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Abstract

Seismic tomography models play a key role in visualizing and discussing the in-
ternal structure and dynamics of the Earth. However interpreting these models
is complicated by seismic data uncertainties that propagate into model uncer-
tainties and by imperfect data coverage that produces uneven resolution; these
complications can create biases and artifacts in the tomographic images. Large-
scale data fitting inversions can struggle to compute and/or constrain the model
resolution and uncertainties, making even harder to interpret their tomographic
models. A fundamentally different type of inversion recently adapted to seismic
tomography, the Backus–Gilbert SOLA inversion, provides direct control on the
model resolution and uncertainties and produces them together with the model
solution. In this Ph.D. thesis we aim to apply the SOLA inversion to surface
wave tomography to improve the interpretations about the upper mantle struc-
ture, with a particular interest on the Pacific region.

Firstly we apply the SOLA inversion with ray theory using a two-step ap-
proach. We regionalize path-averaged profiles of S-wave velocity as a function
of depth to produce a set of two-dimensional S-wave velocity maps at discrete
depths. We design an interpretation workflow that helps us to interpret the tomo-
graphic model accounting for the model uncertainties and resolution provided by
SOLA. Using this workflow we use statistical arguments to argue for the robust-
ness of an anomalous pattern of slow and fast velocity bands elongated in the
southeast-northwest direction below the Pacific lithosphere at ∼ 275 km depth.
However applying SOLA in the second step of a two-step surface wave inver-
sion suffers from certain limitations: (1) data uncertainty estimates are poor and
(2) the SOLA inversion is only two-dimensional (it does not constrain the vertical
resolution).

Secondly, we apply the SOLA inversion with finite frequency theory. In this
framework Rayleigh-wave phase delay data can be inverted into a 3D S-wave ve-
locity model in one linear step. We design a measurement process and estimate
data uncertainties by taking into account both measurement and source errors.
We apply our tomographic scheme to a synthetic case to show that the SOLA
inversion is indeed applicable to finite frequency surface wave tomography. The
model resolution allows us to pinpoint potential artifacts. Although further work
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is required, finite frequency SOLA surface wave tomography could soon be ap-
plied on real data.

Long-term developments of the technique would allow us to improve the es-
timation of data uncertainties and crustal corrections or to consider other types of
observables and parameters. The finite frequency SOLA surface wave tomogra-
phy could also be extended into a joint inversion with body waves in the future.
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Résumé

Les modèles tomographiques ont un rôle clé dans l’observation et la compréhen-
sion de la structure et de la dynamique interne de la Terre. Cependant, leur
interprétation est compliquée par la propagation des incertitudes sur les don-
nées en incertitudes sur le modèle et la couverture imparfaite des données qui
induit une résolution complexe ; ces complications créent des biais et artéfacts
dans les images tomographiques. Pour les gros problèmes, les inversions basées
sur la minimisation de l’écart entre données prédites et observées ont de grandes
difficultées à contraindre et à produire la résolution et les incertitudes, rendant
l’interprétation des modèles difficile. L’inversion SOLA récemment adaptée à
la tomographie sismique, basée sur la théorie Backus–Gilbert, offre un contrôle
direct sur les incertitudes et la résolution et, par construction, produit ces infor-
mations avec le modèle tomographique. L’objectif de cette thèse est d’appliquer
l’inversion SOLA à la tomographie en ondes de surface, dans le but d’améliorer
les interprétations sur la structure du manteau supérieur, avec un regard partic-
ulier sur la région du Pacifique.

Dans un premier temps, nous appliquons l’inversion SOLA dans le cadre de
la théorie des rais, en utilisant une approche en deux étapes. Nous régional-
isons des profils de vitesses moyennes des ondes S le long de trajets source-
récepteur pour produire des cartes de vitesses des ondes S à différentes pro-
fondeurs. Nous proposons aussi une démarche d’interprétation qui intrègre les
incertitudes et la résolution produites par SOLA pour analyser le modèle. Cette
démarche d’interprétation nous offre des arguments statistiques robustes pour
discuter l’existence d’hétérogénéités de vitesses allongées dans la direction sud-
est nord-ouest sous la lithosphère du Pacifique à∼275 km de profondeur. Cepen-
dant, cette première approche souffre de certaines limitations : (1) les incertitudes
sur les données ne sont pas très robustes et (2) l’inversion SOLA est uniquement
latérale (aucune contrainte sur la résolution verticale).

Dans un second temps, nous appliquons l’inversion SOLA dans le cadre d’une
théorie fréquence-finie. Avec cette approche, les délais de phase des ondes de
Rayleigh peuvent être inversés en un modèle tri-dimensionel de la vitesse des
ondes S en une unique étape linéaire. Nous développons un processus de mesure
et estimons les incertitudes sur les données qui incluent les erreurs sur la mesure
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et sur la source sismique. Nous effectuons une tomographie synthétique pour
montrer que l’inversion SOLA est en effet applicable à la tomographie fréquence-
finie en ondes de surface. La résolution du modèle nous permet de pointer des
artéfacts potentiels. Bien que cette approche nécessite encore quelques travaux,
l’inversion SOLA en tomographie fréquence-finie des ondes de surface devrait
pouvoir être appliquée bientôt avec des données réelles.

Des développements à plus long terme de cette technique pourraient inclure
une meilleure estimation des incertitudes sur les données, une meilleure prise en
compte de la croûte ou encore la considération d’autres types d’observables et de
paramètres physiques. La tomographique fréquence-finie en ondes de surface en
utilisant l’inversion SOLA pourra aussi être jointe à une inversion avec des ondes
de volume.
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Résumé étendu en français

Introduction

Une Terre dynamique

De nombreuses observations faites à la surface du globe montrent que la Terre
est un système dynamique. En particulier, la région du Pacifique contient des
modelés géologiques intéressants. Des rides océaniques sont visibles sur la carte
de bathymétrie (figure 1), par exemple la ride Est-Pacifique ou la ride Pacifique-
Antarctique. La profondeur du plancher océanique augmente avec la distance
à la ride et la majeure partie du pourtour nord de l’océan Pacifique est consitué
de fosses océaniques. Les régions d’arrière-arc qui constituent le côté continen-
tal de ces fosses océaniques sont le siège d’un volcanisme intense. Au milieu
des plaques tectoniques se trouvent aussi des zones volcaniques localisées, les
points chauds, par exemple Hawaï ou la Polynésie Française. Des modèles géo-
dynamiques sont proposés pour expliquer ces observations de surface, mais des
observations de l’intérieur de la Terre sont nécessaires pour les discuter. Observer
la structure tri-dimensionelle interne de la Terre est le rôle de la tomographie sis-
mique.

L’augmentation de la profondeur du plancher océanique s’explique par le re-
froidissement de la lithosphère lorsque celle-ci s’éloigne de la ride. Plusieurs
études tomographiques ont imagé le manteau supérieur du Pacifique pour dis-
cuter différents modèles de refroidissement de la lithosphère. Par exemple une
image de Ritzwoller, Shapiro & Zhong (2004) représentée sur la figure 1 mon-
tre la vitesse moyenne des ondes S en fonction de la distance à la ride dans leur
modèle. En observant la transition entre les vitesses faibles et fortes, Ritzwoller,
Shapiro & Zhong (2004) discutent de la profondeur de la lithosphère et com-
parent leur résultats à des prédictions géodynamiques. Les fosses océaniques
marquent les zones de subduction, où une plaque lithosphérique plonge dans
le manteau. Le contraste entre les propriétés physiques de la lithosphère et du
manteau sous-jacent rend ces plaques plongeantes très visibles dans les modèles
tomographiques. Par exemple une image de Zhao, Maruyama & Omori (2007)
représentée sur la figure 1 illustre le plongement de la plaque Philippine dans
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FIGURE 1: Carte de la bathymétrie dans la région du Pacifique.
Sont superposées des figures extraites de Ritzwoller, Shapiro &
Zhong (2004) (vitesse moyenne des ondes S en fonction de la dis-
tance à la ride), Zhao, Maruyama & Omori (2007) (plaque Philip-
pine plongeant dans le manteau) et Nolet et al. (2019) (un panache

mantellique sous les îles Galapagos).

le manteau. Il a été proposé que le volcanisme de points chauds serait alimenté
par des panaches mantelliques, remontées de matériaux chauds et peu denses à
travers le manteau, qui seraient déclenchés par des instabilités au niveau de la
discontinuité manteau-noyau. Plusieurs études tomographiques ont cherché à
imager ces panaches mantelliques avec plus ou moins de succès. Par exemple
une image de Nolet et al. (2019) représentée sur la figure 1 semble montrer un
panache mantellique sous les îles Galapagos.

Ces exemples illustrent les grandes avancées permises par la tomographie sis-
mique pour la compréhension de la dynamque interne du globe ces 50 dernières
années. Cependant, l’interprétation de ces images dans le détail peut s’avérer
particulièrement difficile. La figure 2 oppose deux modèles tomographiques de
la vitesse des ondes S à 75 km de profondeur. Bien que ces images s’accordent
pour les larges anomalies de forte amplitude, de fortes différences existent pour
des anomalies plus petites et de plus faible amplitude. Par exemple, sous Hawaï
le modèle de gauche montre une anomalie de vitesses faibles, le modèle de droite
une anomalie de vitesses fortes.
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FIGURE 2: Deux modèles de la vitesse des ondes S à 75 km de pro-
fondeur. Gauche : modèle Savani de Auer et al. (2014); droite : mod-
èle S20RTS de Ritsema, Heijst & Woodhouse (1999). Les figures ont
été produites avec l’outil en ligne Submachine (Hosseini et al., 2018).

Imager la structure interne de la Terre

La tomographie sismique utilise l’information collectée par les ondes sismiques
lors de leur propagation à l’intérieur de la Terre. Les ondes sismiques sont géné-
rées par les séismes qui ont lieu dans des régions géologiquement actives, comme
les zones de subduction ou les rides océaniques. Les ondes sismiques sont enreg-
istrées par les stations sismologiques qui sont réparties majoritairement sur les
continents ou les îles volcaniques. La figure 3 montre que la répartition spatiale
des séismes et des stations simologiques est très hétérogène, donc la couverture
des données est très imparfaite. De plus, des incertitudes sont liées aux données
sismologiques. Ainsi, les images tomographiques ont une résolution complexe et
leur propres incertitudes. La résolution peut être vue comme un filtre, au travers
duquel nous observons l’intérieur de la Terre, et qui déformerait la réalité. Par ex-
emple une hétérogénéité circulaire peut apparaître plus ou moins forte, grossie,
étalée, ou déplacée par rapport à sa position réelle. Ces deux aspects, incertitude
sur le modèle tomographique et résolution, compliquent l’interprétation des im-
ages et peuvent même nous induire en erreur. Afin d’améliorer la robustesse des
interprétations en tomographie, il est nécessaire de considérer la résolution et les
incertitudes attachées au modèle tomographique.

L’approche classique pour construire un modèle tomographique, dite de min-
imisation de l’écart aux données (minimisation de la distance entre les données
prédites par le modèle et les données observées) permet difficilement d’obtenir
la résolution et les incertitudes du modèle, notamment pour les gros problèmes
(beaucoup de données et de paramètres à estimer). Ces méthodes nécessitent
aussi l’ajout d’un a priori sur la solution à trouver et n’offrent pas de contrôle sur
la résolution et les incertitudes, celles-ci ne pouvant être estimées qu’une fois le
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FIGURE 3: Carte illustrant un grand nombre de stations (triangles
bleus) et évènements sismiques (cercles rouges) entre le 1er janvier
2010 et le 31 décembre 2017. La répartition spatiale des stations et

évènements est très hétérogène.

modèle obtenu. L’objet de cette thèse est de permettre un meilleur contrôle sur
les incertitudes et la résolution en tomographie en ondes de surface et d’intégrer
ces informations pour mieux interpréter les modèles du manteau supérieur.

A la fin des années 60, les chercheurs Backus et Gilbert ont proposé une ap-
proche d’inversion originale permettant de résoudre certains problèmes inhérents
aux approches classiques (Backus & Gilbert, 1967; Backus & Gilbert, 1968; Backus
& Gilbert, 1970). La méthode Backus-Gilbert ne nécessite pas d’information a pri-
ori, elle offre un certain contrôle sur la résolution et les incertitudes du modèle
et, par construction, produit ces informations. Dans cette thèse, nous cherchons
donc à appliquer l’inversion Backus–Gilbert dans le cadre de la tomographie en
ondes de surface. Nous appliquons d’abord l’inversion Backus–Gilbert dans le
cadre simple de la théorie des rais pour construire des modèles 2D à profondeurs
discrètes, puis dans le cadre plus élaboré d’une théorie fréquence-finie, pour con-
struire un modèle 3D.

Théorie inverse

Considérons que nous avons établi la théorie directe, c’est-à-dire une relation g,
qui pour un modèle de Terre m prédit des données d. Nous pouvons écrire cette
relation d = g(m). Idéalement en inversant l’opérateur g et à partir d’un jeu de
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données nous pourrions retrouver le modèle de Terre. Cependant, la couverture
de données étant imparfaite, l’opérateur g n’est pas inversible. Trouver un mod-
èle de Terre à partir d’un jeu de données est une tâche difficile ; c’est l’objet du
problème inverse.

Inversion de type minimisation de l’écart aux données

L’approche classique d’inversion pour obtenir un modèle de Terre est basée sur
la minimisation de l’écart aux données. Puisque la théorie directe d = g(m) per-
met de prédire des données pour un modèle de Terre, un modèle est recherché tel
que les données prédites sont suffisamment proches des données vraiment ob-
servées. Ainsi, le modèle de Terre obtenu produit des données similaires à ce qui
est observé. Cependant, la solution peut ne pas être unique : différents modèles
de Terre pourraient produire un écart aux données similaire. Afin de résoudre
ce problème de non-unicité de la solution, il est nécessaire d’ajouter des infor-
mations a priori pour mieux contraindre le problème ; c’est la régularisation. Par
exemple, un modèle avec de grandes variations pourrait sembler physiquement
inacceptable ; une contrainte sur la norme du modèle peut donc être ajoutée.
Un compromis apparaît entre deux objectifs antagonistes : l’inversion doit pro-
duire un modèle qui d’une part explique les données, mais qui d’autre part ne
s’éloigne pas trop de l’information a priori. Etant donné un a priori, les inversions
dites minimisation de l’écart aux données (régularisées) produisent une solution
qui satisfait à la fois les données et l’a priori. Un schéma illustrant les inversions
de type minimisation de l’écart aux données est représenté sur la partie gauche
de la figure 4.

Cette approche nécessite une information a priori ; mais dans certains cas il
peut être difficile de justifier un a priori. C’est notamment le cas en tomographie
globale où la connaissance de la structure du manteau reste encore imparfaite. A
noter aussi que la solution obtenue dépend de l’information a priori. Ainsi, une in-
formation a priori érronée conduira à une solution érronée. Nous observons aussi
qu’avec cette approche il n’est pas fait mention ni des incertitudes du modèle ni
de sa résolution. En effet, dans les inversions de type minimisation de l’écart aux
données, le modèle est obtenu sans considération de sa résolution et de ses incer-
titudes. Des méthodes ont été développées pour estimer ces informations mais,
pour les gros problèmes tomographiques, elles ont un coût calcul important et ne
conduisent souvent qu’à des estimations imparfaites. Plus important encore, si la
résolution et les incertitudes du modèle sont obtenues, elle ne le sont qu’a posteri-
ori, c’est-à-dire qu’aucun contrôle n’est possible sur ces quantités. Une approche
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FIGURE 4: Schéma comparatif des inversions classiques dites min-
imisation de l’écart aux données à gauche et des inversions SOLA-

Backus–Gilbert à droite.

fondamentalement différente, proposée par Backus et Gilbert dans les années 60,
peut apporter des solutions à ces problèmes.

Inversion Backus–Gilbert

L’inversion Backus–Gilbert prend le point de vue de la résolution et des incerti-
tudes du modèle pour résoudre le problème inverse. Elle offre ainsi un certain
contrôle sur ces quantités et, par construction, les produit sans surcoût. Aussi,
cette approche résout le problème inverse sans considération des données et ne
nécessite aucun a priori.

L’inversion Backus–Gilbert ne s’applique que pour des problèmes linéaires,
c’est-à-dire que la relation directe entre le modèle de Terre et les données est
linéaire. Nous pouvons écrire cette relation d = Gm où G peut être vue comme
une matrice. Comme précédemment, G n’est pas inversible. Nous cherchons
donc ce que l’on appelle une inverse généralisée, G†, qui lie une solution m̃ aux
données d, soit m̃ = G†d. En combinant les relations directe et inverse nous
obtenons une relation entre le modèle de Terre estimé et la vraie Terre : m̃ =

G†Gm. Un point du modèle estimé est une combinaison linéaire des éléments du
vrai modèle. Autrement dit, un point du modèle estimé est une moyenne spa-
tiale du vrai modèle. Ce moyennage spatial est donné par le produit G†G. La
figure 5 illustre ce concept : si l’on cherche à estimer un paramètre physique au
point bleu, alors la résolution fait que la valeur estimée est une moyenne locale
du paramètre physique dans une région étendue de l’espace, par exemple la ré-
gion rouge ; cette fonction est appelée une fonction de résolution. Ainsi, chaque
point du modèle estimé a sa propre fonction de résolution. L’inversion Backus-
Gilbert s’applique à chaque point du modèle indépendamment : Pour un point
donné, l’objectif de l’inversion Backus–Gilbert est de calculer l’inverse général-
isée G† telle que la fonction de résolution soit la plus compacte possible. Ainsi, le
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FIGURE 5: Illustration de la résolution pour la tomographie Backus–
Gilbert. Le problème est d’estimer un paramètre physique au point
bleu à partir des données obtenues pour les trajets illustrés par les
lignes noires. La résolution signifie que la valeur estimée au point
bleu sera une moyenne spatiale de la vraie Terre, par exemple la ré-
gion en rouge : la fonction de résolution. L’inversion Backus–Gilbert
cherche à minimiser la taille de cette région. L’inversion SOLA
cherche à minimiser l’écart entre la fonction de résolution et une

fonction de résolution cible, par exemple la région en vert.

point est une moyenne locale précise spatialement.
Cependant, il faut noter que les incertitudes du modèle augmentent lorsque

la résolution s’améliore. En effet, lorsque l’on fixe l’inverse généralisée G† on fixe
aussi la propagation des incertitudes sur la donnée en incertitudes sur le mod-
èle par la relation Cm̃ = (G†)TCdG†. Intuitivement, plus la résolution est bonne
en un point du modèle plus la quantité de données utilisée pour contraindre la
valeur à estimer en ce point est faible (longueur de rai qui tombe dans la fonction
de résolution) et donc les incertitudes attachées à la valeur estimée en ce point
sont plus élevées. L’inversion Backus–Gilbert cherche donc une inverse général-
isée telle que la résolution soit la meilleure possible, tout en garantissant une
propagation faible des incertitudes. Le schéma de droite sur la figure 4 illustre le
compromis dans le cadre de l’inversion Backus–Gilbert.

La formulation originale de l’inversion Backus–Gilbert n’a pas trouvé de nom-
breuses applications en tomographie sismique car elle s’avère avoir un coût cal-
cul très important. Dans les années 90, les chercheurs Pijepers et Thompson ont
proposé une formulation alternative plus efficace en terme de coûts calcul, tout
en conservant les avantages de l’inversion Backus–Gilbert originale (Pijpers &
Thompson, 1992; Pijpers & Thompson, 1993). Ils ont nommé cette reformulation
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l’inversion SOLA pour Subtractive Optimally Localized Averages (que l’on pourrait
traduire par moyennes locales optimales par différences).

L’inversion SOLA cherche toujours à calculer une inverse généralisée G† en
considérant un compromis entre résolution et incertitudes. Cependant, contraire-
ment à l’inversion originale qui cherche à minimiser l’étalement spatial d’une
fonction de résolution, l’inversion SOLA cherche à minimiser l’écart entre la fonc-
tion de résolution et une fonction de résolution cible prédéfinie. Le schéma de
droite sur la figure 4 illustre le compromis dans le cadre de l’inversion SOLA
en remplaçant le label taille de la résolution par écart à la résolution cible. L’inversion
SOLA a été introduite et adaptée à la tomographie sismique par Zaroli (2016)
et appliquée à la tomographie en ondes de volume. L’objet de cette thèse est
d’appliquer l’inversion SOLA à la tomographie en ondes de surface.

Tomographie SOLA en théorie des rais

Classiquement, la tomographie en ondes de surface commence par une mesure
de dispersion qui détermine un délai de phase (ou de groupe) en fonction de la
fréquence pour chaque paire source-récepteur. Ensuite, l’inversion fait appel à
un processus en deux étapes. Une approche possible est de considérer d’abord
chaque paire source-récepteur indépendammment. Pour une paire donnée, une
inversion (non-linéaire) avec la profondeur permet d’obtenir un modèle radial
de vitesses moyennées le long du trajet en fonction de la profondeur. La seconde
étape considère alors les profondeurs indépendamment : une inversion linéaire
latérale permet de construire un modèle 2D à une profondeur donnée à partir
des vitesses moyennes le long des trajets à cette profondeur. Cette seconde étape,
dite régionalisation, est linéaire donc l’inversion SOLA est applicable. Appliquer
l’inversion SOLA pour l’étape de régionalisation dans le cadre de la théorie des
rais est l’objet de cette première approche.

Données et méthode

Le problème direct considéré dans cette première approche est illustré sur la fig-
ure 6. Nous utilisons les profils de vitesses moyennes des ondes S le long des
rais obtenus par Maggi et al. (2006b). Une estimation de leur incertitude, obtenue
en comparant les trajets proches, est aussi disponible. Pour une profondeur, nous
avons donc un jeu de données et leur incertitude que nous pouvons relier linéaire-
ment, avec la théorie des rais, à un modèle 2D de la vitesse des ondes S à la pro-
fondeur considérée.
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FIGURE 6: Illustration du problème direct pour la régionalisation
(deuxième étape de l’inversion en deux étapes) dans le cadre de
la théorie des rais. A gauche sont représentés les trajets source-
récepteur, colorés en fonction des vitesses moyennes des ondes S
le long des rais issues de la première étape à 75 km de profondeur.
La théorie des rais permet de relier ces données à la vitesse des on-
des S à 75 km de profondeur. A droite est représentée l’incertitude

pour chaque rai obtenue en comparant les trajets proches.

En chaque point du modèle, la résolution cible est définie comme une région
circulaire dont le rayon est calculé à partir de la couverture de données. Aux en-
droits où la couverture est bonne, nous cherchons une bonne résolution et vice
versa. De cette manière nous homogénéisons spatialement la distribution des in-
certitudes du modèle. Sur la figure 4.1(b) est représentée la densité de données à
75 km de profondeur (la somme des longueurs de rais qui tombe dans une cel-
lule normalisée par la somme des longueurs de rais totale). A partir de la densité
de données, nous calculons le rayon de la fonction de résolution cible en chaque
point. Les rayons des fonctions de résolution cibles à 75 km de profondeur sont
donnés sur la figure 4.1(c). Quelques exemples de fonctions de résolution cibles
sont donnés sur la figure 4.2(a).

Résultats

Nous inversons les profils de vitesses à différentes profondeurs avec l’inversion
SOLA pour trois compromis résolution-incertitudes différents. Les figures 4.2(b),
(c) et (d) montrent quelques fonctions de résolution obtenues à 75 km de pro-
fondeur, pour les trois compromis choisis, des résultats les moins bien résolus
aux mieux résolus respectivement.
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La figure 4.3 montre l’ensemble des résultats tomographiques obtenus pour
les trois compromis résolution-incertitudes à 75 km de profondeur. Les colonnes
gauche, centrale et droite correspondent respectivement aux résultats les moins,
moyennement et mieux résolus. La première ligne montre les cartes de résolu-
tion qui sont un résumé de l’information sur la résolution. En chaque point du
modèle, ces cartes donnent le rayon d’un cercle qui contient 68% de la fonction
de résolution. On observe en effet que la résolution est meilleure pour la carte
la plus à droite. Bien sûr, à une amélioration de la résolution doit correspondre
une augmentation des incertitudes du modèle. Les incertitudes du modèle sont
données sur les cartes de la deuxième ligne. En effet les résultats les mieux réso-
lus sont aussi les plus incertains. Enfin les cartes de la dernière ligne montrent
les modèles tomographiques obtenus. On observe qu’un modèle mieux résolu
montre plus de détails ; mais ces détails sont aussi plus incertains.

Cette première approche montre que l’inversion SOLA est applicable à la to-
mographie en ondes de surface dans le cadre de la théorie des rais. L’inversion
SOLA produit des modèles tomographiques au moins aussi satisfaisants qu’avec
d’autres méthodes d’inversion, tout en offrant un contrôle direct sur la résolution
et les incertitudes du modèle.

Interprétations

Avec le modèle tomographique et l’information sur sa résolution et ses incerti-
tudes, l’objectif est maintenant de faire des interprétations robustes. Dans la suite
de l’analyse, nous nous concentrons sur les résultats du compromis résolution-
incertitudes correspondant aux résultats de la colonne centrale de la figure 4.3.
Pour cette analyse nous avons développé une démarche d’interprétation qui in-
tègre l’information sur la résolution et les incertitudes ; notamment pour discuter
des anomalies de vitesses par rapport à un modèle de référence. La figure 7 illus-
tre cette démarche d’interprétation.

Il faut commencer par définir un modèle de référence que nous allons tester
avec nos observations tomographiques. Cette référence peut être une prédiction
géodynamique. Dans cette étude nous utilisons un modèle de refroidissement
de la lithosphère, qui modélise le manteau comme un demi-espace infini qui re-
froidit par diffusion.

Contrairement aux valeurs du modèle de référence qui sont des prédictions
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FIGURE 7: Schéma illustrant la démarche d’interprétation du mod-
èle qui intrègre la résolution et les incertitudes du modèle.

en des points absolus de l’espace, les valeurs estimées dans le modèle tomo-
graphique sont des moyennes locales ; le modèle tomographique est une ver-
sion déformée de la réalité, ‘filtrée’ par la résolution. Ainsi, les modèles tomo-
graphiques ne devraient pas être comparés directement aux modèles de référence.
Dans cette étude, puisque l’inversion SOLA nous a fourni l’information complète
sur la résolution du modèle tomographique, nous pouvons ‘filtrer’ le modèle de
référence par la résolution pour obtenir deux quantités comparables : des obser-
vations de la Terre et des valeurs de référence qui sont toutes deux des moyennes
locales. Les figures 4.6(a) et (b) représentent le modèle tomographique et le mod-
èle de référence filtré par la résolution à 75 km de profondeur.

Nous pouvons alors calculer les anomalies de vitesses dans le manteau comme
la différence entre le modèle tomographique et la référence filtrée par la réso-
lution. Les anomalies de vitesses sont données sur la figure 4.6(c). Comme
nous connaissons les incertitudes sur le modèle, nous pouvons diviser chaque
valeur d’anomalie par l’incertitude correspondante pour exprimer les anoma-
lies de vitesses en termes de barres d’erreur σm̃. Ainsi, par exemple, une valeur
supérieure à 1 peut être interprétée comme une vitesse anormalement grande
qui sort des barres d’erreur (au sens Gaussien). Les anomalies exprimées sous
cette forme sont données sur la figure 4.6(d). Pour focaliser l’interprétation sur
les anomalies significatives, les figures 4.6(e) et (f) représentent ces anomalies de
vitesses avec les valeurs dans l’intervalle [−1, 1] et [−2, 2] masquées respective-
ment.

A 75 km de profondeur, on observe que les masques pour 1σm̃ et 2σm̃ (fig-
ures 4.6(e) et (f)) cachent environ 68% et 95% des pixels respectivement. Aussi, les
pixels restant ne semblent pas agrégés localement en structures cohérentes. Ces



12

observations sont attendues dans le cas où le modèle tomographique ne dévie
pas significativement du modèle de référence. Nous pouvons donc conclure que
le jeu de données utilisé dans cette étude ne permet pas de rejeter ce modèle de
refroidissement de la lithosphère à 75 km de profondeur.

La figure 4.8 montre les résultats obtenus à 275 km de profondeur. A cette
profondeur, les masques laissent apparaître une structure en bandes allongées
dans la direction sud-est–nord-ouest, comme indiquée sur la figure par les lignes
noires. Ces bandes apparaissent avec le masque à 1σm mais aussi avec le masque à
2σm. Elles sont donc robustes au sens des incertitudes. Cependant, de telles struc-
tures allongées peuvent être un artéfact produit par une résolution anisotrope.
Dans notre étude, puisque nous avons l’information complète sur la résolution,
nous pouvons vérifier cette hypothèse. La figure 4.10 représente une sélection
de fonctions de résolution dans le Pacifique. On observe que la résolution sem-
ble bien focalisée et circulaire. Ces bandes allongées ne sont donc sûrement pas
un artéfact dû à une distribution azimutale hétérogène des données : elles sont
robustes au sens de la résolution. De telles bandes ont aussi été observées par
Montagner (2002) et French, Lekic & Romanowicz (2013a). Il est intéressant de
noter que ces bandes sont allongées dans la direction du mouvement absolu de la
plaque Pacifique. Il est possible que nous imagions ici un mode de convection qui
apparaît naturellement perpendiculairement au mouvement d’une plaque rigide
(lithosphère) sur un milieu ductile (asthénosphère) : les cellules de convection sous-
lithosphèriques à petite échelle (e.g. Ballmer et al., 2009).

Conclusion

Dans cette première approche basée sur la théorie des rais, nous avons construit
un modèle tomographique du manteau supérieur dans le Pacifique à partir de
données d’ondes de surface en utilisant un processus en deux étapes. La pre-
mière étape, effectuée par Maggi et al. (2006b) en utilisant une inverison non-
linéarie, a produit des profils de vitesses moyennées le long des rais. La sec-
onde étape est linéaire et nous avons pu utiliser l’inversion SOLA pour con-
struire un jeu de modèles de vitesses 2D à différentes profondeurs. L’inversion
SOLA s’est avérée être un outil très puissant dans cette régionalisation de don-
nées d’ondes de surface pour contrôler la résolution et les incertitudes du modèle
tomographique, et considérer ces informations pour intepréter avec robustesse
le modèle. Cependant, cette approche souffre de certaines limites, dont notam-
ment : (1) l’estimation des incertitudes sur les données peut être améliorée et
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(2) l’inversion SOLA n’a pu produire que des modèles 2D à profondeurs dis-
crètes (la résolution verticale n’est pas considérée). Dans la section suivante,
nous appliquons l’inversion SOLA dans le cadre d’une théorie plus élaborée, dite
fréquence-finie, pour construire un modèle 3D de la vitesse des ondes S dans le
manteau supérieur avec l’inversion SOLA.

Tomographie SOLA en théorie fréquence-finie

Dans le dernier volet de cette thèse, nous utilisons une théorie fréquence-finie
pour relier des mesures de délais de phase à la distribution tri-dimensionelle de
la vitesse des ondes S dans le manteau supérieur. Afin de linéariser le prob-
lème, pour pouvoir appliquer l’inversion SOLA, nous travaillons dans le cadre
de l’approximation de Born.

Données et méthode

La théorie directe utilisée dans cette deuxième approche est basée sur le phéno-
mène de diffusion. Les hétérogénéités du manteau ont pour effet de diffuser
une partie de l’énergie du champ d’ondes primaire émis par une source sis-
mique, produisant des champs d’ondes diffusés, qui sont tous observés au niveau
des stations sismologiques. Ainsi, la donnée mesurée à une station contient de
l’information sur les propriétés physiques tri-dimensionelles du manteau. Le
problème direct est illustré sur la figure 8. Un délai de phase pour une paire
source-récepteur, à une fréquence donnée, est relié à la distribution 3D de la
vitesse des ondes S dans la Terre par un noyau de sensibilité 3D. Les incertitudes
sur les données sont estimées par une technique de type Monte Carlo.

Nous utilisons les programmes informatiques de Zhou, Dahlen & Nolet (2004)
pour calculer les noyaux de sensibilité. Nous avons développé un programme in-
formatique pour calculer un délai de phase entre un sismogramme synthétique
pour une Terre de référence radiale et un sismogramme observé. La figure 9 illus-
tre le processus de mesure. Nous utilisons le programme MINEOS (e.g. Masters,
Misha & Susan, 2014) pour calculer le sismogramme synthétique par sommation
de modes propres. Nous utilisons ensuite une technique de fenêtrage multiple
pour isoler, en temps, la partie du signal concernée. Cette technique a l’avantage
de faire appel à plusieurs fenêtres temporelles et nous pouvons donc obtenir une
estimation de l’incertitude en observant la dispersion des mesures. Nous filtrons
ensuite les signaux dans des bandes de fréquences étroites et nous calculons leur
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FIGURE 8: Illustration du problème direct dans le cadre de la théorie
fréquence-finie. Un noyau de sensibilité 3D relie un délai de phase
à la distribution 3D de la vitesse des ondes S. Une estimation des
incertitudes sur les données est obtenue par une technique de type

Monte Carlo.

spectre en phase. Par soustraction, nous obtenons le délai de phase en fonction
de la fréquence pour chaque fenêtre temporelle.

Nous estimons aussi les incertitudes dues à la connaissance imparfaite de la
source sismique. Une erreur est associée à chaque paramètre de la source (origine
spatiale et temporelle et composantes du tenseur des moments sismiques). Nous
simulons donc des sources en perturbant ces paramètres et nous effectuons les
mesures. En observant la dispersion des mesures nous pouvons déduire une
incertitude en fonction de la fréquence que nous ajoutons à l’incertitude obtenue
par la technique de fenêtrage multiple.

Nous commençons par un cas synthétique dans lequel le rôle de la vraie Terre
est joué par un modèle de Terre 3D connu. Les formes d’ondes pour ce modèle
de Terre sont calculées avec le programme specfem, basé sur une méthode aux élé-
ments spectraux. Cette tomographie synthétique doit nous permettre d’évaluer
la robustesse et le potentiel du processus tomographique développé dans cette
section. Notons que cette étude est restreinte à la composante verticale du mode
fondamental des ondes de Rayleigh.

Résultats

Les résultats de cette tomographie synthétique sont représentés sur la figure 5.21.
La colonne de gauche montre le modèle d’entrée à 37 km et 112 km de profondeur
et la colonne de droite le modèle obtenu aux profondeurs correspondantes. Bien
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FIGURE 9: Illustration du processus de mesure de délais de phase
en utilisant la technique de fenêtrage multiple et la transformation

de Fourier rapide (FFT pour Fast Fourier Transform).

que le jeu de données soit extrêmement petit, nous retrouvons les structures ma-
jeures : l’anomalie de vitesses faibles correspondant à la ride Est Pacifique, les
anomalies de vitesses faibles qui encerclent les plaques Nazca et Philippine et
l’augmentation des vitesses avec la distance à la ride. L’anomalie de vitesses
faibles au niveau de Samoa est bien identifiée à 37 km de profondeur et l’anomalie
de vitesses élevées correspondant au craton Australien est aussi bien marquée à
112 km de profondeur.

Les incertitudes sur le modèle sont extrêmement faibles. Ceci est sûrement dû
à une forte sous-estimation des incertitudes sur les données. Il faudra améliorer
l’estimation des incertitudes sur les données à l’avenir pour pouvoir prendre en
compte les incertitudes sur le modèle dans l’analyse.

Nous pouvons observer la résolution pour évaluer son potentiel dans l’analyse
du modèle. L’encadré à gauche de la figure 10 montre la résolution au niveau de
l’anomalie de vitesses faibles dans la région de Samoa (cercle vert), pour un point
à 37 km et un point à 112 km de profondeur. A 37 km de profondeur, la fonction
de résolution centrée sur Samoa est bien focalisée. En observant une telle fonction
de résolution, nous pourrions dire que l’anomalie de vitesses faibles au niveau de
Samoa est bien résolue ; or cette anomalie est en effet bien présente dans le mod-
èle d’entrée. A 112 km de profondeur, la résolution latérale est un peu moins
bonne car la sensibilité est moins forte. Dans cette approche la résolution est 3D ;
ainsi nous pouvons analyser la résolution verticale. Sur les coupes verticales de la
figure 10 pour la région de Samoa, nous observons que la fonction de résolution
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FIGURE 10: Illustration de la résolution tri-dimensionelle dans la
région de Samoa (gauche) et à l’est de Samoa (droite) pour un point

à 37 km et un point à 112 km de profondeur.

pour un pixel à 112 km de profondeur semble avoir des valeurs significatives à
des profondeurs plus superficielles ; une partie non négligeable de l’information
pour estimer la vitesse à 112 km de profondeur provient de profondeurs plus su-
perficielles. On observe ici un artéfact vertical ; il y a ‘fuite d’information avec la
profondeur’. Si nous voulions discuter en détail la profondeur d’une structure,
par exemple la profondeur de la lithosphère, cet artéfact vertical pourrait induire
en erreur nos conclusions. Dans un cas réel, l’information sur la résolution 3D
produite par l’inversion SOLA dans le cadre de la théorie fréquence-finie nous
permettrait d’être au fait de ce problème. Pour éviter cet artéfact vertical, il fau-
dra augmenter la densité de données en profondeur, en considérant notamment
les modes supérieurs.

