
HAL Id: tel-04193785
https://theses.hal.science/tel-04193785v1

Submitted on 1 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Driving scene understanding from automotive-grade
sensors

Florent Bartoccioni

To cite this version:
Florent Bartoccioni. Driving scene understanding from automotive-grade sensors. Artificial Intel-
ligence [cs.AI]. Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALM018�. �tel-
04193785�

https://theses.hal.science/tel-04193785v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire Jean Kuntzmann

Interprétation de scène de conduite à l'aide de capteurs automobile

Driving scene understanding from automotive-grade sensors

Présentée par :

Florent BARTOCCIONI
Direction de thèse :

Karteek ALAHARI
Chargé de recherche HDR, INRIA CENTRE GRENOBLE-RHONE-
ALPES
Patrick PEREZ
Ingénieur HDR, Valeo.ai

Directeur de thèse

Co-directeur de thèse

Rapporteurs :
Vincent LEPETIT
PROFESSEUR ASSOCIE, ENPC ParisTech
Alexandre ALAHI
PROFESSEUR ASSISTANT, EPFL

Thèse soutenue publiquement le 28 avril 2023, devant le jury composé de :
Vincent LEPETIT
PROFESSEUR ASSOCIE, ENPC ParisTech
Alexandre ALAHI
PROFESSEUR ASSISTANT, EPFL
Matthieu CORD
PROFESSEUR DES UNIVERSITES, Sorbonne University
Aurélie BUGEAU
PROFESSEUR DES UNIVERSITES, Université de Bordeaux
Jean-Sébastien FRANCO
MAITRE DE CONFERENCES, Grenoble INP
Cordelia SCHMID
DIRECTEUR DE RECHERCHE, INRIA Centre de Paris

Rapporteur

Rapporteur

Examinateur

Examinatrice

Examinateur

Présidente

Invités :
Karteek ALAHARI
CHARGE DE RECHERCHE HDR, INRIA CENTRE GRENOBLE-RHONE-ALPES
Patrick PÉREZ
INGENIEUR HDR, Valeo.ai
Éloi ZABLOCKI
INGENIEUR DOCTEUR, Valeo.ai

i

Abstract

Autonomous driving technology has the potential to revolutionize transportation, making
it safer, more efficient, and more accessible for everyone. However, achieving full auton-
omy requires a complex system that can perceive and understand the environment in real-
time. In the context of mass-produced passenger cars, automotive-grade sensors, such as
cameras and few-beam LiDARs, are crucial components of such a system. Despite their
ability to provide rich and diverse information about the scene, these sensors also present
significant challenges. For instance, few-beam LiDARs may suffer from noise and sparsity,
while estimating the scene geometry from cameras only is difficult. To overcome these
challenges, this thesis proposes two novel approaches to leverage automotive-grade sen-
sors for driving scene understanding.

The first part of the thesis revisits the task of depth estimation from a monocular cam-
era; a key feature of autonomous systems that are often equipped with multiple indepen-
dent cameras. Existing methods either rely on costly LiDARs (32 or 64 beams), or only on
a monocular camera signal, which present various ambiguities. To circumvent these limi-
tations, we propose a new approach that combines a monocular camera with a lightweight
LiDAR, such as a 4-beam scanner, typical of today’s mass-produced automotive laser scan-
ners. Our self-supervised approach overcomes scaling ambiguity and infinite depth prob-
lems associated with camera-only methods. It produces a rich 3D representation of the
environment without requiring ground truth during learning. Moreover, as our approach
leverages sensors typical of automated cars on the public market, it finds direct applica-
tions in Advanced Driver Assistance Systems (ADAS).

The second part of this thesis presents a transformer-based architecture for vehicle and
driveable area segmentation in Bird’s-Eye-View (BEV) from multiple cameras. A setup
particularly challenging as both the geometry and semantic of the scene must be extracted
from 2D visual signals alone. Although BEV maps have become a common intermediate
representation in autonomous driving, real-time prediction of these maps requires com-
plex operations, such as multi-camera data extraction and projection into a common top-
view grid. These operations are usually performed with error-prone geometric methods
(e.g., homography or back-projection from monocular depth estimation) or expensive di-
rect dense mapping between image pixels and pixels in BEV (e.g., with MLP or attention).
The proposed model addresses these issues by using a compact collection of latent vectors
to deeply fuse information from multiple sensors. This results in an internal representation
of the scene that is reprojected into the BEV space to segment vehicles and driveable ar-
eas. We also provide evidence that the model also enables accumulating knowledge about
the scene over time directly in the latent space, paving the way for efficient reasoning and
planning.

The proposed models are validated on real-world datasets and prototype cars, demon-
strating the potential of utilizing automotive-grade sensors for driving scene understand-
ing. By addressing the challenges associated with these sensors, our approaches provide a
viable path towards their deployment in autonomous driving systems.

iii

Résumé

La technologie de conduite autonome a le potentiel de révolutionner les transports, les
rendant plus sûrs, plus efficaces et plus accessibles à tous. Cependant, atteindre une
autonomie totale nécessite un système complexe capable de percevoir et de comprendre
l’environnement en temps réel. Dans le contexte des voitures grand public produites en
série, les capteurs de qualité automobile, tels que les caméras et les LiDAR à peu de fais-
ceaux, sont des composants essentiels d’un tel système. Malgré leur capacité à fournir des
informations riches et diverses sur la scène, ces capteurs présentent également des défis
importants. Par exemple, les LiDAR à peu de faisceaux produisent un signal spatiale-
ment parcimonieu et bruité, tandis que l’estimation de la géométrie de la scène unique-
ment à partir de caméras est difficile. Pour surmonter ces défis, cette thèse propose deux
approches innovantes pour tirer parti des capteurs de qualité automobile pour la com-
préhension des scènes de conduite.

La première partie de la thèse revisite la tâche d’estimation de la profondeur à par-
tir d’une caméra monoscopique, une caractéristique clé des systèmes autonomes souvent
équipés de plusieurs caméras indépendantes. Les méthodes existantes reposent soit sur
des LiDAR coûteux (32 ou 64 faisceaux), soit uniquement sur un signal de caméra mono-
scopique, présentant diverses ambiguïtés. Pour contourner ces limitations, nous proposons
une nouvelle approche qui combine une caméra monoscopique avec un LiDAR léger, tel
qu’un scanner à 4 faisceaux, typique des scanners laser automobiles produits en série au-
jourd’hui. Notre approche auto-supervisée surmonte l’ambiguïté de mise à l’échelle et
les problèmes de profondeur infinie associés aux méthodes basées uniquement sur les
caméras. Elle produit une représentation 3D riche de l’environnement sans nécessiter de
vérité terrain pendant l’apprentissage. De plus, notre approche, tirant parti des capteurs
typiques des voitures automatisées sur le marché public, trouve des applications directes
dans les Systèmes d’Aide à la Conduite Avancés (ADAS).

La deuxième partie de cette thèse présente une architecture basée sur un transformer
pour la segmentation des véhicules et des zones praticables en vue aérienne (BEV) à partir
de plusieurs caméras. Une configuration particulièrement difficile car à la fois la géométrie
et la sémantique de la scène doivent être extraites des signaux visuels 2D uniquement.
Bien que les cartes BEV soient devenues une représentation intermédiaire courante dans
la conduite autonome, la prédiction en temps réel de ces cartes nécessite des opérations
complexes, telles que l’extraction de données multicaméra et la projection dans une grille
en vue de dessus commune. Ces opérations sont généralement effectuées avec des méth-
odes géométriques sujettes aux erreurs (par exemple, l’homographie ou la rétroprojection
à partir de l’estimation de la profondeur monoscopique) ou un mappage dense direct coû-
teux entre les pixels de l’image et les pixels en BEV (par exemple, avec MLP ou système
d’attention). Le modèle proposé traite ces problèmes en utilisant une petite collection de
vecteurs latents pour fusionner profondément les informations de plusieurs capteurs. Cela
résulte en une représentation interne de la scène qui est reprojetée dans l’espace BEV pour
segmenter les véhicules et les zones praticables. Nous fournissons également des preuves
que le modèle permet d’accumuler des connaissances sur la scène au fil du temps directe-
ment dans l’espace latent, ouvrant la voie à un traitement et une planification efficaces.

Les modèles proposés sont validés sur des ensembles de données du monde réel et des

iv

voitures prototypes, démontrant le potentiel d’utilisation des capteurs de qualité automo-
bile pour la compréhension des scènes de conduite. En relevant les défis associés à ces
capteurs, nos approches offrent une voie viable vers leur déploiement dans les systèmes
de conduite autonome.

v

Acknowledgements
Those close to me know my love for food and a PhD journey is a recipe that calls for a
mix of ingredients: mentorship, collaboration, friendship, inspiration, and so much more.
Every person I have crossed paths with has added a special flavor to this mix. Now let’s
indulge in this feast of gratitude, akin to a chef, but without the heat and occasional kitchen
disaster. And if anyone’s name was inadvertently missed, please chalk it up to my sleep-
deprived brain.

First, I want to acknowledge my supervisors, Patrick Pérez from Valeo.ai, and Karteek
Alahari from Inria. Patrick, I would like to express my immense gratitude for the trust
you’ve placed in me. Our chance encounter at Technicolor in Rennes has been nothing
short of a pivotal moment in my research journey. I still feel privileged to have witnessed
firsthand the transformation from an ambitious idea that is valeo.ai to a thriving research
hub of more than twenty bright minds. Your unwavering dedication and passion in nur-
turing this environment have been an inspiring spectacle, offering a profound model of
leadership and vision.

Karteek, my heartfelt thanks for your support, thoughtfulness and patience through-
out my PhD. You have been there for me every step of the way (all the way to New
Zealand!), guiding me through the complex maze of research and providing support when-
ever needed. Thank you, deeply, for your advice and guidance on this path.

I also can’t be grateful enough to you, Matthieu Cord, for teaching me to stand on my
own two feet - both literally and figuratively. I credit my strong legs and knowledge of
their preservation to you ;). Your weekly nudges have been like the zesty touch needed
to elevate the flavor of this recipe. Your constant encouragement has made a significant
difference in my thesis. Above all, beyond your high standards and drive for excellence, I
always felt “bienveillance”, a quality that goes beyond kindness and goodwill, and I want
to express my sincere thanks for embodying it.

Another individual who has left an indelible mark on my research journey is Eloi
Zablocki. Eloi, your exceptional communication and writing abilities has been nothing
short of invaluable. Through your mentorship, I’ve learned how to articulate my ideas
more clearly, structure my thoughts effectively, and enhance my overall communication
skills. You are an exceptional individual who has had an immeasurable impact on my
journey. I loved working with you, and I am glad I can continue doing it. Thank you for
everything, Eloi.

To all four of you, I thank you for putting together such an esteemed jury for my de-
fense. I cannot say how proud and honored I am to defend in front of researchers whom
I admire and whose works have influenced academic path. To the jury members, thank
you for the time you’ve dedicated to review my manuscript and attend the defense. The
opportunity to present my work before such a distinguished panel is something I hold in
the highest regard.

My heartfelt gratitude to everyone at Inria, for making this more than just an academic
expedition. You all created an atmosphere of camaraderie and fun that’s second to none.
Alexandre, TheGreatZouzou, often my first hello in the morning, you will be remembered
for our friendly discussions but above all for turning a simple hike into a Spartan race :’).
Mathilde, Valentin and Minttu, I’ve been fortunate to share an office with such wonderful
colleagues. Mathilde, thank you for the vibrant and positive energy, also thanks to you my
“to-do list before I die” now counts diving in the shimmering waters of Mexico. Minttu,
thank you for sharing the best hiking apps I could find, I couldn’t become a full-fledged
"grelou" tho. Valentin, I wish you good luck in San-Francisco, your constant cheerfulness

vi

has always brought a lively atmosphere to our shared office. Theo, our discussions were
a treat, even if you did forget your swimsuit at a pool event, which still puzzles me! Ro-
main, thank you for introducing me to time bomb, I will remember to never trust you
again ;) (even though we won the last round). Juliette, our ’SNCF ticket dealer’ and PhDs’
’Gentille Organisatrice’, I still have to share the focaccia recipe btw! Zhiqui, Michael, Em-
manuel, Loic, and Thomas R., you were our own little pocket of sunshine, bringing joy and
kindness to every interaction. Houssam, for always making our minds work around ethi-
cal issues during coffee breaks and initiating a chess frenzy among the team. Julien Zhou,
for your unlimited arsenal of GIFs and your part in forming the Loosers team. Hadrien, I
admire your sportsmanship at LoL, a feat to be admired. Enrico, you brought the Italian
touch to our team, supplementing our chats with some “gesticolare” and perfect imitations
of the typical French “euh, je sais pas”. Thomas Lucas, thank you for unveiling the world
of split keyboards to me. Thomas de Mine, your corn-starch ’trick’ for caccio e pepe was
cheeky, but I’ve got to admit, despite oneself, it worked wonders. Nathalie and Julien, for
the amazing retreats you organized. Masha, who else could make me discover bubble tea
and their.. intriguing... relationship with goats? Ricardo self-proclaimed “la machina”,
the master of chaos, thank you for always making things more fun ;). Bruno, with your
singing, I’m expecting your name on a billboard any day now! Good luck with your future
entrepreneurial ventures. To Timothee, Jules, Leva, Lina, Bulent, Khue, Margot, Heesung,
Pierre, Jocelyn, Nikita, Nassim, and Pierre-Louis, I’m grateful to have shared this journey
with you all.

During these, not three but four, years at Valeo.ai, I had the privilege to meet extraordi-
nary interns, PhD students, engineers, and researchers who added a unique flavor to my
PhD. Thank you, Andrei, our resident wise owl, for your endless knowledge that is like an
all-you-can-read buffet of papers. Thank you for your kindness, time, and expertise. Thank
you for accompanying and advising me on the technology transfer projects. I loved collab-
orating with you since my internship :). Bjorn, Corentin, Laura, Léon, Victor L., Antonin,
and Loïck, sharing coffees, beers, and ‘planches’ in Paris with you guys was like a mini
holiday in the middle of the month for me! Mickael, thank you for our lengthy debates
about world models and generative models, I “forecast” that there are many more to come
;). Oriane, thank you for being our local social event planner and for teaching the proper
elbow-lifting etiquette in Prague, I treasure those six-month memories. Alexandre, Gilles,
and Renaud, our 3D expert team, I am grateful for your insights, wisdom, willingness to
help, and the time taken to answer all of my questions. Spyros, thank you for our discus-
sions, your dedication to the GPUs, keeping them always fired up, was both admirable and
a bit scary! Tuan-Hung, the grandmaster of domain adaptation and the last samurai of the
“protein team”, Eduardo, thank you for making our team a colorful and lively mosaic with
your vibrant personality. Cédric, I can’t wait to put our discussions on coding practices
into action. Yihong, thank you for sharing your knowledge on detection, tracking and tra-
jectory forecasting. Thank you, Pascal and Ouardia, your help with administrative tasks
during my internship and at the start of my PhD was like a safety net, always ready to
catch me. Alain and Ouafa, you’ve taken the torch, and it’s comforting to have you on the
team. Thibaut, Sophia, and Dennis, it’s a pleasure to have met you, I wish you all the luck
with your internships and future endeavors. Thank you, Serkan, for making me discover
the field of norms and regulations. Gabriel, the Python sensei, thank you for guiding me
through the labyrinth of Python best practices and setting up our dear cluster. Thank you,
Tristan, for always keeping our cluster operational. Thank you to Heidi, Simon, David,
Victor B., Arthur, Charles, Maxime, Antoine, Himalaya, Huy, and Maximilian, I’m glad
our paths intertwined in this journey.

vii

I would also like to thank Ahmet, thank you for your kindness and assistance during
my internship in Prague. Your support made a huge difference and I appreciate it deeply.
Thank you Ondra, Giorgos, and the "flu" people for welcoming me during these months.
Also thank you, David Pichardie, for your trust and tutoring at ENS Rennes, for opening
up the world of scientific research to me. Thank you to Killian, with whom I completed my
’prépa’, pursued my journey at ENS Rennes, and collaborated on my first research project.
I extend my gratitude to all the professors I had the pleasure of learning from.

I am also incredibly grateful for the circle of close friends and family that have stood
by me on this journey. Nico, Tristan, my childhood comrades, no matter the miles between
us, our bond remains unaltered. Your presence is my safe haven, every problem dissipates
in the freshness of your company. Alexandre, my comrade from ’prépa’, your unwavering
support over the years has been a significant influence in my life. Our motto, ’Food and
Dive’, sums up our shared joys perfectly. Caro, thank you for being my accidental match-
maker who brought the best person into my life. Thank you also for being the person who
gets us moving, Jeanne and I, homebodies that we are ;)! Thank you to the Grenoble’s doggy
team ;), Alizée, Matthias, Alicia and Yann, you are an endless local source of happiness.

To my family, the ones who instilled in me a drive to excel, who enveloped me with
love, care, laughter, who molded me into the person I am today, and inspired me with their
lives. Your influence and my thankfulness are beyond words.

Jeanne, my partner in all things, we’ve shared every single part of this journey. Your
presence at my side has been a constant reassurance during the tough times, a safe harbor
amidst the storm. My very own French Riviera. The highs and the lows, they have all been
made better because you’ve been by my side. And in times of success, sharing our joyous
highs, you’ve always been my cherished co-celebrant. You already know everything that
I would like to say but, thank you for being an integral part of this work, thank you for
bringing Scarlett in my life, thank you for your love and for your support <3.

And finally, a heartfelt thank you to my parents, the unfaltering beacon of support and
love that has illuminated every step of my life, for whom words will never be enough to
express my gratitude. This thesis is for you.

ix

Contents

Abstract i

Résumé iii

Acknowledgements v

1 Introduction 1
1.1 Motivation and context . 1
1.2 From ADAS to autonomous driving . 1
1.3 Typical sensors of autonomous vehicles . 3
1.4 AD software stack . 5
1.5 Contributions . 7

1.5.1 Outline . 7
1.5.2 Publications and implementations . 8

2 Deep learning applied to autonomous driving 9
2.1 Tasks and public datasets . 9

2.1.1 Perception . 9
2.1.2 Motion prediction . 11

2.2 Challenges . 14
2.2.1 Modalities of very different natures 14
2.2.2 Robustness to faulty sensor and visual impediments 17
2.2.3 Training with few or no annotations 18
2.2.4 Transformation of representation . 19

2.3 Representing a dynamic scene . 20
2.3.1 In the camera image plane . 20
2.3.2 In the 3D space . 22
2.3.3 In the Bird’s-Eye-View . 22
2.3.4 Implicit . 23

2.4 Positioning . 25

3 Monocular metric depth estimation with a few-beam LiDAR 27
3.1 Introduction . 28
3.2 Related work . 31
3.3 LiDARTouch framework . 34

3.3.1 Depth network . 34
3.3.2 Self-supervision objectives . 35
3.3.3 Pose estimation . 37

3.4 Experimental protocol . 37
3.4.1 Dataset and evaluation metrics . 37
3.4.2 Notations, ablations and external baselines 38

3.5 Influence of a touch of LiDAR . 39
3.5.1 Ablation of LiDAR . 39

x

3.5.2 LiDAR self-supervision variants . 41
3.6 Comparison against related works . 42
3.7 Alleviating the infinite-depth problem . 44

3.7.1 Catastrophic Distance Rate (CDR) metric 44
3.7.2 Quantitative analysis . 45
3.7.3 Qualitative analysis . 46

3.8 Implementation details . 47
3.9 Conclusion . 49

3.9.1 Summary of contributions . 49
3.9.2 Perspectives . 49

4 Latents and Rays for an Implicit Scene Representation 51
4.1 Introduction . 51
4.2 Related work . 52

4.2.1 BEV semantic segmentation . 52
4.2.2 Incorporating geometric priors in Transformers 54

4.3 LaRa: Our Latents and Rays Model . 54
4.3.1 Input modelling with geometric priors 55
4.3.2 Building latent representations and deep fusion 55
4.3.3 Generating BEV output from latents 56

4.4 Experiments . 56
4.4.1 Evaluation details . 56
4.4.2 Comparison with previous works . 58
4.4.3 Extension to the driveable area segmentation task 59
4.4.4 Model ablation and sensitivity to hyper-parameters 59
4.4.5 Study of attention . 61
4.4.6 Qualitative Results . 64

4.5 Extension to temporal modelling . 65
4.5.1 Additional modules . 65
4.5.2 Results . 65

4.6 Conclusion . 66
4.6.1 Summary of contributions . 67
4.6.2 Perspectives . 67

5 Conclusions and future directions 69
5.1 Conclusions and discussions . 69
5.2 Future directions . 69

5.2.1 Handling multiple types of cameras and different intrinsics. 69
5.2.2 Leveraging Simulation . 70
5.2.3 Learning an implicit representation of the world 70

A Monocular metric depth estimation with a few-beam LiDAR 73
A.1 Overfitting to input LiDAR . 73
A.2 Ablation of LiDAR: further analysis . 73
A.3 Dilated LiDAR . 74
A.4 Pose scaling is critical when using a PnP pose estimation with photometric

loss only . 78
A.5 Poor performances for ACMNet, NLSPN and S2D when trained with P+IMU 78

xi

B Latents and Rays for an Implicit Scene Representation 79
B.1 Output embedding . 79
B.2 Additional attention qualitative analysis . 79

xiii

List of Figures

1.1 The VaMP driverless car . 2
1.2 Sensors’ specificities. 4
1.3 Sensor setup of the Valeo Drive4U prototype. 5
1.4 Schematic illustration of the classic modular pipeline of autonomous driving 6

2.1 Examples of annotations from the WoodScape dataset 10
2.2 Common representations for the motion prediction task. 13
2.3 Illustration of a simple Convolutionnal Neural Network (CNN)-based clas-

sifier . 14
2.4 Illustration of fully convolutional networks 15
2.5 Representations of point clouds . 16
2.6 Schematic illustration of the self-attention layer 16
2.7 Depth estimation artefact from a glare . 17
2.8 Illustration of the Perceiver IO architecture 20
2.9 Illustration of a self-supervised learning system for depth estimation 21
2.10 Illustration of the resolution problem that the Bird’s-Eye-View representa-

tion faces . 24

3.1 Different LiDAR densities . 30
3.2 Illustration of the self-supervised image-only depth estimation framework . 31
3.3 Illustration of the fully-supervised depth completion framework 32
3.4 Overview of our LiDARTouch learning framework 33
3.5 Depth networks with different image-LiDAR fusion strategies 34
3.6 Comparison of different supervision schemes for the ACMNet architecture 43
3.7 Selecting vehicles to compute the CDR metric 45
3.8 Plot of the CDR metric for various thresholds τ 46
3.9 Mitigation of the infinite-depth problem . 47
3.10 Qualitative comparison of LiDARTouch with other existing frameworks . . 47

4.1 Overview of our LaRa architecture . 54
4.2 Qualitative results on complex scenes . 60
4.3 Sensitivity study of LaRa to hyper-parameters 61
4.4 Input-to-latent attention study . 62
4.5 Input-to-latent attention study — influence of the input embedding 63
4.6 Measuring the attention consistency across cameras 63
4.7 Qualitative results on complex scenes . 64
4.8 Overview of Lara temporal . 66
4.9 LaRa meta-architecture and extension to other tasks 67

A.1 Predictions of a model overfitting to LiDAR input 74
A.2 Statistics for the depth and pose outputs over a training run with a pose

network and (‘P+L4’) supervision . 75
A.3 Loss values over a training run with a pose network and (‘P+L4’) supervision 76

xiv

A.4 Visual difference between vanilla and dilated LiDAR 77

B.1 Six input camera images coming from the 360-degree camera rig of nuScenes 80
B.2 Input-to-latent attention study — average over latents 80
B.3 Input-to-latent attention study — average over heads 81
B.4 Input-to-latent attention study — all the attention heads of a latent vector . 82
B.5 Input-to-latent attention study — all the latent vectors for an attention head 83

xv

List of Tables

2.1 Overview of autonomous driving datasets 12

3.1 High-level positioning of LiDARTouch vs depth estimation and depth com-
pletion methods . 28

3.2 Pose estimation ablation . 40
3.3 Variants comparison of the LiDAR self-supervision 41
3.4 Comparison against monocular depth estimation methods 42
3.5 Comparison against supervised and naively self-supervised depth comple-

tion schemes . 43

4.1 Intersection-over-Union (IoU) for vehicle segmentation on nuScenes 59
4.2 Driveable area segmentation . 59
4.3 Ablation study for the input and output query embedding 60
4.4 Impact of ray embedding on performance . 61
4.5 Impact of ray embedding on cross-camera attention consistency 64
4.6 Results of temporal integration . 66

xvii

List of Abbreviations

AD autonomous driving 4, 5, 9, 13, 14, 18, 19

BEV Bird’s-Eye-View xiii, 7, 13, 15, 18–20, 22–24, 51, 65–67, 71

CNN Convolutionnal Neural Network xiii, 7, 14, 15, 18, 70

FPN Feature Pyramid Network 15

MDP Markov Decision Process 13

RL Reinforcement Learning 13

1

Chapter 1

Introduction

1.1 Motivation and context

With the advent of powerful computing technologies and advances in sensor systems, the
development of autonomous vehicles gained momentum in the 2010s. Major car manufac-
turers, technology companies, and start-ups began investing heavily in the development of
autonomous vehicles, and the technology quickly moved from the realm of science fiction
to a tangible reality.

One of the key drivers of this growth was the recognition that autonomous vehicles had
the potential to dramatically improve driving safety and efficiency. By removing human
error from the equation, autonomous vehicles could help to reduce the number of acci-
dents and fatalities on the roads; make transportation more efficient, by reducing traffic
congestion and allowing vehicles to travel closer together at higher speeds; help improve
the mobility of people with disabilities and elderly people not able to drive anymore.

On safety alone, the facts are striking: in 2016, about 1.4 million people died in car
accidents and 50 million were injured. Roads are now the eighth leading cause of death
for all age groups, surpassing HIV/AIDS, and the leading cause of death for children and
young adults aged between 5 and 29 years [WHO, 2016]. From a societal perspective,
it has been estimated that in the USA alone, motor vehicle crashes in 2019 cost $340 bil-
lion in economic activity, and nearly $1.4 trillion of societal harm when considering the
loss of life and decreased quality of life from injuries [NHTSA, 2019]. In addition, more
than 90% of these road crashes are caused by human error. According to the US National
Highway Traffic Administration, in 2017, alcohol-impaired-driving fatalities accounted for
29% of overall deaths, distraction for 8.5%, and speeding-related fatalities for 26% of total
fatalities [NHTSA, 2017]. Similar statistics hold in a non-negligible number of other coun-
tries [OECD, 2017]. Although this does not come without issues and limits, having all cars
with automatized (fully or partially) driving could significantly reduce the number of road
accidents and their severity.

1.2 From ADAS to autonomous driving

Advanced Driver Assistance Systems (ADAS) are ubiquitous in today’s vehicles and have
already helped save lives and prevent injuries since 1950 [Galvani, 2019]. Early ADAS fo-
cused on vehicle stabilization systems, e.g., anti-lock braking (ABS) and traction control
(TCS). Nowadays, with the advances of embedded electronics, it is common to find vehi-
cles providing functionalities such as adaptive cruise control, obstacle detection or lane-
following.1

1https://caradas.com/adas-statistics - [Last accessed on 2023-1-2]

https://caradas.com/adas-statistics

2 Chapter 1. Introduction

FIGURE 1.1: Interior of the VaMP driverless car [Mercedes-Benz, 2016], one of the first actual au-
tonomous car that completing in 1995 a 1,758 kilometres (1,092 miles) trip in (almost) complete
autonomy

Building on the early developments in ADAS, the PROMETHEUS project (PROgraMme
for a European Traffic of Highest Efficiency and Unprecedented Safety, 1987–1995) [Dick-
manns, 2002], a research programme headed by car manufacturers from six European
countries, pioneered autonomous driving. This project involved over forty research es-
tablishments as well as automotive and industrial partners. Its aims were diverse, each
raising important research questions: improving road circulation without building new
roads; increasing safety and reducing the number of accidents despite an increasing num-
ber of vehicles; enabling maximum mobility while boosting efficiency; achieving all these
goals while simultaneously preserving the environment. To this end, the research project
was formulated in seven sub-projects, covering a wide range of problems such as “driver
assistance by computer systems”, “methods and systems of artificial intelligence”, “custom
hardware for intelligent processing in vehicles” and “traffic scenario for new assessment
and introduction of new systems”. This project paved the way for further research and de-
velopment in the field, and today many of the technologies that were developed as part of
the project are now being used in our vehicles including lane keeping, collision avoidance,
autonomous cruise control.

The PROMETHEUS project concluded with a 1,758 kilometres (1,092 miles) trip in 1995
from Munich, Germany to Odense, Denmark, in one of the first truly autonomous cars
(fig. 1.1). Driving in free lanes, convoy driving with distance keeping depending on speed,
and lane changes left and right have been performed autonomously from two black-and-
white video-cameras (one facing forward and the other backward) and a small neural net-
work only. These operations were demonstrated in heavy traffic and on highways; some-
times at speeds above 175 kilometres per hour (109 mph) on the Autobahn, a highway
without speed limits. Overall, the trip was realized with almost no human intervention,
achieving a 95% autonomous driving.2

Starting from 2004, the US Defense Advanced Research Projects Agency (DARPA) spon-
sored a series of autonomous vehicle competitions known as the DARPA Grand Chal-
lenge [DARPA, 2004]. The goal of these challenges was to encourage the development
of autonomous vehicles and raise public awareness of the technology. In 2004, 15 teams
from universities and private companies participated in the competition: no vehicle could
complete the 142-mile course through the Mojave Desert. Despite the many technical chal-
lenges, the challenge continued to evolve over the next few years, becoming more complex

2https://www.youtube.com/watch?v=I39sxwYKlEE - [Last accessed on 2023-02-08]

https://www.youtube.com/watch?v=I39sxwYKlEE

1.3. Typical sensors of autonomous vehicles 3

and more closely resembling real-world driving scenarios (driving with passing cars on
the opposite lane, avoiding static obstacles, braking at a stop line). As autonomous vehi-
cles move closer and closer to becoming a reality on our roads and highways, the impact of
the DARPA Grand Challenge cannot be overstated: it helped to bring autonomous driving
out of the lab and raise public awareness.

Since then, investment and development in this area have skyrocketed, with major au-
tomotive companies and technology startups entering the market with their own unique
approaches. More recently, in 2016, the National Highway Traffic Safety Administration
(NHTSA) adopted the six-level classification of automated driving systems introduced by
the Society of Automotive Engineers (SAE):

• Level 0 – The human driver does all the driving.

• Level 1 – Automated system(s) on the vehicle can take control over one functional-
ity (e.g., adaptive cruise control, ABS, automatic emergency brake assist, and lane-
keeping or centering). The human driver constantly oversees operations.

• Level 2 – Automated system(s) on the vehicle can take control over multiple func-
tionalities to aid the driver (e.g., highway assist, autonomous obstacle avoidance,
and autonomous parking). The human driver constantly oversees operations.

• Level 3 – Automated system(s) can perform all aspects of the driving task under
specific circumstances, but the human driver must be ready to take back control when
the automated system requests (e.g., highway chauffeur).

• Level 4 – Automated system(s) can perform the driving task in certain environments
and under certain conditions without any human supervision (e.g., automated valet
parking).

• Level 5 – The automated system can perform all driving tasks, under all conditions
(the steering wheel and pedals commands become optional)

Each level can itself be further decomposed with what is called an ‘operational de-
sign domain’ (ODD). ODDs refer to specific driving scenarios and conditions under which
autonomous vehicles (AVs) are designed and thoroughly tested to operate safely and effec-
tively. These domains may include specific road types, weather conditions, speed limits,
and other parameters that define the operating limits of the AV. Driving on a highway in
broad daylight is very different from driving on a mountain road at night, both in terms of
terrain complexity and visual aspects. How to adapt to different domains and being robust
to harsh weather conditions are two essential research directions for AVs to operate in all
conditions.

1.3 Typical sensors of autonomous vehicles

From the smallest level of automation, automated vehicles must evolve in complex and
changing environments, posing the necessity to acquire information about the scene state
(e.g., street layout, interactions and types of agents, etc.). To this end, automated vehicles
are equipped with a wide range of sensors.

