p =

√
Γ(1/n)
Γ(3/n) . (3.55)
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where Γ is the gamma function. This PDF has a unit standard deviation and
∫∞
−∞ f(x)dx = 1.

For n = 1, f(x) gives an exponential distribution, while for n = 2 a Gaussian one. One can
make two observations based on Fig. 3.29. It seems that for the charge-free case, the PDFs
of particle velocities are almost perfect Gaussian distributions for all the presented levels of
particle inertia, which is to be expected for particles transported by HIT.
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Figure 3.29: PDF of the three components of particle velocities for various levels of
particle inertia in the charge-free case. The distributions are compared with the corresponding
exponential and Gaussian distributions from Eq. (3.55).

3.3 Conclusion

A first step in understanding the dynamics of electrically charged particle-laden turbulent
flows, is to acquire a concrete appreciation of the corresponding charge-free case. Such flows
have been studied for many decades now, and there is a number of theoretical frameworks that
facilitate their study, such as the Tchen-Hinze theory. This is the reason why such a detailed
analysis of the charge-free case and settling-free case has been carried out in this chapter. The
key property that characterizes particle dynamics in turbulent gas-particle flows is particle
inertia.

In a first order approximation, particle agitation, hence particle dispersion is more
pronounced for lighter particles as for decreasing inertia - to the limit of fluid elements -
particles tend to be more susceptible to local fluid fluctuations. However, it is shown that
particle agitation depends on fluid-particle covariance which is a measure of fluid-particle
correlation. An attempt to describe the turbulent dissipation of the latter via the fluid
acceleration - particle velocity covariance has been made. For the latter it is shown that a
model based on a stochastic equation for fluid acceleration measured at particle positions,
predicts it with better accuracy if the supposed form of the fluid autocorrelation function is a
double exponential Furthermore, while the latter dissipation mechanism is not greatly affected
by the decrease of particle inertia, its effect via the hydrodynamic force becomes predominant
and leads to fluid-particle decorrelation.

An even deeper analysis of such flows involves the structure of the particle distribution in
the turbulent flow, and by observing the appropriate statistics (PDF of particle concentration
and nearest-neighbor particle distance, radial distribution functions) a well studied behavior
emerges: preferential concentration. According to this phenomenon, particles of moderate
inertia tend to gather in low-vorticity regions of the flow and as a result, accumulation is
observed in the spatial particle distribution.
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4
Numerical simulation of electrostatic

forces in charged granular flows

“ἡ δὲ φύσις φεύγει τὸ ἄπειρον.
τὸ μὲν γὰρ ἄπειρον ἀτελές,

ἡ δὲ φύσις ἀεὶ ζητεῖ τέλος
1”

- Aristotle, c. 384 – c. 322 BC

Abstract
This chapter deals with the heart of the scientific problem of this PhD thesis, particle-particle electrostatic
interactions. It serves two purposes. To begin with, it presents the fundamental problem of calculation
of electrostatic forces in a system of particles, the known N-body problem. Then it describes the intricate
problem of applying periodic BCs in such systems, where a truncation of the infinite periodic domain is
proposed with a reasonable cut-off error. A scalable algorithm is presented that allows for a rather
fast and precise calculation of electrostatic forces in a tri-periodic computational domain by separating
them in long- and short-range parts, which are calculated exactly and approximately, respectively. The
approximation error, computational cost and performance of the proposed algorithm are documented and
thoroughly analyzed. The second part of the chapter deals with dry like-charged granular flows where
the fundamentals physics of particle-particle electrostatic interactions are investigated via characteristic
length and time scales. An attempt is made to provide analytical estimations for several statistical
quantities which are compared to DNS measured values. Finally, the particle-induced electric field is
presented and its characteristics are related to particle motion.

4.1 Particle-particle electrostatic interactions

4.1.1 Definition of electrostatic forces for a particle dipole
Coulomb’s law allows to calculate the electrostatic force Fq→p acting on p due to q as following

Fq→p = λ
QqQp

‖rpq‖3
rpq (4.1)

where λ is Coulomb’s constant with λ = 1/ (4πε0) where ε0 is the vacuum permittivity, Qp is
the electric charge of particle p and rpq = xp − xq is the distance vector between particles p
and q pointing to p as depicted in Fig. 4.1.

4.1.2 N-body problem
In a system of Np charged particles, each particle interacts with all Np − 1 particles in the
computational domain, thus the total electrostatic force exerted on a particle Fe is defined as

Fe =
Np∑

q=1
q 6=p

Fq→p . (4.2)

1But nature flies from the infinite; for the infinite is imperfect, and nature always seeks an end.

71



72 4 Numerical simulation of electrostatic forces in charged granular flows
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Figure 4.1: Notations in electrostatic interaction of a dipole of like-charged particles.

The problem of predicting the individual motions of all Np particles interacting with each other
electrostatically falls into the category of an N-body problem. This problem has interested
astronomers, physicists and mathematicians for the last several hundred years. It has, in fact,
motivated much of the theoretical work done during that time, from cosmology to solid state
physics to differential equations and potential theory. Unfortunately, the equations of motion
of systems Np > 2 do not allow for an analytical solution.

Until the mid 80s, theoretical studies have been limited to determining the coarse qual-
itative behavior of the system. With the introduction of high-speed computers, however,
the calculation of trajectories of many particles in detail became feasible (Greengard, 1990).
The equations of motion of a system of Np particles are described by a set of Np ordinary
differential equations, each of which is simply Newton’s second law of motion applied to
an individual particle (see Eq. (2.19) and Eq. (4.3)). Given initial positions and velocities,
a numerical simulation follows all the trajectories by numerical integration as described in
Subsect. 2.1.2.

Modification of particle motion equation

The task at every time-step is to move each particle according to its velocity, and then to
update its velocity according to the force exerted by the other particles. If the particles are
charged, then electrostatic force Fe may be significant. Once the total electrostatic force Fe

exerted on a particle is calculated, it has to be taken into consideration in the equation of
particle motion. Hence Eq. (2.20) becomes

mp
dup
dt

= Fe . (4.3)

It is clear that the amount of work required for moving all particles is proportional to Np,
but that the amount of work required for computing all forces is proportional to Np

2, since it
involves determining all dipole interactions. This quadratic growth in cost has been a major
limitation on the size of the systems which can be handled, even by the fastest supercomputers.
Next section is dedicated to the numerical methods for computing electrostatic force Fe.

4.2 Numerical calculation of particle-particle electrostatic forces
In the 80s, significant progress was made in reducing the cost of the numerical calculation
of forces acting at a distance, such as electrostatic forces. The first breakthrough, allowing
simulations with orders of magnitude more bodies, came with the advent of the Particle-Mesh
(PM) approach introduced by Hockney & Eastwood (1988), which makes use of an underlying
grid to speed up the evaluation of the long-range potential. An evolution of this method is
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the PPPM or P3M method which consists in taking into account the short-range forces up
to a certain inter-particle distance, while the long-range contributions are included by the
particle-mesh procedure.

The P3M method requires modifying the long-range potential in Fourier space to avoid
double counting the short-range and long-range contributions and scales with O (N logN). This
type of methods are extremely efficient when the particle distribution is more or less uniform
and the required precision is relatively low. However, a severe degradation of performance is
observed when the bodies are clustered and when the required precision is high.

Ewald (1921) developed the homonymous summation approach in order to handle long-
range potentials accurately in periodic boxes. It consists in splitting the Coulomb potential into
long-range and short-range contributions, each of which converges exponentially fast (Perram
et al., 1988). The fast converging short-range potential is evaluated using direct pairwise sums
over the set of nearest neighbors within a cut-off radius and the slowly converging long-range
contribution is solved in reciprocal space. However, this approach remains computationally
demanding as the long-range contribution requires several Fourier transforms and the total
scheme scales like O

(
N

3/2
p

)
with an optimized cut-off radius (Deserno & Holm, 1998a,b).

In the 90s, a group of algorithms has been developed in the astrophysics community
which have come to be known as "tree codes" or "hierarchical codes" (Appel, 1985, Barnes
& Hut, 1986). They are designed to work well in a variety of settings, including ones where
there is a high degree of clustering. The basic idea is to replace groups of distant particles by
their centers of mass, and to compute the interactions between groups via this approximation.
Although some accuracy is generally sacrificed, the computational cost of these methods grows
as O (Np logNp) rather than O

(
N2
p

)
.

Along with the development of these tree codes, while working in fluid dynamics, van
Dommelen & Rundensteiner (1989) proposed a scheme for two-dimensional calculations which
is also O (Np logNp), but highly accurate. Although the physical intuition underlying their
method is the same, the increased accuracy is obtained by the application of asymptotic
analysis. A closely related scheme, the Fast Multipole Method (FMM) has been developed
by Greengard & Rokhlin (1987). It is also highly accurate, as it involves a more elaborate
asymptotic analysis and requires an amount of operations proportional to O (Np).

More recently, Kolehmainen et al. (2016) presented a hybrid approach that calculates the
electrostatic forces by calculating separately a long- and short range contribution. The former
comes from an Eulerian electric field solved using the Poisson equation, while the latter using
a truncated pairwise sum along with a correction to avoid double counting. Furthermore, Yao
& Capecelatro (2018) deployed a Fourier-based Ewald summation P3M method, to accurately
capture short- and long-range electrostatic forces that was compared to a classic PM method.
It was found that the PM method was capable of quantitatively capturing particle segregation
for like-charged particles. However, it was unable to capture particle chain and ring structures
observed using the P3M method for systems with oppositely charged particles.

4.2.1 Electrostatic periodicity

This simplest and most accurate method for the calculation of inter-particle electrostatic forces
consists in calculating the total electrostatic force on each particle by directly summing all the
Np−1 terms that correspond to the electrostatic interactions of a particle with all particles but
itself as seen by Eq. (4.2). However, one could use Newton’s 3rd law for such a dipole that gives
Fp→q = −Fq→p in order to perform one operation per dipole thus divide the computational
cost by two resulting in Np (Np − 1) /2 ∼ Np

2 operations, which is still forbiddingly expensive.
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L

L

Figure 4.2: Computational domain of interest Ω of length L contains Np particles. A
particle (black dot) interacts electrostatically with all Np − 1 other particles in the domain.

Periodic BCs for the particle phase correspond to an infinite domain. Therefore, to compute
the electrostatic forces it is necessary to take into account the contributions of all particles,
including those not really represented/computed in the computational domain.

Let a cubic computational computational domain Ω of length L as shown in Fig. 4.2.
Consequently, consider a super-domain of (finite) length (2Nper + 1)L, where Nper is the
number of domain images per direction i.e. the number of periodic layers around the domain
(see Fig. 4.3). If d is the number of (periodic) physical dimensions, then the total number of
periodic domain images including the original one is (2Nper + 1)d. In theory, periodic BCs are
exactly represented for Nper → ∞, however in practice Nper will be considered finite based
on a convergence criterion which entails a cut-off error (see Fig. 4.6), hence these BCs are
considered as quasi-periodic.

Apparently, since the computational domain (and its periodic images) is cubic, the periodic
super-domain is also cubic. This implies that for a finite number of periodic layers Nper, a
particle that is close to the borders of the domain interacts roughly with Nper periodic domain
images per direction towards that border, while with Nper + 1 images towards the opposite
direction. Evidently, for Nper → ∞ the ratio (Nper + 1) /Nper → 1 but for Nper finite, this
convergence is very slow as seen in Table 4.1.

Table 4.1: Slow convergence of periodic anisotropy

Nper 1 2 3 4 5 6 7 8 9 10
Nper+1
Nper

2.00 1.50 1.33 1.25 1.20 1.17 1.14 1.12 1.11 1.10

In fact, any particle with an offset from the domain center (essentially all particles) would
always interact with more particles located to the direction of that offset than the opposite
direction. Consequently, it would be subjected to a force that always points outwards of the
domain (towards the closest border) that would be proportional to the offset in question,
which implies an anisotropic distribution of long-range electrostatic forces. As a result, most
particles would accelerate towards the domain borders and due to periodicity re-enter from
the opposite side where they would re-accelerate outwards, which would eventually result in
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rpq
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c

Figure 4.3: Quasi-periodic BCs with Nper periodic layers. The computational domain Ω is
marked with bold contours, while its periodic images with thin ones. Two particles are put
in the domain for simplicity and for each one, a periodic cubic volume (gray contour) of
edge αc = (2Nper − 1)L is centered at its respective position, intersecting only 2Nper periodic
domain images per direction (hatched ones ignored for particle p).

an oscillation of the particles around the borders. This behavior is not physical and in order
to avoid it, each particle interacts only with the particles (real and images) that are located
within a periodic cubic volume that is centered at the particle position xp (see Fig. 4.3) and
has an edge αc = (2Nper − 1)L. In this way, the isotropy of the long-range electrostatic force
distribution is ensured as the particle in question lies in the center of a periodic cubic volume
that by definition extends to (xp ± αc/2). Hence, for tri-periodic BCs the periodic cubic
volume includes exactly (2Nper − 1)3 periodic domain images, thus (2Nper − 1)3Np particles
(real and images). As a result, Fq→p is the sum of all (2Nper − 1)3 − 1 interactions due to
particle q and its periodic images as

Fq→p = λQqQp

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

r†pq∥∥∥r†pq
∥∥∥

3 . (4.4)

where r†pq is the periodic particle distance vector that can be simply calculated as a translation
of the original distance vector as

r†pq = rpq + nL

where n = mî + nĵ + lk̂ is a translation vector for the periodic domain image with indices
l,m, n = −Nper, Nper and î, ĵ, k̂ denote the cartesian unit vectors. In addition, the periodic
volume intersects only with 2Nper periodic domain images per direction, an a priori knowledge
that allows for a small computational gain in terms of operations when computing periodic
Fq→p from Eq. (4.4). However, any computational gain becomes important when the number
of particles and time-steps is really big due to accumulation effect. Hence, in case of tri-periodic
BCs, to calculate the total electrostatic force exerted on a particle Fe, one should estimate
the sum of Eq. (4.2) over (2Nper − 1)3 (Np − 1) real and image particles in the periodic cubic
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volume. In practice, if the positions of Np particles in the domain Ω are known, then for the
calculation of Fe only Np− 1 distance vectors rpq are needed for the rest (2Nper − 1)3 (Np − 1)
particles in Ω and their images. For periodic BCs, the computational cost of the direct method,
C can be written, in terms of number of summations, as

C (Np, Nper) = (2Nper − 1)3Np (Np − 1)
2 ∼ 4Nper

3Np
2 .

Isotropy of the periodic (long-range) electrostatic forces

As explained earlier, it is very important for the correct representation of the simulated physics,
that the quasi-periodic BCs are applied in such a way that the isotropy of the long-range
electrostatic forces is ensured. To this end, one can calculate high order statistical moments
on fluctuations F′e. Since Fe is a vector field known at the particle positions, one can calculate
Lagrangian tensor 〈Fe′i.Fe′j〉p, which is a measure of the corresponding electric field (see Subsect.
4.3.4) and contains 9 elements

〈Fe′i.Fe′j〉p =



〈Fe′x2〉p 〈Fe′x.Fe′y〉p 〈Fe′x.Fe′z〉p
〈Fe′y.Fe′x〉p 〈Fe′y2〉p 〈Fe′y.Fe′z〉p
〈Fe′z.Fe′x〉p 〈Fe′z.Fe′y〉p 〈Fe′z2〉p


 (4.5)

whose intensity can be defined as

F 2 =
〈Fe′x2〉p + 〈Fe′y2〉p + 〈Fe′z2〉p

3 .

If the long-range electrostatic forces are isotropic, the following set of equations is to be satisfied

〈Fe′x
2〉 = 〈Fe′y

2〉 = 〈Fe′z
2〉 = F 2 (4.6a)

〈Fe′i.Fe′j〉 = 0, ∀i, j = x, y, z, i 6= j . (4.6b)

To verify this, a case study has been considered with the following configuration

ρp = 2, 750 kg/m3 Np = 10, 000 L = 2π m Qp = 5×10−9C Nper = 1 .
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(a) Diagonal elements Eq. (4.6a).
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Figure 4.4: Time evolution of Lagrangian tensor of electrostatic forces 〈Fe′i.Fe′j〉p.
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The time evolution of the diagonal and off-diagonal components of the Lagrangian
electrostatic forces tensor 〈Fe′i.Fe′j〉p is presented in Fig. 4.4. It seems that Eqs. (4.6) are
satisfied, which entails that the periodic electrostatic forces are isotropic.

Convergence of the periodic (long-range) electrostatic forces

Once the concept of periodic layers and volume is well established, the inevitable question
rises: how many periodic layers Nper are needed to achieve convergence of the quasi-periodic
electrostatic force calculation? Theoretically, from the point of view of a particle in the periodic
volume, as more particle images are taken into account around it, there is a cut-off distance
after which the long-range electrostatic forces that are exerted on it tend to cancel out as
Nper → ∞. As more periodic domain images are taken into consideration, a particle that
lies in the computational domain interacts with more particles ∝ Nper

3 that are placed in an
increasingly greater distance

∥∥∥r†pq
∥∥∥ ∝ Nper. One can deduce that the electric potential energy

stored in a particle, ue can be calculated Lagrangianly as

ue = λQp

Np∑

q=1
q 6=p

Qq

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

1∥∥∥r†pq
∥∥∥
∝ Nper

2 (4.7)

which implies that the particle electric potential energy diverges quadratically for tri-periodic
BCs as shown by Fig. 4.5 (left). As far as the total electrostatic force on a particle is
concerned, the same dynamics are in place due to periodicity, however it should be noted that
Fe ∝ 1/‖rpq‖2 ∝ 1/Nper

2. In addition, although the number of electrostatic interactions scales
with Nper

3, the electrostatic force converges for Nper →∞ due to its vectorial nature and the
symmetry of periodicity. From Eq. (4.2), one can deduce that

Fe = λQp

Np∑

q=1
q 6=p

Qq

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

r̂†pq∥∥∥r†pq
∥∥∥

2 ∝
Nper∑

m=−Nper∣∣r†pq,i
∣∣≤αc

f̂ (m)
e = fe. (4.8)

In fact, Fig. 4.5 (right) shows that electrostatic forces converge very quickly for Nper ≥ 2.
This convergence is sufficient to correctly simulate periodic particle-particle electrostatic
interactions, albeit the divergence of the electric potential energy, as Fe drives particle motion
(see Eq. (4.3)).
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Figure 4.5: Average particle electric potential energy (left) and average norm of the elec-
trostatic force (right) with regard to the number of periodic domain images for Np = 100.
Quadratic divergence is observed for the former, while convergence for the latter at Nper ≥ 2.
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Admittedly, the choice of a finite Nper entails a cut-off error. To estimate it, simulations
have been performed with the same distribution of Np particles for an increasing number of
periodic layers Nper. Considering the simulation with the maximum number of periodic layers
Nmax
per as the simulation of highest fidelity, the relative error of the total electrostatic force for

each particle p at t = t0, εNperp (xp, t0) has been calculated for each number of periodic layers
Nper as

εNperp (xp, t0) =

∥∥∥FNper
e (xp, t0)

∣∣∣
direct

− FNmax
per

e (xp, t0)
∣∣∣
direct

∥∥∥
∥∥∥FNmax

per
e (xp, t0)

∣∣∣
direct

∥∥∥
.

Figure 4.6 shows that a fast convergence is achieved for Nper ≥ 2, while for Nper ≥ 4 absolute
convergence is observed. However, the cut-off error for Nper = 1, albeit considerable, seems to
be less than 20% for approximately 90% of the particles in the computational domain.
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Figure 4.6: Relative cut-off error distribution of the electrostatic forces exerted on the
particles for one time-step with regard to number of periodic layers Nper for direct algorithm
with Np = 100. Reference simulation is conducted with Nper = 5. A different shade of grey is
attributed to the percentage of particles for which the cut-off error is between 0%, 1%, 5%,
10%, 20% and 50%. The red dashed line marks the cost of simulation. Sufficient convergence
is observed for Nper ≥ 2.

