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Synthèse en Français

Ce travail a été mené au Laboratoire d’Imagerie Translationnelle en Oncologie (LITO) de
l’Institut Curie sous la supervision de Frédérique Frouin (directrice de thèse) et de Fanny Orlhac,
en collaboration avec le département de radiologie de l’Institut Curie et plus particulièrement
avec le Dr Caroline Malhaire, qui a recruté la cohorte de patientes et initié l’étude, le Dr Pia
Akl et le Dr Fatine Selhane. L’approche de segmentation automatique présentée au chapitre 7
a été réalisée en collaboration avec Michel Koole et Masoomeh Rahimpour de l’équipe “Nuclear
Medicine & Molecular Imaging” de l’Université KU Leuven (Belgique).

Le cancer du sein est le cancer le plus fréquent chez les femmes en France. Il est devenu
le cancer le plus diagnostiqué à l’échelle mondiale en 2020 avec près de 2,3 millions de cas
recensés [1]. Il s’agit d’une maladie très hétérogène, divisée en quatre sous-types moléculaires
(Luminal A, Luminal B, HER2+, Triple Négatif) qui ont des caractéristiques, des pronostics et
des réponses aux traitements différentes [2]. Administrée avant la chirurgie, la chimiothérapie
néoadjuvante (CNA) vise à diminuer la taille des tumeurs pour faciliter l’intervention chirur-
gicale et réduire le recours aux mastectomies [3, 4]. La CNA est devenue le traitement de
référence pour les cancers agressifs ou localement avancés. Elle est principalement prescrite
pour les cancers de type Luminal B, HER2+ ou Triple Négatif. Cependant, le taux de réponse
pathologique complète à la CNA dépend des sous-types moléculaires et est globalement de 20
à 30% [5, 6]. Avec le développement de la médecine personnalisée, l’intérêt pour la prédiction
précoce de la réponse pathologique complète à la CNA s’est développé. Identifier les patientes
qui ne répondraient pas à la chimiothérapie avant le début du traitement constituerait une
avancée majeure dans leur prise en charge. Les patientes identifiées comme mauvaises répon-
deuses pourraient être orientées plus rapidement vers d’autres thérapies ce qui leur éviterait
les effets nocifs de la CNA sans retarder leur prise en charge thérapeutique.

Notre hypothèse est que l’imagerie médicale donne accès à des informations complémen-
taires à celles fournies par la biopsie, qui vont contribuer à prédire la réponse pathologique
complète d’une tumeur avant ou en cours de traitement. L’imagerie in vivo permet d’évaluer de
manière non-invasive, à différents moments du traitement, la tumeur dans son ensemble ainsi
que son micro-environnement. L’intelligence artificielle a augmenté le potentiel de prédiction
de l’imagerie médicale, en considérant les images comme une masse importante de données.
Ainsi, la radiomique, une discipline récente, repose sur l’hypothèse que la morphologie et
l’hétérogénéité d’une tumeur, mesurées macroscopiquement, traduiraient ses caractéristiques
biologiques. En extrayant des indices de forme, des indices d’intensité et des indices de texture,
il serait donc possible de quantifier des informations difficilement appréciables visuellement et
de développer de nouveaux modèles de prédiction [7, 8].

L’IRM est la modalité d’imagerie médicale la plus usitée pour le suivi de la réponse à
la chimiothérapie néoadjuvante dans le cancer du sein [9, 10]. Mener des analyses quan-
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titatives en IRM soulève cependant plusieurs problèmes. Les images IRM sont sujettes à
un biais du champ magnétique, modifiant la distribution d’intensités de voxels similaires en
fonction de leur position dans le champ de vue, et à l’arbitraire des unités dans lesquelles
sont exprimées les intensités. Ces deux phénomènes rendent difficiles les comparaisons en-
tre différentes acquisitions effectuées sur un même appareil avec un paramétrage identique.
Par ailleurs, certains indices radiomiques sont dépendants des paramètres d’acquisition (type
d’imageur, antenne, séquences. . . ), effet que nous résumons sous le terme d’« effet scanner»
[11]. En conséquence, un modèle prédictif défini à partir d’indices issus d’images acquises
dans un premier centre d’imagerie risque d’avoir des performances dégradées en utilisant des
images d’un second centre d’imagerie.

Après avoir brièvement défini le contexte clinique de ce travail dans le chapitre 1, le chapitre
2 de cette thèse fait un état de l’art de la radiomique utilisant des indices prédéfinis (indices
de forme, issus de l’histogramme et/ou de texture) extraits des images, sous la forme d’un
schéma récapitulant les 8 étapes nécessaires pour mener de telles études (Figure 1).

Figure 1: Schéma récapitulatif des étapes d’une analyse radiomique.
Le chapitre propose ensuite une analyse critique de l’état de l’art des études radiomiques

utilisant l’IRM et s’intéressant à la prédiction précoce de la réponse à la CNA dans le cancer du
sein. De cette étude sont retenus 36 articles utilisant des indices prédéfinis et 11 études utilisant
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des méthodes d’apprentissage profond. Plusieurs enseignements se dégagent de l’analyse.
Tout d’abord, la prédiction de la réponse à partir des examens IRM est une question difficile
et d’une étude à l’autre, les conclusions varient sur l’intérêt des indices radiomiques extraits
des images acquises avant le début de la chimiothérapie pour prédire la réponse [12, 13],
sur l’utilité de combiner indices radiomiques et données cliniques et biologiques [12, 14], sur
la nature des séquences d’IRM à privilégier [12, 15] et sur la nécessité de développer des
modèles restreints à un sous-type moléculaire particulier [16]. Les questions de correction du
biais dans le champ magnétique, de normalisation des images et d’harmonisation des indices
radiomiques pour réduire l’effet scanner sont également peu discutées : moins de 15% des
études mentionnent ces sujets. Enfin, l’évaluation des modèles développés sur des bases de
données de test indépendantes et multicentriques reste rare (<14%). Pourtant ce point est
crucial pour mesurer la robustesse et la généralisation des modèles proposés.

L’objectif du travail de thèse est de prédire la réponse à la CNA à partir d’une base
multicentrique d’IRM mammaires acquises avant le début de la prise en charge thérapeutique,
tout en apportant des éléments de réponse aux problèmes de standardisation des données
d’imagerie et de généralisation des modèles radiomiques. Le travail a été réalisé sur des images
acquises classiquement suivant les protocoles cliniques, à savoir des images pondérées en T1
après injection de produit de contraste et des images pondérées en T2. Une cohorte de 136
patientes, ayant toutes été prises en charge pour leur thérapie à l’Institut Curie entre 2016 et
2020, a été constituée. Les patientes présentaient une tumeur à un stade avancé ou localement
agressive, nécessitant une chimiothérapie néoadjuvante. La base de données a été divisée en
un ensemble d’apprentissage de 103 patientes dont les images ont été acquises sur l’une des
trois machines de l’Institut Curie et d’un ensemble de test indépendant de 33 patientes dont
les images ont été acquises en majorité à l’extérieur de l’Institut Curie, préalablement à la prise
en charge, dans une quinzaine de centres d’imagerie différents. A partir des images IRM, les
tumeurs ont été segmentées séparément par deux radiologues à l’exception de 30 lésions de
l’ensemble d’apprentissage qui ont été segmentées par les deux radiologues afin d’étudier la
reproductibilité inter-opérateur.

Le chapitre 3 décrit les conditions d’inclusion des patientes et d’acquisition des images IRM
ainsi que les données cliniques et biologiques. Les radiologues ont également évalué visuelle-
ment cette base de données en utilisant le lexique standardisé BI-RADS (Breast Imaging-
Reporting And Data System) [17], spécifique de l’imagerie mammaire. De premiers mod-
èles prédictifs utilisant seulement les caractéristiques BI-RADS et les données cliniques et
biologiques ont été construits en utilisant différentes méthodes de sélection des données (RFE
pour « recursive feature elimination » ou « élimination récursive de caractéristiques », algo-
rithme de Boruta, méthode mRMR pour « minimum Redundancy Maximum Relevance » ou
« redondance minimale pertinence maximale») et types de modèles (SVM pour « Support
Vector Machine » ou « Séparateur à Vaste Marge », Random Forest ou forêt aléatoire, et
régression logistique). Les performances en terme « AUC » d’aire sous la courbe ROC («
Receiver operating characteristic » ou « fonction d’efficacité du récepteur ») obtenues sur
l’ensemble de test se situent dans l’intervalle [0,65, 0,76] et sont équivalentes à celles publiées
par d’autres équipes [18].

Le chapitre 4 présente un ensemble de méthodes (appelé pipeline) de correction des images
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IRM développé et testé sur deux fantômes anatomiques de sein et dont les résultats ont été
publiés dans Magnetic Resonance Materials in Physics, Biology and Medicine en 2021 [19].
Les fantômes sont composés de matériaux ayant des propriétés élastiques proches de celles
du sein. Ils ont des incrustations de dureté et taille différentes, simulant des nodules et sont
dédiés à l’entrainement de la réalisation des biopsies mammaires par les radiologues. Les
images de fantôme, plus simples à analyser que les images cliniques, ont ainsi été acquises sur
les deux machines de l’Institut Curie et les 3 antennes mammaires utilisées en clinique, suivant
un protocole d’imagerie proche de celui utilisé pour les patientes, à l’exception de l’injection
d’un produit de contraste.

De nombreux travaux portant sur la correction du biais lié au champ magnétique dans
des acquisition d’images cérébrales ont été publiés et plusieurs algorithmes de correction,
dont l’algorithme N4 de Tustison et al. [20], ont été proposés. La correction de cet effet
dans l’IRM du sein demeure cependant sous-étudiée. Appliquer l’algorithme N4 utilisant les
hyper paramètres définis pour le cerveau sur les images de sein n’a pas permis une correction
satisfaisante des effets. Nous avons montré que l’algorithme devait utiliser un masque du sein
pour estimer le champ de biais et 5 niveaux de décomposition du volume d’images (au lieu
de 4) pour le corriger efficacement. Deux types de normalisation, un z-score classique et une
méthode de concordance d’histogrammes [21, 22], ont ensuite été testées sur les images de
fantômes. Corriger le champ de biais et normaliser les images quelle que soit la méthode
a permis de réduire les variations intra et inter-acquisitions mais n’a pas conduit à gommer
totalement l’effet scanner sur les valeurs des indices radiomiques. Une harmonisation spécifique
de ces indices par l’approche ComBat [23] est en effet nécessaire après les étapes de correction
de biais et de normalisation. La méthode ComBat consiste à aligner les distributions des
indices issus d’images acquises avec des protocoles différents selon le principe suivant : pour
un indice y mesuré dans la région j du centre d’imagerie ou du protocole i, l’indice peut être
défini par :

yij = α + γi + δiϵij (1)
où α est la valeur moyenne de y, γi est un effet centre additif et δiϵij un effet centre multiplicatif
associé à un terme d’erreur. La méthode ComBat corrige les distributions des paramètres
en calculant α̂, γ̂i et δ̂i estimateurs de α, γi et δi suivant l’estimation du maximum de
vraisemblance, tel que :

yijcorrected =
yij − α̂− γ̂i

δ̂i
+ α̂ (2)

La forme non-paramétrique de la méthode a été employée sans l’hypothèse empirique de
Bayes. Une transformation spécifique pour chaque indice séparément a été définie et a permis
de réduire considérablement l’effet scanner.

Le chapitre 5 a pour objectif d’adapter le pipeline défini au chapitre précédent sur les images
de fantômes aux images patientes et propose une déclinaison du schéma global d’analyse en
8 étapes présenté au chapitre 2 :

• Constitution de la cohorte et acquisition des images

• Prétraitement des images :

– Correction du champ de biais magnétique grâce à l’algorithme de N4 paramétré
spécifiquement pour l’IRM mammaire
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– Rééchantillonnage spatial des images pondérées T1 après injection de produit de
contraste et des images pondérées T2.

– Normalisation des images en utilisant un z-score dont les paramètres (moyenne,
écart-type) ont été calculés dans le parenchyme mammaire, à l’exclusion de la
tumeur

• Segmentation de la lésion tumorale

• Extraction des indices des images natives et des images filtrées par des filtres en on-
delettes à l’aide du logiciel Pyradiomics en utilisant une discrétisation absolue des images
et un intervalle de taille fixe

• Harmonisation des indices radiomiques en utilisant la méthode ComBat

• Sélection des indices :

– Standardisation des indices (variables centrées réduites)

– Sélection des indices robustes à la méthode de segmentation en se basant sur le
coefficient de corrélation intra-classe de chaque indice (ICC > 0,8) calculé sur les
30 lésions segmentées par les deux radiologues

– Sélection des indices dont la borne inférieure de l’AUC pour prédire la réponse à la
CNA est strictement supérieure à 0,5

– Rejet des indices présentant un coefficient de corrélation de Spearman supérieur
au seuil de 0,8

– Sélection des 5 indices les plus fréquemment sélectionnés au cours de 100 répéti-
tions de l’algorithme de Boruta, pour construire les modèles prédictifs

• Construction des modèles prédictifs

• Métriques d’évaluation

Pour valider la méthode de correction du biais dans les volumes d’images, le coefficient de
variation dans un tissu de référence (couche adipeuse dans les images pondérées T1 et quelques
coupes du sternum dans les images pondérées T2) a été calculé. La diminution de ce coefficient
après la correction sur les images des ensembles d’apprentissage et de test dans les deux
modalités a mis en évidence la réduction des inhomogénéités d’intensité dans le champ de vue.
Le choix entre les deux méthodes de normalisation (z-score et concordance d’histogrammes)
s’est fait selon plusieurs critères : la qualité de l’alignement des distributions d’intensités
dans les images entre les différentes acquisitions, le nombre d’indices après normalisation
concordants avec les indices avant normalisation en se basant sur le coefficient de corrélation
de concordance et le nombre d’indices associés à la réponse à la CNA [24]. Il n’y avait pas de
supériorité d’une des deux méthodes dans l’alignement des distributions mais la normalisation
par z-score menait à un plus grand nombre d’indices concordants et associés à la CNA. Compte
tenu également de la plus grande facilité de mise en œuvre, l’approche z-score a été finalement
retenue.

9



Le chapitre 6 intègre la succession d’analyses définie dans le chapitre précédent pour
développer des modèles radiomiques afin de prédire la réponse à la CNA dont les premiers
résultats ont été présentés à la conférence IEEE-EMBS et publiés [25]. Dans ce chapitre,
nous nous sommes intéressés à comprendre si d’autres informations que celles classiquement
estimées dans la région tumorale pouvaient contribuer à la prédiction de la CNA. Différents
volumes d’intérêt desquels sont extraits les indices radiomiques ont été définis sur les images:
la région tumorale classique, une boîte parallélépipédique englobant la région tumorale, une
boîte de taille fixe située dans la plus grande majorité des cas exclusivement à l’intérieur de
la tumeur et la boîte englobante précédemment définie mais en considérant uniquement deux
niveaux d’intensité distinguant la tumeur de l’extérieur. Pour déterminer l’intérêt de com-
biner les indices extraits de plusieurs volumes, 15 expériences ont été menées correspondant à
toutes les combinations possibles utilisant les indices issus d’un, de deux, de trois ou de quatre
volumes d’intérêt. Ces expériences ont été répétées en utilisant dans un premier temps les
indices issus des images pondérées T1 après injection de contraste, puis des images pondérées
T2 et enfin les deux types de séquences. Les résultats ont montré l’intérêt d’associer les
paramètres radiomiques issus de la région tumorale classique, de la tumeur « binarisée »
placée dans une boîte englobante et d’une boîte de taille fixe située à l’intérieur de la tumeur
avec des performances significativement supérieures à celles obtenues dans les expériences
utilisant seulement la région tumorale classique. Sur la base de test indépendante et multicen-
trique, l’index de Youden médian était égal à 0,44 et l’écart interquartile était de [0,43, 0,50]
en prenant la meilleure expérience, alors qu’il était égal à 0,16 et l’écart interquartile à [0,10,
0,18] pour l’expérience utilisant seulement la région tumorale. Considérer uniquement la forme
de la tumeur en la plaçant dans une boîte englobante pour calculer des indices de texture a
permis de caractériser sa forme plus précisément que ce que ne peuvent faire les indices de
forme classiquement utilisés dans les logiciels d’analyse radiomique. Des modèles spécifiques
sur le sous-groupe de patientes présentant des tumeurs HER2 positives et des tumeurs triple
négatives (73 patientes en apprentissage et 24 patientes en test) ont ensuite été développés.
Les résultats préliminaires obtenus soutiennent l’hypothèse que des modèles dédiés à certains
sous-types moléculaires peuvent améliorer les performances de prédiction de réponse complète
à la CNA. Des analyses complémentaires devront cependant être menées sur de plus grandes
cohortes.

Pour obtenir ces résulats dans le chapitre 6, l’ensemble de test, comportant 33 études, a été
analysé de la même manière que l’ensemble d’apprentissage à la différence que l’harmonisation
des indices n’a pas pu être réalisée par la méthode ComBat. En effet, cette approche requiert
qu’il y ait entre 20 et 30 images par configuration d’acquisition alors que l’ensemble de test
contient entre un et cinq examens par centre pour les images acquises en dehors de l’Institut
Curie. Une solution originale a alors été développée pour harmoniser les caractéristiques ra-
diomiques extraites de l’ensemble de test. En s’appuyant sur les indices radiomiques calculés
dans une région de taille constante placée dans le sein controlatéral de chaque patiente de
la base d’apprentissage, et après analyse par composantes principales, trois groupes corre-
spondant aux trois configurations matérielles utilisées pour l’acquisition des images peuvent
être mis en évidence. Les centroïdes de ces « clusters » ont été calculés, puis chaque exa-
men de l’ensemble de test a été associé au cluster dont il était le plus proche, au sens de la
distance euclidienne. Chaque examen de l’ensemble de test est ainsi assigné à une des ma-
chines de l’ensemble d’apprentissage. Les transformations spécifiques à chaque indice pour les
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machines de l’ensemble d’apprentissage précédemment déterminées ont pu alors être utilisées
pour harmoniser l’ensemble de test. Dans la tâche spécifique de la prédiction de la réponse
à la CNA, de meilleures performances ont été observées dans 73% des expériences réalisées
après harmonisation et des performances meilleures ou équivalentes dans 82% des cas après
harmonisation suivant la méthode proposée.

Le dernier chapitre propose une approche originale, basée sur l’apprentissage profond,
de segmentation des tumeurs mammaires à partir d’images pondérées T1 après injection de
produit de contraste. Cette approche est décrite sous la forme d’un article publié dans European
Radiology [26]. Segmenter les tumeurs est une tâche fastidieuse pour les radiologues, qui n’est
pas nécessaire dans le soin courant, ce qui ralentit ainsi la constitution de cohortes dédiées
aux études radiomiques. Les indices radiomiques sont également affectés par la variabilité
inter-opérateur de segmentation. Idéalement une segmentation largement automatisée des
tumeurs permettrait de réduire la variabilité inter-opérateur tout en facilitant l’augmentation
de la taille des cohortes pour les études radiomiques. Ce chapitre portant sur la segmentation
utilise une cohorte de patientes légèrement différente de celle utilisée précédemment car elle
inclut quelques images acquises au cours du traitement. Pour cette étude, la distinction entre
l’ensemble d’apprentissage et l’ensemble de test s’est faite de façon à ce que l’ensemble de
test soit composé uniquement des 30 lésions segmentées par les deux radiologues et que les
performances obtenues puissent être analysées au regard de la variabilité inter-opérateur. Dans
cette approche, trois modèles ont été définis, utilisant soit des images après injection, soit une
fusion précoce ou tardive des images après injection du produit de contraste et des images
de soustraction (images acquises après injection du contraste et images acquises juste avant
l’injection). Comme la fusion des trois modèles ne donnait pas de résultats satisfaisants, il
a été demandé à l’expert de choisir le meilleur modèle parmi les trois proposés pour chaque
patient. Les performances des différents modèles et de la méthode d’ensemble ont été évaluées
quantitativement en utilisant le score de Dice et la distance de Hausdorff et visuellement par un
radiologue. La méthode d’ensemble a obtenu sur la base de test des performances équivalentes
à l’accord entre les deux radiologues. Dans 77% des cas, les segmentations choisies par la
méthode d’ensemble ont été qualifiées d’« excellentes » ou d’ « utiles » par le radiologue
alors que ce pourcentage n’était que de 60% pour le meilleur des trois modèles automatiques.
Ainsi, la contribution de l’expert a permis d’améliorer sensiblement les performances, sans
augmenter de façon notoire sa charge de travail (relecture de trois contours pour une même
étude au lieu d’un seul contour).

En conclusion, ce travail de thèse a apporté des contributions méthodologiques dans
l’élaboration d’une chaîne complète d’analyse pour développer des modèles radiomiques, fondés
sur des images par résonance magnétique, robustes à la segmentation et exportables sur des
acquisitions faites dans des centres extérieurs. Des tendances dans la recherche d’informations
pertinentes pour prédire la réponse à la chimiothérapie néoadjuvante ont été dégagées. Les
perspectives visent à conforter ces résultats à partir de cohortes plus conséquentes, tout en
explorant d’autres axes de recherche comme l’exploitation des images acquises au cours du
traitement mais également des images de diffusion pour prédire la réponse à la chimiothérapie
néoadjuvante dans le cancer du sein le plus précocement possible.
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Introduction

Breast cancer is the leading cause of cancer death in women worldwide. A highly heteroge-
neous disease, breast cancer has been classified into four main molecular subtypes with differ-
ent characteristics, treatments, and prognoses. For aggressive and locally advanced tumors,
neoadjuvant chemotherapy (NAC), that administers treatments before surgery, has become the
standard of care. NAC aims to facilitate surgeries and decrease mastectomy rates. Chances
of responding to NAC are however extremely variable depending on molecular subtypes and
globally only 20 to 30% of patients achieve pathological complete response (pCR). In the
context of precision medicine, early prediction of pCR is becoming more important. Being
able to identify non-responders beforehand would indeed greatly improve patient care as they
could be offered specific alternative treatments more quickly and not suffer the side-effects of
intense chemotherapy.

Trying to predict the response to treatment requires to be able to characterize the lesion
accurately. Biopsies are used to determine the molecular and genetic profile of the tumor, but
they only characterize a small sample of a large and frequently heterogeneous lesion. Medical
imaging appears as an essential complement to biopsies as they offer a non-invasive, easily
repeatable way of assessing lesions in their entirety and potentially their micro-environment.
With the rise of artificial intelligence, the potential of medical imaging grew even more as
images are considered as a mineable source of a considerable amount of data that could be
used, for instance, in predictive modelling. The emerging field of radiomics is premised upon
the idea that morphological aspects and heterogeneity of tumors convey information about
their biological properties. By extracting shape, intensity-based or texture features, radiomics
can contribute to access this hidden or not easily quantifiable biological information in the
images and use it to build decision-making tools.

Magnetic Resonance Imaging (MRI), thanks to its high contrast resolution in soft tissues,
is one of the most precise modalities to monitor patient response to neoadjuvant chemother-
apy in breast cancer and assess residual disease. However, performing quantitative analysis on
MRI raises several challenges. Among them, the bias field gain, creating local inhomogeneities
within tissues, and the comparison of MR intensities between different images since the MR
information is not conventionally expressed in standard units, can be mentioned. Furthermore,
radiomic features extracted from medical imaging are heavily influenced by acquisition param-
eters (scanners, sequences. . . ), this effect being called the “scanner effect”. This makes the
use of radiomic models built using images from one imaging center on datasets from other
centers a very sensitive step.

In recent years, many MRI-based radiomic studies investigated the prediction of pCR to
NAC in breast cancer, sometimes limiting the models to a specific molecular subtype. These
models have various performances, but these numerous studies prove that this prediction is a
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Introduction
difficult task to solve. Little interest was shown in addressing normalization issues in breast
MRI and very few studies reported an export of the radiomic models on multicentric test data.

The focus of this thesis is thus to improve the prediction of pCR to NAC compared with
the models found in the literature, with a particular focus on the standardization of images
and radiomic features and the exportability of radiomic models.

This work was conducted at the “Laboratoire d’Imagerie Translationnelle en Oncologie”
(LITO) under the supervision of Frédérique Frouin and Fanny Orlhac, in collaboration with
the Radiology Department of Institut Curie and especially with Dr. Caroline Malhaire, who
defined the cohort, Dr. Pia Akl and Dr. Fatine Selhane. The segmentation approach detailed
in this work (Chapter 7) was developed in collaboration with Michel Koole and Masoomeh
Rahimpour from the “Nuclear Medicine & Molecular Imaging” team of KU Leuven University
(Belgium).

This thesis consists of seven chapters.

Chapter 1 introduces breast cancer and protocols used in breast MR imaging. It provides
some epidemiological data related to breast cancer, its risk factors and highlights the het-
erogeneity of the disease by going over the different classifications used in clinical routine.
Advantages and drawbacks of neoadjuvant chemotherapy are introduced as well as the role of
MRI in monitoring patient response to NAC.

Chapter 2 focuses on radiomics for medical imaging, describing the general pipeline of a
handcrafted radiomic study from the image acquisition to the evaluation of radiomic models.
A critical review of the literature on the prediction of pCR to NAC in breast cancer using
MRI-based radiomics is also conducted.

Chapter 3 introduces the patient cohort. A cohort of 136 patients with locally advanced
or aggressive breast cancers, all treated at Institut Curie using standard of care therapy was
collected. At Institut Curie, three MR settings were used to acquire T1-weighted dynamic
contrast-enhanced (DCE) images and fat-saturated T2-weighted images. In addition, MR
images coming from several other imaging centers were used if their quality was deemed
satisfactory. Clinical and biological data that were collected on top of MR images are described.
Finally, predictive models, using only clinical and biological data, to predict pCR to NAC were
built and their performances compared with those obtained by equivalent models from the
literature.

Chapter 4 describes experiments conducted on imaging breast phantoms, scanned at In-
stitut Curie with the routine clinical protocol that was used for the patient cohort. These
experiments were used to develop a correction pipeline to address inhomogeneities issues on
MR images and the impact of the “scanner effect” on radiomic features, with the hope to
apply it in a later stage on patient data. This chapter is mainly based on a paper published in
Magnetic Resonance Materials in Physics, Biology and Medicine [19].

Chapter 5 describes the choices and experiments that were carried out to export the pipeline
proposed in Chapter 4 to patient images. It goes over the radiomic pipeline presented in
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Chapter 2 and explains, step by step, the methodological choices taken in our study to build the
radiomic models, including the harmonization of features with the statistical ComBat method
to reduce the “scanner effect”. A dedicated approach to correct bias field inhomogeneities and
to normalize images is detailed.

Chapter 6 aims to further define the relevant information that can be found in MR images
to predict pCR to NAC, with the pipeline presented in Chapter 5. Using different types of
volume of interest based on tumor delineation and simple boxes inside the tumor or englobing
the tumor, the influence of shape and margins of the lesions on the prediction are studied.
Different models were built on the training database (103 patients imaged at Institut Curie)
and tested on the test set of 33 patients (imaged in 15 centers). As it was not possible to
apply the ComBat procedure on the test set due to the reduced number of acquisitions in the
different centers (between 1 and 5), an original harmonization strategy to correct the “scanner
effect” where conventional harmonization methods cannot be used due to small sample size,
is also detailed. This chapter is mainly based on the draft of a paper to be submitted. Some
preliminary results are shown using the same methodology but applied to a subgroup of patients
with specific molecular subtypes.

Chapter 7 presents a deep learning-based segmentation approach to segment breast tumors
on T1-weighted DCE images. Requiring a final user validation, it allows to choose from three
methods the best segmentation for a given patient. This work was done in collaboration
with KU Leuven university (Belgium). The chapter is mainly based on a paper published in
European Radiology [26].

Conclusions and plans for future work, including new methodological developments, are
finally exposed.
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Chapter 1

Breast cancer

Preface
This chapter focuses on the clinical context starting from the epidemiology of breast cancer
and its risk factors, then going over the classifications used in clinical routine, highlighting the
heterogeneity of this disease. It presents next the advantages and drawbacks of neoadjuvant
chemotherapy, the varying rates of pathological complete response among molecular subtypes
and the predictive biomarkers associated with this response. The final section describes the
role of MRI in breast cancer and especially in the assessment of response to neoadjuvant
chemotherapy. It outlines MRI clinical acquisition protocols and introduces the Breast Imaging
Reporting & Data System (BI-RADS).

1.1 Epidemiology
In 2020, female breast cancer became the most frequently diagnosed cancer worldwide, with
almost 2.3 millions cases detected, representing 11.7% of the total new cancer cases, as stated
by GLOBOCAN 2020 data [1]. Breast cancer age-standardized incidence rate has been proven
to be positively associated with the human development index (HDI) of countries by multiple
studies [27–29]. Transitioned countries with high HDI, displaying a higher prevalence of breast
cancer risk factors such as obesity and carrying intensive screening, indeed report incidence
rates 88% higher than transitioning countries with low/medium HDI. Highest incidence rates
are observed in Northern and Western Europe, Northern America and Australia and New
Zealand (>80 per 100 000) [1, 30].

Breast cancer accounted for 6.9% of worldwide cancer deaths, that being an estimated
685 000 deaths, behind lung, colorectal, liver and stomach cancers affecting men and women
alike. It is nevertheless the leading cancer cause of deaths in women in 110 countries, repre-
senting almost 1 in 6 cancer deaths globally (Figure 1.1). Despite lower incidence rate than
in transitioned countries, women in transitioning countries have a 17% higher mortality rate
(15.0 versus 12.8 per 100,000) with highest rates found in countries in Oceania, Polynesia,
Western Africa, and the Caribbean [1].

Incidence rates of breast cancer have globally increased these last two decades. This
trend can be explained by the impressive uptake in mammographic screening, the aging of the
population in western countries, the worldwide increase of obesity but also by sociocultural
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Figure 1.1: Most common type of cancer mortality by country in 2020 among women. The numbersof countries represented in each ranking group are included in the legend. Source: GLOBOCAN 2020.

changes like the delayed age of first pregnancy. In some countries like China or Korea, it is
associated with the evolution to a more “westernized” lifestyle presenting higher risk factors.
Conversely, most developed countries reported a decrease in mortality rates between 2000 and
2015 due to early detection of breast cancer and the development of advanced treatments
while mortality rate increased or remained stable in low income countries with limited access
to repeated preventive screening or timely treatments [1, 28, 30, 31].

1.2 Risk factors
Breast cancer risk factors are wide-ranging and extremely diverse. While some of these risk
factors are inherent, others can be linked to patient lifestyle and environment.

Non-modifiable risk factors include for example, age, as more than 80% of breast cancer
patients are over 50 years old, ethnicity, with a higher incidence observed in white non Hispanic
women, and high breast tissue density. Family history of breast or ovarian cancers and to an
even greater extent, personal history of previous breast cancers or radiation therapies are also
associated with a higher risk of breast cancer. Genetic mutations on genes such as BRCA1 and
BRCA2, which are correlated with a rise of carcinogenesis, have a considerable impact on the
probabilities of developing breast cancer [30, 32]. Besides, studies have highlighted the link
between exposure to endogenous hormones, such as oestrogen, progesterone or other sex hor-
mones, and incidence of breast cancer. A high concentration of oestrogen in postmenopausal
women is associated with an increased incidence of breast cancer. Events that affect hormonal
balance and especially reproductive habits have therefore been investigated. Early age of first
menstruation, delayed age of first full-term pregnancy and late menopause are linked to an
increase risk of breast cancer while breastfeeding, especially over a long period, reduces it [30,
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33].

Lifestyle and physical behaviours can also influence the occurrence and development of
breast cancer. Dietary habits are amongst the first extrinsic factors associated with higher risk
of breast cancer. The consumption of highly processed food rich in saturated fat and sodium
increases this risk [34]. The lack of physical activity, excessive weight or obesity, elevated
alcohol consumption and active smoking are also associated with it [30, 35].

1.3 Breast cancer classification

1.3.1 Histological classification
Breast cancer is a highly heterogeneous disease, presenting a multitude of different clinical,
morphological and molecular profiles affecting its behaviour, response to treatments and even-
tual outcome [36].

Breast cancer is considered invasive as opposed to in situ when cancer cells have broken
from the milk ducts or lobules (glands producing the milk) where they usually originate and
have started proliferating into the surrounding stroma (Figure 1.2). Histological classification
of invasive breast cancer nevertheless mainly rests on the number, cell types characteristics and
profiles rather than the location where these cells first appeared to predict breast cancer types
[37]. The two main histological types of invasive breast cancer are invasive ductal carcinoma
and invasive lobular carcinoma. Invasive ductal carcinoma is the default type, also called
the “no specific type" that gathers tumors which do not present sufficient characteristics to
be classified as a special type of breast cancer. Fifty to 80% of new breast cancer cases are
classified as invasive ductal carcinoma. Invasive lobular carcinoma on the other hand represents
5 to 15% of new cancer cases and is more common in women of advanced age.

1.3.2 Classification based on grade and stage
The American Joint Comittee on Cancer (AJCC) defined in its eighth edition an updated
staging system of breast cancer to estimate patients’ prognosis [30, 38]. This system, which
was globally recognized, combines anatomical assessment and biological factors, such as the
evaluation of biomarkers expression or histological grading.

To assess tumor growth and spread, clinicians rely on the anatomical TNM staging, which
evaluates tumor size and extension (T), nodal status (N) and distant metastases (M) using
multiple categories. A global stage varying between 0 to IV is defined, inversely associated to
an estimate prognosis [38–40] (Table 1.1).

Histological grading can be established using various methods but the Scarff-Bloom Richard-
son grading system modified by Elston-Ellis, often called the Nottingham grading system,
remains a reference (Table 1.2) [41]. This grading aimed to transcribe tumor biology by ana-
lyzing the extent of differentiation in tumor tissue [42]. Tumor grade is assessed by evaluating
three types of morphological features: the mitotic count, the formation of glands or tubules,
and the size and shape of cell nuclei. A total score is then calculated by summing up scores of
each morphological feature. A score between 3 and 5 is associated to grade 1, 6-7 to grade 2
and 8-9 to grade 3. Low-grade tumors which show clear differentiation of structures in tissue,
have been found to have a better prognosis than high-grade tumors. Besides, works have
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Figure 1.2: Diagrams showing (a) progression from a ductal carcinoma in situ (DCIS) to an invasiveductal carcinoma. (b) progression from a lobular carcinoma in situ (LCIS) to an invasive lobularcarcinoma. Source: Cancer Research UK/ Wikimedia Commons.

showed that histological grade remained a prognostic factor independently from tumor size
and lymph node status [43].

The AJCC updated staging system also recommended that all invasive carcinoma be tested
for estrogen receptor (ER), progesterone receptor (PR) and Human epidermal growth factor
receptor 2 (HER2). A tumor is said to be ER or PR positive when at least 1% of the cells
collected for immunohistochemistry testing display respectively ER or PR receptors. Around
three out of four diagnosed breast tumors are hormone positive (ER or PR) [45]. It is however
worth mentioning that the 1% threshold is not always adopted as in France, a 10%-threshold
is preferred.

Finally, the AJCC paved the way to use more genetic profiling during the staging process
to further specify tumors and offer a personalized estimate of patients’ outcome.

1.3.3 Molecular classification

Going beyond morphological and histological classification, attempts have been made to gather
tumors according to molecular patterns. This stratification of breast cancer in molecular sub-
types aimed to better apprehend its diversity and develop specific therapies for each major
trend of breast cancer. Analysing the gene expressions of tumors using the cDNA microarray
technique, fundamental differences between five different molecular subtypes were established
[46, 47]. However, due to the high cost and technology difficulty of resorting to these tech-
niques in clinical practice, a surrogate classification based on immunohistochemistry (IHC) was
developed and recommended at the Saint Gallen conference in 2011 [2]. This IHC classification
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Table 1.1: TNM classification for breast cancer. Source: Ljuslinder [40]
was founded on the expression of four prognostic biomarkers: the estrogen receptor, proges-
terone receptor, Human epidermal growth factor receptor 2 and cell proliferation regulator
(Ki67). Four molecular subtypes were thus defined [2, 37, 45, 48, 49]:

• Luminal A tumors represent almost 50% of invasive breast cancer cases. They are
characterised by being ER positive, HER2-negative and presenting high expression of
PR (≥ 20%) and low Ki67 levels (< 14%). Luminal A tumors usually have a good
prognosis and are historically treated using hormone therapies.

• Luminal B tumors gather 20% to 30% of new invasive breast cancers. They can be
divided into two groups: one characterised by being ER positive, HER2-negative and
displaying low expression of PR (≤ 20%), and high level of Ki67 (≥ 14%) and the
other characterized by being ER positive and HER2 positive, and having various levels
of expression of PR and Ki67. Luminal B tumors tend to have a poorer prognosis than
Luminal A tumors and are treated using hormone therapies as an alternative or alongside
chemotherapies.
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Table 1.2: Nottingham grading system for invasive breast cancers. Source: Atanda et al. [44].

• HER2-enriched tumors (HER2 positive, ER negative, PR ≤ 20%, high Ki67 levels)
account for 15 to 20% of new breast cancer cases. Assessment of HER2 status may
need complementary testing using Fluorescence in situ hybridization (FISH) technique to
confirm the gene amplification when membrane staining in immunohistochemical tests is
incomplete or moderate. Though HER2 positive tumors were originally associated with
a poor outcome, the development of HER2-target therapies used as adjuvant therapies
to chemotherapies considerably improved patients’ prognosis [50]. These therapies are
predominantly based on a monoclonal antibody called trastuzumab (commercially sold
under the name of Herceptin).