Two of the most critical sensors utilized in autonomous vehicles for object detection
and avoidance are radar and LiDAR. Radar operates by emitting radio waves that bounce
off objects in the environment and measuring the reflected signals. The velocity of one
object is estimated thanks to the Doppler effect, while the distance orientation of objects

4 Chapter 1. Introduction

(1) Radar (2) 64-beam LiDAR (3) Camera

Range 250m 150m 250m

Resolution Average Goods Excellent

Works in dark Excellent Excellent Mediocre

Works in very
bright light Excellent Excellent Good

Works in
snow/fog/rain Excellent Average Poor

Provides color
and texture Poor Poor Excellent

FIGURE 1.2: Overview of the sensors typically powering the system of autonomous vehicles and
their specificities. Source: Delphi

can be derived from the correlation between emitted and received signals (if the radar has
enough antennas). This information, still very noisy at this stage, can be further processed
to detect other vehicles, pedestrians, and other objects on the road. LiDAR, on the other
hand, uses laser light to create a 3D map of the environment. The LiDAR sensor emits
pulses of laser light and measures the time it takes for the light to return after hitting an
object. Often, LiDAR are equipped with an internal rotating mirror which enables scanning
in a full surround manner (one revolution is called a ‘sweep’). This information can be used
to construct a highly accurate 3D representation of the environment, allowing the system
to reason about the surroundings of the vehicle.

Along with radar and LiDAR, cameras are also a critical, and nowadays ubiquitous,
component in the perception system of autonomous vehicles. One of the primary advan-
tages of using cameras over other sensors is their ability to capture colour and texture;
necessary to identify objects such as road signs and traffic lights, specifically designed for
human visual perception. Cameras generally also provide a high level of resolution, which
is essential for the detection of small or distant objects.

Overall, when it comes to building an autonomous vehicle, selecting the right set of
sensors is an important decision. Each type of sensor has pros and cons that must be care-
fully considered (see fig. 1.2 for an overview). Radar, for example, is excellent at detecting
objects at a distance and can work well in adverse weather conditions, but has limited
resolution and is subject to interferences, making it difficult to accurately identify objects.
LiDAR, on the other hand, provides high-resolution information about the environment,
but it can be expensive and can struggle in rainy conditions (the laser scatters on droplets
of waters). Cameras are an attractive option due to their ability to detect colour and texture,
but they can be impacted by weather conditions and tend to struggle in low-light condi-
tions. In this regard, how to get the best from each sensor in order to optimize the efficiency
as well as the safety and overall performance of the autonomous system is a research topic
of great importance for the autonomous driving (AD) community.

Ultimately, the choice of sensors depends on the specific requirements of the applica-
tion the autonomous vehicle is being used for. Typical vehicles currently on the robot-taxi
market, such as those developed by Cruise and Waymo, employ cutting-edge sensor tech-
nologies and feature highly redundant systems to ensure safety and reliability. These ve-
hicles are equipped with a vast array of sensors, including multiple cameras, radars, and
dense LiDARs (32 or 64-beam). This over-engineered approach results in vehicles that are

https://getcruise.com/
https://waymo.com/

1.4. AD software stack 5

FIGURE 1.3: Sensor setup of the Valeo Drive4U prototype. It relies on cost-effective sensors such
as cameras, radar and minimal LiDAR for surround perception of the scene; ultrasonic sensors for
parking assist and self-parking systems; GPS and IMU for self-positioning relative to the surround-
ings. Source: Valeo

significantly more expensive, with price tags often exceeding hundreds of thousands of
dollars. In contrast, systems aimed at the public market, such as those developed by Tesla,
Wayve, and Valeo, employ a more cost-effective approach to autonomous driving. These
vehicles mostly rely on less expensive sensors such as cameras, radar and minimal LiDAR
(4-beam instead of the expensive 32 or 64-beam) as illustrated in fig. 1.3. An important
research challenge is how to achieve the same degree of safety that the over-engineered ap-
proach offer, but with cost-effective sensors. This question is at the center of chapter 3. In
particular, we address how to combine an extremely sparse 4-beam LiDAR with a camera
to get competitive performance with respect to a much denser 64-beam LIDAR.

1.4 AD software stack

The design of the autonomous driving software stack determines the overall performance
and reliability of the vehicle. Two popular approaches for developing this software are the
modular software stack and the end-to-end deep learning approach. The modular AD soft-
ware stack is a traditional approach that involves breaking down the problem into smaller,
manageable components, each of which is tackled by a separate module. Typically, parts
of this kind of system rely on expert-knowledge and hard-coded rules. On the other hand,
end-to-end deep learning approaches seek to directly map sensor inputs to control outputs
(angle of steering wheel and gas pedal), bypassing the need for intermediate representa-
tions or modules. This kind of system is entirely learned from data, expert-knowledge only
takes the form of inductive bias.

The modular AD software stack is composed of multiple, independent components
that work together to enable autonomous driving. It typically follows a “Perceive, Predict,
Plan, Act” architecture, see fig. 1.4 for an illustration. The perception module gathers and
processes sensory data from camera, radar, and LiDAR sensors. The prediction module
takes the outputs from the perception module and predicts the behaviour of other vehicles,
pedestrians, and other objects in the driving environment. Based on these predictions, the

https://tesla.com/
https://wayve.ai/
https://https://www.valeo.com/en/valeo-ai/

6 Chapter 1. Introduction

Where are things ?
■
■
■
■

■
■
■
■

How things will move ?
■
■
■
■

How should we move ?
■
■

FIGURE 1.4: A schematic illustration showing the classic modular pipeline of autonomous driving.

planning module makes decisions about the ego-vehicle’s trajectory and speed based on
its surroundings and objectives (e.g., security, comfort, etc.). At the end of the stack, the
control module ensures that the vehicle follows the planned trajectory by controlling the
actuators such as the throttle, brake, and steering. Additionally, to integrate prior knowl-
edge, a mapping module can provide pre-recorded information on the environment to
each of these modules (e.g., road layout, position of signs and traffic light, etc.) [Liu et al.,
2020a]. Although an HD-map greatly simplifies the task of autonomous driving by pro-
viding important information on the environment, predicting it from a large quantity of
data and updating it over long horizons of time is not trivial. On the other hand, relying
on a pre-recorded map constrains the vehicle to operate in a pre-mapped area. Estimating
the elements composing an HD-map from the on-board sensors only and in real-time is an
active research topic [Casas et al., 2021; Li et al., 2022b].

While this modular perspective offers a certain level of interpretability, the interdepen-
dencies between modules can lead to cascading or compounding errors: if a perception
algorithm incorrectly identifies a road sign, it can lead to incorrect behaviour from the
subsequent planning and control modules. How to model uncertainty at each step of the
modular stack such that each module can interpret it and use it to correct its own pre-
dictions remains an important challenge for the research community. Furthermore, it can
also be more difficult to maintain and update, as changes to one module may affect oth-
ers, requiring careful coordination and testing to ensure the system continues to function
as intended. Likewise, the modular approach can also be less scalable, as the number of
modules and their interactions can grow rapidly as the system becomes more complex.
Additionally, such approaches may have higher computational overhead, as each module
must process its inputs and outputs, potentially leading to slower system performance.

In comparison to the modular approaches, the end-to-end approaches are about unifying
the perception and planning modules, or even up to the control module, into a single, in-
tegrated system [Bojarski et al., 2016; Casas et al., 2021; Chitta et al., 2021; Hu et al., 2022a;
Kendall et al., 2019]. This may offer several key advantages over the modular approach.
Firstly, the end-to-end approach eliminates the need for separate training of different mod-
ules; the network is trained as a whole, learning to perform multiple tasks simultaneously.
Moreover, it makes for a more efficient and flexible pipeline, as the network can adapt to
changing scenarios and additional data without the need to intervene at different levels of
the system. It may also alleviate the risk of cascading or compounding errors, as the trans-
formation from raw sensor data to final output is seamless. However, end-to-end deep
learning approaches also have their own set of research problems, such as the need for
efficient learning techniques to limit the amount of labelled data required to train such sys-
tems, or the demand for methods to understand and interpret the internal workings of the
neural network [Jacob et al., 2022; Zablocki et al., 2022; Zemni et al., 2023]. Despite these

1.5. Contributions 7

challenges, the end-to-end approach is becoming increasingly popular in the development
of autonomous vehicles.

1.5 Contributions

1.5.1 Outline

After a detailed overview of the different ways deep learning frameworks can be applied to
autonomous driving in chapter 2 (the tasks, the datasets, the methods and the challenges),
we present the contributions of this thesis.

In this chapter (chapter 1), we have highlighted a number of research problems crucial
for the autonomous driving task. Our focus on the following research questions (RQs) is
the core of this thesis:
RQ1. How to leverage inexpensive sensors (e.g., camera, minimal 4-beam LiDAR, etc.)?
RQ2. How to fuse information from multiple sensors?
RQ3. How to alleviate the need for annotated data?
RQ4. How to estimate a map of the environment in real time from raw sensors?

• In chapter 3, we present ‘LiDARTouch’ a new method that combines a monocular
camera with a minimal 4-beam LiDAR input, typical of laser scanners currently used
in the automotive industry. We introduce a new self-supervision scheme (RQ1) and
study various network architectures to encode this very sparse LiDAR input (RQ2).
We show that the use of a few-beam LiDAR alleviates critical issues that monocu-
lar camera-only methods suffer from; namely scaling ambiguity and infinite depth
problems. This work demonstrates that an inexpensive sensor setup (4-beam LiDAR
+ camera) can reach competitive performances with respect to more costly systems
(10× more) relying on 64-beam LiDARs. Moreover, our system, while not requiring
any annotation (RQ3), also reaches competitive performances with respect to fully
supervised approaches that are trained with dense ground-truth depth that are ex-
pensive to acquire.

• In chapter 4, we present ‘LaRa’ for Latents and Rays, a general, transformer-based
architecture for scene understanding. In this work, LaRa is applied on a car with six
cameras to predict binary vehicle segmentation and driveable area segmentation in
the Bird’s-Eye-View (BEV) space (RQ1, RQ4). There are three important parts to the
architecture. The first one is, the input composed of visual information, essentially
feature maps generated by a Convolutionnal Neural Network (CNN), and geometric
information, which is a ‘ray embedding’ that encodes the 3D position and orienta-
tion of each pixel that gives the network a natural understanding of 3D relationships
between camera views. In a second stage, these visual and geometric information are
then compressed into a small collection of latent vectors, acting as an “internal rep-
resentation” of the scene. Thirdly, this compact, but rich, representation is then re-
projected in a space relevant to the end task (discrete BEV space for instance). This
work demonstrates that some of the geometric and semantic information of a complex
scene, captured and aggregated from many sensors, can be efficiently encoded in a
very compact, but rich, latent representation.

• In chapter 5, we conclude the thesis by summarizing our main contributions and
presenting perspectives for future work.

8 Chapter 1. Introduction

1.5.2 Publications and implementations

• Chapter 3 is based on the paper “LiDARTouch: Monocular metric depth estimation
with a few-beam LiDAR”, Florent Bartoccioni, Éloi Zablocki, Patrick Pérez, Matthieu
Cord, Karteek Alahari, Computer Vision and Image Understanding, CVIU 2023 ([Bar-
toccioni et al., 2023]). The code is available at https://github.com/F-Barto/LiDARTouch.

• Chapter 4 is based on the paper “LaRa: Latents and Rays for Multi-Camera Bird’s-
Eye-View Semantic Segmentation”, Florent Bartoccioni, Éloi Zablocki, Andrei Bur-
suc, Patrick Pérez, Matthieu Cord, Karteek Alahari, Conference on Robot Learning,
CoRL 2022 ([Bartoccioni et al., 2022]). The code is available at https://github.com/
valeoai/LaRa.

The content of this work has been deployed on a prototype autonomous driving sys-
tem at Valeo with only a change in the learning rate, demonstrating its adaptability and
robustness to new conditions.

https://github.com/F-Barto/LiDARTouch
https://github.com/valeoai/LaRa
https://github.com/valeoai/LaRa

9

Chapter 2

Deep learning applied to autonomous
driving

Whether it is equipment manufacturers (e.g., Valeo, Mobileye), existing actors providing
robot-taxi services (e.g., Zoox, Waymo, Cruise) or companies running for high driving au-
tomation (e.g., Wayve, Tesla), actors in the automotive and transport space increasingly
make use of deep learning to power their autonomy software stacks. In this chapter, sec-
tion 2.1 first introduces the tasks commonly found at the heart of autonomous systems and
the public datasets that allow us to study them. Section 2.2 details the main challenges
deep architectures face in addressing these tasks. Next, section 2.3 delves into how to rep-
resent dynamic scenes; that is, how to learn a representation of the world accurate enough
to support reasoning, and interaction with the environment.

2.1 Tasks and public datasets

The software that equips autonomous vehicles must enable them to drive safely in complex
and dynamic scenes. There are several ways in which this task can be approached and
decomposed.

In the typical modular AD stack, the main modules are perception (where are things?),
forecast (how things will move?), plan (how should we move?) and act (how do we best
follow the plan?). In this thesis, we focus on methods that fall under the perception and
prediction umbrella.

First, section 2.1.1 presents the perception tasks, which are about embedding all the infor-
mation necessary to drive including: detecting road users and their interactions; extracting
the road geometry (straight, curved, etc.) and its boundaries (drivable area) from physical
or semantic delimiters (e.g., curbs or lane markings); detecting and associating all traffic
control devices such as signs, lights, and arrows markings to the relevant driving path.

In a second time, the prediction tasks, consisting of predicting the future state of the
dynamic environment, are presented in section 2.1.2. The borders of the prediction module
with the perception and the planning stages can often be blurry. In this regard, section 2.1.2
overviews the various forms that the parameters to predict can take.

2.1.1 Perception

Perception is an essential component of automatized vehicles, enabling them to under-
stand their environment and make informed decisions. This section discusses various per-
ception tasks common in the autonomous driving context to address elementary needs:
what are the objects surrounding the ego-car, and where are they? In practice, utilizing a
combination of tasks and modalities (LiDAR, images, and other sensors), is necessary for
developing safe and reliable autonomous vehicles.

https://https://www.valeo.com/en/valeo-ai/
https://www.mobileye.com/solutions/super-vision/
https://zoox.com/
https://waymo.com/
https://getcruise.com/
https://wayve.ai/
https://tesla.com/

10 Chapter 2. Deep learning applied to autonomous driving

Front Camera & Semantic Segmentation

Front Camera Left Camera Right Camera Rear Camera

Lidar 3D View

3D Box Lidar View Lidar Bird-View

FIGURE 2.1: Examples from the WoodScape dataset [Yogamani et al., 2019] where the vehicle is
equipped with four fisheye cameras covering 360° along with a roof-mounted 64-beam LiDAR.
Annotations for the tasks of 3D object detection, depth estimation and semantic segmentation are
superimposed over the modalities’ visualization.

Where are the objects surrounding the ego-car? First, autonomous systems require an
accurate spatial understanding of their surroundings to plan and act safely, and the capac-
ity to estimate depth is often used to achieve this [Philion and Fidler, 2020; Srikanth et al.,
2019; Zeng et al., 2019]. Depth estimation is the task of estimating the distance between any
element of the scene and the sensor. This information is crucial for determining the relative
positions of objects in the scene and understanding the 3D structure of the environment.
For such applications, two lines of approach exist to infer depth in a scene, depending on
the available data. First, LiDAR-based completion from one or multiple dense LiDARs
(e.g., 32 or 64 beams) [Jaritz et al., 2018; Park et al., 2020; Tang et al., 2020; Xu et al., 2019]
which uses an additional image signal to increase the number of 3D points in the LiDAR
scan of the scene. This is an approach most suitable for typical “over-engineered” Level-
5 cars equipped with multiple dense LiDAR (32 beams or more). Secondly, camera-only
estimation methods, either stereo [Chang and Chen, 2018; Kendall et al., 2017] or monoc-
ular [Casser et al., 2019a; Godard et al., 2019, 2017; Guizilini et al., 2020a,b; Kuznietsov
et al., 2017; Mahjourian et al., 2018; Wang et al., 2018; Yin and Shi, 2018; Zhou et al., 2017],
estimate the distance to objects from the RGB signal only. This is a more inexpensive ap-
proach in terms of sensor cost, but generally less accurate than a LiDAR-based method that
provides a physical measurement of the distance.
What are the objects surrounding the ego-car? Knowing the different objects and their
positions is crucial for an autonomous vehicle to plan its trajectory and react to its sur-
roundings. This is usually tackled by semantic segmentation or object detection or a com-
bination of both (e.g., panoptic segmentation systems). These two approaches and their
limitations are presented in more detail in section 2.3.1. Semantic segmentation [Philion
and Fidler, 2020; Ronneberger et al., 2015; Vobecky et al., 2022] is the task of classifying
each pixel in an image or point in a point cloud into one of several predefined categories,
such as “road”, “pedestrian”, “car”, etc. An example of a semantic segmentation mask is il-
lustrated in the top-right image of fig. 2.1. Object detection [Carion et al., 2020; Misra et al.,
2021; Redmon et al., 2016; Tan et al., 2020] is the task of identifying and locating objects in
the image plane (2D detection) or in the 3D space (3D detection). The goal of object detec-
tion is to produce a set of bounding boxes that tightly enclose objects of interest, along with
class labels for each object (see fig. 2.1 for an example of 3D detection). While 2D detection
only has to fit the pixels of the object in the box, 3D detection needs to infer the entire shape
of the object (often only partially visible), its 3D position as well as 3D orientation.

2.1. Tasks and public datasets 11

AD-related perception tasks. Other important perception sub-tasks for autonomous driv-
ing include lane detection [Chen et al., 2022], which is essential for the vehicle to stay in
its lane and navigate safely; traffic signs and traffic lights recognition [Mishra et al., 2022],
which is crucial for the vehicle to understand the rules of the road and obey traffic laws;
pedestrian detection and behaviour recognition [Belkada et al., 2021; Mordan et al., 2021],
crucial to safely navigate in urban areas and cities among vulnerable road users. These
tasks, when combined with others, extract very rich information from the environment
that are useful for downstream algorithms (prediction, planning and control).
Datasets and benchmarks. Several public datasets are commonly used for training and
evaluating these perception tasks, including classic datasets such as Cityscapes [Cordts
et al., 2016] and KITTI [Geiger et al., 2012], as well as more recent ones like Argoverse [Chang
et al., 2019], WoodScape [Yogamani et al., 2019], nuScenes [Caesar et al., 2020] or Waymo
Open [Sun et al., 2020]. These datasets provide high-quality images, LiDAR point clouds,
and annotations that can be used to train and evaluate deep learning models for the afore-
mentioned tasks. Figure 2.1 illustrate some of these modalities and annotations present in
the WoodScape dataset [Yogamani et al., 2019]. We also give an overview of these datasets
in table 2.1.

2.1.2 Motion prediction

In autonomous driving, it is not only necessary to perceive the current state of the environ-
ment, but also to anticipate how it will change in the future. That is the role of methods
categorized among “prediction” tasks. It allows the vehicle to forecast the future actions
of other agents in the scene, such as vehicles and pedestrians, and to anticipate potential
hazards. That being said, the forecasting pipeline must overcome numerous challenges, in-
cluding: modelling the interdependence between agents’ actions in the scene; integrating
the constraints imposed by road geometry and traffic rules; modelling the inherent uncer-
tainty in future prediction; handling the partial observability, occlusions and disocclusions
of agents.

To this end, deep learning has been leveraged in several stages of the forecasting mod-
ule, most notably at the input and output levels. In particular, two input representations
gained popularity in modern benchmarks for driving scene future prediction [Caesar et al.,
2020; Chang et al., 2019; Ettinger et al., 2021]: the vectorized and the rasterized represen-
tations. The vectorized approach is essentially a big table where the scene is described by
numbers: the lanes are represented as polygons, a set of 3D coordinates; agents and their
trajectories as a sequence of 3D coordinates along with values for their attributes such as the
size, the category (e.g., car, bus, pedestrian, etc.). A 3D rendering of a vectorial represen-
tation is provided in fig. 2.2b. On the other hand, the rasterized approach represents lanes
and agents as images from a virtual top-view. Typically, each channel of the image repre-
sents an element or a characteristic of an element in the scene. For example, in the work
of Bansal et al. [2018], traffic lights are represented by grayscale encoding where each lane
center is coloured with the brightest level for red lights, intermediate gray level for yellow
lights, and a darker level for green or unknown lights. Also, speed limits are represented
with a single channel, where lane centres are coloured in proportion to their known speed
limit. Figure 2.2a illustrates how the road layout as well as its rules, namely speed limits,
traffic lights, and agents in the scene are represented. Although capable of representing
most of the major elements that influence the scene dynamic, these input representations
are often computed offline. Usually, the full temporal context (even the future) is avail-
able to correctly detect and identify objects in the scene, and manual corrections frequently
supplement these offline predictions. While this provides an upper-bound performance

12 Chapter 2. Deep learning applied to autonomous driving

TABLE 2.1: Overview of autonomous driving datasets. We present several datasets commonly
used to develop and evaluate models for the different tasks discussed in section 2.1. For each
dataset, we give the number of samples, where one sample is one recording of the scene from every
sensor (e.g., one sample in nuScenes contains a LiDAR scan and the six images from each camera).
We also indicate which sensors are fitted on the car, the different tasks for which annotations are
available, as well as the visual variations that the dataset contains in addition to the standard "clear
sky in daylight".

Dataset Samples Sensors Annotations
night/

rain

KITTI [Geiger et al., 2012] 15k
forward camera
LiDAR

Depth
Segmentation
Detection
Flow
Road layout

No/No

Cityscapes 3D [Cordts et al., 2016] 20k forward camera
Depth
Segmentation
Detection

No/No

Argoverse [Chang et al., 2019] 44k
ring of cameras
LiDAR

Depth
Segmentation
Detection
Road layout
Ground Height

Yes/Yes

DDAD [Guizilini et al., 2020a] 13k
ring of cameras
LiDAR

Depth No/No

nuScenes [Caesar et al., 2020] 400k
ring of cameras
LiDAR
radar

Segmentation
Detection
Road layout

Yes/Yes

Waymo Open [Sun et al., 2020] 230k
front and sides cameras
LiDAR

Segmentation
Detection
Human skeleton

Yes/Yes

ONCE [Mao et al., 2021] 1M
ring of cameras
LiDAR

Detection Yes/Yes

WoodScape [Yogamani et al., 2019] 10k
ring of fisheye cameras
LiDAR

Depth
Segmentation
Detection
Sensor soiling

No/No

for prediction algorithms, this perfect representation, devoid of any uncertainty, is a far cry
from the online conditions faced by automated vehicles.

At the output level, the most commonly-used forecasting representation on these bench-
marks are trajectory sets, which also suffer from severe limitations: their parameterized
nature constrains the class of future distributions that can be predicted, and trajectories
cannot represent the space that the vehicle will occupy as its shape is not encoded (which
is necessary to model shape-shifting vehicles like articulated bus or excavators).

Instead, a general solution to dynamic scene forecast necessitates an encoding of the
world, learnable from the raw sensors signals, that is compact and yet rich enough to
support reasoning, planning, and interaction with the environment. Ideally, the learned
representation should enable inference of current and future states of all key objects in the
scene, whether from known categories or from new ones. In short, it requires the repre-
sentation of the scene to contain all the contextual information necessary for forecasting,
directly from sensors. In this line of thought, several works aim at designing and training

2.1. Tasks and public datasets 13

Roadmap Speed limits

Traffic lights Vehicles

(A) Rasterized (B) Vectorial

FIGURE 2.2: Illustration of the representations commonly used as input for the motion prediction
task as defined on public benchmark [Caesar et al., 2020; Chang et al., 2019; Ettinger et al., 2021].
Here, (B) is a 3D visualization of the vectorial data. Credits to Bansal et al. [2018] and Ettinger et al.
[2021].

holistic end-to-end driving systems that ingest raw signals and output either (1) a unified
intermediate representation that can fully support planning and control [Casas et al., 2021;
Chitta et al., 2021] or (2) directly driving actions [Hu et al., 2022a; Kiran et al., 2020] for AD.

The probabilistic BEV occupancy prediction, close in spirit to rasterized representa-
tions, has recently gained a lot of interest as an intermediate representation. BEV occu-
pancy prediction is the task of estimating a probability map that indicates the likelihood of
occupancy for each grid cell in the BEV representation. It allows fusing information from
multiple modalities into a common representation, naturally handles uncertainty and sup-
port planning. More specifically, the future prediction in the BEV space takes the form of
a “motion flow” which can directly be used as a cost map by the planning pipeline [Casas
et al., 2021; Mahjourian et al., 2022]. More recent datasets for future prediction adopted this
representation (e.g., Waymo Open [Mahjourian et al., 2022], nuScenes [Caesar et al., 2020])
and numerous papers were published on how to predict and use it, e.g., [Bansal et al., 2018;
Casas et al., 2021; Chitta et al., 2021; Hu et al., 2021; Zeng et al., 2019].

When driving actions are directly estimated, the system is usually based on imitation
learning and reinforcement learning. Based on Markov Decision Process (MDP) [Sutton
and Barto, 1998], Reinforcement Learning (RL) explicitly models the temporal behaviour
of an agent that interacts with a dynamic environment through perception, actions and
rewards, and that tries to maximize its expected future cumulative reward (expected “re-
turn”). As such, RL mathematically relies on temporal predictions of a completely or par-
tially observed dynamic Markovian model. Short-term forecast, e.g., over one time step of
the time-discretized system, is also intrinsically part of the RL model through the MDP’s
dynamics, that is the probabilistic distribution over the next state of the agent conditioned
on the value of the current state and selected action. Learning this one-step probabilistic
prediction function remains an open-problem for driving environments.

14 Chapter 2. Deep learning applied to autonomous driving

2.2 Challenges

While deep learning is a powerful tool, the challenges that come with its use in this AD
context are many. The task of creating the driving software stack of an autonomous ve-
hicle is strewn with many challenges, such as the need to learn from data with few or no
annotations, or being robust to faulty sensors and visual impediments. This section delves
into some of these challenges and explores the various approaches proposed to overcome
them.

2.2.1 Modalities of very different natures

When it comes to applying deep learning to autonomous driving, one of the biggest chal-
lenges is dealing with inputs of very different natures. For example, one might have to
process an image from a camera, a point cloud from a LiDAR, or energy spectrums from
a radar. Hence, different architectural specificities are needed to handle these types of
modalities.

FIGURE 2.3: Illustration of a simple CNN-based classifier.1Here, a bank of simple pattern detectors
are applied to an image of a “C” letter and produce a collection of feature maps. Next, the linear
classifier aggregates information from each detector output and makes its prediction. The detector
at the top row, representing an extremity, is the most discriminative feature between the letter “C”
and “D”, hence the most “active” detector for the image.

Processing images. The most popular method to process images from cameras are CNNs.
A CNN is formed by successive “layers” of artificial neurons, each layer transforming its
input via a collection of localized linear 2D filters followed by piece-wise non-linearities,
also called “activation functions”. Each filter can be seen as a trained local pattern de-
tector. Consequently, each layer ingests a stack of 2D detected features (“feature maps”)
and outputs another one (possibly of different dimensions and a different number of fea-
tures). The deeper in the network, the larger is the spatial extent (“receptive field”) of the
produced pattern detector. These detectors usually outperform hand-crafted feature ex-
tractors. These networks can extract features from images that, further down, enable the
identification of objects and other relevant information. CNNs can be supplemented with
a final “decision” layer (e.g., a linear projection with a logistic function) to create a stan-
dalone network (e.g., a “classifier”) or used as a “backbone”; that is, a CNN producing
high-level features for downstream blocks of the deep architecture. Figure 2.3 illustrates a

1Courtesy of https://atcold.github.io/pytorch-Deep-Learning/fr/week03/03-1/ - [Last accessed on
2023-01-19]

https://atcold.github.io/pytorch-Deep-Learning/fr/week03/03-1/

2.2. Challenges 15

simple 1-layer CNN-based classifier. In practice, many more layers are used. Specifically,
CNNs such as ResNet [He et al., 2016], EfficientNet [Tan and Le, 2019], or ConvNeXt [Liu
et al., 2022b], are very popular backbones in deep architectures and typically use between
15 to 100s of layers. To predict in the image space, a common architecture type is the fully
convolutional network in an encoder-decoder fashion, that is, a network only composed of
convolutional layers. The encoder, generally built on top of a backbone network, produces
feature maps at multiple levels of resolution from the input image. These feature maps are
then fed into the decoder, a series of convolutional and upsampling layers. This produces
a pyramid of feature maps at multiple scales, which enables the retention of fine details
or detection of objects of various sizes. In particular, the U-Net [Ronneberger et al., 2015]
(initially developed for biomedical image segmentation) and Feature Pyramid Networks
(FPNs) [Lin et al., 2017; Tan et al., 2020] (typically used in detection pipelines) are among
the most used fully convolutional architectures (see fig. 2.4 for illustrations).

(A) U-Net (B) Feature Pyramid Network (FPN)

FIGURE 2.4: Illustration of the fully convolutional networks U-Net [Ronneberger et al., 2015] and
FPN [Lin et al., 2017]. Most notably, the U-Net makes the prediction at the highest level, while the
FPN makes a prediction at each scale, which are then combined.

Processing point clouds. On the other hand, the methods to process point clouds are
more diverse and can be divided into three main categories: (1) multi-view (2) volumetric
and (3) raw or point-based methods (see fig. 2.5 for a representation of each). Multi-view
based methods transform the point cloud into 2D images by projecting the point cloud into
multiple virtual views [Su et al., 2015], or the camera plane [Chen et al., 2017] (when one is
available), a range image [Biasutti et al., 2019] (spherical projection of a LiDAR point cloud
on its intrinsic 2D lattice) or BEV map. Then, the point cloud now encoded as an image
of some form, a traditional 2D CNN can be applied to process the signal. Volumetric-
based methods discretize the continuous 3D space into a volumetric grid and then process
it by 3D convolutions [Maturana and Scherer, 2015]. Such approaches, constrained by the
volumetric resolution and the computational cost of 3D convolutions, need sparsity opti-
mization like octrees [Riegler et al., 2017] or sparse convolutions [Choy et al., 2019]. On the
other hand, point-based methods [Boulch et al., 2020; Qi et al., 2017; Thomas et al., 2019],
allow the network to maintain the fine-grained structure of the point clouds. It is to be
noted that these three representations are not exclusive and can be combined [Xu et al.,
2021].

Transformers as a general architecture. In contrast to these modality-specific architec-
tures, often requiring domain expertise, the Transformer is a very general type of architec-
ture [Vaswani et al., 2017]. The Transformer architecture was initially developed to address
the limitations of previous deep learning models for natural language processing tasks. In
particular, early models relied on recurrent or convolutional layers which have difficulties
capturing longer-range dependencies, making it difficult to process long sequences of data,
such as a book. The Transformer architecture can extract complex dependencies in long se-
quences of data thanks to its self-attention mechanism, which allows the model to directly

2https://github.com/risteon/blender_kitti - [Last accessed on 2023-01-19]

https://github.com/risteon/blender_kitti

16 Chapter 2. Deep learning applied to autonomous driving

(A) LiDAR BEV (B) LiDAR front cam (C) LiDAR voxelized (D) LiDAR raw

FIGURE 2.5: Representations of point clouds. Courtesy of (A) Chen et al. [2017] (B) Qi et al. [2018],
(C) and (D) blender-kitti.2Note that (C) and (D) are coloured with semantic classes.

attend to any part of the input sequence, regardless of its position in the sequence. The
self-attention layer (fig. 2.6) takes as input a set of vectors and each vector is transformed
into three separate vectors: a query, a key, and a value (“QKV triplet”). The main idea
is to create a learnable, high-dimensional, indexing system from the input vectors where
the queries ask “this is the information I am looking for”, the keys “this is the informa-
tion available” while the value vector represents the actual information. More formally,
the query and key vectors are used to compute an “attention score”, which is a measure
of how much the query vector “matches” the key vector. When computed over the full set
of input vectors, it creates an “attention map” that indicates the importance of each input
vector with respect to the others. The final output is computed as a weighted sum over
value vectors using the attention map weights.

FIGURE 2.6: Schematic illustration of the self-attention layer [Vaswani et al., 2017]. The input (in
gray) is transformed into query (Q), key (K), and value (V) vectors which are used to model com-
plex dependencies thanks to an attention system and form the output (in dark pink). Adapted
from [Jaegle et al., 2022]

Tokenization and positionnal embeddings. One of the main advantage of Transformers
is that their only requirement is for the input to be organized as a set of vectors, called
‘tokens’. For example, in vision transformers [Dosovitskiy et al., 2021; Liu et al., 2021],
images are divided in small patches of pixels (e.g., 16× 16 in [Dosovitskiy et al., 2021]) that
are flattened (i.e., reorganized to be 1D) and embedded by a linear projection. These ‘patch
embeddings’ are the tokens given to the transformer. Point clouds can also be tokenized,
either in their raw form where each point is considered a token or by first voxelizing it (i.e.,
akin to 2D patches but in 3D) [Lu et al., 2022].