A way to understand the effect of the long-range field of electrostatic forces is to calculate
the total electrostatic force that is exerted on a particle coming from particles that are found
in an increasing distance.

Fe(r) =
Np∑

q=1,q 6=p
−∆r/2≤‖rpq‖−r≤∆r/2

Fq→p (rpq)

Figure 4.7 shows that the contribution of the long-range part of electrostatic forces becomes
negligible after a specific distance. The fact that this distance is smaller than half the size of
the computational domain is what allows to correctly assume periodic boundary conditions
in this system of charged particles, as well as justifies the choice of Nper = 1, albeit the local
cut-off error.
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Figure 4.7: Total electrostatic force exerted on a particle due to interaction with particles
that are found within an annular shell of between radius r ±∆r/2 with ∆r = L/100.

Furthermore, Fig. 4.8 shows the time evolution of several statistical moments in the
transient and stationary regime. The observed attenuated oscillatory behavior is examined in
Subsect. 4.3.4 where it occurs for considerably bigger time scales, as turbulence enhances the
dampening of this response. It seems that the cut-off error for Nper = 1 affects mostly the
transition to the statistically steady regime but not the statistical average after stationarity is
reached.
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Therefore, it can be considered negligible for a 1st order approximation, as it only
affects higher-order dynamics of the granular flow, a conclusion that is in agreement with the
conclusions of Bouchet & Hernquist (1988). In Table 4.2, statistical moments of the granular
flow are presented for decreasing number of periodic layers Nper. Values for Nper = 3 are
considered as the reference and relative errors are calculated for Nper = 1, 2. Despite the

Table 4.2: Cut-off error of quasi-periodic BCs

Nper
q2
p 〈‖Fe‖〉p τ tp Dt

p

10−3[m2s−2] 10−2[ms−2] [s] 10−2[m2s−1]

1 4.4628 3.8007 5.4487 1.6496
0.45% 0.51% 4.14% 3.52%

2 4.4496 3.7747 5.4678 1.6320
0.15% −0.18% 4.50% 1.85%

3 4.4429 3.7816 5.2322 1.5935

significant cut-off errors observed in Fig. 4.6, the relative errors on the statistical moments are
negligible (< 5%). Thus, it seems reasonable for the simulations carried out in this work, to
choose Nper = 1. This way, the domain is replicated only one time towards each direction,
which means that each particle of the computational domain is centered in a cubic periodic
volume of length L in which it interacts with Np − 1 particles. This choice of Nper enables
calculations of a big number of particles 104 ≤ Np ≤ 106 within reasonable computational
time and acceptable statistical error.

4.2.2 Pseudo-particle method
Let the computational domain Ω be discretized in Ne cells per direction (see Fig. 4.9) of length
∆xf = L/Ne, so that each cell Ωk contains Nk = ∑Np

n=1 δ
(n)
k ∼ Np/Ne

3 particles. Evidently, it
is reasonable that Nk � 1 which leads to a maximum number of cells Nmax

e defined as

Nmax
e = Np

1/3 . (4.9)

Each Ωk forms a pseudo-particle, which is a cluster of particles "viewed" from distance as one
particle of equivalent charge Qeqk and position xeqk . The concept of pseudo-particles, inspired
by Barnes & Hut (1986), is defined in Eq. (4.10)-(4.12) and is illustrated in Fig. 4.9.

Qeqk =
Np∑

n=1
δ

(n)
k Qp (4.10)

xeqk = 1
Qeqk

Np∑

n=1
δ

(n)
k Qpxp (4.11)

where δ(n)
k = δ

(
x(n)
p − xck

)
is the indicator function defined as

δ
(
x(n)
p − xck

)
=
{

1, if n ∈ Ωk

0, otherwise.
(4.12)

and xck is the center of pseudo-particle cell Ωk.
For each particle n, its neighborhood V (n)

p of size ∆xv = (2Nv + 1) ∆xf is defined as the
ensemble of (2Nv + 1)3 cells around it. Nv is the number of cells for which the neighborhood
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2Nv + 1

Ne L

Figure 4.9: Computational domain Ω of length L is discretized in Ne cells per direction.
For each particle p (black dot), its neighborhood Vp (bold gray) spans 2Nv + 1 cells to each
direction. Pseudo-particles (gray circles) are defined for every cell Ωk outside of Vp.

spans towards every direction x, y, z (excluding the cell that contains the particle), i.e. the
number of layers of direct computation around the cell of a particle. Therefore, each particle
interacts directly with all particles in neighborhood Vp (short-range interaction), as well as with
the pseudo-particles that are outside of Vp (long-range interaction). This allows to accurately
calculate the short-range part of Fe, which contains most of the information, while committing
an acceptable approximation error for the long-range part. It should be noted that the total
approximation error introduced from such a decoupling, depends both on the number of cells,
Ne but also on the number of neighbourhood cells, Nv.

Observing Fig. 4.9, it is evident that for Nv = 0 the particle neighbourhood is limited
to the very cell to which it belongs. This implies that if the particle in question is close to
the borders of its cell, it would interact in proximity with the pseudo-particle of the adjacent
cell which would be a violation of the very concept of pseudo-particles. For this reason, the
pseudo-particle algorithm can provide reasonable results only for Nv > 0 (see Fig. 4.15).

The electrostatic force Fk→p acting on particle p due to pseudo-particle Ωk is calculated
by treating Ωk as another particle, meaning that Qq is replaced by Qeqk and xq by xeqk in
Eq. (4.1). Hence, the total electrostatic force on particle p is calculated by performing direct
and pseudo-particle summations inside and outside of Vp, respectively. Therefore, the total
electrostatic force exerted on a particle is calculated as

Fe =
Ne3∑

k=1
k∈Vp

Nk∑

q=1
q 6=p

Fq→p

︸ ︷︷ ︸
short-range

(2Nv+1)3 Np

Ne3−1 terms

+
Ne3∑

k=1
k/∈Vp

Fk→p

︸ ︷︷ ︸
long-range

Ne3−(2Nv+1)3 terms

. (4.13)

Quasi-periodic boundary conditions

First of all, the following analysis is based on conclusions deduced in Subsect. 4.2.1 con-
cerning the quasi-periodic BCs (isotropy and convergence of long-range interactions). Let
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the computational domain Ω be discretized in Ne cells per direction. Evidently, the direct
neighbourhood Vp that spans 2Nv + 1 cells should fit inside the periodic cubic volume that
spans (2Nper − 1)Ne cells (as shown by Fig. 4.10), thus Nv and Ne must satisfy the inequality

2Nv + 1 ≤ (2Nper − 1)Ne − 1 . (4.14)

As explained in Subsect. 4.2.1, the super-domain needed to impose periodic BCs for each
particle is of length 2NperL, inside of which the periodic cubic volume of length αc =
(2Nper − 1)L is defined as shown in Fig. 4.10. The electrostatic force acting on a particle p
due to a pseudo-particle Ωk, Fk→p is the sum of (2Nper − 1)3 interactions due to Ωk and its
periodic images as

Fk→p = λQeqk Qp

Nper∑

l,m,n=−Nper∣∣r†
kp,i

∣∣≤αc

r†kp∥∥∥r†kp
∥∥∥

3 (4.15)

where rkp = xp − xeqk is the distance vector between particle p and pseudo-particle Ωk.
However, the notion of periodic cubic volume centered on each particle in combination

with the pseudo-particles defined in each cell, introduces a subtle complexity regarding the
treatment in the borders of the periodic cubic volume in question. In Fig. 4.10 one can observe
that inevitably the borders of the periodic cubic volume will intersect specific cells (for each
particle). Since each pseudo-particle Ωk has an associated equivalent position xeqk and charge

2Nper

Ne

2N
v

+
1L

Figure 4.10: Domain of interest Ω (bold black) of length L, periodic domain images (thin
black) with Nper = 2 and periodic cubic volume (thin gray) of edge αc = 3L. Neighborhood Vp
(bold gray) with Nv = 1 could span over several images of Ω. Every pseudo-particle cell Ωk

can be represented by a rectangle of equivalent charge density ρeqq,k centered at xkeq that extends
up to the closest cell borders. Thus, a cell that is intersected by the periodic volume borders
at position xc can be represented by a section of the corresponding rectangle (hatched).
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Qeqk , a simple solution could be to include pseudo-particles that lie inside the periodic cubic
volume based on their position xeqk .

In fact, each pseudo-particle represents a large number of particles Nk, thus a significant
contribution in Fe. As a result, considering a uniform distribution of particles, every particle
that has a significant offset from its cell center would be subjected to an electrostatic force that
always points outwards of the domain (towards the closest border) that would be proportional
to the offset in question, which implies an anisotropic long-range electrostatic force distribution.
As a result, most particles would accelerate towards the cell borders and ultimately present a
non physical behavior similar to that caused by an anisotropic application of the periodic BCs
explained in Subsect. 4.2.1 this time on the level of the cells.

To ensure the isotropy of the long-range electrostatic interactions on the cell level, it is
imperative that a smarter treatment should be put in place for the border cells of the periodic
volume. Based on the work of Bouchet & Hernquist (1988), each pseudo-particle Ωk can be
represented as a rectangular charged cloud of particles Xk of total equivalent electric charge
Qeqk that is centered at xeqk and extends up to the closest cell borders. That means that this
pseudo-particle rectangle, has an equivalent (constant) charge density ρeqq,k defined as

ρeqq,k = Qeqk
∆xk∆yk∆zk

where ∆xk are the dimensions of pseudo-particle rectangle Xk (see Sect. B.1). Evidently,
for each particle the intersected cells can be easily found as the periodic volume intersects a
periodic domain image at position xc, whose components can be calculated as

xc,i = (xp,i + αc) mod L .

Once the intersected pseudo-particle cells are identified, the correct section of the corresponding
pseudo-particle rectangle has to be taken into account which depends on each translation to
account for periodicity. Finally, using Eq. (4.15) for Fk→p in Eq. (4.13), with the appropriate
corrections for border cells, the total electrostatic force exerted on a particle can be calculated
using the pseudo-particle method and quasi-periodic BCs.

Computational cost and performance

Therefore, for each particle in Ω we take into consideration ∼ (2Nv + 1)3Np/Ne
3 direct

interactions and (2Nper − 1)3Ne
3 pseudo-particle interactions, considering the cost of pseudo-

particle intersections negligible. As a result, the computational cost with periodic BCs becomes

C (Np, Ne, Nv, Nper) = Np


(2Nv + 1)3Np/Ne

3 − 1︸ ︷︷ ︸
short-range

+ (2Nper − 1)3Ne
3 − (2Nv + 1)3

︸ ︷︷ ︸
periodic long-range


 (4.16)

where it is evident that the computational cost of the (costly) short-range part is proportional
to the number of particles Np and the number of cells in the neighbourhood ∼ Nv

3, while it
is inversely proportional to the number of cells Ne

3. However, the (smaller) long-range part
is proportional Ne

3. Therefore, the dependence of C (Np, Ne, Nv, Nper) on Ne is not evident.
Figure 4.11 shows that if Nv = cst, as Ne increases it is evident that for Ne ∼ Np

1
3 ⇒ Nk ∼ 1

each cell Ωk would contain at most one particle, hence the method would degrade to the direct
method in terms of performance.
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Figure 4.11: Theoretical computational cost of periodic pseudo-particle method for Nv = 1.

On the other hand, for smaller values of Ne, each cell would contain a large number of
particles Nk, which means that a big portion of the electrostatic force calculations would be
performed inside the neighbourhood as the size of each cell ∆xf would be relatively big, thus
the neighbourhood size ∆xv would also be big. This means that for every number of particles
Np, there is an optimal number of cells Nopt

e ∈ [(2Nv + 2) / (2Nper − 1) , Np
1/3] that minimizes

the function of the computational cost of Eq. (4.16) (see Sect. B.2) which can be calculated as

Nopt
e = Np

1
6

(
2Nv + 1

2Nper − 1

) 1
2

.

In this case the optimal computational cost would be

Copt (Np, Nv, Nper) = Np

[
2
√
Np (2Nper − 1)3 (2Nv + 1)3 − (2Nv + 1)3 − 1

]
∼ Np

3
2Nv

3
2Nper

3
2 .
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Figure 4.12: The simulation time (1 ∆t) for direct and pseudo-particle algorithm (Nv = 1
and Nper = 1) normalized by its maximum value (for direct algorithm) is plotted against an
increasing number of particles for optimal number of cells Nopt

e .
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Figure 4.12 shows that the calculated order of complexity ∼ Np
1.5 is of similar order

of magnitude than the expected theoretical one. The performance of the algorithm has
been calculated for an optimal number of cells Nopt

e for every level of particle number Np,
as the algorithm has merit only for such a configuration. In addition, the observed slight
overestimation of the anticipated theoretical value comes from the special treatment of the
borders of the cubic volume in order to account for periodic BCs.

Approximation error analysis

The direct method is considered to be of high fidelity as it allows for an exact calculation
of the electrostatic forces, except for the cut-off error due to quasi-periodic BCs. Hence the
results obtained with this method constitute a reference for simulations using an approximative
method such as the pseudo-particle method. Therefore, the relative error of total electrostatic
force estimation for particle p at t = t0, εNep (xp, t0) has been calculated for each number of
cells per direction Ne as

εNep (xp, t0) =

∥∥∥∥FNe
e (xp, t0)

∣∣∣
pseudo

− FNper
e (xp, t0)

∣∣∣
direct

∥∥∥∥
∥∥∥FNper

e (xp, t0)
∣∣∣
direct

∥∥∥
.

Figure 4.13 shows that the committed error is quasi-constant for Ne < 10 and then it decreases
considerably for Ne ≥ 10. For small values of Ne each pseudo-particle would contain a large
number of particles Np/Ne

3, thus it would be a crude approximation of the cluster of particles
that it represents. However, at the same time the size of each cell ∆xf would be relatively big,
hence every such interaction would occur far away from the particle of interest at a distance
≥ ∆xv. Therefore, the errors observed are rather moderate as only ∼ 10% of particles have an
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Figure 4.13: Relative approximation error distribution with regard to number of cells Ne of
pseudo-particle algorithm for one time-step and Np = 10, 000. A different shade of gray is
attributed to the percentage of particles for which the approximation error is between 0%, 1%,
5%, 10%, 20% and 50%. The red dashed line shows the simulation time of the pseudo-particle
algorithm (Nv = 1, Nper = 1) normalized by that of the direct algorithm for the same case.

error 20% < εNep < 50%. Increasing the number of cells Ne reduces the number of particles
per cell Nk = Np/Ne

3. However, at the limit of Nk ∼ 1, where some cells contain at most one
particle while some are empty, some of them will be cut by the periodic volume resulting in a
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rather crude approximation of one particle via sections of the corresponding pseudo-particle
rectangle which entails a remaining error that is hard to eliminate.

4.2.3 Verification of the numerical methods
To verify the direct method, one can use Newton’s 3rd law that for a p − q electric dipole
states that the electrostatic force exerted on a particle p due to particle q is opposite of the
force exerted on particle q due to particle q, or Fp→q = −Fq→p. For direct algorithm and
quasi-periodic boundary conditions, every particle in the computational domain interacts
with (2Nper − 1)3Np particles (real and images). Therefore, theoretically the average of
electrostatic forces exerted on all Np particles of the computational domain should be zero,
or 〈Fe,i〉p = 0, hence this can be used as a verification criterion. In order to examine that,
the time evolution of the Lagrangian average of all three components of particle electrostatic
forces 〈Fe,x〉p, 〈Fe,y〉p, 〈Fe,z〉p are plotted in Fig. 4.14.
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Figure 4.14: Verification of electrostatic forces calculation using Direct method.

As far as the pseudo-particle method is concerned, the equality is not perfectly satisfied,
due to the approximation error from the pseudo-particle algorithm. The complexity of the
pseudo-particle method with quasi-periodic BCs, stems not only from the decoupling of
short- and long-range interactions (neighbourhood) but also from the notion of pseudo-particle
rectangles and their sections that are specific to each periodic domain image under consideration
(see Fig. 4.10). Therefore, in order to verify the electrostatic force calculation for each particle,
one can calculate the sum of all charges with which it interacts, including charges of actual
particles, pseudo-particles, and pseudo-particle rectangle sections. For each particle this sum
should be exactly equal to (2Nper − 1)3Np ×Qp in the case of an like-charged granular flow.
This has been verified for the presented simulations, so the developed pseudo-particle algorithm
and its extension for tri-periodic BCs is considered to be functioning according to its design.

4.2.4 Comparison of the numerical methods and configurations

Although the distribution of the approximation error εNep (xp, t0) seen in Fig. 4.13 provides a first
comparison of pseudo-particle and direct method, in order to better understand how the impact
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of the different numerical methods on the simulated physics, one has to examine characteristic
statistical moments calculated via simulations with different numerical methods/configurations.

To this end, several simulations of an like-charged granular flow have been performed with
Np = 104 particles using Direct (DIR) and Pseudo-Particle (PS) algorithms with Nper = 1
quasi-periodic BCs. As stated in Subsect. 4.2.2, the number of cells Ne is dictated by the
number of particles so as to have a desired average number of particles per cell Nk. For
example, Nk > 10 would imply that Ne < (Np/10)1/3; for Np = 104 this means that Ne < 10.
Thus for simulations using the pseudo-particle algorithm, different numerical configurations
are tested for Ne = 4, 8 and Nv = 1, . . . , Nmax

v . For a given number of cells Ne, the maximum
number of short-range neighbourhood cells, Nmax

v is dictated by inequality (4.14). Table 4.3
contains Nmax

v for increasing number of periodic layers Nper and various numbers of cells Ne.

Table 4.3: Maximum number of short-range neighbourhood cells Nmax
v

Ne

Nper 1 2 3

4 1 5 9
8 3 11 19

To begin with, Fig. 4.15 shows the need for Nv > 0 in pseudo-particle algorithm, as it
was previously stated in Subsect. 4.2.2 which underlines the importance of a high-fidelity
calculation of short-range electrostatic interactions. It is observed that the PDF of electrostatic
forces obtained with pseudo-particle algorithm and Nv = 0 is substantially different from the
one obtained using direct method which is considered the high-fidelity reference simulation. On
the other hand, the shape of the PDF of electrostatic forces for pseudo-particle algorithm with
Nv > 0 matches the one obtained via the direct method. Apparently as number of cells Ne
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Figure 4.15: PDF of x-component of electrostatic forces for direct and pseudo-particle
algorithm for various Ne with Nv ≥ 0. Choice Nv = 0 should be avoided as it leads to a
substantial error in the calculation of particle electrostatic forces.

increases, a greater number of cells Nv is needed into the short-range neighbourhood as the cell
size decreases in order to maintain the same neighbourhood size ∆xv. In Table 4.4 statistical
moments of the granular flow are presented for different numerical algorithms/configurations.
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Their value using direct algorithm is considered as the value of reference and relative errors
are calculated for each numerical configuration of the pseudo-particle algorithm. Despite the
non-negligible approximation error observed in Fig. 4.13, it seems that it is reasonable to
choose Ne = 8 and Nv = 1 for the simulations of Np = 10, 000 particles carried out in this
work, considering the trade-off between the minimization of the approximation error and
computational cost.