• Triple-negative (TN) tumors represent 10% to 20% of breast cancer cases. They dis-
play an ER, PR and HER2 negative status but high level of Ki67 expression (≥ 14%),
reflecting their important ability to proliferate. They are very aggressive tumors, have a
poorer prognosis and higher risks of recurrence than other subtypes especially within the
first five years of treatment. TN tumors usually affect more young women below the age
of forty and patients with BRCA1 mutations. TN subtype presents a high heterogeneity
and can be itself divided into multiple subtypes [51]. Due to the lack of hormone or
HER2 receptors, TN tumors do not respond to endocrine therapies or anti-HER2 ther-
apies and their heterogeneity makes it difficult to develop other target therapies. The
main systemic treatment of TN tumors thus consists in chemotherapies (adjuvant or
neoadjuvant) combined with surgeries [52].

Despite the stratification of breast cancers defined at the Saint Gallen conference, no clear
cut-off of the expression of Ki67 to separate Luminal A from Luminal B tumors could be found.
Though a cutoff at 14% was first suggested [2], several studies have recently advocated to
use a 20% threshold [53, 54].

A noteworthy difference between breast cancer subtypes is their association to histological
grade. Luminal A tumors were found to be well differentiated (Grade 1) while other subtypes
were associated with higher grades (Grade 2 or 3) [37, 55, 56].

Table 1.3 summarizes differences observed between molecular subtypes.
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Table 1.3: Molecular classification of breast cancers associated to their prognosis and therapies.Source: Gomes do Nascimento et al. [37]

1.4 Neoadjuvant chemotherapy in breast cancer

1.4.1 Purpose and benefits

Neoadjuvant chemotherapy (NAC) is a systemic treatment based on cytotoxic drugs delivered
to patients before the administration of local treatments [3].

NAC for breast cancer was first proposed in the beginning of the 80’s to patients with
inoperable tumors with the aim to reduce lesions to facilitate ensuing surgeries or radiation
therapies. It was later extended first to operable breast cancers requiring mastectomies in the
hope to downstage tumors so that breast-conserving surgeries could be performed instead and
then to other early-stage or operable tumors to prevent post-surgical complications [4]. In
some rare cases (< 5%), progression of the disease during NAC could nevertheless have an
adverse effect on breast conservation [57].

Clinical trials showed that there was no difference in overall survival between patients
administered NAC or adjuvant chemotherapy (chemotherapy given after surgery) though the
breast conservation rates in NAC patients was higher [58, 59]. Questions have arisen about a
possible link between NAC and higher locoregional recurrence rate but firm evidence remains
lacking. Observed increase could be also explained by the lower rate of mastectomies [3, 57].

On top of favouring breast conservation, NAC is also associated with fewer adverse ef-
fects (complications due to chemotherapy in particular). Besides, administering chemotherapy
before surgery allows to monitor closely and in vivo the effects of the treatment on the tu-
mor. Patients resistant to drugs can be identified and their treatment altered accordingly [57].
Pathological complete response (pCR) to NAC is also associated with better overall survival
(OS) and event-free survival (EFS) [60]. NAC treatments thus offered the additional oppor-
tunity for the research field to assess the prognosis power of new biomarkers using pCR as a
surrogate marker for OS and EFS.
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1.4.2 Pathological complete response
There is a global lack of standardization in the definition of pathological complete response to
NAC and methods to assess it. Several classification systems have been developed to report on
post-neoadjuvant specimens with the main ones including the Chevalier method, the Sataloff
method, the Miller-Payne system, the residual cancer burden (RCB) score or the ypTNM
staging [61]. Some of these classifications evaluate changes in cellularity and sizes between
pre and post-NAC tumor specimens (Miller-Payne and Sataloff methods) while other systems
focus only on the residual tumor present in the breast and axillary nodes (RCB, ypTNM) [62].

Pathological complete response can be at first described as the lack of residual invasive
disease in the breast. This definition is however often extended to include axillary lymph nodes
as a better prognosis value is conferred to pathological complete response that takes into
account both breast parenchyma and nodes. Patients with no invasive residuals in breast and
nodes have better overall survival [63–65]. Nevertheless, the prognosis power of achieving
pCR is intrinsically linked to the molecular subtype of tumors. Indeed, pCR has been proven
to be a good prognosis factor in triple-negative and HER2-enriched tumors but its entailment
in other subtypes must be further explored [6]. Based on the analysis of the Collaborative
Trials in Neoadjuvant Breast Cancer (CTNeoBC), the Food and Drug Administration (FDA),
the federal agency that regulates the market access of drugs in the United States, has thus
approved the use of pCR to NAC in high risk agressive breast cancer (triple-negative and HER2-
enriched particularly) as an endpoint to accelerate approval of new drugs though confirmatory
trials should be later conducted [66].

1.4.3 pCR rates among molecular subtypes
The probability of achieving pathological complete response strongly depends on molecular
subtypes. Results found in the literature must be analysed carefully as to take into account
the definition of pCR selected in the study, the different chemotherapy regimens administered
to patients, the number of chemotherapy cycles followed, the potential use of complementary
targeted or endocrine therapies and the general tumor state at the beginning of NAC. Using
the immunohistochemistry classification, studies suggested that:

• Luminal A tumors have very low pCR rates and the lowest rate among all molecular
subtypes. Haque et al. [5] analysed pCR to NAC in 13 929 women among which 322
patients were diagnosed with Luminal A tumors. Of these, only 0.3% achieved pCR.
Other works in the literature reported rates between 0% to 7.5% as summarized by
Wang-Lopez et al. [6]. Thus, treating Luminal A tumors with NAC is a controversial
topic as neoadjuvant endocrine therapies or direct surgery is often preferred [67, 68].

• Luminal B tumors display higher chemosensitivity than Luminal A tumors with reported
pCR rates between 1% and 16% [5]. Most chemotherapy treatments prescribed for
Luminal A and B tumors consisted of a sequence or combination of several types of
cytotoxic drugs, anthracyclines and taxanes being the most common, in a various number
of cycles between 4 and 8. However, Luminal B tumors with HER2+ status can be
treated with NAC combined with anti-HER2 targeted therapies (trastuzumab mainly)
as HER2-enriched tumors, which can lead to higher response rate [22%-48%] [5].
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• HER2-enriched tumors seem to have the highest rate of pCR among other subtypes

[33% -70%]. Most studies evaluated pCR rates using chemotherapy combined with
trastuzumab and reported improved pCR rates than when using chemotherapy alone.
Research into using dual inhibition with two antibodies (trastuzumab + pertuzumab
or trastuzumab + lapatinib) combined with chemotherapy yielded promising results,
leading to higher pCR rates than chemotherapy with single inhibition, or dual inhibition
without chemotherapy [6]. In all these combinations of treatments, HER2-enriched
tumors achieved higher pCR rates than Luminal B/HER2+, attesting a higher sensitivity
to chemotherapy and anti-HER2 therapies.

• Triple-negative tumors have relatively high pCR rates [20% -34%] assessed using treat-
ments based in majority on an anthracyclines/taxanes regimen [5, 6]. However, recent
studies have highlighted the potential benefit, in triple-negative tumors, of combining
NAC with platinum salts (cisplatin and carboplatin), that are DNA-damaging drugs. TN
tumors sensitivity to platinum agents could be linked to the high proportion of BRCA-
mutated tumors among them. BRCA1 & BRCA2 genes are indeed involved in the DNA
double strand repair process, and BRCA-mutated tumors would thus be more sensitive
to cross-linking agents [69]. Simultaneously, there has been a huge increase in the devel-
opment of targeted therapies for TN tumors [52]. Multiple agents like bevacizumab, an
antibody inhibiting endothelial growth of blood vessels, have been investigated. Beva-
cizumab was found to improve pCR rates but its influence on OS has not been established
[6].

1.4.4 Predictive biomarkers of pCR
Overall, neoadjuvant chemotherapy is prescribed to patients diagnosed with Luminal B, HER2-
enriched or triple-negative tumors. Though Luminal B/HER2- tumors seldom achieved pCR,
some benefits can still be gained from following NAC without pCR as studies still report in these
conditions, tumor downstaging and higher breast conservation rates [68]. However, even with
favorable molecular subtypes, a large proportion of patients does not respond to NAC. Being
able to identify beforehand patients resistant to chemotherapy would considerably improve
patient care. It would reduce patients’ exposure to chemotherapy toxicity and enable them to
be offered alternative treatments more quickly. A swift change of treatment is important as
ineffective NAC gives time to the tumor to progress and metastasize and could favor ensuing
chemo-resistance of tumors.

Predictive biomarkers not yet integrated into clinical practice were thus researched. High
Ki67 proliferation index, ER negative status, high histological grade, small tumor sizes were
significantly linked with pCR [70–72]. The potential interest of tumor-infiltrating lymphocytes
(TILs) was also pointed out in some subtypes. TILs can invade either the stroma surrounding
the lesion or the tumor-epithelial cells. High level of TILs in both occasions has been associated
with pCR in HER2-positive and triple-negative tumors [4, 73, 74]. High level of stroma TILs
alone, whose count was found to be more reproducible than intratumoral TILs, was validated
as a strong predictor of both pCR and EFS in HER2-positive tumors [75] with several TILs
level cut-off proposed (30%, 40%, 50%) [76]. Numerous studies attempted to integrate the
previously mentioned biomarkers, sometimes with covariates like age or menopause status, to
build nomograms predictive of pCR [70–72]. Further large-scale and independent validation
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process must however take place before such predictive tools could be used in practice to help
clinicians make a decision in the treatment pipeline.

Triple-negative tumors are highly heterogeneous. Novel genetic and molecular profiling
have led to distinguish six subgroups within the TN subtype. These subgroups respond very
differently to NAC with pCR rates going from 52% to 10% depending on the subgroup [4]. In
the future, the constant development of genetic profiling could allow to select more precisely
tumors that would likely achieve pCR.

1.5 MRI in breast cancer

1.5.1 MRI in breast cancer treatment pipeline
Magnetic resonance imaging (MRI) is a non-invasive imaging technique using high magnetic
field, magnetic field gradients and radio waves to create three-dimensional anatomical and
functional images. Because of its excellent soft tissue contrast resolution, MRI can be used
to screen, diagnose and monitor patients during and after treatments for a great variety of
conditions and regions (brain, thoracic and abdominal organs, pelvic organs, blood vessels,
lymph nodes...).

In breast cancer screening routine, X-ray mammography, often associated with ultrasound,
is the standard imaging modality. The sensitivity of mammography is however much lower in
women with dense breast, as tumors can be easily masked within the fibrous and glandular
tissue as they have the same appearance in mammography. X-ray performance is also reduced
in young women and carriers of BRCA mutations. 3D MRI is not influenced by breast density
and has a higher sensitivity than mammography [77]. Therefore, in 2007, the American Cancer
Society recommended in its guidelines that women with high risk to develop breast cancer (≥
20%) due to family history and carriers of BRCA mutations and their untested relatives be
offered MRI screening alongside mammography. MRI screening should also be proposed to
women with an history of chest radiations between the age of 10 to 30 or affected with certain
syndromes. No firm evidence could be found to advise for or against the additional use of MRI
screening in women with dense breast [78].

There has been a significant uptake in the use of pre-operative MRI in newly diagnosed
breast cancer in the last two decades. Arnaout et al. [79] reported a sharp increase from
3% to 24% of new breast cancer patients imaged with MRI between 2003 and 2012 in a
retrospective study based on the Ontario cancer registry in Canada. However, the use of
pre-operative MRI is still the subject of an intense debate as it is a costly modality, requiring
patients to be screened in often uncomfortable positions for a relatively long amount of time
and most importantly, has not been linked with improved outcomes [9]. Because of its higher
sensitivity, MRI is able to detect more tumor foci. In a systematic review and subsequent meta-
analysis, Houssami et al. [80] indeed reported a median increase of 16% in detecting lesions
over 19 studies. However, due to the difficulty of separating benign from malignant lesions
in MRI, only two-thirds of newly detected lesions were confirmed malignant after biopsies.
Detecting more lesions led quite often to delay surgeries in order to carry on histological
testing but also affected surgical procedures. Women with confirmed multifocal or multicentric
tumors were recommended more extensive surgeries (especially mastectomies) in more than
11% of cases. False positive detection unfortunately also happened in about 5.5% of cases and
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despite widespread use of histological confirmation, some women were still offered unnecessary
extensive surgeries [81]. To date, the benefits of additional detection and altered surgeries
are not clearly established. Several randomized trials reported no significant differences in the
rate of re-operations (margin re-excision or conversion to mastectomies) in patients assessed
with conventional imaging (mammography or/and ultrasound) or MRI. On the long-term,
tumor staging with pre-operative MRI was not associated with a reduction of local or distant
recurrence of breast cancer [82]. Nonetheless, in patients specifically diagnosed with infiltrating
lobular carcinoma, MRI was found to better assess the extent of the tumor. MRI can also help
in the detection of contralateral breast cancer though false positive findings are high [9, 83].
Based upon this mixed findings, guidelines of different national and international institutions
may recommend pre-operative MRI for some subgroups of patients but most consider the use
of MRI as optional.

1.5.2 MRI in neoadjuvant chemotherapy
The only context in which benefits of pre-operative MRI in breast cancer are clearly demon-
strated is in the monitoring of the response to neoadjuvant chemotherapy. Though pathological
complete response is definitively established by analyzing the surgical specimens, estimations
with imaging can be used as surrogate markers. MRI has proven to be the most accurate
method before ultrasound, mammography and clinical examination to estimate residual tu-
mor size and determine pCR after NAC. Studies report high rates of correct identification of
residual tumor (83%-92%) but intermediate rate of pCR estimations (47%-63%) [9]. Correct
assessment of residual disease is important for surgical planning to select the type of breast
surgery to perform and increase probabilities of achieving negative margins, implying that all
tumor cells have been removed, and thus lower re-excision rate.

MRI has the combined benefit of allowing morphological and physiological monitoring of
the response. Diameters or volume changes between the different cycles of chemotherapy can
be measured accurately as recommended by Response Evaluation Criteria in Solid Tumors
(RECIST) guidelines commonly used in oncology. In specific MRI sequences using contrast
media injection, pharmacokinetic parameters allow to track the perfusion of contrast agent
highlighting physiological changes occurring within the tumors. MR imaging also assesses well
the shrinkage pattern of tumors whether it is concentric or scattered possibly leaving the tumor
fragmented which is an important information in the selection of subsequent breast surgery
[10].

MRI accuracy can also be influenced by tumor morphology, as the residual extent of non-
mass lesions can be particularly underestimated, and by tumor molecular subtypes. For in-
stance, accuracy to predict pCR based upon MR imaging captured at the end of NAC was
higher in HER2-enriched and triple-negative tumors [10]. Aggressive tumors with a high Ki67
proliferation index or a high grade are also measured more accurately than other types of
tumors [84, 85].

1.5.3 MRI clinical protocols for NAC
Women are usually imaged in MR scanners in the prone position with their breast positioned in
dedicated coils equipped with multiple channels. Modern coils tend to have a higher number
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of channels (16 or more) to increase signal-to-noise ratio and reinforce parallel imaging to
reduce acquisition time. As biopsies are routinely performed to inspect newly found masses on
MRI, patients can be imaged with coils dedicated to biopsy that allow an easy access to the
breast area. Images are most often acquired in the axial plane that gives a complete overview
of both breasts [9]. MRI routine clinical protocols involve almost always nowadays multiple
MRI techniques based on several sequence types.

MRI clinical protocols rely mainly on the use of T1-weighted dynamic contrast-enhanced
(T1-DCE) MRI. In this type of sequence, a gadolinium-based contrast agent is injected via
intravenous access into patients at a dose of 0.1-0.2 mmol/kg [86]. The subsequent temporal
enhancement of the breast is analysed as the increased concentration of the contrast agent
at a given point will shorten the local T1 time, leading to a higher signal intensity. Dynamic
series include a native pre-contrast image acquired before the administration of the gadolinium
chelate and at least one post-contrast image taken 60 to 90s after injection corresponding to
the common peak enhancement time in breast cancer. Subtraction of the pre and post-
contrast image is commonly used in clinical routine for lesion detection, using maximum
intensity projection (MIP) images [9]. Several other post-contrast images can be acquired
usually till 5 to 7 minutes after injection.

This succession of images is used to create a time-signal intensity curve that assesses
microvascular properties of the tissue such as blood vessel permeability and tissue perfusion
[87]. In order to grow, tumors need to create an additional blood supply system by forming new
blood vessels. This process is called angiogenesis. New vessels formed due to tumor growth
can be more permeable leading to a quicker accumulation of contrast agent in tissue than in
the normal vasculature. The reported differences in wash-in and wash-out of the gadolinium-
based agent between benign and malignant lesions are reflected in their time-signal intensity
curves and are further used in the diagnostic process: in 83% of benign cases, a slow onset
with progressive enhancement can be observed (type I curve in Figure 1.3) while a strong and
quick enhancement followed either by a plateau (type II in Figure 1.3) or a fast wash-out (type
III in Figure 1.3) are reported in 93% of cases in malignant lesions [86]. A quick wash-out is
the most common pattern observed in malignant lesions with the exception of DCIS and more
diffuse lobular cancers that can show a persistent curve [9].

Several parameters that characterize the pharmacokinetics of the contrast agent in tissues
can be defined, including KTrans the volume transfer constant of the contrast agent from
blood plasma to extravascular extracellular space (EES), Ve the fractional volume of the EES
(volume of EES per unit volume of tissue) and Kep, the rate constant of tranfer from the EES
to blood plasma.

Routine protocols also include T2-weighting imaging with and without fat suppression.
Fat suppression allows a better visualization of cysts [9]. Compared to T1-weighted imaging,
T2-weighted imaging has the additional benefit of showing edemas in the breast that can have,
like peritumoral and prepectoral edemas, diagnostic and prognostic values [88, 89].

Diffusion-weighted MRI (DW-MRI) is also part of the standard MRI protocol. This imaging
technique measures the Brownian motion (random motion) of water molecules within tissue.
The underlying principle of DW-MRI relies on T2* signal attenuation, depending on the ease
of diffusion of water molecules. DW imaging (DWI) usually uses T2-weighted spin-echo (SE)
or spin-echo echo planar pulse sequences. By applying two symmetrical gradients, one before
and one after the 180° pulse, the sequence is made sensitive to diffusion. For stationary water
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Figure 1.3: Diagrams depicting the three types (type I, type II and type III) of time-signal intensity curvesusually observed in breast lesions imaged with dynamic contrast-enhanced MRI. Source: O’Flynn etal. [86]

molecules, the effect of the first gradient is reversed by the second one and there is no signal
loss. Similarly, moving molecules gained phase information with the first gradient. However,
since they move, they are not subjected to the exact same gradient the second time. They are
thus not rephased properly and there is therefore an attenuation of the signal along the axis
to which the gradient is applied. The greater the diffusion, the bigger the phase difference
leading to a greater signal loss. The degree of the diffusion weighting applied in a sequence
is measured by the “b-value”, which depends on the paired gradient pulse amplitude, duration
and interval [90].

Using the previously defined sequence, DW images are generated according to the following
process. First, an image without diffusion gradients (b=0) is acquired, usually referred as the
“b0 image”. Then, at least three images are acquired assessing the diffusion in orthogonal
directions with potentially different b-values. An isotropic diffusion image is obtained by
combining the diffusion-weighted images using the geometric mean. The isotropic diffusion
image is however T2-weighted and tissues with very long T2 decay time may appear bright
though there is an actual diffusion, this effect is called the “T2-shine through”. An apparent
diffusion coefficient map (ADC) where the T2 effects are removed, can also be calculated from
the isotropic diffusion image and the b0 image. Regions where diffusion is restricted have low
ADC values and appear black on ADC maps contrary to DW images.

Thus, DWI can transcribe the cellularity of tissues. Tumors, characterised by a high
cellularity and where diffusion is hindered, are therefore represented by low ADC values [9,
86]. DW-imaging has been used to differentiate lesions as benign lesions have higher ADC
values than malignant ones [91].

As common MRI clinical protocols involve a long acquisition time, with 20 minutes needed
on average, there has been in recent years an increased interest in developing faster protocols
[92]. So-called “FAST" protocols have emerged which advocate the use of only one post-
contrast image in addition to T1 and T2-weighted morphological images to reduce acquisition
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time. These abbreviated protocols have been proven to successfully save time and resources
while maintaining equivalent diagnostic and lesion characterisation potentials though a slight
decrease in specificity was sometimes reported [93, 94]. They nevertheless prevent the use
of kinetic analyses, that require several post-contrast images. In this context, high-temporal
resolution dynamic contrast-enhanced MRI (HTR-DCE MRI) was introduced. HTR-DCE MRI
focuses more on the analysis of the contrast wash-in than of the wash-out in the lesions
by oversampling the first minute after injection. Mann et al. [95] found that the dynamic
information captured during this lapse of time could be used to detect and classify breast lesions
with as high accuracy as conventional time-signal intensity curves. Milon et al. [92] reported
equivalent performances using a FAST protocol combined with HTR-DCE MR imaging to a
full standard protocol (T2-weighted images, T1-weighted DCE series, DWI series), questioning
the future of the standard protocol. Ramtohul et al. [96] found that the wash-in slope from
ultrafast breast MRI brought relevant information for the prediction of pCR to NAC.

1.5.4 MR imaging analysis

In order to reduce inter and intra-radiologist variabilities in assessing breast images and facili-
tating communication between medical doctors, the Breast Imaging Reporting & Data System
(BI-RADS) atlas was introduced by the American College of Radiology (ACR) in 1993. Its
fifth edition was released in 2013 [17]. It offers standardized terminology to characterize le-
sions, report on their structures and classify them within seven official “BI-RADS assessment
categories”. Management recommendations are associated with every category. The BI-RADS
atlas was originally developed for mammography but nowadays encompasses three different
lexicons of descriptors for mammography, ultrasound, and MRI. The MRI lexicon (Figure 1.4)
includes an estimation of breast density, defined as the relative amount of fibroglandular tissue
compared with fat in the breast. It describes different types of enhancements, characterises
masses and non-mass enhancement, qualitatively estimates kinetic properties and reports on
potential specific features such as implant characteristics.

BI-RADS descriptors assessed on MR images have been integrated over the years into
multiple machine learning models to answer a wide variety of clinical questions. They were no-
tably used to distinguish malignant from benign lesions [97], to predict molecular subtypes of
breast lesions [98, 99], predict lymph node metastasis [100] or help predict invasiveness [101].
Many studies highlighted the association of BI-RADS features from pretreatment MR images
with response to NAC. Harada et al. [102] found in a retrospective study that characterisa-
tion of breast edema on T2-weighted images could help predict the response to neoadjuvant
chemotherapy. Malhaire et al. [103] showed that oval or round shape, no multifocality, non-
spiculated margins and the absence of non mass enhancement indicated response to NAC.
Uematsu et al. [104] reported in chemoresistant cancers large tumour sizes, the absence of
mass effect, and very high intratumoral signal intensity on T2-weighted images, that could
be a sign of intratumoral necrosis. As breast cancer is a highly heterogeneous disease, some
BI-RADS descriptors were significantly associated with response to NAC only in specific molec-
ular subtypes. Bae et al. [105] found that in triple-negative cancers, round or oval masses
and the absence of peritumoral edema and intratumoral T2 high signal intensity seemed to be
indicators of pCR.

The performances of univariate or multivariate models using BI-RADS descriptors only
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Figure 1.4: BI-RADS MRI lexicon. Source: ACR BI-RADS® Atlas Fifth Edition

were often not very high. Models combined BI-RADS descriptors with biological factors and
kinetic parameters [106, 107] to increase the predictive power of models.

Conclusion
Breast cancer is a highly heterogeneous disease that is the leading cancer cause of deaths in
women and whose burden has been continually increasing this last decade. Four main molec-
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ular subtypes (Luminal A, Luminal B, HER2-enriched and triple-negative) of breast cancer
have been identified thanks to immunohistochemistry testing. These subtypes have different
characteristics, prognosis and reactions to treatments. Neoadjuvant chemotherapy has be-
come the standard of care in locally advanced or aggressive Luminal B, HER2-enriched and
triple-negative breast cancers. However, the variable response rate to NAC and the significant
adverse effects associated to it, led to ponder how patients that would not achieve pCR could
be identified before treatment or after a few cycles of chemotherapy. MRI was found to be one
of the most precise imaging modalities to monitor tumor response and assess residual disease.
Predictive models based on biological factors, kinetic parameters and BI-RADS reading from
pretreatment MR images were designed. However, an advanced analysis of MRI emerged as
the way forward to improve predictions of pCR to NAC.
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Chapter 2

MRI-based radiomic analyses
in breast cancer

Preface
This chapter presents an overview of advanced quantitative image analysis applied to MRI of
breast cancer and its underlying principles. It describes the main steps of the radiomic study
pipeline from image pre-processing to evaluation of predictive models. Finally, an analysis of
the state-of-the-art of MRI-based radiomics in breast cancer, and especially in the prediction
of the response to neoadjuvant chemotherapy, is developed.

2.1 Radiomics in cancer imaging

2.1.1 Introduction
Medical imaging offers a non-invasive opportunity to globally assess tumors in addition to
biopsies that are invasive and extract and analyse a small piece of tissue from an often hetero-
geneous lesion. Analyses of radiological images rely on the idea that morphological aspects and
heterogeneity of tumors or surrounding tissues convey information about their biological prop-
erties. Indeed, the BI-RADS initiative elaborates malignancy assessments and management
recommendations based on visual and qualitative image analysis. However, more advanced
and quantitative analysis of medical imaging is presumed to be able to go even further and
transcribe the molecular characteristics, phenotype and microenvironment of tumors, thus
bringing novel and complementary information that could potentially be combined with other
clinical data. This is the idea on which radiomics, an emerging field of study in advanced
medical image analysis, is built. It has known a considerable development in the last decade
with the rise of artificial intelligence in the medical field [8, 108]. Radiomics can be defined as
the high-throughput extraction of quantitative imaging features from radiological images [7,
8]. Radiomic studies focus mainly on three imaging modalities, computed tomography (CT),
MRI and positron emission tomography (PET), though ultrasound-based radiomic studies are
on the rise [108, 109]. The field of radiomics can distinguish three main types of studies
depending on the machine learning techniques they used: handcrafted radiomic studies, deep
learning studies and deep radiomic studies.
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2.1.2 Handcrafted radiomics
Handcrafted radiomics extracts from designated regions of interest (ROI) (lesions, peritumoral
regions...) features that quantify the shape, volume and intensity of lesions but also its tex-
ture, reflecting the heterogeneity of tumors. These features can be separated into three main
categories: shape and volume descriptors, first-order statistics from the image intensity his-
togram and higher-order statistics that analyse the relationship between neighbor image voxels
defining the texture patterns. Though its application fields are wide-ranging like in cardiac
or brain imaging [110, 111], handcrafted radiomics is particularly relevant in oncology where
tumor heterogeneity has been studied extensively. By extracting a large amount of features
bringing objective information about tumors and using them in predictive modelling based on
classical machine learning, handcrafted radiomics could provide a personalized approach to
patient care and help build tools to assist medical doctors in decision-making. Handcrafted
radiomics has been used to predict malignancy of suspicious lesions [112], molecular subtype
[113] or histology [114] of tumors, overall survival [115, 116] but also disease-free survival
[117] of patients in studies based on a large variety of organs (brain [118], lung [119], breast
[120], rectum [116], pancreas [121]...). One of the leading trends in the radiomic field is the
early prediction of response to therapies including radiotherapies [122], chemotherapies [13,
121, 123] or immunotherapies [124, 125].

2.1.3 Deep learning approaches
Deep learning is a sub-area of the global machine learning field that uses complex architectures
made of numerous stacked layers of neurons, called neural networks [126]. These often quite
large networks are optimized during the training process by minimizing a loss function with
algorithms based on the gradient descent method. Amongst deep learning methods, convolu-
tional neural networks (CNNs) are particularly adapted to image analysis. Unlike handcrafted
radiomics which is based on the extraction of features from a precisely defined ROI, deep
learning studies usually take the image as a whole and aim, thanks to filters and convolutions,
to analyse the spatial relationship between voxels. CNNs have been widely used in medical
imaging to segment lesions and organs, detect abnormalities but also to tackle the same kind
of classification and prediction tasks that handcrafted radiomic models handle [126, 127].
They have the advantage of not requiring a delineation of the tumor which often constitutes
a bottleneck in the development of radiomic studies. However, deep learning networks need a
substantial amount of data to build relevant models and reduce the risk of overfitting the train-
ing set. As CNNs usually have millions of parameters, the optimization process also requires
great computational power.

2.1.4 Deep radiomics
Often pitted against each other, handcrafted radiomic and deep learning approaches can nev-
ertheless be combined to improve analyses, by delivering a new approach to extract features
from images. Rather than extracting handcrafted features from ROIs, features could be ex-
tracted from images using deep learning models. Many strategies have been developed to
extract so-called deep features but most of them are based on autoencoders [128, 129].
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Figure 2.1: Extraction of deep radiomic features with an autoencoder. During the pre-training phase,an autoencoder is optimized. Then, deep learned (DL) features extracted from the latent representa-tion (orange module) can be combined with other radiomic features and fed into predictive models.Source: Wang et al. [128].
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Autoencoders are a type of neural network that thanks to two blocks, an encoder and

a decoder, and without any labelling, learn a compressed representation of high dimensional
data. The encoder module learns hidden features in the input data referred as latent features,
from which the decoder part attempts to reconstruct the original image (Figure 2.1). Autoen-
coders are optimized by minimizing the loss estimating the divergence between the original and
reconstructed data. In this context, the encoder acts as a feature extractor. Other strategies
suggest to train CNNs for a specific clinical question and then used the second to last layer to
extract features (Figure 2.2) [127].

The reasoning behind deep features is that they could convey a more abstract represen-
tation of the information contained in an image or find “hidden” information, that would be
difficult to quantified visually. As they are extracted from the neural networks optimized on
the training set, they could also be more data specific than the conventional radiomic features
defined for all images no matter the imaging modality or the organ involved. But on the other
hand, because of their abstract nature, deep features suffer from a lack of interpretability
which makes it difficult to relate with other clinical data.

Figure 2.2: Extraction of deep radiomic features from the second to last layer of a CNN trained for aspecific clinical question. Deep features can then be combined with other types of features to improveperformances when fed into a classifier (SVM, Bayes classifier,...). Source: Zhang et al. [127].

2.1.5 Conclusion
This work will focus on the handcrafted radiomics approach presented previously, which con-
stitutes the bulk of the literature on MRI-based radiomic analyses to predict pCR to NAC in
breast cancer (Section 2.3.2). This approach has the advantage of building low computational
and more interpretable models and needing fewer data.
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2.2 Handcrafted radiomic analysis pipeline
This section will endeavour to describe a generic handcrafted radiomic analysis pipeline and
analyze the challenges raised by each step (Figure 2.3).

Figure 2.3: Main steps of the handcrafted radiomic analysis pipeline.

2.2.1 Cohort constitution & Image acquisition
There has been a steady increase in recent years in the number of multimodality studies
published, with the goal to achieve a better characterization of tumors by combining the
respective abilities of each modality [130]. Combinations of features from PET/CT [131,
132], PET/multiparametric MRI [133] or multiparametric MRI [134] have notably been used
to predict early response to NAC in breast cancer.

The majority of published radiomic studies, no matter the organ, are retrospective studies
including as few as around thirty patients up to hundreds of patients. They gather images
either from a single institution or from multiple institutions (multicentric cohorts) [127]. Taking
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into account the conditions of image acquisition is paramount when conducting a radiomic
study because of their influence on radiomic feature values. This effect, called the “scanner
effect” or the “center effect”, has been reported in PET and CT [135], and in MRI [136–138].
Acquisition and reconstruction parameters including pulse sequence parameters, voxel sizes and
field strengths, types and generations of scanners but also types of receiver coils, impact the
statistical distribution of radiomic feature values in MRI [136–140]. Though single-institution
studies are not homogeneous as several scanners, coils or sequences can be used, additional
variations are to be observed in multicentric studies where radiologists’ preferences could lead
to differences in imaging protocols and patient positioning for example. The “scanner effect”
has two main consequences on radiomic studies. First, in studies based on images acquired in
diverse conditions, variations due to biological effects could be overlooked or minimized by the
“scanner effect”. Besides, it damages the exportability of radiomic models as threshold values
determined for a specific dataset could be unsuitable for another set of images acquired in
different conditions. It thus calls for corrective measures in order to improve the power and
exportability of models.

Chapter 3 will introduce the cohort of our study and the imaging protocol while Chapter 4
will present a pipeline dedicated to breast MRI to reduce the “scanner effect” affecting radiomic
features.

2.2.2 Image pre-processing
After acquisition, a first pre-processing step is required to correct potential artefacts, improve
image quality (noise reduction, spatial smoothing) and adapt images to a standardized scale.
In MR imaging, pre-processing is particularly important as images suffer from the bias field non-
uniformity, which creates regional intensity variations [141, 142]. It is also necessary to correct
bias field gain before the segmentation step as it can affect the ROI delineation. Besides,
MR images are affected by the arbitrary units in which intensities are expressed, that vary
between patients, scanners and acquisitions and that make comparisons difficult to interpret.
Bias field correction, rarely applied in radiomic studies [18], and intensity normalization are
thus required to correct intra and inter-acquisition inhomogeneities. Spatial resampling is also
commonly applied as isotropic voxels are preferred to calculate some texture features [130,
143]. Resampling is usually calculated using B-Spline or higher-order interpolation. Image
pre-processing is the first step in reducing the “scanner effect” in multi-scanner studies.

Chapter 4 and Chapter 5 will further explore the issue of pre-processing in breast MRI first
using phantom experiments and then patient images.

2.2.3 Lesion segmentation
Lesion segmentation to define a ROI constitutes a critical step in handcrafted radiomic anal-
yses. Though peritumoral tissue or parenchyma are sometimes investigated in breast MRI
[144–146], the great majority of radiomic studies rely on a precise delineation of the tumors,
demanding an expert radiologist involvement. Tumors are segmented in 3D or in 2D using
the most representative slice. Tumor segmentation is a time-consuming and tedious task for
radiologists. It thus constitutes a major bottleneck for large cohorts. Moreover, an inter and
intra-radiologist variability in segmenting lesions is unavoidable due to preferences, radiolo-
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gists’ experience or different protocols. This variability affects radiomic features extracted
from these segmented lesions [147, 148].

To make radiologists’ work easier and attempt to reduce inter-operator variability, semi-
automated and automated techniques have been proposed. Semi-automated methods usually
need a first manual input to define a global localization of the tumor from which a more precised
delineation is obtained using for instance, thresholding operations, clustering algorithms like the
fuzzy c-means algorithm or active contours [149–151]. Figure 2.4 shows the semi-automated
pipeline to segment breast lesions in MRI proposed by Teruel et al. [149]. Methods to
automatically segment lesions are nowadays dominated by deep learning approaches. However,
they are usually modality and organ specific and require a substantial amount of data and
computational power to train models.

Figure 2.4: Steps of a semi-automated pipeline to segment breast tumors: (a) first post-contrastimage showing a breast tumor; (b) large manual ROI covering the whole tumor area; (c) same ROIafter thresholding using a relative enhancement ratio (RER) criterion; (d) Segmentation obtained afterperforming morphological operations. Source: Teruel et al. [149].
Chapter 7 will propose a 3D automated deep learning approach to segment tumors on

breast T1-DCE images.

2.2.4 Feature extraction

As radiomics became more frequently used, difficulties arose with the lack of standardization
in calculating features and the lack of accurate reporting on the extraction pipeline in studies.
Therefore, in 2020, the Image Biomarker Standardization Initiative (IBSI) [143] proposed stan-
dardized mathematical definitions of 174 common radiomic features, recommendation guide-
lines and reference values. Pyradiomics [152], a python package dedicated to the extraction
of radiomic features from medical images, is involved in the standardization process inspired
by IBSI though it has some specific features. For convenience, as radiomic features were
predominantly calculated with Pyradiomics (v3.0.1) in this thesis, the following description of
radiomic features used the Pyradiomics glossary.

Before extracting features, image intensities are discretized either using a fixed number of
bins or using a fixed bin width depending on the modality and normalization chosen [130].
Hundreds of features can be extracted but they are commonly gathered in 3 subgroups:
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• Shape descriptors that quantify in 2D or 3D the geometric properties of the ROI including

the description of its surface and volume. These features are globally not or very little
affected by the “scanner effect” but they are very sensitive to segmentation variabilities.
Table 2.1 indicates the shape features (3D) extracted by Pyradiomics (v3.0.1).

• First-order statistics or image intensity histogram features. These features analyse the
intensity distributions inside the ROI represented by the image intensity histogram with-
out considering neighborhood relationships between voxel intensities. Common statistics
calculated from the histogram include mean, median, range, skewness, kurtosis... (Table
2.1).

• Higher-order statistics or texture features. These features analyse the statistical rela-
tionship between the intensities of 2, 3 or more neighboring voxels defining the texture
patterns. Texture features are extracted from matrices that report the spatial relation-
ship between voxels in the image. Five matrices, defined in IBSI [143], are commonly
used:

– the Gray Level Co-occurrence Matrix (GLCM) that measures the number of times
two co-occurring values are represented in an image. Let I be the original image,
and P the GLCM matrix. P(i,j), with i, j respectively the row and column of
the GLCM matrix, is equal to the number of times the combination of two voxels
of levels i and j separated by N pixels along angle θ is present in the image I.
In Pyradiomics, by default a GLCM matrix is calculated for each angle on which
features are calculated. Features are then averaged across all matrices. In 2D,
there are 8 possible angles and in 3D, 26 angles. However, matrices are often
represented according to “directions”, grouping angle θ with angle θ + 180, to get
symmetrical matrices.

Figure 2.5 depicts an example of the construction of a GLCM matrix using a
two-dimensional original image I with parameters N=1, θ = 0◦, 180◦ (horizontal
direction).