A l’est de Samoa, nous observons une anomalie de vitesses faibles qui ne se
trouve pas dans le modèle d’entrée (ellipse verte, encadré à droite de la figure 10).
La fonction de résolution dans cette région montre que le moyennage spatial pour
estimer la vitesse à l’est de Samoa a pris en compte l’information de Samoa à
l’ouest, et de la ride Est-Pacifique à l’est ; or ces régions ont des vitesses faibles ce
qui peut expliquer la vitesse apparente faible à l’est de Samoa. Il y a un artéfact
latéral ; la résolution a pour effet d’étaler latéralement l’information dans cette ré-
gion. Dans un cas réel, la résolution nous permettrait d’être au fait de cet artéfact
latéral.

Conclusion

Dans cette section nous avons appliqué l’inversion SOLA dans le cadre d’une
théorie fréquence-finie avec l’approximation de Born. Cette théorie nous permet
de relier directement, en une unique relation linéaire, des délais de phase à la
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distribution 3D de la vitesse des ondes S. Ainsi, l’inversion SOLA est applicable
en trois dimensions.

Nous avons développé un algorithme de mesure de délais de phase entre une
forme d’onde observée et une forme d’onde synthétique obtenue par sommation
de modes propres pour un modèle de Terre radial. Cet algorithme utilise la tech-
nique de fenêtrage multiple pour produire des délais de phase robustes avec une
estimation de l’incertitude de mesure. Nous avons aussi estimé l’incertitude due
la connaissance imparfaite de la source sismique.

Afin de valider le processus tomographique, et cerner avec précision l’apport
de l’inversion SOLA dans le cadre de la théorie fréquence-finie, nous avons fait
une tomographie synthétique où la vraie Terre est remplacée par un modèle 3D
que nous cherchons à retrouver. Cette tomographie synthétique a montré que
l’inversion SOLA est applicable pour la tomographie en ondes de surface en 3D,
dans le cadre de la théorie fréquence-finie. L’inversion SOLA offre un contrôle
sur la propagation des incertitudes et la forme de la résolution 3D. La compara-
ison du modèle d’entrée au modèle obtenu permet de valider le processus to-
mographique. Nous constatons cependant que les incertitudes sur le modèle
sont extrêmement faibles. Il faudra améliorer à l’avenir l’estimation des incer-
titudes sur les données. Nous montrons que la résolution permet d’analyser fine-
ment le modèle, notamment en mettant au jour des artéfacts, comme des artéfacts
verticaux (fuite verticale d’information en profondeur), ou latéraux (étalements
latéraux d’anomalies de vitesses).

Maintenant que le processus tomographique est validé par la tomographie
synthétique, de nombreuses voies d’amélioration et d’application sont possibles,
notamment:

• Augmenter le jeu de données pour qu’il soit plus réaliste ;

• Appliquer le processus tomographique à des données réelles ;

• Améliorer l’estimation des incertitudes sur les données ;

• Considérer les modes supérieurs ;

• Considérer d’autres observables (e.g. amplitude, polarisation) ;

• Considérer d’autres paramètres (e.g. Vp, attenuation, anisotropie).

Lorsque le processus tomographique développé dans cette section sera ap-
pliqué avec des vraies données, la démarche d’interprétation proposée dans la
section précédente (figure 7) nous permettra d’analyser avec robustesse les struc-
tures tri-dimensionnelles imagées dans le manteau supérieur.



18

Conclusion générale et perspectives

Les modèles tomographiques jouent le rôle d’observations afin de mieux com-
prendre la dynamique interne de la Terre. Cependant, les données sismiques
sont bruitées et la couverture spatiale des données est imparfaite. Ainsi, les mod-
èles tomographiques ont une résolution complexe qui peut induire des biais et
des artéfacts et les incertitudes sur les données se propagent en incertitudes sur
le modèle. Les méthodes classiques basées sur une minimisation de l’écart aux
données ont de grandes difficultées pour contrôler et produire la résolution et les
incertitudes des modèles tomographiques.

L’inversion SOLA récemment introduite en tomographie sismique par Zaroli
(2016) prend le point de vue de la résolution et des incertitudes du modèle pour
résoudre le problème inverse. Bien que l’inversion SOLA ne soit applicable que
pour des problèmes linéaires, elle offre un certain contrôle sur la résolution et
les incertitudes et produit ces informations sans surcoût calcul. L’objectif de ce
travail de thèse était d’appliquer l’inversion SOLA à la tomographie en ondes de
surface pour intépréter avec robustesse la structure du manteau supérieur dans
la région du Pacifique.

En première approche nous avons appliqué l’inversion SOLA dans le cadre
de la théorie des rais. Une première inversion non-linéaire, effectuée par Maggi
et al. (2006b), a produit des profils de vitesses moyennes des ondes S le long de
trajets source-récepteur. Nous utilisons l’inversion SOLA pour régionaliser ces
profils en des cartes de vitesses à différentes profondeurs. L’inversion SOLA of-
fre un certain contrôle sur la résolution et les incertitudes et les modèles sont
très satisfaisants. Nous proposons aussi un schéma d’interprétation qui intègre
les incertitudes et la résolution pour analyser avec robustesse le modèle tomo-
graphique par rapport à un modèle de référence. Ainsi, nous pouvons conclure
que le jeu de données utilisé dans cette étude ne permet pas de rejeter un modèle
simple de refroidissement de la lithosphère à 75 km de profondeur, mais qu’il ex-
iste dans l’asthénosphère des anomalies de vitesses allongées dans la direction de
mouvement absolu de la plaque Pacifique. Cette première approche est une étape
vers des interprétations plus robustes pour la tomographie du manteau supérieur
avec les ondes de surface. Cependant, cette approche présente deux grandes lim-
ites : (1) l’estimation des incertitudes sur les données doit être améliorée et (2)
l’inversion SOLA n’a pu être appliquée que latéralement, ne produisant que des
cartes 2D à profondeurs discrètes (pas de résolution verticale).

En deuxième approche nous avons appliqué l’inversion SOLA dans le cadre



19

d’une théorie fréquence-finie pour relier des mesures de délais de phase à la dis-
tribution 3D de la vitesse des ondes S. Nous avons développé un algorithme pour
mesurer les délais de phase et estimer leur incertitude. Nous avons fait une to-
mographie synthétique qui nous a permi d’évaluer la robustesse et le potentiel
de cette seconde approche. Nous avons montré comment l’inversion SOLA, com-
binée à la théorie fréquence-finie, permet de contrôler et produire la résolution et
les incertitudes avec le modèle tomographique, le tout en trois dimensions. Enfin
nous avons montré que l’information sur la résolution 3D est un atout essentiel
pour identifier des artéfacts dans le modèle, comme des artéfacts verticaux (fuite
d’information avec la profondeur), ou latéraux (étalements latéraux d’anomalies
de vitesses). Lorsque cette approche sera appliquée à des données réelles, la
démarche d’interprétation qui intrègre résolution et incertitudes pourra être ap-
pliquée pour discuter les structures tri-dimensionelles imagées dans le manteau
supérieur. Cette seconde approche ouvre la voie à de nombreuses améliorations
possibles. Par exemple il sera possible d’imager d’autres paramètres physiques
que la vitesse des ondes S ; et des comparaisons entre les modèles plus robustes
seront possibles grâce au contrôle et à l’information sur la résolution et les incer-
titudes.

Comme la tomographie en théorie fréquence-finie rend la tomographie en on-
des de surface tri-dimensionelle, il sera possible de mettre en place une inversion
jointe avec des ondes de volume. Dans ce cas l’inversion SOLA nous permettra
d’évaluer le gain de résolution, notamment aux profondeur où ondes de surface
et ondes de volumes sont complémentaires, par exemple dans la zone de transi-
tion entre le manteau supérieur et le manteau inférieur (discontinuités à 410 km
et 670 km de profondeur).

Le travail achevé dans cette thèse permet de contrôler et de quantifier la ré-
solution et les incertitudes des modèles tomographiques du manteau supérieur
construits à partir de données d’ondes de surface. A terme, ce travail permettra
d’avoir une connaissance plus fiable de la structure tri-dimensionnelle du man-
teau supérieur et ainsi de mieux comprendre la dynamique interne de la Terre.
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Chapter 1

Introduction

Maheu disait:
-C’est le premier accrochage. Nous sommes à trois cent vingt mètres... Regardez la
vitesse.
Levant sa lampe, il éclaira un madrier des guides, qui filait ainsi qu’un rail sous un train
lancé à toute vapeur ; et, au-delà, on ne voyait toujours rien. Trois autres accrochages
passèrent, dans un envolement de clartés. La pluie assourdissante battait les ténèbres.
- Comme c’est profond ! murmura Etienne.

Zola, Germinal, 1885.
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1.1 Toward a three-dimensional picture of the Earth

The seismicity and volcanism observable at the surface show that the Earth is
a dynamic system that is cooling. Therefore it must have a three-dimensional
structure. Over three centuries ago, Kircher, in his Mundus Subterraneus (1664)
proposed that the Earth was an old sun that cooled down, but that still con-
tained remaining magma reservoirs connected to the surface that fed the vol-
canism (figure 1.1). Of course the modern picture of the Earth interior has greatly
changed with the improvement of physical theories and the accumulation of data.
However, there is still no model that makes complete consensus. In 1915 Alfred
Wegener proposed that continents were once grouped into one that he named
‘Pangea’ (Wegener, 1922). The idea that continents could drift over thousands of
kilometers was first received with strong criticism. At that time, a correct mecha-
nism to explain how continents could drift over such distances was lacking. Soon,
it became the plate tectonic hypothesis that is widely assumed in the Earth science
community today.

In the modern version of plate tectonics, the shallowest layer of the Earth,
the lithosphere (ranging from 0 km to ∼150 km below the oceans) is mechani-
cally rigid and split into several plates (DeMets et al., 1990; Bird, 2003). These
plates move with respect to each other over a softer layer: the asthenosphere
(McKenzie & Parker, 1967). Temperature can be used as a proxy for the mechan-
ical behaviour and the limit between the strong lithosphere and the underlying
ductile asthenosphere (for example Parker & Oldenburg (1973) set it to the 1200◦

isotherm). The Pacific hemisphere contains 12 major plates: Phillipine, Okhotsk,
Bering, North America, Coco, Nazca, South America, Antarctic, Australia and
Pacific (see figure 1.2).

The boundary between two plates can be a ridge, often in the middle of an
ocean and thus called mid-oceanic ridge. Along a mid-oceanic ridge the warm
asthenosphere is very shallow and melting occurs because of adiabatic decom-
pression giving rise to an intense volcanism that forms the oceanic crust, made of
the so-called mid-oceanic ridge basalts (MORB). Examples in the Pacific hemisphere
are the East-Pacific-Rise, or the Pacific-Antarctic ridge. Melting produces a strong
linear low velocity anomaly along ridges in tomograhic models (e.g. Toomey et
al., 1998; Baba et al., 2006) up to ∼80 km.

The lithospheric plates move horizontally in opposite directions from the ridge.
This can be observed by dating the oceanic seafloor using rock samples or mag-
netic anomalies or using GPS data (e.g. Gripp & Gordon, 1990; Müller et al., 1997;



1.1. Toward a three-dimensional picture of the Earth 23

FIGURE 1.1: The interior of the Earth, from Kircher’s Mundus Sub-
terraneus (1664).

Wessel & Kroenke, 2000; Müller et al., 2008). At the ridges the lithosphere thick-
ness is close to zero (Parker & Oldenburg, 1973). With increasing distance from
the ridge, since heat is removed from the mantle by the surface, the thickness of
the lithosphere increases. This is the well known lithosphere cooling process. Sev-
eral geodynamical models have been proposed for the lithosphere cooling (e.g.
Parsons & Sclater, 1977; Parsons & McKenzie, 1978; Hoggard et al., 2017). The
relation with ocean bathymetry has been investigated and seismic tomography
observations have been compared to various model predictions (e.g. Ritzwoller,
Shapiro & Zhong, 2004; Priestley & Mckenzie, 2006; Maggi et al., 2006b; Stein-
berger & Becker, 2018; Isse et al., 2019). The cooling mode may be more compli-
cated than has been presumed, for example hydrothermal cooling may play a role
(e.g. Kooi, 2016; Schmeling, Marquart & Nawa, 2017), some reheating processes
may occur and the spreading rate of ridges may not be symmetrical (e.g. Müller
et al., 2008).

Since lithosphere drifts appart at the mid-oceanic ridges it must be destroyed
somewhere for matter conservation. Almost all around the Pacific ocean is found
a convergent plate boundary: the subduction zones, where one lithospheric plate
‘sinks’ below the other. There the bathymetry is usually marked by a deep trench
in between the two plates. Examples are the Mariana trench, the Aleutian trench,
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the Chile trench or the Tonga-Kermadec trench. These regions are marked by
a strong seismicity, where hypocenters are distributed on a plane (the Wadati-
Benioff plane) that roughly corresponds to the sinking slab. Since the subducting
plate is a cool slab within the warm mantle, the temperature difference produces
a strong contrast of seismic velocities in the tomographic models wich makes it
one of the most striking features (e.g. Zhao, Maruyama & Omori, 2007). However
it is not clear whether the subducting slab reaches the lower mantle or whether
the Clapeyron slope at the 660 km discontinuity is such that it is confined to the
upper mantle (see e.g. Foulger, 2011, section 5.1). The picture too may be more
complicated. For example Chang, Ferreira & Faccenda (2016) propose that the
sinking slab from the Tonga-Kermadec trench interacts both with the 660 km dis-
continuity and deep rooted mantle convection processes. A similar hypothesis is
proposed for the Farallon slab under North America by Tian et al. (2011).

During its stay below the ocean, the lithosphere has been hydrated. In the
subduction, the increasing pressure causes changes in the mineral phases that
dehydrate the slab. The water is transfered from the slab into the overlying as-
tenosphere with the effect of lowering its solidus. Thus partial melting occurs
giving rise to volcanism above the subducting slab forming the so-called back-arc
regions (e.g. Ghosh et al., 2020). The melting has the effect of producing strong
low velocity anomalies in tomographic models (e.g. Maggi et al., 2006b; Zhao,
Maruyama & Omori, 2007).

Plate tectonics is now a widely accepted theory. It explains many observ-
able features (ocean seafloor magnetic anomalies, oceanic bathymetry, GPS data,
back-arc volcanism, trenches, seismicity distribution) and tomographic observa-
tions (low velocity below ridges, high velocity slab signature, low velocity above
slabs, thickening of a high velocity layer with distance from the ridge). However
some observations are not directly explained. The most striking example is the
existence of intraplate volcanism (figure 1.3), hotspots, usually associated with a
linear volcanic chain and a large igneous province. Examples in the Pacific are
Hawaii, the French Polynesia, the Masquesas, the Galapagos or Pitcairn (Neall &
Trewick, 2008).

W. Jason Morgan (1972) proposed that instabilities within the D” layer (right
above the core-mantle boundary) produces low density warm materials that rise
within the mantle toward the surface. These mantle plumes take the form of a
mushroom. When the head reaches the surface an intense volcanism creates
a large igneous province (for example the Deccan trapps or the Ontong-Java
plateau). These events have even been linked with mass extinctions by Sobolev
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FIGURE 1.2: Map of the bathymetry in the Pacific and the main
geological features. The bathymetry is from the GEBCO Compila-
tion Group (2022), the plates (green names) from Bird (2003), the
presumed hotspots (brown names) from the list of Courtillot et al.
(2003). The main mid-oceanic ridges are named in red and the main

trenches in black.



26 Chapter 1. Introduction

FIGURE 1.3: The ‘Chaîne des Puys’ in the Massif central (Auvergne,
France) that has been supposed to originate from a mantle plume

(Granet, Wilson & Achauer, 1995). Picture from the author.

et al. (2011). Later the plume tail continues to feed the volcanism but since litho-
spheric plates are moving over a fixed mantle, a linear volcanic chain is created.
Many tomographic studies attempted to image the predicted plumes (e.g. Granet,
Wilson & Achauer, 1995; Bijwaard & Spakman, 1999; Ritsema, Heijst & Wood-
house, 1999; Montelli et al., 2004; Nolet et al., 2019; Tsekhmistrenko et al., 2021).
However seismic tomography images come with their uncertainties, they have
a poor resolution, they may be biased and contain artifacts. Interpreting plume
strucures in the tomographic images is a difficult and tricky task (Foulger et al.,
2013; Zaroli, Koelemeijer & Lambotte, 2017; Maguire et al., 2018). When a plume
is not found, one may argue that the resolution is not good enough; when a plume
is found, others may argue that it is an artifact. For example, Bijwaard & Spak-
man (1999) considered that they were able to resolve a deep rooted plume below
Iceland but Foulger et al. (2001) wrote two years later that “upwelling beneath
Iceland is confined to the upper mantle”. Marignier, Ferreira & Kitching (2020)
analyse several tomographic models to derive a list of possible mantle plumes
with a probability attached to each. It is also difficult to define what a mantle
plume really is. Since the proposition of W. Jason Morgan (1972) the plume hy-
pothesis has derived into many different definitions to fit the tomographic obser-
vations. For example Arndt (2000) proposed that plumes may have a cold tail or
more recently (Tsekhmistrenko et al., 2021) proposed that many plumes may be
related into a plume-tree originating from the large low velocity provinces close
to the core-mantle boundary.

Haxby & Weissel (1986) observed a pattern of elongated anomalous bands
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in the direction perpendicular to the East-Pacific-Rise in satellite altimetric data.
This pattern has been interpreted as small scale sublithospheric convection cells that
should naturally arise in the upper mantle because of the lithospheric motion and
has been proposed as a mechanism to explain the intraplate volcanism (Ballmer
et al., 2009). Recent seismic tomography studies seem to image such a pattern of
elongated anomalies (Montagner, 2002; French, Lekic & Romanowicz, 2013b).

The origin of intraplate volcanism and the motor of plate tectonics are still de-
bated (e.g. Foulger, 2011; Chen et al., 2020, www.mantleplume.org). Since many
interesting processes seem to occur in the Pacific upper mantle, I aim in my the-
sis to take part to the discussion using surface wave tomography in the Pacific
region.

1.2 Tomographic images: behind the scenes

The amount of data available for seismic tomography has considerably increased
with the development of international networks of seismometers. The data cover-
age has improved with temporary deployments such as the PLUME experiment
that deployed oceanic bottom seismometers around volcanic archipelagos (Bar-
ruol, 2002) thus improving the quality of tomographic images in oceanic regions
(Isse et al., 2019). More recently floating seismometers were deployed (Simons,
2021; Simon, Simons & Irving, 2021; Pipatprathanporn & Simons, 2021). For ex-
ample such seismometers are used by Nolet et al. (2019) to image a plume-like
structure beneath the Galapagos. Where seismicity is too low, ambient noise
tomography has been applied to reconstruct signal between two stations (e.g.
Shapiro et al., 2005; Ouattara, Zigone & Maggi, 2019; Movaghari & Doloei, 2020).
New advances in tomographic methods allow to consider various types of data
(body-waves travel times, surface waves phase or group dispersion, polariza-
tion, amplitude, full waveform) to estimate various kinds of physical parame-
ters within the Earth (P- or S-wave velocity, attenuation, anisotropy) and their
relation with different physical parameters such as temperature, degree of melt-
ing or composition (though through complicated relations, see e.g. Priestley &
McKenzie, 2013; Foulger, 2011, section 5.1.2, page 147). Theoretical advances in
seismic tomography allow to model the seismic wavefield in three-dimensional
media with spectral element methods (Komatitsch & Vilotte, 1998; Komatitsch
& Tromp, 2002a; Komatitsch & Tromp, 2002b). These methods allow for solving
non-linear problems using iterative inversion scheme (Tarantola & Valette, 1982)
or adjoint methods to take full advantage of the three-dimensional simulations
(Liu & Gu, 2012) thus leading to high resolution tomographic models (e.g. Lekić
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& Romanowicz, 2011; French, Lekic & Romanowicz, 2013b; French & Romanow-
icz, 2014; Monteiller et al., 2015).

Seismic tomography has to deal with various kinds of data errors that prop-
agate into the tomographic result. Some tomographic studies rely on the knowl-
edge of the seismic source (spatial and origin-time, moment tensor, spectrum).
Catalogs that provide this information are available, like the GCMT catalog (Ek-
ström, Nettles & Dziewoński, 2012). But the source recovery remains imperfect.
Duputel et al. (2012) write: “Here, like in any observational problem, the error
estimation should be part of the solution”. Errors may also come from the crust
when it is not inverted for. For example Panning, Lekić & Romanowicz (2010)
shows that deep structures may be biased by incorrect crustal corrections. If
not accounted for, Liu & Zhou (2013) and Marone & Romanowicz (2007) show
that finite-frequency and non-linear effects may lead to significant errors. Other
sources of error in tomography come for example from the parameterization (for
example splitting the space into blocks of finite size), from the inaccuracy of the
theory describing the seismic wavefield or from the measurement itself (see for
example a comparison of data sets obtained with various methods in Moulik et
al., 2021).

The spatial coverage of the data used in seismic tomography is usually strongly
heterogeneous. As a consequence tomographic images have a very complicated
resolution. The resolution can be thought as a filter (sometimes called the tomo-
graphic filter) through which the object to image would pass. Each estimated value
in the model is actually a spatial average of the true object to map. The averaging
may bias the solution (averaging weights summing to more or less than one), it
smooths the solution, and it may introduce artifacts (such as smearing effects if
the averaging is spatially anisotropic). A comparative example is the point spread
functions used in astronomy. Because of the observational setup, the image of a
distant star does not appear as a simple point, but it has more a star-like shape
as can be seen on figure 1.4. The resolution of the Hubble space telescope (top)
makes stars look like fuzzy balls surrounded by four spikes whereas the resolu-
tion of the James Webb space telescope (below) makes them look more distinct
but with eight long spikes. The problem is even worse in seismic tomography
where the object to map is continuous and where we aim to interpret also the
shape of anomalous patterns. Very soon the misleading effects of the resolution
were recognized. For example, while doing the tomography of the subduction
zone in the north-west of the Pacific, Spakman et al. (1989) also inverted syn-
thetic P wave travel time data from a simple thermal model of the lithosphere
and concluded: “we have demonstrated that large scale resolution artifacts in the
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FIGURE 1.4: Observations of the ‘Cosmic Cliffs’ at the edge of the
Carina nebula. Top: observation in visible light by the Hubble space
telescope (NASA, STScI). Bottom: observation in the infrared range
of the electromagnetic spectrum made with the James Webb space

telescope (NASA, ESA, CSA, and STScI).

synthetic inversion results resemble anomaly patterns in the real data results”.
Resolution investigation in the form of checkerboard tests, i.e. application of the
tomographic process to retrieve an input model that looks like a checkerboard, is
now routinely applied in most seismic tomography studies to investigate the ef-
fect of the resolution (e.g. Zhou et al., 2006; French & Romanowicz, 2014; Auer et
al., 2014; Liu & Zhou, 2016a; Ouattara, Zigone & Maggi, 2019; Tsekhmistrenko et
al., 2021; Magrini et al., 2022; Greenfield et al., 2022). However Lévêque, Rivera
& Wittlinger (1993) have shown that checkerboard tests can be misleading, but
Rawlinson & Spakman (2016) recognize that “the widespread use of synthetic
reconstruction tests in seismic tomography is likely to continue for some time
yet” and propose some best practices. For example French, Lekic & Romanowicz
(2013b) design very specific synthetic models to investigate whether the resolu-
tion would produce the anomalies they observe perpendicular to the ridge.

On figure 1.5 are represented two tomographic models that estimate the S-
wave velocity at 75 km depth. At large scale, for strong amplitude anomalies, the
agreement between the models is good (linear low velocity corresponding to mid-
oceanic ridges, increasing velocity with distance from the ridge, back-arc regions
marked by strong low velocity anomalies, cratons). However, at shorter scale,
for lower amplitude anomalies, many discrepancies arise. For example, there
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is a slow anomaly connecting the East-Pacific rise to Tonga-Kermadec in savani
(left) but not in S20RTS (right). While Hawaii is above a slow velocity anomaly
in savani, it is above a high velocity anomaly in S20RTS, but there are two slow
anomalies in the north and south of Hawaii that do not appear in savani. Such
discrepancies can be attributed to the uncertainties and resolution of both mod-
els. This shows that reliable interpretations of tomographic models require good
estimates of their resolution and uncertainties. This information would be useful
also to compare the tomographic results with other geophysical data. For exam-
ple, it may be worth to filter geodynamical models with the tomographic filter
before comparison with tomographic results (e.g. Simmons et al., 2019; Freissler
et al., 2020).

Usually tomographic models are built using a data fitting inversion method.
One set up a forward problem that produces data for a given Earth model; then
one looks for a model that predicts data close enough to the observations. With
such an approach the estimation of the resolution and uncertainties of the model
is very difficult. Various methods have been proposed to estimate the resolu-
tion. For example Shapiro et al. (2005) estimate the resolution with the method of
Barmin, Ritzwoller & Levshin (2001): while fitting the data a spatial smoothing
is applied and is used as a proxy for the resolution. However this estimate of the
resolution depends on the data, an a priori on the model solution and is tractable
only on small scale problems. An (2012) proposes a statistical estimation of the
resolution (some kind of Monte Carlo approach) but it relies on the approximation
that resolving kernels are Gaussians. Nolet, Montelli & Virieux (1999) propose an
approach based on the singular value decomposition but applicable only to small
scale problems. Another example to estimate the resolution is based on the con-
cept of point spread functions (e.g. Ritsema, McNamara & Bull, 2007b; Ritsema,
Heijst & Woodhouse, 2004; Bonadio et al., 2021; Simmons et al., 2019). A synthetic
model with a punctual anomaly produces synthetic data that are inverted with
the tomographic process. The result is used as a proxy for the resolution at the
location of the punctual anomaly. The full resolution is obtained by applying this
process to each cell in the model. This task is computationally expensive since it
requires as many inversions as the number of cells in the model. Moreover this
estimate of the resolution depends on the data and on an a priori on the model.
A common problem with all these approaches is that the resolution is obtained
only a posteriori. No control on the resolution is possible.

Over 50 years ago Backus and Gilbert (Backus & Gilbert, 1967; Backus &
Gilbert, 1968; Backus & Gilbert, 1970) proposed an original inversion scheme
that takes the point of view of the model resolution and uncertainties to solve
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FIGURE 1.5: Two models that aim to estimate the S wave velocity at
75 km depth. Left: model Savani from Auer et al. (2014); right: model
S20RTS from Ritsema, Heijst & Woodhouse (1999). The figures have
been produced using the Submachine web-based tool (Hosseini et al.,

2018).

the inverse problem. They recognized that, for one location of the tomographic
model, the better the resolution the higher the uncertainties. They proposed to
solve the inverse problem by optimizing the balance between resolution and un-
certainties. The method turned out to be computationally expensive but it was
later reformulated by Pijpers & Thompson (1992) and Pijpers & Thompson (1993)
to be applied in the field of helioseismology. Their reformulation was named the
Subtractive Optimally Localized Averages (SOLA) inversion. The SOLA inversion
has been recently adapted to seismic tomography and applied with body-waves
by Zaroli (2016), Zaroli, Koelemeijer & Lambotte (2017) and Zaroli (2019). The
method is still computationally expensive because it is necessary to solve an in-
verse problem for each location in the tomographic model. However this task is
embarassingly parallel (i.e. the inverse problems to solve are completely indepen-
dent to each other) so that it is no longer a problem with computational facilities
available today. With the SOLA inversion a target resolution is designed giving
a direct control on the resolution. This way it is also possible to remove the bias
(in the sens of averaging bias) and design the target resolution such that artifacts
like smearing effects are reduced. Moreover, contrary to data fitting inversions,
the SOLA inversion requires no a priori information on the model solution. By
construction, the model statistics are produced together with the model solution
and available for robust interpretations. Though the SOLA inversion is limited to
linear problems it is very appealing to overcome some of the issues tomography
has to deal with. The Pacific region is interesting but it is also highly unevenly
sampled and I aim in my thesis to apply the SOLA inversion in the context of
surface waves to overcome the issues induced by the uneven data coverage.
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1.3 From ray to finite frequency surface wave tomog-

raphy

Usually surface wave tomography starts with dispersion measurements where
the phase velocity (velocity of a surface with constant phase) or group velocity
(velocity of a wave packet) is determined as a function of frequency for each
source-station path. Then two schemes, involving two steps, can lead to a three-
dimensional model.

One possibility (e.g. Debayle & Lévêque, 1997; Lévêque, Debayle & Maupin,
1998; Debayle, 1999; Debayle & Kennett, 2000; Simons et al., 2002; Lebedev & No-
let, 2003; Priestley, 2003; Debayle & Sambridge, 2004; Maggi et al., 2006b; Maggi
et al., 2006a; Priestley & Mckenzie, 2006), illustrated with the top row of figure 1.6,
is to start with a forward theory that is non-linear to relate the dispersion mea-
surement for a source-receiver path to a physical parameter (e.g. S-wave velocity)
averaged along the ray as a function of depth. Recovering the model can be done
using one of the many variations of data fitting inversions (e.g. Menke, 1989;
Tarantola, 2005). In the second step the path-averaged models play the role of
the data. A forward theory that is linear can be used to map the parameter of
interest at a specific depth. This is called a regionalization. Finally a quasi three-
dimensional model is obtained. ‘Quasi’ stands for that the model is more like a set
of two-dimensional maps at discrete depths rather than a real three-dimensional
model; two independent inversions, a non-linear depth inversion then a linear
lateral regionalization have been used. No information about the vertical corre-
lations remains in such a model.

The second possibility (e.g. Ekström, Tromp & Larson, 1997; Montagner, 2002;
Yoshizawa & Kennett, 2004; Ekström, 2011; Ouattara, Zigone & Maggi, 2019;
Seredkina, 2019; Isse et al., 2019; Magrini et al., 2022; Greenfield et al., 2022), illus-
trated with the second row of figure 1.6, is to switch the two steps. It starts with
the linear regionalization of many dispersion measurements at fixed frequencies
to obtain phase or group velocity maps. In the second step, at a given latitude-
longitude location, the frequency dependent maps are non-linearly inverted for
the depth. Again the model thus obtained is ‘quasi’ three-dimensional. The first
step is only lateral and the second step is only with depth: each frequency de-
pendent ‘column’ (at a given latitude-longitude location) is inverted with depth,
indepently from the others. This can be seen on vertical cross-sections within
such models where there is a great variability from column to column. No infor-
mation about the horizontal correlations remains in such a model.

Since the regionalization step is linear, it is tractable with the SOLA inversion.
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FIGURE 1.6: Illustration of several approaches in surface wave to-
mography. Top and middle rows illustrate the two-step approaches.

The last row illustrates the one-step approach.

I will attempt in this thesis to apply the SOLA inversion to produce S-wave ve-
locity maps at discrete depths using the first two-step approach.

There are two main issues with the two-step formalism. First all dimensions
are not constrained all together: the model is only ‘quasi’ three-dimensional. Sec-
ond, in both cases, the regionalization relies on ray theory. At a given depth, or
at a given frequency, the production of the two-dimensional map assumes all the
information sampled by the ray is confined within the zero width ray path. Yet
physical observations and simple physical arguments show that this cannot be
true.

Huygens’ principle states that, given an initial wavefield, each point in space
behaves as a secondary source. If the medium is heterogeneous, these secondary
sources disperse the initial wavefield, producing scattered wavefields, and an ob-
server sees the interference of all. The strength of scattering depends on the
wavelength and on the size of the heterogeneities. If heterogeneities are small
with respect to the wavelength scattering is weak (and we retrieve the predic-
tions of ray theory). But if the size of the heterogeneities approaches that of the
wavelength, scattering becomes stronger and ray theory fails to describe what
would be observed. A nice example comes from astronomy again. On figure 1.4
are two ‘pictures’ of the same region of space, the so-called ‘Cosmic Cliffs’ at
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the edge of the Carina nebula. The top panel was taken by the Hubble space
telescope observing in the visible range of the electromagnetic spectrum. What
looks like cliffs are actually gases emanating from the star-forming region. The
particles composing theses gases are of the size of the wavelength of the visible
light. Therefore strong scattering interferences occur in the visible range and the
Hubble space telescope sees the ‘Cosmic Cliffs’ as cloudy regions. The bottom
panel was taken by the James Webb Space telescope that has the particularity to
observe in the infrared range of the electromagnetic spectrum. Since infrared is
larger wavelength, the observed waves are less sensitive to scattering in the gas
region. Thus the ‘Cosmic cliffs’ look more transparent. The same phenomenon
occurs with mechanical waves within the Earth.

A way to extend ray theory to account for scattering is illustrated on figure 1.7.
Part of the energy emanating from the source (solid red star) propagates along
the shortest path with length L toward the receiver (blue triangle). Part of the
radiated energy follows another path (in green) toward some scatterer (empty
red star). Following Huygens’ principle the scatterer behaves as a secondary
source and if the scatterer represents a local heterogeneity in the medium, part
of the energy of the initial wavefield is scattered toward the receiver. If the differ-
ence between the distance propagated by the initial wave and the scattered wave
is less than one half of a wavelength, then both wavefields interfere construc-
tively and modify what the observer would see in an otherwise homogeneous
medium. This half-a-wavelength limit defines the Fresnel zone. Therefore, the
measured data are sensitive to that region with a non-zero surface, whose size
depends on the frequency. The only way for this region to have zero surface (a
true ray) would be for the wavelength to be zero, or the frequency to be infi-
nite. Of course, the influence of the scattered wave depends on where exactly
it has passed within the Fresnel zone (for example the blue path would change
the observation in another manner). Obtaining the detailed lateral sensitivity
of the observations has been the subject of recent work, and this goes with the
name finite-frequency, as opposed to the infinite-frequency ray theory. Theoretical
advances have been made in the 80’s and 90’s (Snieder & Nolet, 1987; Snieder,
1986; Marquering, Nolet & Dahlen, 1998; Dahlen, 2000). In 1998, Dahlen and
Tromp ended their treatise on the free oscillations of the Earth by stating that
the development of finite-frequency was the “current frontier in global seismic
tomography” (Dahlen & Tromp, 1998). Montelli et al. (2004) argue that they are
able to reveal plumes in the mantle using finite-frequency in body-wave tomogra-
phy. Yoshizawa & Kennett (2004) incorporate finite-frequency effects in their sur-
face wave tomography but they actually consider the width of the Fresnel zone
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FIGURE 1.7: Illustration of the scattering principle and the Fresnel
zone.

without detail inside, i.e. some kind of fat rays. Major advances to compute the
detailed finite-frequency sensitivity have been made by the works of Yoshizawa
& Kennett (2005) and Zhou, Dahlen & Nolet (2004). Recent advances allow to
consider anisotropy (Zhou, 2009a), anelasticity (Zhou, 2009b) or near-field effects
(Liu & Zhou, 2016b). Finite frequency has been subsequently applied in surface
wave tomography in various studies (Zhou et al., 2005; Zhou et al., 2006; Ruan &
Zhou, 2010; Tian et al., 2011; Liu & Zhou, 2016a).

One advantage of the finite-frequency approach is that it allows to relate lin-
early frequency and path dependent data directly to the three-dimensional model
in one step. Also, where the two-step approach uses various frequencies to con-
train the depth, finite-frequency uses the frequencies to constrain also lateral vari-
ations, so that we may expect a better lateral resolution. Since the finite-frequency
approach is linear, it is tractable with the SOLA inversion.

I will attempt, as part of this thesis, to apply the SOLA inversion to produce a
S-wave velocity three-dimensional model using the finite frequency approach on
surface waves.

The challenge of my thesis is twofold: to apply the SOLA inversion in the
context of surface waves (first using the simple framework of ray theory, then
with the more powerful framework of finite-frequency) and to interpret robustly
the three-dimensional structure of the Earth using all the advantages provided
by the SOLA inversion. An illustration of the content of this manuscript is given
on figure 1.8. The chapters 2 and 3 are dedicated to describe the tools necessary
to address the challenges. In chapter 2 I describe the forward theory that relates
the data to the three-dimensional Earth. The first part is about ray theory and
the second part is the extension to finite-frequency theory. Chapter 3 is about the
inverse theory. It starts with the classical data fitting point of view and continues
with the SOLA inversion method. The chapters 4 and 5 are dedicated to the
application of the SOLA inversion. Chapter 4 is the application of the SOLA
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FIGURE 1.8: Plan for the manuscript. Top to down arrows represent
the combination of one forward theory (top row) with one inversion
method (bottom row). Maggi et al. (2006b) used ray theory with a
data fitting inversion and Zhou et al. (2006) used finite-frequency
theory with a data fitting inversion. In chapter 4 I apply the SOLA
inversion with ray theory. In chapter 5 I apply the SOLA inversion

with finite-frequency theory.

inversion in the simple ray theory framework with real data, from which first
conclusions about the Earth structure can be drawn though limited by the issues
relative to ray theory. Chapter 5 is the application of the SOLA inversion with the
more elaborate finite-frequency theory. Since chapter 5 relies on relatively new
concepts, it is applied on synthetic data.
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Chapter 2

Forward theory

The waves in the layer which are analogous to Rayleigh-waves are subject to slight dis-
persion, both on account of gravity, as was seen in the solution of the second problem,
and on account of the change of mechanical properties at the under surface of the layer,
and, on both accounts, the wave-velocity of a simple harmonic wave-train increases as the
wave-length increases.

