
HAL Id: tel-04193804
https://theses.hal.science/tel-04193804v1

Submitted on 1 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperation of Combinatorial Solvers for Air Traffic
Management and Control

Ruixin Wang

To cite this version:
Ruixin Wang. Cooperation of Combinatorial Solvers for Air Traffic Management and Control. Net-
working and Internet Architecture [cs.NI]. Institut National Polytechnique de Toulouse - INPT, 2020.
English. �NNT : 2020INPT0080�. �tel-04193804�

https://theses.hal.science/tel-04193804v1
https://hal.archives-ouvertes.fr


En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Informatique et Télécommunication

Présentée et soutenue par :
M. RUIXIN WANG

le jeudi 17 septembre 2020

Titre :

Unité de recherche :

Ecole doctorale :

Collaboration de méthodes d'optimisation combinatoire pour la gestion et le
contrôle du trafic aérien

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Laboratoire de Télécommunications (TELECOM-ENAC)
Directeur(s) de Thèse :

M. NICOLAS DURAND
M. NICOLAS BARNIER

Rapporteurs :
M. JIN-KAO HAO, UNIVERSITE D'ANGERS

Mme CHRISTINE SOLNON, INSA LYON

Membre(s) du jury :
M. LUIS DELGADO MUÑOZ, Université de WESTMINSTER, Membre

M. NICOLAS BARNIER, ECOLE NATIONALE DE L'AVIATION CIVILE, Membre
M. NICOLAS DURAND, ECOLE NATIONALE DE L'AVIATION CIVILE, Membre

  





i

Résumé
Dans le contexte du projet SESAR, le contrôle du trafic aérien (ATC) et sa
gestion (ATM) en Europe est en train de changer de paradigme pour être ca-
pable de gérer l’augmentation du trafic indiquée par les prévisions actuelles :
de nombreux systèmes fondés sur des experts vont être améliorés par des
logiciels d’optimisation pour rendre les processus de prise de décision et la
planification des régulations plus efficaces. Les techniques actuelles d’opti-
misation combinatoires qui sont appliquées aux problèmes d’ATM et ATC
comprennent des algorithmes d’approximation telles que les métaheuristiques
(e.g. Algorithmes Génétiques (AG), recherche taboue, recuit simulé…) et des
algorithmes exacts comme la Programmation Par Contraintes (PPC). Cepen-
dant, la très grande taille des instances considérées et la gestion des incerti-
tudes inhérentes à ce type de problèmes les rendent très difficiles à résoudre,
ce qui peut handicaper fortement les méthodes précédemment mentionnées
lorsqu’elles sont utilisées seules.

Afin de surmonter ces difficultés et d’améliorer l’efficacité des algorithmes
standards, nous proposons d’étudier la coopération générique d’un ensemble
quelconque de solveurs combinatoires, en partageant les solutions décou-
vertes, les bornes d’optimisation ainsi qu’éventuellement d’autres informa-
tions pour permettre d’accélérer la résolution. Dans cette thèse, le candidat
a spécifié et implémenté un tel système distribué de telle manière qu’il puisse
intégrer tout type de solveur combinatoire doté d’une interface adéquate,
adapter des solveurs existants pour prendre en compte et fournir des infor-
mations sur l’état de la recherche des autres solveurs, et appliquer ce système
à la résolution de problèmes d’ATC et ATM tels que la résolution de conflit
et l’allocation de porte de vol (GAP).

Pour le premier, nous avons présenté un nouveau cadre générique pour
la modélisation et la résolution des conflits en route en trois dimensions,
ainsi qu’un grand nombre d’exemples réalistes, qui ont été résolus avec la
coopération d’un algorithme mémétique et de la programmation linéaire en
nombres entiers (ILP). Pour le GAP, nous avons présenté un nouveau modèle
PPC, de nouvelles contraintes d’optimisation et stratégies de recherche, ainsi
que leur coopération parallèle, pour maximiser la robustesse de l’allocation.
Le solveur, implémenté avec la bibliothèque de PPC FaCiLe, surpasse un
solveur ILP à la pointe de la technologie sur des instances réelles.

Mots clés : Optimisation Combinatoire, Hybridation, Métaheuristique,
Programmation Par Contraintes, Contrôle et Gestion du trafic aérien.



Abstract
In the context of the SESAR project, Air Traffic Control (ATC) and Manage-
ment (ATM) in Europe is undergoing a paradigm shift to be able to accommo-
date the current traffic growth forecast: many expert-based systems will be
enhanced by optimization software to improve the decision-making process
and regulation planning. Current state-of-the-art combinatorial optimization
techniques that are applied to ATC and ATM include approximation algo-
rithms like metaheuristics (e.g. Genetic Algorithm, Tabu Search, Simulated
Annealing, etc.) and complete algorithms like Constraint Programming (CP)
and Mixed Integer Programming. However, the large scale of the considered
instances and the handling of their inherent uncertainties result in very hard
problems, which can hinder or even defeat either of the previously mentioned
optimization methods alone.

To overcome these difficulties and improve the resolution efficiency of
standard algorithms, we propose to study the generic cooperation of any
set of combinatorial solvers by sharing solutions, optimization bounds and
possibly other information in order to speed up the overall process. In this
thesis, we have specified and implemented a distributed system which is
able to integrate any combinatorial solver with the suitable interface, adapt
existing solvers to take into account and provide information on the state of
the search from and to other solvers, and applied this framework to two ATC
and ATM problems: the en-route conflict resolution problem and the Gate
Allocation Problem (GAP).

For the first one, we have presented a new generic framework for the
modeling and resolution of en-route conflicts in three dimensions as well as a
large set of realistic instances, which have been solved with the cooperation
of a Memetic Algorithm and Integer Linear Programming (ILP) solver. For
the GAP, we have presented a new CP model, as well as new optimization
constraints to maximize the robustness of the schedule, and search strate-
gies together with their parallel cooperation. The solver, implemented with
the FaCiLe CP library, outperforms a state-of-the-art ILP solver on real
instances.

Keywords: Combinatorial Optimization, Hybridization, Metaheuristics,
Integer Linear Programming, Constraint Programming, Air Traffic Manage-
ment.
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Introduction

Air Traffic Control (ATC) and Management (ATM) automation generates
many difficult Combinatorial Optimization Problems (COP) that can be chal-
lenging for several reasons. First, many uncertainties inherent to the domain
must be taken into account to handle complex and changeable aeronautic op-
erations. Then, the need for real-time decisions in Air Traffic Control leads
to demanding requirements on the efficiency of solvers. Eventually, the scale
of the considered instances according to current traffic growth forecast is very
large. Consequently, the difficulty of such air traffic problems has become
challenging for human experts and current operational algorithms. However,
few attempts have been made to improve the performance of such systems
through parallelization, so as to benefit from the increasing computing power
offered by current networks of multi-core workstations.

Among various parallelization strategies, like the separation of the search
space for a single algorithm or the parallel execution of independent algo-
rithms selected from a portfolio, multi-agent search where a network of opti-
mization agents interact with each other in parallel seem more promising. In-
deed, useful information like the current best solution or optimization bounds
can be shared between solvers and improve their performance beyond their
own abilities if their strengths (and shortcomings) are complementary. Un-
like the aforementioned approaches which are limited to execution speed-ups
or by the performance of the best algorithm of a predefined subset, multi-
agent systems can break the limits of all its contributing algorithms and solve
more difficult problems than any solver alone.

To obtain a system which is generic enough to include such diverse and
complementary algorithms as local search (or metaheuristics) and tree search
(e.g. Constraint Programming or Mixed Integer Programming), with possibly
different models tailored to each approach, we decided to study the cooper-
ation of combinatorial solvers: we propose a generic framework based on a
server-client pattern designed to easily plug various combinatorial solvers in
and have them cooperate to outperform any single method. We describe
the general architecture of our distributed cooperation framework, designed

1
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to be robust to the software or hardware failure of any client, and provide
details about the communication scheme and the internal logic of the server,
which stands as the “meta-solver” and “data manager”. We also show how to
adapt diverse combinatorial optimization algorithms to the proposed frame-
work, with a focus on three classic methods: a Metaheuristic, Integer Linear
Programming (ILP) and Constraint Programming (CP). Finally, we have
applied our framework to two COPs related to ATC and ATM: en-route
conflict resolution and gate allocation at airports.

To increase the level of automation in ATC, one of the key challenges
is the resolution of en-route conflicts to avoid losses of separation between
aircraft in a given airspace volume. To be able to compare various optimiza-
tion approaches to this problem, we first present a novel structure which
completely separates the modelling of en-route conflicts from its resolution.
Though we propose our own realistic 3D maneuvers and conflict detection
with uncertainties on the position of aircraft, our structure is able to han-
dle any other kind of maneuver and detection models. By using an efficient
GPU-based algorithm, potential conflicts between aircraft can then be de-
tected in less than a few seconds on realistic scenarios. Eventually, we solve
this problem with our distributed cooperation framework instantiated with
a Memetic Algorithm and an ILP solver. We show how our cooperation ap-
proach outperforms individual algorithms by orders of magnitude and can
provide in a few minutes optimal solutions to large instances that were out
of reach for a single method.

To improve the operations at airports, the Gate Allocation Problem
(GAP) focuses on finding and optimizing an assignment of a given set of
aircraft with fixed occupancy periods to a number of (non-uniform) gates.
As noted by [Bolat, 2001], one of the main objective of the allocation is to
optimize the robustness of the overall schedule, in order to absorb possible
deviations from the original schedule due to traffic delays, severe weather con-
ditions or equipment failures. We first model gate allocation as Fixed Job
Scheduling (FJS): an aircraft with scheduled arrival and departure times can
be considered as a task with fixed start and end times, and a gate as a specific
resource. Then, we present a new global constraint for CP solvers to prop-
agate the transition costs for FJS. However, the corresponding relaxation is
not of good quality w.r.t. the global lower bound, as a task may be simultane-
ously scheduled on all its compatible resources. To obtain a competitive CP
solver, we then introduce a new CP model based on the MinWeightAllDiff
optimization constraint to compute the lower bound of a Path Cover (PC) of
the compatibility graph of the problem. This relaxation is much tighter as the
constraint directly propagates on the total cost, considering all resources and
all tasks simultaneously. We also describe how the optimal PC computed by
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the constraint can efficiently guide the search strategy. The resulting CP
solver, implemented with FaCiLe [Barnier and Brisset, 2001], using parallel
cooperation between strategies, not only outperforms the previous approach
by orders of magnitude, but also consistently outperforms a basic ILP model.
At the same time, we also point out the problems of the basic ILP model and
propose a new Minimum Cost Flow Problem (MCFP) model for the GAP.
This MCFP model outperforms the basic one by one order of magnitude and
compete well against our parallel CP solver.

This thesis is organized as follows: Chapter 1 presents the literature on
the parallelization of combinatorial solvers, then we describe in Chapter 2
the design of our generic framework for algorithm cooperation and detail
how to include various combinatorial optimization solvers; Chapters 3 and 4
illustrate the use of our framework with the aforementioned algorithms on en-
route conflict resolution and gate allocation at airports. Finally, we conclude
and suggest further works in the last chapter.

The work carried out within the scope of this thesis has been published
in:

[1] Cyril Allignol, Nicolas Barnier, Nicolas Durand, Alexandre Gondran, and
Ruixin Wang. Large scale 3D en-route conflict resolution. In ATM
Seminar, 12th USA/Europe Air Traffic Management R&D Seminar,
2017.

[2] Ruixin Wang and Nicolas Barnier. Propagation of idle times costs for
fixed job scheduling. In 2018 IEEE 30th International Conference on
Tools with Artificial Intelligence (ICTAI), pages 718–725, Nov 2018.

[3] Ruixin Wang, Cyril Allignol, Nicolas Barnier, and Jean-Baptiste Gotte-
land. Departure Management with Robust Gate Allocation. In ATM
Seminar, 13th USA/Europe Air Traffic Management R&D Seminar,
2019.

[4] Ruixin Wang, Richard Alligier, Cyril Allignol, Nicolas Barnier, Nico-
las Durand, and Alexandre Gondran. Cooperation of combinatorial
solvers for en-route conflict resolution. Transportation Research Part
C: Emerging Technologies, 114:36–58, 2020.

[5] Ruixin Wang and Nicolas Barnier. Global Propagation of Transition Cost
for Fixed Job Scheduling. In 24th European Conference on Artificial
Intelligence. Santiago de Compostela, Spain, 2020.
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With the plateauing of processors frequency and the subsequent advent
of multi-core computers during the last decade, there have been a lot of ef-
forts from the scientific community to exploit parallelism for problem solving.
Although recent developments on complete methods (e.g. Constraint Pro-
gramming, SAT or MIP solvers) and incomplete methods (e.g. Local Search
or Metaheuristics) have made the resolution of Combinatorial Optimization
Problems (COP) more efficient, many instances remain out of reach. Vari-
ous approaches consist in combining different optimization methods to cope
with the largest instances of such problems, like separation of the search
space, hybridization, portfolios of algorithms or multi-agent systems.

Among the aforementioned approaches, separation of the search space
consists in splitting and distributing the search space among several processes.
For example, the resolution of a search problem can be formulated as a search
tree in a Constraint Programming (CP) system, so that solving a problem
is similar to finding a feasible path in the tree starting from the root node.
The children of a given node are a series of subproblems derived from the
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subproblem corresponding to each node, and can be dispatched among a
set of processors to speed up the search process. Examples can be found
in [Rao and Kumar, 1993, Chu et al., 2009]. Note that this approach mostly
speed up the search without any improvement on the quality of solutions,
as a sequential execution will produce the same result. However, [McCreesh
and Prosser, 2015] shows that specifically designed splitting strategies can
improve parallel branch and bound beyond the expected speed-up due to the
number of cores.

Hybridization of optimization techniques consists in dividing different re-
search tasks into several (generally two) heterogeneous methods. Among suc-
cessful approaches, CP can be considered as a framework able to integrate
various other optimization techniques as a global constraint, like [Focacci
et al., 2002] with an LP solver, or the other way around, CP can be used
as a component of a metaheuristic, for example to explore ambitious neigh-
borhoods within a Local Search (LS) algorithm, as in Large Neighborhood
Search (LNS) [Shaw, 1998]. Metaheuristics can also benefit from the inte-
gration of other LS algorithms, like Memetic Algorithms (MA) [Hao, 2012b]
which hybridize a population-based evolutionary algorithm with an LS, for
example a Tabu Search, to improve new solution candidates. Following a hier-
archical classification from [Talbi, 2009], a low level hybridization, also called
integrated approach, uses an optimization algorithm as an internal operator
for a metaheuristics (like LNS and MA), whereas a high-level hybridization is
the execution of different algorithms in sequence, the output of an algorithm
being used as an input to the next one.

The motivation behind high-level hybridization is that the currently exe-
cuting algorithm can benefit from the output of the previous one. As men-
tioned in [Talbi, 2009], performances of metaheuristics can be well influenced
by initial solution(s), so various techniques can be used at the start to gener-
ate solution(s) of good quality. In [Khichane et al., 2010] for example, a CP
solver is used to initialize an Ant Colony Optimization (ACO) with consis-
tent solutions, then the resulting best solution and pheromone tracks allow
to improve a standard CP optimization procedure with the same model by
providing a better upper bound and guiding the search strategy.

In our work, we tried to focus more on the parallelization and genericity of
the approach whereas the aforementioned hybridization schemes concentrate
on a tight integration at a finer grain of (generally) two algorithms to enhance
specific phases. Other combinations exist, that better coincide with our
goals, such as multi-agent systems [Dorri et al., 2018] and recent extensions
of portfolios [Li and Hoi, 2014], two parallel approaches in which different
algorithms are running on the complete problem instance individually. In
multi-agent systems, a set of solvers attempt to solve the problem in parallel
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while sharing useful information, whereas in [Li and Hoi, 2014], a subset of
various solvers is selected to run in parallel until one finishes resolution.

We will first present in Section 1.1 the literature on different approaches
to parallelization and then concentrate on the main contributions pertaining
to our own cooperative approach in Section 1.2.

1.1 Parallelization of Combinatorial
Algorithms

As mentioned in [Crainic and Toulouse, 2003], parallelization can be a con-
venient option to efficiently solve optimization problems with a strict time
requirement, like the real-time and dynamic ones occurring in the field of air
traffic control and management or vehicle automation. As the performance
of a given algorithm can significantly vary depending on the problem, it is a
rather intuitive idea to benefit from the growing available parallel computing
power to simultaneously execute different algorithms in concurrent processes,
either in an independent or cooperative way. Portfolios of algorithms (see
Section 1.1.1) address the former approach, while multi-agent systems (see
Section 1.1.2) address the latter.

1.1.1 Portfolio of Algorithms
All simple combinatorial solvers experience erratic performances when faced
with different problems and instances, but some combinations of algorithms
can be complementary, which enables to obtain a robust “meta-solver”. To
formalize this approach, the problem of “Algorithm Selection” was first in-
troduced in [Rice, 1976]. Taking inspiration from Economics, the authors
in [Huberman et al., 1997] present a portfolio method to reduce the risk of
having an unpredictable variation in solver performance w.r.t. the instance:
computational resources are allocated to a portfolio of algorithms which in-
dependently solve the same problem instance. Note that contrarily to multi-
agent systems described in Section 1.1.2, there generally is no communication
between the algorithms of a portfolio, i.e. they are executed in an independent
way.

To solve a combinatorial optimization problem, several elements must be
identified to design an efficient portfolio system: algorithms that are the best
candidates and features of the problem that should be taken into account to
select them. Additional strategies, like the classic restart strategy, can also
be used to avoid the intensification of the search on a small region of the
space only.
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The most simple parallel portfolios, like ppfolio [Roussel, 2012], are just
computer programs which run several SAT solvers in parallel, depending
on the number of available processors. Similar to ppfolio, VPSn (Virtual n-
Parallel Solver) is introduced in [Amadini et al., 2015]. It runs in parallel with
a fixed static selection of n solvers on a machine with n cores. It is a static
portfolio because the n solvers are selected in advance, without consideration
of the problem to be solved.

Another type of method for portfolio is per-instance algorithm selection
based on the idea of a training set as mentioned in [James et al., 2013].
This approach consists in identifying the “features” of the problem (i.e. spe-
cific characteristics like the dimensions or constrainedness of an instance,
or the performance of its resolution) and, based on a set of training prob-
lem instances and available resources, selecting the best algorithms, like the
ASlib solver for Algorithm Selection described in [Bischl et al., 2016]. [Lin-
dauer et al., 2015] introduces the parallel portfolio claspfolio2 using Machine
Learning (ML) techniques to estimate the top n best candidates to be run
in parallel on n processors.

As in Local Search and in some metaheuristics, the restart strategy can
be used in parallel portfolio, to avoid the search to be stuck in a local mini-
mum and encourage diversification. In a parallel context, restart can be used
to execute the same algorithms repeatedly with different starting configura-
tions. A specific restart strategy is introduced in [Arbelaez and Hamadi,
2011] to solve SAT problems with a parallel portfolio of LS algorithms. In-
stead of randomly generating a new configuration, each algorithm starts with
the configuration shared by others, the selected configuration being the one
that minimizes the number of conflicting clauses in other LS. Note that this
scheme can be seen as a multi-agent system (cf. Section 1.1.2) because the
processes communicate with each other during the search.

Another portfolio-based cooperative algorithm, sunny-cp2, is presented
in [Amadini et al., 2015]. It is the first parallel CP portfolio solver, enabling
different CP solvers to execute simultaneously in a multi-core environment.
When a solver finds no solution after some time limit, it can restart with the
best bound shared by other solvers. Note that it is hard to predict which
restart strategy is the best for a given problem as mentioned in [Hamadi
et al., 2008].

On the whole, portfolios of algorithms help select the appropriate candi-
date algorithms for solving optimization problem. However, as cooperation
hardly exists among them, the overall performance of the portfolio system
can never surpass the performance of its best algorithm on a given instance,
so that instances that are not reachable by individual algorithms will not
be reachable using the portfolio either. So we choose not to adopt the idea
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of portfolio but rather concentrate on how different algorithms may interact
with each other during the resolution to enhance the overall performance.
The literature on this topic is detailed in the following section.

1.1.2 Multi-Agent System
A multi-agent search is a software system consisting of a network of opti-
mization solvers (agents) that run in parallel and interact with each other.
It is designed to solve problems that are difficult or impossible to solve by
any individual solver. Each agent works in its own way (e.g. with different
algorithms, models, etc) on the entire problem and can communicate with
others through a common database.

[Clearwater et al., 1991] is one of the earliest examples of a multi-agent
system to solve a Constraint Satisfaction Problem (CSP), with an application
to cryptarithmetic puzzles. All the agents can access a common database,
in which anyone is allowed to read “hints”, i.e. sequences of assignments
locally consistent for at least one constraint, and generate new ones which
are written back in the database. By sharing these assignments, the agents
quickly converge towards tentatives with few unsatisfied constraints.

Multi-agent search can also be applied on distributed constraint satisfac-
tion problem, where each agent only works on part of the problem, so no
single agent can solve the entire problem by itself. A complete solution is
composed by partial solutions provided by each agent. An example can be
seen in [Al-Maqtari et al., 2006], which proposes a CP multi-agent system
to solve an agricultural water management problem. The system relies on
two types of agents: generic agents and controllers. The generic agents work
on different clusters of variables and related local constraints, and send the
values of their decision variables to controllers which are in charge of veri-
fying whether constraints between the agents are satisfied and inform them
back. Note that not all problems are well suited to be partitioned in clusters
of variables, as an increasing number of agents may lead to communication
overheads that burden the whole system.

As a conclusion, there are two different types of multi-agent systems which
differ from each other on whether the agents work on the entire problem or
just on part of it. We choose to develop in this thesis the former, as each
agent can have a more global view of the problem. Moreover, agents have
more freedom to employ different types of algorithm, which is very important
as the weaknesses of one algorithm dealing with certain aspects of a problem
can be compensated for by other ones. However, multi-agent systems in
the literature are mostly tailored to a specific problem, which increases the
difficulty of other agents (i.e. other algorithms) to join. We will propose a
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more generic cooperation framework in Chapter 2, which can allow various
combinatorial solver to be easily integrated and cooperate with each other
on a given problem.

Before introducing our framework, we first need to discuss why and how
different kinds of algorithm can improve their performance through mutual
collaboration. The related literature is presented in the following section.

1.2 Cooperation of Solvers
Based on the observations about the various approaches of parallelization in
the previous section, we decided to develop one sub-branch of multi-agent
systems, namely the cooperative approach where each agent solves the entire
problem and shares useful information with each other. We first discuss
the strengths and weaknesses of different optimization algorithms, and how
sharing information can improve their performance.

Optimization methods can be either complete or incomplete. Complete
methods, like CP or the Branch & Cut (BC) algorithm of MIP solvers for
example, are able to find and prove optimal solutions, as they exhaustively
explore the search space while reducing its size as much as possible. How-
ever, execution times may increase dramatically with the problem size. On
the other hand, incomplete methods, such as metaheuristics, can generally
provide solutions of good quality in a reasonable time, however they cannot
prove the optimality of a solution nor the infeasibility of a problem instance.
Population-based metaheuristics (P-MH), like GA, MA, Particle Swarm Op-
timization (PSO) or ACO consist in improving a population of candidate
solutions iteratively. Whereas Single-solution-based metaheuristics (S-MH),
e.g. LS, TS and Simulated Annealing (SA), make iterative local improvements
on a current solution to generate another one in the search space. Note that,
P-MH is good at exploration, however, weak at exploitation, compared to
S-MH.

For large instances of combinatorial problems, complete methods are in-
tractable, and metaheuristics are favored, as they can still produce a valid
solution, even though it can be far from the optimum. However, information
found by one method might be helpful to the other and vice versa. Cooper-
ative approaches try to benefit from this fact by setting up data exchanges
between different algorithms, so that the resulting solver must have better
performance than each algorithm considered individually. Designing such a
cooperative parallel model requires the following issues to be addressed:

• identify the data that is worth exchanging (see Section 1.2.1), i.e. that
can be made available by some algorithm and can benefit to others;
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• determine at which pace and at which step for each algorithm the
exchanges must occur (see Section 1.2.2);

• determine the network topology and if the involved processes should
communicate directly among each other, or via a common database.
(see Section 1.2.3).

1.2.1 Exchanged Data
The first step to set up an efficient cooperation scheme is to determine what
kind of information could be useful for each algorithm, and whether such
information can be made available by the others.

In the case of metaheuristics or other local search methods, the principle
of maintaining one or several candidate solutions suggests that such solutions
could be periodically exchanged to help others. For example, [Diekmann
et al., 1996] proposed a parallel simulated annealing, where each algorithm
exchanges its current best solution after a fixed number of iterations. In a par-
allel GA, several good candidate solutions (e.g. a small set of the population)
could be migrated at once, as introduced in [Solar et al., 2002]. Information
about the search state of each metaheuristic can also be shared. For exam-
ple, [Cordeau and Maischberger, 2012] implemented a parallel iterated TS to
solve a vehicle routing problem. In order to distribute the computational bur-
den among TSs, the maximum number of iterations without improvement is
exchanged synchronously. Note that the quantity of exchanged information
must be limited to a certain extent, otherwise the communication process
may take too much time w.r.t. the search efforts. Moreover, too much in-
coming information may increase the risk that a metaheuristic abandons its
current (potentially promising) search process to redirect itself to a search
trajectory which is already explored by others.

On the side of exact methods, the Branch and Cut algorithm (BC), used
to solve Mixed Integer Linear Programming (MILP) problems, is a variant of
the Branch and Bound (BB) algorithm. [Ralphs et al., 2018] has given a sur-
vey on parallel solvers for MILP optimization. As listed in the survey, infor-
mation that has been considered for exchanges include: global upper bounds,
nodes in the search tree, feasible solutions and valid inequalities. Good upper
bounds can help other BC to prune their search tree, e.g. if one part of the
tree has a lower bound that is already higher than the received upper bound;
nodes in the search tree can be shared to dynamically balance workload on
cooperative solvers; feasible solutions can enhance primal heuristics of other
cooperative BC to find other feasible solutions of good quality (more details
about primal heuristics can be found in [Berthold, 2014]); finally, valid in-
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equalities (i.e. constraints) can be shared to strengthen relaxations in other
part of the search tree. As in the case of metaheuristics, a trade-off is needed
between the amount of exchanged data and the communication overhead.

Constraint Programming is another exact method based on the Branch
and Prune (BP) algorithm, another variant of BB. Similarly to BC, new
upper or lower bound can also help solvers to efficiently reduce the size of
the search tree. Such bound exchanges are, for example, implemented in
sunny-cp2, the parallel CP solver mentioned in Section 1.1.1, where each
individual component is working on the entire problem. However the shared
bound is only used to restart the solver when no solution is found before a
given time limit.

In parallel SAT solvers, learnt clauses can be shared among the pro-
cesses, as proposed in [Hamadi et al., 2008] and afterwards improved in
works like [Guo et al., 2014], to prevent individual agents from encounter-
ing the same conflicts as others, hence agents help each other taking efficient
decisions during the search and finally improve the overall performance. As
stated in [Hamadi and Wintersteiger, 2012], estimating the shared clause
quality in terms of its local impact is very hard. Though very promising, we
did not implement the sharing of learned constraints in our framework yet,
as the first experiments with such solvers (e.g. Chuffed [Ohrimenko et al.,
2009]) on our target COPs did not provide good enough results and the CP
library we used to develop our CP solvers lacks this feature. Moreover, as
the cooperating solvers of our framework may use different internal models,
though agreeing on the decision variables and the cost to exchange informa-
tion, new constraints learned on the internal model variables would have to
be translated before being sent, burdening the genericity of our approach.