Table 4.4: Approximation error for different numerical algorithms/configurations

Algorithm q2
p 〈‖Fe‖〉p τ tp Dt

p

10−3[m2s−2] 10−2[ms−2] [s] 10−2[m2s−1]

PS Ne = 8 4.8537 3.9724 5.4897 1.7968
Nv = 1 8.76% 4.52% 0.75% 8.92%

PS Ne = 4 4.4839 4.0320 5.2013 1.7499
Nv = 1 0.47% 6.09% −4.54% 6.08%

PS Ne = 8 4.6288 3.8561 5.3865 1.7002
Nv = 2 3.72% 1.46% −1.14% 3.07%

PS Ne = 8 4.6026 3.8371 5.3710 1.7040
Nv = 3 3.13% 0.96% −1.43% 3.30%

DIR 4.4628 3.8007 5.4487 1.6496

4.3 Numerical simulation of dry like-charged granular flows
This section includes an analysis of numerical simulations of dry like-charged granular flows
that aims to characterize the particle-particle electrostatic interactions without the influence
of hydrodynamic drag or gravity forces.

4.3.1 Configuration of particle electrostatics
In this work, all particles are considered to bear equal positive charges. Practically, particles
are charged via the phenomenon of triboelectrification (Grosshans & Papalexandris, 2017)
which occurs when particles collide with walls and other particles. In the simulated periodic
particulate flow, it is assumed that particles have had sufficient time to redistribute their
charges among them via collisions. However, collisions and triboelectrification are neglected in
this study because of the small solid volume fraction.

In fact, the particle phase in these numerical simulations has the characteristics described
in Subsect. 2.2.4. Since particle diameter is smaller than the Kolmogorov scale, particles are
numerically treated under the point-particle approximation. As such, the particle charge Qp is
considered to be concentrated in one point (particle’s center of mass) defined as Qp = πdp

2×ρQ,
where ρQ the particle surface charge density.

It should be noted here, that according to Hamamoto et al. (1992) there is a saturation limit
of surface charge density for small spheres, which can be translated (via dp) to a corresponding
limit for point-particle charges. For the configuration presented in this work, this value can
be estimated to be approximately 4× 10−9 C. The various particle charges that have been
considered in all numerical simulations, all given in terms of a reference charge Q0 = 1×10−9C
are of the same order of magnitude as seen in Table 4.5.
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Table 4.5: Properties of particle electrostatics

Parameters Symbol Value Units
Reference particle density ρ0 100 kg/m3

Reference electric charge Q0 1× 10−9 C
Pseudo-particle cells Ne 8 -
Number of neighbourhood cells Nv 1 -
Number of periodic layers Nper 1 -
Time-step ∆t 5× 10−3 s

4.3.2 Coulomb collisions and electrostatic interactions
To analyze the effects of the charges, one should define a characteristic time scale of electrostatic
interactions. This time scale is the duration of particle velocity decorrelation under the sole
presence of electrostatic interactions. The mechanism of this velocity decorrelation is the
Coulomb collision, which is an elastic collision between two charged particles interacting
through their own electric field. In order to understand a Coulomb collision of two particles,
we can imagine that they undergo an elastic collision with an effective Coulomb diameter dCpq
as depicted by Fig. 4.16. These interactions are well resolved in the DNS carried out in this
work and not modeled. The effective Coulomb diameter dCpq is a notion typically found in cold

p q

Fq→p Fp→qup uq

p q

Fq→p Fp→qup uq

p q

Fp→qFq→p uqup

Figure 4.16: Schematic of a Coulomb collision of two like-charged particles and notion
of Coulomb diameter. Particle diameter dp is depicted with a solid dark gray circle, while
(fictitious) effective Coulomb diameter with a dashed black circle.

plasma (Callen, 2003) and in this case it is defined as

dCpq = λ
QpQq

mpq〈‖wpq‖〉p2 (4.17)

where the Lagrangian average of the norm of the relative particle velocity can be approximated
by

〈‖wpq‖〉p =
√

16
π

2
3q

2
p . (4.18)

Additionally, mpq = mpmq/ (mp +mq) is the reduced mass of a pair of particles p and q. If
the kinetic energy of the particles is very large with regard to the electric potential energy, the
deviation from the initial trajectories of the colliding particles is small. Therefore, dCpq ≤ dp
and particles would undergo a hard sphere collision, however he latter is not treated in our
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simulations, as explained in Subsect. 2.2.4. This length scale is also used to determine the size
of the neighborhood ∆xv as it should be 10 times bigger than the effective Coulomb diameter
dCpq, ∆xv ≥ 10dCpq. Thus, for a given number of cells Ne, one can deduce the minimum number
of cells Nmin

v in the neighborhood of short-range interactions as

Nmin
v =

⌈(
5
Ned

C
pq

L
− 1

2

)
.

The Coulomb collision frequency, νCpq is defined as

νCpq =
√

2npSCpq〈‖wpq‖〉p

where SCpq = πdCpq
2
/4 is the effective section of the Coulomb collision. Therefore the character-

istic time scale of Coulomb collisions is τCpq = 1/νCpq which can be finally written as

τCpq = 4√
2π

mpq
2

λ2npQp
2Qq

2

( 32
3πq

2
p

) 3
2
.

Therefore in mono-disperse like-charged granular flows, mpq ∼ mp/2 and Qp2Qq
2 ∼ Qp

4, so
the characteristic time of Coulomb collisions can be simplified to

τCpq '
2√
2

mp
2

λ2Qp
4np

(
q2
p

) 3
2 . (4.19)

An estimation of the characteristic time scale of electrostatic interactions, τel can be obtained
via a simple dimensional analysis (as shown in Sect. C.1), using particle flow properties, that
allows to write

τel = 1
Qp

√
2mp

λnp
. (4.20)

Dimensional analysis

To verify this, a numerical experiment is conducted, which consists of several DNS of like-
charged granular flows. The particle characteristics are the ones described in Subsect. 2.2.4
and we consider as base parameters the following

Qp = 5Q0 mp = 1.80× 10−4 kg np = 40.314 m−3 .

Only one of the parameters Qp,mp, np is modified at a time, while the others are kept constant.
The values for mp can be deduced from those for ρp of the 5 first particle classes found in
Table 2.4 considering constant particle diameter dp. Particle number density np depends both
on the number of particles Np and the domain size L. Therefore, keeping dp and L constant,
the values of parameters Qp, ρp, Np are chosen in the following intervals

Qp ∈ {1, 2, 3, 4, 5, 6}×Q0 ρp ∈ {200, 100, 50, 27.5, 15}×ρ0 Np ∈ {10, 25, 50, 100, 150}×103 .

For every simulation, the Lagrangian particle integral time scale τ tp can be calculated and
since in such a flow particles move only due to inter-particle electrostatic interactions, it
constitutes the characteristic time scale of electrostatic interactions. In this way, the effect of
these parameters on τ tp can be isolated as shown by Fig. 4.17.
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Figure 4.17: Lagrangian particle integral time scale τ tp for like-charged granular flow.

Considering Coulomb collisions a good physical interpretation of inter-particle electrostatic
interactions, in order for τel to be a good candidate for the characteristic time scale of
electrostatic interactions, it should be of the same order of magnitude as the characteristic
time of Coulomb collisions, τCpq. Thus, combining equations Eq. (4.19) and Eq. (4.20) one can
deduce an estimation for particle agitation q2

p in like-charged granular flows as

q2
p ' λ

Qp
2np

1
3

mp
(4.21)

which in turn is confirmed by simulation results presented in Fig. 4.18.
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Figure 4.18: Particle agitation q2
p for like-charged granular flow.

Finally, Eq. (4.17) can now be simplified by replacing 〈‖wpq‖〉p with its definition from Eq. (4.18)
and consequently q2

p from Eq. (4.21) that leads to

dCpq '
3π
16np

− 1
3 ≈ 0.5891np−

1
3 (4.22)

which implies that the effective Coulomb diameter in like-charged granular flows does not
depend on the particle mass for like-charged granular flows. Although this is not straightforward,
for such flows it can be explained by the fact that particle agitation q2

p depends solely on inter-
particle electrostatic interactions. This means that particles are all agitated simultaneously
in the same way via a self-similar repulsion mechanism that forces particles to the same
homogeneous equidistant distribution. In fact, np−1/3 = L/Np

1/3 denotes the distance between
two particles if all Np particles are put in an equidistant distribution in the cubic domain
of length L, as Np

1/3 would be the number of particles along length L. Particle mass only
affects the level of this agitation (see Eq. (4.21)) and as a result, how fast this flow expands
and contracts (see Eq. (4.19)) but not how far the electrostatic interactions extend.
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Lastly, this analysis also allows to make an estimation of the magnitude of electrostatic
forces exerted on the particles, or equivalently of the particle acceleration due to electrostatic
forces, Fe/mp. Its magnitude can be estimated using characteristic time and length scales
which ultimately yields

〈‖Fe‖〉p
mp

' 2
dCpq
τel2
≈ λ2

3
Qp

2np
2
3

mp
= 2

3q
2
pnp

1/3 (4.23)

which in turn is confirmed by simulation results presented in Fig. 4.19.
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Figure 4.19: Electrostatic particle acceleration 〈‖Fe‖〉p/mp for like-charged granular flow.

These observations are confirmed in Table 4.6 that shows time and length scales for
different particle classes and Qp = 5Q0.

Table 4.6: Characteristic scales of Coulomb interactions for Qp = 5Q0. Particles interact
with each other having an effective Coulomb diameter dCpq/dp ' 34.36.

class τel νCpq q2
p q2

p × mp

λQp2np
1
3

〈‖Fe‖〉p
mp

× τel
2

2dCpq
τel/τ

t
p

δl/dCpq
[s] [s−1] [10−2m2s−2] [10−2]

1 17.00 0.0507 0.0652 1.107 1.162 1.190 3.299
2 12.02 0.0689 0.1339 1.137 1.146 1.124 2.240
3 8.50 0.0941 0.2740 1.164 1.147 1.134 1.530
4 6.30 0.1205 0.5157 1.205 1.147 1.147 1.078
5 4.66 0.1530 0.9866 1.257 1.166 1.039 0.747

4.3.3 Time-step sensitivity analysis
It is evident that in order to perform simulations with adequate resolution of Coulomb collisions,
the simulation time-step should be appropriate in order to be able to capture correctly the
modification of particle trajectories. Otherwise, approaching particles could fail to change
trajectories so that they skip their (Coulomb) collision and thus re-accelerate towards the
other opposite direction as seen in Fig. 4.20. Furthermore, we risk having superimposed
particle dipoles that would result in a non-physical contribution Fq→p to the short-range
sum of Eq.(4.13). In any case, an inadequate time resolution seems to lead to a considerable
overestimation of particle agitation. Even with an adequate time-step, it has been observed
that for weak electrostatic forces, heavy particles can have a very small effective Coulomb
diameter, sometimes even smaller than the physical one, dCpq < dp and as a result it is possible
that particles undergo physical collisions. In this case, since physical collisions are not resolved



4.3 Numerical simulation of dry like-charged granular flows 93

tn+∆t
p q

Fq→p Fp→qup uq

tn + ∆t
pq

upuq

tn + 2∆t
pq

Fp→q Fq→pupuq

Figure 4.20: Under-resolved Coulomb collision. Contribution of superimposed particle dipole
to the total electrostatic force exerted on the particles is neglected as it is non-physical.

in our simulations as explained in Subsect. 2.2.4, particles can overlap. For such a rare (in such
dilute flows), but still probable event, we have taken the decision not to take into account the
contribution of Fq→p to the short-range sum of Eq.(4.13) as it would result in a non-physical
particle acceleration.
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Figure 4.21: Time-step convergence.

In fact, the particle mean free path δl = 〈‖wpq‖〉p∆t should be several times smaller than
the effective Coulomb diameter dCpq, hence the important parameter is dCpq/δl which is found for
every particle class in Table 4.6. This leads to the definition of a particle CFL-like condition as

〈‖wpq‖〉p∆t
max{dCpq, dp}

≤ 0.01 (4.24)

which allows to calculate a time-step threshold ∆tmax ≤ 0.01×max{dCpq, dp}/〈‖wpq‖〉p, below
which the resolution of electrostatic interactions is ensured. Figure 4.21 shows the convergence
of q2

p for decreasing time-steps presented on Table 4.7, where it is clear that convergence for
particle class #4 is achieved for dCpq/δl ∼ 100 at ∆t ≤ 1× 10−2s.
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Table 4.7: Time-step convergence

∆t
dCpq/δl

q2
p 〈‖Fe‖〉p τ tp Dt

p

10−2[s] 10−3[m2s−2] 10−2[ms−2] [s] 10−2[m2s−1]

5.0 23.60 5.2190 4.0177 9.2371 2.7086
7.53% 1.14% 68.26% 50.75%

2.5 47.21 4.9416 3.9821 5.3464 1.8587
1.81% 0.24% −2.61% 3.45%

1.0 118.02 4.8562 3.9717 5.4367 1.7934
0.05% −0.02% −0.97% −0.19%

0.5 236.03 4.8537 3.9724 5.4897 1.7968

4.3.4 Particle motion due to particle-induced electric field

In a charged granular flow, the only source of energy is the electric potential energy stored in the
particles due to their electric charge and initial position. Figure 4.22 shows an instantaneous
snapshot of the like-charged particle cloud where the velocities and electrostatic accelerations
have been plotted for a qualitative appreciation of such a flow.

Figure 4.22: Instantaneous snapshot of a dry like-charged particle cloud for τel = 8.5s and
∆x = L/10. Particle velocities are depicted with blue color, while electrostatic forces with red.

To get a better understanding of the physics of charged granular flows, one can begin
by examining particle agitation. Figure 4.23 shows that for different levels of particle inertia,
particle agitation follows an attenuated oscillation till it reaches a statistically steady value
in the stationary regime. The observed oscillations are due to the expansion-contraction
motion of the like-charged particle cloud due to the combination of repulsive electrostatic
forces (same-sign charges) and periodic BCs.
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Figure 4.23: Time evolution of particle agitation for various levels of particle inertia.

Under the pdf framework for gas-particle flows presented by Simonin (2000) described in
Chapter 3, the equation of the variation of particle agitation q2

p can be written as

∂

∂t
q2
p =
〈F′eu′p〉p
mp

(4.25)

where the right-hand side 〈F′eu′p〉p is the particle-induced electrostatic power, which in the
case of charged dry granular flows is equal to the time derivative of the work of electrostatic
forces. By performing a simple dimensional analysis, the particle-induced electrostatic power
Feup is proportional to the particle-induced electric potential φ.

Feup ∝
Qp
τel
× φ(xp) .

The validity of the power balance in Eq. (4.25) is verified by Fig. 4.24 for various levels of
particle inertia, where the same oscillation patterns are observed. In the stationary regime,
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Figure 4.24: Terms of Eq. (4.25) in transient regime for increasing particle inertia.

∂q2
p/∂t = 〈F′eu′p〉p/mp = 0, which is in agreement with the minimum potential energy principle

that is valid for conservative force fields, such as the electrostatic potential ue. According
to this principle, the system of charged particles is set to motion due to their initial electric
potential energy (due to random initial position distribution), a part of which transforms to
kinetic energy. Then, the system of particles tends to a (statistical) equilibrium of minimum
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electric potential energy which implies that particles try to separate themselves as much as
possible, hence the distance analytically predicted by Eq. (4.22). The effect of particle inertia
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Figure 4.25: Average particle agitation and dispersion coefficient for various particle inertia.

on the average values of q2
p and Dt

p in the stationary regime is found in Fig. 4.25. Specifically,
particle agitation and dispersion is found to decrease for increasing particle inertia. This is
expected, as the initial electric potential energy stored in the particles does not depend on
inertia, so it is the same for all particle classes leading to heavier particles experiencing lower
levels of kinetic energy.

In Fig. 4.26 we compare the analytical models for q2
p of Eq. (4.21) and the theoretical

Tchen-Hinze expression for Dt
p of Eq. (3.22). It seems that the latter is predicted accurately

from the Tchen-Hinze theory, while the former is overestimated by the model based on
macroscopic granular flow characteristics, but remains the same order of magnitude. This is
probably due to accumulation of numerical error, as dry simulations have been run for long
physical times in order to reach a stationary regime. So, since there is no dissipation of the
particle motion any numerical error that comes from under-resolution of Coulomb collisions
(can always happen even if the time-step is small) can accumulate over time and result in this
overestimation (see low inertia q2

p in Fig. 4.23).
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Figure 4.26: Average particle agitation and dispersion coefficient for various particle inertia.
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Particle-induced electric field and potential

In a system of Np (electrostatically) charged particles, at every time t, each particle found in
position xp is immersed in a particle-induced electric field E(x, t). Therefore, the electrostatic
force Fe exerted on it, is defined as

Fe (xp) = Qp ×E (xp) (4.26)

and the electric potential energy stored in a particle ue as

ue (xp) = Qp × φ (xp) (4.27)

where φ (x, t) [V ] is the particle-induced electric potential at position x and time t. These two
quantities are linked via Gauss’s law for the electric field that describes the static electric field
generated by a distribution of electric charges. It states that the electric flux through any
closed surface is proportional to the total electric charge enclosed by this surface or

∇E = ρq
ε0

E = −∇φ

where ρq is the volume charge density. Consequently, if the electrostatic forces and the electric
potential energy are calculated Lagrangianly for all particles via Eq. (4.7) and (4.8), one could
calculate E using the definition of Fe in Eq. (4.26) and φ using the definition of ue in Eq. (4.27).
In order to calculate E and φ on an Eulerian Ne

3 grid, one has first to project Fe/Qp and

xck −
∆xf

2 xck xck + ∆xf
2

Figure 4.27: Projection of Lagrangian quantity to Eulerian cell center xck.

ue/Qp from the particles to the centers of the mesh. For each cell Ωk with cell center xck, the
simplest Lagrangian-Eulerian projection (see Fig. 4.27) is by calculating an average of the
Lagrangian quantities of Nk = ∑Np

n=1 δ
(n)
k particles inside Ωk as

E (xck) =

Np∑
n=1

Fe

(
x(n)
p

)
δ

(n)
k

Q
(n)
p Nk

φ (xck) =

Np∑
n=1

ue
(
x(n)
p

)
δ

(n)
k

Q
(n)
p Nk

where δ(n)
k = δ

(
x(n)
p − xck

)
is the indicator function defined in Eq. (4.12). After performing

the before-mentioned projection, various statistics on the electric field and potential can be
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calculated. The Eulerian average operator on the grid used for electrostatics is hereof denoted
as 〈.〉e in order to avoid confusions with Lagrangian averaging 〈.〉p or Eulerian averaging on
the grid used for the fluid phase 〈.〉f . Hence, the average values of the electric (vector) field
and potential (scalar) field is

〈E〉e = 1
Ne

3

Ne3∑

k=1
E (xck)

〈φ〉e = 1
Ne

3

Ne3∑

k=1
φ (xck) .

Therefore, one can also calculate higher order statistical moments on fluctuations E′ and φ′.
Since E is a vector field, one can calculate Eulerian tensor 〈E′i.E′j〉e which contains 9 elements

〈E′i.E′j〉e =



〈E′x2〉e 〈E′x.E′y〉e 〈E′x.E′z〉e
〈E′y.E′x〉e 〈E′y2〉e 〈E′y.E′z〉e
〈E′z.E′x〉e 〈E′z.E′y〉e 〈E′z2〉e


 . (4.28)

The electric field intensity can be defined as

E2 =
〈E′x2〉e + 〈E′y2〉e + 〈E′z2〉e

3
however, another way of looking at the electric field is via the particles themselves as Eq. (4.26)
Eq. (4.27) allow to know the electric field and potential at particle position. This means that
instead of having the values of the electric field and potential in the center of Ne

3 cells, we can
readily have them on the positions of Np � Ne

3 particles that form a Lagrangian grid. This
way the projection error is avoided and the statistics would be much more converged. In case
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Figure 4.28: Time average of electric field tensor Eq. (4.28) with regard to τel for Qp = 5Q0.

of like-charged particles, each Eulerian covariance of the electric field 〈E′i.E′j〉e of Eq. (4.28)
should be of the same order of magnitude as the corresponding Lagrangian covariance of
electrostatic forces 〈Fe′i.Fe′j〉p of Eq. (4.5) normalized by the square of the particle charge as

〈E′i.E′j〉e ∼
〈Fe′i.Fe′j〉p

Qp
2 .
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Figure 4.28 shows that using the Lagrangian grid (the particles themselves) to calculate the
electric field is significantly more accurate than projecting on the Eulerian grid’s cell centers.