Another important concept used in transformers is the positional embedding. When
combined with the input signal (typically by addition or concatenation), it is a way to

2.2. Challenges 17

introduce an inductive bias and help the network focus on extracting specific dependen-
cies over others. These embeddings can take various forms and are defined according to
the properties of the input signal. For example, if the input is a multi-dimensional grid
(e.g., an image, a video, a voxelized volume) spatial knowledge can be introduced by aug-
menting the input tokens with an embedding of axis coordinates (x and y coordinates for
an image) [Jaegle et al., 2022]. This can help the network extract better spatial relation-
ships [Bartoccioni et al., 2022; Guizilini et al., 2022b; Jaegle et al., 2022]. For multi-modal
setups, an embedding for each modality can be considered, helping the network to better
identify features from each modality leading to better fusion of information [Jaegle et al.,
2022]. Moreover, when dealing with multiple views, an embedding of the cameras’ pa-
rameters, notably their positions and orientations, is sufficient for the network to extract
complex correspondences between views. For instance, Yifan et al. [2022] and Guizilini
et al. [2022b] used this principle for multi-view stereo depth estimation without expensive
matching volumes [Kendall et al., 2017]. In particular, we show in chapter 4 that augment-
ing each pixel with their ray embedding gives the network a natural understanding of 3D
relationships between views.

2.2.2 Robustness to faulty sensor and visual impediments

FIGURE 2.7: Depth estimation artefact from a glare, highlighted in red, on an example from the
KITTI dataset [Geiger et al., 2012]. Depth map predicted using the method from Godard et al.
[2017].

Sensors can be faulty or obstructed, leading to inaccurate or missing information. One
of the biggest challenges in autonomous driving is ensuring robustness to these issues.
For example, cameras have limitations such as sensitivity to lighting conditions, which can
make it difficult for the network to accurately identify objects in nighttime condition or in
the presence of glares (see fig. 2.7).

In particular, sensors directly exposed to the external environment are likely to be
soiled. One way to deal with such a case is to use a soiling detection system [Uricar et al.,
2019] combined with a physical actuator (e.g., a jet of water to remove dirt on the sensor).

Alternatively, sensor fusion is a common approach to mitigate these issues using the
principle of redundancy. This involves combining data from multiple sensors to create a
more accurate and reliable representation of the environment. Ways to fuse data include
early and late fusion schemes. In early fusion, the data is combined before being processed;
the different modalities are typically concatenated at the very beginning of the deep ar-
chitecture. For the late fusion approach, the data is first processed separately and then
combined at the very end (e.g., by multiplying the probabilities from both streams). More
recently, deep multi-stage fusion has become a favoured approach with deep learning ar-
chitectures. This can be implemented in different ways: projecting the data of multiple
sensors into a single intermediate representation, allowing for more accurate and efficient

18 Chapter 2. Deep learning applied to autonomous driving

sensor fusion [Harley et al., 2022; Hendy et al., 2020] or directly fusing information from in-
termediate feature maps between both modalities [Chitta et al., 2022; Li et al., 2022a; Zhao
et al., 2021].

2.2.3 Training with few or no annotations

Collecting and annotating large amounts of data is a crucial aspect of training deep learning
models for autonomous driving. However, it is time-consuming and costly to collect and
annotate enough data to train a model for a specific task or context. For example, the depth
ground-truth in the KITTI dataset [Geiger et al., 2012] required a $60k LiDAR combined
with a stereo camera.

One very common approach to alleviate this problem is transfer learning; using a pre-
trained model on a related task or dataset and fine-tuning it for the specific task or con-
text. Often, CNNs are pre-trained for the classification task on ImageNet [Deng et al.,
2009] while pre-training for 2D detection seems to be a promising avenue for BEV predic-
tions [Wang et al., 2022].

An alternative is to leverage the large amounts of data that cars collect while driving
using self-supervised learning. The idea behind self-supervised learning is to learn from the
structure of the data itself, rather than relying on explicit annotations. Typically, the model
is supervised on a pretext task that does not require manual labelling. The aim is to learn
representations that transfer well to downstream tasks of interest. A representation that
“transfers well” is one that significantly reduces the amount of annotation required to reach
a set level of performance. Most works in self-supervised learning for vision [Caron et al.,
2021; Gidaris et al., 2021; Grill et al., 2020; He et al., 2022; Henaff et al., 2021; Komodakis
and Gidaris, 2018] were developed to learn on still images in well-defined datasets: only
one or few objects are centred in the image; the distribution of classes is close to uni-
form; images are small. In these conditions, simple augmentations (e.g., random cropping,
affine transformation, colour jittering) are enough to learn a representation that “transfers
well”. However, the performance of these methods degrades when applied directly on AD
datasets [Chen et al., 2021].

In the context of self-supervised learning for AD, popular frameworks include exploiting
the fact that the car moves, using geometric principles as supervisory signals and leverag-
ing other modalities than images. For example, FlowE [Xiong et al., 2021] builds on top of
BYOL [Grill et al., 2020] but instead of a contrastive objective at the image level they train
on a pixel-wise objective that makes features equivariant to optical flow (i.e., an object is
still the same object even if it moves). This representation, when fine-tuned for semantic
segmentation, outperforms the fully-supervised model with only 10% of the labelled data.
Another line of work built on insights from predictive coding theories [Harley et al., 2019;
Lal et al., 2021], where the model is trained to predict what a scene would look like from
different viewpoints (e.g., the next few frames). This objective constructs a representation
that is able to “imagine” occluded information (‘amodal completion’), track objects over
time (features change smoothly over time), and improve 3D object detection.

Apart from pre-training tasks, even the downstream task can be self-supervised. For
instance, self-supervised depth estimation from monocular cameras recently became very
popular [Casser et al., 2019a; Godard et al., 2019, 2017; Guizilini et al., 2020a]. Leveraging a
set of consecutive frames, this paradigm predicts neighbour views by means of view pro-
jection using predicted dense depth maps and the relative changes in pose. The model is
trained by minimizing a photometric reconstruction; a view well predicted entails a correct
estimation of the depth map and poses. These approaches are discussed in more detail in
the following sections, and also in chapter 3.

2.2. Challenges 19

Some works also exploit the synchronization between LiDAR and cameras on typical
AD vehicles. In particular, Vobecky et al. [2022] use synchronized images and LiDAR point
clouds to generate pseudo-groundtruth for semantic segmentation learning without man-
ual annotations. Also based on LiDAR-cameras synchronization, the work of Sautier et al.
[2022] distils self-supervised pre-trained image representations into 3D models. This al-
lows pre-training a model operating on 3D point clouds that transfer well on semantic seg-
mentation and object detection tasks. Knowing the calibration of each sensor, correspon-
dences can be established between pixels and 3D points, and thus, a contrastive objective
to impose 3D point features and 2D pixel features to match; infusing semantic knowledge
in the 3D features.

2.2.4 Transformation of representation

As discussed, in the context of AD, predictions can be diverse: e.g., 2D or 3D boxes, seg-
mentation masks, BEV map, 3D voxels, or even graphs to represent the pedestrians’ skele-
ton . This poses the need to transform between representations. Cameras being the most
frequent sensor fitted on cars, these predictions are often made from camera images only.
Predicting 3D voxels of 3D skeletons for pedestrians from pixels only is far from being triv-
ial and may require to make additional estimations (e.g., depth, 2D detection, etc.), making
the system prone to compounding errors.

In this aspect, Transformer architectures [Vaswani et al., 2017] are, again, becoming very
popular because of their generality and impressive performance, and are now a preferred
choice to infuse information from one representation to another. Similar to self-attention,
the cross-attention mechanism [Vaswani et al., 2017] is at the core of this wide adoption.
While self-attention is a mechanism that allows the model to focus on specific parts of a
single input sequence of data, cross-attention, on the other hand, allows the model to focus
on the relationships between different sequences of input data. For example, cross-attention
can be used to establish relationships between pixels in the camera images and pixels in a
Bird’s-Eye-View image. This can be used to project image features into BEV features [Chitta
et al., 2021; Zhou and Krähenbühl, 2022] without the need for dense depth estimation. The
same scheme has been used for: 2D or 3D supervised object detection that does not need
complex hand-crafted detection pipelines [Carion et al., 2020; Misra et al., 2021]; learn-
ing object-centric representations in a self-supervised way, obtaining segmentation masks
without explicit supervision for segmentation [Locatello et al., 2020]

A Transformer-based architecture that has recently gained popularity in the field of
deep learning is the Perceiver [Jaegle et al., 2021] and its extension, the Perceiver-IO [Jaegle
et al., 2022]. The basis of the architecture (illustrated in fig. 2.8) is to first project, using
a cross-attention, the input tokens into a small collection of latent vectors. This set of la-
tent vectors is typically much smaller than the inputs, which makes it cheap to process.
To make the final prediction, the latent representation is then re-projected into the space
of output. Such architectures excel at extracting complex and long-range dependencies,
even from very large inputs and outputs. For example, it allows for optical flow and multi-
view stereo depth estimation without the need for expensive cost volumes aggregating
the matching costs over different possible disparities, usually required to find correspon-
dences. In contrast, all the computation and matchings are done in this intermediate ab-
stract space [Guizilini et al., 2022b; Jaegle et al., 2022].

20 Chapter 2. Deep learning applied to autonomous driving

FIGURE 2.8: Illustration of the Perceiver IO architecture [Jaegle et al., 2022]. A first cross-attention
layer projects the input vectors into a small collection of learnable, abstract, latent vectors. The final
prediction is obtained by a re-projection of the latent representation into the output space. There
are two main advantages to this type of architecture: (1) the size of the internal representation is
decoupled from the inputs and outputs, hence information can be extracted from this compressed
space in a very efficient manner, (2) the input and output spaces can be of very different nature, the
latent array will be the “bridge” between the two.

2.3 Representing a dynamic scene

This section provides an overview of different deep-learning based approaches to repre-
sent dynamic scene in the context of autonomous driving, namely: in the image plane
(2D), as a 3D point cloud or as a set of 3D boxes, in the Bird’s-Eye-View plane, or in a high-
dimensional implicit representation. Dynamic scenes present a unique challenge in the
context of autonomous driving due to a constantly changing environment and conditions
that vehicles must operate in (e.g., traffic, road infrastructure, weather changes). Unlike
static scenes, dynamic scenes are composed of many moving elements such as vehicles,
pedestrians, and other obstacles, which can interact with each other in complex and uncer-
tain ways. This constant motion and unpredictability can make it difficult for autonomous
driving systems to accurately perceive and predict the behaviour of these elements, leading
to potential safety hazards. The ability to accurately represent and understand a dynamic
scene is crucial for the development of safe and reliable autonomous vehicles.

2.3.1 In the camera image plane

One of the main approaches taken by the computer vision community to represent dy-
namic scenes has been to use estimations in the 2D image plane. Such a system is usually
conceptualized in three parts, namely the ontological, geometric and dynamic aspects.

Ontology (semantic segmentation and detection). The ontological aspect relates to the
conceptualization of things composing a dynamic scene; in the words of Gruber [1995], it
is “an abstract and simplified view of the world we want to represent”. Broadly speaking,
an ontology is defined using domain-expert knowledge and entirely defines what are the
passive and active agents, their functional attributes, their relationships and possible inter-
actions. Specifically, semantic segmentation [Ronneberger et al., 2015; Vobecky et al., 2022]
and object detection [Carion et al., 2020; Redmon et al., 2016; Tan et al., 2020] are ontological
tools that make it possible to represent domain knowledge in a form that can be used by a

2.3. Representing a dynamic scene 21

machine. While being powerful tools, they still face many challenges. First, the ontology
defined by the expert must be complete, it must encode everything that is needed to drive,
i.e., what is not described in the ontology does not exist. The world we live in changes
continually, and it must be possible to add new concepts to the ontology without having
to modify its foundations. Moreover, the ontology expressed in the 2D plane of the camera
image does not provide a full understanding of the 3D space.
Geometry (depth estimation). A spatial understanding of the surroundings is required to
plan and act safely, and the capacity to estimate depth is often central to achieving this [Phil-
ion and Fidler, 2020; Srikanth et al., 2019; Zeng et al., 2019]. For such applications, two lines
of approach exist to infer depth in a scene: LiDAR-based completion and camera-only es-
timation methods. LiDAR-based depth completion methods produce depth maps from one
or multiple dense LiDARs (e.g., 32 or 64 beams) [Jaritz et al., 2018; Park et al., 2020; Tang
et al., 2020; Xu et al., 2019] and essentially interpolate the scene structure from the input sig-
nal. However, these approaches rely on expensive setups, and often require several steps
of post-processing to produce the final supervisory signal [Geiger et al., 2012], making the
cost for annotation acquisition very high. In recent years, there has been an increased inter-
est in exploring methods for self-supervised, camera-only, depth estimation [Casser et al.,
2019a; Godard et al., 2019, 2017; Guizilini et al., 2020a; Mahjourian et al., 2018; Wang et al.,
2018; Zhou et al., 2017]. Self-supervised learning methods, leveraging widely available,
low-priced sensors, and not requiring any human annotation, are particularly scalable with
the data acquired by a vehicle fleet. In this thesis, self-supervised depth estimation from
a monocular camera is at the core of our work in chapter 3. The central idea of such ap-
proaches is to combine pose and depth predictions to project a neighbouring source image
into the target view. The objective is based on photometric reconstruction, a surrogate task
aimed at resynthesizing a target image, given neighbouring source images with different
viewpoints [Godard et al., 2019; Ma et al., 2019; Zhou et al., 2017]. The underlying intu-
ition is that to correctly resynthesize the target view from the source one, both the depth
and pose estimation must be accurate. An overview of this learning process is illustrated
in fig. 2.9.

FIGURE 2.9: Illustration of a self-supervised learning system for depth estimation.3A depth and
a pose networks are used to synthesize the current frame from a temporally adjacent frame. The
photometric loss between the original and synthesized images is minimized during training. This
approach is driven by the intuition that to correctly resynthesize the target view, both the depth and
pose estimation must be accurate.

3Adapted from https://medium.com/toyotaresearch/self-supervised-learning-in-depth-part-1-of-2-74825baaaa04

https://medium.com/toyotaresearch/self-supervised-learning-in-depth-part-1-of-2-74825baaaa04

22 Chapter 2. Deep learning applied to autonomous driving

Dynamic (optical flow). Identifying moving objects in the scene can provide critical in-
formation about the environment, such as the presence of other vehicles, pedestrians, and
bicycles. Objects that are in motion are more likely to be hazards, as they may be un-
predictable and difficult to avoid. In the context of 2D representation, movement is often
represented using optical flow, that is, the task of determining the motion parameters of
pixels (or moving parts) between consecutive frames in a video [Jaegle et al., 2022; Xiong
et al., 2021].

Nonetheless, prediction in the image plane like depth and optical flow do not come without
their limitations. For example, cameras have a limited field of view and can only capture
a small portion of the environment at any given time, such 2D outputs do not allow rep-
resenting or imagining what is not seen. Likewise, objects or obstacles can be occluded,
which can make it difficult to accurately identify and track them from a 2D representation
only.

2.3.2 In the 3D space

Predictions can also be made in the 3D space directly. Point clouds are well-suited for rep-
resenting dynamic scenes as they provide a rich representation of the 3D geometry of the
environment, including the shape and location of objects. To represent dynamic scenes,
a series of point clouds captured over time can be used [Wang and Tian, 2022]. Specifi-
cally, motion information, named 3D ‘scene flow’ [Jund et al., 2022], is similar to 2D optical
flow and can be estimated based on consecutive point cloud frames. Also, by analysing
the changes in the point cloud over time, it is possible to identify and track objects in the
environment. While this is typically done from LiDAR inputs [Wang and Tian, 2022], a
2D camera image can be back-projected using the camera parameters to obtain a 3D point
cloud that can also feed into LiDAR-based 3D detection systems [Simonelli et al., 2021;
Wang et al., 2019], resulting in a ‘pseudo-LiDAR’ system. Likewise, Yang and Ramanan
[2020] combine optical flow and motion-in-depth (ratio between the depth of correspond-
ing points over two frames) to recover the 3D scene flow from monocular cameras only.

Extracted cues such as 3D bounding box predictions for objects in the scene as well as
road layout in the form of vectors can be used to represent dynamic scenes. In fact, many
forecasting methods favoured this representation as it abstracts all the visual variations
while keeping the majority of the information needed to predict the evolution of agents in
the scene [Bansal et al., 2018; Gao et al., 2020; Nayakanti et al., 2022; Zhao et al., 2020]. How-
ever, such detection-based perception systems often involve manually tuned thresholding
scores to trade off precision and recall, which may cause the loss of critical information
(e.g., an object on the road).

2.3.3 In the Bird’s-Eye-View

An alternative to detection-based representation are probabilistic occupancy grids. Proba-
bilistic Bird’s-Eye-View (BEV) occupancy prediction is the task of estimating a probability
map that indicates the likelihood of occupancy for each grid cell in the BEV representation.
As already stated in section 2.1.2, the BEV representational space, a.k.a. top-view occu-
pancy grid, recently gained considerable interest within the community for downstream
driving tasks, including motion forecasting [Casas et al., 2021; Hu et al., 2021; Mahjourian
et al., 2022] and planning [Caesar et al., 2021; Casas et al., 2021; Chitta et al., 2021; Zeng
et al., 2019]. The BEV representation is also at the centre of chapter 4, which describes how
to estimate it from cameras only.

2.3. Representing a dynamic scene 23

The increased interest in the BEV grid representation certainly comes from the many
advantages it offers. First, BEV appears as a suitable and natural space to fuse multiple
views [Hu et al., 2021; Philion and Fidler, 2020] or sensor modalities (e.g., camera images
and LiDAR point clouds) [Bai et al., 2022; Hendy et al., 2020]. Knowing the calibration
parameters of each sensor, their respective signal can be projected into the BEV space, then
acting as a common space in which modalities of very different nature can share informa-
tion — an important aspect for sensor fusion (section 2.2.2). Indeed, LiDAR point clouds
are natural 3D signals, making their projection into a top-down grid trivial. For camera
signals, there are different strategies for this image-to-BEV transformation. These include
methods that make this transformation by means of geometric projections [Ng et al., 2020;
Philion and Fidler, 2020; Sengupta et al., 2012; Srikanth et al., 2019] (e.g., by predicting the
depth for each pixel and using cameras’ parameters) and other that learn it [Pan et al., 2020;
Roddick and Cipolla, 2020; Zhou and Krähenbühl, 2022], e.g., by direct correspondences
between all pixels in camera images and all pixels in the BEV grid. These will be detailed
in chapter 4.

The BEV representation also has a geometric meaning: it is a discretization of the 3D
space where the vertical dimension has been flattened. The compression of the vertical axis
is possible as most of the dynamic in a driving scene happens at the ground level, i.e., the
plane of the road. This geometrical grounding makes the BEV grid suitable to describe the
semantic, geometric, and dynamic aspects of objects in the environment.

The BEV representation can describe a wide variety of objects as well as their future
occupancy. The future occupancy takes the form of a “motion flow” where the dynamic
of each pixel composing an object is described [Casas et al., 2021; Mahjourian et al., 2022].
This allows modelling complex dynamic events like a trailer swinging uncontrollably be-
hind a car. Otherwise, the prediction can simply take the form of a sequence of occupancy
grid, i.e., without associations between pixels over time (“flow”). In all cases, this proba-
bilistic map can be used directly as a cost map by the planning pipelines, where prospec-
tive driving paths are weighted by the occupancy likelihood predicted on the pixels they
cross [Casas et al., 2021].

2.3.4 Implicit

An implicit representation encodes the state of the world in an abstract, high-dimensional
space. In the autonomous driving context, it embeds in an abstract space all the information
required for driving such as the geometry, the position, the dynamic and the attributes of
objects in the scene, without explicitly representing these attributes (e.g., MILE from Hu
et al. [2022a]). In comparison, most of the approaches discussed so far try to map sensory
information to an explicit 2D or 3D Euclidean space (whether discrete or continuous). This
has limitations that can make such representation insufficient for capturing the dynamic
and complex nature of the environment in autonomous driving.

For example, grid-based methods like BEV occupancy grids (section 2.3.3) or 3D vox-
els (section 2.3.2), essentially learn a lookup table of the scene where every spatial coor-
dinate is mapped to sensory information. This can suffer from discretization errors and
limited resolution, making it difficult to accurately identify objects or features in the envi-
ronment. Figure 2.10 illustrates how pedestrian occupancy is hard to estimate for current
methods. Additionally, although mostly storing information about empty space, reason-
ing in this representation is both memory and computationally expensive because every
location must be visited by the algorithm (usually with several layers of convolution).

Methods in the 2D camera plane (section 2.3.1) or in 3D LIDAR point clouds (sec-
tion 2.3.2) try to make predictions for every sensory element (pixel or 3D point). Both

24 Chapter 2. Deep learning applied to autonomous driving

Camera Prediction Ground Truth

Camera Prediction Ground Truth

FIGURE 2.10: Columns, from left to right, represent the input image from the frontal camera, the
BEV semantic segmentation prediction from a state-of-the-art architecture [Can et al., 2022], and the
ground truth. These examples illustrate the resolution problem that the Bird’s-Eye-View represen-
tation faces. The coloured boxes (green for the first example and white for the second) highlights
the difficulty that a network has to segment “small” objects, pedestrians in this case. This figure is
adpated from [Can et al., 2022]

pixel-wise or point-wise predictions require a high level of detail to represent all the ob-
jects of the environment (e.g., cones, children, potholes), which can be computationally
expensive.

Vectorial representations (section 2.3.4) essentially ask for perfect detection predictions
while being limited by their ontology (which currently only integrates cars, pedestrians,
and some animals in mainstream datasets [Caesar et al., 2020; Sun et al., 2020]).

In contrast, the implicit representation aggregates the information from every sensor
into a common encoding of the environment in a compact, abstract, and efficient man-
ner [Bartoccioni et al., 2022; Guizilini et al., 2022b; Hu et al., 2022a; Sajjadi et al., 2022]. Typ-
ically instantiated as a single or a collection of high-dimensional vectors, its compact nature
discards irrelevant details and helps efficiently capture complex dependencies. For exam-
ple, a good implicit representation for dynamic scenes may encode the position, move-
ment, and shape of agents in the scene while ignoring the colour of the sky or the move-
ments of leaves on trees. Also, the representation being abstract and continuous, it al-
leviates any resolution issue that grid-based systems face while minimizing the memory
cost for the scene encoding. Additionally, with irrelevant details being removed, it be-
comes much more computationally efficient for the neural network to extract and reason
about relationships between parts of the scenes (e.g., associating a traffic light to the road
it controls, taking into account the distance between a crosswalk and a pedestrian or the
interactions between drivers). Overall, an implicit representation is all about managing the
trade-off between computational cost and representation quality.

Once learned, such an encoding of the world can be used in various ways. Its aggrega-
tive and implicit nature makes it suited for multi-sensor setups and adaptable to a wide
range of tasks, an aspect at the core of chapter 4. Most often, it feeds into an RL-based

2.4. Positioning 25

driving system, where driving commands (angle of the steering wheel, braking, and gas
pedal) are directly predicted from the representation [Hu et al., 2022a]. Such a representa-
tion, being compact and mostly filled with relevant information, makes it easier to reason
temporally and to predict the future state of the world (akin to world-models [Bryson et al.,
1979; Ha and Schmidhuber, 2018; Hafner et al., 2023; Hu et al., 2022a]), a critical character-
istic to enable end-to-end driving.

2.4 Positioning

In this section, we reviewed the existing literature on scene understanding systems for
autonomous driving and identified the challenges associated with their creation. In view
of these challenges and the research questions established in chapter 1, we now give a high
level perspective on the methods we develop in this thesis. For instance, we propose two
novel methods that leverage automotive-grade sensors for scene understanding.

In chapter 3, we present a new self-supervised learning system, leveraging a few-beam
LiDAR and a camera, for the task of depth estimation. We highlighted in section 2.1 that
depth prediction methods are often used to achieve a 3D perception of the surroundings in
camera-based autonomous systems. The geometry of the scene can be physically measured
from multiple LiDAR sensors, but this requires an expensive sensor setup. On the other
hand, camera-only methods are more cost-effective but suffer from two major problems:
scale ambiguity and infinite-depth. In particular, the infinite-depth problem results in the
depth of moving objects being dangerously overestimated. This makes existing methods
unsafe to deploy in real-world scenarios, where moving objects are common. Despite this,
the infinite-depth problem is often overlooked and not properly evaluated. To address
these limitations, we propose to leverage widely available automotive-grade sensors and
combine a monocular camera with a few-beam LiDAR. More specifically, we build on pre-
vious self-supervised camera-only methods relying on view reconstruction principles for
the task of depth estimation (section 2.3.1). However, we complement the classic, ill-posed,
reconstruction objective with the help of “touches” from a few-beam LiDAR to disam-
biguate the estimation of moving objects. We validate the influence of this sparse LiDAR
integration at different levels of the self-supervised learning scheme. In addition, we intro-
duce a new metric to quantitatively measure this infinite depth phenomenon and highlight
its presence in prior methods.

In chapter 4, we propose a transformer-based model for vehicle and driveable area
segmentation in the Bird’s-Eye-View (BEV) from multiple cameras. Section 2.1.2 and sec-
tion 2.3.2 highlight the issues with detection-based perception systems and trajectory-based
prediction systems, namely the difficulty to model spatial uncertainty and shape-shifting
elements of the scene. On the other hand, the BEV grid offers many advantages to represent
a complex driving scene (section 2.3.3). It is a compressed discretization of the 3D space,
it can model a wide range of objects and their dynamic, and it naturally supports the task
of planning. Nevertheless, online prediction of BEV semantic maps requires complex op-
erations such as extracting and fusing information from multiple cameras, and projecting
it into a common top-view grid. Inspired by recent advances in BEV estimation methods
(section 2.3.3), we propose to learn the mapping from camera images to the BEV occupancy
grid. However, existing methods for these operations rely on error-prone geometric opera-
tions or expensive direct dense mapping between image pixels and pixels in BEV. Instead,
we propose to use an intermediate, compact, implicit representation to aggregate and fuse
information within and across multiple cameras. The resulting internal representation of
the scene is then reprojected in the BEV space to segment vehicles and driveable areas. We

26 Chapter 2. Deep learning applied to autonomous driving

also show that we can efficiently aggregate information over time into this implicit repre-
sentation, paving the way for systems able to learn an internal representation of the world
(section 2.3.4).

27

Chapter 3

Monocular metric depth estimation
with a few-beam LiDAR

We have seen in chapter 2 that depth prediction is often used to achieve a 3D spatial un-
derstanding of the surroundings, something necessary to plan and act safely [Philion and
Fidler, 2020; Srikanth et al., 2019; Zeng et al., 2019]. Depth information can be directly
acquired using multiple LiDAR (32 beams or more), a sensor setup typical of expensive
“over-engineered” Level-5 vehicles. Alternatively, camera-only methods offer a less costly
approach by relying on a cheap sensor that is now ubiquitous on passenger vehicles with
modern ADAS.

Nonetheless, self-supervised and trained with a view reconstruction objective, this kind
of vision-based approach suffers from two major drawbacks. First, cameras on automated
vehicles are often organized as a ring to provide a 360° view of the surroundings, leaving
only very small overlaps between views, not enough to leverage stereographic principles.
In such a monocular setup, there is an infinite number of 3D scenes that can explain the
2D projection of the image. This poses an ambiguity of scale, that is to say, the actual size,
in meters, of an object cannot be determined from the image only. Secondly, the view
reconstruction objective typically assumes a rigid scene, meaning that the scene is static.
This assumption is often unrealistic in real-world scenarios and can result in the depth of
moving objects dangerously overestimated. This problem is commonly referred to as the
‘infinite-depth’ problem and mostly happens for cars moving in front of the ego-vehicle, a
situation typical of traffics, making existing methods unsafe to deploy ‘in-situ’.

In this chapter, we propose a new alternative for dense metric depth estimation by com-
bining a monocular camera with a light-weight LiDAR, e.g., with 4 beams, typical of to-
day’s automotive-grade mass-produced laser scanners. We introduce a novel framework,
to estimate dense depth maps from monocular images with the help of “touches” of Li-
DAR. This method, called LiDARTouch has been submitted in 2020, and published in 2023,
in the scientific journal CVIU [Bartoccioni et al., 2023]. We show that the use of a few-beam
LiDAR alleviates scale ambiguity and infinite-depth issues that camera-only methods suf-
fer from. We also demonstrate that methods from the fully-supervised depth-completion
literature can be adapted to a self-supervised regime with a minimal LiDAR signal. At
the time of submission, our LiDARTouch framework achieves new state-of-the-art in self-
supervised depth estimation on the KITTI dataset, thus supporting our choices of integrat-
ing the very sparse LiDAR signal with other visual features.

To enable comparison with our work in the future, the code for our learning system and
the data processing steps have been publicly released at https://github.com/F-Barto/
LiDARTouch.

https://github.com/F-Barto/LiDARTouch
https://github.com/F-Barto/LiDARTouch

28 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

TABLE 3.1: High-level positioning of LiDARTouch vs depth estimation and depth completion
methods. Our LiDARTouch framework addresses critical weaknesses of self-supervision depth es-
timation approaches, while being cheaper and far more scalable than fully-supervised depth com-
pletion methods.

Supervision

Approach Input Depth regression Photo. reconst. Strengths (S) and
Weaknesses (W)

Depth estimation Image No Yes

S: scales well (self-supervised,
very cheap sensor)
W: relative depth, catastrophic
estimations (moving objects)

Depth completion Image and
dense LiDAR

w.r.t. dense GT depth No

S: metric depth, very good
performance
W: scales poorly (expensive
sensors and GT annotations)

LiDARTouch (ours)
Image and
few-beam
LiDAR

w.r.t. few-beam LiDAR Yes

S: scales well (self-supervised,
cheap sensors)
S: metric depth,
good performance

3.1 Introduction

Accurately estimating depth in scenes is a prerequisite for a wide range of computer vision
tasks, from computing semantic occupancy grids [Lee and Medioni, 2016; Ng et al., 2020]
to object detection without labels [Deng et al., 2017; Koestler et al., 2020] and multi-modal
unsupervised domain adaptation [Jaritz et al., 2020]. In particular, autonomous systems
require a 3D understanding of their surroundings to plan and act safely, and the capac-
ity to estimate depth is central to achieving this [Philion and Fidler, 2020; Srikanth et al.,
2019; Zeng et al., 2019]. As already stated in section 2.3.1, two main lines of approach exist
to infer depth in a scene, depending on the available data: LiDAR-based completion and
camera-only estimation methods. LiDAR-based depth completion methods rely on one or
multiple dense LiDARs (e.g., 32 or 64 beams) [Jaritz et al., 2018; Park et al., 2020; Tang et al.,
2020; Xu et al., 2019] to physically capture most of the geometry of the scene and interpo-
late the rest of the scene structure from the camera RGB signal. However, these approaches
are so far unfit for automotive-grade settings, as they rely on expensive sensors — often
costing more than a car alone — and require a rich supervisory signal for training, com-
posed of 64-beam LiDAR point clouds densely accumulated over time. An alternative is
explored by camera-only methods that predict dense depth maps with either stereo [Chang
and Chen, 2018; Kendall et al., 2017] or monocular [Casser et al., 2019a; Godard et al., 2019,
2017; Guizilini et al., 2020a,b; Kuznietsov et al., 2017; Mahjourian et al., 2018; Wang et al.,
2018; Yin and Shi, 2018; Zhou et al., 2017] setups. These models address the task of depth es-
timation and, contrary to the depth completion setup, do not leverage LiDAR point clouds.
While such methods are appealing, as they rely on much cheaper and versatile sensors,
monocular approaches suffer from ambiguity in the map scale they produce: most of them
can only generate relative depth maps, i.e., up to an unknown global scaling factor, which
makes them unusable in a real-world setting.
Moreover, their predictions can be catastrophic for objects with no relative motion with
respect to the ego-camera, e.g., vehicles in front, which are likely estimated at infinite
depth [Casser et al., 2019a; Godard et al., 2019; Guizilini et al., 2020a; Mahjourian et al.,
2018; Wang et al., 2018; Yin and Shi, 2018; Zhou et al., 2017]. Lastly, they are critically im-
peded by low-light conditions (at night or indoors) and adverse weather (in heavy rain,
dense fog, or snow storm) [Gruber et al., 2019].