Love, Some Problems of Geodynamics, 1911.
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2.1 Introduction

To infer the physical properties of the deep Earth (a model m) only surface obser-
vations (some data that we may write d) are available. The forward problem is to
find a relation, or a forward theory g that relates the data to the model: d = g(m).
Obtaining the model solution from the data under a given forward theory is not
an easy task and it is the subject of the next chapter. The aim of this chapter is to
set up the forward theory.

The oscillations of the Earth, when it is subject to disturbances (like the effect
of external bodies or an earthquake) depend on its internal properties. Early in
the 19th century Poisson derived theoretical equations relating the oscillations of
a spherical system to its internal properties. For example, Lord Kelvin compared
the observed period of a particular oscillation (the fundamental 0S2 mode) with
predictions and showed that the Earth had a rigidity close to steel. His observa-
tions added to the debate regarding whether the interior of the Earth is molten
or not (see for example the introductory chapter of Dahlen & Tromp, 1998). This
early work was further developed over the two last centuries leading to the mod-
ern normal modes theory. From normal modes theory it is possible to predict syn-
thetic waveforms that an earthquake would produce for a given radial model of
the Earth; and from that a forward theory can be established. Normal modes
theory is the framework of this thesis. This choice is motivated by the simplicity,
the robustness and the computational efficiency of the normal modes approach,
especially with long period data which characterizes surface waves.

The first part of this chapter presents normal modes theory and the construc-
tion of a synthetic seismogram for a radial model, i.e. the response of a laterally
homogeneous system to an earthquake. The second part of this chapter is dedi-
cated to present the finite frequency theory based on the Born approximation. It
predicts in one linear relation the response of a laterally heterogeneous system.

2.2 Laterally homogeneous system

Most of this section is a synthesis of results extracted from Dahlen & Tromp (1998)
and Nolet (2008), with the aim to converge toward the results of Zhou, Dahlen &
Nolet (2004). In this section the Earth is assumed to be a spherically non-rotating
elastic and transversally isotropic system, or a so-called SNREI model. Under this
assumption the elasto-dynamic equation can be written in the frequency domain:

ρ(r)ω2u +∇(λ(r)∇.u) +∇.[µ(r)(∇u +∇uT)] = 0, (2.1)
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FIGURE 2.1: Real part of the first spherical hamonics with harmonic
degree l and angular order m up to 2.

where ρ(r) is the density, λ(r) and µ(r) are the Lamé parameters that vary only
with depth and u is the wavefield. For simplicity, we introduce the operator L
defined as:

Lu ≡ ρ(r)ω2u +∇(λ(r)∇.u) +∇.[µ(r)(∇u +∇uT)]. (2.2)

2.2.1 Normal modes

Since the Earth is a finite body, its vibrations can be decomposed into a sum of
particular vibrations with a specific shape, amplitude and frequency: the normal
modes (or free oscillations). Any propagating wavefield can be seen as a sum of
standing waves. Given the spherical geometry of the Earth, the shape of normal
modes are given by the spherical harmonics which are identified by two integers
l and m (some of them are illustrated on figure 2.1). For a model of the Earth,
the amplitude and frequency for each of these modes of vibration are obtained
by solving a set of differential equations. It turns out that there is an infinite
number of solutions identified by a third integer n. Finally, from these solutions
and a given seismic source and receiver, one can compute the observed seismic
wavefield as summation of normal modes. Within the approximation l/4� n, a
description in terms of surface waves derives from that normal mode summation.
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Spherical harmonics

Any scalar function f (θ, φ) that takes value on the unit sphere can be decom-
posed into spherical harmonics Ylm(θ, φ) that are orthogonal to each other; in
other words, spherical harmonics are scalar functions of the unit sphere that form
a basis. The integer l is the harmonic degree and ranges from 0 to ∞ and the second
integer m is the azimuthal order and ranges from −l to l. We write,

f (θ, φ) = ∑
lm

flmYlm(θ, φ). (2.3)

A formal derivation of these spherical harmonics can be found in Dahlen & Tromp
(1998, appendix B, pp. 838-868). The spherical harmonics are given by:

Ylm(θ, φ) = Xlm(θ)eimφ, (2.4)

where,

Xlm(θ) = (−1)m
(

2l + 1
4π

)1/2 [ (l −m)!
(l + m)!

]1/2

Plm(cos θ), (2.5)

with Plm the associated Legendre function defined as,

Plm(µ) =
1

2l l!
(1− µ2)m/2

(
d

dµ

)l+m
(µ2 − 1)l. (2.6)

The definition of the spherical harmonics shows a harmonic dependence on the
longitude in the exponential term that depends on the number m. Therefore, the
real part of the spherical harmonic is zero 2m times along a parallel (m meridi-
ans). On the other hand the associated Legendre function turns out to have |l−m|
nodes along a meridian. Figure 2.1 shows the real part of some spherical harmon-
ics.

If we now have a function of the three-dimensional sphere that also depends
on radius, then the projection (equation 2.3) still holds for any spherical shell and
we can write:

f (r, θ, φ) = ∑
lm

flm(r)Ylm(θ, φ). (2.7)

Equation 2.7 defines the spherical harmonics decomposition of any scalar field
that takes value within the three-dimensional sphere.

Vector spherical harmonics

The displacement wavefield in the Earth is a vector quantity. For this reason we
need to extend the spherical harmonics decomposition to a vector field of the
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three-dimensional sphere. A formal derivation can be found in Dahlen & Tromp
(1998, appendix B12, pp. 868-876). The idea is to first decompose the vector onto a
basis of vectors of the three-dimensional space; then to decompose the coefficient
functions into spherical harmonics. We start by writting,

u(r, θ, φ) = ur(r, θ, φ)r̂ + uθ(r, θ, φ)θ̂+ uφ(r, θ, φ)φ̂. (2.8)

The first term involves only a displacement in the radial direction: it is the radial
field. The two last terms involve a displacement only on the spherical shell: they
form the tangential field. The tangential field can be rewritten in terms of a surface
gradient∇1 and a surface curl r̂×∇1 following the Helmholtz representation:

u(r, θ, φ) = U(r, θ, φ)r̂ +∇1V(r, θ, φ)− r̂×∇1W(r, θ, φ). (2.9)

Another distinction arises with this expression: the two first terms are rotation
free and form the so-called spheroidal field while the last term is only rotational
(divergeance free) and is called toroidal field. We will see in section 2.2.1 that both
fields are completely independent. We will see in section 2.2.2 that the spheroidal
field can describe Rayleigh surface waves or the equivalent P-SV body waves
while the toroidal field can describes Love surface waves or SH body waves.
Now we can decompose the scalar functions U, V and W into spherical harmonics
using equation 2.7 and insert them in equation 2.9:

u(r, θ, φ) = ∑
lm

Ulm(r)Ylm(θ, φ)r̂+∑
lm
∇1Vlm(r)Ylm(θ, φ)−∑

lm
r̂×∇1Wlm(r)Ylm(θ, φ).

(2.10)
We can rewrite this equation as:

u(r, θ, φ) = ∑
lm
[Ulm(r)Plm(θ, φ) + Vlm(r)Blm(θ, φ) + Wlm(r)Clm(θ, φ)], (2.11)

where the vector spherical harmonics are thus defined as Plm(θ, φ) = r̂Ylm(θ, φ),
Blm(θ, φ) = ∇1Ylm(θ, φ) and Clm = −r̂×∇1Ylm(θ, φ).

Eigenvalue-eigenfunction problem

The seismic (or displacement) wavefield u(r, θ, φ) is a vector quantity of a three
dimensional space that takes values everywhere in the three-dimensional sphere.
Therefore it can be decomposed into vector spherical harmonics following equa-
tion 2.11. A perturbation in the gravitational potential Φ(r, θ, φ) accompanies the
seismic wavefield. Since it is a scalar function it can be decomposed into scalar
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spherical harmonics following equation 2.7:

Φ(r, θ, φ) = ∑
lm

Plm(r)Ylm(θ, φ), (2.12)

where Plm(r) are the coefficients of the spherical harmonics decomposition of the
gravitational potential (not to be confused with the vector spherical harmonics
Plm).

We use the operator L for the elasto-dynamic equations and the operator
LB(rb) for the boundary conditions (at the boundary radius rb). We start by con-
sidering no forcing term, therefore we have:

L(u(r, θ, φ), Φ(r, θ, φ)) = 0, (2.13)

LB(rb)(u(r, θ, φ), Φ(r, θ, φ)) = 0. (2.14)

Note that this is an eigenvalue-eigenfunction problem. Physically eigen means that
there is no forcing term so that the solution is proper to the system itself. It also
justifies the terminology used for the solutions: the free oscillations. We look for an
eigensolution to the wavefield u and gravitational potential Φ for these equations.
Substituting the harmonic expansions for the wavefield (equation 2.11) and grav-
itational potential (equation 2.12) into the elastodynamic equations (2.13) leads to
four second-order differential equations (one for each vector spherical harmonics
Plm, Blm and Clm and one for the scalar spherical harmonics associated with the
gravitational potential):

r−2 d
dr
[r2(λ + 2µ)U̇ + λr(2U − kV)]

+r−1[(λ + 2µ)U̇ + λr−1(2U − kV)]

−3(λ +
2
3

µ)r−1(U̇ + 2r−1U − kr−1V)

−kµr−1(V̇ − r−1V + kr−1U) + ω2ρU

−ρ[Ṗ + (4πGρ− 4gr−1)U + kgr−1V] = 0,

(2.15)

r−2 d
dr
[µr2(V̇ − r−1V + kr−1U)]

+µr−1(V̇ − r−1V + kr−1U)

+kλr−1U̇ + k(λ +
4
3

µ)r−2(2U − kV)

+[ω2ρ− (k2 − 2)µr−2]V − kρr−1(P + gU) = 0,

(2.16)
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r−2 d
dr
[µr2(Ẇ − r−1W)] + µr−1(Ẇ − r−1W)

+[ω2ρ− (k2 − 2)µr−2]W = 0,
(2.17)

P̈ + 2r−1Ṗ− k2r−2P = −4πGρ̇U − 4πGρ[U̇ + r−1(2U − kV)], (2.18)

where G is the gravitational constant and k =
√

l(l + 1). It is shown in sec-
tion 2.2.2 that

√
l(l + 1) can also be interpreted as the surface wave wavenumber,

justifying the notation used here. Inserting the spherical harmonics decomposi-
tion for the gravitional potential and the seismic wavefield into the boundary
conditions (equations 2.14) leads to four first order differential equations:

(λ + 2µ)U̇ + λr−1(2U − kV) = 0, (2.19)

µ(V̇ − r−1V + kr−1U) = 0, (2.20)

µ(Ẇ − r−1W) = 0, (2.21)

[Ṗ + 4πGρU]+− = 0, (2.22)

where [ ]+− stands for the discontinuous variation of the quantity within the brack-
ets at the boundary. Note that the expression of 2.19, 2.20 and 2.21 may change a
little whether the boundary separates fluids or solid regions; but this is enough
for the purpose of the discussion (see section 8.1, pp. 268-271 of Dahlen & Tromp,
1998, for more details).

For each (l, m) couple the differential equations lead to an infinite number of
solutions. The eigenvalues ωlm and associated eigenfunctions (Ulm, U̇lm, Vlm,...)
take discrete values. Each of them can be identified by another integer n: the
overtone number. Each solution, i.e. each eigenfunction of displacement, can be
written nUlm, nU̇lm etc. and the associated eigenfrequency nωlm. The modes with
n = 0 are called fundamental modes and those with higher n are called overtones
(first overtone, second overtone,...).

A first observation is that the equations do not depend on m. This is due to the
spherical symmetry assumed here. Therefore, for a given overtone number n and
harmonic degree l, the 2l + 1 eigenfrequencies and eigenfunctions (for −l ≤ m ≤
l) are equal. The problem is said to be degenerate. The group of free oscillations
with equal eigenfunctions is called a multiplet while each of its components is
called a singlet. The true Earth departs from spherical symmetry (due to lateral
heterogeneities or rotation for example) so that observations tend to separate the
singlets: this is what we call mode splitting. This observation allows to constrain
some physical parameters within the Earth, but not directly relevant to my thesis.
We shall drop the index m wherever it is not necessary in the following (but the
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summation still holds on it).
Another observation is that some equations involve the terms U, V, P and

their derivatives only, while the others involve W and Ẇ only. It is related to what
we mentioned in the analysis of equation 2.9: there is a rotational-free motion
that involves only the eigenfunctions U, V, P and their derivatives with eigenfre-
quency nωS

l (the spheroidal field); and a divergence-free motion that involves only
the eigenfunctions W and Ẇ with eigenfrequency nωT

l (the toroidal field). The for-
mer is the normal mode equivalent of the P-SV body waves or Rayleigh surface
waves, while the latter is the equivalent of the SH-body waves or Love surface
waves. In chapters 4 and 5, we only consider the vertical component of the seis-
mogram. Therefore only modes U, V, P and their derivatives will be relevant.
There are softwares that solve the equations for a given Earth model, i.e. calculate
the eigenfunctions and associated eigenfrequencies for a given radial distribution
of the elastic parameters λ, µ and ρ. We will use the software minos_bran from the
package MINEOS of Masters, Misha & Susan (2014) for this purpose.

A closer look at normal modes

Here I analyse the normal mode solutions, i.e. the eigenfunctions and eigenfre-
quencies for various integers n and l. For simplicity I restrict the analysis to the
spheroidal modes by looking at the eigenfrequencies nωS

l . I restrict even more
the analysis to the radial field by looking at the eigenfunctions nUl(r) only.

I used the model drawn on figures D.1 and D.2 of appendix D.2 to compute
the normal mode solutions. Figure 2.2 shows the eigenvalues nωS

l as a function
of the harmonic degree l. The lowest blue line corresponds to the fundamental
mode (n = 0), the lowest orange line to the first overtone (n = 1) etc. The branches
also take the name of dispersion curves and the whole diagram is therefore called
a dispersion diagram. This terminology will be justified in section 2.2.2.

One may see the propagating seismic wavefield as a sum of normal modes;
but this is equivalent to seeing the normal modes as interfering propagating
waves. On the dispersion diagram it is possible to see patterns other than the
one depicted by the continuous lines. These patterns are caused by interefering
propagating body waves (e.g. PKIKP within the whole Earth, Jsv within the inner
core, ScSsv within the mantle). The most important for the present study is that,
for l/4 � n, the corresponding eigendisplacement is mostly confined near the
surface. This is clear on figure 2.3 which shows the eigendisplacement for the fun-
damental normal mode and the two first overtones (i.e. n = 0, 1, 2) for harmonic
degrees l ranging from 50 to 100. These normal modes can be seen as multiply-
reflected interfering body waves within the upper-mantle (e.g. SSSSS, SSSSSS)
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FIGURE 2.2: Dispersion diagram (top) with a close-up (bottom).
Crosses are the eigenvalues nωS

l as a function of the angular degrees
l for various overtone numbers n. Crosses linked by a continuous
line with the same color have the same overtone numbers n. Such
an alignment is called a mode branch. The branches are ordered from
bottom to top in increasing angular order n, starting from n = 0
(lowest blue line) to n = 40 (highest blue line). For l/4� n, the nor-
mal mode branches tend to the surface wave mode branches. The Earth

model used is given in appendix D.2
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FIGURE 2.3: Displacement eigenfunctions 0Ul(r) (left, red), 1Ul(r)
(middle, green) and 2Ul(r) (right, blue) for various harmonic de-
gree l ranging from 50 to 100. The stronger the color, the higher the
harmonic degree. Note that the y-axis is truncated below 5000 km

radius. The Earth model used is given in appendix D.2.

which constitute the surface waves. I present in the following (section 2.2.2)
the derivation of the surface wave seismic wavefield from the normal modes.
Analysing the eigendisplacement is interesting because it tells us how the surface
wave, at some frequencies, has made the system vibrate. In other words, it tells
us how the surface wave is sensitive to the medium as a function of depth and
frequency. On figure 2.3 we observe that the displacement eigenfunctions have as
many nodes (zeroes along the radius) as the overtone number n. Also, for a given
l, the higher the overtone number the deeper the displacement. On the contrary,
for one overtone number n, the higher the harmonic degree l (and therefore the
eigenfrequency) the shallower the eigendisplacement. Therefore, if one wants to
illuminate the mantle at great depths, one needs to consider lower frequencies or,
most importantly, higher modes. However, as we will see later, observing higher
modes is challenging because the most energetic modes are usually the funda-
mental modes (at least for shallow earthquakes that excite surface waves most
efficiently) and that other modes tend to interfer with each other.



2.2. Laterally homogeneous system 47

2.2.2 Surface waves

So far we have derived the free oscillations for an Earth model. But what is the
actual response to a seismic source and how can we reconciliate the fact that nor-
mal modes are standing waves while surface waves are propagating waves? The
elasto-dynamic equation and boundary conditions (equations 2.13 and 2.14) still
hold; but now they are subject to initial conditions (a source term). Before t = 0
the displacement wavefield is zero everywhere. At t = 0 and x = x′ we impose a
unit displacement along each direction of the coordinate system: mathematically
it is a Heaviside function. For such a source, the response of a spherically sym-
metric and anelastic Earth can be written as a sum of normal modes uk (Dahlen
& Tromp, 1998, section 4.1, pages 118-120):

G(x, x′, t) = ∑
k
(iνk)

−1uk(x)uk(x′)eiνkt, (2.23)

where the subscript k stands for all the triplets {n, l, m} and νk = ωk + iγk is the
complex eigenfrequency that accounts for anelasticity (in the following I omit the
anelastic term in the formulas for simplicity). The wavefield is a sum of waves
of the form u(x, t) = A(x)eiωt whose amplitudes do not depend on time (except
for anelasticity). Therefore it is a sum of ‘standing waves’. They are waves with
fixed peaks and troughs within the three-dimensional sphere that oscillate at the
frequency ω.

Since we want to derive an expression in terms of propagating waves, we need
to define a coordinate system that is natural for the ray path. An illustration of
this coordinate system is given on figure 2.4. At any location on Earth, the basis
unit vector r̂ is in the vertical direction and points outside the Earth. The vector k̂
is tangent to the spherical shell and points in the direction of the wave propaga-
tion. Then the last vector r̂× k̂ is tangent to the spherical shell and orthogonal to
the ray-path.

By mean of the Watson transformation (or the Poisson’s sum formula), it
is possible to transform the summation over l into integration over continuous
wavenumber k. Then the Legendre function can be decomposed into the Leg-
endre functions of the first and second kind that are travelling waves. Formal
derivations can be found for example in Dahlen & Tromp (1998, pp. 405-414),
Snieder & Nolet (1987, their appendix), Nolet (2008, appendix C pp. 197-202) or
Gilbert (1976). The frequency domain Green tensor takes the form:

G(x, x′, ω) = ∑
n

pn(x)p′∗n (x′)ei[−kn∆+sπ/2−π/4]

cCI
√

8πkn| sin ∆|
, (2.24)
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FIGURE 2.4: Ray-specific coordinate system. The vector r̂ points
vertically ouside the Earth and the vector k̂ is tangent to the Earth
surface and points in direction of wave propagation. The vector
r̂× k̂ is perpendicular to the two others, it is tangent to the Earth
surface and orthogonal to the ray. The red star and blue triangle il-
lustrate the seismic source and the receiver respectively. The primed
(not primed) vectors denote the coordinate system at the source (re-
ceiver). ∆ is the source-receiver distance and ζ is the takeoff angle.

where ∗ denotes the complex conjugate, n is the overtone number, and,

pn(x) = r̂nU(x)− ik̂nV(x) + i(r̂× k̂)nW(x), (2.25)

and,
p′∗n (x′) = r̂′nU(x′) + ik̂′nV(x′)− i(r̂′ × k̂′)nW(x′). (2.26)

Note that this expression is valid in the far-field only. The vectors p and p′ are
called the polarization vectors by Snieder (1986). The polarization vector p′ is eval-
uated at the source location, and it involves, in particular, the evaluation of the
eigenfunctions of displacement at the source depth. Therefore, the depth of the
source determines which modes will influence the wave. For instance, a shallow
source will mostly excite the modes whose eigenfunctions have high amplitudes
close to the surface. The polarization vector p is evaluated at the receiver loca-
tion, which is (almost) always situated at the Earth’s surface. However care must
be taken if the Earth model contains an oceanic layer. In my study I am inter-
ested in the Pacific region so that I consider an ocean on top of the Earth model
(see figure D.2 in appendix D.2). However the stations are on islands or at the
border of the continents; they are not floating in the water (though it would be
possible, e.g. Pipatprathanporn & Simons, 2021; Simons, 2021). For this reason, I
will set them at the bottom of the ocean, considering that 3 km in station depth
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will not bias significatively the result, at least less that evaluating the eigenfunc-
tions in the water layer. The juxtaposition of the two polarization vectors may
seem strange at first but the Green tensor is a second order tensor that represents
the response to a point source in any direction recorded by a sensor in any other
direction. Given the source and sensor orientations we obtain a scalar wavefield
by projection. The amplitude also contains the term cCI

√
8πk| sin ∆| at the de-

nominator. The cCI is simply a normalizing constant for the eigenfunctions that
we set to 1 Nm in the following. The rest of the expression accounts for the two-
dimensional geometrical spreading.

The exponential in equation 2.24 is a propagating factor. First it contains the
sπ/2 term that is a correction for caustics. The integer s (that appears with the
Poisson’s sum formula) is the Maslov index. It has a very simple geometrical in-
terpretation as illustrated in figure 2.5. The propagating wave leaving the source
starts with a Maslov index of zero and it increases by one each time the path
passes by the source or its antipode. For instance it is zero for the wave leav-
ing in the minor arc path direction (i.e. the shortest path from the source to the
receiver) and it increases by two each time it arrives at the station after passing
through the source and its antipode. It is one for the major arc path, then three
the next time this wave arrives at the station again. This gives rise to a notation
for surface waves where the letter R and G are used for the Rayleigh and Love
waves respectively and the Maslov index is juxtaposed as in R0, G0, R1, G1, R2
etc. The term −π/4 is a phase shift correction at the source. The most impor-
tant term is −k∆: k is the wavenumber that counts the number of phase cycles per
meter propagated and ∆ is the source to receiver distance. The term k∆ is the cu-
mulated phase along the total distance between the source and the receiver. For a
given reference Earth model and seismic source we can therefore compute a pre-
dicted phase. Differences between the true Earth and the reference one produce
differences between the observed and the predicted phases. Therefore this phase
difference contains some information about the true Earth.

Note that equation 2.24 shows that surface waves are dispersive. In the time
domain the propagating term becomes (k∆−ωt). Therefore a surface of constant
phase would travel a distance ∆ during a time t = ∆k/ω or t = ∆p(ω) where
p(ω) = k/ω is the phase slowness of the wave. The distance propagated as a func-
tion of time is illustrated on figure 2.6. If the slowness is constant with frequency,
i.e. if p(ω) = k/ω = constant, then waves with various frequencies follow the
same time-distance curve (or hodochrone). On the contrary, if the slowness (or
equivalently the phase velocity c(ω) = 1/p(ω) = ω/k) is not constant with fre-
quency, a fixed observer would observe waves with different frequencies arriving
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FIGURE 2.5: Interpretation of the Maslov index s in terms of spher-
ical turns the wave has travelled. Each time the wave passes the
source or its antipode s is incremented by one. Left: the wave start-
ing with the major arc arrives at the station with a Maslov index
s = 1 since it passed by the source antipode. The next time it arrives
at the station it passed the source and its antipode so that the Maslov
index is s = 3 and so on. For such a wave the Maslov index is always
an odd number. Right: a wave starting with the minor arc arrives at
the station with a Maslov index s = 0, the next time it arrives at the
station it passed the source and its antipode so that the Maslov index
is s = 2 and so on. For such a wave, the Maslov index is always an
even number. This leads to a naming convention for surface waves,
in which we identify the Rayleigh (respectively Love) wave arrivals
by writting next to each other the letter R (respectively G) and the

maslov index, as in R0, R1 etc. (G0, G1 etc.).



2.2. Laterally homogeneous system 51

FIGURE 2.6: Illustration of dispersion. The travel time of a constant
phase surface along a distance ∆ for a wave with frequency ω1 is
given by t1 = ∆p(ω1) with p(ω1) = k1/ω1 the phase slowness. The
time-distance curve (or hodochrone) for this wave is represented by
the red line. If the phase slowness is not a constant of frequency
(i.e. k/ω 6= constant), then another wave with frequency ω2 has
a different slowness and the time-distance curve is different. It ar-
rives at the observer at distance ∆ at another time t2. The medium is

dispersive.

at different times. For example, a Dirac source would spread out along its way
and look more like a Gaussian far from the source. The dispersivity property de-
pends on the medium. The dispersion diagram of figure 2.2 shows the frequency
as a function of the harmonic degree l. But if we replace l by k =

√
l(l + 1)

we can say if the slowness p(ω) = k/ω is constant or not, which justifies the
name dispersion diagram. An informative version of the dispersion diagram is the
one showing the phase velocity as a function of frequency (figure 2.7). Clearly,
the Earth model used to compute the normal modes is dispersive. Since waves
with different frequencies are associated with different sensitivities with depth
(eigendisplacement), this property will help to constrain the Earth properties as
a function of depth.

The derivative of the phase velocity C(ω) = dc(ω)/dω is known as the group
velocity. It is the velocity at which the energy of a certain mode travels. The
group velocity dispersion diagram for the fundamental mode and the first three
overtones is drawn on figure 2.8. This diagram is useful to predict the arrival time
of a wave packet corresponding to some mode order. The fundamental mode is
particular in that it has a relatively low group velocity distinct from the overtones
at frequencies relevant in this thesis (i.e. from ∼5 mHz to ∼60 mHz). It is always
late on the seismograms. Overtones are faster. At low frequency their velocities
are different so that they arrive at distinct times. At high frequency however their
velocities tend to be close so that an observer will see them interfering. Of course
this also depends on the distance to the source; the greater the distance the most
separate the various modes can be.
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FIGURE 2.7: Dispersion diagram (top) and a close-up (bottom).
Same data as in figure 2.2, but the phase velocity as a function of
frequency is plotted: c(ω) or simply ω/k with k =

√
l(l + 1) as

function of ω.

FIGURE 2.8: Dispersion diagram representing the group velocity as
a function of eigenfrequency for the fundamental modes and the
first three overtones. It actually represents the derivatives of the first

four mode orders of figure 2.7.
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In practice we will use the routine green from the package MINEOS of Masters,
Misha & Susan (2014) to compute the Green tensor given the coordinates of a
point source and a receiver. The green routine uses the eigensolutions that have
been computed with the minos_bran routine, for the considered Earth model.

Using equation A.9 (see appendix A) we can write the frequency domain re-
sponse to a moment tensor at the receiver location, projected onto the sensor ori-
entation ν̂ as:

s(ω) = (iω)−1[M : ∇x′G(x, x′, ω)T].ν̂. (2.27)

The difference in the term iω with respect to equation A.9 comes from a slightly
different definition of the Green tensor (defined as the response to a Dirac in
appendix A, not a Heaviside) and normalization of the eigenfunctions. Inserting
2.24 leads to,

s(ω) = ∑
n
(iω)−1(M : En(x′)∗)× (

e−i(kn∆−sπ/2+π/4)√
8πkn| sin ∆|

)× pn(x).ν̂, (2.28)

with the strain tensor defined as E = 1
2 [∇p +∇pT]. The first term is the radi-

ation at the source; following Zhou, Dahlen & Nolet (2004) we write it S. The
fraction term is related to the propagation. As described above the exponential
term accounts for the phase variation along the path and the square root accounts
for the geometrical attenuation. The last term is related to the receiver. It accounts
for the displacement eigenfunctions at the receiver depth and for the projection
of the arrival wave onto the seismological sensor orientation. We will write this
term R in the following. Finally equation 2.28 can be rewritten in a simpler form,

s(ω) = ∑
n

Sn(ω, ζ)× (
e−i(kn∆−sπ/2+π/4)√

8πk| sin ∆|
)× Rn, (2.29)

where the explicit expression for the source term is:

S(ω, ζ) = −iω−1[MrrU̇ + (Mθθ + Mφφ)r−1(U − 1
2

kV)]

+ω−1(−1)n(V̇ − r−1V + kr−1U)(Mrφ sin ζ + Mrθ cos ζ)

+iω−1krV[Mθφ sin 2ζ +
1
2
(Mθθ −Mφφ cos 2ζ]

+ω−1(−1)n(Ẇ − r−1W)(Mrθ sin ζ −Mrφ cos ζ)

+iω−1kr−1W[
1
2
(Mθθ −Mφφ) sin 2ζ −Mθφ cos 2ζ],

(2.30)
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and for the receiver term is:

R = [r̂′U(x′)− ik̂′V(x′) + i(r̂′ × k̂′W(x′)].ν̂. (2.31)

The variable ζ is the takeoff angle – measured counter-clockwise from the
south. Since the source is oriented in space, it is natural that the azimuth of the
receiver matters. It is worth mentioning that the source radiation depends both
on depth and frequency (e.g. Rösler & Lee, 2020).

This formulation is powerful for its interpretability. In practice the full re-
sponse is obtained by convolving the Green tensor with the full moment tensor,
then projected onto the sensor orientation. We will use the routine syndat from
the package MINEOS of Masters, Misha & Susan (2014) for that purpose.

I represent synthetic Rayleigh-wave waveforms for the vertical component
calculated independently for the fundamental mode and the first three overtones
for sources at two depths and within two frequency bands in figure 2.9. We ob-
serve both the minor-arc arrival R0 and later the major-arc arrival R1. The R1
arrival has lower amplitude. Since it is observed later it had more time to attenu-
ate. The fundamental mode has a greater amplitude than the overtones but for a
deeper source the relative amplitude of the overtones is increased. This is related
to the eigenfunctions of displacement: the most excited modes are those whose
eigenfunctions of displacement have high amplitude at the source depth. To ob-
serve overtones, it is necessary to consider deep sources. The wavepackets for
all modes are better separated in the R1 arrival than R0. Since modes propagate
with their specific group velocity (see figure 2.8), the greater the source-receiver
distance the more separated they are. We also observe that modes are better sep-
arated at low frequency. As we observed on figure 2.8, the velocities of various
modes are very different at low frequency but they become close as frequency
increases, explaining the overlap of modes at high frequency. If one wants to
observe modes independently, one needs to use source-receiver pairs with long
enough distances. One also needs to consider low enough frequencies. Observ-
ing the fundamental mode is the easiest since it is usually the most energetic and
it is well separated from the overtones. However, higher overtones are necessary
to illuminate deeper parts of the mantle.

2.2.3 Path-specific forward problem

In a laterally homogeneous system the elastic parameters vary only with depth.
Therefore, a discrepancy between the observed and synthetic seismograms is re-
lated to a perturbation between the reference model and the true Earth averaged
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FIGURE 2.9: Relative amplitude of the fundamental and the three
first overtones for two sources at 20 km (left column) and 200 km
(right column) in two distinct frequency bands : 10-15 mHz (top
line) and 30-35 mHz (bottom line). The map locates the seismic
source as a red beachball (GCMT name C201308301625B) and the
station as a blue triangle (LVC) used to produce the synthetic wave-
forms. Parameters for the sources and stations used to illustrate this
chapter are given in appendix D. Each simulated mode has one color

as indicated by the legend.
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along the ray-path. Elaborate methods have been proposed to recover the per-
turbations. For example Nolet, Trier & Huisman (1986) invert the full wave-
form using a non-linear inversion scheme. However, a simpler forward prob-
lem were the data are – almost – lineary related to the Earth model is usually
prefered (for reasons of computational cost). For example Dziewonski, Mills &
Bloch (1972), followed by Lerner-Lam & Jordan (1983) propose a scheme based on
cross-correlation with pure-mode synthetics. Cara & Lévêque (1987) propose to
measure what they call secondary observables from the cross-correlation method of
Dziewonski, Mills & Bloch (1972) to relate almost linearly these data to the path-
averaged S-wave velocity perturbations. Later automated by Debayle (1999), this
technique is applied by Maggi et al. (2006b) to compute path-averaged S-wave
velocities for paths crossing the Pacific ocean.

Producing path-averaged models for a set of source-receiver paths is the first
step of a two-step scheme toward a three-dimensional model as discussed in the
introductory chapter. The second step is a linear regionalization to produce a set
of two-dimensional maps at discrete depths. For example Maggi et al. (2006b) use
the regionalization process based on a data fitting approach proposed by Mon-
tagner (1986) to produce such maps. Since the regionalization step is linear, it is
tractable with the SOLA (Subtractive Optimally Localized Averages) inversion.
In chapter 4 we take advantage of the SOLA inversion to regionalize the path-
averaged models produced by Maggi et al. (2006b).

With the two-step approach, all spatial dimensions are not constrained to-
gether at the same time. This will be clear in chapter 4 where the SOLA inversion
can only produce the lateral resolution information. Also the regionalization re-
lies on ray theory that does not account for finite frequency effects (such as de-
tailed off-ray sensitivity). In the next part I present the finite frequency theory
based on the Born approximation. It is an extension of the ray theory to account
also for lateral heterogeneity so that a forward theory can relate data to the three-
dimensional Earth in a single step.

2.3 Laterally heterogeneous system

In a laterally homogeneous medium, the density and Lamé parameters are later-
ally constant in a layer: ρ(r), λ(r), µ(r). In such a case, the energy released at the
source that travels along a great circle stays in that plane. In a laterally hetero-
geneous medium the elastic parameters are locally perturbed by some amount:
ρ(r) → ρ(r) + δρ(r, θ, φ), λ(r) → λ(r) + δλ(r, θ, φ), µ(r) → µ(r) + δµ(r, θ, φ).
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FIGURE 2.10: Illustration of the scattering principle. From a seis-
mic source (red star) radiates an initial wavefield (red circles). Some
ray (red line) in the initial wavefield hits a scatterer (an heterogene-
ity, red empty star). The scatterer acts like a secondary source from
which radiates a scattered wavefield (green circles). Some ray (green
line) in the scattered wavefield arrives at the station (blue triangle)
and adds to the initial wavefield. Some other rays of the scattered
wavefield may hit another scatterer giving rise to a secondary scat-
tered wavefield (yellow circles). In the Born approximation, such a

secondary scattered wavefield is ignored.

The wavefield becomes more complicated. The Born approximation gives a way
to extend the ray theory to describe such a wavefield.

2.3.1 Principle

Figure 2.10 illustrates the principle of scattering. A seismic source produces an
initial wavefield. This wavefield may encounter a punctual heterogeneity. This
heterogeneity, a scatterer, acts like a secondary source that is excited by the in-
coming wavefield; it radiates a portion of the energy of the initial wavefield in all
directions: a scattered wavefield adds to the initial one. If the medium is consid-
ered continously heterogeneous, we may integrate the scattered waves produced
continuously by the whole medium

∫∫∫
⊕.

One may note that the scattered wavefield may encounter another heterogene-
ity and give rise to a secondary scattered wavefield. On figure 2.10 the secondary
scattered wavefield is represented by the yellow circles. However, this secondary
wavefield only contains a portion of the energy of the scattered wavefield that
is already a portion of the energy of the initial one. Therefore we assume that
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only the initial wavefield produces significant scattered waves. This is the Born
approximation or the so-called single-scattering approximation.

2.3.2 Born approximation

Let us give a formal derivation of the single scattering following Nolet (2008).
Again, for simplicity we use the linear operator L for the elasto-dynamic equa-
tion.