Different types of algorithms can also search a problem in parallel and
exchange information through shared memory between multiple threads to
improve overall performances. A previous work at the ENAC Lab [Vanaret
et al., 2013] has proposed a cooperation approach between a Differential
Evolution (DE) metaheuristic and an Interval Branch & Contract (IB&C)
algorithm to solve continuous optimization problems: the DE provides solu-
tions to the IB&C in order to improve the pruning of its search space, then
the reduced search space is given back to the DE to intensify the search on
the most promising regions. The resulting cooperation performs better than
each individual component. However, in the context of combinatorial opti-
mization, it is much more difficult to derive a favorable region of the search
space from a good solution.

We have seen what type of information is worth sharing in a cooperation
approach. The next step is to determine the relevant time to proceed to the
exchanges, which is discussed in the next section.
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1.2.2 Communication Points
Determining when the data exchange have to take place involves taking into
account the internals of each algorithm. Considering a single algorithm, send-
ing new information can happen either in a “blind” or adaptive manner, as
described in [Talbi, 2009]. With the blind way, the algorithm sends infor-
mation after every fixed period, e.g. a fixed number of iterations for a meta-
heuristic. Otherwise, some criteria can be evaluated to decide whether new
found information is worthy to be shared, as in [Shi and Zhang, 2018] where
only better solution are shared.

Then, considering a set of algorithms running in parallel, the exchanges
can be classified into two modes, synchronous and asynchronous. In a syn-
chronous cooperation, all processes need to choose a fixed communication
point in advance. The exchange phase starts only when every algorithm has
reached this synchronization point, as mentioned in [Crainic and Toulouse,
2010]. To avoid blocking the search and wasting time at synchronization
points while waiting for other algorithms, the asynchronous mode allows any
algorithm to acquire and send information at its own pace, which is the
most efficient distributed design. Asynchronous cooperative parallelization
are well studied, for instance in [Crainic, 2005, Polacek et al., 2008, Ren et al.,
2018].

If algorithms of different kinds are involved in the cooperation, an asyn-
chronous communication is likely to be more suitable than a synchronous
one, as finding synchronization points that suit every process and works for
every instance will be challenging. Moreover, differences in resolution pro-
cess between constructive, complete tree search algorithms and incomplete
ones, which improve one or multiple solutions iteratively, imply that com-
munication should occur at different steps of the algorithms. For incomplete
algorithms like LS/MH, with successive iterations applying to candidate so-
lution(s), it is quite natural to share information whenever a new feasible
solution has been produced. We can then take advantage of this communi-
cation point to also receive new information when available. However, for
tree-search-based complete algorithms like the ones of CP or MIP solvers,
we can only send new solutions at the leaves of the search tree, whereas ac-
quiring new optimization bounds can be done at any node, i.e. at a much
more sustained pace. Therefore, asynchronous communication will be better
suited to such a generic cooperative framework involving various types of
optimization methods, as described in Chapter 2.

Once the communication points have been set, a topology for the commu-
nications must be implemented accordingly. Various topologies are described
in the next section.
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1.2.3 Architecture
As for any distributed application, setting up a cooperation scheme for opti-
mization algorithms requires to choose a communication architecture between
processes. Direct communication can be seen in parallel metaheuristics algo-
rithms [Tanese, 1989, Alba and Dorronsoro, 2009] using topologies like the
“ring” graph and the “coarse-grain island” model, where the population is
distributed over the nodes of the graph. The advantage of these schemes is
that a good level of diversity can be maintained as communication only exists
among neighboring solvers and only local exchanges can occur. However, in
a generic cooperative framework with any kind of solver, possibly construc-
tive ones like CP or MIP which do not maintain any candidate solutions
population, these schemes seem irrelevant.

Indirect exchange means that the algorithms communicate with each
other through an in-between process, which often performs like an infor-
mation pool, accessible by any process. This indirect exchange concept has
been used in many asynchronous cooperative solvers. The well-known topol-
ogy for indirect exchange is the server-client design pattern, in which the
server plays the role of a data manager. [Crainic et al., 1996] proposes a par-
allel asynchronous TS, where different TSs share their best solution through
a server. The shared solution is not necessary the best one so far, but rather
a randomly selected solution from the list maintained by the server. This
technology can avoid similar TSs, deployed as cooperative processes, from
converging to a similar region of the search space.

The issue of using a centralized server and clients rather than decentral-
ized autonomous agents is more an architectural problem which concerns the
robustness to hardware or software failure related to one of the framework
processes. With such a pattern, our framework can be easily designed to be ro-
bust to one (or several) of the client failure, which may happen quite regularly
with COP state-of-the-art solvers and development versions, and solvers can
be plugged or unplugged at any time to contribute to the overall distributed
framework without hindering anything but their own search state. The loss
of the server is more problematic and would require to store checkpoints
and dynamically reconnect to clients, which was left for future development.
Decentralized autonomous agents would be even more robust to any failure,
but all processes would have to store the complete state of the distributed
algorithm and our non-blocking asynchronous communication scheme along
with the update internal logic would be much more cumbersome.

As a result, the choice of an indirect exchange scheme seemed the simplest
and most versatile based on the above discussion.
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1.3 Summary
In this chapter, we have first presented a literature review on different ap-
proaches to parallelization, with a focus on one branch of multi-agent system,
namely the cooperative approach with every agent working on the entire prob-
lem. The reason why we choose to develop a multi-agent method instead of
a portfolio is the idea that sharing information among algorithm during their
execution can break through the limits of one individual algorithm, whereas
portfolios concentrate on which algorithm could be the best single one for
each given problem kind or instance.

Then we have discussed why and how different kinds of optimization
algorithms can improve their overall performance by collaborating with each
other. To design such a cooperative framework, we carefully analyzed three
issues: what kind of data is worth exchanging, when the exchange must take
place and what is the exchange architecture. According to our discussion,
we decide to develop a generic framework with a centralized server-client
architecture, robust to the loss of any client, in which any optimization solver
can easily be integrated and asynchronously share any kind of information
(e.g. cost, solution and proofs in the applications described in Chapters 3
and 4) through the central data manager (i.e. the server). The next chapter
describes in details the design of this cooperative framework, then shows how
various combinatorial optimization algorithms can be plugged in.
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Many problems in the field of Air Traffic Control (ATC) and Manage-
ment (ATM) are highly combinatorial, such as conflict resolution, organiz-
ing ground operations between aircraft arrival and departure at airports or
designing an efficient route network for a given airspace. In many cases,
exact algorithms cannot provide solutions within a time-frame that is suit-
able with operational constraints, and metaheuristics can be the best option.
However, such methods provide very few, if any, interesting properties about
the fact that a feasible solution can be found or that a solution is optimal.
We propose to combine the use of both exact algorithms and metaheuristics
to handle such ATC and ATM problems. Although we propose a generic
framework, our work focuses on the techniques that are already in use for
solving ATM problems in our research team and others. For example, [Du-
rand et al., 2016, Allignol et al., 2012] provide literature reviews about the

17
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uses of metaheuristics and constraint programming respectively, applied to
ATM problems. Hopefully, such a framework will help research teams with
specializations in various types of algorithm to federate around such prob-
lems.

In this chapter, we introduce a generic cooperation framework based on
a server-client scheme to integrate various combinatorial solvers in order to
have them cooperate on a given problem, with the objective of taking ad-
vantage of the strength of each one of them. In Section 2.1, we present the
general architecture of the distributed cooperation system, and provide de-
tails about the communication between server and clients. Section 2.2 shows
how to adapt combinatorial optimization algorithm to this framework, with a
focus on three classic methods: a metaheuristic, Integer Linear Programming
and Constraint Programming. The use of this framework and adapted algo-
rithms are later illustrated on two ATC and ATM related problems: en-route
conflict resolution (Chapter 3) and gate allocation at airports (Chapter 4).

2.1 A Generic, Distributed Framework
We propose a generic framework in which any number of solvers can exchange
information to help each other to solve such highly combinatorial problems as
the ones encountered in the field of ATC and ATM. The main question that
arose was to determine which communication mode to adopt. As described in
Chapter 1, optimization algorithms may exchange information either directly
or indirectly, and communications can be either synchronous or asynchronous.
Given the variety in nature and the potentially large number of optimization
algorithms that might cooperate through our framework, it was simpler and
more versatile to set up indirect, asynchronous exchanges through a dedicated
central process that acts as a data manager.

The general architecture is depicted in Figure 2.1. The data manager
holds information about the instance of the problem to solve, as well as on
the state of the search for solutions, such as solutions or bounds. Any solver
can, at any time, ask for such information or send information they have dis-
covered (e.g. a new solution, a better bound). Currently, only full solutions,
upper/lower bounds and status of the optimality proof of the instance are
being managed, but the framework is fully generic and could store and share
any kind of information, such as global cuts or nogoods, for example.

Given this general scheme, we implemented this framework as a server-
client architecture, where the central data manager is the server and solvers
are the clients. The main advantage of this choice, apart from the fact
that it is easy to set-up, maintain and extend, is that it can be distributed
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Figure 2.1 – General framework architecture.

over the computers in a network as easily as over the cores of a computer.
Also, it is platform- and language-agnostic, as the only requirement is to
implement the communication interface. This architecture is also robust
to algorithm failures, as processes can connect or disconnect at any time.
If one algorithm fails, for any reason, it does not compromise the rest of
the resolution by the other algorithms. The main current weakness is the
potential failure of the data manager, as in that case, the algorithms would
be lacking the communication. Since such a scenario has never been observed
in our experimentations, we did not set up any redundancy that would help
overcome this issue.

Section 2.1.1 describes the general architecture of our framework as well
as the different communications that can occur during the resolution. Sec-
tion 2.1.2 provides further technical details about the inter-process commu-
nication. Finally, Section 2.1.3 describes the format of the messages to be
exchanged between solvers and the data manager.

2.1.1 Asynchronous Server-Client Architecture
The central element in our architecture, the server, implements a data and
connection manager. It is in charge of setting up the problem instance, ac-
cepting connections from the clients and providing them with the instance
data, updating data upon reception from a client, and publishing new data.
Algorithm 2.1 represents the event loop of the server.

The server is first initialized (line 1) by creating the instance data (e.g.
reading them from a file) and opening the required communication channels
(see Section 2.1.2 for details). An initially empty state is created to later
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1: (instance, state) ← initializeState()
2: while termination criterion is not met do
3: (client, request, data) ← receive()
4: switch request do
5: case first connection
6: send(client, instance, state)
7: case new search data
8: update(data, state)
9: return best_solution(state)

Algorithm 2.1 – Server event loop.

store information about the search for solutions. Then, the server enters a
main loop, in which it awaits for clients requests (received at line 3) and
processes them with one of the two following procedures:

• If the client connects for the first time, register the client and provide
it with the instance data and current search state (line 6).

• Else the client has some new information to share. This information is
used to update the search state (line 8) and, if it lead to any progress
(e.g. there was a higher lower bound), then the new search state is
shared among all clients (line 8), which is to be described in Algo-
rithm 2.2.

As soon as a pre-defined termination criterion is met (e.g. one of the solvers
proved the optimality of a solution, or a time limit has been reached), the
best solution is returned (line 9).

The clients, i.e. the solvers, have to connect to the server to start solv-
ing the instance. After the first connection, they might subscribe to future
updates if they want to benefit from the information found by other solvers.
Also they can post new information to the server during the search. As ex-
plained in Chapter 1, we opted for an asynchronous communication scheme
for this framework. In such a scheme, each individual process implements a
message queue, where messages addressed to it are temporarily stored. The
underlying program can access that message queue at any time (in a first-in-
first-out manner), providing high flexibility for the adaptation of well-known
optimization algorithms to the cooperation, as we can choose, for each kind
of solver, the suitable point in the code to either send or receive informa-
tion. Further details about how we adapted various kinds of solvers to the
framework are provided in Section 2.2.
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Figure 2.2 – Example of a communication sequence between two solvers and
the data manager.

Figure 2.2 illustrates a communication sequence involving the data man-
ager and two solvers. The vertical rules represent the timelines for each
process (the upper the earlier), and the blue (resp. orange) arrows represent
the messages from a solver to the data manager (resp. from the data man-
ager to a solver). Both solvers, whenever they are ready, start by registering
to the data manager, which in return sends the instance data and current
search state. In this example, both solvers also subscribe to further updates
to the search state (the subscription was made optional to handle algorithms
that might only provide data without requiring any). Later on, solver #2
computes a new lower bound, and sends it to the data manager. This lower
bound, in our example, is better than the one currently held, thus the search
state is updated and broadcasted to every solver by the data manager. From
now on, solver #1 can use the lower bound found by solver #2 to speed up its
internal search algorithm. The same process is repeated later, when solver
#1 finds a solution to the instance.

There is no theoretical limitation regarding the type of knowledge that
can be exchanged through this framework. However, as stated in Section 1.2,
a suitable trade-off must be found between the quantity of information and its
relevance in the context of the cooperation. We have currently implemented
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and experimented the following knowledge exchanges:

• complete solutions;

• lower and upper bounds;

• proofs of optimality or infeasibility.

Our implementation of the data manager maintains a state that contains
the above information (for a minimization problem: the solution with lowest
cost so far, lower bound and a boolean corresponding to the current status
of optimality proof), with an history of the received data, each one tagged
with the identifier of the process that sent it. The underlying internals of
the update function are detailed in Algorithm 2.2. Depending on the type
of data that it receives, the procedure:

• updates the search state with the new information, either a better
solution (line 24) or a better lower bound (line 16);

• concludes on optimality and terminates; this is the case when a received
lower bound is equal to the cost of the current solution (line 12) or
conversely when a received solution has a cost equal to the current
lower bound (line 20);

• broadcast the new search information among all clients.

Whenever information is broadcasted, the identifier of the process that ini-
tially provided the information is associated to the message, so that a process
might easily ignore information that were produced by its own underlying al-
gorithm.

In our experiments, complete solutions are incorporated by population-
based, cooperative metaheuristics, leading to a faster convergence. Bounds
have been used by complete algorithms to help prune the search space and
thus speed-up the discovery of new solutions or the proof of optimality (or
infeasibility). The exchange of such proofs does not help the resolution per
se; they are used to tidy up the cooperation process by informing all other
algorithms that they can stop. An example of communications between a
data manager, a metaheuristic and a CP solver is depicted in Figure 2.3. At
the beginning of this sequence, the search state contains a solution of cost 158
and a lower bound of value 82. After a few data exchanges that consecutively
update the search state, the data manager arrives at a state where both the
cost of the best solution and the lower bound have value 117, which ends
the search (the optimality has been proved at this point) and triggers the
sending of termination messages to all solvers.
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1: function update(data, state)
2: switch data do
3: case infeasible
4: state.infeasible ← true
5: broadcast(stop)
6: case optimal solution
7: state.optimal ← true
8: state.best ← optimal solution
9: broadcast(stop)

10: case lb // new lower bound
11: if lb = state.best.cost then
12: state.optimal ← true
13: broadcast(stop)
14: else
15: if lb > state.lb then
16: state.lb ← lb
17: broadcast(state.lb)
18: case solution // a new solution
19: if solution.cost = state.lb then
20: state.optimal ← true
21: broadcast(stop)
22: else
23: if solution.cost < state.best.cost then
24: state.best ← solution
25: broadcast(state.best)

Algorithm 2.2 – Search state update procedure.
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Figure 2.3 – Cooperation between a metaheuristic and a CP solver. In the
orange boxes are displayed the cost of the best current solution (left) and
the lower bound (right) from the search state.
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The next section provides technical details about the implementation of
the framework, focusing on the communication aspects.

2.1.2 Interprocess Communication Protocol
One of our objectives in the design of our cooperation scheme was to ensure
that it would be as generic as possible, either in terms of the data that is
exchanged or of the solvers that can connect to it. To handle the latter
concern, we needed a software component which could transfer messages
across processes, either on a single computer or a network. Other important
criteria for our choice were performance, an open license and the possibility
to use the software with many programming languages, so as to be able to
plug in many existing solvers. We decided to use ZeroMQ (∅MQ) [Hintjens,
2013], which meets all the above criteria:

• it has bindings to more than 50 programming languages (among which
13 are officially supported), including the ones that we mainly use:
OCaml for CP programs using the FaCiLe library and C/C++ for
MILP programs using Gurobi;

• it is distributed under GPLv3 open license;
• it is (self-)presented as “a high-performance asynchronous messaging

library” and is widely used.
This library is also well-known for being simple to use in any context (hence
the “Zero”). Alternatives could have been to directly use sockets, however
∅MQ handles the low-level parts, which is more convenient. Also, any mes-
sage passing technology (e.g. MPI) could be used for implementing such a
framework

Various communication schemes can be implemented using ∅MQ, depend-
ing on the topology (one-to-one, one-to-many, many-to-many, etc.) and the
required message synchronicity (e.g. with or without acknowledgement). Our
framework uses two schemes called request-reply and publish-subscribe that
are described next, and are illustrated in Figure 2.4.

Request-Reply This is a one-to-one communication scheme, where one
process makes a request to the other, and awaits for a reply (no other requests
can happen before the reply has been received). In our setup, this will be
used for the first connection of solvers to the data manager, and for solvers
to send new information. In both cases, the solver is performing the request
and the data manager produces a reply. In practice, the data manager has a
REP socket that is bound to a given port, and each solver has a REQ socket
that is connected to this port on the server.
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Figure 2.4 – Illustration of exchanges between the data manager and solvers
using ∅MQ socket pairs.

Publish-Subscribe In this one-to-many mode, one of the processes (the
publisher) sends messages to any process that has subscribed. This is used
in our framework to publish the new search state any time it has been mod-
ified. Only the data manager uses such broadcastings; it has a PUB socket
bound to a port (different from the one used by the REP socket). Each sub-
scribing solver has a SUB socket connected to that port on the server. This
communication scheme is non-blocking, which is a particularly interesting
feature to maximize the use of the computation time: each algorithm checks
its messages, but if there is none, it can continue its computations.

In Figure 2.4 (with the same color scheme as in the previous figure), we
see that each solver can communicate individually with the server using the
REQ-REP socket pair. For example, solver #2 sends a new lower bound, and
gets acknowledgement for its reception. The data manager can broadcast a
new search state to all solvers using the PUB-SUB socket pairs.

We have described the architecture of our framework, and detailed the
communication protocols involved. The next section focuses on the contents
of the messages, by defining a common interface between the various clients
embedding solvers of different types and the server.
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2.1.3 Message Format
The most efficient way (in terms of message size) to pass data among pro-
cesses is serialization. However, as we want our framework to operate with
programs written in any language, running on different hardware with dif-
ferent operation systems, this can become particularly difficult to set up.
We thus chose to exchange data in a textual format, which is a bit more
costly, but much more versatile. To help define an interface for exchanges,
we use Extensible Markup Language (XML [Bray et al., 2006]) to add a clear
structure to the messages. The advantages of the XML format are twofold:

• it is both human- and machine-readable;

• it is widely used in many kinds of applications, thus someone writing a
new solver for our cooperation framework is likely to know the format
already.

We use an XML structure with various types of sections to distinguish
message types (e.g. first connection, or search state broadcasting) and carried
information (e.g. client identifier, solution to the instance). In the case of a
solver first connecting to a running data manager, the solver sends a very
basic message consisting only of a single, empty section of type first. The
reply from the data manager, shown in Listing 2.1, contains information that
can be split into two categories:

• Connection information indicate to the solver how to set up further
communication with the data manager. It contains a unique identifier
(line 2) that the solver must indicate when performing requests, and a
connection port number (line 3), i.e. where to subscribe to get up-to-
date search data.

• Instance information tell the solver which instance is being solved (here,
at line 4, it references a file name, however richer structures can be
used), and, if other solvers have already made some progress, the cur-
rent search state. In our example, the search state (from line 5 to 14)
already contains a non-optimal solution with cost 20, which is described
by a sequence of values.

Given this format, all cooperative algorithms are required to use the same
main decision variables and cost, even though each one can freely use any
additional variable for its own use.

The server part of the framework we have described in this section was
implemented with the OCaml language. As we have also implemented solvers
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Listing 2.1 – Reply from the data manager to a newly registered solver.
1 <f_reply>
2 <id_client>6</id_client>
3 <pub_port>5556</pub_port>
4 <data_file>cluster_10ac_2err_6</data_file>
5 <sol_option>
6 <instance>
7 <sol>
8 <sub>
9 <cost>20</cost>

10 <values>1;2;10;6;59;30;16;26;96;66</values>
11 </sub>
12 </sol>
13 </instance>
14 </sol_option>
15 </f_reply>

for this framework with C, C++ and OCaml, we have produced wrappers to
help connecting new solvers written with one of those languages. In the next
section, we describe how we adapted classic optimization algorithms to our
cooperation framework.

2.2 Cooperative Algorithms
The cooperation framework we have described in the previous section is
generic as regards the type of information to exchange, and relies on asyn-
chronous communications, meaning that solvers are free to send or receive
up-to-date information about the search state whenever they decide to. Thus
writing a solver for this framework requires the following:

• Identify the information that it can provide to others. For example, a
local search could provide its current solution with its cost; an integer
linear program could provide solutions and bounds.

• Identify the information that could benefit the underlying algorithm.
For example, a population-based metaheuristic could integrate solu-
tions to its population to enhance the convergence; a Branch and Bound
algorithm would benefit from upper or lower bounds to prune the search
tree.
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• Determine the suitable timing for data exchanges, e.g. after a fixed or
adaptive number of iterations of a metaheuristic, or upon backtracks
in a CP solver.

In this section, we present the various optimization algorithms used in
the applications described in Chapters 3 and 4, i.e. a metaheuristic, namely a
Memetic Algorithm in Section 2.2.1, and two exact methods, Integer Linear
Programming in Section 2.2.2 and Constraint Programming in Section 2.2.3,
and show for each of them how they can be adapted to our cooperation
framework.

2.2.1 Memetic Algorithm
A Memetic Algorithm (MA) [Hao, 2012a], is a combination of an evolution-
ary algorithm and a local search algorithm. In this section, we first present
the principle of the Memetic Algorithm used in the application presented
in Chapter 3. Then, we provide further details about a few aspects of the
MA used: construction of an objective function, use of a Tabu Search inten-
sification, and crossover operator for diversification. Finally, we show our
collaborative version of the algorithm.

Principle

The MA used in this thesis, described in Algorithm 2.3, is a hybridization of
an Evolutionary Algorithm and a Tabu Search (TS). It is thus a population
based algorithm, where each individual is a possible solution. The main
feature of our MA is that each element of the population is a local minimum
of the objective function.

1: function MA(P )
2: population← initializePopulation(P )
3: while termination criterion is not met do
4: (parent1, parent2)← select(population)
5: child← crossover(parent1, parent2)
6: (child, cc)← TabuSearch(child)
7: population← replace(population, child, cc)
8: return the best element of population

Algorithm 2.3 – Memetic algorithm

First (line 2), a population of candidate solutions is randomly initialized
from the problem P , and a TS (described in Algorithm 2.4) is applied to each
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candidate. Then (line 4), we randomly select two elements called parents in
the population and generate a new element called a child through a standard
crossover operation between the two parents that recombines their solutions
(line 5). Afterwards (line 6), the child is improved by applying a TS until
a local minimum is found (with cost cc). Then the worst element of the
population is replaced by this child if its cost is lower and if it does not
already belong to the population (line 7). We iterate this procedure until a
given time limit (line 3) or when no improvement is made for a given number
of iterations.

Objective Function

We presented the general principle of our MA with a minimization problem
in mind. The minimization criterion is related to some performance of the so-
lution with respect to the problem being solved (e.g. minimize the departure
delays when computing a take-off sequence, or minimize the fuel consump-
tion when providing maneuvers to avoid conflicts). However, with an MA,
as with most metaheuristics, it is often difficult to maintain a population
of candidate solutions that respect all the constraints of the problem. In
such a situation, it is convenient to allow for some constraint violations and
to account for such violations in the minimization objective. To do so, we
generally define two terms for the minimization:

fsat(sol) =
∑
∀i

Ci(sol) (2.1)

fcost(sol) = cost(sol) (2.2)

where Equation (2.1) represents the number of unsatisfied constraints for a
given solution, while Equation (2.2) represents the real cost of a solution.
Then for the MA, we can define the objective function as the following linear
combination:

f(sol) = M × fsat(sol) + fcost(sol)

where M is a big enough integer to guarantee that, given two candidate
solutions, the one with more constraint violations will have a higher value
for f , no matter the real optimization cost.

Intensification with Tabu Search

Each generated candidate solutions (either at initialization or after a crossover
operation) is improved with respect to the objective function by a Tabu
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Search (TS). TS is a local search algorithm, and as such operates by making
successive, small changes (or moves) to a solution, trying to keep only the
best moves. As an example, when trying to find the best schedule for pilots
in an airline, a solution is described by an assignment of pilots to flights, and
a move could be to exchange the flights for two pilots. The main feature of
TS is that it maintains a tabu list of moves, which is a list of the moves that
are (temporarily) forbidden, in order to be able to escape from local minima.
Algorithm 2.4 describes a generic Tabu Search.

1: function TS(s)
2: tabuList← ∅
3: while termination criterion is not met do
4: mv ← selectBestMove(s, tabuList)
5: s← move(s, mv)
6: tabuList← update(tabuList, reverse(mv))
7: (sbest, cbest)← saveBest(sbest, s)
8: return (sbest, cbest)

Algorithm 2.4 – Tabu Search

The input of the algorithm is a candidate solution s, and the tabu list
is initially empty (line 2). First (line 4), the set of all possible moves from
s (called the neighborhood of s) is computed, and the best move mv from
this neighborhood that is also not in the tabu list is selected. The current
solution s is updated using this move (line 5). Notice that the selected move
does not necessarily improve the cost of the candidate solution s. In order
to avoid coming back on our steps in a near future (and thus be able to
escape from local minima), the reverse of mv is added to the tabu list for
a pre-determined number of iterations (line 6). It will not be possible to
select this move as long as it is in this list. Finally (line 7), the best solution
(and its associated cost) is updated. This procedure is iterated until a fixed
termination criterion has been met (line 3).

In the Memetic Algorithm, TS ensures the intensification, that is the
convergence of the population towards a locally minimal solution. Another
mechanism is required to provide diversification and make sure that we do
not let large parts of the search space unexplored.

Crossover for Diversification

The crossover is an operation that combines two or more candidate solutions
into one or several new candidates. The recombination can take various



32 CHAPTER 2. GENERIC FRAMEWORK FOR COOPERATION

forms, and mostly rely on a random scheme that selects parts of the solution
from one parent or the other, an example is detailed in Chapter 3.

In most cases, such combinations are interesting to gather interesting
parts of several solutions. However, the resulting element(s) are likely to
violate many constraints, as the recombination does (generally) not take
them into account. In our Memetic Algorithm, the Tabu Search that is
applied to every newly created candidate solution helps mitigate their poor
quality by providing some sort of repair. This operation largely contributes
to diversification for the MA.

Collaborative Version of Memetic Algorithm

As described above, the MA is an iterative process in which exploration (via
crossover) and intensification (via Tabu Search) are combined in each step.
The idea behind the adaptation of our MA to the cooperation framework
is simply to communicate at each iteration. As the MA essentially handles
solutions, it can hardly provide nor benefit from lower bounds. However,
it is able to provide solutions, and more interestingly its best solution so
far. It can also integrate some solution from other algorithms to enhance its
own population. The resulting Collaborative Memetic Algorithm (CMA) is
described in Algorithm 2.5.

