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Résumé: Modéliser la ruine des matériaux
nécessite d’être capable de prédire pour un
chargement donné l’initiation et la possible
propagation de fissures. En dehors de la mé-
canique linéaire de la rupture qui ne traite
que des fissures existantes, ceci peut être
réalisé en utilisant la mécanique continue de
l’endommagement qui permet également de
prendre en compte la perte de rigidité associée.
Cependant, malgré leurs avantages ces modèles
présentent un certain nombre de défauts, no-
tamment en ce qui concerne la localisation des
déformations. En effet, alors que les modèles
d’endommagement locaux présentent une dépen-
dance pathologique au maillage, les modèles non
locaux développés pour résoudre ce problème ne
parviennent pas à rendre une zone fortement en-
dommagée équivalente à une fissure.

Une formation non locale basée sur une
approche eikonale avec des interactions dépen-
dantes de l’endommagement s’est avérée adap-
tée pour palier ces défauts, même si elle con-
serve les inconvénients inhérents aux approches
intégrales. Après avoir proposé une définition
de ce qu’on qualifiera ici de « bon » modèle
d’endommagement, ce travail se concentre sur
une nouvelle formulation de type gradient qui
dérive de cette approche, et dont on peut es-
pérer qu’elle résolve les problèmes associés aux
modèles locaux et non locaux.

Cette thèse présente dans un premier temps
l’implémentation non-intrusive dans Abaqus
de la formulation associée à un modèle
d’endommagement isotrope qui est utilisée pour
étudier ses propriétés dans un cas unidirection-

nel. Il est ainsi démontré que cette formulation
a des propriétés similaires à celles d’une formula-
tion basée sur les approches de type champs de
phase, et que malgré un comportement plutôt
fragile les deux formulations sont à même de
gérer la transition endommagement-fissuration.

Elle traite ensuite de l’introduction de plas-
ticité, i.e. de l’utilisation d’un modèle cou-
plant endommagement et plasticité au lieu
d’un modèle d’endommagement pur, et de la
manière dont elle pourrait être utilisée pour
résoudre le problème de la fragilité tout en
conservant les propriétés de l’approche dite
eikonale. Une étude unidimensionnelle se con-
centrant sur les réponses théoriques obtenues
avec une zone de localisation fixe ou se rétré-
cissant est donc menée, et les résultats obtenus
avec les deux modèles comparés. Les observa-
tions ainsi réalisées permettent de conclure que
l’introduction de déformations permanentes ré-
duirait la fragilité liée au rétrécissement de la
zone de localisation et au déchargement associé.

Les deux formulations associées aux modèles
d’endommagement avec et sans plasticité sont
ensuite implémentées dans le code éléments fi-
nis OOFEM qui est utilisé pour confirmer ces
observations dans le cas de la flexion trois points.
On peut ainsi montrer que les deux formulations
peuvent être utilisées pour modéliser la ruine
d’une structure en fournissant des résultats in-
dépendants du maillage où une zone fortement
endommagée est bien équivalente à une fissure.
De plus, alors que la réponse associée au modèle
d’endommagement pur reste relativement frag-
ile, ce problème est résolu par l’utilisation du
modèle couplant endommagement et plasticité.
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Abstract: To properly handle material fail-
ure, one needs to be able to predict, for a given
loading, the possible initiation and propagation
of cracks. Aside from the Linear Elastic Frac-
ture Mechanics, which only deals with existing
cracks, this can be achieved through continuum
damage mechanics, which also accounts for the
associated progressive loss of stiffness. How-
ever, despite their advantages, those models suf-
fer from a certain number of deficiencies, espe-
cially when handling strain localization. As it is,
while local damage models suffer from spurious
mesh dependency, the nonlocal ones, which were
developed to address this issue, fail to make a
highly damaged zone equivalent to a crack.

A nonlocal Eikonal-based formulation with
damage-dependent interactions has been shown
to successfully address these issues, though it
still suffers from the drawbacks inherent to
integral-type formulations. After proposing a
definition of what is called here a “good” damage
model, this work focuses on a new gradient-type
formulation that derives from this approach and
can thus be expected to address the issues asso-
ciated with both local and nonlocal models.

This work first presents the non-intrusive im-
plementation in Abaqus of the formulation asso-
ciated with an isotropic damage model, which is
used to study its properties in a one-dimensional

setting. This formulation is shown to have prop-
erties similar to those of a phase-field-based
formulation, both successfully addressing the
damage-fracture transition though they exhibit
a rather brittle behaviour.

It then deals with the introduction of plas-
ticity, i.e. using a damage-plastic model in-
stead of a pure damage one, and how it could
be used to address the brittleness issue while
keeping the properties of the Eikonal-based ap-
proach. A one-dimensional study is thus con-
ducted, focusing on the theoretical responses ob-
tained with both models associated with either
fixed or shrinking localization area. Based on
its results, one can conclude that introducing
permanent strains would reduce the brittleness
linked to the shrinking of the localization area
and the associated unloading.

Both damage and damage-plastic formula-
tions are then implemented in the finite ele-
ment code OOFEM, which is used to confirm
these preliminary observations in a three-point-
bending setting. It is then shown that both
formulations can be used to model structural
failure by providing mesh-independent results
where a highly damaged zone is equivalent to a
crack. Moreover, while the response associated
with the pure damage model remains somewhat
brittle, the issue is addressed by the damage-
plastic one.
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Résumé en français

0.1 Introduction et cadre de l’étude

0.1.1 Contexte général
Bien que la plupart des systèmes soient conçus de façon à prévenir l’apparition

de tout phénomène de dégradation, en particulier en fonctionnement nominal, la
modélisation des mécanismes de ruine des matériaux reste un enjeu majeur.

En effet, pour de nombreuses applications, les règles de conception imposent
des marges de sécurité conséquentes pour s’assurer que le système étudié reste
largement dans son domaine élastique, y compris lors de situations incidentelles.
C’est notamment le cas pour les systèmes de levage où la prise en compte des
différents scénarios correspondant aux situations nominales et incidentelles se fait
à travers différentes marges sur des critères spécifiques [ANO, 1998].

Malgré leur robustesse, ces méthodes n’apportent pas de compréhension des
phénomènes en jeu lors des différentes sollicitations subies par un système donné
au cours de sa vie, ce qui peut s’avérer insuffisant. En effet, si le système vient à
subir une sollicitation imprévue, une modélisation purement élastique associée à
des marges prédéfinies ne permettra pas d’évaluer le risque d’apparition de fissures.
De surcroît, si pour des systèmes complexes comme des barrages ou des avions
l’apparition de fissure ne peut pas être synonyme de ruine totale, il est toutefois
nécessaire d’évaluer leur dangerosité, et notamment le risque de propagation.

La modélisation de la dégradation progressive des matériaux en vue d’évaluer
le risque d’apparition de fissures et de prédire leur éventuelle propagation. Cela
permettrait en effet d’améliorer les marges de sécurité tout en optimisant les con-
ceptions, permettant ainsi une réduction des coûts associés.

0.1.2 Modélisation de la ruine des matériaux
Il existe historiquement deux grandes familles de méthodes permettant de traiter

de la dégradation des matériaux : les approches discrètes basées sur la mécanique
de la rupture, et celles continues basées sur la mécanique de l’endommagement.

Là où les premières traitent essentiellement de la propagation de fissures exis-
tantes décrites explicitement dans la géométrie, les secondes proposent une mod-
élisation continue de la dégradation du matériau. Cette dernière est modélisée
au travers d’une variable d’endommagement qui peut être assimilée à une densité
de micro-défauts (microfissures et microporosités), ce qui permet de prendre en
compte la perte progressive de rigidité du matériau.
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Bien qu’ils semblent plus adaptés à la modélisation de la dégradation pro-
gressive d’un matériau, les modèles basés sur la mécanique de l’endommagement
continu souffrent d’un certain nombre de défauts intrinsèques. On observe en par-
ticulier une perte d’ellipticité liée au fait que la taille de la zone de localisation
dans laquelle l’endommagement apparait, et donc l’énergie dissipée par la rupture,
n’est pas fixée. Lors de simulations numériques avec de tels modèles, ce problème
se traduit par une forte dépendance au maillage avec une énergie dissipée qui tend
vers zéro avec la taille de maille [Pijaudier-Cabot and Bažant, 1987].

Des approches dites non-locales ont été développées pour résoudre ce problème
en introduisant une longueur interne via une moyenne spatiale [Pijaudier-Cabot
and Bažant, 1987] ou une équation du second degré [Peerlings et al., 1996]. Bien
que ces approches permettent de fixer la taille de la zone de localisation, et ainsi de
rendre les problèmes associés bien posés, elles ne permettent pas de gérer la tran-
sition endommagement-fissuration. En effet, on n’observe pas de coupure des in-
teractions ni de saut de déplacement au travers des zones fortement endommagées
qui ne peuvent de fait pas reproduire un comportement de fissure.

0.1.3 Propriétés attendues d’un modèle d’endommagement
Avant de présenter les modèles étudiés dans cette thèse, il convient d’établir

une liste des propriétés permettant de caractériser ce qui sera appelé ici un "bon"
modèle d’endommagement. On notera que cette définition est spécifique au cadre
de ce travail, et n’est en particulier pertinente que pour des modèles ayant un
comportement élastique jusqu’à la contrainte maximale. On peut ainsi considérer
qu’un tel modèle est caractérisé par :

• Un comportement réaliste avant et après le pic [Jirásek, 1998]

– pré-pic : pas de modification de la réponse élastique

– post-pic : allure de courbe réaliste avec une chute de contrainte

• La convergence et l’indépendance des résultats vis-à-vis du maillage [Pijaudier-
Cabot and Bažant, 1987]

– convergence vers une solution à énergie dissipée non-nulle en raffinant
le maillage

– endommagement réparti sur une zone de largeur non-nulle

– faible sensibilité au maillage pour une taille d’éléments suffisamment
petite

• Une zone fortement endommagée se comportant comme une fissure [Desmorat
and Gatuingt, 2007]

– contrainte finale nulle

– localisation dans un unique élément quand l’endommagement vaut 1

– pas d’interaction à travers une zone où l’endommagement est égal à 1



– existence d’une solution avec un saut en déplacement lorsque l’endommagement
est égal à 1

• La possibilité d’être implémenté de façon non-intrusive dans un code de calcul
commercial [Azinpour et al., 2018].

On notera que d’autres critères pourraient également être envisagés comme la
prise en compte des conditions aux limites [Bažant et al., 2010] et la gestion de
l’initiation de l’endommagement [Eringen et al., 1977].

0.1.4 Régularisation et méthodes non-locales
De nombreuses formulations ont été développées pour modéliser la dégradation

progressive des matériaux tout en évitant les défauts intrinsèques aux modèles
d’endommagement locaux.

On retrouve parmi elles les approches dites non-locales qui visent à fixer la
taille de la zone de localisation en introduisant une longueur interne dans le modèle.
L’idée ici est de remplacer la variable gouvernant l’évolution de l’endommagement
V par sa contrepartie régularisée dite non-locale V̄ . Ce traitement non-local con-
siste généralement en une moyenne spatiale [Pijaudier-Cabot and Bažant, 1987,
Giry et al., 2011] ou une équation du second degré en espace [Peerlings et al.,
1996, Geers et al., 1998] où les longueurs peuvent être pondérées par les variables
d’état du système [Geers et al., 1998, Giry et al., 2011]. Les formulations de type
intégral et gradient s’écrivent respectivement

V̄(x) = 1
V0(x)

∫
Ω
V(ξ)α (x, ξ) dξ (1)

V0(x) =
∫

Ω
α (x, ξ) dξ (2)

et

V̄ − ∇ ·
(
b ∇V̄

)
= V (3)

où α est une fonction de poids qui décroit avec la distance entre les points x et ξ,
et a et b sont des fonctions dont le produit est homogène à une distance au carré.
On notera que α, a et b peuvent dépendre de l’état du matériau.

Les principaux avantages de ce type d’approches viennent du fait qu’elles sont
a priori compatibles avec n’importe quel modèle d’endommagement. De surcroît,
alors que le calcul de la moyenne spatiale empêche l’implémentation non intrusive
des modèles de type intégral, ce n’est pas le cas des approches de type gradient qui
s’y prêtent bien [Azinpour et al., 2018]. Pour cette raison, c’est ce type d’approche
qui sera étudiée dans la suite de ce travail.

Une alternative aurait pu être d’utiliser les approches de type Thick Level Set
[Moës et al., 2011] et Lip Field [Moës and Chevaugeon, 2021] qui visent à obtenir
des propriétés similaires en imposant directement la régularité de l’endommagement.

D’autres formulations auraient également pu être envisagées comme les ap-
proches énergétiques de type Phase Field [Miehe et al., 2010b] ou l’approche vari-
ationnelle de la rupture [Francfort and Marigo, 1998]. Elles visent à modéliser la



dégradation progressive d’un matériau en lien avec la mécanique de la rupture,
mais n’ont de fait pas vocation à être associées à des modèles d’endommagement.

Des approches visant à régulariser l’endommagement en limitant sa vitesse
d’évolution ont également été développées [Dubé et al., 1996, Allix and Deü, 1997],
mais elles sont surtout adaptées aux chargements dynamiques.

0.1.5 Les approches de type eikonales
Comme évoqué précédemment, un des principaux défauts des approches dites

non-locales vient du fait qu’elles ne rendent pas forcément une zone fortement
endommagée équivalente à une fissure. Des formulations où le traitement non-
local dépend de l’état du matériau (déformation, contraintes, endommagement)
ont ainsi été proposées pour pallier ce défaut.

On retrouve parmi ces approches les formulations dites eikonales dont l’idée
originale [Desmorat and Gatuingt, 2007] était d’utiliser des temps de propagation
au lieu de distances dans le calcul des traitements non-locaux. Ainsi, la fonction
de poids α ne dépend plus de la distance ‖x − ξ‖, mais du temps τxξ que met-
trait une onde mécanique pour relier les deux points. L’un des intérêts de cette
approche vient du fait que dans ce cas une fissure aurait le même impact sur le
traitement non-local qu’une zone fortement endommagée que les ondes ne peuvent
pas traverser.

Cependant, l’un des principaux défauts de cette approche vient de la nécessité
de calculer les temps de propagation entre tous les points à chaque pas de temps.
Une formulation alternative considérant un espace courbé par l’endommagement
a ensuite été proposée et associée à différents modèles d’endommagement avec
et sans plasticité [Jirásek and Desmorat, 2019]. Il a ainsi pu être montré qu’en
plus d’assurer un comportement réaliste et l’indépendance vis-à-vis du maillage
[Rastiello et al., 2018a], elle rendait une zone fortement endommagée équivalente
à une fissure. Malgré ces avantages, le temps de calcul associé à l’évaluation
des distances effectives restait très élevé, et cette approche souffrait toujours des
défauts associés aux approches intégrales en termes d’implémentation.

Pour toutes les raisons évoquées ci-dessus, il a été décidé dans cette thèse de
travailler avec une approche de type gradient qui dérive de cette formulation dite
eikonale [Desmorat et al., 2015].

Le travail présenté dans cette thèse vise donc à évaluer les propriétés de cette
nouvelle approche dite eikonale de type gradient, et notamment à évaluer sa capac-
ité à gérer la transition endommagement-fissuration en étant couplée à des modèles
d’endommagement avec et sans plasticité. Pour ce faire, le travail présenté dans
la thèse a comporté différents volets :

• Vérification de la possibilité d’implémenter la formulation de façon non-
intrusive dans un code commercial : conduite en 1D dans Abaqus ;

• Étude des propriétés de régularisation : conduite en 1D dans Abaqus et sur
des essais de flexion 3 points dans OOFEM ;



• Comparaison avec des formulations non-locales classiques : conduite en 1D
dans Abaqus, comparaison avec l’approche classique de type Peerlings et une
formulation basée sur les champs de phase ;

• Association avec différents modèles d’endommagement : modèle isotrope
sans plasticité utilisé dans Abaqus et dans OOFEM, et modèle avec plasticité
uniquement dans OOFEM après une étude analytique préliminaire visant à
évaluer l’apport potentiel de la plasticité.

La suite de ce document va présenter les principaux résultats issus de cette
thèse, et s’articule donc comme suit :

♦ Modèles d’endommagement non-locaux avec et sans plasticité

♦ Implémentation non-intrusive et propriétés dans un cadre unidimensionnel

♦ Introduction de la plasticité et analyse de localisation

♦ Simulations numériques en flexion 3-points avec OOFEM

0.2 Modèles d’endommagement non-locaux avec
et sans plasticité

Cette partie va présenter les modèles d’endommagement avec et sans plasticité
utilisés dans cette thèse, ainsi que les formulations non-locales associées.

0.2.1 Modèle d’endommagement isotrope sans plasticité
Le premier modèle considéré dans cette thèse est un modèle d’endommagement

isotrope sans plasticité avec adoucissement exponentiel, et où l’évolution de l’endommagement
est gouverné par la déformation équivalente de Mazars ε̂.

Le modèle local s’écrit ainsi :

σ = C̃ : ε = (1−D) C : ε (4)
ε̂ =

√
〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+ (5)

κ(t) = max
τ≤t

ε̂(τ) (6)

D = g(κ) =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(7)

Le modèle non-local associé est obtenu en conservant les équations (4), (5) et (7),
et en remplaçant la déformation équivalente ε̂ dans l’équation (6) par sa version
non-locale ε̄ calculée via :

ε̄− a ∇ · (b ∇ ε̄) = ε̂ (8)

On notera que dans le cas de l’approche eikonale étudiée ici, les fonctions a et b
sont définies comme a = c2(1−D)1/2 et b = (1−D)1/2.



0.2.2 Modèle d’endommagement isotrope avec plasticité
Il a été montré que pour prendre en compte les frottements à l’intérieur des fis-

sures, la modélisation de certains matériaux comme le béton nécessitait l’introduction
de déformations permanentes [Mazars et al., 1990]. Il a donc été décidé d’étudier
un second modèle où l’évolution de l’endommagement est cette fois gouvernée par
la déformation plastique cumulée. Ce modèle s’écrit ainsi :

σ = C̃ : (ε− εp) = (1−D) C : (ε− εp) (9)

ṗ =
√

2
3 ε̇

p : ε̇p (10)

κ(t) = p(t) =
∫ t

0
ṗ(τ)dτ (11)

(12)

où la déformation cumulée est calculée en utilisant le critère de Rankine ci-après

f (σ̃, p) = max (σ̃I , σ̃II , σ̃III)− σy(p) (13)
f ṗ = 0, f ≤ 0, ṗ ≥ 0 (14)

où la contrainte seuil est définie comme

σy(p) = σ0 +R(p) = σ0 +H p (15)

ce qui traduit un écrouissage isotrope. On notera que ce critère est basé sur la
contrainte effective σ̃ définie comme

σ̃ = σ

1−D = C : (ε− εp) (16)

pour prendre en compte la présence d’endommagement.
Enfin, pour en vue de faciliter la comparaison entre les deux modèles, l’évolution

de l’endommagement a été choisie de façon à ce que les deux modèles aient des
lois de contrainte-déformation équivalentes, ce qui donne :

D = g(κ) = 1− σ0

σ0 +Hκ
exp

(
−(1 +H/E)κ

εf − ε0

)
(17)

Là encore, la formulation non-locale est obtenu à partir du modèle local en
introduisant la variable non-locale dans a loi d’évolution de l’endommagement.
Dans le cadre de ce modèle, on conserve ainsi les équations (9) à (16), et on
remplace p dans l’équation (17) par la variable κ définie comme :

κ = m p̄+ (1−m)p (18)

La déformation plastique cumulée non-locale est ici déterminée en résolvant

p̄− a ∇ · (b ∇ p̄) = p (19)

où a et b sont toujours définies comme a = c2(1−D)1/2 et b = (1−D)1/2.



0.3 Implémentation non-intrusive et propriétés
dans un cadre unidimensionnel

La première étude menée sur la formulation eikonale visait à valider la faisabilité
d’une implémentation non-intrusive dans le logiciel commercial Abaqus. Cette
étude a été menée dans un cadre unidimensionnel en se concentrant sur le modèle
sans plasticité pour en évaluer les propriétés de régularisation. Les résultats ainsi
obtenus ont également été comparés à ceux obtenus avec la formulation classique
de Peerlings et avec une formulation basée sur une approche de type Phase Field.

L’implémentation non-intrusive dans Abaqus a été conduite en utilisant les simil-
itudes entre l’équation de la chaleur et l’équation de type gradient (8). Cette analo-
gie a permis de résoudre de façon monolithique le problème mécanique couplé au
non-local en utilisant le solveur thermomécanique d’Abaqus ainsi que les éléments
finis associés.