Far from a point source in an homogeneous medium the response observed
by a receiver in x to a point source in x′ is the Green tensor:

LG(x, x′) = 0. (2.32)

In a laterally heterogeneous medium, the operator L is perturbed: L → L +

δL(x). As a consequence the wavefield is also perturbed: G(x, x′) → G(x, x′) +
δG(x, x′). Therefore, in an heterogeneous medium we have,

(L+ δL)(G(x, x′) + δG(x, x′)) = 0. (2.33)

Developing we obtain,

LG(x, x′) + δLG(x, x′) + LδG(x, x′) + δLδG(x, x′) = 0. (2.34)

Far from the source we still have LG(x, x′) = 0. Moreover we may neglect the
second order term in δ: δLδG(x, x′) = 0. This approximation is the mathemat-
ical equivalent of neglecting that the scattered wavefield gives rise to multiply-
scattered wavefields. So finally,

LδG(x, x′) = −δLG(x, x′). (2.35)

The left-hand side is the non-perturbed elasto-dynamic operator, it is known
since it contains the elastic parameters of the reference homogeneous Earth model.
Therefore we should be able to find a solution for the perturbed wavefield δG(x, x′).
The right-hand side can be seen as a forcing term. We see in this equation the in-
terpretation of single scattering given above. On the right-hand side an initial
wavefield strikes an heterogeneity. The heterogeneity is excited and acts as a
secondary source. This secondary source produces a wavefield that propagates
in the reference model (no multiple scattering), so the response to this scattered
wavefield is given as a solution of the non-perturbed elasto-dynamic equation.
Now the medium is continuously heterogeneous so the source term has value
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everywhere. Using equation A.6 from appendix A that gives the response of the
system to an extended source as a function of the source function and the re-
sponse to a point source, we obtain:

δG(x, x′) =
∫∫∫

⊕
G(x, x′′)(−δLG(x′′, x))d3x′′, (2.36)

Here we should understand that the initial point source at x′ produces an initial
wavefield that strikes a point scatterer at x′′ that produces a scattered wavefield
that is observed at x. The integration is over all the point scatters, i.e. the whole
medium. Developing the forcing term we obtain:

δG(x, x′) =
∫∫∫

⊕
ω2δρ(x′′)G(x, x′′)G(x′′, x′)d3x′′

+
∫∫∫

⊕
G(x, x′′)∇x′′(δλ(x′′) ·G(x′′x′)d3x′′

+
∫∫∫

⊕
G(x, x′′)∇x′′ · [δµ(x′′)(∇x′′G(x′′, x′ +∇x′′G(x′′, x′)T)]d3x′′.

(2.37)

After some algebraic transformations we obtain,

δG(x, x′) =
∫∫∫

⊕
ω2δρG(x, x′′)G(x′′, x′)d3x′′

−
∫∫∫

⊕
δλ(∇x′′ ·G(x, x′′))(∇x′′ ·G(x′′, x′)d3x′′

−
∫∫∫

⊕
δµ(∇x′′G(x, x′′) : (∇x′′G(x′′, x′) +∇x′′G(x′′, x′)T)d3x′′.

(2.38)

Here we can make an important observation: the perturbation in the elastic
wavefield is linear in the elastic parameters. Therefore, it is tractable with SOLA
to estimate perturbations in the elastic parameters from observation of the per-
turbed wavefield within the framework of the Born approximation. Actually the
linearity already appeared first in the linear non-perturbed forced wave equation
(equation 2.35). The linearity is produced by neglecting the term of order 2 in δ;
the linearity of the Born approximation arises from neglecting multiple-scattered
waves.

2.3.3 Perturbed surface waves

In the following I use a lighter notation that fits with the notation of Zhou, Dahlen
& Nolet (2004). The location of the point scatterer is now designated as x. Primed
symbols denote any quantity associated to the propagation from the source to the
scatterer and double primed symbol any quantity associated to the propagation
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FIGURE 2.11: Ray-specific coordinate system (as in figure 2.4 but in
the case of single-scattering). ζ ′ is the leaving angle of the wave
along the source-scatterer path and ξ ′′ is the arrival angle of the
wave along the scatterer-receiver path. η is the scattering angle, i.e.
the angle between the great-circle paths that meet the source, the re-
ceiver, and the scatterer. ξ is the arrival angle of the unperturbed

wave.

from the scatterer to the receiver. The coordinate system is still path-specific as
in figure 2.4 but now it involves two rays, one from the seismic source to the
scatterer and one from the scatterer to the receiver. It is illustrated in figure 2.11.
Moreover, we use the subscripts s and r to specify the source and the receiver
respectively.

With this notation equation 2.38 becomes,

δGrs =
∫∫∫

⊕
ω2δρG′′G′d3x

−
∫∫∫

⊕
δλ(∇x ·G′′)T(∇x ·G′)d3x

−
∫∫∫

⊕
δµ(∇xG′′)T : (∇xG′ + (∇xG′)T)d3x,

(2.39)

where δGrs is the perturbed Green tensor for the source at xs observed at the
receiver location xr, G′ is the Green tensor observed at the scatterer location x for
the source at xs, and G′′ is the Green tensor observed at the receiver xr for the
‘source’ (the secondary source) at the scatterer location x. We already have the
non-perturbed Green tensor in a laterally homogeneous system (equation 2.24).
Inserting the Green tensor and its gradient with respect to the scatterer location
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in equation 2.39 gives:

δGrs = ∑
n′

∑
n′′

∫∫∫
⊕

ps∗
n′p

r
n′′e
−i[k′∆′+k′′∆′′−(s′+s′′)π/2√

8πk′| sin ∆′|
√

8πk′′| sin ∆′′|
.n′Ωn′′d3x, (2.40)

where n′Ωn′′ is the interaction matrix, defined as:

n′Ωn′′(x) = ω2δρ(p′ · p′′∗)− δλ(trE)(trE′′∗)− 2δµ(E′ : E′′∗), (2.41)

and E = 1/2[∇p + (∇p)T] is the strain tensor.
I do not detail the lengthy derivation here. It was first derived by Snieder

(1986) in cartesian coordinates and then extended to spherical coordinates by
Snieder & Nolet (1987). Here we use the formulation of Zhou, Dahlen & No-
let (2004). Most terms in this formulation have already been discussed in sec-
tion 2.2.2.

The first sum on n′ is associated with the Green tensor from the source to
the scatterer. The second sum on n′′ corresponds to the Green tensor from the
scatterer to the receiver. There is a double sum because all modes n′ leaving
the source excite all modes n′′ at the scatterer. Considering many modes in the
summation is the so-called mode-coupling. The approximation that there is no
mode-coupling allows to consider one mode at a time, i.e. the mode that leaves
the source excites only itself at the scatterer: n′ = n′′ = n. Zhou, Dahlen &
Nolet (2004) showed that given the present computational power that allows only
coarse parameterizations, it is a good approximation. I use this approximation in
the application of the finite frequency theory in chapter 5. Future developments
may extend the present study to include mode-coupling.

The denominator is the geometrical spreading factor for a path that passes
by the scatterer; it is the product of the geometrical attenuation along the source
to scatterer path by that along the scatterer to receiver path. The last term in the
exponential involves the Maslov index s which corrects the phase for caustics (see
figure 2.5). The exponential is the propagating term. It is the accumulated phase
with wavenumber k′ along the source-to-scatterer path-length ∆′ plus that with
wavenumber k′′ along the scatterer-to-receiver path-length ∆′′. The polarization
vectors ps

n′ and pr
n′′ are the source polarization vector of G′, and the receiver

polarization vector of G′′. They are evaluated at the depth of the source and
receiver respectively.

All terms related to the propagation along the source-to-scatterer path and the
scatterer-to-receiver path have been analysed. They all depend only on the lat-
erally homogeneous medium. All terms related to what happens at the scatterer
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location are in n′Ωn′′(x). It contains the relation between the perturbed Green
tensor and the elastic parameters at the scatterer location and is still linear in the
elastic parameters. The polarization terms p′ and p′′ can be seen as the ‘receiver’
or ‘source’ (which are both the scatterer) of the Green tensor in the first or sec-
ond part of the path respectively. They are located at the same location (same
depth) but they may be different because they may concern different modes n; if
we ignore mode-coupling, then they are the same (in magnitude).

As we did in section 2.2.2, we can use equation A.9 from appendix A to derive
the response to a moment tensor from the perturbed Green tensor and project it
onto the receiver orientation ν̂:

δs(ω) = (iω)−1M : ∇s[δGrs
T(ω)].ν̂. (2.42)

Finally the perturbed response to a full moment tensor in a laterally heteroge-
neous medium is written:

δs(ω) = ∑
n′

∑
n′′

∫∫∫
⊕
S ′(ζ ′)×

(
e−i(k′∆′−s′π/2+π/4)√

8πk′| sin ∆′|

)
×s′ Ωs′′

×
(

e−i(k′′∆′′−s′′π/2+π/4√
8πk′′| sin ∆′′|

)
×R′′d3x,

(2.43)

where S ′ is the source term. It is the same as in a laterally homogeneous case.
It is given in equation 2.30. However the takeoff angle is that of the source-to-
scatterer ray-path ζ ′ (see figure 2.11), not that of the source-to-receiver great-circle
ζ. R is the receiver term. Here the receiver term is not the same as in the laterally
homogeneous case. It accounts for the projection of the arrival wave onto the
seismic sensor but the wave arrives with an angle ξ ′′ that depends on the location
of the source, receiver, and scatterer (see figure 2.11). It is written:

R = {U′′r r̂− i[V′′r cos(ξ ′′ − ξ) + W ′′r sin(ξ ′′ − ξ)]k̂

+i[W ′′r cos(ξ ′′ − ξ)−V′′r sin(ξ ′′ − ξ)]r̂× k̂}.ν̂,
(2.44)

where ν̂ is the orientation of the sensor.
The single scattering principle is clear in equation 2.43. A seismic source (first

term) generates an initial wavefield that propagates (first exponential) and atten-
uates geometrically (first square-root) toward the scatterer. There the scatterer
acts as a secondary source. It is excited by the incoming wavefield and its be-
haviour is given by the interaction matrix that depends on the elastic parameters
at its location. A secondary wavefield is thus produced and propagates (second
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fraction) toward the receiver where the observation along some sensor is obtained
with the receiver term. Snieder (1986) writes that this formulation is the ‘life his-
tory of the scattered wave’.

The interaction matrix is linear in the elastic parameter perturbations (equa-
tion 2.41). To make it explicit we may write the interaction matrix:

n′Ωn′′ =n′ Ωm
n′′δm. (2.45)

2.3.4 Three-dimensional forward problem

We derived the seismic response in a laterally heterogeneous system. The re-
sponse is a function of small three-dimensional perturbations in the elastic pa-
rameters with respect to some laterally homogeneous reference model. It should
therefore be possible to relate an observable that measures the difference between
a synthetic waveform in a laterally homogeneous system and the real one with
the three-dimensional perturbations in the elastic parameters. Since the response
that has been derived within the Born approximation is linear in the elastic pa-
rameters, this relation can be linear. Such relation has been derived by Zhou,
Dahlen & Nolet (2004) for various kinds of measurements. In my thesis I use
phase-delay observables. Therefore I recall only this relation here.

Let s = Ae−iφ be the waveform observed at the receiver from the initial wave-
field in the laterally homogeneous reference system. Let δs = δAe−iδφ be the
observed waveform from the scattered wavefield from a particular scattering lo-
cation. In the Born approximation, both wavefields sum together so that the ob-
served waveform is o = s + δs.

On the one hand we have,

ln
(o

s

)
= ln

(
(A + δA)e−i(φ+δφ)

Ae−iδφ

)
= ln

(
A + δA

A

)
− iδφ. (2.46)

On the other hand we have (first using the Born approximation, then by assuming
that δs/s is small),

ln
(o

s

)
= ln

(
s + δs

s

)
≈ δs

s
. (2.47)

Therefore, taking the imaginary part, the following expression is valid in the ap-
proximation of small perturbations,

−=
{

δs(ω)

s(ω)

}
= δφ(ω). (2.48)
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FIGURE 2.12: Finite-frequency three-dimensional phase delay sen-
sitivity kernels to S-wave velocity for the fundamental mode (top)
and third overtone (bottom) at 10 mHz (left), 30 mHz (middle) and
50 mHz (right). The depth of maps are indicated in the upper-left
corner. The vertical cross-sections are all the same as indicated on
the first map. The colorscale is the sensitivity in km−3. The top map
illustrates the seismic source as red beachball (with GCMT name
C201403152351A) and station as blue triangle (PTCN) used to com-

pute the kernels.

Finally, inserting the response in a laterally homogeneous medium and the re-
sponse in a laterally heterogeneous medium derived above (equations 2.29 and
2.43) we obtain,

δφ(ω) =
∫∫∫

⊕
Km

φ (x, ω)δm(x)d3x, (2.49)

where Km
φ (x, ω), the phase delay sensitivity kernel, is

Km
φ (x, ω) = −=

(
∑
n′

∑
n′′

S′n′Ω
m
n′′R

′′e−i[k′∆+k′′∆′′−k∆−(n′+n′′−n)π/2+π/4]

SR
√

8π(k′k′′/k)(sin |∆′|| sin ∆′′|/| sin ∆|)

)
. (2.50)

The phase delay (some observable data) is linearly explained by the three-
dimensional perturbation in the elastic parameters. It will be possible, using the
SOLA inversion, to invert phase-delays directly for a three-dimensional model.
In practice I use the routines from Zhou, Dahlen & Nolet (2004) and Zhou (2009a)
to produce the sensitvity kernels. Figure 2.12 shows some finite frequency three-
dimensional kernels that express the sensitivity of phase delay measurements to
S-wave velocity at various frequencies for the fundamental mode and the third
overtone. The lateral region of high sensitivity is elliptic ; its external shape re-
sembles the Fresnel zone, but with greater complexity inside. As expected the
region narrows as frequency increases. On the vertical cross-sections we observe
that the sensitivity shallows as frequency increases. This could have been pre-
dicted with the eigenfunctions of displacement and the path-specific forward
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problem (see figure 2.3 and section 2.2.3). Also, the higher the overtone the deeper
the sensitivity. Though it is a challenging task, observing overtones is necessary
to illuminate deeper parts of the mantle. Note that the sensitivity is also partic-
ularly high close to the source and the station. We will observe this effect in the
sensitivity of the global dataset in the tomographic study in chapter 5. However,
care must be taken in these regions close to the source and receiver since the ker-
nels are based on the far-field Green tensor. Recent developments have accounted
for the near-field Green tensor close to the source (Liu & Zhou, 2016b) and we too
should account for them in the future.

2.4 Conclusion

In the first part of this chapter, I presented an expression for the seismic wavefield
produced by a seismic source in a laterally homogeneous medium. From that
expression a synthetic seismogram can be computed and the discrepancy with
the real one can be measured. A relation between the data and the path-averaged
physical parameter between the source and the receiver can be established. This
is the first step of the two-step approach in surface wave tomography. The second
step is a linear regionalization that produces two-dimensional maps at discrete
depths. Since this second step is linear, we can regionalize the path-averaged
profiles of Maggi et al. (2006b) using the SOLA inversion in chapter 4.

Unfortunately the two-step approach has limits. It does not constrain all the
spatial dimensions at the same time and the regionalization is based on ray the-
ory that does not account for finite frequency effects. In the second part of this
chapter, I presented a finite frequency theory based on the Born approximation. It
extends ray theory to relate data to the three-dimensional Earth in a single linear
equation. Since this relation is linear, we can apply this finite frequency approach
together with a SOLA inversion in chapter 5.

However, once the forward problem d = Gm is set, retrieving the model is
not an easy task. Before we apply the SOLA inversion in one case or the other, I
need to describe how to solve the inverse problem and obtain the model m. This is
the subject of the next chapter.
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Chapter 3

Inverse theory

We argue that without a more systematic and realistic error and resolution analysis, in-
terpretations might be misleading.

Trampert, Global seismic tomography: the inverse problem and beyond, 1998.
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3.1 Introduction

In the previous section I built the forward problem: for a physical system (a
model of the Earth), I described the law of physics (surface wave propagation,
response to a seismic source) that leads to some observations (phase delay). The
forward problem can be written in the abstract form d = g(m) (ignoring noise for
the moment) where g is an operator that describes the physical theory through
which the system m produces the predicted data d. The tomographer observes
the data at the surface and is interested in the physical system that produced
them. Ideally the operator g would be invertible such that given the data one
obtains the model from g−1 (assuming g−1g(m) = m). Actually retrieving the
model from the data is not an easy task. If we solve the forward problem by
deduction, we solve the inverse problem by induction.

The model may be a continuous function of space so that constraining the
model would require an infinite number of data while in reality the dataset is
finite (e.g. a finite set of source-receiver pairs). Moreover, some components of
the model (some location in the tomographic image) may be weakly constrained.
The seismic network is much denser in the northern hemisphere and on the con-
tinents and earthquakes occur mostly in geologically active regions like ridges
or subduction zones that are unevenly distributed. As a consequence, the seis-
mological data has a highly uneven distribution leading to overdetermination
in some regions and undertermination in some others. This may induce strong
spatial biases in the tomographic images, making their interpretation particularly
tricky. This is particularly true in the Pacific hemisphere which is the region of
interest in this thesis.

Seismological data are noisy. The noise is the part of the data produced by
physical processes not taken into account in the forward theory or by the imper-
fect measurement process. The forward theory also is erroneous in that it is based
on some assumptions (e.g. that the seismic source is perfectly known) or that it
neglects many physical processes that may affect the data (note that errors in the
theory and in the data are overlapping in some sense). Because of data noise and
imperfect coverage, the existence and uniqueness of a model solution is not guar-
anteed and the construction and interpretation of one model solution is difficult
(e.g. Parker, 1977; Scales & Snieder, 1997; Ritsema, 2005; Foulger, 2011; Foulger
et al., 2013).

Many approaches have been proposed to solve the inverse problem (e.g. Wig-
gins, 1972; Parker, 1977; Tarantola & Valette, 1982; Nolet, 1985; Scales & Snieder,
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1997; Trampert, 1998; Nolet, 2008). The classical philosophy is to look for a so-
lution that predicts data close enough to the observed ones by minimizing the
so-called data misfit. But there is not only one solution and fitting the data too
closely may lead to physically unrealistic models. Usually a criterion is added for
the model to be smooth and one optimizes the tradeoff between data misfit and
‘model coherency’. Adding such a criterion is called regularizing the model solu-
tion. Unfortunately these methods need to add an ad-hoc constraint on the model
itself that may be difficult to justify in some context (like in seismic tomography
where the deep Earth structure remains poorly known).

Since our knowledge of the quantities involved in the forward problem is im-
perfect, there is the question of the precision (or variability, or uncertainties, or
‘error bars’) of the solution obtained by one method or another. Also one may
wonder what are the correlations between the elements of the model. In seismic
tomography where the model is spatial, this is equivalent to ask how different
locations in the model vary together. This is closely related to the concept of
resolution (like the photographic resolution or the point spread functions in as-
tronomy). An estimate somewhere is a local average of the true Earth. The model
uncertainty and model resolution appear to be very important concepts in inverse
problems. Unfortunately classical data fitting methods have great difficuties in
controlling them and obtaining them (especially for large scale problems like a
tomographic model with many cells). Since the data fitting inversions do not
control the resolution, they can even produce models that represent biased local
averages (Zaroli, Koelemeijer & Lambotte, 2017).

The Backus–Gilbert theory (Backus & Gilbert, 1967; Backus & Gilbert, 1968;
Backus & Gilbert, 1970) focuses on the resolution and the uncertainties of the
model to find a solution to the inverse problem. Therefore, one has some control
on these quantities and obtains them by construction. Moreover there is no need
for ad-hoc a priori information on the model solution itself: “the non-uniqueness
of the solution is broken by averaging rather than regularizing” (Zaroli, 2016).
Last, the resolution can be designed such that the estimate is made of unbiased
local averages. Given all its advantages, the Backus–Gilbert approach is very ap-
pealing. The SOLA variant of the Backus–Gilbert theory (Pijpers & Thompson,
1992; Pijpers & Thompson, 1993) was introduced and adapted in seismic tomog-
raphy by Zaroli (2016) and Zaroli (2019). He applied this original approach with
body waves. The central objective of my thesis is the application of the SOLA-
Backus–Gilbert inversion in the context of surface waves. I hope, with the control
on the resolution and model uncertainties, to extract the information from the
data as well as possilble and, with the knowledge of the resolution and model
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uncertainties, to make robust interpretations of the model solution.
In the first part of this section I define precisely the quantities involved in

the inverse problem using the very general probabilistic description of Tarantola
(2005). In the second part I present briefly the data fitting approaches and the very
general Bayesian point of view. In the last section, I present the SOLA-Backus–
Gilbert approach that may overcome some limits of the data fitting inversions.
In general I assume that the imperfect knowledge of some quantities may be de-
scribed using Gaussian probabilities. I also assume that the theory relating the
model and the data is perfectly linear. A discussion on the linearity is given at
the end of the chapter.

3.2 Understanding the inverse problem

In this section I define the various terms of the inverse problem. The best way to
handle mathematically poorly known and noisy quantities is to use probabilities:
a noisy quantity follows some probabilistic distribution with a particular shape
and quantitative features.

3.2.1 Model

The model m is a mathematical abstraction that represents some properties of
the system under study. For example, in chapter 4, in the first step, the model is
the S-wave velocity averaged along the source-receiver path; in the second step
it is the S-wave velocity in a two dimensional spherical shell at some depth. In
chapter 5, the model is the three-dimensional distribution of the S-wave velocity
within the Earth. The set of all possible values the model may take is called the
model space M. Conceptually the model space may be infinite-dimensional (i.e.
one solution is defined by an infinite number of components). For example the
S-wave velocity is a function of space that takes values everywhere within the
Earth: the model m(x) is a function of some spatial variable (in chapter 5 it is the
three-dimensional space, x ∈ R3). In seismic tomography the model space is the
set of all possible tomographic images and the value of some x corresponds to
some spatial location.

For practical purposes, we define a parameterization of the model space. Let
{hl}l=1,..,∞ be a set of elements of the model space that form an orthonormal basis.
Then any element of the model space m can be written:

m(x) =
∞

∑
l=1

mlhl(x). (3.1)
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There are two classes of parameterizations: global and local. Global parameteriza-
tions have basis functions that may be non-zero everywhere in the model. An ex-
emple of such a parameterization is the spherical harmonics decomposition that
we already used to build the forward problem in chapter 2. In my thesis the use
of a local parameterization is more natural (since we regard the model parameter
estimates as local averages as we will see later). Local parameterizations have ‘lo-
cal’ basis functions in that they are non-zero only in a limited region of the model.
This corresponds to splitting the model space into blocks. Note that in the case
of irregular parameterization, that is when basis functions are non-zero in regions
of variable size (as is the case in chapters 4 and 5), the value of the function itself
must take into account the size of the region to guanrantee the orthonormality of
the basis, that is: ∫

x∈M
hi(x)hj(x)dx = δij. (3.2)

A definition that satisfies equation 3.2 is,

hl(x) =

V
−1/2
l if x in cell `,

0 if x elsewhere.
(3.3)

where Vl is the surface of the cell ` (as in chapter 4) or the volume of the voxel `
(as in chapter 5), depending on the context.

To be perfect the expansion (equation 3.1) should consider an infinite number
of basis functions. Obviously it must be truncated to some upper limit M. In a
local parameterization this corresponds to using M blocks of finite volume. In
doing so, the model is a M-dimensional vector of scalars: m = (ml)l=1..,M ∈ RM

and the model space is thus M-dimensional. The model space is the set of all
possible ‘pixelated’ tomographic images and an element of the model vector, a
model parameter, corresponds the value assigned to one of these ‘pixels’. The trun-
cation is not without importance. Trampert (1998) points that the use of different
parameterizations in various studies complicates the comparison of their results.
Moreover the parameterization acts as a filter that smooths the solution. Another
undesirable effect shown by Trampert & Snieder (1996) is that part of the trun-
cated solution may leak into the model estimate. In chapter 5, the sensitivity
kernels are degraded by their projection onto the model grid but the parameter-
ization is good enough to retain their main properties. However, Zhou, Dahlen
& Nolet (2004) show that the current parameterizations, limited by the current
computational power, cannot handle differences in the projected sensitivity ker-
nels including mode-coupling, which leads us to ignore this effect.
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FIGURE 3.1: Illustration of the multi-dimensional Gaussian proba-
bility density function ρ(m) in the case m ∈ R2. The center (or top)
of the ‘bell’ is at m0 = (0, 0) for all graphs and the covariance matrix

is given in the upper-right part of the graph.

Of course the model may represent more than one physical quantity, for exam-
ple the S and P wave velocity. Then the basis functions and the model parameters
would simply be vectors of dimension the number of physical parameters. For
simplicity we will consider only the case where the model represents only one
physical parameter. The extension of the theory to multiple physical parameters
is straightforward (though in practice it adds complications regarding the corre-
lations between the parameters).

Following Tarantola (2005), we use the language of probabilities to describe
the inverse problem in very general terms. For the model, one may already have
some prior information. A good way to represent this prior information is to define
a probability density function (or probability distribution) for the model: ρm(m). We
commonly make the assumption that the a priori model distribution is Gaussian.
In such a case the probability density function for prior model information is
written as a multi-dimensional Gaussian function:

ρm(m) =
1

(2π)M|Cm|
e−

1
2 (m−m0)TCm

−1(m−m0), (3.4)

where m0 is the prior model, the center of the Gaussian bell-curve (the highest
probability value), and Cm is the prior model covariance matrix describing the
spread of the curve in all directions within the model space. The symbols Cm

T,
Cm
−1 and |Cm| denote the transposition, inverse and determinant of the matrix

Cm. I illustrate such a probability on figure 3.1.
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3.2.2 Data

The data are some observables that are produced by the system and the mea-
surement process. For example the three-dimensional distribution of the elastic
parameters within the Earth produces seismograms and we may measure phase
delays from them. To recover the model from the data we need many data. Say
we have N data, they can be grouped into a data vector d that belongs to some
N-dimensional data space D. Unfortunately the measuring process is not perfect.
For example, while measuring the phase delay at some frequency for the funda-
mental mode, the first overtone may be already in the measurement window and
bias the measurement. Therefore, the data are better described by a probability
density function rather than a single value. As for the model the probability may
be assumed Gaussian so that the probability that the actual data is d given the
measured value d0 can be written:

ρd(d) =
1

(2π)N|Cd|
e−

1
2 (d−d0)TCd

−1(d−d0), (3.5)

where Cd is the data covariance matrix. The diagonal terms of Cd are measures of
how far the actual data can be from the observed ones. It can be interpreted in
terms of ‘error bars’. The off-diagonal terms are the covariances between different
data. In this study we assume that there is no covariance between different data,
i.e. that the data are independent of each other. Therefore the data covariance
matrix is diagonal. We may write Cd = diag(σ2

di
), i = 1, .., N (σdi represent the

‘data errors’).

3.2.3 Theory

The theory (or the forward theory) is the physics-based relation between the
physical system properties and the data that it produces and that can be observed.
Mathematically the theory is an operator g that acts on a model to predict data:
d = g(m) (ignoring noise). For example, in seismic tomography, a very funda-
mental theory would relate the Earth to the observed waveforms it produces. Of-
ten, simpler relations are established. For example Cara & Lévêque (1987) build a
relation between what they call ‘secondary observables’ and the S-wave velocity
averaged along the path between the source and the receiver under considera-
tion. In chapter 5 we use a relation between the phase delay with respect to a
reference system and the three-dimensional distribution of the S-wave velocity.
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In chapter 4, we use a relation between the averaged S-wave velocity along ray-
paths and the S-wave velocity within a two-dimensional spherical shell at some
depth.

The forward theory relies on some assumptions. For example the forward
theory I presented in chapter 2 assumes that the seismic source is known, that
there is no multiple-scattering, that the single-scattering occurs in some refer-
ence medium. Say that for a given model m the theory we use predicts the data
g(m). Since the theory is not perfect, the data that should be predicted given
some model is better described using a probability distribution. Again within
the Gaussian hypothesis we write the conditional probability of predicting some
data given a model:

θ(d, m) =
1

(2π)N|CT |
e−

1
2 (d−g(m))TC−1

T (d−g(m)), (3.6)

where g(m) is the predicted data from the theory and CT is the covariance oper-
ator for the modeling errors.

3.2.4 Combining information

The probability density function for the data in the data space D and the prior
model probability density function in the model space M can be combined to
give the joint probability to obtain some model and some data together in the
D ×M space: ρ(d, m) = ρd(d)ρm(m). Of course this is true given that the distri-
butions are independent. I illustrate this combination of information on figure 3.2
in the case of one-dimensional data and model spaces. If both the prior model and
data probability distributions are Gaussian then the joint probability distribution
is a two-dimensional Gaussian.

On the middle panel of figure 3.2, I reproduced the data and prior model joint
probability in the background. On the foreground the conditional probability
distribution for the data given the model (i.e. the imperfect theory) is in black.
Both lie into the same D ×M space. Tarantola & Valette (1982) and Tarantola
(2005) postulate that the combination of information from both probability den-
sity functions is: σ(d, m) = ρ(d, m)θ(d, m). The result is illustrated in the panel
on the right. The combination of all input information leaves the two shady black
stains for the joint probability to have some value for the model and data: we
learnt something. Finally the posterior probability density function for the model
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FIGURE 3.2: Illustration of the combination of prior information (af-
ter Tarantola, 2005). For all panels the horizontal axis is the model
spaceM, the vertical axis is the data spaceD and the plane spanned
by these axes is the D ×M space. On the left panel, the dashed or-
ange and blue lines represent the data and prior model probability
distributions. The joint probability distribution is the green two-
dimensional Gaussian. On the middle panel the black shady line is
the imperfect theory. On the right panel the black shady stains are
the posterior joint probability for the model and data. From that de-
rives the posterior probability distribution for the data (continuous

orange line) and model (continuous blue line).

can be obtained as the marginal probability:

σm(m) =
∫

D
σ(d, m)dd =

∫
D

ρ(d, m)θ(d, m)dd =
∫

D
ρd(d)ρm(d)θ(d, m)dd.

(3.7)
The model posterior probability is the blue continuous line. The same applies
for the data, it is the orange line. The combination of information from the data
and theory has refined the probability distribution of the model. Depending on
the form of the a priori probability density functions and theory, the a posteriori
probability distribution for the model may be very complicated (e.g. it may be
multimodal as on figure 3.2). As we will see in the next section, if we assume
input distributions to be Gaussian and the theory to be perfectly linear, then the
posterior model probability distribution is also Gaussian and analytic formulae
exist (analytic mean and covariances).

Tarantola (2005) shows that, in the case of Gaussian probabilities, equation 3.7
can be further simplified into:

σm(m) = constant× ρm(m)e−
1
2 (g(m)−d0)TCD

−1(g(m)−d0), (3.8)

where CD = CT + Cd. This equation shows that, within the Gaussian hypothesis,
we can consider that the theory is perfect (error-free), and that all the sources of
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error come from the data.
Finally, inserting the a priori probability distribution for the model (equation 3.4)

into equation 3.8 we obtain the a posteriori probability distribution for the model
in the Gaussian hypothesis:

σm(m) = constant× e−
1
2 ((g(m)−do)TCD

−1(g(m)−d0)+(m−m0)TCm
−1(m−m0)). (3.9)

3.3 Data fitting inversions

We defined all the terms involved in the inverse problem under the hypothesis
that all the input probability distributions are Gaussian. From now on I write the
forward problem d = g(m)+ n where d is the observed data and n is a noise term.
The noise term follows a Gaussian distribution with zero mean and covariance
the data covariance matrix Cd. As stated previously, we assume that the data are
uncorrelated so that Cd = diag(σ2

di
), i = 1, .., N.

In this section I further assume that the forward problem is linear. In that
case, the predicted data g(m) can be rewritten Gm with G a linear operator; the
forward problem reduces to a simple matrix-vector product. At the end of the
chapter I discuss the question of linearity. Finding a solution to the inverse prob-
lem is not straightforward. As we have discussed in introduction the data are
noisy, finite-dimensional and they may constrain the model parameters unevenly.
These bad characteristics pose the question of the existence and uniqueness of a
solution and justify the plethora of approaches to obtain one (e.g. Parker, 1977;
Trampert, 1998; Scales & Snieder, 1997; Nolet, 1985; Tarantola & Valette, 1982;
Wiggins, 1972; Nolet, 2008). In this section I present the most traditional inver-
sion methods that belong to the class of data fitting inversions. I discuss classical
optimization techniques and the Bayesian view point that naturally arises from
the probabilistic description of the inverse problem. We recognize some limits
with data fitting inversions: ad-hoc constraints and no direct control on the model
resolution and uncertainties. In the next section I will present the Backus–Gilbert
inversion, and its reformulation named Subtractive Optimally Localized Averages
(SOLA) inversion, that may help to overcome these limits.

One may first ignore the a priori information on the model and consider only
the exponential term appearing in equation 3.8. In the linear case, if we further
assume no correlation between the data, this term is written (see Nolet, 2008,
section 14.1):

χ2(m) =
N

∑
i=1

(∑M
j=1 Gijmj − di)

2

σ2
di

, (3.10)
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where σ2
di

are the diagonal terms of the data covariance matrix (σdi represent the
‘data errors’). ∑M

j=1 Gijmj is the i-th data predicted by the theory and di is the ac-
tual data. χ2 is a data misfit normalized by the data uncertainties. χ2 can be seen
as a sum of N squared independent standard normal random variables. It is dis-
tributed according to the well-known χ2-distribution with N degrees of freedom.
The data misfit is a quadratic equation, which justifies the term least-squares in-
version. In a perfect case there would be a model m for which the predicted data
Gm equals the observed data d so that χ2 would be zero. However there is no
such a solution. Instead one wants a model that fits the data at the level of their
errors. For a large amount of data this is equivalent to find a model such that χ2

is close to the number of data N (the mode of the χ2-distribution with N degrees
of freedom is N − 2). It turns out that there is not only one solution that satisfies
this criterion. Also, when minimizing χ2, the model norm increases leading to a
physically unrealistic model. The solution is not unique and there is a trade-off
between the data misfit and the ‘model coherency’ (for example measured by the
model norm). The minimization of the χ2 follows a L-shaped tradeoff curve as
illustrated on figure 3.3. To get a unique solution, we need to add some criterion
on this ‘model coherency’ to the problem. This leads us to the field of regularized
data fitting inversions.

Adding some criterion to obtain a unique solution to the inverse problem is
called regularization. In very general terms we can express the quest for a regular-
ized solution as the minimization of a cost function as (Trampert, 1998):

Cλ = ∆D(d, Gm) + λ∆M(m, m0), (3.11)

where the first term represents the data misfit under a given norm over the data
space and the second term is the model coherency under a given norm over the
model space. The scalar λ is a tradeoff parameter. In rough words it allows to
give more weight to the data misfit or to the model coherency. In other words it
allows to choose a position on the L-shape curve of figure 3.3. Increasing λ gives
more significance to the model coherency in the optimization so that the solution
will have a low model norm (lower right side of the L-curve) and vice versa. A
simple form of a cost function is known as the Tikhonov regularization (Tikhonov,
1963) where it writes: Cλ = ||Gm− d||22 + λ2||m||22. The Tikhonov regularization
is equivalent to adding M equations to the system to damp model parameters
toward zero when not well constrained by the data.

A more general approach is to use the data covariance matrix Cd as a measure
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FIGURE 3.3: L-shaped tradeoff curve for the classical data fitting op-
timization problem (data misfit versus model coherency). The curve
draws the model coherency as a function of the data misfit for vary-
ing tradeoff parameter λ. For increasing values of λ, the data mis-
fit term gets less and less significant with respect to the model co-
herency term. Therefore the resolution of the optimization problem
lead to a more coherent model with greater data misfit (lower-right
side of the curve). On the contrary lower values of the tradeoff pa-
rameter lead to good data misfit but poor model coherency, leading

to physically unrealistic models (upper-left side of the curve).
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in the data space for the data misfit term and to define an a priori model covari-
ance matrix Cm as a measure in the model space to quantify the ‘model coherency’
(or the deviation from the a priori). Then the cost function directly derives from
equation 3.9:

Cλ = (d−Gm)TCd
−1(d−Gm) + (m−m0)

TCm
−1(m−m0). (3.12)

Note that in this formulation of the cost function the λ term is absorbed in the
a priori model covariance matrix. Within the Gaussian hypothesis and given the
linearity of the theory the minimization of the cost function leads to analytical
solution for the model estimate:

m̃ = (GTC−1
d G + C−1

m )−1(GTC−1
d d + C−1

m m0). (3.13)

This solution is the maximum of the Gaussian probability distribution for the
a posteriori model (or model estimate). There is also analytical solution for the
model estimate covariance matrix:

Cm̃ = (GTC−1
d G + C−1

m )−1. (3.14)

This is the Bayesian point of view where the aim is to replace the subjective choice
of the ad-hoc parameter λ by an objectively defined prior model probability dis-
tribution (m0 and Cm) and the aim is not to look for one solution but for the whole
a posteriori probability distribution. However, defining objectively some prior in-
formation can be difficult (especially in tomography where the deep Earth re-
mains poorly known). To simplify these results let us assume that the model is
expressed as perturbations with respect to some reference so that m0 = 0. Then
the model estimate can be written:

m̃ = [(GTC−1
d G + C−1

m )−1GTC−1
d ]d. (3.15)

This equation is of the form
m̃ = G†d, (3.16)

where G† is called the generalized inverse of G and, in the case of data fitting in-
versions,

G† = (GTC−1
d G + C−1

m )−1GTC−1
d . (3.17)

We also have:
Cm̃ = G†CdG†T

. (3.18)
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If we use d = Gm + n in equation 3.16 we have:

m̃ = G†d = G†Gm + G†n = Rm + G†n, (3.19)

which defines the resolution operator R. Ignoring the noise term, this equation
shows that the solution m̃ is linear combinations of the parameters of the ‘true’
model m. For example, the k-th row of R contains the weights to average the
true Earth to estimate the k-th parameter. In a hypothetical perfect case G would
be invertible so that the generalized inverse would be the inverse of G and the
resolution operator R would be the identity matrix IM . Therefore the solution
would equal the true model. In reality R cannot be the identity but it should to
be as close as possible to the identity such that the model estimates represent local
averages of the true model. The resolution operator acts as a filter through which
the true model is seen, some call it the tomographic filter. Note that if the sum
of weights in a local average (namely a line of R) do not sum to one, then the
local average is said to be biased (see Zaroli, Koelemeijer & Lambotte, 2017). The
resolution is related to the model estimate covariances (in the case of data fitting
inversions) by:

R = I − Cm̃Cm
−1, (3.20)

which shows that the resolution also controls the model covariances. There is
also the term G†n in equation 3.19 which is the propagation of the noise part of
the data into the model solution.