Figure 2.5: GLCM matrix (P) obtained using a 5x5 image (I) discretized to have 5 gray levels with N=1,
θ = 0◦, 180◦. Red arrows give an example of how a value is obtained in the GLCM matrix.
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– the Gray Level Size Zone matrix (GLSZM) measures in an image the number of

zones of size N, defined as a line of N connected voxels of the same gray level
value. Two voxels are considered connected if the distance between them is equal
to 1 using the infinity norm (8-connectivity in 2D). The GLSZM matrix is rotation
invariant with only one matrix calculated from an image as opposed to the GLCM
for instance. Let I be the original image, and P the GLSZM matrix. P(i,j) is
equal to the number of zones of size j of voxels of level i in the image I. Figure 2.6
depicts an example of the construction of a GLSZM matrix using a two-dimensional
original image I.

Figure 2.6: GLSZM matrix (P) obtained using a 5x5 image (I) discretized to have 5 gray levels. Redarrows give an example of how a value is obtained in the GLSZM matrix.

– the Gray Level Run Length Matrix (GLRLM) measures the number of runs of size
N in the image, a run being a line of N consecutive voxels of the same gray level
value. Let I be the original image, and P the GLRLM matrix. P(i,j) is equal
to the number of runs of size j of voxels of level i along angle θ in the image I.
There are 4 possible angles in 2D and 13 in 3D. Figure 2.7 depicts an example of
the construction of a GLRLM matrix using a two-dimensional original image I with
parameter θ = 0◦ (horizontal direction).

Figure 2.7: GLRLMmatrix (P) obtained using a 5x5 image (I) discretized to have 5 gray levels with angle
θ = 0◦. Red arrows give an example of how two values are obtained in the GLRLM matrix.
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– the Gray Level Dependence Matrix (GLDM) counts the number of gray level depen-

dencies in the image. A gray level dependency is defined as the number of voxels
connected by a distance δ to a dependent center voxel. Two voxels of respective
intensities m and n are dependent with a level α if |m − n| ≤ α. Let I be the
original image, and P the GLDM matrix. P(i,j) is equal to the number of center
voxels of gray level i with j+1 dependent voxels for determined α and δ in the
image I.

Figure 2.8 presents the construction of a GLDM matrix using a two-dimensional
original image with parameters α = 0 and δ = 1 (8-connectivity).

Figure 2.8: GLDMmatrix (P) obtained using a 5x5 image (I) discretized to have 5 gray levels with δ = 1and α = 0. Red and green arrows give an example of how a value is obtained in the GLDM matrix.
– the Neighboring Gray Tone Difference Matrix (NGTDM) measures the difference

between the gray level of voxel and the average gray level of its neighbors within
a distance δ. The sum of the absolute differences for a level i is then stored in
the NGTDM matrix. The NGTDM matrix has n rows where n is the maximum
pixel value of the matrix. Figure 2.9 shows the NGTDM matrix obtained using a
two-dimensional original image with δ = 1 using infinity norm (8-connectivity).

Figure 2.9: NGTDMmatrix obtained using a 4x4 image (I) discretized to have 5 gray levels. Let i be thegray level value selected, ni the number of pixels of level i, pi the gray level probability with pi = ni/Nwhere N is the total number of pixels in the image, si is equal to the sum of absolute differences forthe level i.
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From these five matrices are extracted multiple features summarized in the Table 2.2.

Table 2.1: List of shape descriptors and first-order statistics calculated by Pyradiomics.
first-order features Shape Descriptors

10th Percentile Elongation
90th Percentile FlatnessEnergy Least Axis LengthEntropy Major Axis LengthInterquartile Range Maximum 2D Diameter ColumnKurtosis Maximum 2D Diameter RowMaximum Maximum 2D Diameter SliceMean Absolute Deviation Maximum 3D DiameterMean Mesh VolumeMedian Minor Axis LengthMinimum SphericityVariance Voxel VolumeRange Surface AreaRobust Mean Absolute Deviation Surface Volume RatioRoot Mean SquaredSkewnessTotal EnergyUniformity

Definition of the features is available online in Pyradiomics documentation [152].

Features can be extracted from the original images but also from images that have been
filtered to enhance for instance edges or sharp or coarse variations of intensities. Common
filters include logarithm, gradient, square, squareroot, exponential, Laplacian of Gaussian and
wavelet filters. Wavelet filtering in 3D encompasses the application of low (L) or high (H) pass
filters in the three dimensions (x, y, z) resulting in eight different filters: HHH, LHH, HLH,
HHL, LLH, LHL, HLL and LLL. Wavelet filtering can also be computed in 2D. In Pyradiomics,
by default, order1 Coiflet wavelets are used for filtering.

2.2.5 Feature harmonization
In order to reduce the “scanner effect”, further harmonization of the intensity-based features
and texture features may be necessary (shape features are not further processed). Chapters 4
and 5 will present conventional methods like the ComBat approach to harmonize features while
Chapter 6 will introduce an original strategy to harmonize features in a small data sample.

2.2.6 Feature selection
Between the different types of features calculated and the potential use of filters, hundreds of
features are extracted from a single ROI. All of these features are nevertheless not of interest
to answer the clinical question. Besides, amongst the features of interest, there are redundant,
highly correlated or multicollinear features, which can create problems when they are used in
regression models. Removing these features using methods like the variance inflation factor to
deal with multicollinearity [153], can thus be a first option. The risk of overfitting the data,
defined as the development of models that are too specific to the training data and would

47



CHAPTER 2. MRI-BASED RADIOMIC ANALYSES IN BREAST CANCER
Table 2.2: List of texture features calculated by Pyradiomics according to the five different matrices.

GLCM GLDM GLRLM GLSZM NGTDMAutocorrelation Dependence Entropy Gray Level Non-Uniformity Gray Level Non-Uniformity BusynessCluster Prominence Dependence Non-Uniformity Gray Level Non-Uniformity Normalized Gray Level Non-Uniformity Normalized CoarsenessCluster Shade Dependence Non-Uniformity Normalized Gray Level Variance Gray Level Variance ComplexityCluster Tendency Dependence Variance High Gray Level Run Emphasis High Gray Level Zone Emphasis ContrastContrast Gray Level Non-Uniformity Long Run Emphasis Large Area Emphasis StrengthCorrelation Gray Level Variance Long Run High Gray Level Emphasis Large Area High Gray Level EmphasisDifference Average High Gray Level Emphasis Long Run Low Gray Level Emphasis Large Area Low Gray Level EmphasisDifference Entropy Large Dependence Emphasis Low Gray Level Run Emphasis Low Gray Level Zone EmphasisDifference Variance Large Dependence High Gray Level Emphasis Run Entropy Size Zone Non-UniformityId Large Dependence Low Gray Level Emphasis Run Length Non-Uniformity Size Zone Non-Uniformity NormalizedIdm Low Gray Level Emphasis Run Length Non-Uniformity Normalized Small Area EmphasisIdmn Small Dependence Emphasis Run Percentage Small Area High Gray Level EmphasisIdn Small Dependence High Gray Level Emphasis Run Variance Small Area Low Gray Level EmphasisImc1 Small Dependence Low Gray Level Emphasis Short Run Emphasis Zone EntropyImc2 Short Run High Gray Level Emphasis Zone PercentageInverse Variance Short Run Low Gray Level Emphasis Zone VarianceJoint AverageJoint EnergyJoint EntropyMCCMaximum ProbabilitySum AverageSum EntropySum Squares

Definition of the features is available online in Pyradiomics documentation [152].

achieve poor performances when tested on other datasets despite high results obtained during
the training process, must also be taken into account. To reduce the risk of overfitting, feature
selection is thus highly recommended.

Several methods to select features are conventionally used in radiomics. They can be
separated in two broad groups: supervised and unsupervised methods. Unsupervised methods
do not use any data labelling. They commonly include clustering techniques or dimensionality
reduction approaches like the principal component analysis (PCA) and mostly aim to remove
redundancy among features [154].

Supervised techniques select features based on their importance in solving a specific task
and thus require data labelling. Three main approaches can be identified [155]:

• Filter methods: these methods can operate on a univariate or multivariate basis and do
not require to train models. Using univariate statistics, filter methods select features
based on their association with the target variable without considering the relation-
ships and potential redundancy between features. Statistics used in this step depend
on the nature of the data (continuous, discrete or qualitative data) and its distribution.
Wilcoxon rank sum test, Student’s t-test, Fisher score or the Chi-squared score are com-
monly calculated. On the other hand, the minimum Redundancy Maximum Relevance
method (mRMR) is an example of a filter method that takes into account other features
[156]. mRMR finds the minimal-optimal subset by iteratively calculating the F-statistic
of features and using Pearson correlation coefficients (for continuous variables).

• Wrapper methods: wrapper methods investigate within a set of extracted features all
possible subsets of features. Their relevance is assessed by the performance of a pre-
dictive model trained on this subset. Wrapper approaches usually work iteratively by
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adding or removing a feature at each step to find the optimal subset that maximizes
performances. Wrapper methods include the well-known forward and backward selection
approaches [157].
The Boruta algorithm [158] is also an example of a wrapper method, based on random
forest models [159]. It works in an iterative way and its main characteristic is to du-
plicate all features and shuffle randomly values to create “shadow features". At each
iteration, random forest models are trained on real and associated shadow features and
accept real features if their importance is higher than the importance of all the shadow
features created from them or reject them when deemed unimportant. The algorithm
stops when all features have been selected or rejected or when the maximum number
of random forest runs has been carried out. The number of runs (iterations) can be
increased if, after all the iterations, there are still doubts about some features which are
then classified as “Tentative" by the algorithm. The Boruta method selects all features
relevant to the problem instead of finding a minimal-optimal subset like some other
approaches like mRMR.

• Embedded methods: contrary to filter and wrapper approaches, embedded methods
perform feature selection while building the predictive model. Ridge and LASSO [160,
161] regression or tree-based models like Random Forest [159] can be cited as emblematic
embedded methods [157, 162].

Chapter 5 will define the feature selection process performed in our analyses.

2.2.7 Model building
The model building step depends on the purpose of the study and whether it can be assimilated
to a regression or classification task. It is also impacted by the way in which feature selection is
performed as described in the previous section. Classification problems have been investigated
in many radiomic studies such as in the prediction of molecular subtype [113], of the malignancy
of a lesion [112] or the response to a treatment [13]. Predicting pCR to NAC is an example of a
particular case of classification, called binary classification, where the output is restricted to two
classes. Among regression models, logistic regression is well adapted to binary classification
as it offers only two possible outcomes. Other well-known models suitable to classify patients
include support vector machines (SVM), k-nearest neighbors algorithm (k-NN), naive Bayes
classifier, neural networks or tree-based models like Random Forest [118, 151]. In our studies,
we resort most of the times to random forest models as they handle binary, categorical and
numerical features well, are quick to train and robust to outliers and non-linear data.

Random Forest (RF) is an ensemble learning method based on multiple decision trees,
introduced by Breiman [159], that can be used either for classification or regression. The RF
algorithm builds N decision trees made of nodes. Each tree is trained on a bootstrap sample
(random sample with replacement) from the training data using a random subset of features.
The final result is obtained by aggregating the results from each tree based on majority voting
for classification and averaging for regression. Figure 2.10 shows a schematized representation
of a random forest model trained for a classification task.

To achieve the best possible performances, hyperparameters that configure the Random
Forest model architecture, including N the number of trees built, the metric and criteria on
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Figure 2.10: Random Forestmodel for classification built using N trees from a training set of n patientscharacterized by Z features.

which to split on at each node, the number of features randomly selected, usually equivalent
to

√
N and the maximum depth of the trees, must be optimized. This search for the best

hyperparameters, called “model tuning” can be performed using different well-known techniques
like random search or grid search, where all the potential combinations of hyperparameter
values are points on a grid representing the search space that is exhaustively investigated for
the optimal set of hyperparameters [163]. These methods are usually performed on a separate
validation set or conjointly with K-fold cross-validation. K-fold cross validation is a resampling
technique used to estimate the performance of a model by partitioning the data into K subsets
and using iteratively K-1 subsets to train the models and the last subset to test it. Global
performance is obtained by averaging the performances obtained on the test set in the K
iterations. Figure 2.11 depicts a 5-fold cross-validation process.

This optimization process can take a considerable amount of time and depends on the
number and types (continuous, discrete, categorical, conditional...) of the specific hyperpa-
rameters of the model trained. Depending on the circumstances, different approaches (random
or grid search, Bayesian optimization, gradient descent...) may be considered to select hyper-
parameters [164] .

2.2.8 Model evaluation

Evaluation of radiomic models occurs first during the training phase to tune the classifiers and
select the optimal set of hyperparameters and then during the testing phase to estimate the
generalization ability of the models.
In the case of a binary classification task, predictions and ground truth of the model are com-
monly schematized in a confusion matrix (Figure 2.12) from which several evaluation metrics
like the sensitivity (true positive rate or recall), specificity (true negative rate), precision,
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Figure 2.11: Example of a 5-fold cross-validation. Global performance P is obtained by averaging theperformance Pi on the testing data of each fold i.

Figure 2.12: Confusion matrix.

Youden Index, F1-score or accuracy, amongst others, can be calculated:

Recall/Sensitivity/True positive rate =
TP

TP + FN
(2.1)

Specificity/True negative rate =
TN

TN + FP
(2.2)

Precision/Positive predictive value =
TP

TP + FP
(2.3)

F1 =
2× (Recall × Precision)

Recall + Precision
(2.4)

Accuracy =
TP + TN

TP + FP + TN + FN
(2.5)

Y ouden Index = Sensitivity + Specificity − 1 (2.6)

Accuracy is one of the most used metrics for binary and multi-class classification [165]. It is
however not recommended in case of an imbalanced dataset as indeed, in these circumstances,
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predicting the majority class every time will always lead to good performances. That is why
the balanced accuracy, defined as

BalancedAccuracy =
Sensitivity + Specificity

2
(2.7)

was introduced. Precision can be defined as the probability that an observation classified
as positive is actually positive whereas recall is the probability that a positive observation is
classified as positive. The use of precision and recall as evaluation metrics depends on the
predictive question the model intends to tackle. Precision will be favored when the cost of
classifying a patient as positive is high whereas the cost of classifying him as negative is low.
On the other hand, in cases where one wants to maximize the number of actual positive
observations classified as positive, recall will be preferred. In problems where a good balance
must be found between precision and recall without any preferences, the F1-score defined as
the harmonic mean between them can be selected. The Youden index maximizes the sum
of sensitivity and specificity and can equally be used when the cost of wrongly predicting an
observation as positive or negative is comparable. Most of these metrics and the confusion
matrix representation can be extended to multi-class problems. Sometimes, weighting of
the different classes in metrics like the balanced accuracy can be introduced to ensure good
performances in all classes [166].

Unlike the previously defined metrics, the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve measures the quality of the predictions of the models
while varying the classification threshold. The ROC curve graphically depicts the trade-off
between sensitivity and specificity of a binary classifier (Figure 2.13). AUC evaluates the
global ranking performance of a model rather than the final classification. It is one of the
most popular metrics in radiomic studies [149, 167, 168].

Figure 2.13: ROC curve showing an example of a curve obtained with a binary classifier. The left topcorner indicates the point that should be reached by the curve of a perfect classifier with sensitivity= specificity = 1. The better the performance of the classifier, the greater is the area under the curve(AUC).
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The evaluation of a radiomic model performance must also consider the set of patients

on which to test the models to estimate its exportability. Having an independent test set
remains the gold standard when testing predictive models. However when using small datasets,
resorting to K-fold cross-validation is a widespread practice [146, 167–169]. Leave-one-out
cross-validation (LOOCV) is an extension of K-fold cross-validation where K is equal to the
number of patients, leading to train at each iteration the model on all the observations but
one that is used to test the model [170]. This method can be computationally expensive but
reduces the bias of the results as models are trained on almost all the dataset. Another benefit
of K-fold cross-validation is to get a mean and standard deviation of the performance.

2.3 Breast radiomics: state of the art

2.3.1 Applications of radiomics in breast cancer
Radiomics has been applied in breast cancer to tackle many clinical questions, including the
prediction of the response to NAC, using a wide variety of modalities [120, 171]. The para-
graph below describes a few examples of radiomic applications in breast cancer other than the
prediction of pCR to NAC.

First, radiomic studies have attempted to distinguish malignant from benign lesions. Nie et
al. [172] combined volume, shape and GLCM features extracted from post-contrast MR images
into a neural network to differentiate lesions with an AUC of 0.82 on a separate validation set.
To textural features, Wang et al. [173] decided to add kinetic parameters (KTrans, Kep and Ve,
that can be represented in anatomical maps) to improve identification of malignant lesions.
Radiomic-based model can also predict lymph node metastases. In a prospective study, Liu et
al. [134] used features from the wavelet-transformed images combined with shape, size, first-
order statistics and texture features to predict metastases or lymph node metastases with an
AUC of 0.76. Radiomic features have simultaneously been used to identify molecular subtypes
of breast cancer [113] or histological type of tumors [174]. Besides, an important application of
radiomics in breast cancer concerns the prediction of survival outcomes. Park et al. [117] built
a radiomic signature with clinical factors and the accompanying nomogram to predict disease-
free-survival in patients diagnosed with invasive breast cancer. Cancer recurrence prediction is
a topic in which radiomics can bring value as well. Chan et al. [175], for example, identified
patients with high risk of recurrence using features extracted from the patterns of wash-in and
wash-out of DCE pre-treatment images.

2.3.2 Prediction of pCR to NAC in breast cancer using MRI
Literature review methodology

There has been a growing interest in the prediction of pCR to NAC in recent years. From
a few studies between 2010 and 2015, about half a dozen studies have been published every
year since. Researchers have attempted to address this question using both deep learning and
handcrafted radiomic approaches. Radiomics studies designed to predict pCR have been based
on CT [176, 177], PET [178, 179], MR [13] or ultrasound [180] images but also using combi-
nations of these modalities with PET/CT [131, 132, 181] and PET/MRI [133] studies. The
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following section will specifically focus on MRI, the modality used in this thesis. We searched
PubMed, Web of Science and Google Scholar databases until June 1, 2022 to gather all pub-
lished articles in English describing studies designed with MR images only and that calculated
handcrafted texture features or used deep learning methods to build predictive models to pre-
dict pCR to NAC in breast cancer. The following keywords were used to search databases:
“MRI” AND “Breast” AND (“Neoadjuvant chemotherapy” OR “Neoadjuvant therapy”) AND
(“Radiomic” OR “Texture” OR “Deep learning” ). Articles that only measured the association
of features with pCR without building models were not reported. Articles that used PET/MRI
or used other modalities were rejected as well.

Table 2.3 lists studies that calculated handcrafted texture features to predict pCR. The
first columns of Table 2.3 provide the reference, year of publication, molecular subtypes used
to build the model and the number of patients of the study. When several lines describe
molecular subtypes and patients for a specific study, it means that several predictive models
were built with usually one model designed for all the subtypes and other ones for specific
subtypes. The table then reports the MR sequences of the images. The “Multicentric” column
indicates if images were acquired in one or multiple institutions. The mention “MS” standing
for “Multiscanner” means that patients were scanned in one center but on several scanners.
Table 2.3 indicates if image pre-processing was applied before feature extraction. The “ROI”
column describes the region from which features were extracted in the images. Though in
the vast majority of cases, the ROI only considers the tumor region, other sub-regions, such
as the peritumoral regions, were investigated in a few studies. Finally, the selected features,
evaluation methods and AUC values on the test set or using cross-validation on the training
set are mentioned.

Similarly, Table 2.4 lists all published studies using deep learning approaches to predict
pCR and notably indicates if clinical and biological variables were combined with images to
build the models.

Literature review analysis

This review process found 36 handcrafted radiomic and 11 deep learning-based studies designed
to predict pCR to NAC in breast cancer. From the main characteristics of the studies (described
in Tables 2.3 and 2.4), a number of observations can be made while some questions need to
be further explored.

First, we can see an important rise in the last few years in the number of studies published
about the prediction of pCR in breast cancer using either handcrafted or deep learning ap-
proaches (no study combining them was found). There are comparatively fewer deep learning
studies than handcrafted ones but the deep learning trend in radiomics seems to have pick
up more recently which is in par with the global deep learning surge. Deep learning studies
have on average 194 patients (median=141, interquartile range (IQR) [121, 234]) while hand-
crafted studies gather 146 patients (median=95, IQR [60, 160]). This difference is due to the
necessity to constitute larger cohorts to use deep learning approaches. As it may prove tricky,
this can also explain why deep learning studies are less frequent.

Building models for all the molecular subtypes of breast cancer or for a subset of them
is one of the first main questions to tackle in the design of a radiomic study. Indeed, as
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Table 2.3: Listing of handcrafted radiomic studies to predict pCR to NAC in breast cancer.

Reference Year Subtype Number ofPatients Treatment Modality Multicentric 2D/3D ImagePreprocessing ROI Features Evaluation AUC

Golden [167] 2013 TN 60 Pre/Post DCE Yes 2D Kineticmap Tumor BI-RADSClinical/BioFO/Texture MCCV 0.68±0.05

Teruel [149] 2014 All 58 Pre DCE No 2D - Tumor FO/Texture UA 0.69

Wu [170] 2016 All 35 Pre/Mid DCE No 3D TemporalPCA Intratumorpartitioning FO/Texture LOOCV 0.79

Giannini [182] 2017 All 44 Pre DCE No 3D - Tumor FO/Texture CV 0.80

Henderson [183] 2017 All 88 Pre/Mid T2 No 3D - Tumor Texture UA 0.85

Banerjee [168] 2017 TN 41 Pre/Post DCE Yes 3D Kineticmap Tumor FO/Texture MCCV 0.83±0.01

Braman [144] 2017 AllTN/HER2+HR+/HER2-
1174770 Pre DCE Yes 3D - TumorPeritumoral FO/TextureKinetics

Test set (39)CVCV
0.740.83 ± 0.030.93 ± 0.02

Chamming [184] 2017 AllHR+/HER2- 8569 Pre DCE, T2 No 2D - Tumor FO/Texture UA NA0.67

Thibault [169] 2017 All 38 Pre/Mid DCE, T2 No 3D - Tumor FO/TextureKinetics CV 1

Fan [145] 2017 All 103 Pre DCE, T2 MS 3D - TumorBPE FO/TextureKinetics Test set (46) 0.70

Machirredy [185] 2019 All 55 Pre/Mid DCE No 2D Parametricfractalmap Tumor
Multi-resolutionfractalanalysisKinetics

Test set (15) 0.80

Cain [150] 2019 AllTN/HER2+ 269151 Pre DCE MS 3D - Tumor FO/Texture Test set (134)Test set (75) 0.60 ± 0.050.70 ± 0.06

Liu [134] 2019 AllHR+/HER2-TN 586 Pre DCE, T2,DWI Yes 3D Z-score Tumor Clinical/BioFO/Texture Test sets 0.790.870.84

Drukker [186] 2019 All 158 Pre DCE MS 3D - Tumor FO/Texture Bootstraptest 0.82± 0.03

Braman [187] 2019 HER2+ 70 Pre DCE Yes 3D - TumorPeritumoral FO/Texture Test set(28) 0.80± 0.09

Tahmassebi [107] 2019 All 38 Pre/Mid DCE, T2,ADC No 3D - Tumor BI-RADSKinetics CV 0.86± 0.06

Bitencourt[188] 2020 HER2+ 311 Pre DCE Yes 3D - Tumor FO/Texture Test set (134)Test set (75) 0.60 ± 0.050.70 ± 0.06

Chen [189] 2020 All 158 Pre DCE, T2 No 2D - Tumor FO/Texture Test set (48) 0.84

Zhou[146] 2020 All 55 Pre DCE No 3D - TumorPeritumoral FO/Texture CV 0.89± 0.03

Chen [190] 2020 All 158 Pre DCE, ADC No 3D - Tumor FO/Texture Test set (28) 0.84
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Reference Year Subtype Number ofPatients Treatment Modality Multicentric 2D/3D ImagePreprocessing ROI Features Evaluation AUC
Xiong [191] 2020 All 125 Pre DCE No 3D - Tumor Clinical/BioFO/Texture Test set(62) 0.94

Fusco [192] 2020 All 45 Pre DCE Yes 3D - Tumor FO/TextureKinetics UA 0.93

Bian [193] 2020 All 152 Pre DCE, T2,ADC No 2D - Tumor FO/Texture Test set (45) 0.93

Eun [13] 2020 All 136 Pre/Mid DCE, T2DWI,ADC No 2D - Tumor FO/Texture CV 0.82±0.03

Sutton [194] 2020 All 273 Pre/Post DCE MS 3D Histogramstandardization Tumor Clinical/BioFO/Texture CV 0.83±0.05

Hussain [12] 2021 All 166 Pre/Mid DCE, T2 Yes 3D - TumorPeritumoral Clinical/BioFO/Texture Test set 0.98

Granzier [18] 2021 All 320 Pre DCE Yes 3D
Bias fieldcorrectionHistogrammatching

Tumor Clinical/BioFO/Texture Test sets NA*

Pesapane [14] 2021 All 83 Pre DCE No 3D IntensityNormalization Tumor Clinical/BioFO/Texture CV 0.83±0.05

Montemzzi[195] 2021 All 60 Pre DCE No 3D IntensityNormalization(mean=0, sd=1000) Tumor Clinical/BioFO/TextureKinetics LOOCV 0.91

Kolios[196] 2021 All 102 Pre T2 No 2D - TumorMargins FO/Texture LOOCV 0.78

Nemeth [15] 2021 TN 75 Pre DCE, T2,DWI No 3D - TumorParenchyma FO/Texture Test set (18) 0.83

Caballo [16] 2022
AllLuminal ALuminal BHER2+TN

251107472572
Pre DCE MS 3D - TumorPeritumoral FO/TextureKinetics LOOCV

0.710.820.820.840.80

Yoshida [197] 2022 All 78 Pre DCE, T2,DWI No 3D - Tumor
BI-RADSClinical/BioFO/TextureKinetics

Test set (20) 0.76

Jimenez [198] 2022 TN 80 Pre DCE No 3D - Tumor TIlFO/Texture CV 0.75±0.03

Li [199] 2022 All 448 Pre DCE,T2ADC No 3D - TumorPeritumoral FO/Texture Test set(86) 0.92

Peng [200] 2022 All 356 Pre DCE No 3D - Tumor Clinical/BioFO/TextureKinetic CV 0.78±0.02

Kinetic map: texture is calculated onmaps of kinetic parameters instead of native or filtered images;
Pre: Pre-treatment; DCE: T1-weighted dynamic-contrast enhanced sequence; Mid: Mid-treatment;
Post: Post-treatment; MS: Multiscanner but not multicentric study; FO/Texture: first-order, shapeand texture features; Clinical/Bio: Clinical and biological variables; Kinetics: Kinetic parameters;
TIL: Tumor-infiltrating lymphocytes; UA: univariate analysis, CV: Cross-validation, LOOCV: Leave-one-out cross validation; MCCV: Monte-Carlo cross-validation; Test set(N): test set of N patients withN included in the global number of patients; AUC: area under the curve on the test set NA*: Noperformance value is indicated for this study as the highlighted conclusion was that handcraftedradiomics cannot predict successfully pCR.
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Table 2.4: Listing of deep learning radiomic studies to predict pCR to NAC in breast cancer.

Reference Year Subtype Number ofPatients Treatment Sequence Multicentric 2D/3D Clinical Model Evaluation AUC
Huynh [201] 2017 All 64 Pre DCE No 3D No VGG CNN LOOCV 0.85±0.03

Ha [202] 2018 All 141 Pre DCE MS 2D No VGG16 Test set(28) 0.98

Ravichandran [203] 2018 All 166 Pre DCE No 3D Yes AlexNet Test set(33) 0.85

Adoui [204] 2019 All 42 Pre DCE No 3D No CNN CV 0.92

Liu [205] 2020 All 131 Pre DCE Yes 3D No CNN CV 0.72 ± 0.08

Braman [206] 2020 HER2+ 157 Pre DCE Yes 3D No CNN Test set(28) 0.85

Qu [207] 2020 All 302 Pre/Post DCE No 3D No CNN Test set(48) 0.97

Duanmu [208] 2020 All 112 Pre DCE Yes 3D Yes CNN Test set(22) 0.80

Joo [209] 2021 All 536 Pre DCE, T2 No 3D Yes CNN Test set(107) 0.89

Massafra [210] 2022 All 151 Pre DCE Yes 3D Yes CNN Test set(45) 0.80

Peng [200] 2022 All 356 Pre DCE No 3D Yes ResNeXt50 CV 0.83 ±0.02

Pre: Pre-treatment; Mid: Mid-treatment; Post: Post-treatment; MS: Multiscanner but not multicen-tric study; CV: Cross-validation, LOOCV: Leave-one-out cross validation; VGG, AlexNet, ResNetXt50:specific CNNs common in the deep learning literature; CNN: ad-hoc CNNs that were not built using aspecific model; Test set(N): test set of N patients with N included in the global number of patients.
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explained in Chapter 1, molecular subtypes have different characteristics, prognoses, evolution
patterns, treatments and chemosensitivities which may advocate for the design of separate
models. Though the vast majority of the studies (26/36, 10/11) are not subtype-specific, TN
[15, 167, 198] and HER2+ [187, 188, 206] based studies have been developed. Starting from
a global model, some articles [16, 134, 144, 150] have also designed complementary models for
a particular set of subtypes with common pools being TN/HER2+ and HR+/HER2-. Refining
the molecular subtypes of the models frequently proved to increase performances like in the
study by Liu et al. [134] where the global model has an AUC of 0.79 and the HR+/HER2-
model an AUC of 0.87. However, restricting the subtypes tends to reduce the statistical power
of the study and often leads to evaluate models with cross-validation methods instead of using
an independent test set.

The time in the therapy at which to set the study must also be discussed. Most of
the studies extract features from pre-treatment images but some works are based on the
combination of pre, mid and sometimes even post-treatment images [12, 13, 107, 167, 168,
170, 183, 185, 207] or evaluate changes in radiomic features between the different time
points. Being able to predict pCR before the beginning of NAC would indeed be ideal but as
it is a complex question, stopping treatment after a few cycles of an ineffective chemotherapy
would still be useful. Hussain et al. [12] noted a significant boost in AUC from 0.88 to
0.92 on an independent test set when adding mid-treatment images to pre-treatment images.
Furthermore, Eun et al. [13] showed that mid-treatment T1-weighted DCE based models
achieved higher performances than models trained on pre-treatment images only or on a
combination of pre and mid-treatment images.

Selecting the MR sequences is another important step in the study design. The basic
and most frequent sequence consists in T1-weighted DCE (34/36 in handcrafted studies and
11/11 in deep learning studies) to which is sometimes added T2-weighted images (14/36,
1/11), ADC maps (5/36, 0/11) and DW-weighted images (4/36, 0/11). Liu et al. [134] found
that multiparametric signatures (T1-DCE, T2, ADC) outperformed any single sequence-based
models as observed similarly by Nemeth et al. [15]. However, Eun et al. [13] came to a different
conclusion with better performances when using T1-DCE mid-treatment features alone. The
choice of the best T1-weighted DCE image has also been debated. While using the first post-
contrast image is common because peak enhancement time of breast tumors usually happens
quickly, Montemezzi et al. [195] chose the third dynamic and its associated subtraction image.
Yoshida et al. [197] also used subtraction images while Huyn et al. [201] investigated different
pre and post-contrast images and achieved best performances with pre-contrast features.

Once the cohort constituted and image acquisition parameters set, a ROI must be defined
in handcrafted studies. This step raises two questions: which regions to include in the ROI
and how to delineate it. Some works have indeed highlighted the potential benefit of combin-
ing tumoral with peritumoral and parenchymal features for improved performances [131, 145,
187]. Peritumoral tissue, in particular, is thought to bear the mark of the angiogenetic activity
of the tumor and the invasion of lymphatic vessels which could prove useful in the prediction
of the response.

As previously mentioned, delineation of the tumor can be done manually, semi-automatically
and entirely automatically. Tumors can be segmented in 3D like for almost all reported stud-
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ies, or in 2D selecting the most representative slice. However, inter-radiologist variability in
manual and semi-automatic segmentation of tumors heavily impacts radiomic feature values.
As the reproducibility of radiomic features is paramount to export models, efforts have been
made to improve this point by asking several radiologists to segment lesions and using a final
segmentation based on consensus [15, 144]. Granzier et al. [211] and Saha et al. [148] studied
the robustness of radiomic features by calculating the intraclass correlation coefficients (ICC)
of features extracted from different segmentations. Differences in radiologists’ segmentations
were assessed with the Dice similarity coefficient (DSC). As an alternative to altering the seg-
mentations, they proposed to only work on features with an ICC superior to a selected cut-off
value (0.8 for example), which would be deemed robust to segmentation variabilities.

After the segmentation step, features must be extracted and selected to build models. The
choice of features to use for predictive modelling is extremely wide but features usually fall into
one of the five categories: BI-RADS features, kinetic parameters, shape or first-order/texture
features and as a complement, clinical and biological data. The evidence concerning the use of
different sources of features is mixed. Pesapane et al. [14] found their clinical and biological
model and clinical and biological combined with radiomics based model to have equivalent
performances. By contrast, Peng et al. [200] and Hussain et al. [12] indicated that adding
clinical or biological data improved their model performances. Finally, Granzier et al. [18]
underlined that the clinical and biological model achieved the best performances as they fail
to build a model better than the random classifier using MR-based radiomic features. Among
texture parameters, GLCM features and features from the wavelet-transformed images have
been highlighted by some studies as particularly useful to predict pCR [146, 170]. Mallat et
al. [212] notably underscored the scale separation and linearization ability of wavelets, that is
used in deep learning architectures.

The choice of classifiers to predict pCR is an open question and quite often studies compare
the performances of several classical algorithms like naive Bayes, SVM, random forest, logistic
regression [15].

Comparing performances of models is a tricky task as all studies might not have the same
definition of pCR and the distribution of molecular subtypes can greatly influence performances.
Including Luminal A tumors that have a well-know very low rate of achieving pCR into cohorts
can help achieving good performances. On a global level, AUCs on the test set cover a
range from 0.70 to 0.98. Comparisons between deep learning and handcrafted approaches
are again difficult to make except in the study by Peng et al. [200] where a radiomic and a
deep learning models were tested on the same cohort. The deep learning model performed
significantly better than the radiomic approach (AUC 0.83 vs 0.78, p <0.001). In this review,
performances were always reported with the AUC metric, which gives a certain leeway when
defining a classification threshold to study misclassified patients.

Finally, some aspects of the “quality” of the studies as defined by the radiomic quality
score (RQS) [213] could be mentioned. A few studies [12, 205, 208, 210] (1/36, 3/11), used
images from the public database “Investigation of Serial Studies to Predict Your Therapeutic
Response with Imaging and Molecular Analysis” (I-SPY1 TRIAL) [214]. The I-SPY1 database
is a multicentric cohort acquired between 2002 and 2006 to test in a prospective study the
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ability of MRI to predict pCR to NAC in breast cancer. Nevertheless, the majority of the
databases were private. Though the imaging protocol was usually well described and most of
the segmentations obtained by the consensus of several radiologists, very few studies talked
about any of the pre-processing steps that are essential in MR studies. Among radiomic
handcrafted studies, only one study performed bias field correction [18], and five papers (5/36)
reported performing intensity normalization or spatial resampling before extracting features.
Though numerous studies were multicentric, a fact that is welcome, only Granzier et al. [18]
and Caballo et al. [16] conducted further harmonization of the features to reduce the “scanner
effect”. At last, a substantial number of studies (20/36 of handcrafted and 4/11 of deep
learning studies) did not have an independent test set to evaluate the model and needed to
resort to cross-validation techniques.

Conclusion
This chapter introduced the field of radiomics, its underlying biological principles and the main
techniques (handcrafted features, deep learning approaches, deep features) associated with it.
The radiomic pipeline for the handcrafted features was described precisely while at the same
time analyzing the challenges raised by each step like the “scanner effect”, the impact of inter-
radiologist variability in segmenting lesions and the lack of standardization in defining features.
A final section went through the literature on MRI-based approaches to predict pCR to NAC
in breast cancer, notably highlighting the common lack of information on image pre-processing
or feature harmonization in the majority of the studies.
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Chapter 3

MR study design & first analyses

Preface

Being able to predict the response to NAC before the beginning of treatment or after a few
cycles of chemotherapy could considerably improve patient care. Radiomic studies combining
texture features, clinical and biological data, BI-RADS or kinetic parameters have attempted
to address this complex issue (Chapter 2). This chapter will introduce the cohort used in this
thesis and propose first models based on clinical and biological data and BI-RADS features.
A reduced version of the cohort, its characteristics and association with pCR of its features
were published by Malhaire et al. [103].

3.1 Study design

3.1.1 Cohort constitution

This retrospective study was initiated by Dr. Caroline Malhaire, radiologist at Institut Curie
with 15 years of experience in breast MR imaging and was approved by the institutional
review board of Institut Curie (IRB number OBS180204). The study included adult women
with locally advanced or invasive breast cancer treated with NAC (anthracycline and taxane
regimen with herceptin for HER2-positive tumors) at Institut Curie between 2016 and 2020
and who were scanned with MRI before the beginning of NAC. Pregnant women, women
previously treated for ipsilateral breast cancer, who were breastfeeding or who had breast
implants were not included. Among the 156 patients retrospectively identified, 139 women
had been enrolled into a prospective trial called “Neoelasto” (NCT02834494) investigating
the use of shear wave elastography, with MRI as a reference modality, to predict and analyse
the results of NAC in breast cancer and for which they gave written informed consent. The
requirement to obtain informed consent was waived for the other patients. Discarding patients
with missing modalities or clinical data or whose images could not be used due to technical
failures, 136 patients were finally considered (Figure 3.1).
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Figure 3.1: Inclusion flowchart.