Le problème ainsi étudié est celui d’une barre en traction encastrée à une
extrémité et où le chargement est imposé via un élément spécifique (UEL) . Ce
choix a permis d’utiliser une méthode de pilotage global en dissipation, ce qui a
permis de mener à bien les simulations présentant des instabilités de type snap-
back en calculant la courbe de réponse associée.

Cette étude a notamment permis de montrer qu’en plus de pouvoir être im-
plémentée de façon non-intrusive, l’approche eikonale permet d’avoir un com-
portement réaliste et indépendant vis-à-vis du maillage. Il a également été mon-
tré qu’une zone fortement endommagée se comportait comme une fissure avec
un saut de déplacement et un profil d’endommagement qui se rétrécit lorsque
l’endommagement tend vers 1 comme on peut le voir sur la Figure 1.

(a) Saut de déplacement en milieu de barre. (b) Évolution du profil d’endommagement

Figure 1: Saut de déplacement et évolution du profil d’endommagement.

Cette première étude a ainsi permis de confirmer que l’approche dite eikonale
de type gradient possède toutes les propriétés identifiées comme caractéristiques
d’un "bon" modèle d’endommagement.



0.4 Introduction de la plasticité et analyse de
localisation

Après avoir validé les propriétés de l’approche eikonale associée au modèle
d’endommagement sans plasticité, une étude théorique a été menée pour évaluer
l’apport potentiel de l’introduction de la plasticité.

Un première analyse de localisation a ainsi permis de confirmer que les deux mod-
èles (avec et sans plasticité) fixent la taille de la zone dans laquelle l’endommagement
se localise. Elle a notamment permis de montrer que la taille des zones de locali-
sation initiales associées aux deux modèles diffèrent et dépendent des paramètres
associés aux lois gouvernant l’évolution de l’endommagement.

Une seconde étude théorique unidimensionnelle a ensuite été menée pour évaluer
l’influence de la plasticité sur la réponse lorsque la localisation se fait dans une
zone de taille fixe ou qui tend vers un point.

Il a ainsi pu être montré que la plasticité n’a pas d’influence sur la réponse
globale tant que la taille de la zone de localisation n’évolue pas. En revanche,
lorsque taille de la zone de localisation diminue, la présence de déformations per-
manentes limite l’ampleur de la décharge élastique et donc la fragilité de la réponse.
Il a également pu être montré que la fragilité de la réponse associée au modèle
d’endommagement avec plasticité peut être ajustée via le paramètre d’écrouissage
H.

0.5 Simulations numériques en flexion 3-points
avec OOFEM

Après avoir montré dans un cadre unidimensionnel que l’approche eikonale avait
toutes les propriétés attendues d’un bon modèle d’endommagement, il est néces-
saire de passer à des chargements plus complexes comme la flexion 3-points. Cette
étude, conduite dans le code élément fini OOFEM à l’occasion de deux séjours de
recherche à la Czech Technical University de Prague où il est développé a également
été l’occasion d’évaluer les propriétés du modèle avec plasticité.

L’étude menée avec le modèle sans plasticité a permis de montrer que malgré
la fragilité de la réponse, les résultats obtenus étaient bien indépendants vis-à-vis
du maillage. On notera toutefois que le pilotage en déplacement utilisé pour ces
simulations n’a pas permis d’obtenir les courbes de réponse complètes en raison
de l’occurrence de snap-backs. En outre, il a pu être vérifié que la localisation a
lieu dans des zones de plus en plus étroites lorsque l’endommagement tend vers 1.

Pour ce qui est du modèle avec plasticité, il a pu être montré que les résultats
associés étaient indépendant du maillage et que la zone fortement endommagée
se comportait comme une fissure avec une localisation dans une bande de plus en
plus étroite. Comme on peut le voir dans la Figure 2, une fois apparue, cette zone



s’est propagée au travers de la barre en flexion, reproduisant ainsi la propagation
d’une fissure et la perte de rigidité associée.

(a) Endommagement.

(b) Déformation plastique cumulée.

Figure 2: Cartes finales d’endommagement et de déformation plastique cumulée.

Les études menées dans OOFEM ont donc permis de confirmer que l’approche
eikonale de type gradient avait bien les propriétés attendues, et ce, qu’elle soit
associée à des modèles d’endommagement avec ou sans plasticité.

0.6 Conclusion
Après avoir détaillé les principaux défauts des modèles d’endommagement lo-

caux et non-locaux, cette thèse a tout d’abord proposé une liste de propriétés pou-
vant caractériser un bon modèle d’endommagement. Une nouvelle formulation de
type gradient dite eikonale a ensuite été proposée et étudiée de façon à démontrer
qu’elle pouvait être utilisée pour gérer la transition endommagement-fissuration.

Pour ce faire, la formulation obtenue en couplant cette approche à un modèle
d’endommagement isotrope a été implémentée de façon non-intrusive dans Abaqus
en utilisant une analogie thermomécanique et un pilotage en dissipation globale.
Une étude uni-dimensionnelle a ensuite été menée dans Abaqus pour vérifier que
cette approche avait bien toutes les propriétés attendues d’un "bon" modèle.

Une étude théorique a ensuite été menée, toujours dans le cas unidimension-
nel, pour s’assurer analytiquement que les formulations obtenues en couplant
l’approche dite eikonale à deux modèles d’endommagement avec et sans plastic-
ité imposaient bien la taille de la zone de localisation. Ces études ont également
permis d’évaluer l’apport de l’introduction de la plasticité, notamment en ce qui
concerne la fragilité de la réponse du matériau.

Enfin, ces formulations ont été implémentées dans le code de calcul OOFEM.
Cela a permis de confirmer les propriétés de cette approche lors de la simulation
d’essais de flexion 3-points avec deux modèles différents, et notamment le fait
qu’elle permet de rendre une zone fortement endommagée équivalente à une fissure.

On peut donc en conclure qu’il est possible d’utiliser l’approche de type gradient
dite eikonale pour gérer la transition endommagement fissuration.





Introduction

While most systems are designed in a way that should prevent the occurrence
of any degradation phenomenon under nominal loading, one still needs to be able
to accurately model material failure.

As it is, to prevent dramatic events, critical systems are usually designed with
huge margins to ensure that they remain well within the elastic domain, which
induces additional costs and restrictions. This tendency concerns a wide range
of applications from planes to nuclear power plants, including bridges and hydro-
electric dams, but also more conventional applications such as cranes and hoisting
systems.

For example, when following the rules set by the European material handling
federation (FEM) [ANO, 1998] to design a hoisting system, one needs to ensure
that it matches a certain number of requirements. These requirements mainly
consist of having certain margins regarding the elastic limit for different loading
cases corresponding to different scenarios. Based on empiric results, this approach
is supposed to ensure that the system will not suffer any degradation due to fatigue
or specific incidents like wire failure.

However, it does not provide any knowledge about what happens on the mate-
rial level, especially in the presence of defects. It thus cannot give any hindsight
regarding the possible failure mechanisms. Those shortcomings can be pretty prob-
lematic, namely on the occurrence of an unexpected event or when the system does
not behave as expected. In such cases, especially for critical and expensive sys-
tems, one needs to know whether degradation phenomena did or will occur and
how likely they are to induce a system failure.

Aeronautics applications illustrate this phenomenon well since small cracks can
always be found on aeroplanes. This well-known phenomenon raises the question
of damage tolerance: levels of microcracking are inevitable and acceptable, but one
needs to know how and when they will become problematic. Then, the question is
not to determine whether cracks will appear but rather where and how dangerous
they will be. The same can be said about hydroelectric dams that cannot be re-
placed whenever a crack appears and for which specific fracture studies had to be
conducted [Linsbauer et al., 1989a, Linsbauer et al., 1989b]. Proper material mod-
elling is also crucial when optimising critical systems, especially when designing
their maximum load and lifespan. As an example, despite the 7.2 billion passen-
gers expected in 2035 [IAT, 2016], the Advisory Council for Aviation Research and
Innovation in the EU (ACARE) aims to cut the CO2 and NOx emissions by 75%
[ACA, 2014]. To achieve this goal, one would need to use more efficient materials
and technologies that will have to be precisely validated. Accurate modelling of
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the material’s behaviour, including its possible failure, is thus critical to optimise
the design and reduce the cost by replacing experimental testing with numerical
testing at structural load.

The consideration regarding replacing experimental testing with numerical sim-
ulations is particularly relevant in fields where few to no experimental results are
available. Apart from the aeronautic applications, this is also true for the nuclear
field, where one cannot always reproduce the exact conditions corresponding to
an accidental situation to see what would happen. However, for safety reasons,
one still has to know what would happen if one of the systems fails. This in-
sight is usually achieved using models representing the physics of the material and
calibrated using dedicated experimental testing. Provided that the models are
accurate enough, they can then be used to correctly understand what happens
during both incidental and accidental situations.

As pointed out, this general concern is especially relevant in the nuclear field.
Accident situations such as Loss of Cooling Accidents (LOCA) and Reactivity
Initiated Accidents (RIA) can have dramatic consequences and need to be correctly
understood. For example, Pellet-Cladding Mechanical Interactions, which can
occur during an RIA and compromise the fuel’s structural integrity, involve many
mechanisms, including cracking, that must be accurately modelled.

It is worth noting that those considerations apply not only to new systems
but also to existing ones, namely when changing their loading conditions or in-
creasing their lifespan. While the latter mainly deals with the detection and the
propagation prediction of existing cracks, the former might include completely dif-
ferent solicitations linked to the emergence of new threats such as tsunamis or
plane crashes. In such cases, one can wonder whether the system would withstand
the new load and how it would behave since it was not designed accordingly. A
precise understanding of the failure mechanisms is thus mandatory to assess the
risks induced by a potential local failure of the system. For example, apart from
their capacity to produce electricity, the potential failure of hydroelectric dams
and nuclear power plants can have dramatic consequences, such as the release of
radioactivity or vast amounts of water, which would induce substantial losses both
human and material.

One can thus conclude that the proper and physical modelling of material
failure is critical for designing and studying both new and existing systems. Due
to the variety of concerned applications, this issue needs to be addressed for a wide
range of materials (e.g. concrete, metallic and composites) and solicitations (e.g.
fatigue, quasi-static and dynamic loadings).

The most classical way to answer the question of whether a crack will propagate
is to use the Linear Elastic Fracture Mechanic. This approach, based on the
pioneering works of Griffith [Griffith, 1921], Irwin [Irwin, 1957], and Rice and
Tracey [Rice and Tracey, 1969], uses propagation criteria based on stress intensity
factors and elastic energy release rate.

Despite the maturity acquired by its long history, this approach still suffers
from several deficiencies, the most problematic one being the need for a priori
knowledge regarding the crack location. As it is, one can only use it to handle



existing cracks and to predict whether they will propagate, but not to predict crack
initiation. Moreover, the need to work with existing discontinuities embedded in
an elastic material can be problematic in finite element applications since one
cannot accurately model crack propagation either. A direct consequence of these
drawbacks is that it does not model the progressive loss of material properties
inherent to the progressive nucleation and coalescence of voids and micro-defects.

Part of this issues can be addressed by using the so-called extended (XFEM [Be-
lytschko and Black, 1999, Moës et al., 1999]) and generalized (GFEM [Strouboulis
et al., 2000, Strouboulis et al., 2001]) Finite Element Methods, based on the par-
tition of unity [Melenk and Babuška, 1996], along with fracture mechanics. Such
methods, using additional degrees of freedom defined with enrichment functions,
allow the representation of evolving discontinuities through finite elements without
a priori knowledge regarding their location. Though such models were initially de-
signed for the sole geometrical description of discontinuities, they can be coupled
with material laws to bring additional knowledge regarding crack behaviour.

Another option would be to use Cohesive Zone Models [Dugdale, 1960, Baren-
blatt, 1962] which allow the definition of a stress-displacement law across a cracked
element but requires a priori knowledge of the crack path to position the cohesive
elements accordingly.

Finally, an alternative way to model the progressive degradation of materials
up to failure is to use the Continuum Damage Mechanics formalism [Marigo, 1981,
Mazars, 1984, Lemaitre and Chaboche, 1994], which will be done here. The main
advantage of such formulations is that they allow continuous modelling of failure,
including crack initiation and propagation, without any initial knowledge regarding
the crack.

In addition to these considerations, other properties can be expected from a
model handling material failure and that are compatible with the Continuum Dam-
age Mechanics framework.

First, one could expect such a model to take into account crack closure and the
associated partial stiffness recovery [Ladeveze and Lemaitre, 1984, Ladeveze, 1990,
Mazars et al., 1990, Chaboche et al., 1994, Cantournet et al., 2009]. While this
comes naturally with the LEFM approach, it is not a standard feature of isotropic
damage models and thus requires specific attention. In some cases, such as the
phase-Field models [Miehe et al., 2010b], this is achieved through the isotropic
degradation of the "positive" elastic energy while the "negative" part remains
unaffected [Ladeveze, 1983]. One can note that, while these approaches allow for
the modelling of crack closure, the LEFM only considers existing cracks, i.e. it
does not consider micro-cracking. Moreover, isotropic modelling, even with crack
closure, does not consider the micro-cracks orientations. Thus, a tensile loading in
a given direction can induce material degradation in orthogonal directions.

This issue could be addressed, taking into account the anisotropy of the micro-
cracking path, by using tensorial damage [Suaris and Shah, 1984, Chaboche, 1981,
Cordebois and F., 1982, Ladeveze, 1983, Mazars et al., 1990, Papa and Taliercio,
1996, Murakami and Kamiya, 1997, Halm and Dragon, 1996, Fichant et al., 1997,
Lemaitre et al., 2000, Badel et al., 2007]. To remain thermodynamically consistent,



those models should use a single variable per degradation mechanism to represent
damage, which can be either an eighth order tensor [Chaboche, 1978, Chaboche,
1979], a fourth-order tensor [Chaboche, 1978, Chaboche, 1979, Chaboche, 1984,
Leckie and Onat, 1981, Andrieux et al., 1986, Ju, 1989, Kachanov, 1993, Zheng
and Collins, 1998, Ladeveze, 2002, Cormery and Welemane, 2010, Dormieux and
Kondo, 2016], or a symmetric second-order tensor [Vakulenko and Kachanov, 1971,
Murakami and Ohno, 1978, Cordebois and F., 1982, Ladeveze, 1983, Murakami,
1988]. It is worth noting that some formulations use a scalar damage variable
associated with a single vector to describe pre-existing cracks (e.g. [Andrieux
et al., 1986]) and can thus only account for a single crack orientation.

Besides, while there exists a wide range of models using a second-order dam-
age tensor [Murakami, 1988, Kattan and Voyiadjis, 1990, Ramtani et al., 1992,
Papa and Taliercio, 1996, Halm and Dragon, 1998, Steinmann and Carol, 1998,
Lemaitre et al., 2000, Carol et al., 2001, Menzel and Steinmann, 2001, Men-
zel et al., 2002, Brünig, 2003, Lemaitre and Desmorat, 2005, Desmorat et al.,
2007a, Badel et al., 2007, Desmorat and Otin, 2008, Desmorat, 2015], which can
be partially unified in a single model [Ladeveze, 1983, Ladeveze, 1995], a new
general micro-mechanics based framework was recently introduced in [Desmorat
et al., 2018]. Moreover, the physical consideration of induced anisotropy [Desmorat,
2004, Desmorat et al., 2007a, Desmorat, 2015] allows for the reduction of the oth-
erwise prohibitive number of material parameters while remaining thermodynam-
ically consistent [Desmorat, 2006].

A common shortcoming of the so-called pure damage models lies in their inabil-
ity to capture the fact that some materials, such as concrete, exhibit permanent
strain [Terrien, 1980, Mazars et al., 1989, Mazars et al., 1990] due both to dis-
sipation linked to crack friction and to imperfect crack closure. This issue, first
addressed with models involving only plasticity [William and Warnke, 1975, Or-
tiz, 1985, Voyiadjis and Abu-Lebdeh, 1994, Feenstra and Borst, 1996], can be
addressed with the so-called damage-plastic models [Lemaitre, 1985, Lemaitre and
Chaboche, 1985, Andrieux et al., 1986, Simo and Ju, 1987b, Ju, 1989, Govind-
jee et al., 1995, Feenstra and Borst, 1996, Meschke et al., 1998, Burlion et al.,
2000, Nechnech et al., 2002, Gatuingt and Pijaudier-Cabot, 2003, Lemaitre and
Desmorat, 2005, Jason et al., 2006, Grassl and Jirásek, 2006, Grassl and Jirásek,
2005, Desmorat et al., 2007b, Matallah and Borderie, 2009, Lemaitre et al., 2009],
using the plasticity framework coupled with damage. Following the work done
by [Herrmann and Kestin, 1988], one could also consider handling the permanent
strain issue by using damage-driven permanent strain [La Borderie, 1991, Halm
and Dragon, 1998, Desmorat, 2004, Lebon, 2011, Matallah and Borderie, 2009] in-
stead of plasticity-driven damage. It is worth noting that, while dedicated models
using plasticity without damage were historically developed to handle these phe-
nomenons in concrete, one can also stick to the elasto-damage framework [Mazars,
1984] for the sake of simplicity and efficiency.

The last specificity of concrete that should be modelled is the rate dependency
of its behaviour, namely the increase of material’s strength with the strain rate



[Bischoff and Perry, 1991, Brara et al., 1997, Brara and Klepaczko, 1997], which was
first handled by introducing dynamics within the continuum damage framework
[Taylor et al., 1986]. Delay (or visco) damage was successfully used to reproduce
such a behaviour [Simo and Ju, 1987a, Simo and Ju, 1987b, Pontiroli, 1995, Dubé
et al., 1996, Allix and Deü, 1997, Sercombe et al., 1998, Gatuingt and Pijaudier-
Cabot, 2001, Allix et al., 2003, Pedersen et al., 2008, Häußler-Combe and Kitzig,
2009], but also to reproduce the effect of dynamics on fragmentation [Denoual and
Hild, 2000]. It is worth noting that a side effect of such models is the fact that
they introduce additional dissipation and could thus have a spurious stabilising
effect.

It thus seems that most of these properties can be obtained using a dedicated
damage model. However, as discussed in [Bažant, 1976, Bažant and Belytschko,
1985, Pijaudier-Cabot and Bažant, 1987], these so-called local damage models suf-
fer from the same deficiency, namely the fact that the size of the area where damage
localises is not well fixed. When implementing such models in classical finite el-
ements codes, one can thus observe that localisation occurs in a single element.
This phenomenon induces a spurious mesh dependency and convergence toward a
physically unrealistic solution with zero dissipated energy when the element size
tends to zero.

Starting with [Pijaudier-Cabot and Bažant, 1987], and as detailed in the review
[Bažant and Jirásek, 2002], nonlocal models were thus introduced to address this
issue, the idea being to impose the size of the localisation area by introducing an
internal length in the damage evolution law. This was initially done by replacing
a damage driving variable with its nonlocal counterpart, i.e. its weighted average
over a finite zone. Such formulations, physically motivated [Bažant, 1991, Bažant,
1994, Bažant and Jirásek, 1994, Pijaudier-Cabot et al., 2004], allow convergence
toward solutions with a finite and non-zero dissipated energy [Pijaudier-Cabot
and Benallal, 1993]. However, their implementation might not be practical in
commercial finite element software due to the computation of the weighted av-
erage over the numerical neighbourhood. Gradient-type formulations [Aifantis,
1987, Frémond and Nedjar, 1996, Peerlings et al., 1996] deriving from the original
formulation [Pijaudier-Cabot and Bažant, 1987] were thus proposed, and the im-
plicit ones were shown to have similar properties to those of the original nonlocal
model [Peerlings et al., 2001].

It is worth noting that, while such formulations offer a proper way to handle
the spurious mesh dependency under quasi-static loading, rate-dependent models
could provide similar regularisation properties in the case of dynamic loading. As it
is, it was shown that introducing a time dependency in the degradation mechanism
of both plastic [Needleman, 1988] and damage [Taylor et al., 1986, Dubé et al.,
1996, Ladeveze, 1991, Eibl and Schmidt-Hurtienne, 1999, Hervé et al., 2005] models
was equivalent to introducing an internal length and thus helped to handle the
mesh sensitivity when taking into account the inertial term. Similar regularisation
properties were also obtained by introducing a saturation (bounding) effect in
damage evolution rate [Allix and Deü, 1997, Allix et al., 2003].

Nonlocal treatments were successfully applied to anisotropic damage models



[Desmorat and Gatuingt, 2007], damage-plastic models [Jirásek and Desmorat,
2019], and even bounded rate anisotropic damage models [Desmorat et al., 2010a].
The resulting formulations, namely nonlocal anisotropic damage models, nonlocal
damage-plastic models, and nonlocal anisotropic bounded-rate damage models,
were shown to exhibit the properties associated with each of their constitutive
models.

Thus, continuum damage associated with nonlocal treatment might be an ex-
cellent way to handle material failure, especially when associated with anisotropy,
plasticity, and rate dependency.