A first difficulty in the classical data fitting inversions is either the choice of
some subjective criterion (like the ad-hoc λ parameter in Tikhonov-like inver-
sions) or the definition of an objective prior model probability distribution as
in Bayesian-like inversions (Scales & Snieder, 1997). A second difficulty is that
for large-scale problems (like in tomographic inversions with many data and pa-
rameters) the computation of the resolution and model estimate covariances is
expensive. Yet these quantities are necessary to robustly interpret the solution.
Although some authors have computed them (e.g. Ritsema, Heijst & Woodhouse,
2004), resolution and uncertainties are obtained at the end of the process. How-
ever it may be desirable to have some direct control on these quantities, to shape
the resolution and consider the propagation of uncertainties and to guarantee
that the resolution will not lead to biased local averages.



3.4. Backus–Gilbert inversions 81

3.4 Backus–Gilbert inversions

The Backus–Gilbert inversion takes the point of view of the resolution and model
uncertainties to solve the inverse problem; thus it gives some direct control on
these quantities and, by construction, produces them together with the model so-
lution. Moreover, it avoids the need for prior information nor subjective choices
on the model itself. Tarantola (2006) writes: “The [Backus–Gilbert philosophy]
carefully avoids using any a priori information on the model parameters that
could ‘bias’ the inferences to be drawn from the data.” It was proposed by Backus
and Gilbert over fifty years ago (Backus & Gilbert, 1967; Backus & Gilbert, 1968;
Backus & Gilbert, 1970). Unfortunatly the method turned out to be non-tractable
for large scale problems. In the 90’s Pijpers and Thompson proposed a compu-
tationally more efficient formulation that they named Subtractive Optimally Lo-
calized Averages (hereafter SOLA) inversion (Pijpers & Thompson, 1992; Pijpers
& Thompson, 1993). Recently Zaroli (2016) introduced and adapted the SOLA
method to seismic tomography. He applied it with body waves for discrete and
continuous problems (Zaroli, 2016; Zaroli, Koelemeijer & Lambotte, 2017; Zaroli,
2019). The center of my thesis is the application of the SOLA approach in the
context of surface waves. We could summarize the main question as: ‘Can we
apply the SOLA approach in the context of surface wave tomography, to control
the resolution and model uncertainties, to extract as much as possible informa-
tion from the data, and to make robust interpretations given the model resolution
and uncertainties?’ In this section I present the original Backus–Gilbert approach
and the SOLA formulation.

3.4.1 Principle

Recall the forward theory,
d = Gm + n, (3.21)

where n is the noise term. We assume zero-mean uncorrelated Gaussian noise.
Even though G is not invertible, we may look for a generalized inverse operator
G†, that relates the data to a model solution:

m̃ = G†d, (3.22)

where m̃ is a model estimate. Combining equation 3.21 and 3.22 we obtain a
relation between the model estimate and the ‘true’ model:

m̃ = G†Gm + G†n. (3.23)
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As stated previously the matrix product G†G is the resolution matrix R and it
shows that an estimated model parameter is an average of the true model pa-
rameters. For exemple the k-th row of R contains the weights of the weighted
average that leads to the k-th model parameter estimate. For optimal image inter-
pretability, we want the rows of the resolution matrix to represent averages that
are localized around the corresponding model parameter location. I illustrate
this principle on figure 3.4. The red lines represent ray paths between sources
(red stars) and stations (blue triangles). Say we want to estimate the model pa-
rameter at some locations (black dots). The local averages that lead to estimated
model parameters are illustrated by the shades of yellow. In the Backus–Gilbert
approach we simply want these local averages to have a spatial extent as small
as possible. Note that if G was invertible so that R was the identity matrix, then
these local averages would actually be Dirac functions localized at the model pa-
rameter locations. One may also take the problem reversely. Say the true model
is zero everywhere except at the exact location of some parameter. Then, looking
at the model through the resolution matrix (the ‘tomographic filter’) would show
that point spread as the averaging region. This justifies the name point spread
function found in the astronomy literature. This is actually the idea followed by
some studies to estimate the resolution matrix after a data fitting inversion (e.g.
Ritsema, Heijst & Woodhouse, 2004).

The second term is the data noise propagation into the model solution. It turns
out that the smaller the spatial extent of the local averages, the higher the model
uncertainties. This can be understood intuitively. If the local average is large,
then the quantity of data taken into account (the red lines that fall into the yellow
averaging region) will be greater, giving more chances to the Gaussian noises to
cancel each other. Averaging kernels should have a larger extent in regions with
poorer data coverage (as the one on the right on figure 3.4).

The Backus–Gilbert approach consists in minimizing both the size of the lo-
cal averages and the model uncertainties. In the Backus–Gilbert approach we
shape optimally the resolution given the model uncertainties. At the end of the
inversion an optimal resolution is obtained and from that the model solution can
be computed, together with the model uncertainties. To compare with classical
data fitting approaches presented above (section 3.3), the Backus–Gilbert inver-
sion breaks the non-uniqueness of the solution by averaging rather than damp-
ing. There is still a tradeoff, but now it is between the model resolution and
uncertainties. This approach is interesting in that it gives some control on the
final resolution and model uncertainties and it avoids the definition of a priori
information on the model that may be difficult to justify.
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FIGURE 3.4: Illustration of local averaging. The blue triangles rep-
resent a seismological network, the red stars represent earthquakes
and the red lines are seismic ray paths (each of them bearing a data).
The yellow shaded region for each black dot represents a local aver-

age.

3.4.2 Original Backus-Gilbert inversion

Let us give a formal derivation of the Backus–Gilbert approach. The k-th parame-
ter of the model estimate can be written as a linear combination of the true model
parameters (ignoring noise):

m̃k =
M

∑
j=1

Ak
jVjmj, (3.24)

where the term Vj is introduced to account for the variable surface or volume
of the cells or voxels in an irregular paramterization (like those encountered in
chapters 4 and 5). We recognize the resolution matrix Rk

j = ∑i G†k
i Gij = Ak

jVj.
For obvious reasons now Ak = (Ak

j )j=1,..,M is called the averaging kernel of the
k-th model parameter. The use of the superscript notation is to make explicit that
the quantities are specific to cell k. We want to minimize the spatial extent of
the averaging kernels. For that we need to define a measure of the size of the
averaging kernel. There are different possibilities but this would be written in
general:

Sk =
M

∑
j=1

[Ak
j
2
Jk
j

2
], (3.25)
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where J is a function that is designed to make the averaging kernel as close as
possible to a Dirac delta function at the k-th cell location. For example Parker
(1977) proposes to use:

Jk
j = constant× (rk − rj)

2, (3.26)

where rk and rj are the locations of the k-th and j-th cells. The term (rk − rj)
2

increases as the distance between the cells j and k so that minimizing Sk is equiv-
alent to minimizing Ak far from the k-th cell. We also add the constraint that we
want the averaging kernel to be ‘unimodular’, to produce unbiased local aver-
ages:

M

∑
j=1

Ak
jVj = 1. (3.27)

Since Ak
j = ∑i G†k

i Gij/Vj, finding the k-th averaging kernel as a solution to the
minimization of Sk is equivalent to find a solution for the k-th row of the gener-
alized inverse matrix.

The model uncertainties depend on the data uncertainties through the gener-
alized inverse:

σm̃k =

√√√√ N

∑
i=1

(G†k
i σdi)

2. (3.28)

The second part of the optimization problem for the generalized inverse is to min-
imize the model uncertainties. Finally the optimization problem in the Backus–
Gilbert point of view is written:

G†k
= arg min

G†k∈RN
Sk + ηk2

σ2
m̃k , subject to

M

∑
j=1

Ak
jVj = 1, (3.29)

where the scalar ηk is a tradeoff parameter that allows to give more weight to the
final resolution or model uncertainties. This equation looks like the cost function
in data fitting inversions (equation 3.11). Drawing the resolution size as a func-
tion of the model uncertainties would lead to an L-shaped curve like in figure 3.3.
But there is a strong difference: while the cost function in data fitting inversions
is a tradeoff between the data misfit and the ‘model coherence’, the cost function
in Backus–Gilbert inversions is a tradeoff between the model resolution and the
model uncertainties.

Note that the optimization problem only involves the k-th model parameter;
it solves only for the k-th row of the generalized inverse, independently from the
others. This is a particular feature of the Backus–Gilbert approach. Each model
cell can be estimated independently from the others. Then one may solve only
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for some region of interest (were the data density is high enough for example).
Moreover it makes the problem embarassingly parallel, which means that the
computation of M cells of the model could be done theoretically on M indepen-
dent computer Central Processing Units (CPUs). This is an advantage that I use
on High Performance Computer (HPC) facilities.

The Backus–Gilbert optimization problem (equation 3.29) leads to the set of
equations (namely by taking the gradient with respect to G†k and equating to
zero):

(ĜkĜk
T
+ ηk2

IN)G†k
= ON , subject to

M

∑
j=1

Ak
jVj = 1, (3.30)

where,

Ĝk =

(
Jk
j√
Vj

Gij

)
i=1,..,N;j=1,..,M

, (3.31)

IN is the N × N identity matrix and ON is the null vector of size N. The matrix
Ĝk depends on the location of the parameter k because of Jk

j . Therefore, for each
parameter it has to be recomputed. This is a computationally expensive task in
the case the model has many parameters. This is one reason why the Backus–
Gilbert approach has not been applied in large scale tomographic problems and
why a reformulation is necessary.

In the Backus–Gilbert approach we may say that the averaging kernels that we
obtain are optimal in that they are not biased, they tend to be local with a circular
shape (thus reducing smearing effect) and they are designed such that the model
uncertainties are not too high. Therefore one may say that the Backus–Gilbert
approach is an Optimally Localized Averages (OLA) inversion. Since the averag-
ing kernels are obtained by minimizing the function Sk in which they are mul-
tiplied with another function Jk, one may say that the Backus–Gilbert approach
is a Multiplicative Optimally Localized Averages (MOLA) inversion. This terminol-
ogy has been proposed by Pijpers & Thompson (1993) but it does not seem to
be used in practice. To overcome the computational drawback of the Backus–
Gilbert ‘MOLA’ approach, Pijpers & Thompson (1992) and Pijpers & Thompson
(1993) proposed a reformulation that they named Subtractive Optimally Localized
Averages (SOLA) inversion. From the name one may guess the difference with the
original Backus–Gilbert inversion. I present this method in the next section.
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3.4.3 Subtractive Optimally Localized Averages (SOLA) inver-

sion

The SOLA reformulation differs from the Backus–Gilbert original approach in the
process to shape the averaging kernels. In the original approach (MOLA), an av-
eraging kernel is obtained by minimizing its product with another function. In
the SOLA approach, the averaging kernel is obtained by minimizing its squared
difference with another function T, hence the term subtractive in the name SOLA.
The minimization tends to make the averaging as close as possible to that func-
tion T. Therefore T is called a target kernel. The key idea of the SOLA inversion
is that the actual resolution will tend to be as close as possible to a pre-defined
target resolution. We can write the SOLA equivalent of equation 3.25:

Sk =
M

∑
j=1

(Tk
j − Ak

j )
2Vj subject to

M

∑
j=1

Ak
jVj = 1. (3.32)

This replaces the first term in the optimization problem (equation 3.29). Of course
one must also take care of the propagation of the data uncertainties into model
uncertainties when looking for the actual resolution; the second term in the opti-
mization problem is unchanged. Finally the SOLA optimization problem is still
written:

G†k
= arg min

G†k∈RN
Sk + ηk2

σ2
m̃k , subject to

M

∑
j=1

Ak
jVj = 1, (3.33)

Here the tradeoff parameter ηk gives more weight to the fit to the target resolution
or to the model uncertainties. In fact, if the target resolution is defined to be
very close to the Dirac function, the original Backus–Gilbert inversion would in
principle be retrieved.

The SOLA optimization problem leads to the following set of equations:

(ĜĜ
T
+ ηk2

IN)G†k
= Ĝtk, (3.34)

where,

Ĝ =

(
Gij√
Vj

)
i=1,..,N;j=1,..,M

, (3.35)

and,
tk =

(
Tk

j

√
Vj

)
j=1,..,M

. (3.36)
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In these equations the Ĝ matrix does not depend on the parameter location any-
more; we do not have to compute as many matrices as there are model parame-
ters. That the problem is location specific is found in the vector tk that depends
on the target kernel which depends on k. Computing a vector for each location is
cheaper than computing a full matrix for each location. The only term that may
reduce the computational efficiency of the SOLA approach is the tradeoff parame-
ter since it depends on k. But the local role played by ηk can be taken by the target
resolution. For example, small target kernels can be designed where a good res-
olution is desired. Then only one tradeoff parameter η that does not depend on
location, but that controls the global tradeoff for the whole model is needed; the
local weighting is carried out by the location specific target kernels. The SOLA
approach turns out to be very efficient, even for large scale tomographic prob-
lems, where the original Backus–Gilbert inversion couldn’t be applied in practice.
Note that designing the target resolution is advantageous not only for computa-
tional purposes, but also because it helps to have a stronger control on the final
model resolution.

I propose an illustration of the whole SOLA workflow on figure 3.5. From
the physical law relating the data and the model the sensitivity matrix G is built
(see chapter 2). The uncertainties attached to the data σd are estimated. Given
the dataset a target resolution T is defined and some tradeoff parameter η be-
tween the fit to the target resolution and the model uncertainties σm̃ is chosen.
These four quantities are the inputs for the SOLA inversion. The SOLA inver-
sion optimizes the fit to the target resolution while keeping the model uncer-
tainties at a reasonable level. It outputs the generalized inverse of the sensi-
tivity matrix for this balance. Then the model uncertainties are computed from
σm̃k = (∑i(G†

i
k
σdi)

2)1/2), the model resolution is computed from Ak
j = ∑i G†

i
kGij

and the model estimate is obtained from m̃k = ∑i G†
i

kdi. Note that there is one in-
version for one cell, and it is completely independent from that for the other cells.
Solving for all the model parameters requires M independent inversions but this
task is embarassingly parallel. Also it allows to solve only for regions of interest,
there is no need to invert for the full model. Note also that the role played by the
data comes only after the inversion. The SOLA inversion is driven by the physi-
cal law and the geometry of the path coverage, not by the data. It is also possible
to use the SOLA inversion without data uncertainty estimate. In this case we
do not account for the data uncertainties to design the G† matrix and we obtain
some ‘propagation factors’ instead of the propagated model uncertainties. Last,
only a constraint on the resolution has been introduced, which is fundamentally
different than adding an a priori on the model itself.
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FIGURE 3.5: SOLA workflow. The sensitivity matrix G contains the
data distribution and the physical law that relates the model to the
data. The data uncertainties σd are estimated. Given the dataset, a
target resolution T is defined and a tradeoff parameter η balancing
the fit to the target resolution and the resulting model uncertain-
ties is chosen. These four quantities are the inputs for the SOLA
inversion. The SOLA inversion looks for a generalized inverse of
the sensitivity matrix G† such that the resolution is close enough to
the target resolution and that the model uncertainties σm̃ are reason-
able. Finally one combines the generalized inverse with the data
uncertainties to produce the model uncertainties, with the sensitiv-
ity matrix to produce the actual resolution (or the averaging kernels
A(k)), and with the data d to produce the model estimate m̃. Note
that the data play a role only after the inversion and that no a priori

on the model itself has been introduced.
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3.5 About the linearity

All the analytical results that we derived in the previous sections are based on
the assumption that the forward theory is linear. But what happens if the theory
is non linear? We will see that in some cases it is possible to use the concepts
of linear theory if the forward problem is ‘weakly’ non-linear. This discussion is
based on Tarantola (2005, section 1.7).

The data and prior model probability distributions are assumed to be Gaus-
sian. Then the joint probability of both forms a Gaussian in the D ×M space as
illustrated in green on figure 3.6. With the hypothesis that all distributions are
Gaussian the theory errors can be assimilated to data errors, therefore the theory
can be seen as a perfect line, as the solid black lines on figure 3.6.

If the forward theory is purely linear (figure 3.6 a), it can be seen as a straight
line in the D ×M space. The posterior probability for the model is Gaussian
(dotted black curve on figure 3.6) and analytical formulae exist. In chapter 4, the
relation between the path-average S-wave velocity and the S-wave velocity on a
two-dimensional spherical layer at a given depth is assumed purely linear.

If the forward problem is weakly non-linear (figure 3.6 b), the tangent (red
solid line) to the theory at the prior model location (blue dot) is still a good lin-
ear approximation of the theory. The posterior distribution for the model in the
linearized case (red dotted line) is close to the real one (black dotted line). Math-
ematically the linearized theory is a Taylor expansion of the theory where the
terms of order two and higher are neglected:

g(m) ≈ g(m0) + G(m−m0). (3.37)

In this case G is a linear operator, namely a matrix, that contains the derivatives
of the forward theory (or the predicted data) with respect to the model around
the prior model location:

Gij =

(
∂gi(m)

∂mj

)
m0

=

(
∂di

∂mj

)
m0

. (3.38)

Solving the inverse problem is not more difficult than in the linear case since
only the linear operator G that contains the derivatives of the data with respect
to the model parameters is considered. One calls the elements of G the Fréchet
derivatives and G may be called the Fréchet matrix. The rows of G are called Fréchet
kernels. The i-th row of G is the Fréchet kernel of the i-th data. It represents the
sensitivity of the data to the model parameters; thus a row of G may also be called



90 Chapter 3. Inverse theory

FIGURE 3.6: Analysis of linearity effects on posterior probability dis-
tribution and relevance of linearization (after Tarantola (2005)). As
in figure 3.2 the vertical axes represent the data spaceD, the horizon-
tal axes the model spaceM and the surface in between the D ×M
space. The green two dimensional Gaussian is the joint probability
distribution of the prior model and data. Contrary to figure 3.2 the
theory (solid black lines) is represented by a simple line (not a thick
shady area) since within the Gaussian hypothesis one may consider
that the modeling errors are data errors. The tangent dotted red lines
are the linearizations of the theory if applicable. The dotted black
curves are the a posteriori model distributions from the theory and
the dotted red curves are the a posteriori model distributions from
the linearized theory if applicable. a) The theory is purely linear,
the a posteriori model probability distribution is Gaussian, analytical
solutions exist. b) The theory is weakly non-linear, a linearization
around the a priori model (blue dot) is relevant, linear theory can be
used within the linearization. c) The theory is more non-linear, a
linearization around the prior model (blue dot) is not relevant but
it is relevant around the maximum likelihood location (orange dot),
linear theory can be used with the linearization. d) The theory is
highly non-linear, any linearization would give unrealistic results.
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a sensitivity kernel. In chapter 2, where we derived the finite frequency sensitivity
kernels, we make implicit such a linearization. The model parameters are actually
perturbations with respect to a reference model and the linear forward problem
actually contains the derivatives of the data (the phase delays) with respect to
small perturbations in the model (the elastic parameters). In chapter 5 where we
apply in one step the Backus–Gilbert theory to recover the S-wave velocity from
phase delay measurements, we are therefore in the approximation of weakly non-
linear forward theory linearized around a reference model. Note that Snieder
(1991) proposed a formalism to extend the Backus–Gilbert theory to non-linear
problems. Actually this extension is based on that same idea of the linearization
of a weakly non-linear problem around some reference model.

If the problem is more severely non-linear (figure 3.6 c), a linearization around
the prior model location (blue dot) would not lead to realistic results. However a
linearization where the theory is at the maximum joint probability for the model
and data is still possible (orange dot). This location is called the maximum like-
lyhood. To find that location some iterative, non-linear optimization methods
(Newton-like methods for example) can be used. Once the maximum likelihood
location has been found, one may linearize the theory:

g(m) = g(mML) + G(m−mML), (3.39)

where G is a linear operator, a matrix, that contains the derivatives of the forward
theory with respect to the model at the maximum likelihood location:

Gij =

(
∂gi(m)

∂mj

)
mML

=

(
∂di

∂mj

)
mML

. (3.40)

The relation between the path-averaged S-wave velocities and the secondary ob-
servables encountered in chapter 2 belongs to such a situation. Maggi et al.
(2006b) use the automated algorithm of Debayle (1999) based on the approach of
Cara & Lévêque (1987) who use the non-linear optimization algorithm of Taran-
tola & Valette (1982).

Finally there is the case of strongly non-linear problems. As illustrated on
figure 3.6 d the posterior probability distribution is highly non-Gaussian. Any
linear approximation would lead to unrealistic results. No analytical solution
exists. The whole model space may be explored, some Monte-Carlo methods
may be used or the problem may be simplified by trial and error methods. Note
that it would be very difficult to give a meaning to some concepts like ‘error bars’
in that case. The treatment of highly non-linear problems is outside the scope of
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my study.

3.6 Conclusion

Once an equation predicting some data from a model of the Earth is set up (the
forward problem), retrieving the model from measured data (the inverse prob-
lem) is not an easy task. Solving the inverse problem can be done following one
of two main approaches: the traditional data–fitting inversions or the Backus–
Gilbert point of view. To conclude this chapter I propose a sketch that com-
pares the two approaches (figure 3.7). The sketch must be nuanced since vari-
ations of the main approaches have been introduced over time to overcome their
shortcomings. In this chapter I first presented the classical data-fitting inversions
based on the tradeoff between data misfit and model coherency (left side of fig-
ure 3.7). The main shortcomings of this approach are that it requires an a priori
on the model itself that may bias the solution, there is no control on the model
uncertainties and resolution, the estimation of model uncertainties and resolution
can be computationally expensive though both are required for robust interpreta-
tions. These observations led me to present the Backus–Gilbert point of view and
especially its reformulation as Subtractive Optimally Localized Averages (SOLA)
inversion that is central in my thesis (right side of figure 3.7). Contrary to data
fitting inversions, this approach is based on a tradeoff between the fit to a tar-
get resolution and the minimization of the model uncertainties. It requires no
a priori on the model itself. It provides a direct control on the model resolution
and uncertainties and, by construction, produces them together with the model
estimate. In the next two chapters, we aim to apply the SOLA inversion in the
context of surface waves. The chapter 4 is the application of the SOLA inversion
in the simple ray-theory framework, with the two-step approach described in the
first part of chapter 2. The chapter 5 is the application of the SOLA inversion in
the more elaborated and more meaningful finite frequency framework, with the
three-dimensional and one-step approach, described in the second part of chap-
ter 2.
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FIGURE 3.7: Comparison between data fitting-like inversions and
SOLA inversion. The data fitting inversion aims to fit predicted data
to the actual data while guaranteeing high model coherency. It re-
quires an a priori directly on the model that may introduce a bias
in the solution. There is no or a poor control on the resolution and
uncertainties and estimating them is difficult, making the interpreta-
tions of the model solution complicated. The SOLA inversion aims
to fit the actual resolution to a pre-defined target resolution while
keeping the model uncertainties at a reasonable level. Thus it al-
lows a direct control on the model resolution and uncertainties and
produces them together with the model estimate. This sketch must
be nuanced since variations of the main approaches have been in-

troduced to overcome some limitations.
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A common complaint we hear is that people do not want to hear about ranges of models,
error bars, or all this messy statistics. Perhaps the answer is to avoid speaking of “invert-
ing data.” Perhaps we should tell people that we are measuring the risks associated with
various interpretations of the data.

Scales and Snieder, To Bayes or not to Bayes?, 1997.
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Foreword

This chapter has been published in Geophysical Journal International. In this study
we apply the SOLA inversion method to surface wave tomography within the
framework of ray theory. We also design a workflow to account for the resolution
and uncertainties in the analysis of the tomographic model.
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Summary

Since most tomographic problems deal with imperfect data coverage and noisy
data, an estimate of the seismic velocity in the Earth can only be a local average of
the ‘true’ velocity with some attached uncertainty. We use the SOLA (Subtractive
Optimally Localized Averages) method, a Backus–Gilbert-type method based on
the resolution-uncertainty trade-off, to build a range of models of Rayleigh wave
velocities in the Pacific upper mantle. We choose one solution and show how to
analyse the model using its resolution and uncertainties. We exploit the model
statistics to evaluate the significance of deviations from a theoretical prediction:
a half space cooling model of the Pacific lithosphere. We investigate a slow veloc-
ity anomaly located north-east of Hawaii, at about 200 km depth, and a pattern
of alternatively slow and fast velocity bands, aligned approximately north-west
to south-east, between 200 and 300 km depth. According to our resolution and
uncertainty analyses, both features seem to be resolved.

4.1 Introduction

To understand how Earth’s upper mantle behaves, we require robust estimates of
its physical properties and how they vary laterally and with depth (e.g. Mégnin
et al., 1997; Foulger, 2011; Simmons et al., 2019; Freissler et al., 2020). We can
estimate one such property, S-wave velocity, using surface-wave tomography.

Most tomographic studies are performed by minimizing the squared differ-
ences between data predicted using the model and actual measured data, using
one of many variations of the damped-least-squares inversion scheme (e.g. Maggi
et al., 2006b; Zhou et al., 2006; Nettles & Dziewoński, 2008; Panning, Lekić & Ro-
manowicz, 2010; Ekström, 2011; French, Lekic & Romanowicz, 2013a; Auer et
al., 2014; Liu & Zhou, 2016a; Isse et al., 2019). The studies cited show consistent
images of large scale structures (lithosphere cooling signatures, super-swells, cra-
tons) and of structures that produce strong, localized S-wave velocity anomalies
(subduction zones, ridges). These images differ, however, at shorter scales and
for structures that produce weaker anomalies. For instance, the model savani of
Auer et al. (2014) is ‘slow’ in the region of Hawaii at 200 km depth; on the con-
trary, this region is ‘fast’ in the model SEMum2 of French, Lekic & Romanowicz
(2013a) (see for example fig. S7 from Isse et al. (2019) showing comparisons of
various models).

Although some of these discrepancies may be imputed to differences in the-
oretical approaches (forward or inverse methods) used by the aforementioned
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studies, many discrepancies simply reflect how large uncertainties in the initial
seismic measurements propagate into the final tomographic models. To com-
pare tomographic models with each other – or to compare them to some prior,
tectonic-based, conceptual model of the Earth – we need reliable estimates of
their uncertainties (e.g. Rawlinson et al., 2014; Simmons et al., 2019; Freissler et
al., 2020). Unfortunately, because many damped-least-squares inversion schemes
are optimized to invert large volumes of data to constrain large numbers of model
parameters (e.g. Debayle & Sambridge, 2004), they often do not keep track of
how data uncertainties propagate into the tomographic models; for large scale to-
mographic problems, most studies using these methods do not compute explicit
model uncertainties, yet robust interpretation of features requires comparing the
magnitude of the anomalies with the model uncertainties. For smaller scale to-
mographic problems, these methods only provide at best an a posteriori estimate
of the uncertainties and cannot control them directly.

This difficulty derives from the manner in which earthquakes and seismic sta-
tions are distributed geographically: some regions may be sampled by many
independent surface-wave ray paths; other regions may be poorly constrained.
This irregular data coverage causes the inverse problem to be under-determined:
within poorly covered parts of a region, the model can change widely without
changing how it fits the data. Which model we choose is, in some sense, arbi-
trary (Scales & Snieder, 1997; Nolet, 2008). Some tomographic studies make use
of irregular or adapted meshes to account for the heterogeneous distribution of
the data (e.g. Sambridge & Rawlinson, 2005). Many tomographic studies use
ad-hoc regularization constraints to reduce the non-uniqueness of the model solu-
tion; they often minimize the model’s complexity by damping the inversion (e.g.
Nolet, 2008, Chapter 14) – hence the name damped-least-squares inversion. Such
inversions may underestimate seismic velocity anomalies where data coverage is
poor; less intuitively, they can also overestimate velocity anomalies where data
coverage is highly uneven. In either case, we call such models locally biased (in the
sense of ‘averaging bias’ effects, as reported by Zaroli, Koelemeijer & Lambotte,
2017).

Half-a-century ago, Backus and Gilbert proposed an original approach to in-
vert linear geophysical data designed to produce complete uncertainty informa-
tion, optimize local resolution, and eliminate bias (Backus & Gilbert, 1967; Backus
& Gilbert, 1968; Backus & Gilbert, 1970). Instead of searching for a model that fits
the data with some smoothness criterion, the Backus-Gilbert method searches for
a model that has optimal resolution given the geometry and uncertainties of the
data. Pijpers & Thompson (1992) and Pijpers & Thompson (1993) reformulated
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the method, applied it to helio-seismology, and named it Subtractive Optimally
Localized Averages (SOLA). More recently, Zaroli (2016) introduced and adapted
the SOLA method to seismic tomography problems with large numbers of pa-
rameters; he then applied this new inversion scheme to obtain a body wave to-
mographic model of the lower mantle. The SOLA Backus-Gilbert method still
suffers from a form of non-uniqueness, as model resolution and model uncer-
tainties trade-off against each other. Despite not being designed for that pur-
pose, the method also leads to models that fit the data. Note that SOLA tomog-
raphy can deal with heterogeneous spatial distribution of the data and usually
produces models with no averaging bias. Computationally, the SOLA formula-
tion of the Backus-Gilbert approach remains tractable even when dealing with
large-scale tomographic problems (Zaroli, 2016; Zaroli, Koelemeijer & Lambotte,
2017). Lastly, it provides the full resolution and model uncertainties, which are
the model statistics necessary to draw well-informed conclusions from the tomo-
graphic model.

In this study, we use the SOLA inversion to produce tomographic images of
the Pacific upper mantle from path-averaged shear-wave velocity profiles ob-
tained from surface-waves. After discussing how resolution and uncertainty
trade-off in our models, we illustrate how to use them to perform meaningful
comparisons of tomographic images with a geodynamic prediction. Taking as
a reference a simple half-space cooling model (Parker & Oldenburg, 1973), we
point out anomalous regions in our tomographic model and we argue about their
statistical significance and whether they are resolved or not.

4.2 Data and method

Most surface-wave tomography studies that produce 3D shear-wave velocity mod-
els proceed in a sequence of two steps: either they first make 2D phase- or group-
velocity maps at various frequencies (linear tomographic inversion), then com-
bine them to obtain depth-dependent shear-wave velocity profiles at each point
in the map (non-linear inversion) – examples are Ekström (2011) or Liu & Zhou
(2016a); or they first invert for 1D shear-wave profiles as a function of depth
along each source-station path (non-linear inversion), then combine these path-
averaged velocity profiles into maps at each depth (linear tomographic inversion)
– examples are Maggi et al. (2006b) or Isse et al. (2019). Each sequence contains
both a linear and a non-linear inversion. Only the linear inversion can be per-
formed using the SOLA method.
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FIGURE 4.1: Data geometry and target resolution at 75 km depth.
Thick green lines indicate plate boundaries. (a) Each thin line rep-
resents one of the ∼15 000 paths from Maggi et al. (2006b) used as
input to the SOLA tomography; the color of each path is the path-
average shear wave-speed at 75 km depth in the 1D model corre-
sponding to the path; (b) Path density (total path length that falls in
each cell normalized by the total path length over the entire model);

(c) Target-kernel radii.

4.2.1 Path-averaged velocity and uncertainty

As we aim to discuss how SOLA can improve the way we interpret seismic to-
mography images, we have chosen to apply the method on a pre-existing data-
set of path-averaged shear-wave velocity profiles obtained from Rayleigh waves
(Maggi et al., 2006b). These profiles range from 50 km to 450 km depth, and
were obtained by inverting over 56 000 multi-mode surface-waves whose paths
crossed the Pacific Ocean, using the Debayle (1999) automation of the Cara &
Lévêque (1987) secondary observables method. After obtaining a shear-wave ve-
locity profile for each path, Maggi et al. (2006b) gathered similar paths (those
whose end-points were within 200 km of each other) into ∼15 000 clusters, ob-
tained the average velocity profile of each cluster (Fig. 4.1a), and estimated the
uncertainty of the velocities using the standard-deviation in each cluster. These
clustered path-averaged shear-wave velocities are the input data for our SOLA
inversion.

The robustness of the analysis later in this paper relies on the reliability of
the data uncertainty estimates. The approach of Maggi et al. (2006b) to estimate
the data uncertainty captures the stochastic uncertainty: it measures the vari-
ability between adjacent paths within one cluster due, for example, to random
measurement errors or to random errors in the location of the earthquakes in
the cluster. However, it does not account for errors that would affect identically
all paths in a cluster; for example, neglecting off-great circle paths due to some
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TABLE 4.1: χ2
red values at various depths for the damped-least-
squares model of Maggi et al. (2006b).

depth [km] 50 75 100 150 200 250 300 350 400
χ2

red 3.378 3.199 2.630 2.216 1.648 1.561 1.542 1.579 1.497

lateral heterogeneity or mislocating all earthquakes in the same direction due to
lateral heterogeneities or network configuration. Data uncertainties from Maggi
et al. (2006b) decrease at larger depths because paths along which long-period
and higher-mode data were unavailable were damped toward the background
model, a smoothed version of PREM (Dziewonski & Anderson, 1981). As all
the path-averaged models tend toward the same values when the sensitivity de-
creases, the stochastic uncertainties also decrease.

Since the Maggi et al. (2006b) approach considers only stochastic uncertain-
ties, it underestimates the full data uncertainties. Because the data uncertainties
influence the SOLA inversion and propagate directly into model uncertainties
(see section 4.2.2), we needed more reliable estimates of them. We calculated the
χ2

red for the final model of Maggi et al. (2006b) (e.g. Nolet, 2008):

χ2
red(m̃) =

1
N

N

∑
i=1

[(∑M
j=1 Gijm̃j)− di]

2

σ2
di

, (4.1)

where m̃j is the j-th model parameter, M the number of model parameters, di the
i-th datum, N the number of data, Gij the elements of the sensitivity matrix of size
N ×M such that ∑M

j=1 Gijm̃j is the i-th predicted data, and σdi the i-th data uncer-
tainty. The values of χ2

red at all depths are much greater than one (see Table 4.1).
Two reasons may explain these values. First Maggi et al. (2006b) may have cho-
sen an overdamped solution to ensure that all features in their model were in-
terpretable. Second, the data uncertainties may be underestimated because they
do not account for systematic bias. To obtain more reliable data uncertainty es-
timates, we assume that the final model of Maggi et al. (2006b) is a model that
explains the data so that the χ2

red values should be one, then we rescaled the data
uncertainties by the factor required to bring χ2

red = 1, i.e. we multiplied each data
uncertainty by (χ2

red)
1/2 at the corresponding depth (see Table 4.1).

4.2.2 Regionalization with SOLA

We divide the Pacific region into independent depth layers, each of them divided
into cells of 2◦ in latitude and longitude. Each model parameter mj (j = 1, ..., M)
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represents the shear-wave velocity in cell j. Each datum di (i = 1, ..., N) repre-
sents the average shear-wave velocity along the i-th source-receiver path. The
sensitivity matrix G linearly relates the data to the velocities as follows:

di =
M

∑
j=1

Gijmj + ni, (4.2)

where ni denotes a noise term (we assume uncorrelated zero mean Gaussian
noise). The tomographic problem is ill-posed because some regions are under-
sampled and contradictions may arise from the noise in the data. Therefore the
linear sensitivity matrix G is not invertible and we have to seek a ‘generalized’
inverse matrix G†, such that the k-th parameter estimate m̃k can be written as a
linear combination of the data:

m̃k =
N

∑
i=1

G†(k)
i di =

N

∑
i=1

M

∑
j=1

G†(k)
i Gijmj +

N

∑
i=1

G†(k)
i ni. (4.3)

Here k refers to the k-th grid cell, G†(k) = (G†(k)
i )i=1,..,N represents the k-th row

of the G† matrix (k may vary from 1 to M) and R = G†G is called the resolution
matrix. We define the k-th averaging (or resolving) kernel as:

A(k) = (A(k)
j = R(k)

j /Sj)j=1,...,M, (4.4)

where R(k)
j = ∑N

i=1 G†(k)
i Gij are the elements of the k-th row of the resolution

matrix. The factor Sj is, in our case, the cell surface area; it appears because the
model parameterization has cells with different sizes.

If the problem were well-posed, the sensitivity matrix would be invertible,
the resolution matrix would be the identity matrix, and the model estimate m̃
would equal the true model m. In practice, the model estimates are local averages
of the true Earth. The k-th row of the resolution matrix R(k) (closely related to
the k-th averaging kernel through the term Sj) relates m̃k to the true parameters

(m̃k ≈ ∑M
j=1 R(k)

j mj = ∑M
j=1 Sj A

(k)
j mj). In the Backus–Gilbert approach, we want

each averaging kernel to be centered and peak-shaped around the location of its
corresponding model parameter.