3.1.2 Imaging protocol

All patients were imaged in the prone position in the axial plane with dedicated breast coils.
A majority of patients (n=110) were scanned in one of the three imaging settings of Institut
Curie: 28 patients were scanned on a GE Optima MR450w device with an 8-channel coil
(coil 1), 19 on a MAGNETON Aera scanner using a 18-channel breast coil (coil 2) and 63
on the previously mentioned MAGNETON Aera scanner but with a Sentinelle 16-channel
breast coil dedicated to biopsies (coil 3). Patients were imaged with the standard routine
protocol of Institut Curie, including 3D T1-weighted DCE and fat-saturated T2 sequences.
To perform dynamic contrast-enhanced imaging, an intravenous injection of a gadolinium-
based contrast agent (gadoterate meglumine, commercialized under the name of Dotarem by
Guerbet Healthcare) at a concentration of 0.2 mL per kilogram of body weight, was carried
on using a power injector, followed by a 20 mL saline solution flush. Four to five images were
acquired every 90s after injection. The sequence parameters of the three imaging settings are
reported in Table 3.1.

The remaining patients (n=26) were scanned in a multitude of other centers with different
scanners and coils. Slice thickness of images acquired in these centers ranged from 0.7 to 2.2
mm in T1-DCE images with a mean of 1.6 mm and 1.5 to 5 mm in T2 images with a mean
of 3.4 mm. Images were reviewed to control quality by Dr. Malhaire.

Patients were divided into a training set, gathering the first 103 women imaged at Institut
Curie, and a test set with all the patients imaged in other centers and 7 patients imaged at
Institut Curie and included at a later stage in the study. Table 3.2 summarizes the scanning
devices used in both sets.
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Table 3.1: Scanning parameters of routine sequences of imaging devices of Institut Curie.

T1 fat-saturated T2 T1-weighted DCE
Coil Coil 1 Coil 2 Coil 3 Coil 1 Coil 2 Coil 3 Coil 1 Coil 2 Coil 3
TR (ms) 6.9 592 545 5544 3310 6400 6.81 5.2 5.2
TE (ms) 4.2 13 13 90 88 88 3.3 2.4 2.4
Slice thickness(mm) 1.6 3.5 3.0 3.0 3.5 3.0 1.0 0.9 0.9
Spacing betweenslices (mm) 0.8 4.2 3.6 3.3 4.2 3.6 1.0 0.9 0.9
Pixel spacing(mm) 0.68x0.68 0.71x0.71 0.68x0.68 0.70x0.70 0.70x0.70 0.70x0.70 0.82x0.82 0.91x0.91 0.91x0.91
Pixel bandwidth(Hz/pixel) 244 130 130 558 315 375 434 355 355
Flip angle 20 148 148 160 150 180 15 10 10
Coil 1: Optima MR450w with 8-channel coil; Coil 2: Magneton Aera with 18-channel breast coil; Coil
3: Magneton Aera with Sentinelle breast coil.

3.1.3 Patient & tumor characteristics

Clinical & biological data were collected from patient clinical records including the age, BMI,
menopausal status and stage according to TNM staging. From biopsies performed before
the beginning of NAC, histological type, tumor grade, Ki67 and TILs levels were assessed.
TILs levels were binarized into “High” and “Low” classes using 30% as a threshold level [103].
Tumors were considered to be ER or PR positive when at least 10% of the cells collected
for immunohistochemistry testing were stained, indicating respectively the presence of ER or
PR receptors. HER2-overexpression was assessed with immunohistochemistry combined when
necessary with FISH. Molecular subtypes can be described in different manners. Luminal
B tumors with HER2 positive status are sometimes gathered with HER2-enriched tumors
(Chapter 1) while on the contrary the Luminal B class can be sometimes broken down in two
subgroups depending on the HER2 status, which was the case in this thesis. Tumor response
was established at Institut Curie on the post-surgical specimens using the Residual Cancer
Burden (RCB) score (Chapter 1). Grading systems to assess tumor response can vary between
centers. Patients with RCB class I (minimal residual disease), class II (moderate residual
disease) and class III (extensive residual disease) were considered non pCR (npCR) as opposed
to patients with RCB class 0 who achieved pCR.

All MR images and associated BI-RADS descriptors were provided by Dr. Caroline Malhaire,
with the assistance of Dr. Fatine Selhane, resident radiologist with one year of experience in
breast MRI. Kinetic parameters were described using a time-intensity curve calculated in the
most enhanced area within the tumor. In addition to BI-RADS, a breast edema score (BES), as
defined by Harada et al. [102] on T2-weighted images, was recorded. Harada et al. found that
BES was associated with the prognosis of breast cancer patients after NAC. BES was evaluated
using five levels: BES1 indicates the lack of edema, BES2 the presence of a peritumoral edema,
BES3 the presence of a prepectoral edema, BES4 the presence of a subcutaneous edema and
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Table 3.2: Imaging devices of training and test sets.

Imaging centers Manufacturers Devices Magnetic fieldstrength (T) Coils Training Testing
Institut Curie GE Optima MR450w 1.5 8-channel coil 25 3
Institut Curie Siemens MAGNETOM Aera 1.5 18-channel coil 19 0
Institut Curie Siemens MAGNETOM Aera 1.5 Sentinelle (16-channel) coil 59 4
Other center Siemens MAGNETOM Aera 1.5 16-channel coil 0 4
Other center Siemens MAGNETOM Aera 1.5 18-channel coil 0 3
Other center Siemens MAGNETOM Aera 1.5 Spine 32-channel coil 0 1
Other center Siemens MAGNETOM Amira 1.5 18-channel coil 0 1
Other center Siemens MAGNETOM Avanto eco 1.5 Breast matrix coil 0 1
Other center Siemens MAGNETOM Avanto eco 1.5 16-Channel AI Breast coil 0 1
Other center Siemens MAGNETOM ESSENZA 1.5 Breast matrix coil 0 1
Other center GE Discovery MR 750 3 HD Breast coil 0 1
Other center GE Optima MR360 1.5 HD Breast coil 0 4
Other center GE Optima MR450w 1.5 HD Breast coil 0 2
Other center GE Signa Artist 1.5 HD Breast coil 0 3
Other center GE Signa HDxt 1.5 HD Breast coil 0 2
Other center GE Signa Voyager 1.5 HD Breast coil 0 2

Training: Number of training patients; Testing: Number of test patients; Other centers: imagingcenters not associated with Institut Curie.

BES5 the presence of an edema noticeable during clinical exams without MR imaging. This
score was included in the radiologists’ report. When there were several malignant masses
within the ipsilateral breast, tumors were described as multifocal. The presence of non-mass
enhancement associated with the index lesion (the most extensive lesion) was also reported.
The index lesion was measured and so was the combination of masses and potential non-mass
enhancement under the name of “Maximal size of lesion”. Measurements were carried out
along the longest axis in one of the three planes (axial, coronal and sagittal) on the first
subtracted image of the DCE sequence, obtained by subtracting the pre-contrast image to the
first post-contrast image.

Tables 3.3 and 3.4 respectively summarize clinical & biological data and BI-RADS and
other imaging descriptors in both training and test sets. Figure 3.2 illustrates the differences
between the shape and margins descriptors as they both have an “irregular” class that can be
confusing.
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(a) Circumscribed/irregular margins &irregular shape (b) Circumscribed/irregular margins &oval/round shape

(c) Spiculated margins & irregular shape (d) Spiculated margins & oval/round shape
Figure 3.2: Illustration of shape and margins features in T1-weighted DCE images.

According to statistical tests, there were globally few differences between the training
and test sets with the exception of the delayed phase enhancement (p = 0.001) and the
background parenchymal enhancement (p = 0.017). T stage parameter was at the statistical
limit (p = 0.059). The test set size is however limited and should temper these differences.
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Table 3.3: Clinical & biological characteristics of training and test patients.
Label Levels Training Testing Total p

Age (y) Median (IQR) 48.0 (39.5 to 56.5) 46.0 (39.0 to 52.0) 47.5 (39.0 to 56.2) 0.594BMI (kg.m−2) Median (IQR) 23.4 (21.4 to 25.7) 23.4 (21.5 to 27.5) 23.4 (21.5 to 26.1) 0.359Menopause Postmenopausal 42 (40.8) 11 (33.3) 53 (39.0) 0.577Premenopausal 61 (59.2) 22 (66.7) 83 (61.0)T stage 0/I/II 91 (88.3) 24 (72.7) 115 (84.6) 0.059III/IV 12 (11.7) 9 (27.3) 21 (15.4)N stage 0 58 (56.3) 16 (48.5) 74 (54.4 ) 0.559I/II 45 (43.7) 17 (51.5) 62 (45.6)M stage 0 102 (99.0) 33 (100.0) 135 (99.3) 1.000I 1 (1.0) 0 (0.0) 1 (0.7)Histological Type Ductal NOS 99 (96.1) 32 (97.0) 131 (96.3) 0.757Lobular 1 (1.0) 0 (0.0) 1 (0.7)Mixt 2 (1.9) 0 (0.0) 2 (1.5)Other 1 (1.0) 1 (3.0) 2 (1.5)Molecular subtype HER2+ 12 (11.7) 7 (21.2) 19 (14.0) 0.567Luminal B/HER2- 30 (29.1) 9 (27.3) 39 (28.7)Luminal B/HER2+ 13 (12.6) 3 (9.1) 16 (11.8)TN 48 (46.6) 14 (42.4) 62 (45.6)Grade 2 34 (33.0) 8 (24.2) 42 (30.9) 0.4643 69 (67.0) 25 (75.8) 94 (69.1)Ki67 (%) Median (IQR) 60.0 (32.5 to 75.0) 40.0 (30.0 to 60.0) 50.0 (30.0 to 75.0) 0.231TILFactor High 44 (42.7) 18 (54.5) 62 (45.6) 0.324Low 59 (57.3) 15 (45.5) 74 (54.4)Response npCR 54 (52.4) 18 (54.5) 72 (52.9) 0.991pCR 49 (47.6) 15 (45.5) 64 (47.1)
Continuous variables are represented by their median and IQR . Wilcoxon rank sum test and Pear-son’s Chi-square test were performed respectively for continuous and categorical variables betweentraining and test sets. In circumstances where Chi-square test could not be used due to too few ob-servations, Fisher’s exact test was carried out.
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Table 3.4: BI-RADS classification for training and test patients.
Label Levels Training Testing Total p

Multifocality No 76 (73.8) 26 (78.8) 102 (75.0) 0.729
Yes 27 (26.2) 7 (21.2) 34 (25.0)

Depth location Anterior third 7 (6.8) 0 (0.0) 3 (2.2) 0.740
Middle third 43 (41.7) 18 (54.5) 61 (44.9)
Posterior third 53 (51.5) 15 (45.5) 68 (50.0)

Breast composition A 3 (2.9) 0 (0.0) 3 (2.2) 0.740
B 43 (41.7) 17 (51.5) 60 (44.1)
C 40 (38.8) 12 (36.4) 52 (38.2)
D 17 (16.5) 4 (12.1) 21 (15.4)

Margins Circumscribed/Irregular 55 (53.4) 22 (66.7) 77 (56.6) 0.256
Spiculated 48 (46.6) 11 (33.3) 59 (43.4)

Shape Irregular 76 (73.8) 28 (84.8) 104 (76.5) 0.256
Oval/Round 27 (26.2) 5 (15.2) 32 (23.5)

Background parenchymal enhancement (BPE) Marked 61 (59.2) 11 (33.3) 72 (52.9) 0.017

Minimal 42 (40.8) 22 (66.7) 64 (47.1)
Central Necrosis T2 No 65 (63.1) 22 (66.7) 87 (64.0) 0.871

Yes 38 (36.9) 11 (33.3) 49 (36.0)
Associated non-mass enhancement Absent 82 (79.6) 27 (81.8) 109 (80.1) 0.979

Present 21 (20.4) 6 (18.2) 27 (19.9)
Peritumoral edema T2 No 31 (30.1) 9 (27.3) 40 (29.4) 0.928

Yes 72 (69.9) 24 (72.7) 96 (70.6)
Prepectoral edema T2 No 61 (59.2) 24 (72.7) 85 (62.5) 0.235

Yes 42 (40.8) 9 (27.3) 51 (37.5)
Subcutaneous edema T2 No 86 (83.5) 29 (87.9) 115 (84.6) 0.782

Yes 17 (16.5) 4 (12.1) 21 (15.4)
Breast edema score (BES) 1 27 (26.2) 8 (24.2) 35 (25.7) 0.402

2 28 (27.2) 14 (42.4) 42 (30.9)
3 31 (30.1) 7 (21.2) 38 (27.9)
4 17 (16.5) 4 (12.1) 21 (15.4)

Internal enhancement type Heterogeneous 45 (43.7) 16 (48.5) 61 (44.9) 0.732
Homogeneous 29 (28.2) 7 (21.2) 36 (26.5)

Rim enhancement 29 (28.2) 10 (30.3) 39 (28.7)
Kinetic curve initial enhancement Fast 98 (95.1) 30 (90.9) 128 (94.1) 0.401

Slow/Intermediate 5 (4.9) 3 (9.1) 8 (5.9)
Delayed phase enhancement Persistent/Plateau 23 (22.3) 18 (54.5) 41 (30.1) 0.001

Wash-out 80 (77.7) 15 (45.5) 95 (69.9)
Combined size (mm) Median (IQR) 28.0 (23.0 to 40.0) 32.0 (20.0 to 40.0) 30.0 (22.0 to 40.0) 0.841

Maximal size of lesion (mm) Median (IQR) 25.0 (21.5 to 33.5) 30.0 (19.0 to 37.0) 25.0 (21.0 to 35.0) 0.984
Continuous variables are represented by their median and IQR . Wilcoxon rank sum test and Pear-son’s Chi-square test were performed respectively for continuous and categorical variables betweentraining and test sets. In circumstances where Chi-square test could not be used due to too few ob-servations, Fisher’s exact test was carried out.
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3.2 Association of clinical, biological

and MRI features with pCR

3.2.1 Methods

The potential association of the previously defined clinical, biological and imaging features
with the response to NAC was tested on the training set, to be used later on for the feature
selection process. The p-values were calculated with Wilcoxon rank sum test, Pearson’s Chi-
square test or Fisher’s exact test depending on the nature and size of the data. The p-values
were corrected for multiple comparisons with the Benjamini and Hochberg (BH) [215] method
using clinical, biological and imaging features. A significance level of 0.05 was chosen.

3.2.2 Results

Statistical analyses confirmed results found in the literature: molecular subtype, Ki67 and TILs
were significantly associated with pCR (before correction) and close to the significance level
after BH correction (Table 3.5). Amongst BI-RADS and other imaging features, the margins
were found to have a significant association with the response before correction whereas the
multifocality parameter was at the limit of significance (p = 0.051) (Table 3.6).

Table 3.5: Association of clinical & biological data with pCR on the training set.
Label Levels npCR pCR Total p Corrected p
Age Median (IQR) 49.0 (43 to 59.8) 47.0 (38.0 to 53.0) 48 (39.5 to 56.5) 0.160 0.480BMI Median (IQR) 23.6 (21.5 to 26.0) 23.4 (21.3 to 24.8) 23.4 (21.4 to 25.7) 0.616 0.978Menopause Postmenopausal 25 (46.3) 17 (34.7) 42 (40.8) 0.5316 0.702Premenopausal 29 (53.7) 32 (65.3) 61 (59.2)T stage 0/I/II 47 (87.0) 44 (89.8) 91 (88.3) 0.764 1.000III/IV 7 (13.0) 5 (10.2) 12 (11.7)NStage 0 30 (55.6) 28 (57.1) 58 (56.3) 1.000 1.000I/II 24 (44.4) 21 (42.9) 45 (43.7)MStage 0 54 (100.0) 48 (98.0) 102 (99.0) 0.476 0.918I 0 (0.0) 1 (2.0) 1 (1.0)Histological Type Ductal NOS 51 (94.4) 48 (98.0) 99 (96.1) 1.000 1.000Lobular 1 (1.9) 0 (0.0) 1 (1.0)Mixt 1 (1.9) 1 (2.0) 2 (1.9)Other 1 (1.9) 0 (0.0) 1 (1.0)Molecular subtype HER2+ 3 (5.6) 9 (18.4) 12 (11.7) 0.006 0.054Luminal B/HER2- 23 (42.6) 7 (14.3) 30 (29.1)Luminal B/HER2+ 7 (13.0) 6 (12.2) 13 (12.6)TN 21 (38.9) 27 (55.1) 48 (46.6)Grade 2 21 (38.9) 13 (26.5) 34 (33.0) 0.212 0.5723 33 (61.1) 36 (73.5) 69 (67.0)Ki67 Median (IQR) 50.0 (30.0 to 70.0) 70.0 (40.0 to 80.0) 60.0 (32.5 to 75.0) 0.005 0.054TILFactor High 16 (29.6) 28 (57.1) 44 (42.7) 0.006 0.054Low 38 (70.4) 21 (42.9) 59 (57.3)

Continuous variables are represented by their median and IQR.
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Table 3.6: Association of BI-RADS features with pCR on the training set.

Label Levels Training Testing Total p Corrected p
Multifocality No 35 (64.8) 41 (83.7) 76 (73.8) 0.051 0.275Yes 19 (35.2) 8 (16.3) 27 (26.2)Breast composition A 1 (1.9) 2 (4.1) 3 (2.9) 0.842 1B 24 (44.4) 19 (38.8) 43 (41.7)C 21 (38.9) 19 (38.8) 40 (38.8)D 8 (14.8) 9 (18.4) 17 (16.5)Margins Circumscribed/Irregular 22 (40.7) 33 (67.3) 55 (53.4) 0.012 0.081Spiculated 32 (59.3) 16 (32.7) 48 (46.6)Shape Irregular 44 (81.5) 32 (65.3) 76 (73.8) 0.101 0.390Oval/Round 10 (18.5) 17 (34.7) 27 (26.2)Background parenchymal enhancement (BPE) Marked 30 (55.6) 31 (63.3) 61 (59.2) 0.552 0.978Minimal 24 (44.4) 18 (36.7) 42 (40.8)Central Necrosis T2 No 33 (61.1) 32 (65.3) 65 (63.1) 0.813 1.000Yes 21 (8.9) 17 (34.7) 38 (36.9)Associated non-mass enhancement Absent 39 (72.2) 43 (87.8) 82 (79.6) 0.087 0.390Present 15 (27.8) 6 (12.2) 21 (20.4)Peritumoral edema T2 No 18 (33.3) 13 (26.5) 31 (30.1) 0.592 0.978Yes 36 (66.7) 36 (73.5) 72 (69.9)Prepectoral edema T2 No 36 (66.7) 25 (51.0) 6 (59.2) 0.158 0.480Yes 18 (33.3) 24 (49.0) 42 (40.8)Subcutaneous edema T2 No 44 (81.5) 42 (85.7) 86 (83.5) 0.755 1.000Yes 10 (18.5) 7 (14.3) 17 (16.5)Breast edema score (BES) 1 16 (29.6) 11 (22.4) 27 (26.2) 0.338 0.7022 16 (29.6) 12 (24.5) 28 (27.2)3 12 (22.2) 19 (38.8) 31 (30.1)4 10 (18.5) 7 (14.3) 17 (16.5)Internal enhancement type Heterogeneous 24 (44.4) 21 (42.9) 45 (43.7) 0.859 1.000Homogeneous 14 (25.9) 15 (30.6) 29 (28.2)Rim enhancement 16 (29.6) 13 (26.5) 29 (28.2)Kinetic curve initial enhancement Fast 51 (94.4) 47 (95.9) 98 (95.1) 1.000 1.000Slow/Intermediate 3 (5.6) 2 (4.1) 5 (4.9)Delayed phase enhancement Persistent/Plateau 12 (22.2) 11 (22.4) 23 (22.3) 1.000 1.000Wash-out 42 (77.8) 38 (77.6) 80 (77.7)Combined size (mm) Median (IQR) 30.5 (24.0 to 41.0) 27.0 (22.0 to 35.0) 28.0 (23.0 to 40.0) 0.268 0.658Maximal size of lesion (mm) Median (IQR) 25.0 (21.2 to 33.0) 25.0 (22.0 to 34.0) 25.0 (21.5 to 33.5) 0.9992 1.000

Continuous variables are represented by their median and IQR.

3.3 Clinical, biological and BI-RADS feature-based
predictive models

3.3.1 Introduction

Several studies proposed predictive models using only clinical & biological data or BI-RADS
descriptors without advanced texture or shape features requiring a segmentation of the tumors
[18, 134, 193]. Amongst them, the study by Granzier et al. [18] stood out as they built
two different models, performed their analysis before the beginning of NAC and disclosed
precisely the composition of the database and the hyperparameters and features of the clinical
& biological models which were all included in our own database. No weights were however
provided. Granzier et al. [18] had two independent multi-scanner cohorts acquired in two
different hospitals. They developed two different models, each trained on one cohort and
tested on the other one. The first model (that we refer as “Granzier”) achieved an AUC of
0.71, 95% confidence interval (CI) [0.62, 0.79] on the first test cohort of 152 lesions (129
patients) while the second model “Granzier2” achieved an AUC of 0.77, 95% CI [0.70, 0.85]
when tested on the second cohort with 168 tumors (161 patients).

Granzier et al. [18] predicted the response using random forest models trained on a subset
of features selected by the Boruta algorithm (described in Chapter 2). In the study, the
collected clinical & biological data, on which to perform feature selection, included the age

69



CHAPTER 3. MR STUDY DESIGN & FIRST ANALYSES
of patients, the TNM staging, the grade, the histological type and the molecular subtype of
tumors. Response was assessed using the Miller-Payne system which differs from the RCB
score we used as it focuses on changes in cellularity of the primary tumor whereas RCB also
takes into account lymph node metastases [216]. No information on TILs and Ki67 were
included and no BI-RADS or other imaging descriptors were defined. However, as all the
features they used were included in our database, it was possible to build a model based on
these features on our training set and to test it on our test set. We then developed and
tested our own models first using only clinical & biological data or only BI-RADS and imaging
features and then combining the features.

3.3.2 Methods

The molecular subtype feature was divided into four different classes (HER2-enriched, Luminal
B/HER2-, Luminal B/HER2+ and TN) as it was done in [18].

We then trained the two models proposed in [18] and developed new models. Several
selection methods (a simple filter method, MRMR , Boruta and recursive feature elimination
(RFE)) and types of classifiers (logistic regression, SVM with linear or radial kernels, random
forests) were compared. The filter method consisted of a simple threshold cut-off on the
Wilcoxon rank sum test p-values (<0.05). RFE is an iterative wrapper method that can be
associated with different types of predictive models. RFE starts will all the available features in
the dataset and at each iteration, fits a model, ranks features according to their importance and
discards the least relevant ones. This process is repeated until a desired number of features,
which is an hyperparameter of the model, is reached. The method used by Granzier et al.
in their study (selection by Boruta and random forest model) was specifically included in our
experiments. Feature selection was performed on the training set only.

As it gathers 49 patients that achieved pCR and 54 that did not, the maximal number of
features to build models was set to five to avoid overfitting, with the idea of having, as a rule
of thumb, one feature for every ten pCR patients. Models could nevertheless have less than
five features as some selection methods found an optimum set of features on the training set
containing fewer features. In case the Boruta algorithm selected more than five features, the
five best features according to their importance calculated by the algorithm were kept.

As the training and test sets were evenly balanced (49 pCR/54 npCR vs 15 pCR/18 npCR),
no particular resampling of the two classes was performed. Features were standardized and
models were trained and tuned with repeated cross-validation and evaluated on the independent
test set using AUC metric with 95% confidence interval. Models were first trained with only
clinical & biological data or only BI-RADS and imaging features, and then with both types of
features to ponder how they complement one another.

To complete our experiments and evaluate the robustness of the models, our original
training and test sets were gathered and reshuffled to create a new training and test sets with
a 75% split (102/34 patients with 48 pCR/ 54 npCR in the training and 16 pCR/ 18 npCR
in the test sets). Granzier’s models and the best models we developed previously were trained
and tested on these new datasets.
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3.3.3 Results
Tables 3.7, 3.8 and 3.9 report the features selected by each method when using clinical &
biological data, imaging features or both of them. As RFE requires a model to perform
feature selection, different subsets of features were thus selected depending on models. When
using clinical & biological data (Tables 3.8 & 3.9), all methods selected the molecular subtype
feature and the TILs factor. When using imaging descriptors, the margins feature was always
selected.

Figure 3.3 depicts the ROC-curves for all types of models and selection methods on the
original training and test sets when using only clinical & biological data. Figure 3.4 shows the
ROC-curves of the Granzier models while Figure 3.5 displays ROC-curves when using both
clinical & biological and other imaging features. The different models trained using only BI-
RADS features achieved poor performances on the training set (AUCs close to 0.5) and the
idea of using only BI-RADS and imaging features was thus discarded.

Best performances on the original training set were obtained with the random forest model
trained on clinical & biological and BI-RADS features selected by the Boruta algorithm with
AUC=0.75, 95% CI [0.65-0.85] (Figure 3.5g). This model also achieved the best results on
the test set amongst all the experiments (AUC=0.76, 95% CI [0.59-0.93] (Figure 3.5h). The
best model using only clinical & biological data was the logistic regression trained on features
filtered by the threshold cut-off (AUC=0.73, [0.63-0.83] on the training set in Figure 3.3a,
AUC=0.71, [0.52-0.80] on the test set in Figure 3.3b). There was no significant difference
between the AUC obtained on the test set by these two models using Delong tests [217]. Table
3.10 compares the performances of the best model obtained in the experiments and the two
Granzier models trained on our data.

Figure 3.6 depicts the ROC-curves obtained on the reshuffled data, highlighting a drop in
performances of the Granzier’s models on the test set. We also retrained to avoid data leakage
on the reshuffled sets the two pipelines that gave the best results: filters with logistic regression
or Boruta selection with random forest classifier. The filter selection proved very robust,
selecting again the molecular subtype, TILs and Ki67 and the logistic regression achieved on
the test set an AUC=0.70, [0.51-0.89] (Figure 3.6f). There was a slight difference in features
selected by the Boruta algorithm with the presence of non-mass selected instead of the shape
parameter. Random forest model achieved an AUC=0.72, [0.54-0.92] on the reshuffled test
set (Figure 3.6f).

Table 3.7: Feature selection using only BI-RADS and imaging features.
Selection method Selected features
Filter method Margins

mRMR Margins, multifocality, shape, BPE, BES
RFE-logistic regression Margins, multifocality, shape

RFE-linear SVM Margins, multifocality
RFE-radial SVM Margins, multifocality, shape, BES

RFE-random forest Margins, shape
Boruta Margins, shape
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Table 3.8: Feature selection using only clinical & biological data.

Selection method Selected features
Filter method Molecular subtype, TILs, Ki67, marginsmRMR Molecular subtype, TILs, Ki67, age, N stageRFE-logistic regression Molecular subtype, TILs, Ki67, age, menopauseRFE-linear SVM Molecular subtype, TILs, Ki67, age, menopauseRFE-radial SVM Molecular subtype, TILs, Ki67RFE-random forest Molecular subtype, TILs, Ki67Boruta Molecular subtype, TILs, Ki67, grade
Literature Reported
Granzier Molecular subtype, age, T stage, gradeGranzier2 Molecular subtype, T stage, N stage, grade

Table 3.9: Feature selection using both clinical & biological and imaging features.
Selection method Selected features
Filter method Molecular subtype, TILs, Ki67mRMR Molecular subtype, TILs, margins, age, shapeRFE-logistic regression Molecular subtype, TILs, Ki67, marginsRFE-linear SVM Molecular subtype, TILs, Ki67, marginsRFE-radial SVM Molecular subtype, TILs, Ki67, margins, maximal sizeRFE-random forest Molecular subtype, TILs, margins, BES, index lesion sizeBoruta Molecular subtype, TILs, margins, shape

Table 3.10: Performances summary.
Model Features AUC [95%CI](training) AUC [95%CI](test)

Best model built(RF with Boruta selection) Molecular subtype, TILs,margins, shape 0.75 [0.65, 0.85] 0.76 [0.59, 0.93]
Granzier logistic regression Molecular subtype, age,T stage, grade 0.65 [0.54, 0.76] 0.75 [0.64,0.90]
Granzier2 logistic regression Molecular subtype, T stage,N stage, grade 0.61 [0.50, 0.72] 0.74 [0.57,0.92]
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(a) Filter methods: Training (b) Filter methods: Testing

(c) mRMR: Training (d) mRMR: Testing

(e) RFE: Training (f) RFE: Testing

(g) Boruta: Training (h) Boruta: Testing
Figure 3.3: Clinical & biological models: ROC-curves of the four types of models (LogReg: logisticregression; svmLinear: SVM with linear kernel; svmRadial: SVM with radial kernel and RF: randomforest) obtained on the training set using to select features (a) a simple filter method (threshold cut-off); (c) the mRMR approach; (e) RFE; (g) Boruta. Their respective ROC-curves on the test set wereillustrated in (b), (d), (f) and (h). 73
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(a) Granzier: Training (b) Granzier: Testing

(c) Granzier2: Training (d) Granzier2: Testing
Figure 3.4: GRANZIER models: ROC-curves of the four types of models (LogReg: logistic regression;
svmLinear: SVM with linear kernel; svmRadial: SVM with radial kernel and RF: random forest)obtained on the training set using (a) the features of the “Granzier” model; (c) the features of the“Granzier2” model. Their respective ROC-curves on the test set were illustrated in (b) and (d).
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(a) Filter methods: Training (b) Filter methods: Testing

(c) mRMR: Training (d) mRMR: Testing

(e) RFE: Training (f) RFE: Testing

(g) Boruta: Training (h) Boruta: Testing
Figure 3.5: Clinical, biological & BI-RADS Models: ROC-curves of the four types of models (LogReg:logistic regression; svmLinear: SVM with linear kernel; svmRadial: SVM with radial kernel and RF:random forest) obtained on the training set using to select features (a) a simple filter method (thresh-old cut-off); (c) the mRMR approach; (e) RFE; (g) Boruta. Their respective ROC-curves on the test setwere illustrated in (b),(d), (f) and (h). 75
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(a) Granzier: Training (b) Granzier: Testing

(c) Granzier2: Training (d) Granzier2: Testing

(e) Best models: Training (f) Best models: Testing
Figure 3.6: GRANZIER models and best models previously defined on reshuffled data: ROC-curves of the four types of models (LogReg: logistic regression; svmLinear: SVM with linear kernel;
svmRadial: SVM with radial kernel and RF: random forest) obtained on the reshuffled training setusing (a) the features of the “Granzier" model; (c) the features of the “Granzier2" model; (e) the bestmodels previously obtained. Their respective ROC-curves on the reshuffled test set were illustrated in
(b), (d) and (f).
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3.3.4 Discussion
The two models developed by Granzier et al. [18] achieved globally average performances when
evaluated on the original training set (best AUC=0.65, [0.54, 0.76]) but better performances
on the original test set (best AUC 0.74, [0.57, 0.92]), equivalent to those of the best models
built in our experiments and the performances reported in [18]. This trend goes unlike what
is observed in the rest of the experiments where there is a slight drop (or sometimes a very
slight increase) of the performances between training and testing. This could be explained
by the presence of the T stage parameter in the models created by Granzier et al. In their
cohorts, T stage and tumor grade are indeed strongly associated with the response (p < 0.01).
In our database, T stage is not statistically associated with pCR on the training set but its
distribution is very different on the test set (see Table 3.3) where it is strongly associated with
pCR (Wilcoxon rank sum test p for the test set is p < 0.005). None of our feature selection
methods selected the T stage parameter when performed on the training set. After reshuffling
the data, a drop of performances of the Granzier models is observed. This suggests that the
composition of the database and the distribution of features like the T stage parameter, can
have an important impact on model performances and reduce their exportability.

Globally, clinical, biological and BI-RADS feature-based models achieve AUC performances
in the range of [0.65-0.76] on our original test set. Best performances are thus in par with the
results of the clinical models reported in the literature review of radiomic analyses. Using the
Boruta algorithm to select features and then a random forest classifier, as did Granzier et al.,
achieved the best results though other models offered equivalent performances. There was a
trend showing that adding BI-RADS features to clinical & biological data improved models’
performances but further testing on larger cohorts are needed to confirm these results.

Conclusion
This chapter introduced the cohort that is going to be used in the rest of the manuscript and the
inclusion process that took place. The training/testing split was presented and the different
imaging acquisition parameters described, highlighting the heterogeneous and multicentric
characteristics of the datasets.

A first set of features including clinical & biological data from patient records, BI-RADS and
other simple imaging features visually assessed by radiologists without segmenting the lesions
was gathered. Univariate analyses were performed to ponder the association of features with
the response. First predictive models were then built, comparing several feature selection and
model building approaches. Two models from the literature were tested to validate them. Best
performances of clinical & biological and BI-RADS based models achieved AUCs as high as
0.75 on the independent test sets. Ultimately, the difficulty of exporting models on different
databases was underscored.
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Chapter 4

Phantom experiments

Preface
This chapter will present experiments and analyses conducted on breast phantoms scanned at
Institut Curie using routine clinical protocols. These experiments aim to develop a correction
pipeline to tackle inhomogeneities that affect MR images and radiomic features, with the hope
to apply it in a later stage on patient images. Main results have been published in an article
in Magnetic Resonance Materials in Physics, Biology and Medicine [19].

4.1 Introduction
The previous chapter described the inclusion and image acquisition process that was undertaken
to gather the patient cohort and their images.

In view of carrying robust radiomic analyses, several characteristics of the dataset raise
issues. The choice of the MR modality to monitor the response to treatment is well-adapted
according to the literature [9, 10] but two main drawbacks inherent to MR imaging must be
taken into account. First, MR signal is measured in arbitrary units which vary between acqui-
sitions and device settings, unlike in CT or PET imaging respectively measured in Hounsfield
units and kBq/mL. This makes comparisons between different acquisitions difficult, even be-
tween repeated acquisitions of the same patient using the same imaging set-up.

Besides, as previously mentioned in Chapter 2, MR images can be affected by the bias-field
non-uniformity that creates local intensity inhomogeneities within tissues. Sources of the bias
field have been linked to two main causes. First, effects associated with the properties of
the MR devices including radio frequency emission and transmission inhomogeneities, edgy
currents created by field gradients or static field inhomogeneities, have been pointed at. The
shape, position and orientation of the scanned object within the magnet, its dielectric prop-
erties and magnetic permeability also have an impact [218, 219]. The first designated source
of the bias field can be mitigated by improving the design of the coils, calibrating machines
using dedicated phantoms or by shimming techniques, to make the main magnetic field more
homogeneous [220]. Cohorts acquired prospectively can thus attempt to reduce bias field
gain by carefully planning acquisitions on selected devices. This is however not possible in
retrospective studies as patients were collected with this bias. Regardless, inhomogeneities
due to the imaged object or patient always need to be corrected retrospectively using image
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processing techniques. Numerous studies have focused on the correction of MR bias field gain
but most of them were designed very specifically for brain datasets [218].

Furthermore, as the training and test set include patients imaged on different scanners,
coils and imaging centers, the “scanner effect” affecting radiomic feature values must also be
corrected. The correction of this effect has two main purposes: allowing the true biological
effects that could be hidden by a misalignment of feature distributions to stand out and
improving the exportability of decisions made on feature values like simple threshold levels or
more advanced radiomic signatures.

As a majority of the patients (110/136) were acquired in one of the three MR imaging
settings of Institut Curie, where experiments could be carried out, a phantom experiment
was designed to study the bias field, inter-acquisition variabilities and the “scanner effect”.
Dedicated breast phantoms mimicking real breast tissue were chosen to get the closest idea
as possible of the bias field gain impacting patient images. Phantoms are free of biological
effects or artefacts due to tissue interference and their simple composition makes it easier to
model what the ground truth image without bias field gain would look like. Imaging phantoms
according to the clinical imaging routine of Institut Curie offered the opportunity to test and
adapt pre-processing pipelines for radiomic analyses that have later been carried out on patient
images (Chapters 5 and 6).
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4.2 Article - Saint Martin et al., MAGMA, 2021

A radiomics pipeline dedicated to Breast
MRI: validation on a multi-scanner phan-
tom study.
PUBLISHED in Magnetic Resonance Materials in Physics, Biology and Medicine (MAGMA)
[19].

Marie-Judith Saint Martin1, Fanny Orlhac1, Fahad Khalid1, Pia Akl2, Christophe Nioche1,
Irène Buvat1, Caroline Malhaire1,3 and Frédérique Frouin1

1 U1288-LITO, Inserm, Centre de Recherche de l’Institut Curie, Université Paris-Saclay, Orsay,
France
2 Department of Radiology, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Lyon, France
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Abstract
Object: Quantitative analysis in MRI is challenging due to variabilities in intensity distributions
across patients, acquisitions and scanners and suffers from bias field inhomogeneity. Radiomic
studies are especially impacted by these effects that affect radiomic feature values. This
paper describes a dedicated pipeline to increase reproducibility in breast MRI radiomic studies.
Materials and Methods: T1, T2, and T1-DCE MR images of two breast phantoms were
acquired using two scanners and three dual breast coils. Images were retrospectively corrected
for bias field inhomogeneity and further normalized using Z-score or histogram matching.
Extracted radiomic features were harmonized between coils by the ComBat method. The
whole pipeline was assessed qualitatively and quantitatively using a statistical comparison of
radiomic feature values.
Results: Intra and inter-acquisition variabilities were strongly reduced by the standardization
pipeline. Harmonization by ComBat lowered the percentage of radiomic features significantly
different between the three coils from 87% after bias field correction and MR normalization
to 3%, while preserving or improving performances of lesion classification on the phantoms.
Discussion: A dedicated standardization pipeline was developed to reduce variabilities in
breast MRI, which paves the way for robust multi-scanner radiomic studies but needs to be
assessed on patient data.

Introduction
Radiomics is a recent field of study involving the extraction of large amounts of quantitative
imaging features from radiological images [8]. These radiomic features can then feed machine
learning methods to build predictive models that might assist diagnosis and patient monitoring.
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Radiomic studies in breast cancer patients have shown promises, for instance in assessing the
risk of breast cancer recurrence [221], detecting malignant from benign lesions [13, 112], or
estimating disease free survival [117]. Over the last few years, several attempts to predict the
response to neoadjuvant chemotherapy using radiomics have been reported, but this remains
a challenging task [134, 144, 145, 169, 222].

