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Mon problème,  

avec les classements,  

c’est qu’ils ne durent pas ;  

à peine ai-je fini de mettre de l’ordre 

 que cet ordre est déjà caduc. 

Comme tout le monde,  

je suppose,  

je suis pris parfois de frénésie de rangement ;  

l’abondance des choses à ranger,  

la quasi-impossibilité de les distribuer  

selon des critères vraiment satisfaisants  

font que je n’en viens jamais à bout,  

que je m’arrête à des rangements provisoires et flous, 

à peine plus efficace que l’anarchie initiale. 

In Penser/classer, Georges Perec, 1985 
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SYNTHESE 
 

Introduction 
 

Une classification est une organisation de concepts en groupes, selon un objectif donné, 

d’après des critères définis. Il s’agit de trouver un compromis entre l’hétérogène et 

l’homogène, de telle sorte que les classes, comme produits de classifications, regroupent des 

entités selon leurs points communs et se distinguent selon leurs différences. L’exercice de 

classification dépend ainsi fortement de la population étudiée et du niveau de résolution des 

variables utilisées. Ce qui nous pousse vers cet effort est la prise de conscience d’une 

complexité qui nécessite, pour être appréhendée, d’être simplifiée. Cette prise de conscience 

est la souvent la conséquence de l’utilisation de nouvelles approches ou d’outils, qui 

apportent leurs points de vue originaux (Figure 2). Les classifications étaient initialement 

d’avantage basées sur l’intuition et la croyance, comme l’illustre la Doctrine des signatures qui 

estimait la fonction d’un végétal selon des critères anthropomorphiques. Elles devinrent plus 

méthodiques avec l’arrivée de la Systématique, ou science de classer, théorisée par Carl Linée 

(1701–1777) puis Georges Cuvier (1769–1832). Les rapports entre classes sont alors régentés 

par des liens hiérarchiques, d’inclusion et d’exclusion, leur permettant de définir précisément 

le Vivant. C’est enfin Emil Hans Willi Hennig (1913–1976), un biologiste allemand qui 

modernisa ces approches en y apportant d’avantage de rigueur. Il introduisit en particulier, le 

principe de parcimonie qui place la relation la plus directe comme la plus vraisemblable, 

favorisant ainsi la généralisation et la reproductibilité. Les classifications en Biologie comparée 

cherchent à établir un lien entre les espèces, et illustrent bien le phénomène1. Elles ont évolué 

parallèlement à celles de techniques d’observation et méthode d’organisation. Initialement, 

les liens de proximité entre les espèces étaient déterminés sur critères anatomiques, puis 

embryologiques, et enfin génétiques sous la forme des arbres phylogénétiques que l’on utilise 

encore (Figure 5).  

Tout comme en biologie, la médecine a été le terrain de nombreuses classifications. La 

première classification des maladies humaines remonte à Hippocrate (-460– -377) et Galien 

(129-201). Ils ont supposé que la physiologie et la pathologie humaine dépendaient de 

l’équilibre de quatre humeurs : le sang, la lymphe, les biles noire et jaune (Figure 6). Cette 

Théorie des humeurs permettait de donner une explication mécanistique des maladies (défaut 
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ou excès de l’humeur) ainsi qu’une orientation thérapeutique (e.g. saignée, purgatif). Ces 

interprétations ont fait référence jusqu’à la fin du Moyen-Âge et c’est avec l’arrivée de 

sciences descriptives comme l’anatomie et la physiologie que les maladies humaines ont 

commencé à être définies comme nous les concevons actuellement. L’Organisation Mondiale 

de la Santé actualise régulièrement son International statistical Classification of Diseases and 

related health problems (ICD : actuellement dans sa onzième version)2. Ce support offre une 

vue exhaustive des troubles de la santé humaine, classée par organes atteints, mécanismes 

impliqués, et caractérisés selon des variables cliniques, biologiques et radiologiques. Il permet 

de situer les pathologies, les unes par rapports aux autres, et est particulièrement utilisé pour 

le codage administratif des diagnostiques. Par contre, il n’a pas la nuance suffisante pour être 

utilisé dans la prise en charge des malades, où les tableaux cliniques ne répondent que 

partiellement aux définitions. Cela ouvre plusieurs réflexions comme celle de l’objectif de la 

classification (diagnostique, pronostique, prédictif) et de la nécessité de combiner les 

variables pour augmenter la précision du classement. L’intégration de multiples natures de 

données fait partie du raisonnement médical. Pour obtenir un diagnostic, choisir un 

traitement, prévoir une évolution, le médecin prend en compte des informations provenant 

de son interrogatoire, son examen clinique, des imageries, tests sanguins et urinaires. Nous 

sommes entrés dans l’ère des données omiques, dite de haut débit, et l’enjeu de 

classifications futures est de réussir à intégrer ces données complexes à nos critères habituels 

pour améliorer la compréhension des maladies humaines3. 

L’évolution des classifications des cancers du sein est un modèle à suivre. Il s’agit d’une 

maladie fréquente est grave parmi les plus étudiée au monde. Elle a depuis longtemps été le 

terrain de découverte de biomarqueurs et d’innovation thérapeutiques ciblées. C’est un 

chirurgien britannique, Georges Beatson (1849–1933), qui a démontré le rôle des hormones 

sexuelles dans la carcinogenèse en induisant la fonte tumorale après un ovariectomie4. 

L’hormonothérapie a depuis été proposée aux malades dont les tumeurs sur expriment les 

récepteurs de le oestrogènes (ER+) ou de la progesterone (PR+)5. Les classes de tumeurs 

ER/PR+ et ER/PR- constituent ainsi deux maladies distinctes, avec un traitement, et un 

pronostic qui leur est propre. Par la suite, le marqueur tumoral HER2 a permis de caractériser 

une nouvelle classe de cancer du sein avec la possibilité d’un traitement ciblé6. Ces différents 

marqueurs de biologies moléculaires sont encore, en combinaison avec la classification TNM, 

les variables utilisées en routine pour la prise en charge des malades. Plus récemment, a été 
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proposée une classification transcriptomique avec des classes de cancer du sein aux 

pronostics distincts (Figure 7)7,8. Ces approches ont permis d’orienter la recherche sur de 

nouvelles thérapeutiques9 et d’élaborer des signatures génétiques permettant d’orienter la 

prise en charge en pratique courante10,11.  

La dermatite atopique (DA) est une maladie inflammatoire cutanée fréquente (Figure 8) 

caractérisée par des poussées d’eczéma (Figure 9) et de prurit12–14. Elle est marquée par une 

forte hétérogénéité tant sur les plans de l’âge de survenue, de l’intensité des symptômes, des 

comorbidités, et des thérapeutiques15–18. Dans ce travail, nous avons émis l’hypothèse que les 

différences interindividuelles entre les patients atteintes de DA pouvaient être le reflet de 

différents mécanismes moléculaires identifiables sur le transcriptome cutané. La 

physiopathologie de la DA est complexe, elle implique l’interaction entre le monde extérieur 

et son exposome19 (Figure 10), le monde intérieur et les équilibres immunologiques20,21, 

neuro-métaboliques qui y résident, en passant par l’interface cutanée superficielle, garante 

de l’homéostasie22 (Figure 11).  La DA s’intègre dans l’atopie, soit la tendance d’origine 

familiale, à l’hypersensibilité en réponse à une exposition antigénique, s’associant 

fréquemment à l’asthme, la rhinoconjonctivite allergique et les allergies alimentaires23,24. 

Ainsi la DA constitue la facette cutanée de cette maladie systémique qu’est l’atopie (Figure 

12). Mais la DA semble d’avantage complexe que son nom le laisse paraître. Après avoir de 

nombreuses fois changé de noms (Table 1), l’usage veut qu’on la nomme « atopique ». Alors 

que toutes les DA ne sont pas IgE médiées, il serait d’avantage correcte de faire référence à 

l’eczéma atopique et non-atopique25. La DA pourrait d’avantage être considérée comme un 

syndrome avec une physiopathologie commune, à laquelle s’ajouterai des mécanismes 

spécifiques de chaque endotypes (Figure 11). La nécessité de classer la DA et ses sous-entités 

s’est avérée nécessaire. La première catégorisation prenait en compte le taux d’IgE circulantes 

et les allergies associées définissant la DA intrinsèque (non allergique à IgE normales) et 

extrinsèque26,27.  Seulement, cette dichotomie révélait peu les différences interindividuelles 

et n’aidait pas à la prise en charge des malades. Depuis, différents endotypes de DA ont été 

définis en fonction de l’âge de survenue, de l’origine ethnique, ou encore du mode évolutif 

révélant des mécanismes sous-jacents spécifiques. Ainsi, la DA du sujet asiatique semble 

d’avantage liée une polarisation Th17, ce qui suggère un possible rôle bénéfique des anti-

Th1728 chez ces malades, pourtant réservés au psoriasis (Figure 14). Le recours aux données 

omiques devrait permettre d’aller plus en profondeur dans la compréhension de 
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l’hétérogénéité de la DA (i.e. au sein de l’AD du patient asiatique). Les premières 

thérapeutiques ciblées, le Dupilumab (anti-IL4ra)29 et Baricitinib (anti JAK1-2)30, montrent des 

résultats encourageants, mais persistent respectivement 31-52% et 50-65% de non-

répondeurs. A mesure que les pistes thérapeutiques s’élargissent (Table 2), il est de plus en 

plus nécessaire d’identifier les biomarqueurs permettant d’orienter le choix du traitement. 

Pour cela, plusieurs méthodes s’offrent à nous. « Celui qui ne sais pas ce qu’il cherche ne 

comprendra pas ce qu’il trouve » disait Claude Bernard (1813–1878). A l’opposé, appréhender 

la question de la classification avec le moins d’a priori possible amène à des découvertes plus 

originales et inattendues.  Ces méthodes supervisées et non supervisées peuvent s’opposer 

comme se compléter. Elles permettent d’exploiter pleinement les données omiques 

complexes. L’approche supervisée se base sur des annotations cliniques ou biologiques, 

sélectionnées selon une hypothèse médiée par la connaissance. Elle constitue l’approche 

privilégiée dans la DA car nécessite de plus faibles effectifs. C’est le cas des signatures 

transcriptomiques MADAD31 et 89ADGES32 qui permettent de classer les patients AD par 

opposition à des sujets sains ou atteints d’autres dermatoses. La supervision peut aussi porter 

sur les gènes, ainsi Thijs and Bakker et al33,34 ont élaborée une méthode mixte avec une 

sélection restreinte de biomarqueurs, suivie d’une classification non supervisée. Jusqu’à 

présent, une approche purement non supervisée : du choix des variables, au clustering, 

n’existe pas encore. C’est ce que nous avons voulu développer dans la première partie de ce 

travail qui visera à définir des classes de malades selon leurs mécanismes communs. Le 

deuxième projet, au contraire, consistera en une approche supervisée sur un symptôme 

complexe. En effet, il se concentrera sur l’identification d’une signature moléculaire 

minimaliste permettant de classer les patients selon l’intensité de leur prurit. 

 

Résultats  
 

Présentation de la cohorte 
 

En tant que membre du Consortium Microbes in Allergy and Autoimmunity Related to 

the Skin (MAARS), nous avons eu accès à ses données cliniques, transcriptomiques, génétiques 

et métagénomiques. Ce projet financé par l’Union Européen, pour 7,8 millions d’euros, entre 

2011 et 2015, est à ce jour le plus grand jeu de données complexes concernant l’AD, le 
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psoriasis, et des sujets sains. Il n’a à ce jour, fait l’objet que de deux publications35,36. Nous 

avons décidé de nous concentrer sur la question de l’hétérogénéité de la DA, et n’avons donc 

pas utilisé la cohorte de psoriasis. Les patients atteints de DA répondaient aux critères de 

Hanifin et Rajkan37, ne présentaient pas de comorbidité auto-immune et n’avaient pas reçus 

récemment de traitement locaux ou systémiques. Les contrôles ne présentaient pas 

d’antécédent de dermatose inflammatoire. Tous ont été biopsiés en deux sites (lésionnels et 

non-lésionnels pour les DA) pour les analyses transcriptomiques (Affymetrix GeneChip Whole 

Transcript Expression Array®) et métagénomiques, et de nombreux critères cliniques, dont 

l’activité de la maladie, ont été recueillis (Annexe 1). Les données omiques ont été générées 

de manière centralisée, selon un protocole standardisé pour éviter les biais techniques. Une 

phase importante d’exploration des données cliniques a permis de caractériser les 

populations (Table 3), de sélectionner seulement les gènes codants (Figure 5) et d’affiner les 

questions de recherches. 

 

Projet 1 : Identification de nouveaux endotypes de DA à partir de données 
transcriptomiques 
 

Attention : le numéro des figures fait référence à celui de l’article (partie Results). 

 
L’apport des données omiques a permis de caractériser plus profondément les 

mécanismes de la DA. Pourtant, il n’existe pas encore de classification purement non 

supervisée de la DA à partir de transcriptome de peau. Pour répondre à cette question, nous 

avons utilisé les biopsies cutanées faites en peau lésée de 82 patients atteints de DA et de 117 

sujets sains. Nous avons pris en compte les différences qui peuvent exister entre situations 

physiologiques en sélectionnant les gènes selon leurs variances. Les gènes hyper-variants 

spécifiques de la DA avaient une variance > 0.5 et étaient > 2 fois la variance en situation 

physiologique (Figure 1b). Ces 222 gènes avaient des fonctions intéressantes, proches de la 

physiopathologie de la DA : différenciation kératinocytaires, activité des métalloprotéases et 

de multiples voies immunologiques (Figure 1c). Nous avons utilisé ces gènes pour classer les 

échantillons de malades selon différentes méthodes de clustering non supervisées et avec 

nombre optimal de clusters. Nous avons choisi la méthode des k-means, qui divisait les 

échantillons en quatre groupes (Figure 2b), et montrait les meilleurs scores de Dunn, Rand et 
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Jaccard reflet de la robustesse du clustering (Supplementary 4). L’interprétation des 

différences cliniques et biologiques entre les groupes (Figure 2c) selon les tests de Kruskal-

Wallis et Fisher révélaient qu’ils différaient en termes de sévérité de la DA (p=0,003) et 

d’importance de colonisation à Staphylococcus Aureus (SA), (p = 0,004). De manière à 

identifier les gènes qui était les plus importants dans le clustering nous avons effectué une 

analyse différentielle d’expression (t test, p<0,05) entre les clusters (Figure 3b). Nous avons 

regroupé les gènes caractéristiques d’un groupe (Supplementary 6) en 3 métagènes (Figure 

3c) qui se sont révélés avoir des fonctions biologiques intéressantes (Figure 3d).  En effet, le 

métagènes 1 (MG I), 19 gènes, caractéristique du cluster 1, était composé de cytokines de la 

famille de l’IL-1, comme IL-36A et IL-36G) ainsi que de gènes de destruction tissulaire. MG II, 

23 gènes, caractéristique du cluster 2 avaient une activité immunorégulatrice négative avec 

les cytokines IL-34 et IL-37 ainsi que de reconstruction cutanée (FLG2, LOR). MG III, 

caractéristique du cluster 4 était composé entièrement de gènes de l’immunité lymphocytaire 

B. Le cluster 3 était quant à lui caractérisé par une expression moyenne de tous les métagènes. 

En comparant la corrélation entre l’expression des métagènes et les paramètres cliniques 

d’intérêt nous avons retrouvé que le l’expression du MG I, pro-inflammatoire, était fortement 

corrélé avec le SCORAD (R=0.48, p=4.7e-06) et la colonisation à SA (R=0.45, p=3.1e-05), alors 

que le MG II, anti-inflammatoire, leur était inversement corrélé (respectivement R=-0.88, 

p=3.5e-06 and R=-0.46, p=1.8e-05). Enfin, nous avons pu valider ces observations sur une 

cohorte indépendante que nous avons sélectionnée car il s’agissait de la deuxième plus 

importante (après la nôtre), utilisant la même technologie et avec des informations sur le 

SCORAD pour chaque échantillon38. 

Dans cette première partie, nous avons élaboré une classification de la DA en utilisant 

au maximum la structure des données, sans prendre en compte les informations cliniques et 

biologiques avant l’étape d’interprétation. La sélection de gènes a été élaborée de manière 

logique, à partir de la variance des gènes en situation physiologique et pathologique, ce qui 

nous a été permis par l’importance de la cohorte de contrôle. Ainsi, l’équilibre entre les 

métagènes pro-inflammatoires destructeurs de l’architecture cutanée, et anti-inflammatoires 

reconstructeurs est un phénomène jusqu’ici jamais reporté qui pourrait aider à mieux 

comprendre cette pathologie complexe et orienter la thérapeutique. 
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Projet 2: Élaboration d’une signature transcriptomique du prurit dans la 
dermatite atopique, en combinant les modèles statistiques et d’apprentissage 
machine. 
 

Attention : le numéro des figures fait référence à celui de l’article (partie Results). 

 
Le prurit, est la sensation désagréable qui mène au grattage. C’est un symptôme 

central dans la physiopathologie et le retentissement de la DA39–41. Ses mécanismes sont 

complexes et partiellement compris rendant son traitement compliqué42,43 (Supplementary 

1c). Nous avons posé l’hypothèse que les données transcriptomiques étaient par leur 

importante précision, à même d’aider à la compréhension du prurit. Ainsi, nous avons utilisé 

les transcriptomes des 82 biopsies cutanées pratiquées en zone lésées chez les patients 

atteints de DA, et le score visuel analogique (1-10, médian = 7), côté pour tous les patients 

(Figure 1). Dans un premier temps nous avons utilisé des modèles statistiques comme 

l’analyse différentielle, ou les corrélations de Spearman et Pearson (Figure 2). La comparaison 

avec un méthode mixte, alliant statistique et apprentissage machine, comme le sparse PLS44, 

a pointé la nécessité de réduire préalablement la dimensionnalité pour obtenir la puissance 

nécessaire (Figure 3). Ainsi, en collaboration avec une équipe de Mine Paris Tech, nous avons 

utilisé un modèle combinant les outils statistiques et d’apprentissage machine45,46 capable à 

la fois de réduire le nombre de gènes tout en optimisant la prédiction du prurit. Nous avons 

défini deux classes de prurit (bas  < 7, haut ≥ 7) et la cohorte a été divisée en cohorte 

d’entrainement et de test (80%-20%). La sélection de variables a été effectuée sur la cohorte 

d’entrainement en combinant plusieurs techniques : l’arbre de décision, la machine a vecteur 

de support linéaire, XGBoosting, AdaBoost, et Lasso. Ces classifieurs ont été entrainés et 

validés pour distinguer les classes de prurit. Parallèlement, nous avons utilisé des modèles 

statistiques comme l’information mutuelle, le Chi2, et le modèle de régression linéaire 

univariée. Les gènes ont été ordonner selon l’importance que leurs donnaient chaque 

technique et nous avons retenu ceux qui avait été retenus le plus souvent (>40%). La signature 

minimaliste finale a été ensuite obtenue par l’ablation des gènes dont l’exclusion ne modifiait 

pas la précision de la prédiction (Figure 4). Sept gènes faisaient partie de la signature finale : 

Heme Oxygenase 1 (HMOX1), Calcium/Calmodulin Dependent Serine Protein Kinase (CASK), 



 20 

Vestigial Like Family Member 2 (VGLL2), Mannosidase Alpha Class 2A Member 1 (MAN2A1), 

un ARN non-codant (GPRC5D-AS1) et deux nouveaux transcrits (AC113382.1 and AL031123.1). 

Les classes étaient prédites sur la cohorte de test avec une balanced accuracy = 0.77, une 

précision = 0.86, une sensibilité = 0.67, et une spécificité = 0.88. Nous n’avons pas pu valider 

notre signature sur une cohorte externe indépendante car quelques gènes n’étaient pas 

communs aux différentes technologies. Par contre nous avons pu valider la robustesse de la 

méthode, en groupant deux cohortes indépendantes incluant n=70 biopsies de peaux lésées 

de patients avec DA. Une nouvelle signature a pu être élaborée avec des performances 

comparables (balanced accuracy = 0.90, une précision = 0.90, une sensibilité = 1,00, et une 

spécificité = 0,80), mais sans gêne en commun avec la précédente (Figure 5). Par contre, 

l’interprétation fonctionnelle de deux signatures a révélé des fonctions communes. 

A ce jour, ce travail est le premier à utiliser une combinaison de modèle statistiques et 

d’apprentissage machine pour mieux comprendre le prurit dans la dermatite atopique. Il 

permet d’extraire les gènes les plus importants dans la prédiction, mais rend difficile 

l’interprétation fonctionnelle du fait de leur faible nombre. La reproductibilité de nos résultats 

n’a pas été vérifiée, mais l’utilisation de la même méthode sur une cohorte indépendante a 

montré des résultats très encourageants. Cela peut être dû à plusieurs facteurs comme les 

différences de recrutements, de localisation anatomique des biopsies, la différence de 

technologies utilisées entre les cohortes ou encore la difficulté d’évaluer par ce simple score, 

un symptôme aussi subjectif et multifactoriel qu’est le prurit (Supplementary 2). Les gènes 

sélectionnés ne faisaient pas partie de la physiopathologie connue de la DA. Au contraire, ils 

laissent entrevoir des perspectives nouvelles, en particulier via des thérapeutiques ciblées sur 

le trafic intracellulaire de vésicules.  
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Discussions et perspectives 
 

Au-delà des discussions relatives aux résultats des projets, nous avons voulu 

développer trois axes de réflexions soulevés par cette thèse et relativement aux difficultés: 1) 

l’élaborer une classification, 2) d’utiliser de données déjà publiées, et 3) d’appliquer au lit du 

malade les découvertes basées sur des données complexes. 

Qu’est ce qui fait une classification, comment est-elle construite et mise en pratique ? 

Dans le domaine des maladies humaine, les classifications actuelles tendent à corréler des 

données observées avec des états pathologiques pour définir des symptômes, puis des 

syndromes caractérisant un diagnostic. Les données omiques peinent encore à être intégrées 

à la clinique et la biologie standard due à l’évolution des techniques, les disparités de qualité, 

et la difficulté à les générer. Classer revient à simplifier un tableau complexe en concepts 

intelligibles. Ce principe de parcimonie, qui structure le rationalisme occidental, nous permet 

de réduire la quantité d’informations et de définir les classes (i.e. un diagnostic). Mais, alors 

que les données omiques nous informent sur de multiples mécanismes à la fois, cette 

simplification peut paraitre simpliste. La biologie des systèmes modélise les maladies comme 

des réseaux d’interactions complexes entre différentes states d’informations (cliniques, 

génétiques, environnementales…). Elle annonce ainsi comment seront classer les maladies 

quand nous seront capable d’intégrer toutes ces données. Une des difficultés rencontrées est 

la validation des classifications basées sur des données omiques. Le coût des technologies 

restreint souvent le nombre d’échantillons, alors que la quantité d’information par échantillon 

est importante. Cela implique de trouver un compromis entre la puissance statistique (donc 

l’atténuation du bruit de fond) et la résolution biologique. L’idéal est de pouvoir vérifier ses 

découvertes sur une cohorte indépendante et prospective utilisant une technologie similaire 

qui puisse être comparer avec une technologie de référence (e.g. in silico confirmée in situ). 

Le renouvellement des classifications passera par une sensibilisation des différentes 

communautés qui sont impliqué. Cela devra commencer par le choix d’une sémantique 

commune. En effet, la terminologie peut sembler floue aux non-initiés (e.g. predire en 

apprentissage machine n’a pas de valeur prospective, et se rapproche d’estimer) . Ces 

ambiguïtés sont en parties lié à la richesse des initiatives et un défaut de consensus entre les 

multiples disciplines impliquées. 
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La Science ouverte (open Science) désigne le cercle vertueux de la recherche basée sur 

le partage des données scientifiques. Ce projet en est un exemple. En effet, la cohorte MAARS 

a été constitué dans le courant des années 2010 pour aboutir, à ce jour, à deux 

publications35,36. Ces données, qui ont coutées environ 7 millions d’euros, sont devenues 

publiques, mais restent encore sous-exploitées. Selon les principes FAIR (Findable, Accessible, 

Interoperale and Reusable)47, les informations utilisées dans un projets doivent être partagées 

à la communauté à leur publication. Toutefois, la réalité ne suit pas encore la théorie, et il est 

parfois difficile d’avoir accès à certains types de données publiées. Dans le domaine de la DA, 

une signature diagnostique a pu être développée31 en utilisant la base de données GEO48. 

Certains disciplines ont créé des bases de données consultables et utilisables par tous, comme 

en vaccinologie49, ou en biologie forestière50. Cette pratique montre toutefois certaines 

limites. L’utilisation de données dont on ne connait pas exactement les circonstances de 

génération peut entrainer des biais importants. Ce fut le cas dans notre deuxième projet où, 

les disparités de recrutement et de technologie, même minimes, ne nous ont pas permis de 

valider nos résultats. L’on doit trouver un équilibre entre la réutilisation de données existantes 

et la génération de nouvelles données pour ne pas que cette pratique freine l’innovation. Mais 

étant donné que le volume d’information biologique ne fait que croitre, ce n’est pour l’instant 

pas d’actualité. 

Comment faire en sorte que les données complexes puissent être utiles aux malades. 

De nombreuses découvertes ont été faite grâce à l’apport des données génomiques. Pour ce 

qui est de la DA, l’étude du génome de milliers de patients a mis en évidence le rôle important 

du gène (FLG) de la filagrine dans le mécanisme de la maladie, définissant ainsi une classe de 

malade plus précoce, plus graves et plus chronique. Toutefois, le génotypage FLG n’est pas 

fait en routine et son résultat ne modifie pas la prise en charge du malade. L’identification de 

groupes, au sein d’un même diagnostique devrait avoir un impact sur le malade, mais c’est 

rarement le cas en général, et n’existe pas dans la DA. A ce jour, le cancer du sein est la seule 

maladie où, dans certains pays, une signature transcriptomique est proposée pour orienter le 

traitement11. Il est possible que la grande diversité de nature d’informations nuise à leurs 

interprétations et que de nouvelles approches d’analyse soient nécessaires pour aider à leur 

interprétation. L’apport de l’intelligence artificielle, pour l’instant inutilisée en pratique 

courante de soins, devrait à terme débloquer cette situation. Cela impliquera de dépasser le 

choc des cultures entre les disciplines. En effet, médecins et biologistes nécessitent de 
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comprendre pour apprécier leur décision alors que le choix opéré par l’intelligence artificielle 

peut parâtre obscure. Ces nouvelles approches peinent encore à s’imposer et à montrer leur 

supériorité face aux modèles statistiques sur lesquels notre médecine moderne est fondée51. 

De plus, un certain nombre des membres de la communauté médicale devra être initié à ces 

techniques, permettant de garder un regard critique et de participer à des recherches dans le 

domaine. En parallèle, les data scientists devront faire preuve de curiosité sur la discipline et 

discuter constamment avec les biologistes et médecins pour aboutir à un outil proche de la 

réalité du terrain. Dans tous les cas, pour favoriser l’applicabilité du modèle, le choix final 

devra rester entre les mains de l’expert. 

