Autonomous driving technology has the potential to revolutionize transportation, making it safer, more efficient, and more accessible for everyone. However, achieving full autonomy requires a complex system that can perceive and understand the environment in realtime. In the context of mass-produced passenger cars, automotive-grade sensors, such as cameras and few-beam LiDARs, are crucial components of such a system. Despite their ability to provide rich and diverse information about the scene, these sensors also present significant challenges. For instance, few-beam LiDARs may suffer from noise and sparsity, while estimating the scene geometry from cameras only is difficult. To overcome these challenges, this thesis proposes two novel approaches to leverage automotive-grade sensors for driving scene understanding.

The first part of the thesis revisits the task of depth estimation from a monocular camera; a key feature of autonomous systems that are often equipped with multiple independent cameras. Existing methods either rely on costly LiDARs (32 or 64 beams), or only on a monocular camera signal, which present various ambiguities. To circumvent these limitations, we propose a new approach that combines a monocular camera with a lightweight LiDAR, such as a 4-beam scanner, typical of today's mass-produced automotive laser scanners. Our self-supervised approach overcomes scaling ambiguity and infinite depth problems associated with camera-only methods. It produces a rich 3D representation of the environment without requiring ground truth during learning. Moreover, as our approach leverages sensors typical of automated cars on the public market, it finds direct applications in Advanced Driver Assistance Systems (ADAS).

The second part of this thesis presents a transformer-based architecture for vehicle and driveable area segmentation in Bird's-Eye-View (BEV) from multiple cameras. A setup particularly challenging as both the geometry and semantic of the scene must be extracted from 2D visual signals alone. Although BEV maps have become a common intermediate representation in autonomous driving, real-time prediction of these maps requires complex operations, such as multi-camera data extraction and projection into a common topview grid. These operations are usually performed with error-prone geometric methods (e.g., homography or back-projection from monocular depth estimation) or expensive direct dense mapping between image pixels and pixels in BEV (e.g., with MLP or attention). The proposed model addresses these issues by using a compact collection of latent vectors to deeply fuse information from multiple sensors. This results in an internal representation of the scene that is reprojected into the BEV space to segment vehicles and driveable areas. We also provide evidence that the model also enables accumulating knowledge about the scene over time directly in the latent space, paving the way for efficient reasoning and planning.

The proposed models are validated on real-world datasets and prototype cars, demonstrating the potential of utilizing automotive-grade sensors for driving scene understanding. By addressing the challenges associated with these sensors, our approaches provide a viable path towards their deployment in autonomous driving systems.

Résumé

La technologie de conduite autonome a le potentiel de révolutionner les transports, les rendant plus sûrs, plus efficaces et plus accessibles à tous. Cependant, atteindre une autonomie totale nécessite un système complexe capable de percevoir et de comprendre l'environnement en temps réel. Dans le contexte des voitures grand public produites en série, les capteurs de qualité automobile, tels que les caméras et les LiDAR à peu de faisceaux, sont des composants essentiels d'un tel système. Malgré leur capacité à fournir des informations riches et diverses sur la scène, ces capteurs présentent également des défis importants. Par exemple, les LiDAR à peu de faisceaux produisent un signal spatialement parcimonieu et bruité, tandis que l'estimation de la géométrie de la scène uniquement à partir de caméras est difficile. Pour surmonter ces défis, cette thèse propose deux approches innovantes pour tirer parti des capteurs de qualité automobile pour la compréhension des scènes de conduite.

La première partie de la thèse revisite la tâche d'estimation de la profondeur à partir d'une caméra monoscopique, une caractéristique clé des systèmes autonomes souvent équipés de plusieurs caméras indépendantes. Les méthodes existantes reposent soit sur des LiDAR coûteux (32 ou 64 faisceaux), soit uniquement sur un signal de caméra monoscopique, présentant diverses ambiguïtés. Pour contourner ces limitations, nous proposons une nouvelle approche qui combine une caméra monoscopique avec un LiDAR léger, tel qu'un scanner à 4 faisceaux, typique des scanners laser automobiles produits en série aujourd'hui. Notre approche auto-supervisée surmonte l'ambiguïté de mise à l'échelle et les problèmes de profondeur infinie associés aux méthodes basées uniquement sur les caméras. Elle produit une représentation 3D riche de l'environnement sans nécessiter de vérité terrain pendant l'apprentissage. De plus, notre approche, tirant parti des capteurs typiques des voitures automatisées sur le marché public, trouve des applications directes dans les Systèmes d'Aide à la Conduite Avancés (ADAS).

La deuxième partie de cette thèse présente une architecture basée sur un transformer pour la segmentation des véhicules et des zones praticables en vue aérienne (BEV) à partir de plusieurs caméras. Une configuration particulièrement difficile car à la fois la géométrie et la sémantique de la scène doivent être extraites des signaux visuels 2D uniquement. Bien que les cartes BEV soient devenues une représentation intermédiaire courante dans la conduite autonome, la prédiction en temps réel de ces cartes nécessite des opérations complexes, telles que l'extraction de données multicaméra et la projection dans une grille en vue de dessus commune. Ces opérations sont généralement effectuées avec des méthodes géométriques sujettes aux erreurs (par exemple, l'homographie ou la rétroprojection à partir de l'estimation de la profondeur monoscopique) ou un mappage dense direct coûteux entre les pixels de l'image et les pixels en BEV (par exemple, avec MLP ou système d'attention). Le modèle proposé traite ces problèmes en utilisant une petite collection de vecteurs latents pour fusionner profondément les informations de plusieurs capteurs. Cela résulte en une représentation interne de la scène qui est reprojetée dans l'espace BEV pour segmenter les véhicules et les zones praticables. Nous fournissons également des preuves que le modèle permet d'accumuler des connaissances sur la scène au fil du temps directement dans l'espace latent, ouvrant la voie à un traitement et une planification efficaces.

Les modèles proposés sont validés sur des ensembles de données du monde réel et des voitures prototypes, démontrant le potentiel d'utilisation des capteurs de qualité automobile pour la compréhension des scènes de conduite. En relevant les défis associés à ces capteurs, nos approches offrent une voie viable vers leur déploiement dans les systèmes de conduite autonome.
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Motivation and context

With the advent of powerful computing technologies and advances in sensor systems, the development of autonomous vehicles gained momentum in the 2010s. Major car manufacturers, technology companies, and start-ups began investing heavily in the development of autonomous vehicles, and the technology quickly moved from the realm of science fiction to a tangible reality.

One of the key drivers of this growth was the recognition that autonomous vehicles had the potential to dramatically improve driving safety and efficiency. By removing human error from the equation, autonomous vehicles could help to reduce the number of accidents and fatalities on the roads; make transportation more efficient, by reducing traffic congestion and allowing vehicles to travel closer together at higher speeds; help improve the mobility of people with disabilities and elderly people not able to drive anymore.

On safety alone, the facts are striking: in 2016, about 1.4 million people died in car accidents and 50 million were injured. Roads are now the eighth leading cause of death for all age groups, surpassing HIV/AIDS, and the leading cause of death for children and young adults aged between 5 and 29 years [WHO, 2016]. From a societal perspective, it has been estimated that in the USA alone, motor vehicle crashes in 2019 cost $340 billion in economic activity, and nearly $1.4 trillion of societal harm when considering the loss of life and decreased quality of life from injuries [NHTSA, 2019]. In addition, more than 90% of these road crashes are caused by human error. According to the US National Highway Traffic Administration, in 2017, alcohol-impaired-driving fatalities accounted for 29% of overall deaths, distraction for 8.5%, and speeding-related fatalities for 26% of total fatalities [NHTSA, 2017]. Similar statistics hold in a non-negligible number of other countries [OECD, 2017]. Although this does not come without issues and limits, having all cars with automatized (fully or partially) driving could significantly reduce the number of road accidents and their severity.

From ADAS to autonomous driving

Advanced Driver Assistance Systems (ADAS) are ubiquitous in today's vehicles and have already helped save lives and prevent injuries since 1950 [START_REF] Galvani | History and future of driver assistance[END_REF]. Early ADAS focused on vehicle stabilization systems, e.g., anti-lock braking (ABS) and traction control (TCS). Nowadays, with the advances of embedded electronics, it is common to find vehicles providing functionalities such as adaptive cruise control, obstacle detection or lanefollowing.1 , 1987[START_REF] Gruber | Toward principles for the design of ontologies used for knowledge sharing[END_REF][START_REF] Dickmanns | The development of machine vision for road vehicles in the last decade[END_REF], a research programme headed by car manufacturers from six European countries, pioneered autonomous driving. This project involved over forty research establishments as well as automotive and industrial partners. Its aims were diverse, each raising important research questions: improving road circulation without building new roads; increasing safety and reducing the number of accidents despite an increasing number of vehicles; enabling maximum mobility while boosting efficiency; achieving all these goals while simultaneously preserving the environment. To this end, the research project was formulated in seven sub-projects, covering a wide range of problems such as "driver assistance by computer systems", "methods and systems of artificial intelligence", "custom hardware for intelligent processing in vehicles" and "traffic scenario for new assessment and introduction of new systems". This project paved the way for further research and development in the field, and today many of the technologies that were developed as part of the project are now being used in our vehicles including lane keeping, collision avoidance, autonomous cruise control.

The PROMETHEUS project concluded with a 1,758 kilometres (1,092 miles) trip in 1995 from Munich, Germany to Odense, Denmark, in one of the first truly autonomous cars (fig. 1.1). Driving in free lanes, convoy driving with distance keeping depending on speed, and lane changes left and right have been performed autonomously from two black-andwhite video-cameras (one facing forward and the other backward) and a small neural network only. These operations were demonstrated in heavy traffic and on highways; sometimes at speeds above 175 kilometres per hour (109 mph) on the Autobahn, a highway without speed limits. Overall, the trip was realized with almost no human intervention, achieving a 95% autonomous driving. 2Starting from 2004, the US Defense Advanced Research Projects Agency (DARPA) sponsored a series of autonomous vehicle competitions known as the DARPA Grand Challenge [DARPA, 2004]. The goal of these challenges was to encourage the development of autonomous vehicles and raise public awareness of the technology. In 2004, 15 teams from universities and private companies participated in the competition: no vehicle could complete the 142-mile course through the Mojave Desert. Despite the many technical challenges, the challenge continued to evolve over the next few years, becoming more complex and more closely resembling real-world driving scenarios (driving with passing cars on the opposite lane, avoiding static obstacles, braking at a stop line). As autonomous vehicles move closer and closer to becoming a reality on our roads and highways, the impact of the DARPA Grand Challenge cannot be overstated: it helped to bring autonomous driving out of the lab and raise public awareness.

Since then, investment and development in this area have skyrocketed, with major automotive companies and technology startups entering the market with their own unique approaches. More recently, in 2016, the National Highway Traffic Safety Administration (NHTSA) adopted the six-level classification of automated driving systems introduced by the Society of Automotive Engineers (SAE):

• Level 0 -The human driver does all the driving.

• Level 1 -Automated system(s) on the vehicle can take control over one functionality (e.g., adaptive cruise control, ABS, automatic emergency brake assist, and lanekeeping or centering). The human driver constantly oversees operations.

• Level 2 -Automated system(s) on the vehicle can take control over multiple functionalities to aid the driver (e.g., highway assist, autonomous obstacle avoidance, and autonomous parking). The human driver constantly oversees operations.

• Level 3 -Automated system(s) can perform all aspects of the driving task under specific circumstances, but the human driver must be ready to take back control when the automated system requests (e.g., highway chauffeur).

• Level 4 -Automated system(s) can perform the driving task in certain environments and under certain conditions without any human supervision (e.g., automated valet parking).

• Level 5 -The automated system can perform all driving tasks, under all conditions (the steering wheel and pedals commands become optional)

Each level can itself be further decomposed with what is called an 'operational design domain' (ODD). ODDs refer to specific driving scenarios and conditions under which autonomous vehicles (AVs) are designed and thoroughly tested to operate safely and effectively. These domains may include specific road types, weather conditions, speed limits, and other parameters that define the operating limits of the AV. Driving on a highway in broad daylight is very different from driving on a mountain road at night, both in terms of terrain complexity and visual aspects. How to adapt to different domains and being robust to harsh weather conditions are two essential research directions for AVs to operate in all conditions.

Typical sensors of autonomous vehicles

From the smallest level of automation, automated vehicles must evolve in complex and changing environments, posing the necessity to acquire information about the scene state (e.g., street layout, interactions and types of agents, etc.). To this end, automated vehicles are equipped with a wide range of sensors.

Two of the most critical sensors utilized in autonomous vehicles for object detection and avoidance are radar and LiDAR. Radar operates by emitting radio waves that bounce off objects in the environment and measuring the reflected signals. The velocity of one object is estimated thanks to the Doppler effect, while the distance orientation of objects can be derived from the correlation between emitted and received signals (if the radar has enough antennas). This information, still very noisy at this stage, can be further processed to detect other vehicles, pedestrians, and other objects on the road. LiDAR, on the other hand, uses laser light to create a 3D map of the environment. The LiDAR sensor emits pulses of laser light and measures the time it takes for the light to return after hitting an object. Often, LiDAR are equipped with an internal rotating mirror which enables scanning in a full surround manner (one revolution is called a 'sweep'). This information can be used to construct a highly accurate 3D representation of the environment, allowing the system to reason about the surroundings of the vehicle.

Along with radar and LiDAR, cameras are also a critical, and nowadays ubiquitous, component in the perception system of autonomous vehicles. One of the primary advantages of using cameras over other sensors is their ability to capture colour and texture; necessary to identify objects such as road signs and traffic lights, specifically designed for human visual perception. Cameras generally also provide a high level of resolution, which is essential for the detection of small or distant objects.

Overall, when it comes to building an autonomous vehicle, selecting the right set of sensors is an important decision. Each type of sensor has pros and cons that must be carefully considered (see fig. 1.2 for an overview). Radar, for example, is excellent at detecting objects at a distance and can work well in adverse weather conditions, but has limited resolution and is subject to interferences, making it difficult to accurately identify objects. LiDAR, on the other hand, provides high-resolution information about the environment, but it can be expensive and can struggle in rainy conditions (the laser scatters on droplets of waters). Cameras are an attractive option due to their ability to detect colour and texture, but they can be impacted by weather conditions and tend to struggle in low-light conditions. In this regard, how to get the best from each sensor in order to optimize the efficiency as well as the safety and overall performance of the autonomous system is a research topic of great importance for the autonomous driving (AD) community.

Ultimately, the choice of sensors depends on the specific requirements of the application the autonomous vehicle is being used for. Typical vehicles currently on the robot-taxi market, such as those developed by Cruise and Waymo, employ cutting-edge sensor technologies and feature highly redundant systems to ensure safety and reliability. These vehicles are equipped with a vast array of sensors, including multiple cameras, radars, and dense LiDARs (32 or 64-beam). This over-engineered approach results in vehicles that are significantly more expensive, with price tags often exceeding hundreds of thousands of dollars. In contrast, systems aimed at the public market, such as those developed by Tesla, Wayve, and Valeo, employ a more cost-effective approach to autonomous driving. These vehicles mostly rely on less expensive sensors such as cameras, radar and minimal LiDAR (4-beam instead of the expensive 32 or 64-beam) as illustrated in fig. 1.3. An important research challenge is how to achieve the same degree of safety that the over-engineered approach offer, but with cost-effective sensors. This question is at the center of chapter 3. In particular, we address how to combine an extremely sparse 4-beam LiDAR with a camera to get competitive performance with respect to a much denser 64-beam LIDAR.

AD software stack

The design of the autonomous driving software stack determines the overall performance and reliability of the vehicle. Two popular approaches for developing this software are the modular software stack and the end-to-end deep learning approach. The modular AD software stack is a traditional approach that involves breaking down the problem into smaller, manageable components, each of which is tackled by a separate module. Typically, parts of this kind of system rely on expert-knowledge and hard-coded rules. On the other hand, end-to-end deep learning approaches seek to directly map sensor inputs to control outputs (angle of steering wheel and gas pedal), bypassing the need for intermediate representations or modules. This kind of system is entirely learned from data, expert-knowledge only takes the form of inductive bias.

The modular AD software stack is composed of multiple, independent components that work together to enable autonomous driving. It typically follows a "Perceive, Predict, Plan, Act" architecture, see fig. 1.4 for an illustration. The perception module gathers and processes sensory data from camera, radar, and LiDAR sensors. The prediction module takes the outputs from the perception module and predicts the behaviour of other vehicles, pedestrians, and other objects in the driving environment. Based on these predictions, the planning module makes decisions about the ego-vehicle's trajectory and speed based on its surroundings and objectives (e.g., security, comfort, etc.). At the end of the stack, the control module ensures that the vehicle follows the planned trajectory by controlling the actuators such as the throttle, brake, and steering. Additionally, to integrate prior knowledge, a mapping module can provide pre-recorded information on the environment to each of these modules (e.g., road layout, position of signs and traffic light, etc.) [Liu et al., 2020a]. Although an HD-map greatly simplifies the task of autonomous driving by providing important information on the environment, predicting it from a large quantity of data and updating it over long horizons of time is not trivial. On the other hand, relying on a pre-recorded map constrains the vehicle to operate in a pre-mapped area. Estimating the elements composing an HD-map from the on-board sensors only and in real-time is an active research topic [START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Li | BEVFormer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers[END_REF].

While this modular perspective offers a certain level of interpretability, the interdependencies between modules can lead to cascading or compounding errors: if a perception algorithm incorrectly identifies a road sign, it can lead to incorrect behaviour from the subsequent planning and control modules. How to model uncertainty at each step of the modular stack such that each module can interpret it and use it to correct its own predictions remains an important challenge for the research community. Furthermore, it can also be more difficult to maintain and update, as changes to one module may affect others, requiring careful coordination and testing to ensure the system continues to function as intended. Likewise, the modular approach can also be less scalable, as the number of modules and their interactions can grow rapidly as the system becomes more complex. Additionally, such approaches may have higher computational overhead, as each module must process its inputs and outputs, potentially leading to slower system performance.

In comparison to the modular approaches, the end-to-end approaches are about unifying the perception and planning modules, or even up to the control module, into a single, integrated system [START_REF] Bojarski | End to end learning for self-driving cars[END_REF][START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Chitta | NEAT: Neural attention fields for end-to-end autonomous driving[END_REF]Hu et al., 2022a;[START_REF] Kendall | Learning to drive in a day[END_REF]. This may offer several key advantages over the modular approach. Firstly, the end-to-end approach eliminates the need for separate training of different modules; the network is trained as a whole, learning to perform multiple tasks simultaneously. Moreover, it makes for a more efficient and flexible pipeline, as the network can adapt to changing scenarios and additional data without the need to intervene at different levels of the system. It may also alleviate the risk of cascading or compounding errors, as the transformation from raw sensor data to final output is seamless. However, end-to-end deep learning approaches also have their own set of research problems, such as the need for efficient learning techniques to limit the amount of labelled data required to train such systems, or the demand for methods to understand and interpret the internal workings of the neural network [START_REF] Jacob | STEEX: steering counterfactual explanations with semantics[END_REF][START_REF] Zablocki | Explainability of deep visionbased autonomous driving systems: Review and challenges[END_REF][START_REF] Zemni | OCTET: object-aware counterfactual explanations[END_REF]. Despite these challenges, the end-to-end approach is becoming increasingly popular in the development of autonomous vehicles.

Contributions

Outline

After a detailed overview of the different ways deep learning frameworks can be applied to autonomous driving in chapter 2 (the tasks, the datasets, the methods and the challenges), we present the contributions of this thesis.

In this chapter (chapter 1), we have highlighted a number of research problems crucial for the autonomous driving task. Our focus on the following research questions (RQs) is the core of this thesis: RQ1. How to leverage inexpensive sensors (e.g., camera, minimal 4-beam LiDAR, etc.)?

RQ2. How to fuse information from multiple sensors? RQ3. How to alleviate the need for annotated data? RQ4. How to estimate a map of the environment in real time from raw sensors?

• In chapter 3, we present 'LiDARTouch' a new method that combines a monocular camera with a minimal 4-beam LiDAR input, typical of laser scanners currently used in the automotive industry. We introduce a new self-supervision scheme (RQ1) and study various network architectures to encode this very sparse LiDAR input (RQ2).

We show that the use of a few-beam LiDAR alleviates critical issues that monocular camera-only methods suffer from; namely scaling ambiguity and infinite depth problems. This work demonstrates that an inexpensive sensor setup (4-beam LiDAR + camera) can reach competitive performances with respect to more costly systems (10× more) relying on 64-beam LiDARs. Moreover, our system, while not requiring any annotation (RQ3), also reaches competitive performances with respect to fully supervised approaches that are trained with dense ground-truth depth that are expensive to acquire.

• In chapter 4, we present 'LaRa' for Latents and Rays, a general, transformer-based architecture for scene understanding. In this work, LaRa is applied on a car with six cameras to predict binary vehicle segmentation and driveable area segmentation in the Bird's-Eye-View (BEV) space (RQ1, RQ4). There are three important parts to the architecture. The first one is, the input composed of visual information, essentially feature maps generated by a Convolutionnal Neural Network (CNN), and geometric information, which is a 'ray embedding' that encodes the 3D position and orientation of each pixel that gives the network a natural understanding of 3D relationships between camera views. In a second stage, these visual and geometric information are then compressed into a small collection of latent vectors, acting as an "internal representation" of the scene. Thirdly, this compact, but rich, representation is then reprojected in a space relevant to the end task (discrete BEV space for instance). This work demonstrates that some of the geometric and semantic information of a complex scene, captured and aggregated from many sensors, can be efficiently encoded in a very compact, but rich, latent representation.

• In chapter 5, we conclude the thesis by summarizing our main contributions and presenting perspectives for future work.

Publications and implementations

• Chapter 3 is based on the paper "LiDARTouch: Monocular metric depth estimation with a few-beam LiDAR", Florent Bartoccioni, Éloi Zablocki, Patrick Pérez, Matthieu Cord, Karteek Alahari, Computer Vision andImage Understanding, CVIU 2023 ([Bartoccioni et al., 2023]). The code is available at https://github.com/F-Barto/LiDARTouch.

• Chapter 4 is based on the paper "LaRa: Latents and Rays for Multi-Camera Bird's-Eye-View Semantic Segmentation", Florent Bartoccioni, Éloi Zablocki, Andrei Bursuc, Patrick Pérez, Matthieu Cord, Karteek Alahari, Conference on Robot Learning, CoRL 2022[START_REF] Bartoccioni | Lara: Latents and rays for multi-camera bird's-eye-view semantic segmentation[END_REF]). The code is available at https://github.com/ valeoai/LaRa.

The content of this work has been deployed on a prototype autonomous driving system at Valeo with only a change in the learning rate, demonstrating its adaptability and robustness to new conditions.

Chapter 2

Deep learning applied to autonomous driving

Whether it is equipment manufacturers (e.g., Valeo, Mobileye), existing actors providing robot-taxi services (e.g., Zoox, Waymo, Cruise) or companies running for high driving automation (e.g., Wayve, Tesla), actors in the automotive and transport space increasingly make use of deep learning to power their autonomy software stacks. In this chapter, section 2.1 first introduces the tasks commonly found at the heart of autonomous systems and the public datasets that allow us to study them. Section 2.2 details the main challenges deep architectures face in addressing these tasks. Next, section 2.3 delves into how to represent dynamic scenes; that is, how to learn a representation of the world accurate enough to support reasoning, and interaction with the environment.

Tasks and public datasets

The software that equips autonomous vehicles must enable them to drive safely in complex and dynamic scenes. There are several ways in which this task can be approached and decomposed.

In the typical modular AD stack, the main modules are perception (where are things?), forecast (how things will move?), plan (how should we move?) and act (how do we best follow the plan?). In this thesis, we focus on methods that fall under the perception and prediction umbrella.

First, section 2.1.1 presents the perception tasks, which are about embedding all the information necessary to drive including: detecting road users and their interactions; extracting the road geometry (straight, curved, etc.) and its boundaries (drivable area) from physical or semantic delimiters (e.g., curbs or lane markings); detecting and associating all traffic control devices such as signs, lights, and arrows markings to the relevant driving path.

In a second time, the prediction tasks, consisting of predicting the future state of the dynamic environment, are presented in section 2.1.2. The borders of the prediction module with the perception and the planning stages can often be blurry. In this regard, section 2.1.2 overviews the various forms that the parameters to predict can take.