Based on Eq. (4.27), one could argue that for like-charged particles the Eulerian average
of the electric potential is of the same order of magnitude as the Lagrangian average of the
electrostatic potential energy normalized by the electric charge, or

〈φ〉e ∼
〈ue〉p
Qp

.

The Eulerian average particle-induced electric potential 〈φ〉e is seen in Fig. 4.29. However, it
seems to fail to capture the oscillations of the Lagrangian average of the electrostatic potential.
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Figure 4.29: Time evolution of normalized average electric potential 〈φ〉e × dCpq/ (λQp) for
various levels of particle inertia.

We observe that 〈φ〉e reaches a statistical steady value in the stationary regime. The time
evolution of the Eulerian variance of the electric potential 〈φ′2〉e seen in Fig. 4.30 is more
suitable as a criterion for the stationarity of the granular flow.
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Figure 4.30: Time evolution of normalized variance of electric potential 〈φ′2〉e×dCpq
2
/ (λQp)2

for various levels of particle inertia.

4.3.5 Distribution and time scale of electrostatic forces
In this Subsection, an analysis of the very nature of electrostatic forces is attempted via their
distribution and their lifetime for a cloud of charged particles. Firstly, The Probability Density
Function (PDF) of each component of the particle electrostatic force f (Fe,i) is calculated for
each particle class. In order to do so, an interval has to be decided from the non-dimensional
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analysis on the granular case study presented in Subsect. 4.3.2. Hence, an order of magnitude of
the particle electrostatic force can be estimated based on Eq. (4.23) as Femin = −1/2×mpL/τ

2
el

and Femax = 1/2×mpL/τ
2
el.

In Fig. 4.31 one can observe the PDFs of the components of electrostatic forces, where
it is evident they collapse on each other when normalized by the corresponding variance.
This means that the distribution of electrostatic forces among the particles is independent of
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Figure 4.31: PDF of x-component of electrostatic forces for all particle classes (Qp = 5Q0).

particle inertia. Furthermore, in order to characterize the nature of inter-particle electrostatic
interactions one can examine the Lagrangian autocorrelation function of electrostatic forces
Rfe(τ) exerted on the particles, which is defined as

Rfe(τ) =
〈F ′e,i (xp(t), t)F ′e,i (xp(t+ τ), t+ τ)〉p

〈F ′e,i2 (xp(t), t)〉p
. (4.29)

In Fig. 4.32 it is evident that electrostatic forces decorrelate rapidly, and follow an attenuated
oscillation, which is due to the expansion-contraction motion of the like-charged particle cloud.
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Figure 4.32: Autocorrelation function of electrostatic forces for various τel.



4.4 Conclusion 101

Finally, autocorrelation function Rfe also has a negative part, which corresponds to an
obtuse angle between the initial electrostatic force fluctuation F′e(t) and the current fluctuation
F′e(t+ τ) as

〈F′e(t)F′e (t+ τ)〉p < 0⇔
〈cos

[
∠
(
F′e (t) ,F′e (t+ τ)

)]〉p < 0⇔
3π/2 > 〈∠ (F′e (t) ,F′e (t+ τ)

)〉p > π/2 .

This periodic change in orientation is characteristic of the periodic expansion-contraction
motion of the charged particle cloud explained in Subsect. 4.3.4.

4.4 Conclusion
In order to isolate electrostatic interactions, like-charged dry particle clouds have been consid-
ered without the presence of any turbulent fluid flow. Trying to calculate such electrostatic
forces, especially considering tri-periodic boundary conditions, a challenging problem arises:
that of electrostatic periodicity. More specifically, the successful application of electrostatic
periodicity requires the ensuring both of the convergence and of the isotropy of the long-range
electrostatic field. In order to address that, and at the same time consider the computational
cost as well as the accuracy of the calculations, a rather efficient algorithm has been created
and its characteristics as well as the obtained results are extensively analyzed and documented.
Following, an attempt to explain the nature of electrostatic interactions is made via an anal-
ogy with hard collisions. In fact, particle-particle (repulsive) electrostatic interactions can
be viewed as (Coulomb) collisions happening with an effective Coulomb diameter that is
proportional to the square of electric charge and inversely proportional to the square of the
norm of relative particle velocity. By considering this analogy, one can deduce a Coulomb
collision frequency and consequently a characteristic time scale of electrostatic interactions. A
dimensional analysis supports this theory and it is verified via the corresponding measured
quantities obtained by DNS of charged particle-laden flows. Finally, particle agitation is linked
to the particle-induced electric field and the very nature of electrostatic forces is observed in
detail.
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5
Electrically charged particle-laden

turbulent gas flows

“ἓν μόνον ἀγαθὸν εἶναι, τὴν ἐπιστήμην,
καὶ ἓν μόνον κακόν, τὴν ἀμαθίαν

1”
- Socrates, c. 470 – c. 399 BC

Abstract
In this chapter, the complete physics that are in the epicenter of this PhD are simulated: a like-charged
inertial particle cloud transported by a stationary homogeneous isotropic turbulent gas flow. At first,
the configuration for the simulations is presented where an electrostatic Stokes number is defined. Then,
we examine the effect of electric charge on particle dispersion where the obtained results are verified
via the transport equations of particle agitation and fluid-particle velocity covariance. The observed
trends are interpreted physically using classical notions of particle-laden flows as well as the concept of
Coulomb collisions presented in Chapter 4. To deepen our understanding of this effect, various statistics
have been deployed such as autocorrelation functions of fluid and particle velocity, mean square particle
displacement, probability density functions of particle velocities and electrostatic forces, etc. Following,
we focus on the effect of charges on spatial particle distribution and relative motion via PDFs of particle
concentration, RDFs of inter-particle distance and relative velocity as well as nearest-neighbor distance
characteristics. Lastly, we are interested in the effect of particle number density.

5.1 Configuration of like-charged case studies
In Chapter 4 we analyzed particle-particle electrostatic interactions in dry charged granular
flows. However, in the case of charged particles transported by a turbulent gas flow, although
the fundamental elements of that analysis stay the same, the physics change considerably.
Namely in such a flow, particles are set in motion both due to the electrostatic force Fe and
the drag force Fd, hence Eq. (2.20) becomes

mp
dup
dt

= Fd + Fe . (5.1)

To characterize the competition between the hydrodynamic drag and electrostatic forces, one
could define an electrostatic Stokes number in analogy with the particles Stokes number.
Having defined a characteristic time scale of electrostatic interactions τel in Subsect. 4.3.2,
the electrostatic Stokes number is defined as τFfp/τel, which is directly proportional to the
electric charge. It should be noted that such a definition of the electrostatic Stokes number
is substantially different from those found in literature. Indeed, on one hand Alipchenkov
et al. (2004) use the Coulomb number defined as the ratio of the potential energy of Coulomb
inter-particle interaction to the kinetic energy at small scales of the turbulence. On the other
hand, Karnik & Shrimpton (2012) defined an electric settling velocity representing the terminal
velocity of a particle under the influence of a given electric field. Furthermore, one could

1There is only one good, knowledge, and one evil, ignorance.
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attempt to link particle and electrostatic Stokes numbers and describe their dependence on
fluid-particle-electrostatics properties. An elementary dimensional analysis allows to rewrite
the electrostatic Stokes number τStp /τel in terms of the particle Stokes number τStp /τ tf as

τStp
τel

= Qp

√√√√λnpτ tf
πdpµf

×
(
τStp
τ tf

)1/2

. (5.2)

Simulations of like-charged particle-laden turbulent gas flows are performed using the pseudo-
particle method described in Subsect. 4.2.2 for particles of various inertia levels (see Table
5.1). Configuration for particle electrostatics can be found in Table 4.5. Since electrostatic
interactions are directly linked with particle electric charge Qp, in order to investigate how
electrostatic interactions affect particle dynamics, in the following analysis statistical quantities
are presented either for Qp = 5Q0 (when focusing on the transient regime). The same statistics
are also presented for various levels of electric charges in comparison with the charge-free case
(when focusing on the stationary regime). Therefore, the important parameters are

Qp ∈ {1, 2, 3, 4, 5, 6, 8, 10} ×Q0 ρp ∈ {200, 100, 50, 27.5, 15, 7.5, 4, 2} × ρ0 .

Figure 5.1 shows that the relation between the two Stokes numbers is quadratic and that
Eq. (5.2) fits well DNS data. Although expressions of dCpq, 〈‖wpq‖〉p and τel given by Eqs. (4.17)–
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Figure 5.1: Electrostatic Stokes with regard to the particle Stokes number for various levels
of electric charge. Symbols correspond to the numerical simulation and the dashed lines to
the analytical Eq. (5.2).

(4.20) are still valid by definition, theoretical estimations for q2
p, d

C
pq and 〈‖Fe‖〉p/mp of

Eqs. (4.21)–(4.23) do not remain the same since they were deduced in the absence of fluid
in the flow. Based on a measurement of particle agitation, one can calculate the character-
istic quantities of electrostatic interactions that are aggregated in Table 5.1 along with the
aforementioned electrostatic Stokes number τStp /τel for the eight particle classes of Table 2.4.

The last column of Table 5.1 provides the criterion of time-step convergence for each
particle class. Surprisingly, for the same time-step, the motion of heavier particles seems to
be less resolved. This is due to the fact that heavier particles undergo more binary Coulomb
collisions than those of light particles in the sense of smaller effective Coulomb diameters
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Table 5.1: Stokes numbers and characteristic scales of Coulomb interactions of like-charged
particles in turbulent gas flow for Qp = 5Q0.

class τStp /τK τFfp/τ
t
f τFfp/τ

t
f@p τFfp/τel dCpq/dp

νCpq q2
p dCpq/δl[10−2s−1] [10−2m2s−2]

1 53.8 7.57 6.37 1.41 4.54 0.840 0.445 36.9
2 26.9 3.81 3.34 1.01 5.27 0.502 0.768 32.6
3 13.4 1.92 1.732 0.72 6.49 0.969 1.25 31.5
4 7.39 1.07 0.910 0.54 8.30 1.89 1.78 33.9
5 4.03 0.596 0.510 0.41 11.6 4.23 2.33 41.2
6 2.02 0.304 0.263 0.29 19.2 12.7 2.81 62.1
7 1.08 0.164 0.147 0.22 33.3 39.9 3.03 104
8 0.538 0.0825 0.0774 0.15 66.5 155 3.09 202

and lower collision frequency (resembling physical collisions in a dilute regime). This implies
that for the former, although a Coulomb collision is more unlikely to occur, when it does, a
smaller time step is needed to resolve them accurately. In addition, for weak electric charges,
the effective Coulomb diameter can also be smaller than the physical diameter of the (heavy)
particles, which means that they would undergo hard collisions as well. However, since this is
a rather rare event in dilute flows, it can be neglected with a negligible loss of accuracy in the
representation of the physics.

5.2 Effect of same-sign electric charges on particle dispersion

This section demonstrates and analyzes the effects of inter-particle (repulsive) electrostatic
forces on particle dispersion. Figure 5.2 illustrates the evolution of particle agitation with
regard to time normalized by the particle relaxation time τFfp (see Eq. (2.42)).
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Figure 5.2: Evolution of particle agitation for various Stokes numbers in the transient
regime for Qp = 5Q0. Stationarity is reached after several multiples of τFfp.

It is evident that the agitation of like-charged inertial particles, transported by a turbulent
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gas flow, achieves a stationary regime after several multiples of the particle relaxation time.
Lighter particles achieve this stationary regime later in terms of τFfp. To ensure the stationarity
of the granular flow, one needs to check the time evolution of the Eulerian variance of the
electric potential 〈φ′2〉e seen in Fig. 5.3. It seems that despite the particles being electrically
charged, 〈φ′2〉e becomes quickly statistically steady, which signifies the stationary regime of the
turbulent charged particle-laden gas flow. For the stationary regime, ∂q2

p/∂t = 0, in addition
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Figure 5.3: Time evolution of normalized variance of electric potential 〈φ′2〉e×dCpq
2
/ (λQp)2

for various levels of particle inertia for Qp = 5Q0.

to spatial averaging (allowed by homogeneity) one can perform time averaging (allowed by
stationarity), due to the ergodicity property. Therefore, the ensemble average 〈 . 〉p operator
takes the form of Eq.(2.46). Lastly, Fig. 5.4 depicts the time average of the diagonal and
off-diagonal elements of the electric field tensor, which both confirm the isotropy of the electric
field, hence of the field of electrostatic forces. Finally, statistical moments have been calculated
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(a) Diagonal elements Eq. (4.6a).
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Figure 5.4: Time average of electric field tensor Eq. (4.28) with regard to particle inertia
for Qp = 5Q0.

over a sufficiently long duration Tstat ' 5×max{τ tf@p, τ
F
fp, τel} in order to achieve statistical

convergence. Also all time-lag statistics presented here (autocorrelation functions, MSD, etc...)
have been calculated as the average of 10 realizations that have been launched consecutively
after a sufficient offset ∆Toff .
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5.2.1 Energy transfer from turbulence to charged particles

In turbulent (electrically) charged particle-laden gas flows, particles move due to the hydro-
dynamic drag forces that are exerted on them from the fluid turbulent velocity field and the
electrostatic forces that are exerted on them due to the particle-induced electric field. More
specifically, there are three mechanisms that dictate the particle motion: a particle accelerates
due to the hydrodynamic drag force and the total electrostatic force exerted on it while at the
same time its kinetic energy is dissipated due to viscosity via the former.

Effect of electrostatic interactions on particle agitation

To examine the effect of particle-particle electrostatic interactions on particle agitation, we shall
reproduce the extension of the Tchen-Hinze law Eq. (3.9) for various electric charges. As seen
by Fig. 5.5, the effect of electrostatic interactions on particle agitation is not straightforward.
Particles with large inertia τFfp →∞, are not particularly affected by electrostatic interactions,
those with moderate inertia τFfp ∼ τ tf exhibit an increase in agitation, while on the contrary
lighter particles τFfp → 0 undergo a significant decrease in their levels of agitation. To
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Figure 5.5: Effect of electrostatic interactions on particle agitation with regard to particle
inertia for various levels of electric charge. The black dashed line corresponds to the Tchen-
Hinze theory given by Eq. (3.10) and the red markers to the charge-free case.

understand this behavior, one should consider the transport equation of particle agitation
which can be derived in the pdf framework for gas-particle flows presented by Simonin (2000).
For Fg = 0 the total force exerted on a particle is

Fp = −mp

u′p − u′f@p
τp

+ Fe . (5.3)

Under a linear approximation for the drag force, which implies τp = const., Eq. (3.26) consid-
ering Eq. (5.3) becomes

∂

∂t
q2
p = qfp

τFfp
− 2q2

p

τFfp
+
〈F′eu′p〉p
mp

. (5.4)
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The four terms of Eq. (5.4) are shown by Fig. 5.6 and the balance of the equation is verified in
the transient regime for Qp = 5Q0 for particle class corresponding to an electrostatic Stokes
number of τFfp/τel = 0.72.
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Figure 5.6: Time evolution of terms of Eq. (5.4) in transient regime for τFfp/τel = 0.72.

In case of stationary flow ∂q2
p/∂t = 0, so Eq. (5.4) becomes

q2
p = 1

2qfp + 1
2τ

F
fp

〈F′eu′p〉p
mp

. (5.5)

which is the modification of Tchen-Hinze law Eq.(3.29) to account for electrostatic interactions.
The additional term τFfp〈F′eu′p〉p/mp represents the particle-induced electric potential energy
per unit mass which is equal to the work of electrostatic forces (see Subsect. C.2). This means
that particle agitation depends on fluid-particle velocity covariance (i.e. the particle-turbulence
interaction) and particle-induced electric potential energy. Term τFfp〈F′eu′p〉p/mp is strongly
affected by τFfp which includes the effect of particle inertia, so in order to obtain a better

understanding we examine the term 〈F′eu′p〉p/
(
〈F′e2〉p〈u′p2〉p

)1/2
to isolate the effect of the

particle-induced electric potential energy. In fact, As shown by Fig. 5.7, term 〈F′eu′p〉 can
be considered negligible. The physical meaning of this term could be better understood
by considering Coulomb collisions which are considered elastic collisions at a distance as
electrostatic forces are conservative. Therefore, they should not have an effect on particle
agitation and so does this term.
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Figure 5.7: Effect of electrostatic interactions on term 〈F′eu′p〉p/mp with regard to particle
inertia for various levels of electric charge.

Figure 5.8 shows that qfp is the most important term of Eq. (5.5), in that it accounts for most
of the variation of particle agitation. Indeed, the observed variation of q2

p/qfp is of the order
of magnitude ∼ 0.5% of that of 〈F′eu′p〉p/q2

p seen by Fig. 5.7.
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Figure 5.8: Effect of electrostatic interactions on the ratio between the particle kinetic
energy and the fluid-particle velocity covariance with regard to particle inertia for various
levels of electric charge.

Effect of electrostatic interactions on fluid-particle velocity covariance

It is shown in Subsect. 3.2.1 that the key to understanding the behavior of particle agitation
in such a flow, is to understand fluid-particle velocity covariance qfp, which is a measure of
fluid-particle correlation. Figure 5.5 shows that particles with large inertia, are not particularly
affected by electrostatic interactions, those with moderate inertia exhibit an increase both
in qfp ' 2q2

p and in τ tf@p, while on the contrary the lightest particles undergo a significant
decrease in their levels of fluid-particle velocity covariance.

To understand this behavior, one should consider the transport equation of the fluid-
particle velocity covariance, which can be derived in the pdf framework for gas-particle flows
presented by Simonin (2000). For Fg = 0 the total particle force is given in Eq. (5.3). Under
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a linear approximation for the drag force, which implies τp = const., Eq. (3.30) considering
Eq. (5.3) becomes

∂

∂t
qfp = 〈a′f@pu′p〉p −

qfp
τFfp

+
2q2
f@p
τFfp

+
〈F′eu′f@p〉p

mp
. (5.6)

In Subsect. 3.2.2 it is shown that the fluid-particle destruction term 〈a′f@pu′p〉p is usually
modeled in literature (Zaichik et al., 2003) as −qfp/τ tf@p, which is even less accurate under
the influence of electrostatic forces as shown by Fig. 5.9. However, the introduced model of
Eq. (3.40) seems to be closer to the DNS measurements although the effect of electrostatic
interactions seems not to be taken into account, especially using Eq. (3.39a) instead of Eq. (3.42)
for τa@pτε. Figure 5.10 depicts all five terms of Eq. (5.6) and the power equilibrium is verified
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Figure 5.9: Comparison between DNS results ( ) and the predictions of the Langevin model
( ) and the introduced stochastic model ( , ) of the fluid acceleration - particle velocity
covariance 〈a′f@pu′p〉p with regard to particle Stokes number for Qp = 5Q0.

in the transient regime for τFfp/τel = 0.72. Furthermore, for stationary flows ∂qfp/∂t = 0, so
Eq. (5.6) becomes

qfp = τFfp〈a′f@pu′p〉p + 2q2
f@p + τFfp

〈F′eu′f@p〉p
mp

(5.7)

which is the modification of Tchen-Hinze law Eq.(3.32) to account for electrostatic interactions.
Term τFfp〈F′eu′f@p〉p/mp represents the turbulence-induced electric potential energy.
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Figure 5.10: Time evolution of terms of Eq. (5.6) in transient regime for τFfp/τel = 0.41.