The model estimate m̃k also contains the term G†(k)n that reflects propagation
of data noise into model space. Note that smaller averaging kernel sizes lead to
higher model uncertainties (Menke, 1989). This can be understood intuitively:
fewer data can be averaged within smaller averaging kernels, leading to fewer
chances for data errors to cancel out. There is, therefore, a trade-off between
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good resolution and low model uncertainties.
The model uncertainty is defined statistically as:

σm̃k
=

√√√√ N

∑
i=1

G†(k)
i

2
σ2

di
. (4.5)

In this study we assume uncorrelated zero-mean Gaussian data uncertainty. Thus
the data covariance matrix is diagonal: Cd = diag(σ2

di
), i = 1, ..., N. Note that it

would be possible to consider non-diagonal data covariance matrix in the SOLA
approach (Pijpers & Thompson, 1992) but we ignore off-diagonal terms for sim-
plicity.

The key idea of the SOLA method is to specify an a priori target form, T(k) =

(T(k)
j )j=1,...,M, for each averaging kernel, A(k). We specify some a priori informa-

tion on the model resolution, which is fundamentally different from specifying a
priori information on the model itself (as in data-fitting methods such as Bayesian
methods and damped-least-squares). Rather than minimizing the spread (spatial
extent) of each averaging kernel, A(k), as in the original Backus-Gilbert approach,
the SOLA variant aims to minimize the integrated squared difference between
each averaging kernel, A(k), and its corresponding target kernel, T(k). A mini-
mization problem directly computes each generalized inverse vector for each k-th
parameter: 

arg min
G†(k)∈RN

∑M
j=1 Sj(A(k)

j − T(k)
j )2 + η2σ2

m̃k

such that ∑M
j=1 Sj A

(k)
j = 1,

(4.6)

where η is a trade-off parameter to give more weight to the resolution or to the
model uncertainties in the optimization. Equation 4.6 is independent for each
model parameter therefore efficient parallel computations are possible. We could
adapt the trade-off parameter η for each model parameter but this would reduce
the optimization of calculation; here we adapt only the target resolution. The
constraint that the averaging kernels should be unimodular means that SOLA to-
mographic models should be free of averaging bias; a condition that cannot usu-
ally be guaranteed with inversion methods incorporating regularization (Zaroli,
Koelemeijer & Lambotte, 2017).

The target resolution for a parameter is non-zero only in a circular region
around that parameter’s location; the circle’s radius is computed from the path
density:

r(ρ) = rmax − (rmax − rmin)

(
log10(ρ)− log10(ρmin)

log10(ρmax)− log10(ρmin)

)
, (4.7)
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where r is the target kernel radius, ρ is the path density, ρmin and ρmax are the
minimal and maximal path densities, and rmin and rmax are the minimal and max-
imal target kernel radii. The values of rmin and rmax are chosen based on an es-
timate of the a priori resolving-length bounds, which depends on the dominant
wavelengths and path lengths within the dataset. The logarithms lower the spa-
tial variations of the target kernel radii compared to those of the path density.
This smoothing is important to avoid tomographic images that would be diffi-
cult to interpret if nearby averaging kernels had widely different sizes. Other
formulae could be chosen to reduce even further the spatial variability of the tar-
get kernel radii. Figs 4.1(b) and (c) show the path densities and target resolution
length calculated for the path distribution in Fig. 4.1(a). We show several target
kernels in Fig. 4.2(a).

The optimization problem (equation 4.6) involves the rows of the general-
ized inverse through the averaging kernels A(k) (equation 4.4) and model un-
certainties σm̃k

(equation 4.5). It leads to a set of independent equations whose
unknowns are the rows of the generalized inverse. Derivation of these equations
from equation 4.6 can be found in Zaroli (2016). These equations are solved using
the LSQR algorithm of Paige & Saunders (1982) as proposed by Nolet (1985) and
Zaroli (2016). Once the k-th row of the generalized inverse G†(k) has been com-
puted, one obtains the associated model solution m̃k from equation 4.3, the model
uncertainty σm̃k

from equation 4.5, and the averaging kernel A(k) from equation
4.4. For further details, the reader is referred to Zaroli (2016), Zaroli, Koelemeijer
& Lambotte (2017), and Zaroli (2019).

4.3 Tomographic results

In this section, we present the effects of varying the trade-off parameter η in
equation 4.6, choose a value for η, describe in more detail the features of the re-
sulting tomographic model, and illustrate how to take resolution and uncertainty
into account when comparing a tomographic model to the theoretical predictions
of a simple geodynamic model (half-space cooling).

4.3.1 Resolution, uncertainty, and model estimate for various trade-

off parameters

All tomographic inversions have trade-offs. In damped-least-squares inversions,
model smoothness trades-off against data fit (smooth models fit the data poorly,
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FIGURE 4.2: Examples of SOLA target kernels T(k) (a) and corre-
sponding averaging kernels A(k) (b-d) at 75 km depth for η=3, 0.5
and 0.01. Blue circles indicate the edge of the target kernel disks;
grey circles contain 68% of the averaging kernel amplitude. For
convenience, several target (or averaging) kernels are plotted on the

same map.
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but rough models risk fitting the noise part in the data). In SOLA, model reso-
lution trades-off against model uncertainty. Fig. 4.2 shows a selection of target
kernels T(k) and averaging kernels A(k) for three values of the trade-off parame-
ter η. The averaging kernels have dome-like centers and ramified extremities and
are better focused for lower trade-off parameter values. They look like the results
of the synthetic spike or point-spread tests used in some tomographic studies
to approximate the resolution of their models (e.g. Rawlinson & Spakman, 2016).
For a trade-off that favors low model uncertainties but poor resolution, Fig. 4.2(b),
the ramifications of the averaging kernels extend far from the model parameter
location, their magnitudes are non negligible, and they follow the non-uniform
azimuthal path coverage. This is the well-known smearing effect, visible in the
averaging kernel in the north-east of Hawaii, where paths have a predominant
north-east to south-west orientation. In regions where the azimuthal path cov-
erage is better, we do not see such artifacts. This is the case, for example, in the
north-east of Japan where the averaging kernels are compact and nearly circular.
Improving the resolution by lowering η makes the averaging kernels more circu-
lar and decreases the length and magnitude of the ramifications. The averaging
kernels may have a small negative component, which is physically meaningless.
A strong negative component would indicate that the target resolution was badly
chosen and invalidate the results; in our case, it is small enough to be ignored.

A complete set of averaging kernels – one map for each model parameter –
would fully represent the resolution of a SOLA inversion, but would be cumber-
some and difficult to use when interpreting tomographic models. To simplify this
information, we compute for each model parameter k a resolution length Lk cor-
responding to the radius of a circle that contains 68% of the averaging kernel – a
proxy to the standard deviation for a 2D Gaussian (gray circles in Fig. 4.2). This
proxy to the resolution is not ideal if the averaging kernel has a very complex
shape, especially in case of smearing. For example, the gray circles on Fig. 4.2(b)
do not represent well the averaging kernels when the ramifications are long and
strong (especially for those in the middle of the Pacific plate). Note that other sim-
plifications of the resolution could be used; for instance we could fit an ellipse to
the averaging kernels to obtain a main direction in case of anisotropic resolution
(smearing). However, since our averaging kernels are mostly circular, we use the
circular approximation for simplicity. The top row of Fig. 4.3 shows resolution
maps for three values of the trade-off parameter. In all maps the resolution is
bad at the model borders and in the central Pacific Ocean, where path coverage
is poor. As the trade-off parameter decreases, resolution improves in the central
Pacific, though the improvement seems to level off between η = 0.5 and η = 0.01.
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FIGURE 4.3: SOLA inversion results at 75 km depth for three values
of trade-off parameters: η=3, 0.5, 0.01. Each column corresponds to
a value of η and from top to bottom, maps show resolution lengths
(Lk) (a, d, g), model uncertainties (b, e, h) and shear-wave velocities

(c, f, i).
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FIGURE 4.4: Mean resolution versus mean uncertainty of SOLA re-
sults for five values of the trade-off parameter η (5, 3, 1, 0.5, 0.01)
indicated on the curve. The slope from η = 3 to η = 0.5 is more
negative than from η = 0.5 to η = 0.01. This is consistent with the
apparent variations of the model statistics on Fig. 4.3. As η changes,

model resolution and uncertainties follow an L-curve.
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Before choosing a value for η, we must also examine the influence on the
model uncertainties. Note that in this paper we express the uncertainties in the 1σ

sense: there is a 68% probability that the true locally averaged shear-wave veloc-
ity lies within the uncertainty interval around the estimated value. The middle
row of Fig. 4.3 shows model uncertainties for the same three values of η. As
predicted by the nature of the trade-off, model uncertainties worsen as the trade-
off parameter decreases, whereas model resolution improves. Decreasing η from
3 to 0.5 improves resolution greatly while increasing model uncertainties only
slightly; however, decreasing η again from 0.5 to 0.01 improves resolution only
slightly while increasing model uncertainties greatly. As η changes, model resolu-
tion and uncertainties follow a well-known L-curve (see Backus & Gilbert, 1970).
Fig. 4.4 shows mean resolution ( 1

M ∑M
k=1 Lk) versus mean uncertainty ( 1

M ∑M
k=1 σm̃k

)
for five values of the trade-off parameter, including 3, 0.5 and 0.01.

The bottom row of Fig. 4.3 shows tomographic models at 75 km depth for the
same three η values discussed above. As expected, the tomographic models are
smoother where resolution lengths are large and uncertainties low, and rougher
where resolution lengths are low and uncertainties high. No single model is
intrinsically better than another: the poor resolution, low uncertainty model in
Fig. 4.3(c) would be appropriate if we were interested in high precision esti-
mates of the average shear-wave velocity over large patches; the better resolution,
higher uncertainty models in Fig 4.3(f) or (i) would be appropriate if we were
interested in smaller anomalies we expect to be strong enough to be detectable
despite the increased uncertainties.

In the next subsection, we describe in more detail the η = 0.5 tomographic
solution, whose resolution lengths are on average short enough that the model
is not too smooth, and whose uncertainties are on average low enough not to
swamp all its features.

4.3.2 Detailed analysis of one tomographic solution

For any tomographic inversion, resolution, model uncertainty, and model
smoothness are intrinsically linked to path coverage and data quality. The best-
sampled regions for our inversion are the eastern, northern and western borders
of the Pacific ocean (Fig. 4.1): these regions are strongly seismogenic and host
many seismic stations. The interior of the Pacific ocean and its southern boundary
are sparsely sampled, except near Hawaii and French Polynesia where Maggi et
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al. (2006b) exploited both permanent stations and temporary deployments (Bar-
ruol, 2002) to increase local path coverage.

The resolution map in Fig. 4.3(d) shows that the well-sampled regions have
the best lateral resolution: the radii of the circles that approximate the averaging
kernels in these regions are between 300 km and 500 km. The Pacific ocean itself
has a poor resolution, around 800 km on average. The regions west of Hawaii and
west of the French Polynesia have better resolution (550 km) because the seismic
networks installed within those archipelagos record earthquakes that occur on
the western boundary of the Pacific plate. The best resolved region is northeast
Australia, where the resolution length is below 300 km; the worst resolved region
away from the model’s edges is located southeast of Hawaii, where the resolu-
tion length is greater than 1000 km. But the resolution is not only related to the
path coverage: the data uncertainties also influence the achievable resolution and
model uncertainties.

The uncertainty map in Fig. 4.3(e) shows that model uncertainties and model
resolution do not always correlate. In some well-resolved regions, such as the
Philippine Sea, Tonga-Kermadek, and central America, the locally-averaged shear-
wave velocities are known to within 0.02 km/s. In these regions, we can resolve
and interpret small features, even those that generate only moderate shear-wave
velocity signatures. In some poorly-resolved regions, such as the central Pacific
Ocean, shear-wave velocities are known to within greater bounds (0.07 km/s
on average); here it becomes harder to interpret features unless they are large
and generate strong shear-wave velocity signatures. Well-resolved regions may
also display high model uncertainties: in the northern Pacific and off the coast of
north-east Australia, the resolution length is close to 300 km, yet the uncertain-
ties are similar to those in the central Pacific. In such regions, we can interpret
features, regardless of their size, only if they generate strong shear-wave veloc-
ity signatures. This is a reminder that we need both resolution and uncertainty
information for interpreting tomographic models.

The shear-wave velocity maps at 75 km depth (Fig. 4.3f), 125 km depth (Fig. 4.5c),
and 400 km depth (Fig. 4.5f) show all the large-scale geological features we may
expect in tomographic images in oceanic regions: low shear-wave velocities down
to ∼100 km depth beneath the East Pacific Rise and the Pacific-Antarctic Ridge;
fast velocities in the subduction zones (at least down to 200 km depth) and lower
velocities in their back-arc regions; high velocities from 75 to ∼200 km depth in
the North American and Australian cratons; velocities that increase with distance
from the mid-ocean ridges down to depths of∼150 km. Unsurprisingly, given we
have used their shear-wave velocity profiles, Maggi et al. (2006b) also saw similar
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FIGURE 4.5: SOLA inversion results at 125 km (first row) and 400 km
depth (second-row) for η = 0.5: (a, d) resolution lengths; (b, e)

model uncertainties; (c, f) shear-wave velocities.
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features, though with slightly poorer resolution, as their damped-least-squares
tomographic inversion used a single smoothing parameter for all locations in the
model.

The resolution and uncertainty maps at 125 km and 400 km depth (Fig. 4.5)
look like those at 75 km depth (Figs 4.3d and e). This is not what we would
expect given the behaviour of surface waves. Deeper regions of the upper man-
tle can only be resolved by longer-period or higher-mode surface-waves, both
of which have long wavelengths (so poor lateral resolution) and cannot be ob-
served clearly on all paths; therefore, we would expect the resolution lengths
to increase with depth. The reason those in Fig. 4.5 stay constant stems from the
data we used in the SOLA inversions: path-averaged shear-wave velocity profiles
from Maggi et al. (2006b), each one the result of a non-linear inversion of surface-
wave measurements. Where long-period and higher-mode data were available,
shear-wave velocity profiles were constrained by data down to 400 km depth;
where these data were unavailable, the profiles were damped, at depth, towards
the background model: a smoothed version of PREM (Dziewonski & Anderson,
1981). It is likely, therefore, that many of the velocity profiles used for the SOLA
inversion are uninformative below ∼300 km depth; we could not remove them
from our inversion without redoing Maggi et al. (2006b)’s entire analysis, which
was outside the scope of this study. In the following, therefore, bear in mind that
the resolution maps (and for a similar reason the uncertainty maps) in Fig. 4.5 are
overly optimistic at depths beyond ∼300 km.

4.4 Model assessment based on a plate cooling model

The tomographic maps of Fig 4.3 show an increase in seismic velocity with
distance from the mid-oceanic ridges. This is connected with the well-known
phenomenon of plate cooling (e.g. Ritzwoller, Shapiro & Zhong, 2004; Faul &
Jackson, 2005; Priestley & Mckenzie, 2006; Isse et al., 2019). Armed with complete
resolution and uncertainty information, we investigated if any features of these
tomographic images deviated significantly from the predictions of a theoretical
cooling model and if such deviations were well-resolved.

4.4.1 The reference model

We chose to use the simple half-space cooling model of Parker & Oldenburg
(1973) to illustrate our process of comparing tomographic images to theoreti-
cal predictions, not because we believed it to be the best thermodynamic fit to
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FIGURE 4.6: Comparison at 75 km depth between the SOLA tomo-
graphic model and the predictions of the half-space cooling (HSC)
model from Parker & Oldenburg (1973) on the Pacific plate, ex-
cluding ridges and subduction zones. a) shear-wave velocities from
SOLA; b) shear-wave velocities predicted for the HSC model; c) dif-
ference between SOLA and HSC; d) difference between SOLA and
HSC scaled by the tomographic uncertainties σm; e) and f) same as d)
but with masks to remove deviations smaller than±1σm or±2σm re-
spectively. Grey contour lines indicate lithosphere age from Müller
et al. (2008) and yellow triangles locate hot-spots from Courtillot et

al. (2003).
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FIGURE 4.7: Same as Fig. 4.6 but at 200 km depth (note that at this
depth the HSC model shows no age-dependence). The black line
indicates the contour of the anomaly located to the north-east of

Hawaii.



4.4. Model assessment based on a plate cooling model 115

FIGURE 4.8: Same as Fig. 4.6 but at 275 km depth. The black lines
indicate low velocity anomalous bands (the lines follow approxi-

mately the zeroes between anomalous bands).
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the ocean-cooling problem, but because it has the fewest adjustable parameters.
Even with an unsuitable reference model, the analysis would still be relevant as it
would simply lead us to state that the tomographic velocities differ significantly
from the reference model.

The half-space cooling model describes the lithosphere as an infinite half-
space of thermal diffusivity k that cools from a starting temperature Θm. It pre-
dicts the temperature of the lithosphere as a function of age t and depth z from
the following expression:

Θ(t, z) = Θmerf

(
z

√
1

4kt

)
, (4.8)

where erf stands for the error function. We take Θm = 1300◦C and k = 1.10−6m2s−1,
as suggested by Ritzwoller, Shapiro & Zhong (2004). We turned this expression
into temperature maps at each depth by relating age to geographic position using
the age model of Müller et al. (2008), then projected them onto our tomographic
grid: the predicted temperature in cell j at depth z is given by Θj(z) = Θ(tj, z),
where tj is the average age of cell j.

We then had to relate temperatures predicted as a function of position with to-
mographic images that contained velocity estimates representing finite-resolution
local averages. In order to make meaningful comparisons, we needed to account
for this resolution and consider equivalent local averages of the predicted tem-
peratures rather than the temperatures themselves. We obtained these local tem-
perature averages using the resolution matrix : Θ̃k(z) = ∑M

j=1 R(k)
j (z)Θj(z), a

procedure known as tomographic filtering (e.g. Ritsema, McNamara & Bull, 2007a;
Simmons et al., 2019).

In order to convert the locally-averaged predicted temperatures to shear-wave
velocities, we needed to make some assumptions about the relationship between
these two physical quantities that were at least partially supported by rock physics.
We assumed that, in regions distant from both ridges and subduction zones, man-
tle temperature and shear-wave velocities were linearly related (e.g. Chen et al.,
1996; Foulger, 2011, section 5.1.2 pp. 147). We therefore performed a linear re-
gression between the locally-averaged temperature maps and our tomographic
images to obtain locally-averaged predicted shear-wave velocities. In the follow-
ing, we will refer to this predicted shear-wave model as the HSC (Half Space
Cooling) reference model.

Figs 4.6(a) and (b), 4.7(a) and (b), and 4.8(a) and (b) show comparisons be-
tween the SOLA tomography results and the HSC model predictions at 75 km,
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TABLE 4.2: Proportion of points remaining after masking values
within the 1σm or 2σm error bar(s) at various depths. For a normal
distribution, we would expect proportions of 0.32 for 1σm and 0.05

for 2σm.

Depth (km) 50 75 100 150 200 250 300 350 400
For 1σm 0.32 0.33 0.33 0.33 0.38 0.41 0.46 0.49 0.43
For 2σm 0.06 0.03 0.03 0.07 0.09 0.10 0.14 0.13 0.12

200 km, and 275 km depth on the Pacific plate. Unsurprisingly, the HSC pre-
dictions look like the long-wavelength component of the tomographic images.
The lithospheric cooling signature is visible at 75 km depth, but absent below the
deepest extent of the oceanic lithosphere (∼150 km).

4.4.2 Deviations from the reference model

Figs 4.6(c), 4.7(c), and 4.8(c) show the differences between the tomographic
model and the HSC reference model at 75 km, 200 km, and 275 km depth. Red
anomalies correspond to areas where the tomographic model is slower than HSC;
blue anomalies correspond to areas where the tomographic model is faster than
HSC. We used the model uncertainties to assess the significance of these anoma-
lies. Panels (d) of the same figures show the deviations from the reference model
scaled by the uncertainties. A region could be considered anomalous with a con-
fidence threshold of 68% if the velocity difference with respect to the reference
model exceeds the tomographic uncertainties by more than ±1σm (panels (e) of
the same figures). A region could be considered anomalous with a confidence
threshold of 95% if the velocity difference with respect to the reference model ex-
ceeds the tomographic uncertainties by more than ±2σm (panels (f) of the same
figures). Since the estimation of the data uncertainties could be improved, so
could the model uncertainties, we present ±1σm and ±2σm maps to appreciate a
range of uncertainties.

However, just identifying anomalies as exceeding±1σm or±2σm is not enough
to declare them significant, because even if the Earth were in reality identical to the
prediction of the half-space cooling model, we would still expect 32% of points
in a tomographic model with uncertainties σm to exceed ±1σm and 5% of them
to exceed ±2σm. We could be justified in declaring anomalies to be significant
only if more points than expected exceed the ±1σm and ±2σm thresholds, or if
these points organized geographically in coherent regions and these anomalous
regions could indeed be resolved by the tomography (anomalies larger than the
resolving lengths). This definition of significance is stricter than the one used in
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FIGURE 4.9: Selection of averaging kernels around the slow velocity
anomaly located to the north-east of Hawaii (see Fig. 4.7) at 200 km

depth. The black line represents the anomaly contour.
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FIGURE 4.10: Selection of averaging kernels in the Pacific at 275 km
depth. The black lines represent the pattern of anomalous velocity
bands observed on Fig. 4.8. The averaging kernels are located at: (
30N, 165E), ( 30N, 195E), ( 30N, 225E), ( 0N, 165E), ( 0N, 195E), ( 0N,
225E), ( -30N, 165E), ( -30N, 195E), ( -30N, 225E). For convenience,

we plot the averaging kernels on the same map.
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most tomographic studies, including Maggi et al. (2006b), and underlines the im-
portance of correctly estimating the data uncertainties that feed into the estimates
of σm.

Table 4.2 shows the proportion of points that remain in the tomographic mod-
els after applying the ±1σm and ±2σm masks: at lithospheric depths, the pro-
portions of such points do not exceed greatly the expected ones (0.32 and 0.05);
however, as depth increases, so do the proportions of points exceeding the ±1σm

and ±2σm levels. In section 4.2.1 we discussed that the data-uncertainties from
Maggi et al. (2006b), and hence our estimates of σm, may have been underesti-
mated especially below ∼ 300 km. For this reason, we have limited our analysis
of significant anomalies to depths shallower than ∼ 300 km.

4.4.3 Significant anomalies

At lithospheric depths (75 km), the proportion of points still visible in the
tomographic image after applying the ±1σm and ±2σm masks is not significant
(see Table 4.2). What about the geographic distribution of these points? Figs 4.6(e)
and (f) shows that the positions of unmasked low-velocity anomalous regions at
75 km depth do not correlate with hot-spot locations published by Courtillot et
al. (2003), and that anomalies that exceed the ±2σm thresholds are much smaller
than the correlation lengths from Fig. 4.3(d). We therefore concluded that the
lithosphere corresponding to the Pacific plate contains no significant shear-wave
anomalies with respect to predictions made by the half-space cooling model, at
least given the data set of Maggi et al. (2006b).

At shallow asthenospheric depths (200 km), a greater proportion of points re-
mains in the masked tomographic images (see Table 4.2 and Figs 4.7e and f). A
strong low velocity anomaly appears to the north-east of Hawaii at 20◦N 220◦E.
This anomaly of 12◦ (∼ 1400 km) radius is visible between 125 km and 250 km
depth, and is about 0.25 km/s slower than the half-space cooling model (stronger
than -3σm). Not only is the anomaly strong, it is also larger than the local reso-
lution length of 750 km (Fig. 4.5a). Fig. 4.9 shows individual averaging kernels
within and around the anomaly: the kernels are all of similar size or smaller than
the anomaly and are all well focused, indicating absence of smearing. Given the
amplitude and size of the anomaly with respect to the tomographic model’s un-
certainty σm and its resolution length, we considered it to be significant. We need
to carefully analyse averaging kernels when interpreting the size and shape of
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anomalies. Since the averaging kernels are spread in space, the velocity anoma-
lies tend to appear larger than they really are. The shape of the anomaly in the to-
mographic image can also be misleading. For example the anomaly to the north-
east of Hawaii shows two bumps, one to the north and one to the east, which may
be due to the complex shape of the averaging kernels, or to data noise propagated
into the model. Only features outside the uncertainty range with size greater than
the resolution should be interpreted.

Deeper in the asthenosphere, a pattern of alternatively slow and fast velocity
bands appears, oriented approximately south-east to north-west (Fig. 4.8). The
bands are approximately 15◦ wide (∼1700 km), 70◦ (∼8000 km) long, and are vis-
ible between 275 km and 400 km depth. The bands seem to follow the absolute
plate motion of the Pacific plate (e.g. Gripp & Gordon, 1990). They also resemble
the bands observed by French, Lekic & Romanowicz (2013a) at depths between
200 km and 350 km and the low anisotropy channels observed at 100 km depth by
Montagner (2002). The width and length of these bands are greater than the reso-
lution length. To exclude possible smearing, always an issue when tomographic
images show elongated features, we have shown several averaging kernels in
Fig. 4.10. Given the amplitude and size of the highly-correlated bands and the
focused nature of the averaging kernels, we again considered these bands to be
significant features of the tomographic model.

4.5 Discussion

We have produced a tomographic model of shear-wave velocities in the Pacific
upper mantle using the SOLA Backus-Gilbert method (Zaroli, 2016; Zaroli, Koele-
meijer & Lambotte, 2017), and have shown how to exploit the full model resolu-
tion and uncertainty information to evaluate the true significance of deviations
from a theoretical prediction.

4.5.1 Model statistics – a rare commodity

Several authors have inverted surface-wave data to obtain velocity models of the
upper mantle, either globally or in the Pacific, using different forward theories
and inversion methods (e.g. Zhou et al., 2006; Ekström, 2011; French, Lekic & Ro-
manowicz, 2013a; Liu & Zhou, 2016a; Isse et al., 2019). Although they agree with
each other at large scales, they often display different local features. These dis-
crepancies may be partly explained by the differing data-sets (fundamental-mode
Rayleigh waves, multi-mode Rayleigh waves, or full-waveforms) and inversion
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schemes, but may also be due to the complex relationship between the heteroge-
neous path coverage of the Pacific region, irregular resolution, and data-errors.

Without full resolution and uncertainty information – model statistics – we
cannot give strong quantitative arguments for or against the significance of any
small-scale feature of a tomographic model (e.g. Foulger et al., 2013). Unfortu-
nately, most damped-least-squares or iterative conjugate-gradient inversion do
not provide model statistics or control them during the inversion, as they focus
instead on minimising the misfit between observed measurements and those pre-
dicted by the tomographic model. It is possible to approximate the model statis-
tics for these inversion schemes (see for example Rawlinson et al., 2014; Rawl-
inson & Spakman, 2016, for reviews of various techniques), but such methods
are rarely used in practice as they are computationally costly and often provide
only crude estimates of the model statistics. For the tomography problem consid-
ered here, it would indeed be possible to explicitly compute the G† matrix from a
‘traditional’ damped-least-squares inversion and then propagate the data uncer-
tainties into model uncertainties; but the advantage of the SOLA method is that
it allows a direct control on the model resolution and uncertainties.

4.5.2 Advantages of Backus-Gilbert type inversions

Beyond delivering model resolution and uncertainties at no extra cost, there are
other important advantages of using inversion schemes based directly on the
model statistics, such as those proposed by Backus & Gilbert (1967), Backus &
Gilbert (1968), and Backus & Gilbert (1970), Pijpers & Thompson (1992) and Pi-
jpers & Thompson (1993), Zaroli (2016), and Zaroli, Koelemeijer & Lambotte
(2017). Firstly, these inversion schemes constrain model uncertainties to vary
smoothly over the parameter space. Secondly these schemes drive the inversion
to produce well-focused local averages (averaging kernels) that limit smearing
along predominant paths (with SOLA this requires imposing well-focused tar-
get kernels, in our case circular ones). Thirdly, these schemes guarantee that the
weights of the local averaging kernels (i.e. the rows of the resolution matrix) sum
exactly to one, thereby eliminating the averaging bias that occurs with heteroge-
neous spatial distributions of data.
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4.5.3 Model statistics – required for tomographic filtering and

evaluating significance

Before comparing two different tomographic models, or a tomographic model to
other data with different spatial resolution, we need to homogenize their reso-
lutions, a process called tomographic filtering (Ritsema, McNamara & Bull, 2007a;
Simmons et al., 2019). This requires the knowledge of the full resolution matrix.
In our study, we considered a simple temperature model of lithosphere cooling
based on the half space cooling model of Parker & Oldenburg (1973) that we
filtered to the resolution of the tomographic model. Because the temperature
model was very smooth, the tomographic filtering had only a minor effect. How-
ever, such filtering would be critical when comparing tomographic images with
sharper models (Mégnin et al., 1997; Simmons et al., 2019; Freissler et al., 2020).

To assess if some parts of a tomographic model significantly deviate from
some reference we need to know the model uncertainties at each location. Be-
cause we had this information, we were able to mask deviations from the half-
space cooling predictions that were smaller than ±1σm and ±2σm and argue for
the significance of certain anomalies. The process we illustrated in section 4.2.2
could replace statistical appraisal techniques and other tomographic resolution
tests that are not always well understood (Lévêque, Rivera & Wittlinger, 1993;
Rawlinson et al., 2014; Rawlinson & Spakman, 2016).

4.5.4 Two significant anomalies in the Pacific region

We have focused on the significance of two anomalies: a low-velocity anomaly
located to the north-east of Hawaii at 200 km depth and coherent bands of fast
and slow velocities at 275 km depth.

Anomaly NE of Hawaii

This emerges strongly from the background with an amplitude about 0.25 km/s
slower than the average shear-wave velocity of the Pacific plate, where the un-
certainty is around 0.07 km/s, thus corresponding to about -3σm (Figs 4.7e and f).
Despite using the same data-set, the model produced by Maggi et al. (2006b)
shows a much weaker anomaly at the same location, probably because it was
smoothed out by their damped-least-squares inversion and regularization. This
anomaly has also been seen, though at weaker amplitudes than in this study, in
tomographies constructed using fundamental mode Rayleigh waves with a finite-
frequency scheme (Liu & Zhou, 2016a) or multi-mode Love and Rayleigh waves
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(Isse et al., 2019), while it was entirely missed by the GDM52 model of Ekström
(2011) based on fundamental mode Love and Rayleigh wave dispersion data.
Given the different data-sets, forward theories, inversion and damping schemes
of these studies, it is hard to pinpoint the reason for their weaker anomaly, but we
speculate that the anomaly was probably over-smoothed by the regularization of
their inversions.

Coherent SE-NW bands

We see these alternating fast and slow bands emerging from the background at
275 km depth with deviations from HSC up to ±0.25 km/s (±1σm and ±2σm,
see Fig. 4.8). Maggi et al. (2006b) do not show these bands in their 275 km
depth image, suggesting that the SOLA inversion scheme was able to extract
more information from the same dataset. Other studies have observed similar
patterns: Ekström (2011) show a very weak pattern in their isotropic results,
probably because fundamental-mode surface waves are only weakly sensitive
at these depths; French, Lekic & Romanowicz (2013a) see a stronger pattern with
their full-waveform inversion; and, intriguingly, Liu & Zhou (2016a) show sim-
ilar bands in their dispersion maps at 30s and 50s, which are sensitive to much
shallower depths.

4.5.5 Limits and perspectives

The SOLA inversion seems promising because it gives a way to control the model
statistics (uncertainties and resolution) and to obtain them explicitly. The main
problem is that it assumes the forward problem is linear while surface-wave
physics is not (the dispersion characteristics of surface-waves are non-linearly re-
lated to the shear-wave velocity as a function of depth). In this study, as in Maggi
et al. (2006b), each depth in the tomographic model was inverted independently,
so vertical coherence could not be imposed or evaluated using resolution ker-
nels. Furthermore, as the inputs to the SOLA inversion were 1D path-averaged
shear-wave velocity models defined on the same depth range, the geographical
coverage was identical for each depth, and did not take into account the greater
sensitivity to depth of some paths (illuminated by longer-period or higher-mode
surface waves) with respect to others.

To obtain a fully 3D shear-wave velocity model directly from frequency de-
pendent measurements of surface-waves in a single linear step with SOLA, and
to take the full depth-sensitivity of individual measurements into account, we
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would need to adopt a finite-frequency description of surface waves to help lin-
earize the tomographic problem (e.g. Zhou, Dahlen & Nolet, 2004; Yoshizawa &
Kennett, 2005). This would also allow us to obtain a fully 3D model with 3D
resolution kernels, and therefore be able to apply the same statistical rigor to in-
terpreting any vertical structures within the model (e.g. plumes, the lithosphere
depth).

Like any other process, the pertinence of the SOLA outputs rest upon the qual-
ity of the inputs. In particular, the model errors we have relied upon to decide
the significance of anomalies are nothing more than a propagation into the model
space of the data errors. While traditional damped-least-squares schemes use
data uncertainties to weigh data relatively to each other and to evaluate model
quality (using χ2

red measures, for example), SOLA uses them more directly to
evaluate uncertainties in the model which then drive the inversion through their
trade-off with resolution. In order to be able to trust the magnitude of the model
errors in SOLA, it is necessary for the magnitude of the data errors to be correct.
This is the reason why we upscaled the data uncertainties using the χ2

red values of
the damped-least-squares model of Maggi et al. (2006b); however a more rigorous
assessment of the data uncertainties is still required.

Our study calls for other surface wave tomography studies based on the SOLA
inversion in other regions of the world, with new data sets, and particular care
in estimating data uncertainties. Our tomographic model, together with its res-
olution and uncertainty maps, calls for new data in the Pacific to observe other
seismic velocity anomalies significant enough to be interpreted robustly.

4.6 Conclusion

Rayleigh wave tomography of the Pacific upper mantle shows large scale geolog-
ical features (e.g. lithosphere cooling) but both the model uncertainties and res-
olution are required for interpretations at smaller scales. We exploited the SOLA
tomographic inversion scheme (Zaroli, 2016) to propose a workflow to analyse
the tomographic model using its resolution and uncertainties, that is:

1. Define some reference, Earth-like, physical model;

2. Filter the reference model to the tomographic resolution;

3. Compute the deviations from the reference model;

4. Normalize the deviations by the model uncertainties;
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5. Mask model estimates that are within one or two error bars to focus only on
significant seismic anomalies;

6. Compare those non-masked anomalies to the local resolution to discuss
their resolvability and spot artifacts, if any.

In this study, we used a half space cooling description of the Pacific litho-
sphere as a reference model. We observed a low velocity anomaly to the north-
east of Hawaii at 200 km depth and a pattern of alternatively slow and fast
anomalous bands oriented approximately south-east to north-west at 275 km
depth. Both features are reliable given the model statistics. Our study shows
that the model statistics can be properly analysed in surface wave tomography
using the SOLA inversion; the same scheme could be applied in other regions of
the globe.

In this study, the data uncertainties were estimated using multiple sampling
with ray paths close to each other, then upscaled because apparently underesti-
mated. We should aim collectively to characterize more accurately uncertainties
in seismological data sets - clearly a challenging but crucial task.

Data and code availability

The computer codes for the SOLA inversions and the data used in this study
are available from C.Z. (c.zaroli@unistra.fr) and A.M. (alessia.maggi@unistra.fr),
respectively.
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Afterword

In this study we showed that the SOLA inversion provides reliable model uncer-
tainties, resolution and model solution. We designed an interpretation workflow
that accounts for the model uncertainties and resolution. Using this workflow we
could discuss with statistical arguments the robustness of anomalous patterns in
the Pacific upper mantle.

However the study suffers from limits that we may overcome using finite
frequency theory. Applying the SOLA inversion to finite frequency surface wave
tomography is the subject of the next chapter.
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Chapter 5

Finite frequency SOLA tomography

To estimate resolution and uncertainty is a major task that will usually consume far more
time than the actual inversion.

Nolet, A Breviary of Seismic Tomography, 2008.
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5.1 Introduction

In the previous chapter we built a tomographic model of the Pacific upper mantle
from surface wave data using the classical two-step approach. The first path-
specific step was performed by Maggi et al. (2006b) with a non-linear inver-
sion method. It produced path-averaged S-wave velocity profiles. The second
step was fully linear and we applied the SOLA inversion to produce a set of
two-dimensional S-wave velocity maps at various depths. The SOLA inversion
proved to be powerful to extract unbiased information from the data and to pro-
duce useful model statistics (uncertainties, resolution) to robustly interpret the
model solution. However the study suffered from strong limits: (1) data un-
certainty estimates were poor and (2) the SOLA inversion could only be two-
dimensional (no vertical constraint).

In the second part of chapter 2 I described an extension of ray-theory to lat-
erally heterogeneous media. Using the Born approximation, this finite frequency
theory relates phase delays to the three-dimensional S-wave velocity: it embeds
the two steps of the two-step approach into a single linear step. In this chapter I
combine this three-dimensional forward theory and the SOLA inversion scheme.
Red boxes (as box 1) at the end of the chapter contain details about the computer
programs developed for this study. If the computational background is of no in-
terest for the reader they can be ignored without missing the main messages of
the chapter.