Radiomic studies and subsequent machine learning approaches require a substantial num-
ber of images to achieve relevant performance, which encourages the use of multicentric and
retrospective data. However, many articles have highlighted the influence of scanner param-
eters on radiomic features in PET and CT imaging (see for instance the review [135]) and
in MRI [136–138, 223]. This so-called “scanner effect” requires standardization and harmo-
nization procedures. In particular, MRI radiomic feature values have been shown to depend
on magnetic field strengths, voxel size, pulse sequence parameters or receiver coils [139, 140].
The standardization process is especially important in MR as images are expressed in arbi-
trary units that vary between patients, acquisitions and scanners. MR images also suffer from
MR bias field non-uniformity, generating regional and local spatial inhomogeneities. Since the
impact of this latter effect goes beyond the field of radiomics and affects tasks such as seg-
mentation, an abundant literature already addresses this issue, but studies are mainly oriented
towards brain MRI. Several methods have been developed to correct bias field inhomogene-
ity retrospectively [141]. Frackiewicz et al. [224] compared a subset of these approaches
on breast phantoms. They found that the N4 algorithm [20] gave the most uniform results,
slightly outperforming F3CM [225], but hinted that adapting the parameters of the method
specifically for breast imaging could improve the correction. Following bias field correction,
MR normalization techniques have been applied to reduce inter-patient variabilities, the most
frequent being the Z-score standardization [134]. Shinohara et al. [226] designed a new linear
approach, the hybrid White-Stripe, using white matter as a reference tissue in the brain to
normalize images, from which Fortin et al. [227] derived the voxel-based RAVEL method.
Other non-linear normalization techniques have been proposed such as histogram matching
(referred as HM) by Nyul et Udupa [21], further adapted in a multiple sclerosis study by Sha
et al. [22]. Bias field correction and intensity normalization have been shown to improve the
radiomic characterization of tumors from single center MR images of paediatric brain tumors
[228] and lung cancer [229].

Recent works in glioblastoma [230, 231] and prostate cancer [140, 232] patients specifically
investigated the influence of bias field correction, noise reduction and histogram normalization
on the “scanner effect” affecting MR radiomic features. Authors identified small subsets of
features that were reproducible across scanners after standardization but did not manage to
successfully harmonize all features. A harmonization method called ComBat initially developed
to mitigate batch effects in genomic studies [23] was successfully applied to compensate for the
“scanner effect” in PET [233], CT [234] and MR [174]. Few breast radiomic studies mention
bias field correction [113] or MR normalization [134], before computing features.

In this study, we propose and validate a radiomics pipeline dedicated to breast MRI. First,
a bias field correction method was adapted for breast MR images to overcome the limitations
of the conventional approaches. Second, two MR image standardization techniques (Z-score,
HM) were investigated to study their impact on MR intensity distribution. Third, the ComBat
method was proposed to further reduce the “scanner effect” affecting radiomic features. Our
experimental study was conducted using two breast phantoms designed for biopsy training in
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order to monitor the effects of standardization and harmonization without any biological or
tissue interference. MR acquisitions following the standard clinical protocol in our institution
were performed using two MR scanners and three dedicated breast coils. Our pipeline efficacy
was assessed by studying the reproducibility of each radiomic feature across thirty regions
mimicking normal tissue and by comparing the performances of lesion classification on the
phantoms before and after harmonization by ComBat.

Materials & Methods

Phantom

In order to remain as close as possible to clinical settings and to better investigate MR bias field
considering the symmetry inherent to breast imaging, all the experiments described were carried
out using two phantoms simultaneously. Two Multi-Modality Breast Biopsy and Sonographic
phantoms, CIRS reference 073 (Norfolk, VA, USA), were used (Figure 4.1a). They consist of
an elastomer membrane simulating the skin and subcutaneous fat layer of breast in patients
and are filled with a branded gel (Zerdine®). Five to ten cystic lesions (5-10 mm) and ten to
fifteen dense lesions (5-10 mm) are included in the gel. Half of the dense lesions are spheres
including microcalcifications (Figure 4.1c) while the other half are spiculated (Figure 4.1d).
This model is dedicated to biopsy training and accurately reproduces breast tissue with lesions
for MR imaging.

Image acquisition

Images were acquired in the three clinical imaging settings in which patients can be imaged
at our institution. The two phantoms were scanned in a first setting, using a 1.5 T magnet,
Optima MR450w (GE, MA, USA) with an 8-channel breast coil, further referred as “Coil
1”. They were also scanned in a second setting, using a 1.5T magnet, MAGNETOM Aera
(Siemens, Munich, Germany) with an 18-channel breast coil (“Coil 2”). The third setting
consisted of using a 16-channel Sentinelle breast coil, dedicated to diagnosis and MR-guided
biopsy, on the 1.5T MAGNETOM Aera (Siemens, Munich, Germany) (“Coil 3”). For each
setting, two acquisitions were acquired (Acq. A and Acq. B), between which the positions of
the two phantoms on the dual breast coils were switched.

The phantoms were scanned with three sequences routinely used in breast clinical imaging
protocol to get T1-weighted, fat-saturated T2-weighted and T1-weighted DCE images, with
parameters listed in Table 4.1. T1-DCE images and T1 images on the GE scanner used spoiled
gradient recalled techniques whereas T2 and other T1 images used turbo spin echo. The T1
sequence was acquired for anatomical purposes and does not include fat saturation, while T1-
DCE was acquired for functional imaging and includes high resolution voxels and fat saturation.
Parallel imaging techniques such as ARC for the GE machine and GRAPPA for Siemens were
used in T1-DCE. Global acquisition time was around 18 minutes for every coil. Scanning
parameters were determined by the clinical protocols set up in our institution and may differ
for each coil, adding another variability to the settings. Only the first dynamic of T1-DCE,
acquired 90s after what would have been in patients the injection of a contrast product was
presented throughout this work. This study consists of six acquisitions (two acquisitions per
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coil) with three sequences each (T1, fat-saturated T2 or T1-weighted DCE), yielding eighteen
raw 3D images.

Table 4.1: Scanning parameters of routine sequences of imaging devices of Institut Curie.
T1 fat-saturated T2 T1-weighted DCE

Coil 1 Coil 2 Coil 3 Coil 1 Coil 2 Coil 3 Coil 1 Coil 2 Coil 3
TR (ms) 6.9 592 545 5544 3310 6400 6.81 5.2 5.2
TE (ms) 4.2 13 13 90 88 88 3.3 2.4 2.4
Slice thickness(mm) 1.6 3.5 3.0 3.0 3.5 3.0 1.0 0.9 0.9
Spacing betweenslices(mm) 0.8 4.2 3.6 3.3 4.2 3.6 1.0 0.9 0.9
Pixel spacing(mm) 0.68x0.68 0.71x0.71 0.68x0.68 0.70x0.70 0.70x0.70 0.70x0.70 0.82x0.82 0.91x0.91 0.91x0.91
Pixel bandwidth(Hz/pixel) 244 130 130 558 315 375 434 355 355
Flip angle 20 148 148 160 150 180 15 10 10
Coil 1: Optima MR450w with 8-channel coil; Coil 2: Magneton Aera with 18-channel brest coil; Coil
3: Magneton Aera with Sentinelle breast coil.

Bias field correction

Images were corrected for bias field inhomogeneity using the SimpleITK N4BiasFieldCorrection
Image filter class adapted for python from the implementation of the N4 algorithm [20] in the
ITK library. The N4 method is based on the following image model:

Icor(x) = I(x)B(x) + η(x) (4.1)
where x is a voxel, Icor is the corrupted image, B the bias field, I the bias-free image and η
an independent Gaussian noise.
In a noise-free case, using logarithmic transformation, with Î = logI:

Îcor = Î + B̂ (4.2)
The N4 method uses an iterative multi-scale optimisation approach, at iteration n:

În = În−1 − B̂n
res (4.3)

În = În−1 − S∗{În−1 − E
[
Î|În−1]} (4.4)

where S∗ is an adapted B-spline approximation, Î0= Îcor and Bres is the residual bias field at
step.

The number of resolution levels and the number of iterations at each level are set by default
to four levels and fifty iterations but can be changed. A default mask to select the pixels used
to estimate the bias field is defined using Otsu thresholding unless a specific mask is provided.
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The impact of the hyper parameters mentioned above were investigated by running several

trials using three, four, five or six resolution levels, fifty or a hundred iterations, combined with
either the default mask or a full mask of the phantom.

To assess the ability of the N4 correction to reduce intensity non-uniformities within similar
tissue types, voxels corresponding to the background gel and embedded masses were clustered
using the k-means algorithm. The clustering results were compared before and after the bias
field correction. As the inner part is made of three different materials (background gel, dense
masses and cyst masses), that have different physical properties, the number of clusters was
set to three.

The performance of N4 algorithm was also assessed by comparing the coefficients of vari-
ation of the mean intensity of small regions drawn in the background gel for the different
corrections: fifteen 3D spherical regions of 600 voxels each were drawn using the LIFEx free-
ware [235] (www.lifexsoft.org) on every raw acquisition. These spheres were located in the
background neutral gel of the phantom, avoiding any cyst or dense masses. As there were two
acquisitions per coil, regions from the same coil were pooled to get thirty regions per coil.

MR normalization

MR images were normalized after bias field correction as it has been shown that pre-correcting
intensity non-uniformities leads to an improved standardization [236]. Two types of normal-
ization were performed separately and compared: 1) Z-score standardization using a mask of
the phantom to compute the mean and standard deviation of intensities (linear transform); 2)
piecewise linear histogram matching [21, 22]. Histogram matching includes two stages: first,
HM learns landmarks of a standard histogram and then landmarks of the image histograms are
non-linearly mapped to the ones of the standard histogram to align the intensity distributions.
HM was applied independently on the three sequences with codes adapted from Reinhold et
al. [237], using the decile landmarks and standard scale defined by Shah et al. [22]. The
impact of normalization in correcting inter-subject and inter-coil variabilities was evaluated by
qualitatively comparing intensity histogram alignment and by using texture analyses.

Texture analysis
After MR normalization, four MR volumes of the same acquisition were available, corre-
sponding to raw data, N4-corrected data, Z-score normalized-N4-corrected data, and HM
normalized-N4-corrected data.

All 18x4 (3 sequences x 3 coils x 2 acquisitions x 4 normalizations) MR volumes were
resampled, as recommended by Image Biomarker standardization Initiative guidelines [143]
before extracting features, using nearest neighbour interpolation: T1 and fat-saturated T2
images were resampled to 0.7x0.7x4 mm3 voxels and T1-weighted DCE images to 1x1x1 mm3

voxels.
For each MR volume and each of the fifteen regions described previously, forty-two radiomic

features were computed with LIFEx v5.79 [235] in compliance with the Image Biomarker
standardization Initiative guideline [143]. Besides first order features, features included indices
from the grey-level co-occurrence matrix (GLCM), the grey-level run length matrix (GLRLM),
the grey-level zone length matrix (GLZLM) and the neighbourhood grey-level different matrix
(NGLDM). The list of radiomic features is provided in Supplemental Table 1. For texture
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calculations, absolute discretization was chosen [228]. For each sequence and each step of the
standardization pipeline separately, the minimum and maximum intensities inside the regions
were calculated to determine the range of intensities and the average standard deviation of
intensities over the regions was defined as the fixed bin size.

Harmonization of radiomic features

As radiomic features are computed inside similar regions, they should be comparable. Since
radiomic feature values might differ between the three experimental settings even after the
different processing steps, for every sequence separately, the distributions of the radiomic
features extracted after normalization were harmonized across the three coils using the ComBat
method [233, 234]. The ComBat method intends to correct any underlying differences that
could be due to coils, scanners and/or scanning parameters [40, 41]. For feature y measured
in region j in center i, feature yij can be modelled as:

yij = α + γi + δiϵij (4.5)
where α is the average value of y, γi is an additive center effect and δiϵij a multiplicative
center effect associated to an error term.

The ComBat method corrects the distributions by calculating α̂, γ̂i and δ̂i as estimators
of α, γi and δi using maximum likelihood estimation so that:

yijcorrected =
yij − α̂− γ̂i

δ̂i
+ α̂ (4.6)

The non-parametric form of the method was used without any empirical Bayes assumption.
A specific transformation was determined for every feature independently, using R codes by
Fortin et al. [238, 239].

Statistical analysis

Statistical analyses were performed in R. p-values less than 0.05 were interpreted as statistically
significant. For each step of the pipeline and after the harmonization by ComBat, differences in
statistical distributions of radiomic features between coils were assessed with the Kruskal-Wallis
test. 3 (sequences) x 5 (raw, N4 correction, Z-score, HM, HM & ComBat) x 42 (radiomic
features) Kruskal-Wallis tests were performed. To provide a synthetic view of the test results,
five ranges of p-values were defined: p < 10−5, 10−5 ≤ p < 10−3, 10−3 ≤ p < 0.01,
0.01 ≤ p < 0.05 and 0.5 ≤ p. Radiomic features were then put into the five classes defined
by the previous ranges of p-values, depending on the p-value of their Kruskal-Wallis test. For
each sequence at each step of the pipeline, the number of features in every class was calculated
and reported in a table.

For there could be concerns that the ComBat method harmonized data too much thus
reducing the discriminative power of features, we proposed to evaluate the impact of ComBat
on the task of separating two types of dense lesions (Figure 4.1c and Figure 4.1d) on the
different sequences. Lesions were segmented on the three coils semi-automatically with the
k-means algorithm and corrected by hand. Features were extracted from the lesions on the
HM-normalized-N4-corrected images and compared before and after harmonization by ComBat
using Wilcoxon tests.
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Results
Bias field correction

Default parameters of the N4 algorithm (four resolution levels, fifty iterations per level and the
use of a mask defined by Otsu thresholding) proved suboptimal for breast MR images. From
a qualitative point of view, the corrected images showed little improvement when compared
to the raw images (Figure 4.1b and 1g). The bias field estimated with the default parameters
was almost flat on the upper half of the images (Figure 4.1f). These upper regions are the
regions of interest where clinical information will be looked for, whereas lower regions have
less clinical relevance (corresponding to zones posterior to the thorax in patients). Increasing
the number of iterations per level did not improve the corrections as the results seemed to
stabilise after fifty iterations. Running the algorithm with five resolution levels instead of four
yielded a bias field with much stronger variations in the upper zones resulting in a greater
correction of the images. Combining it with a full mask of the phantoms to estimate the bias
field further improved the correction in the upper regions of interest (Figure 4.1m).

(b)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(a)

(c) (d)

Figure 4.1: (a) Phantom. (b) Raw T1 image from Coil 3. (c) Dense lesion with microcalcification. (d)Dense spiculated lesion. (e) Default mask. (f) Bias field estimated with mask e and 4 fitting levels.
(g) Corrected image obtained from bias field f. (h) Default mask. (i) Bias field estimated with maskh and 5 fitting levels. (j) Corrected image from bias field i. (k) Full mask. (l) Bias field estimated withmask k and 5 fitting levels. (m) Corrected image from bias field k. Red arrows point at regions withresidual intensity non-uniformity

The impact of the N4 correction on the coefficients of variation of the means over the
regions across coils in different correction scenarios is shown in Figure 4.2.

The effect of N4 correction with the full mask, 5 levels (50 Iterations) on k-means segmen-
tation results using three clusters on a raw image versus the image after bias field correction
is shown in Figure 4.3.
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(b)(a)

Figure 4.2: (a) Coefficients of variation of the means over thirty regions across settings with differentcorrections. (b) Example of 3 regions (in blue, light blue and yellow) drawn in LIFEx.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: (a), (d) T1-weighted DCE image from coil 3. (b), (e) Histogram of the inner layer voxelsof image coloured by the results of k-means clustering. (c), (f) k-means clustering results overlaid onimage. First line: raw image. Second line: N4 corrected (full mask, 5 levels, 50 iterations) image.

Figure 4.4 presents all bias field estimations across sequences and acquisitions, with images
normalized so that the mean intensity in the mask used to estimate the bias field is 1.
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Figure 4.4: Examples of estimated bias fields across sequences and acquisitions.

MR normalization

Histograms of image intensities within the phantoms (as defined by the mask used for N4
correction) are shown in Figure 4.5 for the four stages of the post-processing pipeline. The
different post-processing methods had a similar behaviour across the three sequences. In
raw images, the peaks of the histograms were not aligned before any correction. Intensities
from coil 1 (the GE machine), in particular, spread on a significantly greater range than the
intensities from the two Siemens coils. N4 correction sharpened the peaks but did not align
them. Z-score normalization combined with N4 correction realigned perfectly acquisitions from
the same coils and managed to align the peaks of different coils around the same value. The
alignment was nevertheless not optimal, especially in high intensities in T2 images. Histogram
matching produced the best alignments whatever the coils.

Harmonization of radiomic features

To illustrate the impact of the pipeline on radiomic feature values, Figure 4.6 shows the
statistical distributions of the Short-Zone High Gray-level Emphasis (GLZLM-SZHGE) feature
extracted from regions on fat-saturated T2 images across coils for the four stages of the
standardization pipeline, and after further harmonization using ComBat. This example shows
that the Z-score and HM normalization contributed to realigning the distributions across coils
(Figure 4.6c, 6d) but that further harmonization using ComBat was needed to co-align all three
coils distributions (Figure 4.6e). Figure 4.6f presents a plot of the ComBat corrected GLZLM-
SZHGE against the feature before its harmonization to emphasize the action of ComBat and
illustrate the different transformations applied to the features depending on the coil.

Table 4.2 reports the number of features for which Kruskal-Wallis p-values are inside a
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Figure 4.5: Image intensity histograms of the six acquisitions (Acq.) for the four steps of the standard-ization pipeline across the three sequences. Each row represents a sequence and each column a stepof the pipeline.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Statistical distributions across coils of the GLZLM-SZHGE texture feature extracted from (a)raw T2 images. (b) N4 corrected (full mask, 5 levels) T2 images. (c) Z-score normalized-N4 correctedT2 images. (d) Histogram-matched-N4 corrected T2 images. (e) Histogram-matched-N4 corrected T2images and harmonized by ComBat. (f) Transformation carried out by ComBat on the GLZLM-SZHGEextracted from Histogram-matched-N4 corrected T2 images depending on coils.
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specific range: in T1 raw images, 37 out 42 features were significantly different between
the 3 coils with a p-value p < 10−5, 3 features were significantly different with a p-value
10−5 ≤ p < 10−3, 1 with a p-value 10−3 ≤ p < 0.01 and the last one with a p-value
0.01 ≤ p < 0.05. The ranges of p-values of the tests run on the forty-two radiomic features
for each step and each sequence are provided in Supplemental Tables 2, 3 and 4.

The same pattern was observed across sequences: the number of features that were signif-
icantly different (p < 0.05 ) decreased gradually when they were computed from N4-corrected
data, Z-score-normalized N4-corrected data, HM-normalized N4-corrected data, ComBat har-
monized HM-normalized N4-corrected data and the number of small p-values was reduced
accordingly. Harmonization by ComBat was essential to reduce drastically the number of
significantly different features in all three settings, especially for T1-weighted DCE features.

Table 4.2: Number of radiomic features in the 5 different ranges of p-values. The p-values correspondto Kruskal-Wallis tests between the three coils, radiomic features being extracted from 30 similarregions. Results are given for the three MR sequences and each main step of the processing pipeline.

Wilcoxon tests were performed between the two dense lesion types segmented on the
phantoms across sequences. Before harmonization, on T1 (respectively T2, T1-DCE) images,
10 (respectively 39, 7) features out of 42 were significantly different between the two lesion
types, whereas after ComBat harmonization, 32 (respectively 39, 21) features were significantly
different. Figure 4.7 shows the impact of ComBat on the mean intensity.
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Figure 4.7: Mean intensity before and after ComBat harmonization across sequences and coils ofLesion 1 (dense lesion withmicrocalcification) and Lesion 2 (dense spiculated lesion). Asterisks denotecases where the difference between the two lesion types is significant.

Discussion
The present study suggests that standardization methods developed for brain or lung MRI
should be adapted specifically to breast MR images. The whole process includes bias field
correction to reduce local/regional inhomogeneities in similar regions (intra-image variabilities),
intensity normalization to lessen inter-acquisitions variabilities, and statistical harmonization
to make results across coils comparable. We have shown that the three steps, each tackling a
different kind of variability, are all needed and complementary. They pave the way towards an
efficient standardization pipeline for multi-scanner radiomic studies of patients’ acquisitions.

To enable retrospective patients’ studies, bias field correction was based on an a posteriori
method. Comparisons of bias fields with different settings of the N4 algorithm led to a set of
parameters appropriate for breast MRI when using dual breast coils. Based on our study, we
recommend using a mask including the internal part of the breast phantoms (unlike the mask
defined by Otsu’s threshold) and performing the optimisation across five resolution levels
(instead of four) with fifty iterations per level. Using the default parameters optimised for
brain MRI underestimated the variations in the bias field, even when using the mask including
the phantom inner part. It resulted in intensity non-uniformity inside this mask, where MR
information is of prime importance in a clinical context (Figure 4.1g). The drawback of the
default mask and five resolution levels was also illustrated in Figure 4.1. The bias field was
indeed underestimated in the central part of the phantom, yielding a hypersignal effect in the
corrected image (Figure 4.1j) and thus increased heterogeneity in the background gel hence
an increase in the coefficient of variation of the mean intensity (Figure 4.2). The analysis
of the quantitative assessments of all experiments (Figure 4.2) showed that the proposed
breast specific N4 parameters led to the greatest decrease, across coils, of the coefficients
of variation of the mean intensity over homogeneous regions inside the phantom. The k-
means clustering performed on the inner part of the phantom clearly shows how N4 correction
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reduced intensity variations across tissue types. In addition, the intensity histogram of the
inner part of the phantom on N4 corrected images showed a strong sharpening of its peak
around the mean value of the largest structure, i.e. the background gel (Figure 4.3e). The
overlay of the segmented regions demonstrated a clear improvement in the identification of
masses on N4 corrected images (Figure 4.3f). Bias field correction thus appeared essential to
improve homogeneity inside the breast MR images and is crucial for a correct segmentation
of abnormalities in the breast. It should be underlined that the estimated bias fields depend
not only on the MR scanner, but also on coils, type of sequence (T1, T2, T1-DCE), and on
the positioning of the phantoms inside the breast coils. As shown in Figure 4.4, the coil has
a high impact. Indeed, bias field images from coils 2 and 3 originating from the same MR
scanner were quite different. Using a same coil, bias field also showed large fluctuations across
sequences. This work only presents the first dynamic of the T1-DCE sequence, but should
several dynamics be studied, the N4 correction would have been applied separately on each
dynamic.

To reduce inter-subject and multi-scanner variabilities, MR normalization was performed
after bias field correction. Linear approaches using a reference tissue, similar to Shinohara et al.
method [226] involving white matter in the brain were not reported as no satisfying reference
tissue could be found in breast for all sequences, despite attempts with the subcutaneous
fat layer of the breast. Studying the co-alignment of intensity histograms across acquisitions
and coils highlighted the impact of intensity normalization, and the good performance of the
histogram matching approach. Results from Figure 4.5 supported the idea that it was necessary
to go beyond linear normalization and Z-score standardization [134], confirming findings by
Nyul et al. [21] and Fortin et al. [227]. Z-score normalization indeed squashed all intensities
inside a range of values but did not succeed at aligning tissue-specific peaks. As observed
by Isaksson et al. [24] (though with different types of landmarks) in the normalization of
prostate radiomics, the piecewise linear histogram matching gave excellent results in realigning
intensity distributions. However, histogram matching depends on the set of images selected
to extract a standard histogram. In a clinical setting, inclusion of new patients in a study
often goes on after the beginning of processing work on the original database. To avoid
recalculating a standard histogram every time new patients are added to the database, it is
thus important to select the images from which to extract it across a wide range of scanner
and biological variabilities to identify robust landmarks [22]. Considering radiomic features
computed inside thirty similar regions, statistical tests showed that N4 correction combined
with histogram matching normalization could not completely remove the “scanner effect”.
Each stage of the pipeline decreased the number of features that were significantly different
between the three coils, but it was not sufficient to harmonize all radiomic features. This result
agrees with the trends reported in glioblastoma [230, 231] and prostate [140, 232] cancer
patients. Further harmonization of the radiomic features is needed and ComBat succeeded
in realigning feature distributions across scanners. Some studies normalize the features using
scaling or Z-score [240, 241] separately for each center but unlike ComBat, these methods
cannot model possible covariates that could affect the features leading to skewed data [23, 238,
239]. Performances in separating the two dense lesion types were preserved or improved by the
ComBat harmonization, therefore suggesting that ComBat was able to successfully harmonize
the features across coils while preserving their biological variabilities and their predictive powers.
Though the effect of ComBat is prevailing in reducing the “scanner effect”, the N4 correction
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and the normalization are paramount to reduce intra-image and inter-acquisition variabilities on
which the affine transformation applied by ComBat has no effect. Combining the corrections
is thus essential to lessen all types of variabilities.

The present study has several limitations. First, the CIRS model was built to be usable in
multiple imaging modalities and not specifically in MRI. The phantom was also aimed at biopsy
training providing lesions that could be biopsied multiple times and was therefore not designed
for radiomic studies unlike phantoms used in normalization [136, 138, 242]. The phantom
was made from simple materials to capture the global breast heterogeneous appearance but
not to mimic the very fine heterogeneity that could be observed in tumors and modelled in
other phantoms [243]. Another limitation is that our experiments were performed using two
MR scanners and three coils at the same institution, but we are confident in the possibility to
extend our results to other scanners, centers and acquisitions protocols. Finally, there is always
an inherent limit in using a phantom to assess performances of methods that we want to apply
in clinical settings. Nevertheless, phantoms offered the opportunity to properly monitor the
effects of standardization without any interference of biological covariates.

Conclusion
This study shows the necessity to use a standardization pipeline before performing radiomic
studies involving MR breast images acquired using multiple settings. A retrospective bias field
correction dedicated to dual breast coils and non-linear MR intensity normalization reduced
the “scanner effect” for subsets of radiomic features, but further statistical harmonization was
needed to fully correct for it. The results were obtained on breast phantoms and future work
will assess the pipeline on patient data, where biological and pathological variations increase
the sources of MR intensity variations.

94



Supplemental Data for article: A radiomics pipeline dedicated to Breast MRI: 

validation on a multicentre phantom study, in Magn Reson Mater Phy 

Authors: Marie-Judith Saint Martin1, Fanny Orlhac1, Pia Akl1,2, 3, Fahad Khalid1, Christophe Nioche1, 

Irène Buvat1, Caroline Malhaire 1, 3, Frédérique Frouin1 

1 Université Paris-Saclay, Inserm, Institut Curie, Laboratoire d’Imagerie Translationnelle en Oncologie 

(LITO), Bât 101B rue Henri Becquerel, 91 401 Orsay, France. 

2 HCL, Radiologie du groupement hospitalier Est, Hôpital Femme Mère enfant, Unité Fonctionnelle: 

imagerie de la femme, 3 Quai des Célestins, 69002 Lyon, France. 

3 Institut Curie, Service de Radiodiagnostic, 26 rue d’Ulm, 75005 Paris, France. 

Corresponding author: Marie-Judith Saint Martin, email: marie-judith-astrid.saint-martin@u-psud.fr 

 

1 CONVENTIONAL_min 

2 CONVENTIONAL_mean 

3 CONVENTIONAL_std 

4 CONVENTIONAL_max 

5 CONVENTIONAL_Q1 

6 CONVENTIONAL_Q2 

7 CONVENTIONAL_Q3 

8 HISTO_Skewness 

9 HISTO_Kurtosis 

10 HISTO_Entropy 

11 HISTO_Energy (Uniformity) 

12 GLCM_Homogeneity (Inverse Difference) 

13 GLCM_Energy (Angular Second Moment) 

14 GLCM_Contrast (Variance) 

15 GLCM_Correlation 

16 GLCM_Entropy 

17 GLCM_Dissimilarity 

18 GLRLM_SRE 

19 GLRLM_LRE 

20 GLRLM_LGRE 

21 GLRLM_HGRE 

22 GLRLM_SRLGE 

23 GLRLM_SRHGE 

24 GLRLM_LRLGE 

25 GLRLM_LRHGE 

26 GLRLM_GLNU 

27 GLRLM_RLNU 

28 GLRLM_RP 

29 NGLDM_Coarseness 

30 NGLDM_Contrast 

31 NGLDM_Busyness 

32 GLZLM_SZE 

33 GLZLM_LZE 

34 GLZLM_LGZE 

35 GLZLM_HGZE 

36 GLZLM_SZLGE 

37 GLZLM_SZHGE 

38 GLZLM_LZLGE 

39 GLZLM_LZHGE 

40 GLZLM_GLNU 

41 GLZLM_ZLNU 

42 GLZLM_ZP 

 

Supplemental Table 1 List of radiomic features extracted using the LIFEx freeware  

CHAPTER 4. PHANTOM EXPERIMENTS
Supplemental data

95



 

  
Raw images 

N4 
correction 

N4 & Z-
score 

N4 &HM 
N4 & HM & 
ComBat 

1 CONVENTIONAL_min      

2 CONVENTIONAL_mean      

3 CONVENTIONAL_std      

4 CONVENTIONAL_max      
5 CONVENTIONAL_Q1      

6 CONVENTIONAL_Q2      

7 CONVENTIONAL_Q3      

8 HISTO_Skewness      

9 HISTO_Kurtosis      

10 HISTO_Entropy      

11 HISTO_Energy (Uniformity)      
12 GLCM_Homogeneity (InverseDifference)      

13 GLCM_Energy (Angular SecondMoment)      

14 GLCM_Contrast (Variance)      

15 GLCM_Correlation      

16 GLCM_Entropy_log10      

17 GLCM_Dissimilarity      

18 GLRLM_SRE      
19 GLRLM_LRE      

20 GLRLM_LGRE      

21 GLRLM_HGRE      

22 GLRLM_SRLGE      

23 GLRLM_SRHGE      

24 GLRLM_LRLGE      

25 GLRLM_LRHGE      
26 GLRLM_GLNU      

27 GLRLM_RLNU      

28 GLRLM_RP      

29 NGLDM_Coarseness      

30 NGLDM_Contrast      

31 NGLDM_Busyness      

32 GLZLM_SZE      
33 GLZLM_LZE      

34 GLZLM_LGZE      

35 GLZLM_HGZE      

36 GLZLM_SZLGE      

37 GLZLM_SZHGE      

38 GLZLM_LZLGE      

39 GLZLM_LZHGE      
40 GLZLM_GLNU      

41 GLZLM_ZLNU      

42 GLZLM_ZP      

 

Supplemental Table 2 Ranges of p-values of Kruskal-Wallis tests on 42 radiomic features extracted from T2 

images between the three coils at each step of the pipeline. Pink is ,  orange corresponds to 

,yellow represents ,  green is   and white is for  

 

 

 

 

 



 

  
Raw images 

N4 
correction 

N4 & Z-
score 

N4 &HM 
N4 & HM & 

ComBat 

1 CONVENTIONAL_min      

2 CONVENTIONAL_mean      

3 CONVENTIONAL_std      

4 CONVENTIONAL_max      
5 CONVENTIONAL_Q1      

6 CONVENTIONAL_Q2      

7 CONVENTIONAL_Q3      

8 HISTO_Skewness      

9 HISTO_Kurtosis      

10 HISTO_Entropy      

11 HISTO_Energy (Uniformity)      
12 GLCM_Homogeneity (InverseDifference)      

13 GLCM_Energy (Angular SecondMoment)      

14 GLCM_Contrast (Variance)      

15 GLCM_Correlation      

16 GLCM_Entropy_log10      

17 GLCM_Dissimilarity      

18 GLRLM_SRE      
19 GLRLM_LRE      

20 GLRLM_LGRE      

21 GLRLM_HGRE      

22 GLRLM_SRLGE      

23 GLRLM_SRHGE      

24 GLRLM_LRLGE      

25 GLRLM_LRHGE      
26 GLRLM_GLNU      

27 GLRLM_RLNU      

28 GLRLM_RP      

29 NGLDM_Coarseness      

30 NGLDM_Contrast      

31 NGLDM_Busyness      

32 GLZLM_SZE      
33 GLZLM_LZE      

34 GLZLM_LGZE      

35 GLZLM_HGZE      

36 GLZLM_SZLGE      

37 GLZLM_SZHGE      

38 GLZLM_LZLGE      

39 GLZLM_LZHGE      
40 GLZLM_GLNU      

41 GLZLM_ZLNU      

42 GLZLM_ZP      

 

Supplemental Table 3 Ranges of p-values of Kruskal-Wallis tests on 42 radiomic features extracted from T1 

images between the three coils at each step of the pipeline. Pink is ,  orange corresponds to 

,yellow represents ,  green is   and white is for  

 

 

 

 

 



 

  
Raw images 

N4 
correction 

N4 & Z-
score 

N4 &HM 
N4 & HM & 

ComBat 
1 CONVENTIONAL_min      

2 CONVENTIONAL_mean      

3 CONVENTIONAL_std      

4 CONVENTIONAL_max      

5 CONVENTIONAL_Q1      

6 CONVENTIONAL_Q2      

7 CONVENTIONAL_Q3      
8 HISTO_Skewness      

9 HISTO_Kurtosis      

10 HISTO_Entropy      

11 HISTO_Energy (Uniformity)      

12 GLCM_Homogeneity (InverseDifference)      

13 GLCM_Energy (Angular SecondMoment)      

14 GLCM_Contrast (Variance)      
15 GLCM_Correlation      

16 GLCM_Entropy_log10      

17 GLCM_Dissimilarity      

18 GLRLM_SRE      

19 GLRLM_LRE      

20 GLRLM_LGRE      

21 GLRLM_HGRE      
22 GLRLM_SRLGE      

23 GLRLM_SRHGE      

24 GLRLM_LRLGE      

25 GLRLM_LRHGE      

26 GLRLM_GLNU      

27 GLRLM_RLNU      

28 GLRLM_RP      

29 NGLDM_Coarseness      
30 NGLDM_Contrast      

31 NGLDM_Busyness      

32 GLZLM_SZE      

33 GLZLM_LZE      

34 GLZLM_LGZE      

35 GLZLM_HGZE      

36 GLZLM_SZLGE      
37 GLZLM_SZHGE      

38 GLZLM_LZLGE      

39 GLZLM_LZHGE      

40 GLZLM_GLNU      

41 GLZLM_ZLNU      

42 GLZLM_ZP      

 

Supplemental Table 4 Ranges of p-values of Kruskal-Wallis tests on 42 radiomic features extracted from T1-

weighted DCE images between the three coils at each step of the pipeline. Pink is ,  orange 

corresponds to ,yellow represents ,  green is   

and white is for   

 



CHAPTER 4. PHANTOM EXPERIMENTS
4.3 Discussion

The study presents some limitations that are detailed in the section below.

Though the phantoms gave us an easy opportunity to compare the repeated acquisitions
of the same objects over three imaging devices, it could not replace a test-retest experiment
involving patients. Indeed, phantoms did contain several masses of different sizes and shapes.
However, only the masses of one phantom could be really used as the second one was much
older and its composition altered. As the phantom was not specifically designed for MRI, it was
sometimes very difficult to spot masses and segment them correctly. Accurately identifying a
designated mass from one acquisition to another one, was impossible as contrast and changes
in the shape of the breast due to the different coils used, made it extremely difficult. A mass
could only be identified as a cystic or dense mass.

In the article, bias fields in the three settings were visualized for each modality. However, in
patient images, anatomy of the subjects and the injection of a contrast media agent in T1-DCE
sequences and the subsequent enhancement of the heart and tumor regions could change the
bias field patterns observed. Besides, the correction was tested only on two scanners that had
the same magnetic field strength (1.5T). The two constructors (GE healthcare and Siemens)
were used in the training and test sets. To make the results more robust, other constructors and
devices, and scanners at 3T especially, should be investigated. Strong magnetic fields indeed
increase the impact of the imaged object on bias field gain as increased radio-frequencies are
needed in these conditions, leading to enhanced radio-frequency standing-waves [219].

Regarding the normalization step, we concluded that histogram matching was the best
method to realign intensity peaks of the different materials in the phantoms between the three
imaging settings. In the context of considering the phantom experiments as a first step towards
pre-processing patient images, these results call for some nuances. Adaptations of the common
method of White Stripe normalization, originally designed for brain images and using white
matter as reference tissue to normalize them, could not be carried out on the phantom images.
Indeed, a satisfactory reference tissue could not be found on fat-saturated T2-weighted images
in phantom images but several approaches like using the sternum could be explored on patient
images. Moreover, though these results were not included in the article as the point was to
stress the importance of each of the correcting step, Z-score normalization followed by ComBat
harmonization dramatically reduced the number of features affected by the “scanner effect”
too (Table 4.3). This could be an alternative that would be easy to perform on both training
and test sets and would not require to learn landmarks through another training process.

Finally, the harmonization step of the pipeline heavily relies on the use of the ComBat
method but this approach requires at least 20 patients per imaging device (or batch) to
estimate a distribution of features within it, that would be realigned with the distributions of
other centers [11]. These conditions are met in the training set. The test set on the other
hand gathers 33 patients coming from more than 15 imaging centers. Other strategies have
been pursued to correct the “scanner effect” in the test set and will be introduced in Chapter 6.
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Table 4.3: Number of radiomic features in the 5 different ranges of p-values.

p-value After Z-score & ComBat After HM & ComBat
T1

p < 10−5 0 0
10−5 ≤ p < 10−3 0 0
10−3 ≤ p < 0.01 0 0
0.01 ≤ p < 0.05 0 2

0.05 ≤ p 42 40
T2

p < 10−5 0 0
10−5 ≤ p < 10−3 0 0
10−3 ≤ p < 0.01 1 0
0.01 ≤ p < 0.05 0 1

0.05 ≤ p 41 41
T1-weighted DCE

p < 10−5 0 0
10−5 ≤ p < 10−3 0 0
10−3 ≤ p < 0.01 1 0
0.01 ≤ p < 0.05 0 1

0.05 ≤ p 41 41
The p-values correspond to Kruskal-Wallis tests between the three coils, radiomic features being ex-tracted from 30 similar regions. Results are given for the three MR sequences. HM:Histogram match-ing.