To explain the behavior of q2
p observed in Fig. 5.5 via qfp, one needs to examine the

three terms of the right hand side of Eq. (5.7). Term τFfp〈F′eu′f@p〉p/mp is strongly affected by
τFfp which includes the effect of particle inertia, so in order to obtain a better understanding

we examine the term 〈F′eu′f@p〉p/
(
〈F′e2〉p〈u′f@p

2〉p
)1/2

so that we isolate the effect of the
turbulence-induced electric potential energy. Increasing particle charge, term 〈F′eu′f@p〉p/mp

becomes very important, especially for light particles as shown by Fig. 5.11. Therefore, in
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Figure 5.11: Effect of electrostatic interactions on term 〈F′eu′f@p〉p/mp with regard to
particle inertia for various levels of electric charge.

presence of electric charges the hydrodynamic forces compete with the repulsive electrostatic
forces as the latter tend to constantly decorrelate the particle velocities from the fluid turbulent
velocity field. This leads to a decorrelation of fluid-particle velocity, hence the negative sign of
this term that serves as a destruction term of fluid-particle velocity covariance. However, it
does not account for the increase of fluid-particle velocity covariance in the case of moderate
inertia particles, τFfp/τ tf ∼ 1 as shown by Fig. 5.5. This increase is due to the first term of
Eq. (5.7), thus due to a modification of τFfp〈a′f@pu′p〉p. Indeed, Fig. 5.12 shows that term



112 5 Electrically charged particle-laden turbulent gas flows

τFfp〈a′f@pu′p〉p is modified by electrostatic forces. This term is strongly affected by τFfp which
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Figure 5.12: Effect of electrostatic interactions on acceleration term 〈a′f@pu′p〉p with regard
to particle inertia for various levels of electric charge.

includes the effect of particle inertia, so in order to obtain a better understanding we examine
the term 〈u′pa′f@p〉p/

(
〈u′p2〉p〈a′f@p

2〉p
)1/2

so that we isolate the effect of fluid acceleration and
particle velocity. In particular, this term decreases in absolute value for an increasing electric
charge and since it’s a destruction term, this leads to an increase of fluid-particle velocity
covariance especially for particles of moderate inertia, τFfp/τ tf ∼ 1.

In Fig. 5.13, it is evident that the dissipation rate of fluid-particle correlation τafp increases
for increasing electric charges, which essentially means that qfp dissipates in lower rates,
resulting to its increase. At this point, it would be interesting to examine the effect of
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Figure 5.13: Effect of electrostatic interactions on time scale τafp with regard to particle
inertia for various levels of electric charge.

electrostatic interactions on fluid acceleration seen at the position of particles 〈a′f@p
2〉p. In Fig.

5.14, it is apparent that for increasing electric charges there is a small decrease of 〈a′f@p
2〉p for

particles of moderate inertia and a considerable increase for light particles. However, for both
cases the variance of fluid acceleration measured at the particles’ position tends to the value
of the fluid acceleration variance measured along fluid elements. This implies that particles
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Figure 5.14: Effect of electrostatic interactions on fluid acceleration at the particles position
〈a′f@p

2〉p with regard to particle inertia for various levels of electric charge.

tend to be distributed more homogeneously.
Lastly, it would be also interesting to examine the behavior of q2

f@p. As far as the second
term of Eq. (5.7) is concerned, in Fig. 5.15, it is shown that an increase in electric charge implies
an increase in the fluid agitation from the point of view of the particles. More specifically, q2

f@p
has the tendency to flatten to the value of q2

f for heavy particles, τFfp →∞ and to increase even
further for moderate and light particles. To explain this behavior, we first have to examine
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Figure 5.15: Effect of electrostatic interactions on fluid agitation "seen" by the particles
with regard to particle inertia for various levels of electric charge.

the levels of q2
f@p in the case of no electric charge. Indeed, inertial and light particles "see" the

same fluid agitation, as the former are rather transported by large turbulent structures and
the latter behave close to fluid elements. However, particles of moderate inertia get trapped in
regions of low vorticity and therefore "see" slightly lower levels of fluid agitation. Under the
influence of electric charges, inertial particles are not as affected, while moderate particles are
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Figure 5.16: Particle agitation normalized by the value without charge with regard to
electrostatic Stokes number. Stokes numbers τFfp/τ tf@p correspond to the value without charge.

less prone to preferential concentration, thus they "see" a fluid agitation close to q2
f . However,

less inertial particles exhibit an increase in q2
f@p which needs to be further investigated.

Finally, it seems that combining Eqs. (5.5) and (5.7), one can write particle agitation in
terms of the different examined statistical moments.

q2
p = q2

f@p + 1
2τ

F
fp

(
〈a′f@pu′p〉p +

〈F′eu′f@p〉p
mp

+
〈F′eu′p〉p
mp

)
. (5.8)

Figure 5.16 provides an overview of what has been discussed. It shows that for a given level
of particle inertia, increasing particle charge leads to an increase of particle agitation due
to an increase of q2

f@p (see Fig. 5.15) and τFfp〈a′f@pu′p〉p (see Fig. 5.12), which are the first
two terms of Eq. (5.8). This occurs up to a saturation limit where q2

p starts to decrease as
the third (destruction) term of Eq. (5.8), τFfp〈F′eu′f@p〉p/mp becomes more important (see Fig.
5.11). Increasing particle inertia, actually moves that saturation limit to lower electrostatic
time scales τel → 0, thus higher electric charges.

Effect of electrostatic interactions on relative fluid-particle velocity covariance

The relative fluid-particle agitation q2
r is defined as

q2
r = 〈u′r,iu′r,i〉p (5.9)

where ur = up − uf@p is the relative fluid-particle velocity. From the definition of Eq. (5.9),
one can deduce that

q2
r = 2q2

p + 2q2
f@p − 2qfp . (5.10)

Thus, by replacing q2
p from Eq. (5.5) into Eq. (5.10) the following expression for q2

r can be
deduced

q2
r = τFfp

〈F′eu′p〉p
mp

+ 2q2
f@p − qfp . (5.11)
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Continuing, the difference 2q2
f@p − qfp can be rewritten using Eq. (5.7) as

2q2
f@p − qfp = −τFfp〈a′f@pu′p〉p − τFfp

〈F′eu′p〉p
mp

and replace it into Eq.(5.11) that finally gives

q2
r = τFfp

(
〈F′eu′r〉p
mp

− 〈a′f@pu′p〉p
)

(5.12)

where 〈F′eu′r〉p = 〈F′eu′p〉p−〈F′eu′f@p〉p is a measure of the relative fluid-particle electric potential
energy. In order to understand the effect of electrostatic forces on q2

r , one should compare
the behavior of term τFfp〈F′eu′r〉p/mp for different levels of particle electric charge and particle
inertia. However, it is strongly affected by τFfp which includes the effect of particle inertia, so

in order to obtain a better understanding we examine the term 〈F′eu′r〉p/
(
〈F′e2〉p〈u′r2〉p

)1/2

so that we isolate 〈F′eu′r〉p. Figure 5.17 shows that this term increases for decreasing particle
inertia and high levels of electric charge.
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Figure 5.17: Effect of electrostatic interactions on term 〈F′eu′r〉p/mp with regard to particle
inertia for various levels of electric charge.

To investigate this, one could compare the value of q2
r measured under the effect of

electrostatic interactions to the one measured in the charge-free case. Figure 5.18 shows that
q2
r remains rather unaffected by electrostatic interactions except for light particles. Since
terms −〈a′f@pu′p〉p and 〈F′eu′r〉p/mp are in competition in Eq. (5.12) it seems that the effect
of electrostatic interactions on the two terms is of the same order of magnitude except for
light particles. For them, q2

r increases for increasing particle electric charge. This happens
because in the charge-free case, light particles seem to follow closely the fluid velocity (q2

r ' 0),
while electrostatic forces create a substantial differential of the relative fluid-particle velocity
(q2
r � 0). This is the reason why, τFfp ∝ ‖ur‖−0.687 exhibits the inverse trend, however its

modification due to electrostatic forces is found to be quite smaller.
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Figure 5.18: Effect of electrostatic interactions on relative fluid-particle agitation number
with regard to particle inertia for various levels of electric charge.

The same behavior is observed when examining the effect of electrostatic interactions on
the particle Reynolds number (see Fig. 5.19), which is defined in Eq.(2.23). This is because it is
a function of the relative fluid-particle velocity ur, since it can be written as Rep = dp‖ur‖/νf .
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Figure 5.19: Comparison of 〈Rep〉p and τFfp to the charge-free case with regard to electrostatic
Stokes number.

5.2.2 Autocorrelation functions of fluid and particle velocity

Figure 5.20 presents the autocorrelation functions of "seen" fluid and particle velocities for
various Stokes numbers for Qp = 5Q0. The time has been normalized with the integral of the
autocorrelation functions. Evidently, heavier particles exhibit a steeper decorrelation of their
velocity and the fluid velocity "seen" at their position in comparison with particles of lower
inertia. Under the Coulomb collisions theory, this observation can be justified due to the lower
frequency abrupt motion of heavier particles and the higher frequency smooth movement of
lighter particles. However, in order to examine the effect of electric charge on autocorrelation
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Figure 5.20: Autocorrelation function Rf@p of fluid velocity "seen" at the particle positions
(left) and Rp of particle velocity (right) with regard to time normalized by corresponding
integral time scale for various Stokes numbers in the case of Qp = 5Q0.

functions, we have to examine how the autocorrelation functions are modified for increasing
particle electric charge for each Stokes number.

Autocorrelation function Rf@p

In Fig. 5.21 one can observe that inter-particle electrostatic interactions do not have a strong
effect on the shape of autocorrelation functions of fluid velocity "seen" by the particles even
for high values of particle electric charge Qp. Evidently, there is no significant modification in
the shape of the functions which essentially means that electric charge does not affect the way
with which uf@p decorrelates, but only the time scale that it takes for the decorrelation of the
"seen" fluid turbulent velocity.
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Figure 5.21: Effect of electrostatic interactions on autocorrelation functions of fluid velocity
"seen" by the particles, Rf@p for various levels of electric charge and three levels of inertia.

Indeed, the effect of electrostatic forces on the Lagrangian integral time scale of the
fluid "seen" at the particle position, τ tf@p is small but not negligible. In Fig. 5.22 it becomes
evident that the comprehension of this effect is not as straight forward. Figure 5.22 draws
a comparison between τ tf@p for the charge-free reference case and τ tf@p at increasing levels
of particle electric charge that correspond to increasing electrostatic Stokes numbers τFfp/τel.
Each curve corresponds to a different particle Stokes number τFfp/τ tf@p. It seems that for
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light particles this characteristic time scale becomes smaller under the stronger electrostatic
interactions as their ability to follow fluid trajectories is enhanced. For moderate inertia
particles this time scale undergoes a slight decrease with it being considerable only for
high electric charges. These particles exhibit preferential concentration that implies slower
decorrelation, thus higher τ tf@p, a phenomenon that is still present for weak electric charges
and is mitigated for strong ones, hence a decrease in τ tf@p. Lastly, heavy particles exhibit an
increase of τ tf@p for strong electric charges, which implies that electrostatic forces enhance
their ability to act as observers.
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Figure 5.22: Effect of electrostatic interactions on τ tf@p with regard to particle inertia for
various levels of electric charge.

More specifically, one can distinguish three different regimes based on particle inertia
(Stokes number) as following

i. heavy particles: in the absence of electric field, these particles present minimum preferential
concentration so they tend to "see" act almost as immobile observers in the sense that their
Lagrangian integral time scale of the measured fluid velocity field is close to τE . In the
presence of (repulsive) electrostatic forces their trajectories become even more decorrelated
from the turbulent velocity field and as a result their ability to act as randomly distributed
observers is enhanced, thus the higher values of τ tf@p < τE . Of course at the limit of
τFfp →∞ the electrostatic interactions should not have any effect on τ tf@p → τE .

ii. particles of moderate inertia: in the absence of electric field, these particles demonstrate
high levels of preferential concentration which imply a low "seen" fluid velocity decorrelation
rate as they tend to concentrate in regions of the flow of high strain rate and low vorticity,
thus relatively high values of τ tf@p. In the presence of (repulsive) electrostatic forces, this
preferential concentration tends to mitigate, thus the spectrum of turbulence that they
"see" is less preferential, thus τ tf@p decreases.

iii. light particles: in the absence of electric field, these particles follow a motion that ap-
proaches that of fluid elements with some effect of inertia (weak preferential concentration).
In the presence of (repulsive) electrostatic forces, these particles move along the fluid
element trajectories but at the same time try to be equidistant from each other which in
fact enhances their fluid-like behavior as they continue their motion with minimum-to-zero
levels of preferential concentration, thus the lower values of τ tf@p > τ tf . Of course at the
limit of τFfp → 0 the electrostatic interactions should not have any effect on τ tf@p → τ tf .
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Autocorrelation function Rp

In Fig. 5.23 one can observe that inter-particle electrostatic interactions have a strong effect on
the shape of autocorrelation functions of particle velocity, especially for high values of particle
electric charge Qp. Evidently, the shape of the functions becomes steeper for increasing electric
charge which essentially means electrostatic interactions expedite the decorrelation process, as
well as the time scale that it takes for the full decorrelation of the particle velocity. In addition,
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Figure 5.23: Effect of electrostatic interactions on autocorrelation functions of particle
velocity, Rp with regard to τ/τ tp for various levels of electric and three levels of particle inertia.

Fig. 5.24, indicates a significant decrease in τ tp due to electrostatic interactions, which implies
an increase in the rate of particle velocity decorrelation. This effect is pronounced for inertial
particles, τFfp →∞, as electrostatic forces abruptly alter particle trajectories and as a result
force their velocities to decorrelate faster than they would in charge-free case. For lighter
particles, this is almost negligible as those already decorrelate in faster rates, close to fluid
elements as τ tp → τ tf , hence electrostatic forces are unable to further "enhance" their particle
velocity decorrelation.

10´2 10´1 100 101 102

τ tf{τFfp

2

4

6

8

τ
t p
{τ
t f

NO CHARGE
Qp “ 1.0Q0

Qp “ 2.0Q0

Qp “ 3.0Q0

Qp “ 4.0Q0

Qp “ 5.0Q0

Qp “ 6.0Q0

Qp “ 8.0Q0

Qp “ 10.0Q0

Figure 5.24: Effect of electrostatic interactions on τ tp with regard to particle inertia for
various levels of electric charge.

Figure 5.25 draws a comparison between τ tp for the reference charge-free case and τ tp at
increasing levels of particle electric charge that correspond to increasing electrostatic Stokes
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numbers τFfp/τel. Each curve corresponds to a different particle Stokes number τFfp/τ tf@p. It
seems that for all levels of particle inertia, time scale τ tp decreases for increasing particle
charge, however the effect becomes significantly more important for heavier particles. This
is in agreement with the aforementioned binary regime of Coulomb collisions (low frequency,
small effective diameter), under which these particles follow high deflection trajectories.
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Figure 5.25: Comparison of τ tp with its charge-free values with regard to electrostatic Stokes
number for various particle Stokes numbers.

5.2.3 Particle dispersion coefficient

Figure 5.26 shows how MSD and particle dispersion is modified by increasing particle electric
charge for various particle Stokes numbers. It is evident that for the same period of normalized
time, the achieved level of MSD is significantly reduced for most particle Stokes numbers as
electric charge increases. This means that the slope of the D − τ line decreases for increasing
electric particle charge which results to a decrease of particle dispersion as implied by Eq. (3.43).
This behavior is due to the repulsive nature of electrostatic forces for like-charged particle
clouds, as the consequent constant repulsion forces the particles to flow in an equidistant
distribution which corresponds to a minimum electric potential energy. Under high electric
charges, particles are not free to wander off since they constantly collide with each other via
the mechanism of Coulomb collisions.

This kind of particle "confinement" has also been observed in terms of particle agitation
(see Fig. 5.5) and leads to a decrease of particle displacement and particle dispersion. It
should be noted here, that for moderate Stokes numbers and low levels of electric charge,
a slight increase of MSD is observed that most likely has to do with the slight increase of
particle agitation due to the observed decrease of the turbulent dissipation rate of fluid-particle
correlation. However, further increase of particle electric charge leads to strong (repulsive)
electrostatic forces that result to a decrease of particle displacement.
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Figure 5.26: Effect of electrostatic interactions on MSD and its time derivative with regard
to τ/τFfp for various levels of electric charge and three levels of particle inertia.

Figure 5.27 demonstrates the effects of electrostatic interactions on particle dispersion
coefficient Dt

p for increasing particle electric charges. Particle dispersion coefficient is found
to decrease under the influence of electrostatic forces, which is more pronounced for heavier
particles. This confirms the phenomenon of particle "confinement" that derives from the
combination of repulsive electrostatic forces in like-charged particle clouds and periodic BCs.
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Figure 5.27: Effect of electrostatic interactions on particle dispersion coefficient with regard
to particle inertia for various levels of electric charge.

Furthermore, in Fig. 5.28 we attempt to verify the validity of two Tchen-Hinze theoretical
expressions of Eq. (3.44) for particle dispersion under the influence of electrostatic interactions.
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It becomes evident that as (repulsive) electrostatic forces become more important, 2/3× q2
pτ

t
p

seems to correctly estimate the particle dispersion coefficient with a maximum deviation
of ∼ 5% for heavy particles and high electric charges. On the contrary, this is not true
for 2/3× q2

f@pτ
t
f@p as it seems that it overestimates particle dispersion, especially for heavy

particles. The reason for this overestimation is quite complex as it has to do with the
modification of both q2

f@p and τ tf@p seen in Figs. 5.15 and 5.22, respectively. By observing these
two Figures, it seems that 2/3× q2

f@pτ
t
f@p increases mostly due to the pronounced increase

of q2
f@p which is the opposite trend of measured Dt

p presented in Fig. 5.27. To get a better
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Figure 5.28: Particle dispersion coefficient models’ validity for various levels of electric
charges and particle Stokes numbers. To the left, 2/3× q2

pτ
t
p seems to give a good estimate

and to the right 2/3× q2
f@pτ

t
f@p seems to overestimate of Dt

p for like-charged particles.

appreciation of the effect of particle electric charge on particle dispersion coefficient, its values
for the charge-free reference case are compared to the corresponding values obtained under
the presence of electrostatic forces, for a wide range of particle inertia. It seems that particle
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Figure 5.29: Comparison of particle dispersion coefficient under the effect of electrostatic
forces in the charge-free case.

dispersion coefficient decreases under repulsive electrostatic interactions and this decrease
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becomes prominent ∼ 60% for heavier particles. In order to understand this, we refer to the
fundamental result of Tchen-Hinze theory (see Eq. (3.22)). According to it, particle dispersion
coefficient is nothing more than the product of particle agitation and Lagrangian integral time
scale, which represent the kinetic energy level and the "memory" of the particles, respectively.
In the charge-free case, heavy particles have low kinetic energy but high "memory" and light
particles the opposite. Under the influence of electrostatic forces, particle kinetic state does
not change dramatically (see Fig. 5.16), but their velocities tend to decorrelate faster and as a
result reduce their "memory" (see Fig. 5.25) which in turn reduces their dispersion coefficient.

5.2.4 Inter-particle electrostatic interactions in turbulent flows

Since the effects of electrostatic interactions on particle motion have been detailed in previous
subsections, at this point it would be interesting to examine the very nature of repulsive
electrostatic forces that develop in a like-charged particle cloud that is transported by stationary
homogeneous isotropic turbulence.
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Figure 5.30: PDF of the three components of electrostatic forces for various levels of particle
inertia and electric charge. The distributions are compared with the corresponding exponential
and Gaussian distributions from Eq. (3.55) and the phenomenological ones from Eq. (5.13).
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PDF of electrostatic forces

As seen in Subsect. 4.3.5, to extract useful information on the distribution of electrostatic
forces, we need to examine the PDFs of their components for various levels of inertia. From
Fig. 5.30, it can be deduced that, since the PDFs overlap, the distribution of electrostatic
forces exerted on the particles is indeed isotropic as orientation does not modify the shape of
the PDFs. This is in agreement with the expected isotropy of the particle-induced electric field
shown by Fig. 5.4. In order to obtain a more precise idea of the form of the PDFs of Fe,i, they
have been plotted in Fig. 5.30 with exponential and Gaussian functions that are obtained by
the relation (3.55). One can make two observations based on Fig. 5.30. Their shape is rather
peculiar, as it is far from Gaussian, has characteristics of an exponential distribution but it is
neither a perfect exponential distribution. In addition, we observe that for a given level of
inertia, increasing electric charge widens the PDF of electrostatic forces.