The goal of this thesis was thus to work on the implementation and analysis
of a new eikonal-based gradient-type formulation and to compare it with classical
gradient-type formulations.

Despite their advantages, the so-called nonlocal formulations usually suffer from
certain deficiencies linked to boundary conditions [Borino et al., 2003, Krayani
et al., 2009, Bažant et al., 2010, Pijaudier-Cabot and Dufour, 2010, Giry et al.,
2011], size effect [Bažant, 1976, Jirásek et al., 2004, Krayani et al., 2007], and
initiation and propagation of damage [Simone et al., 2004]. Moreover, when ap-
plied to models where the nonlocal equivalent strain drives damage, the standard
approaches [Pijaudier-Cabot and Bažant, 1987, Peerlings et al., 1996] exhibit a
spurious expansion of the damage profile at the late stages of failure. Another
problematic issue associated with these damage models is linked to the fact that,
physically, no interaction should exist between two points located on opposite
sides of a crack. However, while this requirement can be met with gradient-type
formulations, it does not come naturally with the standard averaging, and some
specific care needs to be taken. One way to do so is to change how the interac-
tion distances are computed by choosing the shortest path that does not cross the
crack. Such a method, called visibility check [Belytschko et al., 1996], was used
successfully with the element-free Galerkin method [Belytschko et al., 1994, Lu
et al., 1994, Belytschko et al., 1995], which is beyond the scope of this thesis.

To address those issues, nonlocal damage models with evolving internal length
based on stress [Giry et al., 2011, Vandoren and Simone, 2018], strain [Geers
et al., 1998, Pijaudier-Cabot et al., 2004, Saroukhani et al., 2013] and damage
[Simone et al., 2003, Pijaudier-Cabot et al., 2004, Pijaudier-Cabot and Dufour,
2010, Desmorat et al., 2010b, Nguyen, 2011] were proposed by a number of authors.
Variational approaches [Francfort and Marigo, 1998, Bourdin et al., 2000, Bourdin
et al., 2008], shown to converge toward Griffith theory [Bourdin et al., 2000], and
Phase Field models [Miehe et al., 2010b, Miehe et al., 2010a, Miehe et al., 2015]
were also introduced with the same purpose. Such models could work as efficient
localisation limiters by successfully bridging the gap between continuum damage
and fracture mechanics, matching the physical expectation that interactions tend
to vanish when the damage gets close to 1.

A new type of nonlocal formulation was introduced in [Desmorat and Gatu-
ingt, 2007, Desmorat and Gatuingt, 2010], replacing the interaction distance in
[Pijaudier-Cabot and Bažant, 1987] with a propagation time. The idea was to use



the reduction of the elastic wave speed in a damaged material to create damage-
dependent interactions, making a highly damaged zone equivalent to a crack. An
equivalent formulation, using effective distance instead of propagation time, was
then proposed in [Desmorat et al., 2015] and used with different damage mod-
els [Rastiello et al., 2018a, Rastiello et al., 2018b, Jirásek and Desmorat, 2019].
Those effective lengths are computed as a geometric distance between two points
in a space curved by damage through a Riemannian metric up to complete mate-
rial failure. Following the work done in [Peerlings et al., 1996], the gradient-type
formulation studied here was also proposed in [Desmorat et al., 2015] to avoid the
drawbacks associated with integral formulations and is expected to have compara-
ble properties.

Other formulations such as the crack-band theory [Bažant and Oh, 1983] and
the Thick-Level-Set method [Moës et al., 2011, Moës et al., 2014] were also de-
veloped by a certain number of authors to handle damage evolution but were not
studied in this work which focuses on gradient-type nonlocal models. It is worth
noting that an equivalent formulation of the Thick-Level-Set approach, using a
differential equation, was also proposed [Frémond and Stolz, 2017] but will not be
treated here. One can also note that, following this work, a more straightforward
approach was also proposed in [Moës and Chevaugeon, 2021], the idea being to
impose a Lipschitz condition on the damage field to prevent sharp discontinuities.
Another way to handle fracture from continuous modelling could be, following the
work presented in [Legrain et al., 2007, Dufour et al., 2008, Dufour et al., 2010],
to locate a crack from an internal variable field and then estimate its opening.

As pointed out before, the implementation of nonlocal damage models usually
raises numerical issues, linked either to the averaging process or to the need for solv-
ing an additional differential equation. The latter usually requires the creation of
dedicated elements with additional, nonlocal degrees of freedom and corresponding
numerical solvers ([Molnár and Gravouil, 2017]). To facilitate the implementation,
it was proposed in [Azinpour et al., 2018] to use the thermo-mechanical solver em-
bedded in the Abaqus software to solve this nonlinear problem, using the degrees
of freedom associated with temperature for the nonlocal variable. It is worth not-
ing that while the non-intrusive implementation allows the use of all the standard
features coming with commercial software, the use of a dedicated one allows the
creation of dedicated tools that might be more efficient and more practical. Both
strategies thus have their advantages and drawbacks, especially when considering
the possibility of using dedicated tools in an open-source finite element code such
as OOFEM, and will be studied here.

Another issue that may arise when using damage models with strain softening
is the occurrence of instabilities (e.g. snap-backs), which needs to be handled with
a dedicated driving strategy. Experimentally, the occurrence of such instabilities
would correspond to a vertical drop in the load-displacement curve, which cannot
be reproduced using the considered strain softening models since they do not ac-
count for any dynamic effects. The difference between the dissipation associated
with the expected curve with a vertical drop after the peak and that associated



with the one exhibiting a snap-back is thus linked to the kinetic energy, which is
not modeled here. While taking it into account might look like an excellent way
to address the snap-back issue, it would require using a dedicated, dynamic solver
while the rest of the equations are in a quasi-static framework.

A certain number of authors have thus looked for a way to compute the full
response curve [Riks, 1979, Ramm, 1981, Crisfield, 1991, de Borst, 1987, Geers,
1999b, Geers, 1999a, Simo et al., 1986], indirectly controlling the evolution of the
load by imposing the increase of a given quantity, usually linked to failure. It
was recently proposed [Gutiérrez, 2004, Verhoosel et al., 2009] to keep this idea
of an indirect (arc-length) control and apply it to a global quantity by imposing
increments of the total dissipated energy. It is worth noting that, while those
approaches allow the computation of the "at equilibrium" response with the dissi-
pated energy dictated by the material behaviour, they do not necessarily allow the
computation of the macroscopic response, especially in the presence of snap-back.

One way to handle this issue would be to renounce the computation of the ex-
act dissipation and use a fictive path algorithm [Michel et al., 2018] to handle the
unstable part of the loading. Similar results could also be obtained by increasing
the dissipated energy using a rate-dependent damage model [Miehe et al., 2010a].
It is worth noting that, in such cases, the additional dissipation would correspond
to the kinematic energy that would have been introduced through dynamic com-
putations.

The main issue linked to material failure, along with additional considerations,
was highlighted in this introduction. The work presented in this thesis, which was
partly prepared at the Czech Technical University in Prague under the supervision
of Professor Milan Jirásek, will thus unfold according to the following outline.

Chapter 1 : The first chapter will deal with the classical ways to handle material
failure before focusing on the continuum damage framework. The issues associated
with this type of model, along with the classical ways to handle them, will then be
studied after defining what will be considered here as the properties of a "good"
damage model. It will end by presenting the eikonal and eikonal-based formulation,
focusing on how to get the gradient-type model considered here.

Chapter 2 : The second chapter will focus on the non-intrusive implementation
in the Abaqus software of gradient-type formulations, including the eikonal-based
gradient. Using a dissipation-based driving strategy, this implementation will then
be used to assess the properties of the considered formulations.

Chapter 3 : The third chapter will focus on the study of an isotropic damage
model and an isotropic damage-plastic model to see how plasticity’s introduction
affects material behaviour. After conducting this study on a material point, it will
deal with the influence of plasticity on both localisation and structural response
for a bar submitted to tension.



Chapter 4 : The fourth chapter will deal with the variational formulation associ-
ated with the previous isotropic damage and damage-plastic models coupled with
the eikonal formulation before focusing on their implementation in the OOFEM
finite element code.
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This chapter will present an overview of the classical methods that can be used
to handle material failure. In particular, it will present what will be considered
here as the properties of a good damage model, and help justify the choice of a
gradient-type nonlocal formulation with damage-dependent interactions for this
study.

1.1 General framework and associated notations
The aim of this part is to present the general framework and notations that will

be used throughout the thesis. To do so, it will thus begin with some mathemat-
ical notations, before introducing the continuum mechanics framework through a
classical example.

1.1.1 General notations
Throughout this thesis, the following conventions will be used when describing

scalar or tensorial variables and parameters
• a will stand for a scalar

• A will stand for a first or second order tensor

• 1 will stand for the second order identity tensor

• C will stand for a fourth order tensor

• I will stand for the fourth order identity tensor
The-so called Einstein index notations will also be used, namely
• ui will stand for a term of the first order tensor u

• σij will stand for a term of the second order tensor σ

• Cijkl will stand for a term of the fourth order tensor C
along with the associated summing convention, giving for indexes going from 1 to
3

aii = a11 + a22 + a23 (1.1)
The following time-derivative convention will also be used here,

ȧ = ∂a

∂t
, ä = ∂2a

∂t2

along with the spatial one

a,x = ∂a

∂x
, a,xy = ∂

∂y

(
∂a

∂x

)
= ∂2a

∂y∂x

which gives in index notations

ai,j = ∂ai
∂xj

, ai,jk = ∂

∂xk

(
∂a

∂xj

)
= ∂2a

∂xk∂xj

where xj is the jth spatial coordinate.



In addition to these general conventions, the following notations will also be
adopted for linear algebra

• tr(A) will denote the trace of the second order tensor A, i.e. tr(A) = Aii

• tA will denote the transpose of the second order tensor A, i.e. tAij = Aji

• A⊗B will stand for the tensorial product defined by

C = A⊗B ⇔ Cijkl = AijBkl

• A⊗B will stand for the tensorial product defined by

C = A⊗B ⇔ Cijkl = 1
2 (AikBjl + AilBjk)

The following notations will also be adopted for the parameters describing the
properties of an undamaged material

• E will stand for a material’s Young modulus

• ν will stand for its Poisson ratio

• λ and µ will stand for the Lamé’s parameters

• ρ will stand for its density

Finally, the following notations will be used for the divergence and gradient
operators

• ∇ ·A will denote the divergence of the tensor A, div(A)

• ∇B will denote the gradient of the scalar B, grad(B)

• ∇A will denote the gradient of the tensor A, grad(A)

1.1.2 Continuum mechanics framework
First, let us consider a deformable and originally homogeneous and isotropic

media Ω, along with its boundary ∂Ω. In the framework of continuum mechanics
that will be used here, three kinds of loading can be applied to it (Figure 1.1)

• imposed displacement ud on part of the boundary ∂Ωu

• applied surface force T d on part of the boundary ∂ΩF

• applied volume force f v throughout the entire body Ω
Let us then denote u(M) the displacement at a given point M of Ω, and

σ(M) the stress state, represented by Cauchy’s tensor, at this point. The loadings
introduced would then induce the following boundary conditions on u and σ

u(M) = ud(M), ∀M ∈ ∂Ωu (1.2)
σ(M) · n(M) = T d(M), ∀M ∈ ∂ΩF (1.3)

where n(M) stands for the normal to ∂ΩF at point M .
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Figure 1.1: Volume forces and boundary conditions applied to Ω

In this framework, the equilibrium equation writes

∇ · σ + f v = ρü (1.4)

and becomes for a quasi-static modelling, i.e. neglecting the inertia terms,

∇ · σ + f v = 0 (1.5)

At this point, to solve the mechanical problem, i.e. to find a displacement
field u such that equations (1.5), (1.2) and (1.3) are verified, one needs to define
the link between the stress field σ and the displacement field u. Under the small
strain assumption, σ is usually computed from the strain tensor ε, defined as the
symmetric part of the displacement’s gradient.

It is worth noting that, for the problem to be well-posed, both force and dis-
placement cannot be imposed simultaneously, i.e. ∂Ωu ∩ ∂ΩF = ∅. One can
also note that, when no condition is imposed in part of the boundary, it will be
considered as a free boundary, i.e. σ ·n = 0, thus ensuring that ∂Ωu ∪ ∂ΩF = ∂Ω.

The problem on which this thesis focuses is, in this general framework, how can
one predict the occurrence and the propagation of cracks within Ω.

1.2 Fracture mechanics
This part will first deal with the most classical way to address structural failure,

namely the linear elastic fracture mechanics approach.

1.2.1 Experimental observations and notations
Before moving to the theoretical aspects of this problem, this part will focus on

qualitative results to get some hindsight on what can be expected.
A well-known result of fracture mechanics, which can be observed with pho-

toelasticity, is the fact that stresses tend to concentrate at the crack tip. Without
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Figure 1.2: General case of a crack embedded in an elastic solid Ω

any knowledge regarding the associated criterion, one can still get an idea on the
crack path since it can be expected to go through areas of higher tensile stress.

A simple 2D experiment, stretching a sheet of paper with embedded notches,
both horizontal and tilted, can be conducted to assess the relevance of this natural
assumption. A kinking will then be observed in the crack path following the tilted
notch in order to realign with a horizontal propagation. One can thus observe that,
beside the fact that a notched sheet is much easier to tear than an virgin one, a
crack will tend to propagate under an opening mode.

On the other hand, when considering a 3D problem with an out-of-plane load-
ing such as a tube with a horizontal crack submitted to torsion, the crack can be
expected to propagate horizontally in a tearing mode instead of an opening one.

This part will present the most classical way to explain these observations,
namely the linear elastic fracture mechanics.

1.2.2 Principle and general ideas
Considering the general case of a crack embedded in an elastic solid (Figure 1.2),

the goal of the linear elastic fracture mechanics is to answer the three following
questions

• under which condition

• in which direction

• along which distance

will the crack propagate.
One can note that any crack can be seen as a combination of three elementary

cracking modes which can be defined by the relative displacements of the crack’s
lips with respect to the crack plane, or by the stress state, as

• mode I, or opening mode: tensile stress normal to the crack plane

• mode II, or sliding mode: in-plane shear stress



• mode III, or tearing mode: out-of-plane shear stress

It can be shown that, in a linear elastic media, stresses tend to diverge in 1/
√
r

near the crack tip, where r is the distance to the tip, where the material will dam-
age. This damaging area, located behind the so-called process-zone, corresponds
to the area where the material response is no longer elastic, and where the crack
will propagate.

In the case of brittle fracture, this zone remains rather small, and the mate-
rial can be seen as mainly elastic, with a stress amplification near the crack tip.
This local amplification can be modelled using the three stress intensity factors
corresponding to each cracking modes.

1.2.3 Crack propagation criterion
While a crack can propagate continuously, at a rate proportional to the loading,

e.g. in fatigue, we will here focus on the instantaneous propagation associated
with brittle fracture. In that case, one needs to define a threshold beyond which
the crack will propagate.

Such a criterion was first proposed by Griffith [Griffith, 1921], and is still widely
used. It states that a given crack will propagate if and only if the energy G released
by the crack propagation is greater than the fracturing energy Gc needed to create
new surfaces. Simply put, on gets{

G < Gc ⇒ no crack propagation
G = Gc ⇒ the crack propagates

(1.6)

It is worth noting that this only provides a global energy-based criterion for
crack propagation, with no indication on how it will propagate locally. To address
this issue, Irwin later proposed [Irwin, 1957] a link between the energy release rate
G and the Stress Intensity Factors in order to get a more local criterion. This later
allowed him to propose a new propagation criterion for mode I fracture based on
the stress intensity factors [Irwin, 1958], thus introducing a new material property:
the fracture toughness Kc.

This new criterion stated that, for a given crack to propagate in mode I, the
associated stress intensity factor KI had to overcome the local material toughness,
i.e. {

KI < Kc ⇒ no crack propagation
KI = Kc ⇒ the crack propagates

(1.7)

It is worth noting that, since this local criterion only considers the stress intensity
factor associated with mode I, it cannot predict any kinking linked to mixed mode
propagation.

In the end, though both criteria can be used to determine whether a crack will
propagate or not, they are not sufficient to predict the direction of its propagation



1.2.4 Prediction of the crack path
Now that we have seen how to predict whether an existing crack will propagate

or not, it is important to know how, and especially where, it will propagate. The
question of crack branching being an important issue, three main criterion have
been proposed to handle it, namely

• the maximum tangential stress [Erdogan and Sih, 1963]

• the maximum energy release rate [Erdogan and Sih, 1963]

• the principle of local symmetry [Gol’dstein and Salganik, 1974]

The first criterion, proposed by Erdogan and Sih [Erdogan and Sih, 1963], is
based on the idea that the crack opening is mainly induced by the tangential
stress σθθ. Assuming that the crack is more likely to propagate in the direction
that favors its opening, this criterion states that it will tend to realign with the
direction that maximizes the tangential stress.

A second criterion, based on similar considerations but using Griffith criterion
instead of tangential stress, was also proposed by Erdogan and Sih [Erdogan and
Sih, 1963]. It states that the crack will most likely propagate in the direction
where the energy release rate first reaches the fracture energy, and that it will thus
tend to realign with the direction that maximizes G.

The last criterion, proposed by Gol’dstein and Salganik [Gol’dstein and Sal-
ganik, 1974] is based on the principle of local symmetry, and states that a crack
will tend to realign with the direction for which KII will be equal to 0. Though
the physical ground for this criterion is not as straightforward as for the others,
its main advantage comes from the fact that it is the only one who predicts C∞
crack paths.

All those criteria were studied and compared in [Amestoy and Leblond, 1992]
and later in [Leblond, 2003]. They did not show quantitative differences, especially
compared to the experimental uncertainties.

It is worth noting that energy-based criteria can also be used to predict crack
propagation, including the cracking path, in architectured material [Glacet et al.,
2018], namely by considering the energy stored in each beam of a given lattice.

Using the linear elastic fracture mechanics, one can thus predict whether an ex-
isting crack will propagate and, using an additional numerical treatment, whether
the propagation crack will exhibit branching. However, it cannot be used to model
a crack initiation, nor the associated progressive loss of stiffness due to the appear-
ance and coalescence of micro defects.

To address this issue, a new variational theory of fracture mechanics was thus
proposed by Francfort and Marigo in [Francfort and Marigo, 1998]. Following the
work of [Ambrosio and Tortorelli, 1990, Ambrosio and Tortorelli, 1992] on the
regularization of Mumford Shah image processing problem, an approximation of
this formulation was then proposed in [Bourdin et al., 2000]. It was later shown



to converge toward fracture mechanics, and one can note that its formulation
presents some similarities with that of a nonlocal damage model. Besides, due to
both its physical background and their strong similarities, it can serve as a physical
justification for the Phase-Field formulations presented part 1.4.3.

1.3 Local damage formulations and associated is-
sues

This part introduces the local damage model used in this thesis, identifies the
issues associated with such a model, and then specifies the properties that could
be expected of what will be called here a "good" damage model.

Unlike the linear elastic fracture mechanics which only addresses the propagation
of existing cracks, the continuum damage framework was developed to address the
progressive loss of stiffness induced by the appearance and coalescence of micro-
cracks and micro-defects. The first concept of a continuous damage variable was
first proposed by Kachanov ([Kachanov, 1958]) for creep in metallic alloys, and
later expanded by other authors [Rabotnov, 1969, Lemaitre, 1971, Chaboche, 1978,
Marigo, 1981, Mazars, 1984].

This part will focus on a simple example, in order to get an intuitive definition
of damage before moving to a more rigorous and theoretical approach.

Let us consider the simple case of a cube with embedded micro-cracks. It is
quite straightforward that, when studying the response to a tensile load F , one
would need to take into account the influence of the cracked surface on the stress.

As it is, noting S the total cross-section of the cube, and SD the cracked area,
the stress seen locally by the material would no longer be σ = F/S, but rather

σ̃ = F

S − SD
= F

S
(
1− SD

S

) (1.8)

Noting D the relative importance of the cracked area with respect to the total
section, the so-called effective stress seen by the material writes:

σ̃ = σ

1−D (1.9)

Using the principle of strain equivalenceσ̃ = Eεe

σ = Ẽεe
(1.10)

where εe stands for the elastic strain, and the effective elastic stiffness Ẽ can thus
be defined as

Ẽ = (1−D)E (1.11)

This simple example allowed for an intuitive definition of damage D associated
with the micro-cracks density, along with a modelling of the material’s associated



loss of stiffness. The principle of effective stress [Lemaitre, 1971, Lemaitre and
Chaboche, 1985] was also generalized to more complex cases such as anisotropic
damage [Chaboche, 1978, Chaboche, 1979, Lemaitre and Desmorat, 2005].