Conclusion
This chapter proposed a pipeline dedicated to breast MR imaging, highlighting the need for
bias field reduction, normalization and further harmonization of features to reduce the different
types of inhomogeneities affecting analyses. Exporting these results to patient images will
however need to consider other factors, like the use of contrast agents or potential artefacts
not visible on phantoms, and consider the ease of the implementation of the pipeline. It is also
important to underscore that this pipeline, though intending to be exportable to all imaging
centers, was designed with the imaging devices used in the training set. The following chapter
will apply and adapt methods proposed for the phantom images to patient images.

100



Chapter 5

Handcrafted radiomic analysis
pipeline for breast MRI

Preface
This chapter presents the work conducted to export the methods developed on the breast
phantoms to patient images. Decisions taken at each step of the global handcrafted radiomic
analysis pipeline (Figure 5.1) are first described. Specific points that needed further adapta-
tions for patient images like bias field correction and image normalization are then detailed.

Figure 5.1: Main steps of the handcrafted radiomic analysis pipeline, introduced in Chapter 2.
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5.1 General Pipeline

5.1.1 Cohort constitution & Image acquisition
As previously defined in Chapter 3, 136 patients were collected retrospectively, imaged us-
ing T1-weighted DCE and fat-saturated T2 sequences and separated between a training set
(103/136 patients) and test set (33/136). Training patients were all scanned at Institut Curie
while test patients were imaged in a variety of centers (see Table 3.2).

5.1.2 Image pre-processing

Bias field correction

Methods developed to correct bias field gain on breast phantoms as described in Chapter 4
need to be tested and potentially adapted to patient images. Experiments carried out and
associated results are detailed in Section 5.2.

Spatial resampling

Spatial resampling is an important step of the radiomic pipeline as inhomogeneities in voxel
size in a dataset affect radiomic feature values. The influence of spatial resampling has been
the focus of several studies [130, 230, 244].

In this work, T1-weighted DCE images were resampled using B-Spline interpolation to have
isotropic voxels (1 mm x 1 mm x 1 mm) as it is preferred to calculate some texture features
and it is recommended by the IBSI guidelines [130, 143]. Isotropic resampling has also been
associated with a decrease in the number of radiomic features dependent on the magnetic field
strength of scanners (1.5 versus 3T) in a study by Um et al. [230].

Furthermore, T2-weighted images were resampled to have voxels of dimensions 0.7 mm x
0.7 mm x 4 mm. These dimensions were chosen to take the mean of the parameters of the
different scanners of the training set (Table 3.1).

Normalization

Similarly to bias field correction, the normalization step required further testing on patient
images, described in Section 5.3.

5.1.3 Lesion segmentation
Tumors were segmented on the first post-contrast image after injection. Two radiologists, Dr.
Caroline Malhaire and Dr. Pia Akl, segmented separately half of the lesions in 3D using the
LIFEx software (version 6.0, www.lifexsoft.org) [235]. Thirty tumors of the training set were
segmented by both. Both radiologists segmented lesions in the same manner.

To get a more refined delineation of the lesion, segmentations were thresholded using
40% of the maximum tumor intensity value after bias correction as threshold level. These
refined segmentations are referred as “Thresholded segmentations” by opposition to the “Full
segmentations”. Full segmentations were resampled using nearest neighbor interpolation to fit

102



CHAPTER 5. HANDCRAFTED RADIOMIC ANALYSIS PIPELINE FOR BREAST MRI
onto T2-weighted images. Each patient has thus three tumor segmentations as illustrated in
Figure 5.2.

Based on the 30 tumors segmented by both radiologists, a mean Dice similarity coefficient
of 0.78 ± 0.10 was reached on the full segmentations. This score increased to 0.88 ± 0.12 on
the thresholded segmentations, showing a good to excellent agreement between radiologists.

Figure 5.2: Illustrations of (a) the full segmentation delineated by radiologists on the first T1-weightedDCE image after contrast injection; (b) the thresholded segmentation on the same T1-DCE image; (c)the full segmentation on the fat-saturated T2 image for the same patient.

Chapter 7 will present an alternate way to get the “full segmentations”.

5.1.4 Feature extraction

Shape, first-order statistics and texture features were extracted from the segmentations on the
normalized images using the Pyradiomics software (v3.0). Native and wavelet-filtered images
(9 images in total) were used conjointly to extract features. The same set of 107 features (14
shape features and 93 first-order and texture features) was extracted from the three segmen-
tations (full and thresholded segmentations on T1-weighted DCE and full segmentations on
T2 images) for each patient on the native images. On the wavelet-filtered images, for each of
the three segmentations, only the 93 first-order and texture features were extracted. In total,
93x3x9 + 14x3 = 2553 features were extracted for every patient. As advised by Goya-Outi et
al. [228], the extraction was carried out using absolute discretization with a fixed bin size of
1 due to the normalization.
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5.1.5 Feature harmonization
Features were then harmonized to correct the “scanner effect”. On the training set, the
conditions to apply the ComBat method were met (minimum of 20 patients per imaging
device) [11] and the method subsequently performed. The non-parametric version of ComBat
without the empirical Bayes assumption and using three batches corresponding to the three
image settings of Institut Curie was carried out. No covariate was added to the model.
Table 5.1 records the number of features affected by the “scanner effect” (Kruskal-Wallis
p < 0.05) before and after harmonization and underscores the reduction of the effect. After
harmonization, features were standardized with Z-score.

Table 5.1: Impact of ComBat harmonization on features to reduce the “scanner effect”.
Harmonization Number of features significantly affected by the “scanner effect”

No Harmonization 1580/2553 (61.9%)ComBat harmonization 99/2553 (3.9%)
As conditions to apply ComBat were not met on the test set since the 33 patients were

imaged in 15 different imaging centers, an ad hoc harmonization needs to be developed, that
will be presented in Chapter 6.

5.1.6 Feature selection
Feature robustness towards segmentation

Using the 30 tumors of the training set segmented by both radiologists, two-way random
intraclass correlation coefficients of radiomic features were calculated. Following Granzier et
al. [166] and Saha et al. [148] recommendations, “robust” features were defined as features
with ICC > 0.8. Table 5.2 displays the number of “robust” features for each one of the three
segmentation forms. Figure 5.3 reports the ICC values obtained for the features depending on
the modality, the filter applied on the images and the type of features. No particular group
of features could be easily identified as “robust” as the influence of the filter applied to the
image was important but the features from the “GLZSM” matrix seemed particularly affected
by segmentation variabilities. Features that did not qualify as “robust” were discarded and
further selection applied only to “robust” features.

Table 5.2: Features deemed robust according to the modality.
Modality Number of features with ICC>0.8

Full segmentationT1-weighted DCE 692/2553 (27.1%)
Thresholded segmentationT1-weighted DCE 668/2553 (26.2%)

Full segmentationfat-saturated T2 492/2553 (19.3%)
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Feature reduction & further selection

As a large number of features remained after discarding features not robust to the segmenta-
tion, a first univariate filter step was carried out to select the most interesting features with
respect to pCR in the training set. Thus, features whose lower AUC bound was inferior to 0.5
were discarded. Then to remove redundancy, highly correlated features, using a Spearman’s
rank correlation coefficient cut-off of 0.8, were removed.

Feature selection was finally performed on the decorrelated set of features where using a
100 rounds of the Boruta algorithm, the five most frequently selected features were used to
build the predictive models.

5.1.7 Model building
Random forest models were predominantly used in our pipeline. They were tuned with leave-
one-out cross-validation on the training set for each experiment.

5.1.8 Model evaluation
Performances were evaluated with two different metrics: the Youden index and the AUC. The
AUC gives a certain leeway on the test set by not having a determined classification threshold.
The Youden index, on the other hand, has a fixed threshold and can be used when the cost
of wrongly predicting an observation as positive or negative is comparable.

5.2 Image pre-processing: Bias field correction

5.2.1 Introduction
The phantom experiments concluded that the N4 algorithm applied with five resolution levels,
50 iterations and the use of a full mask of the breast and posterior regions, achieved the best
performances in reducing the bias field in the three experimental settings that we tested.

5.2.2 Methods
Images of the training and test sets were segmented to get a full mask of the breast region,
using mean thresholding and morphological closing operations, and corrected with the N4
algorithm tuned with the parameters defined on the phantoms.

To measure quantitatively the effects of bias field correction, the coefficient of variation
(CV) of the intensities inside a reference tissue was calculated for each modality. CV is defined
as

CV =
standardDeviation

mean
(5.1)

As lower CV values are associated with a more homogeneous tissue in terms of intensities,
changes in CV before and after bias correction were analyzed.

In T1-weighted DCE images, the enhanced subcutaneous fat layer was selected as reference
tissue and segmented in 3D. As images acquired on the GE scanner were particularly noisy, a
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first denoising step using median filtering with a kernel size of 3 was performed to facilitate
the segmentation process. The subcutaneous fat layer was then segmented using successively
hysteresis thresholding, with high and low thresholds respectively set to the mean of the image
and 40% of the mean of the image, morphological closing operations using the default kernel
with square connectivity equal to 1, and then distance transforms selecting all voxels whose
values were inferior to 4. Figure 5.4 depicts the segmentation of the fat layer in T1-weighted
DCE images.

In fat-saturated T2 images, several slices of the sternum were segmented manually by
radiologists (Figure 5.5) to be used as reference tissue. Paired Wilcoxon tests were carried out
to compare distributions of CV before and after correction.

Figure 5.4: Segmentation (in pink) in the axial, sagittal and coronal planes of the subcutaneous fatlayer of the breasts of a patient with invasive breast cancer.

5.2.3 Results
Figures 5.6 and 5.7 depict the raw images, the full mask segmented, the estimated bias
field calculated overlaid on the raw images and the bias-corrected images for respectively
T1-weighted DCE and fat-saturated T2 images of three different patients of the training set
imaged with the three training devices. Figure 5.8 and Figure 5.9 show the effect of bias
correction in the axial, coronal and sagittal planes for each modality.

Figure 5.10 and Figure 5.11 show four examples of bias fields estimated during the correc-
tion step for each of the three imaging devices of Institut Curie for both T2 and DCE modalities.
It helps get a global visual pattern of the bias field obtained for each device, though as previ-
ously explained, bias field is also heavily influenced by the anatomy and position of the patient
imaged.
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Figure 5.5: Segmentation (in pink) in the axial, sagittal and coronal planes of the several slices of thesternum of the same patient as Figure 5.4.

Figure 5.12 shows the correction pipeline in both modalities on a patient of the test set,
imaged in a private imaging center on a DISCOVERY MR750 (GE), 3T with an HD breast
coil.

Figure 5.13 and Figure 5.14 show the significant decrease of the coefficient of variation in
the fat and sternum of patients after bias correction. For the T1-weighted DCE images, the
decrease is illustrated both in the training and test set. For T2-images, segmentations of the
sternum were only available for 75 patients of the training set and changes of CV were thus
compared on this subset of patients.
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(a) Raw image (b) Raw image (c) Raw image

(d) Full mask (light green) (e) Full mask (light green) (f) Full mask (light green)

(g) Bias field overlaid on image (h) Bias field overlaid on image (i) Bias field overlaid on image

(j) Corrected image (k) Corrected image (l) Corrected image
Figure 5.6: Column-wise illustrations in the axial plane of raw T1-weighted DCE images (1st row), fullmasks (2nd row), estimated bias field gain overlaid on raw images (3rd row) and corrected images(4th row) from patients scanned on the GE machine (Patient 12, 1st column); the Siemens machinewith the Sentinelle coil (Patient 1, 2nd column) or with the 18-channel coil (Patient 4, 3rd column).
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(a) Raw image (b) Raw image (c) Raw image

(d) Full mask (light green) (e) Full mask (light green) (f) Full mask (light green)

(g) Bias field overlaid on image (h) Bias field overlaid on image (i) Bias field overlaid on image

(j) Corrected image (k) Corrected image (l) Corrected image
Figure 5.7: Column-wise illustrations in the axial plane of raw fat-saturated T2 images (1st row), fullmasks (2nd row), estimated bias field gain overlaid on raw images (3rd row) and corrected images(4th row) from patients scanned on the GE machine (Patient 12, 1st column); the Siemens machinewith the Sentinelle coil (Patient 1, 2nd column) or with the 18-channel coil (Patient 4, 3rd column).
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(a) Raw image (GE scanner) (b) Corrected image (GE scanner)

(c) Raw image (Siemens, Sentinelle coil) (d) Corrected image (Siemens, Sentinelle coil)

(e) Raw image (Siemens, 18-channel coil) (f) Corrected image (Siemens, 18-channel coil)
Figure 5.8: Illustrations in the axial, sagittal and coronal planes of raw (1st column) and corrected(2nd column) T1-weighted DCE images from patients scanned on the GEmachine (Patient 12, 1st row);the Siemens machine with the Sentinelle coil (Patient 1, 2nd row) or with the 18-channel coil (Patient4, 3rd row).

111



CHAPTER 5. HANDCRAFTED RADIOMIC ANALYSIS PIPELINE FOR BREAST MRI

(a) Raw image (GE scanner) (b) Corrected image (GE scanner)

(c) Raw image (Siemens, Sentinelle coil) (d) Corrected image (Siemens, Sentinelle coil)

(e) Raw image (Siemens, 18-channel coil) (f) Corrected image (Siemens, 18-channel coil)
Figure 5.9: Illustrations in the axial, sagittal and coronal planes of raw (1st column) and corrected(2nd column) fat-saturated T2 images from patients scanned on the GE machine (Patient 12, 1st row);the Siemens machine with the Sentinelle coil (Patient 1, 2nd row) or with the 18-channel coil (Patient4, 3rd row).
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(a) GE scanner (b) Siemens, Sentinelle coil (c) Siemens, 18-channel coil
Figure 5.10: Column-wise illustrations in the axial plane of four examples of the estimated bias fieldcalculated by the N4 algorithm on T1-weighted DCE images from four different patients scanned onthe GE machine (1st column), the Siemens machine with the Sentinelle coil (2nd column) and theSiemens machine with the 18-channel coil (3rd column).
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(a) GE scanner (b) Siemens, Sentinelle coil (c) Siemens, 18-channel coil
Figure 5.11: Column-wise illustrations in the axial plane of four examples of the estimated bias fieldcalculated by the N4 algorithmon fat-saturated T2 images from four different patients scanned on theGE machine (1st column), the Siemens machine with the Sentinelle coil (2nd column) and the Siemensmachine with the 18-channel coil (3rd column).
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(a) T1-DCE raw image (b) T2 raw image

(c) Full mask (light green) (d) Full mask (light green)

(e) Bias field overlaid on image (f) Bias field overlaid on image

(g) Corrected image (h) Bias field overlaid on image
Figure 5.12: Column-wise illustrations in the axial plane of raw T1-DCE and fat-saturated T2 images(1st row), full masks (2nd row), estimated bias field gain overlaid on raw images (3rd row) and cor-rected images (4th row) from test set patient 107, imaged on the DISCOVERY MR750 (GE, 3T) with anHD breast coil. 115
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(a) Training test (b) Test set
Figure 5.13: Boxplots of coefficients of variations calculated in the segmented subcutaneous fat layerof the breasts in raw and bias corrected images of (a) the training set; (b) the test set. PairedWilcoxontest was performed. Dashed lines connects points corresponding to the same patients. Median of CVon raw images is 0.4480 and 0.4017 on corrected images of the training set. On the test set, themedian of CV on raw images is 0.4744 and 0.4105 on corrected images

Figure 5.14: Boxplots of coefficients of variations calculated in the segmented sternum in raw and biascorrected images on the training set. Paired Wilcoxon test was performed. Dashed lines connectspoints corresponding to the same patients. Median of CV on raw images is 0.1644 and 0.1605 oncorrected images.
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5.2.4 Discussion & Conclusion
The first noteworthy difference observed between patient and phantom images concerns the
GE scanner. The contrast observed on T1-weighted DCE images acquired on the GE machine
is much stronger, making the parenchymal tissue appears almost as dark as the background.
The automatic pipeline developed to segment the full mask of the breasts, consisting of a
succession of thresholding and filling steps using morphological operations thus did not capture
the parenchyma completely unlike in patients imaged in the other settings (Figure 5.6). No
such effect was observed in T2 images (Figure 5.7). The segmented mask was still nevertheless
much more complete than the default one of the N4 algorithm obtained by Otsu thresholding.
After visual and quantitative comparisons between the results obtained with both masks, as no
changes were observed, it was decided to apply the automatic segmentation pipeline. There
was no particular problem when applying the segmentation pipeline on the test set despite the
variety of scanners.

Figure 5.13 and Figure 5.14 shows the global decrease in CV, which is steep in the fat and
more moderated in the sternum. The choice of a few slices of the sternum as a reference tissue
to analyze the impact of the correction may not be the best as few voxels were considered and
were nearly all at the same location. According to the Wilcoxon signed rank tests, distributions
of CV before and after correction were significantly different (p < 0.01) in both modalities
attesting that the correction carried on reduced local spatial inhomogeneities.

Corrected images of the training and test set were also checked one by one in the axial,
sagittal and coronal planes and the estimated bias fields were visualized. As noticed in the
phantoms, general patterns of the bias field were specific to the coils and scanners used and
differences were observed between modalities (Figures 5.10 and 5.11). In T1-weighted DCE,
a major difference with the phantom experiments is the presence in the all imaging settings of
a physiological strong enhancement of the breast and the tumor region due to the injection of
the contrast agent. This physiological enhancement must not be overcorrected in the clinically
relevant zone of the MR images (breast). In the patient dataset, the N4 algorithm with the
parameters selected on the phantoms was able to reduce local inhomogeneities in images
while keeping a specific enhancement of the tumor region that is still highly noticeable after
correction (Figure 5.8).
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5.3 Image pre-processing: Normalization

5.3.1 Introduction
As pointed out in the phantom experiment, MR images must be normalized to ensure the
reproducibility of radiomic features and it is especially important in MR imaging because of
the absence of standard units.

Though an abundant literature exists on the normalization of MR brain images [228], there
is however no clear consensus today about the best approach to standardise images in breast
MRI. Among the 36 identified papers about handcrafted radiomics for neoadjuvant chemother-
apy in breast cancer (Table 2.3), only five studies reported performing image normalization.
Two studies performed histogram matching (HM) and three of them Z-score normalization.
In a recent paper about the reproducibility of features extracted from brain MR images using
both phantom and patient data, Li et al. [244] found that though bias field correction and
intensity normalization did not remove the “scanner effect”, image pre-processing did improve
the robustness of radiomic features. Li et al. notably compared Z-score, White-Stripe (WS)
normalizations and histogram matching and found no clear advantage of one method over
the others. Reviewing studies about intensity standardisation of MR images before feature
extraction in gliomas, Fatania et al. [245] underscored the rarity of studies comparing sev-
eral types of normalization even in the global brain MR imaging field, which is much more
developed than breast MR imaging. They nevertheless noticed a rise in deep learning-based
normalization approaches. Finally, Destito et al. [246] compared radiomic features extracted
from a sphere in healthy brain tissue in repeated acquisitions of the same group of patients
on different scanners using several normalization techniques (no normalization, Z-score, HM,
WS). They found that features extracted from Z-score normalized images displayed higher ICC
and were thus deemed more reproducible.

5.3.2 Methods
Like in the phantom experiments, MR images were first corrected for bias field gain and
spatially resampled before normalization. Two types of normalization were tested: Z-score
and histogram matching.

Histogram matching

Histogram matching aligns intensity densities of raw images by matching predefined his-
togram landmarks of the images to the landmarks of a histogram template in a piecewise linear
manner (Figure 5.15). As explained in Chapter 4, a histogram template can be provided, or
landmarks can be learned through a training process on a set of images. On the phantom
images, we used decile quantiles as landmarks, which resulted in a good alignment of intensity
distributions between scanners. In patient images, the use of so many landmarks could prove
too strong and reduce inter-subject variabilities and in the process remove useful information,
which is a concern about the histogram matching approach in general [247]. Therefore, we
decided to use a single landmark corresponding to the median intensity as defined by Nyul et
al. [21]. As histogram matching was originally developed for a multiple sclerosis study, the
influence of the presence of a large tumor in the image on the calculation of landmarks has
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been discussed in [24]. Isaksson et al. [24] notably found, in a study on the impact of image
normalization on prostate radiomics, that calculating landmarks for histogram matching in the
healthy prostate tissue gave better results than taking the whole prostate tissue including the
tumor area. Though the ratio of tumor volume to healthy tissue volume is generally smaller in
breast, a single landmark corresponding to the median of healthy breast tissue intensity was
selected for our study and learned on the training set.

The training process of histogram matching starts by segmenting the body of the patients
using thresholding with the mean image intensity and morphological closing operations. The
background is left aside during the whole procedure. A lower p1 and upper p2 percentiles in
the body segmentation are selected to remove outliers. For every image i of the training set,
lower p1i and upper p2i values are then mapped to s1 and s2, the minimum and maximum
intensities of the standard scale. Intensities x of [p1i, p2i] are mapped linearly to x’ of [s1, s2]
following the below formula:

x′ = s1 +
x− p1i
p2i − p1i

(s2 − s1) (5.2)
Selected landmarks are then mapped to the standard scale. Final landmarks are obtained

by averaging landmark values of all training images on the standard scale. In our case a single
landmark µs corresponding to the median intensity of healthy breast tissue was mapped as
illustrated in Figure 5.15.

Once the landmarks defined, the images are normalized by matching their intensities to
the standard scale using several piecewise linear mappings. In the case of a single landmark
µs, intensities are mapped according to two transformations. Let be x’ the mapped intensity
on the standard scale of intensity x of image i,

x′ =

{
µs +

s1−µs

p1i−µi
(x− µi), if x ⩽ µi

µs +
s2−µs

p2i−µi
(x− µi), otherwise.

(5.3)

Z-score normalization

Similarly, Z-score parameters (mean and standard deviation) were calculated in the healthy
breast tissue, taking a full mask of the breast using mean thresholding, closing operations and
cropping while removing the previously segmented tumors.

Quantitative & Qualitative assessment

There is no golden standard to evaluate the impact of normalization, which can be assessed
in multiple manners. First, qualitative analysis can be carried on by visualizing the alignment
of intensity densities of tissues according to the methods used. Quantitative and statistical
analysis can also be performed. The effects of normalization could also be studied through
the perspective of radiomics. Isaksson et al. [24] calculated the concordance correlation
coefficient (CCC) between features extracted before and after normalization. Their assumption
was that normalization techniques that would not overcorrect the images would preserve the
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Figure 5.15: Mapping process of landmark µi of the image scale to µs on the standard scale. p1 and
p2 are the minimum and maximum intensities on the image scale and s1 and s2 their equivalent onthe standard scale. Source: Nyul et al. [21].

concordance between raw and normalized features. The CCC of two features x and y can be
defined as

ρc =
Sxy

σx
2 + σy

2 + (µx − µy)2
(5.4)

where µx, µy and σx, σy are their respective mean and standard deviations and Sxy their
covariance. In their study, Isaksson et al. [24] defined a cut-off of 0.8 to establish the
concordance of features.

Finally, the impact of normalization can be assessed for our specific clinical task, i.e.
predicting pCR to NAC, by comparing performances obtained in each case. This idea was
carried out by counting, for each normalization approach, the number of features whose AUC
lower bound were strictly superior to 0.5 when predicting the response to NAC. No correction
for multiple testing was integrated in this experiment.

5.3.3 Results

Qualitative assessment
Figure 5.16 and Figure 5.17 show the alignment of distributions in T1-DCE and T2 modal-

ities in the healthy breast tissue on one hand and tumor region on the other hand for the
different normalizations.

Quantitative & Statistical assessment
Table 5.3 and Table 5.4 summarize the results obtained by calculating the concordance

of radiomic features extracted from native and wavelet-filtered normalized images and their
association with pCR to evaluate the different types of normalizations.
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Table 5.3: Concordance correlation coefficients (CCC) of radiomic features depending on normaliza-tions.

Normalization type Number of features with CCC>0.8
Histogram matching 196/2553 (7.7%)Z-score 248/2553 (9.7%)

CCC: concordance correlation coefficient.

Table 5.4: Association of radiomic features with pCR depending on normalizations.
Normalization type Number of features with AUCLowerBound>0.5
No normalization 84/2553 (3.2%)Histogram matching 93/2553 (3.6%)Z-score 125/2553 (4.9%)

AUCLowerBound lower bound of the area under the receiver-operating characteristic curve.

5.3.4 Discussion & Conclusion
The figures showed in both modalities a much better alignment across scanners of the intensity
densities in the healthy breast tissue than in the tumor area, in which results were very hetero-
geneous. Unlike in phantom experiments, the use of a single landmark for histogram-matching
resulted in much noisier histograms. The alignment seemed slightly better with the Z-score
normalization but there was no glaring difference between the two approaches.

Radiomic analyses highlighted that with Z-score normalization a 34% increase (Table 5.4)
in the number of features with AUCLowerBound>0.5 could be obtained compared to histogram
matching. Regarding the concordance correlation calculation, several remarks must be made.
First, features were globally heavily affected by the normalizations as an extremely small per-
centage of features (9.7%) was deemed robust which must lead to reassess the assumption of
concordance between raw and normalized features. The differences between the two normal-
ization types were also very small. Finally, the CCC could be affected by the low variance of
some features and the parameters (bounds and bins) used to calculated features.

Therefore, taking into account the previous results and considering its ease of use, Z-score
normalization in the healthy breast tissue was performed on our training and test sets.

Conclusion
This chapter adapted the pipeline defined on the phantoms to patient images, highlighting the
difficulties to go from the simple model of the phantoms to the much more complex patient
images. Figure 5.18 summarizes all the parameters defined to build robust radiomic models in
the context of a multicentric dataset. The remaining point that needs to be further investigated
concerns the harmonization of radiomic features of the test set, where no conventional method
can be used due to its small size. An original strategy will be developed in Chapter 6 to address
this issue.
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(a) Healthy breast tissue: BC image (b) Tumor: BC image

(c) Healthy breast tissue: HM-BC image (d) Tumor: HM-BC image

(e) Healthy breast tissue: Z-score BC image (f) Tumor: Z-score BC image
Figure 5.16: Intensity histograms of healthy breast and tumor tissue from raw (1st row), bias-corrected(BC) (2nd row) and histogram-matched (HM) (3rd row) or Z-score normalized BC (4th row) T1-DCEimages of the training set. RED color is used for patients scanned on the GE machine; BLUE color forthose imaged on the Siemens machine with the Sentinelle coil and GREEN color when the 18-channelcoil was used.
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(a) Healthy breast tissue: BC image (b) Tumor: BC image

(c) Healthy breast tissue: HM-BC image (d) Tumor: HM-BC image

(e) Healthy breast tissue: Z-score BC image (f) Tumor: Z-score BC image
Figure 5.17: Intensity histograms of healthy breast and tumor tissue from raw (1st row), bias-corrected (BC) (2nd row) and histogram-matched (HM) (3rd row) or Z-score normalized BC (4th row)
fat-saturated T2 images of the training set. RED color is used for patients scanned on the GE ma-chine; BLUE color for those imaged on the Siemensmachine with the Sentinelle coil and GREEN colorwhen the 18-channel coil was used.
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Figure 5.18: Summary of the different steps of the radiomic pipeline on the training set.
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Chapter 6

Radiomic analyses to predict
pCR to NAC
Preface
Following the pipeline defined in Chapter 5, this chapter will present first radiomic analyses
based on pre-treatment images to predict pCR to NAC. The importance of delineating precisely
the margins of the tumor to create the volume of interest from which to extract features,
will be explored. An original harmonization method to tackle the “scanner effect” in small
multicentric dataset when conventional harmonization methods like ComBat cannot be applied
will be developed. Main results will be presented in the form of an article, in process of
submission, which is an extension of the long abstract published in The proceedings of IEEE
EMBC [25]. This chapter will use some tables and reintroduce the cohort previously defined
in Chapter 3. The second part of the chapter present preliminary results on molecular subtype-
specific models.

6.1 Introduction
The review of the literature in Chapter 2 showed a strong and growing interest in the radiomic
field for the pre-treatment or early prediction of the response to NAC in breast cancer. Most
predictive models used clinical and biological data, BI-RADS features, kinetic parameters,
shape descriptors or first-order/texture features extracted from the tumor core and possibly
their margins. Useful information in MR breast images to predict pCR to NAC must be better
understood. Some studies looked into the potential use of peritumoral regions [131, 145, 187].
Other works have suggested that it is in a finer and multiresolution analysis of the tumor core
heterogeneity, through the use of wavelet filtering for instance, that lies the information to
predict pCR [146, 185]. Fractal-based texture analysis to explore structure irregularities in the
tumor texture has also been investigated [185].

If many articles focused on the tumor core and the analysis of its peripheral regions, there
has however never been an interest in establishing clearly the contribution of tumor hetero-
geneity and its shape and margins. The study of the tumor shape and margins often remains
restricted to conventional shape parameters (Table 2.1) or qualitative BI-RADS descriptors.
The chapter will thus delve into this issue. Contradictory findings like the interest of multi-
parametric signature over single sequence models, the relevance of molecular subtype-specific
models and the exportability of radiomic models will also be investigated.
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6.2 Article - Saint Martin et al., to be submitted

Multicentric export of MRI-based
radiomic signatures to predict response
to neoadjuvant chemotherapy in breast
cancer.
IN PREPARATION FOR SUBMISSION

Marie-Judith Saint Martin1, Frédérique Frouin1, Irène Buvat1, Pia Akl2, Caroline Malhaire1,3

and Fanny Orlhac1

1 U1288-LITO, Inserm, Centre de Recherche de l’Institut Curie, Université Paris-Saclay, Orsay,
France
2 Department of Radiology, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Lyon, France
3 Department of Radiology, Ensemble Hospitalier de l’Institut Curie, Paris, France

Abstract
Background: MRI-based radiomic studies reported promising results to predict the response
to neoadjuvant chemotherapy (NAC) in breast cancer but model evaluation on independent
multicentric test sets is less documented. Besides, relevant information required for prediction
(tumor shape, margins, intensity, or textural heterogeneity) is understudied.
Purpose: The aim of this study is to identify relevant tumor patterns to predict the response
to NAC and to assess model transferability on an independent multicentric test set.
Materials and methods: In this retrospective study, fat-saturated T2 and T1-weighted
contrast-enhanced pre-treatment MR images of 136 women treated with NAC between 2016
and 2020 at Institut Curie, were analyzed. Features extracted from four volumes of interest
(VOIs) per patient, (tumors, bounding box surrounding tumors, bounding box on binarized
tumor images, constant box inside tumors) were combined in fifteen experiments involving
one to four VOIs and repeated using either T1 or T2 images only and then both modalities.
Models were evaluated using leave-one-out cross-validation on a training set of 103 patients,
acquired with three MR devices, and tested on an independent multicentric test set of 33
patients. An original feature harmonization strategy involving the projection of test patients
to one of the three training imaging devices was developed.
Results: Among the 103 (33) patients (mean age 48 years ± 11 [SD]) in the training (test)
sets, 49 (15) achieved pathological complete response. Models built with features extracted
from binarized images of tumor lesions or from a combination of features from several VOIs,
including precise delineation of tumors, yielded better performances than the model using only
the standard tumor segmentation on the training and test set (p < .001). Harmonizing test
feature values provide better or equivalent performances in most experiments (37/45).
Conclusion: Performances calculated with the Youden Index to predict the response to NAC
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on a multicentric test set were improved by combining features from several VOIs including
binarized images of tumor lesions and by using a harmonizing strategy.

Key words: Breast cancer, radiomics, MRI, NAC, pCR

Abbreviations:
NAC: Neoadjuvant Chemotherapy
pCR: Pathological Complete Response
VOI: volume of interest
T: Tumor
CB: Constant box
BB: Bounding box
bBB: Binary bounding box
LOOCV: Leave-one-out cross-validation
IQR: interquartile range

Introduction
Women with locally advanced breast cancer frequently receive neoadjuvant chemotherapy
(NAC) before surgery. NAC aims to reduce the size of tumors to facilitate surgeries and en-
hances breast conservation rates [57]. Achieving pathological complete response (pCR) is also
associated with better overall survival [60]. Predicting beforehand the response, which depends
on multiple factors such as molecular subtype [248], would considerably improve patient care in
offering women a tailored approach to their treatment. Numerous radiomic studies attempted
to predict pCR using baseline MR images acquired before the beginning of NAC [222, 249].
These works built predictive models based on shape, intensity and textural features [149, 189]
extracted from volumes of interest (VOIs) drawn in images, corresponding usually to the tumor
core [196], sometimes extended to peritumoral regions [144, 187]. The specific influence of
the extent, shape, and margins of the VOIs on the textural and intensity information captured
by features, were however never addressed. It would therefore be of interest to unravel the dif-
ferent sources of information and evaluate their contribution in predictive models. Segmenting
tumors is a time-consuming and radiologist-dependent task, often hampering the constitution
of large radiomic cohorts needed to gather a substantial variability of patients. For instance,
if the textural information captured by bounding boxes around tumors, like experimented in
PET [250], was sufficient to predict pCR, it could considerably facilitate radiomic studies.

Radiomic studies also suffer from the impact of the “scanner effect” [251], i.e. the influence
of image acquisition and reconstruction parameters on radiomic feature values. Thus, perfor-
mances of radiomic models trained on data acquired with one imaging device are significantly
degraded when applied to data acquired with another device [18]. Many radiomic studies
therefore report results using cross-validation on the training set [13, 146, 149, 170, 184, 192,
196] or test sets gathering patients imaged on the same scanners as used during training [15,
144, 150, 185, 189, 190, 193, 252]. Though corrective methods, like the ComBat method
[251], have proven their efficiency in reducing the scanner effect, they require a substantial
number of patients (∼20-30) from each scanner to be efficient [11]. This number proves to be
difficult to be reached in multicentric datasets. The present study aims to identify the distinct
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sources of relevant information to predict pCR using radiomic analyses based on four types of
3D VOIs, capturing different tumor characteristics quantifiable from medical imaging. A strat-
egy to realign feature values extracted from multiple scanners is developed and transferability
of the predictive models is assessed on a multicentric independent test set.

Methods
Study sample

This retrospective study, approved by our institutional review board (IRB number OBS180204),
included all women with breast cancer consecutively treated with NAC in our institute between
2016 and 2020, who underwent initial breast MRI before the beginning of treatment. The
requirement to obtain informed consent was waived. Based on 156 patients, discarding patients
with missing modalities, 136 datasets were collected (Figure 6.1). In addition, clinical and
biological information was reported (Table 6.1).

Figure 6.1: Flowchart of study inclusion. NAC= Neoadjuvant chemotherapy. DCE= Dynamic contrast-enhanced.

Imaging

Patients were imaged in one of the three imaging devices of the institute (n=110) or in other
imaging centers with different scanners and coils (n=26) (Table 6.2). The training set gathered
103 women imaged at the institute while the test set was made of all patients imaged outside
the institute (n=26) and 7 patients imaged at the institute and included later in the study.
Detailed image parameter acquisitions are available in supplemental Table 6.5. Images were
corrected for bias field gain using the N4 algorithm tuned specifically for the breast area [19].

128



CHAPTER 6. RADIOMIC ANALYSES TO PREDICT PCR TO NAC
Table 6.1: Clinical & biological data.

Label Levels Training (n=103) Testing (n=33) Total p

Age (y) Median (IQR) 48.0 (39.5 to 56.5) 46.0 (39.0 to 52.0) 47.5 (39.0 to 56.2) 0.594
BMI (kg.m−2) Median (IQR) 23.4 (21.4 to 25.7) 23.4 (21.5 to 27.5) 23.4 (21.5 to 26.1) 0.359
Menopause Postmenopausal 42 (40.8) 11 (33.3) 53 (39.0) 0.577

Premenopausal 61 (59.2) 22 (66.7) 83 (61.0)
T stage 0/I/II 91 (88.3) 24 (72.7) 115 (84.6) 0.059

III/IV 12 (11.7) 9 (27.3) 21 (15.4)
N stage 0 58 (56.3) 16 (48.5) 74 (54.4 ) 0.559

I/II 45 (43.7) 17 (51.5) 62 (45.6)
M stage 0 102 (99.0) 33 (100.0) 135 (99.3) 1.000

I 1 (1.0) 0 (0.0) 1 (0.7)
Histological Type Ductal NOS 99 (96.1) 32 (97.0) 131 (96.3) 0.757

Lobular 1 (1.0) 0 (0.0) 1 (0.7)
Mixt 2 (1.9) 0 (0.0) 2 (1.5)
Other 1 (1.0) 1 (3.0) 2 (1.5)

Molecular subtype HER2+ 12 (11.7) 7 (21.2) 19 (14.0) 0.587
Luminal B/HER2- 30 (29.1) 9 (27.3) 39 (28.7)
Luminal B/HER2+ 13 (12.6) 3 (9.1) 16 (11.8)

TN 48 (46.6) 14 (42.4) 62 (45.6)
Grade 2 34 (33.0) 8 (24.2) 42 (30.9) 0.464

3 69 (67.0) 25 (75.8) 94 (69.1)
Ki67 (%) Median (IQR) 60.0 (32.5 to 75.0) 40.0 (30.0 to 60.0) 50.0 (30.0 to 75.0) 0.231
TILFactor High 44 (42.7) 18 (54.5) 62 (45.6) 0.324

Low 59 (57.3) 15 (45.5) 74 (54.4)
Response to NAC non pCR (npCR) 54 (52.4) 18 (54.5) 72 (52.9) 0.991

pCR 49 (47.6) 18 (54.5) 64 (47.1)
Patients and tumors characteristics in training and test sets. Continuous variables are representedby their median and interquartile range (IQR). Wilcoxon rank sum test and Pearson’s Chi-square testwere performed respectively for continuous and categorical variables between training and test sets.In circumstances where Chi-square test could not be used due to too few observations, Fisher’s exacttest was carried out.
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Table 6.2: Imaging devices of training and test sets.