Perception

Perception is an essential component of automatized vehicles, enabling them to understand their environment and make informed decisions. This section discusses various perception tasks common in the autonomous driving context to address elementary needs: what are the objects surrounding the ego-car, and where are they? In practice, utilizing a combination of tasks and modalities (LiDAR, images, and other sensors), is necessary for developing safe and reliable autonomous vehicles. [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF] where the vehicle is equipped with four fisheye cameras covering 360°along with a roof-mounted 64-beam LiDAR.

Annotations for the tasks of 3D object detection, depth estimation and semantic segmentation are superimposed over the modalities' visualization.

Where are the objects surrounding the ego-car? First, autonomous systems require an accurate spatial understanding of their surroundings to plan and act safely, and the capacity to estimate depth is often used to achieve this [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Srikanth | INFER: Intermediate representations for future prediction[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF]. Depth estimation is the task of estimating the distance between any element of the scene and the sensor. This information is crucial for determining the relative positions of objects in the scene and understanding the 3D structure of the environment.

For such applications, two lines of approach exist to infer depth in a scene, depending on the available data. First, LiDAR-based completion from one or multiple dense LiDARs (e.g., 32 or 64 beams) [START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF][START_REF] Park | Non-local spatial propagation network for depth completion[END_REF][START_REF] Tang | Learning guided convolutional network for depth completion[END_REF][START_REF] Xu | Depth completion from sparse LiDAR data with depth-normal constraints[END_REF] which uses an additional image signal to increase the number of 3D points in the LiDAR scan of the scene. This is an approach most suitable for typical "over-engineered" Level-5 cars equipped with multiple dense LiDAR (32 beams or more). Secondly, camera-only estimation methods, either stereo [START_REF] Chang | Pyramid stereo matching network[END_REF][START_REF] Kendall | End-to-end learning of geometry and context for deep stereo regression[END_REF] or monocular [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF]Guizilini et al., 2020a,b;[START_REF] Kuznietsov | Semi-supervised deep learning for monocular depth map prediction[END_REF][START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF][START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Yin | GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF], estimate the distance to objects from the RGB signal only. This is a more inexpensive approach in terms of sensor cost, but generally less accurate than a LiDAR-based method that provides a physical measurement of the distance.

What are the objects surrounding the ego-car? Knowing the different objects and their positions is crucial for an autonomous vehicle to plan its trajectory and react to its surroundings. This is usually tackled by semantic segmentation or object detection or a combination of both (e.g., panoptic segmentation systems). These two approaches and their limitations are presented in more detail in section 2.3.1. Semantic segmentation [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Vobecky | Drive&segment: Unsupervised semantic segmentation of urban scenes via cross-modal distillation[END_REF] is the task of classifying each pixel in an image or point in a point cloud into one of several predefined categories, such as "road", "pedestrian", "car", etc. An example of a semantic segmentation mask is illustrated in the top-right image of fig. 2.1. Object detection [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Misra | An End-to-End Transformer Model for 3D Object Detection[END_REF][START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF][START_REF] Tan | Efficientdet: Scalable and efficient object detection[END_REF] is the task of identifying and locating objects in the image plane (2D detection) or in the 3D space (3D detection). The goal of object detection is to produce a set of bounding boxes that tightly enclose objects of interest, along with class labels for each object (see fig.

2.1 for an example of 3D detection). While 2D detection only has to fit the pixels of the object in the box, 3D detection needs to infer the entire shape of the object (often only partially visible), its 3D position as well as 3D orientation.

AD-related perception tasks. Other important perception sub-tasks for autonomous driving include lane detection [START_REF] Chen | Persformer: 3d lane detection via perspective transformer and the openlane benchmark[END_REF], which is essential for the vehicle to stay in its lane and navigate safely; traffic signs and traffic lights recognition [START_REF] Mishra | Evaluating and bench-marking object detection models for traffic sign and traffic light datasets[END_REF], which is crucial for the vehicle to understand the rules of the road and obey traffic laws; pedestrian detection and behaviour recognition [START_REF] Belkada | Do pedestrians pay attention? eye contact detection in the wild[END_REF][START_REF] Mordan | Detecting 32 pedestrian attributes for autonomous vehicles[END_REF], crucial to safely navigate in urban areas and cities among vulnerable road users. These tasks, when combined with others, extract very rich information from the environment that are useful for downstream algorithms (prediction, planning and control).

Datasets and benchmarks. Several public datasets are commonly used for training and evaluating these perception tasks, including classic datasets such as Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] and KITTI [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF], as well as more recent ones like Argoverse [START_REF] Chang | Argoverse: 3D tracking and forecasting with rich maps[END_REF], WoodScape [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF], nuScenes [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF] or Waymo Open [START_REF] Sun | Scalability in perception for autonomous driving: Waymo open dataset[END_REF]. These datasets provide high-quality images, LiDAR point clouds, and annotations that can be used to train and evaluate deep learning models for the aforementioned tasks. Figure 2.1 illustrate some of these modalities and annotations present in the WoodScape dataset [START_REF] Yogamani | Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving[END_REF]. We also give an overview of these datasets in table 2.1.

Motion prediction

In autonomous driving, it is not only necessary to perceive the current state of the environment, but also to anticipate how it will change in the future. That is the role of methods categorized among "prediction" tasks. It allows the vehicle to forecast the future actions of other agents in the scene, such as vehicles and pedestrians, and to anticipate potential hazards. That being said, the forecasting pipeline must overcome numerous challenges, including: modelling the interdependence between agents' actions in the scene; integrating the constraints imposed by road geometry and traffic rules; modelling the inherent uncertainty in future prediction; handling the partial observability, occlusions and disocclusions of agents.

To this end, deep learning has been leveraged in several stages of the forecasting module, most notably at the input and output levels. In particular, two input representations gained popularity in modern benchmarks for driving scene future prediction [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF][START_REF] Chang | Argoverse: 3D tracking and forecasting with rich maps[END_REF][START_REF] Ettinger | Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset[END_REF]: the vectorized and the rasterized representations. The vectorized approach is essentially a big table where the scene is described by numbers: the lanes are represented as polygons, a set of 3D coordinates; agents and their trajectories as a sequence of 3D coordinates along with values for their attributes such as the size, the category (e.g., car, bus, pedestrian, etc.). A 3D rendering of a vectorial representation is provided in fig. 2.2b. On the other hand, the rasterized approach represents lanes and agents as images from a virtual top-view. Typically, each channel of the image represents an element or a characteristic of an element in the scene. For example, in the work of [START_REF] Bansal | Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst[END_REF], traffic lights are represented by grayscale encoding where each lane center is coloured with the brightest level for red lights, intermediate gray level for yellow lights, and a darker level for green or unknown lights. Also, speed limits are represented with a single channel, where lane centres are coloured in proportion to their known speed limit. Figure 2.2a illustrates how the road layout as well as its rules, namely speed limits, traffic lights, and agents in the scene are represented. Although capable of representing most of the major elements that influence the scene dynamic, these input representations are often computed offline. Usually, the full temporal context (even the future) is available to correctly detect and identify objects in the scene, and manual corrections frequently supplement these offline predictions. While this provides an upper-bound performance TABLE 2.1: Overview of autonomous driving datasets. We present several datasets commonly used to develop and evaluate models for the different tasks discussed in section 2.1. For each dataset, we give the number of samples, where one sample is one recording of the scene from every sensor (e.g., one sample in nuScenes contains a LiDAR scan and the six images from each camera). We also indicate which sensors are fitted on the car, the different tasks for which annotations are available, as well as the visual variations that the dataset contains in addition to the standard "clear sky in daylight".

Dataset

Samples Sensors Annotations night/ rain KITTI [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF] for prediction algorithms, this perfect representation, devoid of any uncertainty, is a far cry from the online conditions faced by automated vehicles. At the output level, the most commonly-used forecasting representation on these benchmarks are trajectory sets, which also suffer from severe limitations: their parameterized nature constrains the class of future distributions that can be predicted, and trajectories cannot represent the space that the vehicle will occupy as its shape is not encoded (which is necessary to model shape-shifting vehicles like articulated bus or excavators).

Instead, a general solution to dynamic scene forecast necessitates an encoding of the world, learnable from the raw sensors signals, that is compact and yet rich enough to support reasoning, planning, and interaction with the environment. Ideally, the learned representation should enable inference of current and future states of all key objects in the scene, whether from known categories or from new ones. In short, it requires the representation of the scene to contain all the contextual information necessary for forecasting, directly from sensors. In this line of thought, several works aim at designing and training

Roadmap
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Traffic lights Vehicles

(A) Rasterized (B) Vectorial FIGURE 2.2: Illustration of the representations commonly used as input for the motion prediction task as defined on public benchmark [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF][START_REF] Chang | Argoverse: 3D tracking and forecasting with rich maps[END_REF][START_REF] Ettinger | Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset[END_REF].

Here, (B) is a 3D visualization of the vectorial data. Credits to [START_REF] Bansal | Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst[END_REF] and [START_REF] Ettinger | Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset[END_REF].

holistic end-to-end driving systems that ingest raw signals and output either (1) a unified intermediate representation that can fully support planning and control [START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Chitta | NEAT: Neural attention fields for end-to-end autonomous driving[END_REF] or (2) directly driving actions [Hu et al., 2022a;[START_REF] Kiran | Deep reinforcement learning for autonomous driving: A survey[END_REF] for AD.

The probabilistic BEV occupancy prediction, close in spirit to rasterized representations, has recently gained a lot of interest as an intermediate representation. BEV occupancy prediction is the task of estimating a probability map that indicates the likelihood of occupancy for each grid cell in the BEV representation. It allows fusing information from multiple modalities into a common representation, naturally handles uncertainty and support planning. More specifically, the future prediction in the BEV space takes the form of a "motion flow" which can directly be used as a cost map by the planning pipeline [START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Mahjourian | Occupancy flow fields for motion forecasting in autonomous driving[END_REF]. More recent datasets for future prediction adopted this representation (e.g., Waymo Open [START_REF] Mahjourian | Occupancy flow fields for motion forecasting in autonomous driving[END_REF], nuScenes [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF]) and numerous papers were published on how to predict and use it, e.g., [START_REF] Bansal | Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst[END_REF][START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Chitta | NEAT: Neural attention fields for end-to-end autonomous driving[END_REF][START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF].

When driving actions are directly estimated, the system is usually based on imitation learning and reinforcement learning. Based on Markov Decision Process (MDP) [START_REF] Sutton | Introduction to reinforcement learning[END_REF]], Reinforcement Learning (RL) explicitly models the temporal behaviour of an agent that interacts with a dynamic environment through perception, actions and rewards, and that tries to maximize its expected future cumulative reward (expected "return"). As such, RL mathematically relies on temporal predictions of a completely or partially observed dynamic Markovian model. Short-term forecast, e.g., over one time step of the time-discretized system, is also intrinsically part of the RL model through the MDP's dynamics, that is the probabilistic distribution over the next state of the agent conditioned on the value of the current state and selected action. Learning this one-step probabilistic prediction function remains an open-problem for driving environments.

Challenges

While deep learning is a powerful tool, the challenges that come with its use in this AD context are many. The task of creating the driving software stack of an autonomous vehicle is strewn with many challenges, such as the need to learn from data with few or no annotations, or being robust to faulty sensors and visual impediments. This section delves into some of these challenges and explores the various approaches proposed to overcome them.

Modalities of very different natures

When it comes to applying deep learning to autonomous driving, one of the biggest challenges is dealing with inputs of very different natures. For example, one might have to process an image from a camera, a point cloud from a LiDAR, or energy spectrums from a radar. Hence, different architectural specificities are needed to handle these types of modalities.

FIGURE 2.3: Illustration of a simple CNN-based classifier.1 Here, a bank of simple pattern detectors are applied to an image of a "C" letter and produce a collection of feature maps. Next, the linear classifier aggregates information from each detector output and makes its prediction. The detector at the top row, representing an extremity, is the most discriminative feature between the letter "C" and "D", hence the most "active" detector for the image.

Processing images. The most popular method to process images from cameras are CNNs. A CNN is formed by successive "layers" of artificial neurons, each layer transforming its input via a collection of localized linear 2D filters followed by piece-wise non-linearities, also called "activation functions". Each filter can be seen as a trained local pattern detector. Consequently, each layer ingests a stack of 2D detected features ("feature maps") and outputs another one (possibly of different dimensions and a different number of features). The deeper in the network, the larger is the spatial extent ("receptive field") of the produced pattern detector. These detectors usually outperform hand-crafted feature extractors. These networks can extract features from images that, further down, enable the identification of objects and other relevant information. CNNs can be supplemented with a final "decision" layer (e.g., a linear projection with a logistic function) to create a standalone network (e.g., a "classifier") or used as a "backbone"; that is, a CNN producing high-level features for downstream blocks of the deep architecture. Figure 2.3 illustrates a simple 1-layer CNN-based classifier. In practice, many more layers are used. Specifically, CNNs such as ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], or ConvNeXt [START_REF] Hu | Investigating the impact of multi-lidar placement on object detection for autonomous driving[END_REF], are very popular backbones in deep architectures and typically use between 15 to 100s of layers. To predict in the image space, a common architecture type is the fully convolutional network in an encoder-decoder fashion, that is, a network only composed of convolutional layers. The encoder, generally built on top of a backbone network, produces feature maps at multiple levels of resolution from the input image. These feature maps are then fed into the decoder, a series of convolutional and upsampling layers. This produces a pyramid of feature maps at multiple scales, which enables the retention of fine details or detection of objects of various sizes. In particular, the U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] (initially developed for biomedical image segmentation) and Feature Pyramid Networks (FPNs) [START_REF] Lin | Feature pyramid networks for object detection[END_REF][START_REF] Tan | Efficientdet: Scalable and efficient object detection[END_REF] [START_REF] Su | Multi-view convolutional neural networks for 3d shape recognition[END_REF], or the camera plane [START_REF] Chen | Multi-view 3d object detection network for autonomous driving[END_REF] (when one is available), a range image [START_REF] Biasutti | Lu-net: An efficient network for 3d lidar point cloud semantic segmentation based on end-to-end-learned 3d features and u-net[END_REF] (spherical projection of a LiDAR point cloud on its intrinsic 2D lattice) or BEV map. Then, the point cloud now encoded as an image of some form, a traditional 2D CNN can be applied to process the signal. Volumetricbased methods discretize the continuous 3D space into a volumetric grid and then process it by 3D convolutions [START_REF] Maturana | Voxnet: A 3d convolutional neural network for realtime object recognition[END_REF]. Such approaches, constrained by the volumetric resolution and the computational cost of 3D convolutions, need sparsity optimization like octrees [START_REF] Riegler | Octnet: Learning deep 3d representations at high resolutions[END_REF] or sparse convolutions [START_REF] Choy | 4d spatio-temporal convnets: Minkowski convolutional neural networks[END_REF]. On the other hand, point-based methods [START_REF] Boulch | FKAConv: Feature-Kernel Alignment for Point Cloud Convolution[END_REF][START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF][START_REF] Thomas | Kpconv: Flexible and deformable convolution for point clouds[END_REF], allow the network to maintain the fine-grained structure of the point clouds. It is to be noted that these three representations are not exclusive and can be combined [START_REF] Xu | Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud segmentation[END_REF].

Transformers as a general architecture. In contrast to these modality-specific architectures, often requiring domain expertise, the Transformer is a very general type of architecture [START_REF] Vaswani | Attention is all you need[END_REF]. The Transformer architecture was initially developed to address the limitations of previous deep learning models for natural language processing tasks. In particular, early models relied on recurrent or convolutional layers which have difficulties capturing longer-range dependencies, making it difficult to process long sequences of data, such as a book. The Transformer architecture can extract complex dependencies in long sequences of data thanks to its self-attention mechanism, which allows the model to directly attend to any part of the input sequence, regardless of its position in the sequence. The self-attention layer (fig. 2.6) takes as input a set of vectors and each vector is transformed into three separate vectors: a query, a key, and a value ("QKV triplet"). The main idea is to create a learnable, high-dimensional, indexing system from the input vectors where the queries ask "this is the information I am looking for", the keys "this is the information available" while the value vector represents the actual information. More formally, the query and key vectors are used to compute an "attention score", which is a measure of how much the query vector "matches" the key vector. When computed over the full set of input vectors, it creates an "attention map" that indicates the importance of each input vector with respect to the others. The final output is computed as a weighted sum over value vectors using the attention map weights.

FIGURE 2.6: Schematic illustration of the self-attention layer [START_REF] Vaswani | Attention is all you need[END_REF]. The input (in gray) is transformed into query (Q), key (K), and value (V) vectors which are used to model complex dependencies thanks to an attention system and form the output (in dark pink). Adapted from [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF] Tokenization and positionnal embeddings. One of the main advantage of Transformers is that their only requirement is for the input to be organized as a set of vectors, called 'tokens'. For example, in vision transformers [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF], images are divided in small patches of pixels (e.g., 16 × 16 in [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]) that are flattened (i.e., reorganized to be 1D) and embedded by a linear projection. These 'patch embeddings' are the tokens given to the transformer. Point clouds can also be tokenized, either in their raw form where each point is considered a token or by first voxelizing it (i.e., akin to 2D patches but in 3D) [START_REF] Lu | Transformers in 3d point clouds: A survey[END_REF].

Another important concept used in transformers is the positional embedding. When combined with the input signal (typically by addition or concatenation), it is a way to introduce an inductive bias and help the network focus on extracting specific dependencies over others. These embeddings can take various forms and are defined according to the properties of the input signal. For example, if the input is a multi-dimensional grid (e.g., an image, a video, a voxelized volume) spatial knowledge can be introduced by augmenting the input tokens with an embedding of axis coordinates (x and y coordinates for an image) [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. This can help the network extract better spatial relationships [START_REF] Bartoccioni | Lara: Latents and rays for multi-camera bird's-eye-view semantic segmentation[END_REF][START_REF] Guizilini | Depth field networks for generalizable multi-view scene representation[END_REF][START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. For multi-modal setups, an embedding for each modality can be considered, helping the network to better identify features from each modality leading to better fusion of information [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. Moreover, when dealing with multiple views, an embedding of the cameras' parameters, notably their positions and orientations, is sufficient for the network to extract complex correspondences between views. For instance, [START_REF] Yifan | Input-level inductive biases for 3D reconstruction[END_REF] and [START_REF] Guizilini | Depth field networks for generalizable multi-view scene representation[END_REF] used this principle for multi-view stereo depth estimation without expensive matching volumes [START_REF] Kendall | End-to-end learning of geometry and context for deep stereo regression[END_REF]. In particular, we show in chapter 4 that augmenting each pixel with their ray embedding gives the network a natural understanding of 3D relationships between views.

Robustness to faulty sensor and visual impediments

FIGURE 2.7: Depth estimation artefact from a glare, highlighted in red, on an example from the KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF]. Depth map predicted using the method from [START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF].

Sensors can be faulty or obstructed, leading to inaccurate or missing information. One of the biggest challenges in autonomous driving is ensuring robustness to these issues. For example, cameras have limitations such as sensitivity to lighting conditions, which can make it difficult for the network to accurately identify objects in nighttime condition or in the presence of glares (see fig. 2

.7).

In particular, sensors directly exposed to the external environment are likely to be soiled. One way to deal with such a case is to use a soiling detection system [START_REF] Uricar | Soilingnet: Soiling detection on automotive surround-view cameras[END_REF] combined with a physical actuator (e.g., a jet of water to remove dirt on the sensor).

Alternatively, sensor fusion is a common approach to mitigate these issues using the principle of redundancy. This involves combining data from multiple sensors to create a more accurate and reliable representation of the environment. Ways to fuse data include early and late fusion schemes. In early fusion, the data is combined before being processed; the different modalities are typically concatenated at the very beginning of the deep architecture. For the late fusion approach, the data is first processed separately and then combined at the very end (e.g., by multiplying the probabilities from both streams). More recently, deep multi-stage fusion has become a favoured approach with deep learning architectures. This can be implemented in different ways: projecting the data of multiple sensors into a single intermediate representation, allowing for more accurate and efficient sensor fusion [START_REF] Harley | Simple-BEV: What really matters for multi-sensor bev perception?[END_REF][START_REF] Hendy | FISHING net: Future inference of semantic heatmaps in grids[END_REF] or directly fusing information from intermediate feature maps between both modalities [START_REF] Chitta | Transfuser: Imitation with transformer-based sensor fusion for autonomous driving[END_REF][START_REF] Li | Deepfusion: Lidar-camera deep fusion for multi-modal 3d object detection[END_REF][START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF].

Training with few or no annotations

Collecting and annotating large amounts of data is a crucial aspect of training deep learning models for autonomous driving. However, it is time-consuming and costly to collect and annotate enough data to train a model for a specific task or context. For example, the depth ground-truth in the KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF] required a $60k LiDAR combined with a stereo camera.

One very common approach to alleviate this problem is transfer learning; using a pretrained model on a related task or dataset and fine-tuning it for the specific task or context. Often, CNNs are pre-trained for the classification task on ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] while pre-training for 2D detection seems to be a promising avenue for BEV predictions [Wang et al., 2022].

An alternative is to leverage the large amounts of data that cars collect while driving using self-supervised learning. The idea behind self-supervised learning is to learn from the structure of the data itself, rather than relying on explicit annotations. Typically, the model is supervised on a pretext task that does not require manual labelling. The aim is to learn representations that transfer well to downstream tasks of interest. A representation that "transfers well" is one that significantly reduces the amount of annotation required to reach a set level of performance. Most works in self-supervised learning for vision [START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF][START_REF] Gidaris | Obow: Online bag-of-visual-words generation for self-supervised learning[END_REF][START_REF] Grill | Bootstrap your own latent -a new approach to self-supervised learning[END_REF][START_REF] He | Masked autoencoders are scalable vision learners[END_REF][START_REF] Henaff | Efficient visual pretraining with contrastive detection[END_REF][START_REF] Komodakis | Unsupervised representation learning by predicting image rotations[END_REF] were developed to learn on still images in well-defined datasets: only one or few objects are centred in the image; the distribution of classes is close to uniform; images are small. In these conditions, simple augmentations (e.g., random cropping, affine transformation, colour jittering) are enough to learn a representation that "transfers well". However, the performance of these methods degrades when applied directly on AD datasets [START_REF] Chen | Multisiam: Self-supervised multi-instance siamese representation learning for autonomous driving[END_REF].

In the context of self-supervised learning for AD, popular frameworks include exploiting the fact that the car moves, using geometric principles as supervisory signals and leveraging other modalities than images. For example, FlowE [START_REF] Xiong | Self-supervised representation learning from flow equivariance[END_REF] builds on top of BYOL [START_REF] Grill | Bootstrap your own latent -a new approach to self-supervised learning[END_REF] but instead of a contrastive objective at the image level they train on a pixel-wise objective that makes features equivariant to optical flow (i.e., an object is still the same object even if it moves). This representation, when fine-tuned for semantic segmentation, outperforms the fully-supervised model with only 10% of the labelled data. Another line of work built on insights from predictive coding theories [START_REF] Harley | Learning from unlabelled videos using contrastive predictive neural 3d mapping[END_REF][START_REF] Lal | Coconets: Continuous contrastive 3d scene representations[END_REF], where the model is trained to predict what a scene would look like from different viewpoints (e.g., the next few frames). This objective constructs a representation that is able to "imagine" occluded information ('amodal completion'), track objects over time (features change smoothly over time), and improve 3D object detection.

Apart from pre-training tasks, even the downstream task can be self-supervised. For instance, self-supervised depth estimation from monocular cameras recently became very popular [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF]Guizilini et al., 2020a]. Leveraging a set of consecutive frames, this paradigm predicts neighbour views by means of view projection using predicted dense depth maps and the relative changes in pose. The model is trained by minimizing a photometric reconstruction; a view well predicted entails a correct estimation of the depth map and poses. These approaches are discussed in more detail in the following sections, and also in chapter 3. Some works also exploit the synchronization between LiDAR and cameras on typical AD vehicles. In particular, [START_REF] Vobecky | Drive&segment: Unsupervised semantic segmentation of urban scenes via cross-modal distillation[END_REF] use synchronized images and LiDAR point clouds to generate pseudo-groundtruth for semantic segmentation learning without manual annotations. Also based on LiDAR-cameras synchronization, the work of [START_REF] Sautier | Image-to-lidar self-supervised distillation for autonomous driving data[END_REF] distils self-supervised pre-trained image representations into 3D models. This allows pre-training a model operating on 3D point clouds that transfer well on semantic segmentation and object detection tasks. Knowing the calibration of each sensor, correspondences can be established between pixels and 3D points, and thus, a contrastive objective to impose 3D point features and 2D pixel features to match; infusing semantic knowledge in the 3D features.