We note that the Gaussian PDF model predicts 〈‖Fe‖〉p/〈Fe
′2〉p

1/2 =
√

8/(3π) = 0.9213
(Fede, 2004, Wang et al., 1998). The DNS measured values of 〈‖Fe‖〉p/〈Fe

′2〉p
1/2 are visualized

in Fig. 5.31. It seems that for the same level of particle electric charge, the PDFs of electrostatic
forces are far from the Gaussian distribution, 〈‖Fe‖〉p/〈Fe

′2〉p
1/2 ≤ 0.9213. As particle inertia

decreases, there are several cases for high levels of electric charges for which the ratio tends to
the this value, however the distributions partially resemble to either Gaussian or exponential
distributions, so it is likely that the latter exhibits a ratio of average-to-standard deviation
that is close to that number. In fact, The examined PDFs seem to approach the exponential
distribution in the case of either light particles and strong electrostatic forces or heavy particles
and moderate-to-strong electrostatic forces for |Fe,i| < 5〈F ′e,i2〉p

1/2.
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Figure 5.31: Effect of electrostatic interactions on the shape of the PDFs of electrostatic
forces via ratio 〈‖Fe‖〉p/〈Fe

′2〉p
1/2

. The horizontal line corresponds to its theoretical value
for Gaussian distribution (Fede, 2004, Wang et al., 1998).

This rather peculiar shape has been seen before in the work of Voth et al. (2002) as the
shape of PDFs of particle accelerations. This is interesting because, in fact, electrostatic forces
are nothing else than electrostatic particle acceleration multiplied by particle mass. Voth
et al. (2002) actually propose a phenomenological function that gives the shape of particle
acceleration PDF for inertial particles in stationary HIT that can be written as a function of a
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variable x (whose variance is equal to unity) as

A(x) = C exp
{

−x2

(1 + |βx/σ|γ)σ2

}
. (5.13)

where parameters C = 0.786, β = 0.539, γ = 1.588 are calibrated in their work using DNS
data at Reλ = 970. Although this model needs parameter calibration to match the profile of
the less intense simulated turbulence of Reλ = 42.86, it seems that this shape corresponds
qualitatively to the measured shape of electrostatic particle accelerations.

Figure 5.32 shows the effect of inertia on the PDF of the x-component of the particle
electrostatic forces. Increasing particle inertia narrows the range of electrostatic forces exerted
on the particles. This is in agreement with the Coulomb collision regime for light particles
that collide virtually with high frequency and large effective Coulomb diameters, while heavier
particles interact with each other in a rather binary way. This essentially means that for
higher values of electric charge, particle-particle electrostatic interactions approach more the
Coulomb regime that describes cold plasma flows, and inertia effect becomes less important.

´15 ´10 ´5 0 5 10 15
Fe,x{xF 1e,x2yp

1{2

10´5

10´4

10´3

10´2

10´1

100

f
ˆ F

e,
x
{xF

1 e,x
2 y p

1{2
˙

τFfp{τel “ 0.28
τFfp{τel “ 0.20
τFfp{τel “ 0.14
τFfp{τel “ 0.11
τFfp{τel “ 0.08
τFfp{τel “ 0.06
τFfp{τel “ 0.04
τFfp{τel “ 0.03

(a) Qp = 1Q0

´15 ´10 ´5 0 5 10 15
Fe,x{xF 1e,x2yp

1{2

10´7

10´6

10´5

10´4

10´3

10´2

10´1

f
ˆ F

e,
x
{xF

1 e,x
2 y p

1{2
˙

τFfp{τel “ 1.41
τFfp{τel “ 1.01
τFfp{τel “ 0.72
τFfp{τel “ 0.54
τFfp{τel “ 0.41
τFfp{τel “ 0.29
τFfp{τel “ 0.22
τFfp{τel “ 0.15

(b) Qp = 5Q0

´10 0 10
Fe,x{xF 1e,x2yp

1{2

10´7

10´6

10´5

10´4

10´3

10´2

10´1

f
ˆ F

e,
x
{xF

1 e,x
2 y p

1{2
˙

τFfp{τel “ 4.00
τFfp{τel “ 2.85
τFfp{τel “ 2.03
τFfp{τel “ 1.53
τFfp{τel “ 1.14
τFfp{τel “ 0.82
τFfp{τel “ 0.60
τFfp{τel “ 0.43

(c) Qp = 10Q0

Figure 5.32: Effect of particle inertia on the PDF of the x-axis component of electrostatic
forces for Qp = [1, 5, 10]Q0. Increasing particle inertia narrows the range of electrostatic
forces, while increasing electric charge widens it.

Figure 5.33 illustrates the effect of particle electric charge on the average and variance
of the norm of electrostatic acceleration. It seems that for increasing electric charge, the
average norm of electrostatic acceleration increases, as it scales with the square of the latter.
In addition, for the same level of particle electric charge, lighter particles exhibit higher levels
of electrostatic acceleration. This is in agreement with the high frequency and long-distance
Coulomb collision regime that characterizes their motion. Frequent Coulomb collisions that
occur in longer distances imply constant particle motion with larger accelerations due to
electrostatic forces. As far as its variance is concerned, it becomes evident that it is significant
only for high electric charges and light particles, while it drops to zero for weak electric charges
and heavy particles, as it has also been observed in Fig. 5.32.
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Figure 5.33: Effect of electrostatic interactions on the average of the norm (left), and
variance (right) of electrostatic force with regard to particle inertia.

Autocorrelation function of electrostatic forces

In Fig. 5.34 one can observe the autocorrelation function of electrostatic forces for various
levels of particle inertia. Time has been normalized by the Lagrangian electrostatic integral
time scale, τ tfe , which is defined as the integral of the autocorrelation function of electrostatic
forces as

τ tfe =
∫ ∞

0
Rfe(τ)dτ . (5.14)

Similar shapes of autocorrelation functions have been shown by Pope (1994) and later again
by Pope (2002) which in these cases correspond to autocorrelation functions of particle acceler-
ations. In fact, electrostatic forces can be also viewed as electrostatic particle accelerations, as
it was also observed in Fig. 5.30 and due to the properties of homogeneity and isotropy of the
electrostatic field, they constitute a homogeneous isotropic vectorial field of accelerations/forces
that alters the kinetic situation of the particles. It is evident that electrostatic forces decorrelate
rapidly, especially for heavier particles. More specifically, heavier particles undergo more abrupt
modifications in their acceleration, hence the steep descent of the autocorrelation function Rfe .
To better understand this, one should refer to the Coulomb collision frequency that decreases
for increasing inertia (see Table 5.1). As a result, Coulomb collisions, hence electrostatic
interactions of heavier particles are rather binary for inertial particles which implies a faster
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Figure 5.34: Autocorrelation functions of electrostatic forces, Rfe with regard to time
normalized by the corresponding integral time scale for various Stokes numbers in the case of
Qp = 5Q0.

decorrelation of electrostatic acceleration. On the other hand, lighter particles exhibit a high
Coulomb frequency which means that their acceleration is modified in a more smooth and
continuous way. Furthermore, one can observe a negative part of autocorrelation function
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Figure 5.35: Effect of electrostatic interactions on autocorrelation functions of electrostatic
forces, Rfe with regard to τ/τ tfe for various levels of electric charge and three levels of inertia.

which corresponds to an obtuse angle between the initial electrostatic force fluctuation F′e(t0)
and the current fluctuation F′e(t0 + τ) as explained in Subsect. 4.3.5. This significant change in
orientation is characteristic of the light particles’ Coulomb regime and shows that the exerted
electrostatic force/acceleration on such particles changes drastically (but gradually) both in
magnitude and orientation along their trajectory. Figure 5.35 shows how autocorrelation
functions of electrostatic forces or equivalently electrostatic accelerations are modified by
increasing particle electric charge for a given particle Stokes numbers. It becomes evident
that the shape of the autocorrelation function of electrostatic forces is modified by increasing
particle electric charge, which denotes a change in the very nature of their decorrelation. More
specifically, it seems that for increasing particle electric charge the electrostatic force remains
autocorrelated for a shorter period of time.
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Figure 5.36 shows how the Lagrangian electrostatic integral time scale, τ tfe is modified for
increasing levels of particle electric charge. In fact, τ tfe becomes smaller as particle electric
charge increases due to faster decorrelation of electrostatic forces for higher levels of electric
charge. This is in agreement with previous observations as for high levels of particle electric
charge, particles are undergoing high frequency Coulomb collisions that lead to a rapid change
in the orientation and magnitude of the total electrostatic force that is exerted on them.
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Figure 5.36: Effect of electrostatic interactions on electrostatic integral time scale τ tfe with
regard to particle inertia.

5.3 Effect of repulsive electrostatic forces on spatial particle
distribution

This section deals with the effect of inter-particle electrostatic interactions on the spatial
distribution of particles transported by a homogeneous isotropic turbulence. As explained in
Chapter 3, in the absence of electric charge, solid particles transported by a turbulent flow
field tend to accumulate in low-vorticity regions of the flow (Fessler et al., 1994, Squires &
Eaton, 1991), a phenomenon that is called preferential concentration.

In general, external forces may modify preferential concentration, as for example, Fede &
Simonin (2010) showed that inter-particle collisions enhance preferential concentration. In
addition, Dejoan & Monchaux (2013) investigated experimentally the effect of gravity on
preferential concentration. There are several literature studies, which focus on the modification
of preferential concentration in the case of charged particles transported by HIT such as
(Di Renzo & Urzay, 2018, Karnik & Shrimpton, 2012, Lu & Shaw, 2015, Lu et al., 2010, Yao
& Capecelatro, 2018) or by turbulent channel flow (Rambaud et al., 2002).

In order to obtain a better understanding of the effect of inter-particle electrostatic
interactions on the spatial distribution of particles, several statistics have been calculated that
offer an insight on the distribution of particles in the turbulent charged particle-laden gas flow.
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5.3.1 Preferential particle concentration

In case of like-charged particles, one could reflect on the nature of electrostatic interactions by
observing instantaneous snapshots of the particle flow in the stationary regime. In Fig. 5.37 it
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Figure 5.37: Instantaneous snapshots of like-charged particle-laden turbulent gas flows for
various levels of inertia and electric charges for ∆x = Lf .

is observed that such electrostatic interactions tend to homogenize the particle distribution due
to the repulsive nature of the electrostatic forces. This leads to a mitigation and eventually an
elimination of preferential concentration especially for light particles.
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Figure 5.38: Effect of electrostatic interactions on particle concentration distributions for
various levels of electric charge and three levels of particle inertia.

Electrostatic forces are conservative forces, thus a system of charged particles under their
influence will start evolving with an initial electric potential energy, part of which will gradually
transform to kinetic energy. However, in the presence of a fluid turbulent flow, the physics of
the charged particle-laden turbulent gas flow are slightly more complex, so in order to gain
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some more insight we should consider three main mechanisms that govern it.
Firstly, according to the minimum potential energy principle, which is valid for conservative

forces such as the electrostatic, the system of particles tends to an equilibrium of minimum
electric potential energy which implies that the particles will try to separate themselves as
much as possible. On the other hand, it has been mentioned in Sect. 3.2.4, that in turbulent
particle-laden gas flows there are certain regions in the flow (high strain rate, low vorticity)
that favor particle concentration resulting in a local increase of electric potential energy and
thus in further production of kinetic energy.

Lastly, the additional production by electrostatic effects tends to increase the average
stationary level of q2

p. This kinetic energy production is compensated, in stationary flow, by an
additional dissipation due to the drag force of the fluid which dissipates it in heat by viscous
effect. Figure 5.38 depicts the effect of electrostatic interactions on particle concentration
distribution. Specifically, for increasing particle electric charge it seems that f(Cp) tends to a
Dirac distribution at the particle density np (see Eq. (3.47)).

This occurs for like-charged particles because inter-particle repulsive electrostatic forces
tend to homogenize the particle distribution across the computational domain. In fact, this
behavior is characteristic of the conservative field of electrostatic forces that tends to force
the particles in such a distribution that the total electrostatic potential stored in the charged
particle cloud is minimized. This means that electrostatic interactions mitigate or even
eliminate the phenomenon of preferential concentration as previously shown by work by Karnik
& Shrimpton (2012), Lu & Shaw (2015), Lu et al. (2010), Yao & Capecelatro (2018).

These observations are also confirmed by Fig. 5.39 which depicts the effect of electrostatic
interactions on global particle accumulation. Increasing electric charge, leads to stronger inter-
particle repulsive electrostatic forces which tend to diverge the global particle accumulation
close to that predicted by a Dirac distribution, for which σCp = 0 so that Eq. (3.48) gives
Σp = −σP /n, where n = Np/Nc. In order to deepen our analysis on the structure of the
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Figure 5.39: Effect of electrostatic interactions on global particle accumulation levels with
regard to particle inertia for various levels of electric charge.

particle distribution under the effect of electrostatic forces, we investigate in Fig. 5.40 their
effect on the PDF of the nearest-neighbor particle distance. Specifically, for increasing particle
electric charge it seems there is no probability that a particle be close to another particle.
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Figure 5.40: Effect of electrostatic interactions on PDF of nearest-neighbor particle distance
for various levels of electric charge and three levels of particle inertia.

This constitutes first evidence of the existence of an exclusion sphere around each particle
where no other particle can enter as the repulsive electrostatic force generated at such small
distances is too big to be overcome by hydrodynamic forces. Interestingly, this is in agreement
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with the implications of the Coulomb collision mechanism used as an explanation of the
inter-particle electrostatic interactions. According to that mechanism, particles act as if they
perform collisions at a distance, or collisions with a fictitious effective Coulomb diameter dCpq
which is substantially large for lighter particles, an observation made in Fig. 5.40c.

Figure 5.41 illustrates the effect of electrostatic interactions on the average and variance of
the nearest-neighbor particle distance. It seems that increasing the electric charge, the average
minimum inter-particle distance increases, as repulsive electrostatic forces become stronger
and particle distribution becomes homogeneous. In addition, for the same level of particle
electric charge, lighter particles exhibit bigger inter-particle distances in average approaching
an average distance of an equidistant distribution np

−1/3, which once again confirms the
high-frequency Coulomb collision regime hypothesis for light particles. As far as the variance
of dnp is concerned, it becomes evident that it diminishes as particle inertia and electric charge
increase, as has also been observed in Fig. 5.40.
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Figure 5.41: Effect of electrostatic interactions on average (left), and variance (right) of
the nearest-neighbor particle distance.

Figure 5.42 depicts how the radial distribution function is affected by electrostatic inter-
actions. Specifically, for increasing particle electric charge it seems that g(r) tends to start
from increasingly lower values. This is more pronounced for light particles and it indicates
that preferential concentration is strongly mitigated for weak electrostatic forces and even
eliminated for strong ones. This is an expected phenomenon that has been first documented
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by Alipchenkov et al. (2004), Karnik & Shrimpton (2012), Yao & Capecelatro (2018).
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Figure 5.42: Effect of electrostatic interactions on particle concentration distributions for
various levels of electric charge and three levels of particle inertia.

Finally, these observations are confirmed by Fig. 5.43 which depicts the effect of electro-
static interactions on RDF at separation distance r = dp. Increasing particle electric charge,
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leads to stronger inter-particle repulsive electrostatic forces which tend to flatten the g(r = dp)
curve to zero, as all particles develop exclusion zones around them. In fact, for a given level of
electric charge, this exclusion zone is more pronounced for lighter particles. Characteristically,
for weak electric charge, the (low) agglomeration of heavy particles is not considerably affected,
while for light particles it decreases significantly.
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Figure 5.43: RDF at separation distance r = dp and r = dCpq with regard to particle inertia
for various levels of electric charge. The red markers correspond to the charge-free case.

It should be noted here that these observations seem to match (qualitatively) the ones
made in the published work of Alipchenkov et al. (2004), Lu et al. (2010) and Lu & Shaw
(2015). Specifically in the latter, Lu & Shaw (2015) deals with particles of low Stokes numbers
τFfp/τK and weak electric charges. Under these assumptions, and for the dissipative turbulent
length range r < ηK , they decompose the radial relative particle velocity into turbulence and
Coulomb terms ws and we, respectively

wr = ws + we (5.15)
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where we is the terminal Coulomb velocity

we = 2λQp2

mpr2 τ
F
fp (5.16)

and they provide a model for the calculation of the RDF of like-charged particles as

g(r) = c0

(
ηK
r

)c1
[
1− erf

(
weτK

1
r

√
15
2

)]
. (5.17)

where c0 and c1 are the coefficients that have been calculated by curve fitting of the power law of
Eq. (3.52) (Chun et al., 2005) to the DNS data for RDFs of charge-free inertial particles. Figure
5.44 shows the RDFs for a turbulent length range bigger than the dissipative, ηK < r < 25ηK
and for particles with the lowest Stokes number examined in this work for several levels of
weak electric charges. It seems that the theoretical model of Lu & Shaw (2015) tends to match
the trend of the DNS data at the limit of low Stokes numbers and of weak electric charges
(two main hypotheses of the model). It should be noted here, that the aforementioned model
was validated for lower Stokes numbers τFfp/τK ∈ [0.06, 0.18], but the apparent discrepancies
are more likely to be related to its adaptation for a bigger turbulent length range, that is one
of the main hypotheses of the Chun et al. (2005) model for the radial distribution function in
the charge-free case (see Subsect. 3.2.4) upon which this model is based to include the effect
of electric charges.
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Figure 5.44: RDFs of the lighter particles compared with Lu & Shaw (2015) model of
Eq. (5.17) for various levels of electric charges. We observe an agreement on the trend of the
evolution of RDFs for weak electric charges, one of the hypotheses of the cited model.

5.3.2 Relative inter-particle motion
Figure 5.45 shows the effect of electric charge on RDFs of radial relative particle velocity for
three levels of particle inertia. An increase of its value for short particle separation distance is
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observed which can be due to the strong repulsive electrostatic forces at such distances. As the
separation distance increases, 〈|wr|〉p follows the trend of the charge-free case as electrostatic
forces become weaker.
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Figure 5.45: Effect of electrostatic interactions on RDFs of radial relative particle velocity
for various levels of electric charge and three levels of particle inertia. Most affected are the
particles of moderate inertia that exhibit preferential concentration in the charge-free case.
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For large separation distances r ∼ 5Lf , 〈|wr|〉p seems to slightly increase for heavy particles
and slightly decrease for light particles as the former are more while the latter are less agitated
due to electrostatic forces. However, for moderate particle inertia, the average radial relative
velocity, 〈|wr|〉p seems to increase for increasing electric charge. This can be explained by
the strong competition of the hydrodynamic and electrostatic forces for moderate particle
inertia. For these particles, the former are strictly responsible for particle approaching motion
(preferential concentration), while the latter partially responsible (drag is also responsible for
this) for particle departing motion (electrostatic repulsion).

In Fig. 5.46 the average value 〈|wr|〉p and variance 〈w′r2〉p of the radial relative particle
velocity is presented for various levels of electric charges and particle inertia. It seems that for
intermediate Stokes numbers, both average and variance slightly increase due to electrostatic
interactions as they experience an increase in agitation. On the contrary, for low Stokes
numbers, the same statistics decrease as they experience a decrease in agitation.
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Figure 5.46: Effect of electrostatic interactions on average (left), and variance (right) of
the radial relative particle velocity normalized by 2/3q2

f .