3.1. Introduction 29

In this thesis, we propose the LiDARTouch framework, where dense metric depth is
estimated by combining a monocular camera with a minimal sparse LiDAR input (e.g., 4
beams). Our motivations to use a sparse LiDAR input are diverse. First, from a practi-
cal perspective, 4-beam laser scanners are currently embedded in consumer-grade vehicles
and they are a hundred times less expensive than their dense (64-beam) counterparts. Sec-
ond, we expect that such a LiDAR signal, although extremely sparse, can provide valuable
cues for monocular depth estimation, thus alleviating scale-ambiguity and infinite-depth
problems. Third, we hypothesize that a light LiDAR touch will result in the overall model
correctly estimating the depth of moving objects, notably cars, alleviating the infinite-depth
issue. Finally, from a security perspective, such an approach makes it difficult to attack the
camera signal alone [Yamanaka et al., 2020], due to a form of data redundancy between the
camera and LiDAR.

Leveraging recent advances in monocular depth estimation [Godard et al., 2019; Guizilini
et al., 2020a; Watson et al., 2019; Zhou et al., 2017], our approach is self-supervised. This set-
ting is significantly less data-hungry than the fully-supervised alternative, which requires
densified and stereo-filtered depth maps as ground truth [Fu et al., 2018; Jaritz et al., 2018;
Park et al., 2020; Tang et al., 2020; Xu et al., 2019]. We emphasize that this self-supervised
learning setting, combined with the fact that it only involves widely available and low-
priced sensors, makes the overall approach particularly scalable. Indeed, it becomes pos-
sible to estimate dense and metric depth maps on datasets and domains lacking depth
ground truth [Caesar et al., 2020; Chang et al., 2019; Sun et al., 2020]. Moreover, from an
industrial perspective, the LiDARTouch framework naturally scales with the data acquired
by a vehicle fleet without the need for any annotation. Under this new regime, we propose
the adaptation of recent methods from the two aforementioned streams of approaches for
inferring depth. On the one hand, we adapt fully-supervised depth completion methods,
namely ACMNet [Zhao et al., 2021] and NLSPN [Park et al., 2020], to a much sparser Li-
DAR using our self-supervised setup. On the other hand, we strengthen the very embod-
iment of self-supervised monocular camera-only methods, namely Monodepth2 [Godard
et al., 2019], to integrate the new complementary LiDAR information. We then perform an
extensive study on the contribution brought by the sparse LiDAR signal at different levels
as: (1) an additional input, (2) a new information source to estimate better poses, and (3)
a form of self-supervision. A high-level positioning of LiDARTouch with respect to depth
estimation and completion approaches is summarized in table 3.1.

To evaluate the adapted models and validate our hypotheses, we propose a novel train-
ing and evaluation protocol on the KITTI dataset [Geiger et al., 2012] which includes the
degradation of the raw 64-beam LiDAR data to obtain 4 beams. We also propose a new
metric to quantitatively measure the infinite-depth problem. This allows us to verify one of
our core hypotheses that the use of very limited LiDAR information corrects infinite-depth
degeneracies of camera-only methods. In comparison to depth completion methods, our
LiDARTouch framework overcomes the need for depth ground truth and leads to highly
improved results with respect to approaches that are naïvely adapted to the self-supervised
setting. In addition, we show that it is possible to successfully adapt architectures from the
depth completion literature, as well as camera-based depth estimation methods, into a uni-
fied framework that alleviates problems from which these two lines of approaches suffer.
We make the following contributions:

1. We propose LiDARTouch, a new self-supervised depth estimation framework, where a
minimal LiDAR and a monocular camera are available without access to any ground-
truth depth annotations. This configuration is close to in situ conditions of today’s vehi-
cles, which is seldom addressed in other works.

2. We demonstrate that models trained within our LiDARTouch framework close the per-
formance gap between self-supervised monocular depth estimation and fully-supervised

30 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

depth completion learning schemes, proving that the need for ground-truth acquisition
and costly sensors can be alleviated.

3. We show that models trained within our LiDARTouch framework do not suffer from
critical scale-ambiguity and infinite-depth issues, in contrast to camera-only models.
We evaluate this a novel metric to quantitatively measure the infinite-depth issue for
the first time in the literature.

4. We demonstrate that LiDARTouch is a versatile learning framework by successfully ap-
plying it to a range of network architectures: Networks from the depth-completion liter-
ature are revamped to work with very sparse LiDAR instead of dense ones and camera-
only models are adapted to integrate LiDAR data.

5. We study the influence of LiDAR inputs at each stage of our framework extensively.
Our experiments show that integrating sparse LiDAR in a self-supervised scheme is not
trivial. We provide key insights for the community on how the fusion scheme, the pose
method and the supervisions interact.

Minimal / Sparse 4-beam

Dense 64-beam

Accumulated LiDAR

FIGURE 3.1: Different LiDAR densities. Dense 64-beam point clouds are typically used as the input
of depth completion approaches, which are supervised with accumulated LiDAR seen as ground
truth (GT). These point clouds are far denser than the minimal LiDAR we use. Note that LiDAR
data is often not available in the upper part of the scenes.

3.2. Related work 31

Pose

Photometric
loss w

Depth Net.Target image

Source image Warped source image

Pred. Depth

Pose
Net.

FIGURE 3.2: Illustration of the self-supervised image-only depth estimation framework. This
figure shows the classical learning system from self-supervised image-only depth estimation litera-
ture, e.g., SfMLearner [Zhou et al., 2017] or Monodepth2 [Godard et al., 2019]. The model is trained
to resynthesize the target image from (i) the neighboring source images with different viewpoints,
(ii) the estimated depth of the target image, and (iii) the relative change of pose between the target
and source views. The circled w denotes the image warping operation from the estimated pose
change and target depth map.

3.2 Related work

In the remainder of this thesis we refer to a LiDAR as dense if it has more than 32 beams, and
call it sparse or minimal otherwise. Depth ground-truth, required by fully-supervised meth-
ods, is obtained from a dense LiDAR signal, accumulated over several sweeps. A camera
stereo setup is then used to remove trail artifacts from moving objects. We will refer to such
densified point-cloud data as accumulated LiDAR. These three density levels are illustrated
in fig. 3.1. We now detail the two lines of approaches related to our work: camera-only
monocular self-supervised methods and LiDAR-based fully-supervised depth completion
systems.

Monocular self-supervised methods. In a fully- or semi-supervised setting, several mod-
els estimate depth in a camera-only monocular setup [Amiri et al., 2019; Fu et al., 2018;
Kuznietsov et al., 2017], but acquiring depth ground truth for outdoor environments at
scale is challenging and expensive. To overcome this issue, a few camera-based works [Casser
et al., 2019a; Godard et al., 2017; Zhou et al., 2017] propose a self-supervised alternative
to the use of ground-truth depth. Leveraging a set of consecutive frames, this paradigm
predicts the depth for one of them and the relative changes in pose across nearby views.
The model is trained by minimizing a photometric reconstruction error defined over these
views (fig. 3.2). Two important issues with such approaches hinder their widespread us-
age: the scale ambiguity of the produced depth maps and the infinite-depth problem.

The scale-ambiguity problem stems from the view synthesis formulation being ill-posed.
The formulation is scale ambiguous, as the target view can be correctly reconstructed re-
gardless of the scale of the prediction. As a consequence, estimated depth maps are relative
— up to an unknown global scaling factor — and models thus need additional supervision
to accurately estimate a metric depth. Several self-supervised approaches rely on ground-
truth LiDAR signal to scale their depth estimation at test time [Casser et al., 2019a; Godard
et al., 2019; Mahjourian et al., 2018; Wang et al., 2018; Yin and Shi, 2018; Zhou et al., 2017].
Alternatively, the recent PackNet model [Guizilini et al., 2020a] proposes to automatically
scale estimations with additional constraints imposed by the instantaneous velocity of the
ego-vehicle. Some works have also moved to a stereo setup to disambiguate the scale fac-
tor, using additional information, at train time only [Godard et al., 2017; Groenendijk et al.,

32 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

LiDAR loss

Depth Net.

Dense LiDAR

Image

Pred. Depth

Depth ground truth

FIGURE 3.3: Illustration of the fully-supervised depth completion framework. This figure sum-
marizes the depth completion pipeline, e.g., models ACMNet [Zhao et al., 2021] or NLSPN [Park
et al., 2020], which employs a multi-modal depth prediction network that is learned by regressing
a provided ground-truth depth.

2020] or also at run time [Chang and Chen, 2018; Cheng et al., 2019; Kendall et al., 2017],
thus abandoning the monocular setup.

The second issue of infinite depth arises when objects move at the same speed as the
camera. In this common situation, a trivial solution for the model is to predict that these
objects are infinitely far and big, as they do not change in appearance through time [Go-
dard et al., 2019; Guizilini et al., 2020a; Zhou et al., 2017]. Recent proposals to address
this problem exploit semantic segmentation of classes known to be often dynamic (e.g.,
cars, trucks) [Casser et al., 2019a,b], or automatically prune the dataset by removing these
objects [Guizilini et al., 2020b]. The robustness of both these approaches to novel test sce-
narios, however, remains unclear.

In our work, we build on camera-only methods to additionally integrate LiDAR infor-
mation and show that: (i) very few direct depth measures suffice to have a metrically-scaled
dense depth estimation, and (ii) the infinite-depth issue can be partially or completely
solved with the use of LiDAR input, depending on its resolution and position, without
any additional assumptions.
Depth completion methods typically estimate a dense depth map from raw LiDAR mea-
surements. Current deep-learning based methods for depth completion [Jaritz et al., 2018;
Kumar et al., 2018; Ma and Karaman, 2018; Park et al., 2020; Tang et al., 2020; Xu et al., 2019;
Zhao et al., 2021] usually learn to regress ground-truth depth maps in a fully-supervised
setup (fig. 3.3). Such approaches generally operate over RGB and LiDAR inputs.

A popular approach is to use one encoder per modality and fuse them at each resolu-
tion scale [Guizilini et al., 2021; Tang et al., 2020] or at the feature bottleneck only [Jaritz
et al., 2018]. An other option is early fusion, where both modalities are concatenated at the
very beginning of the architecture [Ma et al., 2019; Park et al., 2020; Xu et al., 2019] Some
fusion modules, as the one of GuideNet [Tang et al., 2020], only considers the image as a
guiding signal for the LiDAR features. This assumes that the LiDAR input is sufficient,
i.e., high-resolution, for estimating depth, and thus unsuitable for our case. This limits the
approach [Tang et al., 2020] to estimate depth from high-resolution 64-beam LiDAR both at
train and run time, making it incomparable to ours as we do not have access to such data.
On the contrary, the SAN architecture [Guizilini et al., 2021], can handle various levels of Li-
DAR sparsity with sparse convolutions. Alternatively, networks like ACMNet [Zhao et al.,
2021] and NLSPN [Park et al., 2020] propagate sparse LiDAR features into image features
where depth measurements are not available. ACMNet [Zhao et al., 2021] uses a multi-
scale co-attention-guided graph propagation strategy for depth completion. It propagates

3.2. Related work 33

the sparse and irregularly distributed LiDAR measurements through a nearest-neighbor
encoding. In addition, it uses a symmetric gated fusion strategy to fuse multi-modal con-
textual information throughout the decoder. The NLPSN architecture [Park et al., 2020]
jointly estimates an initial depth map, a pixel-wise confidence and non-local affinity ker-
nels. This initial depth map is iteratively refined with the input LiDAR features using the
predicted confidence map and affinity kernels.

All the aforementioned depth completion methods employ a 64-beam input LiDAR and
are trained with accumulated LiDAR as supervision. Here, most of the scene structure is
available and the task amounts to color-guided depth interpolation. This design prevents
these works from being easily adapted to new domains. Indeed, the acquisition of ground-
truth data is expensive and not scalable, as it is obtained from high-resolution LiDARs
and stereo cameras. In contrast, our work specifically focuses on minimal 4-beam LiDAR
directly, with no densely accumulated LiDAR data as supervision. We emphasize that in
this very sparse 4-beam regime, almost no structural information can be directly extracted
for the input signal. The task we propose is then more akin to depth estimation than depth
completion.

A closely related work to ours is the model of [Ma et al., 2019], which also uses Li-
DAR as a supervisory signal in a monocular self-supervised setting. LiDAR and camera
signals are merged through an early fusion and the change of pose is estimated by solving
a Perspective-n-Point problem. However, their setup is different from ours. Their study fo-
cuses on the dense depth completion regime, i.e., with a 64-beam LiDAR, while we work on
depth estimation with a minimal 4-beam LiDAR. Moreover, they do not compare against
other existing architectures in the self-supervised setting. In contrast, we perform thorough
evaluations with existing work by adapting camera-only and depth completion methods
to our extremely scarce LiDAR regime. Additionally, we propose a different supervision
scheme and the use of multiple views in photometric reconstruction. These choices lead to
a substantial improvement on the KITTI dataset. Finally, we provide in-depth analyses of
the impact brought by the LiDAR signal at different levels.

Pose

Photometric loss
(section 3.2)

Pose estimation
with PnP

(section 3.3)

w

Depth Net.
(section 3.1)

Target image

Warped source image

Predicted depth

Target LiDAR
LiDAR loss
(section 3.2)

Source image

FIGURE 3.4: Overview of our LiDARTouch learning framework. The proposed framework lever-
ages ideas from both the camera-only depth estimation approach (illustrated in Figure 3.2) and
fully-supervised depth completion methods (illustrated in Figure 3.3). In LiDARTouch, the light
touch of LiDAR is integrated at three different stages: as an input of the depth network, as a self-
supervision signal, and to estimate a scaled pose.

34 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

C

(A) S2D [Ma et al., 2019]

C

N
LS

PN

(B) NLSPN [Park et al., 2020]

(C) Monodepth2-L, extension of [Godard et al., 2019]

Co-attn Co-attn C

(D) ACMNet [Zhao et al., 2021]

FIGURE 3.5: Depth networks with different image-LiDAR fusion strategies. We depict early (A),
hybrid (early and late for B) as well as multiscale (C and D) fusion-based architectures. Volumes
in yellow indicate LiDAR feature tensors and blue ones are image feature tensors. We indicate the
mixing of modalities with a color grading of the two colors on the volumes. The architecture (C) is
our extension of [Godard et al., 2019] to make it operate over minimal LiDAR input. We denote the
concatenation operator by c .

3.3 LiDARTouch framework

This section is organized into three parts, each corresponding to a different and comple-
mentary use of the light LiDAR signal. In section 3.3.1, we present the architecture of the
depth network, shown in green in fig. 3.4, which estimates depth by fusing the monocular
image with the sparse LiDAR point cloud. In section 3.3.2, we detail the self-supervision
objectives involving a photometric reconstruction along with a LiDAR self-supervision, as
illustrated in red in fig. 3.4. Lastly, section 3.3.3 introduces methods to estimate the relative
change of pose between the source and target views, depicted by the orange part of fig. 3.4.

3.3.1 Depth network

The core of our depth estimation system is a neural network taking the target image It
coupled with Ht, the LiDAR data projected in the image plane, as input, and predicting
a depth map D̂t. Given the multi-modal nature of the input, our depth network employs
a fusion strategy, that can be either early or multi-scale. In this thesis, we consider four
different architectures that are illustrated in fig. 3.5. Three of them are from the recent
depth-completion literature, namely NLSPN [Park et al., 2020], S2D [Ma et al., 2019] and
ACMNet [Zhao et al., 2021]. The fourth one, we refer to as Monodepth2-L, is an extension
of the camera-only model Monodepth2 [Godard et al., 2019] to operate over the additional
LiDAR input (we provide details of this extension in section 3.8).

The two architectures NLSPN [Park et al., 2020] and S2D [Ma et al., 2019], illustrated in
Figures 3.5b and 3.5a respectively, employ an early-fusion strategy, combining image and
LiDAR features from the start, through concatenation. Early fusion directly mixes features
from both modalities, thus potentially enabling richer interactions across them. The NL-
SPN architecture additionally re-injects the LiDAR signal at the end of the processing, as a
late refinement strategy to mitigate signal degradation due to normalization layers.

3.3. LiDARTouch framework 35

In contrast, Monodepth2-L and ACMNet architectures, represented in Figure 3.5c and
3.5d respectively, use a multi-scale fusion. They both encode LiDAR and visual data sep-
arately so that these modalities are processed differently and their learned features are
progressively integrated together. This design merges modalities more carefully than the
early-fusion strategy, which is desirable as visual and LiDAR inputs carry complementary
semantics. The two encoders, based on ResNet-18 [He et al., 2016], are independent and
modality-specific features are fused with a series of concatenations. ACMNet, on the other
hand, employs a more sophisticated co-attention strategy to mutually guide the features in
the encoders and mix the features in the decoders to finally fuse them into one prediction.

3.3.2 Self-supervision objectives

Our challenging setting, where depth ground truth is unavailable for training the model,
prevents the depth network architecture to be supervised directly. We address this by train-
ing the network under the supervision of two combined objectives. The first one, photo-
metric reconstruction Lphoto, is inspired by recent advances in self-supervised camera-only
monocular depth estimation [Godard et al., 2019, 2017; Zhou et al., 2017]. However, as
discussed in section 3.2, training with this objective alone leads to scale and infinite-depth
issues. Consequently, we leverage a LiDAR self-reconstruction objective, which uses sparse
yet complementary LiDAR information to mitigate these issues.
Self-supervised photometric reconstruction Lphoto. We recall that the photometric recon-
struction problem is a surrogate task aimed at resynthesizing a target image, given neigh-
boring source images with different viewpoints [Godard et al., 2019; Ma et al., 2019; Zhou
et al., 2017]. Solutions to this task build on optimization approaches for disparity, motion
and depth estimation without learning, based on photo-consistency. The central idea is to
combine pose and depth predictions to project a neighboring source image into the target
view. The underlying intuition is that to accurately resynthesize the target view from the
source one, both the depth and pose estimation must be accurate.

Formally, the target image It is considered with a set S of source images Is in its temporal
vicinity. First, the depth network predicts the dense depth map D̂t for the target image
It. Second, the relative changes of pose P̂t�s between the target and source views are esti-
mated — we detail this in section 3.3.1. One pose transformation P̂t�s =

(
R̂ r̂
0 1

)
∈ SE(3) is

estimated for each source image Is ∈ S, where R̂ is a rotation matrix and r̂ the translation
component. Given the estimates of depth and pose, and the camera intrinsics K, a source
image Is can be warped via a differentiable geometric transformation into synthetic image
Îs in the target view. More precisely, for homogeneous coordinates pt of a pixel in the target
image, the projected coordinates ps in the source image are computed with:

ps ≃ KP̂t�sD̂t(pt)K−1 pt . (3.1)

For a pair (Is, It) of source-target images, the reconstructed image Îs is enforced to match
the target image It by a pixel-wise image reconstruction error based on both an L1 intensity
loss and a structural similarity (SSIM) loss [Loza et al., 2006]. Note that this formulation
assumes Lambertian surfaces.

More formally, at a given pixel location p, this loss reads:

Lphoto(p) = min
Is∈S

{α

2
(
1 − SSIM(It, Îs)(p)

)
+ (1 − α)

∣∣It(p)− Îs(p)
∣∣}, (3.2)

where α is a hyper-parameter balancing the contributions of the two terms. Moreover,
taking the minimum value over all source images Is ∈ S limits the impact of errors resulting

36 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

from occlusions and disocclusions in the scene due to motion of the ego-car and/or of the
other scene elements [Godard et al., 2019]. To take into account objects with no motion
with respect to the ego-car, this loss is only applied to pixels whose appearance between
frames varies [Godard et al., 2019].
LiDAR self-supervision. As detailed in section 3.2, a model solely trained with the pho-
tometric reconstruction loss Lphoto suffers from a scale-ambiguity issue and may be affected
by the infinite-depth problem. In the following, we describe the new role of the low-density
input LiDAR as a supervisory signal to mitigate this problem. We assume that this com-
plementary information source can provide minimal-yet-crucial cues to disambiguate the
estimated depth, at a global scale level and especially for moving objects. Furthermore,
a sparse depth signal can refine the photometric supervision for small objects, thus im-
proving overall performances [Watson et al., 2019]. Inspired by the depth completion and
the stereo depth estimation literature, we consider three different ways of using LiDAR
as a supervisory signal: a straightforward L1 regression along with two refinements that
either control the interference with the photometric reconstruction or take into account the
inherent noise of the LiDAR signal.

First, we consider a naïve self-supervision scheme, an L1 loss for all pixels having a
LiDAR measurement, in addition to the photometric loss Lphoto:

Lnaïve(p) =

{
|D̂t(p)− Ht(p)|+ Lphoto(p) if Ht(p) > 0,
Lphoto(p) otherwise,

(3.3)

where p is an index over the pixels, D̂t the estimated depth and Ht the input LiDAR pro-
jected in the target image plane. The latter being sparse, not all pixels have LiDAR data
available; we use the encoding Ht(p) = 0 for such pixels.

Second, we consider the masked self-supervised objective proposed in [Ma et al., 2019].
It makes the LiDAR regression and the photometric loss exclusive by masking-out the pho-
tometric loss Lphoto on pixels with a LiDAR measurement. Denoting Lmasked as this loss, it
is given by:

Lmasked(p) =

{
|D̂t(p)− Ht(p)| if Ht(p) > 0,
Lphoto(p) otherwise.

(3.4)

This loss is similar to Lnaïve but avoids potential conflicts between the photometric and
LiDAR reconstructions.

Lastly, inspired by [Watson et al., 2019], we also introduce the hinted self supervision,
Lhinted, that takes into account the inherent noise of the LiDAR signal. Despite being a
direct depth measurement, raw LiDAR signal is noisy for a number of reasons, including
potentially imprecise calibration, approximated projection, and the fact that the camera
and LiDAR are not exactly positioned at the same place, which results in objects observ-
able by one but hidden to the other. Therefore, the loss Lhinted integrates the LiDAR self-
supervision only where image reconstruction is more precise by using the LiDAR signal
instead of the estimated depth. More precisely, two versions of the photometric contri-
bution of the pixel are computed: the regular pixel-wise photometric loss Lphoto, using
the estimated depth map D̂t in eq. (3.1), and LH

photo using the input projected LiDAR Ht

instead of D̂t in eq. (3.1). Then we only supervise with the LiDAR reconstruction when
LH

photo < Lphoto. The objective is thus:

Lhinted(p) =

{
|D̂t(p)− Ht(p)|+ Lphoto(p) if LH

photo(p) < Lphoto(p)

Lphoto(p) otherwise.
(3.5)

3.4. Experimental protocol 37

3.3.3 Pose estimation

The formulation of the photometric reconstruction involves the change of pose P̂t�s be-
tween the target image It and source view Is for the source image warping. A first possi-
bility, which is widely used in monocular self-supervised depth estimation [Casser et al.,
2019a; Godard et al., 2019; Guizilini et al., 2020a; Zhou et al., 2017], uses a so-called pose
network jointly trained with the depth network. However, due to the monocular ambiguity,
this approach can only estimate a relative pose and thus relative depth maps, which then
must be rescaled by an unknown factor. Instead, we explore another way to estimates a
metric pose, by leveraging the LiDAR information and solving a Perspective-n-Point prob-
lem [Gao et al., 2003; Lepetit et al., 2009]. As such, depth estimation should also align to a
real-world scaling.
Perspective-n-Point (PnP). The PnP problem originally seeks the absolute pose of a cam-
era given a set of 3D points and their corresponding 2D image projections. In our case,
we use the PnP formulation to estimate the change of pose between the target and source
views, i.e., given the target image It and LiDAR measurements, as well as the source image
Is.

First, pairs of pixels (pt, ps) matching in both views It and Is are found using the SIFT
descriptor [Lowe, 2004] based on a DoG keypoint detector. Then, the sole pairs for which
pt has a LiDAR measurement are considered. This gives us the pairs of 3D-2D points,
where points pt are complemented with depth measurements and match the 2D points ps
of the source image Is. Given these pairs, we can precisely estimate the metric-scaled 6D
rigid transformation between the target and source poses by minimizing the cumulative
projection error.

In challenging real-life situations, and especially when dealing with a 4-beam LiDAR,
finding matching pixels that have LiDAR measurements can be arduous, making this
method prone to errors. Hence, we follow [Ma et al., 2019] to remove outliers in the set
of point correspondences by using RANSAC in conjunction with the PnP solving algo-
rithm. When this filtering step is insufficient for the algorithm solving the PnP problem to
converge, we discard the training sample.

3.4 Experimental protocol

The first component of our protocol is the dataset used for the experiments, namely KITTI
[Geiger et al., 2012], and our preprocessing to reduce the raw 64-beam LiDAR to a 4-beam
one (section 3.4.1). We then introduce baselines in section 3.4.2. Additional details are
given in appendix A.

3.4.1 Dataset and evaluation metrics

To train models in our LiDARTouch framework, we need a dataset that provides a camera
stream with aligned sparse LiDAR data for training. We also require this dataset to have
ground-truth depth data with an associated benchmark to assess and compare our test
performances. We are aware of only one dataset matching both of these requirements,
namely KITTI. It contains 1.5 hours of recorded driving sessions in urban environment
from a video stream synchronized with LiDAR data. Depth ground truth is available: it
is derived from dense LiDAR signals accumulated over five sweeps and stereo filtered.
Overall, we use this dataset to train and evaluate the quality of the predictions of our
framework, and to compare against baselines and variants. On the KITTI dataset [Geiger
et al., 2012], we use the so-called Eigen split [Eigen et al., 2014] for train, val and test with
a minor modification for the val and test. The ground-truth LiDAR of [Uhrig et al., 2017] is

38 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

not available for some of the frames of the Eigen splits (fewer than 10). Following common
practice [Godard et al., 2019; Guizilini et al., 2020a], we removed them from the val and
test splits. Thus, the total number of examples are 22537, 873 and 652 respectively for the
train, val and test sets.

The LiDAR data provided in KITTI is obtained with high-end 64-beam sensors, appro-
priate for evaluating our self-supervised models, but much denser than what is expected to
train our LiDARTouch framework. Consequently, we perform a filtering step to extract 4
beams out of the raw 64-beam LiDAR data. To conform with prior works [Guizilini et al.,
2019; Jaritz et al., 2018; Ma et al., 2019] and better compare with them, we sample LiDAR
beams uniformly: 1 beam is kept every 16. Note that with such a sampling, while 4 beams
are extracted, only three beams effectively project onto the image plane as one beam falls
out of the considered visual region.
Evaluation metrics. Evaluation is conducted against accumulated ground-truth LiDAR
obtained following [Uhrig et al., 2017], with the metrics defined in [Eigen et al., 2014].
This includes the absolute (Abs Rel) and square (Sq Rel) relative errors, the root mean
square error (RMSE), and its log version (RMSElog), as well as precision-under-threshold
metrics measuring the percentage of depth predictions D̂ close enough to the ground-truth
depth D, in the sense of the value δ := max(D̂

D , D
D̂
) being under a user-defined threshold.

Following [Eigen et al., 2014], we consider three thresholds: δ < 1.25, δ < 1.252 and δ <
1.253.

3.4.2 Notations, ablations and external baselines

Notations. To refer to the network architecture, independently of the rest of the learning
framework, we use Monodepth2, Monodepth2-L, NLSPN, ACMNet and S2D. When we
refer to whole models, i.e., architectures trained under the LiDARTouch framework, we
append the ‘LiDARTouch’ prefix. For example, we note ‘LiDARTouch-ACMNet’ when we
adapt the ACMNet architecture into the LiDARTouch framework.

For clarity, the inputs and the supervision schemes that are employed by the models are
recalled in the tables of the experiments section. The input of each depth prediction model
includes an image (noted ‘I’) and, optionally, a sparse 4-beam LiDAR point cloud (‘L4’).We
considered the following supervisions strategies: self-supervised photometric reconstruc-
tion (‘P’) associated to loss eq. (3.2), supervised LiDAR ground-truth regression with L1
loss (‘Lgt’), or LiDAR self-supervision (‘L4’) with one of the three options in Eqs. (3.3), (3.4),
or (3.5).
Ablation: Pose estimation with a pose network. In section 3.3.3, we presented the PnP
algorithm, which estimates metric pose changes from source to target views. To highlight
the gains enabled by the use of the extra LiDAR information for computing the pose, we
experiment by training a pose network instead, a widely used component of monocular
depth estimation models [Casser et al., 2019a; Godard et al., 2019; Guizilini et al., 2020a;
Zhou et al., 2017]. For each target-source image pair, the pose network outputs the 6D
rigid transformation between views. It is differentiable and trained jointly with the depth
network. When only trained with the photometric error (eq. (3.2)), the 6D transformation
is estimated up to a scale factor due to the monocular ambiguity. This results in a relative
depth estimation requiring to be rescaled by the LiDAR depth ground-truth median value
(not available in our case).

A solution is to use data from the IMU/GNSS to supervise the pose estimation scale.
In the context of depth estimation, such an approach has been explored by [Guizilini et al.,
2020a]. Formally, we first obtain the approximate change in pose between the source and
target views (Pt�s) from integrated inertial measurements. Then, we extract its translation

3.5. Influence of a touch of LiDAR 39

component r and make the predicted pose translation component r̂ regress its magnitude:

Limu =
∣∣∣∥r∥2 − ∥r̂∥2

∣∣∣. (3.6)

As for a given pose there is a unique depth minimizing eq. (3.2), constraining the pose’s
magnitude to a metric scale forces the depth estimation to be metric as well.
Baselines: Monocular methods. We compare against state-of-the-art monocular self-
supervised approaches such as SfMLearner [Zhou et al., 2017], Vid2Depth [Mahjourian
et al., 2018], GeoNet [Yin and Shi, 2018], DDVO [Wang et al., 2018], Monodepth2 [Godard
et al., 2019], PackNet-SfM [Guizilini et al., 2020a] and MonoViT [Zhao et al., 2022]. Note
that these methods can only produce relative depth maps, as they use an unsupervised
pose network, so they have to be rescaled using the ground-truth LiDAR. Comparisons
with these methods is thus unfair, in their favor.

Additionally, we compare with methods that directly produce metric depth by lever-
aging additional supervision. This includes (1) DORN [Fu et al., 2018], a camera-only
method fully-supervised by a dense LiDAR signal, (2) [Kuznietsov et al., 2017], a semi-
supervised method using stereo reconstruction and dense LiDAR supervision, and (3)
PackNet-SfM [Guizilini et al., 2020a] model supervised with IMU prior.
Baselines: Depth completion methods. We also compare against supervised depth
completion methods, namely ACMNet [Zhao et al., 2021], NLSPN [Park et al., 2020] and
S2D [Ma et al., 2019]. However, their original versions are not trained and evaluated on
the same splits as monocular methods. We re-train and evaluate them on the Eigen split,
in their fully-supervised setting but with only a 4-beam LiDAR input. Additionally, we
also train and evaluate these depth completion methods when the depth ground truth is
simply replaced by the 4-beam LiDAR input for supervision signal. We refer to this setting
as ‘Naïve self-sup.’.

3.5 Influence of a touch of LiDAR

In this section, we validate setups where the depth network converges to a metric scale. In
particular, in section 3.5.1, we disentangle the contributions brought by LiDAR with an ab-
lation study on the three levels of integration presented in section 3.3: as a self-supervision
signal, as a depth network’s input, and as additional information for pose estimation. We
also investigate various combinations of LiDAR self-supervision schemes and depth net-
works in section 3.5.2.

3.5.1 Ablation of LiDAR

We begin with an ablation study to assess the contribution brought by sparse LiDAR at
three different levels: supervision, input and pose. We define our LiDARTouch framework
as using a PnP for pose estimation, LiDAR self-supervision (L4) with the masked loss vari-
ant, and a bi-modal depth network (i.e., taking RGB and LiDAR as input). Models that
belong to this framework are highlighted as light blue cells in table 3.2. For the sake of
clarity, in this section we focus on the leftmost three columns for direct comparison with
LiDARTouch. Other learning setups are discussed in detail in appendix A.2.
LiDAR as an input. First, we study the contribution brought by LiDAR when it is used as
an input to the depth network in addition to the image signal. Results in the first column
of table 3.2 show that the Monodepth2 architecture, which does not use LiDAR as input, is
consistently outperformed by all the other bi-modal architectures leveraging LiDAR input.