Before entering the main loop, the CMA registers to the server (line 1)
to get the instance P , and possibly a solution sr or a proof of termination p
(either a proof of optimality, or a proof of inconsistency). If there is indeed a
solution sr available, it is integrated into the initial population and it is the
best solution so far (lines 5 to 7). If there is no proof of termination, then
the main loop starts as in our standard MA, with selection, crossover and TS
(lines 9 to 12). If the child solution that has been produced is the new best
solution so far, and if all constraints are satisfied (i.e. fsat = 0), it is shared
to the others by sending it to the server (lines 13 to 15). Before the next
iteration, the mailbox is checked, and if any new information is available (i.e.
a solution or a proof of termination), it is integrated (lines 16 and 18). A
Cooperative Memetic Algorithm is used in Chapter 3 to solve a problem of
air conflict avoidance.

2.2.2 Integer Linear Programming
Integer Linear Programming (ILP) [Jünger et al., 2009] has become a very
powerful tool for modeling and solving real-world combinatorial optimiza-
tion problems, like planning and scheduling. In this section we describe the
general model for ILP problems and a common algorithm, namely Branch
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1: (P, sr, p)← register(server) // get problem and current best solution
2: function CMA(P )
3: population ← initializePopulation(P )
4: cbest ← +∞ // to hold the cost of the best solution
5: if sr 6= ∅ then
6: population ← replace(population, sr)
7: cbest ← cost(sr)
8: while termination criterion is not met and ¬p do
9: (parent1, parent2)← select(population)

10: child ← crossover(parent1, parent2)
11: (child, cc)← tabuSearch(child)
12: population← replace(population, child)
13: if cc < cbest then
14: cbest ← cc

15: send(server, child) // send better solution
16: (sr, p)← receive(server) // try to receive useful information
17: if ¬p and sr 6= ∅ then
18: population ← replace(population, sr)
19: return the best element of population

Algorithm 2.5 – Collaborative Memetic algorithm (CMA)

and Cut, for solving such problems. We then present how this algorithm is
modified to be integrated to our cooperation framework.

ILP Model

Linear programs (LPs) are a mathematical model for problems where the con-
straints and optimization criterion are all expressed as a linear relationship.
Such problems are solved efficiently using the simplex algorithm. Integer
linear programs (ILPs) are a variant of linear programs where variables take
their values in Z rather than in R. ILPs are inherently combinatorial and
thus much harder to solve than continuous linear programs.

Given a combinatorial problem for which we want to use ILP techniques,
we must first model it in a linear form, compliant with the ILP paradigm.
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Such models can be expressed as the following standard form:

minimize
x

cT x

subject to Ax ≤ b,

x ≥ 0,

and x ∈ Zn,

where x is the vector of (integer) variables, b and c are vectors, and A is a
matrix with integer values. The expression cT x represents the optimization
criterion, and the expression Ax ≤ b represents the constraints of the prob-
lem. An additional requirement for such a standard form is that x must have
only positive values. ILPs can be solved using various heuristic methods or
exact algorithms. In this report, we focus on the Branch and Cut algorithm,
which we describe next.

Branch & Cut Algorithm

The Branch and Cut algorithm (BC) [Mitchell, 2002] makes use of continuous
relaxations and of the search for cutting planes within a standard Branch and
Bound algorithm.

Relaxation A continuous relaxation of an ILP P simply consists in con-
sidering its continuous version, i.e. where variables have continuous values
instead of integer values. As previously stated, this LP P ′ can be quickly
solved using a simplex algorithm, providing an optimal, but not integral,
solution x. If all values in x are integers, then it is also a solution to P .
Otherwise, as x is optimal, its optimization cost is a lower bound (in the
case of minimization) of the optimal solution P .

Cutting-plane From the non-integral solution x to the relaxation P ′ of
P , it is possible to deduce new linear constraints to refine P , by the means
of a cutting-plane algorithm. Such constraints, also called cuts, must be
violated by the solution x (otherwise it has no effect) and verified by all
feasible solutions to the integer problem P (otherwise, we might miss the
integer-optimal solution).

Branch and Cut The branch and cut algorithm, detailed in Algorithm 2.6,
consists in recursively splitting the search space into smaller spaces and search
each of these smaller spaces using relaxation and a cutting-plane algorithm.
It maintains the following structure and data:
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• the set E of spaces to explore;

• the current best solution sbest and its cost cbest;

• a global lower bound lb.

1: function BC(P0)
2: (sbest, cbest)← (∅, +∞)
3: (s0, c0)← LPrelax(P0)
4: E ← {(P0, s0, c0)}
5: lb← c0
6: while E 6= ∅ and cbest − lb > ϵ do
7: take (P, s, c) from E
8: (Pc, sc, cc)← searchCut(P, s, c)
9: if sc 6= ∅ and cc < cbest then

10: if sc is integral then (sbest, cbest)← (sc, cc)
11: else
12: (P1, P2)← branch(Pc)
13: (s1, c1)← LPrelax(P1)
14: (s2, c2)← LPrelax(P2)
15: E ← E ∪ {(P1, s1, c1), (P2, s2, c2)}
16: lb← min∀P ∈E cP

17: return (sbest, cbest)

Algorithm 2.6 – Branch and Cut

To obtain an initial lower bound, we first solve the continuous LP re-
laxation of initial problem P0, thanks to a simplex algorithm embedded in
function LPrelax (line 3). The solution s0 and its cost c0 are stored with
P0 in the (initially empty) set E of active subproblems (line 4). After this
initialization steps, we loop over the list of active subproblems E (line 6)
until it is emptied (the search space has been exhausted) or the difference
between the cost of the current best solution cbest and the lower bound lb is
smaller than a given tolerance ϵ (ϵ = 0 to obtain the optimal solution). If
not, one subproblem P (line 7) is selected and removed from E. We then ap-
ply procedure searchCut (described afterwards and shown in Algorithm 2.7)
to P (line 8), returning a new solution sc, its cost cc and a problem Pc en-
riched with new cutting planes. If Pc does not have a feasible solution or
its cost cc is greater than the current best cost, this means that a better
solution cannot be found and the problem P is discarded. Otherwise, we
check whether sP is integral to replace the current best solution and best



36 CHAPTER 2. GENERIC FRAMEWORK FOR COOPERATION

cost by sc and cc (line 10). If not, problem P must be explored further to
find its optimal solution, so procedure branch chooses a branching variable
to produce two subproblems P1 and P2 (line 12) on which LPrelax is applied
to tighten their formulation (lines 13 and 14), prior to their addition to the
set of active subproblems (line 15). The global lower bound lb can then be
updated with the minimum of the relaxed costs of the active subproblems
(line 16). Eventually, the best solution and corresponding cost are returned
(line 17).

The searchCut procedure (Algorithm 2.7) iteratively searches for cutting
planes in a problem P until a fixed point is reached. It takes as input an ILP
problem P and the solution s (of cost c) to its continuous relaxation. If the
relaxation is infeasible or its optimal solution has a lower cost than the best
solution and is integral (line 2), which is seldom the case, it is immediately
returned. Otherwise, we search for useful cutting planes (line 3), if any,
which are then added to the problem (line 5). In this case, the optimal
solution of the continuous relaxation of the enriched problem is computed 6
and searchCut is called recursively on the result (line 7) until no cutting
plane can be added anymore.

1: function searchCut(P, s, c)
2: if s 6= ∅ and c < cbest and s is not integral then
3: cuts← searchCuttingPlanes(P )
4: if cuts 6= ∅ then
5: Pc ← addCuts(P, cuts)
6: (sc, cc)← LPrelax(Pc)
7: (Pc, sc, cc)← searchCut(Pc, sc, cc)
8: else
9: (Pc, sc, cc)← (P, s, c)

10: else
11: (Pc, sc, cc)← (P, s, c)
12: return (Pc, sc, cc)

Algorithm 2.7 – Cutting plane algorithm

Collaborative Version of Branch & Cut

As regards cooperation, the Branch and Cut algorithm is able to share solu-
tions (if any) at each iteration after refining the problem with cutting planes.
If no solution is found at a given iteration, the BC branches on the current
problem, and can deduce a (possibly) better lower bound by the use of relax-
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ation. This new lower bound can be shared with other solvers as well. BC
can also benefit from any solution found by other algorithms, as they will en-
able further filtering of the set E of problems to explore. These modifications
are detailed in the Collaborative Branch and Cut (CBC) Algorithm 2.8.

1: (P0, sr, cr, lbr)← register(server) // get problem, current best
solution and bounds

2: function CBC(P0)
3: (sbest, cbest)← (∅, +∞)
4: if sr 6= ∅ then (sbest, cbest)← (sr, cr) // update internal data
5: (s0, c0)← LPrelax(P0)
6: E ← {(P0, s0, c0)}
7: lb← max(c0, lbr)
8: while E 6= ∅ and cbest − lb > ϵ do
9: take (P, s, c) from E

10: (Pc, sc, cc)← searchCut(P, s, c)
11: if sc 6= ∅ and cc < cbest then
12: if sc is integral then
13: (sbest, cbest)← (sc, cc)
14: send(server, sbest) // send better solution
15: else
16: (P1, P2)← branch(Pc)
17: (s1, c1)← LPrelax(P1)
18: (s2, c2)← LPrelax(P2)
19: E ← E ∪ {(P1, s1, c1), (P2, s2, c2)}
20: lb← min∀P ∈E cP

21: send(server, lb)
22: (sr, cr, lbr)← receive(server) // receive useful information
23: if sr 6= ∅ then
24: (sbest, cbest)← (sr, cr)
25: E ← {(P, s, c) ∈ E | c < cr}
26: if lbr 6= ∅ then lb← lbr

27: return (sbest, cbest)

Algorithm 2.8 – Collaborative Branch and Cut

As for the CMA, the CBC algorithm first registers to the server and gets
the problem and the current state of the search (line 1). If any solution sr

or lower bound lbr have been received, they are used to update the internal
data (lines 4 and 7 respectively). During the resolution process, any better
feasible solution, once found by CBC, is sent to the server (line 14). Then
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we check for any updates in the search state from the server (line 22) and,
if applicable, the best solution and cost (line 24) and lower bound (line 26)
are updated. Better feasible solutions and costs are always useful for the BC
algorithm because they provide efficient cutting planes. If the LP relaxation
cost cP of some active problem in E is even greater than the received better
cost cr (better upper bound), these active problems are removed from the
set at line 25. As a result, the search space can be drastically reduced in
some cases. Finally, any better lower bound can also be systematically sent
to the server (line 21). Implementations of this CBC algorithm are described
in chapters 3 and 4.

2.2.3 Constraint Programming
Constraint Programming (CP) [Rossi et al., 2006] is a versatile optimization
technology based on the Constraint Satisfaction Problem (CSP) formalism,
which emphasizes the satisfaction of combinatorial constraints. The problem
must be defined by its decision variables and a set of constraints, i.e. arbitrary
relations between variables. Then a constraint solver is used to find a feasible
assignment for all decision variables while holding constraints satisfied among
related variables during the search. A formal CSP is described in Definition 1,
it consists of a set of variables; a finite set of possible values (its domain);
and a set of constraints restricting the values that related variables can be
assigned to simultaneously.

Definition 1 (Constraint Satisfaction Problem (CSP)). A CSP (or Con-
straint Network) is defined by a triplet (X, D, C):

• X = {x1, . . . , xn} is the set of unknown variables.

• Each variable x ∈ X is associated with its domain dx ∈ D of possible
values.

• C is the set of constraints. Each constraint c ∈ C is defined over a
subset of variables Xc ⊆ X by a relation Rc ⊂×x∈Xc

dx that specifies
the set of allowed tuples (combinations) for Xc.

A solution to a CSP is an assignment of all variables to a value in its domain
ϕ : X 7→ ⋃

x∈X dx s.t. ∀x ∈ X, ϕ(x) ∈ dx, and s.t. all constraints are satisfied:
∀c ∈ C, ϕ(Xc) ∈ Rc.

Note that the assignment function ϕ is overloaded to also apply to subset
of variables, in which case it returns the tuple (or vector) of the corresponding
subset of values: ϕ ({xi1 , . . . , xik

}) = (ϕ (xi1) , . . . , ϕ (xik
)).
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With such a scheme where the CSP formalism and constraint solver are in-
dependent, the problem modeling and its resolution can be tackled separately,
thus giving the opportunity to test various search strategies. Also, most con-
straint solvers provide high-level constraints, leading to concise models that
are easier to produce and understand. Unlike ILP, most constraints are not
linear. This is a huge advantage as many real-world problems are inherently
non-linear and modeling is more natural and straightforward using CP. How-
ever, CP solvers cannot benefit from the efficiency of linear relaxations and
cuts from ILP solvers and thus mainly perform an exhaustive exploration
of the search space, which can be too time-consuming if the filtering is not
successful enough at reducing its size.

To find a feasible solution to a CSP, typical CP solvers implements a
backtracking algorithm which iteratively extends a partial assignment (i.e.
assignment of a subset of the variables) by providing a value to a yet unas-
signed variable. At each step, a typical backtracking algorithm at least checks
the relevant constraints to avoid exploring unfeasible subspaces, as defined
by Definition 2.

Definition 2 (Partial Assignment and Constraint Check). A partial assign-
ment ϕV : V 7→ ⋃

x∈V dx is an assignment defined over a subset of variables
V ⊆ X. If V = X, the assignment is said to be total.

A constraint check of partial assignment ϕV is a predicate which returns
true iff each constraint covered by assigned variables is satisfied:

∀c ∈ C, s.t. Xc ⊆ V, ϕV (Xc) ∈ Rc

otherwise, it returns false.

Whenever an assignment violates a constraint, the last value-to-variable
association is removed and an untried other one is performed. A solution cor-
responds to a total assignment. Such a general procedure is quite inefficient
to explore large instances, as it might take many steps before discovering
that a given constraint is not satisfied. To improve this backtracking scheme,
CP solvers mostly rely on look-ahead techniques which attempt to remove
inconsistent values in the domains or detect inconsistent constraints before
the assignment of the concerned variables, as explained in the next section.

Constraint Propagation

As previously mentioned, the set of constraints in a CSP must hold during
the resolution. In order to prune the search tree and thus reduce the time
needed for resolution, every time the domain of a variable is modified or,
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more generally, a constraint is added in a branch of the backtracking algo-
rithm, all constraints associated to this variable execute their consistency
algorithms until a fix point is reached, i.e. no more deduction can be done.
This phase, called constraint propagation, aims at maintaining stronger lev-
els of consistency (cf. [Rossi et al., 2008]) than the basic constraint check
described in Definition 2.

Ensuring local consistency properties can help reduce the search space
by filtering out values in the domains of some variables for which there is no
possibility to find any solution, or precociously detecting more subtle cases of
inconsistency (like the pervasive AllDifferent constraint for example). This
can be performed using various algorithms that can enforce different types of
local consistencies, like arc consistency, bound consistency, path consistency,
etc. Constraint propagation is one of the main concepts behind the Branch
& Prune algorithm, which is widely used to solve CSPs and is described in
the next section.

Branch & Prune Algorithm

Branch & Prune (BP) is an algorithm based on a depth-first exploration of
the search space. The branching part refers to the assignment of a variable
to a value taken from its current domain (or more generally any constraint
added to the CSP), at each step of the search, thus creating a branching point.
Pruning refers to the constraint propagation as described in the previous
section, which leads to domain reductions and the pruning of the current
branch whenever a domain becomes empty.

BP is detailed in Algorithm 2.9. The algorithm maintains the set V of
unassigned variables and the partial assignment ϕ, which are respectively
initialized to the set of variables of the CSP being solved and the empty
set with the first call BP(X, ∅), for a CSP (X, D, C) (the other parameters
being considered accessible from a global state of the solver). Note that in
this algorithm, we represent the mapping of a partial assignment ϕU by a set
of couples: {(x, ϕ(x)),∀x ∈ U} instead of a function.

First (line 2), if all decision variables have been assigned, it means a
feasible solution was found. If not, an unassigned variable x is selected from
V (line 4), and a branching process is iterated on every value α in its domain.
For each such value, two branches are implicitly created (line 6): one where
x = α, in which this assignment is added to the partial assignment ϕ, and
the other where x 6= α. More generally, any constraint and its negation can
be used to represent an alternative in the search tree.

This decision is propagated using a local consistency algorithm, as de-
scribed in the previous section, and BP is recursively called with the new
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subproblem (line 7). The propagate function must return false if at least
one variable gets its domain wiped out by the constraint propagation (mean-
ing no solution can be found in the subsequent branch). If the exploration of
this branch is unsuccessful, the domains modifications due to the constraint
propagation must be undone (line 10) before exploring a new branch.

1: function BP(V, ϕ)
2: if V = ∅ then return true
3: else
4: x ∈ V
5: for α ∈ dx do
6: ϕ′ ← ϕ ∪ {(x, α)}
7: if propagate(x← α) and BP(V \ {x}, ϕ′) then
8: return true
9: else

10: undo( )
11: return false

Algorithm 2.9 – Branch & Prune.

Next section describes how we adapted the BP algorithm to our cooper-
ation framework.

Collaborative Version of Branch & Prune

With respect to cooperation, the Branch & Prune algorithm can provide
newly found solutions (if any) during the resolution. This will indicate to
other algorithms where to find some feasible regions of the problem; also
the cost of the solution is a useful upper bound. Conversely, BP can ben-
efit from any optimization bounds found by other algorithms, as they will
help to further prune the search tree if any inconsistency is induced. These
modifications are shown in the Collaborative Branch and Prune (CBP) Al-
gorithm 2.10.

First (line 2), as for CMA and CBC, the CBP registers to the server and
gets the instance data and the current state of the search. A CSP is generated
(line 3) based on the instance P0 and upper and lower bounds cϕr and lbr. If
a new solution is found during research, it is sent together with its cost to
the server (line 6). Otherwise, the search continues as in the standard BP.
Upon a failure during the constraint propagation on the current branch, the
CBP first backtracks (line 15) as in the BP, and then gets the latest search
data available from the server if any (line 16). That information is used to
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update the bounds of the cost (line 17) in a monotonic way (i.e. not subject
to backtracking, as the standard bounding scheme of a Branch and Bound
algorithm), possibly triggering a failure in the current branch if it returns
false. Note that the server could be regularly queried at other control points
of the BP algorithm (e.g. just before the call to the propagate function),
but the update of the cost bounds was more convenient to integrate within
the similar mechanism used by the Branch and Bound algorithm of FaCiLe,
which occurs after each backtrack.

1: function CBP(V, server)
2: (P0, cϕr , lbr)← register(server)
3: (V, ϕ)← generateCSP(P0, cϕr , lbr)
4: function CBP_rec(V, ϕ)
5: if V = ∅ then
6: send(server, ϕ, cϕ)
7: return true
8: else
9: x ∈ V

10: for α ∈ dx do
11: ϕ′ ← ϕ ∪ {(x, α)}
12: if propagate(x← α) and CBP_rec(V \ {x}, ϕ′) then
13: return true
14: else
15: undo( )
16: (cϕr , lbr)← receive(server)
17: if not update(cϕr , lbr) then
18: return false
19: return false
20: CBP_rec(V, ∅)

Algorithm 2.10 – Collaborative Branch & Prune.

In this chapter, we have proposed a generic, distributed framework for the
cooperation of various optimization algorithms, and provided details about
its implementation. We also presented three classical optimization algorithms
together with their cooperative versions which can benefit from and provide
information to each other through the framework. Next chapters describe
how we used this framework and algorithms to solve optimization problems
linked to air traffic management: en-route conflict avoidance (Chapter 3) and
airport gate allocation (Chapter 4).
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One of the key challenges towards more automation in Air Traffic Con-
trol (ATC) is the resolution of en-route conflicts to avoid hazardous losses
of separation between aircraft in a given airspace volume. In this chapter,
we present a generic framework for conflict resolution that clearly separates
the trajectory and conflict models from the solver technology. It is able to
handle any kind of maneuver and detection models, though we propose our
own realistic 3D maneuvers and conflict detection that takes into account
uncertainties on the positioning of aircraft. Based on these models, realis-
tic scenarios are built, for which potential conflicts are detected using an
efficient GPU-based algorithm. The resulting instances of the conflict reso-
lution problem are provided to the community as a public benchmark.

To efficiently solve this problem, we have used the generic framework
for the cooperation of optimization algorithms described in Chapter 2. The
framework benefits from the various plugged algorithms by sharing relevant
information among each other, and is implemented as a distributed applica-
tion for better performance. We illustrate its behavior on the conflict reso-
lution problem with the cooperation between a Memetic Algorithm and an
Integer Linear Program which consistently outperforms previous approaches
by orders of magnitude. Instances with up to 60 aircraft are optimally solved
within a few minutes using this framework, while each algorithm taken in-
dividually only provides sub-optimal solutions. This cooperative approach
thus seems appropriate for application in a real-time context.

This chapter is organized as follows. Previous research works related
to the conflict resolution problem are presented in Section 3.1. Section 3.2
describes a maneuver model allowing heading or Flight Level changes and
a 3D-trajectory model that takes into account realistic uncertainties to de-
tect all potential conflict. Section 3.3 details a Metaheuristic approach and
a Integer Linear Programming method, as well as the framework for their
cooperation. Section 3.4 compares both optimization techniques and their
cooperation on our benchmark in order to assess the performance of these
different approaches, showing the advantage of the cooperation method for
large instances. We then conclude and present future research directions in
Section 3.5.

The work carried out with the en-route conflict resolution problem has
been published in [Allignol et al., 2017, Wang et al., 2020].

3.1 Related Works
Research on automated aircraft conflict resolution started in the 1980s. Many
different models were introduced to comply with existing resolution tech-
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niques. Some studies like [Erzberger et al., 1997], conducted by Air Naviga-
tion System Providers, offer realistic models but do not focus on the resolu-
tion methods. Other approaches, like [Durand et al., 1996, Granger et al.,
2001] which use uncertainty models and the Base of Aircraft Data (BADA,
developed and maintained by Eurocontrol [Nuic et al., 2010]), studied both
the model and the resolution algorithms. However, they were completely tai-
lored to the underlying traffic simulator (CATS [Alliot et al., 1997]), which
prevents the scientific community from comparing different resolution meth-
ods.

Many mathematical models have led to specific resolution algorithms
able to deal with very complex situations, but which require specific char-
acteristics for trajectory prediction. This is the case for [Pallottino et al.,
2002] which uses Mixed Integer Linear Programming (as [Vela et al., 2009,
Alonso-Ayuso et al., 2011, Rey et al., 2012]). Theses models rely on constant-
speed trajectories and assume that all maneuvers are executed simultane-
ously, which is not realistic. They cannot deal with trajectory models able
to handle descending or climbing aircraft, nor with complex trajectory uncer-
tainties. Other authors like [Alonso-Ayuso et al., 2016a,b] proposed different
Mixed Integer Non-Linear models that can deal with horizontal and vertical
maneuvers, taking multi-objective criteria into account, though uncertainties
are not included in the trajectory prediction.

Moreover, conflict resolution is known for being highly combinatorial [Du-
rand and Granger, 2003] and large instances can therefore be very difficult to
solve, but the optimal solution (or at least a good enough one) is needed very
quickly for real-time en-route conflict resolution. So assessing the relative
merits of different solvers is very useful to pave the way to future automa-
tion tools. To be able to fairly compare the performance of various solvers,
[Allignol et al., 2013] proposed a framework to separate the trajectory model
from the resolution algorithm, as well as a Constraint Programming (CP)
approach to solve the problem with 2D maneuvers only. This framework
was extended to scenarios involving several Flight Level with 3D maneuvers
in [Allignol et al., 2017], and a second approach using a Memetic Algorithm
(MA) was proposed.

However, in these studies, optimal solutions could only be found on small
instances. On larger instances, the MA was able to find good solutions with-
out reaching the optimal, while CP was occasionally able to prove optimality
or infeasibility for highly constrained instances. The strict separation be-
tween the model and the resolution made it possible for us to publish the
instances of the problem for the scientific and ATM community. This offered
the opportunity to test different algorithms on various problems without in-
vesting effort in the model. With such a framework, resolution times and
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Figure 3.1 – Graph representation of a conflict resolution problem: clique
〈1d, 2c, 3c, 4b〉 is a solution.

costs of different solvers can be fairly compared. Instances can be down-
loaded from the dedicated website: clusters.recherche.enac.fr.

In 2015, [Lehouiller et al., 2015] also proposed a general framework by
modeling the problem with a graph where the vertices are the trajectories
and the edges connect compatible trajectories. This is possible because the
problem only involves binary constraints, i.e. constraints that specify the
allowed combination of maneuvers for exactly two aircraft. The problem can
thus be viewed as minimizing the cost of a maximum clique. For example in
Figure 3.1, each aircraft must choose between four maneuvers {a, b, c, d}. The
edges represent compatible maneuvers. There is only one maximum clique
representing a solution: 〈1d, 2c, 3c, 4b〉. Lehouiller obtains good results using
this model on problems involving up to 20 aircraft with a small number
of maneuver options. Then in 2017, [Lehouillier et al., 2017] proposed two
decomposition algorithms to enhance the resolution. This graph model can
easily be generated with our framework, but uncertainties are not taken into
account. The same year, [Rey and Hijazi, 2017] proposed a new complex
number formulation and convex relaxation for the centralized problem and
showed that it could reduce the resolution time.

As observed from previous studies, classic algorithmic approaches of the
en-route conflict resolution problem have not proved to be effective as soon as
instances are of large dimension. In the last ten years, combining various algo-
rithmic strategies, such as mathematical programming techniques and meta-
heuristics, has proved powerful in many domains [Raidl and Puchinger, 2008].
Problems for which pure traditional approaches were ineffective could be suc-
cessfully solved by exploiting synergies between different techniques [Blum
et al., 2008, 2011]. Even among metaheuristics, some are better at local
search [Li et al., 2017], while others cope well with global search [Mirjalili

clusters.recherche.enac.fr
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and Lewis, 2016]. Therefore, the hybridization of optimizers can alleviate
the intrinsic drawbacks of basic algorithms [Awad et al., 2017], leading to re-
duced calculations, improvement of the precision of results and more stable
convergence behaviors [El-Abd and Kamel, 2005, Heidari et al., 2019]. The
purpose of this chapter is to show that combining different algorithms on
the conflict resolution problem can improve the results obtained with pure
approaches alone.

3.2 Model
In this section, we present a generic approach to the conflict resolution prob-
lem which can be based on any conflict prediction system that takes as input
a discrete set of possible maneuvers for each aircraft.

We first describe a possible model of realistic 3D maneuver options com-
patible with current Air Traffic Control (ATC) practice. Then we present a
trajectory prediction model that approximates an aircraft possible positions
at each time step as a convex polyhedron, according to a set of uncertainty
parameters, as described in [Allignol et al., 2017]. Possible conflicts are
thereupon detected by an efficient GPU-based parallel algorithm described
in [Alligier et al., 2018], which improves the execution time by orders of
magnitude compared to our previous sequential approach (cf. [Allignol et al.,
2017]). Eventually, the resulting conflict matrix is used to specify the con-
straints of the instance and a simple cost function is defined to favor later,
shorter and least-deviating maneuvers.

3.2.1 Maneuvers and Decision Variables
In the traffic scenarios used for our benchmark, aircraft are initially leveled
on consecutive Flight Levels (FL) spaced-out by 1000 ft, as sketched in Fig-
ure 3.2. On each FL, the routes of the flight plans are defined by a sequence
of waypoints (specified by their coordinates in the horizontal plane).

In our trajectory model, a maneuver could be a heading change (cf. Fig-
ure 3.3a), a FL change (cf. Figure 3.3b) or a speed change (cf. Figure 3.3c).
These types of maneuvers are representative of ATC practice and can be
easily implemented by pilots and current Flight Management System (FMS)
technologies (cf. [Granger et al., 2001]). But we do not allow to combine
different types in order to keep them simple enough.