It should be noted here, that these observations seem to match (qualitatively) the ones
made in the published work of Alipchenkov et al. (2004), Lu et al. (2010) and Lu & Shaw
(2015). Specifically in the latter, Lu & Shaw (2015) provide a model for the calculation of the
radial relative particle velocity of like-charged particles, for particles of low Stokes numbers
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τFfp/τK and weak electric charges, written as

〈|wr|〉p =
√

2
π
σ

exp
(
− w2

e
2σ2

)

1− erf
(
we√
2σ

) − we (5.18)

where σ, defined in Eq. (3.53) is the standard deviation of the Gaussian distribution of the
turbulent part of the radial relative particle velocity, ws (see Eq. (5.15)) for the dissipative
turbulent length range r < ηK , and we is the terminal Coulomb velocity (see Eq. (5.16)). In
Fig. 5.47 we observe that the DNS data do not match the model’s predictions. The reason
for this is twofold, as it is suitable for particles of very low Stokes numbers, but also it was
based on Saffman & Turner (1956) model for the radial relative velocity, which is valid for the
dissipative turbulent length range r < ηK and here it is used outside of this length range.
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Figure 5.47: RDFs of the average radial relative velocity for low particle Stokes numbers
compared with Lu & Shaw (2015) model of Eq. (5.18) for three levels of (weak) electric charges.

PDF of particle velocities

Figure 5.48 shows the PDF of the three components of particle velocities for various levels of
inertia. It can be deduced that, since the PDFs overlap, the distribution of particle velocities
is isotropic as orientation does not affect the shape of the PDFs. This is in agreement with
the known isotropy properties of the electric field (as shown by Fig. 5.4) and of the simulated
turbulence. In order to obtain a more precise idea of the form of the PDF of up,i, they have
been plotted in Fig. 5.48 with exponential and Gaussian functions that are obtained via
relation (3.55). One can make two observations based on Fig. 5.48. First, it seems that the
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Figure 5.48: PDF of the three components of particle velocities for various levels of particle
inertia and Qp = 5Q0. The distributions are perfectly Gaussian (see Eq. (3.55)).
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PDFs of particle velocities are almost perfect Gaussian distributions, while for the same level
of particle electric charge, as particle inertia increases their range increases. Furthermore,
Fig. 5.49 shows the effect of electrostatic interactions on the PDF of the x-axis component
of the particle velocity for different levels of particle inertia. It seems that particle-particle
electrostatic interactions have no effect on the distribution of particle velocities. This implies
that they affect mostly the spatial structure of the gas-particle flow and modify the fluid-particle
correlation instead of directly altering the kinetic state of the particles.
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Figure 5.49: Effect of electrostatic interactions on the PDF of the x-axis component of
the particle velocity for various levels of electric charge and three levels of particle inertia.
Increasing particle electric charge does not seem to affect the distribution of particle velocities.

5.4 Effect of particle number density
At this point, we examine the effect of particle number density on the dynamics of a like-charged
particle-laden turbulent gas flow. To do this, inertial particles of Stokes number τStp /τK = 4.03
(class 5 in Table 2.4) are considered in a computational domain of constant size L/π = 2.

A three-fold approach is followed: at first particle flow dynamics are examined for
increasing particle numbers Np = [1, 5, 10, 20]× 104 in the charge-free case. Then the particle
electric charge is kept constant at Qp = 5Q0 and flow dynamics are examined for increasing
particle numbers Np = [1, 5, 10, 20] × 104. Finally, for each level of particle number density
np, particle flow dynamics are examined for calculated levels of particle electric charge for
which τel is kept constant, based on the premise that τel dictates the electrostatics of particle
dynamics. For the latter, following Eq.(4.20) for a given particle mass mp and domain size
L, it is possible to calculate an equivalent particle electric charge Q′p that corresponds to a
charged particle cloud of N ′p that has the same τel with that of (Np, Qp). Thus, one can write

(N ′p, Q′p) ≡ (Np, Qp)⇔ τel(N ′p, Q′p) = τel(Np, Qp)⇔ Q′p = Qp

√
Np

N ′p

For this level of particle inertia and domain size, charged particle cloud
(
104, 5Q0

)
has

electrostatic time scale τel = 2.5s. To to keep the same particle dynamics via a constant τel,
an equivalent electric charge is calculated for an increasing particle number Np in Table 5.2.

Table 5.2: Equivalent particle electric charge for increasing Np and given τel

τel [s]
Np/104

1 5 10 20

2.5 5Q0 5/
√

5Q0 5/
√

10Q0 5/
√

20Q0
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Figure 5.50 shows flow snapshots for the twelve (in fact eleven) (Np, Qp) configurations.
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Figure 5.50: Instantaneous snapshots of like-charged particle-laden turbulent gas flows for
various levels of particle number and electric charges for ∆x = Lf .
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Figure 5.51 visualizes the case studies that have been examined in terms of particle electric
charge Qp. For each level of particle number density, apart from the charge-free case, there
are two particle electric charges examined: 5Q0 and Qp = Qp(τel = const). As expected, while
keeping particle electric charge constant, increasing particle volume/number density entails
a smaller electrostatic time scale, since electrostatic interactions become stronger and the
Coulomb collision frequency increases. To examine the latter, one can calculate the Lagrangian
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Figure 5.51: Electrostatic time scale for increasing particle number density.

particle integral time scale as shown in Fig. 5.52. This Figure shows that particle-particle
(repulsive) electrostatic interactions enhance particle velocity decorrelation, as indicated by
the decrease of τ tp. In fact, it seems that constant τel entails (somewhat) constant τ tp, as
for strong electrostatic interactions the latter is strongly tied to the former. However, for
constant levels of particle charge Qp, increasing particle number density further enhances the
particle velocity decorrelation as particle charge density increases. This concept of "stronger"
electrostatic interactions can be viewed by Fig. 5.53. Indeed, τel seems a very good candidate
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Figure 5.52: Lagrangian particle integral time scale for increasing particle number density.
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for characterizing the kinetic energy levels of the like-charged particle cloud as both 〈‖Fe‖〉p
and q2

p remain slightly unaffected by np for constant τel. However, for constant particle electric
charge, an increase of np implies a dramatic increase of the average norm of the electrostatic
forces applied on the particles. One cannot say the same for particle agitation which seems to
reach a saturation level at q2

p ' 0.8× q2
f@p as kinetic energy is dissipated by turbulent viscosity.
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Figure 5.53: Effect of particle number density on Lagrangian average of the norm of
electrostatic forces (left) and particle agitation (right) for different levels of particle charge.

Finally, there are several interesting observations to be made considering Fig. 5.54.
Indeed, the effect of particle number density on particle distribution is more intricate for the
different examined levels of particle electric charge. For example, in the charge-free case the
nearest-neighbor particle distance remains unaffected as 〈dnp〉p ' 1/2np−1/3 for increasing
particle number density np. For Qp = 5Q0, since the increase of particle number density implies
stronger electrostatic interactions, 〈dnp〉p approaches the equidistant-distribution distance
np
−1/3 for increasing np. However, for Qp = Qp (τel = const), dnp decreases slightly with
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Figure 5.54: Effect of particle number density on particle distribution for different levels of
particle charge. Nearest-neighbor particle distance (left), global particle accumulation (right).

regards to np−1/3 which means that when keeping the same level of electrostatic interactions
the distribution tends to be more uniform and less equidistant due to the largest number of
particles per volume. This observation is also backed by the effect of np on the evolution of
the global particle accumulation Σp which seems to increase in the iso-τel case.
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Last but not least, Fig. 5.55 examines the behavior of the exclusion zone phenomenon
under the influence of growing particle number density. On one hand, at a distance close to
the physical collision, The particle accumulation levels remain the same for the charge-free
case, as the fundamental mechanisms of preferential concentration remain the same. On the
other hand, keeping particle electric charge constant and increasing particle number density
leads to a high content of particle electric charge density, which leads to a strong exclusion
zone around each particle. On the contrary, keeping the same electrostatic time scale and
increasing the particle number density, inevitably leads to slightly higher levels of accumulation
since it is not otherwise possible to maintain the same levels of particle charge density while
increasing particle number density. Coulomb collision mechanism is found to present some-kind
of self-similarity as, although Coulomb effective diameter dCpq does not directly depend on
particle number density (only for dry granular flows), the radial distribution functions at
r = dCpq collapse for different levels of electrostatic interactions.
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Figure 5.55: Effect of particle number density on particle distribution for different levels of
particle charge. RDF at particle collision (left) and RDF at Coulomb collision (right).

5.5 Conclusion
This chapter presents the results obtained from DNS of electrically charged particles transported
by homogeneous isotropic turbulence and their statistical analysis. In such a configuration,
the two main mechanisms that drive particle behavior are the hydrodynamic drag and the
electrostatic forces. To characterize the competition between the two, an electrostatic Stokes
number is devised and linked theoretically to the particle Stokes number.

Then, the effect of electrostatic interactions on particle dispersion is examined via a
modification of the classic theoretical Tchen-Hinze framework (Hinze, 1972). The basic
observation is that for increasing particle electric charge, particle agitation increases for
particles of moderate inertia and decreases for light particles, while heavy particles remain
unaffected. This modification of particle agitation is not direct, but rather comes from a
corresponding modification of fluid-particle covariance, which is a measure of fluid-particle
correlation. In fact, a closer look at the flow dynamics shows that electrostatic forces slow
down the turbulent dissipation rate of fluid-particle correlation, thus increasing fluid-particle
correlation. However, at the same time turbulence-induced electrostatic energy destroys
this correlation. This essentially means that for a given level of particle inertia, stronger
electrostatic interactions lead to fluid-particle correlation increase up to a saturation electric
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charge, above which it starts to decrease. Same goes for particle agitation.
Moreover, as far as the characteristic time scales are concerned, the Lagrangian integral

time scale of the particle velocity, τ tp is considerably reduced by electrostatic interactions as
particle velocities decorrelate faster under the influence of electrostatic forces, while their effect
on the corresponding time scale of the turbulent velocity "seen" at the particles position, τ tf@p
is not so straight forward. In fact, electrostatic interaction enhance the ability of light particles
to follow fluid trajectories, while for heavy particles the opposite trend is observed, hence they
tend to become even more decorrelated from the turbulent flow. The former time scale seems
to be the reason for a significant reduction of the particle dispersion coefficient, which entails
an equivalent reduction of particle dispersion. Particles that are constantly repelled from each
other, are less prone to wander off their initial positions as they have to "navigate" through
paths of minimum resistance, hence this observed behavior.

Furthermore, follows an extensive analysis of electrostatic forces themselves, which brings
to light their rather peculiar distribution whose form seems to be greatly different from
Exponential and Gaussian distributions. In addition, a characteristic time scale of electrostatic
interactions is defined and it could be used to determine the lifetime of the application of such
a force distribution in a stochastic model. The spatial distribution of the like-charged particle
cloud is examined and two main interesting observations are drawn. Firstly, preferential
concentration is mitigated for weak particle electric charges and completely eliminated for
strong ones. Secondly, there appears to be an exclusion zone around each particle, that stems
from the fact that inside this zone, the repulsive electrostatic forces are substantially strong so
that no particle can ever stay in this zone, leading to an equidistant particle distribution.

Finally, we examine the effect of particle number density on particle flow characteristics.
There is a clear distinction between the "kinetic state" of the gas-particle flow and the spatial
structure of the charged particle cloud. In fact, τel seems to be a very good candidate at
describing the kinetic energy content of such a flow, however the spatial distribution of particles
seems to be considerably affected by the particle number density. Simply, more particles per
volume normally entail more particle accumulation. However, more particles per volume of
the same level of electric charge, entail a higher particle charge density which leads to a rather
homogeneous (equidistant distribution) but inevitably that of a smaller inter-particle distance.
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6
Conclusion and prospects

“ὅλον δέ ἐστιν τὸ ἔχον ἀρχὴν
καὶ μέσον καὶ τελευτήν

1”
- Aristotle, c. 384 – c. 322 BC

6.1 Conclusions
The work presented in this PhD thesis has basically covered three topics: turbulent gas-particle
flows, inter-particle electrostatic interactions and turbulent charged particle-laden gas flows.

To begin with, in order to simulate stationary homogeneous isotropic turbulence, one
needs to add a kinetic energy production term that should balance the turbulent dissipation.
Furthermore, when particles are transported by a fluid turbulent flow, one needs to carefully
consider the involved length scales. If the inertial particles are smaller than the Kolmogorov
length scale, they interact with rather large turbulent structures and the point-particle
approximation can be used. This along with the fact that the particles are considered
considerably more dense than the fluid, allows for a simplification of the forces exerted on
them: the hydrodynamic drag, the gravity force and the electrostatic forces. Finally, several
statistics have been deployed that allow for the calculation of characteristic scales that are of
paramount importance in the understanding of the dynamics of such gas-particle flows.

A first step in understanding the dynamics of electrically charged particle-laden turbulent
flows, is to acquire a concrete appreciation of the corresponding charge-free case. Such flows
have been studied for many decades now, and there is a number of theoretical frameworks
that facilitate their study, such as the Tchen-Hinze theory. A simulation of particle-laden
turbulent gas flow without electric charges has been carried out. This requires the setup
of a case of resolved stationary HIT and the calibration of the particle phase according to
a desired range of Stokes numbers, which yields several particle classes based on different
densities. This calibration occurs by performing a statistical analysis of the flow, by using
velocity autocorrelation functions that allow to estimate characteristic time scales of the fluid
and particle flow. This statistical analysis enables to recreate Tchen-Hinze theory concerning
particle agitation which serves as verification of a successful particle-laden turbulent gas flow
simulation. The key property that characterizes particle dynamics in turbulent gas-particle
flows is particle inertia.

In a first order approximation, particle agitation, hence particle dispersion is more
pronounced for lighter particles as for decreasing inertia - to the limit of fluid elements -
particles tend to be more susceptible to local fluid fluctuations. However, it is shown that
particle agitation depends on fluid-particle covariance which is a measure of fluid-particle
correlation. An attempt to describe the turbulent dissipation of the latter via the fluid
acceleration - particle velocity covariance has been made. For the latter it is shown that a

1A whole is that which has beginning, middle and end.
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model based on a stochastic equation for fluid acceleration measured at particle positions,
predicts it with better accuracy if the supposed form of the fluid autocorrelation function
is a double exponential. Furthermore, while the latter dissipation mechanism is not greatly
affected by the decrease of particle inertia, its effect via the hydrodynamic force becomes
predominant and leads to fluid-particle decorrelation. An even deeper analysis of such flows
involves the structure of the spatial particle distribution in the turbulent flow. By observing the
appropriate statistics (PDF of particle concentration and nearest-neighbor particle distance,
radial distribution functions) a well studied behavior emerges: preferential concentration.
According to this phenomenon, particles of moderate inertia tend to gather in low-vorticity
regions of the flow and as a result, particle accumulation is observed.

Moreover, in order to isolate electrostatic interactions, like-charged dry particle clouds
have been considered without the presence of any turbulent fluid flow. The combination
of tri-periodic boundary conditions, and particle-particle electrostatic interactions has been
found to pose a challenging and complicated problem, that of electrostatic periodicity. More
specifically, the successful application of electrostatic periodicity requires the ensuring both of
the convergence and of the isotropy of the long-range electrostatic field. In order to address
that, and at the same time consider the computational cost as well as the accuracy of the
calculations, a rather efficient algorithm has been created and its characteristics as well as the
obtained results are extensively analyzed and documented.

The computational cost of the Np-body problem is prohibitively high O
(
Np

2
)
. However,

separating the interactions in short- and long-range can be a viable solution. Such a method,
is the pseudo-particle method that is more efficient O

(
Np

1.5
)
and with an acceptable error.

Furthermore, in case of tri-periodic BCs, since electrostatic forces depend on the distance of
particle images, electrostatic periodicity entails an additional cost which scales with the cube
of the number of periodic images per direction. However, it is shown that in order to represent
accurately enough the periodic BCs, one periodic layer is enough so as to respect the isotropy
and convergence of the long-range force field. In order to ensure such periodic isotropy, every
particle has to interact with particles within a cubic periodic volume centered at its position.

In addition, an attempt to explain the nature of electrostatic interactions is made via an
analogy with hard collisions. In fact, particle-particle (repulsive) electrostatic interactions can
be viewed as (Coulomb) collisions happening at a distance with an effective Coulomb diameter
that is proportional to the square of electric charge and inversely proportional to the square of
the norm of particle relative velocity. By considering this analogy, one can deduce a Coulomb
collision frequency and consequently a characteristic time scale of electrostatic interactions. A
dimensional analysis supports this theory and it is verified via the corresponding measured
quantities obtained by DNS of like-charged particle-laden flows. Effectively, particle agitation
is linked to the particle-induced electric field and the very nature of electrostatic forces is
observed in detail. Hence, a time scale of electrostatic interactions is proposed, whose order of
magnitude has been compared to the characteristic time of Coulomb collisions.

To examine the competition between hydrodynamic drag and electrostatic forces, several
like-charged particle-laden turbulent gas flows have been simulated with different particle
charges in order to investigate the effects of electrostatic interactions on particle agitation.
A statistical analysis of these flows has been carried out so as to acquire an insight of their
behavioral dynamics. This statistical analysis, along with a theoretical one enables to rewrite
the transient equations of important statistical moments and effectively derive the modified
Tchen-Hinze theory for the stationary regime in the presence of electrostatic forces. In such a
configuration, the two main mechanisms that drive particle behavior are the hydrodynamic drag
and the electrostatic forces. To characterize the competition between the two, an electrostatic
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Stokes number is devised and linked theoretically to the particle Stokes number.
Then, the effect of electrostatic interactions on particle dispersion is examined via a

modification of the classic theoretical Tchen-Hinze framework. The basic observation is that for
increasing particle electric charge, particle agitation increases for particles of moderate inertia
and decreases for light particles, while heavy particles remain unaffected. This modification
of particle agitation is not direct, but rather comes from a corresponding modification of
fluid-particle covariance, which is a measure of fluid-particle correlation. In fact, a closer
look at the flow dynamics shows that (repulsive) electrostatic forces slow down the turbulent
dissipation rate of fluid-particle correlation, thus increasing fluid-particle correlation, while at
the same time turbulence-induced electrostatic energy destroys this correlation. This essentially
means that for a given level of particle inertia, stronger electrostatic interactions lead to a
greater fluid-particle correlation up to a saturation level of electric charge, above which it
starts to decrease. Same goes for particle agitation.

As far as the characteristic time scales are concerned, the Lagrangian integral time scale
of the particle velocity, τ tp is considerably reduced by electrostatic interactions as particle
velocities decorrelate faster under the influence of electrostatic forces, while their effect on the
corresponding time scale of the turbulent velocity "seen" at the particles position, τ tf@p is not
so straight forward. In fact, electrostatic interaction enhance the ability of light particles to
follow fluid trajectories, while for heavy particles the opposite trend is observed, hence they
tend to become even more decorrelated from the turbulent flow. The former time scale seems
to be the reason for a significant reduction of the particle dispersion coefficient, which entails
an equivalent reduction of particle dispersion. Particles that are constantly repelled from each
other, are less prone to wander off their initial positions as they have to "navigate" through
paths of minimum resistance, hence this observed behavior.

An extensive analysis of electrostatic forces themselves, has been also carried out which
brings to light their rather peculiar distribution whose form seems to be greatly different from
Exponential and Gaussian distributions. In addition, a characteristic time scale of electrostatic
interactions is defined and it could be used to determine the lifetime of the application of such
a force distribution in a stochastic model. The spatial distribution of the like-charged particle
cloud is examined and two main interesting observations are drawn. Firstly, the preferential
concentration is mitigated for weak particle electric charges and completely eliminated for
strong ones. Secondly, there appears to be an exclusion zone around each particle, that stems
from the fact that inside this zone, the repulsive electrostatic forces are substantially strong so
that no particle can ever stay in this zone, leading to an equidistant particle distribution.