 

Cette thèse, nous l’espérons, semble présenter de multiples perspectives. Elle 

regroupe deux travaux qui ont permis de mieux comprendre les mécanismes de la DA et de 

son prurit à l’échelle de l’individus. Ces méthodes pourraient être utilisées dans la partie non 

exploité de la cohorte concernant le psoriasis, ainsi que dans d’autres maladies complexes. A 

titre personnel, elle m’a permis d’appréhender une nouvelle discipline, celle de la Science des 

données, et de la mêler à mes connaissances médicales. J’espère avoir ainsi acquis un regard 

neuf et élargi qui me sera utile dans mes projets et ma pratique future. 
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Classifying: an evolving definition of a moving concept applied to the Living 

and other fields 

 

What is classifying? 
 

A compromise between finding differences and commonalities 

 

Classifying is interpreting data, whatever their nature may be, in order to simplify apparent 

complexity but without denying it. If we focus on extreme situations: at the lowest degree of 

resolution, everything seems homogeneous. People belong to a unique category: human 

beings. On the other side, if we zoom to the maximum, every person is singular and represents 

a full-fledged category. Strictly speaking, these two examples are not classification. To build a 

classification is to find a compromise between the observation scale and the desired level of 

information. 

Classifications produce classes regrouping samples with commonalities related to an 

addressed question. It may refer to the origin, the present, or the future of the studied object. 

Thus, classifying implies defining: a non-too-homogeneous-non-too-heterogeneous 

population of samples, a scale of observation, one or several classification criteria, and a 

question. As in all Science, completeness is an illusion, and the ambition of the classification 

work must be balanced by the fact that we only ever classify samples, and current 

classifications are meant to be redefined by future ones. 

 

Description vs applicability: do classifications have to be useful? 

 

Guillaume Lecointre (1964-), a French zoologist and systematician (i.e. Science 

classification specialist) speaks about classification this way:  

“Classifying is clustering objects in an ensemble. This ensemble is an argued 

concept containing objects with common properties. […] Classification tells 

something about the world while determination tree purpose is to be 

practical. […] It creates concepts, that do not have to be practical. […] But it 

could be simplified for a pedagogical reason.”(ref Lecointre ENS) 



 26 

He thus opposes the purely descriptive approach, whose aim is to bring out concepts, to the 

finalist approach, whose aim is to answer a practical question. In other words, he announces 

the duality between unsupervised and supervised strategies that will frame our problematic. 

In human biology, and especially in the human diseases field, a choice should be made 

between discovering original concepts with an unbiased method and addressing pragmatic 

questions related to patient care issues. What is sure is that the perspective of improving 

patient management should not be forgotten. 

 

A universal need for classifying 

 

Is there any field that does not have classification needs? Is organizing knowledge through 

hierarchized concepts inherent to the way we think?  It appears that none makes an exception. 

Whether it is willfully or not, our reasoning is based on concepts organized together, 

sometimes exclusively, sometimes not. And the manner we place the objects depends on the 

question’s angle of attack. 

An illustrative example of infinite and moving classification concerns musical genres. As 

musical genres influence each other, we can study their historical and geographical relations. 

Musical notation begun during the 14th century BC in Middle East and adopted progressively 

its contemporary form with the musical partition since Middle Ages. It has allowed bypassing 

classical evolutionary thinking, as written music have influenced the music of other places and 

times. And this is even more true with music recording and the possibility for musicians to 

travel along each with their own musical universe. Thus, many musical genres result from the 

evolution of others, but external influence can disrupt the chronological relationships. As an 

example, jazz music derived from blues, that derived from Afro-American Black slaves’ music, 

that derives from traditional African music. But Afro-Caribbean jazz was born when Cuban 

percussionists arrived in the United States of America to play with jazz bands (Figure 1). 
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Figure 1 How music travels: a geographical classification of musical genres. Arrows symbolize the influences and evolutions 

of musical genres on each other. 

 

Jazz music could have been also sub-classified according to the instrument types (e.g. with 

or without piano), the amplification method (e.g. acoustic, amplified), or the number of 

musicians (e.g. solo, trio, big band). Possibilities are infinite, especially since the criteria can 

be combined. The musical industry recent needs for automatic music recognition promotes 

artificial intelligence approaches. Nowadays, machine learning and deep learning can identify 

the precise musical genre and even the name of the piece without using previous criteria but 

dissecting the physical music structure (e.g. timbral texture, rhythmic, pitch)52. 

 

Why do we classify and for what purpose? 
 

Originally: when light reveals an intriguing complexity 

 

It is legitimate to question the beginning of our classification needs. It may be the 

consequence of a revelation: the one of heterogeneity. As soon as Humans took heed of the 

diversity surrounding them, as soon the classification need began. It started with the 

observation and description of the Living, and it became progressively enriched by new lights 
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on previously shaded areas. In biology, classifications evolved with technologies and each new 

tool brings its share of fresh data (Figure 2). 

 

Figure 2 Increasing level of resolution brings forth complexity and provokes the need to classify. Anatomical drawing of a 

nautilus, a microscope, and an lllumina® sequencer illustrate the evolution of technology to describe the Living. This 

highlighted complexity gives rise to questioning. 

 

An illustrative example is Comparative biology (Figure 5) which we will see more in detail 

later. This science uses natural variations and disparities to understand the patterns of life. It 

hypothesizes that conservation among species greatly assists the detection and 

characterization of functional elements, whereas inter-species differences are probably the 

best indicators of biological adaptation1. Its classification has been updated progressively with 

new tools and disciplines such as Descriptive Anatomy, Embryology, and more recently 

Genetics showing that new classifications can both reinforce and contradict old ones. 

  

Aim: highlighting and simplifying diversity 

 

It appears that being aware of the complexity of your environment bring to the need for 

its simplification. Our way of thinking forces us, unconsciously or actively, to define classes to 

organize our knowledge. Data are grouped into understandable and named concepts. 

Regardless of the scale, the simplification work begins with a selection of relevant features 

called dimensionality reduction. Selected features should be strongly informative. The 

ultimate goal is answering one or several specific questions from a certain attack angle (e.g. 
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Ordering the emergence of animal species in the course of evolution through the description 

of their embryogenesis or Endotyping a disease according to treatment response and 

biomarker levels). 

 

How do we classify: is it essential to have a method? 
 

A brief history of classification methods 

 

Classifications have changed with technologies but also with culture and method 

evolution. Early stages of classification should date to the Paleolithic period (1.8 million years 

ago), where the hunter-gatherer Homo erectus probably already distinguished gender and 

species. These informal classification premises had an operative role concerning necessity to 

use plants and animals according to their properties (i.e. feeding without being poisoned)53. 

The intuitive and interpretative classification approach was formalized in the Doctrine of 

signatures. It was theorized by the Greeks Pedanius Dioscorides (40 – 90 AD) and Aelius 

Galenus (129 – 201 AD). It was based on an anthropomorphic interpretation of flora so that 

plants were classified according to their resemblances with human body parts and their 

therapeutic functions for those body parts. As an example, walnuts were used for head 

ailments because of their similarities with brain morphology. 

It is still tempting to rely on intuition to simplify the complexity of the world. Regularly, we 

classify the new concepts coming to us without proper rules, by more or less passive 

aggregation to previous ones. But when it appears too confusing, an active reset is needed 

and a method should be used to hierarchize concepts afresh (Figure 2). This is how our 

Western and contemporary way of classifying developed along with Systematics classification 

during the XIIXth century. 
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Figure 3 Tiger’s position in G.Cuvier hierarchical classification of Living.  

 

Systematic classification was theorized by Carl Linnaeus (1707 – 1778) whose ambition 

was to illustrate the Creator’s map. He implemented a standard naming system, dividing the 

Living in concepts with hierarchical relationships between them. The hierarchical connections 

between the concepts were based on the Bernard de Jussieu (1699 – 1777 AD) principle of 

Character subordination so that a unique and constant feature is equal or even superior to 

inconstant ones. It was then formalized by Georges Cuvier (1769 – 1832), a French naturalist, 

who defined the different layers of Living as kingdoms, phyla, classes, orders, families, genera, 

then species (Figure 3). These rules unknowingly defined here what would be the basis of the 

hierarchical clustering method. 
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Figure 4 Haeckel's original conception of the Tree of life (1866).  

The branch junctions symbolize the common origins between the species that are regrouped in kingdoms. 

 

The formal framework defined by Systemics allowed Charles Darwin (1809–1882) to 

model his Theory of evolution. He used the shared nature of a character as a marker of 

evolution and introduced chronological relationships between species. These relationships 

are figured in a universal Tree of life (Figure 4) the ancestor of the phylogenetic tree that we 
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still widely use and can be stated as follow: relationships between concepts (e.g. species) are 

represented with two components: the branching order (illustrating group proximity) and the 

branch length (illustrating evolution course). 

“Therefore, a man should examine for himself the great piles of 

superimposed strata, and watch the rivulets bringing down mud, and the 

waves wearing away the sea-cliffs, in order to comprehend something 

about the duration of past time, the monuments of which we see all 

around us” 

Charles Darwin, The Origin of Species (1859). 

The last disruption in classification method evolution was the Systematic phylogenetic 

classification published in 1950 by Emil Hans Willi Hennig (1913–1976) a German biologist. He 

offered another version of Systematics tenets. Less mystical, his intention was not to reflect 

God’s vision, but to “classify a representative sample of life”. He was also more rigorous; he 

introduced the parsimony principle favoring the more direct relationship as the most likely. 

He aimed to gain reproducibility and reduce the possible hypothesis. As a concept derives 

from another, the first cannot help to make groups in the second. Thus, he paved the way to 

recent classification based on the computerization of high throughput data such as omics data 

(genomics, transcriptomics, etc.). 

 

The example of the classification of living organisms in light of Comparative biology 

 

The Living has always been intriguing to the eyes of Science so that classification efforts 

have been historically significant on this topic. The classification of living organisms based on 

Comparative biology is the reflection of these changes. First, it was based on anatomical 

homologies and differences. Pierre Belon (1517–1564) a French naturalist, discussed the 

comparisons between the skeleton of birds and humans. This reasoning was then adopted by 

anatomists and surgeons that enriched it with their observations and led to modern 

Comparative anatomy (Figure 5A). 

Later, Karl Ernst von Baer (1792–1876) introduced Ontogenesis to go deeper than 

anatomical description. He hypothesized that embryos start from one or a few basic forms 

that are similar in different animals, as the more general characters of a large group appear 
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earlier in the embryo than the more special characters (e.g. embryological similarities 

between lizard’s mandible and mammal’s ear) (Figure 5B). 

Recent advances in genomics have revealed even more subtle links and disparities and 

have led to a total reclassification of the Living. Principles are the same as previously except 

that gene sequences have replaced characters, defining that the less a gene is shared between 

individuals, the more recent it is (Figure 5C). 

Figure 5 Comparative biology classification has changed with technologies and disciplines evolution. A: Anatomical 

homologies between vertebrae. B: Embryological homologies between several living beings. C: Genetical proximity between 

species using Pax-like gene evolution. 

 

In this part, we have seen how the history of Science has shaped classification 

methodology toward systematism and thoroughness carried by the Classification of the Living 

and the Theory of evolution. It leads us to a clearer definition of what classification is. It 

answers a specific question (e.g. relationships between living beings), with one or several 

types of data (e.g. anatomical data), to define classes (e.g. species). We will see afterward that 

this frame is common to human disease classification issues and that contribution of high 

throughout data will challenge the methodological reasoning introducing unsupervised 

classification to generate original hypotheses. 
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Human disease classification: a matter of era and scale 
 

Classifying is naming and defining new diseases based on common characteristics and 

mechanisms. Without being aware of it, doctors manipulate classes in patient everyday care. 

In making disease diagnosis, or predicting its evolution, they thus validate, through use, the 

existence of these concepts. But as for Living, disease classifications have moved over times. 

 

A brief history of human disease classification 
 

From Hippocrates to Galen: a certain sense of humors 

 

The first formal attempt to classify human diseases can be attributed to  

Hippocrates (-460 – -377 BC), the Greek philosopher and physician, who has founded modern 

medicine. He theorized that four humors acted as vital body fluids: blood, yellow bile, phlegm, 

and black bile (in reference to blood in internal hemorrhage). Good health was defined as a 

balance of these humors while a pathological condition could be due to excess or deficiency 

of one of them. Hippocrates classified diseases according to these variables to categorize, 

name, understand the diseases, and guide their care (e.g. bloodletting for an excess of blood 

humor). It was a diagnostic and therapeutic classification.  

Several centuries later another Greek physician, Galen (129 – 201 AD) used these humors 

to define the concepts of Temperaments, which he associated with natural elements, seasons, 

age, organs (Figure 6). 

 

Figure 6 Galen’s Humoral theory. From Strathern et al. 
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This classification of human disease using mechanisms that oriented treatment, inspired 

Avicenna (980 – 1037) to write The Canon of Medicine (1025), thus influencing Islamic 

medicine.  In Western medicine, the legacy of Hippocrates and Galen had dominated medical 

thinking until the end of the Middle Ages. In this period Andreas Vesalius (1514 – 1564), a 

Flemish physician and anatomist founded modern Anatomy while the British physician and 

physiologist William Harvey (1578 – 1657) described for the first time the cardio-vascular 

system physiology. These innovative disciplines will change radically our understanding of 

human diseases. 

 

Describe dispassionately to cluster better: the rise of modern classifications 

 

It is therefore with the arrival of disciplines based on the objectification of descriptive data 

that classifications we still use today were established. They derived from observed 

correlations between pathological states and clinical syndromes. They characterized disease, 

establishing a nosology depending on observational skills and simple laboratory tools to define 

a syndromic phenotype. Like in Systematics evolutionary classification of Living follows the 

parsimony principle in which the simplest explanation is favored over the others. The aim is 

to facilitate the applicability of classification for establishing syndromic patterns that 

streamline the number of phenotypes to consider for the clinician. As clinicians are often 

dealing with atypical situations due to variable phenotypic expression, classifications might 

suffer from a lack of specificity when challenged in real life3. 

Large classification of human diseases typically uses clinical and standard biological 

symptoms. The World Health Organization updates regularly the International Statistical 

Classification of Diseases and Related Health Problems (ICD-11) that attempts to classify 

comprehensively human diseases2. It is used to code and classify morbidity data from the 

patient records for a public health survey. On a similar scale, the American Psychiatric 

Association wrote the Diagnostic and Statistical Manual of Mental Disorders: DSM-554. It aims 

to describe psychiatric clinical symptoms in the most atheoretical way. Even if the way of 

elaborating its lists of symptoms and of weighting them in a given disease is controversial and 

arbitrary and use in daily practice is not the rule55, it remains a base for mental disorder 

training and student formation. As we will develop later, classification applications reveal their 

weakness, and lead to their loss, and finally serve the reconstruction of future ones. 
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Data integration in the pre- and post-genomic era 

 

As the nature of data is changing, so is the one of disease classification. Classifications with 

different types of data have been designed for decades. Because variables do not have the 

same importance, this could be a challenge for their normalization and weighting. That is what 

physicians do when they diagnose or predict while dealing with a variety of data. 

First example, a diagnostic classification integrating data of different natures: the 

EULAR/PRINTO/PRES classification of inflammatory vasculitis in children56. Its objective was 

to diagnose the sub-type of vasculitis (between Henoch–Schönlein purpura, childhood 

polyarteritis nodosa, childhood Wegener granulomatosis, and childhood Takayasu arteritis). 

A group of experts first defined the scope of application (i.e. context in which classification 

criteria can be applied): children with suspicion of inflammatory vasculitis. Then they selected 

the classification variables which are biologic, radiologic, and histologic. Lastly, they tested the 

statistical robustness of the classifier to select the most specific and sensitive variables for 

diagnoses. Second example, a prognosis classification that all medical students have learned: 

the clinic-biological Ranson score for acute pancreatitis evolution57. It classes patients 

according to their risk of severe pancreatitis. Although still used, it has never been validated 

on prospective independent studies. These two examples illustrate the strengths and limits of 

current classification that future ones should take into consideration. 

We are now at the beginning of a post-genomic era where molecular big data classification 

at the individual level puts us in a unique position to redefine human diseases with optimal 

accuracy, sensitivity, and specificity. The ambition is now to define precisely each patient's 

endophenotype offering the perspective of personalized diagnosis, prognosis, and 

therapeutics3. As we will see further with breast cancer, particular issues will arise notably 

dimensionality reduction, or how to deal with a huge amount of data, and biological 

interpretation, or how to apply these discoveries in real life. 
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Breast cancer as a figurehead of human disease classification 
 

Why is breast cancer classification a major concern for the past decades? 

 

Malignant diseases are heterogeneous entities, even within a specific organ. The most 

illustrative might be breast cancer. Indeed, breast cancer is a very frequent disease, with a 

disparity in terms of diagnosis of sub-types, therapeutic strategies, and prognosis58. A large 

research effort has been made in this field. In the PubMed database, more than 292,000 

publications have already been indexed on the topic, to compare with lymphoma (approx. 

256,000), prostate cancer (approx. 128,000), or colon cancer (approx. 50,000). For decades, 

breast cancer has been at the forefront of innovation in terms of biomarkers and treatment 

thus illustrate well the need for aggregating new approaches to classical ones. This leads to 

updated classifications that fit, at least partially, to old and validated ones while providing 

original information59. To clarify these evolutions that reinforce knowledge on breast cancer, 

we will detail the sequence of these discoveries. 

 

History of breast cancer classification 

 

First breast cancer classification occurred when the estrogen role was suggested in 1896 

while Georges Beatson reduced the malignancy with bilateral oophorectomies4. 

Hormonotherapy has since been studied even before the estrogen and/or progesterone 

receptors (ER/PR) could be detected in situ in approximately 70% of patients5. In 1987 Slamon 

et al. discovered a new subtype where expression of Human Epidermal Growth Factor 

Receptor-2 (HER2) was associated with prognosis6. At this point breast cancer was divided into 

three major in-situ molecular groups: ER/PR+, HER2 amplified group, and the triple-negative 

group (ER-/PR-/HER2-) with distinct presentations, evolution, and prognosis. This came as a 

complement to the clinical and radiological Tumor-Node-Metastases (TNM) classification 

whose aim is to harmonize criteria between all types of cancers. 

Omics data increased the level of resolution of disease pathophysiology but especially 

allowed to conceive it as multifactorial. Perou et al and Sorlie et al defined in 2000 and 2001 

the first transcriptomic diagnosis and prognosis classification from breast cancer biopsies 

(Figure 5)7,8. This led to various molecular clusters that partially fitted with previous in situ 
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classes60, progressively evolved to their specific sub-classes division61, and were finally 

integrated into vaster ones62. 

 

 

Figure 7 First transcriptomic classification of breast cancer. Six breast cancer classes (A) have been identified from gene 

expression array (B). This classification highlights new disease mechanisms and prognosis disparity between classes (C). From 

Sørlie et al.  

 

Biological and therapeutical impact of breast cancer classification 

 

The understanding and management of breast cancer have been revolutionized by these 

successive discoveries with a direct impact on patients. ER was at the same time an important 

pathophysiological actor and a prognosis marker. When studies of endocrine therapies were 
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analyzed, it became apparent that patients with tumors expressing ER could benefit from such 

therapy63. However, even if tumors do express ER or PR, not all women benefit from 

hormonotherapy. HER-2 amplification in tumors had a comparable value than hormonal 

receptors or TNM. Initially seen as a marker for bad prognosis, it became the marker of a good 

response to anti-HER2 therapy. The first monoclonal therapy targeting HER2 in association to 

chemotherapy began in 199864 but resulted in 40-50% of non-responder among HER2+ 

metastatic breast cancers.  

The more we know about breast cancer, the more it appears complex, and remain women 

whose disease mechanisms are still poorly understood. Omics classifications offered 

mechanistic explanations but also prognosis and therapeutic value.  As an example, poly-ADP-

ribose-polymerase-1 (PARP1) expression on basal-like breast cancer suggests possible benefit 

for PARP-1 inhibitor therapy9. Taking advantage of multiple gene expression signatures, 

MammaPrint®, contains 70 genes that are associated with outcome. Applied to women under 

sixty-one years old, with lymph node-negative breast cancer and tumors smaller than 5 cm. It 

identified women that do not need adjuvant chemotherapy despite high clinical risk and 

classifies them as low and high transcriptomic risks which represent approximately half of 

women in each class10. It was designed in 2002, validated prospectively in 201611, and it is 

beginning to be used in daily practice in the United States of America, and the United Kingdom. 

But the recognition of its benefit is not consensual so that it has not received approval for the 

French market. Despite this, Mammaprint® is one of the rare transcriptomic-based prognoses 

classifications that has a direct impact on patients. 

 

In the field of breast cancer, researchers and clinicians have been constantly striving to 

capitalize on innovation. This has made it possible to considerably increase the understanding 

of the disease and the outcome of the patients. It illustrates the fact that the more you 

understand the disease heterogeneity, the more you realize that it is broader than expected. 
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The need for classification in atopic dermatitis 
 

Generalities about atopic dermatitis 
 

Epidemiology: a worldwide frequent disease  

 

Atopic dermatitis (AD) is one of the most frequent inflammatory skin conditions. Its 

lifetime prevalence has shown a worldwide increase in the past 30 years. In developed 

countries, it seems to plateau now at 10–20%12–14 and continues to increase in many 

developing countries (Figure 8)65. 

 

 

Figure 8 AD geographical prevalence disparity. From Brunner et al (ref) 

 

Most AD begins during childhood, but persistent or adult-onset forms are not rare. In 

France, it touches 3,6% of the adult population (2.1 million) with 40 % of moderate (1 million) 

and 12.5 % of severe forms. Among them, 100 000 to 150 000 require systemic treatment and 

26 500 to 42 500 are eligible for targeted biologics30. 
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A rich semiology likely to blur the vision 

 

AD is marked by chronic and recurrent episodes of pruriginous, and erythematous 

lesions of eczema of varying severity. Non-lesional skin is not intact, often dry and sensitive14. 

Nonetheless, AD is a multifaceted disease that can appear in multiple ways and varies 

according to its lesion morphology and distribution, its age of onset (Figure 7), its course, its 

associated symptoms, and comorbidities15–17 . The bio-clinical heterogeneity of a disease can 

be hard to apprehend, while 78 clinical variables could be associated with AD depending on 

the geographical region, and the age18. In this work, we hypothesized that clinical and 

biological heterogeneity of AD could reflect different underlying mechanisms. 

 

 

Figure 9 Typical clinical appearance and localization of AD at different ages. From Weidinger et al. 
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Complex pathophysiology that combines multiple mechanisms 

 

The skin facing the external environment 

 

AD pathophysiology is complex. It includes basal mechanisms common to all AD patients, 

and individual particularities. Different layers are implicated. First, the outer world which is 

the skin exposome, that combines the sum of all external factors the skin is exposed to19, such 

as temperature, humidity, ultraviolet radiation, diet, pollution, water hardness, and 

microbiome (Figure 8). 

 

Figure 10 The skin facing the outside world.  

Adapted from Passeron et al and Stefanovic et al. Designed with Biorender® 

 

The semi-permeable barrier ensuring homeostasis between the inside and the outside 

 

Second, the interface which is the epidermis that acts as the cutaneous barrier itself. It 

plays a critical role in preventing allergen and microbial penetration into the human body, skin 

water loss, and skin homeostasis22. The filaggrin, coded by the FLG gene, is one of the most 

important proteins of the skin architecture. Mutated in 9% of European people66 it leads to an 

increased risk of developing AD of 3.12 to 4.78 for heterozygous FLG -/+ loss-of-function 

mutations67.  
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The skin micro-environment involving immunological balance and nervous system 

 

Third, the inner world which is the dermis and in particular the immune micro-

environment. AD has been typically described as a Th2 disease26, but the underlying cytokine 

networks appear more complex with the influences of  Th1, Th17, Th22, or Tfh polarization20,21 

(Figure 11). Primary immunodeficiency associated with eczema, such as STAT3, TYK2, or 

DOCK8 loss-of-function mutations reinforce the immune-mediated character of the disease68. 

This immune unbalance produces a variety of mediators that activate pruritus signal 

conduction along nerves to be interpreted by the central nervous system. 

 

Figure 11 Key pathophysiological changes in AD. From Langan et al. 

Moreover, it is the interdependencies of these 3 layers that makes the complexity of the 

disease pathophysiology. 
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Placing AD within atopy as a cutaneous facet of a systemic condition 
 

Definition of atopy 

 

Atopy is a personal or familial tendency due to polygenic predisposition, usually in 

childhood or adolescence, to become sensitized and produce IgE antibodies in response to 

ordinary exposures to allergens. As a consequence, these persons can develop asthma, 

rhinoconjunctivitis, food allergies, or atopic dermatitis69.  

 

The atopic march and the association of AD and other atopic comorbidities 

 

The sequence of these diseases forms the atopic march which illustrates the systemic 

nature of atopy where AD would be the cutaneous facet (Figure 10). Due to defective skin 

barrier function, AD is usually the first step before developing other atopic diseases. This 

defective skin barrier is thought to allow both epidermal water loss and penetration by high 

molecular weight structures such as allergens, bacteria, and viruses causing hypersensitivity 

reactions23. Cross-sectional studies  showed up to 62% of asthma and 29% of rhinitis in a Thai 

AD children cohort24. These values were completed in a longitudinal study showing that early-

onset (<2 years old) persistent eczema was associated with an increased risk of asthma (OR 

7.48), allergic rhinitis (OR 3.47), and food allergy (OR 13.4) at year 7. This strong tendency was 

not confirmed in late-onset AD, suggesting the possibility of alternative mechanisms in older 

children and adults70. 
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Figure 12 The systemic nature of AD as the dermatological manifestation of atopy. From Paller et al. 

 

AD is not only atopic, in its semantic as in its mechanisms 

 

One of the first questions that strikes the young researcher who begins to take an interest 

in AD is its name. Over time, AD has changed its name many times (Table 1). Thus, it would be 

more correct to refer to eczema to introduce the concepts of atopic and non-atopic eczema25. 

While eczema is not always associated with elevated circulating IgE, it is still customary to 

name it atopic dermatitis whether it is IgE-mediated or associated with asthma and 

rhinoconjunctivitis. Despite constant effort to define allergic disease nomenclatures, use 

prevails. Thus, in our study AD will refer both to atopic (or extrinsic AD) or non-atopic eczema 

(or  intrinsic AD).  