The first phase of a maneuver begins at a discrete given time t0, when
it deviates from the initial trajectory, and its second phase starts at a later
given time t1, when the aircraft returns to its initial trajectory, as depicted in
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Figure 3.2 – A traffic scenario on several Flight Levels.

Figure 3.3. To recover the trajectory, described as a sequence of waypoints
(depicted by large white dots in Figure 3.3a), while implementing an heading
change maneuver, the first of the next waypoints that can be reached with an
acceptable turning angle (i.e. ≤ 60°) is selected; therefore, some waypoints
might be skipped as illustrated by Figure 3.3a. For vertical maneuvers, the
aircraft begin to climb or descend at a standard rate at time t0 towards its
assigned FL and starts to return to its original FL (also at a standard rate)
at time t1. Note that the time spent by an aircraft to climb or descend only
depends on the climbing or descending rate and is not related to t0 or t1.

Heading changes α can take nα = 6 different values in our benchmark
(see Section 3.4.1), i.e. 10°, 20° or 30° degrees to the left or the right of
the current heading. Vertical moves δFL can take nFL = 4 values, i.e. climb
or descend 1000 ft or 2000 ft (i.e. one or two FLs) from the current level.
Speed changes σ can take nσ = 2 different values, i.e. −6 % slowdown or
+3 % acceleration (w.r.t. the current speed), which corresponds to the speed
adjustment range deemed acceptable w.r.t. pilots and air traffic controllers
constraints by the ERASMUS project [Averty et al., 2007]. The number of
maneuver types is thus nk = nα + nFL + nσ = 12. We limit the number of
possible maneuvers by choosing t0 among n0 values (typically n0 = 4 in our
experiments). The number of values for t1 is also chosen among a limited set
of n1 values (typically n1 = 4).

If we combine n0 values for t0 and n1 for t1 with nα possible angles, nFL
vertical maneuvers or nσ possible speed modifications, plus one maneuver for
unaltered aircraft (as a null heading, level change or speed change correspond
to the same trajectory, regardless of t0 and t1), the number of maneuvers per
aircraft is:

nman = n0 × n1 × (nα + nFL + nσ) + 1
= n0 × n1 × nk + 1
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α

t0

t1

(a) Horizontal maneuver.
t0

t1

δFL

(b) Vertical maneuver.

t0
speed control σ

t1

back to initial speed

(c) Speed maneuver. The black parts of the trajectory correspond to the nomi-
nal speed, the green part corresponds to active speed control. The orange parts
represent transition phases during which the aircraft speeds up or slows down.

Figure 3.3 – Maneuvers, beginning at t0 and returning at t1, compatible
with current ATC practice. Large white dots correspond to waypoints of the
initial trajectory, which is itself depicted in light gray.
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Table 3.1 – Maneuver parameters.

Parameter Size (value) Typical values
t0 start time n0 (= 4) 0, 1, 2 and 3 min
t1 return time n1 (= 4) 5, 6, 7 and 8 min
α heading change nα (= 6) -30, -20, -10, +10, +20, +30°
δFL FL change nFL (= 4) −20, −10, 10 and 20 FL
σ speed change nσ (= 2) −6 and +3 %

Table 3.1 sums up the maneuver parameters and their respective values in
the benchmark presented in Section 3.4.1, which amounts to nman = 4× 4×
(6 + 4 + 2) + 1 = 193 combinations. For a conflict cluster with n aircraft, the
search space size is then:

nn
man

therefore 19320 ≈ 5.14× 1045 for a 20-aircraft instance and up to 1.36× 10137

for 60 aircraft.
To provide a generic view of the maneuver model, we restrict the num-

ber of parameters for each aircraft i to a single decision variable mi that
aggregates variables t0, t1 and the heading change α, the FL change δFL or
the speed change σ, thanks to a bijection from the valid 5-tuples to interval
{1, . . . , nman}. We call M the set of decision variables of the problem:

M = {mi ∈ {1, . . . , nman}, ∀i ∈ {1, . . . , N}} (3.1)

3.2.2 Trajectory Prediction and Conflict Detection
To compute possible conflicts between maneuvers within the time frame of
the resolution, we first model various sources of uncertainty, then describe
how our trajectory prediction take them into account to detect incompatible
maneuvers and build the conflict matrix.

Conflict

For ATC, a conflict occurs between two aircraft if there is a simultaneous
loss of horizontal and vertical separation according to some distance thresh-
olds (called separation norms in the following) which depend on the airspace
considered:
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5NM

1000 ft

Figure 3.4 – Typical en-route protection volume around an aircraft.

Definition 3 (Conflict Between Aircraft). Aircraft i and j are in conflict iff
∃t s.t.:

disth(pi(t), pj(t)) ≤ normh ∧ distv(pi(t), pj(t)) ≤ normv

where:

• pk(t) = (xt
k, yt

k, zt
k) is the position of aircraft k at time t;

• disth(pi(t), pj(t)) =
√

(xt
i − xt

j)
2 + (yt

i − yt
j)

2 is the distance in the hor-
izontal plane;

• distv(pi(t), pj(t)) = |zt
i − zt

j| is the distance between altitudes.

For en-route traffic, the separation norms are usually normh = 5 NM and
normv = 1000 ft as illustrated by Figure 3.4 showing the protection volume
around an aircraft. A conflict occurs whenever another intruding aircraft
enters the protection volume.

Uncertainties on Trajectories

To model the inaccuracy of realistic trajectory prediction systems, we model
the six following sources of uncertainties, associated to the implementation
of the maneuver or to the state of the aircraft (as in Figure 3.3, large white
dots represent waypoints of the aircraft flight plan, while small black dots
correspond to turning points of maneuvers in Figures 3.5–3.9):

• When instructed to maneuver, a pilot can react more or less quickly.
Uncertainty εt0 ∈ [0, Et0 ], which represents the maximum reaction time
to start a maneuver, is associated to time t0 (see Figure 3.5).

• Uncertainty εt1 ∈ [0, Et1 ], which represents the maximum reaction time
for ending a maneuver, is associated to time t1 (see Figure 3.5).
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t0

t0 + Et0

t1 t1 + Et1

Figure 3.5 – Reaction time uncertainty model with maximal errors Et0 and
Et1 .

• Uncertainty εα ∈ [−Eα, Eα] is also associated to the heading change
angle α (see Figure 3.6).

• Horizontal speeds vh are subject to relative error εvh
∈ [−Evh

, Evh
]

(expressed as a percentage) such that future positions of aircraft are
spread over a range which grows with time (see Figure 3.7).

• Climbing and descending rates vv are also subject to relative error
εvv ∈ [−Evv , Evv ] (as a percentage) as illustrated in Figure 3.8.

• The fly mode fm can be chosen among two values fm ∈ {Fb, Fo} as an
aircraft can “fly by” (Fb) or “fly over” (Fo) a waypoint, depending on
the pilot practice or the airline rules, and we consider both options to
build the future trajectory (see Figure 3.9). More precisely, when an
aircraft must turn at a waypoint, it cannot strictly fly linear segments
with instant turning points. Flight Management Systems or pilots can
either “fly by” or “fly over” the turning point: when the pilot antici-
pates the turning angle before arriving at the waypoint, she flies by the
waypoint, and when the pilot turns once she has reached the waypoint
and heads back to the initial trajectory after it, she flies over the way-
point. Because we do not know which choice is going to be made by
the pilot, we take the so-called “fly mode” uncertainty into account in
our model.

Table 3.2 sums up these uncertainties, related to the maneuver param-
eters at the top of the table, and to the aircraft characteristics only at the
bottom. Note that there is no uncertainty on the lateral position when an air-
craft is heading toward a waypoint as its FMS is able to dynamically correct
the lateral error. Accordingly, no uncertainty is considered for the maneuver
parameter specifying the FL change δFL as current FMS are able to precisely
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α α + Eα

α− Eα

t0

t1

Figure 3.6 – Heading change uncertainty model with maximal error Eα.

t0(1− Evh
)vh

(1 + Evh
)vh

t1(1− Evh
)vh (1 + Evh

)vh

Figure 3.7 – Speed uncertainty model with maximal error Evh
.

t0

t1(1 + Evv)vv (1− Evv)vv

(1 + Evv)vv (1− Evv)vv

Figure 3.8 – Climb and descent uncertainty model with maximal error Evv

model.

Fo

Fb

Figure 3.9 – Flight mode uncertainty model with possible modes “fly by” (Fb,
in blue) or “fly over” (Fo, in green).
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Table 3.2 – Uncertainties on the trajectory parameters.

Parameter Error Typical values
t0 start time εt0 ∈ [0, Et0 ] 10, 20 and 30 s
t1 return time εt1 ∈ [0, Et1 ] 10, 20 and 30 s
α angle εα ∈ [−Eα, Eα] 1°; 2°; 3°
vh horizontal speed εvh

∈ [−Evh
, Evh

] 2, 4 and 6 %
vv vertical speed εvv ∈ [−Evv , Evv ] 5, 10 and 15 %
fm waypoint fly mode fm ∈ {Fb, Fo} Fb, Fo

level out at the specified FL. Uncertainty on the vertical profile is therefore
taken into account by the error on the vertical speed εvv alone.

Aircraft Position Envelope

To detect the conflicts, time can be discretized into regular steps, provided
their duration τ is small enough to avoid missing even the shortest conflicts.
In Section 3.4.1, we fix τ = 3 s because two facing aircraft flying at 600 kn
(maximal speed for airliners) get only 1 NM closer every 3 s, which ensures
the detection of such a conflict, as the target separation distance is 5 NM
(see [Barnier and Allignol, 2012] for a more in-depth discussion on this topic).

We assume that at a given time step, the position of an aircraft belongs to
the set of positions allowed by any combination of the uncertainty parameters
with a uniform probability distribution (but this assumption could be refined
with a more realistic distribution model as described in [Erzberger et al.,
1997]). We therefore build the envelopes of possible positions at each time
step for all maneuvers before checking their distance to detect a possible
conflict (see Section 3.2.2).

As described in Section 3.2.1, we have defined six uncertainty parameters
for our trajectory prediction: εt0 , εt1 , εα, εvh

, εvv and fm. In order to take into
account every possible trajectory, we test every combination of the extreme
values of these parameters: 26 = 64 trajectories are computed to built the
geometric boundaries of a single maneuver over time. Once these extreme
trajectories are built, we compute for each time step t a 3D polyhedral convex
envelope to safely approximate the possible positions of an aircraft. We use
the well-known Graham’s algorithm [Graham, 1992] to build the correspond-
ing smallest convex hull in the horizontal plane, and take the minimum and
maximum altitudes in the vertical plane. The resulting prism is the smallest
convex orthogonal cylinder that includes the set of the possible positions of
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t0

t1

α

Figure 3.10 – An example of convex hulls representing a maneuver with
uncertainties in the horizontal plane at each time step.

the aircraft at step t.
Figure 3.10 gives an example in the horizontal plane of a 30° heading

change maneuver starting at t0 = 5 min, lasting 10 min (therefore t1 =
15 min), with Et0 = Et1 = 60 s, Eα = 5° and Evh

= 5 %. The original
route of the aircraft is represented as a gray solid line and the maneuver is
depicted every minute as a polygon corresponding to the convex hull that
includes the possible aircraft positions.

Conflict Detection

In the previous section, each predicted trajectory is modeled as a sequence of
aircraft position envelopes. As the notion of conflict is only defined pointwise
between two perfect aircraft trajectories, we extend the notion of conflict to
trajectories modeled as a sequence of aircraft position envelopes.

Definition 4 (Conflict Between Predicted Trajectories). Predicted trajecto-
ries p and q are in conflict iff ∃t, a ∈ p(t) and b ∈ q(t) s.t.:

disth(a, b) ≤ normh ∧ distv(a, b) ≤ normv

where p(t) and q(t) are aircraft position envelopes at time t, and a and b are
3D positions.

We assume that the actual future trajectory will always be inside the air-
craft position envelopes of the predicted trajectory. Thus, with Definition 4,
if the predicted trajectories are not in conflict then this property will hold
for the actual future trajectories as well.

Using this definition, we can compute all the conflicts between all the
predicted trajectories considered for the resolution and store them in a 4D
boolean matrix. We combine the maneuver parameters t0, t1, α, δFL and
β thanks to a bijection from the valid 5-tuples to interval {1, . . . , nman} in
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order to reduce them to a single number and provide a generic access to the
conflict matrix. Then, for each pair of aircraft (i, j), with i < j as the conflict
relation is symmetric, and each pair of maneuver options (k, l), where k is
a maneuver option for aircraft i and l for aircraft j, we test if maneuvers k
and l are in conflict to set the coefficients Ci,j,k,l of the conflict matrix:

Definition 5 (Conflict Matrix). The coefficients of the symmetric conflict
matrix of dimensions n× n× nman × nman are defined by:

Ci,j,k,l =
{

1 if maneuver k and l conflicts according to Definition 4
0 otherwise

∀i ∈ {1, . . . , N}, ∀j ∈ {i + 1, . . . , N},∀k ∈ {1, . . . , nman},∀l ∈ {1, . . . , nman}.

The calculation of such a conflict matrix requires to compare n2
man

n(n−1)
2

pairs of predicted trajectories. In the end, it leads to compare n2
man

n(n−1)
2 T

pairs of aircraft position envelopes where T is the number of time steps and
therefore of aircraft position envelopes per trajectory. This number can be
huge even with a limited number of aircraft. For the smallest scenario in this
paper with n = 15 aircraft, nman = 193 possible trajectories and T = 150
time steps, we have to check the separation for 586 672 750 envelope pairs. If
we were to integrate our conflict solver in a traffic simulator or operational
system, we would have to solve iteratively a sequence of conflict resolution
problems over a Rolling Horizon (RH) with the fastest possible update rate
allowed by the running time of the resolution process (see [Granger et al.,
2001]). Therefore, the conflict matrices must also be built as fast as possible.

In order to avoid numerous time-consuming distance computations, we
can use simple bounding volumes with cheap intersection checks. As de-
picted by Figure 3.11, for each aircraft position envelope we can compute an
Axis-Aligned Bounding Box (AABB) increased by half the separation norm
(cf. Definition 3). The intersection test between AABBs is very fast as it
requires six floating-point number comparisons at most. If the AABBs of
two aircraft position envelopes do not intersect then the envelopes cannot
conflict. Otherwise, we use the ISA-GJK algorithm [van den Bergen, 1999],
a more time-consuming test, to check if the envelopes intersect. It is a variant
of the GJK algorithm [Gilbert et al., 1988] which is widely used in robotics
and computational geometry to determine the distance between two convex
shapes. This algorithm runs in linear time w.r.t. the number of vertices of
the aircraft position envelopes.

To reduce even more the running time of our solver, the computation
of the conflicts can be parallelized. A parallel implementation on Graphics
Processing Unit (GPU) described in [Alligier et al., 2018] using the AABBs
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Figure 3.11 – Axis-Aligned Bounding Box (in black) of an aircraft position
envelope (in green).

and ISA-GJK has been successfully tested to compute conflict matrices with a
decrease of two orders of magnitude for the total running time of the detection
phase. For instance, the conflict matrix of the largest scenario available in our
online benchmark (see Section 3.1) with n = 100, nman = 193 and T = 150
is computed in 1 s only. On average, the trajectory pairs are processed at a
rate of 117 000 pairs per millisecond.

3.2.3 Cost of Maneuvers
To discriminate among the solutions to feasible instances, we build an arbi-
trary cost function for the maneuvers so as to ensure the following properties
which characterize efficient solutions from an operational point of view:

1. Any maneuver is more costly than no maneuver.

2. Maneuvers should start as late as possible: because uncertainties are
reduced over time for successive resolution problems in a RH solver (cf.
Section 3.2.2), the cost of a delayed maneuver could be reduced when
the problem is updated.

3. Maneuvers should be as short as possible.

4. The angle should be as small as possible.

5. FL change should be as small as possible.
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6. A −6 % slowdown or +3 % acceleration is here equivalent to a 10° head-
ing change for the sake of simplicity.

7. A 1000 ft vertical maneuver is deemed equivalent to a 20° heading
change, and a 2000 ft one to 30°.

To compute the cost of a maneuver, values of t0 are enumerated by an
index k0 varying in {1, . . . , n0}, values of t1 by index k1 in {1, . . . , n1} and
angles α, of value 10, 20 or 30° right or left, are respectively indexed by kα in
{1, . . . , nα

2 }. Speed changes σ are enumerated by an index kσ in {1, . . . , nσ

2 }.
Similarly, FLs are indexed by kFL in {1, . . . , nFL

2 }. For our benchmark, the
cost of a maneuver is then defined as follows:
Definition 6 (Cost of a Single Maneuver). The cost c(mi) of a single ma-
neuver mi ∈ {1, . . . , nman} for aircraft i is:

c(mi) =


(n0 − k0)2 + k2

1 + k2
α if α 6= 0

(n0 − k0)2 + k2
1 + (1 + kFL)2 if δFL 6= 0

(n0 − k0)2 + k2
1 + k2

σ if σ 6= 0
0 otherwise

where k0, k1, kα, kFL and kσ are the indices corresponding to the values of
t0, t1, α, δFL and σ for maneuver mi.

As this work is based on a generic framework that separates the solver
method from the problem itself, we chose to instantiate our benchmark with
the most simple and intuitive cost function satisfying the previously men-
tioned list of requirements, easy to understand and reproduce, so as to en-
courage the comparison of different solvers by interested readers, which might
be unfamiliar with all the quirks of operational ATC costs. In a real envi-
ronment, it should be modified to comply with aircraft performance models
on one side and controllers’ preferences on the other side. We could easily
replace this cost by a more accurate one, taking into account the fuel con-
sumption, or pilots and air traffic controllers preferences. This would however
not change the model but only the values given to each maneuver of each
aircraft. The same resolution methods would apply but provide different
results.

Given an instance with n aircraft, we define the cost of a solution as the
sum of the costs of the maneuvers for all aircraft:
Definition 7 (Cost of Conflict Resolution). The cost of a solution to a
conflict resolution problem with n aircraft is:

cost(M) =
n∑

i=1
c(mi)
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3.2.4 Overall Mathematical Model
Eventually, we model conflict resolution as the following combinatorial opti-
mization problem which summarizes the preceding sections.

Decision variables

For a problem with n aircraft, the set of decision variables is:
M = {mi ∈ {1, . . . , nman}, ∀i ∈ {1, . . . , n}}

where the maneuver of aircraft i is represented by decision variable mi and
all the maneuver options associated with allowed tuples 〈t0, t1, α, δFL, σ〉 are
numbered from 1 to nman as described in Section 3.2.1. Hence, the size of the
search space is nnman . Note that different sets of possible maneuvers could
also be specified for each aircraft without loss of generality.

Constraints

According to the 4D conflict matrix C defined in Section 3.2.2, for each
element Ci,j,k,l = 1, maneuvers k of aircraft i and l of aircraft j cannot be
chosen at the same time. The constraints of our problem are therefore defined
by:

mi 6= k ∨ mj 6= l,
∀i ∈ {1, . . . , n}, ∀j ∈ {i + 1, . . . , n},∀k, l ∈ {1, . . . , nman} s.t. Ci,j,k,l = 1

Cost

The cost of an optimal solution to a conflict resolution problem is equal to:

min
∀i∈{1,...,n},mi∈{1,...,nman}

n∑
i=1

c(mi)

with

c(mi) =


(n0 − k0)2 + k2

1 + k2
α if α 6= 0

(n0 − k0)2 + k2
1 + (1 + kFL)2 if δFL 6= 0

(n0 − k0)2 + k2
1 + k2

σ if σ 6= 0
0 otherwise

where maneuver mi corresponds to allowed tuple 〈t0, t1, α, δFL, σ〉 and k⋆ ∈
{1, . . . , n⋆} indexes the possible values associated with ⋆ ∈ {0, 1, α, FL, σ}
(a generic parameter subscript) by increasing absolute value (as described
in Section 3.2.3), such that later, shorter, and least-deviating maneuvers are
favored. Note that any cost function, possibly customized for each aircraft,
could also be used in our model.
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3.3 Resolution Algorithms
To solve en-route conflict resolution problem, we first use two methods,
Memetic Algorithm and Integer Linear Programming, mentioned in Sec-
tions 2.2.1 and 2.2.2, then the cooperation of both algorithms to improve
the performances.

The first one, a Memetic Algorithm (MA), is an extension of the tradi-
tional Genetic Algorithm (GA). It uses a local search technique to reduce
the likelihood of a premature convergence. We can clearly see in Section 3.4,
we show that for small instances, a MA is capable to find optimal solutions
in a very limited amount of time. However, for larger instances, a MA may
remain stuck in local optima and fail to discover an optimal solution. More-
over, metaheuristics are not exact algorithms, hence they can neither prove
the optimality of a solution nor the infeasibility of an instance.

The second one, Integer Linear Programming (ILP), is based on the
Branch and Cut algorithm, as described in Section 2.2.2 and able to quickly
prove optimal solutions (or infeasibility) for small instances. Though for
large instances (more than 50 aircraft), the resolution is too time-consuming
for a real-time system.

To benefit from the advantages of both combinatorial solvers and find
better solutions to large instances, our third approach consists in their coop-
eration. In the following sections, we first describe MA and ILP models for
en-route conflict resolution, then provide an analysis about their cooperation.

3.3.1 Memetic Algorithm
The general principle of Memetic Algorithm (MA) has been presented in
Section 2.2.1. In this section, we present how to instantiate the objective
function and operators of an MA to solve the conflict resolution problem.

Objective Function

The objective function of our MA represents the function to minimize. Here,
we first focus on finding a conflict-free set of maneuvers, with the smallest
cost as a secondary objective. Therefore, we define the objective function as
the linear combination of two terms, the number of remaining conflicts and
the cost of a solution (cf. Definition 7):

f(s) = P ×
∑

∀mi,mj∈M s.t. i<j

Ci,j,mi,mj
+ cost(s)

where P is a big (enough) integer to guarantee that the cost of a solution is
always higher than the one of another solution if it has more conflicts.
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× init config× local optimum− phase1 1-move− phase2 1-move− crossover− admissible configuration zones

Figure 3.12 – Typical behaviour of the Memetic Algorithm in the landscape
of solutions. The inside of green circles corresponds to a subset of admissible
solutions.

Tabu Search

Tabu Search (TS), as mentioned in Section 2.2.1, is a local search algorithm
that is used as a component of an MA to repair and improve a candidate
solution. For the conflict resolution problem, the tabu list simply represents
the list of forbidden maneuvers for each aircraft during a given number of
iterations and the neighborhood used in line 5 of Algorithm 2.4 consists in the
modification of the maneuver assigned to one of the aircraft (i.e. a “1-move”
neighborhood, cf. Definition 8).

Definition 8 (“1-move” neighborhood). For a given candidate solution s =
(m1, . . . , mn), we define the “1-move” neighborhood of s, noted as Ns, as the
set of solutions that differ from s on only one variable, and have a cost at
most equal to the cost of s:

Ns = {s′ = (m′
1, . . . , m′

n) | ∃! i ∈ {1, . . . , n}, m′
i 6= mi∧cost(s′) ⩽ cost(s)}

With the objective function previously described, there are two different
successive phases in our TS process:

Phase 1 When the candidate solution s still involves some remaining conflicts,
therefore ∑

∀mi,mj∈M s.t. i<j Ci,j,mi,mj
> 0, the TS only minimizes the
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number of remaining conflicts. The purple track in Figure 3.12 repre-
sents this first phase of our TS inside the solutions landscape.

Phase 2 When the candidate solution s is a conflict-free set of maneuvers, there-
fore ∑

∀mi,mj∈M s.t. i<j Ci,j,mi,mj
= 0, then the TS minimizes the cost of

the solution cost(M) accepting only neighborhood in each iteration
without introducing new conflicts. Actually, if a “1-move” neighbor-
hood, i.e. modification of one aircraft maneuver, creates conflict with
other aircraft, this neighborhood will be abandoned directly. Termi-
nation criterion in line 3 of Algorithm 2.4 is when the cost has no
amelioration within a certain iteration. The blue track in Figure 3.12
represents this second phase. Notice that during this phase, the can-
didate solution s cannot step outside its admissible configuration area
(represented by green circles in Figure 3.12). Indeed, the admissible
configuration set is not a connected space if we consider the 1-moves
neighborhood.

If only the TS was used, each of its run would find a solution within a given
admissible configuration area. As the number of admissible configuration
areas might be exponential in the problem size, even a multi-start strategy
on top of the TS would be inefficient. However, the crossover operator in
MA is able to help the search to escape the admissible configuration areas
while maintaining relatively structured candidate solutions.

Crossover

We have used a standard crossover operator, uniform crossover, that gener-
ates a single new candidate solution from two elements of the population. For
each aircraft, this crossover operator randomly selects one of the two maneu-
vers of the parents and assigns it to their child. In Figure 3.12, the crossover
of two admissible solutions, presented in red, will create a conflict solution.
However, with applying afterwards TS, a new admissible configuration area
can be explored, which prevent the research from being stuck in local minima.
Other crossover operators, such as one-point crossover or k-point crossover,
have been tested on our benchmark but with no better results.

3.3.2 Integer Linear Programming
State of the art ILP solvers like Gurobi [Gurobi Optimization, 2018], which
was used to obtain the results presented in Section 3.4, significantly improve
the efficiency of the basic Branch and Cut algorithm (described in Algo-
rithm 2.6) with preliminary transformation techniques to reduce the size
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of combinatorial problems, as well as heuristics to obtain better objective
bounds during the search. These sophisticated refinements fall beyond the
scope of our study and inquisitive readers may refer to [Achterberg et al.,
2014] to obtain more information.

In the following sections, we first present a basic ILP model for conflict
resolution, then we show how to obtain an equivalent but much more compact
and efficient “aggregated” model.

Basic Model

In this section, we describe a straightforward ILP model of the en-route con-
flict resolution problem with binary assignment variables. First, the decision
variables are defined by:

∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , nman},

xi,k =
{

1 if maneuver k is assigned to flight i
0 otherwise (3.2)

As each flight must choose exactly one maneuver, the following constraint
must be added for each flight:

(3.3)
nman∑
k =1

xi,k = 1, ∀i ∈ {1, . . . , n}

Moreover, conflicting trajectories cannot be chosen simultaneously:

xi,k + xj,l ≤ 1,

∀i ∈ {1, . . . , n},∀j ∈ {i + 1, . . . , n},∀k, l ∈ {1, . . . , nman}
s.t. Ci,j,k,l = 1 (3.4)

As the cost of a maneuver does not depend on the aircraft in our model,
the objective function can be expressed as the sum of the products of the
cost c(k) of each maneuver k by the sum of the corresponding binary decision
variables xi,k:

min
nman∑
k=1

c(k)×
n∑

i=1
xi,k (3.5)

Note that specific maneuver costs c(i, k) for each aircraft could easily be taken
into account by generalizing Equation (3.5) with: ∑n

i=1
∑nman

k=1 c(i, k)xi,k.
In this basic model, the conflict constraints of Equation (3.4) are straight-

forward but the resulting number of equations is in O(n2×n2
man), which can

be huge for large numbers of aircraft and maneuvers. For example, with
an instance with 50 aircraft and 193 maneuvers, there will be more than
93× 106 constraints.
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Aggregated Model

To avoid the large number of constraints (quadratic with n and nman) of the
previous basic model, it is possible to aggregate, for a given trajectory k of a
given aircraft i, all conflicting trajectories belonging to aircraft with indices
j > i into a single constraint:

n∑
j =i+1

nman∑
l =1

Ci,j,k,lxj,l ≤ ni,k(1− xi,k), ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . , nman}

(3.6)

with ni,k = |{j ∈ {i + 1, . . . , n} s.t. ∑nman
l=1 Ci,j,k,l ⩾ 1}|, the number of air-

craft (with indices greater than i) that have at least one maneuver in conflict
with maneuver k of aircraft i.