1.3.1 Local isotropic damage model
3D formulation

The local damage model considered here is a modified version of Mazars [Mazars,
1984] model which represents a material with an isotropic elastic behaviour and
isotropic damage. It is worth noting that it does not take plasticity nor thermal
expansion into account. The associated stress-strain law

σ = C̃ : ε = (1−D) C : ε (1.12)

is based on Hooke’s law extended to damage, and can be rewritten using Lamé’s
coefficients (λ, µ) as

σ = λ(1−D)tr (ε) 1 + 2µ (1−D) ε (1.13)

Here, C is the stiffness of the undamaged material, C̃ the effective stiffness of the
damaged material and D is the damage variable that evolves from 0 to 1.

The evolution of damage is assumed to be driven by Mazars’ equivalent strain
ε̂, defined as

ε̂ =
√
〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+ (1.14)

where ε1, ε2 and ε3 denote the principal strains, i.e the eigenvalues of the strain
tensor, and where 〈εi〉+ = max(0, εi) are the so-called extensions.

Due to irreversibility, the current damage depends on the maximum previously
reached value of equivalent strain,

κ(t) = max
τ≤t

ε̂(τ) (1.15)

which ensures that a decrease in equivalent strain does not affect the damage value.
Moreover, after a decrease in strain, damage will only begin to grow again when
the equivalent strain exceeds its previous maximum value.

The damage evolution law is postulated in the form

D = g(κ) =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(1.16)

where ε0 is the damage threshold taken here equal to 0.03, and εf is a damage
parameter taken here equal to 0.15.

The damage evolution law and the normalized material response associated
with this model are presented in Figure 1.3.



(a) Damage evolution law (b) Stress-strain curve

Figure 1.3: Material behaviour considered here.

1D formulation

To assess the properties of both the local and nonlocal damage models, a 1D
version of the model presented in the previous part will be considered.

In a one-dimensional setting, the stress-strain law would write

σ = Ẽε = (1−D)Eε (1.17)

where E is the elastic modulus of the undamaged material, Ẽ the effective elastic
modulus of the damaged material, and D is still the damage variable that evolves
from 0 to 1.

The evolution of damage is still assumed to be driven by Mazars’ equivalent
strain ε̂, which writes in a 1D setting

ε̂ = 〈ε〉+ (1.18)

Due to irreversibility, the current damage still depends on the maximum pre-
viously reached value of equivalent strain,

κ(t) = max
τ≤t

ε̂(τ) (1.19)

and the damage evolution law remains in the form

D = g(κ) =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(1.20)

with ε0 = 0.03, and εf = 0.15.

1.3.2 Classical reference problem and localization phenomenon
Classical reference problem

The reference problem considered here (Figure 1.4) is the classical case of a bar
submitted to tension with the isotropic material behaviour described equations



(1.17) to (1.20). A defect (smaller section) has been introduced in the element
located at the middle of the bar, in order to trigger bifurcation toward a non-
homogeneous solution in the bar.

Y

X

Z

Figure 1.4: Reference one-dimensional tensile test considered here.

This simple reference problem will be used here to highlight the localization
phenomenon and the associated issues through classical results. It will also be
reused in Chapter 2 to assess the efficiency of the different nonlocal formulations.

Localization phenomenon

In the case presented above (Figure 1.4), one first observes a phase of elastic
loading, until damage appears in the weaker part of the bar, inducing softening.
From this point, the damaged part of the bar will keep loading and damaging while
the rest of the bar is unloading, thus inducing localization of strain and damage.

Even though this phenomenon is physical, it has a major intrinsic drawback:
the size of the localization area is not fixed, and the same holds for the energy
needed to break the bar. In numerical simulations, damage will tend to localize
in a single element, and the solution will thus exhibit a strong and spurious mesh
dependency.

This can be observed in Figure 1.5, where the force-displacement curve and the
damage profile are plotted for various element sizes. It is worth noting that, in the
present 1D setting, only the number of elements used to discretize the geometry
was changed, while one would also have to change their orientation for 2D and 3D
computations.

As shown in [Hillerborg et al., 1976, Hillerborg, 1978, Pijaudier-Cabot and
Bažant, 1987], sensitivity to spatial discretization can be observed through the
influence of the mesh size on the response curve (Figure 1.5a). It is thus essential
to improve the model to address this issue, for instance through the introduction
of an internal length.

1.3.3 Expected properties of a damage model
It is possible, based on what precedes and on the literature, to determine the

properties that we would expect from a damage model, defining what would be
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Figure 1.5: Damage localization and mesh dependency.

called thereafter a "good" damage model. It is worth noting that, since the mate-
rial behaviour remains elastic up to the peak, only the post-peak part of the curve
needs to be enhanced by the considered formulation. Other models with inelastic
pre-peak behaviour, e.g. diffuse damage, might lead to different requirements. In
the end, using a "good" damage model, one should have:

• a realistic behaviour, both before and after the peak [Jirásek, 1998]

– before the peak: unchanged elastic response

– after the peak: realistic shape with respect to experiments (stress drop)

• convergence and mesh-independence [Pijaudier-Cabot and Bažant, 1987]

– convergence toward a solution with a non zero dissipated energy

– damage spread over a non-zero area

– low sensitivity to the finite element mesh for a small enough element
size

• a highly damaged zone behaving as a crack [Desmorat and Gatuingt, 2007]

– final zero stress

– localization in a single element when D = 1
– no interaction through a pseudo-crack (when D = 1)
– existence of a solution with a displacement jump at D = 1

• the possibility to implement the model in a non intrusive way in an industrial
finite element code [Azinpour et al., 2018, Wangermez et al., 2022]

The last criterion comes from the fact that, for the considered damage model
to be of better use, one should be able to use it as easily as possible on any
geometry. It is worth noting that, even though they are not discussed here, the
issues associated with the boundary conditions remain important, especially in 2D
and 3D settings. One can also note that the potential issues linked to damage



initiation [Eringen et al., 1977, Simone et al., 2004], which are tightly linked to
the handling of boundaries [Bažant et al., 2010] and existing cracks [Giry et al.,
2011], will not be discussed here.

It will now be possible to use these criteria to assess the relevance of the different
damage models, especially the nonlocal formulations on which this thesis is focused.

1.4 Nonlocal damage models
This part will first introduce the general framework of nonlocal damage models

before focusing on some nonlocal formulations with both fixed and evolving internal
length, including a Phase Field formulation. It is worth noting that one could also
have chosen to write everything in a thermodynamics framework as was done in
[Ganghoffer and de Borst, 2000, Ganghoffer et al., 1999] for nonlocal damage and
damage-plastic models.

To take into account the state of the neighbourhood of a material point, one
has to replace a local variable by its nonlocal counterpart. In the presence of strain
softening, the nonlocal variables are usually those associated with dissipative phe-
nomena, namely damage growth in the framework of continuum damage mechanics.
Thus, the possible nonlocal variables are damage and the damage driving variable;
details of the nonlocal treatment of course depend on the specific damage model.

In our case, Following the work of [Pijaudier-Cabot and Bažant, 1987] and
[Jirásek, 1998], the damage driving variable is the equivalent strain ε̂, thus equa-
tions (1.12) and (1.14) still hold while equation (1.15) is replaced by

ε̄ = F (ε̂) (1.21)
κ(t) = max

τ≤t
ε̄(τ) (1.22)

where F is the nonlocal operator, which can take various forms such as a differential
expression or a convolution.

The damage evolution law (1.16) is still used to evaluate damage, but from the
maximum value of the nonlocal equivalent strain computed from equation (1.22).

1.4.1 Nonlocal formulations with fixed internal length
Integral-type formulation

As pointed out before, the main idea of the original nonlocal formulation [Pijaudier-
Cabot and Bažant, 1987] was to fix the dissipated energy by spreading damage
over a non zero and mesh-independent area. This was done by replacing the dam-
age driving variable at a given point by its nonlocal counterpart F (ε̂), namely
its weighted average over a fixed neighborhood centered at this point. Using this
formulation, equation (1.21) is specified as

ε̄(x) = 1
V0(x)

∫
Ω
ε̂(ξ)α

(
‖x− ξ‖

lc

)
dξ (1.23)

V0(x) =
∫

Ω
α

(
‖x− ξ‖

lc

)
dξ (1.24)



where α is a suitable weight function, typically decreasing with increasing relative
distance ‖x− ξ‖/lc and equal to zero when the distance exceeds a certain limit.

It is worth noting that in this case lc is not a numerical parameter, but rather
a characteristic length of the material, supposed to be constant here. It will thus
have to be experimentally determined so as to impose the right cracking energy
and damage spreading [Pijaudier-Cabot et al., 2001, Le Bellégo et al., 2003].

Despite its qualities, this integral approach brings many numerical difficulties,
namely the need to detect each point’s neighbours and to evaluate the distance
between them in order to compute the nonlocal field. Even though this is not
nowadays prohibitive in the general case, such information might not be available
in commercial software, especially in the case of a non intrusive implementation.
For example, the commercial Abaqus software offers the possibility to compute the
average of a given variable at a given point, but only over the connected elements,
which would not be sufficient here.

Gradient-type formulations

Part of the drawbacks associated with the nonlocal integral approach could be
solved using a related gradient-type approach. This approach was proposed in
1996 by Peerlings et al. ([Peerlings et al., 1996]), based on calculations done in
1987 by Aifantis ([Aifantis, 1987]).

The idea here is to get an equivalent expression of the nonlocal strain (1.23)-
(1.24) by replacing the equivalent strain with its expansion in to a Taylor series.
This gives, after neglecting the high order terms, the following explicit gradient-
type formulation

ε̄ = ε̂+ c2 ∇2ε̂ (1.25)

where c is an internal length linked to lc and to the nonlocal weight function α.
However, this formulation is not well suited for numerical implementation since

it requires the C1 continuity of the displacement. After additional adjustments of a
rather heuristic nature, it gives the more stable implicit gradient-type formulation:

ε̄− c2∇2ε̄ = ε̂ (1.26)

which introduces the same order of approximation and the same internal length as
equation (1.25), and is much less restrictive regarding displacement properties.

It is worth noting that a more rigorous argument, based on Green’s function,
was later provided in [Peerlings et al., 2001] to justify the link between the original
integral-type formulation and the implicit gradient one. This argument is based
on the fact that computing ε̄ as the solution of differential equation (1.26) with
appropriate boundary conditions is equivalent to computing it with the integral for-
mulation (1.23)-(1.24), using the Green’s function of the boundary value problem
as weight function.

Moreover, it was shown numerically in [Peerlings et al., 1996] that this formu-
lation exhibits regularization properties that are similar to those of the integral
formulation. It also has a huge advantage for the purpose of numerical implementa-
tion since the associated nonlocal treatment only consists in solving an additional



differential equation. However, the additional degree of freedom tends to increase
the global numerical cost, and raises the question of the boundary conditions that
need to be applied on ε̄ and ∇ε̄ in order to ensure the uniqueness of the solution.
On this regard, the most common choice is to set ∇ε̄ · n = 0 on the boundary
of normal n, thus imposing that ε̄ should there be equal to ε̂, which might seem
questionable when a crack propagates near the boundary.

Choice of the nonlocal variable

It is worth noting that, although the previous nonlocal formulations were in-
troduced through their application on Mazars equivalent strain, other nonlocal
variables could also be considered including damage itself.

This matter was addressed for the nonlocal formulation (1.23)-(1.24) in [Jirásek,
1998], where the author considered different candidates in order to assess their
suitability as nonlocal variables. The idea then was to run one-dimensional tensile
testings, with different damage models and nonlocal variables, and to study the
relevance of the obtained load-displacement curve.

While a common choice might be to use nonlocal strain due to the versatility
of such an approach, it suffers from certain disadvantages. As it is, the use of
a nonlocal strain tensor is compatible with any damage evolution law since most
damage driving variables, such as Mazars equivalent strain and the damage energy
release rate, are computed from it. This choice would provide good numerical
results so long as one did not use the nonlocal strain to compute the stress, which
would wrongly affect the material’s elastic response. However, applying a nonlocal
treatment to a second order tensor induces a high computational cost since it has
to be applied on all of its components.

Similar considerations appeared when using a nonlocal inelastic strain since it
provided a versatile formulation with good regularization properties, but induced
a prohibitive computational cost.

The goal of this formulation being to address the spurious mesh dependency
linked to damage localization, one might consider applying the nonlocal treat-
ment directly to damage itself. This natural solution was thus tested in the one-
dimensional setting considered here but, despite the softening, the load asymptot-
ically tends to a finite non-zero value after the peak.

This, so-called stress locking, unrealistic phenomenon was also observed when
using nonlocal inelastic stress rate, while the use of nonlocal inelastic stress and
inelastic stress computed from nonlocal strain both gave unrealistic response curves
with alternating ascending and descending stresses.

In the end, the use of a scalar damage driving variable, namely Mazars equivalent
strain and damage energy release rate, provided good numerical results, without
the prohibitive computational cost associated with nonlocal strain tensor.

It was thus decided in this thesis to stick to nonlocal scalar damage driving
variables, and mainly to Mazars equivalent strain.



1.4.2 Nonlocal formulations with evolving internal length
The previous formulations successfully address the issue of spurious mesh depen-

dency, and were shown to induce convergence toward meaningful solutions with a
finite non-zero dissipated energy [Pijaudier-Cabot and Benallal, 1993]. However,
despite those advantages, they still suffer from a certain number of deficiencies
that need to be addressed.

Shortcomings of the standard nonlocal formulations

The first drawback inherent to integral-type formulations comes from the compu-
tation of the nonlocal average near boundary, especially when the averaging area
exceeds the material’s boundary. A rather straightforward solution [Pijaudier-
Cabot and Bažant, 1987] is to re-scale the weight function in order to take the
discontinuity into account. However, it was shown in [Borino et al., 2003, Krayani
et al., 2009, Bažant et al., 2010] that it is not sufficient, especially when considering
homogeneous field who tend to become in-homogeneous by nonlocal averaging near
boundaries. Two solutions were proposed to address this issue, namely changing
the nonlocal treatment near boundaries [Pijaudier-Cabot and Dufour, 2010, Giry
et al., 2010, Giry et al., 2011] or directly introducing a nonlocal boundary layer
[Bažant et al., 2010]. It is worth noting that, in the case of a gradient-type formu-
lation, this is directly handled through the natural Neumann boundary condition
which is rather simple and practical from a numerical point of view.

It was rightly pointed out in [Pijaudier-Cabot and Dufour, 2010, Giry et al.,
2011] that the issues regarding the taking into account of boundaries in the com-
putation of nonlocal treatment is especially true for the free surfaces associated
with the presence of cracks. A first solution was also proposed in [Pijaudier-Cabot
and Dufour, 2010] where the authors also suggested that one might need to use
damage-dependent interactions to properly model cracks by becoming local in their
vicinity.

Another drawback linked to the modelling of material failure, and which also
concerns both gradient-type [Krayani et al., 2007] and integral-type nonlocal for-
mulation [Jirásek et al., 2004] is the ability to represent the size effect on the
fracturing energy. It was thus pointed out in [Jirásek et al., 2004] that, to take
such effects into account, one would have to properly model the interactions both
around and between the cracks, and that modeling existing notch as predamaged
areas might help doing so.

The main issue linked to the computation of nonlocal treatments near a crack
comes from the fact that, since each side should behave as a free boundary, no
interaction should exist between two points located on opposite sides of it. One
way to do this would be to use the visibility check method [Belytschko et al., 1996],
and to replace the direct distance between two points by the shortest path that
does not cross the crack. This method was successfully used with the element-free
Galerkin method [Belytschko et al., 1994, Lu et al., 1994, Belytschko et al., 1995]
which is beyond the scope of this thesis, but one might keep the basic idea to
improve nonlocal formulations. As it is, such a modification of the interaction



distances would allow the proper modelling of a crack, at least in the nonlocal
treatment, without changing the weight function or the nonlocal treatment.

Although the previous comments were made for pre-existing cracks, they re-
main relevant when dealing with highly damaged zones which are supposed to
behave in the same way. This is made even more difficult by the fact that, in this
case, no clear boundary exists, and the classical nonlocal treatments are thus ap-
plied in the same way as anywhere else. As a consequence, the nonlocal treatments
transfer information from fully damaged zones (i.e. cracks) to partly damaged
zones, resulting in a spurious expansion of the damage profile at the late stages of
failure [Geers et al., 1998].

It is worth noting that, according to [Simone et al., 2004], the use of a non-
local damage driving variable prevents the proper modelling of damage initiation,
even with specific treatments dedicated to handling excising cracks in the nonloal
treatment.

Nonlocal formulations with evolving internal length

Nonlocal damage models with evolving internal lengths were thus introduced by
a certain number of authors to address those issues. The idea here is to introduce
a dependency of the nonlocal treatment with respect to the local material’s state
in both integral-type and gradient-type formulations.

In the case of integral-type formulations based on the one proposed in [Pijaudier-
Cabot and Bažant, 1987], the general form of the associated nonlocal equation still
writes

ε̄(x) = 1
V0(x)

∫
Ω
ε̂(ξ)α

(
‖x− ξ‖

lc

)
dξ (1.27)

V0(x) =
∫

Ω
α

(
‖x− ξ‖

lc

)
dξ (1.28)

where lc is is now a function that may depend on state variables such as stress [Giry
et al., 2011], strain or damage [Nguyen, 2011]. In a similar fashion, the general
form of a gradient-type formulation based of the one proposed in [Peerlings et al.,
1996] writes

ε̄− a ∇ · (b ∇ε̄) = ε̂ (1.29)

where a and b are functions that may depend on state variables such as stress
[Vandoren and Simone, 2018], strain [Geers et al., 1998] or damage.

The need for such a formulation was first pointed out in [Geers et al., 1998] as
a mean to avoid the spurious expansion of the damage profile in the late stages of
damage. The authors thus proposed a strain-based gradient-type damage model
where the nonlocal activity, i.e. the internal length, was determined from the local
strain. The idea was that the nonlocal treatment is not needed when the material
behaves in an elastic way, but needs to be activated on the occurrence of damage



to handle its localization and prevent spurious mesh dependency. The associated
internal length would then increase from 0 in an unloaded media to the value c when
Mazars equivalent strain would be greater or equal to the damage threshold. Other
gradient-type formulations were later proposed based on similar considerations,
using either an improved strain-dependency [Saroukhani et al., 2013] or a stress
dependency [Vandoren and Simone, 2018] to drive the internal length’s evolution.

Integral-type formulations, using the local stress [Giry et al., 2011] or damage
[Nguyen, 2011] to activate the nonlocal treatment were also proposed based on
similar considerations.

It is worth noting that, while they address the spurious expansion of damage
profile and allow the proper taking into account of cracks and boundaries in the
nonlocal treatment, the strain-based [Geers et al., 1998, Saroukhani et al., 2013]
and damage-based [Nguyen, 2011] formulations do not suppress the interactions
accross a highly damaged zone.

One can also note that the use of anisotropic internal length allows the stress-
based formulations [Giry et al., 2011, Vandoren and Simone, 2018] to properly
handle the vicinity of boundaries through stress redistribution, and might help
cutting nonlocal interactions across a highly damaged zone.

To address this issue, a new nonlocal formulation using damage-dependent in-
teractions motivated by internal time was proposed in [Desmorat and Gatuingt,
2007, Desmorat and Gatuingt, 2010] and will be detailed in Part 1.6. This thesis
will thus focus on the implementation and study of the gradient-type formulation
that was later derived from it in [Desmorat et al., 2015].

1.4.3 Phase-Field formulation
Another way to handle progressive material failure would be, following [Pons

and Karma, 2010, Miehe et al., 2010b, Miehe et al., 2010a, Miehe et al., 2015] to
use the framework of phase-field modelling.

The idea of such formulations is to use an auxiliary field variable d to describe
the crack topology. In the particular case of an infinite bar with a sharp crack
embedded at x = 0, this variable would write

d(x) =
{

1 if x = 0
0 elsewhere

(1.30)

Due to the similarities between this crack field variable and damage, one might
consider defining it as

d(x) = exp
(
−|x|
ld

)
(1.31)

which introduces a more diffuse and realistic representation of the crack topology,
and the area around it since

d(0) = 1 and lim
|x|→∞|

d(x) = 0 (1.32)



It is worth noting that this approach introduces a regularization similar to the
one associated with nonlocal models since the size of the damaged zone is fixed by
the internal length ld. Moreover, such a variable would be solution to the problem

d(x)− ld2d′′(x) = 0,∀x ∈ R (1.33)

which is the Euler equation of the variational formulation

d = arg
{

inf
d∈W

(1
2

∫
R

(
d2 + ld

2d′
2)dV )} (1.34)

where W =
{
d | d(0) = 1 and lim|x|→∞| d(x) = 0

}
.