Transformation of representation

As discussed, in the context of AD, predictions can be diverse: e.g., 2D or 3D boxes, segmentation masks, BEV map, 3D voxels, or even graphs to represent the pedestrians' skeleton . This poses the need to transform between representations. Cameras being the most frequent sensor fitted on cars, these predictions are often made from camera images only. Predicting 3D voxels of 3D skeletons for pedestrians from pixels only is far from being trivial and may require to make additional estimations (e.g., depth, 2D detection, etc.), making the system prone to compounding errors.

In this aspect, Transformer architectures [START_REF] Vaswani | Attention is all you need[END_REF] are, again, becoming very popular because of their generality and impressive performance, and are now a preferred choice to infuse information from one representation to another. Similar to self-attention, the cross-attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF] is at the core of this wide adoption. While self-attention is a mechanism that allows the model to focus on specific parts of a single input sequence of data, cross-attention, on the other hand, allows the model to focus on the relationships between different sequences of input data. For example, cross-attention can be used to establish relationships between pixels in the camera images and pixels in a Bird's-Eye-View image. This can be used to project image features into BEV features [START_REF] Chitta | NEAT: Neural attention fields for end-to-end autonomous driving[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF] without the need for dense depth estimation. The same scheme has been used for: 2D or 3D supervised object detection that does not need complex hand-crafted detection pipelines [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Misra | An End-to-End Transformer Model for 3D Object Detection[END_REF]; learning object-centric representations in a self-supervised way, obtaining segmentation masks without explicit supervision for segmentation [START_REF] Locatello | Object-centric learning with slot attention[END_REF] A Transformer-based architecture that has recently gained popularity in the field of deep learning is the Perceiver [START_REF] Jaegle | Perceiver: General perception with iterative attention[END_REF] and its extension, the Perceiver-IO [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. The basis of the architecture (illustrated in fig. 2.8) is to first project, using a cross-attention, the input tokens into a small collection of latent vectors. This set of latent vectors is typically much smaller than the inputs, which makes it cheap to process. To make the final prediction, the latent representation is then re-projected into the space of output. Such architectures excel at extracting complex and long-range dependencies, even from very large inputs and outputs. For example, it allows for optical flow and multiview stereo depth estimation without the need for expensive cost volumes aggregating the matching costs over different possible disparities, usually required to find correspondences. In contrast, all the computation and matchings are done in this intermediate abstract space [START_REF] Guizilini | Depth field networks for generalizable multi-view scene representation[END_REF][START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. FIGURE 2.8: Illustration of the Perceiver IO architecture [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. A first cross-attention layer projects the input vectors into a small collection of learnable, abstract, latent vectors. The final prediction is obtained by a re-projection of the latent representation into the output space. There are two main advantages to this type of architecture: (1) the size of the internal representation is decoupled from the inputs and outputs, hence information can be extracted from this compressed space in a very efficient manner, (2) the input and output spaces can be of very different nature, the latent array will be the "bridge" between the two.

Representing a dynamic scene

This section provides an overview of different deep-learning based approaches to represent dynamic scene in the context of autonomous driving, namely: in the image plane (2D), as a 3D point cloud or as a set of 3D boxes, in the Bird's-Eye-View plane, or in a highdimensional implicit representation. Dynamic scenes present a unique challenge in the context of autonomous driving due to a constantly changing environment and conditions that vehicles must operate in (e.g., traffic, road infrastructure, weather changes). Unlike static scenes, dynamic scenes are composed of many moving elements such as vehicles, pedestrians, and other obstacles, which can interact with each other in complex and uncertain ways. This constant motion and unpredictability can make it difficult for autonomous driving systems to accurately perceive and predict the behaviour of these elements, leading to potential safety hazards. The ability to accurately represent and understand a dynamic scene is crucial for the development of safe and reliable autonomous vehicles.

In the camera image plane

One of the main approaches taken by the computer vision community to represent dynamic scenes has been to use estimations in the 2D image plane. Such a system is usually conceptualized in three parts, namely the ontological, geometric and dynamic aspects.

Ontology (semantic segmentation and detection).

The ontological aspect relates to the conceptualization of things composing a dynamic scene; in the words of [START_REF] Gruber | Toward principles for the design of ontologies used for knowledge sharing[END_REF], it is "an abstract and simplified view of the world we want to represent". Broadly speaking, an ontology is defined using domain-expert knowledge and entirely defines what are the passive and active agents, their functional attributes, their relationships and possible interactions. Specifically, semantic segmentation [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Vobecky | Drive&segment: Unsupervised semantic segmentation of urban scenes via cross-modal distillation[END_REF] and object detection [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF][START_REF] Tan | Efficientdet: Scalable and efficient object detection[END_REF] are ontological tools that make it possible to represent domain knowledge in a form that can be used by a machine. While being powerful tools, they still face many challenges. First, the ontology defined by the expert must be complete, it must encode everything that is needed to drive, i.e., what is not described in the ontology does not exist. The world we live in changes continually, and it must be possible to add new concepts to the ontology without having to modify its foundations. Moreover, the ontology expressed in the 2D plane of the camera image does not provide a full understanding of the 3D space.

Geometry (depth estimation).

A spatial understanding of the surroundings is required to plan and act safely, and the capacity to estimate depth is often central to achieving this [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Srikanth | INFER: Intermediate representations for future prediction[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF]. For such applications, two lines of approach exist to infer depth in a scene: LiDAR-based completion and camera-only estimation methods. LiDAR-based depth completion methods produce depth maps from one or multiple dense LiDARs (e.g., 32 or 64 beams) [START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF][START_REF] Park | Non-local spatial propagation network for depth completion[END_REF][START_REF] Tang | Learning guided convolutional network for depth completion[END_REF][START_REF] Xu | Depth completion from sparse LiDAR data with depth-normal constraints[END_REF] and essentially interpolate the scene structure from the input signal. However, these approaches rely on expensive setups, and often require several steps of post-processing to produce the final supervisory signal [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF], making the cost for annotation acquisition very high. In recent years, there has been an increased interest in exploring methods for self-supervised, camera-only, depth estimation [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF]Guizilini et al., 2020a;[START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF][START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. Self-supervised learning methods, leveraging widely available, low-priced sensors, and not requiring any human annotation, are particularly scalable with the data acquired by a vehicle fleet. In this thesis, self-supervised depth estimation from a monocular camera is at the core of our work in chapter 3. The central idea of such approaches is to combine pose and depth predictions to project a neighbouring source image into the target view. The objective is based on photometric reconstruction, a surrogate task aimed at resynthesizing a target image, given neighbouring source images with different viewpoints [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. The underlying intuition is that to correctly resynthesize the target view from the source one, both the depth and pose estimation must be accurate. An overview of this learning process is illustrated in fig. 2.9. FIGURE 2.9: Illustration of a self-supervised learning system for depth estimation. 3 A depth and a pose networks are used to synthesize the current frame from a temporally adjacent frame. The photometric loss between the original and synthesized images is minimized during training. This approach is driven by the intuition that to correctly resynthesize the target view, both the depth and pose estimation must be accurate.

Dynamic (optical flow).

Identifying moving objects in the scene can provide critical information about the environment, such as the presence of other vehicles, pedestrians, and bicycles. Objects that are in motion are more likely to be hazards, as they may be unpredictable and difficult to avoid. In the context of 2D representation, movement is often represented using optical flow, that is, the task of determining the motion parameters of pixels (or moving parts) between consecutive frames in a video [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Xiong | Self-supervised representation learning from flow equivariance[END_REF].

Nonetheless, prediction in the image plane like depth and optical flow do not come without their limitations. For example, cameras have a limited field of view and can only capture a small portion of the environment at any given time, such 2D outputs do not allow representing or imagining what is not seen. Likewise, objects or obstacles can be occluded, which can make it difficult to accurately identify and track them from a 2D representation only.

In the 3D space

Predictions can also be made in the 3D space directly. Point clouds are well-suited for representing dynamic scenes as they provide a rich representation of the 3D geometry of the environment, including the shape and location of objects. To represent dynamic scenes, a series of point clouds captured over time can be used [START_REF] Wang | Sequential point clouds: A survey[END_REF]. Specifically, motion information, named 3D 'scene flow' [START_REF] Jund | Scalable scene flow from point clouds in the real world[END_REF], is similar to 2D optical flow and can be estimated based on consecutive point cloud frames. Also, by analysing the changes in the point cloud over time, it is possible to identify and track objects in the environment. While this is typically done from LiDAR inputs [START_REF] Wang | Sequential point clouds: A survey[END_REF], a 2D camera image can be back-projected using the camera parameters to obtain a 3D point cloud that can also feed into LiDAR-based 3D detection systems [START_REF] Simonelli | Are we missing confidence in pseudo-LiDAR methods for monocular 3D object detection?[END_REF][START_REF] Wang | Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving[END_REF], resulting in a 'pseudo-LiDAR' system. Likewise, [START_REF] Yang | Upgrading optical flow to 3d scene flow through optical expansion[END_REF] combine optical flow and motion-in-depth (ratio between the depth of corresponding points over two frames) to recover the 3D scene flow from monocular cameras only.

Extracted cues such as 3D bounding box predictions for objects in the scene as well as road layout in the form of vectors can be used to represent dynamic scenes. In fact, many forecasting methods favoured this representation as it abstracts all the visual variations while keeping the majority of the information needed to predict the evolution of agents in the scene [START_REF] Bansal | Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst[END_REF][START_REF] Gao | Vectornet: Encoding hd maps and agent dynamics from vectorized representation[END_REF][START_REF] Nayakanti | Wayformer: Motion forecasting via simple & efficient attention networks[END_REF][START_REF] Zhao | Tnt: Target-driven trajectory prediction[END_REF]. However, such detection-based perception systems often involve manually tuned thresholding scores to trade off precision and recall, which may cause the loss of critical information (e.g., an object on the road).

In the Bird's-Eye-View

An alternative to detection-based representation are probabilistic occupancy grids. Probabilistic Bird's-Eye-View (BEV) occupancy prediction is the task of estimating a probability map that indicates the likelihood of occupancy for each grid cell in the BEV representation. As already stated in section 2.1.2, the BEV representational space, a.k.a. top-view occupancy grid, recently gained considerable interest within the community for downstream driving tasks, including motion forecasting [START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Mahjourian | Occupancy flow fields for motion forecasting in autonomous driving[END_REF] and planning [START_REF] Caesar | NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles[END_REF][START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Chitta | NEAT: Neural attention fields for end-to-end autonomous driving[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF]. The BEV representation is also at the centre of chapter 4, which describes how to estimate it from cameras only.

The increased interest in the BEV grid representation certainly comes from the many advantages it offers. First, BEV appears as a suitable and natural space to fuse multiple views [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] or sensor modalities (e.g., camera images and LiDAR point clouds) [START_REF] Bai | Transfusion: Robust LiDAR-camera fusion for 3D object detection with transformers[END_REF][START_REF] Hendy | FISHING net: Future inference of semantic heatmaps in grids[END_REF]. Knowing the calibration parameters of each sensor, their respective signal can be projected into the BEV space, then acting as a common space in which modalities of very different nature can share information -an important aspect for sensor fusion (section 2.2.2). Indeed, LiDAR point clouds are natural 3D signals, making their projection into a top-down grid trivial. For camera signals, there are different strategies for this image-to-BEV transformation. These include methods that make this transformation by means of geometric projections [START_REF] Ng | BEV-Seg: Bird's eye view semantic segmentation using geometry and semantic point cloud[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Sengupta | Automatic dense visual semantic mapping from street-level imagery[END_REF][START_REF] Srikanth | INFER: Intermediate representations for future prediction[END_REF]] (e.g., by predicting the depth for each pixel and using cameras' parameters) and other that learn it [START_REF] Pan | Cross-view semantic segmentation for sensing surroundings[END_REF][START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]], e.g., by direct correspondences between all pixels in camera images and all pixels in the BEV grid. These will be detailed in chapter 4.

The BEV representation also has a geometric meaning: it is a discretization of the 3D space where the vertical dimension has been flattened. The compression of the vertical axis is possible as most of the dynamic in a driving scene happens at the ground level, i.e., the plane of the road. This geometrical grounding makes the BEV grid suitable to describe the semantic, geometric, and dynamic aspects of objects in the environment.

The BEV representation can describe a wide variety of objects as well as their future occupancy. The future occupancy takes the form of a "motion flow" where the dynamic of each pixel composing an object is described [START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Mahjourian | Occupancy flow fields for motion forecasting in autonomous driving[END_REF]. This allows modelling complex dynamic events like a trailer swinging uncontrollably behind a car. Otherwise, the prediction can simply take the form of a sequence of occupancy grid, i.e., without associations between pixels over time ("flow"). In all cases, this probabilistic map can be used directly as a cost map by the planning pipelines, where prospective driving paths are weighted by the occupancy likelihood predicted on the pixels they cross [START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF].

Implicit

An implicit representation encodes the state of the world in an abstract, high-dimensional space. In the autonomous driving context, it embeds in an abstract space all the information required for driving such as the geometry, the position, the dynamic and the attributes of objects in the scene, without explicitly representing these attributes (e.g., MILE from Hu et al. [2022a]). In comparison, most of the approaches discussed so far try to map sensory information to an explicit 2D or 3D Euclidean space (whether discrete or continuous). This has limitations that can make such representation insufficient for capturing the dynamic and complex nature of the environment in autonomous driving.

For example, grid-based methods like BEV occupancy grids (section 2.3.3) or 3D voxels (section 2.3.2), essentially learn a lookup table of the scene where every spatial coordinate is mapped to sensory information. This can suffer from discretization errors and limited resolution, making it difficult to accurately identify objects or features in the environment. Figure 2.10 illustrates how pedestrian occupancy is hard to estimate for current methods. Additionally, although mostly storing information about empty space, reasoning in this representation is both memory and computationally expensive because every location must be visited by the algorithm (usually with several layers of convolution).

Methods in the 2D camera plane (section 2.3.1) or in 3D LIDAR point clouds (section 2.3.2) try to make predictions for every sensory element (pixel or 3D point). Both The coloured boxes (green for the first example and white for the second) highlights the difficulty that a network has to segment "small" objects, pedestrians in this case. This figure is adpated from [START_REF] Can | Understanding bird'seye view of road semantics using an onboard camera[END_REF] pixel-wise or point-wise predictions require a high level of detail to represent all the objects of the environment (e.g., cones, children, potholes), which can be computationally expensive.

Vectorial representations (section 2.3.4) essentially ask for perfect detection predictions while being limited by their ontology (which currently only integrates cars, pedestrians, and some animals in mainstream datasets [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF][START_REF] Sun | Scalability in perception for autonomous driving: Waymo open dataset[END_REF]).

In contrast, the implicit representation aggregates the information from every sensor into a common encoding of the environment in a compact, abstract, and efficient manner [START_REF] Bartoccioni | Lara: Latents and rays for multi-camera bird's-eye-view semantic segmentation[END_REF][START_REF] Guizilini | Depth field networks for generalizable multi-view scene representation[END_REF]Hu et al., 2022a;[START_REF] Sajjadi | Scene representation transformer: Geometry-free novel view synthesis through set-latent scene representations[END_REF]. Typically instantiated as a single or a collection of high-dimensional vectors, its compact nature discards irrelevant details and helps efficiently capture complex dependencies. For example, a good implicit representation for dynamic scenes may encode the position, movement, and shape of agents in the scene while ignoring the colour of the sky or the movements of leaves on trees. Also, the representation being abstract and continuous, it alleviates any resolution issue that grid-based systems face while minimizing the memory cost for the scene encoding. Additionally, with irrelevant details being removed, it becomes much more computationally efficient for the neural network to extract and reason about relationships between parts of the scenes (e.g., associating a traffic light to the road it controls, taking into account the distance between a crosswalk and a pedestrian or the interactions between drivers). Overall, an implicit representation is all about managing the trade-off between computational cost and representation quality.

Once learned, such an encoding of the world can be used in various ways. Its aggregative and implicit nature makes it suited for multi-sensor setups and adaptable to a wide range of tasks, an aspect at the core of chapter 4. Most often, it feeds into an RL-based driving system, where driving commands (angle of the steering wheel, braking, and gas pedal) are directly predicted from the representation [Hu et al., 2022a]. Such a representation, being compact and mostly filled with relevant information, makes it easier to reason temporally and to predict the future state of the world (akin to world-models [START_REF] Bryson | Applied optimal control: Optimization, estimation, and control[END_REF][START_REF] Ha | Recurrent world models facilitate policy evolution[END_REF][START_REF] Hafner | Mastering diverse domains through world models[END_REF]Hu et al., 2022a]), a critical characteristic to enable end-to-end driving.

Positioning

In this section, we reviewed the existing literature on scene understanding systems for autonomous driving and identified the challenges associated with their creation. In view of these challenges and the research questions established in chapter 1, we now give a high level perspective on the methods we develop in this thesis. For instance, we propose two novel methods that leverage automotive-grade sensors for scene understanding.

In chapter 3, we present a new self-supervised learning system, leveraging a few-beam LiDAR and a camera, for the task of depth estimation. We highlighted in section 2.1 that depth prediction methods are often used to achieve a 3D perception of the surroundings in camera-based autonomous systems. The geometry of the scene can be physically measured from multiple LiDAR sensors, but this requires an expensive sensor setup. On the other hand, camera-only methods are more cost-effective but suffer from two major problems: scale ambiguity and infinite-depth. In particular, the infinite-depth problem results in the depth of moving objects being dangerously overestimated. This makes existing methods unsafe to deploy in real-world scenarios, where moving objects are common. Despite this, the infinite-depth problem is often overlooked and not properly evaluated. To address these limitations, we propose to leverage widely available automotive-grade sensors and combine a monocular camera with a few-beam LiDAR. More specifically, we build on previous self-supervised camera-only methods relying on view reconstruction principles for the task of depth estimation (section 2.3.1). However, we complement the classic, ill-posed, reconstruction objective with the help of "touches" from a few-beam LiDAR to disambiguate the estimation of moving objects. We validate the influence of this sparse LiDAR integration at different levels of the self-supervised learning scheme. In addition, we introduce a new metric to quantitatively measure this infinite depth phenomenon and highlight its presence in prior methods.

In chapter 4, we propose a transformer-based model for vehicle and driveable area segmentation in the Bird's-Eye-View (BEV) from multiple cameras. Section 2.1.2 and section 2.3.2 highlight the issues with detection-based perception systems and trajectory-based prediction systems, namely the difficulty to model spatial uncertainty and shape-shifting elements of the scene. On the other hand, the BEV grid offers many advantages to represent a complex driving scene ( section 2.3.3). It is a compressed discretization of the 3D space, it can model a wide range of objects and their dynamic, and it naturally supports the task of planning. Nevertheless, online prediction of BEV semantic maps requires complex operations such as extracting and fusing information from multiple cameras, and projecting it into a common top-view grid. Inspired by recent advances in BEV estimation methods (section 2.3.3), we propose to learn the mapping from camera images to the BEV occupancy grid. However, existing methods for these operations rely on error-prone geometric operations or expensive direct dense mapping between image pixels and pixels in BEV. Instead, we propose to use an intermediate, compact, implicit representation to aggregate and fuse information within and across multiple cameras. The resulting internal representation of the scene is then reprojected in the BEV space to segment vehicles and driveable areas. We also show that we can efficiently aggregate information over time into this implicit representation, paving the way for systems able to learn an internal representation of the world (section 2.3.4).

Chapter 3

Monocular metric depth estimation with a few-beam LiDAR

We have seen in chapter 2 that depth prediction is often used to achieve a 3D spatial understanding of the surroundings, something necessary to plan and act safely [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Srikanth | INFER: Intermediate representations for future prediction[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF]. Depth information can be directly acquired using multiple LiDAR (32 beams or more), a sensor setup typical of expensive "over-engineered" Level-5 vehicles. Alternatively, camera-only methods offer a less costly approach by relying on a cheap sensor that is now ubiquitous on passenger vehicles with modern ADAS.

Nonetheless, self-supervised and trained with a view reconstruction objective, this kind of vision-based approach suffers from two major drawbacks. First, cameras on automated vehicles are often organized as a ring to provide a 360°view of the surroundings, leaving only very small overlaps between views, not enough to leverage stereographic principles. In such a monocular setup, there is an infinite number of 3D scenes that can explain the 2D projection of the image. This poses an ambiguity of scale, that is to say, the actual size, in meters, of an object cannot be determined from the image only. Secondly, the view reconstruction objective typically assumes a rigid scene, meaning that the scene is static. This assumption is often unrealistic in real-world scenarios and can result in the depth of moving objects dangerously overestimated. This problem is commonly referred to as the 'infinite-depth' problem and mostly happens for cars moving in front of the ego-vehicle, a situation typical of traffics, making existing methods unsafe to deploy 'in-situ'.

In this chapter, we propose a new alternative for dense metric depth estimation by combining a monocular camera with a light-weight LiDAR, e.g., with 4 beams, typical of today's automotive-grade mass-produced laser scanners. We introduce a novel framework, to estimate dense depth maps from monocular images with the help of "touches" of Li-DAR. This method, called LiDARTouch has been submitted in 2020, and published in 2023, in the scientific journal CVIU [START_REF] Bartoccioni | Lidartouch: Monocular metric depth estimation with a few-beam lidar[END_REF]. We show that the use of a few-beam LiDAR alleviates scale ambiguity and infinite-depth issues that camera-only methods suffer from. We also demonstrate that methods from the fully-supervised depth-completion literature can be adapted to a self-supervised regime with a minimal LiDAR signal. At the time of submission, our LiDARTouch framework achieves new state-of-the-art in selfsupervised depth estimation on the KITTI dataset, thus supporting our choices of integrating the very sparse LiDAR signal with other visual features.

To enable comparison with our work in the future, the code for our learning system and the data processing steps have been publicly released at https://github.com/F-Barto/ LiDARTouch. 

Introduction

Accurately estimating depth in scenes is a prerequisite for a wide range of computer vision tasks, from computing semantic occupancy grids [START_REF] Lee | Rgb-d camera based wearable navigation system for the visually impaired[END_REF][START_REF] Ng | BEV-Seg: Bird's eye view semantic segmentation using geometry and semantic point cloud[END_REF] to object detection without labels [START_REF] Deng | Unsupervised object region proposals for rgb-d indoor scenes[END_REF][START_REF] Koestler | Learning monocular 3D vehicle detection without 3D bounding box labels[END_REF] and multi-modal unsupervised domain adaptation [START_REF] Jaritz | xMUDA: Cross-modal unsupervised domain adaptation for 3D semantic segmentation[END_REF]. In particular, autonomous systems require a 3D understanding of their surroundings to plan and act safely, and the capacity to estimate depth is central to achieving this [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Srikanth | INFER: Intermediate representations for future prediction[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF]. As already stated in section 2.3.1, two main lines of approach exist to infer depth in a scene, depending on the available data: LiDAR-based completion and camera-only estimation methods. LiDAR-based depth completion methods rely on one or multiple dense LiDARs (e.g., 32 or 64 beams) [START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF][START_REF] Park | Non-local spatial propagation network for depth completion[END_REF][START_REF] Tang | Learning guided convolutional network for depth completion[END_REF][START_REF] Xu | Depth completion from sparse LiDAR data with depth-normal constraints[END_REF] to physically capture most of the geometry of the scene and interpolate the rest of the scene structure from the camera RGB signal. However, these approaches are so far unfit for automotive-grade settings, as they rely on expensive sensors -often costing more than a car alone -and require a rich supervisory signal for training, composed of 64-beam LiDAR point clouds densely accumulated over time. An alternative is explored by camera-only methods that predict dense depth maps with either stereo [START_REF] Chang | Pyramid stereo matching network[END_REF][START_REF] Kendall | End-to-end learning of geometry and context for deep stereo regression[END_REF] or monocular [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF]Guizilini et al., 2020a,b;[START_REF] Kuznietsov | Semi-supervised deep learning for monocular depth map prediction[END_REF][START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF][START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Yin | GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF] setups. These models address the task of depth estimation and, contrary to the depth completion setup, do not leverage LiDAR point clouds.