Figure 5.1 illustrates the workflow for this chapter (see also Box 2). First I
describe the measurement process developed to build a phase delay database: I
show how I produced synthetic waveforms for a radial Earth model (section 2.1),
how I measured phase delays (section 2.2), and how I estimated data uncertainty
(section 2.3). Then I describe the tomographic setup I used to invert the phase
delays; it includes the construction of the three-dimensional sensitivity kernels
(section 3.1) and target resolution (section 3.2). Section 4 is dedicated to a syn-
thetic tomography: I invert phase delays measured on synthetic waveforms that
I obtained for a known three-dimensional model of the Earth.

5.2 Data and data uncertainties

In this section I show how to construct synthetic waveforms for a radial reference
model using the routines from Masters, Misha & Susan (2014). I also describe
how I measured phase delays and estimated data uncertainties.
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FIGURE 5.1: Workflow for the chapter. Numbers in red indicate the
sections where the topic is discussed. From the Earth structure (or
an arbitrary input three-dimensional model of the Earth) waveforms
are generated. From a radial reference model synthetic waveforms
are produced. A phase delay δφ is measured for each source-receiver
pair p and frequency ωq; and data uncertainties σd are estimated.
Three-dimensional sensitivity kernels Kp are also built for the ref-
erence model and a three-dimensional target resolution T(k) is set
up. Finally the workflow is applied for a known three-dimensional
model of the Earth to investigate to what extent our tomographic
process developed allows to make inferences about the input model.
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5.2.1 Synthetic waveforms

The very first step to build the synthetic waveform (Box 4) is to determine the
normal mode solutions for a given radial reference Earth model. In this study
the reference model used is CPacific. It can be found in the MINEOS normal
mode package (Masters, Misha & Susan, 2014). It corresponds to some location
in the Central Pacific (the last layer of the model is therefore an ocean layer).
The distribution with depth of the vertically and horizontally polarized P and S
waves, as well as the density and bulk and shear attenuations of this model are
drawn on figures D.1 and D.2 in appendix D.2.

As I have restricted the analysis to the vertical component of Rayleigh waves,
only eigenfunctions of displacement corresponding to the spheroidal modes need
to be computed. The dispersion diagram (the phase velocity as a function of fre-
quency) and some functions of displacement nUl for various angular orders n
and harmonic degrees l are given in chapter 2. As discussed in chapter 2, normal
modes can be interpreted in terms of surface waves in the limit l/4 � n. There-
fore the computation of the normal mode solutions should be restricted to the
first overtones (e.g. n ≤ 3). We also discussed the difficulty of observing over-
tones. Compared to the fundamental modes their amplitude is usually lower and
they tend to interfere. Therefore I further restricted my work to the fundamen-
tal modes only and I plan to integrate higher modes in the future. I have also
limited the computation to angular orders l corresponding to the frequency band
from 0 to 80mHz. In this band surface waves have little attenuation so that they
can be observed at distances relevant for this study (in the order of thousands of
kilometers).

Using the eigensolutions the green function observed at a seismic station loca-
tion can be computed for a point source at some seismic source location. Then, the
green function is convolved with the seismic source moment tensor and source
time function to get the full response to the seismic source. An approximate de-
scription of seismic events can be obtained from the Global Centroid Moment
Tensor (GCMT) catalog (Dziewonski, Chou & Woodhouse, 1981; Ekström, Net-
tles & Dziewoński, 2012). The catalog provides the source location, time and
moment tensor for earthquakes that occured from 1977 up to present with mag-
nitude greater than 5. It also provides uncertainty estimates. Detailed informa-
tion for seismic stations can be obtained from the Incorporated Research Institu-
tions for Seismology (IRIS). Their data service provides the station metadata, i.e.
the channels orientations, operational time, locations and instrumental responses
(see also Box 3). The vertical component synthetic and observed waveforms for
a source-receiver pair is given on figure 5.2 in various frequency bands. Though
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FIGURE 5.2: The first subpanel is a map showing the seismic source
with GCMT name C201308301625B (red beachball), the seismic sta-
tion KIP (blue triangle) and the great-circle connecting them (green
line). The other captions are the synthetic (blue) and observed
(black) waveforms. The waveforms have been sliced from the event
origin time to around 2000s after the event, tapered with a Hann ta-
per and filtered in the frequency bands indicated in the title of each

subpanel.

the observed waveform contains more details that the synthetic one, the normal
modes prediction is a good representation of the observation. Parameters for the
sources and stations used to illustrate this chapter are given in appendix D. Note
that since the last layer of the reference model is an ocean but the seismic stations
are on land, I set them at the bottom of the ocean.

The crust is known to be highly heterogeneous and to strongly affect the
measurements, and potentially in a non-linear way (e.g. Marone & Romanow-
icz, 2007; Bozdağ & Trampert, 2008; Panning, Lekić & Romanowicz, 2010; Liu &
Zhou, 2013). However, in the framework of this study, it is not possible to model
the crust in the inversion (e.g. coarse gridding, poor constraints) and neither the
forward problem nor the SOLA inversion that we use in this study can handle
non-linear processes. Therefore it is necessary to apply some crustal correction
to remove the effect of the crust from the data and do not get its contribution in
the tomographic model. The crustal correction I use is estimated in the frame-
work of ray theory using the crustal model CRUST1.0 (Laske et al., 2013). For
each source-receiver pair, I use a path-specific radial reference model that is just
the common reference model CPacific with the crustal model averaged along the
path on top. I assume that the synthetic waveform computed for such a model
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contains the information about the crust so that the phase delay between the syn-
thetic and observed waveforms does not depend on the crust. This holds to the
extent that CRUST1.0 is a good crustal model and is strictly applicable only in
the ray approximation. In the future, more elaborated crustal corrections could
be applied to tackle these limits.

5.2.2 Phase delay measurement

We may write the synthetic waveform s(ω) = A(ω) expφ(ω) and the observed
waveform o(ω) = Ao(ω) expφo(ω); where A(ω) is the amplitude, φ(ω) is the
phase and the superscript o stands for ‘observed’. The phase is the sum of var-
ious components: φ = φs + φr + φc + φp (e.g. Ekström, 2011; Ma et al., 2014;
Moulik et al., 2021); where φs is the source phase, φr is the phase of the receiver,
φc is the static phase that comes from caustics and φp is the phase accumulated
during the propagation from the source to the receiver. The synthetic waveforms
account for all these components (φs from the moment tensor, φr from the channel
orientation, φc from the Maslov index and φp from the normal modes solution).
If we assume that the source and station characteristics are perfectly known (or
that errors fall into some uncertainty estimates), subtracting the phase of the ob-
served and synthetic waveforms leaves only a perturbation in the propagation
component: δφ = φo− φ = φo

p− φp. δφ is the observable for which the sensitivity
kernels were derived in chapter 2 and measuring it is the subject of this section
(see also Box 5).

Preprocessing

Before performing the measurements, a waveform pre-processing and a time
window selection step is required. Since the synthetic waveforms do not contain
the instrumental response it is necessary to remove it from the observed wave-
forms. Then the observed waveforms need to be resample to the same sampling
rate as the synthetics (1 Hz).

Next it is necessary to restrict the analysis to a narrow time window that con-
tains only the information relevant given the forward theory. For example, when
measuring for a particular surface wave mode, one needs to define a time win-
dow that excludes other modes (that are more or less separated as discussed
in chapter 2). In this chapter the measurement is restricted to the fundamen-
tal modes only. The time window is chosen centered on the group arrival time
(which depends on the frequency considered) with a 801s length. The group ve-
locity is computed for the fundamental modes in the reference model and the
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FIGURE 5.3: Examples of tapers in the time domain (left) and their
amplitude spectrum in the frequency domain (right). Top: boxcar
and cosine tapers, bottom: the first five Slepians used in this chapter.

group arrival time is predicted from the source-receiver distance. Any linear
trend or mean is removed from the sliced observed and synthetic waveforms.

Observing the data in a time window is equivalent to applying a taper, i.e.
multiplying the waveform s(t) with some function of time h(t). When slicing
the data, the taper is a boxcar function that is zero everywhere except in the de-
fined time window, as represented by the dashed black line on figure 5.3 (upper-
left). Multiplying the signal with the taper in the time domain is equivalent to
convolution in the frequency domain, i.e. the spectrum of the tapered data is
sh(ω) = s(ω)⊗ h(ω). If the taper has a wide spectrum, it averages distant fre-
quencies from the spectrum of the original waveform. Since distant frequencies
leak into other frequencies, this effect is refered to as frequency leakage. For ex-
ample the boxcar function has a spectrum with significant sidelobes (figure 5.3
dashed line upper right) so that frequency leakage involves very distant frequen-
cies. Simply slicing the waveforms, i.e. applying a boxcar taper, would be a very
bad choice. Therefore the sliced waveforms are tapered with another time func-
tion, like the cosine taper (solid lines on top of figure 5.3), that has a narrower
frequency spectrum so that it leads to spectrum estimates with less frequency
leakage. Unfortunately the cosine taper is not constant in time, it reduces the
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weight of the time series far from the center of the time window which biases
the measurement. While choosing a taper, there is a tradeoff between frequency
leakage in the frequency domain and bias in the time domain.

To overcome this issue, Thomson (1982) proposed to use the first few of an
infinite series of tapers, that have optimal frequency spectrum and that weight
different parts of the waveform. These tapers, called discrete prolate spheroidal
sequences, or Slepians from its discoverer Slepian (1978), are orthogonal to each
other. The Fourier transform is computed using each of these tapers and opti-
mal estimates (in term of frequency leakage) with reduced bias (because the use
of several tapers illuminates well the whole waveform) are obtained by averag-
ing. This approach has been applied with short period data (e.g. Park, Lind-
berg & Vernon, 1987; Park, Vernon & Lindberg, 1987) and surface waves data
(e.g. Laske, Masters & Zu¨rn, 1994; Laske & Masters, 1996; Hjorleifsdottir, 2007).
Finite-frequency surface wave tomography also includes the possibility to use the
multitaper technique (e.g. Zhou, Dahlen & Nolet, 2004; Zhou, 2009a) and we take
advantage of it in the measurement process designed for this study. With a 1 Hz
sampling rate and 801 seconds-long time series we should use the first five Slepi-
ans (see Percival & Walden, 1993, section 7, pp. 331 for statistical arguments).
Figure 5.3 (bottom) shows these tapers in the time and frequency domains. The
measurement process described in the following is applied to each tapered wave-
form.

Measurement

As the phase delay depends on frequency, the measurement workflow described
here is applied for a series of frequencies, ranging from 10 to 50 mHz by steps
of 1 mHz. First the tapered waveforms are bandpass filtered in a 10mHz-large
frequency band centered on the measurement frequency. The waveforms are also
normalized to remove any effect of amplitude differences on the measurement.
Filtered waveforms at various frequencies for the first two tapers are drawn on
figure 5.4. The observed signal is best represented by the synthetic for the first
taper at low frequencies. As frequency increases the synthetic waveform gets
more delayed. It also seems to be delayed by more than a complete phase cycle
(2π radians) after 40mHz. Moreover, early in the time window, we observe some
wingles in the observed waveforms but not in the synthetic ones. This is the first
overtone but its effect is attenuated by the shape of the first taper. In this case the
time window has been well chosen to favor the fundamental mode. The fit be-
tween the synthetic and observed waveforms is much poorer for the second taper
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FIGURE 5.4: Tapered synthetic (green or red) and observed wave-
forms (black) with the first (left column) and second (right column)
Slepians, filtered at the center frequencies 10mHz, 20mHz, 30mhz,
40mHz and 50mHz (from top to bottom). The source-station pair is

the same as shown on the map of figure 5.2
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FIGURE 5.5: Amplitude (left) and phase (right) spectra for the syn-
thetic (green) and observed (black) waveforms tapered with the first

eigentaper and bandpass filtered around 30mHz.

(second column). In this case the first overtone seems to have gained importance.
This is due to the shape of the second taper (figure 5.3 lower left).

The spectra of the tapered synthetic and observed waveforms are obtained
using the Fast Fourier Transform algorithm. The estimated spectra for the first
taper around 30 mHz is given on figure 5.5. As expected the energies of the
signals are confined in the frequency band 25-35mHz and are similar for both
of them since they have been normalized. The phase component of the spectra
looks chaotic. In fact there are ±2π shifts that can be corrected afterward. Finally
the phase delay, for each taper and each frequency, is obtained as the difference
between the phase of the observed and synthetic spectrums.

The phase delay as a function of frequency takes the name dispersion curve.
The dispersion curves obtained for the first two tapers are drawn as solid lines on
figure 5.6 (top). The curves make jumps of±2π outside the±π range represented
by the gray horizontal lines. These jumps are not physical and the curves can be
corrected by adding or removing 2π. This leads to the dashed lines. After this
correction the curves can still make jumps of ±2π, but in this case the jumps
are physical. It is the well known cycle-skip: the mathematical procedure can
only measure a phase delay within the range ±π but what if one waveform is
delayed by more than a complete phase cycle? I assume that at low frequency
it is very unlikely that there is more than one phase cycle of difference between
the observed and synthetic waveforms. Then, for increasing frequencies, when a
jump greater than a certain value (4 radians seems to be a good value) is detected,
the curve is corrected by adding or removing 2π. On figure 5.6 (bottom) are
drawn again as dashed lines the curves corrected for the non-physical jumps and



5.2. Data and data uncertainties 139

FIGURE 5.6: Corrections for non-physical (top) and physical cycle-
skip (bottom) jumps of the dispersion curves for the first (left) and
second (right) tapers. Top: the solid curve is prior to correction, it
jumps of ±2π outside of the ±π range (indicated by the horizontal
gray lines); the dashed curve is after correction. Bottom: the dashed
curve is prior to cycle-skip correction and the dotted curve is cor-

rected for cycle-skip.
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FIGURE 5.7: Final dispersion curves for the five tapers.

as dotted lines the curves also corrected for cycle-skip. In the case of the first
taper a cycle-skip was detected around 40 mHz (figure 5.6 lower-left). This full
phase cycle difference between the signals was already noticed on figure 5.4. The
second taper also detects this cycle-skip (figure 5.6) but it detects another one
around 20 mHz that is not observed with the first taper. It turns out that all the
three other tapers do not detect any cycle-skip at this frequency. As we observed
on figure 5.4, it is very likely that the second taper leads to bad results because of
the significance of the first overtone and that the cycle-skip at 20 mHz is a false
detection.

Figure 5.7 represents the final dispersion curves for the five tapers. All ta-
pers lead to similar dispersion curves except the second one. It is shifted by
−2π at frequencies higher than 20 mHz because of the false cycle-skip detec-
tion. Finally figure 5.8 shows the mean of the five dispersion curves (black line)
with the standard deviation (grey lines). The standard deviation increases signif-
icantly at 20 mHz. This is due to the false cycle-skip detection with the second
taper. Detecting correctly the cycle-skips is difficult. In their study, Moulik et al.
(2021) compare various phase delay datasets and observe±2π discrepancies that
come from this difficulty to detect cycle-skip (see their figure 6). Beyond mini-
mizing frequency leakage and bias in the time domain, the multitaper technique
has three major advantages in this study. First it reduces the risk of poor choices
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FIGURE 5.8: Mean of all five dispersion curves and standard devia-
tion.

for the time window by illuminating various parts of the time domain wave-
form. Second, potential errors with one taper (such as cycle-skip mis-detection)
are attenuated by averaging the results from several tapers. Last, it provides an
uncertainty estimate for the measurement. Data uncertainties are the suject of the
next section.

5.2.3 Phase delay uncertainties

The SOLA inversion accounts for the propagation of data uncertainties into model
uncertainties. However the reliability of the model uncertainties depends on the
quality of the data uncertainty estimates.

As described in the previous section, the phase delay estimate is an average
of phase delays obtained with several tapers that weight differently the time do-
main waveform. An uncertainty estimate can be derived as the standard devia-
tion of the set of measurements (for example the gray lines on figure 5.8). This
uncertainty component accounts for the time window positioning and inaccurate
spectrum estimation (bias and frequency leakage). As noted previously it can
also account for cycle-skip mis-detection. On figure 5.9 are given the distribution
of the multitaper uncertainty estimates for each measurement frequency for a se-
lection of source-receiver-frequency triplets that we use later in this chapter (see
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FIGURE 5.9: Distribution of uncertainties obtained from the multi-
taper technique for various frequencies.

section 5.4.2). Table B.1 in appendix B gives some statistics for the distribution
of the uncertainties from the multitaper technique. In general the uncertainty in-
creases with frequency with mean ranging from a tenth of a phase cycle at 10 mHz
to half a phase cycle at 50 mHz.

Another important source of uncertainty is the imperfect knowledge of the
seismic source parameters (centroid longitude, latitude, depth, time, and the six
independent components of the moment tensor). In the best cases the GCMT
catalog provides uncertainty estimates for these parameters. The distributions
of the uncertainties for the source parameters for a set of sources that we use
later in this chapter (see section 5.4.2) are given in figure 5.10 and some statistics
are given in table B.2 (appendix B). Zero values are ignored: if the uncertainty of
some parameter is zero, it will be set to the mean uncertainty of the whole dataset
for that parameter. It seems that these uncertainty values are underestimated.

To investigate how much an error in a source parameter induces an error in the
estimated phase delay, I use an approach close to Monte Carlo methods. I consider
one source-receiver pair and I simulate 70 sources by perturbing the source pa-
rameter following a normal distribution using the source parameter uncertainty
as standard deviation. The perturbed phase delays as a function of the perturba-
tions in the source parameters are shown on figure 5.11. The errors for the event
origin time generate very small (or even zero) errors in the measured phase de-
lay. This is because the errors are too small given the 1 Hz sampling rate. It seems
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FIGURE 5.10: Distribution of uncertainties for various source pa-
rameters (576 events from the GCMT catalog).
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FIGURE 5.11: Phase delay produced by perturbations in the source
parameters. This example is for the source with GCMT name
C201103220718A and station RAO. For each parameter 70 sources
are simulated with perturbation in the parameter following a nor-
mal distribution with standard error given by the parameter uncer-
tainty. The coloring convention is the same as in figure 5.9: it goes
from red to blue as frequency increases from 10 to 50 mHz by steps

of 10 mHz.
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that within the region of the source parameter uncertainties, the relation between
the source parameter perturbation and the perturbed phase delay is linear. The
phase delay perturbations for this example are also represented as distributions
on figure 5.12. The linearity makes that the distributions are mainly Gaussian
and we could use the standard deviations of these Gaussians as phase delay un-
certainties propagated from the source uncertainty. In general, the uncertainty in
a parameter induces an uncertainty in the measured phase delay that increases
with frequency. The uncertainty in the latitude, longitude and depth of the events
seem to have the largest effect on the phase delay compared with the uncertainty
in the moment tensor components. Of course these results depend on the source-
receiver pair (depth of the source, moment tensor, orientation of the station with
respect to the focal mechanism). The best would be to apply the same proce-
dure to each source-receiver pair to propagate the source uncertainties into phase
delay uncertainties. Unfortunately this task is computationally expensive.

To get a more general idea of the propagation of source uncertainties into
phase delay uncertainties I apply the same procedure to a set of 29 randomly
chosen source-receiver pairs. Some statistics on this set of propagated uncertain-
ties are given in tables B.3, B.4, and B.5 in appendix B. Again we observe that
the propagated uncertainties are very small for the source origin time and for all
parameters it increases with frequency. The propagated uncertainties are much
larger for the latitude, longitude and depth components than for the moment
tensor ones. Note that the data selection involves a criterion that accounts for
the orientation of the station with respect to the source moment tensor. This se-
lection reduces the uncertainties from the moment tensor components since it
avoids strong phase changes that are expected close to the nodal planes of the
focal mechanism. In the following I consider only the maximum of propagated
uncertainty for each parameter and I combine them to obtain an uncertainty es-
timate for the source errors that depends on frequency only. I believe that the
source errors have been highly underestimated. The uncertainties obtained from
the source are of the order of 10 times lower that the uncertainties obtained from
the multitaper technique. It turns out to be very difficult to have an estimate of
the uncertainties from the source errors that is reasonable. However the relative
amplitude of the estimates at various frequencies may be informative. I decide to
multiply the propagated uncertainties from the source by 10 for them to weight
at the same level as the multitaper uncertainties in the inversion and in the tomo-
graphic model. The final estimates are given in table 5.1. For each measurement,
the uncertainty from the source errors at the data frequency is added to the un-
certainty estimate from the multitaper technique.
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FIGURE 5.12: Same data as in figure 5.11 but plotted as the distri-
bution of the perturbed phase delay produced by perturbations in
source parameters. The coloring convention is the same as in fig-

ure 5.9.



5.3. Tomographic setup 147

TABLE 5.1: Phase delay uncertainties from errors in the seismic
source parameters as a function of frequency.

frequency 10mHz 20mHz 30mHz 40mHz 50mHz
phase delay uncertainty (radians) 1.16 1.80 2.32 3.07 3.86

Clearly this estimation of data uncertainties is very rough. First the propa-
gated uncertainties are similar for all source-receiver pairs while they might de-
pend strongly on the source location and on the source-receiver orientation. To
get the data uncertainty estimate I combine all sources of error as if they were in-
dependent while there might be correlations between the uncertainties that I do
not account for in this study. Furthermore, some sources of errors are neglected.
For example one may wonder what is the uncertainty generated by the imper-
fect crustal correction or by the parameterization (next section). Last, this study
assumes that all error distributions are perfectly Gaussian though the errors for
the source parameters may not be normally distributed and the relation between
source error and phase delay error may not even be linear. Here I only attempted
to get crude estimates of data uncertainties for the remaining of the study. Esti-
mating the data uncertainties turns out to be a difficult task but it is also a crucial
task, especially when using the SOLA inversion since it propagates data uncer-
tainties into model uncertainties. This difficult but crucial task of estimating data
uncertainties in tomography should be adressed more seriously in the future.

5.3 Tomographic setup

5.3.1 Three-dimensional sensitivity kernels

In chapter 2 I presented the derivation of the finite frequency sensitivity kernels
that relate a phase delay for a source-receiver pair to the three-dimensional per-
turbations in some physical parameters. Here I assume that the phase delays are
mostly sensitive to perturbations in the isotropic vertically polarized S-wave ve-
locity δ ln Vs(x). This is justified because measurements are made on the vertical
component of seismograms, far from the source. The forward problem for the
source-receiver pair p at frequency ωq can be written:

δφp(ωq) =
∫∫∫

⊕
Kp(ωq, x)δ ln Vs(x)d3x, (5.1)

with
Kp(ω, x) = − Im

(
K(ω, x)

s(ω)

)
. (5.2)
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FIGURE 5.13: Sensitivity kernel for the source C201308301625B and
station KIP at 10 mHz (left), 30 mHz (middle) and 50 mHz (right).
Top: depth slice at 70 km depth, middle: transversal cross-section,
bottom: longitudinal cross-section. The grid cell size is 1◦ × 1◦ ×

10km.

where K(ω, x) is the scattered waveform kernel: δs(ω, x) = K(ω, x)× δ ln Vs(x)
. To be consistent with the measurements, the sensitivity kernels are based on the
normal mode solutions for the radial reference model CPacific.

The expression 5.2 stands for untapered waveforms, however the measure-
ments are made from tapered waveforms. For full consistency between the data
and the forward problem it is therefore necessary to taper the sensitivity kernels
as well. In the case of multi-taper measurement the tapered sensitivity kernel is
given by:

K(ω, x) = − Im

(
∑jKj(ω, x)s∗j (ω)

∑j sj(ω)s∗j (ω)

)
, (5.3)

where sj(ω) = s(ω) ⊗ hj(ω) and Kj(ω, x) = K(ω, x) ⊗ hj(ω) are the tapered
waveforms and tapered scattered waveform kernel with the j-th taper hj. The
⊗ symbol denotes convolution. Tapering the sensitivity kernel would require to
compute it for a broad range of frequencies, not only at the frequencies where the
measurements are made. Assuming tapers with narrowly concentrated spectra,
Zhou, Dahlen & Nolet (2004) show that:

Kj(ω, x) ≈ K(ω, x)× hj[t = ∆′/C′(ω) + ∆′′/C′′(ω)], (5.4)

and,
sj(ω, x) ≈ s(ω)× hj[t = ∆/C(ω)]. (5.5)

where ∆/C(ω) is the group arrival time of the initial wave and ∆′/C′(ω) +
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FIGURE 5.14: Same as figure 5.13 but with a coarser grid (2◦ × 2◦ ×
25km).

∆′′/C′′(ω) is the group arrival time of the scattered wave at frequency ω. Ta-
pering the waveform and the scattered waveform kernel at some frequency ω

simply requires multiplying it with the value of the taper at the predicted group
arrival time for the initial and scattered waves.

I compute the three-dimensional sensitivity kernels using the computer pro-
grams from Zhou, Dahlen & Nolet (2004) and Zhou (2009a). The kernel is com-
puted at the depths of the reference model. At each depth, every one degree along
the source-receiver great-circle, the kernel is sampled at 32 equidistant points
within two Fresnel zones in the orthogonal direction to the great-circle (Box 6). To
set up the forward problem the kernel must be projected onto the tomographic
grid (Box 7). For one lateral location the kernel is interpolated at the grid depths
using splines. Then the value for one cell is the mean of all samples that fall in
that cell. The sensitivity kernel for the source C201308301625B and station KIP,
for the fundamental mode (n = 0) at three frequencies, projected onto a grid with
cells of size 1◦ × 1◦ × 10km, is drawn on figure 5.13. In general the sensitivity
is shallow compared with higher modes kernels (see chapter 2). Restriction to
the fundamental mode will make it difficult to image the mantle deeper than the
first hundred kilometers. We observe that the higher the frequency the shallower
the sensitivity. This is in connection with the observations made with the eigen-
functions of displacement in chapter 2. Moreover we observe that the higher
the frequency the narrower the kernel laterally. This is also expected that for in-
creasing frequency the kernel tends to the ray approximation. The low frequency
kernel is also low amplitude (note the colorscale ranges on figure 5.13). Therefore
we may expect a poorer resolution at great depths.

Unfortunately it is necessary to increase the gridding size to avoid high com-
putational costs. In the following the grid has cells with size 2◦ × 2◦ × 25km. The
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kernel projected on such a grid is drawn on figure 5.14. Though the projection
degrades the kernel, it seems to retain its main properties.

5.3.2 Three-dimensional target kernels

Since the forward problem is fully three-dimensional the target resolution needs
to be designed in three-dimensions. The target kernels are designed as ellipsoids.
Taking into account the physical behaviour of surface waves the target kernels
need to be flattened laterally and to reduce smearing effect they can be chosen
to be circular laterally. Therefore the target kernel for the cell k is an ellipsoid
defined by two values: rk

v is the ellipsoid minimal axis along the vertical direction
and rk

l is the two other ellipsoid axes along the lateral directions (east, north).
To set the vertical and lateral target resolution length rk

v and rk
l for all cells I use

the same approach to that in chapter 4. For one direction, the minimum and
maximum target resolution lengths rmin and rmax corresponding to the maximal
and minimal data densities ρmin and ρmax are set and the resolution length r for
any cell as a function of the data density ρ in that cell is obtained using the linear
relation:

r(ρ) = rmax − (rmax − rmin)

(
log10(ρ)− log10(ρmin)

log10(ρmax)− log10(ρmin)

)
(5.6)

The use of the log10 is to avoid strong spatial variations in the target resolution
that would induce strong spatial variations in the actual resolution. Note that
in this chapter equation 5.6 defines the target resolution radii everywhere in the
three-dimensional space, as much as the sensitivity is defined everywhere in the
three-dimensional space.

The target kernels need to be projected onto the tomographic grid. This is
achieved by a process close to Riemann integrations. A subgrid that contains the
target kernel with very small cell sizes is designed. The value of the projected tar-
get kernel in cell k is the sum of the volumes of the cells of the subgrid that belong
both to the target kernel and cell k. Moreover the target kernels are normalized
such that ∑M

j=1 T(k)
j Vj = 1.

The projection of the target kernels for cells at 60 km and 160 km depths are
shown on figure 5.15. The size of the target kernels has been computed based on
the sensitivity obtained with the data selection used in the next section. On the
maps we observe that the target kernels are circular. This circular shape should
help to reduce artifacts such as smearing effects. Contrary to the target kernels
designed in chapter 4, the target kernels in this chapter also have a vertical ex-
tent that will help to constrain the resolution with depth. Since the sensitivity
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FIGURE 5.15: Target kernels located at 199◦E, 31◦N, at 60km (left)
and 160km depth (right).

at 60 km depth is higher that at 160 km, the shallower averaging kernel has a
smaller spatial extent.

All the tools necessary for the three-dimensional SOLA tomography have
been presented and the next section is dedicated to the application of the tomo-
graphic process in a synthetic case.

5.4 Synthetic tomography

5.4.1 Motivations

The forward theory used for the problem to be fully three-dimensional has been
applied only in few studies by the research group that developed the sensitivity
kernels (e.g. Zhou, Dahlen & Nolet, 2004; Zhou et al., 2005; Zhou et al., 2006;
Zhou, 2009a; Ruan & Zhou, 2010; Tian et al., 2011; Liu & Zhou, 2013; Liu & Zhou,
2016a; Liu & Zhou, 2016b). The SOLA inversion has been adapted to seismic to-
mography only recently (Zaroli, 2016). Its use in the framework of surface waves
is even more recent (Ouattara, Zigone & Maggi, 2019; Latallerie et al., 2022). The
use of the SOLA inversion for surface wave tomography in a complete three-
dimensional framework is, to the best of my knowledge, completely new.

For this reason it is safer to start with a synthetic tomography where the role
of the ‘true’ Earth is played by a known input model. This synthetic tomography
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FIGURE 5.16: Seismic events (red stars) and seismic stations (blue
triangles) used in this synthetic tomography.

will help to check the reliability of the measurement process (production of syn-
thetic seismograms and phase delay measurement), the uncertainty estimates, the
three-dimensional sensitivity kernels and the overall consistency of the process.
Moreover, by comparing the input Earth with the results (recovered Earth, model
uncertainties and resolution), this synthetic tomography will help to understand
the power of the three-dimensional SOLA surface wave tomography and spot
any biases and artifacts.

5.4.2 Settings

The synthetic waveforms that play the role of observations for this synthetic to-
mography are produced by the specfem3D software. The specfem3D software pro-
duces synthetic seismograms in any three-dimensional Earth model using the
spectral-element method (e.g. Komatitsch & Vilotte, 1998; Komatitsch & Tromp,
2002a; Komatitsch & Tromp, 2002b). Synthetics are pre-computed for events in
the GCMT catalog by the Princeton’s Global ShakeMovie project (Tromp et al., 2010)
for the three-dimensional model S362ANI from Kustowski, Ekström & Dziewoński
(2008). Vertical component synthetics can be obtained from the IRIS repository
(Hutko et al., 2017). The aim is now to retrieve the three-dimensional model
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FIGURE 5.17: Focal mechanisms (top) and radiation patterns (bot-
tom) for the sources with GCMT names C201111111041A (left),
C201310251710A (middle) and C201308301625B (right). The color-
ing convention is the same as in figure 5.9: it goes from red to blue
as frequency increases from 10 to 50 mHz by steps of 10 mHz. The
radiation at all azimuths is normalized by the maximum radiation.

S362ANI that plays the role of the ‘true’ Earth using the tomographic process
developed in this chapter.

A total of 576 seismic events that occured between January 2010 and Decem-
ber 2017 are selected from the GCMT catalog. Events have been selected such
that the source depth ranges from 10 to 80 km to avoid strong influence from the
crust with shallow events and significant overtones with deep sources. Events
are also selected with moment magnitude Mwc ranging from 6 to 7.8 for event
to be small enough to avoid source finiteness effects (the forward theory assumes
point source in space) but strong enough for good signal-to-noise ratio. Events
are also selected to have occured within the Pacific ocean or at the continent-
ocean border, to avoid effects of continental lithosphere since the reference model
is chosen to reflect the oceanic domain. 45 seismic stations are selected from the
IU virtual network and channel information is obtained from IRIS (Hutko et al.,
2017). Stations are selected such that the source-receiver path is confined to the
Pacific ocean, again to avoid the effect of the continental lithosphere that is not
represented in the reference model and that would complicate the waveforms.
All selected events and stations are located on figure 5.16.

A source-receiver-frequency specific selection is also applied (see also Box 8).
To guarantee the far-field approximation used in the forward theory only data
that are predicted to have accomplished at least five phase cycles are selected (i.e.
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FIGURE 5.18: Ray coverage for each frequency considered for the
inversion.

k∆ ≥ 10π radians, with k the wavenumber in radians per angular degree and ∆
the source-receiver distance in angular degrees). In addition only source-receiver
distances less than 120◦ (i.e. ∆ ≤ 120◦) are selected to stay within the paraxial ap-
proximation. A selection criterion could be based on the source-receiver pair ori-
entation with respect to the focal mechanism to ensure enough energy is radiated
for the signal-to-noise ratio to be high and to avoid strong phase changes near
a nodal plane. However, as noted in chapter 2 the radiation pattern for surface
waves actually depends on frequency and source depth. On figure 5.17 radiation
patterns for the measurement frequencies are drawn for three sources. We ob-
serve indeed a strong variability with frequency. Source-receiver-frequency data
are selected if the radiation in the direction of the receiver is at least 50% of the
maximum radiation. Last, the maximum correlation between the tapered and fil-
tered synthetic and observed waveforms is computed. The waveform is selected
if the maximum correlation (the mean for all five tapers) exceeds 0.85. Finally we
end up with 31062 phase delays. The number of measurements per frequency is
given in table 5.2. The ray coverage for each frequency is given on figure 5.18.
The sensitivity, i.e. the sum of the absolute value of the sensitivity kernels that
fall in each cell (∑i |Gij|) is plotted on figure 5.19. As expected from the source
and station lateral selection the sensitivity is confined to the Pacific region. More-
over it is highly heterogeneous, with a sensitivity greater in the west of the Pacific
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FIGURE 5.19: Sensitivity, or sum of the absolute value of kernels that
fall in each cell, or ∑i |Gij|.

ocean. Vertically, the sensitivity is very shallow. This is because only the funda-
mental modes are considered here. To highlight deeper part in the mantle it will
be necessary to also consider higher modes.

From the sensitivity, the vertical and lateral radii of the ellipsoidal target ker-
nels are computed using equation 5.6 (see also Box 9). Figure 5.20 gives the lat-
eral and vertical radii of all target kernels at 37km depth where rl

min = 750km,
rl

max = 5000km, rv
min = 25km and rv

max = 125km. All inputs are set up and phase
delays can be inverted using the SOLA scheme (see also Box 10). Note that a
numerical account for the whole process is given in appendix C.

5.4.3 Results

On figure 5.21 are represented the input model, the output model and the model
uncertainties at 37 km and 112 km depth (see also Box 11). This synthetic to-
mography is a crude preliminary test: the dataset is relatively small and some
input parameters may be better tuned. However it is interesting to draw the first
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FIGURE 5.20: Lateral (left) and vertical (right) radii of target kernels
at 37km depth. In this case rl

min = 750km, rl
max = 5000km, rv

min =
25km and rv

max = 125km.

TABLE 5.2: Number of data per frequency.

frequency [mHz] data count
10 3503
20 6835
30 7162
40 6685
50 6877

FIGURE 5.21: Input model (left), output model (middle) and output
model uncertainties (right) at 37 km depth (top) and 112 km depth
(bottom). The mean velocity of the output model is indicated above
each caption. The gray ellipses on the output model at 37 km locate

the features discussed in the text.
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conclusions about the tomography presented in this chapter, to show potential
artifacts and biases, and to point the areas for improvement in the future.

The model uncertainties seem extremely low. This may be due to underesti-
mated data uncertainties. It may also be due to the target resolution since there
is a tradeoff between the resolution and the uncertainties. The resolution may
be too pessimistic (target kernels too large or tradeoff parameter η too high). We
may achieve a better resolution given the dataset. The model uncertainties have
a pattern close to that of the sensitivity (figure 5.19). It is not surprising since
the sensitivity was used as a proxy to design the target resolution. This pattern
may indicate that the target resolution is too optimistic where the sensitivity is
high, or too pessimistic were the sensitivity is low. The uncertainties are lower
at 112 km depth than at 37 km depth but the model is also smoother. Again this
can be explained by the relation between the sensitivity and the target resolution:
since the sensitivity decreases with depth, the target kernels are larger. As a con-
sequence the resolution of the model is larger leading to a smoother model with
lower uncertainties.

Since the output model is a ‘filtered’ version of the input model, it contains
lower amplitude anomalies. There are discrepancies but we retrieve the main fea-
tures of the input model, especially for large scale and strong anomalies. The slow
velocity anomaly between the Pacific and Philipine sea plates at 37 km depth ap-
pears in the output model. The slow velocity anomaly that surrounds the Nazca
plate is also retrieved. The increase of velocity in the northwest direction from
the East-Pacific-Rise (a lithosphere cooling signature) appears clearly in the out-
put model. The high velocity Australian craton, the slow velocity anomaly in the
Samoa region as well as the transition from slow to fast velocity at the Tonga-
Kermadec trench are strong features in the output model.