If trajectory k of aircraft i is chosen, i.e. xi,k = 1, the right-hand side
of Equation (3.6) becomes 0, so all the xj,l conflicting with it (s.t. Ci,j,k,l =
1) on the left-hand side must also be assigned 0, as all the corresponding
trajectories conflict with trajectory k of aircraft i. Otherwise, xi,k = 0 and
the constraint is relaxed such that any aircraft j can choose a trajectory
conflicting with trajectory i of aircraft k. Conversely, if any conflicting xj,l

of the left-hand side is assigned 1, then xi,k must be assigned 0 as trajectory
k of aircraft i can no longer be chosen.

Combined with Equation (3.3) and objective 3.5, this aggregated model
is equivalent to the basic model described in the previous section, but the
number of constraints is reduced by orders of magnitude as there are only
O(n×nman) constraints instead of O(n2×n2

man). If we still take 50 aircraft and
193 maneuvers into account, there will be only 9,650 constraints (omitting the
50 constraints of Equation (3.3)). As this model consistently outperformed
the basic one by orders of magnitude in our experiments, the results presented
in Section 3.4 were all obtained using the aggregated model.

Contrarily to metaheuristics, BC provides a complete algorithm able to
prove the optimality of a solution or the infeasibility of an instance. These
properties also allow us to assess the efficiency of the MA, which succeeds
in consistently finding the optimal solution for instances up to 40 aircraft,
with comparable computation times (as described in Section 3.4). However,
the amount of time of our ILP solver for finding the best solution becomes
prohibitive for larger instances, as the BC algorithm has an exponential worst-
case complexity w.r.t. the number of aircraft.
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3.3.3 Cooperation Between the MA and the ILP
We presented a metaheuristic (Memetic Algorithm) in Section 3.3.1 and an
exact ILP algorithm in Section 3.3.2, two classic techniques to solve the en-
route conflict resolution problem. However, both approaches used separately
were not efficient enough to solve our largest instances, therefore we use the
cooperation approach described in Chapter 2 to run CMA (the collaborative
version of MA presented in Algorithm 2.5) and CBC (its ILP counterpart
described in Algorithm 2.8) simultaneously while exchanging information
thanks to the distributed system described in Section 2.1.

Note that, the problem to solve is modeled differently in the various
solvers: e.g. the n decision variables of the MA model directly represent ma-
neuvers, whereas the n× nman ILP ones correspond to possible assignments.
However, they must comply to the common interface proposed by the server
to exchange information such as the upper and lower bounds or feasible solu-
tions. As a result, before sending feasible ILP solutions, we first translate its
binary assignment variables to a more standard solution representing directly
the maneuver of each aircraft.

3.4 Results
The methods described in the previous section have been implemented and
thoroughly tested on a set of realistic en-route traffic instances. This section
details the construction of these instances, which have been made publicly
available, and presents the results obtained for conflict resolution.

3.4.1 Benchmark
To assess the performance of our resolution methods, we tested them on cus-
tom traffic scenarios within a fixed airspace volume. Figure 3.13 describes
the construction of the scenarios which aims at mimicking typical converg-
ing traffic situations within en-route control sectors: aircraft are first evenly
distributed on a 100 NM-radius circle, then their initial positions (i.e. the
points marked Ok) are randomly disturbed within a 20 NM-wide square to
avoid perfectly symmetrical instances (which may oversimplify the problem).
The route for each aircraft, i.e. its initial heading, is also randomly chosen
in a ±60° interval around the direction that would lead the aircraft towards
the center of the circle.

In the vertical dimension, aircraft are also randomly (and evenly) dis-
patched among five FLs (from FL280 to FL320) and initially leveled, which
is generally the case in en-route sectors. Finally, the nominal speed for each
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Figure 3.13 – Geometry of conflict scenario generation.

aircraft is randomly chosen in a ±20 % interval around 480 kn, a typical speed
for airliners. The nominal vertical speed for maneuvers is set at 600 ft min−1

for all aircraft. The density of scenarios is controlled by the number of air-
craft in the airspace volume. For the experiments reported in the current
study, this number varies from 20 to 60.

Based on this initial state, all possible trajectories are computed for ev-
ery aircraft, using the maneuver parameters previously described in Table 3.1,
then conflicts are detected to compute the conflict matrix (see Definition 5),
with a medium uncertainty level corresponding to Et0 = 20 s, Et1 = 20 s,
Eα = 2°, Evh

= 4 % and Evv = 10 % (cf. Table 3.2), using the method de-
scribed in Section 3.2.2. As each scenario is randomly generated, we produced
10 different instances for each density to avoid the bias of some instances be-
ing particularly easy or difficult to solve. All the generated instances are
available to download at clusters.recherche.enac.fr.

Real upper airspace sectors are generally smaller than the airspace volume
we consider (less than 70 NM wide in France), but can be merged together
when the traffic is not dense. Vertically, five FLs are reasonable as most
current aircraft tend to fly at the same altitudes (which optimize their fuel
consumption). When they are levelled they end up on a few Flight Levels.
With the tools currently available, an air traffic controller can hardly handle

clusters.recherche.enac.fr
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more than 30 aircraft at a time in a 70 NM sector. Also, aircraft flying in the
upper airspace prefer flying a direct routes at optimal FL, while the similarity
of current airliners performances tend to concentrate the demand on a small
set of FLs. Thus, automatic solvers should target large airspace and may
have to deal with high demand on a small amount of FLs, hence the design
of our scenarios.

3.4.2 Experimental Setup
We report in this section the performances of the various techniques de-
scribed in Section 3.3 to solve the instances of the benchmark described
in Section 3.4.1. All experiments were carried out on a standard workstation
consisting of a 3.4 GHz Intel® Xeon® octo-core processor with 16 GB of mem-
ory running Debian GNU/Linux 9.4. We used the Gurobi 8.1 Commercial
Optimizer [Gurobi Optimization, 2018] for the ILP model, as well as the
ZeroMQ 4.x messaging library [Akgul, 2013] to implement our cooperation
framework.

As the MA is a stochastic algorithm using a pseudo-random number gener-
ator, 20 runs with different seeds were attempted for each instance to benefit
from the diversification of the algorithm, and the best one is reported. All
tests were done with a population of 50 individuals with 1000 iterations for
the Tabu Search phase.

In the following sections, we first show that the Memetic Algorithm and
the ILP solver both easily reach optimal solution to small instances of the
problem. We discuss their strengths and weaknesses on larger instances, then
detail how their cooperation described in Section 3.3.3 largely outperforms
any single algorithm and scales well with larger and more complex instances
in a limited amount of time (300 s).

3.4.3 Single Algorithms
As mentioned in Section 3.4.1, the limited number of FLs and high den-
sity of the generated instances make the conflict resolution quite challenging.
Moreover, whereas ATC usually tries to find a feasible maneuver for aircraft
involved in a conflict, our approach also focuses on the cost of the solution
in terms of fuel consumption, aiming at an optimum of the cost function
described in Section 3.2.

For small 3D instances up to 40 aircraft, both the MA and the ILP
obtain an optimal solution, and the optimality can systematically be proved
by Gurobi in very limited time. Figure 3.14 shows the mean time needed to
compute the optimal solution for both MA and ILP for all instances ranging
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Figure 3.14 – Comparison of computation times to find an optimal solution
for small instances with the MA and ILP w.r.t. the number of aircraft.

from 20 to 40 aircraft. Though the MA is efficient enough to reach an optimal
solution under 40 s, the refinements of our new aggregated ILP model enable
Gurobi to largely outperform the metaheuristic, even if the time spent to
prove the optimality is included.

For larger instances however, the problem is more challenging, and finding
the optimal solution might be out of reach in a reasonable amount of time.
In order to stay within the limits of a potential real-time application, we
decided to restrict the computation time to 300 s. Figure 3.15 shows the
percentages of large instances (ranging from 40 to 60 aircraft) for which an
optimal solution was found. This ratio quickly decreases when the number
of aircraft (and thus their density) increases, with the ILP still being able to
optimally solve about 20 % of our largest instances.

Next section shows that the cooperation between MA and ILP signifi-
cantly increases the success rate of finding an optimum, and thus enhances
the cost of the resulting solution.

3.4.4 Cooperation
We present in this section the results obtained with the cooperative version of
the MA (cf. Algorithm 2.5) and the Branch and Cut (cf. Algorithm 2.8) inte-
grated in the distributed framework described in Section 3.3.3. The behavior
of the resulting solver exhibits a much better behavior when the density of
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Figure 3.15 – Percentage of success for finding an optimal solution within a
300 s time limit with the MA and ILP w.r.t. the number of aircraft.

instances increases. It is able to give optimal solutions for almost all feasible
instances within the 300 s time limit, while MA or ILP alone could not reach
the optimum, as depicted in Figure 3.16.

In Figure 3.17, we compare the cost (averaged over 10 runs for each
density) of the best solutions found by the MA, ILP and their cooperation,
with respect to the optimal value. Here, 0 % represents the optimum cost,
while a larger value represents the cost of a non-optimal solution. As expected
from our previous observations, the cooperation systematically reaches an
optimal solution. For even larger instances (with 70 to 100 aircraft), MA
or ILP alone can be much farther from the optimal value: up to 3.5 % on
average, and up to 10 % on some particular instances.

Figure 3.18 shows the evolution of the cost of the best solution during
the search for one of the most difficult instances in our set, involving 59
aircraft. First, we observe that, at the end of the 300 s limit, the cost of the
solutions found by MA and ILP are similar, but are about 10 % higher than
the cost of the cooperation solution. Second, we can see from the graph that
the cooperation proved the optimality of its solution, as the process stopped
at about 280 s. This optimal solution was found after about 90 s. In the
meantime, MA and ILP seemed to be stuck, probably on a locally optimal
solution, after 100 s to 150 s. In the first part of the search, the cooperation
follows exactly the same convergence profile than the MA, while the ILP
algorithm does not provide any solution. This is due to the fact that the
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Figure 3.16 – Percentage of success for finding an optimal solution with a
300 s time limit with MA, ILP and their cooperation w.r.t. the number of
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Figure 3.17 – Average cost of the best solution found within 300 s, expressed
as the ratio of the difference to the optimum w.r.t. the number of aircraft.
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Figure 3.18 – Convergence of the cost with a 300 s time limit w.r.t. the
execution time.

solver used for ILP performs some internal transformations of the problem
to provide a more efficient search afterwards. During this process, no solution
can be proposed. The cooperation highly benefits from this mechanism, as
in the meantime the MA can quickly converge to solutions with a good cost,
thus saving time for the ILP solver when it is ready to execute the BC
algorithm.

In order to assess how the cooperation impacts the optimality of the
solutions, we performed a new series of tests without the 300 s time limit, and
measured the time needed for the ILP solver alone and for the cooperation
to find and prove the optimal solution on large instances (50 to 60 aircraft).
The results of this experiment are shown in Figures 3.19 and 3.20 respectively.
Note that the y-axis is in log scale on both figures.

Figure 3.19 shows that the advantage of the cooperation over the ILP
solver alone increases with the density of the problem: for instances around
50 aircraft, it is only 1.2 to twice as fast to find the optimum, while for larger
instances, it can be up to 10 times as fast.

For the proof of optimality, we see in Figure 3.20 that the difference is
more consistent, with cooperation being approximately twice as good as ILP
alone. This is explained by the fact that the MA does not contribute to the
proof of optimality due to its lack of completeness properties. Thus, once an
optimal solution has been found, the cooperation has no further advantage
over the ILP solver alone. Also, we observe that proving optimality is signifi-
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Figure 3.19 – Comparison of computation times to find an optimal solution
for the cooperation and the ILP solver alone w.r.t. the number of aircraft.

cantly costlier than finding an optimal solution (by a 10 to 100 factor). In the
reported experiment, it was even out of reach (in a reasonable computation
time) for most 60-aircraft instances.

3.4.5 Infeasible Instances
In an operational context, any real-time software that manages a non-inter-
ruptible critical system should provide a fallback scheme, were an instance
infeasible, i.e. without valid conflict-free solutions. In such cases, the solver
should provide a set of maneuvers “as good as possible”, trying to minimize
the number and severity of conflicts, and report perilous situations.

Table 3.3 – Value of the uncertainty bounds w.r.t. the error level l.

uncertainty bound Et0 Et1 Eα Evh
Evv

value for level l l × 10 s l × 10 s l × 1° l × 2 % l × 5 %

One of the advantages of combining a complete algorithm (like Branch
and Cut) able to prove optimality or infeasibility with a metaheuristic (like
an MA) is that the latter directly processes candidate solutions in the ma-
neuver space, possibly with remaining conflicts. Moreover, the minimization
of the number of conflicts is the main criterion used by its objective function,
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Figure 3.20 – Comparison of computation times to prove optimality for the
cooperation and the ILP solver w.r.t. the number of aircraft.

before attempting to minimize its maneuver cost as described in Section 3.3.1.
Consequently, when no legal solution is found, the best current solution of
the MA tends to minimize the number of conflict violations.

Figure 3.21 shows the mean of the number of remaining conflicts over
five scenarios with 60 aircraft, w.r.t. the level of uncertainty l ∈ {5, . . . , 9} of
the detection phase, which was artificially raised until the problem becomes
unfeasible (e.g. for l = 9, the aircraft may deviate up to 9° relatively to the
requested heading change, which is much more than operational error levels).
Indeed, envelopes representing the position of aircraft will expand with the
level of uncertainty, as well as the number of conflicts. Table 3.3 gives the
value of the various uncertainty bounds defined in Section 3.2.2 w.r.t. to the
uncertainty level l. Note that the ILP solver is consistently able to report
the infeasibility of the tested instances.

In such a case, our cooperation framework can be adapted in several ways:

• whenever a complete solver proves that the instance is infeasible, the
cooperation mode can be switched to report the best solution obtained
by a metaheuristic within the time limit;

• similarly, if no valid solution nor proof of infeasibility were obtained
within the time limit, the best solution of the MA can be reported as
well;
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Figure 3.21 – Average of the number of remaining conflicts over 5 instances
with 60 aircraft w.r.t. the level of uncertainty l, resolved by the MA with a
300 s time limit.

• eventually, provided that there is enough time to restart the search, the
separation norm could be reduced until the problem becomes solvable.

Moreover, in an operational context, all conflicts are not equivalent be-
cause violations can be almost inconsequential (e.g. the closest point of ap-
proach is 4.5 NM instead of the required 5 NM in the horizontal plane) or
severe (e.g. less than 0.5 NM), only last a fraction of a second or continue
during one minute. To handle infeasibility more precisely, we could compute
the severity of each potential conflict during the detection phase described in
Section 3.2.2 and store the information in the conflict matrix. The objective
function of the MA can then be modified to minimize the sum of conflict
violations weighted by their severity to obtain the safest maneuver set.

Furthermore, in an operational setting, conflict resolution would be it-
erated over a Rolling Horizon taking into account a limited time window
(e.g. 20 min), which is then shifted by a given time step (e.g. 5 min). There-
fore, the volume of a given aircraft position envelope (cf. Section 3.2.2) at a
given time in the current window will shrink in the next one, as the envelope
will be closer to the initial position of the aircraft. Consequently, conflicts
that cannot be solved in the current time window might be easier to solve
during a later iteration, or even disappear. As explained in Section 3.3.1
concerning the cost of valid solutions, the MA could also be tuned to favor
solutions with remaining conflicts appearing as late as possible, in the hope
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that the reduction of uncertainty will make them easier to solve during the
next iterations.

Eventually, the range of maneuvers could also be extended to widen the
solution space with, for example, heading changes of 5°, 15° and 25°, vertical
changes of ±3000 ft or speed adjustments greater than a −6 % slow down or
greater than a +3 % speed up.

3.5 Conclusion and Further Work
We have presented an innovative framework for the modeling and resolution
of en-route conflicts in three dimensions. The model is clearly separated from
the resolution, thus giving the opportunity to compare various resolution
methods on the same instances. Horizontal, vertical and speed maneuvers
are taken into account, and a comprehensive uncertainty model is described
as well. The proposed modeling is also totally generic, and gives users the
possibility to integrate their own maneuvers. Based on our model, a large
set of realistic instances of the problem have been generated, with various
densities and difficulties. These instances have been made freely available to
the research community at clusters.recherche.enac.fr.

Building on previous work (see [Allignol et al., 2013]), we have proposed
two algorithms for the resolution of the en-route conflict problem: a Memetic
Algorithm (MA) and a Branch and Cut (BC) algorithm to solve Integer Lin-
ear Programs (ILPs). The MA has the advantage of finding feasible solutions
in a very short time, even for dense instances, while the ILP is able to find
and prove optimal solutions for low to medium density instances. Based on
these observations, we used a generic framework for the cooperation of algo-
rithms for the resolution of optimization problems, in which any algorithm
can share information such as partial solutions, lower or upper bounds for
the cost, etc. This framework was successfully tested with the MA and ILP
solver.

Instances of low density were optimally solved by all three methods within
less than one minute. For larger instances, we have restricted the computa-
tion time by 300 s, in order to make the approach compatible with a real-time
context. With this limit, both the MA and ILP solver were able to provide
good solutions to high density instances, without reaching optimality though.
The cooperation between the MA and the ILP solver outperformed both ap-
proaches on all instances, and made it possible to reach and prove optimality
in most cases, even for very dense instances. Moreover, should a particu-
lar instance be infeasible, our solver is able to provide a set of maneuvers
that minimizes the number of remaining conflicts, thanks to the incremental

clusters.recherche.enac.fr
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properties of the MA.
The proposed framework is completely generic, from the model to the

cooperation method, which provides many opportunities for future research.
On the optimization side, we could plug other algorithms in the cooperation
tool to further enhance the performance of the resolution. We could also
weigh the conflicts according to their severity during the detection phase
to handle infeasibility with more accuracy and provide “as-good-as-possible
solution”. Regarding the Technology Readiness Level of our solver, our next
step is to integrate this framework into a more realistic air traffic simulator,
with a finer model of aircraft performances, to validate the approach before
assessing its real-life abilities in an operational context.
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The Gate Allocation Problem (GAP) is one of the numerous operational
problems that all busy airports have to handle and to optimize every day. It
is usually tackled with specific usages and preferences that are difficult to
model or list rigorously — some airlines may even manage their own stands
area with their own undisclosed strategy. This can lead to a very complex
organization, in which the parking stands can have various configurations
during each period of the day.

In the scope of this chapter, we consider the GAP at Paris-CDG, one of
the busiest European international airports: terminals and their gates are
well described, and the types of aircraft that can operationally use a given
gate can be easily reconstructed from the available actual traffic records.
Figures 4.1 and 4.2 are extracted from the official airport charts and show
the location of the gates in the main terminals at Paris-CDG.

Paris-CDG has implemented the Airport Collaborative Decision Making
(A-CDM) program during the last decade as indicated in [EUROCONTROL,
2017]: this program defines which and how accurate information (arrival and
departure times, aircraft delay…) can be shared between the different airport
stakeholders, in order to help them make more efficient decisions in real time.
The A-CDM program also includes a major improvement in the departures
management: the delay due to the runways capacities is anticipated and air-
craft are preferably delayed at gate, engines off, rather than near the runway
after start-up, burning fuel and emitting CO2. The benefits are twofold: it
results in less taxiing traffic, which decreases congestion and nuisance, and
also provides a more accurate departure schedule. However, it has a negative
effect on gates occupancy, which can significantly increase, especially during
peak hours. For these reasons, the robustness of the gate allocation towards
additional gate occupancy due to departures delay becomes more and more
important for such airports: significant disruptions can be caused in case of
gate conflicts between arriving aircraft and delayed departures.

To optimize the robustness of a schedule, [Bolat, 2001] suggests to min-
imize the variance of the durations of idle times of gates in order to keep
a sufficient amount of buffer between successive flights. In this chapter, we
first model gate allocation as Fixed Job Scheduling (FJS), which is a well-
known resource allocation problem [Eliiyi and Azizoğlu, 2011] with many
applications where jobs (or tasks, i.e. flights for the GAP) with fixed start
and end times are to be processed on different machines (or resources, i.e.
gates for the GAP). Then we present a new global constraint for Constraint
Programming (CP) solvers to propagate the transition costs for FJS, which
are a generalization of idle times. To minimize the variance of idle times,
transition costs are then defined as the squares of idle times between the
successive tasks allocated on the same resource.
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Figure 4.1 – Paris-CDG 1: terminals T, U, V, W, X, Y, Z.
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Figure 4.2 – Paris-CDG 2: terminals A, B, C, D, E, F

The propagation of the constraint is based on the computation of the
shortest path in the compatibility directed acyclic graph of each resource (see
Section 4.2.6) to obtain an exact lower bound. It ensures Bound Consistency
on the cost of a single resource in polynomial time, as well as the filtering
of the resource variables associated with compatible tasks. However, the
corresponding relaxation is not of good quality w.r.t. the global lower bound,
as a task may be simultaneously scheduled on all its compatible resources.

Hence, we also present a new CP model based on the MinWeightAllDiff
optimization constraint [Caseau and Laburthe, 1997] to compute the lower
bound of a Path Cover (PC) of the Global Compatibility Graph (cf. Sec-
tion 4.2.6) of the whole problem. This relaxation is much tighter as the con-
straint directly propagates on the total cost, considering all resources and all
tasks simultaneously. We also describe how the optimal PC computed by the
constraint can efficiently guide the search strategy. The resulting CP solver,
implemented with FaCiLe [Barnier and Brisset, 2001], using parallel cooper-
ation between the strategies, not only outperforms the previous approach by
orders of magnitude, but also consistently outperforms a basic Integer Lin-
ear Programming (ILP) model resolved with a state-of-the-art MIP solver on
real instances of the GAP at Paris-Charles-de-Gaulle international airport.

At the same time, we also point out the problems of the basic ILP model,
then propose a new Minimum Cost Flow Problem (MCFP) model for the
GAP. This MCFP model outperforms the basic one by one order of mag-
nitude and competes well against our CP solver using parallel cooperation
between the strategies. For most instances, the parallel CP solver outper-
forms the ILP one, except for the densest instances of the busiest terminal



82 CHAPTER 4. APPLICATION TO GATE ALLOCATION

for which the CP solver always manages to give solutions of very good quality
in less than 60 s, but their optimality can hardly be proved in a reasonable
time.

This chapter is organized as follows: Section 4.1 presents the literature
on the GAP, then we provide a precise formulation of the problem in Sec-
tion 4.2. Section 4.3 details our CP approach, which includes the description
of a new global optimization constraint which propagates the transition cost
of a single resource, then of the propagation of the global cost thanks to
an incremental implementation of the MinWeightAllDiff constraint which re-
laxes FJS as Path Covering, and eventually of several search strategies and
their parallel cooperation, which is able to outperform the MIP solvers pre-
sented in Section 4.5 on real instances of the GAP as shown in Section 4.7.
Afterwards, we discuss the problems of the ILP model for the GAP intro-
duced in [Bolat, 2001] and propose a new improved ILP model in Section 4.6.
The comparison with the parallel CP solver is detailed in Section 4.7 and we
conclude in the last section.

The work carried out on the GAP problem has been published in [Wang
and Barnier, 2018, Wang et al., 2019, Wang and Barnier, 2020].

4.1 Related Works
The Gate Allocation Problem1 (GAP) consists in assigning arriving flights
with fixed occupancy periods to available compatible gates while maximizing
both conveniences to passengers and operational efficiency of airports [Bouras
et al., 2014]. [Steuart, 1974] was one of the first to introduce the problem in
1974, but the literature is scarce until the 2000s. However, many variants of
the GAP have been studied since, as mentioned in [Bouras et al., 2014].

Were there no compatibility restriction between gates and aircraft, the
corresponding decision problem could be modeled as the coloring of an in-
terval graph, which is polynomial [Gupta et al., 1982] for the minimization of
the number of colors (i.e. gates). Airport gates are generally not equivalent
resources though, as they are dimensioned to accommodate specific types of
aircraft. Therefore, the set of compatible gates for an aircraft usually is a
strict subset of all the available gates and the decision version of the alloca-
tion problem is rather a list-coloring problem, which is NP-Complete even
for interval graphs [Biró et al., 1992].

Moreover, gates may also be endowed with other secondary features (e.g.
compatible airlines, domestic or international, terminal or apron, etc.) which

1This problem is sometimes called Airport Gate Allocation Problem (AGAP) or Stand
Allocation Problem (SAP) in the literature.



4.1. RELATED WORKS 83

should match the characteristics of the flight and the preferences of airlines
as much as possible. These preferences can be modeled as costs associated
with each possible assignment, and standard GAP objectives often include
the minimization of their sum, which is NP-Hard [Kroon et al., 1997]. From
the airport operations perspective, the objective could be to maximize the
utilization of the available gates and terminal [Steuart, 1974, Yan and Huo,
2001, Li and Xu, 2012], minimize the flight delay [Yan and Tang, 2007] or
maximize the preferences [Dorndorf et al., 2007] (i.e. certain aircraft should
go for particular gates). Other classic objectives can be the passengers walk-
ing distance [Kim, 2013] (or other connection means like buses), which is
similar to the Quadratic Assignment Problem, or the number of towing move-
ments [Guépet et al., 2015].

Even if flights occupancy is fixed, many real-life factors of uncertainty (e.g.
traffic delays, severe weather conditions, equipment failure, etc.), can lead to
deviations from the original schedule. If there is not enough buffer time
between successive flight occupancies at a given gate, a delay may propagate
to other flights, then to other gates, and hinder the operational efficiency
of the whole terminal. In order to absorb potential delays and avoid costly
disruptions, our study rather focuses on optimizing the robustness of the
allocation as proposed by [Bolat, 2000], which minimizes the variance of
idle times to balance and spread them over time and resources. Despite its
practical importance, research on the robustness of solutions to the GAP is
quite limited.

To solve these very diverse variants of the GAP, many classic combinato-
rial optimization methods were experimented, depending on the linearity of
the model, the size of the instances and the requirements on the execution
time of the solver. One of the most used tools is Mixed Integer Programming
or Integer Linear Programming (ILP) solvers, like Gurobi or CPLEX, to ob-
tain proved optimal solution like in [Guépet et al., 2015]. Several studies
present their ILP model as a Multi-commodity Flow Problem (MFP), like
[Zhang and Klabjan, 2017] which models re-assignment while minimizing
passengers cost, or [Maharjan and Matis, 2012] which minimizes taxiing and
connection costs (though the model description is, unless we are mistaken,
technically unsound). Another complete combinatorial optimization tech-
nique, Constraint Programming, was also experimented in [Simonis, 2007]
to solve the GAP as a scheduling problem similar to Fixed Job Scheduling
(FJS).

As previously mentioned, all considered variants of the GAP are NP-
Complete or NP-Hard, so many publications have suggested various heuris-
tic approaches for solving large instances or non-linear models in a reason-
able time. [Yan and Chang, 1998] developed an algorithm based on the
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Lagrangian relaxation of the GAP, with subgradient methods, accompanied
by a shortest path algorithm and a Lagrangian heuristic to solve an MFP
model. Additionally to the ILP model previously mentioned, [Benlic et al.,
2017] proposed a multi-objective heuristic approach base on Breakout Local
Search, with a particular focus on the perturbation strategy. [Deng et al.,
2017] proposed an improved Particle Swarm Optimization algorithm to solve
a multi-objective (walking distance of passengers, number of flights at park-
ing apron, etc.) optimization model. [Zhang and Klabjan, 2017] used two
heuristic algorithms to minimize the weighted sum of the total flight delays.
More research work can be found in a survey about the GAP [Bouras et al.,
2014].