40 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

TABLE 3.2: Pose estimation ablation. We report precision (%) under threshold (δ < 1.25) on the
KITTI test split; higher is better. As we are interested in metric depth estimations, contrary to com-
mon practice [Godard et al., 2019; Guizilini et al., 2020a], estimations are not rescaled with LiDAR
GT. Light blue cells indicate configurations corresponding to our LiDARTouch framework. Some
models are more difficult to train and indicated in light grey cells. In particular, ‘∗’ implies that a
rescaling of the pose was used for a stable training, and ‘†’ indicates that the LiDAR signal had to
be dilated to avoid overfitting to the LiDAR input (more details in A.3). When using a pose net-
work with photometric supervision only (dark gray cells), the estimation can only be relative and
the scores are all below 1%. More details are provided in subsection 3.5.1.

w/ PnP w/ pose network

Depth network P+L4 P P+L4 P P+imu P+L4+imu

Monodepth2 86.1 86.2∗ 83.9 - 86.2 86.5
Monodepth2-L

Li
D

A
R

To
uc

h

96.9 96.2∗ 94.9 - 96.4 96.5
ACMNet 97.4 97.5 91.2 † - 27.0 95.3

NLSPN 95.9 96.8 94.2 † - 38.5 94.1 †

S2D 96.2 96.4 93.9 † - 28.7 94.0 †

These architectures achieve a relative improvement of 11-13% compared to Monodepth2.
This validates the positive influence of integrating few-beam LiDAR as an input.
Self-supervision with the sparse LiDAR. Next, we study the impact of using a 4-beam Li-
DAR as a self-supervisory signal by removing it from the LiDARTouch framework, which
leaves only the photometric loss (‘P’). This corresponds to the second column in table 3.2.
Overall, the results support our claim that the use of LiDAR self-supervision improves or
is similar in performance with respect to the photometric-only supervision schemes.

Although ACMNet, NLSPN and S2D architectures show slightly better performance
when trained with PnP and the photometric-only loss, i.e., without any LiDAR self-supervision,
they are severely affected by the infinite-depth issue (see section 3.7).

Moreover, when using the photometric loss alone (‘P’ in the table), Monodepth2 and
Monodepth2-L are hard to train. Indeed, while PnP pose is metric by construction, the
depth network is initialized randomly and has to converge to a metric scale with the pho-
tometric reconstruction as the sole learning signal. Without any precaution, we observe
large numerical differences in scale at initialization between the pose and depth, which
provoke unstable training for the depth network. To address this instability, we divide the
translation component of the PnP pose by a factor α during training and multiply the depth
prediction consequently at inference (details in appendix A.5). This procedure is inspired
by the baseline (distance between the two cameras) scaling introduced in Monodepth2 for
the stereo setting [Godard et al., 2019]. We indicate models that need to be trained using
this strategy with ‘∗’ in table 3.2. On the other hand, under the LiDARTouch framework,
all depth networks train well without requiring training tricks.
Pose estimation with a sparse LiDAR. We now show that a precise computation of the
change of pose is critical to estimate depth maps that are correctly scaled, and that a touch
of LiDAR is beneficial for this purpose. To demonstrate this, we experiment by replacing
PnP in our LiDARTouch setup with a pose network that does not use any LiDAR infor-
mation, as detailed in section 3.4.2. This ablation of LiDARTouch corresponds to the third
column, ‘P+L4’ under ‘w/ pose network’, in table 3.2.

The main difference between these two setups is that PnP methods produce metric poses
by construction, which left only metric depths as solutions to minimize the photometric
loss. In opposition, the use of a pose network requires a joint alignment and convergence

3.5. Influence of a touch of LiDAR 41

TABLE 3.3: Variants comparison of the LiDAR self-supervision. RMSE metric (lower is better) on
the Eigen test split of KITTI. Models are trained with photometric self-supervision (P) in conjunction
with one of the three considered variants of minimal-LiDAR self-supervision (L4). All models are
trained with PnP for pose estimation.

Self-supervision Monodepth2 Monodepth2-L ACMNet NLSPN S2D

P + L4 (naïve) 4.504 2.796 2.490 3.084 2.839
P + L4 (hinted) 4.794 2.813 2.563 3.271 2.982
P + L4 (masked) 4.517 2.696 2.504 3.014 2.776

to a metric scale between the depth and pose networks as they are both randomly initial-
ized. While Monodepth2-L achieves this, it can be observed that the use of a pose network
instead of PnP degrades performance up to 6% when compared to LiDARTouch. Above
all, we observe a tendency for ACMNet, NLSPN and S2D to overfit the LiDAR signal (see
fig. A.1b for an example).

We find that the multi-scale prediction and supervision during training of Monodepth2
and Monodepth2-L are key for the models not to overfit the sparse 4-beam LiDAR data.
Indeed, supervision at the lowest scale (1:8) increases the number of pixels getting supervi-
sion from LiDAR as pixels with associated LiDAR signal are expanded due to the difference
in scale.

Building on this observation, we propose a procedure to simulate this behavior in order
to avoid LiDAR overfitting for mono-scale networks without changing their architectures.
To simulate a LiDAR self-supervision at a lower scale, we apply a dilation morphologi-
cal operation on the 4-beam LiDAR at the supervision level. This artificially increases the
number of pixels receiving LiDAR supervision, albeit in a noisy manner, and enables the
mono-scale depth networks ACMNet, NLSPN and S2D to produce globally coherent met-
ric depth estimations. We report results of models trained with this procedure (indicated
by ‘†’) in table 3.2 and provide technical details as well as qualitative examples in ap-
pendix A.3.

On the other hand, training under our LiDARTouch framework eliminates the need for
such tricks. Indeed, results demonstrate that our LiDARTouch framework, using LiDAR
as self-supervision, in input and in pose computation yields competitive performances for
all the five architectures, a more stable training compared to any other configuration, and
alleviates the infinite-depth problem as we will show in section 3.7.

3.5.2 LiDAR self-supervision variants

We compare in table 3.3 the variants for the LiDAR loss defined in section 3.3.2, namely the
naïve compound loss eq. (3.3), the masked one eq. (3.4), which prevents interferences with
the photometric error, and the hinted loss eq. (3.5), which handles the noise of the LiDAR
signal. These experiments are conducted for the four different depth networks considered
in section 3.3.1. Overall, averaged over all architectures, the masked version of the LiDAR
loss achieves the best results, demonstrating the need to reduce interferences between the
LiDAR and photometric supervisions. On the other hand, we observe that the hinted loss
yields the worst results. We expected the naïve loss to have the worst performance as it does
not consider the noise in LiDAR, but it appears that the control the hinted loss imposes is
too strong and discards too many of the already scarce LiDAR measurements. Hence, it
confirms that the masked LiDAR self-supervision is the most effective.

42 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

TABLE 3.4: Comparison against monocular depth estimation methods. Results are reported on
the KITTI Eigen split [Eigen et al., 2014] with improved ground truth [Uhrig et al., 2017]. A few
self-supervised methods produce relative-depth maps and their prediction must be rescaled using
ground-truth information; this is identified by ‘gt rescaled’ in the table. Some of the methods also
benefit from an extra pre-training, on ImageNet [Deng et al., 2009] or Cityscapes [Cordts et al.,
2016], denoted with ◦ or ⋆ superscripts, respectively. The model Monodepth2 in italic indicates our
re-implementation of [Godard et al., 2019] without pre-training and post-processing. Input includes
the image only (‘I’), or combined with the few-beam LiDAR point cloud (‘L4’). Supervision includes
photometric loss (‘P’), IMU prior (‘imu’), stereo reconstruction (‘ste’) and LiDAR supervision with
either dense ground truth (‘Lgt’) or sparse 4-beam LiDAR (‘L4’). A hyphen indicate that the score is
not communicated by the authors of the method.

Method Input Superv. Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Su
p. DORN◦ [Fu et al., 2018] I Lgt 0.072 0.307 2.727 0.120 0.932 0.984 0.995

[Kuznietsov et al., 2017]◦ I Lgt+ste 0.089 0.478 3.610 0.138 0.906 0.980 0.995

Se
lf

-s
up

er
vi

se
d gt

re
sc

al
ed

SfMLearner⋆ [Zhou et al., 2017] I P 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth⋆ [Mahjourian et al., 2018] I P 0.134 0.983 5.501 0.203 0.827 0.944 0.981
GeoNet⋆ [Yin and Shi, 2018] I P 0.132 0.994 5.240 0.193 0.883 0.953 0.985
DDVO [Wang et al., 2018] I P 0.126 0.866 4.932 0.185 0.851 0.958 0.986
Monodepth2 (our reimplem.) I P 0.099 0.591 4.030 0.149 0.897 0.976 0.993
Monodepth2◦ [Godard et al., 2019] I P 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM⋆ [Guizilini et al., 2020a] I P 0.071 0.359 3.153 0.109 0.944 0.990 0.997
MonoViT⋆ [Zhao et al., 2022] I P 0.067 0.328 3.108 0.104 0.950 0.992 0.998
Monodepth2 w/ IMU supervision I P+imu 0.110 0.729 4.565 0.172 0.862 0.965 0.989
PackNet-SfM⋆ [Guizilini et al., 2020a] I P+imu 0.075 0.384 3.293 0.114 0.938 0.984 0.995
LiDARTouch-SAN I+L4 P+L4 0.063 0.396 3.318 0.118 0.946 0.982 0.993
LiDARTouch-NLSPN I+L4 P+L4 0.053 0.336 3.013 0.106 0.959 0.987 0.994
LiDARTouch-S2D I+L4 P+L4 0.059 0.285 2.776 0.102 0.962 0.988 0.995
LiDARTouch-Monodepth2-L I+L4 P+L4 0.047 0.267 2.696 0.090 0.969 0.991 0.996
LiDARTouch-ACMNet I+L4 P+L4 0.044 0.242 2.504 0.086 0.974 0.991 0.996

3.6 Comparison against related works

In table 3.4, we report evaluations of the four architectures presented in section 3.3.1,
trained within our LiDARTouch framework against camera-only baselines.
Self-supervised camera-only methods. First, we show that training under our frame-
work outperforms self-supervised monocular depth estimation methods at time of sub-
mission [Godard et al., 2019; Guizilini et al., 2020a; Mahjourian et al., 2018; Wang et al.,
2018; Yin and Shi, 2018; Zhou et al., 2017]. We note that contrary to other methods, ours
uses few-beam LiDAR as input. Furthermore, self-supervised monocular depth estimation
approaches only estimate relative depth and thus are rescaled with ground truth before
evaluation. With our approach, this unrealistic and impractical rescaling step is no longer
needed.
Supervised camera-only methods. We also obtain better results than monocular depth es-
timation models trained with ground truth and optional stereo [Fu et al., 2018; Kuznietsov
et al., 2017], while not requiring either of those. While the latter does not use few-beam
LiDAR as input, not requiring ground truth at train time makes our method trainable at
scale on any domain.

Overall, we showed that by integrating few-beam LiDAR in the pipeline, we substan-
tially increase performances on all metrics over other methods not using few-beam LiDAR.

We compare our LiDARTouch framework against two supervision schemes from the
depth completion literature: full-supervision with ground truth (Lgt) and self-supervision
(L4-naïve). These results are reported for the three architectures in table 3.5.
Supervised depth completion methods. Unsurprisingly, supervising the training of any
of the architectures with the privileged ground-truth depth yields better results than our
LiDARTouch framework. However, LiDARTouch remains very competitive, e.g., 2.504 vs.

3.6. Comparison against related works 43

TABLE 3.5: Comparison against supervised and naively self-supervised depth completion
schemes. Input includes the image and the 4-beam LiDAR (I+L4)

Network Superv. Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ < 1.25 ↑

G
T

su
p.

ACMNet Lgt 0.030 0.143 2.112 0.983
NLSPN Lgt 0.044 0.214 2.617 0.971

S2D Lgt 0.035 0.152 2.271 0.979
SAN Lgt 0.037 0.172 2.491 0.976

N
ai

ve

se
lf

-s
up

.

ACMNet L4 0.714 9.751 15.88 0.057
NLSPN L4 4.133 268.4 51.96 0.010

S2D L4 0.849 12.84 17.53 0.077
SAN L4 0.426 6.226 14.148 0.243

Li
D

A
R

To
uc

h ACMNet P+L4 0.044 0.242 2.504 0.974
NLSPN P+L4 0.053 0.336 3.013 0.959

S2D P+L4 0.059 0.285 2.776 0.962
SAN P+L4 0.063 0.396 3.318 0.946

2.112 in RMSE for ACMNet while not requiring any ground truth at train time. We also
investigate the impact of the density of the input LiDAR on these scores in fig. 3.6. We
observe that LiDARTouch is consistently close to the fully-supervised depth completion
alternative when the number of layers varies.

0 4 8 16 32 64
1

10

Number of input LiDAR beams

R
M

SE
(m

et
er

s)

LiDARTouch-ACMNet ACMNet (Naive self-sup.)
PackNet-SfM ACMNet (GT sup.)

FIGURE 3.6: Comparison of different supervision schemes for the ACMNet architecture. In the
depth-completion setting, results are highly degraded when ground-truth depth information is no
longer available for supervision (blue plots, ‘GT sup.’ vs. ‘Naive self-sup.’). By combining ideas
from self-supervised monocular depth estimation along with a careful integration of the LiDAR
signal, we show that our self-supervised LiDARTouch framework can reach performance very close
to the one offered by fully-supervised depth completion, as illustrated by the black arrow. Note that
the y-axis is log-scaled.

Self-supervised depth completion method. The results in table 3.5 show that the models
trained with naïve 4-beam LiDAR self-supervision are unable to converge to decent results.
Architectures cannot generalize from such a sparse LiDAR input as the supervisory signal
is not sufficient. Moreover, in fig. 3.6, we remark that the naïve self-supervision scheme
makes performance plummet when the LiDAR data becomes sparser. Furthermore, for
the sake of completeness, we also experiment with SAN [Guizilini et al., 2021], a recent
depth completion method with similar fusion scheme to the Monodepth2-L we propose in

44 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

section 3.3.1. Overall the results of SAN in table 3.4 and table 3.5 fall within the expected
range, i.e., better than camera-only methods.

3.7 Alleviating the infinite-depth problem

We now study the infinite-depth problem affecting traditional pipelines and how well does
the LiDARTouch framework solve it. First, we introduce a new metric to assess the degree
and the frequency to which a model dramatically overestimates the distance to cars ahead
(section 3.7.1). This metric is employed for a quantitative evaluation of the problem in sec-
tion 3.7.2. Besides, we also provide a qualitative analysis of the problem and the significant
improvements offered by LiDARTouch (section 3.7.3).

3.7.1 Catastrophic Distance Rate (CDR) metric

Monocular image-only depth estimation methods suffer from the infinite-depth problem:
vehicles with a motion close to that of the ego vehicle (in other words, with almost no rel-
ative motion) can be estimated as being infinitely far away. In the context of autonomous
vehicles, such anomalies can lead to potentially dangerous outcomes. This critical weak-
ness of image-only methods is not well reflected in the commonly-used evaluation metrics,
as errors associated with these local flaws are overwhelmed by global scores aggregated at
a dataset level.

This problem was qualitatively evaluated in some recent work [Casser et al., 2019a,b;
Godard et al., 2019; Guizilini et al., 2020a; Zhou et al., 2017] but no precise measurement
of its severity has yet been proposed. To address this issue, we define a novel quantitative
metric, called the catastrophic distance rate (CDR), to assess the degree to which a model
tends to make such disastrous predictions.

CDR measures the percentage of cars whose estimated distance to the ego-car is catas-
trophically poor in the test set. To this end, we use instance segmentation masks for all the
vehicles of every image of the test set. With these vehicle instances, CDR is computed in a
two-step process:

1. Instance mask filtering to keep the ones potentially concerned by the infinite-depth
problem;

2. Computation of the depth error measured on these instance masks.

Instance mask filtering. For the first step of our CDR metric, we filter out irrelevant
masks to only focus on vehicles typically concerned by the infinite-depth problem, i.e.,
first vehicle in front, unoccluded and not too far. As we use a centered frontal camera, we
begin by discarding vehicles that are not in the center of the scene. We also remove cars
whose instance masks are too small, considered too far from the ego vehicle. Then, to assess
whether a car is occluded or not, we assume that a heavily occluded vehicle generally has
a non-convex apparent shape (e.g., incised by the front vehicle) and that, on the contrary,
the mask of a non-occluded car is approximately convex. The overall process is illustrated
in fig. 3.7.
CDR computation. CDR estimates the percentage of instances for which the relative
depth error is above a manually-defined “catastrophic” threshold τ. Within each segmen-
tation mask Mk, indexed by k ∈ K, we define the set Vk of pixels that possess a ground-
truth LiDAR depth measurement: Vk = {p | Mk(p) > 0 ∧ Dk(p) > 0}. Note that, as with
Ht, D(p) = 0 if and only if there is no LiDAR point projecting at p. In the KITTI test set,

3.7. Alleviating the infinite-depth problem 45

vehicles on the side

very far vehicle non-convex
mask

Keep masks: centered, big enough and convex convex mask

Instance
segmentation

occluded veh.

FIGURE 3.7: Selecting vehicles to compute the CDR metric. The aim is to extract the individual
mask of the first vehicles in front of the ego-car. These are indeed vehicles affected by infinite-depth
error due to a small relative motion, leading to potentially catastrophic consequences. The proposed
CDR metric computes the rate of such failures over the test set.

the average size of Vk is 543. The error Rk made by the model on the instance mask Mk is
measured by the average signed depth error over Vk:

Rk =
1

|Vk| ∑
p∈Vk

D̂k(p)− Dk(p)
Dk(p)

, (3.7)

where |Vk| is the cardinality of Vk. Please note that no absolute value is involved in the
design of Rk as we focus only on the infinite-depth problem, i.e., D̂(p) > D(p), when a car
is predicted catastrophically further away than its true position.

By thresholding the error Rk and aggregating it over instances, we define the “Catas-
trophic Distance Rate” as:

CDR(τ) =
1
|K| ∑

k∈K
JRk > τK, (3.8)

with J·K the Iverson bracket, |K| the number of instance masks and τ a user-defined thresh-
old. For example, CDR(τ = 0.5) = 20% indicates that the distance to front vehicles is over-
estimated by more than 50% of the true distance in 20% of the cases.

3.7.2 Quantitative analysis

To verify our intuition that LiDAR self-supervision is a suitable means to mitigate the
infinite-depth problem, we study three models:

• A model that does not use the LiDAR signal at all, noted ‘Monodepth w/ IMU su-
pervision’, which heavily suffers from the infinite-depth issue;

• A model with LiDAR as input and for the PnP-estimated pose, but supervised solely
with the photometric loss, noted ‘ACMNetP

PnP’;

46 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

• A model trained within the LiDARTouch framework, using LiDAR for the depth
network, pose estimation and self-supervision, noted ‘LiDARTouch-ACMNet’.

We plot the distribution of the CDR metric against the chosen threshold τ in fig. 3.8. We
observe that the more LiDAR information is integrated, the fewer catastrophic estimations
occur.

Indeed, ACMNetP
PnP, which uses LiDAR both in input and pose, improves over Mon-

odepth2 but is still affected by the infinite-depth issue. We also see a clear improvement
of our LiDARTouch-ACMNet over the two other models. For example, for τ = 0.5, i.e.,
the distance of a car is overestimated by at least half, Monodepth2 has a metric score of
5.02% while ACMNetP

PnP has 0.6% and LiDARTouch-ACMNet 0.0%. Such results show
that Monodepth2 predictions cannot be trusted for downstream tasks such as car detection
or free space estimation that are both required by functions like automatic emergency brak-
ing, keep-lane assist or adaptive cruise control. While ACMNetP

PnP reduces the likelihood
of catastrophic estimation by 8 folds for τ = 0.5, 0.6% is still too high to implement in a
critical system intended for wide commercial use.

Overall, a network trained with our pipeline is significantly less impacted by the infinite-
depth problem and we validate our hypothesis that, during training, the LiDAR self-
supervision disambiguates cars estimated too far from their real distance. Hence, our mod-
els can accurately and safely handle moving objects with no relative motion, typical of cars
in fluid traffic.

3.7.3 Qualitative analysis

The three examples in fig. 3.9 illustrate the improvement of our framework over the classic
self-supervised camera-only pipeline. On the leftmost column, we observe a typical ‘hole’
in the depth map where Monodepth2 with IMU supervision estimates a vehicle three times
more distant than in reality. in contrast to our model without such holes.

In addition to fig. 3.9, we provide some qualitative analyses where we show the depth
maps obtained for different frameworks in fig. 3.10. First, we observe better overall depth
maps with LiDARTouch-ACMNet than with Monodepth2. For example, we better estimate
the two moving cyclists in fig. 3.10a as well as the fine tree trunks in fig. 3.10c.

As expected, the fully-supervised method ACMNet (GT-sup.) delivers the best-qualitative
depth maps, as it leverages privileged ground-truth LiDAR depth during training. How-
ever, we observe that self-supervised approaches (Monodepth2 and LiDARTouch-ACMNet)
better estimate areas near the top of the scene. This can be explained as LiDAR points are

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

1

10

Threshold τ

C
D

R
(i

n
%

)

Monodepth2 w/ IMU sup. ACMNetP
PnP

LiDARTouch-ACMNet

FIGURE 3.8: Plot of the CDR metric for various thresholds τ. The y-axis is log-scaled.

3.8. Implementation details 47

In
pu

ti
m

ag
e GT: 14.3m

M
on

od
ep

th
2

w
/I

M
U

su
p. Pred: 47.6m

Li
D

A
R

To
uc

h
A

C
M

N
et Pred: 14.1m

GT: 18.0m

Pred: 32.0m

Pred: 20.2m

GT: 24.0m

Pred: 39.1m

Pred: 29.5m

FIGURE 3.9: Mitigation of the infinite-depth problem. Self-supervised image-only approaches
tend to predict objects with no relative-motion at an infinite depth, as indicated by the hole in the
depth close-up (red). In contrast, our LiDARTouch framework estimates the depth of these vehicles,
as shown in the green close-up. Note that for the example in the middle, we verified that no LiDAR
measurement falls on the car. This shows that our training framework can generalize well to cases
where no LIDAR is available on critical moving vehicles.

Im
ag

e
In

pu
t

M
on

od
ep

th
2

w
/I

M
U

su
p.

Li
D

A
R

To
uc

h
A

C
M

N
et

G
T

su
p.

A
C

M
N

et

(a) (b) (c)

FIGURE 3.10: Qualitative comparison of LiDARTouch with other existing frameworks. Mon-
odepth2 is trained with IMU supervision. The model trained with GT supervision gives sharper
depth estimates, but struggles in regions where GT signal is not available (e.g., top of the scene).

absent from regions above the road, which hinders ACMNet (GT-sup.) prediction in these
regions due to the lack of supervisory signal it uses (last row in fig. 3.10).

Despite the successful integration of LiDAR in LiDARTouch, we note that some local
depth estimation artifacts still occur, similar to the maps obtained from self-supervised
depth estimation methods. Typically, this concerns distorted, reflective and color-saturated
regions because the photometric reconstruction loss assumes Lambertian surfaces (cars in
fig. 3.10c). Our model may also produce blurry depth predictions for small or thin objects,
such as traffic signs (Figures 3.10a and 3.10b).

3.8 Implementation details

Training. We train all our models for 30 epochs using the Adam optimizer [Kingma and
Ba, 2015] with β1 = 0.9 and β2 = 0.999. The initial learning rate is set to 1e−4 and divided
by two halfway through training.

48 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

In all training pipelines, following common practice [Godard et al., 2019, 2017; Guizilini
et al., 2020a], we add an edge-aware smoothing regularization loss to encourage the pre-
dicted depth map D̂t to be locally smooth while taking into account sharp boundaries:

Lsmooth = |∂xD̂t|e−|∂x It| + |∂yD̂t|e−|∂y It|, (3.9)

with the index p over pixels omitted for clarity.
Monodepth2 extension. Our Monodepth2-L architecture is similar to Monodepth2 at
the difference that we use a second ResNet-18 encoder specifically for the LiDAR modality.
We only remove the first batch-normalization layer of the LiDAR ResNet, as using it would
imply the computation of ineffective statistics given that the LiDAR input mostly contains
zeros (encoding measurement absence).
Pose estimation. To solve the PnP problem, we use an open-source implementation of PnP
methods with RANSAC from the OpenCV library [Bradski, 2000]. We use 100 iterations
and a reprojection error threshold of 2. Even after RANSAC, the remaining outliers are
numerous enough to hinder training. Therefore, we remove the relative pose estimates for
which the translation magnitude ∥r̂∥ is too large. In effect, we first compute the median
value of translation magnitude for each relative pose of the train set. Then, we remove all
examples that are too far-off the median. When using a pose network, we follow [Godard
et al., 2019] and use a ResNet-18 taking two images in input and outputting the parameters
of P̂t�s, the rigid transformation between the two views.
Evaluation after rescaling. Baselines and models from prior works that only provide
relative-depth maps have their predictions rescaled so that they have the same mean com-
pared to the ground truth against which they are evaluated. This is mentioned as ‘gt
rescaled’ in table 3.4. For methods that directly produce metric depth maps, like ours, we
do not apply this post-processing procedure and depth maps are kept at the originally-
predicted scale.
CDR Metric. To compute results with our CDR metric, we first extract instance masks
with EfficientPS [Mohan and Valada, 2021]. Among these masks, we want to focus only on
those of close-by, non-occluded vehicles, i.e., first vehicles in front of the ego-car. These
vehicles are particularly prone to infinite-depth mistakes, with safety-critical consequences
when it happens. To do this selection, vehicles that are not in front of the ego-car are dis-
carded, as measured by not belonging to the central band of the scene (size is 20% of the
image width) captured by the front camera. Vehicle having instance masks calculated with
fewer than 20 pixels are considered too far from the ego vehicle. Then, to assess whether
a car is occluded or not, we assume that a heavily occluded vehicle generally has a non-
convex shape (e.g., incised by the front vehicle) and that, on the contrary, the mask of a
non-occluded car is approximately convex. Accordingly, we first smooth segmentation
masks and fill noisy areas where the intensity changes rapidly (e.g., edges, small holes
from the wheels) by applying a morphological dilation operator. We use a square kernel
of size 10 and 4 iterations for this operation. The masks now being smoothed, we then
approach their shape by a polygon from which we can tell if they are convex or not. To
approximate each pixel blob by a polygon, we use the Douglas–Peucker algorithm [Dou-
glas and Peucker, 1973]. The algorithm ensures the fit of the approximated polygon with
an accuracy parameter dependent of the pixel blob size. After this first filtering step, 657
valid masks remain out of the 4460 vehicle masks of the KITTI test split.
Extracting 4 beams from 64-beam point clouds. In the KITTI dataset, the LiDAR data in
a frame is provided as a unique point cloud, that is, a set of (x, y, z) coordinates, without
the beam indexes, i.e., which of the 64 lasers has been used for each measurement. We
needed to recover this information for our experiments. Fortunately, in KITTI the points

3.9. Conclusion 49

are recorded in an orderly manner. The points of one beam follow the points of another in
the direction of laser rotation (counter-clockwise). This means that, inside the data stream
of a same frame, each rotation completion indicates a change of beam. More precisely, the
coordinate basis of the LiDAR is oriented with x: positive forward and y: positive to the
left of the car. Then we can compute the horizontal angle in radian of each point with:

ϕ = arctan2(y, x). (3.10)

We use the 2-argument arctangent instead of classic arctangent, arctan(y/x), as the latter
cannot distinguish between diametrically opposite directions. Then, by computing the
horizontal angle (azimuth) of each point, we can separate data for each beam by detecting
when ϕ changes from 360◦ to 0◦ in the stream of points. This way, we have access to the
ring index for each LiDAR point and can, thus, freely sparsify the LiDAR data.

3.9 Conclusion

In this chapter, we proposed LiDARTouch, a novel self-supervised framework for depth
estimation with a monocular camera and a few-beam LiDAR.

3.9.1 Summary of contributions

Alleviate monocular ambiguities. While extremely sparse, we show that the LiDAR
signal can be leveraged to alleviate the ambiguity of scale and the infinite-depth issues that
monocular depth estimation methods face.
Performant, cheap, self-supervised. The LiDARTouch framework can reach competitive
performances with respect to fully-supervised depth completion methods while being sig-
nificantly cheaper and not requiring dense annotation. Thus, our method can be trained
for accurate and metric depth estimation on any domain with no modification from the
raw sensors signal only, taking full advantage of the data acquired by a vehicle fleet.
Flexibility of the framework. We have validated the influence of the LiDAR integration
at three complementary levels of the self-supervised learning scheme, across five different
architectures, highlighting the robustness and the adaptability of our learning system to
diverse deep architectures.
New metric. Along with the new CDR metric to measure the infinite-depth problem,
and the associated source code, we hope to enable further research on the task of monocu-
lar depth prediction with minimal LiDAR input, typical of real-world assisted/automated
driving systems.

3.9.2 Perspectives

Extension to full surround. This work mostly focus on a “frontal camera” setup, i.e., only
one camera facing forward, while L3+ automatized vehicles are typically equipped with
multiple cameras organized such that a full surround observation of the surrounding is
possible. The recent work of Guizilini et al. [2022a] takes advantage of such sensor setups
by projecting views between cameras in addition to projecting views across time, leading
to a more precise depth estimation that is also coherent across cameras. Such approach
could directly be adapted in the LiDARTouch framework to handle full surround camera
setups.

50 Chapter 3. Monocular metric depth estimation with a few-beam LiDAR

Better photometric loss. Another aspect that can be improved is the photometric recon-
struction objective. The SSIM+L1 loss used in this work assumes uniform lightning con-
ditions and Lambertian surfaces (i.e., a surface that scatters incident illumination equally
in all directions), making reflective and transparent surfaces difficult to estimate. Like-
wise, textureless regions and surfaces with repeated patterns can be difficult to learn on.
To address these problems, Shu et al. [2020] propose to define the reconstruction loss in
a learned feature space instead of the RGB space (i.e., a feature map is projected between
views instead of RGB values). This feature space is learned to favour discriminative fea-
tures, making the reconstruction loss easier to optimize and improving the depth quality
on fine details and textureless regions.
Improving robustness to visual impediments. Alternatively, Kaushik et al. [2021] pro-
pose a consistency loss on the depth under strong augmentation (e.g., brightness, jitter,
gamma, saturation, Gaussian noise). The inductive bias introduced that the 3D geometry
of the scene is independent of visual variations like lightning, colours, and visual noise.
This concept could be extended to visual impediments typical of conditions that can affect
the perception capabilities of automatized vehicles, i.e., synthesized glares or droplets of
water.

51

Chapter 4

Latents and Rays for an Implicit Scene
Representation

As presented in section 2.3.3, recent works in autonomous driving have widely adopted
the Bird’s-Eye-View (BEV) semantic map as an intermediate representation of the world.
Nonetheless, online prediction of these BEV maps involves non-trivial operations such as
multi-camera data extraction as well as fusion and projection into a common top-view grid.
This is usually done with error-prone geometric operations (e.g., homography or back-
projection from monocular depth estimation) or expensive direct dense mapping between
image pixels and pixels in BEV (e.g., with MLP or attention).

In this chapter, we present an efficient and general encoder-decoder, transformer-based
model for vehicle semantic segmentation from multiple cameras. This method, called
‘LaRa’ has been published in 2022, in the scientific conference CoRL [Bartoccioni et al.,
2022]. Our approach uses a system of cross-attention to aggregate information over mul-
tiple sensors into a compact, yet rich, collection of latent representations. These latent
representations, after being processed by a series of self-attention blocks, are then repro-
jected with a second cross-attention in the BEV space. We demonstrate that our model
outperforms the best previous works, at the time of submission, on nuScenes. The code
and trained models are available at https://github.com/valeoai/LaRa.

4.1 Introduction

To plan and drive safely, autonomous cars need accurate 360-degree perception and under-
standing of their surroundings from multiple and diverse sensors, e.g., cameras, RADARs,
and LiDARs. Most of the established approaches tardily aggregate independent predic-
tions from each sensor [Liu et al., 2020b; Roddick et al., 2019; Wang et al., 2021]. Such a late
fusion strategy has limitations for reasoning globally at the scene level and does not take
advantage of the available prior geometric knowledge that links sensors. Alternatively, the
bird’s-eye-view’s (BEV) representational space, a.k.a. top-view occupancy grid, recently
gained considerable interest within the community. BEV appears as a suitable and natural
space to fuse multiple views [Hu et al., 2021; Philion and Fidler, 2020] or sensor modali-
ties [Bai et al., 2022; Hendy et al., 2020] and to capture semantic, geometric, and dynamic
information. Besides, it is a widely adopted choice for downstream driving tasks includ-
ing motion forecasting [Caesar et al., 2020; Chang et al., 2019; Ettinger et al., 2021; Hu et al.,
2021] and planning [Caesar et al., 2021; Casas et al., 2021; Chitta et al., 2021; Zeng et al.,
2019].