This condition can be generalized in multiple dimensions as

d = arg
{

inf
d∈W

(∫
R
γ (d,∇d)dV

)}
(1.35)

where γ, the crack surface density function per unite volume of the solid, writes

γ (d,∇d) = 1
2l d

2 + l

2 |∇d|
2 (1.36)

A possible choice of a dissipation function φ, taking into account the evolution
of the crack surface [Miehe et al., 2010b], is then

φ
(
d,∇d; ḋ,∇ḋ

)
=
(
Gc

ld
d
)
ḋ+ (Gcl∇d)∇ḋ (1.37)

where Gc is the fracturing energy introduced in Part 1.2.
A classical choice for the free energy density, taking into account the crack

closure under compression, is then

ψ (ε, d) = (1− d)2
[
λ

2 〈tr (ε)〉2+ + µ tr
(
〈ε〉2+

)]

+ λ

2 〈tr (ε)〉2− + µ tr
(
〈ε〉2−

) (1.38)

It is worth noting that this choice of a convex function in d ensures that the tangent
operator will be equal to 0 when d = 1.

The stress then writes

σ = ∂ψ

∂ε
= (1− d)2

[
λ〈tr (ε)〉+1 + 2µ〈ε〉+

]
+
[
λ〈tr (ε)〉−1 + 2µ〈ε〉−

] (1.39)

and, due to energy balance, the crack phase-field variable is indirectly defined
through

Gc

ld

[
d− ld2∇2d

]
= 2 (1− d)Y (1.40)



where Y is the usual driving variable defined as

Y = λ〈tr (ε)〉2+ + 2µ tr
(
〈ε〉2+

)
(1.41)

To ensure crack irreversibility, i.e. ḋ ≥ 0, one needs to replace Y with its
maximum value over time, YM . The phase-field equation (1.40) would then become

Gc

ld

[
d− ld2∇2d

]
= 2 (1− d)YM (1.42)

where, due to the right hand side of the equation, the shape of d is no longer
governed only by (1.33), but also by the local material history.

Though they were not constructed in the same way, this formulation is known
to be quite similar to the numerical implementation of the variational approach to
fracture [Francfort and Marigo, 1998, Bourdin et al., 2000, Tanné et al., 2018] which
is consistent with Griffith theory. An alternative way to obtain similar formulations
would be, following the work done by [Mielke, 2003] and [Jayet, 2021], to use an
approach based on pseudo-potential to ensure the irreversibility of damage.

It is worth noting that all those formulations are also similar to nonlocal damage
models, the main difference being that in the phase-field approaches both the
evolution law and the nonlocal treatment are usually combined in a single equation,
namely (1.42) for the present model.

1.5 Bounded rate damage model
One of the features that could be expected from a damage model, whether local

or nonlocal, is the ability to model the rate dependency of a material’s behaviour.
We will here focus on the so-called bounded rate damage models [Allix and

Deü, 1997, Allix et al., 2003, Guimard et al., 2009], and their nonlocal counterpart
[Desmorat et al., 2010a], which were developed to take into account this depen-
dency. Models with similar visco-damage features were also obtained within the
thermodynamic framework [Dubé et al., 1996], but are beyond the scope of this
work.

1.5.1 Local bounded rate damage models
The idea of such models is to rewrite the damage evolution law in order to ensure

that the damage evolution rate does not exceed a given value.
Since they were initially developed for laminated composites, such formulations

were first proposed for two damage models, namely a 1D damage model and a
damage mesomodel taking the composite ply behaviour into account. The key
point here is that an increase of the damage energy release rate does not lead to
an instantaneous increase of damage.



Initial unidirectional damage model

Following the works of [Ladeveze and Lemaitre, 1984] and of [Marigo, 1981],
the unidirectional damage model proposed in [Allix and Deü, 1997] was defined
through the free energy density

ψ(ε,D) = 1
2
[
(1−D)E〈ε〉2+ + E〈ε〉2−

]
(1.43)

giving

σ = ∂ψ

∂ε
= (1−D)E〈ε〉+ + E〈ε〉− (1.44)

Y = ∂ψ

∂D
= E〈ε〉2+ (1.45)

Then, while the unbounded damage model handles damage evolution in a rather
classical way

κ(t) = max
τ≤t

Y (τ) (1.46)

g(κ) =
√
κ−
√
Y0√

Yc
(1.47)

D =
{
〈g(κ)〉+ if D < 1
1 else

(1.48)

where Y0 is the damage threshold and Yc a parameter governing the damage evo-
lution, the bounded damage model only deals with Ḋ up to D = 1, writing

g(Y ) =
√
Y −

√
Y0√

Yc
(1.49)Ḋ = Ḋ∞

[
1− exp

(
−k〈g(Y )−D〉+

)]
if D < 1

D = 1 else
(1.50)

where Ḋ∞ is the maximum damage rate, and k a parameter characterizing the
delay effect on damage.

It is worth noting that, in this case, the irreversibility of damage is introduced
in equation (1.50) through the Macauley brackets around g(Y )−D.

Application to the damage model considered here

Using similar considerations, this dynamics treatment could also be applied to
the damage model considered here (1.13)-(1.16).

While equations (1.13) and (1.14) defining the stress and the equivalent strain
would remain unchanged, those handling damage irreversibility (1.15) and evolu-
tion (1.16) would have to be replaced byḊ = Ḋ∞

[
1− exp

(
−k〈g(ε̂)−D〉+

)]
if D < 1

D = 1 else
(1.51)



where g would still be defined as

g(ε̂) =


0 if ε̂ < ε0

1− ε0

ε̂
exp

(
− ε̂− ε0

εf − ε0

)
if ε̂ ≥ ε0

(1.52)

The 1D version of this formulation, constructed by associating equations (1.51)-
(1.52) to (1.17)-(1.18) instead of (1.13)-(1.14), was implemented in Abaqus during
this PhD, and numerical simulations were conducted to assess the influence of the
bounded-damage treatment on the considered model.

First, simulations using only 3 elements were conducted to study the influence
of the bounding rate parameter Ḋ∞ on the material behaviour in the absence of
snap-back instabilities. As expected, one can see in Figure 1.6a, the bounded-rate
treatment tends to slow damage evolution, thus increasing the energy dissipated
through material failure.

(a) With 3 elements (b) With 21 elements

Figure 1.6: Influence of the bounded rate treatment on the isotropic damage model.

Computations were also conducted with a finer mesh (21 elements) to study its
influence in presence of snap-back instabilities. As one can see in Figure 1.6b, the
reduction of damage evolution rate tends to stabilize the response by increasing
the dissipated energy. The idea of stabilizing the response curve by introducing
a time-dependence in the materials behavior is worth noting, and will be used in
Part 2.3.1.

It was shown in [Desmorat et al., 2010a] that, as expected, applying the bounded-
rate treatment on a given damage model for concrete enabled the modelling of
this material strain-rate effect on damage evolution. It also addressed the issue of
spurious mesh dependency under dynamic loading, bot not in quasi-statics. This is
consistent with the link between a bounded rate and an internal length in dynamics
presented in [Allix et al., 2003] for a dynamic loading.

It was thus proposed to use a nonlocal bounded rate damage model in order to
get a proper modeling under both quasi-static and dynamic loading. While this
look quite promising, one should pay attention to the fact that, in the aforemen-
tioned articles such as [Allix and Deü, 1997] and [Allix et al., 2003], the value of



g(Y ) used in the bounding function could go way beyond 1, which here is not true
for g(ε̂).

1.5.2 Nonlocal bounded rate damage model
The principle of the proposed formulation is to replace the damage driving vari-

able in the bounded-rate equation, (1.50) with the present model, by its nonlocal
counterpart. By doing so, one would first ensure the spatial regularization of the
damage-driving variable through the nonlocal treatment, before introducing the
strain rate effect.

Applying those considerations to the bounded damage model presented in Part
1.5.1, and using the general gradient-type formulation (1.29), one would keep equa-
tions (1.13) and (1.14) while (1.51) and (1.52) would be replaced by

ε̄− a ∇ · (b ∇ε̄) = ε̂ (1.53)

g(ε̄) =


0 if ε̄ < ε0

1− ε0

ε̄
exp

(
− ε̄− ε0

εf − ε0

)
if ε̄ ≥ ε0

(1.54)

Ḋ = Ḋ∞
[
1− exp

(
−k〈g(ε̄)−D〉+

)]
(1.55)

It is worth noting that the model proposed in [Desmorat et al., 2010a] was
based on the classical gradient-type formulation (1.26), and thus still exhibited
the drawbacks associated with nonlocal damage models with fixed internal length.
A model based on a more suited gradient-type formulation, i.e. using the adequate
functions a and b, could then be expected to address this issue while keeping both
the spatial regularization and the rate dependency of damage evolution.

On can also note that, since the regularisations are applied in a row, the bounded
rate treatment will only be effective if it is still needed after the nonlocal one has
been applied. An alternative solution could also be to start with the bounded rate
treatment, before applying the nonlocal one on the bounded variable.

In such a case, one should probably bound the evolution of the damage-driving
variable, instead of damage itself. By doing so, one should still indirectly bound
the evolution of damage, while avoiding the issues encountered when applying a
nonlocal treatment to damage [Jirásek, 1998].

1.6 Eikonal and eikonal-based formulations
This part will focus on the eikonal and eikonal-based formulations which are

at the center of this study. It will start from a brief reminder of the integral-
types formulations [Desmorat and Gatuingt, 2007, Desmorat and Gatuingt, 2010,
Desmorat et al., 2015], before introducing the new eikonal-based gradient-type
formulation that will be implemented and studied in this thesis.



1.6.1 The original time-based integral formulation
A new nonlocal damage model was proposed in 2007 in [Desmorat and Gatuingt,

2007]. It is based on the original integral formulation proposed in [Pijaudier-
Cabot and Bažant, 1987], but the distances are replaced by propagation time.
The integral formulation with nonlocal equivalent strain is described by

ε̄ (x) = 1
V0(x)

∫
Ω
ε̂ (ξ)α

(
τxξ
τc

)
dξ (1.56)

V0(x) =
∫

Ω
α
(
τxξ
τc

)
dξ (1.57)

where τxξ represents the time needed for propagation of a (fictitious) wave between
x and ξ in the considered material, possible affected by damage, while τc is the
propagation time in the undamaged material over the characteristic length lc.

The key idea of this approach is that, owing to the wave celerity dependency
on the material stiffness, the nonlocal treatment will evolve with damage. In the
1D case with scalar damage D, this dependency enters through the expression of
the effective wave celerity

c̃ =

√√√√Ẽ

ρ
=
√

(1−D)E
ρ

=
√

1−D c0 (1.58)

where E and ρ are respectively the Young modulus and mass density of the mate-
rial, and c0 =

√
E/ρ is the one-dimensional wave celerity without damage.

The 1D propagation time τ12 between two points x1 and x2 such that x1 < x2
is then given by

τ12 =
∫ x2

x1

dx
c̃(x) = 1

c0

∫ x2

x1

dx√
1−D(x)

(1.59)

and tends to increase with damage, thus reducing the influence of a highly damaged
zone on the averaging process.

One can also note that, should damage reach 1 at a given point, the wave
speed would locally tend to 0, and the propagation time can be expected to blow
up, cutting all interactions as one would expect near a crack. It was also shown
through dynamics computations [Desmorat and Gatuingt, 2007] that, in a given
body, replacing a crack by a fully damaged zone does not affect wave propagation.
This means that, as far as the nonlocal treatment is concerned, a highly damaged
zone can be expected to behave just as a crack, and one can thus hope to use the
eikonal approach to properly handle the damage-fracture transition.

It was also shown in [Desmorat et al., 2015] that this approach gives very good
results in terms of damage localization for a bar submitted to tension. As damage
grows, the nonlocal treatment tends to be disentangled on each side of the highly
damaged zone. This effect cuts all interactions through the crack, thus removing
one of the main deficiencies of the classical approach.



In the particular case of 1D simulations, the propagation time can be replaced
with an effective "dynamic" distance weighted by damage. The "dynamic" dis-
tance

l̃12 = c0 τ12 =
∫ x2

x1

dx√
1−D(x)

(1.60)

between two points x1 and x2 (still assuming that x1 < x2) can be interpreted as
the distance covered, in an undamaged material, during the time lapse τ12 defined
in (1.59). The associated one-dimensional nonlocal formulation is given by

ε̄ (x) = 1
V0(x)

∫
Ω
ε̂ (ξ)α

(
l̃xξ
lc

)
dξ (1.61)

V0(x) =
∫

Ω
α

(
l̃xξ
lc

)
dξ (1.62)

However, despite all its qualities, this approach requires the computation of a
propagation time at each point and at each time step, which induces a prohibitive
computational cost for 2D and 3D computations.

1.6.2 Alternative integral formulation based on effective
distances

It was shown in [Desmorat et al., 2015] that, working under the WKB approxima-
tion [Wentzel, 1926, Kramers, 1926, Brillouin, 1926, Bender and Orszag, 1978, Hall,
2013], the influence of damage on wave propagation can be taken into account by
considering a space curved by damage (see Appendix A for more details).

This can be modeled using a Riemannian damage-dependent metric g, which
would define the space curvature, and thus fix the geodesic along which the distance
between two points, used for the nonlocal treatment, will have to be computed.

In the case of isotropic damage, the damage-dependent metric tensor writes

g = 1
1−D 1 (1.63)

while, in the case of anisotropic damage represented by a second-order damage
tensor [Murakami and Ohno, 1978, Cordebois and F., 1982], it can be defined as

g = (1−D)−1 (1.64)

where 1 is the second-order unit tensor.
It can be used to evaluate the effective distance l̃, locally given by its differential

dl̃ =
√

dx · g · dx (1.65)

which means that the effective distance between two points A and B will tend to
increase in the presence of damage, the shortest path between those two points
then corresponding to a curved, damage-dependent, line.



It is worth noting that, since damage is not homogeneous in the general case,
neither is the space curvature. As a consequence, identifying the shortest path
between two point is not straightforward since it requires the computation and
comparison of many trajectories. An analogy could be done with the computation
of the shortest path between two points on a sphere, e.g. computing the optimal
flight between two cities, though the curvature is then constant.

One can also note that, due to the important space curvature, the shortest path
between two points will be more likely to go around a highly damaged zone than
across it. This is illustrated in Figure 1.7 where one can see that the shortest way
to reach the other side of a "highly curved" area, namely a mountain, might be to
go around it rather than over it. As a consequence, since these effective distances
are meant to be used in the nonlocal treatment, one could expect all interactions
to be cut across highly damaged zones, making them equivalent to cracks.

(a) Flat space. (b) "Highly curved" space.

Figure 1.7: Influence of space curvature on the shortest path between two points.

The resulting nonlocal formulation then writes

ε̄ (x) = 1
V0(x)

∫
Ω
ε̂ (ξ)α

(
l̃xξ
lc

)
dξ (1.66)

V0(x) =
∫

Ω
α

(
l̃xξ
lc

)
dξ (1.67)

and can be understood as a generalization of (1.61)–(1.62) to multiple dimensions.
The main advantage of this formulation is that it does not require the system-

atic computation of propagation times, which reduces the numerical cost induced
by the nonlocal treatment. However, it still requires the computation of effective
distances along geodesics which, as shown in [Rastiello et al., 2018a, Rastiello
et al., 2018b], can be done using a dedicated algorithm such as Dijkstra-like al-
gorithms and Fast Marching Methods [Dijkstra, 1959, Tsitsiklis, 1995, Sethian,



1996, Sethian, 1999]. The latter was successfully used with this formulation as-
sociated with an isotropic damage model [Rastiello et al., 2018a, Rastiello et al.,
2018b].

It is worth noting that, providing one can choose the adequate nonlocal vari-
able, this formulation should be compatible with any damage model, including
anisotropic ones. As it is, it was successfully applied in [Jirásek and Desmorat,
2019] to models that combine damage and plasticity, and displayed the expected
properties in terms of damage localization. One should also note that, though they
are not treated here, special care will have to be taken when dealing with models
involving more than one damage variable such as the one used in [Allix and Deü,
1997] for composites.

However, even this formulation still induces a high computational cost since,
at each time step, one has to compute all the effective distances for all pairs of
interacting Gauss points in the entire curved space. It also suffers from the draw-
backs associated with the implementation of integral-type nonlocal formulations,
especially since the averaging process is damage-dependent. To address this issue,
a gradient-type formulation was derived from this formulation in [Desmorat et al.,
2015] and will be studied in the next section.

1.6.3 The associated gradient-type formulation
As already pointed out, one way to address the numerical issues associated

with the formulation (1.66)–(1.67) would be to follow the approach presented in
[Peerlings et al., 1996], in order to derive an equivalent gradient-type formulation.
However, applying it directly to this formulation might not produce the expected
results due to the effective lengths computed in the space curved by the damage-
dependent metric g introduced before.

It was thus decided in [Desmorat et al., 2015] to write it directly in the curved
space in order to deal with a single set of coordinates. As an example, focusing on
a two-dimensional setting, one would have an initially flat space that would warp
in the presence of damage, the local curvature increasing with the damage level.

The resulting formulation

ε̄ (x) = 1
V0(x)

∫
Ω
ε̂
(
ξ̃
)
α

(
l̃xξ
lc

)
dξ̃ (1.68)

V0(x) =
∫

Ω
α

(
l̃xξ
lc

)
dξ̃ (1.69)

differs from (1.66)–(1.67) by the fact that the integration variable ξ̃ resides in
the curved space. The corresponding gradient-type formulation was shown to be
described by the differential equation

ε̄− c2 1√
det g

∇ ·
(√

det g g−1 · ∇ε̄
)

= ε̂ (1.70)

which represents a particular form of (1.29).



This formulation should be easier to implement, provided one can compute the
determinant and inverse of the metric tensor g. In the case of isotropic damage
D, the metric tensor is given by g = (1−D)1 and equation (1.70) reads

ε̄− c2(1−D)3/2 ∇ ·
(
(1−D)−1/2 ∇ε̄

)
= ε̂ (1.71)

On the other hand, in the case of unidirectional damage D1 taken as the only
nonzero component of second order variableD, the result is slightly different since
the metric tensor is given by g = (1−D)−1, and one thus gets

ε̄− c2(1−D1)1/2 ∇ ·
(
(1−D1)1/2 ∇ε̄

)
= ε̂ (1.72)

This is the equation defining ε̄ which will be used for the 1D numerical simulation.

This gradient-type formulation should keep the properties of the integral eikonal
formulations while avoiding the issues linked to both the averaging process and
the effective distance computation.

This thesis will thus focus on its implementation, and on the assessment of its
regularization properties.
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1D non intrusive implementation
and analysis of nonlocal isotropic
damage models
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After reminding the formulations associated with both the classical and the
eikonal-based nonlocal damage models, a phase-field-based gradient-type formu-
lation based on the same isotropic damage model is introduced. The numerical
implementation of these three models in the Abaqus software is then presented,
along with a suited dissipation-based strategy. These implementations will then be
used to assess the efficiency of the considered damage models in a one-dimensional
setting.

2.1 Considered damage models
For the non-intrusive implementation to be possible, this chapter will only in-

volve nonlocal gradient-type formulations which, for the sake of simplicity, will be
used in a one-dimensional setting.

All the models considered here will be based on the isotropic damage model
presented in equations (1.17) to (1.20), and some of the nonlocal and Phase-field
formulations introduced in Chapter 1.

2.1.1 Nonlocal gradient-type damage models
1D nonlocal gradient-type damage model using Peerling’s formulation

The first nonlocal damage model considered here is based on the classical nonlo-
cal gradient-type formulation introduced in [Peerlings et al., 1996], and is defined
in a one-dimensional setting by the following set of equations

σ = (1−D)Eε (2.1)
ε̂ = 〈ε〉+ (2.2)

ε̄ − c2 ∂2ε̄

∂x2 = ε̂ (2.3)

κ(t) = max
τ≤t

ε̄(τ) (2.4)

D =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(2.5)

Though this formulation is quite classical, and its properties well-known, it will
serve as a good comparison point to study the two other formulations.

1D nonlocal eikonal-based damage model

The second nonlocal damage model considered here derives from the eikonal-
based gradient-type formulation introduced in Part 1.6.3. To remain consisent with
the fact that this chapter focuses on what happens in a one-dimensional setting,
it was decided here to work with the formulation corresponding to unidirectional
damage, namely (1.72). As a consequence, the eikonal-based model considered
here is defined, in a one-dimensional setting, by the following set of equations

σ = (1−D)Eε (2.6)



ε̂ = 〈ε〉+ (2.7)

ε̄ − c2(1−D)1/2 ∂

∂x

(
(1−D)1/2 ∂ε̄

∂x

)
= ε̂ (2.8)

κ(t) = max
τ≤t

ε̄(τ) (2.9)

D =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(2.10)

2.1.2 1D nonlocal phase-field-based damage model
In addition to the two nonlocal models presented in the previous part, one

might want to study the properties of phase-field formulations such as the one
presented in Part 1.4.3. However, as pointed out before, the main drawback of such
a formulation is that both evolution and regularization of the phase-field variable,
and thus damage, are contained within a single equation. To get a meaningful
comparison with nonlocal formulations, one would first have to rewrite it as a
nonlocal damage model, before replacing the damage evolution law with the one
used for the other formulations while keeping the specific nonlocal treatment.