To a much lesser extent, AD can be associated with non-atopic comorbidities without 

knowing whether it is a cause, a consequence, or a shared mechanism. Studies have described 

a higher risk of depression and anxiety, cutaneous and extra-cutaneous infections, 

cardiovascular disease, inflammatory diseases (e.g. rheumatoid arthritis, inflammatory bowel 

disease)17,71. 
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Classification challenges in AD 
 

AD endotyping history 

 

 It is important to design well the shape of AD so that it contains entities sharing 

important common points while representing its heterogeneity. AD must follow the way of 

asthma where endotyping strategies have been applied72. Recently has been identified  

an IL-17 immunity asthma endotype that shared pathophysiological mechanism with psoriasis 

and then suggest original therapeutic approaches73. Thus, AD should be considered more as a 

syndrome with a base of mechanisms and manifestations common to all patients, and 

endophenotype specificities (Figure 11).  

 

Figure 13 Disease endophenotyping illustrates with the example of AD. A single disease is defined by shared mechanisms 

and symptoms between patients. To identity endophenotypes, patients with a similar diagnosis must be compared with each 

other. Adapted from Lotval et al. 
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AD is a moving concept that has been renamed almost twenty times in the two past 

centuries (Table 1). Likely, the constant attempts by different authors to redefine and 

reclassify AD reflect a recognition that the clinical syndrome encompasses more than one 

disease entity. Opposingly, during the same period, psoriasis has remained a well-defined, 

non-controversial diagnosis with multiple well-recognized subtypes74. 

 

The first endotyping taking into account a biological signature defines the dual extrinsic 

(with elevated IgE level and associated atopic diseases) and intrinsic AD (with normal IgE level 

and no atopic comorbidities)26,27. These two concepts are less and less used because further 

discoveries revealed their overlap and did not show a significant impact on patient 

management. But this biologically and clinically intuitive classification showed the way to 

other stratification of the AD syndrome. Recent findings in AD endophenotyping, based on 

very diverse categories such as ethnicity, age of onset, disease chronicity, have revealing their 

underlying specific mechanism (Figure 12). Thus, Asian AD phenotype can be considered as a 

predominant Th-17 disease that could eventually benefit from Th-17 targeted treatment28. As 

treatment efficiency is still debated75, ethnicity-based endotypes appear not to be the only 

contributor to individual specificities. The arrival of high throughput data allows to interpret 

more closely the complex pathophysiology of AD and to understand AD heterogeneity inside 

a specific entity (e.g. AD heterogeneity inside Asian population).  

Table 1 Different names that have been used for AD over time. 

 From Novak et al. 
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Figure 14 The multiplicity of AD endophenotypes. Clinical phenotypes are associated with immune polarization and 

epidermal barrier characterization. Pathophysiology could vary between acute or chronic status. From Czarnowicki et al. 

 

AD endotyping heralds the consideration of inter-individual specificities and personalized 

medicine 

 

Previous approaches have helped to distinguish between important entities. As an 

example, Simpson et al compared AD colonized with SA vs non-colonized with SA and 

distinguished two distinct endotypes based on clinical and biological. Studies that focus on 

deeper heterogeneity, like intra-Caucasian heterogeneity, are rarer. The more illustrative 

example is the AD endotyping by Thijs et al, which has been partially prospectively validated 

by Bakker et al33,34. In these studies, AD patients are divided into 4 classes based on a 

knowledge-driven list of 278 blood biomarkers revealing interesting associations. This could 

be the first step to identify inter-individual specificities and go beyond the one size fit all 

strategy that prevails in AD therapy.   
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In official recommendations, no biomarkers are used for treatment choice, and the only 

variables that are taken into account to guide patient care are patient age, therapeutic history, 

and disease severity76. In France, 37% of severe AD and 5,9 % of moderate AD patients have 

received systemic immunosuppressive drugs, mainly ciclosporin, in the past 12 months30. 

Among them, 13% have stopped systemic immunosuppressive therapies each year, for 

inefficiency or intolerance and will require alternative targeted therapeutics. At this step,  

31 to 52% will be non-responsive to Dupilumab (anti-IL4ra)29 and 50-65% to Baricitinib (anti-

JAK1,2)30. Understanding individual specificities is needed to guide therapeutic orientation.  

The past years have brought significant progress in the current treatment of AD in the form 

of biological treatment. Cytokines and other mediators that play an important role in the 

pathogenesis of skin inflammation have become a target for new forms of therapy77,78. 

 

 

Supervised vs unsupervised strategy 

 

“Who does not know what he is looking for, does not understand what he finds”, Claude 

Bernard (1813-1878) said. On the other way, exploration with the lesser a priori could lead to 

original discoveries. This echoes Meno’s paradox, a Socratic dialogue by Plato (428-347 BC), 

and questioned our openness to likely consider original discoveries. Our ability to discover AD 

classes could depend on a knowledge-driven hypothesis (e.g. racial or age disparities). This so-

called supervised approach is complementary to an unsupervised approach which relies on 

Table 2 Current and ongoing biologics in clinical development for atopic dermatitis. From Wu et al. 
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data structure independently to annotations and thus generates original hypothesis. Due to 

their size and high level of resolution, high throughput data can be approached in these two 

ways. 

The supervised approach needs clinical or biological annotations and knowledge expertise 

to formulate a question. Although some analysis steps can use unsupervised technics, so far, 

the AD classification effort has been mainly supervised. Using skin transcriptomic data, 

MADAD31 and 89ADGES32 allowed to classify AD patients, psoriasis patients, and healthy 

controls in their pre-definite diagnostic class. This highlighted AD mechanisms that acted as 

molecular signatures of AD, in comparison to non-AD mechanisms. It thus defined the 

common pathophysiology of AD. To zoom on AD heterogeneity, Thijs and Bakker et al followed 

a mixed approach made with a supervised step of feature selection by choosing known 

relevant blood biomarkers. Then they stratified patients with unsupervised clustering to 

identify original associations between their proteins of interest. So far, a purely data-driven 

AD classification is still lacking. 

In this work, we wanted to develop both ways of classifying. In the first part of our results, 

we designed an unsupervised analysis from the initial step of feature selection to the final 

clustering. We finally interpreted clinically and biologically the different clusters with the 

ambition to discover previously unknown mechanisms. On the other hand, in the second part 

of our results, we conducted a supervised analysis to better understand pruritus, combining 

statistical and machine learning models, thus identifying exciting novel actors of this complex 

syndrome. 
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Cohort presentation 

 

MAARS consortium 
 

As a total beginner in complex data analysis, I spent a lot of time getting to know my 

datasets at the early stages of my thesis. The aim was to identify their strengths and 

weaknesses to be able to ask a research question that they could effectively respond to. High 

throughput data generation is a long process that requires several steps that cannot be done 

by a unique actor. That is why sequential quality control is needed, preferably by technical 

experts. 

The Microbes in Allergy and Autoimmunity Related to the Skin (MAARS) project has been 

funded by the European Union to the value of 7.8 million euros between April 2011 and March 

2015. This collaborative project implied ten different clinical and research teams from seven 

distinct countries. The overall goal was to unravel the inflammatory pathways during host-

pathogen interactions which may trigger allergic or autoimmune inflammation using atopic 

dermatitis (a surrogate for allergic diseases) and psoriasis (a surrogate for autoimmune 

diseases) as disease models. To this end, multiscale characterisations have been generated 

such as clinical, metagenomic, transcriptomic, and genomic data. Quality and homogeneity 

were assessed and confirmed in a pilot study before starting the major sampling collection. 

 

So far, this effort has resulted in only two published papers: 

1) Microbe-host interplay in atopic dermatitis and psoriasis, 

Fyhrquist et al. Nature communications, Oct. 201935 

2) Microbial and transcriptional differences elucidate atopic dermatitis heterogeneity 

across skin sites, Ottman et al. Allergy Oct. 202036 

 

Here, we chose to assess an original problematic from these underused high-quality data. 

We did not consider psoriasis samples in order to focus on AD lesional skin and healthy 

controls non-lesional skin. As we were dealing with transcriptomic classification issues, we 
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only considered Staphylococcus aureus colonization, which are the main bacteria implicated 

in AD, and excluded the whole of metagenomic data. 

 

Method 

 

Methods of data generation and quality control steps are presented synthetically in results 

parts. We take the time here to develop the different aspects that may have influenced our 

questions and the ways of answering them 

 

Subject recruitment 
 

Patients were recruited in 3 European dermatological centers: London, Dusseldorf, 

Helsinki. The MAARS cohort was composed of 91 AD adult patients. The diagnosis was made 

by a dermatologist according to the Hanifin and Rajka criteria (Figure 13A)37. 

 

 

Figure 3 A: Hanifin and Rajka crieria in the original article. From Hanifin et al. 

B: SCORAD-based the severity level. Equivalence on EASI score. 
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AD patients had moderate-to-severe chronic disease with a SCORAD score greater or equal to 

2579 (Figure 13B, Annex 1). In the same 3 centers, were recruited 126 controls that did not 

have significant comorbidity or treatment. 

Exclusion criteria for the AD cohort were as followed:  

- Concomitant autoimmune disease 

- Personal or familial history of psoriasis 

- Use of the following therapeutics  

o within 2 weeks: systemic antibiotics, topical steroids on the biopsy site 

o within 12 weeks: systemic immunosuppressive drugs, systemic biologic agent, 

phototherapy 

 

Ethical aspect 
 

The study was approved by the appropriate local Institutional Review Boards (University 

of Helsinki, Dnro 91/13/03/00/2011; Heinrich Heine University Düsseldorf, 3647/2011; King’s 

College London, 11/H0802/6. All subjects provided written informed consent before 

participation. 

 

Sampling 
 

As a standardized sampling procedure was applied, skin biopsy sites were left untreated, 

and cleaned with antibacterial Dove soap for 2 weeks before. Washing was avoided for the 

last 24 hours before sampling. Active disease parts of the skin were selected for a skin swab 

and a 6 mm biopsy punch with local anesthesia. All were localized in the upper back and tight 

posterior area (areas II and III on Fig. 14A) and matched for AD lesional and healthy controls. 
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Figure 4 A : Standardized sampling procedure. B : Clinical and technical quality control steps. 

 

Biological data generation and quality control 

 

Biological data generation involved multiples standardized steps implying different 

members of the consortium. Each step had its pipeline of data generation and quality controls 

(Figure 14B), and can be divided as follow. 

 

Metagenomics were generated and analyzed following these steps 

1) DNA extraction Pathogen lysis and QIAamp UCP pathogen Mini Kit (Qiagen®) according 

to the manufacturer’s instructions.  

2) 16 rRNA gene amplification with RT-PCR GradeWater (Life technology®) 

3) The output from each sample was further processed in QIIME (Quantitative Insights 

Into Microbial Ecology) and OTU taxonomies were assigned from the Greengenes 

Database Consortium. 

Microarray transcriptional profiles were generated and pre-processed following these 

steps 

1) RNA extraction with RNeasy Fibrous Tissue Mini kit (Qiagen®) 

2) 100 ng of total RNA were amplified according to Affymetrix protocols (Affymetrix 

GeneChip Whole Transcript Expression Array®) 

3) RNA hybridization in Affymetrix Gene ST 2.1® 96 plates, after several quality control 

steps 
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§ Multichannel Nanodrop (Thermofisher®) was used to normalize RNA 

quantity 

§ QUIxcel DNA electrophoresis (Quiagen®) was used to ensure RNA quality 

§ Universal RNA and bacterial spikes were added to total RNA to check the 

quality of the hybridization procedure 

Microarrays were then normalized using the Robust Multi-Array Average (RMA) approach 

and technical batch effects were removed. 

 

Exploration of clinical data 

 

Quality control and variable preprocessing 
 

Clinical data were collected from a standard form completed by the examinator, and 

containing several dozens of close-ended questions and semi-open-ended  

questions (Annex 1). Thus, we had several clinical datasets at our disposal. One was common 

to all patients (AD and HV) and contained only 33 variables. One was only for AD patients and 

contained 296 variables, and one was only for HV and contained 166 variables. The major part 

of these variables concerned technical and identification information. It was important to 

consider them for labeling trackability but they were not clinically relevant. We then focused 

on the clinical and biological information. 

Even if the quality control step of the clinical data is less standardized than for its biological 

counterpart, it remains an important milestone. We chose not to include in our analyses the 

variables with many missing values (e.g. “AD treatment history”). When necessary, we created 

variables by combining several others (e.g. “All kinds of allergy” combined the different 

allergies-related variables for one patient). 

 
Identifying relevant variables for analysis and interpretation 
 

Prior to analysis and interpretation, it was important to identify potential bias especially 

comparing AD patients to healthy controls (Table 3) 
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Table 3 Main demographical characteristic of AD and controls. 

 

Due to the significant overrepresentation of the white skin population (> 90%), we would 

not be able to show differences due to ethnic endotypes. In like manner, our methods should 

take into account the gender disparity between AD and controls. Gender was also unbalanced 

between groups so we designed an analysis pipeline to neutralize the gender bias by excluding 

genes located on the sex chromosomes in our unsupervised feature selection process. For the 

supervised part of the classification, we chose to focus on the clinically relevant pruritus score 

because it was well annotated in the whole cohort, using a good precision score from 1 to 10.  

 

Exploration of transcriptomic data 
 

Expression values 
 

Unlike RNA sequencing, another transcriptomics technology, which yields very sparse data 

(i.e. that contains many zeros), microarray data are continuous values strictly greater than 0. 

They have been log2 normalized so that their distributions range from 0 to 13. As expected, 

expression values were distributed according to a bi-modal gaussian. The first gaussian 

distribution, on the left, was the result of background noise, while the second gaussian 

distribution represented the biological signal (Figure 15). 

 

Selection of coding genes 
 

To limit the influence of non-biologically relevant signals on our analyses we chose to 

exclude non-coding genes. To do so, we used the ExpFilter function from the EMA R package 

(version 1.4.7) and we defined a low expressed gene as being inferior to 4 in all samples. From 
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32633 probes, we obtained a 22635 coding genes matrix, corresponding approximatively to 

the order of magnitude of known biologically relevant genes in Homo sapiens. Thereafter, we 

used this smaller matrix in all our analyses (Figure 15). 

 

 

Figure 5 Gene expressions distribution before and after coding gene  filtering. 
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PART 1: Unsupervised classification 

 

What does skin transcriptome tell about AD heterogeneity? 
 

Approach rational 
 

For the first part of the thesis, we wanted to take advantage of the cohort size which is so 

far the largest skin transcriptomic cohort published for AD patients and healthy controls. It 

provided us with enough statistical power for making possible an original unsupervised 

approach. To be less influenced by clinical and biological annotations, we started from the 

formal mathematical structure of the data. Then we advanced as far as possible in the analysis, 

remaining blind to a possible biological significance. We have therefore selected our genes, 

determined the optimal number of clusters and the optimal clustering method following this 

way. In the last part of the study, we began to use the data annotation to define how our AD 

clusters differed biologically and clinically. 

 

Results announcement 
 

Our initial hypothesis was that disease heterogeneity could be revealed using the AD-

specific hyper variables genes. We designed an intuitive and logical way to select genes using 

physiological and pathological conditions. This helped us to reduce dramatically the data 

dimensionality and concentrate the biological information. We discovered four AD clusters 

that had distinct biological and clinical properties and we succeeded to validate this finding 

on an independent cohort.  
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Graphical abstract 
 

 

Figure 6 Graphical abstract of study design and results 
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Abstract 
 

Atopic dermatitis (AD) is a frequent and heterogeneous inflammatory skin disease, for 

which personalized medicine remains a challenge. High-throughput approaches have recently 

improved understanding of the complex pathophysiology of AD. However, a purely data-

driven AD classification is still lacking. To address this question, we applied an original 

unsupervised approach on the largest available AD transcriptome dataset (n=82) and healthy 

(n=213) skin samples (MAARS dataset). Taking into account pathological and physiological 

state, variance-based filtering revealed 222 AD-specific hyper-variable genes that efficiently 

classified the AD samples into 4 clinically and biologically distinct clusters. Comparison of gene 

expression between clusters identified 3 sets of upregulated genes used to derive metagenes 

(MG): MG-I (19 genes) was associated with IL-1 family signaling (including IL-36A and 36G) & 

skin remodeling, MG-II (23 genes) with negative immune regulation (including IL-34 and 37) & 

skin architecture, and MG-III (17 genes) with B lymphocyte immunity. Sample clusters differed 

in disease severity (p=0.003) and S. aureus (SA) colonization (p=0.004). Cluster 1 contained 

the most severe AD samples, highest SA colonization, and overexpressed MG-I. Cluster 2 was 

characterized by less severe AD samples, low SA colonization, and high MG-II expression. 

Cluster 3 included mild AD samples, mild SA colonization, and low expression of all MGs. 

Cluster 4 had the same clinical features as cluster 3 but had hyper-expression of MG-3. Last, 

we successfully validated our method and results in an independent cohort of samples. Our 

study revealed unrecognized AD endotypes with specific underlying biological pathways, 

which highlight novel pathophysiological mechanisms. These data provide new insights to 

establish novel personalized treatment strategies. 
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Introduction 
 

Atopic dermatitis (AD), i.e. atopic eczema, is an inflammatory skin condition characterized 

by chronic and recurrent episodes of pruriginous, and erythematous lesions of varying 

severity12.  Depending on the geographical region, AD can affect up to 20% of children and 5% 

of adults80,81. AD is clinically very heterogeneous in terms of symptoms, severity, 

comorbidities, and response to therapy. 

AD pathophysiology is multifaceted, involving several biological and organizational levels, 

such as dermo-epidermal architecture, water and lipid metabolism, and skin immunity13. 

These interact with the patient’s genetic background as well as multiple environmental factors 

like the microbiome, radiations, or allergens19. AD has been typically described as a Th2 

disease26, but the underlying cytokine networks appear more complex with inter-relationship 

of  Th1, Th17, Th22, or Tfh polarization20,21. Notably, IL-36 which is known to be involved in 

psoriasis and Th17 immunity82,83, and negative immunoregulatory IL-34 and IL-3784–86, may 

also contribute to AD pathophysiology.  

 The marked clinical and biological heterogeneity of AD has suggested the existence of 

different disease endotypes, defined as patient subtypes with shared pathobiological 

mechanisms87. Since the description of extrinsic and intrinsic AD26,27, several other 

endophenotypes have been identified, mainly based on the age of disease onset, duration of 

symptoms, and patient ethnicity28. Selected biomarkers, including serum IgE levels, blood 

eosinophils, or panels of pre-defined cytokines, have been applied to design supervised 

approaches allowing stratification of patient groups34,88 without reaching a consensus 

regarding their clinical applications and utility. 

Large-scale and omics approaches are increasingly used because they offer the possibility 

of characterizing complex diseases based on a diversity of biological variables and pathways. 

Previous AD studies have identified diagnostic molecular signatures from skin 

transcriptome31,32, and endotypes from a knowledge-driven set of blood biomarkers33,34. 

However, a purely data-driven skin transcriptomic classification of AD is still lacking. 

In this study, we sought to establish a systematic, unbiased strategy for patient 

classification and characterization of AD heterogeneity. We exploited the largest available AD 

and normal skin transcriptomic datasets, and validate our results on an independent cohort. 
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Our work provides new insights into AD heterogeneity and suggests how unprecedented 

potential strategies for personalized treatments could be designed. 

 

Material and methods 
 

Study cohort 

 

The data were obtained from the MAARS Consortium35, whose dataset is publicly available 

on the Array Express interface (E-MTAB-8149). Patient recruitment and data generation 

methodologies are comprehensively described in Fyhrquist et al publication35. Briefly, AD 

patients and healthy controls have been recruited in three European Dermatology 

departments, after provided written informed consent under institutional review board-

approved protocols. All AD patients met the Hanifin and Rajka criteria37. Sampling and data 

generation occurred between 2012 and 2013. A vast amount of clinical features was collected, 

including disease severity AD scoring (SCORAD)79 (Annex 1). A 6 mm punch biopsy was 

performed in lesional skin of AD patients and at two different sites for healthy controls. Bulk 

transcriptomic analysis was performed after mRNA extraction with Affymetrix GeneChip® 

Whole Transcript Expression Arrays. SA colonization was determined by 16s rRNA 

amplification and sequencing from a non-invasive skin swab made on the lesional skin biopsy 

site. 

 

Validation cohort 

 

To assess the reproducibility and robustness of both our unsupervised approach and the 

main findings of our study, we applied the same analysis protocol on an independent dataset. 

To reduce technological and technical biases, we sourced independent cohorts using a 

comparable transcriptomic technology and with available annotation on disease severity. 

Among the total number of pre-selected transcriptomic cohorts (n=48), only six studies met 

the above criteria (Suppl 8). We selected the largest one, with n=51 lesional skin sample, and 

whose methodology is described in Guttman et al study38. Bulk transcriptomic data were 

generated using Affymetrix Human U133Plus 2.0® gene arrays. The expression matrix was 
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downloaded through the Gene expression omnibus (GEO) interface (GSE130588) using 

GEOquery package89 (version 2.51.1). 

 

Expression array preprocessing 

 

The MAARS dataset was loaded and analyzed with R language (version 3.6.0) on the R 

Studio interface (version 1.2.1335). As an exploratory step, we projected the dataset using 

Principal Component Analysis and performed several clustering methods. We discarded the 

sample MAARS_3_070_03 as a potential mislabeled outlier. After quality control steps, 213 

samples from the 113 healthy controls were pooled with AD samples. Thus, 82 AD lesional 

and 213 healthy skin samples were used for further analyses  

 

Variance-based feature selection 

 

Expression variance was computed for each gene across AD lesional and healthy control 

samples. Subsequently, a ratio of the corresponding variance between the two populations 

(AD lesional variance / healthy controls variance) was calculated for each gene. We included 

genes that were highly variable and specific of AD lesional skin: variance >0.5 (corresponding 

approximatively to the 5th percentile of all variances), and ratio >2. We further term the 

selected genes from this step as AD-specific hyper-variable genes and use them for 

subsequent steps. 

 

Clustering method and optimal number of clusters estimation 

 

Unsupervised clustering algorithms, such as k-means, hierarchical clustering, k-Nearest 

Neighbors (k-NN) followed by Minimal Spanning Tree (MST) partitioning, were applied on the 

expression matrix, including only AD samples (n=82). The optimal number of clusters to 

consider for downstream analysis was determined by the elbow method, average silhouette 

width, and MST. To assess the clustering efficiency, we calculated the clustering purity with 

the Dunn index, Rand index, and Jaccard similarity coefficient, and chose the method which 

scored the best in the different metrics. 

 



 67 

Metagene construction 

 

Differential analysis, using Student test and Bonferroni correction, was computed 

between patient clusters to identify the set of genes characteristic of each sample group. 

Unique and upregulated genes were further pooled to construct Metagenes (MG) using 

pairwise correlation. MG expressions correspond to the expression’s mean of their respective 

genes. Clinical and biological parameters were compared using the Kruskal-Wallis test for 

continuous variables and the Fisher test for binary variables. Sample clusters were then 

characterized using the most significant features and metagene expressions. Correlation 

analyses between MG, features, and AD clusters were performed with non-parametric 

Spearman or parametric Pearson statistics, depending on the nature of the data. 

 

Functional enrichment 

 

Pathway enrichment analysis and functional annotation of the metagenes were 

performed first using g:Profiler web server (https://biit.cs.ut.ee/gprofiler/gost) with Kyoto 

Encyclopedia of Genes and Genomes database (KEGG)90 and then Cytoscape (version 3.8.0)91 

with ClueGO extension (version 2.5.6)92 using gene ontology (GO) biological process. An 

extensive manual curation of the literature through PubMed search was carried out to ensure 

a complete functional annotation of genes identified by non-supervised analysis. 

 

Statistics and data visualization 

 

Statistics were conducted with stats (version 3.6.0) package and Rquery function. Figures 

were generated with ggplot2 package (version 3.3.1). Statistical differences in clinical data 

were considered significant at an adjusted P-value of less than 0.05 (Benjamini and Hochberg 

correction). At the transcriptomic level, the adjusted P-value below 0.05 (Bonferroni 

correction) was required. For correlation analysis, r > 0.3 and p < 0.05 were considered 

significant.      
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Results 
 

Variance-based gene selection revealed pathways relevant to AD pathophysiology  

 

To identify clinically and biologically relevant AD endotypes, we exploited a large and 

multicentric transcriptomic dataset (Suppl 1a) containing 82 AD samples and 213 healthy skin 

control samples from 113 healthy volunteers35. The control cohort was composed of 69 

females and 44 males with a mean age of 35 years [min-max: 19-77]. We have chosen to keep 

all healthy samples to maximize statistical power. AD cohort contained different levels of AD 

severity since it included mild (n=6), moderate (n=39), and severe (n=37) AD, with a mean 

SCORAD of 52 [min-max: 17-89]. It included 36 females and 46 males. The mean age was 44 

years [min-max: 20-83]. A more than 90% of AD patients and controls were Caucasian. All 

patients were recruited after a therapeutic wash-out of 3 months for systemic 

immunosuppressive drugs, and 2 weeks for topical steroids. 

Transcriptomic profiles were obtained using Affymetrix protocols, which enabled the 

detection of 22,635 coding genes. We designed a feature selection strategy based on the 

premise that hyper-variable genes in AD samples would contain the most discriminatory 

information for the subsequent definition of patient clusters (Fig 1a). We applied a cut-off on 

variance values (> 0.5) to filter out low variable genes that resulted in a selection of 575 

“hyper-variable genes” (Fig 1b). Next, we considered that hyper-variable genes in both AD and 

healthy states could represent physiologically hyper-variable genes. Such genes would also 

vary across healthy skin and their corresponding ratio (Variance in AD/ Variance in controls) 

would oscillate around 1, such as gender-related genes. Hence, we applied an additional filter 

based on a variance ratio >2, to select highly variable genes solely in the AD state, that would 

represent “AD-specific hyper-variable genes”. As expected, XIST and DGAT2L6, which are 

involved in gender representation, are two of the most variable genes in AD lesional and 

control skin with respective variances of 11.6 vs 11.3, and 7.2 vs 6.7. Genes not associated 

with sex chromosomes may also vary among healthy skin samples for physiological reasons. 

This was the case for KRTAP4-12 and PM20D1 with respective variances of 5.4 vs 8.6, and 6.7 

vs 6.6. We reasoned that such genes would not inform on the disease-specific variability that 

should form the basis for characterizing putative AD clusters. Overall, the application of these 
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two filters on the initial dataset identified 222 AD-specific hyper-variable genes (Fig 1b, Suppl 

2). 

We exploited several databases such as the GO biological process (Fig 1c) and the KEGG 

pathways (Suppl 1b) for functional interpretation and biological relevance of these 222 genes. 

AD-specific hyper-variable genes were enriched in functions such as “keratinocyte 

differentiation”, “type-I interferon signaling pathways”, “lymphocyte-mediated immunity” 

(Fig 1c). Most of these pathways were consistent with previously described mechanisms of AD 

onset and development, confirming that the selected genes were representative of AD 

pathophysiology. This was a first step that revealed the biological relevance of the AD-specific 

hyper-variable genes.  

 

AD-specific hyper-variable genes identify AD clusters with distinct clinical features 

 

The 222 AD-specific hyper-variable genes were used to cluster the AD samples (Fig 2a). 