Imaging centers Manufacturers Devices Magnetic fieldstrength (T) Coils Training Testing
Institut Curie GE Optima MR450w 1.5 8-channel coil 25 3
Institut Curie Siemens MAGNETOM Aera 1.5 18-channel coil 19 0
Institut Curie Siemens MAGNETOM Aera 1.5 Sentinelle (16-channel) coil 59 4
Other center Siemens MAGNETOM Aera 1.5 16-channel coil 0 4
Other center Siemens MAGNETOM Aera 1.5 18-channel coil 0 3
Other center Siemens MAGNETOM Aera 1.5 Spine 32-channel coil 0 1
Other center Siemens MAGNETOM Amira 1.5 18-channel coil 0 1
Other center Siemens MAGNETOM Avanto eco 1.5 Breast matrix coil 0 1
Other center Siemens MAGNETOM Avanto eco 1.5 16-Channel AI Breast coil 0 1
Other center Siemens MAGNETOM ESSENZA 1.5 Breast matrix coil 0 1
Other center GE Discovery MR 750 3 HD Breast coil 0 1
Other center GE Optima MR360 1.5 HD Breast coil 0 4
Other center GE Optima MR450w 1.5 HD Breast coil 0 2
Other center GE Signa Artist 1.5 HD Breast coil 0 3
Other center GE Signa HDxt 1.5 HD Breast coil 0 2
Other center GE Signa Voyager 1.5 HD Breast coil 0 2

Training: Number of patients included in training set; Testing: Number of patients included in testset; Other centers: imaging centers other than Institut Curie.

Definition of the VOIs

Two radiologists (with 14 and 3 years of experiences in breast MRI) equally and independently
segmented the lesions in 3D on the first T1-weighted DCE image after gadolinium-based con-
trast media injection using the LIFEx software [235] (version 6.0, www.lifexsoft.org). Thirty
lesions in the training set were segmented by both radiologists to assess segmentation vari-
abilities. Segmentations were resampled to fit onto the fat-saturated T2 images. To get a
more precise delineation of the tumor borders, segmentations were refined on the T1-weighted
DCE image using a threshold equal to 40% of the maximum intensity inside tumor (tDCE).
This segmentation with its 3 declinations: DCE, tDCE and T2 (Supplemental Figure 6.9)
constitutes the first type of VOI. Denoted “T”, it is the standard VOI used in the majority
of radiomic studies (Figure 6.2a). Features from this VOI capture tumor heterogeneity and
intensity variations but are influenced by shape and border outlines of the lesions. To disso-
ciate the different sources of information involved in the prediction, three other VOIs were
automatically defined:

• The minimal 3D bounding box around the tumor, on which was added a one-voxel
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border, formed a second VOI (“BB” for bounding box). Its features transcribed the
heterogeneity of the tumoral and peritumoral regions and can be influenced to a lesser
extent by the volumes of the boxes (Figure 6.2b).

• The third VOI (“CB” for constant box) is a 12-pixel wide cube of fixed size across the
database. It was chosen so that the cubes could fit in the lesions and positioned at
their center of mass. It focuses on the tumor heterogeneity and intensity and brings no
information about shape or volume (Figure 6.2c).

• The last VOI (“bBB” for binary bounding box) has the same shape as the bounding box
but is applied on binarized DCE and T2 images where tumor voxels value is 2 while the
rest of the image is set to 1. It only apprehends shape and margins of the lesion (Figure
6.2d).

(a) Tumor (T) (b) Bounding box (BB)

(c) Constant box (CB) (d) Binary bounding box (bBB)
Figure 6.2: Coronal (Cor), sagittal (Sag) and axial (Ax) views of the 4 VOIs on the first dynamic contrast-enhanced (DCE) image after gadolinium-based contrast media injection of a 44-year-old woman withbreast cancer. (a) Full tumor lesion VOI (abbreviated T); (b) Bounding box VOI surrounding the tumor(abbreviated BB); (c) Constant Box VOI of fixed size centered inside the tumor (abbreviated CB); (d)Binary bounding box (abbreviated bBB).
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Prediction Pipeline

To investigate the opportunity of combining features from different VOIs, 15 experiments
were defined, carrying out all possible combinations using features extracted from either one
(T, BB, CB or bBB), two, three or all the four VOIs. Though multiparametric signatures
based on several MR sequences have achieved good results [15, 134], using only one sequence
sometimes proved to yield better results [13]. The 15 experiments were therefore repeated
three times: the first round of experiments used only T1-weighted DCE images (DCE and
tDCE segmentations), the second one only fat-saturated T2 images (T2 segmentations) and
the last one both modalities (DCE, tDCE, T2). For every experiment, the feature selection
process and model building followed the pipeline described in Figure 6.3.

Figure 6.3: Diagram summarizing the pre-processing and selection process on the training set to buildpredictive models, tested after a preprocessing step on the original and harmonized test set. ICC= In-traclass correlation coefficient; rSpearman= Spearman’s rank correlation coefficient; AUClowerBound= lower bound of the area under the receiver operating characteristic curve. VOIs= volumes of inter-est.
Radiomic features were computed with the IBSI-compliant [143] Pyradiomics software (v

3.0.1) [152] on the native and wavelet-filtered images. The same set of 107 features (93
texture features and 14 shape features) was extracted from each declination of each VOI for
each image. In order to differentiate features during the selection process, a suffix was added
to each feature to identify the VOI it was extracted from (T, BB, CB, bBB) and the modality
of the images (T2, tDCE and DCE forms).
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Harmonization of the test set
Due to the many imaging devices used in the test set (Table 6.2) and the low number of
patients imaged on each of them, the ComBat harmonization method could not be directly
used. Therefore, an original harmonization strategy of the feature values of the test set,
involving the projection of test patients onto one of the three training imaging devices was
developed.

In the tumor area, the “scanner effect” is mixed with the disruptions due to the tumor signal.
In healthy tissue, the specific impact of the “scanner effect” can be more clearly assessed. A
box of constant dimensions (12-pixel wide cube) was therefore placed in the healthy breast
tissue of normalized bias-corrected T2 and T1-DCE images of every patient from training and
test sets. Radiomic features were extracted from this box using absolute bounds with fixed
bin size. As parameters of the T1-DCE and T2 sequences of imaging devices of the test sets
may be closer to different training imaging devices, the harmonization strategy was carried out
separately for the two sequences.

Using training set patients only, features that were heavily impacted by the “scanner effect”
were selected (Kruskal-Wallis p < 10−14 for T1-DCE features, and p < 10−8 for T2 features).
17 T1-DCE and 10 T2 features were selected and normalized. Using the selected features,
the centroids of the three clusters formed by patients of the three training imaging devices
were calculated. Test patients were then assigned to the cluster whose centroid they were
the closest to using Euclidean distance and the previously selected features. Every feature of
a test patient extracted from a tumor VOI could then be corrected using the ComBat affine
transformation determined during the training phase for this feature for its assigned scanner.

Figure 6.4 illustrates in 2D with principal component analysis (PCA) the projection process
for the T2 sequence. PCA visualization shows the clustering of patients according to their
scanners. Table 6.3 and Table 6.4 reports the projection results for T1-DCE and T2 sequences.
As 7 out of the 33 test patients were imaged on one of the training imaging devices (4 on the
Siemens with Sentinelle coil, 3 with the GE machine), it was possible to assess the projection
method based on their respective assigned scanners. For both modalities, 5 out of 7 cases
were projected accurately while the two other patients were projected on the Siemens device
(with 18-channel coil).

Table 6.3: Projection of test set patients on closest scanners for T1-DCE sequence.
OriginalScanner

Projection Siemens(Sentinelle coil) Siemens(18-channel coil) GE
Siemens (Sentinelle coil) 3 1 0GE 0 1 2Other centers 13 8 5

Table 6.4: Projection of test set patients on closest scanners for T2 sequence.
OriginalScanner

Projection Siemens(Sentinelle coil) Siemens(18-channel coil) GE
Siemens (Sentinelle coil) 4 0 0GE 0 2 1Other centers 5 5 16
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(a) Patients of training and test sets colored according to their original scanner.

(b) Patients of training and test sets colored according to their projected scanner for the test set and originalscanner for the training set.
Figure 6.4: Principal component analysis (PCA) representation of patients from training and test setsusing T2 features impacted by the “scanner effect”. Each dot represents a patient and is colored: (a)by the original scanner on which patients were imaged; (b) by their projected training scanner fortest patients and by their original scanner for training patients.

Statistical analysis

Statistical analyses were performed in R (version 4.1). Performances of random forest mod-
els on the training set were evaluated with the median and interquartile range (IQR) of
the Youden index (Y=sensitivity+specificity-1) using 100 repetitions of leave-one-out cross-
validation (LOOCV). Performances on the test set were obtained using 100 random forest
models made of the five features selected during the training process (Figure 6.3) and tested
on the original and harmonized feature values issued from the test set. Kruskal-Wallis tests
were carried out to compare the performances of the 15 experiments of each round globally
then Dunn’s tests were performed to make 2-by-2 comparisons.
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Results
Patient characteristic

A total of 136 patients with mean age 48 ± 11 years were included (Figure 6.1). The tumor
response was assessed on surgical specimens after NAC using the Residual Cancer Burden
(RCB) score. The training and test set presented both a relatively balanced proportion of
responders and non-responders to the treatment (Table 6.1) and included patients diagnosed
with tumors from different molecular subtypes.

Training results

When using T1-weighted DCE images only (Figure 6.5a), best results were obtained with the
“bBB & T” experiment (median Youden index, 0.52, [IQR, 0.50, 0.54]) while the “T & CB &
bBB” experiment achieved best results when using only T2 images (0.47, [0.43, 0.49], Figure
6.5b) or both modalities (0.50, [0.46, 0.52], Figure 6.5c). Supplemental Figure 6.10 ranks
all the 45 training experiments according to the median of their Youden index distributions.
Features selected in the best experiments are reported in Supplemental Table 6.5.

As there was no constraint on the selection algorithm to select features from each VOI or
modality the experiment uses, several experiments can select the same set of features like the
experiments “All (T2)” and “T & CB & bBB (T2)” or the experiments “All (DCE & T2)” and
“T & CB & bBB (DCE & T2)”.

Kruskal-Wallis test revealed that the medians of Youden index distributions of the exper-
iments were not equal (p < 10−12). Subsequent analysis of Dunn’s test (Figure 6.7) showed
that there was no significant difference between the best experiments of each round (“bBB & T
(DCE)”,“T & CB & bBB (DCE & T2)”, “T & CB & bBB (T2)”) but that they all significantly
outperformed experiments based on the tumor segmentation alone (p < 0.05, Figure 6.7d).
Statistical results in Figure 6.7d were calculated using Dunn’s test on the 45 experiments
together but for clarity’s sake, only partial results are depicted in the figure.

Testing results

Harmonization of the test set following the new projection approach led to better or equivalent
results (Wilcoxon signed rank test between results before and after harmonisation p < 0.05)
in 13/15 experiments when using only T1-DCE images (Figure 6.6a), in 12/15 with both
modalities (Figure 6.6c) and in 12/15 with T2 images (Figure 6.6b).

Performances on the test set were disparate amongst experiments, going from negative
Youden index values to a median of 0.44, IQR [0.39, 0.50] for the best experiment “bBB” in
T1-DCE after harmonization.

Similarly to the training experiments, results of testing experiments on the harmonized
test set were significantly different in each round (Kruskal-Wallis (p < 10−12). Dunn’s tests
comparing the best results across modalities with the tumor experiments (T (DCE), T (T2),
T (DCE & T2)) show that they achieved significantly better performances (p < 0.05, Figure
6.8).
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(a) Using T1-weighted DCE images

(b) Using fat-saturated T2-weighted images

(c) Using both fat-saturated T2 & T1-weighted DCE images
Figure 6.5: Training results ranked according to the median value of the Youden index using LOOCVwith segmentations based on (a) T1-DCE images; (b) fat-saturated T2 images; (c) images from bothmodalities. Dashed lines represent the median Youden index value of the best experiment: “bBB & T”on T1-DCE images. 136
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(a) Using T1-weighted DCE images

(b) Using fat-saturated T2-weighted images

(c) Using both fat-saturated T2 & T1-weighted DCE images
Figure 6.6: Test results ranked according to the median value of the Youden index obtained using 100random forest models with segmentations based on (a) T1-DCE images; (b) fat-saturated T2 images;
(c) images from both modalities. 137
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(a) Results using T1-weighted DCE images (b) Results using fat-saturated T2-weighted images

(c) Results using both T2 & T1-weighted DCE images (d) Comparing best results with Tumor experiments

Figure 6.7: Statistical analysis of training results using Dunn’s test. (a) comparisons of results usingonly T1-DCE images; (b) comparisons of results using only T2 images; (c) comparisons of results usingT2 & T1-DCE images, (d) comparisons of best results across modalities and tumor experiments (T DCE,T T2, T DCE & T2).
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Figure 6.8: Statistical analysis of test results using Dunn’s test. The six best results overall on the testsets covering the three cases (DCE, T2 and DCE & T2) were compared with the tumor experiments (T(DCE), T (T2), T (DCE & T2)). Like in Figure 6.7d, Dunn’s tests were performed on the 45 experimentsbut for clarity’s sake, only partial results are depicted.

Discussion
This study investigated which tumor patterns quantified from MR images contribute the
most to radiomic model prediction of pathological complete response (pCR) to neoadjuvant
chemotherapy in breast cancer. It also aimed to assess model transferability on an independent
and multicentric test set with and without a harmonization strategy of radiomic feature values.

Based on our experiments involving four types of volumes of interest (VOIs) apprehending
tumors in diverse ways, we found that significantly better performances than those of the
models using the standard tumor delineation alone (“T”), could be achieved. The constant box
(“CB”) experiment that only assesses tumor heterogeneity outperformed the tumor models in
the DCE and DCE & T2 training results. Similarly, the binary bounding box (“bBB”) that relies
on shape and borders information, also surpassed in these conditions the tumor experiments
(Figure 6.5a,6.5c). On the other hand, the bounding box (“BB”) experiments always trailed
behind. However, results from the training set suggest that the combination of features from
different VOIs achieved the best results. In the round of experiments based on T2 or DCE &T2
images, the combination of features from three VOIs (T, bBB and CB) topped results. These
findings suggest that complex shape or border information and textural heterogeneity could
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both present interest to predict pCR, relegating the idea of using only constant or bounding
boxes, and that information found in the different VOIs is complementary and not redundant.

Results of the test set showed a marked drop in performances in models built on raw
features. The designed harmonization strategy improved predictions in 73% (33/45) and gave
equivalent performances in 9% (4/45) of the cases. Best results of the test set were obtained
after harmonization and were globally consistent with the training results in the DCE and DCE
& T2 rounds of experiments. In the T2 round however, best training experiments achieved
poor performances and the harmonization strategy did not work as well. In all rounds, the
performance of the “bBB” was particularly good and consistent with training Youden indexes.
The “bBB” captures the information found in the shape and margins of tumor lesions beyond
what traditional shape parameters calculated on the standard tumor VOI in Pyradiomics, such
as volume, elongation, or sphericity, could apprehend. Unlike features extracted from the T
VOI, features from the bBB, achieving already relatively good performances on the test set
before harmonization, seemed also more robust to the scanner effect. This is quite logical
since the binarization process reduced its dependence on the intensity values affected by the
scanner effect. The analysis of the test set showed that the best performances were obtained
by combining features from several VOIs or using the “bBB” experiment and that they always
surpassed tumor model results (T (DCE), T (T2), T (DCE & T2)). No definitive conclusion
on the benefit of multiparametric signature over single-sequence models could be reached but
T1-DCE images used alone bring the best performances for the test set.

Drops in model performances on the multicentric test set are in line with recent studies
[18, 251], highlighting the core problem of radiomic model transferability in the context of the
scanner effect. Da-ano et al. [253] proposed in the similar circumstances of an heterogeneous
and independent test set, to gather test patients into groups using hierarchical clustering and
to consider these groups as new imaging devices to apply the ComBat algorithm. However,
due to the much smaller dataset available in our study (33 patients versus 98 patients in Da-
ano et al.), separating the test set in several groups would have created too small batches to
properly apply ComBat. We opted instead for an original approach that consists in identifying
the device of the training set closest to each patient in the test set to apply the most suitable
ComBat transformation. Unlike Da-ano et al., the projection of patients was carried out using
radiomic features calculated in a VOI located in the healthy contralateral breast of patients
instead of using features from tumor lesions. Healthy breast tissue should indeed give a clearer
outlook of the scanner effect, as it is not disturbed by tumor signals.

It is difficult to compare performances between already published studies due the variability
of databases, methods and the number of selected features for instance, but our results were
comparatively superior to those obtained by Granzier et al. [18] when using a multi-scanner
test set (slightly lower median sensitivity 67% (10/15) versus 73% (36/49), and improved
specificity 83% (15/18) versus 36% (43/119) when comparing the “bBB (DCE)” experiment
to results on the ZMC cohort in [18]). Though the test set used by Granzier et al. was larger
than ours, it was less diverse (three imaging devices from a single medical center versus more
than 15 devices from multiple medical centers).
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Our study nevertheless suffers from the small size of our dataset and especially our test

set. The distribution of molecular subtypes in the cohort also made it difficult to build molec-
ular subtype-specific models as in [15, 144, 167, 168] for every subtype while preserving an
independent test set. Our dataset is however much closer to what could be observed in routine
clinical practice, where the subtype is not always known at the time of baseline MRI.

Conclusion
In conclusion, models built with features extracted from binarized images of tumor lesions
or from a combination of features from several VOIs automatically derived from the tumor
segmentation outperformed models relying solely on the standard tumor segmentation to pre-
dict response to neoadjuvant chemotherapy. Our new harmonization strategy of the test set
feature values improved in most experiments the models transferability on an independent
multicentric test set.

Supplemental data

Figure 6.9: Illustrations of (a) the full segmentation delineated by radiologists on first T1-weightedDCE image after contrast injection; (b) the thresholded segmentation on DCE image; (c) the full seg-mentation on a fat-saturated T2 image.
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Table 6.5: Features selected in models of interest and associated Youden index on test set.
Experiments Features Youden index(media, [IQR])on test set

BB & bBB (DCE) * original glszm SizeZoneNonUniformityNormalized (tDCE bBB)original glszm SmallAreaLowGrayLevelEmphasis (tDCE bBB)waveletHHH firstorder Maximum (tDCE bBB)waveletHHL firstorder Minimum ( DCE bBB)waveletHHL firstorder Range (DCE bBB)

0.44, [0.43, 0.50]

bBB & T (DCE) original glszm SizeZoneNonUniformityNormalized (tDCE bBB)original glszm SmallAreaLowGrayLevelEmphasis (tDCE bBB)waveletHHH firstorder Maximum (tDCE bBB)waveletHLL firstorder Range (DCE bBB)waveletLLH glszm ZoneEntropy (tDCE T)

0.39, [0.33, 0.44]

bBB (T2) waveletHHH firstorder Maximum (T2 bBB)waveletHLH firstorder Minimum (T2 bBB)waveletHLH firstorder Range (T2 bBB)waveletLLH glszm SmallAreaEmphasis (T2 bBB)original glszm HighGrayLevelZoneEmphasis (T2 bBB)

0.34, [0.30, 0.41]

T & BB & bBB (DCE) original glszm SizeZoneNonUniformityNormalized (tDCE bBB)original glszm SmallAreaLowGrayLevelEmphasis (tDCE bBB)waveletHHH firstorder Maximum (tDCE bBB)waveletHHL firstorder Range (DCE bBB)waveletLLH glszm ZoneEntropy (tDCE T)

0.34, [0.29, 0.40]

T & CB & bBB (DCE & T2)** original glszm SizeZoneNonUniformityNormalized (tDCE bBB)original glszm SmallAreaLowGrayLevelEmphasis (tDCE bBB)waveletHHH firstorder Maximum ( tDCE bBB)waveletHHH firstorder Mean (T2 T)waveletHLL glszm LargeAreaHighGrayLevelEmphasis (T2 CB)

0.28, [0.22, 0.33]

T (DCE & T2) waveletLHH glcm ClusterShade (tDCE T)waveletLLL firstorder 10Percentile (T2 T)waveletLLH glszm ZoneEntropy (tDCE T)waveletLHH glcm MaximumProbability (tDCE T)waveletHHH glrlm LongRunLowGrayLevelEmphasis (tDCE T)

0.16, [0.10, 0.18]

T (T2) original gldm DependenceEntropy (T)waveletLLL firstorder 10Percentile (T)waveletLLL gldm LargeDependenceHighGrayLevelEmphasis (T)waveletLLH glcm Imc1 (T)waveletLLH firstorder Median (T)

0.10, [0.03, 0.12]

T (DCE) waveletLHH glcm ClusterShade (tDCE T)waveletLLH glszm ZoneEntropy (tDCE T)waveletLHH glcm MaximumProbability (tDCE T)waveletLLL glszm ZoneEntropy (T)waveletHLH firstorder Minimum (tDCE T)

0.03, [-0.02, 0.09]

* “BB & bBB (DCE)” and “bBB (DCE)” selected the same set of features. ** “T & CB & bBB (DCE & T2)”and “all (DCE & T2)” selected the same set of features.
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Figure 6.10: All 45 training experiments ranked according to the median of their Youden indexes.Tumor experiments (T (DCE), T (T2), T (DCE & T2)) are in boxes to spot them easily.
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Figure 6.11: All 45 testing experiments ranked according to the median of their Youden indexes. Tu-mor experiments (T (DCE), T (T2), T (DCE & T2)) are in boxes to spot them easily.
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6.3 Molecular subtype-specific models

6.3.1 Introduction
As described in Chapter 2, the different molecular subtypes of breast cancer have varied
characteristics, prognoses and responses to treatments. NAC has become the standard of care
for Luminal B, HER2-enriched and triple-negative cancers. Though some radiomic studies
[14, 16] included Luminal A tumors, it is a rarer occurrence as they have very low chances of
achieving pCR (< 7.5%) [6].

Some studies have designed molecular subtype-specific models to create more homogeneous
databases with the hope of revealing effects that would exist more strongly in a certain subtype
and that would be swamped when mixing all tumors together. Improved performances were
reported in [134]. Most of the time, studies focused on HER2-enriched specific models [187,
188, 206] or models designed for TN tumors [15, 167, 198]. HER2-enriched tumors follow a
particular course of treatment including Herceptin on top of the standard Anthracycle/Taxane
regimen, which explains the constitution of a distinct database for this subtype. Similarly, TN
tumors are extremely aggressive with the worst prognosis and often considered separately from
other subtypes.

Nevertheless, to refine the dataset while keeping as many patients as possible to preserve
statistical power, common division of TN/HER2+ (TN, HER2+, Luminal B/HER2+) [144,
150] versus HR+/HER2- (Luminal A, Luminal B/HER2-) [134, 144] tumors has been exper-
imented on. Compared with HR+/HER2- tumors, TN/HER2+ patients have higher chances
of achieving pCR and a better overall survival associated with it [150].

6.3.2 Methods
Considering the molecular subtype composition of our database, a single model designed for
TN/HER2+ tumors was built (Table 6.6). The training set collected 73 patients (42 pCR/31
npCR) and the test set 24 patients (14 pCR/10 npCR). To keep up with our rule of thumb of
one feature for every 10 pCR patients in the training set, previously detailed in Chapter 3, the
number of features was set to four.

The same VOIs and prediction pipeline including the harmonization strategy for the test set
defined in Figure 6.3 and previous sections were used. Random forest models were however
tuned to take into account the slight class imbalance and they were evaluated with AUC
and 95% CI. AUCs were used to facilitate comparisons with performances from the literature
reported in Table 2.3. Three rounds of experiments (DCE, T2, DCE & T2) were carried out
like in the previous section.

Molecular subtype Training set (n=103) Test set (n=33)
TN 48 14HER2+-enriched 12 7Luminal B/HER2+ 13 3Luminal B/HER2- 30 9

Table 6.6: Distribution ofmolecular subtypes between the training and test sets including all subtypes.
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6.3.3 Results
Among the three rounds of experiments (T2, DCE, DCE & T2), best results on the training set
were obtained when using both T1-DCE and T2 sequences. AUCs of DCE & T2 experiments
are reported in Figure 6.12. Best models performances are summarized in Table 6.7 to which
is added the performances of the tumor (T) experiment and the best model for all subtypes
obtained in Section 6.2.

Table 6.7: Training and test performances of radiomic models of interest.
TN/HER2+ Models AUC, [95%CI](training) AUC, [95%CI](testing)

CB & BB 0.87, [0.79, 0.95] 0.66, [0.43, 0.90]CB 0.86, [0.78, 0.94] 0.68, [0.45, 0.91]T & CB & bBB 0.86, [0.78, 0.94] 0.76, [0.55, 0.96]BB & CB & bBB 0.86, [0.78, 0.94] 0.79, [0.60, 0.98]all 0.85, [0.76, 0.94] 0.77, [0.57,0.96]CB & bBB 0.85, [0.76, 0.94] 0.76, [0.55, 0.96]T 0.73, [0.62, 0.84] 0.51, [0.26, 0.70]
Best global model AUC, [95%CI](all subtypes training) AUC, [95%CI](all subtypes testing)
bBB & T (DCE) 0.80, [0.71, 0.89] 0.72, [0.53, 91]

6.3.4 Discussion
On the cohort restricted to the TN/HER2+ patients, several models (“CB & BB”, “CB”, “T
& CB & bBB”, “all”, “BB & CB & bBB”, “CB & bBB”) reported AUC values around 0.86
[0.78, 0.94] with no significant differences between them. Their respective results on the test
were spread inside the range [0.66, 0.79]. As observed in Section 6.2, better performances
on the training set were achieved by using a combination of features from different VOIs or
from another type of VOI (in this case, the constant box) than by using the standard tumor
segmentation (training AUC = 0.73, [0.62, 0.84]). On the test set, the best performances
were achieved in the model “BB & CB & bBB” (0.79, [0.60, 0.98]).

On the cohort gathering all molecular subtypes, presented in Section 6.2, the “bBB & T”
experiment achieved the best results on the training set. Using AUC metrics, “bBB & T”
reached on the training set an AUC = 0.80, [0.71, 0.89] and on the test set an AUC of 0.72
[0.53, 0.91]. Thus, there seems to be a slight trend in achieving higher performances with
subtype-specific models than with global signatures, as reported in [16, 134, 144], though no
significant statistical results could be obtained.

Comparing our performances with the literature remains tricky as when subsetting their
dataset, many studies drops the evaluation of the model on an independent test set in favor
of cross-validation on a new subtype-specific training set. The impact of the “scanner effect”
in our multicentric dataset must also not be forgotten. On a multi-scanner independent test
set, Cain et al. [150] reported an AUC=0.70 ± 0.06 for their TN/HER2+ model while

146



CHAPTER 6. RADIOMIC ANALYSES TO PREDICT PCR TO NAC
Braman et al. [144] achieved an AUC=0.83 ± 0.03 with CV on a 47-patient training set. The
performances obtained in our experiments are thus in par with the literature.

Our experiments are however limited by the small size of our dataset and especially of the
test set (n=24). HR+/HER2- specific models should also be tested while other divisions of
the subtypes could be investigated.

(a) Training

(b) Testing
Figure 6.12: Evaluation with AUC and 95% CI of radiomic-based models using T1-DCE & T2 featureson (a) training set; (b) test set.
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Conclusion
In this chapter, a large number of experiments were conducted to investigate which information
found in MR images could be relevant to predict pCR to NAC. Based on several types of VOIs
(tumor, bounding box surrounding tumors, bounding box on binarized tumor images, constant
box inside tumors), experiments highlighted that the information contained by the shape
and margins of the lesions, conveyed by performing advanced texture analysis on a binarized
version of the images, could be of great interest for the prediction. Results also suggested that
combining features from different VOIs could improve performances and outperform models
based on the standard tumor delineation.

The experiments also underscored the difficulty of exporting radiomic models to multi-
centric test sets in the context of the “scanner effect”. The original harmonization strategy
developed offered an encouraging boost to test performances but still needs to be tested in
other situations.

The experiments did not allow us to reach a definite opinion on the added benefit of
multiparametric signatures. A slight trend of achieving better results in subtype-specific models
than in models based on all subtypes has been reported but further investigation should be
carried out.

148



Chapter 7

Automatic segmentation

Preface
This chapter introduces a deep learning-based ensemble approach to segment breast tumors
on T1-weighted DCE images. Methods and results were reported in an article that was ac-
cepted for publication in European Radiology [26]. Some descriptions of the image acquisition
process and other information about parameters and radiologist inputs defined in Chapter 3
are repeated in the article.

This work was conducted in collaboration with Michel Koole and Masoomeh Rahimpour
from the Nuclear Medicine & Molecular Imaging team of KU Leuven university (Belgium).
My contribution to this work involved the design of the study, data management and pre-
processing, conducting the evaluation process and statistical analyses, researching the literature
and writing the manuscript.

7.1 Introduction
In handcrafted radiomic analyses, the segmentation of lesions is a crucial step. Segmenting
lesions in 3D is a time-consuming and tedious task for radiologists. As it requires the input of
specialists, it can constitute a bottleneck from a time, practical and sometimes even financial
point of view. Being able to segment automatically or semi-automatically the tumors would
considerably alleviate radiologists’ workload and facilitate the development of radiomic studies.
Besides, depending on their relative experience, training or simply their preferences, radiologists
will segment lesions differently. However, inter-radiologist variabilities in segmenting lesions
affect radiomic feature values.

The cohort introduced in this chapter does not completely match the 136-patient dataset
used to build the predictive models in Chapters 3 and 5. The modality requirements were
indeed different as the segmentation approach requires both the first post-contrast T1-DCE
image and its subtraction image but do not need T2 images. A few scans identified at a later
stage as mid-course MRI were also kept in the cohort for the segmentation task while they
were excluded from radiomic analyses. Furthermore, the split between training and test sets
was made differently than in Chapter 3, to keep the 30 tumors segmented by both radiologists
in the test set in order to compare results with inter-operator reproducibility.
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7.2 Article - Rahimpour, SaintMartin et al., EurRad, 2022.

Visual ensemble selection of deep
convolutional neural networks for 3D
segmentation of breast tumors on
dynamic contrast enhanced MRI.
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Abstract
Objectives: To develop a visual ensemble selection of deep convolutional neural networks
(CNN) for 3D segmentation of breast tumors using T1-weighted dynamic contrast enhanced
(T1-DCE) MRI.
Methods: Multi-center 3D T1-DCE MRI (n=141) were acquired for a cohort of patients
diagnosed with locally advanced or aggressive breast cancer. Tumor lesions of 111 scans were
equally divided between two radiologists and segmented for training. The additional 30 scans
were segmented independently by both radiologists for testing. Three 3D U-Net models were
trained using either post-contrast images, or a combination of post-contrast and subtraction
images fused either at the image or feature level. Segmentation accuracy was evaluated
quantitatively using the Dice Similarity Coefficient (DSC) and the Hausdorff distance (HD95)
and scored qualitatively by a radiologist as excellent, useful, helpful, or unacceptable. Based
on this score, a visual ensemble approach selecting the best segmentation among these three
models was proposed.
Results: Mean and standard deviation of DSC and HD95 between the two radiologists were
equal to 77.8±10.0% and 5.2±5.9 mm. Using the visual ensemble selection, a DSC and
HD95 equal to 78.1±16.2% and 14.1±40.8 mm was reached. The qualitative assessment was
excellent (resp. excellent or useful) in 50% (resp. 77%).
Conclusion: Using subtraction images in addition to post-contrast images provided comple-
mentary information for 3D segmentation of breast lesions by CNN. A visual ensemble selection
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allowing the radiologist to select the optimal segmentation obtained by the three 3D U-Net
models achieved comparable results to inter-radiologist agreement, yielding 77% segmented
volumes considered excellent or useful.

Key words: Breast Neoplasms; Magnetic Resonance Imaging; Neural Networks; Computer;
Image Processing; Computer-Assisted.

Key points:

• Deep convolutional neural networks were developed using T1-weighted post-contrast
and subtraction MRI to perform automated 3D segmentation of breast tumors.

• A visual ensemble selection allowing the radiologist to choose the best segmentation
among the three 3D U-Net models outperformed each of the three models.

• The visual ensemble selection provided clinically useful segmentations in 77% of cases,
potentially allowing for a valuable reduction of the manual 3D segmentation workload
for the radiologist and greatly facilitating quantitative studies on non-invasive biomarker
in breast MRI.

Abbreviations:
CNN: Convolutional Neural Network
DCE: Dynamic Contrast Enhanced
DSC : Dice Similarity Coefficient
HD95 : 95th percentile of Hausdorff Distance
ReLU: Rectified Linear Unit
SubT1: Subtraction image (first post-contrast DCE-MRI minus pre-contrast DCE-MRI)
T1c: first post-contrast DCE-MRI

Introduction
MR imaging, alongside mammography, is one of the standard imaging modalities for the detec-
tion, diagnosis, and treatment follow-up of breast cancer [254]. Dynamic contrast-enhanced
MRI (DCE-MRI) is commonly used in quantitative analysis such as radiomic studies [8] to
assess the malignancy of breast lesions, tumor extension, or predict their response to neoad-
juvant therapy [222]. The analysis requires a precise segmentation of the breast tumor, but
a manual delineation of lesion is time-consuming, often tedious and prone to inter-and intra-
radiologist variability [255]. It frequently constitutes a bottleneck for the quantitative analysis
of larger imaging studies using breast MRI. By providing an easy access to robust 3D quan-
titative features extracted from tumoral lesions, an automated 3D tumor segmentation would
considerably improve the identification of non-invasive biomarkers in breast MR imaging.
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The recent rise of deep learning methods has brought a renewed interest to tackle organ

and lesion segmentation [255]. Deep convolutional neural networks (CNNs) have established
themselves as state-of-the-art methods to segment medical images in 2D [256, 257] and in
3D [258, 259]. Many public databases and segmentation challenges are available online to
train and test CNN models. Although the Medical Segmentation Decathlon [260] intends
to build models that could segment multiple organs using different imaging modalities, most
challenges focus on specific lesions such as brain tumors with The Brain Tumor Segmentation
(BraTS) Challenge [261] or liver with the Liver Tumor Segmentation (LiTS) Challenge [262]
benchmarks. To the best of our knowledge, no challenge for breast tumor segmentation
using DCE-MRI has been reported. There are fewer studies using deep learning methods to
segment breast tumors using DCE-MRI than using mammograms, partly due to the availability
of very large mammography datasets [263]. Studies based on DCE-MRI used well established
CNN segmentation models [264–267] based on U-Net [256], DeepMedic [268] or SegNet [269]
architectures or less common models [270, 271]. Several studies [265, 267, 270, 272] took
advantage of all the information given by the DCE-MRI by using the different post-contrast or
subtraction (post-contrast minus the pre-contrast acquisition) images. For instance, Piantadosi
et al. [272] used images from three different time points (pre-contrast, first and last post-
contrast images). In the same way, Hirsch et al. [267] built several models taking different
post-contrast images as input while Zhang et al. [270] fed both post-contrast and subtraction
images as input to a hierarchical CNN

Though all these studies aimed to integrate segmentation results into a clinical workflow,
the practical evaluation was only based on quantitative criteria. However, a visual assessment
is still necessary to detect outliers, and should be integrated in the evaluation process. The key
objective of this study was therefore to define a clinically useful tool to assist radiologists in
breast lesion segmentation on DCE-MRI. Three different 3D U-Nets models were considered
using either the first post-contrast T1 DCE-MRI (denoted T1c) or a fusion of T1c and sub-
traction images (denoted SubT1), with SubT1 images defined as the difference between the
first post-contrast image and the pre-contrast image. Fusion of T1c and SubT1 images was
implemented at both the image and features level, resulting in three 3D U-Net models. These
models were trained and the visual ensemble selection was considered where the most optimal
segmentation was selected visually by a radiologist to take advantage of the complementarity
of the different U-Net models and to select the best segmentation for each patient.

Materials & Methods
Image database and ground truth definition

Breast MR images (n=141) were collected from a cohort of women diagnosed with locally
advanced or aggressive breast cancer (see Table 7.1 for clinical characteristics) and undergoing
neoadjuvant chemotherapy in Institut Curie between 2016 and 2020. This retrospective study
was approved by our institutional review board (IRB number OBS180204) and written informed
consent was waived for it. The 3D T1 fat suppressed DCE-MR images were acquired in a
multi-center setting, with the majority of scans (77%) coming from Institut Curie with three
acquisition devices (see Table 7.2). A dedicated breast coil was used in all cases. For DCE-
MRI, gadolinium-based contrast material was injected using a power injector, followed by
a saline solution flush. Representative acquisition parameters for T1 fat-suppressed DCE
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sequences are given in Supplemental Table 7.6. On the whole database, in-plane voxel size
varied between 0.62x0.62 and 1.0x1.0 mm, while voxel thickness ranged from 0.7 to 2.2 mm.
The MRI performed outside Institut Curie were reviewed to control the quality of the images
and the compliance with the recommendations of the American College of Radiology for the
performance of contrast-enhanced MRI of the breast [273].

A set of 111 tumoral lesions was evenly segmented in 3D by two radiologists (see Sup-
plemental Figure 7.5). Radiologist R1 had 15 years of experience in breast imaging while
radiologist R2 had 3 years of experience. Tumors were manually segmented using the LIFEx
software (v6.0, www.lifexsoft.org) [235] and were used as ground truth labels for training and
validating the CNN models. The remaining 30 lesions were segmented by both radiologists
and defined as the test dataset.