While such methods are appealing, as they rely on much cheaper and versatile sensors, monocular approaches suffer from ambiguity in the map scale they produce: most of them can only generate relative depth maps, i.e., up to an unknown global scaling factor, which makes them unusable in a real-world setting. Moreover, their predictions can be catastrophic for objects with no relative motion with respect to the ego-camera, e.g., vehicles in front, which are likely estimated at infinite depth [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF][START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Yin | GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. Lastly, they are critically impeded by low-light conditions (at night or indoors) and adverse weather (in heavy rain, dense fog, or snow storm) [START_REF] Gruber | Pixel-accurate depth evaluation in realistic driving scenarios[END_REF].

In this thesis, we propose the LiDARTouch framework, where dense metric depth is estimated by combining a monocular camera with a minimal sparse LiDAR input (e.g., 4 beams). Our motivations to use a sparse LiDAR input are diverse. First, from a practical perspective, 4-beam laser scanners are currently embedded in consumer-grade vehicles and they are a hundred times less expensive than their dense (64-beam) counterparts. Second, we expect that such a LiDAR signal, although extremely sparse, can provide valuable cues for monocular depth estimation, thus alleviating scale-ambiguity and infinite-depth problems. Third, we hypothesize that a light LiDAR touch will result in the overall model correctly estimating the depth of moving objects, notably cars, alleviating the infinite-depth issue. Finally, from a security perspective, such an approach makes it difficult to attack the camera signal alone [START_REF] Yamanaka | Adversarial patch attacks on monocular depth estimation networks[END_REF], due to a form of data redundancy between the camera and LiDAR.

Leveraging recent advances in monocular depth estimation [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Watson | Self-supervised monocular depth hints[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF], our approach is self-supervised. This setting is significantly less data-hungry than the fully-supervised alternative, which requires densified and stereo-filtered depth maps as ground truth [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF][START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF][START_REF] Park | Non-local spatial propagation network for depth completion[END_REF][START_REF] Tang | Learning guided convolutional network for depth completion[END_REF][START_REF] Xu | Depth completion from sparse LiDAR data with depth-normal constraints[END_REF]. We emphasize that this self-supervised learning setting, combined with the fact that it only involves widely available and lowpriced sensors, makes the overall approach particularly scalable. Indeed, it becomes possible to estimate dense and metric depth maps on datasets and domains lacking depth ground truth [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF][START_REF] Chang | Argoverse: 3D tracking and forecasting with rich maps[END_REF][START_REF] Sun | Scalability in perception for autonomous driving: Waymo open dataset[END_REF]. Moreover, from an industrial perspective, the LiDARTouch framework naturally scales with the data acquired by a vehicle fleet without the need for any annotation. Under this new regime, we propose the adaptation of recent methods from the two aforementioned streams of approaches for inferring depth. On the one hand, we adapt fully-supervised depth completion methods, namely ACMNet [START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF] and NLSPN [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF], to a much sparser Li-DAR using our self-supervised setup. On the other hand, we strengthen the very embodiment of self-supervised monocular camera-only methods, namely Monodepth2 [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF], to integrate the new complementary LiDAR information. We then perform an extensive study on the contribution brought by the sparse LiDAR signal at different levels as: (1) an additional input, (2) a new information source to estimate better poses, and (3) a form of self-supervision. A high-level positioning of LiDARTouch with respect to depth estimation and completion approaches is summarized in table 3.1.

To evaluate the adapted models and validate our hypotheses, we propose a novel training and evaluation protocol on the KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF] which includes the degradation of the raw 64-beam LiDAR data to obtain 4 beams. We also propose a new metric to quantitatively measure the infinite-depth problem. This allows us to verify one of our core hypotheses that the use of very limited LiDAR information corrects infinite-depth degeneracies of camera-only methods. In comparison to depth completion methods, our LiDARTouch framework overcomes the need for depth ground truth and leads to highly improved results with respect to approaches that are naïvely adapted to the self-supervised setting. In addition, we show that it is possible to successfully adapt architectures from the depth completion literature, as well as camera-based depth estimation methods, into a unified framework that alleviates problems from which these two lines of approaches suffer. We make the following contributions: 1. We propose LiDARTouch, a new self-supervised depth estimation framework, where a minimal LiDAR and a monocular camera are available without access to any groundtruth depth annotations. This configuration is close to in situ conditions of today's vehicles, which is seldom addressed in other works. 2. We demonstrate that models trained within our LiDARTouch framework close the performance gap between self-supervised monocular depth estimation and fully-supervised depth completion learning schemes, proving that the need for ground-truth acquisition and costly sensors can be alleviated. 3. We show that models trained within our LiDARTouch framework do not suffer from critical scale-ambiguity and infinite-depth issues, in contrast to camera-only models.

We evaluate this a novel metric to quantitatively measure the infinite-depth issue for the first time in the literature. 4. We demonstrate that LiDARTouch is a versatile learning framework by successfully applying it to a range of network architectures: Networks from the depth-completion literature are revamped to work with very sparse LiDAR instead of dense ones and cameraonly models are adapted to integrate LiDAR data. 5. We study the influence of LiDAR inputs at each stage of our framework extensively.

Our experiments show that integrating sparse LiDAR in a self-supervised scheme is not trivial. We provide key insights for the community on how the fusion scheme, the pose method and the supervisions interact. 

Related work

In the remainder of this thesis we refer to a LiDAR as dense if it has more than 32 beams, and call it sparse or minimal otherwise. Depth ground-truth, required by fully-supervised methods, is obtained from a dense LiDAR signal, accumulated over several sweeps. A camera stereo setup is then used to remove trail artifacts from moving objects. We will refer to such densified point-cloud data as accumulated LiDAR. These three density levels are illustrated in fig. 3.1. We now detail the two lines of approaches related to our work: camera-only monocular self-supervised methods and LiDAR-based fully-supervised depth completion systems.

Monocular self-supervised methods. In a fully-or semi-supervised setting, several models estimate depth in a camera-only monocular setup [START_REF] Amiri | Semi-supervised monocular depth estimation with left-right consistency using deep neural network[END_REF][START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF][START_REF] Kuznietsov | Semi-supervised deep learning for monocular depth map prediction[END_REF], but acquiring depth ground truth for outdoor environments at scale is challenging and expensive. To overcome this issue, a few camera-based works [Casser et al., 2019a;[START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF] propose a self-supervised alternative to the use of ground-truth depth. Leveraging a set of consecutive frames, this paradigm predicts the depth for one of them and the relative changes in pose across nearby views. The model is trained by minimizing a photometric reconstruction error defined over these views (fig. 3.2). Two important issues with such approaches hinder their widespread usage: the scale ambiguity of the produced depth maps and the infinite-depth problem.

The scale-ambiguity problem stems from the view synthesis formulation being ill-posed. The formulation is scale ambiguous, as the target view can be correctly reconstructed regardless of the scale of the prediction. As a consequence, estimated depth maps are relative -up to an unknown global scaling factor -and models thus need additional supervision to accurately estimate a metric depth. Several self-supervised approaches rely on groundtruth LiDAR signal to scale their depth estimation at test time [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF][START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Yin | GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. Alternatively, the recent PackNet model [Guizilini et al., 2020a] proposes to automatically scale estimations with additional constraints imposed by the instantaneous velocity of the ego-vehicle. Some works have also moved to a stereo setup to disambiguate the scale factor, using additional information, at train time only [START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF][START_REF] Groenendijk | On the benefit of adversarial training for monocular depth estimation[END_REF] [START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF] or NLSPN [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF], which employs a multi-modal depth prediction network that is learned by regressing a provided ground-truth depth. 2020] or also at run time [START_REF] Chang | Pyramid stereo matching network[END_REF][START_REF] Cheng | Noise-aware unsupervised deep lidar-stereo fusion[END_REF][START_REF] Kendall | End-to-end learning of geometry and context for deep stereo regression[END_REF], thus abandoning the monocular setup.

The second issue of infinite depth arises when objects move at the same speed as the camera. In this common situation, a trivial solution for the model is to predict that these objects are infinitely far and big, as they do not change in appearance through time [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. Recent proposals to address this problem exploit semantic segmentation of classes known to be often dynamic (e.g., cars, trucks) [Casser et al., 2019a,b], or automatically prune the dataset by removing these objects [START_REF] Guizilini | Semantically-guided representation learning for self-supervised monocular depth[END_REF]. The robustness of both these approaches to novel test scenarios, however, remains unclear.

In our work, we build on camera-only methods to additionally integrate LiDAR information and show that: (i) very few direct depth measures suffice to have a metrically-scaled dense depth estimation, and (ii) the infinite-depth issue can be partially or completely solved with the use of LiDAR input, depending on its resolution and position, without any additional assumptions.

Depth completion methods typically estimate a dense depth map from raw LiDAR measurements. Current deep-learning based methods for depth completion [START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF][START_REF] Kumar | Monocular fisheye camera depth estimation using sparse lidar supervision[END_REF][START_REF] Ma | Sparse-to-dense: Depth prediction from sparse depth samples and a single image[END_REF][START_REF] Park | Non-local spatial propagation network for depth completion[END_REF][START_REF] Tang | Learning guided convolutional network for depth completion[END_REF][START_REF] Xu | Depth completion from sparse LiDAR data with depth-normal constraints[END_REF][START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF] usually learn to regress ground-truth depth maps in a fully-supervised setup (fig. 3.3). Such approaches generally operate over RGB and LiDAR inputs.

A popular approach is to use one encoder per modality and fuse them at each resolution scale [START_REF] Guizilini | Sparse auxiliary networks for unified monocular depth prediction and completion[END_REF][START_REF] Tang | Learning guided convolutional network for depth completion[END_REF] or at the feature bottleneck only [START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF]]. An other option is early fusion, where both modalities are concatenated at the very beginning of the architecture [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF][START_REF] Park | Non-local spatial propagation network for depth completion[END_REF][START_REF] Xu | Depth completion from sparse LiDAR data with depth-normal constraints[END_REF]] Some fusion modules, as the one of GuideNet [START_REF] Tang | Learning guided convolutional network for depth completion[END_REF], only considers the image as a guiding signal for the LiDAR features. This assumes that the LiDAR input is sufficient, i.e., high-resolution, for estimating depth, and thus unsuitable for our case. This limits the approach [START_REF] Tang | Learning guided convolutional network for depth completion[END_REF] to estimate depth from high-resolution 64-beam LiDAR both at train and run time, making it incomparable to ours as we do not have access to such data. On the contrary, the SAN architecture [START_REF] Guizilini | Sparse auxiliary networks for unified monocular depth prediction and completion[END_REF], can handle various levels of Li-DAR sparsity with sparse convolutions. Alternatively, networks like ACMNet [START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF] and NLSPN [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF] propagate sparse LiDAR features into image features where depth measurements are not available. ACMNet [START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF] uses a multiscale co-attention-guided graph propagation strategy for depth completion. It propagates the sparse and irregularly distributed LiDAR measurements through a nearest-neighbor encoding. In addition, it uses a symmetric gated fusion strategy to fuse multi-modal contextual information throughout the decoder. The NLPSN architecture [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF] jointly estimates an initial depth map, a pixel-wise confidence and non-local affinity kernels. This initial depth map is iteratively refined with the input LiDAR features using the predicted confidence map and affinity kernels.

All the aforementioned depth completion methods employ a 64-beam input LiDAR and are trained with accumulated LiDAR as supervision. Here, most of the scene structure is available and the task amounts to color-guided depth interpolation. This design prevents these works from being easily adapted to new domains. Indeed, the acquisition of groundtruth data is expensive and not scalable, as it is obtained from high-resolution LiDARs and stereo cameras. In contrast, our work specifically focuses on minimal 4-beam LiDAR directly, with no densely accumulated LiDAR data as supervision. We emphasize that in this very sparse 4-beam regime, almost no structural information can be directly extracted for the input signal. The task we propose is then more akin to depth estimation than depth completion.

A closely related work to ours is the model of [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF], which also uses Li-DAR as a supervisory signal in a monocular self-supervised setting. LiDAR and camera signals are merged through an early fusion and the change of pose is estimated by solving a Perspective-n-Point problem. However, their setup is different from ours. Their study focuses on the dense depth completion regime, i.e., with a 64-beam LiDAR, while we work on depth estimation with a minimal 4-beam LiDAR. Moreover, they do not compare against other existing architectures in the self-supervised setting. In contrast, we perform thorough evaluations with existing work by adapting camera-only and depth completion methods to our extremely scarce LiDAR regime. Additionally, we propose a different supervision scheme and the use of multiple views in photometric reconstruction. These choices lead to a substantial improvement on the KITTI dataset. Finally, we provide in-depth analyses of the impact brought by the LiDAR signal at different levels. The proposed framework leverages ideas from both the camera-only depth estimation approach (illustrated in Figure 3.2) and fully-supervised depth completion methods (illustrated in Figure 3.3). In LiDARTouch, the light touch of LiDAR is integrated at three different stages: as an input of the depth network, as a selfsupervision signal, and to estimate a scaled pose. We indicate the mixing of modalities with a color grading of the two colors on the volumes. The architecture (C) is our extension of [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF] to make it operate over minimal LiDAR input. We denote the concatenation operator by c .

LiDARTouch framework

This section is organized into three parts, each corresponding to a different and complementary use of the light LiDAR signal. In section 3. 

Depth network

The core of our depth estimation system is a neural network taking the target image I t coupled with H t , the LiDAR data projected in the image plane, as input, and predicting a depth map Dt . Given the multi-modal nature of the input, our depth network employs a fusion strategy, that can be either early or multi-scale. In this thesis, we consider four different architectures that are illustrated in fig. 3.5. Three of them are from the recent depth-completion literature, namely NLSPN [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF], S2D [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF] and ACMNet [START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF]. The fourth one, we refer to as Monodepth2-L, is an extension of the camera-only model Monodepth2 [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF] to operate over the additional LiDAR input (we provide details of this extension in section 3.8).

The two architectures NLSPN [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF] and S2D [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF], illustrated in Figures 3.5b and 3.5a respectively, employ an early-fusion strategy, combining image and LiDAR features from the start, through concatenation. Early fusion directly mixes features from both modalities, thus potentially enabling richer interactions across them. The NL-SPN architecture additionally re-injects the LiDAR signal at the end of the processing, as a late refinement strategy to mitigate signal degradation due to normalization layers.

In contrast, Monodepth2-L and ACMNet architectures, represented in Figure 3.5c and 3.5d respectively, use a multi-scale fusion. They both encode LiDAR and visual data separately so that these modalities are processed differently and their learned features are progressively integrated together. This design merges modalities more carefully than the early-fusion strategy, which is desirable as visual and LiDAR inputs carry complementary semantics. The two encoders, based on ResNet-18 [START_REF] He | Deep residual learning for image recognition[END_REF], are independent and modality-specific features are fused with a series of concatenations. ACMNet, on the other hand, employs a more sophisticated co-attention strategy to mutually guide the features in the encoders and mix the features in the decoders to finally fuse them into one prediction.

Self-supervision objectives

Our challenging setting, where depth ground truth is unavailable for training the model, prevents the depth network architecture to be supervised directly. We address this by training the network under the supervision of two combined objectives. The first one, photometric reconstruction L photo , is inspired by recent advances in self-supervised camera-only monocular depth estimation [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. However, as discussed in section 3.2, training with this objective alone leads to scale and infinite-depth issues. Consequently, we leverage a LiDAR self-reconstruction objective, which uses sparse yet complementary LiDAR information to mitigate these issues.

Self-supervised photometric reconstruction L photo . We recall that the photometric reconstruction problem is a surrogate task aimed at resynthesizing a target image, given neighboring source images with different viewpoints [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. Solutions to this task build on optimization approaches for disparity, motion and depth estimation without learning, based on photo-consistency. The central idea is to combine pose and depth predictions to project a neighboring source image into the target view. The underlying intuition is that to accurately resynthesize the target view from the source one, both the depth and pose estimation must be accurate.

Formally, the target image I t is considered with a set S of source images I s in its temporal vicinity. First, the depth network predicts the dense depth map Dt for the target image I t . Second, the relative changes of pose Pt s between the target and source views are estimated -we detail this in section 3.3.1. One pose transformation Pt s = R r 0 1 ∈ SE( 3) is estimated for each source image I s ∈ S, where R is a rotation matrix and r the translation component. Given the estimates of depth and pose, and the camera intrinsics K, a source image I s can be warped via a differentiable geometric transformation into synthetic image Îs in the target view. More precisely, for homogeneous coordinates p t of a pixel in the target image, the projected coordinates p s in the source image are computed with:

p s ≃ K Pt s Dt (p t )K -1 p t . (3.1)
For a pair (I s , I t ) of source-target images, the reconstructed image Îs is enforced to match the target image I t by a pixel-wise image reconstruction error based on both an L 1 intensity loss and a structural similarity (SSIM) loss [START_REF] Loza | Structural similarity-based object tracking in video sequences[END_REF]. Note that this formulation assumes Lambertian surfaces.

More formally, at a given pixel location p, this loss reads:

L photo (p) = min I s ∈S α 2 1 -SSIM(I t , Îs )(p) + (1 -α) I t (p) -Îs (p) , (3.2)
where α is a hyper-parameter balancing the contributions of the two terms. Moreover, taking the minimum value over all source images I s ∈ S limits the impact of errors resulting from occlusions and disocclusions in the scene due to motion of the ego-car and/or of the other scene elements [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]. To take into account objects with no motion with respect to the ego-car, this loss is only applied to pixels whose appearance between frames varies [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF].

LiDAR self-supervision. As detailed in section 3.2, a model solely trained with the photometric reconstruction loss L photo suffers from a scale-ambiguity issue and may be affected by the infinite-depth problem. In the following, we describe the new role of the low-density input LiDAR as a supervisory signal to mitigate this problem. We assume that this complementary information source can provide minimal-yet-crucial cues to disambiguate the estimated depth, at a global scale level and especially for moving objects. Furthermore, a sparse depth signal can refine the photometric supervision for small objects, thus improving overall performances [START_REF] Watson | Self-supervised monocular depth hints[END_REF]. Inspired by the depth completion and the stereo depth estimation literature, we consider three different ways of using LiDAR as a supervisory signal: a straightforward L 1 regression along with two refinements that either control the interference with the photometric reconstruction or take into account the inherent noise of the LiDAR signal. First, we consider a naïve self-supervision scheme, an L 1 loss for all pixels having a LiDAR measurement, in addition to the photometric loss L photo :

L naïve (p) = | Dt (p) -H t (p)| + L photo (p) if H t (p) > 0, L photo (p) otherwise, (3.3) 
where p is an index over the pixels, Dt the estimated depth and H t the input LiDAR projected in the target image plane. The latter being sparse, not all pixels have LiDAR data available; we use the encoding H t (p) = 0 for such pixels. Second, we consider the masked self-supervised objective proposed in [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF]. It makes the LiDAR regression and the photometric loss exclusive by masking-out the photometric loss L photo on pixels with a LiDAR measurement. Denoting L masked as this loss, it is given by:

L masked (p) = | Dt (p) -H t (p)| if H t (p) > 0, L photo (p) otherwise. (3.4)
This loss is similar to L naïve but avoids potential conflicts between the photometric and LiDAR reconstructions. Lastly, inspired by [START_REF] Watson | Self-supervised monocular depth hints[END_REF], we also introduce the hinted self supervision, L hinted , that takes into account the inherent noise of the LiDAR signal. Despite being a direct depth measurement, raw LiDAR signal is noisy for a number of reasons, including potentially imprecise calibration, approximated projection, and the fact that the camera and LiDAR are not exactly positioned at the same place, which results in objects observable by one but hidden to the other. Therefore, the loss L hinted integrates the LiDAR selfsupervision only where image reconstruction is more precise by using the LiDAR signal instead of the estimated depth. More precisely, two versions of the photometric contribution of the pixel are computed: the regular pixel-wise photometric loss L photo , using the estimated depth map Dt in eq. (3.1), and L H photo using the input projected LiDAR H t instead of Dt in eq. (3.1). Then we only supervise with the LiDAR reconstruction when L H photo < L photo . The objective is thus:

L hinted (p) = | Dt (p) -H t (p)| + L photo (p) if L H photo (p) < L photo (p) L photo (p)
otherwise.

(3.5)

Pose estimation

The formulation of the photometric reconstruction involves the change of pose Pt s between the target image I t and source view I s for the source image warping. A first possibility, which is widely used in monocular self-supervised depth estimation [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF], uses a so-called pose network jointly trained with the depth network. However, due to the monocular ambiguity, this approach can only estimate a relative pose and thus relative depth maps, which then must be rescaled by an unknown factor. Instead, we explore another way to estimates a metric pose, by leveraging the LiDAR information and solving a Perspective-n-Point problem [START_REF] Gao | Complete solution classification for the perspective-three-point problem[END_REF][START_REF] Lepetit | Epnp: An accurate o(n) solution to the pnp problem[END_REF]. As such, depth estimation should also align to a real-world scaling.

Perspective-n-Point (PnP).

The PnP problem originally seeks the absolute pose of a camera given a set of 3D points and their corresponding 2D image projections. In our case, we use the PnP formulation to estimate the change of pose between the target and source views, i.e., given the target image I t and LiDAR measurements, as well as the source image I s . First, pairs of pixels (p t , p s ) matching in both views I t and I s are found using the SIFT descriptor [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] based on a DoG keypoint detector. Then, the sole pairs for which p t has a LiDAR measurement are considered. This gives us the pairs of 3D-2D points, where points p t are complemented with depth measurements and match the 2D points p s of the source image I s . Given these pairs, we can precisely estimate the metric-scaled 6D rigid transformation between the target and source poses by minimizing the cumulative projection error.

In challenging real-life situations, and especially when dealing with a 4-beam LiDAR, finding matching pixels that have LiDAR measurements can be arduous, making this method prone to errors. Hence, we follow [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF] to remove outliers in the set of point correspondences by using RANSAC in conjunction with the PnP solving algorithm. When this filtering step is insufficient for the algorithm solving the PnP problem to converge, we discard the training sample.

Experimental protocol

The first component of our protocol is the dataset used for the experiments, namely KITTI [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF], and our preprocessing to reduce the raw 64-beam LiDAR to a 4-beam one (section 3.4.1). We then introduce baselines in section 3.4.2. Additional details are given in appendix A.

Dataset and evaluation metrics

To train models in our LiDARTouch framework, we need a dataset that provides a camera stream with aligned sparse LiDAR data for training. We also require this dataset to have ground-truth depth data with an associated benchmark to assess and compare our test performances. We are aware of only one dataset matching both of these requirements, namely KITTI. It contains 1.5 hours of recorded driving sessions in urban environment from a video stream synchronized with LiDAR data. Depth ground truth is available: it is derived from dense LiDAR signals accumulated over five sweeps and stereo filtered. Overall, we use this dataset to train and evaluate the quality of the predictions of our framework, and to compare against baselines and variants. On the KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? The KITTI vision benchmark suite[END_REF], we use the so-called Eigen split [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] for train, val and test with a minor modification for the val and test. The ground-truth LiDAR of [START_REF] Uhrig | Sparsity invariant CNNs[END_REF] is not available for some of the frames of the Eigen splits (fewer than 10). Following common practice [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a], we removed them from the val and test splits. Thus, the total number of examples are 22537, 873 and 652 respectively for the train, val and test sets.

The LiDAR data provided in KITTI is obtained with high-end 64-beam sensors, appropriate for evaluating our self-supervised models, but much denser than what is expected to train our LiDARTouch framework. Consequently, we perform a filtering step to extract 4 beams out of the raw 64-beam LiDAR data. To conform with prior works [START_REF] Guizilini | Robust semi-supervised monocular depth estimation with reprojected distances[END_REF][START_REF] Jaritz | Sparse and dense data with CNNs: Depth completion and semantic segmentation[END_REF][START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF] and better compare with them, we sample LiDAR beams uniformly: 1 beam is kept every 16. Note that with such a sampling, while 4 beams are extracted, only three beams effectively project onto the image plane as one beam falls out of the considered visual region.