The slow velocity anomalies associated with the ‘ring of fire’ (the borders of
the Pacific to the north) and the Pacific-Antarctic ridge are missing in the output
model. In these regions the sensitivity is low. As a consequence the resolution
is large so that the model is close to global average (i.e. it contains no informa-
tion). The output model shows high velocity in the Solomon sea region while it
is not the case in the input model. This is also a region where the model uncer-
tainties are high. Accounting for the uncertainties would help to avoid wrong
conclusions.

At 37 km depth the model shows spurious strong velocity anomalies at the
locations of the seismic stations (figure 5.16). This is related to the very high sen-
sitivity near the stations. The heterogeneous spatial resolution in these regions
may complicate the interpretations. However these regions are also associated
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FIGURE 5.22: Three-dimensional averaging kernels for cells in the
Samoa region (top) and to the east of Hawaii (bottom) at 37 km
depth (left) and 112 km depth (right). The maps show depth-slices
at the depth of the cells. Below the maps are vertical cross-sections

as indicated on the maps.

with high model uncertainties that may prevent from interpreting them. To re-
move this effect, i.e. to homogeneise the resolution, it could be desirable to design
a larger target resolution around the stations.

As examples I consider the two features indicated by the gray ellipses on fig-
ure 5.21: Samoa and the east of Hawaii. I discuss them regarding the resolution
and uncertainties as if I did not know the input model. Unfortunately, since the
uncertainties seem to be highly underestimated, the comparison with them is of
little significance. However their relative amplitudes may be of interest.

What could be said about the Samoa low velocity using the resolution and
model uncertainties? The uncertainties in this region are high (relatively to other
location) but the anomaly is strong (∼0.06km/s slower than mean). Figure 5.22
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(top) shows the three-dimensional averaging kernels in this regions at 37 km and
112 km depth. At 37 km depth the averaging kernel is mainly circular. This guar-
antees that there is no artifact such as a smearing effect. Moreover the averaging
kernel has a small spatial extent (its radius is ∼ 400km) which indicates that this
anomaly is well resolved. At 112 km depth the averaging kernel is still circular
but it has a much larger spatial extent. The vertical cross-sections show that the
averaging kernel samples the information at depths shallower than 112 km. The
shallow ‘true Earth’ leaks into the solution at 112 km depth. This is because the
sensitivity is very shallow since we used only the fundamental modes. Note that
without finite frequency theory we could not show this effect since the averaging
kernels would not depend on depth. We conclude, using the model uncertain-
ties and resolution, that this anomaly is robust at 37 km depth, that it may exist
at 112 km depth but there is a depth bias and the model may show it smoother
than it is in reality. We can confirm these interpretations since we know the input
model.

What could be said about the elongated feature to the east of Hawaii? This
feature has a velocity close to the global mean but it is slower than the surround-
ing region by ∼ 0.04 km/s. In this region the uncertainties are low. However, the
averaging kernels represented in figure 5.22 (bottom) show that the resolution
itself is elongated in the same direction as the feature. We conclude that this elon-
gated feature in the model is probably an artefact from the resolution. Indeed the
input model shows no such elongated feature. Actually such a smearing effect is
not surprising given the ray coverage in this region (figure 5.18). To reduce such
a smearing effect a larger target resolution could be designed in regions where
the ray coverage is highly anisotropic.

5.5 Conclusion

The application of the SOLA inversion with the two-step approach in chapter 4
proved to be powerful to extract reliable information from the data and well in-
formative resolution and model uncertainties. However strong limits remained
with the estimation of the data uncertainties and the inherent two-dimensionality
of the problem. In this chapter I go beyond ray theory to make the problem fully
three-dimensional and I try another approach to estimate the data uncertainties.

Within the finite frequency framework based on the Born approximation, phase-
delay data are related to the three-dimensional S-wave velocity. Phase delay data
are measured using the multitaper technique. Data uncertainties, that account for
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measurement and source errors are estimated. A three-dimensional target reso-
lution based on the data sensitivity is designed. Finally the SOLA inversion is
applied to produce a three-dimensional model with a direct control on its three-
dimensional resolution and uncertainties.

Since this approach combines recent developments I start with a synthetic to-
mography: I apply the tomographic scheme to synthetic waveforms generated
by a known input three-dimensional model of the Earth. The comparison of the
input and output models shows that the three-dimensional SOLA surface wave
tomography is reliable. This is a crude test, the dataset is small and input param-
eters could be better tuned, but it has the advantage to show potential artifacts
and to point areas for improvement.

The model uncertainties are very small. It may be due to the data uncertainties
since they result from them. It may also be due to the target resolution and to the
chosen resolution-uncertainty tradeoff. The model uncertainties depend strongly
on the sensitivity (laterally and with depth). They could be homogeneised by
designing a larger target resolution where the sensitivity is high. Strong anoma-
lies appear near the seismic stations due to very small target kernels (since the
sensitivity at these locations is very high). This may be partly due to the far-field
approximation used for the sensitivity kernels, the coarse parameterization at the
stations and simply to the data distribution. However the model uncertainties
are also high, preventing from interpreting them. The target resolution could be
designed smoother to homogeneise the resolution in such regions. I show that
the resolution helps to spot artifacts such as smearing effects. The anisotropy of
the ray coverage could be quantified (as in Simons et al., 2002) and used as a
proxy to design a larger target resolution in regions subject to smearing effects.
I point a ‘depth bias’. Since only the fundamental modes are used, the sensi-
tivity is very shallow. As a consequence the model at great depths (for exam-
ple at 112 km) actually represents averages that are shallower: the shallow ‘true
Earth’ leaks into the solution at great depths. It is the combination of the finite
frequency and SOLA approaches, making possible to constrain the resolution in
three-dimensions, that allows to show the depth leaking. This effect was already
noticed (e.g. Nolet, 2008, section 15.3, page 285-288). In this chapter we found a
mean to quantify it.

The tomographic process developed in this chapter, that combines the advan-
tages of finite frequency theory and SOLA inversion, is highly promising to tackle
some of the main issues encountered in seismic tomography. Nevertheless some
work is still required. Here is a list of potential improvements from most highest
to lowest priority:
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• The estimation of the data uncertainties is still rough and should be inves-
tigated more seriously. A better estimation of data uncertainties may ac-
count for example for the parameterization, the crustal correction or the
approximations in the forward theory. It would also require more realistic
source uncertainties and their propagation into data uncertainties should
be source-receiver pair dependent, not only frequency dependent.

• The measurement should be extended to account for overtones. Without
that only a very shallow picture of the mantle can be drawn and the advan-
tages of the three-dimensionality of the forward theory may be lost.

• The far-field approximation for the sensitivity kernels can be broken using
the near-field Green tensor estimation (Liu & Zhou, 2016b).

• Other crustal corrections can be tried, using finite frequency for example
(e.g. Liu & Zhou, 2013).

• Other observables can be investigated (e.g. amplitude, polarization, other
seismic channel orientations) and other model parameters can be mapped
(e.g. P-wave velocity, attenuation, density, anisotropy) (e.g. Zhou, 2009a;
Zhou, 2009b).

Of course, the tomographic process developed in this chapter should be ap-
plied soon with real data. Then the workflow designed in chapter 4 will be ap-
plied to discuss the three-dimensional structure of the Pacific upper mantle.
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Box 1: About boxes

I think that it might be useful to give some details about the codes devel-
oped for this study. Not to blur the main messages with technical details,
I use these boxes for that purpose. All the codes can be downloaded from
the gitlab repository at: https://gitlab.com/FranckLatallerie/sola_ffsw.git.
Note that only a tiny piece of these codes have been written by myself. A
part of the codes come from my advisors Pr. Maggi, Dr. Lambotte and Dr.
Zaroli. The production of the synthetics uses routines from Masters, Misha
& Susan (2014), and the production of the sensitivity kernels uses routines
from Zhou, Dahlen & Nolet (2004).

Box 2: General organization

The organigram below illustrates the main file system organization
for the project. Names in rectangles are directories and names
alone are the most important files. The main input directory con-
tains external data. The main output directory contains computed
data necessary for the tomography (measurements, sensitivity ker-
nels). The solaIO directory contains input/output data for the SOLA
inversion. The sola_ffswk directory contains programs. Programs
use parameters defined in the configuration file ffswk_sola_params.cfg.
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Box 3: External inputs

The tomographic study requires observed waveforms and seismic source
and seismic stations/channels metadata to be saved locally. The observed
waveforms must be saved in the sac format in the inputs/obswf direc-
tory. The sources metadata need to be saved in the cmt format (one file
per source) in the inputs/sources/ directory. Some functions in the script
user_defined_io.py may help for conversions between the various formats.
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Box 4: Computing synthetic waveforms

Computing synthetic waveforms requires three distinct steps: (1) compute
the normal mode solutions for a radial Earth model, (2) use the solutions
to compute the green functions for a source-receiver pair and (3) convolve
the green functions with the source moment tensor to obtain the synthetic
waveforms. Below is an example for the reference model CPacific, consid-
ering only the fundamental spheroidal modes, for the source with GCMT
name C201001100027A and the station KIP of the network IU.

1 from normal_modes import ←↩
compute_eigen_solution_MINEOS , compute_green , ←↩
compute_synthetic_data

2 compute_eigen_solution_MINEOS( model_file="CPacific"←↩
, basename_eig="cpacific", parser=parser , mode=’S←↩
’, nmin=0, nmax =0)

3 compute_green( basename_eig="cpacific", parser=←↩
parser , sourcefile="C201001100027A", ←↩
basename_stachan="IU_KIP", modes=’S’)

4 compute_synthetic_data( basename_green="←↩
cpacific_C201001100027A_IU_KIP", parser=parser , ←↩
sourcefile="C201001100027A", modes=’S’)

Many synthetic waveforms are computed in parallel using the script
syn_paral.py. It takes as inputs a file that contains many source names,
a network and station code and the number of CPUs to use. For example,
in bash:

1 python syn_paral.py sourcesfile IU KIP 24

Note that for crustal corrections CRUST1.0 crustal model needs to be added
on top of the reference model. For a set of source-receiver pairs this is
achived by running:

1 python crust_paral.py sourcesfile KIP 24
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Box 5: Measuring

The phase delay between two waveforms as a function of frequency is com-
puted using the script measurement_MT.py. One needs to provide the source
and station names, the paths to the waveforms and the basename for the
normal mode solutions. For example, in bash:

1 python measurement_MT.py C201001100027A IU_KIP ./../←↩
outputs/syn/←↩
cpacific_C201001100027A_IU_KIP_C201001100027A_syn_S←↩
.sac/BHZ ./../ inputs/obswf/C201001100027A_IU_KIP.←↩
sac cpacific

Many measurements can be made in parallel:

1 python measurement_MT_paral.py sourcesfile IU KIP 24
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Box 6: Computing finite frequency sensitivity kernels

The computation of the sensitivity kernels requires two disctinct steps: (1)
compute the normal mode solutions for a radial Earth model and (2) use
the solutions to compute the finite frequency sensitivity kernel for a given
source-receiver pair and source moment tensor. For example to compute
the sensitivity kernel at 30mHz for the source C201001100027A and station
KIP:

1 from normal_modes import ←↩
compute_eigen_solution_FFSWK , ←↩
compute_sensitivity_kernel

2 compute_eigen_solution_FFSWK( model_file="CPacific",←↩
basename="cpacific", parser=parser , mode=’S’, ←↩

nmin=0, nmax =0)

3 compute_sensitivity_kernel( basename_eig="cpacific",←↩
parser=parser , sourcefile="C201001100027A", ←↩

basename_stachan="IU_KIP", freq=30, mode=’S’, n←↩
=0)

One can compute many sensitivity kernels in parallel using the script
ker_paral.py:

1 python ker_paral.py sourcesfile IU KIP 24

This script also projects the sensitivity kernels onto the tomographic grid
(see box 7).



5.5. Conclusion 167

Box 7: Grid

The tomographic grid is managed using the object oriented paradigm. Be-
low are examples how to use the grid:

1 from parameterizations import ←↩
SBG_param_3D_sphere_latlonradgrid

2 from graphics import mapp

3 from user_defined_io import read_sensitivity_kernel ,←↩
write_projected_sensitivity_kernel

4 grid = SBG_param_3D_sphere_latlonradgrid( parser) # ←↩
Generate grid

5 k = grid.whereami( latlonrad_to_xyz( 40, 170, 6271) ←↩
# Find cell

6 latlonrad = grid.centerpoints[ k] # Check

7 K = read_sensitivity_kernel( "←↩
cpacific_C201001100027A_IU_KIP_030 .00 _S_bv")

8 Kp, err = grid.project_sens_kernel( K) # return proj←↩
K and proj error

9 mapp = plot_map () # Generate map

10 mapp.plot_grid_depth_section( grid=grid , rad=6271, ←↩
data=Kp) # Plot Kp

11 write_projected_sensitivity_kernel( "←↩
cpacific_C201001100027A_IU_KIP_030 .00_bv")

Box 8: Setting the forward problem

Once sensitivity kernels and phase delays and data uncertainties have been
computed, a clean forward problem, considering selection criterions, needs
to be set up. This is achieved by running:

1 python sola_format_data.py

Note that for data selection the radiation patterns are required. They can be
computed in parallel with:

1 python radiat_paral.py sourcesfile 24
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Box 9: Target resolution

The radii of the target kernels are computed with:

1 python target_preproc.py

The target kernels for cells specified in the file ks are projected in parallel
with:

1 python target.py ks 24

10: Inversion and tomographic results

For some technical reasons it is necessary, to start with:

1 python sola_preproc.py

To the inversion (in parallel) run:

1 python sola_lsqr.py ks 24

The model solution and uncertainties are obtained by running:

1 python sola_postproc.py 24

Averaging kernels for cells specified in the ks file are obtained by running:

1 python sola_ak.py ks 24
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11: Plotting the solutions

Here is just a small example how to plot the results in python:

1 from user_defined_io import read_A

2

3 A = read_A( "A_36452") # Read averaging ker

4 m = np.loadtxt( "./../ solaIO/outputs/m") # read ←↩
model , sigma m

5 v, s = m[:,1], m[:,2] # extract velocities , sigma m

6 mapp = plot_map ()

7 mapp.plot_grid_depth_section( grid=grid , rad=6271, ←↩
data=A) # Plot A

8 mapp.plot_grid_depth_section( grid=grid , rad=6271, ←↩
data=v) # Plot Vsv

9 mapp.plot_grid_depth_section( grid=grid , rad=6271, ←↩
data=s) # Plot std
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6.1 General conclusion

Seismic tomography is the only tool powerful to infer informations about the
three-dimensional structure of the Earth. Tomographic models can play the role
of observations to discuss geodynamical predictions. However the seismic data
is noisy and the spatial coverage is highly uneven. As a result the tomographic
models have a complex resolution that may induce biases and artifacts and data
uncertainties propagate into model uncertainties. The model uncertainties and
resolution are required to guarantee reliable interpretations. Yet they are a rare
comodity in seismic tomography. Data fitting methods used to obtain a model
solution have great difficulties to estimate the model uncertainties and resolution.
Often they rely on crude approximations. In all cases they depend on an a priori
on the model solution and no direct control is possible.

The Backus–Gilbert-type SOLA inversion, recently introduced in seismic to-
mography by Zaroli (2016) takes the point of view of the model resolution and
uncertainties to solve the inverse problem. Though it is applicable only to linear
problems, it does not need any a priori on the model itself and it provides a direct
control on the model uncertainties and resolution. By construction it produces
the model together with its uncertainties and resolution. All these advantages
are very appealing in a region where the data coverage is highly uneven, like the
Pacific region. In my thesis the challenge was to apply the SOLA inversion in the
context of surface wave tomography to interpret the structure of the Pacific upper
mantle.

The first application was made in the framework of ray theory with a two-
step approach. In the first step path-averaged S-wave velocity versus depth pro-
files were produced by Maggi et al. (2006b). The second step was a regionaliza-
tion to produce S-wave velocity maps at discrete depths. Since the regionaliza-
tion is linear we could use the SOLA inversion. The SOLA inversion proved to
provide a strong control on the model resolution and uncertainties and we ob-
tained very consistent model solution, model uncertainties and resolution. We
proposed a workflow to analyse the tomographic model using its uncertainties
and resolution: (1) filter a reference model to the tomographic resolution, (2)
spot statistically significant anomalies regarding the model uncertainties and (3)
check the resolution to guarantee that the anomaly is resolved and that there is
no bias or artifact. Using this workflow we could argue with strong statistical
arguments that there seems to be a reliable pattern of anomalous slow and fast
velocity bands aligned approximately southeast to northwest below the Pacific
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lithosphere (∼275 km depth). Such a pattern may be related to small scale sub-
lithospheric convection cells. This study was a first step toward reliable inter-
pretations in seismic tomography. However this approach suffered from strong
limits: (1) data uncertainty estimates were poor and (2) the SOLA inversion could
only be two-dimensional (no vertical constraint).

The second application was made in the more elaborate framework of finite
frequency theory based on the Born approximation. In this context we could in-
vert phase delay data into a three-dimensional S-wave velocity model in one sin-
gle linear step using the SOLA inversion. We designed a measurement workflow
to obtain the phase delay data and we proposed an approach to estimate data
uncertainties that accounts for the source and measurement errors. Since the use
of the SOLA inversion for surface wave tomography in a fully three-dimensional
framework is completely new, we applied this tomographic process in a synthetic
case where the ‘true’ Earth is a known input three-dimensional model. The re-
sults showed that SOLA is powerful to produce a three-dimensional picture of
the Earth interior in surface wave tomography. We showed that the knowledge
of the model uncertainties and resolution provided by the SOLA inversion can
be powerful to make robust interpretations of the model solution (quantifying
for example horizontal smearing or depth leaking). The results of this study are
very promising but it requires some more work to be fully reliable. It should be
soon applied with real data to produce a three-dimensional SOLA model of the
Pacific upper mantle that could be analyzed using the interpretation workflow
that we proposed in Latallerie et al. (2022).

6.2 Perspectives

I believe that my thesis tackles some of the main challenges in seismic tomogra-
phy. In the context of surface wave tomography we removed the need for an a
priori constraint on the model solution, made possible to control and produce the
model uncertainties and resolution. We found a way for more robust analysis of
tomographic models with an interpretation workflow that accounts for the model
uncertainties and resolution. We made these advances tractable in a fully three-
dimensional framework using finite frequency theory. However these progresses
can be improved further and new opportunities are opened.
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6.2.1 Improving the finite frequency surface wave SOLA approach

The application of the SOLA inversion in a fully three-dimensional framework in
this study can be further improved. The measurement process accounts only for
the fundamental modes. Yet we showed that to highlight deeper in the mantle it
is necessary to account for overtones. The measurement should be extended to
higher modes soon to really take advantage of the three-dimensional framework.

In the application of SOLA with ray theory the data uncertainties were esti-
mated by multiple sampling. The estimation of the data uncertainties was a little
further improved in the application of SOLA with finite frequency theory. It was
not based on the dataset itself but on an estimation of the measurement errors
with the multitaper technique and source error propagation by a technique close
to Monte Carlo methods. However this estimation was still very rough. The esti-
mation of the data uncertainties should be taken more seriously. The influence of
each parameter should be investigated more closely. Other source of uncertainty
such as the parameterization or the crustal correction should be accounted for.
The correlations between the various error components should be evaluated. At
present, the estimation of the data uncertainties remains a challenging but crucial
task.

In this study we have restricted the measurement on the vertically polarized
Rayleigh wave to obtain phase delays. It would be interesting to extend the mea-
surement to horizontal components, to consider also Love waves or to measure
other kind of observables (e.g. polarization angle, amplitude). This would pro-
vide additional data. These new data could also be used to constrain other type
of model parameters such as the P-wave velocity, the density, the attenuation or
the anisotropy. The sensitivity kernels have been derived for all such kind of ob-
servables or data (e.g. Zhou, Dahlen & Nolet, 2004; Zhou, 2009b; Zhou, 2009a).
Comparing models of various parameters can provide more information about
the Earth interior than considering the models separately. However comparing
models with complex resolution and uncertainties can be a tricky task, especially
when these quantities are unkown. Here the SOLA inversion could be highly
beneficial.

Recently Zaroli (2019) introduced a continuous version of the SOLA inversion
in seismic tomography. Adapting the continuous formulation of the SOLA inver-
sion in surface wave tomography could contribute to reduce the bad effects of the
parameterization.
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6.2.2 Toward joint inversion with body waves

Surface wave physics is inherently two dimensional. This characteristic has led to
the two-step approaches in surface wave tomography that do not produce a real
three-dimensional model but a set of two-dimensional maps at discrete depths.
On the contrary body wave physics is three-dimensional by nature. This dis-
crepancy made difficult the combination of these two very different kind of data.
However this barrier has been removed with finite frequency theory that makes
surface wave tomography a fully three-dimensional problem. For example, us-
ing finite frequency theory, Tian et al. (2011) combined SH, SS and Love waves
to produce S-wave velocity models of the North American mantle with a data
fitting inversion.

The combination of surface wave and body wave data has a major advan-
tage: surface waves are mostly sensitive in the upper mantle and body waves
are mostly sensitive in the lower mantle but both have a sensitivity that rapidly
decreases at the transition zone (440 km - 660 km); combining surface and body
wave data may shed light on the transition zone. It is quite clear that the Clapey-
ron slope at 410 km depth would favor the passage of rising plumes and sinking
slabs but it is not clear for the 660 km discontinuity. Combining surface wave
and body wave data could help to discuss such a question. Using the SOLA in-
version, we could assess how much the combination of surface and body wave
data improves the resolution in the transition zone.

6.2.3 Near future

I will pursue my investigations as a postdoctoral research associate at the Oxford
university within the Mantle Circulation Constrained (MC2) project. The project
aims to understand the nature and evolution of upwellings in the Earth’s man-
tle. My role will be to produce tomographic models that can be used to test
geodynamical predictions. This position is a great opportunity to address the
perspectives with the SOLA surface wave tomography, to produce real models
and make robust assesments of geodynamical predictions using the knowledge
of the model uncertainties and resolution. Since this project is mainly centered
on oceanic regions, I may have the opportunity to image, and argue, for example
about plume-like upwelling structures using the SOLA surface wave tomogra-
phy that I developed during my thesis.
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Appendix A

Response to a seismic source

In this appendix I present some general objects and their properties that are useful
to describe the seismic wavefield. Most of this appendix is a synthetis of develop-
ments found in Nolet (2008). First I introduce the Green tensor as the response to
an instantaneous point source and I show that the wavefield produced by a more
complex source function naturally derives from the Green tensor. Second I show
that the response to an earthquake source, that is a moment tensor, also derives
naturally from the Green tensor.

A.1 From instantaneous point source to finite source

function

An instantaneous point source is a force that acts on an infinitesimal surface dur-
ing an infinitesimal time. Mathematically it is a Dirac distribution (see Figure A.1
top). It is usually easier to find the response of a system to such a simple force
rather than to a complex source function. Here I show that the full response to a
finite source function (Figure A.1 bottom) is obtained easily from the response to
a point source using the linearity of the wave equation and the sampling property
of the Dirac distribution.

By definition, the Green tensor is the response of a system to a point source.
The (i,j) component of the Green tensor is the response of the system in the i-th
direction to the point force in the j-th direction. Using the L operator for the wave
equation, the Green tensor observed at x for a point source at x′ satisfies,

LG(x, x′) = Iδ(x− x′). (A.1)

Let f (x) be a finite source function, and let u(x) be the wavefield produced by
such a source. Then,

Lu(x) = f (x). (A.2)
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FIGURE A.1: Top: Illustration of a point source at x′ as a Dirac dis-
tribution. An instantaneous point source is a force that acts on an
infinitesimal surface with an infinitesimal duration. Bottom: A fi-
nite source function. A finite source function can be expressed as a

sum of Dirac distributions.

Usgin the sampling property of the Dirac function we can write the source func-
tion as a superposition of Dirac functions:

f (x) =
∫∫∫

⊕
δ(x− x′)I · f (x′)d3x′ (A.3)

Replacing in A.2,

Lu(x) =
∫∫∫

⊕
δ(x− x′)I · f (x′)d3x′ (A.4)

Using the definition for the Green tensor (equation A.1) we have,

Lu(x) =
∫∫∫

⊕
LG(x, x′) · f (x′)d3x′ (A.5)

Since the equation of motion is linear, it does not depend on the integration so
that it cancels out on both sides of the equation and we finally have,

u(x) =
∫∫∫

⊕
G(x, x′) · f (x′)d3x′ (A.6)

This equation shows that having the response to a point source, the full response
to a more complicated source function is obtained by multipliyng the response
by the source function and integrating everywhere (note that the same principle
applies for the time component). In other words, the response to a finite source
function is the superposition of the responses of each of its fundamental compo-
nents. This result is useful to derive the response to a seismic source in a radial
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FIGURE A.2: Illustration of the earthquake source. A couple of
forces (assumed equal in norm and opposed in directions) act on
both side of the fault plane. A perpendicular couple of forces ap-

pears in reaction.

model of the Earth but also to derive the response in a laterally heterogeneous
system where we integrate the seismic wavefields continuously produced by lat-
eral heterogeneities.

A.2 From single force to double couple

For an earthquake source the system of forces is conveniently expressed in terms
of the moment tensor. An illustration of the earthquake source is given on fig-
ure A.2. Everywhere along the fault, on each side of the fault, moving blocks
apply forces in opposite directions. In response, pushed or pulled blocks apply
forces in the other perpendicular directions. Let f (x′) be the force on one side of
the fault. We may assume some symmetry so that on the other side of the fault,
at x′ + dx′ the force is f (x′ + dx′) = − f (x′).

Therefore, using the property of the Green function, the response to both
forces is,

u(x)

= G(x, x′) · f (x′) + G(x, x′ + dx′) · f (x′ + dx′)

= G(x, x′) · f (x′)−G(x, x′ + dx′) · f (x′)

= (G(x, x′)−G(x, x′ + dx′)) · f (x′)

= ∇x′G(x, x′) · dx′ · f (x′)

(A.7)

where the gradient of the Green tensor with respect to the source location is a
three-order tensor defined as (∇x′G(x, x′))ijk = ∂x′k

G(x, x′k)ij. We define the mo-
ment tensor as Mjk = dx′k f j. Finally the wavefield can be expressed as a function
of the gradient of the Green tensor and the moment tensor:

u = M : ∇x′G(x, x′) (A.8)
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where we use the Gibbs notation such that: ui = ∑j ∑k Mjk[∇x′G(x, x′)]ijk. Con-
sidering the time coordinate for the source, we have the following general for-
mula in the frequency domain:

u = −iωM : ∇x′G(x, x′) (A.9)

The response to a full moment tensor is the convolution of the moment tensor
with the derivative of the response to a single point source.



181

Appendix B

Data uncertainties

TABLE B.1: Statistics of the uncertainties from the multitaper tech-
nique. Minimum, maximum, mean and standard deviation are in

radians.

frequency [mHz] number minimum maximum mean standard deviation
10 3503 0.013 2.981 0.401 0.452
20 6835 0.008 9.29 1.225 1.194
30 7162 0.013 12.46 1.976 1.947
40 6685 0.019 19.22 2.811 2.558
50 6877 0.029 21.862 3.485 2.807

TABLE B.2: Minimum, maximum and mean value of the errors for
each source parameter investigated for the set of 576 sources consid-

ered in this study. Zeroes are ignored.

parameter minimum maximum mean
latitude (deg) 0.01 0.05 0.0128

longitude (deg) 0.01 0.05 0.0115
depth (m) 100 3100 316

centroid time (s) 0.1 0.70 0.113
Mrr (N.m) 5e15 2.54e19 1.47e17
Mtt (N.m) 4e15 1.23e19 0.90e17

Mpp (N.m) 4e15 1.56e19 1.05e17
Mrt (N.m) 6e15 2.96e19 3.40e17
Mrp (N.m) 6e15 2.37e19 3.30e17
Mtp (N.m) 4e15 6.00e19 0.61e17
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TABLE B.3: Mean phase delay uncertainties for 29 randomly se-
lected source-receiver pairs.

10mHz 20mHz 30mHz 40mHz 50mHz
latitude 1.25e-02 2.51e-02 3.78e-02 5.09e-02 6.47a-02

longitude 1.24e-02 2.47e-02 3.72e-02 5.00e-02 6.35e-02
depth 9.57e-19 2.87e-18 9.57e-19 9.57e-18 1.34e-17
time 6.27e-04 9.92e-04 1.26e-03 1.50e-03 1.77e-03
mrr 7.52e-04 5.97e-04 4.64e-04 4.18e-04 4.68e-04
mtt 9.32e-04 6.94e-04 7.57e-04 7.81e-04 8.71e-04

mpp 9.32e-04 6.94e-04 7.57e-04 7.81e-04 8.71e-04
mrt 3.39e-03 3.94e-03 3.96e-03 4.35e-03 5.21e-03
mrp 3.69e-03 4.63e-03 4.97e-03 5.53e-03 6.26e-03
mtp 8.26e-04 7.40e-04 6.66e-04 6.63e-04 7.98e-04

TABLE B.4: Maximum phase delay uncertainties for 29 randomly
selected source-receiver pairs.

10mHz 20mHz 30mHz 40mHz 50mHz
latitude 2.50e-02 5.01e-02 7.55e-02 1.02e-01 1.29e-01

longitude 2.05e-02 4.09e-02 6.16e-02 8.28e-02 1.05e-01
depth 2.23e-02 2.79e-02 3.71e-02 5.90e-02 8.25e-02
time 1.39e-17 2.78e-17 2.78e-17 1.11e-16 1.11e-16
mrr 2.54e-03 3.26e-03 3.49e-03 3.58e-03 3.94e-03
mtt 4.90e-03 3.66e-03 3.40e-03 1.77e-03 1.51e-03

mpp 3.51e-03 3.51e-03 2.76e-03 2.57e-03 4.62e-03
mrt 1.82e-02 2.32e-02 2.57e-02 2.94e-02 2.71e-02
mrp 1.58e-02 2.43e-02 2.01e-02 2.42e-02 2.87e-02
mtp 2.96e-03 3.36e-03 2.25e-03 2.51e-03 4.44e-03
sum 1.16e-01 1.80e-01 2.32e-01 3.07e-01 3.86e-01

TABLE B.5: Standard deviation of phase delay uncertainties for 29
randomly selected source-receiver pairs.

10mHz 20mHz 30mHz 40mHz 50mHz
latitude 6.36e-03 1.28e-02 1.93e-02 2.59e-02 3.30e-02

longitude 4.89e-03 9.77e-03 1.47e-02 1.98e-02 2.51e-02
depth 5.08e-03 7.88e-03 1.00e-02 1.39e-02 2.24e-02
time 3.52e-18 8.45e-18 5.06e-18 2.55e-17 2.79e-17
mrr 6.53e-04 9.33e-04 9.35e-04 9.46e-04 1.08e-03
mtt 1.02e-03 8.90e-04 6.33e-04 4.21e-04 4.37e-04

mpp 9.49e-04 8.12e-04 7.23e-04 7.58e-04 9.80e-04
mrt 4.52e-03 5.35e-03 4.92e-03 5.53e-03 5.59e-03
mrp 3.92e-03 5.12e-03 4.99e-03 5.40e-03 6.17e-03
mtp 8.34e-04 9.36e-04 5.87e-04 5.87e-04 8.80e-04
sum 2.82e-02 4.45e-02 5.68e-02 7.33e-02 9.55e-02
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Appendix C

Numerical considerations

The tomographic study of chapter 5 requires successive tasks that may be com-
putationally expensive. In table C.1 I summarize the main computational costs
in term of memory usage (RAM) and computing time. These are given for the
specific example of chapter 5 but they may change for example because of the
gridding size, the number of data, the size of the target kernels.

This example is given for 20 stations and 571 sources leading to 20x571=11420
source-receiver pairs. The computation of the synthetic waveforms thus takes
11420 pairs x 2.2 sCPU/pair = 25124 sCPU (7hCPU) and the measurement takes
11420 pairs x 50 sCPU/pair = 571000 sCPU (159 hCPU). For one pair 5 frequen-
cies are considered leading to 5 data/pair x 11420 pairs = 57100 data. Thus the
computation of the sensitivity kernels takes 57100 data x 76 sCPU/data = 4339600
sCPU (1205 hCPU). Finally computing the data and sensitivity kernels takes ap-
proximately 1371 hours CPU time. In fact I run the code in parallel on nodes
with 24 CPUs and I use 20 nodes, one for each station. Therefore setting up the
forward problem takes approximately 3 hours in user time (instead of 57 days).

Say we decide to solve the inverse problem for 67104 cells. It takes 67104 cells
x 7 sCPU/cell = 469728 s (130 hCPU) to project the target kernels, 67104 cell x
25 sCPU/cell = 1677600 s (466 hCPU) to compute the generalized inverse, 67104
cells x 0.6 sCPU/cell = 40262 sCPU (11 hCPU) to compute the model solution
and model uncertainties and 67104 cells x 1.6 sCPU = 107366 sCPU (29 hCPU)
to compute the averaging kernels. Finally solving the inverse problem takes ap-
proximately 636 hCPU. In fact I run the code in parallel on nodes with 24 CPUs
and I use 8 nodes, one for each depth of the grid. Therfore it takes 3h20min to
solve the inverse problem (instead of 26 days).

That the longest tasks are embarassingly parallel is a great advantage and
allows to scale the problem up with more source-receiver pairs and more accu-
rate gridding. However care must be taken on the RAM usage, especially in
the inversion part. In this example 25997 data are considered (that passed se-
lection criterion) and the grid has 194400 cells. Therefore the sensitivity matrix
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TABLE C.1: Summary of the main computational costs. The first col-
umn is the python script to be run. The second colum is the RAM
usage. Some scripts require to load once the G and/or Q matri-
ces while others, that use several CPUs in parallel require to load
the matrices for each CPU leading to high RAM usage. The third
column is the computation time. Values in sCPU/pair indicate the
time to do the task for one source-receiver pair on one CPU. Values
in sCPU/cell indicate the time to do the task for one cell of the grid
on one CPU. Values in seconds indicate the global time to run the

script. The last colum is the time to load matrices in RAM.

task RAM computing time loading time
radiat.py 0.4 sCPU/source

syn_paral.py 50 sCPU/pair
measurement_MT_paral.py 50 sCPU/pair

ker_paral.py 76 sCPU/data
sola_format_data.py G (3.9Go) 2300 s

target_preproc.py G (3.9Go) 88 s
target.py 7 sCPU/cell

sola_preproc.py G+Q (4+9)Go 880 s
sola_lsqr.py Q/CPU (9Go/CPU) 25 sCPU/cell 75s

sola_postproc.py 0.6 sCPU/cell
sola_ak.py G/CPU (4Go/CPU) 1.6 sCPU/cell 93s

has dimensions 25997x194400. It is highly sparse so that we end up with only
108532480 elements to store. On disk it takes 2.6Go. More importantly, on RAM
it takes 3.9Go. Therefore, to use 24 CPUs at the same time to compute the aver-
aging kernels one needs a node with at least 93.6Go of RAM. Solving the inverse
problem requires another matrix Q that is less sparse than G. Folowing Zaroli
(2016) the sparsity of Q can optimized by setting the first row of G as the sparsest
one. Doing so, in this case study, the Q matrix takes 3Go on disk but on RAM it
takes 9Go. Therefore, if one wants to solve the inverse problem with 24 CPU, one
needs a node with 216Go of RAM.



185

Appendix D

Source/receiver parameters and
models

D.1 Source/receiver parameters

TABLE D.1: Table of parameters for the sources used in the text.

GCMT id time (UTC) latitude longitude depth (km) Mwc (N.m)
C201308301625B 2013/08/28 16:25:09.5 -175.12 51.44 26.7 6.97
C201403152351A 2014/03/15 23:51:34.5 -81.1 -5.65 32.5 6.28
C201308301625B 2013/08/30 16:25:09.5 51.44 184.88 26.7 6.97
C201103220718A 2011/03/22 07:18:51.5 37.11 144.00 12.3 6.41
C201111111041A 2011/11/11 10:41:42.9 -55.72 235.43 20.9 6.02
C201310251710A 2013/10/25 17:10:25.3 37.17 144.66 14.9 7.14

TABLE D.2: Table of parameters for the stations used in the text.

network station id latitude (N) longitude (E) elevation (m)
IU LVC -22.61 -68.91 2930
IU PTCN -25.07 -130.1 220
IU RAO -29.25 -177.93 60
IU KIP 21.42 201.99 77

D.2 Models
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FIGURE D.1: Reference model used to compute the normal-mode
solutions. Left: S (green) and P(blue) wave velocity for vertical
(continuous) and horizontal (dashed) polarizations. Right: Density
(gray), shear (green) and compressional (blue) attenuations. For dis-
play purposes the shear attenuation has been multiplied by 10 and
compressional attenuation has been divided by 10. This model was
part of the MINEOS package and represents a point in central Pa-
cific. It is therefore well adapted for the study of the Pacific in this

thesis.
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FIGURE D.2: Same as figure D.1 but close-up in the upper-mantle.
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