Table 7.1: Clinical information related to the 141 breast scans involved in the study. Quantitativefeatures are given by mean values ± standard deviation, qualitative features are given by the numberof cases (percentage).
Age of patients 48±11 yearsLargest diameter of tumor 29±13 mmPrimary Tumor : T Stage I / II / III / IV 34 (24%) / 83 (59%) / 19 (13%) / 5 (4%)Regional Lymph Node: N Stage 0 / I / II 77 (55%) / 62 (44%)/ 2 (1%)Distant Metastasis: M Stage 0 / I 139 (99%) / 2 (1%)Tumor type Ductal NOS 137 (97%) / Others 4 (3%)Breast Cancer Subtype Luminal / HER2+ / TN 41 (29%) / 37 (26%) / 63 (45%)

NOS: Not Otherwise Specified; HER2+: Human Epidermal growth factor Receptor 2 positive; TN: Triple-negative.

Table 7.2: MRI scanners and breast coils used to acquire the training and test databases.
MRI settings Database Cases

Institut Curie - GE Healthcare - 1.5T 8 channel breast coil Training 13Institut Curie - Siemens Healthineers - 1.5T Sentinelle breast coil Training 50Institut Curie - Siemens Healthineers - 1.5T 18 channel breast coil Training 16External Centres (n=10) - GE Healthcare - breast coil1.5T breast coil Training 21External Centres (n=6) - Siemens Healthineers - breast coil1.5T breast coil Training 11
Total Training 111

Institut Curie - GE Healthcare - 1.5T 8 channel breast coil Test 13Institut Curie - Siemens Healthineers - 1.5T Sentinelle breast coil Test 13Institut Curie - Siemens Healthineers - 1.5T 18 channel breast coil Test 4
Total Test 30
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Image preprocessing

All MR images were corrected for bias field gain using the N4 algorithm as described in [19],
resampled to get isotropic 1x1x1 mm3 voxels across the whole database then cropped in a
fixed size bounding box (300x160x200 mm3) ensuring that the whole breast area and armpit
were included in the images. Next, images were resampled to the voxel size of 2 mm to reduce
memory requirements for the segmentation model. In addition, images were normalized by
dividing the intensity values of each image volume by the 95th percentile of its intensity values
to avoid a normalization based on intensity outliers.

Segmentation models

The basic architecture of the models was a 3D U-Net similar to the implementation in No New-
Net [258]. The U-Net contained 4 pathways, each consisting of 2 convolutional layers with
kernel size of (3,3,3) and (3, 3, 1) (see Supplemental Figure 7.6 and Supplemental Table 7.7).
All convolutional layers were followed by an instance normalization and a leaky rectified linear
unit (Leaky ReLU) activation function. Two fully-connected layers followed by a softmax layer
were added as final layers to classify the image voxels into healthy or tumoral tissue. Three
different configurations of the U-Net model were elaborated. The first model (referred as
“U-Net (T1c)”) was trained by the T1c image while the other two models were trained by a
combination of the first post-contrast and the first subtraction images using an image or feature
level fusion strategy to combine images. For the image-level fusion approach (denoted “U-Net
ILF (T1c+SubT1)”), the two both MR images were concatenated to form defined a single dual-
channel, before being used as input for the CNN model. For the feature-level fusion approach
(abbreviated “U-Net FLF (T1c+SubT1)”), a U-Net architecture was used in which the encoder
part consisted of two independent channels fed by the post-contrast and subtraction images,
respectively. In the bottleneck of the U-Net, feature maps were concatenated and provided
as the input to the decoder part, as illustrated in Figure 7.1. The models were implemented
using DeepVoxNet [274], a high-level framework based on Tensorflow/Keras but specifically
designed and optimized for 3D medical image data. All models were trained using a combined
loss function L (defined by Equation 7.1) defined as a weighted combination of cross-entropy
(LCE) and soft Dice (LSD) losses [275]:

L = αLCE + (1− α)LSD (7.1)
α being the weighting factor of the two loss terms. For training and validation, the Adam
optimizer with default Keras settings (v 2.2.4 with Tensorflow backend) was used with the
initial learning rate set at 0.001. When the validation Dice Similarity Coefficient (DSC) reached
a plateau, the learning rate was reduced by a factor of 5, and training was stopped when
the DSC on the validation dataset did not improve during the last 500 epochs. For this
implementation, a single epoch consisted of feeding 12 entire image volumes to the model
with a batch size of 2. All computations were performed on the Flemish supercomputer
(CentOS Linux 7) using 2 NVIDIA P100 GPUs (CUDA v11.0, GPU driver v450.57) and 1
Intel Skylake CPU (18 cores). During training, a five-fold cross-validation was performed to
determine the optimal number of epochs and a grid search was performed within a range of
[0.1, 0.9] and a step size of 0.1 to find the optimal value for the hyperparameter α. The
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Figure 7.1: Schematic description of U-Net architecture used for Image-level fusion (ILF) and Feature-level fusion (FLF). The colored part represents the ILF where the T1c and SubT1 images are concate-nated before being used as input for the CNN model. The dotted part is added to implement the FLFwhere T1c and SubT1 images are used as the input to two separate encoding parts and the extractedfeatures from each level are concatenated.

highest DSC was achieved when α was set to 0.5 to appropriately weight soft Dice and cross-
entropy loss functions. At the end of the training/validation, five models were saved and then
used to generate the predictions on the test dataset. For final performance comparisons, the
segmentation masks were averaged over the five models of the five-fold cross-validation, and
then were up-sampled to a 1 mm3 voxel size for comparison with the ground truth labels.

Visual ensemble selection

Radiologist R1 visually assessed the quality of the automated segmentations obtained by the
three models: U-Net (T1c), U-Net ILF (T1c+SubT1) and U-Net-FLF (T1c+SubT1) and
scored the segmentation quality as ‘excellent’, ‘useful’, ‘helpful’, or ‘unacceptable’. Score 4
was given to excellent segmentations that could be used clinically without further modification.
Score 3 was given to useful segmentations for which modifications (less than 25% of the
total number of slices) could be achieved in a reasonable time (less than 50% of the time
required for segmentation from scratch). Score 2 was given to helpful results that require
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substantial modifications on a larger number of slices (between 25% and 66% of the total
number of slices). Score 1 was given to unacceptable results, corresponding to very large
errors in the tumor delineation or cases for which tumor was not detected. A novel patient-
centric approach denoted visual ensemble selection was thus defined where, for each patient,
the best segmentation was selected by Radiologist R1, when the visual scores were identical.

Quantitative analysis

To compare segmentations, the volumes of the lesions, DSC measuring the percentage of
overlap ranging from 0% (no overlap) to 100% (perfect overlap) and the 95th percentile of
the symmetric Hausdorff distance (denoted HD95) measuring how far the two segmentations
are distant from each other were calculated for each case of the test database. Inter-radiologist
agreement was estimated by comparing the segmentations from R1 and R2. The 3D segmen-
tations produced by the three U-Net models and the visual ensemble selection were compared
to the ground truth labels defined by R1 and R2.

Statistical analysis

Statistical analysis was performed using R software (version 4.1), with a significance level equal
to 0.05. The distribution of DSC and HD95 values of segmentations obtained by the visual
ensemble selection versus R1 and R2 were compared to the inter-radiologist DSC and HD95
using a Friedman test. The distribution of DSC and HD95 issued from the three 3D U-Net
models were globally compared using the Kruskal-Wallis test according to the four qualitative
scores and then compared using the Dunn’s test and Bonferroni correction.

Results
Quantitative analysis

Table 7.3 shows the volumes of the lesions as assessed by the two radiologists, the three 3D
U-Net models, and the visual ensemble selection on the test database. Table 7.4 provides the
mean and standard deviation of DSC and HD95 for the comparison of R1 and R2 segmentations
(inter-radiologist criteria) and the comparison of the three 3D U-Net models and the visual
ensemble selection with the segmentations provided by either R1 or R2. Figure 7.2 illustrates
these results, providing box plots for each configuration.

Qualitative analysis

Figure 7.3 and Supplemental Figure 7.7 show the boxplots obtained for DSC and HD95 ac-
cording to the four quality scores of visual assessment. The three 3D U-Net models achieved
comparable results with 27% to 33% of cases scored as excellent, 20% to 30% as useful,
20% to 27% as helpful, and 17% to 27% as unacceptable. When using the visual ensemble
selection, 50% of cases were scored as excellent, 27% as useful, while only 23% of cases were
scored as helpful or unacceptable. The global performance of the three 3D U-Net models was
reduced by some outliers, while the visual ensemble selection reduced the number of outliers,
which highlights the complementary role of the three 3D U-Net models.
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Figure 7.2: Boxplot presenting (a) the DSC (%); (b) HD95 (mm) obtained by the different segmentationmodels on the test database: a U-Net using only T1c images, a U-Net trained by a combination usingan image-level fusion of T1c and SubT1 images, a U-Net trained by a combination using a feature-levelfusion of T1c and SubT1 images, and the visual ensemble selection. DSC and HD95 were determinedusing the manual delineation of the two independent radiologists (R1 and R2) as the ground truthlabels. Inter-radiologist DSC and HD95 were added for comparison.
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Figure 7.3: Distribution of (a) automated segmentations according to the visual score 4 (Excellent), 3(Useful), 2 (Helpful) and 1 (Unacceptable); together with the boxplots presenting (b) the DSC (%); (c)HD95 (mm). Results are shown for the different segmentation models: a U-Net using only T1c images,a U-Net using an image-level fusion of T1c and SubT1 images, a U-Net using a feature-level fusion ofT1c and SubT1 images, and the visual ensemble selection.
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Table 7.3: Volumes of lesions (mean values ± standard deviation) as estimated by the two radiologists(R1 and R2), the three CNN models, and the visual ensemble selection on the test database.

Readers or Models Volumes (cm3)
Radiologist R1 12.9±14.9Radiologist R2 14.8±17.2U-Net (T1c) 9.8±6.3U-Net ILF (T1c +SubT1) 14.4±16.0U-Net FLF (T1c+SubT1) 11.5±9.8Visual ensemble 12.6±13.5

Table 7.4: Mean values ± standard deviation of quantitative criteria (DSC and HD95) to assess thesegmentation provided by three CNNmodels and the visual ensemble selection, using either R1 or R2as the ground truth on the test database.
DSC (%) HD95 (mm)Radiologist or Model Radiologist R1 Radiologist R2 Radiologist R1 Radiologist R2

Radiologist R2 77.8±10.0 5.2±5.9U-Net (T1c) 72.7±22.8 70.6±20.8 15.6±40.3 15.9±40.6U-Net ILF (T1c +SubT1) 74.9±20.3 71.9±19.7 22.9±53.2 23.6±53.6U-Net FLF (T1c+SubT1) 70.2±26.1 67.3±25.0 19.3±45.1 19.8±45.4Visual ensemble selection 78.1±16.2 76.5±14.5 14.1±40.8 14.1±41.2

Statistical analysis

For the segmentations obtained by three 3D U-Net models, the mean values of quantitative
criteria (DSC and HD95) on the test database were significantly different (p<0.0001) for the
unaceptable score (excellent, useful, helpful versus unacceptable) from the visual assessment
provided by R1 (Supplemental Figure 7.7). Using R1 as the ground truth and based on
paired rank analysis (Friedman tests), the DSC values between the segmentations provided
by the visual ensemble selection and R1 were slightly better (p-value<0.03) than the DSC
values computed from the segmentations provided by R1 and R2. There was no statistically
significant difference for the HD95 results. Using R2 as the ground truth, the DSC values
between the segmentation provided by the visual ensemble selection and by R2 were not
significantly different from the DSC values computed using the segmentations provided by R1
and R2 (p-value=0.27).

Quantitative analysis according to visual assessment

Table 7.5 displays the mean and standard deviation of DSC and HD95 of the visual ensemble
selection compared to the segmentations provided by either R1 or R2, according to the visual
assessment. For the test cases scored as excellent, the mean DSC was higher than 81%,
and with the standard deviation less than 6%, showing better results compared to the inter-
radiologist DSC for the whole test database. Additionally, for these cases the mean HD95 was
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less than 4 mm with the standard deviation less than 2 mm.

Table 7.5: Mean values ± standard deviation of quantitative criteria (DSC and HD95) to compare thesegmentation provided by the visual ensemble selection, using either R1 or R2 as the ground truth,according to the four scores of qualitative assessment on the test database.
DSC (%) HD95 (mm)Visual ensemble selection Radiologist R1 Radiologist R2 Radiologist R1 Radiologist R2

Score 4 - Excellent (n=15) 86.3±3.3 81.2±6.4 2.4±0.4 3.9±1.5Score 3 - Useful (n=8) 76.9±8.7 76.7±8.1 13.1±18.9 11.4±19.7Score 2 - Helpful (n=5) 69.3±18.1 77.4±5.8 10.6±6.1 8.1±3.1Score 1 - Unacceptable (n=2) 43.9±43.0 39.3±42.9 116±151 117±154

Illustrative cases

Representative segmentation results of the test dataset are illustrated in Figure 7.4. These
exemplified cases demonstrate the interest of the visual ensemble selection while highlighting
the complementary role of the three 3D U-Net models. For instance, U-Net trained with T1c
images could provide excellent results (case #1) and largely underestimated volumes (cases
#2 and #3). For cases #2 and #3, the 3D U-Net using image-level fusion of T1c and SubT1
images as input, provided the best segmentation, scored as helpful (13 slices out of 30 need
some correction) for case #2 and as useful (7 slices out of 37 need some correction) for case
#3.

Discussion
We proposed a new CNN-based approach for breast tumor segmentation in a clinical setting.
In our implementation, three 3D U-Net models were trained using different strategies: using
only the post-contrast image or a combination of post-contrast and subtraction images using
fusion at either the image or feature level. These three models were tested on 30 independent
cases and none of them outperformed the other two. Following a subsidiarity principle, the
best segmentation among the three was ultimately selected for each patient by the radiologist,
defining a visual ensemble selection. Using appropriate display tools available in LIFEx [235],
the additional workload required for the visual selection is low, compared to the time that is
required to check one single segmentation carefully. Furthermore, the visual ensemble selection
proves to provide acceptable segmentation results in 77% of the test cases and results are
globally within inter-radiologist reproducibility.

Our approach provides a 3D segmentation of breast lesions, while some of the most recent
studies still segment in 2D [264, 267, 272], despite tumor volume measured by MR imaging
is a strong predictor of patient survival [276]. For advanced radiomic studies or follow-up
studies, 3D segmentation is also an important task to achieve [222]. The CNN models were
trained using multi-centric MRI, a prerequisite for a higher generalization of these models, and
they were also evaluated using a multi-scanner test dataset. Compared to many studies, for
which DSC was the only evaluation criteria [266, 267], HD95 was added as a criterion for the
maximal distance between two segmentations. Contrary to DSC, this criterion was not included
in the loss function for the training of the models and was therefore more independent. The
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Figure 7.4: Illustration of representative segmentation results (axial and coronal views) on three casesof the test database. From left to right: T1c volume, SubT1 volume, segmentation provided by U-Net(T1c), U-Net ILF (T1c+SubT1), U-Net FLF (T1c+SubT1), ground truth (GT) provided by R1 and R2. DSC(%) and visual scoring (VS) given by R1 are included below each case. The visual ensemble selectioncorresponds to segmentation provided by U-Net (T1c) for case 1, and U-Net ILF (T1c+SubT1) for cases2 and 3.
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models designed in this study were based on the state-of-the-art U-Net architecture similar
to the model proposed in [271] but without residual blocks. While Khaled et al. [271]
generated a breast ROI mask during the pre-processing step and used it as the input to the
segmentation model along with the 3D DCE-MRI, we did not provide the U-Net models with
this prior information. The prior knowledge on the breast ROI mask was also used in [267]
to train the CNN segmentation models with the U-Net architecture. We only used the T1c
or/and SubT1 as the input to train the U-Net models, and not a full series of DCE-MRI
for training as in [271], nor T1 and T2-weighed MRI sequences as in [267]. The Deepmedic
architecture with a patch-based training method was evaluated in [267] demonstrating lower
performance compared to the U-Net model. This evaluation confirms our choice to use the
U-Net architecture. Furthermore, performance of our U-Net models was in the same DSC
range [65%-80%] as reported in literature [204, 266, 267, 270–272], though it is difficult to
compare methods evaluated on different datasets with DSC computed in 2D or in 3D. The
mean 3D DSC between R1 and R2 was similar to the mean 3D DSC [78%-83%] for different
observer combinations studied in [211]. Our database included locally advanced tumors or
aggressive tumors, for which the irregular shape is difficult to segment.

The principle of an ensemble approach that combines the output of independently trained
CNN models was also proposed in [271]. The authors compared a strategy of majority-voting
and union operation to integrate the results of several CNN models trained with different
post-contrast and subtraction images. We tested the automated ensemble approaches, but
they did not improve final results (see Supplemental Table 7.8).

Despite the improved segmentation performance, our study had some limitations. The
database used for training and testing was limited in terms of datasets but adding progressively
new cases could gradually improve the performance of the different CNN models, even if the
ideal number of cases is unknown. Further use of other post-contrast images needs to be
investigated as well as the potential value of adding other modalities such as diffusion weighted
images and apparent diffusion coefficient maps. Finally, the strategy we proposed is not fully
automated and requires an additional visual assessment, but to the best of our knowledge,
no current automated segmentation method included a self-assessment, even if a recent study
[266] proposes solutions to address this issue.

Conclusion

This study proposes a visual ensemble selection as a new pragmatic segmentation method
where the radiologist is asked to select the best segmentation among the results obtained by
three different 3D U-Net models. This visual ensemble selection provided results comparable
to inter-radiologist agreement with excellent or useful segmentations in 77% of the cases
versus 60% of the cases for the 3D U-net model using image-level fusion of post-contrast and
subtraction images, while it required little additional workload when compared to the visual
evaluation of one single segmentation.
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Supplemental data

Table 7.6: Representative values of MR acquisition parameters for the three settings at the InstitutCurie.
GE Healthcare(8-channel breast coil) Siemens Healthineers(18-channel breast coil) Siemens Healthineers(Sentinelle breast coil)

TR (ms) 6.81 5.2 5.2
TE (ms) 3.3 2.4 2.4
Slicethickness (mm) 1.0 0.9 0.9

Spacing betweenslices (mm) 1.0 0.9 0.9
Pixel spacing (mm) 0.82 x 0.82 0.91 x 0.91 0.91 x 0.91

Bandwidth 111 350 350
Pixel bandwidth 434 355 355

Flip angle 15 10 10
Fat saturation DIXON SPAIR SPAIR
Parallel Imaging ARC GRAPPA GRAPPA
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Table 7.7: Parameters of U-Net model
Pathway Block Number of kernels Kernel size1 - EC Conv3D 20 (3, 3, 1 )1 - EC Conv3D 40 (3, 3, 3 )2 - EC Conv3D 40 (3, 3, 1 )2 - EC Conv3D 80 (3, 3, 3 )3 - EC Conv3D 80 (3, 3, 1 )3 - EC Conv3D 160 (3, 3, 3 )4 - EC Conv3D 160 (3, 3, 3 )4 - EC Conv3D 160 (3, 3, 3 )3 - DC Conv3D 160 (3, 3, 3 )3 - DC Conv3D 80 (3, 3, 1 )2 - DC Conv3D 80 (3, 3, 3 )2 - DC Conv3D 40 (3, 3, 1 )1 - DC Conv3D 40 (3, 3, 3 )1 - DC Conv3D 20 (3, 3, 1 )1 - FC Conv3D 20 (1, 1, 1 )2- FC Conv3D 1 (1, 1, 1 )

EC, DC, and FC stand for encoder part, decoder part and fully-connected layer.

Table 7.8: Mean values ± standard deviation of quantitative criteria (DSC and HD95) to assess the per-formance of the automated ensemble approaches: majority voting and averaging. For the averaging,the segmentation predictions obtained by the three CNN models were averaged and thresholded by0.5.
DSC (%) HD95 (mm)Automated ensemble approach Radiologist R1 Radiologist R2 Radiologist R1 Radiologist R2

Majority Voting 74.5± 21.6 71.6±20.5 20.6±50.2 20.6±50.5Averaging 74.9±22.0 72.3±20.8 14.0±25.13 14.24±25.1
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Figure 7.5: Flowchart for the definition of training and test datasets.

Figure 7.6: Overview of the 3D U-Net model.
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Figure 7.7: Statistical analysis performed on the quantitative criteria (DSC and HD95) obtained by thethree 3D U-Net models and using R1 as the ground truth according to the four visual scores (excellent,useful, helpful, and unacceptable), showing some significant differences of the mean values of DSCand HD95 according to the visual scores (****p-value<0.0001, ** p-value<0.01).
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7.3 Discussion
In the study, the different segmentation models and the ensemble approach were assessed with
DSC or HD95 combined with a radiologist visual score. Using the 30 lesions segmented by
both radiologists, agreement between each radiologist and each model, measured with the two
metrics, was compared with the inter-radiologist agreement. As the goal of this model is to
segment breast lesions for radiomic analyses, a radiomic-based evaluation of the methods could
however be considered. Based on the 30 lesions segmented twice, the number of robust features
(ICC > 0.8 as defined in Chapter 5) obtained when using the two radiologists’ segmentations
could be compared with the number of robust features calculated when using automatic and
radiologist segmentations.

This model was developed throughout this thesis as the database progressively increased
in size and was therefore not used in the first radiomic analyses. However, inter-radiologist
variabilities in segmenting lesions affect radiomic feature values which hinders the exportability
of radiomic signatures. These considerations led to define procedures based on the ICC to select
robust features (Chapter 5) and incorporate them in the global prediction pipeline. Taking
into account the robustness of features to segmentation caused to discard more than 27% of
the radiomic features calculated on native or wavelet-filtered images. Amongst the discarded
features, 26 were associated with pCR (p < 0.05). Therefore, attempting to counter inter-
radiologist variabilities resulted in rejecting potentially useful information for the prediction.
Developing a segmentation approach and making it available to other researchers alongside
our radiomic models would increase their exportability and allow us to use otherwise rejected
features to build predictive models.

Conclusion
This chapter thus presents a patient-centric deep learning-based ensemble approach to seg-
ment breast lesions on T1-DCE MR images with performances on par with inter-radiologist
agreement. This segmentation approach could facilitate radiomic studies and improve radiomic
models’ exportability. In future work, this approach will be used to segment mid-treatment
images to study the changes in radiomic features between pre and mid-treatment.

167





Conclusion & future work

The prediction of the response to neoadjuvant chemotherapy in breast cancer has rose to
prominence in recent years with the increasing development of precision medicine. Early iden-
tification of non-responders would constitute a major step forward in personalized treatment.
An abundant literature on MRI-based radiomic signatures to predict pCR to NAC exists. Con-
tradictory findings nevertheless emerged from the review of the literature. Pesapane et al. [14]
found, for instance, no benefit in adding clinical and biological data to radiomic models while
Peng et al. [200] and Hussain et al. [12] reported increased performances when combining
clinical, biological and radiomic features. Whether to use pre-treatment or a mix of pre and
mid-treatments images was questioned, as well as the benefit of multiparametric over single-
sequence signatures, the necessity to build molecular subtype-specific models or the potential
of peritumoral regions. The prediction of the response is thus a complex question that remains
the subject of intense debates.

Beyond these considerations specific to the prediction of pCR to NAC, MRI-based radiomic
analyses in general are faced with several challenges: local inhomogeneities in MR images,
lack of standardized units in which to express MR signal, problems of reproducibility and
exportability of features due to little robustness to segmentation and the impact of the “scanner
effect”. In [18], Granzier et al. concluded that the potential of radiomic features to predict pCR
could not be properly investigated because of their lack of reproducibility. While the question
of the feature robustness to segmentation is often addressed, little interest is shown towards
normalizing MR images or harmonizing features to reduce the “scanner effect”. Besides, testing
of radiomic models on independent multicentric test sets remains limited in the literature.

Based on a cohort of 136 patients treated for NAC at Institut Curie, this thesis proposed
methodological solutions to develop robust and exportable MRI-based radiomic models trained
on a multi-scanner training set and tested on an independent multicentric test set, while
investigating the potential of radiomic features extracted from pre-treatment T1-weighted
DCE and fat-saturated T2 images and clinical and biological data in predicting pCR to NAC.

Taking advantages of their lack of biological effects and artefacts, experiments based on
breast phantom images, acquired using the three different devices of Institut Curie, were
conducted to build an MRI correction pipeline. Analyses concluded that the N4 algorithm,
originally designed to correct bias field gain in brain MRI, needed to be tuned specifically for
the breast area. It was also established that both bias field correction and normalization of
MR images were needed to correct variations of image intensities (intra and inter scanner) but
that further harmonization of the radiomic features using the ComBat method was required
to reduce the “scanner effect”.

Results obtained on phantoms were then adapted to patient images and a specific pipeline
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to carry out radiomic analyses was outlined. Once the images acquired, the training set should
be processed according to the following 7 steps: image pre-processing, lesion segmentation,
feature extraction, feature harmonization, feature selection including robustness assessment,
model building with a limited number of features and finally model evaluation. For the test
set, the first three steps should be repeated similarly. As the test set gathered patients
from many different imaging centers, there were not enough patients per center to apply
the conventional ComBat method to reduce the “scanner effect”. An original harmonization
approach consisting in assigning patient to one of the three training imaging devices using
information from the healthy breast tissue was designed. Based on the final goal of predicting
patients with pCR, results after harmonization were at least equal or better in 82% of the
experiments and performances were improved in 73% of the cases.

Finally, a deep learning-based approach to segment breast tumors on T1-weighted DCE
images (including first image after injection and subtracted image) was developed to alleviate
radiologists’ workload and improve feature reproducibility and model exportability. This ap-
proach, requiring the final input of a user, is patient-centric as it allows to choose for each
patient the best fit amongst three models using either post-contrast images or an early or late
fusion of post-contrast and subtraction T1-DCE images.

Thus, this work proposed a robust pipeline to carry out MRI-based radiomic analyses,
including pre-processing techniques specifically tuned for breast MR images, a new patient-
centric segmentation approach to improve feature reproducibility and an original harmonization
strategy that handles small multicentric test sets where conventional harmonization methods
fail. This pipeline or some steps such as the harmonization strategy, could be used in all kinds
of radiomic analyses beyond the prediction of the response to NAC.

Using the defined pipeline, investigations were conducted to determine what information
found in MR images could be relevant to predict pCR. The contribution of shape and margins
of the lesions to the prediction model compared with tumor heterogeneity was assessed using an
original multi-VOI approach. Experiments concluded that models built with features extracted
from binarized images of tumor lesions that apprehend the outline of the tumor beyond what
traditional shape parameters can convey or from a combination of features from several volumes
of interest (the standard tumor segmentation, a bounding box on the binarized tumor images
and a constant box placed inside the tumor) achieved better performances than models using
the standard tumor segmentation alone (median Youden index on the test set: 0.44, IQR
[0.43, 0.50] vs 0.16, [0.10, 0.18], p < 0.05). Using the AUC to measure the performances,
the best experiment achieved an AUC of 0.80, [0.71, 0.89] on the training set and 0.72, [0.53,
0.91] on the test set. Performances were thus comparable to the performances of the models
built using only clinical and biological data (test AUCs in range [0.66, 0.76]). Defining models
specific to the different molecular subtype led to better performances (best AUC=0.79, [0.60,
0.98] on the test set), but further analyses (including training and testing) with larger datasets
are required.

Testing models published in the literature on our dataset is challenging as on top of the
“scanner effect”, feature extraction and normalization parameters and weights of the models
(when applicable) are rarely disclosed. Comparing performances of the models developed with
results from the literature is also a tricky task. Differences in composition of the datasets
including distribution of molecular subtypes may impact results. In this study, performances
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were obtained on an independent multicentric test set, which remains rare in the literature. The
test set was also highly unusual compared with the literature due to its extreme variability with
images collected from more than 15 imaging centers though it accurately represents databases
collected in clinical routine. Performances of the models developed were nevertheless in par
with those reported in the literature.

Several leads could be followed in future work. First, to confirm the trends observed in
our experiments, a larger dataset and especially a larger test set should be acquired. Then, as
new patients are recruited into the study, the deep learning-based segmentation model should
be included in the treatment pipeline to ease the segmentation step but also to let features
discarded as not robust enough to segmentation be used in models. They could bring new and
relevant information.

This thesis focused on a handcrafted radiomic approach. This choice was made due to
the limited size of our dataset at the beginning of our study, that increased throughout the
thesis to reach 136 patients. It was also interesting to study what kind of performances could
be obtained with low computational models and delve into the issue of their exportability.
However, with an increased dataset, deep learning-based approaches to predict pCR could
also be investigated. Though for the moment they are limited in number compared with
handcrafted approaches, there is a rise in the use of deep learning that affects all areas. Deep
radiomic models built with biological and clinical data and features extracted from the final
layer of a CNN could also be tested. Peng et al. [200] reported increased performances with
deep learning-based models compared with handcrafted radiomic models (AUC 0.83 vs 0.78,
p <0.001). Deep learning methods nevertheless require a larger number of images and greater
computational power.

Voxel-based analysis like performed in [277] could also be investigated to determine if there
exist patterns in sub-regions of the tumor associated with the prediction of pCR.

To improve prediction, new sources of information could be integrated into the study such
as DW images or ADC maps. Kinetic parameters were not the major focus of this thesis, but
they have been used in many models with high performances reported. Texture analysis of
kinetic parametric maps has even been explored and could thus be included in our models.

The database at Institut Curie also includes mid-treatment images, whose acquisitions
were recently completed. These images open a new path for research to better interpret
the radiomic signatures and test the reproducibility of the whole pipeline. Though not as
groundbreaking as prediction before treatment, being able to predict the response after a few
cycles of chemotherapy would still represent a major step forward for patient care. From a
radiomic point of view, features extracted from mid-treatment images could feed a variety of
models. They could be used alone, or in combination with features from pre-treatment images.
Changes and variations of texture features, sometimes called “delta-radiomics”, between the
pre-treatment and mid-treatment phases could also be studied as they express changes in the
biological properties of tissues. These changes often appear before any modification of the
general shape of the tumors, that could still be observed at mid-treatment.

Going beyond the prediction of the response, radiomic features could be further analyzed
to determine if they convey information about the risk of breast cancer recurrence. As, though
patients achieving pCR have better outcomes, tumors can still reoccur.
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Glossary

ACR American College of Radiology.

ADC Apparent Diffusion Coefficient.

AJCC American Joint Comittee on Cancer.

AUC Area Under the Curve.

BB Bounding Box.

bBB binary Bounding box.

BC Bias Corrected.

BES Breast Edema Score.

BH Benjamini and Hochberg multiple comparisons correction method.

BI-RADS Breast Imaging Reporting & Data System.

BMI Body Mass Index.

CB Constant Box.

CCC Concordance Correlation Coefficient.

CNN Convolutional Neural Network.

CV Coefficient of variation.

DCE Dynamic Contrast-Enhanced.

DCIS Ductal Carcinoma In Situ.

DSC Dice Similarity Coefficient.

DWI Diffusion-weighted imaging.

EFS Event-Free Survival.

ER Estrogen Receptor.
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FDA Food and Drug Administration.

FISH Fluorescence In Situ Hybridization.

GLCM Gray Level Co-occurrence Matrix.

GLDM Gray Level Dependence Matrix.

GLRLM Gray Level Run Length Matrix.

GLSZM Gray Level Size Zone.

HD95 95th percentile of Hausdorff Distance.

HDI Human Development Index.

HER2 Human Epidermal growth factor Receptor 2.

HM Histogram Matching.

HTR High Temporal Resolution.

IBSI Image Biomarker Standardization Initiative.

ICC Intraclass Correlation Coefficient.

IHC Immunohistochemistry.

IQR Interquartile Range.

LCIS Lobular Carcinoma In Situ.

LOOCV Leave-One-Out Cross-Validation.

MIP Maximum Intensity Projection.

mRMR minimum Redundancy Maximum Relevance.

NAC Neoadjuvant chemotherapy.

NGTDM Neighboring Gray Tone Difference Matrix.

npCR non Pathological Complete Response.

OS Overall survival.

PCA Principal Component analysis.

pCR Pathological Complete Response.

PR Progesterone Receptor.
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RCB Residual Cancer Burden.

RECIST Response Evaluation Criteria in Solid Tumors.

ReLU Rectified Linear Unit.

RF Random Forest.

RFE Recursive Feature Elimination.

ROC Receiver Operating Characteristic.

ROI Region Of Interest.

RQS Radiomic Quality Score.

SubT1 Subtraction image.

SVM Support Vector Machine.

T Tumor.

T1-DCE T1-weighted Dynamic Contrast-Enhanced.

T1c First post-contrast DCE-MR image.

TILs Tumor-Infiltrating Lymphocytes.

TN Triple Negative.

VOI Volume Of Interest.

WS White-Stripe normalization.
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Titre: Modèles de prédiction de la réponse à la chimiothérapie néoadjuvante à partir d’examens d’IRM mammaire
Mots clés: Radiomique, IRM mammaire, apprentissage automatique, traitement d’images, apprentissage profond
Résumé: La chimiothérapie néoadjuvante (CNA)
est devenue le traitement de référence des cancers
agressifs ou localement avancés. Cependant, seule-
ment 20 à 30% des patientes obtiennent une réponse
pathologique complète (pCR). Être capable d’identifier
les lésions chimiorésistantes avant le début du traite-
ment améliorerait considérablement la prise en charge
des patients. Dans cette perspective, la radiomique
cherche à mieux exploiter les images et extrait des in-
dices de forme, des indices issus de l’histogramme ou
de texture pour construire des modèles d’aide à la déci-
sion. L’objectif de ce travail de thèse a été d’améliorer
la prédiction de la réponse à la CNA en s’intéressant
notamment aux problématiques de normalisation des
images et d’exportabilité des modèles de prédiction.
Nous avons travaillé sur une base clinique rétrospec-
tive multicentrique de 136 IRM mammaires constituée
à l’Institut Curie et composée d’images pondérées en
T1 après injection de produit de contraste et d’images
pondérées en T2. La qualité des études radiomiques
en IRM mammaire est sujette à trois limitations : le
champ de biais magnétique affectant la distribution
des intensités au sein du champ de vue, l’arbitraire de
l’intensité dans les images et les variations d’intensité
liées aux paramètres d’acquisition (machine, antenne,
séquences. . . ), appelées « effet scanner ». Une étude
multi-machine réalisée sur deux fantômes de sein ac-

quis suivant le protocole utilisé en clinique a mis en év-
idence la nécessité d’adapter pour le sein l’algorithme
de correction de biais N4. L’intérêt d’harmoniser les
indices radiomiques avec la méthode ComBat, après
une étape de normalisation des images, a aussi été dé-
montré. Cette chaîne de traitement a ensuite été adap-
tée à la base des patientes. Des analyses statistiques
ont été menées pour identifier les indices robustes à la
segmentation inter-radiologue. Nous avons aussi pro-
posé une méthode de segmentation automatique des
tumeurs par apprentissage profond, utilisant la fusion
d’images pondérées en T1 après contraste et d’images
de soustraction, dans l’objectif de réduire la charge de
travail des radiologues et de rendre cette tâche plus ro-
buste. Une chaîne de sélection de caractéristiques ra-
diomiques a été proposée pour construire des modèles
multiparamétriques. Les résultats ont montré l’intérêt
d’associer les paramètres radiomiques issus de la ré-
gion tumorale classique, de la tumeur binarisée placée
dans une boîte englobante et d’une boîte de taille fixe
située à l’intérieur de la tumeur. Ces modèles ont été
testés sur une base indépendante multicentrique, har-
monisée de façon originale pour pallier les limites de
ComBat dans le cas de petits échantillons, ce qui a
permis d’améliorer les performances dans 73% des ex-
périences.

Title: Definition of predictive models to assess the response to neoadjuvant chemotherapy from breast magnetic resonance images
Keywords: radiomics, breast MRI, machine learning, image processing, deep learning
Abstract: Neoadjuvant chemotherapy (NAC) has be-
come the standard treatment for locally advanced or
invasive breast cancer, but with only 20 to 30% of pa-
tients achieving pathological complete response (pCR).
Being able to predict non-responders to NAC would
greatly improve patient care. In this context, the field
of radiomics considers images as sources of a large
amount of data and extracts shape, histogram-based
and texture features to build decision-making tools.
The goal of this thesis is to improve the prediction of
pCR to NAC, with a particular focus on the normaliza-
tion of images and the exportability of radiomic models.
We used a retrospective multicentric database of 136
patients treated at Institut Curie, using T1-weighted
dynamic contrast-enhanced and T2 images. In the lit-
erature, radiomic studies suffer from three main draw-
backs: the bias field inhomogeneity creating regional
intensity variations, the arbitrary units in which MR sig-
nal is expressed and the influence of acquisition param-
eters on feature values, called the “scanner effect”. A
multi-scanner study based on two breast phantoms im-

aged using the routine clinical protocol, highlighted the
need to adapt the bias field correction N4 algorithm for
the breast area. The need for further harmonization of
features, using the ComBat method, after image nor-
malization was also underscored. This pre-processing
pipeline was then applied to patient data. Statistical
analyses were carried out to identify features robust
to inter-radiologist segmentation variabilities. A deep
learning-based automatic segmentation approach using
combined post-contrast T1-weighted and subtraction
images was developed to reduce radiologists’ workload
and improve segmentation robustness. A pipeline to
build multiparametric radiomic models was proposed.
Results showed that combining features extracted from
the standard tumor segmentation, from a bounding box
on the binarized tumor images and from a constant box
placed inside the tumor, improved performances. Mod-
els were tested on an independent multicentric test set,
harmonized using an original method to overcome the
limitations of the ComBat method in small datasets,
that improved performances in 73% of experiments.
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