Evaluation metrics. Evaluation is conducted against accumulated ground-truth LiDAR obtained following [START_REF] Uhrig | Sparsity invariant CNNs[END_REF], with the metrics defined in [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF]. This includes the absolute (Abs Rel) and square (Sq Rel) relative errors, the root mean square error (RMSE), and its log version (RMSE log ), as well as precision-under-threshold metrics measuring the percentage of depth predictions D close enough to the ground-truth depth D, in the sense of the value δ := max( D D , D D ) being under a user-defined threshold. Following [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF], we consider three thresholds: δ < 1.25, δ < 1.25 2 and δ < 1.25 3 .

Notations, ablations and external baselines

Notations. To refer to the network architecture, independently of the rest of the learning framework, we use Monodepth2, Monodepth2-L, NLSPN, ACMNet and S2D. When we refer to whole models, i.e., architectures trained under the LiDARTouch framework, we append the 'LiDARTouch' prefix. For example, we note 'LiDARTouch-ACMNet' when we adapt the ACMNet architecture into the LiDARTouch framework.

For clarity, the inputs and the supervision schemes that are employed by the models are recalled in the tables of the experiments section. The input of each depth prediction model includes an image (noted 'I') and, optionally, a sparse 4-beam LiDAR point cloud ('L 4 ').We considered the following supervisions strategies: self-supervised photometric reconstruction ('P') associated to loss eq. ( 3.2), supervised LiDAR ground-truth regression with L 1 loss ('L gt '), or LiDAR self-supervision ('L 4 ') with one of the three options in Eqs. (3.3), (3.4), or (3.5).

Ablation: Pose estimation with a pose network. In section 3.3.3, we presented the PnP algorithm, which estimates metric pose changes from source to target views. To highlight the gains enabled by the use of the extra LiDAR information for computing the pose, we experiment by training a pose network instead, a widely used component of monocular depth estimation models [Casser et al., 2019a;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. For each target-source image pair, the pose network outputs the 6D rigid transformation between views. It is differentiable and trained jointly with the depth network. When only trained with the photometric error (eq. (3.2)), the 6D transformation is estimated up to a scale factor due to the monocular ambiguity. This results in a relative depth estimation requiring to be rescaled by the LiDAR depth ground-truth median value (not available in our case).

A solution is to use data from the IMU/GNSS to supervise the pose estimation scale. In the context of depth estimation, such an approach has been explored by [Guizilini et al., 2020a]. Formally, we first obtain the approximate change in pose between the source and target views (P t s ) from integrated inertial measurements. Then, we extract its translation component r and make the predicted pose translation component r regress its magnitude:

L imu = ∥r∥ 2 -∥r∥ 2 .
(3.6)

As for a given pose there is a unique depth minimizing eq. ( 3.2), constraining the pose's magnitude to a metric scale forces the depth estimation to be metric as well.

Baselines: Monocular methods. We compare against state-of-the-art monocular selfsupervised approaches such as SfMLearner [START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF], Vid2Depth [START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF], GeoNet [START_REF] Yin | GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[END_REF], DDVO [START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF], Monodepth2 [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF], PackNet-SfM [Guizilini et al., 2020a] and MonoViT [START_REF] Zhao | Monovit: Self-supervised monocular depth estimation with a vision transformer[END_REF]. Note that these methods can only produce relative depth maps, as they use an unsupervised pose network, so they have to be rescaled using the ground-truth LiDAR. Comparisons with these methods is thus unfair, in their favor. Additionally, we compare with methods that directly produce metric depth by leveraging additional supervision. This includes (1) DORN [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF], a camera-only method fully-supervised by a dense LiDAR signal, (2) [START_REF] Kuznietsov | Semi-supervised deep learning for monocular depth map prediction[END_REF], a semisupervised method using stereo reconstruction and dense LiDAR supervision, and ( 3) PackNet-SfM [Guizilini et al., 2020a] model supervised with IMU prior.

Baselines: Depth completion methods.

We also compare against supervised depth completion methods, namely ACMNet [START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF], NLSPN [START_REF] Park | Non-local spatial propagation network for depth completion[END_REF] and S2D [START_REF] Ma | Self-supervised sparse-to-dense: Selfsupervised depth completion from LiDAR and monocular camera[END_REF]. However, their original versions are not trained and evaluated on the same splits as monocular methods. We re-train and evaluate them on the Eigen split, in their fully-supervised setting but with only a 4-beam LiDAR input. Additionally, we also train and evaluate these depth completion methods when the depth ground truth is simply replaced by the 4-beam LiDAR input for supervision signal. We refer to this setting as 'Naïve self-sup.'.

Influence of a touch of LiDAR

In this section, we validate setups where the depth network converges to a metric scale. In particular, in section 3.5.1, we disentangle the contributions brought by LiDAR with an ablation study on the three levels of integration presented in section 3.3: as a self-supervision signal, as a depth network's input, and as additional information for pose estimation. We also investigate various combinations of LiDAR self-supervision schemes and depth networks in section 3.5.2.

Ablation of LiDAR

We begin with an ablation study to assess the contribution brought by sparse LiDAR at three different levels: supervision, input and pose. We define our LiDARTouch framework as using a PnP for pose estimation, LiDAR self-supervision (L 4 ) with the masked loss variant, and a bi-modal depth network (i.e., taking RGB and LiDAR as input). Models that belong to this framework are highlighted as light blue cells in table 3.2. For the sake of clarity, in this section we focus on the leftmost three columns for direct comparison with LiDARTouch. Other learning setups are discussed in detail in appendix A.2.

LiDAR as an input. First, we study the contribution brought by LiDAR when it is used as an input to the depth network in addition to the image signal. Results in the first column of table 3.2 show that the Monodepth2 architecture, which does not use LiDAR as input, is consistently outperformed by all the other bi-modal architectures leveraging LiDAR input. TABLE 3.2: Pose estimation ablation. We report precision (%) under threshold (δ < 1.25) on the KITTI test split; higher is better. As we are interested in metric depth estimations, contrary to common practice [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a], estimations are not rescaled with LiDAR GT. Light blue cells indicate configurations corresponding to our LiDARTouch framework. Some models are more difficult to train and indicated in light grey cells. In particular, ' * ' implies that a rescaling of the pose was used for a stable training, and ' †' indicates that the LiDAR signal had to be dilated to avoid overfitting to the LiDAR input (more details in A.3). When using a pose network with photometric supervision only (dark gray cells), the estimation can only be relative and the scores are all below 1%. More details are provided in subsection 3. These architectures achieve a relative improvement of 11-13% compared to Monodepth2. This validates the positive influence of integrating few-beam LiDAR as an input.

Self-supervision with the sparse LiDAR. Next, we study the impact of using a 4-beam Li-DAR as a self-supervisory signal by removing it from the LiDARTouch framework, which leaves only the photometric loss ('P'). This corresponds to the second column in table 3.2. Overall, the results support our claim that the use of LiDAR self-supervision improves or is similar in performance with respect to the photometric-only supervision schemes. Although ACMNet, NLSPN and S2D architectures show slightly better performance when trained with PnP and the photometric-only loss, i.e., without any LiDAR self-supervision, they are severely affected by the infinite-depth issue (see section 3.7).

Moreover, when using the photometric loss alone ('P' in the table), Monodepth2 and Monodepth2-L are hard to train. Indeed, while PnP pose is metric by construction, the depth network is initialized randomly and has to converge to a metric scale with the photometric reconstruction as the sole learning signal. Without any precaution, we observe large numerical differences in scale at initialization between the pose and depth, which provoke unstable training for the depth network. To address this instability, we divide the translation component of the PnP pose by a factor α during training and multiply the depth prediction consequently at inference (details in appendix A.5). This procedure is inspired by the baseline (distance between the two cameras) scaling introduced in Monodepth2 for the stereo setting [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]. We indicate models that need to be trained using this strategy with ' * ' in table 3.2. On the other hand, under the LiDARTouch framework, all depth networks train well without requiring training tricks.

Pose estimation with a sparse LiDAR. We now show that a precise computation of the change of pose is critical to estimate depth maps that are correctly scaled, and that a touch of LiDAR is beneficial for this purpose. To demonstrate this, we experiment by replacing PnP in our LiDARTouch setup with a pose network that does not use any LiDAR information, as detailed in section 3.4.2. This ablation of LiDARTouch corresponds to the third column, 'P+L 4 ' under 'w/ pose network', in table 3.2. The main difference between these two setups is that PnP methods produce metric poses by construction, which left only metric depths as solutions to minimize the photometric loss. In opposition, the use of a pose network requires a joint alignment and convergence TABLE 3.3: Variants comparison of the LiDAR self-supervision. RMSE metric (lower is better) on the Eigen test split of KITTI. Models are trained with photometric self-supervision (P) in conjunction with one of the three considered variants of minimal-LiDAR self-supervision (L 4 ). All models are trained with PnP for pose estimation. We find that the multi-scale prediction and supervision during training of Monodepth2 and Monodepth2-L are key for the models not to overfit the sparse 4-beam LiDAR data. Indeed, supervision at the lowest scale (1:8) increases the number of pixels getting supervision from LiDAR as pixels with associated LiDAR signal are expanded due to the difference in scale.

Self-supervision

Building on this observation, we propose a procedure to simulate this behavior in order to avoid LiDAR overfitting for mono-scale networks without changing their architectures. To simulate a LiDAR self-supervision at a lower scale, we apply a dilation morphological operation on the 4-beam LiDAR at the supervision level. This artificially increases the number of pixels receiving LiDAR supervision, albeit in a noisy manner, and enables the mono-scale depth networks ACMNet, NLSPN and S2D to produce globally coherent metric depth estimations. We report results of models trained with this procedure (indicated by ' †') in table 3.2 and provide technical details as well as qualitative examples in appendix A.3.

On the other hand, training under our LiDARTouch framework eliminates the need for such tricks. Indeed, results demonstrate that our LiDARTouch framework, using LiDAR as self-supervision, in input and in pose computation yields competitive performances for all the five architectures, a more stable training compared to any other configuration, and alleviates the infinite-depth problem as we will show in section 3.7.

LiDAR self-supervision variants

We compare in table 3.3 the variants for the LiDAR loss defined in section 3.3.2, namely the naïve compound loss eq. ( 3.3), the masked one eq. (3.4), which prevents interferences with the photometric error, and the hinted loss eq. (3.5), which handles the noise of the LiDAR signal. These experiments are conducted for the four different depth networks considered in section 3.3.1. Overall, averaged over all architectures, the masked version of the LiDAR loss achieves the best results, demonstrating the need to reduce interferences between the LiDAR and photometric supervisions. On the other hand, we observe that the hinted loss yields the worst results. We expected the naïve loss to have the worst performance as it does not consider the noise in LiDAR, but it appears that the control the hinted loss imposes is too strong and discards too many of the already scarce LiDAR measurements. Hence, it confirms that the masked LiDAR self-supervision is the most effective. [START_REF] Eigen | Depth map prediction from a single image using a multi-scale deep network[END_REF] with improved ground truth [START_REF] Uhrig | Sparsity invariant CNNs[END_REF]. A few self-supervised methods produce relative-depth maps and their prediction must be rescaled using ground-truth information; this is identified by 'gt rescaled' in the table. Some of the methods also benefit from an extra pre-training, on ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] or Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF], denoted with • or ⋆ superscripts, respectively. The model Monodepth2 in italic indicates our re-implementation of [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF] without pre-training and post-processing. Input includes the image only ('I'), or combined with the few-beam LiDAR point cloud ('L 4 '). Supervision includes photometric loss ('P'), IMU prior ('imu'), stereo reconstruction ('ste') and LiDAR supervision with either dense ground truth ('L gt ') or sparse 4-beam LiDAR ('L 4 '). A hyphen indicate that the score is not communicated by the authors of the method.

Method
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Comparison against related works

In table 3.4, we report evaluations of the four architectures presented in section 3.3.1, trained within our LiDARTouch framework against camera-only baselines.

Self-supervised camera-only methods. First, we show that training under our framework outperforms self-supervised monocular depth estimation methods at time of submission [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Mahjourian | Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints[END_REF][START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Yin | GeoNet: Unsupervised learning of dense depth, optical flow and camera pose[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]. We note that contrary to other methods, ours uses few-beam LiDAR as input. Furthermore, self-supervised monocular depth estimation approaches only estimate relative depth and thus are rescaled with ground truth before evaluation. With our approach, this unrealistic and impractical rescaling step is no longer needed.

Supervised camera-only methods. We also obtain better results than monocular depth estimation models trained with ground truth and optional stereo [START_REF] Fu | Deep ordinal regression network for monocular depth estimation[END_REF][START_REF] Kuznietsov | Semi-supervised deep learning for monocular depth map prediction[END_REF], while not requiring either of those. While the latter does not use few-beam LiDAR as input, not requiring ground truth at train time makes our method trainable at scale on any domain.

Overall, we showed that by integrating few-beam LiDAR in the pipeline, we substantially increase performances on all metrics over other methods not using few-beam LiDAR.

We compare our LiDARTouch framework against two supervision schemes from the depth completion literature: full-supervision with ground truth (L gt ) and self-supervision (L 4 -naïve). These results are reported for the three architectures in table 3.5.

Supervised depth completion methods. Unsurprisingly, supervising the training of any of the architectures with the privileged ground-truth depth yields better results than our LiDARTouch framework. However, LiDARTouch remains very competitive, e.g., 2.504 vs. In the depth-completion setting, results are highly degraded when ground-truth depth information is no longer available for supervision (blue plots, 'GT sup.' vs. 'Naive self-sup.'). By combining ideas from self-supervised monocular depth estimation along with a careful integration of the LiDAR signal, we show that our self-supervised LiDARTouch framework can reach performance very close to the one offered by fully-supervised depth completion, as illustrated by the black arrow. Note that the y-axis is log-scaled.

Self-supervised depth completion method. The results in table 3.5 show that the models trained with naïve 4-beam LiDAR self-supervision are unable to converge to decent results. Architectures cannot generalize from such a sparse LiDAR input as the supervisory signal is not sufficient. Moreover, in fig. 3.6, we remark that the naïve self-supervision scheme makes performance plummet when the LiDAR data becomes sparser. Furthermore, for the sake of completeness, we also experiment with SAN [START_REF] Guizilini | Sparse auxiliary networks for unified monocular depth prediction and completion[END_REF], a recent depth completion method with similar fusion scheme to the Monodepth2-L we propose in section 3.3.1. Overall the results of SAN in table 3.4 and table 3.5 fall within the expected range, i.e., better than camera-only methods.

Alleviating the infinite-depth problem

We now study the infinite-depth problem affecting traditional pipelines and how well does the LiDARTouch framework solve it. First, we introduce a new metric to assess the degree and the frequency to which a model dramatically overestimates the distance to cars ahead (section 3.7.1). This metric is employed for a quantitative evaluation of the problem in section 3.7.2. Besides, we also provide a qualitative analysis of the problem and the significant improvements offered by LiDARTouch (section 3.7.3).

Catastrophic Distance Rate (CDR) metric

Monocular image-only depth estimation methods suffer from the infinite-depth problem: vehicles with a motion close to that of the ego vehicle (in other words, with almost no relative motion) can be estimated as being infinitely far away. In the context of autonomous vehicles, such anomalies can lead to potentially dangerous outcomes. This critical weakness of image-only methods is not well reflected in the commonly-used evaluation metrics, as errors associated with these local flaws are overwhelmed by global scores aggregated at a dataset level. This problem was qualitatively evaluated in some recent work [Casser et al., 2019a,b;[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF] but no precise measurement of its severity has yet been proposed. To address this issue, we define a novel quantitative metric, called the catastrophic distance rate (CDR), to assess the degree to which a model tends to make such disastrous predictions.

CDR measures the percentage of cars whose estimated distance to the ego-car is catastrophically poor in the test set. To this end, we use instance segmentation masks for all the vehicles of every image of the test set. With these vehicle instances, CDR is computed in a two-step process:

1. Instance mask filtering to keep the ones potentially concerned by the infinite-depth problem;

2. Computation of the depth error measured on these instance masks.

Instance mask filtering.

For the first step of our CDR metric, we filter out irrelevant masks to only focus on vehicles typically concerned by the infinite-depth problem, i.e., first vehicle in front, unoccluded and not too far. As we use a centered frontal camera, we begin by discarding vehicles that are not in the center of the scene. We also remove cars whose instance masks are too small, considered too far from the ego vehicle. Then, to assess whether a car is occluded or not, we assume that a heavily occluded vehicle generally has a non-convex apparent shape (e.g., incised by the front vehicle) and that, on the contrary, the mask of a non-occluded car is approximately convex. The overall process is illustrated in fig. 3.7.

CDR computation. CDR estimates the percentage of instances for which the relative depth error is above a manually-defined "catastrophic" threshold τ. Within each segmentation mask M k , indexed by k ∈ K, we define the set V k of pixels that possess a groundtruth LiDAR depth measurement:

V k = {p | M k (p) > 0 ∧ D k (p) > 0}.
Note that, as with H t , D(p) = 0 if and only if there is no LiDAR point projecting at p. In the KITTI test set, the average size of V k is 543. The error R k made by the model on the instance mask M k is measured by the average signed depth error over V k :

R k = 1 |V k | ∑ p∈V k Dk (p) -D k (p) D k (p) , (3.7) 
where |V k | is the cardinality of V k . Please note that no absolute value is involved in the design of R k as we focus only on the infinite-depth problem, i.e., D(p) > D(p), when a car is predicted catastrophically further away than its true position. By thresholding the error R k and aggregating it over instances, we define the "Catastrophic Distance Rate" as:

CDR(τ) = 1 |K| ∑ k∈K R k > τ , (3.8) 
with • the Iverson bracket, |K| the number of instance masks and τ a user-defined threshold. For example, CDR(τ = 0.5) = 20% indicates that the distance to front vehicles is overestimated by more than 50% of the true distance in 20% of the cases.

Quantitative analysis

To verify our intuition that LiDAR self-supervision is a suitable means to mitigate the infinite-depth problem, we study three models:

• A model that does not use the LiDAR signal at all, noted 'Monodepth w/ IMU supervision', which heavily suffers from the infinite-depth issue;

• A model with LiDAR as input and for the PnP-estimated pose, but supervised solely with the photometric loss, noted 'ACMNet P PnP ';

• A model trained within the LiDARTouch framework, using LiDAR for the depth network, pose estimation and self-supervision, noted 'LiDARTouch-ACMNet'.

We plot the distribution of the CDR metric against the chosen threshold τ in fig. 3.8. We observe that the more LiDAR information is integrated, the fewer catastrophic estimations occur.

Indeed, ACMNet P PnP , which uses LiDAR both in input and pose, improves over Mon-odepth2 but is still affected by the infinite-depth issue. We also see a clear improvement of our LiDARTouch-ACMNet over the two other models. For example, for τ = 0.5, i.e., the distance of a car is overestimated by at least half, Monodepth2 has a metric score of 5.02% while ACMNet P PnP has 0.6% and LiDARTouch-ACMNet 0.0%. Such results show that Monodepth2 predictions cannot be trusted for downstream tasks such as car detection or free space estimation that are both required by functions like automatic emergency braking, keep-lane assist or adaptive cruise control. While ACMNet P PnP reduces the likelihood of catastrophic estimation by 8 folds for τ = 0.5, 0.6% is still too high to implement in a critical system intended for wide commercial use.

Overall, a network trained with our pipeline is significantly less impacted by the infinitedepth problem and we validate our hypothesis that, during training, the LiDAR selfsupervision disambiguates cars estimated too far from their real distance. Hence, our models can accurately and safely handle moving objects with no relative motion, typical of cars in fluid traffic.

Qualitative analysis

The three examples in fig. 3.9 illustrate the improvement of our framework over the classic self-supervised camera-only pipeline. On the leftmost column, we observe a typical 'hole' in the depth map where Monodepth2 with IMU supervision estimates a vehicle three times more distant than in reality. in contrast to our model without such holes.

In addition to fig. 3.9, we provide some qualitative analyses where we show the depth maps obtained for different frameworks in fig. 3.10. First, we observe better overall depth maps with LiDARTouch-ACMNet than with Monodepth2. For example, we better estimate the two moving cyclists in fig. 3.10a as well as the fine tree trunks in fig. 3.10c.

As expected, the fully-supervised method ACMNet (GT-sup.) delivers the best-qualitative depth maps, as it leverages privileged ground-truth LiDAR depth during training. However, we observe that self-supervised approaches (Monodepth2 and LiDARTouch-ACMNet) better estimate areas near the top of the scene. This can be explained as LiDAR points are In all training pipelines, following common practice [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF][START_REF] Godard | Unsupervised monocular depth estimation with left-right consistency[END_REF]Guizilini et al., 2020a], we add an edge-aware smoothing regularization loss to encourage the predicted depth map Dt to be locally smooth while taking into account sharp boundaries:

L smooth = |∂ x Dt |e -|∂ x I t | + |∂ y Dt |e -|∂ y I t | , (3.9) 
with the index p over pixels omitted for clarity.

Monodepth2 extension. Our Monodepth2-L architecture is similar to Monodepth2 at the difference that we use a second ResNet-18 encoder specifically for the LiDAR modality. We only remove the first batch-normalization layer of the LiDAR ResNet, as using it would imply the computation of ineffective statistics given that the LiDAR input mostly contains zeros (encoding measurement absence).

Pose estimation. To solve the PnP problem, we use an open-source implementation of PnP methods with RANSAC from the OpenCV library [START_REF] Bradski | The opencv library[END_REF]. We use 100 iterations and a reprojection error threshold of 2. Even after RANSAC, the remaining outliers are numerous enough to hinder training. Therefore, we remove the relative pose estimates for which the translation magnitude ∥r∥ is too large. In effect, we first compute the median value of translation magnitude for each relative pose of the train set. Then, we remove all examples that are too far-off the median. When using a pose network, we follow [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF] and use a ResNet-18 taking two images in input and outputting the parameters of Pt s , the rigid transformation between the two views.

Evaluation after rescaling. Baselines and models from prior works that only provide relative-depth maps have their predictions rescaled so that they have the same mean compared to the ground truth against which they are evaluated. This is mentioned as 'gt rescaled' in table 3.4. For methods that directly produce metric depth maps, like ours, we do not apply this post-processing procedure and depth maps are kept at the originallypredicted scale.

CDR Metric. To compute results with our CDR metric, we first extract instance masks with EfficientPS [START_REF] Mohan | EfficientPS: Efficient panoptic segmentation[END_REF]. Among these masks, we want to focus only on those of close-by, non-occluded vehicles, i.e., first vehicles in front of the ego-car. These vehicles are particularly prone to infinite-depth mistakes, with safety-critical consequences when it happens. To do this selection, vehicles that are not in front of the ego-car are discarded, as measured by not belonging to the central band of the scene (size is 20% of the image width) captured by the front camera. Vehicle having instance masks calculated with fewer than 20 pixels are considered too far from the ego vehicle. Then, to assess whether a car is occluded or not, we assume that a heavily occluded vehicle generally has a nonconvex shape (e.g., incised by the front vehicle) and that, on the contrary, the mask of a non-occluded car is approximately convex. Accordingly, we first smooth segmentation masks and fill noisy areas where the intensity changes rapidly (e.g., edges, small holes from the wheels) by applying a morphological dilation operator. We use a square kernel of size 10 and 4 iterations for this operation. The masks now being smoothed, we then approach their shape by a polygon from which we can tell if they are convex or not. To approximate each pixel blob by a polygon, we use the Douglas-Peucker algorithm [START_REF] Douglas | Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[END_REF]. The algorithm ensures the fit of the approximated polygon with an accuracy parameter dependent of the pixel blob size. After this first filtering step, 657 valid masks remain out of the 4460 vehicle masks of the KITTI test split.

Extracting 4 beams from 64-beam point clouds. In the KITTI dataset, the LiDAR data in a frame is provided as a unique point cloud, that is, a set of (x, y, z) coordinates, without the beam indexes, i.e., which of the 64 lasers has been used for each measurement. We needed to recover this information for our experiments. Fortunately, in KITTI the points are recorded in an orderly manner. The points of one beam follow the points of another in the direction of laser rotation (counter-clockwise). This means that, inside the data stream of a same frame, each rotation completion indicates a change of beam. More precisely, the coordinate basis of the LiDAR is oriented with x: positive forward and y: positive to the left of the car. Then we can compute the horizontal angle in radian of each point with:

ϕ = arctan2(y, x). (3.10)
We use the 2-argument arctangent instead of classic arctangent, arctan(y/x), as the latter cannot distinguish between diametrically opposite directions. Then, by computing the horizontal angle (azimuth) of each point, we can separate data for each beam by detecting when ϕ changes from 360 • to 0 • in the stream of points. This way, we have access to the ring index for each LiDAR point and can, thus, freely sparsify the LiDAR data.