First, we estimated the optimal number of clusters and performed clustering through different 

methods such as the elbow method coupled with k-means (Fig 2b), MST partitioning coupled 

with k-NN (Suppl 3a), and the average silhouette width coupled with hierarchical clustering 

(Suppl 3b-c). All approaches indicated four clusters. We compared the different clustering 

methods based on the intra-cluster metric Dunn index, and the inter-cluster metrics Rand 

index and Jaccard similarity coefficient. We selected k-means clustering because of its highest 

score in all metrics (Suppl 4). k-means clustering classified samples in four AD clusters of n=12, 

23, 29, and 18 samples, respectively. Multidimensional scaling (MDS) showed the embedding 

of previously defined clusters (Fig 2b). 

Second, we asked whether clinical, biological, bacteriological, or genetic features were 

different between those four AD clusters (Fig 2c). We found that the SCORAD79 and the 16s 

rRNA quantification of skin SA colonization differed in at least one cluster compared to the 

others (p=0.003, and p=0.004, respectively) (Suppl 5a). Other variables, such as association 

with other allergic diseases (p=0.85), gender (p=0.80), pediatric age at disease onset (p=0.20), 

age (p=0.98) and raised IgE levels (p=0.56) (Fig 2c, Suppl 5b) did not show significant variation 

among clusters. 
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Construction of metagenes and identification of their specific biological functions 

 

Considering the 222 AD-specific hyper-variable genes, and the 4 AD clusters, we sought to 

identify the genes with the best ability to discriminate between clusters (Fig 3a). 

We performed a sequential differential expression analysis of one AD cluster versus all the 

others. It revealed 3 sets of genes since one cluster did not contain any specific gene (Suppl 

6a). In total, 62 differentially expressed genes were either up- or down-regulated, and some 

were shared between several gene sets (Fig 3b). To get the strongest positive signal, we 

considered only the 59 unique and upregulated genes. We then carried out a correlation 

analysis, and grouped genes that had the same behavior into metagenes (Fig 3c). We thereby 

defined three metagenes: MG-I, MG-II, and MG-III containing respectively 19, 23, and 17 

genes (Suppl 6b).  

Next, we wanted to functionally characterize those three metagenes. GO biological 

process analysis showed enrichment in keratinization and innate immune pathways for MG-I, 

complement activation, and humoral response for MG-III. Probably due to the low number of 

genes and their apparent heterogeneity, functional enrichment analysis did not identify a 

significant association for MG-II. Hence, we turned to manual curation and functional 

annotation through an extensive PubMed search for each gene in each metagene (Fig 3d). 

This approach revealed more specific information about each gene and allowed grouping 

genes into relevant biological families. MG-I had a strong enrichment in IL-1 family signaling 

(DEFB4A, IL36A, IL36G, PI3, PLA2G4D, S100A7A, S100A12), and epidermal proliferation and 

differentiation (EPGN, KRT6A, KRT6C, AKR1B10, SPRR2B). MG-II was enriched in negative 

immune regulation (CLEC2A (=PILAR), IL34, IL37, SLC46A2), skin architecture (FLG2, LOR, 

OGN), and epidermal homeostasis (BTC, GJB4, GSTA3, KRT77, UGT3A2). Finally, MG-III was 

entirely composed of B lymphocyte immunity-related genes (IGLs, IGHs, IGKs). In total, we 

could characterize the predominant molecular functions of the 59 most important genes in 

our AD clusters. 

 

Multilayer characterization of AD clusters 

 

We compared the metagene expression distribution across AD clusters (Fig 3b, Suppl 7). 

Hyper-expression of MG-I was associated with AD cluster 1 (p=6.0e-14), MG-II with AD cluster 
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2 (p=1.4e-11), and MG-III with AD cluster 4 (p=1.2e-08). AD cluster 3 was the only one with a 

mild expression of all metagenes. Differential expression analysis between metagenes 

confirmed that they could act as discriminating variables allowing the classification of AD 

samples and characterization of AD clusters at the biological level. 

Then we analyzed the correlation of metagene expression levels with the clinical and 

biological features that differed between groups (Fig 4a). This revealed a positive correlation 

of MG-I with the SCORAD (R=0.48, p=4.7e-06), and with SA colonization (R=0.45, p=3.1e-05), 

and a strong inverse-correlation between MG-II and those 2 parameters (R=-0.88, p=3.5e-06 

and R=-0.46, p=1.8e-05, respectively). In contrast, MG-III was not correlated with any of these 

parameters (Fig 4b). In conclusion, the expression level of IL-1 family signaling & skin 

remodeling MG-I was associated with greater clinical severity and SA colonization, whereas 

the Negative immune regulation & skin architecture MG-II was associated with milder forms 

of the disease.  

 

Validation on an independent cohort 

 

We set out to validate the main results of this study, which is the contrasting association 

of the IL-1 family signaling & skin remodeling MG-I, and the Negative immune regulation and 

skin architecture MG-II with disease severity. To do so, we screened independent datasets 

from Affymetrix® microarray AD skin studies that included annotations about disease severity. 

Six cohorts with 12 to 51 lesional AD skin samples met these criteria in the GEO database 

(Suppl 8). We selected the largest dataset38 containing 51 mild-to-severe adult Caucasian AD 

samples.  We used our reference AD-specific hyper-variable genes (Suppl 2) with the same 

analysis pipeline by clustering the patient samples in four groups using the k-means method. 

We then built metagenes with the same genes as in our study (Suppl 6b) to compare the 

metagene expression and the AD severity among clusters (Fig 4c).  

SCORAD significantly differed between AD clusters (p = 0,04), as well as for the 3 metagene 

expressions (with respectively p = 5.9e-06, 1.1e-06, 0.004). As in our cohort, the most severe 

AD cluster was associated with MG-I hyper-expression, and the less severe AD cluster was 

associated with the hyper-expression of MG-II. Finally, we calculated the correlation of 

metagene expression and disease severity (Fig 4d) and confirmed the significant positive 

association of IL-1 family signaling & skin remodeling MG-I with disease severity (R=0.35, 
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p=0.013) and the significant negative association of Negative immune regulation and skin 

architecture MG-II with disease severity (R=-0.42, p=0.0019).  

This analysis, based on the largest independent dataset available, validates the existence 

of four AD clusters characterized by different disease severity and underlying mechanisms.  

 

Discussion 
 

The question of how to evaluate and interpret human disease heterogeneity? is difficult to 

assess. Since the beginning of the high-throughput data era, the duality between supervised 

and unsupervised approaches prevails. Practically, both strategies are complementary. As AD 

is a frequent and complex disease, multiple approaches to data collection and interpretation 

have been developed. Because they are less difficult to design, supervised approaches are 

mainly used. The idea is to compare different patients’ groups with pre-defined clinical or 

biological characteristics with the scope of identifying specific pathological mechanisms. Thus, 

AD disease signatures as MADAD (Meta-Analyses Derived Atopic Dermatitis)31 and 89ADGES 

(89 Atopic Dermatitis Gene Expression Signature)32, have been robustly designed comparing 

AD patients to healthy skin transcriptomes. In AD and other complex diseases, such as 

systemic lupus erythematosus, supervised approaches on disease severity score were able to 

highlight particular pathways93–95. Unsupervised approaches are more rarely used and consist 

in using data structure to generate new hypotheses independently of clinical and biological 

annotations. They require a higher number of samples compared to supervised methods to 

maximize their statistical robustness. We decided to design a purely data-driven unsupervised 

strategy using the largest AD and controls microarray cohort. Our method is novel and 

therefore able to reveal original findings. It also consolidates previous discoveries because of 

its complementarity to published studies84,96,97. 

 

Feature selection is an essential step in complex data analysis. It consists in reducing data 

dimension and complexity by removing redundant and irrelevant features to reduce noise and 

improve classification performance. Differential expression and machine learning wrapping 

are the most commonly used method in the supervised approach98. As genes with high 

expression variance could drive phenotypical diversity, we hypothesized that their study is 

important for the success of unsupervised approaches. The variance could be used directly to 
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select genes7,99 or through variance-based methods like principal component analysis 

(PCA)100. Considering that important gene expression differences have been reported 

between healthy individual101 we elaborate an original strategy of gene selection using their 

variabilities in AD versus physiological context. 

 

From the description of its extrinsic and intrinsic forms26,27, AD has been extensively sub-

divided and many endophenotypes have been identified, based on the age of disease onset, 

duration of symptoms, or patient ethnicity28. Recent studies discovered33 and validated34 

prospectively the existence of four AD endotypes using unsupervised clustering based on a 

knowledge-driven set of blood biomarkers. These are efficient strategies for endotyping 

patients using low invasive and cost-effective procedures. Our study differs from the above 

ones on two main points. First, we used skin transcriptomic data considering that the skin 

microenvironment would be the more representative of AD development mechanisms. 

Second, we did not follow preconceived ideas for selecting the genes of interest to be able to 

identify original genes and new mechanisms. 

 

While down-regulation of IL-34 and IL-37 expressions have already been described in AD 

in comparison to controls84,97, the role of IL-37 as a negative immune regulator102, especially 

in a Th2 context has just been reported85. Also, IL-34 can lead to a pro- or anti-inflammatory 

state, depending on the context86, and has been recently described as inversely-correlated 

with AD severity94. FLG2 and LOR are part of the epidermal differentiation complex, they act 

as important mediators of skin architecture. As a reflection of skin reconstruction defects, 

they are also downregulated in AD in comparison to healthy skin103. In our study, IL-34 and IL-

37 are part of MG-II that groups skin architecture genes such as FLG2, LOR, OGN, and skin 

homeostasis genes. We showed that MG-II expression is strongly inversely-correlated with AD 

severity and is the functional signature of the less severe AD endotype. This supports the 

notion that their co-expression, as anti-inflammatory and skin reconstruction signals may be 

responsible for a protective effect.  

 

The more severe SCORAD and SA colonized AD endotype was characterized by the up-

regulation of MG-I that was enriched in IL-1 family signaling, epidermal proliferation, and 

differentiation. This metagene shows a high level of overlap with the molecular signature of 
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psoriasis, in particular Th17 immunity104. Although Th17 polarization is often described as 

downregulated in AD compared with psoriasis105, it could be upregulated according to the AD 

endotype106 and participate in AD development mechanisms107. As part of Th17 polarization, 

upregulated IL-36 pathway is responsible for a mendelian monogenic psoriasis108, besides IL-

36G and IL-36A have been described as upregulated in AD96 where it seemed to play a role in 

SA induced hypersensitivity109. In contrast with MG-II, pro-inflammatory IL-1 signaling is 

grouped with genes of keratinocyte proliferation (such as KRT6A and C) and protease activity 

(such as PRSS22 and PI15) which could reveal a disorganized tissue response. Similarly to 

asthma, where a Th17 endotype has been recently described73, our findings could suggest the 

introduction of IL-17 and IL-36 blockers into the AD therapeutic arsenal, representing an 

important step towards personalized medicine. 

 

The use of patient stratification based on transcriptomic data in daily care is still very rare. 

The validation step of those data is critical and should be carried out in each study, at least on 

independent sample groups and ideally on prospective cohorts. However, prospective 

validation of a transcriptomic signature could be a long process. Breast cancer is currently the 

only situation in which a transcriptomic signature is routinely used in patient 

management10,11. In our study, we have decided to validate our main biological findings taking 

advantage of an independent dataset that was generated with a comparable transcriptomic 

technology. The questions of the method and the observation scale remain. Although RNA 

sequencing offers a better resolution than microarray, the latter is the most used in the AD 

field and remains robust for bulk transcriptomic analyses110. In addition, classification studies 

require large bulk transcriptome cohorts. Those are limited by the fact that sampling AD 

patients and control volunteers involve invasive skin biopsies that are not common practice 

in AD management, especially in children. This could be addressed by implementing recent 

non-invasive and validated methods such as skin tape strippings84,94,111. In addition to 

innovative sampling techniques, newer high-throughput approaches could allow the 

detection of gene expression with higher resolution. Indeed, the first studies using single-cell 

RNA sequencing have been recently published112–115 and have begun dissecting AD 

heterogeneity at the cellular level. 
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Perspectives 
 

Our logical and intuitive method selected biologically relevant genes from a large amount 

of data. Combined with a data-driven unsupervised classification, it enabled reproducible AD 

endotype identification. This pipeline could be applied in other complex diseases for which 

classification remains challenging. Regarding AD, endotypes were characterized by distinct 

disease severities and conflicting biological mechanisms. This could help to better understand 

AD heterogeneity as well as develop new and personalized therapeutic approaches.  
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Figures and legends 
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Figure 1: AD-specific hyper-variable genes are representative of known AD mechanisms. 

a: Workflow of feature selection and functional annotation. First, we selected only hyper-

variable genes in AD lesional skin (variance > 0.5). Second, we kept genes that were twice less 

variable in healthy skin (ratio: variance AD / Control skin > 2) (Fig 1b). From the 222 AD-specific 

hyper-variable genes, we performed several functional enrichments that highlighted known 

AD mechanisms (Fig 1c, Suppl 1b). 

b: AD-specific hyper-variable gene selection. Among AD lesional skin, n = 575 genes were 

highly variable (variance > 0.5). Among them, n = 222 were twice more variable than healthy 

skin and called AD-specific hyper-variable genes. 

c: Functional enrichment of all AD-specific hyper-variable genes with GO biological process. It 

confirmed the AD-specific hyper-variable gene’s role as representative of AD known 

pathophysiology. Network representation of significative terms (p.adj > 0.05). Nodes 

represent main GO terms. Edges symbolize interactions between nodes. 

AD: atopic dermatitis, GO: gene ontology 
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Figure 2: Unsupervised clustering of four sample clusters with distinct clinical features.  

a: Workflow of sample clustering and clinical characterization. The 222 AD-specific hyper-

variable genes have been used to cluster samples. The optimal number of clusters was 

estimated at four by all the different methods (Fig 2b and Suppl 3). The different clustering 

methods have been compared to choose the most consensual and consistent (Suppl 4).  

b: k-means clustering representation using the optimal number of clusters according to the 

elbow method. The optimal number of clusters has been evaluated to 4 by the elbow method. 

k-means clusters have been represented in the dimension reduction MDS graph. 

c: Relevant clinical variables among clusters. Variables are ordered by statistical significance. 

Kruskal Wallis test has been used for continuous, and Fisher test for Boolean variables. The 

most significant clinical parameters were: SCORAD, and SA colonization (adjusted p<0.01). All 

other variables had an adjusted p>0.05. 

AD: atopic dermatitis, MDS: multi-dimensional scale, MST: Minimal Spanning Tree, SA: 

Staphylococcus aureus, SCORAD: score AD 
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Figure 3: Metagene expression in sample clusters reveal exciting molecular and functional 

signatures. 

a: Workflow of discriminant genes selection and grouping, and functional annotation to build 

molecular signature of sample clusters. We used the four sample clusters made from the 222 

AD-specific hyper-variable genes. The second phase of gene selection was performed based 

on their differential analysis (Fig 3b).  

b: Heatmap representation of gene expression disparity among samples and clusters. Co-

expressed genes had the same behavior according to sample clusters They are surrounded by 

their specific colored boxes. 

c: Metagenes construction by correlation analysis using Pearson statistic. We select unique 

and up-regulated genes from the differential expression analysis and grouped correlated 

genes into their respective metagenes. 

d: Literature mining manually curated signature revealed interesting and defined metagenes 

functions. Genes belonging to each metagene shared common biological functions. 

Computational approaches were not suitable for this analysis due to the low number of genes 

per metagene. Thus, a manually curated approach was favored. 

AD: atopic dermatitis 
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Figure 4: Data integration for multiscale cluster characterization and external validation. 

a: Workflow of the data integration step. The different phases were independent of each 

other.  

b: Correlation between metagene expressions and clinical features using Spearman statistics. 

Significant positive correlations were shown between MG-I, SCORAD, and SA colonization. 

Opposingly, significant negative correlations were found between MG-II, SCORAD, SA 

colonization, and MG-I. No significant results were found between metagenes expression and 

raised IgE levels (binary variable) or age (continuous variable). 

c: Metagene expression and disease severity disparities among clusters in an independent 

dataset (GSE130588). AD cluster colors have been chosen relatively to their mean severity 

score. ANOVA test showed metagenes as differentially expressed between clusters. As in our 

cohort, the cluster with the more severe AD hyper-expressed MG-I, and the cluster with the 

less severe AD hyper-expressed MG-II. 

d: Correlation of metagene and disease severity in an independent dataset (GSE130588). 

Spearman statistics confirmed the positive correlation between MG-I expression and disease 

severity as well as the negative correlation between MG-II expression and disease severity. 

AD: atopic dermatitis, MG: metagene, SA: Staphylococcus aureus, SCORAD: score AD 
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Supplementary figures and legends 
 

 

Functional enrichment of all AD-specific hyper-variable genes with KEGG database

Term name Terme ID p.adj

Cytokine-cytokine receptor interaction KEGG:04060 3.4 e-9

Viral protein interaction with cytokine KEGG:04061 1.4 e-8

IL-17 signaling pathway KEGG:04657 2.8 e-4

Influenza A KEGG:05164 3.3 e-3

AGE-RAGE signalling pathway in diabetic complications KEGG:04933 3.9 e-3

Supplementary 1

AD patients Controls

Individuals (nb) 82 113

Samples (nb) 82 213

Age mean (yo) [min-max] 44 [20-83] 35 [19-77]

Gender (F/M) 36/46 44/69

Demographical data of AD and control cohort 

a

b
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Supplementary 1:  

a: Demographical data of AD and control cohort. 

b: Functional enrichment of all AD-specific hyper-variable genes 

based on the KEGG database. Statistically significant biological processes are ranked by 

adjusted p-value. 
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GeneSymbol Variance in AD Variance in controls Ratio

ENSG00000175426 PCSK1 0.695 0.022 31.2

ENSG00000197915 HRNR 1.534 0.05 30.8

ENSG00000127318 IL22 0.772 0.026 29.8

ENSG00000196611 MMP1 5.05 0.17 29.7

ENSG00000162892 IL24 0.822 0.029 27.9

ENSG00000142224 IL19 0.842 0.032 26.5

ENSG00000254651 RP11-430H10.3 0.554 0.025 22.5

ENSG00000244057 LCE3C 1.391 0.064 21.6

ENSG00000108702 CCL1 1.255 0.059 21.2

ENSG00000105641 SLC5A5 0.76 0.041 18.7

ENSG00000169429 IL8 1.201 0.071 16.8

ENSG00000006074 CCL18 1.102 0.067 16.5

ENSG00000149968 MMP3 2.109 0.134 15.7

ENSG00000211936 IGHV4-4 0.936 0.065 14.4

ENSG00000143520 FLG2 0.729 0.051 14.2

ENSG00000185962 LCE3A 2.139 0.154 13.9

ENSG00000162891 IL20 0.554 0.04 13.7

ENSG00000123496 IL13RA2 0.784 0.06 13.0

ENSG00000182585 EPGN 2.173 0.168 12.9

ENSG00000103569 AQP9 1.082 0.086 12.5

ENSG00000134028 ADAMDEC1 1.256 0.101 12.5

ENSG00000166509 CLEC3A 0.559 0.045 12.4

ENSG00000212556 Y_RNA 0.781 0.063 12.3

ENSG00000153802 TMPRSS11D 1.343 0.112 12.0

ENSG00000136694 IL36A 2.499 0.211 11.8

ENSG00000163661 PTX3 0.89 0.076 11.7

ENSG00000182566 CLEC4G 0.736 0.063 11.6

ENSG00000175592 FOSL1 1.564 0.144 10.8

ENSG00000188293 IGFL1 1.939 0.181 10.7

ENSG00000181617 FDCSP 0.606 0.057 10.6

ENSG00000236481 AC002331.1 0.51 0.048 10.6

ENSG00000158859 ADAMTS4 0.6 0.058 10.3

ENSG00000206384 COL6A6 1.181 0.115 10.3

ENSG00000203782 LOR 0.757 0.076 10.0

ENSG00000110347 MMP12 2.275 0.241 9.4

ENSG00000171889 MIR31HG 0.904 0.096 9.4

ENSG00000223872 AC006372.5 0.601 0.065 9.2

ENSG00000189433 GJB4 0.836 0.093 9.0

ENSG00000248329 RP11-366M4.3 1.114 0.126 8.8

ENSG00000198074 AKR1B10 1.277 0.145 8.8

ENSG00000162040 HS3ST6 0.706 0.081 8.7

ENSG00000204936 CD177 1.006 0.116 8.7

ENSG00000170465 KRT6C 4.139 0.484 8.6

ENSG00000102837 OLFM4 1.787 0.211 8.5

ENSG00000184330 S100A7A 3.221 0.383 8.4

ENSG00000205362 MT1A 1.137 0.136 8.4

ENSG00000105205 CLC 1.598 0.193 8.3

ENSG00000213886 UBD 1.315 0.161 8.1

ENSG00000227471 AKR1B15 0.699 0.089 7.9

ENSG00000115758 ODC1 0.584 0.076 7.7

ENSG00000166736 HTR3A 0.603 0.079 7.6

ENSG00000104368 PLAT 0.663 0.093 7.2

ENSG00000103044 HAS3 0.605 0.085 7.1

ENSG00000211966 IGHV5-51 0.997 0.143 7.0

ENSG00000163221 S100A12 2.652 0.385 6.9

ENSG00000138135 CH25H 0.743 0.108 6.9

ENSG00000163600 ICOS 0.57 0.086 6.6

ENSG00000211791 TRAV13-2 0.638 0.096 6.6

ENSG00000157368 IL34 0.543 0.082 6.6

ENSG00000243466 IGKV1-5 1.263 0.191 6.6

ENSG00000211653 IGLV1-40 1.367 0.209 6.5

ENSG00000134827 TCN1 2.844 0.44 6.5

ENSG00000163638 ADAMTS9 0.525 0.081 6.5

ENSG00000103888 KIAA1199 0.661 0.102 6.5

ENSG00000102970 CCL17 0.509 0.08 6.4

ENSG00000227300 KRT16P2 0.638 0.102 6.3

ENSG00000166869 CHP2 0.681 0.109 6.3

ENSG00000169385 RNASE2 0.681 0.109 6.3

ENSG00000188404 SELL 0.598 0.099 6.1

ENSG00000119457 SLC46A2 0.744 0.126 5.9

ENSG00000124731 TREM1 0.669 0.116 5.8

ENSG00000211598 IGKV4-1 0.565 0.098 5.8

ENSG00000226145 AC022596.6 0.876 0.153 5.7

ENSG00000171711 DEFB4A 4.897 0.867 5.7

ENSG00000131969 ABHD12B 0.755 0.134 5.6

ENSG00000119508 NR4A3 0.514 0.092 5.6

ENSG00000159337 PLA2G4D 0.679 0.122 5.6

ENSG00000137440 FGFBP1 0.755 0.136 5.5

ENSG00000169213 RAB3B 0.788 0.148 5.3

ENSG00000169248 CXCL11 1.113 0.211 5.3

ENSG00000200972 RNU5A-8P 2.442 0.47 5.2

ENSG00000094804 CDC6 0.523 0.101 5.2

ENSG00000125571 IL37 1.276 0.247 5.2

ENSG00000137648 TMPRSS4 0.8 0.159 5.0

ENSG00000211900 IGHJ6 4.605 0.979 4.7

ENSG00000189182 KRT77 0.743 0.16 4.7

ENSG00000211838 TRAJ52 0.578 0.126 4.6

ENSG00000112984 KIF20A 0.527 0.117 4.5

ENSG00000168671 UGT3A2 1.614 0.367 4.4

ENSG00000239855 IGKV1-6 1.566 0.358 4.4

ENSG00000149090 PAMR1 0.516 0.119 4.3

ENSG00000117594 HSD11B1 1.358 0.316 4.3

ENSG00000138642 HERC6 0.65 0.153 4.2

ENSG00000157601 MX1 0.669 0.159 4.2

ENSG00000126787 DLGAP5 0.56 0.133 4.2

ENSG00000172382 PRSS27 0.673 0.16 4.2

ENSG00000231475 IGHV4-31 1.065 0.257 4.2

ENSG00000177257 DEFB4B 1.41 0.341 4.1

ENSG00000187498 COL4A1 0.542 0.132 4.1

ENSG00000105664 COMP 1.706 0.418 4.1

ENSG00000137558 PI15 1.494 0.384 3.9

ENSG00000106366 SERPINE1 0.803 0.206 3.9

ENSG00000159167 STC1 0.856 0.223 3.8

ENSG00000006327 TNFRSF12A 0.7 0.183 3.8

ENSG00000236543 RP11-98L5.5 1.059 0.278 3.8

ENSG00000211753 TRBV28 0.618 0.163 3.8

ENSG00000134321 RSAD2 0.572 0.152 3.8

ENSG00000012223 LTF 2.873 0.78 3.7

ENSG00000151006 PRSS53 0.617 0.17 3.6

ENSG00000184613 NELL2 0.834 0.232 3.6

ENSG00000039987 BEST2 0.643 0.179 3.6

ENSG00000211904 IGHJ2 1.09 0.304 3.6

ENSG00000005001 PRSS22 0.512 0.143 3.6

ENSG00000187116 LILRA5 0.688 0.193 3.6

ENSG00000231331 AC103563.2 0.74 0.209 3.5

ENSG00000111335 OAS2 0.711 0.203 3.5

ENSG00000211866 TRAJ23 0.721 0.206 3.5

ENSG00000211952 IGHV4-28 0.754 0.216 3.5

ENSG00000211880 TRAJ9 0.508 0.148 3.4

ENSG00000137959 IFI44L 1.052 0.314 3.4

ENSG00000161905 ALOX15 1.047 0.314 3.3

ENSG00000152268 SPON1 0.552 0.166 3.3

ENSG00000211950 IGHV1-24 0.616 0.186 3.3

ENSG00000211956 IGHV4-34 0.683 0.207 3.3

ENSG00000166948 TGM6 0.563 0.171 3.3

ENSG00000158485 CD1B 0.923 0.282 3.3

ENSG00000184557 SOCS3 0.656 0.201 3.3

ENSG00000183813 CCR4 0.515 0.158 3.3

ENSG00000162739 SLAMF6 0.62 0.191 3.2

ENSG00000211949 IGHV3-23 0.718 0.223 3.2

ENSG00000111012 CYP27B1 0.612 0.19 3.2

ENSG00000140519 RHCG 1.252 0.389 3.2

ENSG00000041982 TNC 0.654 0.204 3.2

ENSG00000205678 TECRL 0.763 0.238 3.2

ENSG00000119125 GDA 1.207 0.377 3.2

ENSG00000162692 VCAM1 0.527 0.167 3.1

ENSG00000116031 CD207 0.63 0.2 3.1

ENSG00000136688 IL36G 0.73 0.232 3.1

ENSG00000211875 TRAJ14 0.542 0.173 3.1

ENSG00000205364 MT1M 0.581 0.186 3.1

ENSG00000211853 TRAJ36 0.539 0.175 3.1

ENSG00000240382 IGKV1-17 1.761 0.574 3.1

ENSG00000241244 IGKV1D-16 0.546 0.179 3.0

Supplementary 2
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ENSG00000239951 IGKV3-20 0.922 0.305 3.0