More generally, there are already many studies on the GAP focusing on
different criteria. However, few of them except [Bolat, 2000, 2001] really con-
sider the robustness of the assignment, which appears to be one of the most
important criteria for major international airports like Paris-CDG. Moreover,
the resolution process should be efficient enough to be computed in a few min-
utes, as the GAP does not occur only once (one day before the date of the
traffic), but has also to be solved almost in real time when a severe disruption
leads to a necessary re-assignment of gates.

4.2 Fixed Job Scheduling
The scheduling of tasks with fixed start and end times on non-identical2
resources is a versatile NP-complete problem [Arkin and Silverberg, 1987]
which occurs in many applications beside the GAP, like processors scheduling
or staff rostering. Though various objectives can be associated with this
problem, our approach is dedicated to optimize the transition cost between
tasks, particularly to obtain robust solutions w.r.t. delays.

We present in the following sections the integer model used in our study
(whereas classic ILP approaches consider boolean variables only, as in [Bolat,
2000]), with the introduction of fictive tasks to model the opening and closing
of resources, and of the compatibility graph used to define our new CP model
in Section 4.3.

4.2.1 Instance
An instance of the FJS problem is defined by:

2Note that with identical resources (i.e. all tasks can be assigned to any resource),
this problem becomes equivalent to the coloring of an interval graph, which is polyno-
mial [Gupta et al., 1982].
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• T = {t1, . . . , tn} a set of n tasks, with ∀ti ∈ T :

– ts
i and te

i the start and end times of task ti;
– Ri ⊆ R a set of compatible resources on which the task can be

executed.

• R = {r1, . . . , rm} the set of m resources, with ∀rj ∈ R:

– rs
j and re

j the opening and closing times of rj. However, all re-
sources are considered available during the same period3 in the
following, i.e. ∀j, rs

j = rs and re
j = re.

– Tj = {ti ∈ T s.t. rj ∈ Ri} the set4 of compatible tasks that can
be executed on resource rj.

Without loss of generality, the tasks of T are supposed to be numbered by
increasing start time, i.e. ∀i < i′, ts

i ≤ ts
i′ .

For conciseness, we also define the duration function d, “overloaded” on
the following sets:

• T 7→ N the duration of a task: d(ti) = te
i − ts

i ;

• 2T 7→ N the total sum of the durations of a subset of (possibly overlap-
ping) tasks: d(T ′) = ∑

ti∈T ′ d(ti);

• R 7→ N the availability of a resource: d(rj) = re
j − rs

j ;

• 2R 7→ N the total sum of the availability of a set of resources: d(R′) =∑
rj∈R′ d(rj).

4.2.2 Fictive Tasks and Renumbering
As already mentioned, our model is designed to minimize the variance of idle
times. To obtain a uniform formulation of our model, even when the idle
time considered occurs between the opening of a resource and its first task or
between its last task and its closing, we introduce 2m additional fictive tasks
with a singleton compatible resource set and null duration corresponding to
the openings and closings of the m resources.

We accordingly renumber the tasks of T and the resource sets Ri, while
preserving the ordering by increasing start time:

3Without loss of generality, as the unavailability of a resource can be modelled by an
additional task with a singleton resource set.

4Redundantly defined from Ri to simplify notations afterwards.
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• openings: t1, . . . , tm with ts
j = te

j = rs and Rj = {rj};

• actual tasks: tm+1, . . . , tm+n with Rm+i equal to Ri of Section 4.2.1
(before the renumbering);

• closings: tm+n+1, . . . , t2m+n with ts
m+n+j = te

m+n+j = re and Rm+n+j =
{rj}.

The task set is therefore redefined by:

T = {t1, . . . , tm︸ ︷︷ ︸
openings

, tm+1, . . . , tm+n︸ ︷︷ ︸
actual tasks

, tm+n+1, . . . , t2m+n︸ ︷︷ ︸
closings

}

We also define the subsets of predecessors T s, successors T e and actual tasks
T a (i.e. T in the previous section):

T s = {t1, . . . , tm+n}
T e = {tm+1, . . . , t2m+n}
T a = {tm+1, . . . , tm+n}

We also extend each set Tj of compatible tasks to include its fictive opening
tj and closing tm+n+j.

4.2.3 Decision Variables
A solution to an FJS problem consists in assigning a resource to each task
while satisfying the non-overlapping constraints of Equation (4.1) described
in the next section. As the fictive tasks are already assigned to their as-
sociated resource, we define the set of decision variables over actual tasks
only:

Definition 9 (Resource Variables). A solution to an FJS problem is repre-
sented by a set of resource variables:

X = {xi,∀ti ∈ T a}

where ∀xi ∈ X , dxi
= {j s.t. rj ∈ Ri} is the domain of xi, such that xi = j

iff task ti is assigned to resource rj.

Note that tasks and possible resource sets have been renumbered in the
previous section (compared to Section 4.2.1), so that actual task ti becomes
ti+m and resource set Ri becomes Ri+m, ∀i ∈ {1, . . . , n}.
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4.2.4 Non-Overlapping Constraints
The only type of constraints of this essential version of the problem is the non-
overlapping of the tasks scheduled on the same resource. As tasks execution
times are fixed, we require that overlapping tasks are assigned to different
resources:

xi 6= xi′ , ∀ti 6= ti′ ∈ T a s.t. [ts
i , te

i [∩[ts
i′ , te

i′ [ 6= ∅ (4.1)

However, specific applications of FJS like the GAP are often described
with many additional hard and soft constraints to account for operational
requirements (e.g. a large aircraft might occupy two adjacent stands) or user
preferences (e.g. favor terminal gates over remote apron stands).

4.2.5 Transition Cost
Many different kinds of costs can be taken into account to optimize the
allocation of fixed tasks on non-identical resources. For our target application,
the GAP, one of the most crucial objectives is the robustness of the schedule,
as air traffic operations can be burdened by many uncertainties such as late
arrival or departure. To be able to absorb those possible delays, [Bolat,
2000] proposes to minimize the variance of idle times, which tends to balance
them over resources and time while allowing necessary short or large pauses
required by some instances.

Since the mean of the idle times is constant for our problem (as the overall
duration of tasks and availability of resources are constant, and all tasks must
be scheduled), minimizing their variance amounts to minimizing the sum of
their squares:

cost =
∑

∀ti∈T s

(next(ti)s − te
i )

2 (4.2)

where function next : T s 7→ T e returns the successor of a task (closings
having no successor and openings no predecessor). So the cost cj for a single
resource rj can be expressed as: cj = ∑

ti∈Tj s.t. xi=j (next(ti)s − te
i )

2.
More generally, our approach is generic and able to optimize the sum of

the transition costs cti,ti′ between successive tasks ti ∈ T s and ti′ ∈ T e, with
any positive cost matrix C:

cost =
∑

∀ti∈T s

cti,next(ti) (4.3)
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4.2.6 Global Compatibility Graph
To model the FJS transition cost in our CP solver, as described in Section 4.3,
we define the notion of compatibility on a pair of tasks, then of the Global
Compatibility directed acyclic Graph (GCG) of the whole problem.

The compatibility predicate indicates whether two ordered tasks can both
be scheduled on the same resource:

Definition 10 (Compatibility). The compatibility predicate γ : T s×T e 7→ B
is defined over all pairs of ordered tasks ti and ti′ s.t. i < i′ by:

γ(ti, ti′) = (Ri ∩Ri′ 6= ∅) ∧ (te
i ⩽ ts

i′)

If γ(ti, ti′) holds, then ti and ti′ are said to be compatible.

We can then define the GCG of the whole problem that represents each
task (actual and fictive) as a node and each ordered pair of compatible tasks
as an arc weighted by their transition cost:

Definition 11 (Global Compatibility Graph (GCG)). The weighted Global
Compatibility Graph G = (V, E) of an FJS problem is defined by:

• V = {vi,∀ti ∈ T }

• E = {(vi, vi′),∀ti ∈ T s,∀ti′ ∈ T e, s.t. i < i′ ∧ γ(ti, ti′)}

• w : E 7→ R≥0 with w((vi, vi′)) = cti,ti′

We will take cti,ti′ = (ts
i′ − te

i )
2 to optimize the robustness of GAP in-

stances in Section 4.7. Once more, note that any positive function w : E 7→
R≥0 could be used to weigh the transition between tasks instead of the square
of idle times. We will also use the following notation:

• Vj = {vi,∀ti ∈ Tj}, ∀rj ∈ R, i.e. the set of nodes corresponding to
tasks compatible with resource rj;

• Gj = G[Vj] the subgraph of the GCG induced by the nodes of resource
rj;

• V s, V e and V a the restriction of V to T s, T e and T a;

• N+(vi) ⊂ V e the set of successors of node vi.
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4.3 Basic CP Model
We present in this section how the previous formulation of the FJS problem
translates in a CP context. We first describe how all maximal cliques of
the conflict graph of the tasks can be easily computed to efficiently model
the mutual exclusion of overlapping tasks, and how symmetries on resources
and tasks can be broken, then we introduce a new global constraint named
IdleCost to propagate the idle times cost (or any positive transition cost)
on each resource independently. Particularly, an incremental shortest path
algorithm is used on the restricted compatibility graph Gj (see Section 4.2.6)
of the possible (and assigned) tasks of each resource rj to compute the lower
bound of its contribution to the global cost. However, the resulting CP solver
was only able to solve small instances up to 40 tasks and could not compete
with the ILP model of [Bolat, 2001], because the lower bound of the global
cost can be O(m) times worse than the actual bound when the uniqueness
of task assignment is relaxed.

To improve our CP approach, we then introduce a new model based on
a much tighter relaxation: we compute the Minimum Weight Path Cover
(MWPC) [Ntafos and Hakimi, 1979] of the GCG (cf. Definition 11) in poly-
nomial time, thanks to an optimization constraint that directly propagates
on the total cost, considering all resources and all tasks simultaneously. More
precisely, MWPC in a Directed Acyclic Graph (DAG) can be reduced to the
Linear Assignment Problem (LAP), solvable by the Hungarian method [Kuhn,
1955] in O(|V s||E|), with |V s|= |T s|= n+m. [Sellmann, 2002] describes how
this algorithm can be used to achieve Generalized Arc Consistency (GAC)
for the Minimum Weight All Different (MinWeightAllDiff) optimization con-
straint which can be posted on successor variables of the tasks to model the
corresponding LAP.

Even if much tighter than the former relaxation, an MWPC is not in
general a solution to FJS, as consistency on resources along each path is
not taken into account. So resource variables are still necessary, as well as
channelling constraints to link them with the successor variables involved
in the MWPC. So after the definition of the IdleCost constraint and its
propagation rules, we present how the optimization of the transition cost of
FJS can be relaxed to MWPC, which is modelled with successor variables
and reduced to the LAP. Eventually we describe our incremental version of
the MinWeightAllDiff constraint and the channelling constraints that link the
successor and resource variables and how the minimum matching computed
while propagating the constraint can efficiently guide the search strategy.
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4.3.1 Constraints on Maximal Cliques
To specify the mutual exclusion constraints of Equation (4.1) on unitary
resources, it would be sufficient to model each of them directly with a binary
difference constraint. However, stronger propagations can be obtained with
the well-known all-different global constraint on cliques of the associated
conflict graph of the tasks, as noted in [Simonis, 2007]. Only constraints
corresponding to all distinct maximal cliques need to be added, as any other
clique would be subsumed by a maximal one.

In the general case, computing the maximum clique of an arbitrary graph
is NP-Hard. However, [Gupta et al., 1982] mentions how all maximal cliques
(including the maximum one) of an interval graph of n vertices can be gen-
erated by a sweep algorithm in Θ(n log n), or even linear time Θ(n) if the
endpoints of the intervals are already sorted.

Indeed, once the 2n endpoints of the tasks are sorted by ascending order,
all maximal cliques of the corresponding intersection graph can be easily de-
tected by maintaining the list of overlapping tasks at each endpoints. While
scanning the sorted list of endpoints, the corresponding task is added when-
ever its left endpoint is encountered and removed upon reaching its right
endpoint. For each minimal size of the maintained list (except when it is
empty), a new clique can be started with all currently overlapping inter-
vals, collecting all subsequently opened new intervals until a local maximum
is reached, which corresponds to a new maximal clique. All-different con-
straints can then be posted in linear time on all maximal cliques to improve
propagation and allow global reasoning over multiple resources.

However, as mentioned in [Kutz et al., 2008], a collection of all-different
constraints that share subsets of variables but propagate independently may
keep inconsistent values w.r.t. their conjunction. [Simonis, 2007] mentions
the use of the non-overlap global constraint diffn introduced by [Beldiceanu
and Contejean, 1994] to solve placement problems. However, its propagation
rules would be useless with the FJS because tasks are fixed and have a
unitary demand. Moreover, it has been proved in [Kutz et al., 2008] that
the corresponding decision problem is NP-complete. As the instances of our
target application, the GAP, are relatively easy to solve w.r.t. the allocation
decision problem, it was deemed efficient enough to use a simple collection
of all-different constraints in our model.

4.3.2 Symmetries
Depending on the instance at hand, allocation problems may exhibit symme-
tries on equivalent resources and equivalent tasks. For the GAP, the former
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is much more frequent on real instances: many adjacent stands in a termi-
nal share the same set of characteristics, whereas equivalent flights with the
same aircraft type, company and dates are seldom.

Resources

Resources that have exactly the same set of possible tasks can be exchanged
while preserving the admissibility and optimality of solutions. Therefore,
whenever a (yet) unused resource is assigned to a task, all other unused
equivalent resources should be removed from its domain upon backtracking.

To this end, all the equivalence classes Ck of resources (with at least two
elements) are computed before search. Before each assignment of a task i
to an unused resource rj, we check if other unused resources remain in the
corresponding class C to add the following goal:

(xi = rj) ∨ (xi /∈ {j′ s.t. rj′ ∈ C ∧ unused(rj′)})

with predicate unused : T 7→ B indicating whether a resource is still free of
any task or not.

Tasks

Two tasks i and i′ that have the same compatible resource set and arrival
and departure dates can also be exchanged while preserving solutions. So
they can be arbitrarily ordered with the following constraint:

∀i < i′ s.t. Ri = Ri′ , ts
i = ts

i′ , te
i = te

i′ , xi < xi′ (4.4)

4.3.3 The IdleCost Constraint
Modeling transition cost with standard CP reification constraints would be
cumbersome and inefficient. Therefore, we introduce a new global optimiza-
tion constraint IdleCost to tighten the bounds of the cost of a single resource
and the domains of its possible tasks. In the following sections, we define the
semantic of this constraint as well as static bounding schemes for the overall
sum of transition costs. Propagation rules for the IdleCost constraint are
then discussed in Section 4.3.4.

Optimization Constraint for a Single Resource

We introduce the IdleCost optimization constraint on a single resource rj ∈ R
to tighten its idle times cost and filter the resource variables of its set of
possible tasks Tj:
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Definition 12 (The IdleCost Constraint). Let XTj
⊆ X be the set of re-

source variables associated to Tj and f : N 7→ N a positive elementary cost
function that represents the contribution of a single idle time interval. The
optimization constraint IdleCost(rj, Tj,XTj

, f, cj) is satisfied iff:

• cj = ∑
ti∈Tj s.t. xi=j f(next(ti)s − te

i ) with the next function defined as
in Section 4.2.5;

• the set of mutual exclusion constraints Equation (4.1) of Section 4.2.4
restricted to variables of XTj

is satisfied.

Static Lower Bound

A static lower bound for the overall sum of the squares of idle times can be
easily computed as it is minimal when all idle times have the same size and
are evenly distributed among all resources. For n tasks to be executed on m
resources, there are exactly n + m idle time periods (taking the first and last
idle times of every resource into account). Therefore, we can compute the
following global lower bound for the objective:

cost ≥ (n + m)
⌊

d(R)− d(T )
n + m

⌋2

(4.5)

Static Upper Bound

For instances with identical availability for all resources, a simple upper
bound could also be obtained by saturating the first resources except the
last non-empty one (where tasks are stacked at the beginning). The corre-
sponding bound would then be:

cost ≤ m′d(r)2 + (d(r)− k)2 (4.6)

with d(r) = re − rs, m′ = m −
⌈

d(R)−d(T )
d(r)

⌉
the number of empty resources

and k = (d(R)− d(T )) mod d(r) the time taken by the tasks scheduled on
the last non-empty resource. But this bound is very loose and not really
significant to help close the optimality gap.

4.3.4 Per-Resource Propagation of Transition Costs
We present in this section a new polynomial algorithm to achieve Bound
Consistency on the cost of a single resource for the IdleCost constraint: after
its execution, a partial assignment can be extended to the possible tasks of
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the resource such that the cost can be assigned either its lower or upper
bound.

After describing a tight upper bound and a naive relaxed lower bound in
Section 4.3.4, we introduce in more details our algorithm to achieve Bound
Consistency on the lower bound in Section 4.3.4. We define the following
notations, used in these sections, w.r.t. a resource rj:

• Tj = {ti ∈ Tj s.t. j ∈ dom(xi)} its possible tasks;

• Tj = {ti ∈ Tj s.t. xi = j} its necessary tasks;

• ubj the upper bound induced by Tj;

• lbj the lower bound induced by Tj and Tj;

with dom(xi) the set of currently possible values for xi.

Bounds Based on the Union of Tasks

In the next paragraphs, we present simple algorithms to compute the upper
bound and an approximation of the lower one.

Assignment and Upper Bound The upper bound of a single resource
can be computed thanks to the set of necessary tasks Tj already assigned
to rj. If the cost was linear, it would be enough to maintain the sum of
the durations of the tasks of Tj and subtract it from the availability of the
resource to obtain a tight upper bound on the cost: d(rj) −

∑
ti∈Tj

d(ti).
Upon assignment of a task ti, we would just have to subtract its duration to
incrementally maintain the bound in constant time: ubj ← ubj − d(ti).

Though for a positive non-linear cost like the sum of the squares of idle
times, we have to thoroughly maintain the set of idle intervals to be able
to determine which one will be impacted by the new assigned task ti, and
compute the new upper bound incrementally. Once the idle interval [a, b[ is
identified, the upper bound is updated accordingly:

ubj ← ubj − (b− a)2 + (ts
i − a)2 + (b− te

i )
2 (4.7)

As Tj only contains disjoint tasks, a simple binary search tree could be
used to maintain the set of intervals and update the upper bound in loga-
rithmic time upon assignment, provided that the data structure be easily
“backtrackable”. However, considering the low number of tasks associated
with each resource in the instances of our target application (the GAP), we
only implemented a simple linear algorithm in the solver to avoid the likely
overhead costs of a more sophisticated data structure.
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Removal and Lower Bound Approximation The removal is not as
straightforward as the assignment because tasks are not disjoint within Tj,
so the removal of one task from a resource rj does not entail that a new
necessary idle time appears on rj. However, by maintaining the union of
intervals corresponding to the tasks of Tj, necessary idle times can be detected
whenever Tj does not span the entire availability. The lower bound can then
be updated as follows upon removal:

lbj ←
l∑

k=1
(he

k − hs
k)2 (4.8)

with Hj = [rs
j , re

j [ \⋃
∀ti∈Tj

[ts
i , te

i [=
⋃l

k=1[hs
k, he

k[ the necessary “holes” (possi-
bly ∅, in which case lbj ← 0).

A segment tree data structure [de Berg et al., 2000] can be used to main-
tain the tasks intervals, and augmented to also aggregate the upper bound
of each subtree, including the root node which holds the bound for the
whole resource, in Θ(k log n) with n the number of intervals and k the num-
ber of newly discovered necessary idle times. However, for reasons already
mentioned in the previous section, our solver only use a naive (but simple)
quadratic algorithm.

Tight Lower Bound

Among the bounds presented in the previous section, only the upper one is
tight, because the assignment of a new possible task on a resource necessarily
decreases the cost. In contrast, the lower bound is not, as the union of tasks
doesn’t take into account temporal conflicts. Therefore, the actual lower
bound could be arbitrarily larger as, for example, with the following set of n
possible tasks on a given resource depicted in Figure 4.3:

Example 1 (Overlapping tasks with unbounded lower bound approximation
ratio). ∀i ∈ [0..n

2 − 1]:

• ts
2i+1 = 2i(g + 1) and te

2i+1 = 2i(g + 1) + g + 2

• ts
2i+2 = (2i + 1)(g + 1) and te

2i+2 = (2i + 1)(g + 1) + g + 2

with rs = 0, re = n(g + 1) + 1 and some constant g ∈ N>0.

The lower bound of Section 4.3.4 applied to Example 1 would be 0 whereas
the actual lower bound is n

2 g2. Therefore, the ratio of the actual lower bound
over the one defined by Equation (4.8) can be arbitrarily large.
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g g1 11

Figure 4.3 – The resource and tasks of Example 1 with unbounded lower
bound approximation ratio.

To achieve Bound Consistency on the cost lower bound, the best admis-
sible solution for the single resource should be taken into account. This best
solution must be a maximal independent set of the conflict graph, as adding
another task can only decrease the cost of a resource, but it is not neces-
sarily either the maximum independent set (as the number of tasks is not
relevant on instances with different durations) or even the largest (duration
wise) maximal one as it would be the case with a linear cost.

More precisely, a solution corresponding to the lower bound of a resource
rj must be a shortest path between vertices vj and vm+n+j corresponding to
the fictive opening task tj and fictive closing task tm+n+j of the resource in the
Global Compatibility Graph (GCG) G = (V, E), introduced in Section 4.2.6.

In the GCG, the shortest path between two vertices can be computed
in linear time Θ(|V |+|E|) as mentioned in [Cormen et al., 2009], provided
a topological ordering of the vertices (corresponding to the tasks sorted by
increasing start time, i.e. for each edge (vi, vj) ∈ E, the start time of ti is
smaller than the start time of tj). Therefore, the lower bound of an IdleCost
optimization constraint can be computed in linear time with respect to G
(i.e. possibly quadratic time w.r.t. the number of tasks n):

lbj ← dist(vj, vm+n+j) (4.9)

with dist : V 2 7→ N the length of the shortest path from vj to vm+n+j in G.
After the initialization steps where Tj and G are built and the bounds

computed, the IdleCost constraint must propagate whenever:

• A task ti is assigned to rj:

– the upper bound must be updated (cf. Section 4.3.4);
– the arcs of the predecessors of vi pointing to vertices vi′ s.t. i′ > i

(i.e. that “skip” vi) must be deleted;
– if vi does not belong to the previous shortest path, a new one

must be computed and the lower bound updated accordingly.

• A task ti is removed from rj:
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– the arcs of the predecessors of vi pointing to vi must be deleted;
– if vi belongs to the previous shortest path, a new one must be

computed and the lower bound updated accordingly.

Moreover, thanks to the previous tightening algorithms, we are also able
to filter the domains of the decision variables corresponding to tasks of Tj

whenever the bounds of the resource cost variable cj are updated:

• If the upper bound cj of cj is modified:

– if cj < lbj, a failure is triggered;
– if cj < ubj, we try to determine if some tasks of Tj \ Tj (i.e. the

set of possible tasks not yet assigned) must be added: for each
task ti of this set, if its removal entails a new lower bound lb′

j s.t.
lb′

j > cj, then the task must be assigned to rj, i.e. xi = j.

• Conversely, if the lower bound cj of cj is modified:

– if cj > ubj, a failure is triggered;
– if cj > lbj, we try do determine if some unassigned tasks must be

excluded from rj: if the addition of a task entails a new upper
bound ub′

j s.t. ub′
j < cj, then the task must be excluded from rj,

i.e. xi 6= j.

Note that all the modifications of the maintained data structures induced by
these tests must be undone whenever the triggering condition is not met.

To sum up, the IdleCost optimization constraint achieves Bound Consis-
tency on the cost of a single resource and the filtering of the resource variables
of its possible tasks in:

• O(n2) when a task is assigned: O(log n) to update the upper bound,
O(n2) to delete the bypassing edges of G and O(n2) to find a shortest
path;

• O(n2) when a task is removed: O(n) to delete edges and O(n2) to
compute the shortest path;

• O(n3) when the upper bound of cj is modified: O(n) shortest paths to
compute;

• O(n2 log n) when the lower bound of cj is modified: there might be
O(n) uncovered idle times at most for the O(n) tasks.
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The overall propagation algorithm has then a worst-case time complexity in
O(n3). However, most of the time, the propagation events and the structure
of the GCG of the resource at a given node will not trigger the necessary
conditions to meet this worst case.

Nonetheless, the computation of shortest paths, involved in the most
costly rules, can also be implemented incrementally. Each time a task ti

is assigned on the resource, let ti′ and ti′′ be the preceding and succeeding
assigned tasks (possibly t0 and tn+1) w.r.t. ti, then only the shortest path
between vi′ and vi′′ needs to be recomputed (therefore the lower bound can
be updated incrementally), and the shortest path problem is divided into two
independent subproblems between vi′ and vi, and vi and vi′′ .

The results presented in Section 4.7 were obtained with this incremen-
tal algorithm, not detailed here for the sake of brevity. However, this new
constraint IdleCost and its propagation is only local to a single resource, so
the lower bound of the global cost can be O(m) times worse than the ac-
tual bound as the uniqueness of task is relaxed. So in the next sections, we
present a new CP model based on a much tighter relaxation, considering all
resources and all tasks simultaneously.

4.4 Global Propagation of Transition Cost
As mentioned in the previous section, the lower bound of the transition cost
obtained with per-resource constraints can be far from the optimal value and
we show in this section how to globally propagate the cost, taking all resources
into account simultaneously, thanks to the MinWeightAllDiff optimization
constraint. We also present several search strategies which take advantage
of the MinWeightAllDiff constraint to efficiently guide the search.

4.4.1 Relaxation of FJS to Path Covering
In the GCG, a solution to the FJS problem (as can be seen in Figure 4.4 for
an instance with 5 tasks and 3 resources) corresponds to m vertex-disjoint
simple paths (vj, . . . , vm+n+j), ∀j ∈ {1, . . . , m}, joining the opening vj to
the closing vm+n+j of each resource rj while covering all vertices exactly
once. Therefore, an optimal solution to the FJS w.r.t. the cost defined by
Equation (4.3) corresponds to a set of m such paths with minimal total
length.

More generally, a set of vertex-disjoint simple paths that covers all vertices
of an unweighted directed graph is called a vertex-disjoint Path Cover (PC),
whose objective is to minimize the number of paths [Ntafos and Hakimi,
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Figure 4.4 – A solution to an instance of FJS.
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Figure 4.5 – Relaxation of FJS to Minimum Weight Path Cover (MWPC).

1979]. For the GCG of an FJS problem, there must be exactly m paths in
any minimal PC, as there are exactly m sources vj, ∀j ∈ {1, . . . , m}, and m
sinks vm+n+j (corresponding to the opening and closing of all resources). So
we can use a variant of the PC problem called the Minimum Weight Path
Cover (MWPC) whose objective is to produce a cover that minimizes the
total weight of its edges, as depicted in Figure 4.5.

We then obtain a relaxation of the FJS problem which is much tighter
than the one presented in Sections 4.3.3 and 4.3.4 w.r.t. the lower bound of
the total cost, as all tasks are scheduled exactly once, instead of possibly
|Ri|≤ m times for each task ti. For example, an instance with a single task,
spanning the entire availability of resources and compatible with all of them,
would lead to a 0 lower bound using IdleCost constraints, whereas the exact
lower bound (m− 1)(re − rs)2 is provided by the MWAD constraint.