Finally, the effect of particle number density on particle flow characteristics has been
examined. It becomes evident that there is a clear distinction between the "kinetic state" of the
gas-particle flow and the spatial structure of the charged particle cloud. In fact τel seems to
be a very good candidate at describing the kinetic energy content of such a flow, however the
spatial particle distribution seems to be considerably affected by the particle number density.
Simply, more particles per volume normally entail more particle accumulation, however more
particles per volume of the same level of electric charge, entail a higher particle charge density
which leads to a rather homogeneous (equidistant distribution) but inevitably that of a smaller
inter-particle distance.

6.2 Future work
Although most of the fundamental goals set at the beginning of this PhD have been achieved,
there are several topics that have not been well investigated and more work needs to be done
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towards this direction, in order to make more progress in this subject.
To begin with, as far as the gas-particle part is concerned, there are a lot of points that

could be reconsidered. First, one could consider more dense particulate flows which would
require to take into account particle-particle (physical) collisions and/or the introduction of
two-way coupling. In this case, this would allow for a more accurate representation of the
simulated physics. There is practically no end in how complex physics, one could try to simulate,
so in the same spirit, one could imagine non-spherical particles that would require the addition
of supplementary forces (e.g. buoyancy/lubrication force, rotation) and/or orientation, etc.
Lastly, it would be certainly interesting to be able to add walls in any direction of preference
and simulate turbulent channel flows which is representative of more real-life applications.
Continuing with the charge-free physics, in the future, more work needs to be carried out
towards the modeling of the fluid acceleration - particle velocity covariance, especially for light
particles, and the work presented in this PhD offers a rather comprehensive approach to do so.

As far as the computational methods for the calculation of electrostatic forces are concerned,
there is certainly room for improvement and expansion in this front. Although the presented
algorithm is very robust and efficient for the requirements of this work, one could implement
a very competitive FMM algorithm with tri-periodic BCs. That would allow for a very fast,
robust and accurate calculation of the inter-particle electrostatic interactions for considerably
more particles (∼ Np ∈

[
107, 108]). Such an algorithm would also allow for a more generic

application of boundary conditions, where one can imagine charged walls (Dirichlet), insulated
walls (Neumann), that could potentially bare interest for more industry-oriented applications.

In the same spirit of more accurate representation of particle electrostatics, one could also
envisage to simulate distributions of particle charges. In addition, charges of different polarity
would certainly require the resolution of physical particle collisions. The epitome of such a
capability would be a time-variable particle electric charge distribution that is potentially
modified at every time-step via wall- and particle-particle hard/soft physical collisions along
with a triboelectricity model. However, in order to perform simulations of oppositely charged
particles, one would need to be very careful with the time resolution of their collisions, as
electrostatic forces would present strongly non-linear behavior as they scale quadratically with
the inverse of the inter-particle distance.

As far as the observed physics are concerned, more clarification is needed towards the
investigation of the effect of electrostatic interactions on the autocorrelation functions of
fluid velocity "seen" by inertial particles. More specifically, the modification of the turbulent
spectrum "seen" by the charged inertial particles due to electrostatic interactions has not
been thoroughly understood in the presented work. Increasing the number of particles from
Np = 104 to 105 would be the first step towards that, as the calculation of the autocorrelation
function would be significantly more accurate, thus allowing for a more confident analysis.
Such a study could allow us to further investigate particle dispersion, preferential concentration
as well as modeling the electrostatic-related terms in the modified Tchen-Hinze equation.

Moreover, it would be equally interesting to examine the effect of gravity in such a system,
thus to study the dispersion of charged inertial particles settling in stationary homogeneous
isotropic turbulence. This would be of great interest for applications that focus on particle
deposition and would be closer to real-life applications. Of course, the inclusion of the
gravity force, would increase considerably the complexity of the system as particles move
preferentially towards the direction of the gravity and special treatment is needed for the
statistical description of such a flow.

Another interesting direction that could be taken as continuation of this work is the
creation of a stochastic model for predicting inter-particle electrostatic interactions of inertial



6.2 Future work 153

charged particles in stationary HIT. In fact, the electrostatic interactions have been well
documented in this work, and all the elements needed for such a work are available. Such
are the average value and variance of the electrostatic forces for various levels of particle
inertia and electric charges, the characteristic lifetime of electrostatic interactions, the PDF of
electrostatic forces, etc. However, more work needs to be done towards the modeling of these
elements so that the knowledge obtained via the physical analysis of high fidelity DNS data is
transferred to lower fidelity stochastic models. The latter are of great interest for engineering
applications that look into at larger-scale simulations.
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APPENDIX A
Numerical schemes

A.1 2nd order Adams-Bashforth numerical schemes
Assuming a constant time step, the 2nd order Adams-Bashforth numerical scheme takes the
following form:

dfi
dt

= gi ⇒
fn+1
i − fni

∆t = 3
2g

n
i −

1
2g

n−1
i . (A.1)

A.1.1 Discretization of N-S momentum equation
N-S equation of momentum with turbulent forcing (2.14) is re-written as

dûf,i
dt

+ νfκ
2ûf,i + R̂i = 0 (A.2)

where R̂i contains the advection and non-linear terms of the (spectral) N-S equations as well
as the turbulence forcing term and is defined as

R̂i =
[
δij −

κiκj
κ2

]
N̂j − âi .

Equation (A.2) is strictly equivalent to
d

dt

(
ûf,ie

νfκ
2t
)

+ R̂ie
νfκ

2t = 0 . (A.3)

Discretizing (A.3) using 2nd order Adams-Bashforth numerical scheme of Eq. (A.1) (as shown
in Sect. A.1.1) yields an equation for advancing fluid velocity in the frequency domain that
gives

ûn+1
f,i = ûnf,ie

−νfκ2∆t − ∆t
2
[
3R̂ni e−νfκ

2∆t − R̂n−1
i eνfκ

2te−2νfκ2∆t
]
.

Applying this scheme to discretize equation of momentum (A.3) yields

ûie
νfκ

2t
∣∣∣
n+1
− ûieνfκ2t

∣∣∣
n

∆t = −3
2R̂ie

νfκ
2t
∣∣∣
n

+ 1
2R̂ie

νfκ
2t
∣∣∣
n−1

ûn+1
i eνfκ

2(t+∆t) − ûni eνfκ
2t

∆t = −3
2R̂

n
i e
νfκ

2t + 1
2R̂

n−1
i eνfκ

2(t−∆t)

ûn+1
i eνfκ

2(t+∆t) − ûni eνfκ
2t = −∆t

2
[
3R̂ni eνfκ

2t − R̂n−1
i eνfκ

2(t−∆t)
]
.

Expanding the exponential terms and simplifying gives

ûn+1
i eνfκ

2teνfκ
2∆t − ûni eνfκ

2t = −∆t
2
[
3R̂ni eνfκ

2t − R̂n−1
i eνfκ

2te−νfκ
2∆t
]

ûn+1
i eνfκ

2∆t − ûni = −∆t
2
[
3R̂ni − R̂n−1

i e−νfκ
2∆t
]
.

Finally, fluid velocity is advanced in the frequency domain via the following equation

ûn+1
i = ûni e

−νfκ2∆t − ∆t
2
[
3R̂ni e−νfκ

2∆t − R̂n−1
i eνfκ

2te−2νfκ2∆t
]
.
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A.1.2 Discretization of particle motion equation

The particle trajectory equation Eq. (2.20) can be written as

dup,i
dt

= −αup,i + β (A.4)

with
α = 1

τp
and β = uf@p,i

τp
+ Fe,i
mp
− g .δi3

Equation (A.4) is strictly equivalent to

d
(
up,ie

αt
)

dt
= βeαt . (A.5)

Discretizing (A.5) using 2nd order Adams-Bashforth numerical scheme of Eq. (A.1) (as shown
in Sect. A.1.2) yields an equation for advancing particle velocity time that gives

un+1
p,i = unp,ie

−∆t/τp + ∆t
2
[
3βne−∆t/τp − βn−1e−2∆t/τp

]
.

Applying this scheme to discretize the equation of particle motion (A.5) yields

up,ie
αt
∣∣∣
n+1
− up,ieαt

∣∣∣
n

∆t = 3
2βe

αt
∣∣∣
n
− 1

2βe
αt
∣∣∣
n−1

un+1
p,i e

αn+1(t+∆t) − unp,ieα
n(t)

∆t = 3
2β

neα
nt − 1

2β
n−1eα

n−1(t−∆t) .

Since α = α(t), the above equation cannot be further simplified. However, it is reasonable to
assume that the particle response has small fluctuations between two time steps. Under such
an assumption αn−1 = αn = αn+1 = α, therefore

un+1
p,i e

α(t+∆t) − unp,ieαt = ∆t
2
[
3βneαt − βn−1eα(t−∆t)

]

un+1
p,i e

α∆t − unp,i = ∆t
2
[
3βn − βn−1e−α∆t

]

un+1
p,i = unp,ie

−α∆t + ∆t
2
[
3βne−α∆t − βn−1e−2α∆t

]
.

Finally, the time-integration of particle momentum equation is performed by the following
equation

un+1
p,i = unp,ie

−∆t/τp + ∆t
2
[
3βne−∆t/τp − βn−1e−2∆t/τp

]
.

A.2 Lagrange polynomial interpolation schemes

Below, the Lagrange polynomials defined by Eq. (2.24) are calculated for 1st, 2nd, 3rd and 4th
order.
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1st order

For n = 1, at least N = 2 points are needed in order to perform the interpolation as

P (x) = f(x1)p1 + f(x2)p2

with n+ 1 = 2 base polynomials

p1 = x− x2
x1 − x2

= 1− α

p2 = x− x1
x2 − x1

= α .

2nd order

For n = 2, at least N = 3 points are needed in order to perform the interpolation as

P (x) = f(x1)p1 + f(x2)p2 + f(x3)p3

with n+ 1 = 3 base polynomials

p1 = x− x2
x1 − x2

× x− x3
x1 − x3

= 1
2 (α− 1) (α− 2)

p2 = x− x1
x2 − x1

× x− x3
x2 − x3

= −α (α− 2)

p3 = x− x1
x3 − x1

× x− x2
x3 − x2

= 1
2α (α− 1) .

3rd order

For n = 3, at least N = 4 points are needed in order to perform the interpolation as

P (x) = f(x1)p1 + f(x2)p2 + f(x3)p3 + f(x4)p4

with n+ 1 = 4 base polynomials

p1 = x− x2
x1 − x2

× x− x3
x1 − x3

× x− x4
x1 − x4

= −1
6 (α− 1) (α− 2) (α− 3)

p2 = x− x1
x2 − x1

× x− x3
x2 − x3

× x− x4
x1 − x4

= 1
2α (α− 2) (α− 3)

p3 = x− x1
x3 − x1

× x− x2
x3 − x2

× x− x4
x1 − x4

= −1
2α (α− 1) (α− 3)

p4 = x− x1
x3 − x1

× x− x2
x3 − x2

× x− x4
x1 − x4

= 1
6α (α− 1) (α− 2) .

4th order

For n = 4, at least N = 5 points are needed in order to perform the interpolation as

P (x) = f(x1)p1 + f(x2)p2 + f(x3)p3 + f(x4)p4 + f(x5)p5
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with n+ 1 = 5 base polynomials

p1 = x− x2
x1 − x2

× x− x3
x1 − x3

× x− x4
x1 − x4

× x− x5
x1 − x5

= 1
24 (α− 1) (α− 2) (α− 3) (α− 4)

p2 = x− x1
x2 − x1

× x− x3
x2 − x3

× x− x4
x1 − x4

× x− x5
x1 − x5

= −1
6α (α− 2) (α− 3) (α− 4)

p3 = x− x1
x3 − x1

× x− x2
x3 − x2

× x− x4
x1 − x4

× x− x5
x1 − x5

= 1
4α (α− 1) (α− 3) (α− 4)

p4 = x− x1
x3 − x1

× x− x2
x3 − x2

× x− x4
x1 − x4

× x− x5
x1 − x5

= −1
6α (α− 1) (α− 2) (α− 4)

p5 = x− x1
x3 − x1

× x− x2
x3 − x2

× x− x4
x1 − x4

× x− x5
x1 − x5

= 1
24α (α− 1) (α− 2) (α− 3) .



APPENDIX B
Pseudo-particle algorithm

B.1 Pseudo-particle rectangles

A pseudo-particle rectangle Xk centered in position xeqk of equivalent pseudo-particle Ωk, is
defined in a cell whose center is denoted as xck. Its dimensions are ∆xeqk = xeqk min − xeqk max
where xeqk min and xeqk max are its borders.

xeqk,imin =





xck,i −
∆xf

2 , if xeqk,i < xck,i

2xeqk,i − xck,i −
∆xf

2 , otherwise
(B.1)

and

xeqk,imax =





2xeqk,i − xck,i + ∆xf
2 , if xeqk,i < xck,i

xck,i + ∆xf
2 , otherwise

. (B.2)

xck,i

xeqk,i xeqk,imaxxeqk,imin

xck,i + ∆xf
2xck,i −

∆xf
2

(a) xeq
k,i < xc

k,i

xck,i

xeqk,i xeqk,imaxxeqk,imin

xck,i + ∆xf
2xck,i −

∆xf
2

(b) xeq
k,i ≥ xc

k,i

Figure B.1: Two different possible pseudo-particle positions xeqk relative to cell center xck.

B.2 Optimal computational cost
The computational cost of the pseudo-particle algorithm with periodic boundary conditions
depends on the number of particles Np, the number of cells Ne, the number of neighborhood
cells Nv and the number of periodic domain images Nper. Its function has been estimated
theoretically in Eq. (4.16) and can be rewritten as

C (Np, Ne, Nv, Nper) = Np

[
(2Nv + 1)3 Np

Ne
3 + (2Nper − 1)3Ne

3 − (2Nv + 1)3 − 1
]
. (B.3)
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For givenNp, Nv andNper there is an optimal number of cellsNopt
e ∈ [(2Nv + 2) / (2Nper − 1) , Np

1/3]
that minimizes the function of the computational cost. In order to calculate Nopt

e , one can
write the partial derivative

∂C

∂Ne
= −3Np

2 (2Nv + 1)3Ne
−4 + 3 (2Nper − 1)3Ne

2Np .

Hence, Nopt
e is the solution of Eq. (B.2) with regards to Ne

∂C

∂Ne
= 0

Np (2Nv + 1)3Ne
−4 = (2Nper − 1)3Ne

2

Ne
6 = Np

(
2Nv + 1

2Nper − 1

)3

Nopt
e = Np

1
6

(
2Nv + 1

2Nper − 1

) 1
2

.

If Nn = 2Nv + 1 and Nim = 2Nper − 1, then Nopt
e = Np

1/6 (Nn/Nim)1/2 and the optimal
(minimum) computational cost would be

Copt (Np, Nv, Nper) = Copt
(
Np, N

opt
e , Nv, Nper

)

= Np

[
Nn

3 Np

Np
1
2

(
Nim

Nn

) 3
2

+Nim
3Np

1
2

(
Nn

Nim

) 3
2
−Nn

3 − 1
]

= Np

[
Nn

3
2Np

1
2Nim

3
2 +Nn

3
2Np

1
2Nim

3
2 −Nn

3 − 1
]

= Np

[
2Nn

3
2Np

1
2Nim

3
2 −Nn

3 − 1
]

∼ Np
3
2Nv

3
2Nper

3
2

and the corresponding optimal number of particles per cell is

Nopt
k = Np

1
2

(2Nper − 1
2Nv + 1

) 3
2
.



APPENDIX C
Turbulent charged particle-laden gas

flows

C.1 Nondimensionalization of the particle motion equation
In case of turbulent charged particle-laden gas flows with periodic boundary conditions, the
equation of particle motion 2.20 can be written as

mp
dup
dt

=
Np∑

q=1
q 6=p

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

λ
QqQp∥∥∥r†pq

∥∥∥
3 r†pq −mp

up − uf@p
τp

−mpgk̂ . (C.1)

To nondimensionalize this equation, one should write every physical quantity q as q = Q · q̃,
where Q is a reference quantity and q̃ the non-dimensional instance of quantity q. Table C.1,
presents the quantities for the particle motion problem in charged granular flows. To begin

Table C.1: Reference quantities for the particle motion problem

Parameters Symbol Units
Length L m
Time τel s
Charge Q0 C
Mass m0 kg
Velocity L/τel m/s
Acceleration L/τel

2 m/s2

with, normalizing Eq. (C.1) with particle mass mp gives

dup
dt

= 1
mp

Np∑

q=1
q 6=p

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

λ
QqQp∥∥∥r†pq

∥∥∥
3 r†pq −

up − uf@p
τp

− gk̂ .

Finally by inserting the non-dimensional quantities in the equations one can get

L

τel2
dũp
dt̃

= 1
m0
· 1
m̃p

Np∑

q=1
q 6=p

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

λQ0
2

L2
Q̃qQ̃p∥∥∥r̃†pq

∥∥∥
3 r̃†pq −

L

τel2
ũp − ũf@p

τ̃p
− L

τel2
g̃k̂

dũp
dt̃

= λQ0
2

m0L2
τel

2

L
· 1
m̃p

Np∑

q=1
q 6=p

Nper∑

l,m,n=−Nper∣∣r†pq,i
∣∣≤αc

Q̃qQ̃p∥∥∥r̃†pq
∥∥∥

3 r̃†pq −
ũp − ũf@p

τ̃p
− g̃k̂

dũp
dt̃

= λQ0
2τel

2

m0L3 ·Np
F̃e

m̃p
+ F̃d

m̃p
+ F̃g

m̃p
.
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This last equation is dimensionless and the ratio λNpQ0
2τel

2/
(
m0L

3) is also a dimensionless
number. For a 1st order approximation, one could assume λNpQ0

2τel
2/
(
m0L

3) ∼ 1, which
yields

τel ∝
√

m0L3

NpQ0
2λ

τel ∝
1
Q0

√
m0L3

Npλ

τel ∝
1
Q0

√
m0
λnp

.

C.2 Particle electric potential energy
For the following analysis, we introduce the kinetic energy ekp and the total electric potential
energy ue of the system defined as following

ekp = 1
2mp‖up‖2 (C.2)

ue =
Np∑

q=1
q 6=p

λ
QqQp
‖rpq‖

. (C.3)

According to the kinetic energy theorem, the kinetic energy variation of a particle system
between two time instants is equal to the sum of the work of all the forces applied to each particle
of the system along the trajectory of each of these points in the same time interval. Considering
the dry granular case, the work of the electrostatic forces exerted on the particles is a measure
of kinetic energy variation between two positions, say (1) and (2): W1→2/mp = ∆q2

p

∣∣∣
1→2

and

W1→2 = ∑Np
i=1

∫ 2
1 F(i)

e u(i)
p δt. In order to get an equation for the kinetic energy, one can multiply

Eq. (2.20) by up using the identity qq̇ = 1
2
d
dtq

2 for q = q(xp, t) :

1
2
d

dt
u2
p = 1

mp
Feup + 1

mp
Fdup

1
2
d

dt
u2
p

︸ ︷︷ ︸
kinetic
energy

= 1
mp

We

δt︸ ︷︷ ︸
electrostatic
force work

+ 1
mp

Wd

δt︸ ︷︷ ︸
drag

force work

. (C.4)

Essentially, this last power balance is basically the 2nd thermodynamic law. The first term of
the right hand side represents the specific electrostatic power

Pe
mp

= 1
mp

We

δt
= 1
mp

d

dt
Ue = 1

mp

d

dt
Fexp = Fe

mp
up . (C.5)
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