Considering the rate-independent formulation proposed in [Miehe et al., 2010a]
and detailed in Part 1.4.3, one would have in a 1D setting

σ = (1− d)2E〈ε〉+ + E〈ε〉− (2.11)

YM(t) = max
τ≤t

E

2 〈ε(τ)〉2+ (2.12)

d− l2d
∂2d

∂x2 = (1− d) 2ldYM
Gc

(2.13)

Introducing the intermediate damage variable y, whose evolution law writes

y = 2ldYM
2ldYM +Gc

(2.14)

in the phase-field formulation, and keeping equation (2.12), one gets

σ = (1−D)E〈ε〉+ + E〈ε〉− (2.15)

d − l2d (1− y) ∂
2d

∂x2 = y (2.16)

D = 1− (1− d)2 (2.17)

In this case, by analogy with the general nonlocal formulation, equation (2.16)
will play the role of (1.21), while (1.20) should be replaced with both (2.14) and
(2.17). It is worth noting that, here, the damage evolution law is split in two,
and the nonlocal treatment is applied to the intermediate damage variable y. As
a consequence, the non-decreasing condition is here applied to the local damage
driving variable used to compute y, and not to the nonlocal variable d.



The damage evolution law associated with the corresponding local formulation,

obtained by setting
∂d

∂x
= 0 and thus d = y, then writes

y = 2ldYM
2ldYM +Gc

(2.18)

D = 1− (1− y)2 (2.19)

and should be replaced by

y = 1−
√

1− g(κ) (2.20)
D = 1− (1− y)2 (2.21)

to get a meaningful comparison with other nonlocal damage models.

Using the nonlocal equation (2.16) associated with the Phase-Field formulation,
along with this local damage evolution law, one can get the following gradient-type
Phase-Field-based nonlocal damage model

σ = (1−D)E〈ε〉+ − E〈ε〉− (2.22)
ε̂ = 〈ε〉+ (2.23)
κ(t) = max

τ≤t
ε̂(τ) (2.24)

y =


0 if κ < ε0

1−
√
ε0

κ
exp

(
− κ− ε0

2 (εf − ε0)

)
if κ ≥ ε0

(2.25)

d− l2d (1− y) ∂
2d

∂x2 = y (2.26)

D = 1− (1− d)2 (2.27)

whose local counterpart is the same as that of the other nonlocal formulations.
It will thus be used in the rest of this chapter to assess the regularization

properties associated with the Phase-Field formulation, and compared to the other
nonlocal formulations.

A 3D version of this formulation could also be determined following the same
steps, but starting directly from the formulation detailed in Part 1.4.3. In the end,
keeping equations (1.39), (1.14), (1.15), (2.25) and (2.27), the associated gradient-
type equation would then write

d− l2d (1− y) ∇2d = y (2.28)

It is worth noting that this study mainly focuses on the regularization proper-
ties of the considered approaches when applied to continuum damage models. The
convergence towards fracture mechanics, which has been studied for the Phase-
Field approach e.g. in [Bourdin et al., 2008], is beyond the scope of this thesis.



2.2 Non intrusive numerical implementation
This part will detail the non-intrusive implementation in the Abaqus software

of the models introduced in the previous part, using a thermo-mechanical analogy,
similarly to what was done in [Azinpour et al., 2018].

2.2.1 Implementation possibilities
Before discussing the non-intrusive implementation of the considered nonlocal

damage models, one first needs to assess the different implementation possibilities.
When using a specific material model in a commercial finite element software such
as Abaqus, one can usually encounter three kinds of implementation (Figure 2.1)
with different levels of intrusiveness.

FINITE ELEMENT
CODE

Scripts
(python, Fortran, …)

Standard
input

Standard
output

Non-Standard input

API

(a) Simple

FINITE ELEMENT
CODE

Scripts 
(python,Fortran, …)

Standard
input

Standard
output

Non-Standard input

API

(b) Non intrusive

FINITE ELEMENT
CODE

Scripts
(python, Fortran, …)

Standard
input

Standard
output

Non-Standard output

API

(c) Fully intrusive

Figure 2.1: Implementation possibilities in a finite element code.

The first and most basic implementation (Figure 2.1a) corresponds to a fully
graphical use of the software, without any scripts. In this case, the geometry, mesh
and boundary conditions are defined through the Graphical User Interface, which
is already used to choose the considered material and handle the post-treatment.
This only works with materials that are already embedded in the software, includ-
ing parametric models, and whose behaviour will be computed using only standard
inputs and outputs.

More complex implementations (Figure 2.1b), using additional scripts, can also
be envisioned, either to handle the computations or to deal with material models
that are not already implemented in the finite element code Abaqus. Pythons
scripts can thus be used to automate everything that can be done through the
graphical user interface, such as defining problems, running simulations and post-
treating results. Other scripts, such as the UMAT subroutine, can also be used to
define the material behaviour associated with models that are not already imple-
mented in the finite element software. While this subroutine is mainly meant to
solve mechanical problems, updating state variables based on both their previous
values and the strain increment, it can also be associated with other subroutines
to handle more complex behaviours. As an example, solving thermo-mechanical
problems can be done by coupling it to either UMATHT or HETVAL subroutines.
The UMAT subroutine would then handle the mechanical variables, while the other
subroutine handles the thermal ones.



In the case of a local damage model, the only equation that needs to be solved
is the equilibrium equation

∇ · σ = 0 (2.29)

whose variational formulation can be rewriten as

ΦU (U) = Fext (2.30)

where Φu and Fext are the internal and external forces associated with the dis-
placement degree of freedom U . After linearization, this problem would then write
:

KUU · {U} = {Fext} (2.31)

where KUU is the tangent stiffness defined as

KUU = ∂ΦU
∂U

(2.32)

One could also consider using the secant stiffness which is usually easier to
compute, but induces a slower convergence. It is worth noting that, since the
user-material script is used through a dedicated API, this implementation requires
only standard inputs and outputs such as stress, strain, and other state variables
and can thus be seen as non-intrusive.

In the more complex case of nonlocal damage models, one can differentiate
the implementation of the integral-type and gradient-type formulations. While
integral-type formulations do not require to solve any additional equation, the
computation of the nonlocal variable ε̄ at a given point x requires access to its
neighbourhood, namely the value of the local field ε̂ at each other point ξ, and
their relative distance to x, lxξ. Since these information are usually not accessible,
one would need an intrusive implementation (Figure 2.1c) to get access to these
non-standard outputs.

On the other hand, gradient-type formulations do require to solve an additional
equation which can be written under the general form

ε̄− a ∇ · (b ∇ε̄) = ε̂ (2.33)

where a and b are scalar fonctions that might depend on both local and nonlocal
variables, and ε̂ and ε̄ would be replaced by s and d for the Phase-Field-based
model. The full coupled nonlinear problem thus writes{

∇ · σ = 0
ε̄− a ∇ · (b ∇ε̄) = ε̂

(2.34)

and its variational formulation can be rewritten as{
ΦU (U , E) = Fext
ΦE (U , E) = 0

(2.35)



where ΦE are the internal forces associated with the nonlocal degree of freedom E .
In this case, due to the additional equation and degree of freedom, one would

not be able to use directly the embedded mechanical solver, nor the associated el-
ements, to solve a problem using this model. This issue was addressed in [Molnár
and Gravouil, 2017] for the Phase-Field model proposed in [Miehe et al., 2010a]
using user-defined elements (UEL) and material (UMAT) to handle both the addi-
tional equation and the associated degree of freedom. This implementation, using
non-standard outputs, enabled the staggered resolution (Figure 2.2a) of the cou-
pled problem with a dedicated set of finite elements.

Ini�alise the coupled problem
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Ini�alise the coupled problem

Solve the coupled
problem

Convergence 
achieved ?

New 
itera�on

New 
increment

No Yes

(b) Monolithic resolution

Figure 2.2: Resolution schemes for the coupled problem.

When using such a resolution scheme, uncoupling the problem and handling
only one equation at a time, one would first fix the nonlocal degree of freedom E
and solve the linearized equilibrium equation

KUU · {U} = {Fext} (2.36)

before fixing the displacement degree of freedom U and solving the linearized
nonlocal equation

KEE · {E} = {0} (2.37)

where KUU and KEE are the stiffness related respectively to the displacement and
nonlocal degrees of freedom 

KUU = ∂ΦU
∂U

KEE = ∂ΦE
∂E

(2.38)

On the other hand, in order to handle both equations simultaneously, one
could also consider a coupled monolithic resolution (Figure 2.2b), solving directly
the linearized coupled problem[

KUU KUE
KEU KEE

]
·
[
U
E

]
=
{
Fext

0

}
(2.39)



where the diagonal terms of the stiffness matrix KUU and KEE are still defined as
in (2.38), and the coupling terms KUE and KEU are defined as

KUE = ∂ΦU
∂E

KEU = ∂ΦE
∂U

(2.40)

An intermediate and less efficient scheme that could also be envisioned is the
monolithic resolution of the system (2.35) treated as an uncoupled problem. To
do so, starting from (2.39), one would have to set KUE and KEU to zero, giving the
linearized problem [

KUU 0
0 KEE

]
·
[
U
E

]
=
{
Fext

0

}
(2.41)

which is easier to implement due to the absence of coupling terms.

While the staggered resolution might be easier to implement, solving the coupled
problem should enable the monolithic approach to have a better convergence rate,
especially when using the tangent stiffness. However, the monolithic resolution
cannot be implemented by simply creating a new set of user-defined elements
since one would also need to use a completely different solver.

2.2.2 Thermo-mechanical analogy
As seen in the previous part, the implementation of gradient-type nonlocal dam-

age models usually requires the use of dedicated elements and solver with an addi-
tional degree of freedom, which can be done through an intrusive implementation.
However, the goal of this chapter is to conduct a non-intrusive implementation of
the models introduced previously. To do so, one would have to use existing solver
and elements that already have an additional degree of freedom, e.g. temperature,
instead of creating new ones.

One can rewrite the general gradient-type equation (2.33) as

−∇ · (b ∇ε̄) = ε̂− ε̄
a

(2.42)

and, based on its similarities with the transient heat equation

ρcp
∂T

∂t
−∇ · (κ ∇T ) = r(T ) (2.43)

where ρ is the density, cp the specific heat, κ the conductivity, T the temperature,
∇T its gradient, and r a heat source, one could consider using thermo-mechanical
solver and elements to handle both the equilibrium and the nonlocal equations.

As pointed out before, thermo-mechanical models can be handled in Abaqus
using the UMAT subroutine associated either to the HETVAL or UMATHT sub-
routines. By using one of these subroutines, one could also avoid writing and



implementing the model’s variational formulation, simply replacing the terms of
the thermal equation by those of the nonlocal one. The main difference between
the two subroutines comes from the fact that, while the resolution scheme asso-
ciated with HETVAL is a staggered one (Figure 2.3), the UMATHT subroutine
enables the monolithic resolution of a fully coupled problem (2.4).

When using HETVAL, each equation of the problemρcp
∂T

∂t
−∇ · (κ ∇T ) = r(T )

∇ · σ = 0
(2.44)

is handled separately, and one has to define ρ, cp and κ as fixed material param-
eters while r, σ, and their derivatives are defined through the scripts using each
subroutine standard inputs, namely

• the initial values of stress, strain, temperature and the other state variables,
along with the increments of strain and temperature for UMAT

• the increment, initial value and gradient of temperature for HETVAL

Regarding the solving algorithm (Figure 2.3), one can note that, at each inte-
gration point, the code first calls the UMAT subroutine to define the terms related
to the equilibrium equation

σ,
∂σ

∂ε
(2.45)

before calling the HETVAL subroutine to define the terms related to the thermal
equation

r,
∂r

∂T
(2.46)

The thermal and mechanical stiffness are then assembled, the residuals com-
puted and, depending on whether convergence is achieved, the code either moves
on to the next increment or try a new iteration for the current one.

This procedure can be used with any thermo-mechanical element and allows
for the uncoupled resolution of the thermo-mechanical problem. This was done by
Azinpour et al. ([Azinpour et al., 2018]) for both the classical gradient [Peerlings
et al., 1996] and the stationary Phase Field [Miehe et al., 2010a] formulations. How-
ever, it only allows the use of constant thermal parameters, which is not sufficient
when using a state dependent function b as in the eikonal-based formulation.

The alternative implementation, using UMATHT instead of HETVAL, allows
for a more extensive implementation, solving simultaneously both equations of the
problem ρ

∂e

∂t
−∇ · q = r(T )

∇ · σ = 0
(2.47)
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Figure 2.3: Resolution using HETVAL and UMAT subroutines.

where the internal thermal energy e is still defined as

e = cp T (2.48)

and the heat flux q is still defined as

q = −κ ∇T (2.49)

Moreover, while ρ is still defined as a fixed material parameter, each term (u,
r, q and σ), along with its derivatives, is defined through the scripts using each
subroutine standard inputs, namely

• the initial values of stress, strain, temperature and the other state variables,
along with the increments of strain and temperature for UMAT

• the state variables and the increment, initial value and gradient of tempera-
ture for UMATHT

Regarding the solving algorithm (Figure 2.4), one can note that, to handle
the monolithic resolution, both subroutines are called simultaneously at each inte-
gration point. Unlike the previous implementation, the terms related to the heat
source

r,
∂r

∂ε
,
∂r

∂T
(2.50)

are computed through the UMAT subroutine, along with the terms related to
stresses

σ,
∂σ

∂ε
,
∂σ

∂T
(2.51)



while those linked to the internal energy and the heat flux

q,
∂q

∂T
,

∂q

∂ (∇T ) , e,
∂e

∂T
,

∂e

∂ (∇T ) (2.52)

are computed through the thermal subroutine. It is worth noting that, when
computing the derivatives in the UMATHT subroutine, T and ∇T are taken as
independent variables.
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Figure 2.4: Resolution using UMATHT and UMAT subroutines.

This procedure can also be used with any thermo-mechanical element, and it
allows for the monolithic resolution of the coupled thermo-mechanical problem,
using state dependent thermal parameters and tangent stiffness.

It was thus decided here to use the UMAT and UMATHT subroutines to handle
the coupled problem (2.34), in order to take advantage of both the non-intrusive
implementation and the monolithic resolution. The implementation of the different
gradient-type damage models considered here will be detailed in the next part.

It is worth noting that the use of standard thermo-mechanical elements imposes
both the interpolation and the integration associated with temperature in Abaqus,
which was here assumed to be sufficient. On the other hand, the use of a dedicated
implementation such as the one conducted by Molnar and Gravouil [Molnár and
Gravouil, 2017] allowed them to use a quadratic interpolation of the additional
degree of freedom. As far as the integration is concerned, it could be interesting
to study whether the integration used with both implementation is sufficient to
properly handle the right hand side of the gradient-type equation.

Depending on the outcome of this study, one might then consider taking ad-
vantage of a dedicated implementation in order to improve the integration.



2.2.3 Application to the considered gradient-type formula-
tions

This part will focus on the thermo-mechanical analogies related to the non-
intrusive implementation of each gradient-type formulation considered here, using
the UMAT and UMATHT subroutines.

On a general matter, based on the analogy related to the general gradient-type
formulation

ρ
∂e

∂t
−∇ · q = r(T )

⇔ −∇ · (b ∇ε̄) = ε̂− ε̄
a

(2.53)

one can note that all terms related to the internal energy e should be put to 0.
This point will be discussed in more details in Part 2.3, but until then one can

consider from now on that

e = 0, ∂e

∂T
= 0, ∂e

∂ (∇T ) = 0 (2.54)

Classical gradient-type formulation

The first formulations considered here are the classical gradient-type formulation
(1.26), introduced in [Peerlings et al., 1996] and for which the thermo-mechanical
analogy writes

ρ
∂e

∂t
−∇ · q = r(T )

⇔ −∇ ·
(
c2∇ε̄

)
= ε̂− ε̄

(2.55)

giving term by term
q ⇔ c2∇ε̄
T ⇔ ε̄

r ⇔ ε̂− ε̄
(2.56)

in addition to the conditions introduced in equation (2.54).
This means that, in this case, the heat source r should be replaced by the term

ε̂ − ε̄, the conductivity κ by the square value of the internal length c, and the
temperature T by the nonlocal strain ε̄.

The derivatives of σ and r with respect to ε and T , that have to be implemented
in the UMAT subroutine, then write for 1D simulations

∂σ

∂ε
= (1−D)E, ∂σ

∂T
=
{
− g′(κ) Eε if ε̄ ≥ κ

0 if ε̄ < κ

∂r

∂ε
=
{

1 if ε ≥ 0
0 if ε < 0

,
∂r

∂T
= −1

(2.57)

And, considering the analogy for the heat flux (2.56), its derivatives, that
should be implemented in the UMATHT subroutine, simply write

∂q

∂T
= 0,

∂q

∂∇T
= c2 (2.58)



Phase-Field-based formulation

Following the same steps with the Phase-Field-based formulation (2.28), one
gets the thermo-mechanical analogy

ρ
∂e

∂t
−∇ · q = r(T )

⇔ −∇ ·
(
ld

2∇d
)

= y − d
1− y

(2.59)

and thus, term by term

q ⇔ ld
2∇d

T ⇔ d

r ⇔ y − d
1− y

(2.60)

in addition to the conditions introduced in equation (2.54).
This means that, in this case, the heat source r should be replaced by the term

y − d/1− y, the conductivity κ by the square value of the internal length ld, and
the temperature T by the Phase-Field variable d.

The derivatives of σ and r with respect to ε and T , that have to be implemented
in the UMAT subroutine, then write for 1D simulations

∂σ

∂ε
= (1−D)E, ∂σ

∂T
= 2
√

1−D Eε

∂r

∂ε
=


y

′(κ)
〈ε〉+
ε

1− d
(1− y)2 if ε̂ ≥ κ > 0.

0. otherwise
,

∂r

∂T
= −1

1− y

(2.61)

And, considering the analogy for the heat flux (2.56), its derivatives, that
should be implemented in the UMATHT subroutine, simply write

∂q

∂T
= 0.,

∂q

∂∇T
= ld

2 (2.62)

One can note that, when y gets close to 1., singularities may appear when
computing r, ∂r/∂T and ∂r/∂ε. This issue was here addressed by bounding the
value of y used to compute those terms to avoid division by 0.

It is worth noting that this only affects the nonlocal treatment and the tangent
operator approximation, and not damage itself which can take higher values that
will be used to compute the stress σ.

Eikonal-based gradient-type formulation

This approach can also be applied to any of the eikonal-based gradient-type
formulations presented in Part 1.6.3. Focusing on the one studied in this chapter,
i.e involving unidirectional damage (1.72), the thermo-mechanical analogy writes

ρ
∂e

∂t
−∇ · q = r(T )

⇔ −∇ ·
(
c2√1−D ∇ε̄

)
= ε̂− ε̄√

1−D

(2.63)



and thus, term by term

q ⇔ c2√1−D ∇ε̄
T ⇔ ε̄

r ⇔ ε̂− ε̄√
1−D

(2.64)

in addition to the conditions introduced in equation (2.54).
This means that, in this case, the heat source r should be replaced by the term

(ε̂ − ε̄)/
√

1−D, the conductivity κ by the square value of the effective internal
length c(1−D)1/4, and the temperature T by the nonlocal strain ε̄.

The derivatives of σ and r with respect to ε and T , that have to be implemented
in the UMAT subroutine, then write for 1D simulations

∂σ

∂ε
= (1−D)E

∂σ

∂T
=
{
− g′(κ) Eε if ε̄ ≥ κ

0. if ε̄ < κ

∂r

∂ε
=


1.√

1−D
if ε ≥ 0.

0. if ε < 0.

∂r

∂T
= −1√

1−D
+


− g

′(κ) (ε̂− ε̄)
2 (1−D)3/2 if ε̄ ≥ κ

0 if ε̄ < κ

(2.65)

And, considering the analogy for the heat flux (2.56), its derivatives, that
should be implemented in the UMATHT subroutine, simply write

∂q

∂T
=


− c2 g

′(κ)
2
√

1−D
∇ε̄ if ε̄ ≥ κ

0 if ε̄ < κ

,
∂q

∂∇T
= c2 √1−D (2.66)

Again, specific care will need to be taken when D gets close to 1 in order
to avoid singularities when computing the nonlocal treatment and the tangent
operator approximation.

2.3 Driving strategies and associated issues
This part will deal with the driving strategy used here to assess the properties of

the considered formulations through the computations of 1D numerical examples.
It will first focus on the more classical driving strategy before considering its
associated issues and proposing a way to address them.