ENSG00000117228 GBP1 0.524 0.173 3.0

ENSG00000211945 IGHV1-18 0.838 0.279 3.0

ENSG00000102962 CCL22 0.961 0.32 3.0

ENSG00000174502 SLC26A9 0.74 0.248 3.0

ENSG00000007908 SELE 1.278 0.429 3.0

ENSG00000235842 RP11-356I2.2 1.052 0.354 3.0

ENSG00000211953 IGHV3-30 2.119 0.715 3.0

ENSG00000140534 TICRR 0.514 0.175 2.9

ENSG00000200648 U6 0.517 0.176 2.9

ENSG00000164687 FABP5 0.507 0.174 2.9

ENSG00000211860 TRAJ29 0.503 0.173 2.9

ENSG00000199004 MIR21 0.696 0.24 2.9

ENSG00000185745 IFIT1 0.515 0.178 2.9

ENSG00000119938 PPP1R3C 0.525 0.184 2.9

ENSG00000107984 DKK1 0.681 0.24 2.8

ENSG00000240834 IGKV1D-12 1.198 0.423 2.8

ENSG00000211934 IGHV1-2 1.102 0.39 2.8

ENSG00000240864 IGKV1-16 1.301 0.464 2.8

ENSG00000156284 CLDN8 0.558 0.199 2.8

ENSG00000172752 COL6A5 0.92 0.33 2.8

ENSG00000127954 STEAP4 0.524 0.188 2.8

ENSG00000168685 IL7R 0.606 0.22 2.8

ENSG00000196805 SPRR2B 2.209 0.802 2.8

ENSG00000183760 PAPL 0.541 0.198 2.7

ENSG00000158488 CD1E 0.601 0.221 2.7

ENSG00000174156 GSTA3 0.579 0.213 2.7

ENSG00000140285 FGF7 0.564 0.208 2.7

ENSG00000211899 IGHM 0.985 0.371 2.7

ENSG00000188393 CLEC2A 0.527 0.199 2.6

ENSG00000211892 IGHG4 3.067 1.167 2.6

ENSG00000251616 RP11-485M7.3 0.583 0.223 2.6

ENSG00000119917 IFIT3 0.547 0.211 2.6

ENSG00000147138 GPR174 0.625 0.242 2.6

ENSG00000211859 TRAJ30 0.521 0.202 2.6

ENSG00000169313 P2RY12 0.524 0.204 2.6

ENSG00000184348 HIST1H2AK 0.676 0.266 2.5

ENSG00000211867 TRAJ22 0.797 0.317 2.5

ENSG00000242887 IGHJ3 3.233 1.285 2.5

ENSG00000199377 RNU5F-1 1.107 0.44 2.5

ENSG00000211943 IGHV3-15 1.81 0.723 2.5

ENSG00000188257 PLA2G2A 1.284 0.513 2.5

ENSG00000211673 IGLV3-1 1.189 0.475 2.5

ENSG00000124102 PI3 2.64 1.058 2.5

ENSG00000211955 IGHV3-33 2.804 1.127 2.5

ENSG00000087916 SLC6A14 0.927 0.374 2.5

ENSG00000211858 TRAJ31 1.01 0.411 2.5

ENSG00000211940 IGHV3-9 0.504 0.206 2.4

ENSG00000137965 IFI44 0.739 0.307 2.4

ENSG00000162654 GBP4 0.518 0.216 2.4

ENSG00000211664 IGLV2-18 1.256 0.529 2.4

ENSG00000174808 BTC 0.6 0.253 2.4

ENSG00000211855 TRAJ34 0.571 0.242 2.4

ENSG00000113070 HBEGF 0.795 0.34 2.3

ENSG00000153234 NR4A2 0.528 0.227 2.3

ENSG00000100985 MMP9 0.503 0.216 2.3

ENSG00000243290 IGKV1-12 0.892 0.383 2.3

ENSG00000211893 IGHG2 2.611 1.147 2.3

ENSG00000211685 IGLC7 1.791 0.793 2.3

ENSG00000211765 TRBJ2-2 0.548 0.245 2.2

ENSG00000170801 HTRA3 0.564 0.254 2.2

ENSG00000211884 TRAJ5 0.545 0.25 2.2

ENSG00000171246 NPTX1 0.585 0.268 2.2

ENSG00000249437 NAIP 0.595 0.274 2.2

ENSG00000211897 IGHG3 1.077 0.498 2.2

ENSG00000211856 TRAJ33 0.62 0.289 2.1

ENSG00000177575 CD163 0.699 0.327 2.1

ENSG00000205420 KRT6A 1.876 0.878 2.1

ENSG00000211873 TRAJ16 0.653 0.308 2.1

ENSG00000090659 CD209 0.618 0.293 2.1

ENSG00000169245 CXCL10 2.853 1.355 2.1

ENSG00000115008 IL1A 0.98 0.466 2.1

ENSG00000211699 TRGV3 0.603 0.288 2.1
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Supplementary 2: The 222 AD specific hyper-variable genes with their respective variance 

in the pathological and physiological states are ranked by ratio. 
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Supplementary 3:  Cluster number optimization 

a: Sample k-NN and MST clustering in four clusters. The number written within each circle 

refers to the sample identity. 

b: The highest average silhouette width corresponded to four sample clusters. 

c: Hierarchical clustering: Euclidian distance has been used to constitute four clusters 
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Methods
Hierarchical 

clustering

k-NN 

clustering

k-means 

clustering

Cluster numbers 4 4 4

Intra-cluster metric

Dunn Index 0,42 0,34 0,43

Inter-cluster metrics

Rand Index

Hierarchical clustering 0,68 0,79

k-NN clustering 0,68 0,73

k-means clustering 0,79 0,73

Jaccard similarity coefficient

Hierarchical clustering 0,30 0,44

k-NN clustering 0,30 0,38

k-means clustering 0,44 0,38

Intra and inter-cluster metrics used to select the more consensual method

Supplementary 4
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Supplementary 4: Clustering methods comparison. k-means clustering method has been 

chosen for sample clustering because of its highest intra-cluster (Dunn index) and inter-

cluster (Rand index and Jaccard similarity coefficient) metrics. 
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Supplementary 5: Clinical features representation in sample clusters. 

a: Statistically significant clinical features: SCORAD and SA colonization 

b: Important non-significant clinical features: early age of disease onset, IgE concentration, 

gender, age 

SA: Staphylococcus aureus, SCORAD: score AD 
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Supplementary 6: AD clusters transcriptomic signature. 

a: Differentially expressed genes in one cluster versus the others 

b: Upregulated differentially expressed genes grouped in their metagenes 

AD: atopic dermatitis 
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Supplementary 7: Metagene expression among sample clusters. ANOVA test showed 

differential expression of metagenes between clusters. 
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TITLE DOI GEO
ARRAY 

EXPRESS
AUTHOR YEAR TECH_MICROARRAY SAMPLES AGE

SCOR

AD

Dupilumab progressively improves systemic and 
cutaneous abnormalities in patients with atopic 

dermatitis

10.1016/j.jaci.2018.08.022 GSE130588 NA
E. Guttman-
Yasski et al

2018 Affymetrix Human U133Plus 2.0 gene arrays 51 Adult YES

Cyclosporine in patients with atopic dermatitis 
modulates activated inflammatory pathways and 

reverses epidermal pathology
10.1016/j.jaci.2014.03.003 GSE58558 E-GEOD-58558 S. Khattri et al 2014 Affymetrix Human U133Plus 2.0 gene arrays 12 Adult YES

Dupilumab improves the molecular signature in skin of 
patients with moderate-to-severe atopic dermatitis

10.1016/j.jaci.2014.10.013 GSE59294 E-GEOD-59294
JD. Hamilton et 

al
2014 Affymetrix Human U133Plus 2.0 gene arrays 18 Adult YES

Progressive Activation of Th2/Th22 characterizes acute 
and chronic atopic dermatitis

10.1016/j.jaci.2012.07.012 GSE36842 NA JK. Gittler et al 2012 Affymetrix Human U133Plus 2.0 gene arrays 17 Adult YES

Reversal of atopic dermatitis with narrow-band UVB 
phototherapy and biomarkers for therapeutic response

10.1016/j.jaci.2011.05.042 GSE27887 E-GEOD-27887 S Tintle et al 2011 Affymetrix Human U133Plus 2.0 gene arrays 12 Adult YES

Nonlesional atopic dermatitis skin is characterized by 
broad terminal differentiation defects and variable 

immune abnormalities
10.1016/j.jaci.2010.12.1124 GSE32924 NA

M Suárez-Fariña 
et al

2011 Affymetrix Human U133Plus 2.0 gene arrays 12 Adult YES
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Supplementary 8: Comprehensive list of independent skin AD transcriptome with clinical 

annotations on disease severity. The largest expression matrix (GSE130588) was used to 

validate our main findings. 
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PART 2: Supervised approach 

 

Could a combination of statistical and machine learning models highlight 

pruritus multiple mechanisms? 
 

Rational of the approach 
 

For the second part of the thesis, we wanted to start from a clinical issue as we had an 

important and well characterized clinical dataset. We have chosen to focus on pruritus for 

several reasons. First, this is a very debilitating symptom for which targeted treatments 

development has just began. Second, the pruritus intensity score was annotated for all 

patients. Finally, we thought that pruritus is a complex symptom involving a wide range of 

mechanisms that could be well captured by transcriptomic data. 

 

Result announcement 
 

 We hypothesized that relationships between pruritus intensity and genetic expression 

could be diverse. Thus, we used different kinds of approaches that assessed different natures 

of data. We used classical statistical models to first find out that they were not the most 

pertinent. We then used a combination of statistical and machine learning approaches to 

extract the most minimalistic pruritus signature. We optimized our pipeline to be able to 

highlight a distinct pruritus signature on an independent cohort. Both signatures showed great 

accuracy for pruritus predictions. Although, no gene was common to both signatures, they 

shared interesting functions, had never been described in AD and showed interesting 

therapeutic potential.  
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Graphical abstract 
 

 
Figure 7 Graphical abstract of study design and results. Designed with Biorender©. 
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Abstract 
 

Pruritus is a major symptom of atopic dermatitis (AD) and causes an important burden for 

patients and society. Its mechanisms are complex and partly understood, making therapeutic 

perspectives promising. To address this question, we used the largest (n=82) available AD 

transcriptome lesional skin dataset (MAARS dataset). All patients auto-evaluated pruritus 

intensity using a visual scale going from 1 to 10. The median score was 7.  

We first explore our data using correlation, differential analysis, and sparse PLS to conclude 

that more innovative approaches should be favored. We applied an automatic deep learning 

and statistical-based model using an ensemble of architectures, and a data-driven consensus 

for the gene selection and the pruritus prediction. Final minimalist signatures were obtained 

using an ablation study. Its application on our data revealed interesting genes for pruritus 

prediction: Heme Oxygenase 1 (HMOX1), Calcium/Calmodulin Dependent Serine Protein 

Kinase (CASK), Vestigial Like Family Member 2 (VGLL2), Mannosidase Alpha Class 2A Member 

1 (MAN2A1), one long non-coding RNA (GPRC5D-AS1) and two novel transcripts (AC113382.1 

and AL031123.1). It predicted pruritus classes with 0.77 balanced accuracy, 0.86 precision, 

0.67 sensitivity, and 0.88 specificity. We validated our ensemble approach on two merged 

external cohorts, with n=70 samples in total. A new signature was designed, without gene in 

common with the previous one, but with similar prediction performance. Functional 

interpretation including both signatures showed interesting shared function and potential 

therapeutic targets. Our study is so far the first to apply ML to pruritus understanding, and 

encourage the use of innovative approaches for complex data comprehension. 
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Introduction 
 

Atopic dermatitis (AD), i.e atopic eczema, is one of the most common inflammatory 

dermatitis worldwide. Depending on the geographical region, AD can affect up to 20% of 

children and 5% of adults80,81. Pruritus, defined as an unpleasant urge to scratch, is one of its 

major symptoms according to Hanifin and Rajka criteria37. It concerns 87-100% of patients39 

and places AD as one of the main causes of pruritus from dermatological origins116 (Suppl. 1a). 

Pruritus is a very debilitating symptom for AD patients, it alters the quality of life, sleeping, 

and concentration, it causes psychiatric disorders such as depression, anxiety, or helplessness, 

reduces self-esteem, and provokes pruritus-induced skin lesions40,41 (Suppl. 1b). 

But why pruritus is so hard to treat? A part of the answer lies in its complex 

pathophysiology involving: 

1) The exterior world regrouping all itch-causing agents such as mechanical or chemical 

irritants, skin microbiome or infection, allergens. 

2) The interface constituted by the epidermis, mainly composed of keratinocytes, lipids, 

and structural proteins. 

3) The inner world which begins with the dermis and its rich immune microenvironment 

continues through nerves and spinal cord then ends with the pruritus signal 

interpretation in several cortex areas. 

Each layer implies specific pruritogenic molecular actors e.g. cytokines, proteases, histamines, 

leukotrienes, or neuropeptides that constitute general and disease-specific mechanisms. 

AD shares common mechanisms with other pruriginous diseases but has its specificities. 

Indeed, AD patients, have an unbalanced skin microbiome with an overrepresentation of 

Staphylococcus aureus that can secrete itching proteases42. The skin barrier is altered due to 

the downregulation of essential skin architecture protein (e.g. FLG, LOR)117,118. AD dermis 

immune environment is Th2, Th22, Th17 or TfH polarized with important concentrations of 

prurigenic cytokines such (e.g. IL4, IL13, or IL31)20. Finally, AD skin shows a higher density of 

nerves119,120 that expresses receptors for all these prurigenic mediators42 (Suppl. 1c).  

All these molecular and cellular actors play a role in an itch-scratch circle43 that antipruritic 

therapeutics try to break (Suppl. 1d). So far only anti-IL31 has been validated specifically for 

its anti-pruritic effect121,122, but as a Th2 blocker, it is hard to determine the anti-pruritic effect 

independently. Other targeted treatments more focused on the symptom are emerging123,124. 
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In this study, we took advantage of the largest skin microarray AD cohort. We hypothesize 

that machine learning (ML) will be an innovative way to understand better pruritus 

mechanism and identify new targeted treatments. While the benefit of ML over statistical 

models is still debated51 we used an analysis pipeline that combines ML and statistical 

approaches to select the more consensual pruritus signature. We then applied the same 

method on an independent cohort and highlighted the common mechanism shared in both 

signatures.  
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Method 
 

Learning cohort 

 

The data were obtained from the MAARS Consortium35,36 whose dataset is publicly 

available on the Array Express interface (E-MTAB-8149). Patient recruitment and data 

generation methodologies have been comprehensively described in Fyhrquist et al 

publication35. Briefly, AD patients have been recruited in three European Dermatology 

departments, after provided written informed consent under institutional review board-

approved protocols. All AD patients met the Hanifin and Rajka criteria37. Sampling and data 

generation occurred between 2012 and 2013. Numbers of clinical features were collected, 

including visual auto-evaluation of the pruritus scale41 (Fig. 1a). A 6 mm punch biopsy was 

performed in the lesional skin of AD patients. Bulk transcriptomic analysis was performed after 

mRNA extraction with Affymetrix GeneChip® Whole Transcript Expression Arrays. 

 

External and independent cohort 

 

To assess the reproducibility and robustness of our classifier we applied our prediction on 

two independent datasets. To reduce technological and technical biases, we sourced 

independent cohorts using a comparable transcriptomic technology and with available 

annotation on pruritus severity. Among the total number of pre-selected transcriptomic 

cohorts (n=48), only two studies met the above criteria (Suppl. 2a) with n = 30 and n = 40 AD 

lesional skin samples125,126. They were generated by the same team, using homogeneous 

protocols described in Bissonnette et al and Pavel et al studies. Pruritus intensity was 

evaluated by the patient using NRS (Numeric rating scale) (Suppl. 2b ) Bulk transcriptomic data 

were generated using Affymetrix Human U133Plus 2.0® gene arrays. Expression matrices 

GSE133385 and GSE133477 were downloaded through the Gene expression omnibus (GEO) 

interface using GEOquery package89 (ver. 2.51.1). Annotations on pruritus severity were 

shared by collaborators. 
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Expression array preprocessing 

 

The MAARS dataset was loaded and analyzed with R language (version 3.6.0) on the R 

Studio interface (version 1.2.1335). As an exploratory step, we projected the dataset using 

Principal Component Analysis and performed several clustering methods. We discarded the 

sample MAARS_3_070_03 as a potential mislabeled outlier. Thus, 82 AD lesional skin samples 

were used for further analyses on the training cohort. The two external cohorts have been 

merged so that 70 AD lesional skin samples were included in the testing cohort. Coding genes 

have been filtered in both cohorts, reducing the expression array respectively from 32,633 

probes to 22,637 genes, and 30,409 to 18,588. 

No outlier was excluded in both validation cohorts. Due to their perfect homogeneity, the 

two validation cohorts have been merged. We then selected probes at the intersection that 

were covered by all technologies. Thus, we used for validation analyses 12837 gene expression 

matrices. 

 

Statistical models 

 

To identify important genes in the pruritus mechanism we first used statistical models such 

as differential expression and correlation analyses. 

Differential expressions were computed using limma R packages (3.42.2). Correlation 

analyses were conducted using the psych R package (ver. 2.0.9). For statistical significance, r 

> 0.3 and adjusted p-values < 0.05 were considered significant, Benjamini-Hochberg 

correction was applied for multiple testing. Graphical representations were designed using 

the ggplot2 R package (ver. 3.3.1). 

sPLS was performed using the mixomics R package (ver. 6.13.3)127. sPLS regression mode 

was used to identify a combination of variables able to explain relationships between 

expression array and pruritus score. Repeated k-fold cross-validation was performed to 

optimize the number of dimensions using the Q2 value ( calculated as 1 – (Predictive residual 

Error Sum of Squares/ Total Sums of Squares)), and Mean Absolute Error (MAE) were 

computed for final gene selection. 
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Functional enrichment has been done using the g:Profiler interface 

(https://biit.cs.ut.ee/gprofiler/gost) using GO: Biological process terms. Adjusted p-values < 

0.01 (Benjamini-Hochberg correction) were considered as significant. 

 

Predictive genes’ selection 

 

As classical statistical models did not show a definitive conclusion, we then used machine 

learning approaches. Using all the coding genes considered, we built a high-dimension space 

of size 22 637. A min-max normalization of the attributes was performed for the training and 

validation cohorts. The same values were also applied to the test set.  

To tackle the dimensionality curse and discover significant and robust predictive genes for 

the pruritus score, we adapted our in-house feature selection pipeline45. First, applying a 

space dimension reduction step, which is of prime importance especially in genomics 

studies46. 

We separated the samples’ cohort into two classes: low (< median i.e. 7) and high pruritus 

(≥ 7). The cohort was subdivided into training and test on the principle of 80%-20% 

maintaining the observed distribution of classes between the two subsets. Then, on this basis, 

the training set was further divided into 5 subdivisions to perform feature selection. We 

evaluated a variety of classical machine learning classifiers - using the entire feature space and 

4 subdivisions for training -  such as Decision Tree Classifier, Linear Support Vector Machine, 

XGBoosting, AdaBoost, and Lasso. These classifiers were trained and validated to distinguish 

between pruritus classes.  Besides, we considered statistics-based approaches based on 

Mutual Information, Chi-squared statistics, and Univariate linear regression tests.  

Each of these methods was used to assess the importance of the features regarding 

pruritus. Features were ranked according to their selection prevalence for each method. Our 

experiments indicated that different classifiers highlight different attributes as important. We 

adopted a consensus approach choosing features with the highest sum of prevalence (>40%) 

over all methods. 
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Classification task 

 

The classification was addressed using an ensemble learning approach on the gene 

signature designed in the feature selection step. The same training/test sets as the ones for 

feature selection were used. We performed 5-fold cross-validation and evaluated the average 

performance of the following supervised classification methods: Nearest Neighbor, Linear, 

Sigmoid, Radial Basis Function (RBF), Polynomial Kernel Support Vector Machines (SVM), 

Gaussian Process, Decision Trees, Random Forests, AdaBoost, XGBoosting, Gaussian Naive 

Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron (MLP) & Quadratic Discriminant 

Analysis. For each binary classification task, a consensus model was designed selecting the top 

5 classifiers. The selected models were trained and combined through a winner takes all 

approach to determine the optimal outcome.  The final prediction was performed thanks to a 

majority voting scheme. 

 

Signature refinement 

 

A step of signature refinement was then performed thanks to ablation. In the same cross-

validation settings as before, we iteratively trained the ensemble classifier on the training set 

using the signature genes except one. Then, we removed the gene which ablation incurred 

the best-averaged results on validation. This process was repeated until no gene remained. 

The final retained signature was designed by considering all the genes after the inflection 

point, according to the elbow method. 

Then, the selected classifiers were retrained using the entire training set and the refined 

signature, and their performance was reported on the test set. 

 

Implementation details 

 

Concerning the implementation details, for the majority voting classifier, the top 5 

classifiers consist of RBF SVM, Linear SVM, Polynomial SVM, QDA, and MLP. The RBF SVM had 

a penalty parameter of 0.7 and a kernel coefficient gamma of 1. The Linear kernel had a 

penalty parameter of 3. The Polynomial SVM was granted a kernel degree of 2. The QDA 

classifier was considered without any prior or regularization parameter and with an absolute 

threshold of 10. The MLP classifier was trained with a lbfgs solver, an alpha of 0.1, a ReLU 
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activation a maximal number of iterations of 1000, a batch size of 500, and an invscaling 

learning rate. To prevent overfitting, early stopping was used.  
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Results 

 

Explore clinical and transcriptomic data 

 

The learning cross-sectional cohort contained 82 AD lesional skin samples. All AD patients 

had auto-evaluated their pruritus intensity using the pruritus Visual Rating Scale (VRS) ranging 

from 1 to 10 (Fig. 1a). Pruritus intensity distribution was characterized by, mean = 6.4, median 

= 7, interquartile = 5-8, a minimum = 1, and  a maximum = 10 (Fig. 1b). 

All patients had lesional skin transcriptome arrays, including 22637 coding genes per 

sample. We wondered if a relationship between gene expressions and pruritus score could be 

established. We first projected genetic data using Principal Component Analysis (PCA). 

Pruritus score did not seem associated with the two first principal components (Fig. 1c). 

Pearson correlations were computed for any of the 30 first dimensions, and none was 

significantly correlated with pruritus score (r2 were between -0.3 <> 0.3, and adjusted p-value 

> 0.05) (data not shown). This led us to use statistical models to identify interesting genes in 

the pruritus mechanism. 

 

Statistical models: differential expression and correlation analyses 

 

We first computed differential expression analyses. For well-balanced comparisons, we 

separated the cohort into two groups centered on the median pruritus score, with n= 42 with 

pruritus score < 7 (pruritus low) and n = 40 with pruritus score ≥ 7 (pruritus high). Differential 

expression analyses showed no significant differences between the two populations with all 

adjusted p-values >0.05. Similar results were obtained with different group comparisons, like 

first vs last third (data not shown). Differential expression comparison was not adapted to 

assess the pruritus questioning our cohort. 

We then wanted to take advantage of the pruritus score’s continuous nature. We 

computed correlation analyses with Spearman and Pearson statistics to establish what would 

be the best to highlight relationships between pruritus intensity and gene expressions. Both 

technics showed strengths and weaknesses. Spearman statistics revealed a restricted list of 

pruritus-correlated genes (with r coefficient -0.3 < or > 0.3), but without statistical significance 
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(all adjusted p-values were above 0.05) (Fig. 2a,b).On the opposite, Pearson statistics showed 

an extensive gene list positively (n=879 genes) and negatively correlated (n=808 genes) with 

pruritus intensity (Fig. 2b). A functional annotation based on GO: Biological process terms was 

applied on genes correlated with pruritus score. It revealed that positively correlated genes 

were highly enriched in immune function while negatively correlated genes were enriched in 

neuronal function (Suppl. 3a, b). 

Pearson and Spearman's statistics were complementary to reveal interesting biological 

functions about pruritus. But with both approaches, the too-large dimension of our dataset 

provoked the selection of inappropriate gene numbers for biological interpretation (Fig. 2c). 

 

sPLS: a mixed approach between statistical models and ML models 

 

As dimensionality reduction was required, we used sparse partial least square (sPLS) to 

apply a gene’s number reduction supervised on pruritus intensity score. It consists of 

achieving variable selection by introducing Lasso penalization on the pair of loading matrices, 

here expression array, and pruritus score. We first applied the sPLS algorithm on all genes’ 

expression dataset (Fig. 3a). The two first dimensions explained 5 and 4% of the total variance 

and well-segregated samples according to their pruritus score. The next crucial step was about 

tuning the sPLS model to reduce the number of variables. To do so we repeated 20 times 10-

fold cross-validation. We selected the optimal number of sPLS components that was defined 

as the lowest dimension with Q2 level ≥0.097544(Fig. 3b). Based on the lowest MAE obtained 

on both components, the optimal number of variables was respectively  15 and 5 genes (for 

MAE=0.400 and 0.385) (Fig. 3c). The sPLS algorithm was then rerun with optimized parameters 

(2 components and 20 selected genes) supervised on the pruritus score. Variance per 

component was comparable according to the first run (4 and 2%), meaning that little 

information has been lost, and the pruritus score was well distributed (Fig. 3d). Finally, we 

ordered the gene of interest according to their weight in the prediction of pruritus score (Fig. 

3e). 

 

Predictive genes’ signature: selection and performances 
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To add robustness to previous approaches we decided to use an analysis pipeline combining 

ML and statistical model. This can reduce gene number, and predict pruritus categories in a 

consensual manner, taking advantage of multiple approaches. To do so we categorize our in-

house cohort into two categories: low pruritus (score <7) and high pruritus (score ≥7) with 

respectively n= 40 and 42 samples. Relying on the aforementioned selection method, we 

extracted 22 genes and obtained after ablation a minimalist signature composed of the 7 

following genes (Fig. 4a): Heme Oxygenase 1 (HMOX1), Calcium/Calmodulin Dependent Serine 

Protein Kinase (CASK), Vestigial Like Family Member 2 (VGLL2), Mannosidase Alpha Class 2A 

Member 1 (MAN2A1), one long non-coding RNA (GPRC5D-AS1) and two novel transcripts 

(AC113382.1 and AL031123.1).  

Our proposed ensemble approach reported high performance overall considered 

evaluation metrics in intra-cohort validation (Fig. 4b). With only a 7 genes signature, we 

reached on test 0.77 balanced accuracy, 0.86 precision, 0.67 sensitivity, 0.88 specificity. Also, 

we manage to correctly classify 87.5% of the low pruritus class’ samples and 66.67% for the 

high pruritus class (Fig. 4c). 