Conclusion

In this chapter, we proposed LiDARTouch, a novel self-supervised framework for depth estimation with a monocular camera and a few-beam LiDAR.

Summary of contributions

Alleviate monocular ambiguities. While extremely sparse, we show that the LiDAR signal can be leveraged to alleviate the ambiguity of scale and the infinite-depth issues that monocular depth estimation methods face.

Performant, cheap, self-supervised. The LiDARTouch framework can reach competitive performances with respect to fully-supervised depth completion methods while being significantly cheaper and not requiring dense annotation. Thus, our method can be trained for accurate and metric depth estimation on any domain with no modification from the raw sensors signal only, taking full advantage of the data acquired by a vehicle fleet.

Flexibility of the framework. We have validated the influence of the LiDAR integration at three complementary levels of the self-supervised learning scheme, across five different architectures, highlighting the robustness and the adaptability of our learning system to diverse deep architectures.

New metric. Along with the new CDR metric to measure the infinite-depth problem, and the associated source code, we hope to enable further research on the task of monocular depth prediction with minimal LiDAR input, typical of real-world assisted/automated driving systems.

Perspectives

Extension to full surround. This work mostly focus on a "frontal camera" setup, i.e., only one camera facing forward, while L3+ automatized vehicles are typically equipped with multiple cameras organized such that a full surround observation of the surrounding is possible. The recent work of Guizilini et al. [2022a] takes advantage of such sensor setups by projecting views between cameras in addition to projecting views across time, leading to a more precise depth estimation that is also coherent across cameras. Such approach could directly be adapted in the LiDARTouch framework to handle full surround camera setups.

Better photometric loss. Another aspect that can be improved is the photometric reconstruction objective. The SSIM+L1 loss used in this work assumes uniform lightning conditions and Lambertian surfaces (i.e., a surface that scatters incident illumination equally in all directions), making reflective and transparent surfaces difficult to estimate. Likewise, textureless regions and surfaces with repeated patterns can be difficult to learn on.

To address these problems, [START_REF] Shu | Feature-metric loss for self-supervised learning of depth and egomotion[END_REF] propose to define the reconstruction loss in a learned feature space instead of the RGB space (i.e., a feature map is projected between views instead of RGB values). This feature space is learned to favour discriminative features, making the reconstruction loss easier to optimize and improving the depth quality on fine details and textureless regions.

Improving robustness to visual impediments. Alternatively, [START_REF] Kaushik | Adaadepth: Adapting data augmentation and attention for self-supervised monocular depth estimation[END_REF] propose a consistency loss on the depth under strong augmentation (e.g., brightness, jitter, gamma, saturation, Gaussian noise). The inductive bias introduced that the 3D geometry of the scene is independent of visual variations like lightning, colours, and visual noise. This concept could be extended to visual impediments typical of conditions that can affect the perception capabilities of automatized vehicles, i.e., synthesized glares or droplets of water.

Chapter 4

Latents and Rays for an Implicit Scene Representation

As presented in section 2.3.3, recent works in autonomous driving have widely adopted the Bird's-Eye-View (BEV) semantic map as an intermediate representation of the world. Nonetheless, online prediction of these BEV maps involves non-trivial operations such as multi-camera data extraction as well as fusion and projection into a common top-view grid. This is usually done with error-prone geometric operations (e.g., homography or backprojection from monocular depth estimation) or expensive direct dense mapping between image pixels and pixels in BEV (e.g., with MLP or attention).

In this chapter, we present an efficient and general encoder-decoder, transformer-based model for vehicle semantic segmentation from multiple cameras. This method, called 'LaRa' has been published in 2022, in the scientific conference CoRL [START_REF] Bartoccioni | Lara: Latents and rays for multi-camera bird's-eye-view semantic segmentation[END_REF]. Our approach uses a system of cross-attention to aggregate information over multiple sensors into a compact, yet rich, collection of latent representations. These latent representations, after being processed by a series of self-attention blocks, are then reprojected with a second cross-attention in the BEV space. We demonstrate that our model outperforms the best previous works, at the time of submission, on nuScenes. The code and trained models are available at https://github.com/valeoai/LaRa.

Introduction

To plan and drive safely, autonomous cars need accurate 360-degree perception and understanding of their surroundings from multiple and diverse sensors, e.g., cameras, RADARs, and LiDARs. Most of the established approaches tardily aggregate independent predictions from each sensor [START_REF] Liu | Single-stage monocular 3D object detection via keypoint estimation[END_REF][START_REF] Roddick | Orthographic feature transform for monocular 3D object detection[END_REF][START_REF] Wang | FCOS3D: Fully convolutional one-stage monocular 3D object detection[END_REF]. Such a late fusion strategy has limitations for reasoning globally at the scene level and does not take advantage of the available prior geometric knowledge that links sensors. Alternatively, the bird's-eye-view's (BEV) representational space, a.k.a. top-view occupancy grid, recently gained considerable interest within the community. BEV appears as a suitable and natural space to fuse multiple views [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] or sensor modalities [START_REF] Bai | Transfusion: Robust LiDAR-camera fusion for 3D object detection with transformers[END_REF][START_REF] Hendy | FISHING net: Future inference of semantic heatmaps in grids[END_REF] and to capture semantic, geometric, and dynamic information. Besides, it is a widely adopted choice for downstream driving tasks including motion forecasting [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF][START_REF] Chang | Argoverse: 3D tracking and forecasting with rich maps[END_REF][START_REF] Ettinger | Large scale interactive motion forecasting for autonomous driving: The waymo open motion dataset[END_REF][START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF] and planning [START_REF] Caesar | NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles[END_REF][START_REF] Casas | MP3: A unified model to map, perceive, predict and plan[END_REF][START_REF] Chitta | NEAT: Neural attention fields for end-to-end autonomous driving[END_REF][START_REF] Zeng | End-to-end interpretable neural motion planner[END_REF].

In this thesis, we focus on BEV perception from multiple cameras. The online estimation of BEV representations is usually done by: (i) imposing strong geometric priors such as a flat world [START_REF] Reiher | A sim2real deep learning approach for the transformation of images from multiple vehicle-mounted cameras to a semantically segmented image in bird's eye view[END_REF] or correspondence between pixel columns and BEV rays [START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF], (ii) predicting depth probability distribution over pixels to lift from 2D to 3D and project back in BEV [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF], a system subject to compounding errors, or, (iii) learning a costly dense mapping between multi-camera features and the BEV grid pixels [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF].

Here, we depart from these dominant strategies and introduce 'LaRa', a novel transformerbased model for vehicle segmentation from multiple cameras. In contrast to prior works, we propose to use a latent 'internal representation' instantiated as a collection of vectors. Fusing multiple views into a compact latent space comes with several benefits. First, it provides an explicit control on the memory and computation footprint of the model, instead of the quadratic scaling of the full mapping between multi-camera features and the BEV grid pixels [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. By design, the number of latents that we use is much smaller compared to the spatial resolution of the BEV grid, enabling a highly-efficient aggregation of information at the latent-level while exploiting spatial cues within and across camera views. Moreover, we also hypothesize that discarding error-prone modules in the pipeline such as depth estimation [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] can boost model accuracy and robustness. Finally, we can directly predict at the full-scale BEV resolution bypassing noisy upsampling operations. This is infeasible, within a reasonable computational budget, for prior works restricted to coarser BEV grids as they map densely between all the image and BEV grid pixels [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. Besides, as an orthogonal contribution, we augment input features with ray embeddings that encode geometric relationships within and across images. We show that such spatial embeddings, encoding prior geometric knowledge, help guide the cross-attention between input features and the latent vectors.

Our approach is extensively validated against prior works on the nuScenes [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF] dataset. We significantly improve the performance on the vehicle segmentation task, outperforming recent high-performing models [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. Moreover, we show interesting properties of our cross-attention, which naturally stitches multiple cameras together. We also perform several ablation and sensitivity studies of our architecture with respect to hyper-parameters changes. Overall, LaRa is a novel model that learns the mapping from camera views to bird's-eye-view for the task of vehicle semantic segmentation. In summary, our contributions are as follows:

• We encode multiple views into a compact latent space that enables precise control on the model's memory and computation footprint, decoupled from the input size and output resolution.

• We augment semantic features with spatial embeddings derived from cameras' calibration parameters and show that it strongly helps the model learn to stitch multiple views together.

• Our architectural contributions are validated on nuScenes where we reach new SOTA results.

Related work

BEV semantic segmentation

Models for BEV segmentation are typically structured in two parts. They first extract features of each camera and then project them into a common top-view grid, called the bird'seye-view. There are different strategies for this projection, which can be grouped into the following categories.

IPM-based.

Inverse perspective mapping (IPM) defines the correspondence between the camera and the ground planes as a homography matrix. IPM makes strong assumptions that the world is planar and the cameras' horizontal axes are parallel to the ground. Early works [START_REF] Bertozzi | Experience of the ARGO autonomous vehicle[END_REF][START_REF] Sengupta | Automatic dense visual semantic mapping from street-level imagery[END_REF] apply it directly to raw camera pixels or features. This approach suffers from blurring and stretching artifacts for distant objects (as they have fewer pixels in the camera view) and objects with a height (as they violate the planar world assumption). To alleviate these shortcomings, a generative adversarial network [START_REF] Zhu | Generative adversarial frontal view to bird view synthesis[END_REF] or training a BEV decoder with synthetic ground-truth [START_REF] Reiher | A sim2real deep learning approach for the transformation of images from multiple vehicle-mounted cameras to a semantically segmented image in bird's eye view[END_REF] has been used to refine the IPM projection.

'Lift-splat'-based: guiding with depth. Using depth information to lift features from 2D to 3D and then 'splatting' them in BEV space recently gained popularity for its effectiveness and sound geometric definition. Among the formulations of depth estimation for BEV projection [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Ng | BEV-Seg: Bird's eye view semantic segmentation using geometry and semantic point cloud[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Roddick | Orthographic feature transform for monocular 3D object detection[END_REF][START_REF] Srikanth | INFER: Intermediate representations for future prediction[END_REF], estimating depth probabilities along camera rays appears to perform the best [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF]. However, depth being the most influential factor [START_REF] Simonelli | Are we missing confidence in pseudo-LiDAR methods for monocular 3D object detection?[END_REF], such a strategy is subject to compounding errors. Inaccuracies in the depth prediction will propagate into the BEV features, which themselves can be degraded.

Implicitly learned with dense networks. An alternative to explicit geometric projection is to learn the mapping from data. For instance, VPN [START_REF] Pan | Cross-view semantic segmentation for sensing surroundings[END_REF] uses an MLP to make a dense correspondence between pixels in the camera views and BEV. This kind of method relies on expensive operations and does not use readily available spatial information given by the calibrated camera rig capturing the images. The BEV projection must be entirely learned, and as it is determined by training data, it can hardly apply to new settings with slightly different camera calibrations. Alternatively, PON [START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF] builds on the observation that a column in the camera image contains all the information of the corresponding ray in BEV: it first encodes each column into a feature vector, which is then decoded into a ray along the depth dimension. However, this relies on two implicit assumptions: (i) the camera follows a pinhole projective model, and (ii) it is horizontally aligned with the ground plane.

Implicitly learned with transformer architectures. The attention system at the core of transformer architectures [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] allows learning of long-range dependencies and correspondences explicitly. These architectures have recently been employed for the BEV semantic segmentation task, yielding among the best-performing methods [START_REF] Gong | GitNet: Geometric prior-based transformation for birds-eye-view segmentation[END_REF][START_REF] Li | BEVFormer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. Nonetheless, a direct cross-attention [START_REF] Vaswani | Attention is all you need[END_REF] between camera images and the BEV grid is computationally expensive. BEVFormer [START_REF] Li | BEVFormer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers[END_REF] alleviates this issue by only cross-attending BEV pixels with cameras in which the BEV pixel is visible and by replacing the heavier multi-head attention [START_REF] Vaswani | Attention is all you need[END_REF] with deformable attention [START_REF] Zhu | Deformable DETR: Deformable transformers for end-to-end object detection[END_REF]. CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF] keeps the vanilla multi-head cross-attention [START_REF] Vaswani | Attention is all you need[END_REF] but applies it between lowresolution camera feature maps and a small BEV grid which is then upsampled to reach the final resolution. GitNet [START_REF] Gong | GitNet: Geometric prior-based transformation for birds-eye-view segmentation[END_REF] restrains the cross-attentions to column-ray pairs making the same original implicit assumptions as PON [START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF]. Our proposed model LaRa belongs to this category as it learns the BEV representation with a transformer architecture. On the other hand, our attention scheme does not impose strong geometric assumptions while still being efficient enough to attend to a full-resolution BEV grid.

Incorporating geometric priors in Transformers

Since transformer architectures are permutation-invariant, spatial relationships between image regions are lost if no precautions are taken. A standard practice to retain this spatial knowledge is to add a positional embedding to the input of attention layers [START_REF] Vaswani | Attention is all you need[END_REF]. A popular approach is to encode the position of pixels with sine and cosine functions of varying frequencies [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] applied over the horizontal and vertical axes. An alternative solution to induce spatial awareness in the model is to concatenate x, y positions to feature maps fed to convolutional layers [START_REF] Liu | An intriguing failing of convolutional neural networks and the coordconv solution[END_REF]. Related to our ray embedding proposition, recent works [START_REF] Yifan | Input-level inductive biases for 3D reconstruction[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF] embed the parameters of the calibrated cameras in the image features, improving training efficiency and segmentation performance. Similar to LaRa, IIB [START_REF] Yifan | Input-level inductive biases for 3D reconstruction[END_REF]] also encodes the camera center and ray direction in the input feature sequence, but it addresses the task of depth estimation on image pairs in an indoor environment. Furthermore, [START_REF] Yifan | Input-level inductive biases for 3D reconstruction[END_REF] embed the origin and direction of rays into Fourier features, which can become memory intensive depending on the number of frequency bands and also introduces additional hyper-parameters to tune. CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF] adds up a ray direction embedding to the input feature sequence, but, differently from ours, uses the camera center embedding in the BEV query. This requires a BEV query and 'cross-view attention' operation per camera, increasing the memory and computational footprint, thus limiting the maximum resolution of the BEV query. Given multiple cameras observing the scene, our goal is to estimate a binary occupancy grid [START_REF] Elfes | Occupancy grids: A stochastic spatial representation for active robot perception[END_REF] ŷ ∈ {0, 1} h bev ×w bev of size h bev × w bev ∈ N 2 for vehicles in the surroundings of the ego car. We propose 'LaRa' a transformer-based architecture to efficiently aggregate information gathered from multiple cameras into a compact latent representation before expanding back into the BEV space. Besides, as we believe that the geometric relationship between cameras should guide the fusion across each camera view, we propose to augment each pixel with the geometry of the ray that captured it. The LaRa architecture is illustrated in fig. 4.1.

LaRa: Our Latents and Rays Model

Input modelling with geometric priors

We consider C cameras described by (I k , K k , R k , t k ) C k=1 , with I k ∈ R H×W×3 the image produced by camera k, K k ∈ R 3×3 the intrinsics, R k ∈ R 3×3 and t k ∈ R 3 the extrinsic rotation and translation respectively. From these inputs, two complementary types of information are extracted: visual information from raw images and geometric cues from the camera calibration parameters. Visual information from raw images. A shared image-encoder E extracts feature maps for each image F k = E(I k ) ∈ R h×w×c . Following [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF], we instantiate E with a pretrained EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] backbone to produce the multi-camera features. These spatial feature maps in R C×h×w×c are then rearranged as a sequence of feature vectors, in R (C h w)×c . Leveraging geometric priors. To enrich camera features with geometric priors, commonly used sine and cosine spatial embeddings [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] are ambiguous in the presence of multiple cameras. A straightforward solution would be to use camera-dependant learnable embeddings in addition to the Fourier embeddings to disambiguate between cameras. However, in our setting, we argue that the geometric relationship between cameras, which is defined by the structure of the camera rig, is crucial to guide the fusion of the views. This motivates our choice to leverage the cameras' extrinsics and intrinsics to encode the position and orientation of each pixel in the vehicle ego-frame.

More precisely, we encode the camera calibration parameters by constructing the viewing ray for each pixel of the cameras. Given a pixel coordinate x ∈ R 2 within a camera image I k , the direction d k (x) ∈ R 3 of the ray that captured x is computed with:

d k (x) = R -1 k K -1 k x, (4.1) 
where x are the homogeneous coordinates of x, and d k (x) is expressed in ego-coordinates. The origin of the ray d k (x) is the camera center given by t k . Then, to fully describe the position and the orientation of the ray that captured pixel x, we use the embedding ray k (x) ∈ R d computed as follows:

ray k (x) = MLP ray (t k ⊕ d k (x)), (4.2)
where ⊕ is a concatenation operation and MLP ray a 2-layer MLP with GELU activations [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF]. Note that the intrinsics are scaled according to the difference in resolution between I k and F k . As shown in fig. 4.1, the final input vector sequence, in R (C h w)×(d+c) , is produced by concatenating each of the C h w feature vectors F k (x) ∈ R c with its geometric embedding ray k (x) ∈ R d .

Building latent representations and deep fusion

To control the computational and memory footprint of the image-to-BEV block, we leverage findings from general-purpose architectures [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF] and propose to use an intermediate fixed-sized latent space instead of learning the quadratic all-to-all correspondence between multi-camera features and BEV space [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. Formally, the visual representations F k from all cameras, along with their corresponding geometric embeddings ray k , are compressed by cross-attention [START_REF] Vaswani | Attention is all you need[END_REF] into a collection of N learnable latent vectors of dimension M ∈ N and processed by a series of L self-attention blocks [START_REF] Vaswani | Attention is all you need[END_REF] (see yellow elements in fig. 4.1). We stress that N ≪ C h w, which enables to fuse and process efficiently the visual information coming from all the cameras, regardless of the input feature resolution or the number of cameras. Thanks to latent-based querying, this formulation decouples the network's deep multi-view processing from the input and output resolution. Our architecture can thus take advantage of the full resolution of the BEV grid.

Generating BEV output from latents

The final step is to decode the binary segmentation prediction ŷ ∈ {0, 1} h bev ×w bev from the latent space. In practice, the latent vectors are cross-attended [START_REF] Vaswani | Attention is all you need[END_REF] with a BEV 'query' grid Q ∈ R h bev ×w bev ×d bev at the final prediction resolution, with d bev ∈ N a hyper-parameter (illustrated by the red blocks in fig. 4.1). Each element of the query grid is a feature vector encoding the spatial position in the bird's-eye-view which specifies what information the cross-attention would extract from the latent representations. This last cross-attention yields a feature map in BEV space, in dimension h bev × w bev × 256, that is further refined with a small convolutional encoder-decoder U-Net ('BEV CNN' in fig. 4.1) to finally predict the binary bird's-eye-view semantic map ŷ ∈ {0, 1} h bev ×w bev ×1 . Specifically, we consider a combination of two types of queries: normalized coordinates in the BEV space and radial distance. Normalized coordinates encode ego-centered normalized coordinates of the BEV plane. They are obtained with:

Q coords [i, j] = 2i h bev -1 -1, 2j w bev -1 -1 , ∀i, j ∈ {0, . . . , h bev -1} × {0, . . . , w bev -1}.
(4.3) Normalized radial distances are simply Euclidean distances of pixels w.r.t. the origin:

Q radial [i, j] = Q coords [i, j] 2 i + Q coords [i, j] 2 j . (4.4)
While the network could produce a similar embedding from Q coords using MLP bev , we find that introducing these radial embeddings along Q coords empirically improves results. Moreover, this query decoding choice compares favorably against more classical Fourier embeddings [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Yifan | Input-level inductive biases for 3D reconstruction[END_REF] and learned query embeddings [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Vaswani | Attention is all you need[END_REF], as shown in table 4.3.

Experiments

Evaluation details

Dataset. We conduct experiments on the nuScenes dataset [START_REF] Caesar | nuScenes: A multimodal dataset for autonomous driving[END_REF], which contains 34k annotated sets of frames captured by C=6 synchronized cameras covering the 360°field of view around the ego vehicle. The extrinsics and intrinsics calibration parameters are given for all cameras in every scene. Raw annotations come in the form of 3D bounding boxes that are simply rendered in the discretized top-down view of the scenes to form the ground-truth for our binary semantic segmentation task.

Precise settings for training and validation. With no established benchmarks to precisely compare model's performances, there are almost as many settings as there are previous works. Differences are found at three distinct levels:

• The resolution of the output grid where two main settings have been used: a grid of 100m×50m at a 25cm resolution [START_REF] Pan | Cross-view semantic segmentation for sensing surroundings[END_REF][START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF][START_REF] Saha | Enabling spatio-temporal aggregation in birds-eye-view vehicle estimation[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]] and a grid of 100m×100m at a 50cm resolution [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. These settings are respectively referred as 'Setting 1' (h bev × w bev = 400 × 200) and 'Setting 2' (h bev × w bev = 200 × 200) and they are clearly specified when we present our results.

• The considered classes. There are slight differences in the classes used to train and evaluate the model. For instance, some models are trained with a multi-class objective to simultaneously segment objects such as cars, pedestrian or cones [START_REF] Pan | Cross-view semantic segmentation for sensing surroundings[END_REF][START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF][START_REF] Saha | Enabling spatio-temporal aggregation in birds-eye-view vehicle estimation[END_REF]. Some others only train and evaluate in a binary semantic segmentation setting on a meta-class vehicles which includes cars, bicycles, trucks, etc. [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. Some works also use instance segmentation information to train their model where the centers of each distinct vehicle is known at train time [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF]. In our experiments, we place ourselves in the binary semantic segmentation setting of the meta-class vehicles. This choice is made to have fair and consistent comparisons with our baselines [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF], however, it should be noted that our model is not constrained to this setting.

• The levels of visibility of objects. Objects selected as ground truth, both for training and evaluating the model, differ in terms of their levels of visibility. Three options have been considered: objects that are in line-of-sight with the ego car's LiDAR [START_REF] Roddick | Predicting semantic map representations from images using pyramid occupancy networks[END_REF], or objects with a nuScenes visibility above a defined threshold, either 0% [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] or 40% [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. When amenable, we clearly indicate the level of visibility used in our experiments.

In all the settings we considered, models are evaluated with the Intersection-over-Union (IoU) metric.

Training and implementation details. We train our model by optimizing the Binary Cross Entropy with our predicted soft segmentation maps and the binary ground-truth. Images are processed at resolution 224 × 480. We use the AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] optimizer with a constant learning rate of 5e-4 and a weight decay of 1e-7. We train our model on 4 Tesla V100 16GB GPUs with a total batch size of 8 for 30 epochs. Training takes on average 11 hours. We use an EfficientNet-B4 [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] with an output stride of 8 as our CNN image encoder. For the BEV CNN we follow [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF]. Following common practice [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF], we employ an EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] as our CNN image encoder E. In particular, we use an EfficientNet-B4 [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF] with an output stride of 8. It extracts feature maps for each image F k = E(I k ) ∈ R h×w×c . In practice, h = 224/8 = 28, w = 480/8 = 60 and we define c = 128.

For the BEV CNN, we follow [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] and use an encoder-decoder architecture with a ResNet-18 [START_REF] He | Deep residual learning for image recognition[END_REF] as backbone. It produces features at three levels of resolutions (1:1, 1:2 and 1:8), which are progressively upsampled back to the input resolution with bilinear interpolation (first ×4 for the 1:8th scale then ×2 for the 1:2th). Skip connections are used between encoder and decoder stages of the same resolution.

Both MLP ray and MLP bev are 2-layer MLPs producing 128-dimensional features. Each consists of two linear transformations with a GELU [START_REF] Hendrycks | Gaussian error linear units (GELUs)[END_REF] 

activa- tion function: MLP(x) = W 2 GELU(W 1 x + b 1 ) + b 2 . (4.5)
Following [START_REF] Jaegle | Perceiver: General perception with iterative attention[END_REF], the latent vectors are randomly initialized using a truncated normal distribution with mean 0, standard deviation 0.02, and truncation bounds [-2, 2].