In this thesis, we focus on BEV perception from multiple cameras. The online estima-
tion of BEV representations is usually done by: (i) imposing strong geometric priors such
as a flat world [Reiher et al., 2020] or correspondence between pixel columns and BEV
rays [Roddick and Cipolla, 2020], (ii) predicting depth probability distribution over pixels

https://github.com/valeoai/LaRa

52 Chapter 4. Latents and Rays for an Implicit Scene Representation

to lift from 2D to 3D and project back in BEV [Hu et al., 2021; Philion and Fidler, 2020], a
system subject to compounding errors, or, (iii) learning a costly dense mapping between
multi-camera features and the BEV grid pixels [Zhou and Krähenbühl, 2022].

Here, we depart from these dominant strategies and introduce ‘LaRa’, a novel transformer-
based model for vehicle segmentation from multiple cameras. In contrast to prior works,
we propose to use a latent ‘internal representation’ instantiated as a collection of vectors.
Fusing multiple views into a compact latent space comes with several benefits. First, it pro-
vides an explicit control on the memory and computation footprint of the model, instead of
the quadratic scaling of the full mapping between multi-camera features and the BEV grid
pixels [Zhou and Krähenbühl, 2022]. By design, the number of latents that we use is much
smaller compared to the spatial resolution of the BEV grid, enabling a highly-efficient ag-
gregation of information at the latent-level while exploiting spatial cues within and across
camera views. Moreover, we also hypothesize that discarding error-prone modules in the
pipeline such as depth estimation [Hu et al., 2021; Philion and Fidler, 2020] can boost model
accuracy and robustness. Finally, we can directly predict at the full-scale BEV resolution
bypassing noisy upsampling operations. This is infeasible, within a reasonable computa-
tional budget, for prior works restricted to coarser BEV grids as they map densely between
all the image and BEV grid pixels [Zhou and Krähenbühl, 2022]. Besides, as an orthogo-
nal contribution, we augment input features with ray embeddings that encode geometric
relationships within and across images. We show that such spatial embeddings, encoding
prior geometric knowledge, help guide the cross-attention between input features and the
latent vectors.

Our approach is extensively validated against prior works on the nuScenes [Caesar
et al., 2020] dataset. We significantly improve the performance on the vehicle segmenta-
tion task, outperforming recent high-performing models [Philion and Fidler, 2020; Zhou
and Krähenbühl, 2022]. Moreover, we show interesting properties of our cross-attention,
which naturally stitches multiple cameras together. We also perform several ablation and
sensitivity studies of our architecture with respect to hyper-parameters changes. Overall,
LaRa is a novel model that learns the mapping from camera views to bird’s-eye-view for
the task of vehicle semantic segmentation. In summary, our contributions are as follows:

• We encode multiple views into a compact latent space that enables precise control on the
model’s memory and computation footprint, decoupled from the input size and output
resolution.

• We augment semantic features with spatial embeddings derived from cameras’ calibra-
tion parameters and show that it strongly helps the model learn to stitch multiple views
together.

• Our architectural contributions are validated on nuScenes where we reach new SOTA
results.

4.2 Related work

4.2.1 BEV semantic segmentation

Models for BEV segmentation are typically structured in two parts. They first extract fea-
tures of each camera and then project them into a common top-view grid, called the bird’s-
eye-view. There are different strategies for this projection, which can be grouped into the
following categories.
IPM-based. Inverse perspective mapping (IPM) defines the correspondence between the
camera and the ground planes as a homography matrix. IPM makes strong assumptions

4.2. Related work 53

that the world is planar and the cameras’ horizontal axes are parallel to the ground. Early
works [Bertozzi et al., 1998; Sengupta et al., 2012] apply it directly to raw camera pixels
or features. This approach suffers from blurring and stretching artifacts for distant objects
(as they have fewer pixels in the camera view) and objects with a height (as they violate
the planar world assumption). To alleviate these shortcomings, a generative adversarial
network [Zhu et al., 2018] or training a BEV decoder with synthetic ground-truth [Reiher
et al., 2020] has been used to refine the IPM projection.
‘Lift-splat’-based: guiding with depth. Using depth information to lift features from
2D to 3D and then ‘splatting’ them in BEV space recently gained popularity for its effec-
tiveness and sound geometric definition. Among the formulations of depth estimation for
BEV projection [Hu et al., 2021; Ng et al., 2020; Philion and Fidler, 2020; Roddick et al.,
2019; Srikanth et al., 2019], estimating depth probabilities along camera rays appears to
perform the best [Hu et al., 2021; Philion and Fidler, 2020]. However, depth being the
most influential factor [Simonelli et al., 2021], such a strategy is subject to compounding
errors. Inaccuracies in the depth prediction will propagate into the BEV features, which
themselves can be degraded.
Implicitly learned with dense networks. An alternative to explicit geometric projection
is to learn the mapping from data. For instance, VPN [Pan et al., 2020] uses an MLP to
make a dense correspondence between pixels in the camera views and BEV. This kind of
method relies on expensive operations and does not use readily available spatial informa-
tion given by the calibrated camera rig capturing the images. The BEV projection must be
entirely learned, and as it is determined by training data, it can hardly apply to new settings
with slightly different camera calibrations. Alternatively, PON [Roddick and Cipolla, 2020]
builds on the observation that a column in the camera image contains all the information
of the corresponding ray in BEV: it first encodes each column into a feature vector, which
is then decoded into a ray along the depth dimension. However, this relies on two implicit
assumptions: (i) the camera follows a pinhole projective model, and (ii) it is horizontally
aligned with the ground plane.
Implicitly learned with transformer architectures. The attention system at the core of
transformer architectures [Carion et al., 2020; Dosovitskiy et al., 2021; Jaegle et al., 2022;
Vaswani et al., 2017] allows learning of long-range dependencies and correspondences ex-
plicitly. These architectures have recently been employed for the BEV semantic segmenta-
tion task, yielding among the best-performing methods [Gong et al., 2022; Li et al., 2022b;
Zhou and Krähenbühl, 2022]. Nonetheless, a direct cross-attention [Vaswani et al., 2017]
between camera images and the BEV grid is computationally expensive. BEVFormer [Li
et al., 2022b] alleviates this issue by only cross-attending BEV pixels with cameras in which
the BEV pixel is visible and by replacing the heavier multi-head attention [Vaswani et al.,
2017] with deformable attention [Zhu et al., 2021]. CVT [Zhou and Krähenbühl, 2022] keeps
the vanilla multi-head cross-attention [Vaswani et al., 2017] but applies it between low-
resolution camera feature maps and a small BEV grid which is then upsampled to reach the
final resolution. GitNet [Gong et al., 2022] restrains the cross-attentions to column-ray pairs
making the same original implicit assumptions as PON [Roddick and Cipolla, 2020]. Our
proposed model LaRa belongs to this category as it learns the BEV representation with a
transformer architecture. On the other hand, our attention scheme does not impose strong
geometric assumptions while still being efficient enough to attend to a full-resolution BEV
grid.

54 Chapter 4. Latents and Rays for an Implicit Scene Representation

4.2.2 Incorporating geometric priors in Transformers

Since transformer architectures are permutation-invariant, spatial relationships between
image regions are lost if no precautions are taken. A standard practice to retain this spatial
knowledge is to add a positional embedding to the input of attention layers [Vaswani et al.,
2017]. A popular approach is to encode the position of pixels with sine and cosine functions
of varying frequencies [Carion et al., 2020; Jaegle et al., 2022; Vaswani et al., 2017] applied
over the horizontal and vertical axes. An alternative solution to induce spatial awareness
in the model is to concatenate x, y positions to feature maps fed to convolutional layers [Liu
et al., 2018].

Related to our ray embedding proposition, recent works [Yifan et al., 2022; Zhou and
Krähenbühl, 2022] embed the parameters of the calibrated cameras in the image features,
improving training efficiency and segmentation performance. Similar to LaRa, IIB [Yifan
et al., 2022] also encodes the camera center and ray direction in the input feature sequence,
but it addresses the task of depth estimation on image pairs in an indoor environment.
Furthermore, Yifan et al. [2022] embed the origin and direction of rays into Fourier features,
which can become memory intensive depending on the number of frequency bands and
also introduces additional hyper-parameters to tune. CVT [Zhou and Krähenbühl, 2022]
adds up a ray direction embedding to the input feature sequence, but, differently from
ours, uses the camera center embedding in the BEV query. This requires a BEV query and
‘cross-view attention’ operation per camera, increasing the memory and computational
footprint, thus limiting the maximum resolution of the BEV query.

4.3 LaRa: Our Latents and Rays Model

Cameras

ray origin

and direction
MLP

SA CA

MLP

BEV
features

flatten Latent init.

Latent
representation

BEV query

BEV segmentation

Rays in ego-frame

Images

... ...

M

CNN

...

CA

M

BEV
CNN

FIGURE 4.1: LaRa overview. Semantic features (green) are extracted from the images with a shared
CNN and are concatenated with ray embeddings (multi-coloured) that inform about geometric
information to spatially relate pixels within and across cameras. This representation is then fused
into a compact latent representation through one cross-attention (CA) and L self-attention (SA)
layers (yellow). The final BEV map is obtained by querying the latent representation with a cross-
attention and then refined with BEV CNN (red). ⊕ denotes concatenation. The orange letters
indicate tensor dimensions. K, Q, and V are the Key, Query, and Value of the cross-attentions.

Given multiple cameras observing the scene, our goal is to estimate a binary occupancy
grid [Elfes, 1990] ŷ ∈ {0, 1}hbev×wbev of size hbev × wbev ∈ N2 for vehicles in the surround-
ings of the ego car. We propose ‘LaRa’ a transformer-based architecture to efficiently ag-
gregate information gathered from multiple cameras into a compact latent representation

4.3. LaRa: Our Latents and Rays Model 55

before expanding back into the BEV space. Besides, as we believe that the geometric rela-
tionship between cameras should guide the fusion across each camera view, we propose to
augment each pixel with the geometry of the ray that captured it. The LaRa architecture is
illustrated in fig. 4.1.

4.3.1 Input modelling with geometric priors

We consider C cameras described by (Ik,Kk,Rk, tk)
C
k=1, with Ik ∈ RH×W×3 the image pro-

duced by camera k, Kk ∈ R3×3 the intrinsics, Rk ∈ R3×3 and tk ∈ R3 the extrinsic rotation
and translation respectively. From these inputs, two complementary types of information
are extracted: visual information from raw images and geometric cues from the camera
calibration parameters.
Visual information from raw images. A shared image-encoder E extracts feature maps
for each image Fk = E(Ik) ∈ Rh×w×c. Following [Hu et al., 2021; Philion and Fidler, 2020],
we instantiate E with a pretrained EfficientNet [Tan and Le, 2019] backbone to produce the
multi-camera features. These spatial feature maps in RC×h×w×c are then rearranged as a
sequence of feature vectors, in R(C h w)×c.
Leveraging geometric priors. To enrich camera features with geometric priors, commonly
used sine and cosine spatial embeddings [Carion et al., 2020; Jaegle et al., 2022; Vaswani
et al., 2017] are ambiguous in the presence of multiple cameras. A straightforward solu-
tion would be to use camera-dependant learnable embeddings in addition to the Fourier
embeddings to disambiguate between cameras. However, in our setting, we argue that the
geometric relationship between cameras, which is defined by the structure of the camera
rig, is crucial to guide the fusion of the views. This motivates our choice to leverage the
cameras’ extrinsics and intrinsics to encode the position and orientation of each pixel in the
vehicle ego-frame.

More precisely, we encode the camera calibration parameters by constructing the view-
ing ray for each pixel of the cameras. Given a pixel coordinate x ∈ R2 within a camera
image Ik, the direction dk(x) ∈ R3 of the ray that captured x is computed with:

dk(x) = R−1
k K−1

k x̃, (4.1)

where x̃ are the homogeneous coordinates of x, and dk(x) is expressed in ego-coordinates.
The origin of the ray dk(x) is the camera center given by tk.

Then, to fully describe the position and the orientation of the ray that captured pixel x,
we use the embedding rayk(x) ∈ Rd computed as follows:

rayk(x) = MLPray(tk ⊕ dk(x)), (4.2)

where ⊕ is a concatenation operation and MLPray a 2-layer MLP with GELU activations [Hendrycks
and Gimpel, 2016]. Note that the intrinsics are scaled according to the difference in resolu-
tion between Ik and Fk. As shown in fig. 4.1, the final input vector sequence, in R(C h w)×(d+c),
is produced by concatenating each of the C h w feature vectors Fk(x) ∈ Rc with its geomet-
ric embedding rayk(x) ∈ Rd.

4.3.2 Building latent representations and deep fusion

To control the computational and memory footprint of the image-to-BEV block, we lever-
age findings from general-purpose architectures [Jaegle et al., 2022] and propose to use
an intermediate fixed-sized latent space instead of learning the quadratic all-to-all corre-
spondence between multi-camera features and BEV space [Zhou and Krähenbühl, 2022].
Formally, the visual representations Fk from all cameras, along with their corresponding

56 Chapter 4. Latents and Rays for an Implicit Scene Representation

geometric embeddings rayk, are compressed by cross-attention [Vaswani et al., 2017] into
a collection of N learnable latent vectors of dimension M ∈ N and processed by a se-
ries of L self-attention blocks [Vaswani et al., 2017] (see yellow elements in fig. 4.1). We
stress that N ≪ C h w, which enables to fuse and process efficiently the visual information
coming from all the cameras, regardless of the input feature resolution or the number of
cameras. Thanks to latent-based querying, this formulation decouples the network’s deep
multi-view processing from the input and output resolution. Our architecture can thus
take advantage of the full resolution of the BEV grid.

4.3.3 Generating BEV output from latents

The final step is to decode the binary segmentation prediction ŷ ∈ {0, 1}hbev×wbev from the
latent space. In practice, the latent vectors are cross-attended [Vaswani et al., 2017] with
a BEV ‘query’ grid Q ∈ Rhbev×wbev×dbev at the final prediction resolution, with dbev ∈ N a
hyper-parameter (illustrated by the red blocks in fig. 4.1). Each element of the query grid is
a feature vector encoding the spatial position in the bird’s-eye-view which specifies what
information the cross-attention would extract from the latent representations. This last
cross-attention yields a feature map in BEV space, in dimension hbev × wbev × 256, that is
further refined with a small convolutional encoder-decoder U-Net (‘BEV CNN’ in fig. 4.1)
to finally predict the binary bird’s-eye-view semantic map ŷ ∈ {0, 1}hbev×wbev×1.

Specifically, we consider a combination of two types of queries: normalized coordi-
nates in the BEV space and radial distance. Normalized coordinates encode ego-centered
normalized coordinates of the BEV plane. They are obtained with:

Qcoords[i, j] =
(

2i
hbev − 1

− 1,
2j

wbev − 1
− 1

)
, ∀i, j ∈ {0, . . . , hbev − 1} × {0, . . . , wbev − 1}.

(4.3)
Normalized radial distances are simply Euclidean distances of pixels w.r.t. the origin:

Qradial[i, j] =
√

Qcoords[i, j]2i + Qcoords[i, j]2j . (4.4)

While the network could produce a similar embedding from Qcoords using MLPbev, we
find that introducing these radial embeddings along Qcoords empirically improves results.
Moreover, this query decoding choice compares favorably against more classical Fourier
embeddings [Jaegle et al., 2022; Vaswani et al., 2017; Yifan et al., 2022] and learned query
embeddings [Carion et al., 2020; Vaswani et al., 2017], as shown in table 4.3.

4.4 Experiments

4.4.1 Evaluation details

Dataset. We conduct experiments on the nuScenes dataset [Caesar et al., 2020], which
contains 34k annotated sets of frames captured by C=6 synchronized cameras covering
the 360° field of view around the ego vehicle. The extrinsics and intrinsics calibration
parameters are given for all cameras in every scene. Raw annotations come in the form
of 3D bounding boxes that are simply rendered in the discretized top-down view of the
scenes to form the ground-truth for our binary semantic segmentation task.
Precise settings for training and validation. With no established benchmarks to precisely
compare model’s performances, there are almost as many settings as there are previous
works. Differences are found at three distinct levels:

4.4. Experiments 57

• The resolution of the output grid where two main settings have been used: a grid
of 100m×50m at a 25cm resolution [Pan et al., 2020; Roddick and Cipolla, 2020; Saha
et al., 2021; Zhou and Krähenbühl, 2022] and a grid of 100m×100m at a 50cm resolu-
tion [Philion and Fidler, 2020; Zhou and Krähenbühl, 2022]. These settings are respec-
tively referred as ‘Setting 1’ (hbev × wbev = 400 × 200) and ‘Setting 2’ (hbev × wbev =
200 × 200) and they are clearly specified when we present our results.

• The considered classes. There are slight differences in the classes used to train and
evaluate the model. For instance, some models are trained with a multi-class objec-
tive to simultaneously segment objects such as cars, pedestrian or cones [Pan et al.,
2020; Roddick and Cipolla, 2020; Saha et al., 2021]. Some others only train and eval-
uate in a binary semantic segmentation setting on a meta-class vehicles which in-
cludes cars, bicycles, trucks, etc. [Philion and Fidler, 2020; Zhou and Krähenbühl,
2022]. Some works also use instance segmentation information to train their model
where the centers of each distinct vehicle is known at train time [Hu et al., 2021]. In
our experiments, we place ourselves in the binary semantic segmentation setting of the
meta-class vehicles. This choice is made to have fair and consistent comparisons
with our baselines [Philion and Fidler, 2020; Zhou and Krähenbühl, 2022], however,
it should be noted that our model is not constrained to this setting.

• The levels of visibility of objects. Objects selected as ground truth, both for training
and evaluating the model, differ in terms of their levels of visibility. Three options
have been considered: objects that are in line-of-sight with the ego car’s LiDAR [Rod-
dick and Cipolla, 2020], or objects with a nuScenes visibility above a defined thresh-
old, either 0% [Philion and Fidler, 2020] or 40% [Zhou and Krähenbühl, 2022]. When
amenable, we clearly indicate the level of visibility used in our experiments.

In all the settings we considered, models are evaluated with the Intersection-over-Union
(IoU) metric.
Training and implementation details. We train our model by optimizing the Binary Cross
Entropy with our predicted soft segmentation maps and the binary ground-truth. Images
are processed at resolution 224 × 480. We use the AdamW [Loshchilov and Hutter, 2019]
optimizer with a constant learning rate of 5e−4 and a weight decay of 1e−7. We train our
model on 4 Tesla V100 16GB GPUs with a total batch size of 8 for 30 epochs. Training takes
on average 11 hours. We use an EfficientNet-B4 [Tan and Le, 2019] with an output stride of
8 as our CNN image encoder. For the BEV CNN we follow Philion and Fidler [2020].

Following common practice [Hu et al., 2021; Philion and Fidler, 2020; Zhou and Krähen-
bühl, 2022], we employ an EfficientNet [Tan and Le, 2019] as our CNN image encoder E.
In particular, we use an EfficientNet-B4 [Tan and Le, 2019] with an output stride of 8. It
extracts feature maps for each image Fk = E(Ik) ∈ Rh×w×c. In practice, h = 224/8 = 28,
w = 480/8 = 60 and we define c = 128.

For the BEV CNN, we follow Philion and Fidler [2020] and use an encoder-decoder
architecture with a ResNet-18 [He et al., 2016] as backbone. It produces features at three
levels of resolutions (1:1, 1:2 and 1:8), which are progressively upsampled back to the input
resolution with bilinear interpolation (first ×4 for the 1:8th scale then ×2 for the 1:2th). Skip
connections are used between encoder and decoder stages of the same resolution.

Both MLPray and MLPbev are 2-layer MLPs producing 128-dimensional features. Each
consists of two linear transformations with a GELU [Hendrycks and Gimpel, 2016] activa-
tion function:

MLP(x) = W2GELU(W1x + b1) + b2. (4.5)

Following Jaegle et al. [2021], the latent vectors are randomly initialized using a truncated
normal distribution with mean 0, standard deviation 0.02, and truncation bounds [-2, 2].

58 Chapter 4. Latents and Rays for an Implicit Scene Representation

Details on attention modules. Following the original formulation and notations [Vaswani
et al., 2017], the attention operation is defined as:

Attn(Q, K, V) = softmax(
QK⊤
√

dK
)V (4.6)

with its multi-headed extension:

MultiheadAttn(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attn(QWQ
i , KWK

i , VWV
i).

(4.7)

with dq, dv, dk the dimensions of Q, K and V. In practice, we use dmodel, a hyperparameter,
to define the dimension of the queries, keys and values for the inner attention (eq. (4.6)) as
well as h the number of attention heads. More precisely, we linearly project queries, keys
and values h times with different projections, each with dimension demb = dmodel/h. The
learnable projection matrices of each head are defined as WQ

i ∈ Rdq×demb , WK
i ∈ Rdk×demb ,

WV
i ∈ Rdv×demb and WO

i ∈ Rh·demb×dv .
Our architecture integrates three attention modules [Vaswani et al., 2017]: (i) a cross-

attention between latent vectors and input features; (ii) a sequence of self-attention on the
latent vectors; (iii) a cross-attention between BEV query and latent vectors. More precisely,
and with a slight abuse of notation:

Latent-Input cross-attention (32 heads)

latents := MultiheadAttn(LN(latents), LN(input), LN(input)) + latents
latents := MLP(LN(latents)) + latents

(4.8)

Latent self-attention (16 heads)

latents := MultiheadAttn(LN(latents), LN(latents), LN(latents)) + latents
latents := MLP(LN(latents)) + latents

(4.9)

BEV query-Latent cross-attention (16 heads)

output := MultiheadAttn(LN(BEVquery), LN(latents), LN(latents))
output := MLP(LN(output)) + output

(4.10)

Where LN is a layer normalization [Ba et al., 2016]. In particular, the cross-attention be-
tween BEV query and latent vectors is not residual. Since the query is made of coordinates,
imposing the network to predict segmentation as residual of coordinates does not make
sense. The exact specification of other modules are available in our code.

4.4.2 Comparison with previous works

In table 4.1, we compare the IoU performances of LaRa against two baselines Lift-Splat [Phil-
ion and Fidler, 2020] and CVT [Zhou and Krähenbühl, 2022] on vehicle BEV segmentation
in their respective training and evaluation setups. In all cases, we improve results by a
significant margin. More precisely, we improve by 10% compared to Lift-Splat in their
settings, by 10% and 8% compared to CVT respectively in Setting 1 and Setting 2. This
suggests that our model can better extract the geometric and visual information from all

4.4. Experiments 59

TABLE 4.1: Intersection-over-Union (IoU) for vehicle segmentation on nuScenes. ‘Setting 1’ refers
to a 100m×50m grid with a 25cm resolution and ‘Setting 2’ to a 100m×100m grid with a 50cm
resolution. For training and validation, vehicles are considered only if their visibility level is above
a predefined threshold (either 0% or 40%). To compare against other works, we refer the reader to
Lift-splat [Philion and Fidler, 2020] and CVT [Zhou and Krähenbühl, 2022].

visibility > 0% visibility > 40%
Method Conference Setting 2 Setting 1 Setting 2

Lift-splat [Philion and Fidler, 2020] ECCV’20 32.1 — —
CVT [Zhou and Krähenbühl, 2022] CVPR’22 — 37.5 36.0
LaRa (ours) CORL’22 35.4 41.4 38.9

cameras with a very general architecture that does not necessitate any strong geometric as-
sumptions. Besides, when compared with CVT, we observe that LaRa obtains better results
in the setting with finer resolution (+10% in Setting 1 vs. +8% in Setting 2).

Since our attention mechanism does not rely on all-to-all attention between camera
images and BEV map as CVT does, LaRa can directly decode to the final BEV resolution
which helps for fine prediction at a high resolution.

4.4.3 Extension to the driveable area segmentation task

In this section, we also provide results for the driveable area segmentation task, also ad-
dressed by CVT [Zhou and Krähenbühl, 2022]. Contrary to vehicle segmentation, this task
requires the network to do “amodal completion” to a high degree, i.e., to correctly estimate
regions of the road despite parts of it being severely occluded.

We followed the protocol of CVT [Zhou and Krähenbühl, 2022] for this segmentation
task; the ground truth is generated using HD-map’s polygons from the dataset. We kept the
same hyperparameters as used for the vehicle segmentation task, with a minor difference
to the learning rate: we divide it by a factor 10 after 15 epochs (compared to a constant
learning rate for vehicle segmentation).

TABLE 4.2: Driveable area segmentation. Results (in IoU) on nuScenes.

Method IoU

CVT 74.3
LaRa (ours) 75.2

Quantitative and qualitative results for this additional task are given respectively in
table 4.2 and fig. 4.2. When compared with CVT, we observe that LaRa achieves better per-
formance (+0.9). Note that we do not do multi-tasking: following CVT [Zhou and Krähen-
bühl, 2022], we train a model specifically for the task of driveable area segmentation; the
qualitative examples in fig. 4.2 are produced by fusing predictions from two models.

4.4.4 Model ablation and sensitivity to hyper-parameters

Input and Output-level embeddings. To assess the contribution of the geometric em-
beddings that we use, we compare the different choices at both the input and output level
in table 4.3. As hypothesized, embedding the geometric relationship between cameras in
the input is better suited for our task than the generic sine and cosine spatial embeddings.
The additional camera index, while performing better than Fourier feature alone, is not

60 Chapter 4. Latents and Rays for an Implicit Scene Representation

front left front front right

back left back back right

GT Pred

front left front front right

back left back back right

GT Pred

front left front front right

back left back back right

GT Pred

FIGURE 4.2: Qualitative results on complex scenes. We show the six camera views surrounding
the vehicle along with segmentation ground truth for reference. Vehicles are shown in blue and
driveable area in gray. Vehicles and driveable area predictions are from two different models trained
independently for their respective ground-truth, the predictions are then merged for vizualization
purpose. The ego vehicle is located in the center and facing upwards. Predictions of both driveable
area and vehicle segmentation are thresholded at 0.5 for visualization purpose.

enough to link pixels across cameras. For the output query embedding, the combination
of normalized coordinates and radial distance gives the best results. This simple choice
outperforms both the Fourier features [Jaegle et al., 2022; Vaswani et al., 2017] and learned
embeddings [Carion et al., 2020; Vaswani et al., 2017] that also have the disadvantage of
increasing the number of parameters.

TABLE 4.3: Ablation study for the input and output query embedding. Training and evaluation
are done in Setting 2 (100m×100m at 50cm resolution), with a visibility > 0%.

Input geometry embedding

Cam. rays Cam. idx Fourier IoU

✔ ✗ ✗ 35.4
✔ ✔ ✔ 34.4
✗ ✔ ✔ 32.3
✗ ✗ ✔ 30.5

Output query embedding

Radial dist. Norm. coords Fourier Learned IoU

✔ ✔ ✗ ✗ 35.4
✗ ✔ ✗ ✗ 35.1
✗ ✗ ✔ ✗ 30.6
✗ ✗ ✗ ✔ 21.8

Comparison to PETR embedding. In addition to our baselines, we include quantitative
results in table 4.4 to compare our ray embedding against PETR [Liu et al., 2022a] embed-
ding, a work concurrent to ours that also infuse “geometric” information into the “visual”
stream to fuse information between views.

4.4. Experiments 61

In PETR [Liu et al., 2022a], the embedding of each pixel is computed by sampling its
ray given D predefined depths. The 3D coordinates of the D sampled points along the ray
are normalized, concatenated, processed by an MLP and summed with the visual features.
Conceptually, the embedding is a way to indicate to the network “this pixel can observe
these 3D points in the camera frustum space”. The embedding in PETR differs to ours in
that it is limited by the sampling resolution (i.e., the D predefined depths), as computation
and memory footprint increase linearly with respect to D.

We trained our model with PETR input embedding in place of ours and show that our
constant-complexity embedding is effective as a 3D positional embedding and performs
better (+2%).

TABLE 4.4: Impact of ray embedding on performance. Vehicle segmentation performance (in IoU)
for vehicle segmentation on nuScenes.

Embedding IoU

PETR [Liu et al., 2022a] 34.8
Cam. rays (ours) 35.4

Sensitivity to hyper-parameters. To delve into the influence of hyper-parameters, we
conduct a sensitivity analysis in fig. 4.3 where we vary the number N of latent vectors,
their dimension M and the number of self-attention blocks L. We clearly observe that the
performance increases with the number of latent vectors used. This is expected as it is the
main parameter controlling the attentional bottleneck between input and output. Such a
parametrization allows for an easy tuning of the performance/memory trade-off. We ob-
serve no clear correlation between the dimension M of latent vectors, the number L of self-
attention layers, and the obtained IoU performance. This indicates that our architecture
is not too sensitive to these hyper-parameters and can work efficiently with a wide range
of values for these parameters. Although we obtain better results with 512 latent vectors,
we use a maximum of 256 to stay in the same computational regime as the baseline we
compare against; training with 512 latent vectors requires 32GB GPUs.

1 2 4 8
L (# SA layers)

34

36

38

Io
U

N=64

1 2 4 8
L (# SA layers)

N=128

1 2 4 8
L (# SA layers)

N=256

1 2 4 8
L (# SA layers)

N=512
 M
 latent dim

512

256

128

64

FIGURE 4.3: Sensitivity study of LaRa to hyper-parameters. We vary the number of latent vectors
(N), their dimension (M), and the number of self-attention layers (L) and report IoU performances.

4.4.5 Study of attention

As quantitatively studied in section 4.4.4, embedding camera rays impacts significantly the
performance of LaRa. In this section, we further support our claim that “our network is
able to retrieve the pixel relationships between views thanks to our ray embedding” (Sec.
4.3) through a qualitative and quantitative analysis of the input-to-latent attention.

62 Chapter 4. Latents and Rays for an Implicit Scene Representation

Attention qualitative analysis We further investigate the geometric reasoning of LaRa
in fig. 4.4 by analyzing the input-to-latent attention map. In this figure, we show two rep-
resentations of the attention: a reprojection of the attention in the camera-space (left) and
a top-view projection of the attention in polar coordinates by collapsing, i.e., averaging the
vertical dimension (right). In the latter, the radial distance is proportional to the attention
level and shows the directions the network attends the most.

n:10 h:5

front left front front right

back left back back right

n:10 h:5 n:10 h:avg n:avg h:5

n:50 h:30

front left front front right

back left back back right

n:50 h:30 n:50 h:avg n:avg h:30

FIGURE 4.4: Input-to-latent attention study. Attention maps analysis for a network using 256
latents and 32 attention heads. The attention for one attention head and one latent is shown on the
left superimposed with RGB images. The polar plots represent the directional attention intensity
for one (or the average) attention head with one (or the average) latent vector. The radial distance
is proportional to the attention level and shows the directions the network attends the most.

The study is conducted at three distinct levels. First, for a couple of one latent vector
and one attention head (n = 10, h = 5 and n = 50, h = 30), among N = 256 possible latents
and H = 32 possible attention heads. Second, for one latent vector and the averaged
attention from all attention heads (n = 10, h = avg and n = 50, h = avg). Third, for
one attention head and the averaged attention over all latents (n = avg, h = 5 and n =
avg, h = 30). From these three settings, we note the followings: First, the attention map
between one latent vector and one attention head targets a specific direction (about a 90°
field of view). Additionally, it can be clearly observed that the attention is continuous
across cameras, proving the network is able to retrieve the pixel relationships between
views. Second, while one attention head fires in a specific direction, the attention averaged
over all the heads for one latent vector spans over half of the scene. This allows one latent
vector to extract long-range context between views with the capacity to disambiguate them.
Third, the attention for one head aggregated over all the latent vectors covers all directions,
suggesting that the latent vectors contain all of the directional information and that the
whole scene is attended across the latents. To summarize, by integrating early multi-view
geometric cues instantiated by camera rays embedding (section 4.3.1), we show that LaRa
learns to reason across views.

Additionally, we provide qualitative examples of the ‘Fourier + Cam. idx’ embedding
to compare against our ray embedding in fig. 4.5. Contrary to the attention yield by our
ray embedding, the one derived from the ‘Fourier + Cam. idx’ embedding is much more
spread out and less consistent across cameras.
Attention quantitative analysis. We now introduce a metric that directly quantifies the
consistency and alignment of attention values across camera by analyzing behavior in
“overlapping” regions, i.e., regions seen by two different cameras. We provide a visual
description of this metric and its computation in fig. 4.6.

4.4. Experiments 63

n:80 h:10

front left front front right

back left back back right

n:80 h:10

n:10 h:5

front left front front right

back left back back right

n:10 h:5

FIGURE 4.5: Input-to-latent attention study — influence of the input embedding. Analysis of
attention maps for two networks trained with different input embeddings. Top row is with ‘Fourier
+ Cam. idx’ and bottom row is with our proposed ‘Cam. rays’ embedding. The attention for one
attention head and one latent is shown on the left superimposed with RGB images. The polar plots
represent the directional attention intensity for one attention head with one latent vector. The radial
distance is proportional to the attention level and shows the directions the network attends to the
most.