2.3.1 Displacement-based driving and stabilization using
numerical viscosity

Displacement-based driving, principle and associated issues

The most simple way to handle a monotonic loading with a softening behaviour
(Figure 2.5a) is to impose the displacement at the end of the bar, since the driving
variable thus have a monotonic evolution. One could also consider using it for
alternate loading with elastic unloading (Figure 2.5b) since a given increment of
displacement, whether positive or negative, will correspond to a unique point on
the response curve.

It is worth noting that, in this case, one could not use a force based driving
strategy since, even for a loading following the material’s response (Figure 1.3b),
the force would not have a monotonic evolution. Moreover, after the peak, a given
force increment does not correspond to a unique point on the response curve since
a decrease in the force could be induced either by unloading or softening.

(a) Monotonic loading (b) Alternate loading

Figure 2.5: Response curves for monotonic and alternate loading.

Numerical simulations were conducted in order to assess the relevance of the
strain-based driving strategy, and it seems to be working well with the classical
gradient-type formulation. However, when using small internal length, or when
computing responses using the local formulation, it does not appear to be sufficient.

Snap-back instabilities

The issue encountered in the previous part for small internal lengths is linked to
the occurrence of snap-back instabilities when damage localizes in small area. In
this case, after the stress reaches its maximum value, the unloading of the elastic
part exceeds the loading of the localization zone, and both stress and displacement
at the bar’s end decrease. This phenomenon comes from the fact that, depending
on the load, geometry and model considered, the elastic energy stored during the
first part of the loading exceeds the energy that can be dissipated after the peak.
It is thus a structural effect inherent to stress softening and localization, and not
specific to the considered nonlocal damage model. Though such instabilities can



also occur in 2D and 3D settings, they cannot be avoided in 1D settings due to
the absence of load sharing, and one thus have to find a way to handle it.

As it is, in the particular case of a bar submitted to tension, it is possible to
demonstrate that snap-back instabilities will occur when the size of the localiza-
tion area l is smaller than a critical size. Considering a homogeneous bar of length
L made of a material whose behaviour corresponds to the local damage model de-
scribed in Part 1.3.1, the condition for such instabilities thus writes (cf. Appendix
B)

l <
ε0

εf
L (2.67)

One can thus conclude that, the occurrence of a snap-back is linked to the dam-
age rate through the term ε0/εf , and to the relative importance of the localization
area through l/L. In the scope of this chapter, using ε0 = 0.03 and εf = 0.15,
one can expect this structure effect when damage localizes in less than 20% of the
bar. Numerical simulations were conducted in order to assess the relevance of this
result and, as one can see in Figure 2.6, the slope of the response curve tends to
get steeper when the localization area shrinks, and snap-back instabilities finally
occur when l < 0.2L which is consistent with the analytical result (2.67).

Figure 2.6: Force-displacement curves of the local model for different localization
sizes.

The occurrence of these instabilities explains the loss of convergence for small
internal length, i.e. small localization area, for displacement driven computations.
In such cases, the displacement at the end of the bar does not have a monotonic
evolution, hence it cannot be used to drive the whole computation. One way to ad-
dress this issue would be to find another, more suited, driving strategy compatible
with the considered instabilities.

Though it was not available here, another option could also be to take into
account the dissipation linked to the kinetic energy, thus ensuring a continuous
increase of the displacement and stabilizing the response curve.

Stabilization of the response

As pointed out before, one way to address the snap-back issue would be to
stabilize the response curve by taking into account the kinetic energy. However,



even though this would enable one to remain consistent with the energy balance,
it would require the modelling of dynamic effects, which is not possible with this
Abaqus formulation and is beyond the scope of this work. Based on this idea,
another classical way to obtain similar stabilization properties would be to add
a dissipative phenomenon in the material model, which can be done either by
changing the local material behaviour or the nonlocal treatment.

Regarding the change in the local material behaviour, it could be done by
using a bounded rate damage model ([Allix and Deü, 1997], [Allix et al., 2003],
[Desmorat et al., 2010a]), or a damage plastic model ([Jirásek and Desmorat, 2019]).
It was however decided here to keep the local damage model, and to increase the
dissipated energy by changing the nonlocal treatment.

This classical modification was done, pursuing the thermo-mechanical analogy,
by adding the term corresponding to the time derivative of the internal energy
∂e/∂t in the general gradient-type formulation (2.42) equation, writing

ρ
∂υ

∂t
−∇ · (b ∇ε̄) = ε̂− ε̄

a
(2.68)

where υ represents the additional energy defined, using a numerical parameter ζ,
as

υ = ζε̄ (2.69)

It is worth noting that, using the resulting formulation, one could express ˙̄ε as
a function of ε̄ and ε̄− ε̂, which is similar to bounded-rate and nonlocal bounded-
rate damage models. This modification of the nonlocal treatment would induce a
numerical viscosity, delaying damage evolution in order to stabilize the curve and
prevent the occurrence of snap-back instabilities.

The thermo-mechanical analogy of the stabilized classical gradient-type formu-
lation would then write

ρ
∂e

∂t
−∇ · q = r(T )

⇔ ρ
∂υ

∂t
−∇ ·

(
c2∇ε̄

)
= ε̂− ε̄

(2.70)

giving term by term

e⇔ υ

q ⇔ c2∇ε̄
T ⇔ ε̄

r ⇔ ε̂− ε̄

(2.71)

which, apart from the term related to the additional energy, is the same as the one
presented Part 2.2.3.

One could thus expect the other terms, r, σ and q, and their derivatives, ∂r/∂ε,
∂r/∂T , ∂σ/∂ε, ∂σ/∂T , ∂q/∂T and ∂q/∂ (∇T ) to remain unchanged, while the
conditions established in equation (2.54) would become

e = ρζT (2.72)



∂e

∂T
= ρζ (2.73)

∂e

∂ (∇T ) = 0 (2.74)

Using this stabilized formulation with an additional energy, one should be able
to use a displacement-based strategy to drive simulations that would exhibit a
snap-back with the classical formulation.

Numerical examples

This new formulation was used, along with displacement based driving strategy,
to run the same simulations as the ones computed in Part 2.3.1, including those
who did not converge due to the snap-back instabilities.

As one can see in Figure 2.7, no instabilities appear when damage is localized
in more than 20% of the bar, i.e for κ = 2, 1, 0.5.

(a) Force-displacement curves (b) Damage profiles

Figure 2.7: Response curves of the nonlocal model with numerical viscosity and
displacement driven computations for different internal length.

However, even though it was possible to compute the response curve for κ = 0.2,
one can note that it exhibits a quasi-vertical slope after the peak. This corresponds
to a snap-back instability which is consistent with the fact that, in this case,
damage localizes in less than 20% of the bar (Figure 2.7b). It thus appears that
this formulation enables the stabilization of a response curve exhibiting a snap-back
instability, which can be computed using a displacement based driving strategy.
Moreover, one can note (Figure 2.8) that the stabilizing modification allows the
existence of converged increments along the quasi-vertical part of the curve.

It is worth noting that this does not allow one to compute the dissipated energy
associated with the original model, since part of the area under the curve represents
the numerical stabilizing energy e. While this is quite straightforward for initially
unstable response curves, one should note that it is also true for the stable ones
since the additional dissipation will still be introduced through the viscous term.
Another driving strategy, allowing the computation of snap-back instabilities, is
thus needed in order to properly handle these computations.



Figure 2.8: Force-displacement curve of the nonlocal model with numerical viscosity
and displacement driven computations for κ = 0.2.

2.3.2 Dissipation-driven computations

Principle

As pointed out in Part 2.3.1, the occurrence of snap-back instabilities raises the
issues of the computations’ driving since a direct method controlling either force or
displacement at the end of the bar cannot be used. Another option would be to use
an indirect driving strategy, such as the arc length method [Riks, 1979, Crisfield,
1991], controlling both force and displacement at the end of the bar by imposing
the increase of a given quantity.

A natural choice could then be to fix the evolution of a local and monotonic
variable such as damage or strain in the localization zone. However, this would
require the geometrical identification of this area, either before or during the com-
putation, and the driving itself wont be done in a non intrusive fashion. Instead,
one can fix the evolution of a global variable, computed directly from the force
and displacement at the end of the bar, thus addressing the issue of the driving
intrusiveness.

It was thus decided, following [Gutiérrez, 2004, Verhoosel et al., 2009], to use a
dissipation-based global driving method to handle the post-peak part of the prob-
lem. In this case, one imposes the increment of dissipated energy at each step,
and the force and displacement at the end of the bar are computed accordingly.
As one can see in Figure 2.9, the energy dissipated between two time steps can
be observed on the response curve as the area of the triangle defined by the cor-
responding portion of the response curve and the two elastic unloadings at those
time steps.

First, one needs to consider the simple case of strain softening without snap-
back instabilities. A portion of such a response curve between two points (U1, F1)
and point (U2, F2) with U2 ≥ U1 and F2 ≤ F1 is displayed in Figure 2.10. As one
can see, the increment of dissipated energy ∆A, which is equal to the area of the
triangle defined by the blue, green and red lines, can be defined as the sum of the
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Figure 2.9: Partition between elastic and dissipated energy, and increments of
dissipation, in the absence of plasticity.

areas of the blue, green and red triangles, giving

∆A = 1
2 [F1 (U2 − U1)− U1 (F2 − F1)] (2.75)
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Figure 2.10: Computation of the increment of dissipated energy with strain soften-
ing.

On the other hand, the occurrence of a snapback would bring the response
curve displayed in Figure 2.11, where one U2 ≥ U1 and F2 ≤ F1. In that case, the
increment of dissipated energy ∆A would still be equal to the area of the triangle
defined by the blue, green and red lines, which would be equal to the area of the
green triangle, minus those of the blue and red ones, giving just as before

∆A = 1
2 [F1 (U2 − U1)− U1 (F2 − F1)] (2.76)

In the end one can conclude that, to impose an increment of dissipated energy
∆A, one needs to have

∆A = 1
2 (F∆U − U∆F ) (2.77)
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Figure 2.11: Computation of the increment of dissipated energy with snapback.

where F and U are the initial values of the force and displacement at the end of
the bar, and ∆F and ∆U are their increments.

However, unlike the displacement-based strategy, this one cannot be directly
used through a classical boundary condition, and requires a dedicated implementa-
tion that will be detailed in the next part. It is also worth noting that this driving
strategy does not work with additional dissipation mechanisms, e.g. plasticity,
since the elastic unloadings have to go through the origin of the response curve.

Numerical implementation and driving algorithm

As pointed out before, using the dissipation-based driving strategy requires a
dedicated implementation, since the increment of force ∆F at the end of the bar
needs to become an unknown just as the increments of displacement ∆U and
nonlocal strain ∆ε̄. This was done by using a connecting user-defined element
(UEL) located at the end of the bar (Figure 2.12), linking an unused rotational
degree of freedom to the force at the end of the bar.

Y

X

Z

Pinned

User Element

Figure 2.12: Considered geometry with boundary condition and UEL

Using the residuals associated with the element’s behaviour, it was then pos-
sible to add the driving equation (2.77) to the coupled linearized problem (2.39),
imposing the increment of energy dissipated in the bar. Noting A0 the loading



parameter associated with this strategy, the driving equation writes

F∆U − U∆F = 2 A0 dt (2.78)

and the problem associated with the last element becomesKUU KUE −1.
KEU KEE 0.
F 0. −U

 ·
∆U

∆ε̄
∆F

 =


0.
0

A0 dt

 (2.79)

Regarding the solving algorithm (Figure 2.13), one can note that the UEL
subroutine associated with the connecting element is called at each time step,
before moving to the other elements, and contributes to the global residual that is
used to check convergence.
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Figure 2.13: Resolution using UMATHT and UMAT subroutines along with a UEL
at the bar’s end.

This strategy appears to be well suited to compute the post-peak part of the
curve, even with snap-back instabilities, but it cannot be used to drive the elastic
loading since no energy is dissipated in this part. One thus needs to find a driving
algorithm that handles both part of the curve without knowing in advance when
the peak will be reached, and whether snap-back instabilities will occur or not.

Based on the advantages and drawbacks inherent to the displacement-based
and dissipation based strategies, it was decided here to use both with a suitable
commuting condition. The idea was to use the displacement based strategy for the
non-dissipatve part of the loading, namely the elastic part before the peak, and to
move to the dissipation based strategy after the peak for the softening part. Doing



so should ensure that the post-peak part of the curve can be computed, along with
the elastic part, whether snap-back instabilities occur or not.

In that case, the displacement-based strategy needs to be implemented using
the same tools, imposing the increment in displacement through the UEL’s resid-
uals. Noting U0 the loading parameter associated with this strategy, the driving
equation thus writes

∆U = U0 dt (2.80)

and the problem associated with the last element becomesKUU KUE −1.
KEU KEE 0.
1. 0. 0.

 ·
∆U

∆ε̄
∆F

 =


0.
0

U0 dt

 (2.81)

The main issue was then to detect the peak in order to change the driving
strategy precisely at the beginning of the softening. It was thus decided to use an
energy based criterion, checking whether the new increment is likely to dissipate
some energy and choosing the driving method accordingly. This choice was handled
on the UEL level, by checking whether the dissipation ∆Atry associated with the
new increment, defined as

∆Atry = 1
2 (F∆U − U∆F ) (2.82)

was equal to 0. The dissipation-based strategy (2.79) would then be used when
∆Atry is greater than 0, namely during most of the post-peak part of the curve,
while the displacement-based strategy (2.81) would be used during the elastic
loading and the last part of the curve when F gets close to 0.

This driving algorithm enables the computation of all three parts of the curve
without knowing a priori when the peak will be reached, and whether snap-back
instabilities will occur or not. It was used to handle the numerical simulations that
will be presented in the next part and used to assess the properties of the different
nonlocal models that will be studied here.

2.4 Numerical results and properties of the non-
local approaches

This part presents the numerical results obtained with the driving algorithm
introduced in Part 2.3.2 in order to assess the properties of the nonlocal damage
models considered here. This assessment was done based on the expected proper-
ties of what we call here a "good" damage model (cf.Part 1.3.3), and especially
the one regarding the crack behaviour

• final zero stress

• convergence and mesh independence



• no interaction through a pseudo-crack (when D = 1)

• existence of a solution with a displacement jump at D = 1

• localization in a single element when D = 1

The numerical problem studied here is the one described in Figure 2.12, a 1D
bar under tension made of an homogeneous isotropic material, with a weakened
element at the middle.

2.4.1 Realism of the associated behaviour
The first criterion considered here is the "realism" of the response curve, which

will be studied by comparing the results obtained with each nonlocal formulation
to those obtained with the local one.

The response curves and damage profiles obtained with both the local and
classical (Peerlings’) nonlocal formulation are plotted in Figure 2.14. First, one
can note that the elastic part of the loading is identical for both models, and that
the curve exhibits the expected stress drop after the peak. Moreover, the damage
profile is much wider with the nonlocal damage model, which seems more realistic
in the sense that damage is not only localized in a single element. However, the
fact that damage reaches 1 in such a wide area is not consistent with the expected
properties since it is not likely to reproduce a crack behaviour due to the width of
the pseudo-crack.

(a) On the force-displacement curves (b) On the damage profiles

Figure 2.14: Influence of the Peerling’s formulation on the local behaviour.

Moving on to the Phase-Field based formulation, the response curves and dam-
age profiles obtained with both this formulation and the local one are plotted in
Figure 2.15. First, one can note that, as for the previous formulation, the elastic
part of the loading is identical for both models, and that the curve exhibits the
expected stress drop after the peak. Moreover, damage is still spread over a non-
zero zone, which is consistent with the physical spreading of damage, but here it
only reaches 1 in a single element and is thus more likely to reproduce a crack
behaviour.



(a) On the force-displacement curves (b) On the damage profiles

Figure 2.15: Influence of the Phase-Field based formulation on the local behaviour.

Finally, regarding the eikonal-based formulation, the response curves and dam-
age profiles obtained with both this formulation and the local one are plotted in
Figure 2.16. First, one can note that, as for the previous formulation, the elastic
part of the loading is identical for both models, and that the curve exhibits the
expected stress drop after the peak. Moreover, as for the Phase-Field based for-
mulation, damage is spread over a non-zero zone and reaches 1 in a single element
which is fully consistent with the requirements of what we call a "good" damage
model.

(a) On the response curves (b) On the damage profiles

Figure 2.16: Influence of the eikonal-based formulation on the local behaviour.

In the end, one can note that all three damage models meet this first require-
ment, associated with the response curve, even though only the eikonal-based
and the Phase-Field based models seem likely to accurately reproduce a crack
behaviour.

It is worth noting that the response curves obtained with both the eikonal-based
and Phase-Field-based formulations are much more brittle than the one obtained
with the classical one.



2.4.2 Convergence and mesh independence
Now that it has been checked that the considered formulations produce realis-

tic results, one has to ensure that they converge toward a realistic solution, and
become mesh-independent for a small enough element size.

The response curves and damage profiles obtained with the classical nonlocal
formulation were plotted in Figure 2.17 for different levels of discretization (21, 41,
101 and 201 elements) of the considered geometry. First, one can note that both
the response curve (Figure 2.17a) and the damage profile (Figure 2.17b) appear to
become mesh independent for a small enough element size. Moreover, the results
converge toward a realistic solution with a non-zero dissipated energy since the
area under the response curve does not tend to 0, and the size of the damaged
zone is constant and does not shrink to 0.

(a) On the force-displacement curves (b) On the damage profiles

Figure 2.17: Mesh convergence of the classical nonlocal formulation.

Moving on to the Phase-Field based formulation, the response curves and dam-
age profiles obtained with this formulation for different levels of discretization (21,
41, 101 and 201 elements) of the considered geometry were plotted in Figure 2.18.
First, it can be seen that one still has convergence toward a realistic solution with a
non-zero dissipated energy. However, although the damage profile becomes mesh-
independent for a small element size (Figure 2.18b), it is not strictly the case for
the response curve (Figure 2.18a). This small discrepancy is linked to the fact that,
when reaching high damage levels, the size of the localization shrinks to 0, and
thus becomes slightly mesh dependent. Despite this, one can note that for rather
fine discretizations, namely for 101 and 201 elements, the difference between the
response curves becomes negligible since it only concerns a very small part of the
curve. As it is, the area under the curve has a very low sensitivity with respect to
the element size, which results in a 1.9% variation in the dissipated energy.

Finally, regarding the eikonal-based nonlocal formulation, the response curves
and damage profiles obtained with this formulation for the same levels of discretiza-
tion of the considered geometry were plotted in Figure 2.19. First, it can be seen
that one still has convergence toward a realistic solution with a non-zero dissipated
energy. However, just as for the Phase-Field based formulation and despite the
mesh independence of the damage profile (Figure 2.18b), the response curve does



(a) On the force-displacement curves (b) On the damage profiles

Figure 2.18: Mesh convergence of the Phase-Field based nonlocal formulation.

not become strictly mesh independent (Figure 2.18a) due to the shrinkage of the
damage profile at high levels of damage. Nonetheless, one can note that for rather
fine discretization the difference between the response curves is once again negligi-
ble since it only concerns a very small part of the curve. The area under the curve
still has a low mesh sensitivity, which results in a 4.4% variation in the dissipation.

(a) On the force-displacement curves (b) On the damage profiles

Figure 2.19: Mesh convergence of the eikonal-based nonlocal formulation.

In the end, one can note that the results obtained with all three damage mod-
els tend to converge toward realistic solutions with a non zero dissipated energy.
Moreover, the solution obtained with the classical nonlocal formulation becomes
mesh-independent for small enough element size and, to some extend, so do the
solutions obtained with the Phase Field based and eikonal-based formulations.

2.4.3 Pseudo-crack behaviour
The last criterion considered here is the fact that a highly damaged zone should

behave as a crack, which means that no interaction should exist through a pseudo-
crack (D ≈ 1), and a solution with a displacement jump should exist at D = 1.



To meet the first requirement, the damage active zone, i.e the zone where
damage increases, should shrink after the peak and tend to vanish when D gets
close to 1, inducing a sharp damage profile. The size of this area, also referred to
as the active length, will thus have to be studied in order to ensure that it tends
to 0.

As one can see, this is not truly the case for the classical nonlocal formulation
(Figure 2.20a) since, even though it slightly shrinks after a small increase in the
early stages of damage, the active length does not tend to 0, and even increases
when damage reaches 1 (Figure 2.20b).

(a) Damage profile (b) Active zone

Figure 2.20: Evolution of the damage profile and active zone with the classical
formulation.

On the other hand, the damage profile obtained with the Phase-Field based
model (Figure 2.21a) does appear to shrink when damage increases, which is con-
sistent with the decrease of the active length who tends to 0 when D gets close to
1 (Figure 2.21b). The initial peak observed on the evolution of the active length

(a) Damage profile (b) Active zone

Figure 2.21: Evolution of the damage profile and active zone with the Phase-Field
based formulation.