Details on attention modules. Following the original formulation and notations [START_REF] Vaswani | Attention is all you need[END_REF], the attention operation is defined as:

Attn(Q, K, V) = softmax( QK ⊤ √ d K )V (4.6)
with its multi-headed extension: 

MultiheadAttn(Q, K, V) = Concat(head 1 , . . . , head h )W O where head i = Attn(QW Q i , KW K i , VW V i ). ( 4 
Q i ∈ R d q ×d emb , W K i ∈ R d k ×d emb , W V i ∈ R d v ×d emb and W O i ∈ R h•d emb ×d v .
Our architecture integrates three attention modules [START_REF] Vaswani | Attention is all you need[END_REF]: (i) a crossattention between latent vectors and input features; (ii) a sequence of self-attention on the latent vectors; (iii) a cross-attention between BEV query and latent vectors. More precisely, and with a slight abuse of notation: Where LN is a layer normalization [START_REF] Ba | Layer normalization[END_REF]. In particular, the cross-attention between BEV query and latent vectors is not residual. Since the query is made of coordinates, imposing the network to predict segmentation as residual of coordinates does not make sense. The exact specification of other modules are available in our code.

Comparison with previous works

In table 4.1, we compare the IoU performances of LaRa against two baselines Lift-Splat [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] and CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF] on vehicle BEV segmentation in their respective training and evaluation setups. In all cases, we improve results by a significant margin. More precisely, we improve by 10% compared to Lift-Splat in their settings, by 10% and 8% compared to CVT respectively in Setting 1 and Setting 2. This suggests that our model can better extract the geometric and visual information from all cameras with a very general architecture that does not necessitate any strong geometric assumptions. Besides, when compared with CVT, we observe that LaRa obtains better results in the setting with finer resolution (+10% in Setting 1 vs. +8% in Setting 2). Since our attention mechanism does not rely on all-to-all attention between camera images and BEV map as CVT does, LaRa can directly decode to the final BEV resolution which helps for fine prediction at a high resolution.

Extension to the driveable area segmentation task

In this section, we also provide results for the driveable area segmentation task, also addressed by CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. Contrary to vehicle segmentation, this task requires the network to do "amodal completion" to a high degree, i.e., to correctly estimate regions of the road despite parts of it being severely occluded.

We followed the protocol of CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF] for this segmentation task; the ground truth is generated using HD-map's polygons from the dataset. We kept the same hyperparameters as used for the vehicle segmentation task, with a minor difference to the learning rate: we divide it by a factor 10 after 15 epochs (compared to a constant learning rate for vehicle segmentation). 4.2. When compared with CVT, we observe that LaRa achieves better performance (+0.9). Note that we do not do multi-tasking: following CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF], we train a model specifically for the task of driveable area segmentation; the qualitative examples in fig. 4.2 are produced by fusing predictions from two models.

Model ablation and sensitivity to hyper-parameters

Input and Output-level embeddings. To assess the contribution of the geometric embeddings that we use, we compare the different choices at both the input and output level in table 4.3. As hypothesized, embedding the geometric relationship between cameras in the input is better suited for our task than the generic sine and cosine spatial embeddings. The additional camera index, while performing better than Fourier feature alone, is not enough to link pixels across cameras. For the output query embedding, the combination of normalized coordinates and radial distance gives the best results. This simple choice outperforms both the Fourier features [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] and learned embeddings [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] that also have the disadvantage of increasing the number of parameters. Comparison to PETR embedding. In addition to our baselines, we include quantitative results in table 4.4 to compare our ray embedding against PETR [START_REF] Liu | Petr: Position embedding transformation for multi-view 3d object detection[END_REF] embedding, a work concurrent to ours that also infuse "geometric" information into the "visual" stream to fuse information between views.

In PETR [START_REF] Liu | Petr: Position embedding transformation for multi-view 3d object detection[END_REF], the embedding of each pixel is computed by sampling its ray given D predefined depths. The 3D coordinates of the D sampled points along the ray are normalized, concatenated, processed by an MLP and summed with the visual features. Conceptually, the embedding is a way to indicate to the network "this pixel can observe these 3D points in the camera frustum space". The embedding in PETR differs to ours in that it is limited by the sampling resolution (i.e., the D predefined depths), as computation and memory footprint increase linearly with respect to D.

We trained our model with PETR input embedding in place of ours and show that our constant-complexity embedding is effective as a 3D positional embedding and performs better (+2%). Sensitivity to hyper-parameters. To delve into the influence of hyper-parameters, we conduct a sensitivity analysis in fig. 4.3 where we vary the number N of latent vectors, their dimension M and the number of self-attention blocks L. We clearly observe that the performance increases with the number of latent vectors used. This is expected as it is the main parameter controlling the attentional bottleneck between input and output. Such a parametrization allows for an easy tuning of the performance/memory trade-off. We observe no clear correlation between the dimension M of latent vectors, the number L of selfattention layers, and the obtained IoU performance. This indicates that our architecture is not too sensitive to these hyper-parameters and can work efficiently with a wide range of values for these parameters. Although we obtain better results with 512 latent vectors, we use a maximum of 256 to stay in the same computational regime as the baseline we compare against; training with 512 latent vectors requires 32GB GPUs. 

Study of attention

As quantitatively studied in section 4.4.4, embedding camera rays impacts significantly the performance of LaRa. In this section, we further support our claim that "our network is able to retrieve the pixel relationships between views thanks to our ray embedding" (Sec. 4.3) through a qualitative and quantitative analysis of the input-to-latent attention. The study is conducted at three distinct levels. First, for a couple of one latent vector and one attention head (n = 10, h = 5 and n = 50, h = 30), among N = 256 possible latents and H = 32 possible attention heads. Second, for one latent vector and the averaged attention from all attention heads (n = 10, h = avg and n = 50, h = avg). Third, for one attention head and the averaged attention over all latents (n = avg, h = 5 and n = avg, h = 30). From these three settings, we note the followings: First, the attention map between one latent vector and one attention head targets a specific direction (about a 90°fi eld of view). Additionally, it can be clearly observed that the attention is continuous across cameras, proving the network is able to retrieve the pixel relationships between views. Second, while one attention head fires in a specific direction, the attention averaged over all the heads for one latent vector spans over half of the scene. This allows one latent vector to extract long-range context between views with the capacity to disambiguate them. Third, the attention for one head aggregated over all the latent vectors covers all directions, suggesting that the latent vectors contain all of the directional information and that the whole scene is attended across the latents. To summarize, by integrating early multi-view geometric cues instantiated by camera rays embedding (section 4.3.1), we show that LaRa learns to reason across views.

Attention qualitative analysis

Additionally, we provide qualitative examples of the 'Fourier + Cam. idx' embedding to compare against our ray embedding in fig. 4.5. Contrary to the attention yield by our ray embedding, the one derived from the 'Fourier + Cam. idx' embedding is much more spread out and less consistent across cameras.

Attention quantitative analysis. We now introduce a metric that directly quantifies the consistency and alignment of attention values across camera by analyzing behavior in "overlapping" regions, i.e., regions seen by two different cameras. We provide a visual description of this metric and its computation in fig. In short, knowing the orientation of each camera, we compute the Mean Squared Error (MSE) of the directional attention intensity between cameras on their overlapping regions. FIGURE 4.7: Qualitative results on complex scenes. We show the six camera views surrounding the vehicle along with segmentation map ground-truth for reference. In the ground-truth (GT) map, vehicles are shown in blue (visibility > 40%) or purple (visisibility < 40%). The ego vehicle is located in the center and facing upwards. We show results for our two baselines [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF][START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF]. For a fair comparison, we always compare using their respective level of visibility. Setting 2 is used. This score is averaged for all the overlapping regions, latents and attention heads, and examples in the validation set. A score of zero indicates a perfect match of the attention levels on overlapping regions (i.e., across cameras). Results with this metric, reported in table 4.5, show that our 'Cam. rays' embedding is 10 times more "consistent" across cameras than the baseline 'Fourier + Cam. idx'. 

Qualitative Results

We show the segmentation results of two complex scenes in fig. 4.7. For a fair comparison, we use our model trained with visiblity > 40% against CVT and > 0% against Lift-Splat. Compared to LaRa, CVT missed two objects, one at a long distance and the other in the dark (red box). We also estimate the boundaries of the vehicles better than Lift-Splat (green box). Interestingly, models trained on all vehicles (visibility > 0%) tend to hallucinate cars in occluded or distant regions (highlighted with black circles in the figure).

Extension to temporal modelling

So far, LaRa demonstrates that the geometry and semantics of a complex scene can be compacted in a small collection of latent vectors. We believe that this formulation would allow for efficient temporal reasoning. By retaining information from the past, the system can better refine the information and improve overall performance. In particular, it may help to handle challenging situations like when a car is currently occluded but has been seen in past frames, to refine the estimated boundaries objects (e.g., in fig. 4.7 some vehicles are elongated), and to better detect small and distant objects.

Additional modules

Current methods [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF][START_REF] Li | BEVFormer: Learning bird's-eye-view representation from multi-camera images via spatiotemporal transformers[END_REF] carry out the temporal modelling in the BEV space, which is of high resolution, costly to process, while mostly representing empty space. As the ego-car moves, there is a need to align each past BEV feature maps into the current ego reference frame to take in account the change of point of view. Typically, this alignment (or 'warping') is operated using ego-motion information, by a simple rotation and translation of the BEV feature maps.

In contrast, we take advantage of our implicit representation and efficiently aggregate information over time directly in the latent representation. However, the latent representation being an abstract space, we cannot "warp" the information of the scene. Hence, we extend our LaRa architecture with two additional modules: (1) a module to integrate the ego-motion information, and (2) a recurrent update of the latent representation (see fig. 4.8). The 'motion conditioning' module takes as input the ego-motion of the car to make the internal representation "motion-aware". It is necessary to integrate the ego-motion for the network to extract dependencies between viewpoints across time. Otherwise, not able to make sense of it, the network simply ignores information from the past. The 'recurrent update' takes information from the past and integrates it with the information currently observed. This allows refining the current prediction and better handling occlusions.

More formally, we reduce the ego-motion to a horizontal motion: a rotation of angle θ with respect to the vertical axis and a translation in the horizontal plane ∆x, ∆y. These parameters, defining the relative change in pose between two time steps P i-1→i = [cos(θ), sin(θ), ∆x, ∆y], are given as input to a 2-layer MLP which lifts P i-1→i from 4 di- mensions to M dimensions, i.e., the size of the latent vectors. This MLP produces an "ego-motion feature vector" that is then infused in the latent representation using a crossattention. More specifically, the embedding of P i-1→i is given as the key and value to the cross-attention and the past latent representation as the query. This, now "motion-aware" latent representation, feeds a recurrent module to aggregate information over time. In our experiment, we instantiate the recurrent module as a simple Gated Recurrent Unit (GRU [START_REF] Cho | On the properties of neural machine translation: Encoder-decoder approaches[END_REF]).

Results

In table 4.6 we report results for vehicle segmentation and inference time against FIERY [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF]. FIERY builds on Lift-splat [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] (a baseline in table 4.1) and extends it for temporal modelling. FIERY aggregates information over time in the BEV space. For this, it first computes BEV feature maps using the method of Lift-splat [START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF]. Then it uses ego-motion information to warp (i.e., rotating and translating) each past BEV feature maps into the current ego reference frame. This creates a spatio-temporal volume of T BEV feature maps, which is then processed by a 3D convolutional layer. The 3D convolutions extract spatio-temporal patterns from the BEV feature FIGURE 4.8: LaRa temporal. Schematic illustration of the temporal extension of LaRa. The 'motion conditioning' module takes as input the ego-motion of the car to make the internal representation "motion-aware". The 'recurrent update' takes information from the past and integrates it with the information currently observed. TABLE 4.6: Results of temporal integration. We present results for vehicle segmentation performance (in IoU) for vehicle segmentation on nuScenes and the inference time in milliseconds for a forward pass on a V100 GPU. Note that FIERY [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF] initially address the task of instance segmentation; here we re-train the model for binary segmentation of vehicles, all other parameters remain unchanged. In particular, the models take the past two frames in addition to the current frame for temporal modelling.

Method

IoU Forward pass (ms)

FIERY [START_REF] Hu | FIERY: Future instance segmentation in bird's-eye view from surround monocular cameras[END_REF] 37.5 550 LaRa temporal (ours) 37.1 70 maps, allowing to reason about the dynamic of the vehicles in the scene. This produces a single spatio-temporal BEV feature map (i.e., the temporal dimension is collapsed) that is then used to make the final prediction. This approach requires processing the T past BEV feature maps in parallel.

In contrast, our LaRa temporal model processes the scene information sequentially in the latent space. With this approach, we obtain competitive IoU performances while having an inference 8× faster.

Conclusion

In this chapter, we proposed LaRa, a general architecture for scene understanding from multiple cameras.

Summary of contributions

Sensor fusion and capacity to efficiently represent a scene. This work demonstrates that some of the geometric and semantic information of a complex scene, can be efficiently aggregated from many sensors and encoded in a very compact, but rich, implicit representation.

Ray embedding. By incorporating ray embeddings into LaRa, we augment visual features with geometric cues of the scene and show that this leads to multi-view stitching (supported by our attention analysis in section 4.4.5) and improved performances over other baselines.

Robustness to hyper-parameters. Our architecture has been tested with a broad range of hyper-parameters (section 4.4.4) and has also been successfully implemented on a prototype car, which has a different number and arrangement of cameras. These experiments demonstrate the adaptability of LaRa and its capacity to be deployed in various conditions.

Perspectives

Task dependent Query

CNN LaRa Encoder

Ray origin + direction

LaRa Decoder

Compact representation of geometry and semantic FIGURE 4.9: LaRa meta-architecture. Schematic illustration of how our architecture could be applied to a wide range of tasks. Here we depict outputs for view reconstruction, pixel-wise segmentation, depth estimation, BEV vehicle segmentation, and 3D occupancy.

Extension to other tasks. LaRa is not limited to BEV predictions. In particular, using an appropriate query, predictions could be done in any other output space, including depth or semantic prediction in the image plane or 3D occupancy grid prediction (fig. 4.9).

Evaluation against visual impediments. We demonstrated the very good capacity of our architecture to extract and fuse complex and long-range dependencies (even across cameras). Our method could further be evaluated against depth-based methods in difficult visual conditions (e.g., water droplets or soiling on the camera lens, glares like in fig. 2.7, etc.).

Sensor Fusion. Our model operates on camera inputs only, a setup in which correctly estimating distances is difficult (chapter 3). Moreover, in adverse conditions, e.g., with glares and darkness, its performance may remain limited. To better handle these challenging situations, one avenue of improvement would be the extension of LaRa to handle complementary modalities, e.g., coming from LiDARs or radars. fisheye, etc.). When the intrinsics of the camera change, the way the light interacts with the camera sensor is also modified. This affects the way visual data is captured, which ties the filters learned by the CNN to the intrinsics present in the learning data. A naïve, time-consuming, and computationally expensive way to address this issue is to retrain the entire network from scratch or to fine-tune it with the new data.

To build a more robust and efficient autonomous driving system, the works 'CAM-Convs' by [START_REF] Facil | CAM-Convs: Camera-Aware Multi-Scale Convolutions for Single-View Depth[END_REF] and 'Camera Tensor' by Ravi [START_REF] Kumar | Omnidet: Surround view cameras based multi-task visual perception network for autonomous driving[END_REF] offer a way to handle these different types of cameras without having to retrain the whole model for each. The CAM-Convs method proposes to inject the intrinsic parameters of the camera in the CNN as additional channels of the feature maps (e.g., the distance to the camera principal point is concatenated to each pixel). By doing so, the network can learn to account for visual variations due to changes in the intrinsics of different cameras. Camera Tensors [START_REF] Kumar | Omnidet: Surround view cameras based multi-task visual perception network for autonomous driving[END_REF] builds upon this work and generalizes to arbitrary camera geometries, including fisheye cameras Combined with our ray embedding (chapter 4), which already integrates the intrinsics and extrinsics of the cameras, such approaches would further increase the versatility and adaptability of LaRa, allowing its deployment on a wide range of mobile robots.

Leveraging Simulation

While the core of this thesis is not about planning and control for autonomous driving, it is essential to keep in mind that our end goal is not to achieve high performance on individual benchmarks, but to ensure safe and efficient motion of the vehicle. Indeed, a higher performance in benchmarks for multi-modal motion forecasts may not translate into better and safer motion planning [START_REF] Casas | The importance of prior knowledge in precise multimodal prediction[END_REF]. Hence, we need ways to evaluate our complete system in realistic driving conditions. Likewise, it is important to evaluate the performance of our methods in a closed-loop setup as open-loop evaluations, while proposed in certain benchmarks [START_REF] Caesar | NuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles[END_REF], do not take into account the interactions between the vehicle and the environment. Since we cannot train and evaluate closed-loop systems on public roads for security reasons, validation on test tracks and in simulation is necessary. Note that the simulator does not necessarily need to be photorealistic, but it needs to capture and represent the mutable characteristics of the world [START_REF] Sun | Shift: A synthetic driving dataset for continuous multi-task domain adaptation[END_REF] (e.g., weather, time of day, agent density, road layout and agent behaviour). In this regard, CARLA [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] is a simulator that generates diverse virtual environments closely resembling real-world scenarios, including realistic weather conditions, traffic, and road layouts. It also simulates a wide range of sensors including cameras, LIDARs, and radars, which can be used to evaluate the performance of different sensor configurations available on real vehicles [START_REF] Hu | Investigating the impact of multi-lidar placement on object detection for autonomous driving[END_REF]. These elements motivate the development of better evaluation standards, and publicly available simulators such as CARLA [START_REF] Dosovitskiy | CARLA: An open urban driving simulator[END_REF] appear to be promising tools to develop and test autonomous driving algorithms.

Learning an implicit representation of the world

In section 2.3.4 we introduced the notion of an implicit representation of the world. The supposed advantages of such a representation are numerous, including the removal of irrelevant details; facilitating the extraction of complex dependencies. It alleviates any resolution issue by projecting in a continuous and abstract space. It also extracts the statistical regularities of the world, something that helps model the temporal dynamic of the world and reduces the amount of annotated data necessary to train on a particular task [START_REF] Hafner | Mastering diverse domains through world models[END_REF]. To achieve this goal, two main problems must be solved. First, we need a neural network architecture that can compress raw sensor signals into a compact encoding. Second, we need a system to train this architecture so that this encoding has the properties stated previously.

For the architecture, LaRa, presented in chapter 4, constitutes a first attempt to project multiple sensory streams into a small collection of latent vectors. This internal representation can then be queried to make predictions in an arbitrary output space; allowing a single representation to learn from multiple and diverse supervisory signals.

That leaves the second major question: how to learn such a representation? Learning such abstract encoding of the world naturally involves the compression of relevant information. However, the notion of "relevant information" only makes sense in regard to a task, i.e., the latent space and what information are discarded from the inputs are entirely defined by the supervisory signal. In this aspect, an implicit representation is also very flexible and supervision of many forms can be used. For example, in a predictive fashion, one may want to predict the future observation (e.g., at the next time step) directly at the latent state level for ease of environment modelling: a consistency between the future prediction and the actual observation is imposed on the latent vectors [START_REF] Sobal | Joint embedding predictive architectures focus on slow features[END_REF][START_REF] Ye | Mastering atari games with limited data[END_REF]. However, in dynamic and noisy environments, such an objective may be minimized by focusing on irrelevant correlations [START_REF] Sobal | Joint embedding predictive architectures focus on slow features[END_REF]: the network may only encode parts of the scene easily predictable that change very slowly over time, like the sky, instead of learning the agents' behaviours.

To address this drawback, a reconstruction objective is often used as an additional objective, the aim is to force the latent state to maximize the information it contains. For example, one of the most known approaches is reconstructing the input signal, or autoencoding. However, reconstructing the entire RGB signal from cameras can be a very hard task due to visual variations and, above all, not necessarily useful (e.g., encoding the shape of the clouds or the texture of buildings does not help to drive). Instead, representations typically used in perception tasks can serve as additional supervisory signals. In particular, depth, optical flow, and semantic segmentation can be used to supervise the scene representation [START_REF] Zhou | Does computer vision matter for action? Science Robotics[END_REF]. These explicit representations provide a level of abstraction with far fewer details to predict (e.g., they do no present variations of albedo or lighting). This is helpful to infuse important concepts like 3D geometry and motion in the implicit representation. In particular, the work of [START_REF] Zhou | Does computer vision matter for action? Science Robotics[END_REF] suggests it improves transferability to control tasks. At the extreme, the work of Hu et al. [2022a] supervises the internal representation with a BEV semantic occupancy grid encoding the rules of the road (traffic lights state, stop sign) and dynamic agents (vehicles and pedestrians). These approaches have the drawback of requiring a ground truth; learning these concepts in a self-supervised way remains an open problem.

In this regard, we showed that depth can be self-supervised in chapter 3. Likewise, optical flow [START_REF] Yang | Upgrading optical flow to 3d scene flow through optical expansion[END_REF] and semantic segmentation [START_REF] Vobecky | Drive&segment: Unsupervised semantic segmentation of urban scenes via cross-modal distillation[END_REF] can also be self-supervised. More recently, [START_REF] Wimbauer | Behind the scenes: Density fields for single view reconstruction[END_REF] presented a self-supervised method based on view reconstruction and neural rendering to estimate the volumetric occupancy of a scene (i.e., estimating the 3D geometry of a scene even in occluded areas). All these approaches, requiring no annotation, could be exploited to learn a compact representation of the geometry, dynamics, and semantics of the world in a self-supervised way. We hypothesize that the mono-scale training is the cause of overfitting to LiDAR input when training with LiDAR self-supervision. This is confirmed by the fact that, when Monodepth2-L is only supervised at the scale 1:1, the model collapses into the overfitted regime which highlights the importance of multi-scale training.

As modifying the mono-scale networks is non-trivial, we propose to self-supervise with a dilated LiDAR to compensate for the lack of multi-scale supervision and to avoid overfitting the LiDAR input. More precisely, we apply two iterations of a dilation morphological operator with a kernel of 10 × 10 on the 4-beam LiDAR at the supervision level only (i.o.w., we do not apply dilation on the LiDAR input). The aim is to increase the number of pixels receiving LiDAR supervision, albeit in a noisy manner, (fig. A.4). This simple procedure, while remaining a trick, enables mono-scale architectures to avoid overfitting the input LiDAR and to converge to metric depth estimation. On the other hand, none of the architectures need such special care when trained under our LiDARTouch framework. We report results of models trained with this procedure with the superscript † intable 3.2.

In addition to this strategy, we explored various experimental setups and combination of hyper-parameters when training with (P+L4) and (P+L4+IMU) for mono-scale networks:

• Dividing the sparse LiDAR depth values (used as input and/or ground-truth) by a factor α at train time and multiply depth prediction consequently at validation. The network still overfits to LiDAR data with α ∈ {10, 100, 1000}.

• Decreasing the contribution of the depth loss in the global objective to mitigate the overfitting behavior to LiDAR points. With λ ∈ {1, 1e-1, 1e-2, 1e-3}, the model still overfits the LiDAR. With λ ∈ {1e-4, 1e-5} the network stops overfitting the LiDAR data but the depth estimation becomes only relative instead of being metric.

• Increasing the contribution of the smoothness loss in the global objective. By doing so, we hoped to uniformize the scale of the depth prediction on pixels without LiDAR that are neighbors to pixels with LiDAR. The network still overfits to LiDAR data with λ ∈ {1e-1, 1e-2, 1e-3}.

• Varying learning rate from 1e-3 to 1e-5. The network still overfits to LiDAR data. 
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FIGURE 1 . 1 :

 11 FIGURE 1.1: Interior of the VaMP driverless car [Mercedes-Benz, 2016], one of the first actual autonomous car that completing in 1995 a 1,758 kilometres (1,092 miles) trip in (almost) complete autonomy

FIGURE 1 . 3 :

 13 FIGURE 1.3: Sensor setup of the Valeo Drive4U prototype. It relies on cost-effective sensors such as cameras, radar and minimal LiDAR for surround perception of the scene; ultrasonic sensors for parking assist and self-parking systems; GPS and IMU for self-positioning relative to the surroundings. Source: Valeo

  FIGURE 1.4: A schematic illustration showing the classic modular pipeline of autonomous driving.