 

Ensemble learning approach applied on an external and independent cohort 

 

The genes included in the external cohorts massively varying from the ones of the MAARS 

dataset, the previously identified gene signature could not be tested in those new settings. 

Thus, the same pipeline was repeated on our external cohort to demonstrate the 

generalizability of our approach despite the microarray technology disparity. A very different 

signature was obtained, again including 7 genes: Nuclear Transcription Factor/X-Box Binding 

Like 1(NFXL1), TOX High Mobility Group Box Family Member 2 (TOX2), Transcription Factor 

Like 5 (TCFL5), Synaptosome Associated Protein 23 (SNAP23), one long non-coding RNA 

(ENSG00000279064), and one novel transcript (AC011815.3) (Fig. 5a). 

Notwithstanding, the differences between the cohorts, we managed excellent results on 

the test. With only a 7 genes signature, we reached on test 0.90 balanced accuracy, 0.90 

precision, 1.00 sensitivity, 0.80 specificity (Fig. 5b). Also, we manage to correctly classify 80.0% 

of the low pruritus class’ samples and 100% for the high pruritus class(Fig. 5c). 
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Discussion 
 

Our molecular signature may seem destabilizing for several reasons. Our pipeline was 

designed so that the minimal number of genes would be selected. This had the advantage of 

highlighting the essential substance of pruritus prediction. But it makes functional 

interpretation harder. In our case, our predictive genes could orientate AD pruritus treatment 

development. The recourse to the drug repositioning databases did not show convincing 

results but manually PubMed research revealed interesting tracks to follow. 

sPLS signature and the Spearman statistics top 10 positively correlated genes (Fig. 3e, 

Suppl. 3c), contained candidates for pruritus comprehension and treatment. A special interest 

has to be brought to CRTC (CREB Regulated Transcription Coactivator), 2 and 3. These genes 

are part of the CREB complex (cAMP Responsive Element Binding Protein) which acts as an 

activator of ERK (Extracellular Signal-regulated Kinase) cascade inflammatory skin pruritus and 

pain128,129 and could be a potential therapeutic target130. 

Our ensemble approach showed different gene signatures within in-house and external 

cohorts. Nevertheless, we excluded novel transcript and long non-coding RNA to extracted 

common functions from better-characterized genes. Interestingly, CASK, SNAP23, and IFT46 

were implied in vesicle trafficking131,132. This could be central in pruritus mechanisms in 

particular considering mast cell degranulation, cytokine emission by lymphocytes, and cell-

nerve interaction at the synapse level. Interesting treatments are developed targeting 

prurigenic meditators trafficking, like botulin toxin133, and others could follow, as CASK 

inhibitors. HMOX1 appeared in both ML and Pearson correlation gene selection. Positively 

associated with pruritus intensity, its expression could be a response to tissue injury and act 

as a protective factor134, and it can be upregulated upon specific therapeutics135. 

In this study, we discovered that combining ML and statistical models led to robust 

pruritus predictions. Our minimalistic gene signatures highlight potential molecular actors of 

pruritus mechanisms.  Surprisingly, our gene of interest did not overlap with current 

knowledge about AD pruritus. This recall us that predicting is not explaining. Indeed, none of 

our genes belongs to classical AD pathways such as Th2,17,22 polarization nor skin 

architecture14. But variables selected to predict are not always indicative of a mechanism 

logic. Mamaprint®, which is the only transcriptomic prognosis signature with a direct impact 
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on the patient, includes 70 genes, and a large majority is not already described in the breast 

cancer pathophysiology10,11.  

To allow ML model application, we categorized our pruritus score and thus lost its 

continuous nature. We divide our cohort into two groups by whether they were above or 

below the median pruritus score. But due to the inclusion criteria that excluded low severity 

AD, low pruritus scores were then underrepresented and the median was high (=7/10). This 

could have attenuated the expression contrast between our two groups and made the work 

of the classifier harder. Although independent validation cohorts were selected because of 

their similarities with our learning cohort (Suppl. 2c). Unfortunately, our results were not 

validated on an external cohort. In general, this can be due to disparities in patient 

recruitment (age, gender, race disparities), sampling procedure (anatomical localization, skin 

preparation), microarray technologies, and platform protocols. In our case, differences 

between learning and validation cohorts are subtle and could be due to various sample 

anatomical localizations and the diverse Affymetrics® microarray generations. A recent study 

using the same data as ours showed that gene expressions differed according to the 

anatomical localization in the AD context36. It highlights the importance of standardized 

sampling procedures within skin transcriptomic studies. The technical bias might be even 

strongest in our case. As genome coverage is not homogeneous among Affymetrix® 

technologies136, focusing on common genes led to biological information loss. 

Beyond technology disparities that make validation steps more difficult. One potential 

issue is the lack of a consensual and routinely used pruritus scale. In this study, we used two 

simple ways to evaluate pruritus intensity: the VRS and the NRS (Fig. 1a and Suppl. 2b). These 

two auto-evaluation scales ranging from 1 to 10 have their subtilities and can be discordant137. 

But beyond that, they point out the difficulty of measuring a symptom with a strong subjective 

component. Many ways to explore and quantify this symptom exist (Suppl. 4a)41 and a 

consensual research-oriented pruritus scale still needs to be designed and used. As we 

develop a pruritus classifier based on complex data, it might be time to use emerging 

approaches to objectively assess pruritus in atopic dermatitis by multidimensionality scale138. 

ML models have advantages over statistical ones as they can identify multicollinear and 

complex relationships in multidimensional data. Yet, these approaches have not been used 

extensively in AD fields. ML has been applied for histological-based AD diagnosis139. Recently, 

AD severity prediction, using a knowledge-based set of biomarkers and intern cross-validation 
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has been performed in a cross-sectional manner140,141. Personalized prediction of disease 

severity based on prospective clinical followings142 showed interesting results.  ML superiority 

on statistical models is still debated51. When compared in previous examples, ML did not 

outperform statistical models140. Moreover, studies are tempted to overuse the term ML to 

designate more “classical” clustering approaches, without learning step. To be convinced of 

ML contribution in AD understanding, purely data-driven studies with external validation are 

still missing. In our study, we conducted a feature selection capable of accurate predictions in 

our cohort and an independent one. 

Pearson and Spearman correlations can be used complementarily143. In our case, both 

approaches showed interesting results but did not assess the pruritus issue. With the 

increasing use of high throughput data, analysis methods need to adapt. While traditional 

statistical models still dominate the field, even in omics data. Omics data began to exceed the 

capabilities of the conventional statistical model144. Many machine learning methods can 

derive models for pattern recognition, classification, and prediction from complex data145. It 

appears nevertheless less effective in producing explicit models with biological significance. 

In our study, we chose to compare different approaches, and even if ML superiority was not 

clear, its use should be more generalized to update progressively the way we analyze complex 

data.  

 

Perspectives 
 

We aimed to understand deeper pruritus mechanism in the AD context. To do so we used 

statistical and machine learning models in a complementary manner. It led to identifying 

important transcriptomic signatures that bring a new light on pruritus and suggest targeted 

therapeutic development.  
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Figures and legends 
 

 

Figure 1

a
Visual rating scale for pruritus auto-evaluation
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Figure 1: Exploration of pruritus score in the learning in-house cohort 

a: Visual scale for pruritus auto-evaluation. 

b: Pruritus distribution among learning cohort patients. 

c: PCA representation of whole cohort genetic data colored with pruritus intensity. PCA two 

first dimensions poorly illustrate pruritus’ intensity distribution. 

PCA: Principal component analysis. 
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Figure 2

a b

82 genes negatively correlated

71 genes positively correlated

adj p-value > 0.01

Spearman correlation between pruritus score 

and gene expressions

808 genes negatively correlated

879 genes positively correlated

adj p-value < 0.01

Pearson correlation between pruritus score 

and gene expressions

Comparing correlation analyses to understand relationship 

between genetic expression and pruritus intensity

Spearman statistics

Non-linear collinearity

Non-parametric

Pearson statistics

Linear collinearity

Parametric test

Extensive gene list

(+) Informative databased 

functional enrichment

(-) Too many genes to identify 

minimal molecular signature 

Restricted gene list

(+) Functional interpretation 

at individual gene level

(-) No statistical significance
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Figure 2: Comparison of Spearman and Pearson’s correlations between pruritus intensity 

and gene expression. 

a: No correlation between pruritus intensity and gene expression according to Spearman 

statistics. Few genes have correlation coefficients above 0.3 but none showed significance. 

b: Correlation between pruritus intensity and gene expression according to Pearson statistics. 

A large number of genes have correlation coefficients above 0.3 and high significance. 

c: Both correlation models’ contribution points to the need for dimension reduction. 
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Figure 3
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Figure 3: sPLS model optimize dimension and gene reduction for pruritus estimation 

a: Representation of all genes supervised on pruritus score, on sPLS first two dimensions. 

b: Optimized number of components according to Q2 value. 10-fold cross-validation repeated 

20 times allow reduction to 2 components. 

c: Optimized number of genes according to MAE. 15 genes from 1st component and 5 from 2nd 

component was selected. 

d: New run of sPLS model optimized with 2 components and 20 genes. Pruritus score is still 

well segregated. 

e: Ranked genes by load values in pruritus estimation. 

MAE: Mean Average Error, sPSL: sparse Partial Least Square 
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Number
Removed Feature

Balanced

of Genes accuracy

22 ENSG00000138944 – SHISAL1 0,812

21 ENSG00000184210 – DGAT2L6 0,8

20 ENSG00000167969 – ECI1 0,8

19 ENSG00000089916 - GPATCH2L 0,8

18 ENSG00000063761 - ADCK1 0,8

17 ENSG00000215405 - GOLGA6L6 0,815

16 ENSG00000129646 - QRICH2 0,826

15 ENSG00000188171 – ZNF626 0,814

14 ENSG00000143502 – SUSD4 0,815

13 ENSG00000005238 – FAM214B 0,815

12 ENSG00000120708 - TGFBI 0,814

11 ENSG00000102910 – LONP2 0,835

10 ENSG00000162949 - CAPN13 0,835

9 ENSG00000059377 – TBXAS1 0,836

8 ENSG00000162877 – PM20D1 0,836

7 ENSG00000052802 – MSMO1 0,849

6 ENSG00000100292 – HMOX1 0,811

5 ENSG00000246323 - AC113382.1 0,788

4 ENSG00000147044 - CASK 0,811

3 ENSG00000170162 – VGLL2 0,799

2 ENSG00000226281 - AL031123.1 0,708

1 ENSG00000247498 - GPRC5D-AS1 0,664

0 ENSG00000112893 – MAN2A1 0

Classifier
Balanced Accuracy Precision Sensitivity Specificity

Training Test Training Test Training Test Training Test

Linear SVM 0,91 0,65 0,89 0,67 0,94 0,67 0,88 0,62

poly SVM 0,94 0,77 0,94 0,86 0,94 0,67 0,94 0,88

RBF SVM 0,89 0,65 0,89 0,67 0,91 0,67 0,88 0,62

Neural Net 0,99 0,77 1 0,86 0,97 0,67 1 0,88

QDA 0,88 0,65 0,86 0,67 0,91 0,67 0,84 0,62

Ensemble Classifier 0,94 0,77 0,94 0,86 0,94 0,67 0,94 0,88

Predicted

Pruritus

< 7 ³ 7

Actual < 7 7  (87.5%) 1 (12.5%)

Pruritus ³ 7 3 (33.3%) 6 (66.7%)

a

b

c

Figure 4
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Figure 4: Feature ablation and test result details on the MAARS  

a: Gene signature before and after ablation study on MAARS cohort. The table presents the 

balanced accuracy on validation for each removed gene. Genes are ordered from the least 

predictive to the most predictive. The curve represents balanced accuracy according to the 

number of genes. The inflection point is evidenced by the red arrow. 

b: Test results on MAARS cohort. Predictive performance over the different metrics 

considered for the classifiers selected on cross-validation to design the ensemble classifier. 

Classifiers have been retrained on the full training set using the signature obtained by 

selection and ablation.  

c: Confusion matrix.  Prediction of pruritus classes (columns) according to the actual classes 

(rows) performed on the MAARS cohort part that has not been used for ablation study nor 

classification. 
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a

b

d

Figure 5

Number
Removed Feature

Balanced

of Genes accuracy

19 ENSG00000185483 - ROR1 0,775

18 ENSG00000118514 - ALDH8A1 0,79

17 ENSG00000105497 - ZNF175 0,805

16 ENSG00000114770 - ABCC5 0,836

15 ENSG00000186532 - SMYD4 0,874

14 ENSG00000279967 - FP671120.5 0,874

13 ENSG00000279186 - FP236315.2 0,845

12 ENSG00000118473 - SGIP1 0,831

11 ENSG00000279303 - CU634019.3 0,865

10 ENSG00000258634 - AL160006.1 0,865

9 ENSG00000264720 - MIR3117 0,879

8 ENSG00000115827 - DCAF17 0,874

7 ENSG00000011143 - MKS1 0,874

6 ENSG00000170448 - NFXL1 0,861

5 ENSG00000124191 - TOX2 0,827

4 ENSG00000101190 - TCFL5 0,829

3 ENSG00000279064 - FP236315.1 0,765

2 ENSG00000092531 - SNAP23 0,714

1 ENSG00000279989 - AC011815.3 0,675

0 ENSG00000118096 - IFT46 0

Classifier
Balanced Accuracy Precision Sensitivity Specificity

Training Test Training Test Training Test Training Test

Linear SVM 0,85 0,9 0,92 0,9 0,81 1 0,88 0,8

poly SVM 0,9 0,9 0,97 0,9 0,84 1 0,96 0,8

RBF SVM 0,85 0,9 0,9 0,9 0,86 1 0,85 0,8

Neural Net 0,96 0,9 0,96 0,9 1 1 0,92 0,8

QDA 0,87 0,9 0,92 0,9 0,86 1 0,88 0,8

Ensemble Classifier 0,91 0,9 0,93 0,9 0,93 1 0,88 0,8

Predicted

Pruritus

< 7 ³ 7

Actual < 7 4  (80.0%) 1 (20.00%)

Pruritus ³ 7 0 (0%) 9 (100.00%)
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Figure 5: Feature ablation and test result details on the independent and external cohort 

a: Gene signature before and after ablation study on the external cohort. The table presents 

the balanced accuracy on validation for each removed gene. The genes are ordered from the 

least predictive to the most predictive.  

b: Test results on the external cohort. Predictive performance over the different metrics 

considered for the classifiers selected on cross-validation to design the ensemble classifier. 

Classifiers have been retrained on the full training set using the signature obtained by 

selection and ablation. 

c: Confusion matrix.  Prediction of pruritus classes (columns) according to the actual classes 

(rows) performed on the external cohort part that has not been used for ablation study nor 

classification. 
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Supplementary figure and legends 
 

 

a

Supplementary 1

b

c

d
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Supplementary 1: Pruritus overview in dermatoses and atopic dermatitis 

a: Main causes of pruritus among dermatoses. From Pereira et al. 

b: Photographs of pruritus lesion in AD patient hands. From Pereira et al. 

c: Cellular and molecular actors of pruritus signal and their neuronal receptors. From 

Mollanazar et al. 

d: Pruritus vicious circle implying skin, immunity, and nervous system. From Cevikbas and 

Lerner. 
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Pavel et al. Bissonnette et al. Our cohort

DOI 10.1016/j.jaci.2019.07.013 10.1016/j.jaci.2019.06.047

Journal JACI JACI

Year 2018 2019

Patient recruitment

Centers
Multicentric 

(North America)

Monocentric

(North America)

Multicentric

(North Europe)

Age > 18 yo > 18 yo >18 yo

Majoritary skin color White White White

Hanifin and Rajka criteria NA Yes Yes

Active AD Yes Yes Yes

Topical washout 2 w 2 w 2 w

Systemic washout 12 w 4 w 12 w

AD severity Moderate to severe Mild to moderate Moderate to severe

Pruritus severity (/10)

med[min-max]
7 [1-10] 6 [2-10] 7[1-10]

Technical aspect

number of samples 30 40 82

Anatomical site Various Various Standardized

Microarray technology
Affymetrix Human 

U133Plus 2.0

Affymetrix Human 

U133Plus 2.0

Affymetrix® 

GeneChip® Whole 

Transcript

Data availability GSE133385 GSE133477 E-MTAB-8149

c
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b

Supplementary 2
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Supplementary 2: In-house and external cohort comparability 

a: Clinical and demographical comparison of our in-house cohort and two external cohorts.  

b: Numeric Rating Scale (NRS) for pruritus evaluation in both external cohorts. 

c: Gene intersection of in-house and external cohorts. Due to technology disparities, only 

12837 coding genes are covered by all microarrays.  
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Supplementary 3

Top 10 functional enrichment of significant positively 

correlated genes

c

a

Top 10 functional enrichment of significant negatively 

correlated genes

b

Top 20 positively correlated genes with pruritus score

Ensembl Symbol r p_adj

ENSG00000160741 CRTC2 0,43 0,57

ENSG00000246323 AC113382.1 0,41 0,63

ENSG00000247925 AL139807.1 0,40 0,63

ENSG00000069702 TGFBR3 0,40 0,63

ENSG00000234199 LINC01191 0,40 0,63

ENSG00000176658 MYO1D 0,39 0,63

ENSG00000197191 CYSRT1 0,39 0,63

ENSG00000237815 Unknow 0,39 0,63

ENSG00000140577 CRTC3 0,38 0,63

ENSG00000112214 FHL5 0,38 0,63

ENSG00000152377 SPOCK1 0,38 0,63

ENSG00000100292 HMOX1 0,37 0,63

ENSG00000116032 GRIN3B 0,37 0,63

ENSG00000240032 LNCSRLR 0,37 0,63

ENSG00000180818 HOXC10 0,36 0,63

ENSG00000258435 AC048337.1 0,36 0,63

ENSG00000165695 AK8 0,36 0,63

ENSG00000215305 VPS16 0,36 0,63

ENSG00000103942 HOMER2 0,36 0,63

ENSG00000213612 FAM220CP 0,36 0,63

Ensembl Symbol r p_adj

ENSG00000178445 GLDC -0,34 0,76

ENSG00000170162 VGLL2 -0,35 0,76

ENSG00000164347 GFM2 -0,35 0,73

ENSG00000086696 HSD17B2 -0,35 0,70

ENSG00000130487 KLHDC7B -0,35 0,70

ENSG00000187554 TLR5 -0,36 0,63

ENSG00000185875 THNSL1 -0,36 0,63

ENSG00000174327 SLC16A13 -0,36 0,63

ENSG00000234614 C2CD4D-AS1 -0,36 0,63

ENSG00000143502 SUSD4 -0,36 0,63

ENSG00000147573 TRIM55 -0,36 0,63

ENSG00000186510 CLCNKA -0,36 0,63

ENSG00000111530 CAND1 -0,36 0,63

ENSG00000231584 FAHD2CP -0,36 0,63

ENSG00000205037 AC134312.1 -0,37 0,63

ENSG00000252980 RNU6-367P -0,37 0,63

ENSG00000183770 FOXL2 -0,38 0,63

ENSG00000247498 GPRC5D-AS1 -0,39 0,63

ENSG00000257556 LINC02298 -0,41 0,63

ENSG00000223648 IGHV3-64 -0,44 0,57

Top 20 negatively correlated genes with pruritus score

d
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Supplementary 3: Functional interpretation of correlated genes with pruritus. Even with too 

low or too much significance, correlated genes showed interesting functions. 

a: Top 10 functional enrichment according to GO: Biological process using all positively 

correlated genes with pruritus according to Pearson correlation. Immune functions are 

overrepresented. 

b: Top 10 functional enrichment according to GO: Biological process using all inversely 

correlated genes with pruritus according to Pearson correlation. Neuronal functions are 

overrepresented. 

c: Detailed list of top 20 genes positively correlated with pruritus score according to Spearman 

correlation. 

d: Detailed list of top 20 genes negatively correlated with pruritus score according to 

Spearman correlation. 
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Supplementary 4

An overview of tools to measure pruritus. From Pereira et ala

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary 4: Overview of tools used to measure pruritus. From Pereira et al. 
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GENERAL DISCUSSION 
 

 

The trans-disciplinarity of this thesis calls for multiple discussions. I chose to develop 

three questions that have been raised by this work. First will be the constraints and 

expectations of classification work. Second will be the need for open data science, with its 

pros and cons. Last will be the difficult application of complex data-based discoveries to 

patient management, and the physician position in the understanding and decision process. 

 

 

Classification issues 
 

 

Create a temporary and unperfect object 
 

Contemporary classification approaches rely on the ability to correlate observed features 

with pathological states to define syndromes. Throughout the last century, this approach 

became more objective, as the molecular underpinnings of many disorders were identified 

and definitive laboratory tests became an essential part of the overall diagnostic paradigm3. 

In many aspects, the ambition of molecular classifying still faces obstacles such as data 

quality, method performances, results reproducibility, and overall real-life interpretation. It is 

difficult being definitive while knowing that current classifications will sooner or later be 

broken and replaced by newer ones. What makes this field so unstable is the lack of a 

community-wide, consensus-based, human- and machine-interpretable language for 

describing phenotypes, in their genomic and environmental contexts. This could be the most 

pressing scientific bottleneck to develop robust classification integrating many biological key 

fields146. 

 

From reductionism’s pitfall to comprehensiveness illusion 
 

Current disease classifications and medical diagnosis are the direct consequence of 

inductive generalization predicated on Occam’s razor. This parsimony principle reduces 
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variable number to reach a limited number of possible classes making diagnosis more feasible. 

But doctors’ reliance on Cartesian reductionism in establishing diagnoses may appear 

insufficient for out-of-square situations3. 

As the quality and quantity of biological data are growing, this simplification may now 

appear simplistic. Even in a monogenic disorder such as sickle cell disease, whose mechanisms 

seem well defined, clinical presentations are heterogeneous and intermediate phenotypes 

frequent147. This is due to polygenic interferent mechanisms and host-environment 

interactions that current diagnosis classification hardly considers. To be able to identify new 

mechanisms, Systems biology proposes to model disease as a complex network integrating 

data’s modules of different nature (clinic, environmental, omics, etc…), connected according 

to a certain probabilistic strength (Figure 15). Although more comprehensive, these dense 

graphical representations are often hard to understand for clinicians and barely applicable. 

 

 

 

Figure 15 Summary of a systems medicine approach to infection. Data sources can be combined to obtain clinically-

informative phenotyping of patients, and identification of therapeutic targets. From Russel et al. 
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Classification biological interpretation and validation 
 

In a biologic research project, the validation step is the point that strengthens the 

discovery, and classifying is not an exception. In omics-based classification, this step is rarely 

reached as opposed to more classical experimental biology where triplicates can robustly 

underly a strong biological effect between two conditions. With omics data, the large scale 

allows to identify more subtle mechanisms, but the noise background is also more important. 

Added to this potential smaller cohort size due to the cost issue and the statistical robustness 

is difficult to maintain during the validation steps. 

A first possibility could be to go back to the bench and to validate with more routine 

experiments a selection of relevant biomarkers. Recently, has been designed an AD skin 

transcriptome classification supervised on patient age and validated biomarker existence, at 

the protein level, using in situ assays148. This is a secure way to convince the reader of the 

replicability of results but, due to variables biased selection, this removes a part of the picture, 

the complex one. 

Moreover, this is often done at the expense of replicating the results on an independent 

cohort which is a far too rare step in the omics field, for some reasons. Due to rapid technical 

evolution, experimental protocol or computational scripts cannot be applied to all publicly 

available cohorts. Besides, the recruitment and sampling procedure can differ from the 

original and challenge the result verification. In our project, finding an independent cohort 

with comparable patients and technologies was hard and only one, for the unsupervised 

classification, and two cohorts, for the supervised classification, met these criteria and had 

enough patients 38,125,126.  

The ideal validation is hard to design and requires the constitution of an independent 

prospective cohort. And it has been done only once in AD with serum-biomarkers-based 

classification33,34. In breast cancer, this took a decade but opened the unique opportunity for 

the first transcriptome-based classification signature to be applied at the patient bedside and 

recognize by public health authorities10,11. 

 

  



 140 

Seeking a semantic consensus 
 

Last but not least, the scientific community should begin classification issues clarification 

with semantic harmonization. Over time, all disciplines have added up their terminology, 

bringing semantic richness but also confusion. This issue has been asked for a long time149 

however, in current research, no effort has been made to define the terms they use. The 

literature overview that was done for this work showed that the classification objects could 

be: clustered / classified / subclassified / divided /sub-divided / stratified, into: classes / sub-

classes / groups / sub-groups / entities / clusters / types / endophenotypes … This wealth of 

terminology reflects a willingness of rigor but could also make the message less accessible for 

non-expert readers. So far attempts in terminology harmonization are field-specific (e.g. 

hierarchical classification of species, Figure). But due to the multidisciplinary influences, a 

global harmonization, if desired, would be a long process.   

Added to this is the ambiguity that results from certain statistical terms, which can confuse 

the clinician. In the same way that association does not mean causality. Machine learning 

makes use of the term predict which does not have the meaning of projection into the future 

that it implies. In this context, predict is used as estimate. To make a true prediction, the 

estimation should be confirmed prospectively. 

To make classification articles more understandable for biologists and clinicians, the 

semantic harmonization effort must be initiated simultaneously at the biological and technical 

levels. 
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Recycling data, a dilemma of consciousness 
 

We surely can try to assess original questions with already used data. Provided that its 

quality allows it, it relies on the inspiration of the researcher to recycle them for new purposes. 

 

The moral obligation of sharing published data 
 

Open science refers to the virtuous circle of making research based on shared data while 

publishing results to the community. This increases transparency in the research process, 

confidence in findings, and facilitates reproducibility150. This could take different forms such 

as give access to published datasets or actively collect them about a specific topic in a 

collaborative manner. Many initiatives are growing this way, such as Global Forest Biodiversity 

Initiative, an international research collaboration, that contains information about more than 

1 million locations. They are publicly available, stored in CSV plain-text files, therefore 

accessible to all, and have already been used for high-impact research projects50 . 

Good practice data management is now defined as the FAIR (Findable, Accessible, 

Interoperable, and Reusable) principles47. And many scientific journals have adopted policies 

that encourage or require data sharing. But still, many collaborators support open data in 

principle but have a specific reason for keeping their collections private. It reflects the current 

state of Science: partly open and partly closed, still driven by competitive emulation more 

than collaboration151. Associating as co-authors those who share their data could be a solution 

to encourage generous comportments. 

All fields are not equal in the sharing process. Especially in medical research, data 

generation could be a long process, dependent on ethical aspects. Thus, the volume of data 

can be limited in comparison to other fields. Practically, anonymous clinical outputs are rarely 

publicly available as they can be reused at the research team level in other projects. But omics 

field sets the example, as datasets are increasingly shared48,152. 