However, an MWPC is not in general a solution to FJS, as the consistency
on resources along a path is not entailed by the model:

• A path starting at vj, corresponding to the opening of resource rj,
may end at vm+n+j′ , with j′ 6= j, the closing of another resource. E.g.
with the instance depicted in Figure 4.6, the path starting at t3, corre-
sponding to the opening of resource r3, should end at t11, the closing
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of the same resource; however it may end at t10, the closing of r2, be-
cause immediate successors are all compatible along this path, even
if the corresponding subset of tasks cannot be assigned on the same
resource.

• More generally, if γ(ti, ti′)∧ γ(ti′ , ti′′), nodes vi, vi′ and vi′′ can succeed
each other along the same path, even though it does not imply that
Ri ∩Ri′ ∩Ri′′ 6= ∅, which is necessary to assign ti and ti′′ on the same
resource.

t1

t2

t3

t9

t10

t11

t4
r1,r2

t5
r2,r3

t7
r1,r3

t8
r1,r2

t6
r2,r3

c1,7 = 81

c2,4
=

4

c5,8 = 16

c7,9 = 49

c8,10 = 16

c3,5
= 9

c4,6 = 1

c6,11 = 64

Figure 4.6 – A solution to MWPC is not generally a solution to FJS.

To obtain an exact FJS model, resource variables are kept in our new
model and channelling constraints must be added to link them with the
successor variables introduced in Section 4.4.2, which model the MWPC on
the GCG. To implement the minimization constraint between the successor
variables and the cost, we first reduce MWPC to the Linear Assignment
Problem in the next section.

4.4.2 Successor Variables and Reduction to the Linear
Assignment Problem

A PC in the GCG can be modelled by m + n variables yi that represent the
successor of each node vi in V s, with a domain equal to the indices of its
possible successors:

Definition 13 (Successor Variables). A PC in the GCG of an FJS problem
is represented by the following set of successor variables:

Y = {yi,∀vi ∈ V s}

where ∀yi ∈ Y , dyi
= {i′,∀vi′ ∈ N+(vi)} is the domain of yi, such that yi = i′

iff next(ti) = ti′.
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In the following, we will denote by dom(yi) the current domain of succes-
sor variable yi.

Note that the union of the domains of Y must be equal to the indices of V e,
i.e. ⋃

yi∈Y dom(yi) = {m + 1, . . . , 2m + n}, as all actual tasks (with indices in
{m + 1, . . . , m + n}) have at least one predecessor (the openings of its com-
patible resources) and all closings (with indices in {m + n + 1, . . . , 2m + n})
as well (its corresponding opening and compatible tasks). To obtain a valid
PC, the variables of Y must have distinct values, such that the assignment
is a perfect matching between the m + n variables and the m + n values. So
finding an MWPC on G reduces to the Linear Assignment Problem (LAP)
between Y and the union of its domains, with cost ∑

∀vi∈V s w((vi, vyi
)) =∑

∀ti∈T s cti,next(ti), i.e. the cost of the FJS in equation (4.3).
An optimal matching can be obtained in polynomial time, i.e. O(n(d +

m log m)) with an efficient enough implementation of the Hungarian algo-
rithm (with n the size of the left set of vertices, m the size of the right
one and d the number of edges). We can then model an MWPC with the
MinWeightAllDiff global optimization constraint introduced by [Caseau and
Laburthe, 1997], for which [Sellmann, 2002] describes how the Hungarian
algorithm can be used to propagate the MinWeightAllDiff constraint, which
is able to enforce generalized arc-consistency over the constraint variables
representing the end of each task, i.e. the successor of each node of the GCG
in our case.

4.4.3 The MinWeightAllDiff Constraint
To constrain the transition cost of FJS, we add to our model a MinWeigh-
tAllDiff constraint over the successor variables and the global cost, where the
contribution of an assignment yi = i′ is defined by w′(i, i′) = w((vi, vi′)) =
cti,ti′ for all ordered pairs of compatible tasks ti and ti′ with i < i′:

MinWeightAllDiff(Y , w′, cost) (4.10)

which is satisfied iff cost = ∑
∀yi∈Y w′(i, yi) and variables of Y have distinct

values. We will denote by {lb, . . . , ub} the current domain of the cost.
[Sellmann, 2002] describes how the Hungarian algorithm can be used to

compute lb, then how the variables of Y can be pruned to withdraw values
that only belong to assignments exceeding ub. To our knowledge, there is no
implementation of the MinWeightAllDiff constraint in any of the main pub-
licly available CP solvers. Therefore, we implemented an incremental version
of the Hungarian algorithm for the FaCiLe OCaml constraint library [Barnier
and Brisset, 2001], based on the C++ source code of [Payor, 2017], to compute
lb in O(|Y|d), with |Y|= n + m and d = ∑

∀yi∈Y |dom(yi)|= |E|.
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Our constraint propagates only when edges belonging to the previous
minimal matching are removed: the remaining assignments are kept and aug-
mented until a new perfect matching is obtained, then the optimal matching
is computed and a failure is triggered if its weight is strictly greater than ub.

As the results obtained with the computation of lb alone outperformed
by orders of magnitude our previous approach, we postponed to a later study
the implementation of the pruning of Y described in [Sellmann, 2002] and
the assessment of potential additional speed-ups for FJS. Note that the
MinWeightAllDiff constraint is intended for constraint programs that mini-
mizes the assignment cost, so the constraint does not compute ub (nor prunes
successor values w.r.t. lb). However, the same algorithm could be used to
implement a maximization version and achieve Bound Consistency for the
cost and GAC for Y with the same complexity.

However, as mentioned in Section 4.4.1, a solution to the LAP (therefore
an MWPC), is generally not a solution to the FJS problem and variables of
Y must also be constrained with the resource variables X as described in the
next section.

4.4.4 Channelling Constraints
To obtain valid FJS solutions, we have to keep the AllDifferent constraints on
the cliques of overlapping tasks (see Section 4.3.1) to prevent incompatible
tasks to be assigned on the same resource. Moreover, implication constraints
that ensure resource consistency along each path of an MWPC must be
added to link the successor variables and the resource ones. Furthermore, a
task succeeds to another one iff the hole (see Definition 14) between them is
empty, so additional propagation rules can be associated with each resource
to improve our model.

Resource Consistency

As mentioned in Section 4.4.1, each path of a PC must connect the opening
tj to the closing tm+n+j of a resource rj, and all tasks in-between must be
assigned to rj to obtain a valid FJS solution. Therefore, the following chan-
nelling constraints must be added to our model to ensure that successive
tasks are assigned to the same resource:

yi = j ⇒ xi = xj, ∀yi ∈ Y ,∀j ∈ dom(yi) (4.11)

where resource variables xi of X = {xm+1, . . . , xm+n} are extended to open-
ings, i.e. ∀j ≤ m, xj = j, and closings, i.e. xm+n+j = j, with bound vari-
ables. Note that we use arc-consistent equality constraints (instead of bound-
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consistent ones) on the RHS of the implication to improve the filtering of
successor variables whenever the contraposition holds, i.e. xi 6= xj ⇒ yi 6= j.

Tasks Exclusion

When a successor variable is assigned, i.e. yi = i′, on a known resource, all
tasks that could be scheduled between ti and ti′ should be removed from the
resource. Conversely, when no task can be scheduled between ti and ti′ , the
successor variable must be assigned yi = i′.

First, we define the notion of hole between assigned tasks to help specify
the tasks exclusion constraints:

Definition 14 (Hole). For any pair of tasks ti and ti′ assigned on resource
rj (i.e. xi = xi′ = j) with no assigned task in-between (i.e. ∄ti′′ ∈ Tj s.t.
xi′′ = j ∧ te

i ≤ ts
i′′ ∧ te

i′′ ≤ ts
i′), hole Hi,i′

j is defined as the set of all unassigned
tasks that fit between ti and ti′:

Hi,i′

j = {ti′′ ,∀ti′′ ∈ Tj s.t. j ∈ dom(xi′′) ∧ te
i ≤ ts

i′′ ∧ te
i′′ ≤ ts

i′}

We denote by Hj the set of all holes of resource rj.

For each resource rj, we introduce a new TaskExclusion constraint on Xj

and Yj, the restrictions of X and Y to Tj, to remove j from the resource
variables of the hole between connected tasks and, conversely, to chain the
sides of holes that become empty:

TaskExclusion(rj,Xj,Yj), ∀rj ∈ R (4.12)

which is satisfied when yi = i′ ⇔ Hi,i′

j = ∅, ∀Hi,i′

j ∈ Hj.
∀yi ∈ Yj s.t. yi = i′, xi = j and xi′ = j, it holds that ∀ti′′ ∈ Hi,i′

j , xi′′ 6= j

and, conversely, ∀Hi,i′

j ∈ Hj, it holds that Hi,i′

j = ∅⇒ yi = i′. Therefore, to
propagate constraint (4.12), the following rules are triggered upon successor
assignment or resource modification (with ti′′ ∈ Hi,i′

j initially), which are
depicted in Figures 4.7 and 4.8:

• yi = i′ ⇒ xi′′ 6= j, ∀ti′′ ∈ Hi,i′

j : to propagate successor assignment
yi = i′, we remove j from the resource variables of all tasks ti′′ ∈ Hi,i′

j ,
i.e. xi′′ 6= j;

• xi′′ = j ⇒ (Hi,i′′

j = ∅ ⇒ yi = i′′) ∧ (Hi′′,i′

j = ∅ ⇒ yi′′ = i′): if a hole
becomes empty on either side of a task upon resource assignment, i.e.
xi′′ = j, then both sides of the holes are connected, i.e. yi = i′′ if the
left hole is empty, yi′′ = i′ if the right hole becomes empty;
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rj ,rj′′

ti3
rj ,rj′

Figure 4.7 – If successor variable is assigned on a known resource rj, then
possible in-between tasks ti1 , ti2 and ti3 are removed from the resource rj.

ti
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ti2
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Figure 4.8 – If no task can be scheduled on resource rj between two already
assigned tasks ti and ti′ , then successor variable must be assigned, i.e. yi = i′.

• xi′′ 6= j ⇒ (Hi,i′

j = ∅ ⇒ yi = i′): if the last task of a hole is removed
from the resource, i.e. xi′′ 6= j, then both sides of the hole are connected.

For each resource, the non-empty holes of Hj (initialized to {Hj,m+n+j
j },

withHj,m+n+j
j = Tj\{tj, tm+n+j}) can be maintained in logarithmic time with

a Binary Search Tree5 (BST) upon a successor assignment (removal of a hole)
and a task assignment (a hole must be divided in two) or exclusion (the task
must be removed from its hole). This set can be maintained and queried in
O(log|Tj|) to remove a task ti′′ from a holeHi,i′

j (implemented as a hash table)
when j is filtered from xi′′ and to exclude j from the resource variables of a
hole upon assignment. When a task of a holeHi,i′

j is assigned on rj, Hi,i′

j must
be split in two new nodes, which can be done in O(log|Tj|+|Hi,i′

j |). However,
we only implemented a simple linear algorithm to query holes, letting the
implementation of the BST for a later study, as a similar optimization of our
previous model only improved resolution times by less than 10 %.

4.4.5 Search Strategies
This section presents several search strategies to optimize the robustness
of the GAP instances solved in Section 4.7, i.e. to balance the idle times
over time and resources. As an MWPC is a tight relaxation of FJS, all our

5Lexicographically ordered by pair (te
i , ts

i′) for each hole Hi,i′

j .
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t1 tn+m+1

t2 tn+m+2

t3 tn+m+3

RB-EST
Earliest Start

RB-BC
Best Cost

Figure 4.9 – On this partial solution (where assigned tasks are in orange and
unassigned ones are in grey), the first resource is currently the least loaded, so
the Resource Balancing strategy would select either task RB-EST or RB-BC.

strategies follow the optimal assignment computed by the MinWeightAllDiff
constraint when trying to assign a successor variable.

The simplest strategy aims at selecting the least loaded resource, while
the second one generalizes the notion of resources to non-empty holes (see
Definition 14). Then both first assign a task on the resource or hole, be-
fore assigning its successor according to the optimal matching. The third
strategy simply follows the optimal matching on one of the side of the best
selected hole. As no single strategy was robust enough to efficiently solve our
various instances, we eventually obtained the best results with their parallel
cooperation.

Resource Balancing

For many simple instances of FJS, we observed that the resource loads were
balanced in optimal schedules. So the Resource Balancing (RB) strategy
(illustrated in Figure 4.9) selects the least loaded resource rj, i.e. with the
greatest amount of idle time, among the ones where unassigned tasks can still
be scheduled. Then it assigns to rj either the task with the Earliest Start
Time (EST) or the one that improves the cost the most, call Best Cost (BC),
before assigning the successor variable of the selected task according to the
optimal matching computed by the MinWeightAllDiff constraint. Note that
this second assignment contributes to the reduction of the search space as
one of the channelling constraints (4.11) will be able to propagate. We will
denote these variants by:

• RB-EST: choose least loaded resource, assign earliest task;

• RB-BC: choose least loaded resource, assign task with best cost.
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ti tn+m+ihole

Figure 4.10 – A partial solution (where assigned tasks are in orange and
unassigned ones are in grey) with a non-empty hole on resource ri.

t1 tn+m+1

t2 tn+m+2

t3 tn+m+3

Min-EST Min-BC

Max-EST Max-BC

Figure 4.11 – On this partial solution (where assigned tasks are in orange
and unassigned ones are in grey), the Critical Hole strategy would either
select the hole of resource r1 (CH-Min) or the one of resource r2 (CH-Max),
then choose among its possible tasks the one with earliest start time (EST)
or best cost (BC).

Critical Hole

In order to better take into account the structure of partial solutions where
blocks of successive tasks can be discarded, we may consider each non-empty
hole (see Definition 14 and Figure 4.10) as an independent resource. So the
Critical Hole (CH) strategy (illustrated in Figure 4.11) selects the one (among
all resources) with the fewest (called Min) or the most (called Max) tasks,
using the largest span to break ties, rather than the least loaded resource of
strategy RB. Then it unfolds identically. This leads to four variants:

• CH-Min-EST: choose hole with fewest tasks, assign earliest task;

• CH-Min-BC: choose hole with fewest tasks, assign task with best
cost;

• CH-Max-EST: choose hole with most tasks, assign earliest task;

• CH-Max-BC: choose hole with most tasks, assign task with best cost.

Task Chaining

Instead of selecting a new task to insert into the critical hole based on its start
time or its impact on the cost as the previous strategy, the Task Chaining
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(TC) strategy simply follows the optimal matching provided by the Min-
WeightAllDiff constraint from the beginning of the hole, or backward from
its end, by assigning the corresponding successor variable. We then choose
to extend the side which reduces the most the span of the hole, called Best
Extension (BE), or the one corresponding to the successor variable with the
smallest domain, called Next Size (NS), which gives four variants:

• TC-Min-BE: choose hole with fewest tasks, assign task with best hole
reduction;

• TC-Min-NS: choose hole with fewest tasks, assign task with smallest
domain;

• TC-Max-BE: choose hole with most tasks, assign task with best hole
reduction;

• TC-Max-NS: choose hole with most tasks, assign task with smallest
domain.

Furthermore, the reduced costs computed by the Hungarian algorithm
when propagating the MinWeightAllDiff constraint could be used to guide
the search as well, as mentioned by [van Hoeve, 2005].

Parallel Cooperation

Even if the TC-Min-BE strategy gives excellent results with many instances
of the GAP (as shown on Figure 4.16), solving them in a few dozens of
backtracks, other instances were more time-consuming and better solved by
one of the other variants. Therefore, we can build a new strategy that benefits
from all of the previous variants by exploring the search space in parallel
while exchanging upper bounds between processes, provided there are enough
available cores on the computer.

We have developed a cooperative version of FaCiLe, which benefits from
the distributed system presented in Section 2.1, provides a parallel search
goal that forks its process before applying each strategy and solves the same
model while communicating bounds to all the children through their parent
whenever a better solution is found. So the parent process corresponds to the
server of Section 2.1.1 and the children to the clients. Note that the parallel
cooperation of strategies may be strictly better than any single strategy on
some instances as the addition of new upper bounds might shorten its reso-
lution time. This strategy will be denoted by CP_COOP in Section 4.7.
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4.5 Basic ILP Model
In [Bolat, 2001], the author proposes several mathematical models for the
GAP, with different kinds of optimization criteria, in order to capture the
robustness of gate assignment solutions towards flight schedule disruptions.
In particular, he proposes to minimize the variance of the idle times of the
gates to evenly distribute the global leeway over resources and time. This
criterion allows for short or long pauses that might be necessary in some
instances without hindering the optimization of the rest of the schedule.

An idle time is defined as a time period, possibly of null duration, between
two successive flights assigned to the same gate and during which the gate
is unoccupied. The underlying idea of this minimization criterion is that the
more the flights are regularly distributed to gates, the less the corresponding
gate allocation solution should be sensitive to schedule disruptions.

Indeed, even if the number and the sum of the idle times is considered
to be constant in [Bolat, 2001], because the arriving and departing times of
flights are fixed, their respective durations directly depend on the gate as-
signment. Hence, the more the idle times are balanced w.r.t. their durations,
the smaller the sum of their squares (or any other convex function). The
author proposes an Integer Linear Programming (ILP) model to solve the
GAP with the sum of the idle times squares as minimization criterion, with
O(mn2) binary variables zi,j,k stating that flight tj is the successor of flight
ti on gate rk.

4.5.1 Tasks and Resources Compatibility
In this section, we define a ternary compatibility predicate, adapted from
the one of Definition 10, to help define compact ILP models in Sections 4.5
and 4.7.

For a given instance, all the transition costs cti,tj
, ∀i, j ∈ {0, . . . , n + 1},

i < j, need not be defined, but only for the ordered pairs of indices of
compatible tasks, i.e. that have at least a possible resource in common and do
not overlap. In Section 4.2.6, we have defined a binary compatibility predicate
γ(ti, ti′), which indicates when ti and ti′ are compatible. However, as decision
variables of ILP models are defined by a triplet of indices (of two possibly
successive tasks and a given resource), we define a new ternary compatibility
predicate to specify the corresponding compatible triplets of indices and allow
the ILP models described in the following sections to discard unnecessary
decision variables:
Definition 15 (Ternary Compatibility Predicate). The ternary compatibil-
ity predicate γ′ : {0, . . . , n}×{1, . . . , n + 1}×{1, . . . , m} 7→ B on two ordered
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task indices i and j and a resource index k is defined by:

∀i ∈ {0, . . . , n}, ∀j ∈ {i + 1, . . . , n + 1}, ∀k ∈ {1, . . . , m},

γ′(i, j, k) =


rk ∈ Rj if i = 0 ∧ j ⩽ n (first task)
rk ∈ Ri if i > 0 ∧ j = n + 1 (last task)
true if i = 0 ∧ j = n + 1 (no task)
rk ∈ Ri ∩Rj ∧ te

i ⩽ ts
j otherwise (pairs of tasks)

ti, tj and rk are then said to be compatible.

In the following sections, we reformulate the ILP model of [Bolat, 2001],
taking into account the heterogeneity of the gates and discarding variables
that can statically be set to 0 because of an incompatibility, which was not
explicitly done in the article.

4.5.2 Decision Variables
A binary variable is defined to denote the successive assignment of a pair of
compatible tasks to the same compatible resource:

∀i ∈ {1, . . . , n}, ∀j ∈ {i + 1, . . . , n}, ∀k ∈ {1, . . . , m}, s.t. γ′(i, j, k),

zi,j,k =

1 if tasks ti and tj are successively assigned to rk

0 otherwise
(4.13)

∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m}, s.t. γ′(0, j, k),

z0,j,k =

1 if tj is the first task assigned to resource rk

0 otherwise
(4.14)

∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m}, s.t. γ′(i, n + 1, m),

zi,n+1,k =

1 if ti is the last task assigned to resource rk

0 otherwise
(4.15)

∀k ∈ {1, . . . , m},

z0,n+1,k =

1 if there is no task assigned to resource rk

0 otherwise
(4.16)
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If the instance is feasible, there is exactly one zi,j,k variable equal to 1
for each task ti, so the allocation can trivially be deduced from the decision
variables:

∀ti ∈ T , ∃! j ∈ {i + 1, . . . , n}, ∃! k ∈ {1, . . . , m}, s.t. zi,j,k = 1

Note that variables zi,j,k are similar to the ones of typical ILP models of
the Multi-commodity Flow Problem [Wang, 2018], where they are interpreted
as the amount of a commodity k flowing through an arc from node i to node
j in a network. Nevertheless, as shown hereafter, the model is not formulated
as a flow problem model.

4.5.3 Constraints
A solution to the GAP must cover all tasks, ensure that the same resource
is used by successive tasks and that tasks do not overlap, and be integral.

Covering As each task has to be assigned to exactly one compatible re-
source, the following constraints are introduced to ensure that exactly one
task is assigned immediately before a given task tj (Equation (4.17)), and
only one task is assigned immediately after a given task ti (Equation (4.18)):

∀j ∈ {1, . . . , n},
∑

i∈{0,...,j−1},k∈{1,...,m}
γ′(i,j,k)

zi,j,k = 1 (4.17)

∀i ∈ {1, . . . , n},
∑

j∈{i+1,...,n+1},k∈{1,...,m}
γ′(i,j,k)

zi,j,k = 1 (4.18)

Moreover, Equation (4.19) is added to specify that there are exactly n + m
binary variables that should be equal to 1 in a feasible solution:∑

i∈{0,...,n},j∈{i+1,...,n+1},k∈{1,...,m}
γ′(i,j,k)

zi,j,k = n + m (4.19)

Resource Consistency The resource used by several successive tasks
must be the same. So if a pair of tasks (ti, tj) with j ⩽ n (i.e. ti is not
the last task on its resource) are successively assigned to a resource rk, there
must be a task tj′ with j′ ∈ {j + 1, . . . , n + 1} such that the pair of tasks
(tj, tj′) are also successively assigned to rk, but there cannot be any task tj′

such that the pair of tasks (tj, tj′) are successively assigned to a resource
rk′ 6= rk. This consistency constraint is modeled with Equation (4.20),
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which states that, for any pair of tasks (ti, tj) and any resource rk, either
zi,j,k = 1, and then no zj,j′,k′ with j′ > j and k′ 6= k can be equal to 1
(∑

k′∈{1,...,m}|k′ 6=k,j′∈{j+1,...,n+1} zj,j′,k′ = 0); or zi,j,k = 0, and then at most one
zj,j′,k′ with j′ > j and k′ 6= k equals to 1 (which is always true due to
Equations (4.17) and (4.18)):

∀i ∈ {0, . . . , n− 1}, ∀j ∈ {i + 1, . . . , n}, ∀k ∈ {1, . . . , m}, γ′(i, j, k),
zi,j,k +

∑
j′∈{j+1,...,n+1},k′∈{1,...,m}\{k}

γ′(j,j′,k′)

zj,j′,k′ ⩽ 1 (4.20)

Note that these consistency constraints are not formulated as a flow balance
constraint but as the linearization of the logical constraint:

∀i ∈ {0, . . . , n− 1}, ∀j ∈ {i + 1, . . . , n}, ∀k ∈ {1, . . . , m}, γ′(i, j, k),
∀j′ ∈ {j + 1, . . . , n + 1}, ∀k′ ∈ {1, . . . , m} \ {k}, γ′(j, j′, k′),

zi,j,k = 1 ⇒ zj,j′,k′ = 0

These O(mn2) constraints dominate the number of constraints of this model.

Capacity Each resource can execute at most one task at a time. Due to the
previous consistency constraints, it is sufficient to check that each resource
should have at most one assigned first task:

∀k ∈ {1, . . . , m},
∑

j∈{1,...,n+1}
γ′(0,j,k)

z0,j,k ⩽ 1 (4.21)

Domain As mentioned above, the decision variables are binary:

∀i ∈ {0, . . . , n}, ∀j ∈ {i + 1, . . . , n + 1},∀k ∈ {1, . . . , m}, γ′(i, j, k),
zi,j,k ∈ {0, 1} (4.22)

4.5.4 Objective
As previously mentioned, the objective function proposed in [Bolat, 2001]
consists in minimizing the sum of the squares of the idle times, in order
to find robust solutions towards operational arrival and departure delays.
Therefore, the following minimization criterion is proposed:

min
∑

i∈{0,...,n},j∈{i+1,...,n+1},k∈{1,...,m}
γ′(i,j,k)

I2
i,jzi,j,k (4.23)
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where Ii,j is the idle time duration between two successive tasks ti and tj

assigned to the same resource. Note that any positive transition cost, possibly
non-uniform (i.e. which depends on the resource), could be used instead.

4.6 Flow Model
As mentioned in the previous section, the FJS is similar to a Minimum-Cost
Flow Problem (MCFP) [Wang, 2018], more precisely an Unsplittable Multi-
commodity Flow Problem (UMFP) [Alvelos and De Carvalho, 2003] with
additional constraints, which translates into a tighter and smaller ILP model.
We first introduce the corresponding graph flow model and then describe its
translation to ILP as an improvement of the basic model constraints.

4.6.1 Graph Model
The FJS can be seen as a kind of Unsplittable Multi-commodity Flow Prob-
lem (UMFP) [Alvelos and De Carvalho, 2003] with unit capacity for each
arc and unit demand for each commodity. But our problem is defined on a
directed multigraph G = (V, E) with parallel arcs between nodes vi and vj

(corresponding to tasks ti and tj) whenever te
i ⩽ ts

j ∧ |Ri ∩Rj| > 1 that
restrict the compatible commodities rather than their amount. Arcs are la-
beled with the corresponding compatible resource index k (represented by a
distinct color in the example of Figure 4.12) s.t. γ′(i, j, k), and are specified
by triplets of V × V × {1, . . . , m}. More classically, the opening of resources
are the sources and their closing the sinks.

Definition 16 (Compatibility (Multi)Graph). Given an FJS instance G =
(V, E, w, d) with weight w : E 7→ R⩾0 and supply d : V 7→ R, its compatibility
(multi)graph is defined by:

• V = VT ∪ V s
R ∪ V e

R:

(4.24a)VT = {vi, ∀i ∈ {1, . . . , n}}

(4.24b)V s
R = {vk

0 , ∀k ∈ {1, . . . , m}}

(4.24c)V e
R = {vk

n+1, ∀k ∈ {1, . . . , m}}

VT corresponds to regular tasks, V s
R to fictive openings of the resources

and V e
R to their endings, and |V | = 2m + n.
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• E = ET ∪ Es
R ∪ Ee

R ∪ ER:

ET = {(vi, vj, k), ∀i ∈ {1, . . . , n− 1}, ∀j ∈ {i + 1, . . . , n},
∀k ∈ {1, . . . , m} s.t. γ′(i, j, k)} (4.25a)

(4.25b)Es
R = {(vk

0 , vj, k), ∀j ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m},
s.t. rk ∈ Rj}

(4.25c)Ee
R = {(vi, vk

n+1, k), ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m},
s.t. rk ∈ Ri}

(4.25d)ER = {(vk
0 , vk

n+1, k), ∀k ∈ {1, . . . , m}}

ET corresponds to idle times between two regular successive tasks, Es
R

to idle times between the opening of the resources and their first tasks,
Ee

R to the ones between their last tasks and the closing of the resources,
and ER to empty resources. |E| is equal to the number of compatible
pairs of (real) tasks plus 2 ∑

k∈{1,...,m} |Tk|, the number of arcs from
the opening and closing of the resources to compatible tasks, i.e. in
O(2mn + n2) in the worst case.

• Each arc has a unit capacity and a weight (or cost) w defined by:

w((vi, vj, k)) = ci,j = I2
i,j

(also valid for start and end vertices vk
0 and vk

n+1). Note that our model
is generic enough to take into account non uniform resources (gates)
for which the cost may depend on k.