AC1

AC2 AC1 (θi)

}overlapping region between
cameras C1 and C2

Normalized attention intensity
AC2(θi)

θ

FIGURE 4.6: Measuring the attention consistency across cameras. The proposed metric computes
the Mean-Squared-Error (MSE) of the attention intensity on overlapping regions between cameras
(as illustrated for two cameras and one latent and one attention head), and averages it over all
cameras, latents, heads and scenes.

In short, knowing the orientation of each camera, we compute the Mean Squared Error
(MSE) of the directional attention intensity between cameras on their overlapping regions.

64 Chapter 4. Latents and Rays for an Implicit Scene Representation

frontfront left front right back right back leftback

CVT vis>40%Lift-Splat vis>0% Our vis>0% GTOur vis>40%

GTCVT vis>40%Lift-Splat vis>0% Our vis>0% Our vis>40%

frontfront left front right back right back leftback

FIGURE 4.7: Qualitative results on complex scenes. We show the six camera views surrounding
the vehicle along with segmentation map ground-truth for reference. In the ground-truth (GT)
map, vehicles are shown in blue (visibility > 40%) or purple (visisibility < 40%). The ego vehicle
is located in the center and facing upwards. We show results for our two baselines [Philion and
Fidler, 2020; Zhou and Krähenbühl, 2022]. For a fair comparison, we always compare using their
respective level of visibility. Setting 2 is used.

This score is averaged for all the overlapping regions, latents and attention heads, and ex-
amples in the validation set. A score of zero indicates a perfect match of the attention levels
on overlapping regions (i.e., across cameras). Results with this metric, reported in table 4.5,
show that our ‘Cam. rays’ embedding is 10 times more “consistent” across cameras than
the baseline ‘Fourier + Cam. idx’.

TABLE 4.5: Impact of ray embedding on cross-camera attention consistency. Cross-camera atten-
tion consistency (measured with proposed MSE metric, see Fig. 4.5) on nuScene.

Embedding MSE on overlap

2D Fourier + Cam. idx 0.0896
Cam. rays (ours) 0.0068

4.4.6 Qualitative Results

We show the segmentation results of two complex scenes in fig. 4.7. For a fair comparison,
we use our model trained with visiblity > 40% against CVT and > 0% against Lift-Splat.
Compared to LaRa, CVT missed two objects, one at a long distance and the other in the
dark (red box). We also estimate the boundaries of the vehicles better than Lift-Splat (green
box). Interestingly, models trained on all vehicles (visibility > 0%) tend to hallucinate cars
in occluded or distant regions (highlighted with black circles in the figure).

4.5. Extension to temporal modelling 65

4.5 Extension to temporal modelling

So far, LaRa demonstrates that the geometry and semantics of a complex scene can be
compacted in a small collection of latent vectors. We believe that this formulation would
allow for efficient temporal reasoning. By retaining information from the past, the system
can better refine the information and improve overall performance. In particular, it may
help to handle challenging situations like when a car is currently occluded but has been
seen in past frames, to refine the estimated boundaries objects (e.g., in fig. 4.7 some vehicles
are elongated), and to better detect small and distant objects.

4.5.1 Additional modules

Current methods [Hu et al., 2021; Li et al., 2022b] carry out the temporal modelling in the
BEV space, which is of high resolution, costly to process, while mostly representing empty
space. As the ego-car moves, there is a need to align each past BEV feature maps into the
current ego reference frame to take in account the change of point of view. Typically, this
alignment (or ‘warping’) is operated using ego-motion information, by a simple rotation
and translation of the BEV feature maps.

In contrast, we take advantage of our implicit representation and efficiently aggregate
information over time directly in the latent representation. However, the latent represen-
tation being an abstract space, we cannot “warp” the information of the scene. Hence, we
extend our LaRa architecture with two additional modules: (1) a module to integrate the
ego-motion information, and (2) a recurrent update of the latent representation (see fig. 4.8).
The ‘motion conditioning’ module takes as input the ego-motion of the car to make the in-
ternal representation “motion-aware”. It is necessary to integrate the ego-motion for the
network to extract dependencies between viewpoints across time. Otherwise, not able to
make sense of it, the network simply ignores information from the past. The ‘recurrent
update’ takes information from the past and integrates it with the information currently
observed. This allows refining the current prediction and better handling occlusions.

More formally, we reduce the ego-motion to a horizontal motion: a rotation of an-
gle θ with respect to the vertical axis and a translation in the horizontal plane ∆x, ∆y.
These parameters, defining the relative change in pose between two time steps Pi−1→i =
[cos(θ), sin(θ), ∆x, ∆y], are given as input to a 2-layer MLP which lifts Pi−1→i from 4 di-
mensions to M dimensions, i.e., the size of the latent vectors. This MLP produces an
“ego-motion feature vector” that is then infused in the latent representation using a cross-
attention. More specifically, the embedding of Pi−1→i is given as the key and value to the
cross-attention and the past latent representation as the query. This, now “motion-aware”
latent representation, feeds a recurrent module to aggregate information over time. In our
experiment, we instantiate the recurrent module as a simple Gated Recurrent Unit (GRU
Cho et al. [2014]).

4.5.2 Results

In table 4.6 we report results for vehicle segmentation and inference time against FIERY [Hu
et al., 2021]. FIERY builds on Lift-splat [Philion and Fidler, 2020] (a baseline in table 4.1)
and extends it for temporal modelling. FIERY aggregates information over time in the BEV
space. For this, it first computes BEV feature maps using the method of Lift-splat [Philion
and Fidler, 2020]. Then it uses ego-motion information to warp (i.e., rotating and trans-
lating) each past BEV feature maps into the current ego reference frame. This creates a
spatio-temporal volume of T BEV feature maps, which is then processed by a 3D convo-
lutional layer. The 3D convolutions extract spatio-temporal patterns from the BEV feature

66 Chapter 4. Latents and Rays for an Implicit Scene Representation

LaRa
Encoder

Images & Cam. parameters
at time

LaRa
Decoder

BEV query

Latent representation

LaRa
Encoder

Images & Cam. parameters
at time

LaRa
Decoder

LaRa
Encoder

Images & Cam. parameters
at time

LaRa
Decoder

Prediction at time Prediction at time Prediction at time

Reccurent
update

Reccurent
update

Motion
conditioning

Motion
conditioning

FIGURE 4.8: LaRa temporal. Schematic illustration of the temporal extension of LaRa. The ‘motion
conditioning’ module takes as input the ego-motion of the car to make the internal representation
“motion-aware”. The ‘recurrent update’ takes information from the past and integrates it with the
information currently observed.

TABLE 4.6: Results of temporal integration. We present results for vehicle segmentation perfor-
mance (in IoU) for vehicle segmentation on nuScenes and the inference time in milliseconds for a
forward pass on a V100 GPU. Note that FIERY [Hu et al., 2021] initially address the task of instance
segmentation; here we re-train the model for binary segmentation of vehicles, all other parameters
remain unchanged. In particular, the models take the past two frames in addition to the current
frame for temporal modelling.

Method IoU Forward pass (ms)

FIERY [Hu et al., 2021] 37.5 550
LaRa temporal (ours) 37.1 70

maps, allowing to reason about the dynamic of the vehicles in the scene. This produces a
single spatio-temporal BEV feature map (i.e., the temporal dimension is collapsed) that is
then used to make the final prediction. This approach requires processing the T past BEV
feature maps in parallel.

In contrast, our LaRa temporal model processes the scene information sequentially in
the latent space. With this approach, we obtain competitive IoU performances while hav-
ing an inference 8× faster.

4.6 Conclusion

In this chapter, we proposed LaRa, a general architecture for scene understanding from
multiple cameras.

4.6. Conclusion 67

4.6.1 Summary of contributions

Sensor fusion and capacity to efficiently represent a scene. This work demonstrates
that some of the geometric and semantic information of a complex scene, can be efficiently
aggregated from many sensors and encoded in a very compact, but rich, implicit represen-
tation.
Ray embedding. By incorporating ray embeddings into LaRa, we augment visual fea-
tures with geometric cues of the scene and show that this leads to multi-view stitching
(supported by our attention analysis in section 4.4.5) and improved performances over
other baselines.
Robustness to hyper-parameters. Our architecture has been tested with a broad range
of hyper-parameters (section 4.4.4) and has also been successfully implemented on a pro-
totype car, which has a different number and arrangement of cameras. These experiments
demonstrate the adaptability of LaRa and its capacity to be deployed in various conditions.

4.6.2 Perspectives

Task dependent
Query

C
N

N LaRa
Encoder

Ray
origin + direction

LaRa
Decoder

Compact representation
of geometry and semantic

FIGURE 4.9: LaRa meta-architecture. Schematic illustration of how our architecture could be ap-
plied to a wide range of tasks. Here we depict outputs for view reconstruction, pixel-wise segmen-
tation, depth estimation, BEV vehicle segmentation, and 3D occupancy.

Extension to other tasks. LaRa is not limited to BEV predictions. In particular, using an
appropriate query, predictions could be done in any other output space, including depth
or semantic prediction in the image plane or 3D occupancy grid prediction (fig. 4.9).
Evaluation against visual impediments. We demonstrated the very good capacity of
our architecture to extract and fuse complex and long-range dependencies (even across
cameras). Our method could further be evaluated against depth-based methods in difficult
visual conditions (e.g., water droplets or soiling on the camera lens, glares like in fig. 2.7,
etc.).
Sensor Fusion. Our model operates on camera inputs only, a setup in which correctly
estimating distances is difficult (chapter 3). Moreover, in adverse conditions, e.g., with
glares and darkness, its performance may remain limited. To better handle these chal-
lenging situations, one avenue of improvement would be the extension of LaRa to handle
complementary modalities, e.g., coming from LiDARs or radars.

69

Chapter 5

Conclusions and future directions

5.1 Conclusions and discussions

In this PhD thesis, we explore the use of deep learning for scene understanding applied to
autonomous driving. In particular, we address several important research questions (RQs)
including:
RQ1. How to leverage inexpensive sensors (e.g., camera, minimal 4-beam LiDAR, etc.)?
RQ2. How to fuse information from multiple sensors?
RQ3. How to alleviate the need for annotated data?
RQ4. How to estimate a map of the environment in real time from raw sensors?

First, in chapter 3, we tackle the important task of depth estimation. To take full ad-
vantage of the abundant flow of unannotated data that a fleet of cars can produce, our
method is self-supervised (RQ3). Leveraging inexpensive sensors typical of existing pas-
senger cars, we show competitive performances compared to methods relying on expen-
sive sensor suites and trained in a fully-supervised way (RQ1). Given a camera and a
minimal LiDAR with as few as 4 beams (RQ2), our system can learn to estimate depth on
any domain without any annotation.

Our work in chapter 3 also highlights the difficulty to predict accurate pixel-wise depth,
a very explicit way to represent the geometry of the scene. This pushed us to explore a
more implicit approach. The main objective of chapter 4 is to create an architecture able to
encode the geometric and semantic information of a complex scene in a very compact, but
rich, internal representation. This effort led to ‘LaRa’, a transformer-based architecture for
scene understanding. Thanks to its ray embedding, it is able to encode information from
many sensors into a small latent representation of the scene (RQ2). We can then process
and query information from this compact representation to efficiently segment vehicles and
driveable areas in the Bird’s-Eye-View space (RQ4). Moreover, in section 4.5 we provide
evidence that knowledge about the scene can be accumulated over time directly in this
abstract representation of the world; paving the way for models that efficiently reason and
plan in the latent space.

Despite our work making progress on the topic of scene understanding for autonomous
driving, there are still several avenues for future work. We comment on possible extensions
and outline future research directions in the following.

5.2 Future directions

5.2.1 Handling multiple types of cameras and different intrinsics.

Across datasets [Caesar et al., 2020; Geiger et al., 2012; Sun et al., 2020; Yogamani et al.,
2019], images from cameras come in all different kinds of shapes and sizes (e.g., pinhole,

70 Chapter 5. Conclusions and future directions

fisheye, etc.). When the intrinsics of the camera change, the way the light interacts with
the camera sensor is also modified. This affects the way visual data is captured, which
ties the filters learned by the CNN to the intrinsics present in the learning data. A naïve,
time-consuming, and computationally expensive way to address this issue is to retrain the
entire network from scratch or to fine-tune it with the new data.

To build a more robust and efficient autonomous driving system, the works ‘CAM-
Convs’ by Facil et al. [2019] and ‘Camera Tensor’ by Ravi Kumar et al. [2021] offer a way
to handle these different types of cameras without having to retrain the whole model for
each. The CAM-Convs method proposes to inject the intrinsic parameters of the camera in
the CNN as additional channels of the feature maps (e.g., the distance to the camera prin-
cipal point is concatenated to each pixel). By doing so, the network can learn to account
for visual variations due to changes in the intrinsics of different cameras. Camera Ten-
sors [Ravi Kumar et al., 2021] builds upon this work and generalizes to arbitrary camera
geometries, including fisheye cameras

Combined with our ray embedding (chapter 4), which already integrates the intrinsics
and extrinsics of the cameras, such approaches would further increase the versatility and
adaptability of LaRa, allowing its deployment on a wide range of mobile robots.

5.2.2 Leveraging Simulation

While the core of this thesis is not about planning and control for autonomous driving, it
is essential to keep in mind that our end goal is not to achieve high performance on indi-
vidual benchmarks, but to ensure safe and efficient motion of the vehicle. Indeed, a higher
performance in benchmarks for multi-modal motion forecasts may not translate into bet-
ter and safer motion planning [Casas et al., 2020]. Hence, we need ways to evaluate our
complete system in realistic driving conditions. Likewise, it is important to evaluate the
performance of our methods in a closed-loop setup as open-loop evaluations, while pro-
posed in certain benchmarks [Caesar et al., 2021], do not take into account the interactions
between the vehicle and the environment. Since we cannot train and evaluate closed-loop
systems on public roads for security reasons, validation on test tracks and in simulation
is necessary. Note that the simulator does not necessarily need to be photorealistic, but it
needs to capture and represent the mutable characteristics of the world [Sun et al., 2022]
(e.g., weather, time of day, agent density, road layout and agent behaviour). In this regard,
CARLA [Dosovitskiy et al., 2017] is a simulator that generates diverse virtual environments
closely resembling real-world scenarios, including realistic weather conditions, traffic, and
road layouts. It also simulates a wide range of sensors including cameras, LIDARs, and
radars, which can be used to evaluate the performance of different sensor configurations
available on real vehicles [Hu et al., 2022b]. These elements motivate the development
of better evaluation standards, and publicly available simulators such as CARLA [Doso-
vitskiy et al., 2017] appear to be promising tools to develop and test autonomous driving
algorithms.

5.2.3 Learning an implicit representation of the world

In section 2.3.4 we introduced the notion of an implicit representation of the world. The
supposed advantages of such a representation are numerous, including the removal of
irrelevant details; facilitating the extraction of complex dependencies. It alleviates any res-
olution issue by projecting in a continuous and abstract space. It also extracts the statistical
regularities of the world, something that helps model the temporal dynamic of the world
and reduces the amount of annotated data necessary to train on a particular task [Hafner

5.2. Future directions 71

et al., 2023]. To achieve this goal, two main problems must be solved. First, we need a neu-
ral network architecture that can compress raw sensor signals into a compact encoding.
Second, we need a system to train this architecture so that this encoding has the properties
stated previously.

For the architecture, LaRa, presented in chapter 4, constitutes a first attempt to project
multiple sensory streams into a small collection of latent vectors. This internal representa-
tion can then be queried to make predictions in an arbitrary output space; allowing a single
representation to learn from multiple and diverse supervisory signals.

That leaves the second major question: how to learn such a representation? Learning
such abstract encoding of the world naturally involves the compression of relevant infor-
mation. However, the notion of “relevant information” only makes sense in regard to a
task, i.e., the latent space and what information are discarded from the inputs are entirely
defined by the supervisory signal. In this aspect, an implicit representation is also very
flexible and supervision of many forms can be used. For example, in a predictive fash-
ion, one may want to predict the future observation (e.g., at the next time step) directly at
the latent state level for ease of environment modelling: a consistency between the future
prediction and the actual observation is imposed on the latent vectors [Sobal et al., 2022;
Ye et al., 2021]. However, in dynamic and noisy environments, such an objective may be
minimized by focusing on irrelevant correlations [Sobal et al., 2022]: the network may only
encode parts of the scene easily predictable that change very slowly over time, like the sky,
instead of learning the agents’ behaviours.

To address this drawback, a reconstruction objective is often used as an additional ob-
jective, the aim is to force the latent state to maximize the information it contains. For
example, one of the most known approaches is reconstructing the input signal, or auto-
encoding. However, reconstructing the entire RGB signal from cameras can be a very hard
task due to visual variations and, above all, not necessarily useful (e.g., encoding the shape
of the clouds or the texture of buildings does not help to drive). Instead, representations
typically used in perception tasks can serve as additional supervisory signals. In particular,
depth, optical flow, and semantic segmentation can be used to supervise the scene repre-
sentation [Zhou et al., 2019]. These explicit representations provide a level of abstraction
with far fewer details to predict (e.g., they do no present variations of albedo or lighting).
This is helpful to infuse important concepts like 3D geometry and motion in the implicit
representation. In particular, the work of Zhou et al. [2019] suggests it improves transfer-
ability to control tasks. At the extreme, the work of Hu et al. [2022a] supervises the internal
representation with a BEV semantic occupancy grid encoding the rules of the road (traffic
lights state, stop sign) and dynamic agents (vehicles and pedestrians). These approaches
have the drawback of requiring a ground truth; learning these concepts in a self-supervised
way remains an open problem.

In this regard, we showed that depth can be self-supervised in chapter 3. Likewise, op-
tical flow [Yang and Ramanan, 2020] and semantic segmentation [Vobecky et al., 2022] can
also be self-supervised. More recently, Wimbauer et al. [2023] presented a self-supervised
method based on view reconstruction and neural rendering to estimate the volumetric oc-
cupancy of a scene (i.e., estimating the 3D geometry of a scene even in occluded areas). All
these approaches, requiring no annotation, could be exploited to learn a compact represen-
tation of the geometry, dynamics, and semantics of the world in a self-supervised way.

73

Appendix A

Monocular metric depth estimation
with a few-beam LiDAR

A.1 Overfitting to input LiDAR

In this section, we provide qualitative examples as well as elements of analysis for the
convergence behavior observed on ACMNet, NLSPN and S2D that we call “overfitted to
LiDAR input”. To this end, we compare S2D (overfitted) to Monodepth2-L (metric) trained
with a pose network and (‘P+L4’) supervision for 30 epochs. In essence, we refer to models
as overfitted when most of the depth prediction is consistent but only relative, while depth
prediction is only metric on pixels with LiDAR data. On fig. A.1b, we can clearly observe
the difference in scale between areas with and without LiDAR data. Likewise, we can
quantitatively observe the existence of two distinct scales within predictions of S2D. In the
middle plot of fig. A.2, the median value of the inverse depth prediction (disparity) on
pixels with LiDAR are roughly the same for S2D and Monodepth2-L, they are both scaled
metrically. On the other hand, in the top plot of fig. A.2 showing the median value of
disparity on pixels without LiDAR, there is a clear difference between Monodepth2-L, that
is properly scaled, and S2D that converged to a random scale.

From a supervisory perspective, the depth network is stuck within a local minima
where the photometric loss is mostly minimized apart on pixels with LiDAR data where it
is clear the pixels are projected at different scale (see fig. A.1a). The amount of pixels with
LiDAR data being very small, the erroneous photometric loss is on these areas is strongly
dampened by the average over the whole image. So strongly dampened that that photo-
metric loss between S2D and Monodepth2-L, respectively an overfitted and a metric model,
almost perfectly match (see photometric loss fig. A.3). At the same time the LiDAR loss has
already reached a minimum and the smoothness loss is not powerful enough to regularize
this convergence behavior.

This convergence profile is expected because there are an infinite number of depth pre-
diction scales for which the photometric loss is minimized over areas with no LiDAR data.
Hence, there is an infinite number of local minima leading to this overfitted behavior. On
the contrary, when using LiDAR self-supervision, only one depth prediction scale exists,
the metric one, to obtain a globally coherent reconstruction. We propose a solution to this
problem for S2D as well as ACMNet and NLSPN in appendix A.3.

A.2 Ablation of LiDAR: further analysis

In this section, we analyse results for learning setups not described in section 3.5.1. In
particular, we continue to study the use of a pose network instead of PnP, with ‘P’, ‘P+IMU’
or ‘P+L4+IMU’ supervision.

74 Appendix A. Monocular metric depth estimation with a few-beam LiDAR

(A) Reconstructed view from source image, depth and
pose predictions

(B) Deth estimation

(C) Mask on pixels without LiDAR data (D) Mask on pixels with LiDAR data

FIGURE A.1: Predictions of a model overfitting to LiDAR input. We show (A) a reconstructed
view from source image, depth and pose prediction (B) a depth estimation considered as overfitted
to the LiDAR input (C) a binary mask where the value is 1 for pixels without LiDAR data and 0
otherwise (D) a binary mask where the value is 1 for pixels with LiDAR data and 0 otherwise.

Overall, we observe very poor performances with the use of the pose network. First,
we note that the use of photometric reconstruction only (‘P’ in table 3.2) leads to to relative
depth for all networks (dark gray cells in the table 3.2). Indeed, this setup is well known
as being an ill-posed problem [Godard et al., 2019; Guizilini et al., 2020a; Wang et al., 2018;
Zhou et al., 2017]; the pose provided by the monocular pose network can only be relative
without additional information, and the depth estimation is thus unscaled as well.

To enforce a metric scale, we train the pose network with additional supervision in
the form of an IMU prior (‘P+IMU’), as explained in section 3.4.2. While this helps Mon-
odepth2 and Monodepth2-L to correctly train, ACMNet, NLSPN and S2D architectures
cannot reach good performances when a joint alignment between a pose and depth net-
work is required (see appendix A.5 for more details).

With further supervision from the input LiDAR (‘P+L4+IMU’), we can slightly increase
results for Monodepth2 and Monodepth2-L as well as significantly boosting results for
ACMNet compared to the (‘P+IMU’) setup (253% increase). However, similar to ACMNet,
NLSPN and S2D in the (‘P+L4’) setup (see section 3.5.1), NLSPN and S2D tends to overfit
the input LiDAR. Hence, we use the same dilation procedure, as detailed in appendix A.3,
for these models to avoid overfitting the LiDAR input.

A.3 Dilated LiDAR

Contrarily to Monodepth2 and Monodepth2-L, when trained with a pose network and
LiDAR self-supervision, the networks ACMNet, NLSPN and S2D tend to overfit the Li-
DAR. Most of the depth prediction is consistent but only relative, while depth prediction
on pixels with LiDAR data is metric (see appendix A.1 for an example). The main differ-
ence between these architectures is that Monodepth2 and Monodepth2-L are supervised at
multiple scales (1:1, 1:2, 1:4 and 1:8) while ACMNet, NSLPN and S2D are only supervised
at the final resolution (1:1). Supervision at the lowest scale (1:8) artificially increases the
number of pixels getting supervision from LiDAR as a LiDAR point spans multiple pixels
when projected at low resolutions.

A.3. Dilated LiDAR 75

0 2500 5000 7500 10000 12500 15000 17500 20000
of training steps

0.0

0.3

0.6

0.9

1.2

M
ed

ia
n

di
sp

ar
ity

 p
re

di
ct

io
n S2D Monodepth2-L

0 2500 5000 7500 10000 12500 15000 17500 20000
of training steps

0.00

0.15

0.30

0.45

0.60

M
ed

ia
n

di
sp

ar
ity

 p
re

di
ct

io
n

 o
n

LiD
AR

 p
ixe

ls

S2D Monodepth2-L

0 2500 5000 7500 10000 12500 15000 17500 20000
of training steps

0.0

0.4

0.8

1.2

1.6

Tr
an

sla
tio

n
m

ag
ni

tu
de

S2D Monodepth2-L

FIGURE A.2: Statistics for the depth and pose outputs over a training run for S2D (overfitted)
and Monodepth2-L (metric) with a pose network and (‘P+L4’) supervision. Respectively from top
to bottom, we provide the median value of the disparity predicted by the depth network on pixels
without LiDAR data (see Figure A.1c), then on pixels with LiDAR data (see Figure A.1d), and
the magnitude of the relative pose’s translation component (i.e., by how much the pose network
estimates the car moved between two views).

76 Appendix A. Monocular metric depth estimation with a few-beam LiDAR

0 2500 5000 7500 10000 12500 15000 17500 20000
of training steps

0.000

0.015

0.030

0.045

0.060

LiD
AR

 lo
ss

S2D Monodepth2-L

0 2500 5000 7500 10000 12500 15000 17500 20000
of training steps

0.00

0.05

0.10

0.15

0.20

Ph
ot

om
et

ric
 lo

ss

S2D Monodepth2-L

0 2500 5000 7500 10000 12500 15000 17500 20000
of training steps

0.00

0.03

0.06

0.09

0.12

Sm
oo

th
ne

ss
 lo

ss

S2D Monodepth2-L

FIGURE A.3: Loss values over a training run for S2D (overfitted) and Monodepth2-L (metric)
with a pose network and (‘P+L4’) supervision. Respectively from top to bottom, we provide the
values over a training run for the self-supervised LiDAR loss, the photometric loss as well as the
smoothness loss.

A.3. Dilated LiDAR 77

Minimal / Sparse 4-beam

Dilated 4-beam

FIGURE A.4: Visual difference between vanilla and dilated LiDAR.

We hypothesize that the mono-scale training is the cause of overfitting to LiDAR in-
put when training with LiDAR self-supervision. This is confirmed by the fact that, when
Monodepth2-L is only supervised at the scale 1:1, the model collapses into the overfitted
regime which highlights the importance of multi-scale training.

As modifying the mono-scale networks is non-trivial, we propose to self-supervise with
a dilated LiDAR to compensate for the lack of multi-scale supervision and to avoid overfit-
ting the LiDAR input. More precisely, we apply two iterations of a dilation morphological
operator with a kernel of 10× 10 on the 4-beam LiDAR at the supervision level only (i.o.w.,
we do not apply dilation on the LiDAR input). The aim is to increase the number of pixels
receiving LiDAR supervision, albeit in a noisy manner, (fig. A.4). This simple procedure,
while remaining a trick, enables mono-scale architectures to avoid overfitting the input
LiDAR and to converge to metric depth estimation. On the other hand, none of the ar-
chitectures need such special care when trained under our LiDARTouch framework. We
report results of models trained with this procedure with the superscript † intable 3.2.

In addition to this strategy, we explored various experimental setups and combination
of hyper-parameters when training with (P+L4) and (P+L4+IMU) for mono-scale networks:

• Dividing the sparse LiDAR depth values (used as input and/or ground-truth) by a
factor α at train time and multiply depth prediction consequently at validation. The
network still overfits to LiDAR data with α ∈ {10, 100, 1000}.

• Decreasing the contribution of the depth loss in the global objective to mitigate the
overfitting behavior to LiDAR points. With λ ∈ {1, 1e−1, 1e−2, 1e−3}, the model
still overfits the LiDAR. With λ ∈ {1e−4, 1e−5} the network stops overfitting the
LiDAR data but the depth estimation becomes only relative instead of being metric.

• Increasing the contribution of the smoothness loss in the global objective. By doing
so, we hoped to uniformize the scale of the depth prediction on pixels without LiDAR
that are neighbors to pixels with LiDAR. The network still overfits to LiDAR data
with λ ∈ {1e−1, 1e−2, 1e−3}.

• Varying learning rate from 1e−3 to 1e−5. The network still overfits to LiDAR data.

78 Appendix A. Monocular metric depth estimation with a few-beam LiDAR

A.4 Pose scaling is critical when using a PnP pose estimation with
photometric loss only

Most of the depth network’s learning signal comes from the reconstruction of the target
image from the source image. For a given scale, a correct photometric reconstruction cor-
responds to a unique pair of depth and pose. Hence, for one to be metrically scaled, both
the depth and the pose have to be metric. However, the networks are initialized randomly
and thus need to jointly align and converge to a metric scale.

On the other hand, when using PnP, the estimated pose is metric thanks to LiDAR
data (see section 3.3.3), thus, only the depth network has to converge to the correct scale.
However, this may produce a large difference in scale at initialization between the pose
and depth, provoking unstable training for the depth network. Thus, one strategy we
adopt to stabilize training is to divide the translation component of the PnP pose by 10 and
multiply the depth prediction by 10 at inference time. Models trained with this strategy
are indicated with the superscript ∗ in table 3.2.

To circumvent these difficult training behaviors, we can use the PnP method to pro-
duce metric poses, and further enforce the collapse of the depth solutions to a metric scale
with additional LiDAR self-supervision. This is consistently verified with the use of pho-
tometric and LiDAR supervisions (P+L4) for each of the five architectures considered and
leads to the best results compared to any other configuration (see table 3.2). These results
demonstrate that the use of LiDAR both as self-supervision and in pose computation yields
performance on-par or better than camera-only setups.

A.5 Poor performances for ACMNet, NLSPN and S2D when trained
with P+IMU

Unfortunately, we cannot make these models converge to metric depth estimations. We
describe below the combination of hyper-parameters we experimented with:

• Dividing the pose GT (translation magnitude) by 10, 100, 1000 and multiplying depth
predictions consequently.

• Varying the contribution of the smoothness loss with λ ∈ {1e−1, 1e−2, 1e−3}.

• Varying learning rate from 1e−3 to 1e−5.

In all these cases, the networks still converge to bad quality depth estimations. We also
investigate Monodepth2-L only supervised at the biggest scale to evaluate the influence of
multi-scale training in the ‘P+IMU’ setup. We found that performances slightly decreased,
but the network still converges to metric depth estimations. Hence, in this setup, multi-
scale training does not seem to be crucial.

79

Appendix B

Latents and Rays for an Implicit Scene
Representation

B.1 Output embedding

In chapter 4, we considered Fourier features and learned query as alternative BEV query
embeddings. Here we detail both of them.
Fourier features. The Fourier encoding has been proven to be well suited for encoding
fine positional features [Jaegle et al., 2022; Vaswani et al., 2017; Yifan et al., 2022]. This is
done by applying the following on an arbitrary input z ∈ R:

fourier(z) = (z, sin(f1πz), cos(f1πz), . . . , sin(fBπz), cos(fBπz)) , (B.1)

where B is the number of Fourier bands, and fb is spaced linearly from 1 to a maximum
frequency fB and typically set to the input’s Nyquist frequency [Jaegle et al., 2022]. The
maximum frequency fB and number of bands B are hyper-parameters. This Fourier em-
bedding is applied on the normalized coordinate grid such that:

Qfourier[i, j] = fourier(Qcoords[i, j]i)⊕ fourier(Qcoords[i, j]j). (B.2)

Learned. Another alternative, following common transformer practice [Carion et al., 2020;
Vaswani et al., 2017] and most notably proposed by CVT [Zhou and Krähenbühl, 2022], is to
let the network learn its query of dimension dbev-query from data. However, this is memory
intensive as it introduces hbev × wbev × dbev-query additional parameters to be optimized. In
other words, the number of parameters grows quadratically to the resolution of the BEV
map. For experiments using learned output query embedding, we use dbev-query = 32.

B.2 Additional attention qualitative analysis

We also provide additional analysis of attention maps for the multi-camera input shown
in fig. B.1 with a network using 256 latents and 32 attention heads. As in chapter 4, the
polar plots represent the directional attention intensity, showing the directions the network
attends the most. The contribution of each camera is indicated by a color code coherent
with fig. B.1. Each polar plot is oriented in an upward direction (i.e., the front of the car
points upward).

80 Appendix B. Latents and Rays for an Implicit Scene Representation

front left front front right

back left back back right

FIGURE B.1: Six input camera images coming from the 360-degree camera rig of nuScenes. Note
the small overlaps between views, e.g., the front of the white truck is both seen in the front-left and
front cams.

FIGURE B.2: Input-to-latent attention study — average over latents. These polar plots represent
the directional attention intensity averaged over all the 256 latent vectors for each attention head.
When averaging over latent vectors, we observe that each attention head generally covers all di-
rections. This suggests that the latent vectors contain most of the directional information and that
the whole scene is attended across the latent. More rarely, an attention head’s polar plot will be
directional but will maintain a level of generality by being symmetrical.

B.2. Additional attention qualitative analysis 81

FIGURE B.3: Input-to-latent attention study — average over heads. These polar plots represent the
directional attention intensity averaged over all attention heads for the 32 attention heads. When
averaging over attention heads, we observe that the average attention spans over half of the scene.
This allows latent vectors to extract long-range context between views with the capacity to disam-
biguate them.