 

Example of great medical discoveries based on shared data 
  

About AD classifications, significant discoveries have been done thanks to publicly 

available microarray  pooling, such as the MADAD transcriptomic signature31. In this project, 
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the merging of several microarray datasets allowed the authors to obtain sufficient statistical 

power to design a disease molecular signature. Unfortunately, no international open database 

exists for AD clinical information. Therefore, important AD translational studies using clinical 

and omics features are rare and remain at the exclusive disposal of the team that generated 

them. 

About the vaccine follow-up survey, there is the Vaccine Adverse Event Reporting System 

(VAERS) which is a publicly available dataset (https://vaers.hhs.gov/) where United States’ 

health practitioners can declare any adverse effects related to a vaccine.  Motivated by an 

ideal of transparency and sharing, reports are at the disposal of the scientific community, thus 

serving as a high dimensional reference dataset for research projects. A four years phase IV 

survey of quadrivalent influenza vaccine has been published recently, with a comprehensive 

adverse event overview. It underlined the poor allergenic nature and the benefits-risks ratio 

of the vaccine49. 

The Covid-19 crisis, raised the obvious need for global collaboration153 especially in areas 

suffering from a lack of resources154. Open data has become a reality, even for the public, with 

live epidemiological statistics diffusion on platforms such as www.covidtracker.fr or 

www.data.gouv.fr. These efforts saw the birth of many international data sharing 

collaborative initiatives and allowed the publication of biological155  and clinical156 disease 

phenotype that increased rapidly our knowledge on this emerging disease.  

 

 

Limits of data sharing 
 

Practicing Science from underused data has many advantages. It is an ecological and 

almost free way to make discoveries. In our project, the MAARS cohort, data generation cost 

more than 7 million euros. Only one person, with one computer, is needed to reuse them. 

Also, it allows increasing the sample size in studies merging several datasets157. This approach 

is notably adapted to high throughput data whose generation is often not driven by a closed-

ended question so they can be used for many other problematics. But even if original data 

generation has a cost, we must not deny the financial and ecological impact of storage and 

indexation for them to be reuse as second-hand data. 
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As technologies are moving fast, old data could be out of date, they became hard to use 

and to validate discoveries based on recent technologies. In our project, the validation of the 

machine learning pruritus predictive signature was not easy because it required comparable 

transcriptomic technologies. And even with almost similar technologies, subtle differences 

can make validation impossible. While validating results on other types of data could 

strengthen them, it can also add technological biases hard to identify and correct. It is 

generally recommended, when possible, to start from the raw data to avoid biases related to 

the pre-processing stages. 

Above technological constraints, data quality increases when they are generated and 

analyzed in an identical environment. Can it be assumed that the differences in study 

populations, data collection and analysis, and treatments, both protocol-specified and 

unspecified, can be ignored?151 Thus, researchers planning to use publicly available data 

should have skills in data management, curation, and quality control to avoid using poor 

quality data. Lastly, recycling data could have the perverse effect of slowing down the 

generation of original data, putting a brake on innovation. But as we generate more and more 

data, this is currently not the point. 

 

Researchers have to be conscious of the strengths and weaknesses of their data. To do so, 

the sharing spirit should concern clinical and technical meta-data as well as omics data. Thus, 

an informed researcher will be able to judge and criticize its results, with the final objective of 

applying these discoveries in practice. 
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Are complex-data-based discoveries lost in translation? 
 

 High throughput data take more and more part of research discoveries. They can be 

analyzed as unique layers or as multiple and integrated. Ironically, they remain underused in 

real-life clinical practice. We will develop here the increasing implication of complex data-

based-discoveries on patient bedsides. 

 

Impact of diagnostic, prognostic, and therapeutic classifications for patients 
 

Diagnoses, prognoses, and therapeutics are often interrelated so classifications could 

address several of these aspects. Omics data contributed to discovering major disease 

subtypes. Next genome sequencing applied on AD population revealed the important role of 

FLG protein in skin barrier integrity. Indeed, heterozygous loss of function mutations of FLG 

gene, carried by 9% of the European population, increases the disease risk of 3 to 5 times. It 

defined a mutated patient class with earlier age of onset, chronic and more severe 

evolution22,66. While this classification strongly highlighted one of the main disease 

mechanisms, it does not lead to therapeutical intervention. Thus, FLG characterization at the 

DNA level is not a part of standard care. In the cancer field, several blood-based combinatorial 

proteomic biomarker assays have been recently developed to assess the breast biopsy 

indication in women routine screening. While it has not been approved by public health 

instances, this kind of approach might have a high impact on breast cancer diagnosis158. 

Endotyping complex diseases in biological-based classes support the revelation of 

actionable therapeutic targets. It is susceptible to give information about treatment efficacy 

and tolerance. AD targeted treatment, is currently indicated to patients with moderate-to-

severe AD (exclusively based on clinical criteria). This is a revolution in patient therapeutic 

strategies, although there remains a significant proportion of non-responders. Omics-based 

studies are designed to demonstrate treatment biological efficacity38,125,126,159 or to identify 

good-response biomarkers160,161. However, no robust longitudinal study for treatment 

response prediction has been done in AD. Prediction of treatment responses is not easy and 

has to deal with various problems such as how to define a response or responder, what are 

clinically relevant outcome measures, and what should be the timing of response evaluation.  
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Classifications are often based on a unique level of biological information stratified using 

statistical models. With the increasing ability to generate even more high throughput data, 

multi-omics data integration using machine learning strategies seems promising. 

 

When artificial intelligence integrates data: predict instead of understand 
 

Complex data require complex methods. Data layer addition forces analyses strategies to 

update constantly and to grow in complexity. That is why machine learning is increasingly used 

in medical research: because the machine has access to a precision that humans cannot see. 

As an example, drug repurposing (or repositioning) is a cost-effective approach for revealing 

drugs that can be used to treat diseases for which they are currently not prescribed. In 

inflammatory skin conditions, a machine learning algorithm has been designed to model drug-

disease relationships taking into account drugs whose effects were already known. Then, was 

attributed a supposed effectiveness to drugs and identified potential therapeutics162. This 

generated original hypotheses to facilitate future treatment development, reducing cost and 

time expense. 

While machine learning shows promising perspectives, its implementation in medical 

research has two main paradoxes. The first would be the culture shock between both 

disciplines. Biologists and clinicians are seeking biological meaning and interpretability. To do 

so they need a certain amount of information to be able to group variables, as genes, in 

common molecular pathways or functions. On the opposite, mathematicians and statisticians 

aim to design the more minimalistic signature for more accurate prediction. Collaboration 

between both sides requires dialogue and compromise ability. The second paradox would be 

the necessity of a minimal sample quantity concerning the variable number. Indeed, the 

machine learning models we used, estimated their accuracies using intra-cohort cross-

validation. So, as for statistical models, its robustness will strongly depend on cohort size and 

the sample/variable ratio. Thus, while complex data generation is costly, machine learning 

analyses might require an increased number of samples, with increased expends. 

Complexification has its detractors. Simple methods might perform almost as well as more 

sophisticated ones163. Why a smart black box that produces hardly interpretable results should 

be better than more classical tools that Statistics made three centuries to develop. A recent 

systematic review showed no global performance benefit of machine learning over logistic 
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regression for binary clinical prediction models51. As statistics and machine learning are part 

of a unique entity: data science, future analysts should learn the different facets of this 

discipline and combine statistical and machine learning approaches as we did in our 

supervised analysis. 

 

Good old clinic for real-life application, until the advent of data physician 
 

Clinical decision support system has been intended to improve healthcare delivery by 

enhancing medical decisions with targeted clinical knowledge, patient information, and other 

health information164.  It can be knowledge-based or not, thus requiring IA tools. Its aims are 

as diverse as diagnosis and treatment management, cost containment, administrative task 

automation, etc. All medical aspects can be concerned by this assistance, but so far, it has not 

been used with a direct impact on patient care. Indeed, ethical issue about responsibility and 

transparency of the decisions made by such systems remains165 . 

As the final choice stands in the physicians’ hands, they have to be educated on Data 

Science, its strengths, and weaknesses. They should overcome their inferiority complex which 

leads them to a blind validation or a total rejection when they deal with scientific papers based 

on complex data. Thus, these innovative approaches should help them refine their clinical 

intuition rather than vanishing it.  

On the other hand, data scientists should show curiosity towards clinical data, share their 

thinking with the project referring clinician, and simplify their discovery in the most 

interpretable concepts. To do so, study protocols should strive to validate their findings with 

routine gold-standard approaches such as rtPCR for transcriptomic studies or 

immunohistochemistry for proteomics. 

Interaction between Data and Medical Sciences has become a staple. It has announced a 

revolution probably as important the contribution of Statistic contribution to evidence-based 

medicine. A peaceful and balanced collaboration between data scientists and medical doctors 

shall be a prerequisite to finally hope for personalized medicine. 
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PERSPECTIVES 
 

 

In the field of complex diseases 

 

The two parts of thesis results could be informative in other complex disease contexts for 

their methodological aspects. Feature selection based on variance disparities between 

physiological and pathological states appeared as a simple and logical way to reduce 

dimensionality while keeping the maximum of biological information. It could be used to 

assess disease heterogeneity issues using unsupervised clustering. After being used in the 

Covid context, our analysis pipeline combining statistical and machine learning models 

showed interesting results in identifying symptom mechanisms. The complementarity of the 

different tools it includes makes it a more flexible pipeline, more easily applicable in another 

complex disease context. 

 

In the field of AD 

 

Our findings revealed unknown facets of atopic dermatitis. Our four skin-transcriptomic-

based endotypes were related to mechanisms which were, until now, poorly considered. 

These non-canonical pathways should be taken into account to develop new therapeutics that 

could be used alone or in addition to standard treatments. These endotypes should be 

searched in independent cohorts with the gene signature we designed using targeted gene 

expression arrays. The role of the IL-36 pathway in disease severity suggests that anti-IL36 

biologics should be reconsidered in the AD therapeutic arsenal, at least for patients belonging 

to the IL-36 dependent endotype.  

Pruritus remains a complex symptom. Our results revealed the unsuspected role of vesicle 

trafficking and suggest that therapeutic development should be oriented in this direction. As 

pruritus is shared in variety of diseases, these new mechanisms should be screened in other 
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itching conditions such as prurigo nodularis, or others, to determine whether they are AD-

specific or not. 

 

In the team 

 

Although they are publicly available, the MAARS data (transcriptomics, metagenomics and 

clinics) are still stored in the team server and could be inspiring for novel research projects. 

Given the wealth of clinical data, original supervised questions can be addressed in AD cohort. 

Moreover, data about psoriasis are important and of good quality while similar analyses 

should be applied to decipher psoriasis heterogeneity. That is probably what I would have 

done if I have had encouraging feedback on the AD side, as an early first publication. 

Moreover, classifying is now a new pilar of the team activity. We are now part of an 

important European consensus whose aim is to classify inflammatory disorders. I hope that 

this work has started a good momentum in this direction. 

 

At the personal level 

 

Independently to the global context, that has been hard for every human being in the past 

year, and has darkened this second half of the thesis, the main challenge for me was to take 

possession of the omics culture while bringing it to my medical culture. 

 I do not pretend to become an expert in data analysis. But I have lost a part of my 

inferiority complex when I apprehend a medical research paper that deals with omics data. I 

discovered an open-minded research spirit, more collaborative and transparent than clinical 

research. I collaborated with passionate and rigorous data scientists that shared their 

expertise with me for this thesis but also in parallel projects (such as Data for Good). I did not 

become a data physician, I don’t know if this even exists, but I feel I can be at the interface 

between both cultures, to be able to participate in medical research projects based on 

complex data.  



 149 

 

 

 

 

 

 

BIBLIOGRAPHY 

  



 150 

1. Tirosh, I., Bilu, Y. & Barkai, N. Comparative biology: beyond sequence analysis. 
Current Opinion in Biotechnology 18, 371–377 (2007). 
2. World Health Organization. International Classification of Diseases 11th Revision. 
3. Loscalzo, J., Kohane, I. & Barabasi, A. Human disease classification in the postgenomic 
era: A complex systems approach to human pathobiology. Mol Syst Biol 3, 124 (2007). 
4. Beatson, G. Tn the Treatment of Inoperable Cases of Carcinoma of the Mamma: 
Suggestions for a New Method of Treatment, with Illustrative Cases. Trans Med Chir Soc 

Edinb 15, 153–179 (1896). 
5. McGuire, W. L. & Chamness, G. C. Studies on the estrogen receptor in breast cancer. 
Adv Exp Med Biol 36, 113–136 (1973). 
6. Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with 
amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987). 
7. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor 
subclasses with clinical implications. Proceedings of the National Academy of Sciences 98, 
10869–10874 (2001). 
8. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–
752 (2000). 
9. Domagala, P., Huzarski, T., Lubinski, J., Gugala, K. & Domagala, W. PARP-1 expression 
in breast cancer including BRCA1-associated, triple negative and basal-like tumors: possible 
implications for PARP-1 inhibitor therapy. Breast Cancer Res Treat 127, 861–869 (2011). 
10. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in 
breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002). 
11. Cardoso, F. et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage 
Breast Cancer. N. Engl. J. Med. 375, 717–729 (2016). 
12. Langan, S. M., Irvine, A. D. & Weidinger, S. Atopic dermatitis. The Lancet 396, 345–
360 (2020). 
13. Weidinger, S., Beck, L. A., Bieber, T., Kabashima, K. & Irvine, A. D. Atopic dermatitis. 
Nat Rev Dis Primers 4, 1 (2018). 
14. Weidinger, S. & Novak, N. Atopic dermatitis. The Lancet 387, 1109–1122 (2016). 
15. Silverberg, N. B. Typical and atypical clinical appearance of atopic dermatitis. Clin. 

Dermatol. 35, 354–359 (2017). 
16. Silverberg, J. I. et al. Phenotypical Differences of Childhood- and Adult-Onset Atopic 
Dermatitis. The Journal of Allergy and Clinical Immunology: In Practice 6, 1306–1312 (2018). 
17. Silverberg, J. I. Comorbidities and the impact of atopic dermatitis. Annals of Allergy, 

Asthma & Immunology 123, 144–151 (2019). 
18. Yew, Y. W., Thyssen, J. P. & Silverberg, J. I. A systematic review and meta-analysis of 
the regional and age-related differences in atopic dermatitis clinical characteristics. J Am 

Acad Dermatol 80, 390–401 (2019). 
19. Stefanovic, N., Flohr, C. & Irvine, A. D. The exposome in atopic dermatitis. Allergy 75, 
63–74 (2020). 
20. Carmi-Levy, I., Homey, B. & Soumelis, V. A modular view of cytokine networks in 
atopic dermatitis. Clin Rev Allergy Immunol 41, 245–253 (2011). 
21. Szabó, K. et al. Expansion of circulating follicular T helper cells associates with disease 
severity in childhood atopic dermatitis. Immunology Letters 189, 101–108 (2017). 
22. Kim, B. E. & Leung, D. Y. M. Significance of Skin Barrier Dysfunction in Atopic 
Dermatitis. Allergy Asthma Immunol Res 10, 207–215 (2018). 
23. Hogan, M. B., Peele, K. & Wilson, N. W. Skin barrier function and its importance at 



 151 

the start of the atopic march. J Allergy (Cairo) 2012, 901940 (2012). 
24. Somanunt, S., Chinratanapisit, S., Pacharn, P., Visitsunthorn, N. & Jirapongsananuruk, 
O. The natural history of atopic dermatitis and its association with Atopic March. Asian Pac J 

Allergy Immunol 35, 137–143 (2017). 
25. Johansson, S. G. et al. A revised nomenclature for allergy. An EAACI position 
statement from the EAACI nomenclature task force. Allergy 56, 813–824 (2001). 
26. Reinhold, U., Kukel, S., Goeden, B., Neumann, U. & Kreysel, H. W. Functional 
characterization of skin-infiltrating lymphocytes in atopic dermatitis. Clinical & Experimental 

Immunology 86, 444–448 (1991). 
27. Wüthrich, B. Atopic neurodermatitis. Wien Med Wochenschr 139, 156–165 (1989). 
28. Czarnowicki, T., He, H., Krueger, J. G. & Guttman-Yassky, E. Atopic dermatitis 
endotypes and implications for targeted therapeutics. Journal of Allergy and Clinical 

Immunology 143, 1–11 (2019). 
29. Gooderham, M. J., Hong, H. C., Eshtiaghi, P. & Papp, K. A. Dupilumab: A review of its 
use in the treatment of atopic dermatitis. Journal of the American Academy of Dermatology 
78, S28–S36 (2018). 
30. Haute Autorité de Santé. Comission de transparence avant acceptation de mise sur le 
marché du Baricitinim. (2021). 
31. Ewald, D. A. et al. Meta-analysis derived atopic dermatitis (MADAD) transcriptome 
defines a robust AD signature highlighting the involvement of atherosclerosis and lipid 
metabolism pathways. BMC Medical Genomics 8, (2015). 
32. Ghosh, D. et al. Multiple Transcriptome Data Analysis Reveals Biologically Relevant 
Atopic Dermatitis Signature Genes and Pathways. PLOS ONE 10, e0144316 (2015). 
33. Thijs, J. L. et al. Moving toward endotypes in atopic dermatitis: Identification of 
patient clusters based on serum biomarker analysis. Journal of Allergy and Clinical 

Immunology 140, 730–737 (2017). 
34. Bakker, D. S. et al. Confirmation of multiple endotypes in atopic dermatitis based on 
serum biomarkers. Journal of Allergy and Clinical Immunology S0091674920308010 (2020) 
doi:10.1016/j.jaci.2020.04.062. 
35. Fyhrquist, N. et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat 

Commun 10, 4703 (2019). 
36. Ottman, N. et al. Microbial and transcriptional differences elucidate atopic dermatitis 
heterogeneity across skin sites. Allergy all.14606 (2020) doi:10.1111/all.14606. 
37. Hanifin, J.M., R., G. Diagnostic Features of Atopic Dermatitis. Acta Derm. Venereol. 
(1980). 
38. Guttman-Yassky, E. et al. Dupilumab progressively improves systemic and cutaneous 
abnormalities in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology 
143, 155–172 (2019). 
39. Dawn, A. et al. Itch characteristics in atopic dermatitis: results of a web-based 
questionnaire. Br J Dermatol 160, 642–644 (2009). 
40. Schmitt, J. et al. Usage and effectiveness of systemic treatments in adults with severe 
atopic eczema: First results of the German Atopic Eczema Registry TREATgermany. J Dtsch 

Dermatol Ges 15, 49–59 (2017). 
41. Pereira, M. P. & Ständer, S. Assessment of severity and burden of pruritus. Allergol 

Int 66, 3–7 (2017). 
42. Mollanazar, N. K., Smith, P. K. & Yosipovitch, G. Mediators of Chronic Pruritus in 
Atopic Dermatitis: Getting the Itch Out? Clinic Rev Allerg Immunol 51, 263–292 (2016). 



 152 

43. Cevikbas, F. & Lerner, E. A. Physiology and Pathophysiology of Itch. Physiol Rev 100, 
945–982 (2020). 
44. Tenenhaus, Michel. La régression PLS: théorie et pratique. (1998). 
45. Chassagnon, G. et al. AI-driven quantification, staging and outcome prediction of 
COVID-19 pneumonia. Med Image Anal 67, 101860 (2021). 
46. Battistella, E. et al. Cancer Gene Profiling through Unsupervised Discovery. 
arXiv:2102.07713 [cs, q-bio] (2021). 
47. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management 
and stewardship. Sci Data 3, 160018 (2016). 
48. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res 30, 207–210 (2002). 
49. Woo, E. J. & Moro, P. L. Postmarketing safety surveillance of quadrivalent 
recombinant influenza vaccine: Reports to the vaccine adverse event reporting system. 
Vaccine 39, 1812–1817 (2021). 
50. Liang, J. et al. Positive biodiversity-productivity relationship predominant in global 
forests. Science 354, aaf8957–aaf8957 (2016). 
51. Christodoulou, E. et al. A systematic review shows no performance benefit of 
machine learning over logistic regression for clinical prediction models. Journal of Clinical 

Epidemiology 110, 12–22 (2019). 
52. Oramas, S., Barbieri, F., Nieto, O. & Serra, X. Multimodal Deep Learning for Music 
Genre Classification. Transactions of the International Society for Music Information Retrieval 
1, 4–21 (2018). 
53. Rouhan, G. & Gaudeul, M. Plant Taxonomy: A Historical Perspective, Current 
Challenges, and Perspectives. Methods Mol Biol 2222, 1–38 (2021). 
54. American Psychiatric Association. Diagnostic and statistical manual of mental 
disorders (5th ed.). (2013). 
55. Wakefield, J. C. Diagnostic Issues and Controversies in DSM-5: Return of the False 
Positives Problem. Annu Rev Clin Psychol 12, 105–132 (2016). 
56. Ozen, S. et al. EULAR/PRINTO/PRES criteria for Henoch-Schonlein purpura, childhood 
polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: 
Ankara 2008. Part II: Final classification criteria. Annals of the Rheumatic Diseases 69, 798–
806 (2010). 
57. Ranson, J. H. Etiological and prognostic factors in human acute pancreatitis: a review. 
Am J Gastroenterol 77, 633–638 (1982). 
58. Harbeck, N. & Gnant, M. Breast cancer. Lancet 389, 1134–1150 (2017). 
59. Szymiczek, A., Lone, A. & Akbari, M. R. Molecular intrinsic versus clinical subtyping in 
breast cancer: A comprehensive review. Clin Genet 99, 613–637 (2021). 
60. Kristensen, V. N. et al. Principles and methods of integrative genomic analyses in 
cancer. Nat Rev Cancer 14, 299–313 (2014). 
61. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic 
subtype of breast cancer. Breast Cancer Res 12, R68 (2010). 
62. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 
tumours. Nature 490, 61–70 (2012). 
63. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy 
and hormonal therapy for early breast cancer on recurrence and 15-year survival: an 
overview of the randomised trials. Lancet 365, 1687–1717 (2005). 
64. Pegram, M. D. et al. Phase II study of receptor-enhanced chemosensitivity using 



 153 

recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients 
with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy 
treatment. JCO 16, 2659–2671 (1998). 
65. Brunner, P. M. & Guttman-Yassky, E. Racial differences in atopic dermatitis. Annals of 

Allergy, Asthma & Immunology 122, 449–455 (2019). 
66. Palmer, C. N. A. et al. Common loss-of-function variants of the epidermal barrier 
protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genetics 38, 
441–446 (2006). 
67. Liang, Y., Chang, C. & Lu, Q. The Genetics and Epigenetics of Atopic Dermatitis—
Filaggrin and Other Polymorphisms. Clinical Reviews in Allergy & Immunology 51, 315–328 
(2016). 
68. Lyons, J. J. & Milner, J. D. Primary atopic disorders. Journal of Experimental Medicine 
215, 1009–1022 (2018). 
69. Paller, A. S., Spergel, J. M., Mina-Osorio, P. & Irvine, A. D. The atopic march and 
atopic multimorbidity: Many trajectories, many pathways. J Allergy Clin Immunol 143, 46–55 
(2019). 
70. Carlsten, C. et al. Atopic dermatitis in a high-risk cohort: natural history, associated 
allergic outcomes, and risk factors. Ann Allergy Asthma Immunol 110, 24–28 (2013). 
71. Schmitt, J. et al. Atopic dermatitis is associated with an increased risk for rheumatoid 
arthritis and inflammatory bowel disease, and a decreased risk for type 1 diabetes. J. Allergy 

Clin. Immunol. 137, 130–136 (2016). 
72. Lötvall, J. et al. Asthma endotypes: A new approach to classification of disease 
entities within the asthma syndrome. Journal of Allergy and Clinical Immunology 127, 355–
360 (2011). 
73. Östling, J. et al. IL-17–high asthma with features of a psoriasis immunophenotype. 
Journal of Allergy and Clinical Immunology 144, 1198–1213 (2019). 
74. Ardern-Jones, M. R. Characterisation of atopic dermatitis (AD) endotypes and novel 
treatment targets: towards a molecular classification. Experimental Dermatology 27, 433–
434 (2018). 
75. Ungar, B. et al. Phase 2 randomized, double-blind study of IL-17 targeting with 
secukinumab in atopic dermatitis. Journal of Allergy and Clinical Immunology 147, 394–397 
(2021). 
76. Agache, I. et al. EAACI Biologicals Guidelines - dupilumab for children and adults with 
moderate-to-severe atopic dermatitis. Allergy (2020) doi:10.1111/all.14690. 
77. Klasa, B. & Cichocka-Jarosz, E. Atopic Dermatitis - Current State of Research on 
Biological Treatment. J Mother Child 24, 53–66 (2020). 
78. Wu, J. & Guttman-Yassky, E. Efficacy of biologics in atopic dermatitis. Expert Opin Biol 

Ther 20, 525–538 (2020). 
79. European Task Force on Atopic Dermatitis. Severity scoring of atopic dermatitis: the 
SCORAD index. Consensus Report of the European Task Force on Atopic Dermatitis. 
Dermatology (Basel) 186, 23–31 (1993). 
80. Deckers, I. A. G. et al. Investigating International Time Trends in the Incidence and 
Prevalence of Atopic Eczema 1990–2010: A Systematic Review of Epidemiological Studies. 
PLoS ONE 7, 28 (2012). 
81. Barbarot, S. et al. Epidemiology of atopic dermatitis in adults: Results from an 
international survey. Allergy (2018) doi:10.1111/all.13401. 
82. D’Erme, A. M. et al. IL-36γ (IL-1F9) is a biomarker for psoriasis skin lesions. J. Invest. 