  (typically used in detection pipelines) are among the most used fully convolutional architectures (see fig. 2.4 for illustrations).

  FIGURE 2.4: Illustration of the fully convolutional networks U-Net[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and FPN[START_REF] Lin | Feature pyramid networks for object detection[END_REF]. Most notably, the U-Net makes the prediction at the highest level, while the FPN makes a prediction at each scale, which are then combined.

5 :

 5 FIGURE 2.5: Representations of point clouds. Courtesy of (A) Chen et al. [2017] (B) Qi et al. [2018], (C) and (D) blender-kitti. 2 Note that (C) and (D) are coloured with semantic classes.

  FIGURE 2.10: Columns, from left to right, represent the input image from the frontal camera, the BEV semantic segmentation prediction from a state-of-the-art architecture[START_REF] Can | Understanding bird'seye view of road semantics using an onboard camera[END_REF], and the ground truth. These examples illustrate the resolution problem that the Bird's-Eye-View representation faces. The coloured boxes (green for the first example and white for the second) highlights the difficulty that a network has to segment "small" objects, pedestrians in this case. This figure is adpated from[START_REF] Can | Understanding bird'seye view of road semantics using an onboard camera[END_REF] 

Minimal / Sparse 4

 4 FIGURE 3.1: Different LiDAR densities. Dense 64-beam point clouds are typically used as the input of depth completion approaches, which are supervised with accumulated LiDAR seen as ground truth (GT). These point clouds are far denser than the minimal LiDAR we use. Note that LiDAR data is often not available in the upper part of the scenes.

FIGURE 3 . 2 :

 32 FIGURE 3.2: Illustration of the self-supervised image-only depth estimation framework. This figure shows the classical learning system from self-supervised image-only depth estimation literature, e.g., SfMLearner [Zhou et al., 2017] or Monodepth2 [Godard et al., 2019]. The model is trained to resynthesize the target image from (i) the neighboring source images with different viewpoints, (ii) the estimated depth of the target image, and (iii) the relative change of pose between the target and source views. The circled w denotes the image warping operation from the estimated pose change and target depth map.

FIGURE 3 . 3 :

 33 FIGURE 3.3: Illustration of the fully-supervised depth completion framework. This figure summarizes the depth completion pipeline, e.g., models ACMNet[START_REF] Zhao | Adaptive context-aware multi-modal network for depth completion[END_REF] or NLSPN[START_REF] Park | Non-local spatial propagation network for depth completion[END_REF], which employs a multi-modal depth prediction network that is learned by regressing a provided ground-truth depth.
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 34 Photometric loss(section 3.2)

FIGURE 3 . 5 :

 35 FIGURE 3.5: Depth networks with different image-LiDAR fusion strategies. We depict early (A), hybrid (early and late for B) as well as multiscale (C and D) fusion-based architectures. Volumes in yellow indicate LiDAR feature tensors and blue ones are image feature tensors. We indicate the mixing of modalities with a color grading of the two colors on the volumes. The architecture (C) is our extension of[START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF] to make it operate over minimal LiDAR input. We denote the concatenation operator by c .

  3.1, we present the architecture of the depth network, shown in green in fig. 3.4, which estimates depth by fusing the monocular image with the sparse LiDAR point cloud. In section 3.3.2, we detail the self-supervision objectives involving a photometric reconstruction along with a LiDAR self-supervision, as illustrated in red in fig. 3.4. Lastly, section 3.3.3 introduces methods to estimate the relative change of pose between the source and target views, depicted by the orange part of fig. 3.4.

FIGURE 3 . 7 :

 37 FIGURE 3.7: Selecting vehicles to compute the CDR metric. The aim is to extract the individual mask of the first vehicles in front of the ego-car. These are indeed vehicles affected by infinite-depth error due to a small relative motion, leading to potentially catastrophic consequences. The proposed CDR metric computes the rate of such failures over the test set.

FIGURE 4 . 1 :

 41 FIGURE 4.1: LaRa overview. Semantic features (green) are extracted from the images with a shared CNN and are concatenated with ray embeddings (multi-coloured) that inform about geometric information to spatially relate pixels within and across cameras. This representation is then fused into a compact latent representation through one cross-attention (CA) and L self-attention (SA) layers (yellow). The final BEV map is obtained by querying the latent representation with a crossattention and then refined with BEV CNN (red). ⊕ denotes concatenation. The orange letters indicate tensor dimensions. K, Q, and V are the Key, Query, and Value of the cross-attentions.

Latent-

  Input cross-attention (32 heads) latents := MultiheadAttn(LN(latents), LN(input), LN(input)) + latents latents := MLP(LN(latents)) + latents (4.8) Latent self-attention (16 heads) latents := MultiheadAttn(LN(latents), LN(latents), LN(latents)) + latents latents := MLP(LN(latents)) + latents (4.9) BEV query-Latent cross-attention (16 heads) output := MultiheadAttn(LN(BEVquery), LN(latents), LN(latents)) output := MLP(LN(output)) + output (4.10)

FIGURE 4 . 2 :

 42 FIGURE 4.2: Qualitative results on complex scenes. We show the six camera views surrounding the vehicle along with segmentation ground truth for reference. Vehicles are shown in blue and driveable area in gray. Vehicles and driveable area predictions are from two different models trained independently for their respective ground-truth, the predictions are then merged for vizualization purpose. The ego vehicle is located in the center and facing upwards. Predictions of both driveable area and vehicle segmentation are thresholded at 0.5 for visualization purpose.
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 43 FIGURE 4.3: Sensitivity study of LaRa to hyper-parameters. We vary the number of latent vectors (N), their dimension (M), and the number of self-attention layers (L) and report IoU performances.

FIGURE 4 . 4 :

 44 FIGURE 4.4: Input-to-latent attention study. Attention maps analysis for a network using 256 latents and 32 attention heads. The attention for one attention head and one latent is shown on the left superimposed with RGB images. The polar plots represent the directional attention intensity for one (or the average) attention head with one (or the average) latent vector. The radial distance is proportional to the attention level and shows the directions the network attends the most.
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 4546 FIGURE 4.5: Input-to-latent attention study -influence of the input embedding. Analysis of attention maps for two networks trained with different input embeddings. Top row is with 'Fourier + Cam. idx' and bottom row is with our proposed 'Cam. rays' embedding. The attention for one attention head and one latent is shown on the left superimposed with RGB images. The polar plots represent the directional attention intensity for one attention head with one latent vector. The radial distance is proportional to the attention level and shows the directions the network attends to the most.

FIGURE A. 3 :

 3 FIGURE A.2: Statistics for the depth and pose outputs over a training run for S2D (overfitted) and Monodepth2-L (metric) with a pose network and ('P+L 4 ') supervision. Respectively from top to bottom, we provide the median value of the disparity predicted by the depth network on pixels without LiDAR data (see Figure A.1c), then on pixels with LiDAR data (see Figure A.1d), and the magnitude of the relative pose's translation component (i.e., by how much the pose network estimates the car moved between two views).

FIGURE B. 3 :

 3 FIGURE B.3:Input-to-latent attention study -average over heads. These polar plots represent the directional attention intensity averaged over all attention heads for the 32 attention heads. When averaging over attention heads, we observe that the average attention spans over half of the scene. This allows latent vectors to extract long-range context between views with the capacity to disambiguate them.
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  2.1: Examples from the WoodScape dataset

TABLE 3 .1: High-level positioning of LiDARTouch vs depth estimation and depth completion methods.

 3 Our LiDARTouch framework addresses critical weaknesses of self-supervision depth estimation approaches, while being cheaper and far more scalable than fully-supervised depth completion methods.

	Supervision

  scale between the depth and pose networks as they are both randomly initialized. While Monodepth2-L achieves this, it can be observed that the use of a pose network instead of PnP degrades performance up to 6% when compared to LiDARTouch. Above all, we observe a tendency for ACMNet, NLSPN and S2D to overfit the LiDAR signal (see fig. A.1b for an example).

		Monodepth2 Monodepth2-L ACMNet NLSPN S2D
	P + L 4 (naïve)	4.504	2.796	2.490	3.084	2.839
	P + L 4 (hinted)	4.794	2.813	2.563	3.271	2.982
	P + L 4 (masked)	4.517	2.696	2.504	3.014	2.776
	to a metric					

TABLE 3 . 4 :

 34 Comparison against monocular depth estimation methods. Results are reported on the KITTI Eigen split

TABLE 3 .5: Comparison against supervised and naively self-supervised depth completion schemes.

 3 Input includes the image and the 4-beam LiDAR (I+L 4 ) Network Superv. Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ < 1.25 ↑ ACMNet while not requiring any ground truth at train time. We also investigate the impact of the density of the input LiDAR on these scores in fig.3.6. We observe that LiDARTouch is consistently close to the fully-supervised depth completion alternative when the number of layers varies.

			ACMNet	L gt	0.030	0.143 2.112	0.983
	GT sup.		NLSPN S2D	L gt L gt	0.044 0.035	0.214 2.617 0.152 2.271	0.971 0.979
			SAN	L gt	0.037	0.172 2.491	0.976
	Naive	self-sup.	ACMNet NLSPN S2D	L 4 L 4 L 4	0.714 4.133 0.849	9.751 15.88 268.4 51.96 12.84 17.53	0.057 0.010 0.077
			SAN	L 4	0.426	6.226 14.148 0.243
	LiDARTouch	ACMNet P+L 4 NLSPN P+L 4 S2D P+L 4 SAN P+L 4	0.044 0.053 0.059 0.063	0.242 2.504 0.336 3.013 0.285 2.776 0.396 3.318	0.974 0.959 0.962 0.946
	2.112 in RMSE for					

Comparison of different supervision schemes for the ACMNet architecture.

  

  .7) with d q , d v , d k the dimensions of Q, K and V. In practice, we use d model , a hyperparameter, to define the dimension of the queries, keys and values for the inner attention (eq. (4.6)) as well as h the number of attention heads. More precisely, we linearly project queries, keys and values h times with different projections, each with dimension d emb = d model /h. The learnable projection matrices of each head are defined as W

TABLE 4 .1: Intersection-over-Union (IoU) for vehicle segmentation on nuScenes

 4 . 'Setting 1' refers to a 100m×50m grid with a 25cm resolution and 'Setting 2' to a 100m×100m grid with a 50cm resolution. For training and validation, vehicles are considered only if their visibility level is above a predefined threshold (either 0% or 40%). To compare against other works, we refer the reader to Lift-splat[START_REF] Philion | Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[END_REF] and CVT[START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF].

	visibility > 0%	visibility > 40%

TABLE 4 .2: Driveable area segmentation. Results

 4 (in IoU) on nuScenes.Quantitative and qualitative results for this additional task are given respectively in table4.2 and fig.

	Method	IoU
	CVT	74.3
	LaRa (ours) 75.2

TABLE 4 . 3 : Ablation study for the input and output query embedding.

 43 Training and evaluation are done in Setting 2 (100m×100m at 50cm resolution), with a visibility > 0%.

	Input geometry embedding			Output query embedding		
	Cam. rays Cam. idx Fourier IoU	Radial dist. Norm. coords Fourier Learned IoU
	✔	✗	✗	35.4	✔	✔	✗	✗	35.4
	✔	✔	✔	34.4	✗	✔	✗	✗	35.1
	✗	✔	✔	32.3	✗	✗	✔	✗	30.6
	✗	✗	✔	30.5	✗	✗	✗	✔	21.8

TABLE 4 . 4 :

 44 Impact of ray embedding on performance. Vehicle segmentation performance (in IoU) for vehicle segmentation on nuScenes.

	Embedding	IoU
	PETR [Liu et al., 2022a] 34.8
	Cam. rays (ours)	35.4

front front left front right back right back left back CVT vis>40% Lift-Splat vis>0% Our vis>0% GT Our vis>40% GT CVT vis>40% Lift-Splat vis>0% Our vis>0% Our vis>40% front front left front right back right back left back

  

TABLE 4 .5: Impact of ray embedding on cross-camera attention consistency. Cross

 4 -camera attention consistency (measured with proposed MSE metric, see Fig.4.5) on nuScene.

	Embedding	MSE on overlap
	2D Fourier + Cam. idx 0.0896
	Cam. rays (ours)	0.0068

https://caradas.com/adas-statistics -[Last accessed on

2023-1-2] 

https://www.youtube.com/watch?v=I39sxwYKlEE -[Last accessed on 2023-02-08]

Courtesy of https://atcold.github.io/pytorch-Deep-Learning/fr/week03/03-1/ -[Last accessed on

2023-01-19] 

https://github.com/risteon/blender_kitti -[Last accessed on 2023-01-19]

Adapted from https://medium.com/toyotaresearch/self-supervised-learning-in-depth-part-1-of-2-74825baaaa04
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AD autonomous driving 4,[START_REF]Future directions 5.2.1 Handling multiple types of cameras and different intrinsics[END_REF]9,13,14,18,7,13,15,[18][19][20][22][23][24]51,[65][66][67]71 CNN Convolutionnal Neural Network xiii,7,14,15,18 Pred: 29.5m FIGURE 3.9: Mitigation of the infinite-depth problem. Self-supervised image-only approaches tend to predict objects with no relative-motion at an infinite depth, as indicated by the hole in the depth close-up (red). In contrast, our LiDARTouch framework estimates the depth of these vehicles, as shown in the green close-up. Note that for the example in the middle, we verified that no LiDAR measurement falls on the car. This shows that our training framework can generalize well to cases where no LIDAR is available on critical moving vehicles. absent from regions above the road, which hinders ACMNet (GT-sup.) prediction in these regions due to the lack of supervisory signal it uses (last row in fig. 3.10). Despite the successful integration of LiDAR in LiDARTouch, we note that some local depth estimation artifacts still occur, similar to the maps obtained from self-supervised depth estimation methods. Typically, this concerns distorted, reflective and color-saturated regions because the photometric reconstruction loss assumes Lambertian surfaces (cars in fig. 3.10c). Our model may also produce blurry depth predictions for small or thin objects, such as traffic signs (Figures 3.10a and 3.10b).

Implementation details

Training. We train all our models for 30 epochs using the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with β 1 = 0.9 and β 2 = 0.999. The initial learning rate is set to 1e-4 and divided by two halfway through training.

Chapter 5

Conclusions and future directions

Conclusions and discussions

In this PhD thesis, we explore the use of deep learning for scene understanding applied to autonomous driving. In particular, we address several important research questions (RQs) including:

RQ1. How to leverage inexpensive sensors (e.g., camera, minimal 4-beam LiDAR, etc.)?

RQ2. How to fuse information from multiple sensors? RQ3. How to alleviate the need for annotated data? RQ4. How to estimate a map of the environment in real time from raw sensors? First, in chapter 3, we tackle the important task of depth estimation. To take full advantage of the abundant flow of unannotated data that a fleet of cars can produce, our method is self-supervised (RQ3). Leveraging inexpensive sensors typical of existing passenger cars, we show competitive performances compared to methods relying on expensive sensor suites and trained in a fully-supervised way (RQ1). Given a camera and a minimal LiDAR with as few as 4 beams (RQ2), our system can learn to estimate depth on any domain without any annotation.

Our work in chapter 3 also highlights the difficulty to predict accurate pixel-wise depth, a very explicit way to represent the geometry of the scene. This pushed us to explore a more implicit approach. The main objective of chapter 4 is to create an architecture able to encode the geometric and semantic information of a complex scene in a very compact, but rich, internal representation. This effort led to 'LaRa', a transformer-based architecture for scene understanding. Thanks to its ray embedding, it is able to encode information from many sensors into a small latent representation of the scene (RQ2). We can then process and query information from this compact representation to efficiently segment vehicles and driveable areas in the Bird's-Eye-View space (RQ4). Moreover, in section 4.5 we provide evidence that knowledge about the scene can be accumulated over time directly in this abstract representation of the world; paving the way for models that efficiently reason and plan in the latent space.

Despite our work making progress on the topic of scene understanding for autonomous driving, there are still several avenues for future work. We comment on possible extensions and outline future research directions in the following.

Appendix A

Monocular metric depth estimation with a few-beam LiDAR

A.1 Overfitting to input LiDAR

In this section, we provide qualitative examples as well as elements of analysis for the convergence behavior observed on ACMNet, NLSPN and S2D that we call "overfitted to LiDAR input". To this end, we compare S2D (overfitted) to Monodepth2-L (metric) trained with a pose network and ('P+L 4 ') supervision for 30 epochs. In essence, we refer to models as overfitted when most of the depth prediction is consistent but only relative, while depth prediction is only metric on pixels with LiDAR data. On fig. A.1b, we can clearly observe the difference in scale between areas with and without LiDAR data. Likewise, we can quantitatively observe the existence of two distinct scales within predictions of S2D. In the middle plot of fig. A.2, the median value of the inverse depth prediction (disparity) on pixels with LiDAR are roughly the same for S2D and Monodepth2-L, they are both scaled metrically. On the other hand, in the top plot of fig. A.2 showing the median value of disparity on pixels without LiDAR, there is a clear difference between Monodepth2-L, that is properly scaled, and S2D that converged to a random scale.

From a supervisory perspective, the depth network is stuck within a local minima where the photometric loss is mostly minimized apart on pixels with LiDAR data where it is clear the pixels are projected at different scale (see fig. A.1a). The amount of pixels with LiDAR data being very small, the erroneous photometric loss is on these areas is strongly dampened by the average over the whole image. So strongly dampened that that photometric loss between S2D and Monodepth2-L, respectively an overfitted and a metric model, almost perfectly match (see photometric loss fig. A.3). At the same time the LiDAR loss has already reached a minimum and the smoothness loss is not powerful enough to regularize this convergence behavior.

This convergence profile is expected because there are an infinite number of depth prediction scales for which the photometric loss is minimized over areas with no LiDAR data. Hence, there is an infinite number of local minima leading to this overfitted behavior. On the contrary, when using LiDAR self-supervision, only one depth prediction scale exists, the metric one, to obtain a globally coherent reconstruction. We propose a solution to this problem for S2D as well as ACMNet and NLSPN in appendix A.3.

A.2 Ablation of LiDAR: further analysis

In this section, we analyse results for learning setups not described in section 3.5.1. In particular, we continue to study the use of a pose network instead of PnP, with 'P', 'P+IMU' or 'P+L 4 +IMU' supervision. Overall, we observe very poor performances with the use of the pose network. First, we note that the use of photometric reconstruction only ('P' in table 3.2) leads to to relative depth for all networks (dark gray cells in the table 3.2). Indeed, this setup is well known as being an ill-posed problem [START_REF] Godard | Digging into selfsupervised monocular depth estimation[END_REF]Guizilini et al., 2020a;[START_REF] Wang | Learning depth from monocular videos using direct methods[END_REF][START_REF] Zhou | Unsupervised learning of depth and ego-motion from video[END_REF]; the pose provided by the monocular pose network can only be relative without additional information, and the depth estimation is thus unscaled as well.

To enforce a metric scale, we train the pose network with additional supervision in the form of an IMU prior ('P+IMU'), as explained in section 3.4.2. While this helps Mon-odepth2 and Monodepth2-L to correctly train, ACMNet, NLSPN and S2D architectures cannot reach good performances when a joint alignment between a pose and depth network is required (see appendix A.5 for more details).

With further supervision from the input LiDAR ('P+L 4 +IMU'), we can slightly increase results for Monodepth2 and Monodepth2-L as well as significantly boosting results for ACMNet compared to the ('P+IMU') setup (253% increase). However, similar to ACMNet, NLSPN and S2D in the ('P+L 4 ') setup (see section 3.5.1), NLSPN and S2D tends to overfit the input LiDAR. Hence, we use the same dilation procedure, as detailed in appendix A.3, for these models to avoid overfitting the LiDAR input.

A.3 Dilated LiDAR

Contrarily to Monodepth2 and Monodepth2-L, when trained with a pose network and LiDAR self-supervision, the networks ACMNet, NLSPN and S2D tend to overfit the Li-DAR. Most of the depth prediction is consistent but only relative, while depth prediction on pixels with LiDAR data is metric (see appendix A.1 for an example). The main difference between these architectures is that Monodepth2 and Monodepth2-L are supervised at multiple scales (1:1, 1:2, 1:4 and 1:8) while ACMNet, NSLPN and S2D are only supervised at the final resolution (1:1). Supervision at the lowest scale (1:8) artificially increases the number of pixels getting supervision from LiDAR as a LiDAR point spans multiple pixels when projected at low resolutions.

A.4 Pose scaling is critical when using a PnP pose estimation with photometric loss only

Most of the depth network's learning signal comes from the reconstruction of the target image from the source image. For a given scale, a correct photometric reconstruction corresponds to a unique pair of depth and pose. Hence, for one to be metrically scaled, both the depth and the pose have to be metric. However, the networks are initialized randomly and thus need to jointly align and converge to a metric scale.

On the other hand, when using PnP, the estimated pose is metric thanks to LiDAR data (see section 3.3.3), thus, only the depth network has to converge to the correct scale. However, this may produce a large difference in scale at initialization between the pose and depth, provoking unstable training for the depth network. Thus, one strategy we adopt to stabilize training is to divide the translation component of the PnP pose by 10 and multiply the depth prediction by 10 at inference time. Models trained with this strategy are indicated with the superscript * in table 3.2.

To circumvent these difficult training behaviors, we can use the PnP method to produce metric poses, and further enforce the collapse of the depth solutions to a metric scale with additional LiDAR self-supervision. This is consistently verified with the use of photometric and LiDAR supervisions (P+L 4 ) for each of the five architectures considered and leads to the best results compared to any other configuration (see table 3.2). These results demonstrate that the use of LiDAR both as self-supervision and in pose computation yields performance on-par or better than camera-only setups.

A.5 Poor performances for ACMNet, NLSPN and S2D when trained with P+IMU

Unfortunately, we cannot make these models converge to metric depth estimations. We describe below the combination of hyper-parameters we experimented with:

• Dividing the pose GT (translation magnitude) by 10, 100, 1000 and multiplying depth predictions consequently.

• Varying the contribution of the smoothness loss with λ ∈ {1e-1, 1e-2, 1e-3}.

• Varying learning rate from 1e-3 to 1e-5.

In all these cases, the networks still converge to bad quality depth estimations. We also investigate Monodepth2-L only supervised at the biggest scale to evaluate the influence of multi-scale training in the 'P+IMU' setup. We found that performances slightly decreased, but the network still converges to metric depth estimations. Hence, in this setup, multiscale training does not seem to be crucial.

Appendix B

Latents and Rays for an Implicit Scene Representation

B.1 Output embedding

In chapter 4, we considered Fourier features and learned query as alternative BEV query embeddings. Here we detail both of them.

Fourier features. The Fourier encoding has been proven to be well suited for encoding fine positional features [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Yifan | Input-level inductive biases for 3D reconstruction[END_REF]. This is done by applying the following on an arbitrary input z ∈ R:

where B is the number of Fourier bands, and f b is spaced linearly from 1 to a maximum frequency f B and typically set to the input's Nyquist frequency [START_REF] Jaegle | Perceiver IO: A general architecture for structured inputs & outputs[END_REF]. The maximum frequency f B and number of bands B are hyper-parameters. This Fourier embedding is applied on the normalized coordinate grid such that:

Learned. Another alternative, following common transformer practice [START_REF] Carion | End-to-end object detection with transformers[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] and most notably proposed by CVT [START_REF] Zhou | Cross-view transformers for real-time map-view semantic segmentation[END_REF], is to let the network learn its query of dimension d bev-query from data. However, this is memory intensive as it introduces h bev × w bev × d bev-query additional parameters to be optimized. In other words, the number of parameters grows quadratically to the resolution of the BEV map. For experiments using learned output query embedding, we use d bev-query = 32.

B.2 Additional attention qualitative analysis

We also provide additional analysis of attention maps for the multi-camera input shown in fig. When averaging over latent vectors, we observe that each attention head generally covers all directions. This suggests that the latent vectors contain most of the directional information and that the whole scene is attended across the latent. More rarely, an attention head's polar plot will be directional but will maintain a level of generality by being symmetrical.