82 Appendix B. Latents and Rays for an Implicit Scene Representation

FIGURE B.4: Input-to-latent attention study — all the attention heads of a latent vector. These
polar plots represent the directional attention intensity of the 32 attention heads for a randomly
chosen latent vector (latent vector #10). As shown in fig. B.3, one latent vector approximately covers
half of the scene over its attention heads.

B.2. Additional attention qualitative analysis 83

FIGURE B.5: Input-to-latent attention study — all the latent vectors for an attention head. These
polar plots represent the directional attention intensity of the 256 latent vectors for a randomly
chosen attention head (head #4). As shown in fig. B.2, one attention head generally covers the full
scene over the latent vectors.

85

Bibliography

Amiri, A. J., Loo, S. Y., and Zhang, H. (2019). Semi-supervised monocular depth estimation
with left-right consistency using deep neural network. In IEEE ROBIO.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., and Tai, C.-L. (2022). Transfusion:
Robust LiDAR-camera fusion for 3D object detection with transformers. In CVPR.

Bansal, M., Krizhevsky, A., and Ogale, A. (2018). Chauffeurnet: Learning to drive by imi-
tating the best and synthesizing the worst.

Bartoccioni, F., Zablocki, E., Bursuc, A., Pérez, P., Cord, M., and Alahari, K. (2022). Lara:
Latents and rays for multi-camera bird’s-eye-view semantic segmentation. In CoRL.

Bartoccioni, F., Zablocki, É., Pérez, P., Cord, M., and Alahari, K. (2023). Lidartouch: Monoc-
ular metric depth estimation with a few-beam lidar. CVIU.

Belkada, Y., Bertoni, L., Caristan, R., Mordan, T., and Alahi, A. (2021). Do pedestrians pay
attention? eye contact detection in the wild.

Bertozzi, M., Broggi, A., Conte, G., and Fascioli, A. (1998). Experience of the ARGO au-
tonomous vehicle. In Enhanced and Synthetic Vision.

Biasutti, P., Lepetit, V., Aujol, J.-F., Bredif, M., and Bugeau, A. (2019). Lu-net: An efficient
network for 3d lidar point cloud semantic segmentation based on end-to-end-learned 3d
features and u-net. In ICCV Workshop.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D.,
Monfort, M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-driving cars.
arXiv preprint arXiv:1604.07316.

Boulch, A., Puy, G., and Marlet, R. (2020). FKAConv: Feature-Kernel Alignment for Point
Cloud Convolution. In 15th Asian Conference on Computer Vision (ACCV 2020).

Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal of Software Tools.

Bryson, A., Ho, Y.-C., and Siouris, G. (1979). Applied optimal control: Optimization, esti-
mation, and control. Systems, Man and Cybernetics, IEEE Transactions on, 9:366 – 367.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y.,
Baldan, G., and Beijbom, O. (2020). nuScenes: A multimodal dataset for autonomous
driving. In CVPR.

Caesar, H., Kabzan, J., Tan, K. S., Fong, W. K., Wolff, E. M., Lang, A. H., Fletcher, L., Bei-
jbom, O., and Omari, S. (2021). NuPlan: A closed-loop ML-based planning benchmark
for autonomous vehicles. arXiv 2106.11810.

86 BIBLIOGRAPHY

Can, Y. B., Liniger, A., Unal, O., Paudel, D., and Van Gool, L. (2022). Understanding bird’s-
eye view of road semantics using an onboard camera. IEEE Robotics and Automation
Letters.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).
End-to-end object detection with transformers. In ECCV.

Caron, M., Touvron, H., Misra, I., Jegou, H., Mairal, J., Bojanowski, P., and Joulin, A. (2021).
Emerging properties in self-supervised vision transformers. ICCV.

Casas, S., Gulino, C., Suo, S., and Urtasun, R. (2020). The importance of prior knowledge in
precise multimodal prediction. 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

Casas, S., Sadat, A., and Urtasun, R. (2021). MP3: A unified model to map, perceive, predict
and plan. In CVPR.

Casser, V., Pirk, S., Mahjourian, R., and Angelova, A. (2019a). Depth prediction without
the sensors: Leveraging structure for unsupervised learning from monocular videos. In
AAAI.

Casser, V., Pirk, S., Mahjourian, R., and Angelova, A. (2019b). Unsupervised monocular
depth and ego-motion learning with structure and semantics. In CVPR Workshop.

Chang, J.-R. and Chen, Y.-S. (2018). Pyramid stereo matching network. In CVPR.

Chang, M., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P.,
Lucey, S., Ramanan, D., and Hays, J. (2019). Argoverse: 3D tracking and forecasting with
rich maps. In CVPR.

Chen, K., Hong, L., Xu, H., Li, Z., and Yeung, D.-Y. (2021). Multisiam: Self-supervised
multi-instance siamese representation learning for autonomous driving. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 7546–7554.

Chen, L., Sima, C., Li, Y., Zheng, Z., Xu, J., Geng, X., Li, H., He, C., Shi, J., Qiao, Y., and Yan,
J. (2022). Persformer: 3d lane detection via perspective transformer and the openlane
benchmark. In European Conference on Computer Vision (ECCV).

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017). Multi-view 3d object detection network
for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Cheng, X., Zhong, Y., Dai, Y., Ji, P., and Li, H. (2019). Noise-aware unsupervised deep
lidar-stereo fusion. In CVPR.

Chitta, K., Prakash, A., and Geiger, A. (2021). NEAT: Neural attention fields for end-to-end
autonomous driving. In ICCV.

Chitta, K., Prakash, A., Jaeger, B., Yu, Z., Renz, K., and Geiger, A. (2022). Transfuser:
Imitation with transformer-based sensor fusion for autonomous driving. IEEE TPAMI.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of
neural machine translation: Encoder–decoder approaches. Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation.

BIBLIOGRAPHY 87

Choy, C., Gwak, J., and Savarese, S. (2019). 4d spatio-temporal convnets: Minkowski con-
volutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3075–3084.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U.,
Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene under-
standing. In CVPR.

DARPA (2004). Grand challenge 2004 final report. https://www.esd.whs.mil/
Portals/54/Documents/FOID/Reading%20Room/DARPA/15-F-0059_GC_2004_FINAL_
RPT_7-30-2004.pdf. [Last accessed on 2023-1-2].

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. (2009). ImageNet: A large-scale
hierarchical image database. In CVPR.

Deng, Z., Todorovic, S., and Jan Latecki, L. (2017). Unsupervised object region proposals
for rgb-d indoor scenes. CVIU, 154:127–136.

Dickmanns, E. (2002). The development of machine vision for road vehicles in the last
decade. In IEEE Intelligent Vehicle Symposium.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021).
An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA: An open
urban driving simulator. In CoRL.

Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica: Intl. J.
Geographic Information and Geovisualization, 10(2):112–122.

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single image
using a multi-scale deep network. In NeurIPS.

Elfes, A. (1990). Occupancy grids: A stochastic spatial representation for active robot per-
ception. UAI.

Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp, B., Qi, C. R.,
Zhou, Y., Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V., McCauley, A., Shlens,
J., and Anguelov, D. (2021). Large scale interactive motion forecasting for autonomous
driving: The waymo open motion dataset. In ICCV.

Facil, J. M., Ummenhofer, B., Zhou, H., Montesano, L., Brox, T., and Civera, J. (2019). CAM-
Convs: Camera-Aware Multi-Scale Convolutions for Single-View Depth. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D. (2018). Deep ordinal regression
network for monocular depth estimation. In CVPR.

Galvani, M. (2019). History and future of driver assistance. IEEE Instrumentation & Mea-
surement Magazine, 22(1):11–16.

Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., and Schmid, C. (2020). Vectornet:
Encoding hd maps and agent dynamics from vectorized representation. In CVPR.

https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf
https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf
https://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/DARPA/15-F-0059_GC_2004_FINAL_RPT_7-30-2004.pdf

88 BIBLIOGRAPHY

Gao, X., Hou, X., Tang, J., and Cheng, H. (2003). Complete solution classification for the
perspective-three-point problem. IEEE TPAMI, 25:930–943.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? The
KITTI vision benchmark suite. In CVPR.

Gidaris, S., Bursuc, A., Puy, G., Komodakis, N., Cord, M., and Perez, P. (2021). Obow:
Online bag-of-visual-words generation for self-supervised learning. In CVPR.

Godard, C., Aodha, O. M., Firman, M., and Brostow, G. J. (2019). Digging into self-
supervised monocular depth estimation. In ICCV.

Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). Unsupervised monocular depth
estimation with left-right consistency. In CVPR.

Gong, S., Ye, X., Tan, X., Wang, J., Ding, E., Zhou, Y., and Bai, X. (2022). GitNet: Geometric
prior-based transformation for birds-eye-view segmentation. arXiv 2204.07733.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., kavukcuoglu, k., Munos, R., and
Valko, M. (2020). Bootstrap your own latent - a new approach to self-supervised learning.
In NeurIPS.

Groenendijk, R., Karaoglu, S., Gevers, T., and Mensink, T. (2020). On the benefit of adver-
sarial training for monocular depth estimation. CVIU, 190:102848.

Gruber, T., Bijelic, M., Heide, F., Ritter, W., and Dietmayer, K. (2019). Pixel-accurate depth
evaluation in realistic driving scenarios. In 3DV.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge
sharing? International Journal of Human-Computer Studies.

Guizilini, V., Ambrus, R., Burgard, W., and Gaidon, A. (2021). Sparse auxiliary networks
for unified monocular depth prediction and completion. In CVPR.

Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., and Gaidon, A. (2020a). 3D packing for
self-supervised monocular depth estimation. In CVPR.

Guizilini, V., Hou, R., Li, J., Ambrus, R., and Gaidon, A. (2020b). Semantically-guided
representation learning for self-supervised monocular depth. In ICLR.

Guizilini, V., Li, J., Ambrus, R., Pillai, S., and Gaidon, A. (2019). Robust semi-supervised
monocular depth estimation with reprojected distances. In CoRL.

Guizilini, V., Vasiljevic, I., Ambrus, R., Shakhnarovich, G., and Gaidon, A. (2022a). Full
surround monodepth from multiple cameras. IEEE Robotics and Automation Letters.

Guizilini, V., Vasiljevic, I., Fang, J., Ambrus, R., Shakhnarovich, G., Walter, M., and Gaidon,
A. (2022b). Depth field networks for generalizable multi-view scene representation. In
ECCV.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. In
NeurIPS.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2023). Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104.

BIBLIOGRAPHY 89

Harley, A. W., Fang, Z., Li, J., Ambrus, R., and Fragkiadaki, K. (2022). Simple-BEV: What
really matters for multi-sensor bev perception? arXiv 2206.07959.

Harley, A. W., Li, F., Lakshmikanth, S. K., Zhou, X., Tung, H.-Y. F., and Fragkiadaki, K.
(2019). Learning from unlabelled videos using contrastive predictive neural 3d mapping.
In ICLR.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., and Girshick, R. (2022). Masked autoencoders are
scalable vision learners. In CVPR.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In CVPR.

Henaff, O. J., Koppula, S., Alayrac, J.-B., van den Oord, A., Vinyals, O., and Carreira, J.
(2021). Efficient visual pretraining with contrastive detection. In ICCV.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (GELUs). arXiv
1606.08415.

Hendy, N., Sloan, C., Tian, F., Duan, P., Charchut, N., Xie, Y., Wang, C., and Philbin, J.
(2020). FISHING net: Future inference of semantic heatmaps in grids. In CVPR Workshop.

Hu, A., Corrado, G., Griffiths, N., Murez, Z., Gurau, C., Yeo, H., Kendall, A., Cipolla, R.,
and Shotton, J. (2022a). Model-based imitation learning for urban driving. In NeurIPS.

Hu, A., Murez, Z., Mohan, N., Dudas, S., Hawke, J., Badrinarayanan, V., Cipolla, R., and
Kendall, A. (2021). FIERY: Future instance segmentation in bird’s-eye view from sur-
round monocular cameras. In ICCV.

Hu, H., Liu, Z., Chitlangia, S., Agnihotri, A., and Zhao, D. (2022b). Investigating the impact
of multi-lidar placement on object detection for autonomous driving. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Jacob, P., Zablocki, É., Ben-Younes, H., Chen, M., Pérez, P., and Cord, M. (2022). STEEX:
steering counterfactual explanations with semantics. In ECCV.

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula, S.,
Zoran, D., Brock, A., Shelhamer, E., Henaff, O. J., Botvinick, M., Zisserman, A., Vinyals,
O., and Carreira, J. (2022). Perceiver IO: A general architecture for structured inputs &
outputs. In ICLR.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., and Carreira, J. (2021). Per-
ceiver: General perception with iterative attention. In ICML.

Jaritz, M., de Charette, R., Wirbel, É., Perrotton, X., and Nashashibi, F. (2018). Sparse and
dense data with CNNs: Depth completion and semantic segmentation. In 3DV.

Jaritz, M., Vu, T.-H., de Charette, R., Wirbel, E., and Pérez, P. (2020). xMUDA: Cross-modal
unsupervised domain adaptation for 3D semantic segmentation. In CVPR.

Jund, P., Sweeney, C., Abdo, N., Chen, Z., and Shlens, J. (2022). Scalable scene flow from
point clouds in the real world. IEEE Robotics and Automation Letters, 7(2):1589–1596.

Kaushik, V., Jindgar, K., and Lall, B. (2021). Adaadepth: Adapting data augmentation and
attention for self-supervised monocular depth estimation. IEEE Robotics and Automation
Letters.

90 BIBLIOGRAPHY

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D., Bewley, A.,
and Shah, A. (2019). Learning to drive in a day. In ICRA.

Kendall, A., Martirosyan, H., Dasgupta, S., and Henry, P. (2017). End-to-end learning of
geometry and context for deep stereo regression. In ICCV.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In ICLR.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., and Pérez, P.
(2020). Deep reinforcement learning for autonomous driving: A survey.

Koestler, L., Yang, N., Wang, R., and Cremers, D. (2020). Learning monocular 3D vehicle
detection without 3D bounding box labels. In GCPR.

Komodakis, N. and Gidaris, S. (2018). Unsupervised representation learning by predicting
image rotations. In ICLR.

Kumar, V. R., Milz, S., Witt, C., Simon, M., Amende, K., Petzold, J., Yogamani, S. K., and
Pech, T. (2018). Monocular fisheye camera depth estimation using sparse lidar supervi-
sion. In IEEE ITSC.

Kuznietsov, Y., Stückler, J., and Leibe, B. (2017). Semi-supervised deep learning for monoc-
ular depth map prediction. In CVPR.

Lal, S., Prabhudesai, M., Mediratta, I., Harley, A. W., and Fragkiadaki, K. (2021). Coconets:
Continuous contrastive 3d scene representations. In CVPR.

Lee, Y. H. and Medioni, G. (2016). Rgb-d camera based wearable navigation system for the
visually impaired. CVIU, 149:3–20.

Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). Epnp: An accurate o(n) solution to the
pnp problem. IJCV, 81:155–166.

Li, Y., Yu, A. W., Meng, T., Caine, B., Ngiam, J., Peng, D., Shen, J., Lu, Y., Zhou, D., Le, Q. V.,
Yuille, A. L., and Tan, M. (2022a). Deepfusion: Lidar-camera deep fusion for multi-modal
3d object detection. In CVPR.

Li, Z., Wang, W., Li, H., Xie, E., Sima, C., Lu, T., Qiao, Y., and Dai, J. (2022b). BEVFormer:
Learning bird’s-eye-view representation from multi-camera images via spatiotemporal
transformers. arXiv 2203.17270.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017). Feature
pyramid networks for object detection. In CVPR.

Liu, R., Lehman, J., Molino, P., Such, F. P., Frank, E., Sergeev, A., and Yosinski, J. (2018).
An intriguing failing of convolutional neural networks and the coordconv solution. In
NeurIPS.

Liu, R., Wang, J., and Zhang, B. (2020a). High definition map for automated driving:
Overview and analysis. The Journal of Navigation.

Liu, Y., Wang, T., Zhang, X., and Sun, J. (2022a). Petr: Position embedding transformation
for multi-view 3d object detection. arXiv.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV).

BIBLIOGRAPHY 91

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. (2022b). A convnet for
the 2020s. CVPR.

Liu, Z., Wu, Z., and Toth, R. (2020b). SMOKE: Single-stage monocular 3D object detection
via keypoint estimation. In CVPR Workshop.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J.,
Dosovitskiy, A., and Kipf, T. (2020). Object-centric learning with slot attention. arXiv
preprint arXiv:2006.15055.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In ICLR.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. IJCV, 60:91–
110.

Loza, A., Mihaylova, L., Canagarajah, N., and Bull, D. R. (2006). Structural similarity-based
object tracking in video sequences. In IEEE FUSION.

Lu, D., Xie, Q., Wei, M., Gao, K., Xu, L., and Li, J. (2022). Transformers in 3d point clouds:
A survey.

Ma, F., Cavalheiro, G. V., and Karaman, S. (2019). Self-supervised sparse-to-dense: Self-
supervised depth completion from LiDAR and monocular camera. In ICRA.

Ma, F. and Karaman, S. (2018). Sparse-to-dense: Depth prediction from sparse depth sam-
ples and a single image. In ICRA.

Mahjourian, R., Kim, J., Chai, Y., Tan, M., Sapp, B., and Anguelov, D. (2022). Occupancy
flow fields for motion forecasting in autonomous driving. arXiv.

Mahjourian, R., Wicke, M., and Angelova, A. (2018). Unsupervised learning of depth and
ego-motion from monocular video using 3D geometric constraints. In CVPR.

Mao, J., Niu, M., Jiang, C., Liang, X., Li, Y., Ye, C., Zhang, W., Li, Z., Yu, J., Xu, C.,
et al. (2021). One million scenes for autonomous driving: Once dataset. arXiv preprint
arXiv:2106.11037.

Maturana, D. and Scherer, S. (2015). Voxnet: A 3d convolutional neural network for real-
time object recognition. In IROS.

Mercedes-Benz (2016). Image of the interior of the vamp3driverless car (1994).
https://group-media.mercedes-benz.com/marsMediaSite/en/instance/picture/
S-Klasse-Baureihe-140-Prometheus-VaMP--Vita2.xhtml?oid=9268914. [Last ac-
cessed on 2023-1-2].

Mishra, A., Kumar, A., Mandloi, S., Anand, K., Zakkam, J., Sowmya, S., and Thakur, A.
(2022). Evaluating and bench-marking object detection models for traffic sign and traffic
light datasets. In Proceedings of the Asian Conference on Computer Vision (ACCV) Workshops,
pages 338–353.

Misra, I., Girdhar, R., and Joulin, A. (2021). An End-to-End Transformer Model for 3D
Object Detection. In ICCV.

Mohan, R. and Valada, A. (2021). EfficientPS: Efficient panoptic segmentation. IJCV,
129:1551 – 1579.

https://group-media.mercedes-benz.com/marsMediaSite/en/instance/picture/S-Klasse-Baureihe-140-Prometheus-VaMP--Vita2.xhtml?oid=9268914
https://group-media.mercedes-benz.com/marsMediaSite/en/instance/picture/S-Klasse-Baureihe-140-Prometheus-VaMP--Vita2.xhtml?oid=9268914

92 BIBLIOGRAPHY

Mordan, T., Cord, M., Pérez, P., and Alahi, A. (2021). Detecting 32 pedestrian attributes for
autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems (T-ITS).

Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K. S., and Sapp, B. (2022). Way-
former: Motion forecasting via simple & efficient attention networks.

Ng, M., Radia, K., Chen, J., Wang, D., Gog, I., and Gonzalez, J. (2020). BEV-Seg: Bird’s eye
view semantic segmentation using geometry and semantic point cloud. In CVPR.

NHTSA (2017). 2017 fatal motor vehicle crashes: Overview. https://crashstats.nhtsa.
dot.gov/Api/Public/ViewPublication/812603. [Last accessed on 2023-01-02].

NHTSA (2019). The Economic and Societal Impact Of Motor Vehicle Crashes, 2019 (Re-
vised). https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813403.
[Last accessed on 2023-1-2].

OECD (2017). Road safety annual report. https://www.oecd-ilibrary.org/content/
publication/irtad-2017-en. [Last accessed on 2023-01-02].

Pan, B., Sun, J., Leung, H. Y. T., Andonian, A., and Zhou, B. (2020). Cross-view semantic
segmentation for sensing surroundings. In IROS.

Park, J., Joo, K., Hu, Z., Liu, C.-K., and Kweon, I. S. (2020). Non-local spatial propagation
network for depth completion. In ECCV.

Philion, J. and Fidler, S. (2020). Lift, splat, shoot: Encoding images from arbitrary camera
rigs by implicitly unprojecting to 3D. In ECCV.

Qi, C. R., Liu, W., Wu, C., Su, H., and Guibas, L. J. (2018). Frustum pointnets for 3d object
detection from rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep learning on point sets for
3d classification and segmentation. In CVPR.

Ravi Kumar, V., Yogamani, S., Rashed, H., Sitsu, G., Witt, C., Leang, I., Milz, S., and Mader,
P. (2021). Omnidet: Surround view cameras based multi-task visual perception network
for autonomous driving. IEEE Robotics and Automation Letters, 6(2):2830–2837.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In CVPR.

Reiher, L., Lampe, B., and Eckstein, L. (2020). A sim2real deep learning approach for the
transformation of images from multiple vehicle-mounted cameras to a semantically seg-
mented image in bird’s eye view. In IEEE ITSC.

Riegler, G., Ulusoy, A. O., and Geiger, A. (2017). Octnet: Learning deep 3d representations
at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Roddick, T. and Cipolla, R. (2020). Predicting semantic map representations from images
using pyramid occupancy networks. In CVPR.

Roddick, T., Kendall, A., and Cipolla, R. (2019). Orthographic feature transform for monoc-
ular 3D object detection. In BMVC.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812603
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812603
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813403
https://www.oecd-ilibrary.org/content/publication/irtad-2017-en
https://www.oecd-ilibrary.org/content/publication/irtad-2017-en

BIBLIOGRAPHY 93

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In MICCAI.

Saha, A., Mendez, O., Russell, C., and Bowden, R. (2021). Enabling spatio-temporal aggre-
gation in birds-eye-view vehicle estimation. In ICRA.

Sajjadi, M. S., Meyer, H., Pot, E., Bergmann, U., Greff, K., Radwan, N., Vora, S., Lucic,
M., Duckworth, D., Dosovitskiy, A., Uszkoreit, J., Funkhouser, T., and Tagliasacchi, A.
(2022). Scene representation transformer: Geometry-free novel view synthesis through
set-latent scene representations. In CVPR.

Sautier, C., Puy, G., Gidaris, S., Boulch, A., Bursuc, A., and Marlet, R. (2022). Image-to-lidar
self-supervised distillation for autonomous driving data. In CVPR.

Sengupta, S., Sturgess, P., Ladicky, L., and Torr, P. H. S. (2012). Automatic dense visual
semantic mapping from street-level imagery. In IROS.

Shu, C., Yu, K., Duan, Z., and Yang, K. (2020). Feature-metric loss for self-supervised
learning of depth and egomotion. Lecture Notes in Computer Science, page 572–588.

Simonelli, A., Bulo, S. R., Porzi, L., Kontschieder, P., and Ricci, E. (2021). Are we missing
confidence in pseudo-LiDAR methods for monocular 3D object detection? In ICCV.

Sobal, V., V, J. S., Jalagam, S., Carion, N., Cho, K., and LeCun, Y. (2022). Joint embedding
predictive architectures focus on slow features.

Srikanth, S., Ansari, J. A., Ram, K., Sharma, S., Krishna Murthy, J., and Madhava Krishna,
K. (2019). INFER: Intermediate representations for future prediction. In IROS.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. G. (2015). Multi-view convolutional
neural networks for 3d shape recognition. In ICCV.

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou,
Y., Chai, Y., Caine, B., et al. (2020). Scalability in perception for autonomous driving:
Waymo open dataset. In CVPR.

Sun, T., Segu, M., Postels, J., Wang, Y., Van Gool, L., Schiele, B., Tombari, F., and Yu, F.
(2022). Shift: A synthetic driving dataset for continuous multi-task domain adaptation.
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning. MIT press Cam-
bridge.

Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional
neural networks. In ICML.

Tan, M., Pang, R., and Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection.
In CVPR.

Tang, J., Tian, F.-P., Feng, W., Li, J., and Tan, P. (2020). Learning guided convolutional
network for depth completion. IEEE TIP.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F., and Guibas, L. J. (2019).
Kpconv: Flexible and deformable convolution for point clouds. Proceedings of the IEEE
International Conference on Computer Vision.

94 BIBLIOGRAPHY

Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., and Geiger, A. (2017). Sparsity
invariant CNNs. In 3DV.

Uricar, M., Krizek, P., Sistu, G., and Yogamani, S. (2019). Soilingnet: Soiling detection on
automotive surround-view cameras. 2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In NeurIPS.

Vobecky, A., Hurych, D., Siméoni, O., Gidaris, S., Bursuc, A., Pérez, P., and Sivic, J. (2022).
Drive&segment: Unsupervised semantic segmentation of urban scenes via cross-modal
distillation. In arXiv preprint arXiv:2203.11160.

Wang, C., Buenaposada, J. M., Zhu, R., and Lucey, S. (2018). Learning depth from monoc-
ular videos using direct methods. In CVPR.

Wang, H. and Tian, Y. (2022). Sequential point clouds: A survey.

Wang, T., Zhu, X., Pang, J., and Lin, D. (2021). FCOS3D: Fully convolutional one-stage
monocular 3D object detection. In ICCV Workshop.

Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu, X., Lu, T., Lu, L., Li, H., et al.
(2022). Internimage: Exploring large-scale vision foundation models with deformable
convolutions. arXiv preprint arXiv:2211.05778.

Wang, Y., Chao, W.-L., Garg, D., Hariharan, B., Campbell, M., and Weinberger, K. (2019).
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for
autonomous driving. In CVPR.

Watson, J., Firman, M., Brostow, G. J., and Turmukhambetov, D. (2019). Self-supervised
monocular depth hints. In ICCV.

WHO (2016). Global status report on road safety 2018. https://www.who.int/
publications/i/item/9789241565684. [Last accessed on 2023-01-02].

Wimbauer, F., Yang, N., Rupprecht, C., and Cremers, D. (2023). Behind the scenes: Density
fields for single view reconstruction. arXiv preprint arXiv:2301.07668.

Xiong, Y., Ren, M., Zeng, W., and Waabi, R. U. (2021). Self-supervised representation learn-
ing from flow equivariance. In ICCV.

Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., and Pu, S. (2021). Rpvnet: A deep and efficient
range-point-voxel fusion network for lidar point cloud segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 16024–16033.

Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., and Li, H. (2019). Depth completion from sparse
LiDAR data with depth-normal constraints. In ICCV.

Yamanaka, K., Matsumoto, R., Takahashi, K., and Fujii, T. (2020). Adversarial patch attacks
on monocular depth estimation networks. IEEE Access, 8.

Yang, G. and Ramanan, D. (2020). Upgrading optical flow to 3d scene flow through opti-
cal expansion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

https://www.who.int/publications/i/item/9789241565684
https://www.who.int/publications/i/item/9789241565684

BIBLIOGRAPHY 95

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. (2021). Mastering atari games with
limited data. In NeurIPS.

Yifan, W., Doersch, C., Arandjelović, R., Carreira, J., and Zisserman, A. (2022). Input-level
inductive biases for 3D reconstruction. In CVPR.

Yin, Z. and Shi, J. (2018). GeoNet: Unsupervised learning of dense depth, optical flow and
camera pose. In CVPR.

Yogamani, S., Hughes, C., Horgan, J., Sistu, G., Varley, P., O’Dea, D., Uricar, M., Milz,
S., Simon, M., Amende, K., Witt, C., Rashed, H., Chennupati, S., Nayak, S., Mansoor,
S., Perrotton, X., and Perez, P. (2019). Woodscape: A multi-task, multi-camera fisheye
dataset for autonomous driving. In ICCV.

Zablocki, É., Ben-Younes, H., Pérez, P., and Cord, M. (2022). Explainability of deep vision-
based autonomous driving systems: Review and challenges. IJCV.

Zemni, M., Chen, M., Zablocki, É., Ben-Younes, H., Pérez, P., and Cord, M. (2023). OCTET:
object-aware counterfactual explanations. In CVPR.

Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., and Urtasun, R. (2019). End-to-end
interpretable neural motion planner. In CVPR.

Zhao, C., Zhang, Y., Poggi, M., Tosi, F., Guo, X., Zhu, Z., Huang, G., Tang, Y., and Mat-
toccia, S. (2022). Monovit: Self-supervised monocular depth estimation with a vision
transformer. In 3DV.

Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen, Y., Chai, Y.,
Schmid, C., Li, C., and Anguelov, D. (2020). Tnt: Target-driven trajectory prediction.

Zhao, S., Gong, M., Fu, H., and Tao, D. (2021). Adaptive context-aware multi-modal net-
work for depth completion. IEEE TIP.

Zhou, B. and Krähenbühl, P. (2022). Cross-view transformers for real-time map-view se-
mantic segmentation. In CVPR.

Zhou, B., Krähenbühl, P., and Koltun, V. (2019). Does computer vision matter for action?
Science Robotics.

Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). Unsupervised learning of depth
and ego-motion from video. In CVPR.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2021). Deformable DETR: Deformable
transformers for end-to-end object detection. In ICLR.

Zhu, X., Yin, Z., Shi, J., Li, H., and Lin, D. (2018). Generative adversarial frontal view to
bird view synthesis. In 3DV.

	Pour obtenir le grade de
	École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique Spécialité : Informatique
	Direction de thèse :
	Karteek ALAHARI
	Patrick PEREZ

	Rapporteurs :
	Vincent LEPETIT
	Alexandre ALAHI

	Thèse soutenue publiquement le 28 avril 2023, devant le jury composé de :
	Vincent LEPETIT
	Alexandre ALAHI
	Matthieu CORD
	Aurélie BUGEAU
	Jean-Sébastien FRANCO
	Cordelia SCHMID

	Invités :
	Karteek ALAHARI
	Patrick PÉREZ

	Abstract
	Résumé
	Acknowledgements
	Introduction
	Motivation and context
	From ADAS to autonomous driving
	Typical sensors of autonomous vehicles
	AD software stack
	Contributions
	Outline
	Publications and implementations

	Deep learning applied to autonomous driving
	Tasks and public datasets
	Perception
	Motion prediction

	Challenges
	Modalities of very different natures
	Robustness to faulty sensor and visual impediments
	Training with few or no annotations
	Transformation of representation

	Representing a dynamic scene
	In the camera image plane
	In the 3D space
	In the Bird's-Eye-View
	Implicit

	Positioning

	Monocular metric depth estimation with a few-beam LiDAR
	Introduction
	Related work
	LiDARTouch framework
	Depth network
	Self-supervision objectives
	Pose estimation

	Experimental protocol
	Dataset and evaluation metrics
	Notations, ablations and external baselines

	Influence of a touch of LiDAR
	Ablation of LiDAR
	LiDAR self-supervision variants

	Comparison against related works
	Alleviating the infinite-depth problem
	Catastrophic Distance Rate (CDR) metric
	Quantitative analysis
	Qualitative analysis

	Implementation details
	Conclusion
	Summary of contributions
	Perspectives

	Latents and Rays for an Implicit Scene Representation
	Introduction
	Related work
	BEV semantic segmentation
	Incorporating geometric priors in Transformers

	LaRa: Our Latents and Rays Model
	Input modelling with geometric priors
	Building latent representations and deep fusion
	Generating BEV output from latents

	Experiments
	Evaluation details
	Comparison with previous works
	Extension to the driveable area segmentation task
	Model ablation and sensitivity to hyper-parameters
	Study of attention
	Qualitative Results

	Extension to temporal modelling
	Additional modules
	Results

	Conclusion
	Summary of contributions
	Perspectives

	Conclusions and future directions
	Conclusions and discussions
	Future directions
	Handling multiple types of cameras and different intrinsics.
	Leveraging Simulation
	Learning an implicit representation of the world

	Monocular metric depth estimation with a few-beam LiDAR
	Overfitting to input LiDAR
	Ablation of LiDAR: further analysis
	Dilated LiDAR
	Pose scaling is critical when using a PnP pose estimation with photometric loss only
	Poor performances for ACMNet, NLSPN and S2D when trained with P+IMU

	Latents and Rays for an Implicit Scene Representation
	Output embedding
	Additional attention qualitative analysis