 154 

Dermatol. 135, 1025–1032 (2015). 
83. Miura, S. et al. IL-36 and IL-17A Cooperatively Induce a Psoriasis-like Gene Expression 
Response in Human Keratinocytes. J Invest Dermatol (2021) doi:10.1016/j.jid.2021.01.019. 
84. Guttman-Yassky, E. et al. Use of Tape Strips to Detect Immune and Barrier 
Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. JAMA Dermatol 
155, 1358 (2019). 
85. Li, W. et al. IL-37 is protective in allergic contact dermatitis through mast cell 
inhibition. International Immunopharmacology 83, 106476 (2020). 
86. Guillonneau, C., Bézie, S. & Anegon, I. Immunoregulatory properties of the cytokine 
IL-34. Cell. Mol. Life Sci. 74, 2569–2586 (2017). 
87. Russell, C. D. & Baillie, J. K. Treatable traits and therapeutic targets: Goals for systems 
biology in infectious disease. Current Opinion in Systems Biology 2, 140–146 (2017). 
88. Thijs, J. L., de Bruin-Weller, M. S. & Hijnen, D. Current and Future Biomarkers in 
Atopic Dermatitis. Immunology and Allergy Clinics of North America 37, 51–61 (2017). 
89. Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus 
(GEO) and BioConductor. Bioinformatics 23, 1846–1847 (2007). 
90. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. The KEGG databases at 
GenomeNet. Nucleic Acids Res. 30, 42–46 (2002). 
91. Shannon, P. Cytoscape: A Software Environment for Integrated Models of 
Biomolecular Interaction Networks. Genome Research 13, 2498–2504 (2003). 
92. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene 
ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009). 
93. Alarcón-Riquelme, M. E. New Attempts to Define and Clarify Lupus. Curr Rheumatol 

Rep 21, 11 (2019). 
94. He, H. et al. Tape strips detect distinct immune and barrier profiles in atopic 
dermatitis and psoriasis. Journal of Allergy and Clinical Immunology S0091674920308241 
(2020) doi:10.1016/j.jaci.2020.05.048. 
95. Toro-Dom, D. & Carmona-S, P. Stratification of Systemic Lupus Erythematosus 
Patients Into Three Groups of Disease Activity Progression According to Longitudinal Gene 
Expression. 11. 
96. Tsoi, L. C. et al. Atopic Dermatitis Is an IL-13–Dominant Disease with Greater 
Molecular Heterogeneity Compared to Psoriasis. Journal of Investigative Dermatology 139, 
1480–1489 (2019). 
97. Esaki, H. et al. Identification of novel immune and barrier genes in atopic dermatitis 
by means of laser capture microdissection. Journal of Allergy and Clinical Immunology 135, 
153–163 (2015). 
98. Hira, Z. M. & Gillies, D. F. A Review of Feature Selection and Feature Extraction 
Methods Applied on Microarray Data. Advances in Bioinformatics 13. 
99. Dozmorov, I. Hypervariable genes--experimental error or hidden dynamics. Nucleic 

Acids Research 32, e147–e147 (2004). 
100. Thijs, J. L. et al. Serum biomarker profiles suggest that atopic dermatitis is a systemic 
disease. Journal of Allergy and Clinical Immunology 141, 1523–1526 (2018). 
101. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood. 
Nat Genet 46, 430–437 (2014). 
102. Wang, L., Quan, Y., Yue, Y., Heng, X. & Che, F. Interleukin-37: A crucial cytokine with 
multiple roles in disease and potentially clinical therapy (Review). Oncol Lett (2018) 
doi:10.3892/ol.2018.7982. 



 155 

103. Guttman-Yassky, E. et al. Broad defects in epidermal cornification in atopic dermatitis 
identified through genomic analysis. Journal of Allergy and Clinical Immunology 124, 1235-
1244.e58 (2009). 
104. Li, J., Chen, X., Liu, Z., Yue, Q. & Liu, H. Expression of Th17 cytokines in skin lesions of 
patients with psoriasis. J Huazhong Univ Sci Technolog Med Sci 27, 330–332 (2007). 
105. Guttman-Yassky, E. et al. Low Expression of the IL-23/Th17 Pathway in Atopic 
Dermatitis Compared to Psoriasis. J Immunol 181, 7420–7427 (2008). 
106. Suárez-Fariñas, M. et al. Intrinsic atopic dermatitis shows similar TH2 and higher 
TH17 immune activation compared with extrinsic atopic dermatitis. Journal of Allergy and 

Clinical Immunology 132, 361–370 (2013). 
107. Sugaya, M. The Role of Th17-Related Cytokines in Atopic Dermatitis. IJMS 21, 1314 
(2020). 
108. Akiyama, M., Takeichi, T., McGrath, J. A. & Sugiura, K. Autoinflammatory 
keratinization diseases. J. Allergy Clin. Immunol. 140, 1545–1547 (2017). 
109. Patrick, G. J. et al. Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE 
production and ensuing allergic disease. J Clin Invest 131, (2021). 
110. Suárez-Fariñas, M. et al. RNA sequencing atopic dermatitis transcriptome profiling 
provides insights into novel disease mechanisms with potential therapeutic implications. 
Journal of Allergy and Clinical Immunology 135, 1218–1227 (2015). 
111. Hulshof, L. et al. A minimally invasive tool to study immune response and skin barrier 
in children with atopic dermatitis. Br J Dermatol 180, 621–630 (2019). 
112. He, H. et al. Single-cell transcriptome analysis of human skin identifies novel 
fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. Journal of 

Allergy and Clinical Immunology 145, 1615–1628 (2020). 
113. Rojahn, T. B. et al. Single-cell transcriptomics combined with interstitial fluid 
proteomics defines cell type–specific immune regulation in atopic dermatitis. Journal of 

Allergy and Clinical Immunology S009167492030556X (2020) doi:10.1016/j.jaci.2020.03.041. 
114. Bangert, C. et al. Persistence of mature dendritic cells, TH2A, and Tc2 cells 
characterize clinically resolved atopic dermatitis under IL-4Rα blockade. Sci Immunol 6, 
(2021). 
115. Kalinina, P. et al. The Whey Acidic Protein WFDC12 Is Specifically Expressed in 
Terminally Differentiated Keratinocytes and Regulates Epidermal Serine Protease Activity. J 
Invest Dermatol (2020) doi:10.1016/j.jid.2020.09.025. 
116. Ständer, S. et al. Clinical classification of itch: a position paper of the International 
Forum for the Study of Itch. Acta Derm Venereol 87, 291–294 (2007). 
117. Bao, L. et al. A molecular mechanism for IL-4 suppression of loricrin transcription in 
epidermal keratinocytes: implication for atopic dermatitis pathogenesis. Innate Immun 23, 
641–647 (2017). 
118. Gutowska-Owsiak, D., Schaupp, A. L., Salimi, M., Taylor, S. & Ogg, G. S. Interleukin-22 
downregulates filaggrin expression and affects expression of profilaggrin processing 
enzymes. Br J Dermatol 165, 492–498 (2011). 
119. Pincelli, C. et al. Neuropeptides in skin from patients with atopic dermatitis: an 
immunohistochemical study. Br J Dermatol 122, 745–750 (1990). 
120. Andersen, H. H., Elberling, J., Sølvsten, H., Yosipovitch, G. & Arendt-Nielsen, L. 
Nonhistaminergic and mechanical itch sensitization in atopic dermatitis. Pain 158, 1780–
1791 (2017). 
121. Ruzicka, T. et al. Anti–Interleukin-31 Receptor A Antibody for Atopic Dermatitis. New 



 156 

England Journal of Medicine 376, 826–835 (2017). 
122. Kabashima, K., Matsumura, T., Komazaki, H. & Kawashima, M. Trial of Nemolizumab 
and Topical Agents for Atopic Dermatitis with Pruritus. N Engl J Med 383, 141–150 (2020). 
123. Cowan, A., Kehner, G. B. & Inan, S. Targeting Itch with Ligands Selective for κ Opioid 
Receptors. Handb Exp Pharmacol 226, 291–314 (2015). 
124. Golpanian, R. S. & Yosipovitch, G. Current and emerging systemic treatments 
targeting the neural system for chronic pruritus. Expert Opin Pharmacother 21, 1629–1636 
(2020). 
125. Pavel, A. B. et al. Oral Janus kinase/SYK inhibition (ASN002) suppresses inflammation 
and improves epidermal barrier markers in patients with atopic dermatitis. Journal of Allergy 

and Clinical Immunology 144, 1011–1024 (2019). 
126. Bissonnette, R. et al. Crisaborole and atopic dermatitis skin biomarkers: An 
intrapatient randomized trial. Journal of Allergy and Clinical Immunology 144, 1274–1289 
(2019). 
127. Lê Cao, K.-A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: biologically 
relevant feature selection and graphical displays for multiclass problems. BMC 

Bioinformatics 12, 253 (2011). 
128. Chen, Y. et al. Role of ERK1/2 activation on itch sensation induced by bradykinin B1 
activation in inflamed skin. Exp Ther Med 12, 627–632 (2016). 
129. Yeom, M. et al. Atopic dermatitis induces anxiety- and depressive-like behaviors with 
concomitant neuronal adaptations in brain reward circuits in mice. Progress in Neuro-

Psychopharmacology and Biological Psychiatry 98, 109818 (2020). 
130. Vollono, L. et al. Potential of Curcumin in Skin Disorders. Nutrients 11, (2019). 
131. Blue, R. E., Curry, E. G., Engels, N. M., Lee, E. Y. & Giudice, J. How alternative splicing 
affects membrane-trafficking dynamics. J Cell Sci 131, (2018). 
132. Hou, Y. & Witman, G. B. The N-terminus of IFT46 mediates intraflagellar transport of 
outer arm dynein and its cargo-adaptor ODA16. Mol Biol Cell 28, 2420–2433 (2017). 
133. Gharib, K., Mostafa, A. & Elsayed, A. Evaluation of Botulinum Toxin Type A Injection 
in the Treatment of Localized Chronic Pruritus. J Clin Aesthet Dermatol 13, 12–17 (2020). 
134. Chen, L. & Zhong, J. L. MicroRNA and heme oxygenase-1 in allergic disease. Int 

Immunopharmacol 80, 106132 (2020). 
135. Casares, L. et al. Cannabidiol induces antioxidant pathways in keratinocytes by 
targeting BACH1. Redox Biol 28, 101321 (2020). 
136. Robinson, M. D. & Speed, T. P. A comparison of Affymetrix gene expression arrays. 
BMC Bioinformatics 8, 449 (2007). 
137. Storck, M. et al. Pruritus Intensity Scales across Europe: a prospective validation 
study. J Eur Acad Dermatol Venereol jdv.17111 (2021) doi:10.1111/jdv.17111. 
138. Smith, M. P. et al. Emerging Methods to Objectively Assess Pruritus in Atopic 
Dermatitis. Dermatol Ther (Heidelb) 9, 407–420 (2019). 
139. Guimarães, P., Batista, A., Zieger, M., Kaatz, M. & Koenig, K. Artificial Intelligence in 
Multiphoton Tomography: Atopic Dermatitis Diagnosis. Sci Rep 10, 7968 (2020). 
140. Holm, J. G. et al. Immunoinflammatory Biomarkers in Serum Are Associated with 
Disease Severity in Atopic Dermatitis. Dermatology 1–8 (2021) doi:10.1159/000514503. 
141. Jurakic Toncic, R. et al. Stratum corneum markers of innate and T helper cell-related 
immunity and their relation to the disease severity in Croatian patients with atopic 
dermatitis. J Eur Acad Dermatol Venereol (2021) doi:10.1111/jdv.17132. 
142. Hurault, G., Domínguez-Hüttinger, E., Langan, S. M., Williams, H. C. & Tanaka, R. J. 



 157 

Personalized prediction of daily eczema severity scores using a mechanistic machine learning 
model. Clin Exp Allergy 50, 1258–1266 (2020). 
143. Liesecke, F. et al. Ranking genome-wide correlation measurements improves 
microarray and RNA-seq based global and targeted co-expression networks. Sci Rep 8, 10885 
(2018). 
144. Rajula, H. S. R., Verlato, G., Manchia, M., Antonucci, N. & Fanos, V. Comparison of 
Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug 
Development, and Treatment. Medicina 56, 455 (2020). 
145. Arcadu, F. et al. Deep learning algorithm predicts diabetic retinopathy progression in 
individual patients. npj Digit. Med. 2, 92 (2019). 
146. Deans, A. R. et al. Finding our way through phenotypes. PLoS Biol 13, e1002033 
(2015). 
147. Kato, G. J., Gladwin, M. T. & Steinberg, M. H. Deconstructing sickle cell disease: 
reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 
21, 37–47 (2007). 
148. Renert-Yuval, Y. et al. The molecular features of normal and atopic dermatitis skin in 
infants, children, adolescents, and adults. J Allergy Clin Immunol (2021) 
doi:10.1016/j.jaci.2021.01.001. 
149. Kosolapoff, G. M. Basis for scientific terminology and classification. Science 101, 89–
90 (1945). 
150. Popkin, G. Data sharing and how it can benefit your scientific career. Nature 569, 
445–447 (2019). 
151. Longo, D. L. & Drazen, J. M. Data Sharing. N Engl J Med 374, 276–277 (2016). 
152. Conesa, A. & Beck, S. Making multi-omics data accessible to researchers. Sci Data 6, 
251 (2019). 
153. Cosgriff, C. V., Ebner, D. K. & Celi, L. A. Data sharing in the era of COVID-19. Lancet 

Digit Health 2, e224 (2020). 
154. Wehbe, S. et al. COVID-19 in the Middle East and North Africa region: an urgent call 
for reliable, disaggregated and openly shared data. BMJ Glob Health 6, (2021). 
155. Weber, G. M. et al. International Comparisons of Harmonized Laboratory Value 
Trajectories to Predict Severe COVID-19: Leveraging the 4CE Collaborative Across 342 
Hospitals and 6 Countries: A Retrospective Cohort Study. medRxiv (2021) 
doi:10.1101/2020.12.16.20247684. 
156. Ning, W. et al. Open resource of clinical data from patients with pneumonia for the 
prediction of COVID-19 outcomes via deep learning. Nat Biomed Eng 4, 1197–1207 (2020). 
157. Milham, M. P. et al. Assessment of the impact of shared brain imaging data on the 
scientific literature. Nat Commun 9, 2818 (2018). 
158. Loke, S. Y. & Lee, A. S. G. The future of blood-based biomarkers for the early 
detection of breast cancer. Eur J Cancer 92, 54–68 (2018). 
159. Guttman-Yassky, E. et al. Molecular signatures order the potency of topically applied 
anti-inflammatory drugs in patients with atopic dermatitis. Journal of Allergy and Clinical 

Immunology 140, 1032-1042.e13 (2017). 
160. Brunner, P. M. et al. Baseline IL-22 expression in patients with atopic dermatitis 
stratifies tissue responses to fezakinumab. Journal of Allergy and Clinical Immunology 143, 
142–154 (2019). 
161. Nakahara, T. et al. Exploration of biomarkers to predict clinical improvement of 
atopic dermatitis in patients treated with dupilumab: A study protocol. Medicine (Baltimore) 



 158 

99, e22043 (2020). 
162. Patrick, M. T. et al. Drug Repurposing Prediction for Immune-Mediated Cutaneous 
Diseases using a Word-Embedding–Based Machine Learning Approach. Journal of 

Investigative Dermatology 139, 683–691 (2019). 
163. Hand, D. J. Classifier Technology and the Illusion of Progress. Statist. Sci. 21, (2006). 
164. Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, 
and strategies for success. npj Digit. Med. 3, 17 (2020). 
165. Jayatilake, S. M. D. A. C. & Ganegoda, G. U. Involvement of Machine Learning Tools in 
Healthcare Decision Making. Journal of Healthcare Engineering 2021, 1–20 (2021). 
  
  



 159 

 

 

 

 

 

 

APPENDICES  



 160 

Annex 1 : eCRF AD MAARS 
 

 

Patient Initials                              Patient ID                                                    

 

MAARS, 16th February, 2012 Version 1.1 

 
1 

Date of Visit  

 

 

 

CASE REPORT 

FORM 

(Atopic Eczema) 
MAARS: Microbes in Allergy and 

Autoimmunity Related to the Skin 

  

 
Principal Investigator  
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Patient Initials                              Patient ID                                                    

 

MAARS, 16th February, 2012 Version 1.1 

 
2 

INCLUSION CRITERIA 

If the answer is NO to any of these questions then the patient is to be excluded from the study. 
 

                                                                                        YES   NO 

Written informed consent 
 

³ 18 years old  

 

 

Patients with Atopic Dermatitis, diagnosed using Hanifin-Rajka  

Criteria 

 

 

 
EXCLUSION CRITERIA 

If the answer is YES to any of these questions then the patient is to be excluded from the study. 

 
                                           Yes         No 

Patient unable to give written informed consent 

 
Patient has no allergen-specific IgE  

and  

no allergen-specific immediate type reactions 

 
 

Patients who have received treatment at the biopsy site at least 

2 weeks prior to screening 
 

 

Patients who have received systemic antibiotics within the  

previous 4 weeks prior to screening 
 

Patients who have received systemic immunosupressive therapy  

within the previous 12 weeks prior to screening 
 

Patients who have received systemic biologic agents within the  

previous 12 weeks prior to screening 
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Patient Initials                              Patient ID                                                    

 

MAARS, 16th February, 2012 Version 1.1 

 
3 

Diagnostic & Phenotypic Data  

ATOPIC DERMATITIS 

Anamnesis sheet 

 

 

Name  ................................................... 

Date of birth ................................................... 

Address ................................................... 

ID-No.* AD ................................................... 

  Male   � Female    � 

 

Ethnicity/Family History 

Ethnicity:  § White  § Black - African § Black - Caribbean  § Black - Other §  Indian  §  Bangladeshi  § Chinese  

§ Asian - Other   §  Other                              If Other, Please Specify: _________________________ 

Family History of atopic diseases: q Yes    q No     q Unknown    If Yes, Please Specify  (1st relative 

only)_____________                                                    

Known Allergies:       q Yes    q No      q Unknown    If Yes, Please Specify:          

.....................................................................................................................................................................................

.....................................................................................................................................................................................                                       

Hanifin and Rajka diagnostic criteria
 
  No Yes 

1. Pruritus (major)  � � 

2. Typical morphology and distribution  � � 

3. Chronic or chronically-relapsing dermatitis  � � 

4. White dermographismus   � � 

5. Xerosis  � � 

6.Palmar hyperlinearity/ Keratosis pilaris  � � 

7. Immediate (type 1) skin-test reactivity  � � 

 (specify if possible)  � � 

 Grass polls  � � 

 Birch polls  � � 

 Ragweed  � � 

 Dermatophagoides pteronissimus  � � 

 Dermatophagoides farinae  � � 

 Dog  � � 

 Cat  � � 

 Total IgE (IU/ml)     

 a) 150 IU/ml < x < 400 IU/ml  � � 

 b) >400 IU/ml   � � 

8. Raised serum IgE  � � 

9. Early age of onset    

10. ECP measurement [ug/ml]    

11. Tendency toward cutaneous infections or 
impaired cell-mediated immunity 

 � � 

Staphylococcus aureus  � � 

Viral:  HSV  � � 

HPV  � � 

12. Tendency toward non-specific hand or foot 
dermatitis 

 � � 

13. Nipple eczema   � � 

14. Intolerance to:  � � 

 wool  � � 

 lipid solvents  � � 

15. Cheilitis  � � 

16. Food intolerance  � � 

17. Recurrent conjunctivitis   � � 

18. Dennie-Morgan infraorbital fold  � � 

19. Keratoconus  � � 

20. Anterior subcapsular cataracts  � � 

 

     

21. Orbital darkening  � � 

22. Facial pallor/erythema  � � 

23. Pityriasis alba   � � 

24. Anterior neck folds  � � 

25. Itch when sweating  � � 

26. Perifollicular accentuation  � � 

27. Course influence by enviromental  
      or emotional factors 

 � � 

28. Responsiveness to    

 Glucocorticosteroids  � � 

 Topical steroids  � � 

 Systemic cyclosporin  � � 

29.) Concurrent diseases  � � 

30.) Specify if yes:  
 
 
 

 
 
 

 
31.) Additional medication   � � 

32.) Specify if yes:  
 
 
 
 

 
 

 

*The identification number contains: 

- Two digit code for the disease (AD=atopic dermatitis) 

- The date of the biopsy in YYMMDD-format 

- A two digit consecutive number 

- Two digits for the initials of the patient 

- One digit for indentification of the Center (D: Düsseldorf; H: 

Helsinki; L: London) 

- One digit for additional biopsies. Should be 0 for a patient with 

one biopsy and leaves room for up to 10 biopsies per patient. 

 

Identification numbers must be unique  



 163 

 

 

Patient Initials                              Patient ID                                                    

 

MAARS, 16th February, 2012 Version 1.1 

 
4 

33. Personal or family history of atopy  � � 

 a) Personal history of:  � � 

  Allergic rhinitis   � � 

  Allergic conjunctivitis  � � 

  Bronchial asthma  � � 

 Urticaria   � � 

    

 
 
 

 
 
 

   food  � � 

   drug  � � 

                                other  � � 

  Contact allergy (nickel)  � � 

 
 

33 b) Family history Parents Children Siblings 

 Mother Father Boy Girl Brother Sister 

 Y N Y N Y N Y N Y N Y N 

Atopic dermatitis             

Allergic rhinitis             

Allergic conjunctivitis             

Asthma             

Urticaria             

 

 

 Atopic Dermatitis Treatment –  

 
 

Concomitant Medication- 

 

 

 

 

 

 

 

 

 

Other concurrent chronic diseases 

 

 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY Y/N 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

   DD/MM/YY Y/N DD/MM/YY 

End Date Ongoing  Start date Dose Freq Past treatment- including UV Responder 

End Date Ongoing  Start date Dose Freq Medication 
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MAARS, 16th February, 2012 Version 1.1 

 
5 

Smoking:       q Yes    q No       

 

 

Malignancies 

 
Skin cancers treated not treated 

 DD/MM/YY DD/MM/YY 

 DD/MM/YY DD/MM/YY 

 DD/MM/YY DD/MM/YY 

Other  DD/MM/YY DD/MM/YY 

 DD/MM/YY DD/MM/YY 

 DD/MM/YY DD/MM/YY 
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Patient Initials                              Patient ID                                                    

 

MAARS, 16th February, 2012 Version 1.1 

 
6 

SCORAD index 

  

 Institution:  ......................................... 

 Physician:  ......................................... 

 

 

 
 

A)Extend: Please state the areas involved 

 

........................................................................................................................ 
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B)  Intensity 

 

Erythema   Means of calculation 

Edema/Papulation   0 = absence 

Oozing/crusts   1 = mild 

Excoriation   2 = moderate 

Lichenification   3 = severe 

Dryness**    

**Dryness is evaluated on uninvolved areas 

 

C) Subjective symptoms: Pruritus and sleep loss 

 
Pruritus  (1-10):  ___  

     1........................................................................10 

Sleep loss  (1-10):  ___ 

(Visual analog scale average for the last 3 days or nights) 

 

Objective SCORAD A/5 + 7B/2   / 83 

 

SCORAD A/5 + 7B/2 + C    / 103 

 

Remarks: 

 ........................................................................................................................ 

........................................................................................................................ 

........................................................................................................................ 

........................................................................................................................ 
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LOCAL SCORAD 

  

 Institution:  ......................................... 

 Physician:  ......................................... 

 

 
 

A)Please state the areas used for sampling 

 

Lesional skin: ________________________________ 

 

 q Acute lesion (< 1 week)    q Chronic lesion (> 1 week)      q Unknown     
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Evidence of superinfection: 

a) clinical ___________________________________ 

b) microbiological (bacterial)____________________ 

c) microbiological (viral)_______________________ 

 
Non-lesional skin: _____________________________ 

 

 

B)  Intensity 

 

Erythema   Means of calculation 

Edema/Papulation   0 = absence 

Oozing/crusts   1 = mild 

Excoriation   2 = moderate 

Lichenification   3 = severe 

Dryness**    

**Dryness is evaluated on uninvolved areas 

  

 

Remarks: 

 ........................................................................................................................ 

........................................................................................................................ 

........................................................................................................................ 

........................................................................................................................ 

 

Clinical Assessment:      
 

 

Date of Assessment (DD/MM/YY) ____________ 

Atopic Dermatitis Patients: 

SCORAD Score:    ____________ 

LOCAL SCORAD Score:    ____________ 

 

 

Global Assessment Score 

 

Sample Collection:      

 

 Swipe sample 

 

 Site- Flexor  

Disease Type  Lesional Non-lesional Date DD/MM/YY 

AD    

 

 

     Biopsy 

 Site- Flexor  

Disease Type  Lesional Non-lesional Date DD/MM/YY 

AD    

 

 

Severe/ moderate-severe/ moderate/ mild/ almost clear/ clear 
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Blood sample collection:     Date: DD/MM/YY 

Heparinised blood sample for 

PBMC:   

YES  / NO   

Blood sample for genomic 

DNA:   

YES  / NO   

    

 

 

 

Photographs taken   YES / NO  Date: DD/MM/YY 
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Titre : Classifications transcriptomiques des dermatites inflammatoires : application à la dermatite atopique

Mots clés : dermatite atopique, transcriptome, endotype, prurit, statistique, apprentissage machine

Résumé :  La dermatite atopique (AD) est une 
maladie inflammatoire de la peau qui touche selon 
l’origine géographique jusqu’à 20% des enfants et 
5% des adultes. Elle est marquée par une forte 
hétérogénéité aussi bien clinique, biologique, qu’en 
terme de conséquence pour le patient. Cette 
variabilité interindividuelle est probablement liée à 
des mécanismes distincts qui pourraient être la cible 
de traitements personnalisés. Dans cette thèse, nous 
avons appliqué deux stratégies distinctes sur une 
importante cohorte transcriptomique issue du 
consortium MAARS, d’échantillons cutanés AD 
(n=82) et sains (n=213). 
1) L’approche non-supervisée, a permis 
l’identification de gènes hypervariables spécifiques 
de l’AD. A partir de ces gènes, quatre groupes de  

patients ont été constitués, caractérisés par des 
mécanismes biologiques et des présentations 
cliniques distinctes. L’existence de ces quatre 
endotypes a été validé sur une cohorte 
indépendante. 
2) L’approche supervisée s’est intéressée à
l’exploration du prurit, un symptôme de l’AD très
invalidant. En utilisant des approches innovantes
comme l’apprentissage machine, nous avons
identifié une signature génétique du prurit. Elle a
permis de prédire l’intensité du prurit avec une
précision importante et d’identifier de nouveaux
mécanismes.
Ces deux stratégies complémentaires ont tiré profit
de l’importance de la cohorte et de la technologie
utilisé permettant des découvertes originales, aussi
bien méthodologiques et biologiques.

Title : Inflammatory dermatitis transcriptomic classifications: application to atopic dermatitis 

Keywords : atopic dermatitis, transcriptomics, endotype, pruritus, statistics, machine learning 

Abstract : Atopic dermatitis (AD) is a frequent 
inflammatory dermatitis that concerns up to 5% of 
adults and 20% of children depending on their 
origins. It is a highly heterogeneous disease at the 
clinical and biological levels. Interindividual 
variabilities should underline distinct 
pathophysiological mechanisms that could be 
targeted by personalized therapeutics. In this thesis 
work, we applied two strategies to the largest 
transcriptomics cohort (MAARS Consortium). We 
used n=82 AD and n=213 healthy controls skin 
samples. 
1) The unsupervised approach identified AD hyper-
variable genes in comparison to healthy controls.
These genes were used to cluster patients into four

groups with distinct underlying mechanisms and 
clinical characterization. The exitance of four 
endotypes was then validated on an external 
cohort. 
2) The supervised approach focused on the
understanding of pruritus. This symptom takes an
important part in the AD burden. Combining
machine learning and statistical models, we
identified a pruritus genetic signature able to
accurately predict pruritus intensity and revealed
new mechanisms.
These complimentary strategies took advantage of
our large cohort and good quality data to reveal
original findings at the methodological and
biological levels.