• Each node has a supply value d defined by:

d(v) =


1 if v ∈ V s

G (openings)
−1 if v ∈ V e

G (closings)
0 otherwise (i.e. v ∈ VF , regular flights)

As an example, Figure 4.12 represents the graph model of the following
FJS instance:
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Figure 4.12 – Colored representation of the compatibility graph of Example 2
where commodities (or gates) are represented by different colors. Weights (i.e.
costs of idle times) are indicated in hundreds of min2. The flow corresponding
to the optimal solution is shown with bold arcs.

Example 2 (FJS Instance with 4 Tasks and 3 Resources). T = {t1, t2, t3, t4},
R = {r1, r2, r3} with rs = 06 : 00, re = 21 : 00 (in hh : mm format):

i ts
i te

i Ri

1 06 : 00 08 : 00 {r1, r2}
2 10 : 30 12 : 00 {r1, r2}
3 11 : 20 14 : 00 {r2, r3}
4 18 : 00 20 : 00 {r1, r3}

Feasibility Like a standard flow problem, an instance of the FJS is feasible
iff there exists a binary flow ϕ : E 7→ {0, 1} such that the imbalance between
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outgoing and incoming flows is equal to the supply:

∀v ∈ V,
∑

e∈E+
v

ϕ(e)−
∑

e∈E−
v

ϕ(e) = d(v) (4.26)

with E+
v = {e, ∀e = (u, v, k) ∈ E} the incoming arcs of node v and E−

v =
{e, ∀e = (v, w, k) ∈ E} its outgoing ones. However, for the GAP, the flow
must also satisfy the following additional constraints.

Additional constraints In general, a solution to a UMFP is not a solution
to the FJS, because all internal nodes (corresponding to real flights) must be
covered by the flow (Equation (4.27)) and paths must be “monochromatic”
(Equation (4.28)), i.e. consistently use the same resource along a path:

• A solution to the FJS must cover all tasks of T , therefore all nodes of
VT must have a unit inflow and outflow:

∀v ∈ VT ,
∑

e∈E+
v

ϕ(e) =
∑

e∈E−
v

ϕ(e) = 1 (4.27)

• The same resource must be used to enter and leave a node, therefore
the flow imbalance of Equation (4.26) (null for internal nodes) must be
expressed individually for each resource (or “color”):

∀vi ∈ VT ,∀rk ∈ Rk,
∑

(vi′ ,vi,k)∈E+
v

ϕ((vi′ , vi, k)) =
∑

(vi,vi′′ ,k)∈E−
v

ϕ((vi, vi′′ , k))

(4.28)

The flow of each edge (vi, vj, k) (or (vk
0 , vj, k), (vi, vk

n+1, k), (vk
0 , vk

n+1, k)) cor-
responds to the binary decision variable zi,j,k (or z0,j,k, zi,n+1,k, z0,n+1,k) of the
basic ILP model described in Section 4.5.2, thus the assignment of flights to
gate can be deduced accordingly.

Objective The cost of a flow is defined by:∑
e∈E

w(e)ϕ(e) (4.29)

As mentioned in the previous paragraph, this cost corresponds to the one of
the basic ILP model described in Section 4.5.4, and is therefore also equal
to the transition cost. Figure 4.13 depicts the Gantt diagram of an optimal
solution to Example 2 with cost: cost = 10069× 100min2.
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Figure 4.13 – Gantt diagram of the optimal solution to Example 2.

4.6.2 ILP Model
The previously described FJS model as a UMFP with additional constraints
can be translated in an ILP model equivalent to the basic model of Section 4.5,
based on the same zi,j,k binary decision variables and cost expression but
with tighter and fewer constraints. The UFMP flow imbalance constraints of
Equation (4.26) ensures that all sources (or resource openings) have a unit
outflow as their supply value is 1:

∀k ∈ {1, . . . , m},
∑

j∈{1,...,n+1}
γ′(0,j,k)

z0,j,k = 1 (4.30)

and that all sinks (resource closings) have a unit inflow (supply value of -1):

∀k ∈ {1, . . . , m},
∑

i∈{0,...,n}
γ′(i,n+1,k)

zi,n+1,k = 1 (4.31)

which amounts to O(m) constraints.
The covering constraints of Equation (4.27) for nodes of VT (i.e. regular

tasks) lead to Equation (4.18) of the basic model, i.e. all internal nodes have
a unit outflow:

∀i ∈ {1, . . . , n},
∑

j∈{i+1,...,n+1},k∈{1,...,m}
γ′(i,j,k)

zi,j,k = 1

which amounts to O(n) constraints.
More specifically, the constraints of Equation (4.28) ensuring that the

path of a commodity is monochromatic, can be directly translated to:

∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . , m},
∑

i′∈{0,...,i−1}
γ′(i′,i,k)

zi′,i,k =
∑

i′′∈{i+1,...,n+1}
γ′(i,i′′,k)

zi,i′′,k
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(4.32)

which amounts to O(mn) constraints.
Other constraints of the basic model that ensure that nodes of VF have a

unit inflow (cf. Equation (4.17)), the continuity of path (cf. Equation (4.20))
or the number of variables equal to 1 (cf. Equation (4.19)) would be redundant
in our flow model and are therefore omitted. Overall, this model has only
O(nm) constraints in the worst case instead of O(mn2) for the basic one.

4.7 Results
All experiments were carried out on a standard Debian GNU/Linux 9.6
workstation with a 2.0 GHz 16-core processor and 48 GB of RAM, with the
OCaml 4.05.0 compiler [Leroy et al., 2017] and Gurobi 8.1 [Gurobi Optimiza-
tion, 2018]. Note that all execution times and backtrack amounts graphs are
plotted with a base-10 logarithmic scale.

In this section, we first describe how we have extracted the traffic demand
and the available gates from actual traffic records at Paris-CDG airport in
Section 4.7.1. We focus here on optimizing the robustness of the overall sched-
ule, in order to absorb possible deviations from the original schedule due to
traffic delays, severe weather conditions, equipment failures, etc. Hence, our
version of the GAP is a FJS problem where the sum of the transition costs,
defined as the square of idle times (cf. Section 4.2.5), should be minimized.
Nevertheless, many of the aforementioned side-constraints or secondary ob-
jectives could be easily added to our CP model.

We show in Section 4.7.2 that our new model based on the MinWeigh-
tAllDiff constraint outperforms by orders of magnitude our previous model
using the IdleCost constraint, and compare in Section 4.7.3 the various strate-
gies described in Section 4.4.5. Then we show in Section 4.7.4 that our CP
approach not only outperforms the basic ILP model,but also our improved
Flow model (cf. Section 4.6) solved by the state-of-the-art solver Gurobi, on
instances recorded from real data at Paris-CDG international airport. How-
ever, we will also show in the same section the limit of the CP approach with
large instances of the densest terminal in Paris-CDG.

As mentioned in Section 4.7.1, the limited number of gates and high
density of several terminals make the robustness of gate allocation quite
sensible to gate occupancy modification as a result of DMAN processing,
traffic delays, etc. Hence, we discuss in Section 4.7.5 the benefits of a robust
gate allocation in terms of idle times distribution between the initial traffic
and optimal robust solutions.
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Table 4.1 – Number of flights and gates (per day on average) w.r.t. the
terminal. The density is the ratio of the average number of flights by the
number of gates.

Terminal Flights Gates Density
B 15 10 1.5
F 185 27 6.8
J 72 20 3.6
K 53 19 2.8
Q 50 17 3.0

4.7.1 Data
The data sample used for this study is available at:

http://recherche.enac.fr/~wangrx/ecai_gap

It consists in:

• An actual traffic demand during a whole heavy month of traffic (July,
2017) at 5 terminals in Paris-CDG airport;

• A set of allowed aircraft types at each gate.

The traffic demand is extracted from actual traffic records: for each flight,
the data sample provides the arrival time at the gate, the departure time from
the gate, the aircraft type, the runway and the gate used. Table 4.1 gives the
number of flights (on average per day) and the number of gates by terminal
in this data sample.

In some cases (probably due to some gate-to-gate movements that were
not recorded), one of the two times was missing. The data were completed
as follows:

• When the arrival time is missing, the flight is considered at the gate
from the beginning of the day if there is no other flight previously
occupying the same gate. Otherwise, the flight is considered at the
gate 30 min before its departure time (which did not cause any gate
conflict in the data set).

• In the same way, when the departure time is missing, The flight is
considered at the gate until the end of the day if there is no other flight
occupying the same gate afterwards. Otherwise, the flight is considered
at the gate 30 min after its arrival time (which did not cause any gate
conflict in the data set).

http://recherche.enac.fr/~wangrx/ecai_gap
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Table 4.2 – Number of backtracks and execution time w.r.t. the number of
aircraft to prove optimality for ICTAI and MWAD with 7 gates.

# Flights # backtracks execution time speed-up
ICTAI MWAD ICTAI MWAD

33 17,925 68 1.41 s 0.06 s 23
34 373,502 22 19.2 s 0.03 s 640
35 516,989 2 39.6 s 0.02 s 1,980
36 6,768,752 24 458.1 s 0.04 s 11,453

The sets of allowed aircraft types at each gate is also deduced from the
actual traffic sample: we consider that the only aircraft types allowed at a
given gate are the ones that actually used this gate during the month.

4.7.2 Per-Resource vs. Global CP Models
Table 4.2 and Figure 4.14 compare the performance of the per-resource CP
model, named ICTAI, and the improved model based on the MinWeightAllD-
iff optimization constraint, named MWAD, with the TC-Min-BE strategy (cf.
Section 4.4.5). They show the number of backtracks and execution time (in
seconds) to prove optimality w.r.t. the number of aircraft on instances of the
GAP with 7 gates. Note that both y-axes are in logarithmic scale.

MWAD systematically outperforms ICTAI by orders of magnitude in
terms of backtracks as well as execution time, with speed-ups exceeding
10,000 for the largest instance.

4.7.3 Search Strategies
In this section, we present our results on 150 real instances at Paris-CDG
airport and discuss the performance of the search strategies mentioned in
Section 4.4.5. Figure 4.15 presents the Gantt diagram of an optimal solution
to one of these instances with 20 gates and 78 aircraft at terminal J.

Figure 4.16 gives the percentage of instances at terminal B, J, K and Q,
that MWAD is able to optimally solve within 60 s w.r.t. the search strategies
described in Section 4.4.5, during the busiest month of 2017 at Paris-CDG
airport. In all our tests, Gurobi and FaCiLe were allowed to exploit all 16
cores of our workstation, though the CP solver used only 11, one for the
server and ten for the parallel cooperation of the various strategies described
in Section 4.4.5.
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Figure 4.14 – Number of backtracks (solid lines) and execution time in sec-
onds (dashed lines) w.r.t. the number of aircraft to prove optimality for
ICTAI and MWAD with 7 gates.

Figure 4.15 – Gantt diagram of an optimal solution to an instance with 20
gates and 78 aircraft at terminal J of Paris-CDG airport.
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Figure 4.16 – Percentage of instances solved optimally within 60 s by MWAD
for all instances at Paris-CDG airport, w.r.t. the strategy.

As expected, the CH and TC strategies are more robust than the simpler
RB one, with a success rate of more than 80 % for TC-Min-BE, which is the
best variant for our instances. We can also observe that it is more efficient to
concentrate the search efforts on holes with the fewest number of compatible
flights (or tasks), i.e. the “Min” variants of CH and TC, following the “first-
fail” principle, than to schedule more requested ones, as the gate restrictions
are generally not too strict and still leave many assignment opportunities.
However, TC-Min-BE is not systematically the best strategy, and none of
the variants could easily be discarded as each one occasionally obtained the
best results on some instances.

In Table 4.3, we compare the cost of the best solutions found by differ-
ent strategies to the optimal value. Here, 0.00 % represents the optimum,
while a larger value corresponds to a suboptimal solution. Similarly to our
previous observations, the cooperation systematically reaches an optimal so-
lution, whereas single strategies all fail to do so in some occurrences. For
larger instances of terminal J (with 20 gates and more than 70 aircraft), they
can even be farther from the optimal value: up to 6.65 % on average with
strategy CH-Min-BC, and up to 11.9 % on some particular instances. Note
that even though we use 60 s as the time limit, the average time spent by
the CP_COOP strategy to solve an instance is much smaller than 60 s, only
slightly less than 10 s for the most difficult instances as shown in Figure 4.17.
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Table 4.3 – Average gap between the optimal cost and the one of the best
solution found within 60 s w.r.t. the strategy.

Strategy B K Q J
RB-BC 0.00 % +0.12 % +0.30 % +1.14 %
RB-Est 0.00 % +0.05 % +0.26 % +0.11 %
CH-Min-BC 0.00 % +0.12 % +0.47 % +6.65 %
CH-Min-Est 0.00 % +0.62 % +0.51 % +4.27 %
CH-Max-BC 0.00 % +4.26 % +3.10 % +5.00 %
CH-Max-BC 0.00 % +0.25 % +0.20 % +1.29 %
TC-Min-BE 0.00 % +0.01 % +0.07 % +0.05 %
TC-Min-NS 0.00 % +0.05 % 0.00 % +0.55 %
TC-Max-BE 0.00 % +0.11 % +0.32 % +0.38 %
TC-Max-NS 0.00 % +0.01 % +0.30 % +0.36 %

CP_COOP 0.00 % 0.00 % 0.00 % 0.00 %

4.7.4 CP vs. ILP Models
In this part, we compare our MWAD model, using the CP_COOP strat-
egy and solved with the development version of FaCiLe, to the ILP models
described in Sections 4.5 and 4.6 and solved by the Gurobi Commercial Op-
timizer 8.1.0 [Gurobi Optimization, 2018], with the same real traffic at the
Paris-CDG airport than the one used in the previous section to compare
search strategies.

Figure 4.17 displays the execution time to prove an optimal solution, aver-
aged over the entire month of July, 2017, w.r.t. the terminals and the models
(distinguished by their color). All models are able to reach optimal solutions,
and the optimality is always proved in reasonable time, more precisely in less
than 10 s with the Flow and MWAD models. The Flow model systematically
outperforms its Basic counterpart in terms of computation times, as does the
cooperative CP solver, up to 6.2 times faster for terminal J. Moreover the
latter also beats our best ILP model consistently. We think that the combi-
nation of a tight relaxation (thanks to the MinWeightAllDiff constraint) to
compute the lower bound of the global cost, efficient heuristics that follows
the corresponding optimal cover, and their parallel cooperation (to be able
to solve instances with distinct features), is what enable our CP solver to
compete with and outperform a state-of-the-art MIP solver like Gurobi.

Finally, we have also tested our different methods on instances of the
densest terminal (F), with more than 180 aircraft and 27 gates. Table 4.4
compares the average gap between the cost of the optimal solution found



122 CHAPTER 4. APPLICATION TO GATE ALLOCATION

B K Q J
Terminal

10−1

100

101

Ti
m

e
(S

ec
on

ds
)

BASIC
FLOW
MWAD

Figure 4.17 – Mean of execution times (in seconds) to prove optimality with
the basic ILP model and the Flow ILP model solved by Gurobi, and our new
MWAD CP model solved with FaCiLe for instances at Paris-CDG, w.r.t. the
terminal.

Table 4.4 – Average gap between the cost of optimal solution and the best
solution found with various ILP models and MWAD within different time
limits.

Time limit Basic Flow MWAD
30 s +∞ +∞ +0.8 %
60 s +∞ +∞ +0.1 %
120 s +∞ +0.0 % +0.1 %
300 s +∞ +0.0 % +0.05 %
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by the ILP and CP models within different time limits. We observe that
the MWAD solver is still capable to provide a very good solution at less
than 0.1 % from the optimal on average within a 60 s time limit, whereas
the ILP ones are unable to provide any solution in this time frame. This is
due to the fact that Gurobi (like most state-of-the-art ILP solvers) initially
performs some internal transformations of the problem (the “presolve” phase)
to reduce the search effort afterwards. The Basic ILP model is not even able
to find any solution with an extended time limit of 300 s.

However, our CP solver is still unable to consistently reach or prove opti-
mal solutions to such large instances within 300 s, while the Flow ILP solver
generally succeeds to do so in less than 120 s, thanks to the rewriting rules
and sophisticated heuristics used by Gurobi. Nevertheless, the MWAD solver
seems to be adequate in an operational context, especially when quick re-
assignment of near-optimal quality are needed upon major disturbances that
invalidate the current schedule.

4.7.5 Robustness of the Schedule
To assess the robustness of a gate allocation, we have measured the idle
times corresponding to the computed solution, as small idle times are likely
to cause issues on the day of operations. Table 4.5 shows the average idle time
between two successive flights assigned to the same gate (i.e. not counting
the idle times at gates openings and closings). The average for the initial
allocation recorded on the day of the traffic (named “Initial”) is 120 min,
which is improved by 37 min with the schedule obtained by our algorithms
(named “Robust”).

Table 4.5 – Average idle time between two consecutive aircraft at the same
gate.

Allocation Initial Robust
Average idle time 120 min 157 min

More interestingly, Figure 4.18 shows the distribution of idle times for the
entire airport. Those distributions are plotted for the Initial (in blue) and
Robust (in orange) allocations. As we can see, the Initial allocation leads to
a high number of short idle times: more than 1000 idle times (about 6 %)
between 0 and 10 min and more than 1300 idle times (almost 8 %) between
10 and 20 min. The Robust allocation drastically reduces the number of idle
times of less than an hour, thus increasing the robustness of the allocation as
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expected. With this model, only 150 idle times (less than 1 %) are less than
10 min. The presence of long idle times in all distributions (more than 2 h)
comes from the fact that all terminals are aggregated in this figure, even the
smallest ones with a very low density.

0 50 100 150 200 250 300 350 400
Idle time (minutes)

0

200

400

600

800

1000

1200

1400

N
um

be
ro

fo
cc

ur
re

nc
es

Initial
Robust

Figure 4.18 – Distribution of idle times for all terminals over all tested in-
stances.

Table 4.6 and Figure 4.19 present similar results, focusing on terminal F
only. Even for this particularly busy terminal, the Robust allocation manages
to provide solutions that significantly reduce the occurrences of small idle
times. Note also that there are very few idle times of more than 2 h, as the
density (the ratio between the number of flights and the number of gates) is
very high at this terminal.

Table 4.6 – Average idle time between two consecutive aircraft at the same
gate for terminal F only.

Allocation Initial Flow
Average idle time 65 min 73 min
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Figure 4.19 – Distribution of idle times at terminal F over all tested instances.

4.8 Conclusion
In this section, we have first presented a new global constraint which improves
the efficiency of CP solvers to find and prove robust solutions to the FJS
problem that minimize the variance of idle times (or any positive transition
cost) as proposed by [Bolat, 2001]. This new optimization constraint, named
IdleCost, ensures the Bound Consistency of the transition cost associated
with each resource and the filtering of the resource variables associated with
each possible task.

Then, we propose an improved CP model and search strategies which
considerably improves the previous approach to optimize the transition cost
of FJS. The main contribution of this novel approach consists in a much
better relaxation to constrain the global cost, which simultaneously takes all
resources into account instead of independent constraints that propagate the
cost for a single resource and may underestimate the lower bound by far. We
show that FJS can be relaxed to a Path Covering problem in a DAG and
that minimizing the sum of transition costs corresponds to Minimum Weight
Path Covering, which can itself be reduced to the Linear Assignment Prob-
lem. Therefore, our model is able to compute a much better lower bound of
the global cost thanks to the MinWeightAllDiff optimization constraint [Sell-
mann, 2002] on successor variables. However, a path cover is generally not
a solution to FJS and the resource variables of our previous model must be
linked by channelling constraints to the successor variables in order to obtain
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a valid schedule. Afterwards, we also point out the disadvantages of the ILP
model proposed in [Bolat, 2001] and propose a new efficient Minimum Cost
Flow model for the FJS problem.

Our latter CP model, implemented with an incremental version of the
MinWeightAllDiff constraint for the FaCiLe CP library and solved with a
parallel cooperation of various strategies guided by the optimal covering
computed by the constraint, outperforms our previous approach by orders
of magnitude, as well as the basic ILP model (solved by a state-of-the-art
MIP solver) on real instances at Paris-CDG airport of the GAP. When com-
pared with our improved Flow formulation of the ILP model, our parallel
CP solver still manages to perform better on most instances of the GAP.
However, when confronted to the densest instances, it is much harder for our
cooperation strategy to find optimal solution in a reasonable time, whereas
the Flow ILP model scales well.



Conclusion and Perspectives

Combinatorial optimization problems in Air Traffic Control and Management
become more and more difficult to solve because of the increasing scale of
their instances combined with the multiple uncertainties inherent to aviation.
On the other hand, the rapid development of multi-core processors and fast
networks has made the use of cooperative and parallel computing easier,
a technology which can increase the search speed, improve the quality of
solutions and allow to solve larger instances.

Contribution
In this thesis, we have studied the generic cooperation of different combinato-
rial solvers by sharing solutions and optimization bounds in order to speed up
the overall resolution process. We have specified a distributed system based
on a client-server scheme, consisting of a central process (i.e. the server),
which acts as a data manager, and any number of solvers (i.e. the clients).
To post and retrieve new information, solvers communicate asynchronously
through the server which holds the current state of the “solver” (i.e. best
solution and bounds). Solvers can execute in parallel on a set of processors,
either on a single multi-core computer or over a network. We have also pro-
duced high-level client bindings for the main three programming languages
used in our code base (C, C++ and OCaml) in order to ease the setup of new
cooperative algorithms for our framework. Then, we have focused on three
classic optimization methods: Integer Linear Programming (ILP), Constraint
Programming (CP) and a metaheuristic, and showed how to adapt them to
our framework. Finally, we have applied the resulting parallel solver to the
resolution of two large-scale combinatorial problems in the field of air traffic
control and management: the en-route conflict resolution problem and the
Gate Allocation Problem (GAP) at airports.

To solve the former, we have presented a novel scheme for the modelling
and resolution of aircraft conflicts in three dimensions. The model is strictly
separated from the resolution, which allows to easily compare optimization
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methods on the same instances and make them cooperate. Uncertainties are
handled in a realistic manner, and the model is fully generic with respect
to the type of maneuvers allowed, which provides ground for further exper-
imentation with real traffic data to validate the whole approach. Realistic
instances were generated with up to 60 aircraft and various difficulties and
densities. To solve this problem, we have combined a Memetic Algorithm
(MA) with an ILP solver as the clients of our cooperation framework, and
compared its results with both algorithms alone. For instances of low density,
optimality was reached by all three methods in a very short time. For larger
instances, a 5 min computation time limit was imposed in order to comply
with a real-time context. In this time frame, both the MA and ILP solver
were able to provide good solutions, though the latter could no longer prove
optimality. As expected, their cooperation outperformed both approaches
on all instances, making it possible to reach and prove an optimal solution
in most cases, even on very dense instances.

To solve the GAP, a problem which can be seen as a kind of Fixed Job
Scheduling (FJS), though with specific requirements or objectives, we have
introduced the new IdleCost global optimization constraint in the FaCiLe
CP library to efficiently find and prove robust solutions by minimizing the
variance of idle times between successive flights. This new optimization con-
straint enforces bound consistency on the transition cost of each resource
independently and filters the resource variables associated with each possible
task. However, our solver could not compete with a state-of-the-art MIP
solver like Gurobi, as per-resource constraints do not offer a good enough
relaxation of the problem on the lower bound of the global cost, which could
be very far from the optimal. To overcome this issue, we have also proposed
a novel approach which simultaneously takes all resources into account, with
a much tighter relaxation on the global cost as a Path Covering problem in
a directed acyclic graph. We propagate this new model thanks to an incre-
mental version of the MinWeightAllDiff constraint implemented with FaCiLe
and solve the GAP/FJS with a parallel cooperation of various strategies that
outperforms the previous approach as well as a basic ILP model (solved with
Gurobi) on real instances of the GAP at Paris-CDG airport. Finally, we
have also pointed out performance issues of the basic ILP model and pro-
posed a new efficient Minimum Cost Flow model for the GAP/FJS problem.
When compared with the new proposed ILP model, our parallel CP solver
can also perform better on most instances of the GAP. However, when re-
solving the densest instances, it is much harder for our cooperation strategy
to find optimal solution in a reasonable time, whereas the Flow ILP model
scales well.
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Perspectives
In this section, we present some leads to enhance the performance and usabil-
ity of the framework, as well as the performance and operational accuracy of
our solvers dedicated to ATM problems.

Cooperation Framework
Even though it only carries best solutions, bounds and optimality proof at
the moment, our framework is fully generic and could potentially handle
any type of information. Future investigations include the sharing of learnt
clauses or nogoods (i.e. reasons for failure within tree search) from CP or
SAT solvers, as in [Gebser et al., 2011, Chu and Stuckey, 2012], to avoid
the pitfalls that were previously identified. Cutting planes from MIP solvers
could also be exchanged to forbid the exploration of regions were no solution
can be found. To help metaheuristics within this framework, many additional
information might also be exchanged, such as partial solutions or subsets of
populations (for population-based metaheuristics).

One of the main drawbacks of our cooperation scheme is that the user
has to implement as many models as there are types of algorithms. In order
to facilitate the setup of the framework on a new problem, it would be much
more convenient to write the problem once in an agnostic high-level modeling
language and then automatically derive each algorithm-specific model (e.g.
CP, MIP, LS, etc.), as described in the Comet programming language [Michel
and Van Hentenryck, 2005], the IBM Concert Technology. Among the issues
that have to be addressed are the linearization of high-level constraints to
feed the MIP solver [Belov et al., 2016] or the definition of a neighborhood for
LS algorithms. Moreover, we have seen in Chapter 4 that the best internal
model for a solver depends on its resolution algorithm and the expressiveness
of the associated language, and often demands a lot of expertise. Therefore
the automatic rewriting of models would probably not produce a very effi-
cient parallel solver compared to carefully hand-tailored ones, but it would
constitute a simple and robust solver for non-experts.

ATC/ATM Applications
To enhance the technology readiness level of our applications, more detailed
models and scenario simulations should be designed. The CATS [Granger
and Durand, 2003] en-route simulator and ATOS [Gotteland and Durand,
2003] airport simulator, both developed at ENAC, could be used to integrate
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our solvers into an environment that models aircraft performance more accu-
rately and takes many operational constraints into account, such as airspace
sectorization or ground traffic congestion. In such a context, the solvers need
also to be adapted to a rolling horizon mechanism, where subproblems must
be iteratively solved on a sliding time window, or more generally to partial re-
assignments upon a schedule disruption, where a part of the previous solution
is kept while the rest must be recomputed with updated constraints.

For the en-route conflict resolution problem, one missing aspect towards
an operational decision support tool is the ability to provide an air traffic
controller with several alternative solutions. A distance must be defined
between trajectories to be able to build a set of solutions that are not too
similar to each other, and a suitable GUI should be designed to allow the
controller to select the the most convenient one easily.

For the gate allocation problem, the integration of our solver into the
ATOS simulator, which already implements runway sequencing of departures
and arrivals as well as ground traffic management, would enable to have a
global view of the interactions between all these operational tasks, and thus
to analyze and refine their interactions. To enhance the performance of our
solver further, we could also complete the implementation of the MinWeigh-
tAllDiff constraint, which only computes the lower bound of the assignment
cost in the current version, but could also filter the domains of successor
variables to remove assignments that would lead to exceed the upper bound
of the cost, as described in [Sellmann, 2002].
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FMS Flight Management System
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ILP Integer Linear Programming
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MCFP Minimum Cost Flow Problem
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MILP Mixed Integer Linear Programming
MIP Mixed Integer Programming
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RH Rolling Horizon
RHS Right Hand Side
S-MH Single-solution-based Metaheuristic
SA Simulated Annealing
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SESAR Single European Sky ATM Research
TC Task Chaining
TS Tabu Search
UMFP Unsplittable Multi-commodity Flow Problem
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