(orange curve) is linked to the fact that, due to the absence of damage thresh-



old with this formulation, one can observe very low levels of damage everywhere.
Those very low levels of damage were not taken into account which explains the
absence of the initial peak, and the occurrence of the initial increase also observed
with the classical formulation.

Apart from the initial peak, the same thing can be said of the eikonal-based
formulation, whose damage profile also shrinks when damage increases (Figure
2.22b), and whose damage active length also tends to 0 when D gets close to 1
after a small increase in the very early stages of damage (Figure 2.22a).

(a) Damage profile (b) Active zone

Figure 2.22: Evolution of the damage profile and active zone with the eikonal-based
formulation.

Regarding the existence of a solution with a displacement jump, the displace-
ment appears to be condensed near the middle of the bar, i.e where damage gets
close to 1, at the end of the loading (Figure 2.23a), which is consistent with a
crack behaviour. However, as one can see in Figure 2.23b, the classical nonlocal

(a) In the entire bar (b) Near the middle

Figure 2.23: Displacement jump observed with all damage models.

model does not exhibit a true displacement jump which is consistent with the
fact that the pseudo-crack is wider than a single element. On the other hand,



both the Phase-Field based and the eikonal-based formulations exhibit the same
displacement discontinuity on a single element as the local formulation.

2.5 Conclusion of chapter 2
After having presented the formulations associated with the considered nonlocal

damage models, their non-intrusive implementation was proposed using a thermo-
mechanical analogy and a monolithic resolution with the tangent stiffness.

Two solutions were then proposed to handle the instabilities associated with
the brittle responses: a stabilizing modification of the nonlocal treatments or the
use of a dedicated dissipation based driving strategy. While the former might
be easier to implement, only the second allows the precise computation of the
complete response, which was needed to study the three nonlocal damage models
properly.

Numerical simulations were then conducted using the non-intrusive implemen-
tation and the dissipation-based driving strategy to assess the relevance of the
three considered formulations.

As expected, even though the classical nonlocal formulation addresses the issues
linked to the spurious mesh dependency while keeping a "realistic" behaviour, it
does not make a highly damaged zone equivalent to a crack. Thus it cannot be
used to successfully bridge the gap between continuum damage mechanics and
fracture mechanics.

As far as the Phase-Field-based and eikonal-based gradient-type formulations
are concerned, they still address the issues linked to the spurious mesh dependency
while keeping a "realistic" behaviour. The only possible drawbacks would be that
the associated responses might be too brittle to reproduce a realistic material be-
haviour accurately. Moreover, both approaches appear to make a highly damaged
zone equivalent to a crack and thus match all the requirements of what is called a
"good" damage model here.

It thus confirms that both the eikonal-based and the Phase-Field-based formu-
lations could be successfully used to fill the gap between continuum damage and
fracture mechanics. Moreover, since its nonlocal treatment can be directly applied
to any scalar damage driving variable, the eikonal-based formulation might be more
versatile in terms of material behaviour. One could thus expect that this nonlocal
model could be associated with other material behaviours, e.g. damage-plastic
models, to get better modelling of materials such as concrete.



Chapter 3

Localization analysis of nonlocal
isotropic damage and
damage-plastic models
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As seen in Chapter 2, coupling a pure isotropic damage model to the eikonal-
based gradient-type formulation addresses the spurious mesh dependency associ-
ated with local formulations. Moreover, it also addresses one of the main issues
associated with nonlocal formulations with fixed internal lengths since a highly
damaged zone does behave as a crack.

However, one can note that, for a given set of material parameters, the load
displacement curves obtained with the eikonal-based formulation are much more
brittle than the ones obtained with the classical one. Besides, as pointed out
before, the proper modelling of concrete failure requires taking into account the
dissipation linked to crack friction and imperfect crack closure, which induces
permanent strains [Terrien, 1980, Mazars et al., 1989, Mazars et al., 1990].

A classical way to address this issue would be to introduce plasticity in the
considered damage model, namely by using the so-called damage-plastic framework
[Simo and Ju, 1987a, Simo and Ju, 1987b, Ju, 1989, Govindjee et al., 1995, Feenstra
and Borst, 1996, Meschke et al., 1998, Burlion et al., 2000, Nechnech et al., 2002,
Gatuingt and Pijaudier-Cabot, 2003, Lemaitre and Desmorat, 2005, Jason et al.,
2006, Grassl and Jirásek, 2006, Grassl and Jirásek, 2005, Desmorat et al., 2007b,
Matallah and Borderie, 2009, Lemaitre et al., 2009]. A recent study by Jirasek and
Desmorat [Jirásek and Desmorat, 2019] has shown the advantages of using such
models coupled with nonlocal formulations with damage dependent interactions.

In order to see whether the introduction of plasticity can address the issues
linked to the eikonal-based formulations, this chapter will focus on the study of
two isotropic damage models, namely a pure damage one and damage-plastic one.

These models will first be studied on a single material point to compare the as-
sociated behaviors, before focusing on the formulations obtained by coupling them
to the classical and eikonal-based nonlocal treatments. The bifurcation points, cor-
responding to the initial localization associated with each formulation, were then
studied and later used to focus on how plasticity affects the material behavior in
presence of both fixed and shrinking localization.

It is worth noting that, in order to get some insight on the influence of each
component of the considered formulations, it was decided here to use simplified
versions of the classical and eikonal-based nonlocal treatments.

3.1 Considered material behaviours

This part will present the local material behaviours considered in this chapter,
namely a pure isotropic damage model and an isotropic damage-plastic model,
along with a study of the influence of plasticity on stress evolution. It will then
present the nonlocal formulations associated with these models that will be used
throughout this chapter. It is worth noting that, since this chapter will only deal
with one-dimensional cases, the models presented in this part will be written in a
one-dimensional setting.



3.1.1 Local damage models
This part will first remind the pure isotropic damage model used previously,

before introducing the damage-plastic model to which it will be compared here.

Isotropic damage model

The first local damage model considered here is the one presented in Chapter 1
which represents a pure isotropic model with isotropic damage. It is worth noting
that, in this case, damage is driven by Mazars’ equivalent strain, and no plasticity
is considered. The model thus writes in a one-dimensional setting

σ = Ẽε = (1−D)Eε (3.1)
ε̂ = 〈ε〉 (3.2)

κ(t) = max
τ≤t

ε̂(τ) (3.3)

D = g(κ) =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(3.4)

Isotropic damage-plastic model

As pointed out before, the introduction of plasticity is mainly motivated by the
need to introduce permanent strain for the modelling of concrete, though it should
also help to increase the ductility of the eikonal-based damage model. Based on
those considerations, and in order to get a meaningful comparison with the pure
damage model, one could consider using a damage-plastic model with the same
stress-strain law, the additional ductility being introduced through the permanent
plastic strain. It was thus decided to use a plasticity-driven damage model with a
Rankine criterion for plasticity.

Noting εp the uniaxial plastic strain, the stress-strain relation based on Hooke’s
law extended to plasticity and damage writes in a one-dimensional setting

σ = Ẽ (ε− εp) = (1−D)E (ε− εp) (3.5)

In this case, damage evolution is assumed to be driven by the cumulative plastic
strain p, defined through

ṗ = |ε̇p| (3.6)

The damage-driving variable κ then writes

κ(t) =
∫ t

0
ṗ(τ)dτ = p(t) (3.7)

which allows the taking into account of the plastic history, and ensures that damage
does not decrease since κ̇ ≥ 0.

One can note that, due to the differences in the driving phenomenon, the
irreversibility condition is quite different from the one associated with the pure
damage model. As it is, irreversibiliy is here imposed by integrating the norm of a
function’s derivative instead of taking the maximum value of the function’s norm.



From this point, one still needs to address the issue of the plastic strain evolution.
It was decided, due to the presence of damage, to use a criterion f based on the
effective stress σ̃ introduced in [Lemaitre and Chaboche, 1985] and defined as

σ̃ = σ

1−D = E (ε− εp) (3.8)

The Rankine plasticity criterion used in this chapter thus writes in a one-
dimensional setting

f (σ̃, p) = σ̃ − σy(p) (3.9)
f ṗ = 0, f ≤ 0, ṗ ≥ 0 (3.10)

where σy is the yield stress that may depend on p in presence of hardening.
In the case of linear isotropic hardening R considered here, the yield stress

writes

σy = σ0 +R(p) = σ0 +H p (3.11)

where σ0 is the yield stress of the virgin material, andH is the hardening coefficient.

In the end, to get a meaningfull comparison, one should use a damage evolution
law that yields the same softening curve as the one associated with the pure damage
model. Damage is thus assumed to be defined as

D = g(κ) = 1− σ0

σ0 +Hκ
exp

(
−(1 +H/E)κ

εf − ε0

)
(3.12)

where εf and ε0 are still parameters governing damage evolution.
It is worth noting that no threshold is introduced in the damage evolution law,

such a condition will be introduced through the plasticity criterion, and that the
stress triaxiality effect is not taken into account.

Now that the considered local damage models have been introduced, one needs
to compare the associated behaviours in simple settings such as a material point.

3.1.2 Comparison on a material point under tension
Using the model introduced in Part 3.1.1 in a uniaxial setting, one could expect

that, in the absence of localization, the stress-strain law would be the same as the
one associated with the pure damage plastic model, and that damage would have a
slower evolution with respect to the total strain due to the introduction of plastic
strain. One can thus expect that the influence of plasticity can be observed, either
when localization occurs after the onset of plasticity, or when the localization area
tends to shrink when damage grows.

This part will thus focus on the behaviour associated with both models when
considering a single material point under monotonic uniaxial tension.



Influence of plasticity

First, one needs to check that the stress-strain laws associated with both models
are identical. To do so, let’s first consider the case of a material whose behaviour
corresponds to the pure damage model with the set of material parameters de-
scribed in Table 3.1 where εf = 5ε0.

E ν ε0 εf
30000 MPa 0.3 1.e− 4 5.e− 4

Table 3.1: Material parameters used with the pure damage model

In this case, keeping the stress-strain law (3.1), the equivalent strain will be
equal to the constantly increasing total strain, giving the damage driving variable

κ(t) = max
τ≤t

ε̂(τ) = ε(t) (3.13)

The damage evolution law then writes

D =


0 if ε < ε0

1− ε0

ε
exp

(
− ε− ε0

εf − ε0

)
if ε ≥ ε0

(3.14)

which gives for the stress-strain law

σ =


Eε if ε < ε0

Eε0 exp
(
− ε− ε0

εf − ε0

)
if ε ≥ ε0

(3.15)

On the other hand, in the case of a material whose behaviour is described by the
damage-plastic model, one would need to use a set of parameters consistent with
the one described in Table 3.1. It is worth noting that, though the peak stress σ0
might look like an additional parameter, it is actually defined as σ0 = Eε0, the
only additional parameter thus being the hardening parameter H.

Using H = E/30 as a default value for H, and in order to get meaningful com-
parison with the pure damage model, one can consider using the set of parameters
described in Table 3.2 for the damage-plastic one.

E ν ε0 εf σ0 H
30000 MPa 0.3 1.e− 4 5.e− 4 3 Mpa 1000 MPa

Table 3.2: Material parameters used with the damage-plastic model

Keeping the stress-strain law (3.5), the time derivative of the cumulative plastic
strain will be equal to that of the plastic strain, giving for the damage-driving
variable κ

κ(t) =
∫ t

0
ṗ(τ)dτ = εp(t) (3.16)



The plasticity criterion then gives

E(ε− εp) = σy = σ0 +Hεp (3.17)

which, when ε is greater than ε0, gives for the plastic strain

εp = E
(
ε− ε0

E +H

)
(3.18)

The damage evolution law then writes

D =


0 if ε < ε0

1− (E +H)ε0

Eε0 +Hε
exp

(
− ε− ε0

εf − ε0

)
if ε ≥ ε0

(3.19)

and, in the end, one has the stress-strain law

σ =


Eε if ε < ε0

Eε0 exp
(
− ε− ε0

εf − ε0

)
if ε ≥ ε0

(3.20)

which is the same as the one obtained with the pure damage model.
Moreover, noting DD and DDP the damage levels associated respectively to the

damage and damage plastic models, and defined in equations (3.14) and (3.19), one
would also have for ε ≥ ε0

DD −DDP = Eε0(ε− ε0)
ε(Eε0 +Hε) exp

(
− ε− ε0

εf − ε0

)
(3.21)

which is obviously greater than zero, meaning that DDP < DD.

The evolution of stress and damage with respect to strain is plotted in Figure 3.1
for both the damage and damage-plastic models, using the parameters described
in Tables 3.1 and 3.2. One can see in Figure 3.1a that, as expected, the introduc-
tion of plasticity does not influence the stress-strain law, and thus the total energy
dissipated up to complete failure. Moreover, Figure 3.1b shows that, as expected,
it tends to slow damage evolution since, for a given strain, the damage level associ-
ated with the damage plastic model will be lower than the one associated with the
pure damage model. This is also consistent with the fact that, to keep the same
dissipated energy, the dissipation induced by plasticity needs to be compensated
by a decrease in the one linked to damage.

Since (E, ν, ε0, εf ) are common to both models, and since σ0 can be defined from
(E, ε0), the only additional parameter introduced by the damage-plastic model,
and whose influence thus needs to be studied here, is the hardening parameter H.

Influence of hardening

After studying how the introduction of plasticity affects the material behaviour,
one needs to study the influence of hardening which is controlled through H.



(a) Stress-strain curves. (b) Damage evolution.

Figure 3.1: Stress-strain curves and damage evolution associated with both models.

The first and straightforward effect of this parameter is to influence the evo-
lution of plasticity since, according to equation (3.18), any increase in H could
be expected to induce an increase in the plastic strain rate. Since plasticity has
been shown to have no influence on the stress-strain curve, one can assume that
changing its evolution rate will have no influence either.

The evolution of both stress and plastic strain with respect to the total strain
have been plotted in Figure 3.2 for different values of H in order to check the
influence of this parameter. As expected, one can thus see in Figure 3.2a that it
does not have any influence on the stress-strain curve, while Figure 3.2b shows
that, for a given strain level ε, any increase in H would induce a decrease in εp.

As far as damage is concerned, one could expect that, based on equation (4.16),
an increase in the hardening parameter would tend to increase the evolution rate of
damage with respect to the plastic strain. Moreover, due to its negative influence
on the plastic strain rate, the hardening parameter can also be expected to have a
positive effect on damage evolution with respect to the total strain since, in order to
keep a constant dissipated energy, a decrease in plasticity should be compensated
by an increase in damage. This assumption can be easily checked since, for a given
strain ε > ε0 and set of parameters (E, ε0, εf ), when considering the damages D1
and D2 corresponding respectively to the hardening parameters H1 = H and
H2 = H + δH (δH > 0), one would get based on equation (3.19)

D2 −D1 = δHE(ε− ε0)ε0

(Eε0 +Hε)(Eε0 +Hε+ δHε) exp
(
− ε− ε0

εf − ε0

)
(3.22)

which is greater than zero.

In order to check those assumptions, the evolution of damage with respect to
both the total strain and the plastic strain has been plotted in Figure 3.3 for
different values of H. One can thus see in Figure 3.3b that, for a given strain ε,
an increase in the hardening parameter would induce an increase in damage, while
Figure 3.3a shows that it has a similar influence on damage for a given plastic
strain.



(a) Stress-strain curves.

(b) Plastic strain evolution.

Figure 3.2: Influence of hardening on stress and plastic strain evolution.

This part has shown that, as expected, the introduction of plasticity does not
affect the evolution of stress with respect to strain, but it does tend to slow down
damage evolution. Moreover, though it does not affect the stress-strain law, the
hardening parameter can be used to control both plasticity and damage evolutions.

Now that one has seen the influence of plasticity on a material point, its in-
fluence in presence of localization, either in a fixed or shrinking area, needs to be
studied.

3.1.3 Considered nonlocal formulations

This part will present the formulations associated with both the isotropic dam-
age and damage-plastic models coupled with a general nonlocal operator F used
to handle localization, before introducing the nonlocal treatments considered here.
As before, this part will only deal with one dimensional equations.



(a) Evolution with respect to the total strain.

(b) Evolution with respect to plasticity.

Figure 3.3: Influence of hardening on damage evolution.

Nonlocal isotropic damage model

As pointed out, Chapter 1, the formulation associated with a nonlocal isotropic
damage model keeps both the stress-strain law (3.1) and damage evolution law
(3.4) of the local damage model. However, the damage driving variable κ is then
defined as the maximum value of the nonlocal strain ε̄ computed from Mazars
equivalent strain (4.2) as

ε̄ = F (ε̂) (3.23)

where F is the nonlocal operator, which can take various forms such as a differential
expression or a convolution.

Nonlocal isotropic damage-plastic model

In a similar fashion, in the case of a nonlocal isotropic damage-plastic model,
the formulation would keep both the stress-strain law (3.5) and damage evolution
law (3.12), along with equations (3.6) to (3.11) linked to plasticity evolution.

However, following the work done for nonlocal plasticity [Vermeer and Brinkgreve,
1994, Strömberg and Ristinmaa, 1996] and later extended to nonlocal plasticity



combined with damage [Grassl and Jirásek, 2005], one uses the so-called over-
nonlocal damage driving variable κ defined as

κ = m p̄+ (1−m)p (3.24)

where m is a numerical parameter, and p̄ is the nonlocal cumulative plastic strain
computed from p through

p̄ = F (p) = 0 (3.25)

where F is still the nonlocal operator. It is worth noting that the particular cases
m = 0 and m = 1 respectively correspond to the use of the local and nonlocal
damage-driving variables. The so-called over-nonlocal formulations correspond to
the cases where m > 1.

Considered gradient-type formulations

This section will present the equations associated with the considered nonlocal
treatments, that will be used to replace equation (3.23) for the pure damage model
and (3.25) for the damage plastic one.

The nonlocal formulations presented in this section will involve a local variable
V , and its nonlocal counterpart V̄ , which will need to be replaced either by ε̂ and
ε̄ for the pure damage model, or by p and p̄ for the damage-plastic model.

The first gradient-type formulation considered here is the classical one, which
writes in a one-dimensional setting

V̄ − c2 V̄ ′′ = V (3.26)

where V̄ ′′ stands for the second order spatial derivative of V̄ .
Similarly, the second gradient-type formulation is the general one, which writes

V̄ − a
(
b V̄ ′

)′
= V (3.27)

where V̄ ′ and
(
b V̄ ′

)′
stand for the spatial derivatives of V̄ and

(
b V̄ ′

)
, and a and b

are functions that may depend on state variables such as stress, strain or damage.
It is worth noting that equation (3.27) can stand for any gradient-type formula-

tions, including the eikonal-based ones, provided one choose the functions a and b
accordingly. As an example, to use the eikonal-based formulation (2.8) interpreted
as the one-dimensional version of the anisotropic damage model, which writes

ε̄− c2 (1−D)1/2
(
(1−D)1/2 ε̄′

)′
= ε̂ (3.28)

one would need to set

a = c2(1−D)1/2, b = (1−D)1/2 (3.29)

The formulations introduced in this section will be studied in the rest of this
chapter in order to study how the introduction of plasticity affects the regulariza-
tion properties of gradient-type nonlocal treatments.



3.2 Study of the bifurcation point, and predic-
tion of the initial localization in 1D

Since the considered formulations are expected to address the spurious mesh
dependency of strain localization by fixing the size of the area where it develops,
one could start with their localization analysis. Following the work done in [Jirásek,
2018], this part will study the bifurcation point in order to check that the size of
the initial localization is indeed imposed, and to determine its value.

These analyses will be conducted in a one-dimensional setting, considering the
simple case of a homogeneous bar submitted to tension, which allows the study of
this property through relatively simple nonlinear equations. In this case, the onset
of localization will be seen as the bifurcation from a homogeneous and potentially
damaged state, further evolution of the active zone will not be considered here.

3.2.1 Gradient damage model
The first formulation considered here is the one obtained with the pure damage

model and the classical gradient-type nonlocal treatment.
To do so, one must first consider an initially homogeneous material, and then

study the nonlocal equation on the onset of localization. At this point, damage
will localize in a zone Zd of size Ld, whilst it will stop growing in the rest of the
bar Ze.

In the case of a bar submitted to tension, Mazars’ equivalent strain ε̂ is still
equal to the total strain ε, the stress is still defined through (3.1), and the gradient
equation (3.26), used to compute the nonlocal strain ε̄, writes

ε̄− c2 ε̄′′ = ε (3.30)

where ε̄′′ stands for the second space derivative of ε̄.
In the damaging zone Zd one thus has D = g(ε̄), and the Hooke’s law (3.1) can

be derived as

σ̇ = Esε̇+ (Et − Es) ˙̄ε (3.31)

where gκ is the derivative of function g, and Es and Et are respectively the secant
and tangent moduli defined as

Es = (1− g(ε̄))E (3.32)
Et = (1− g(ε̄)− εgκ(ε̄))E (3.33)

on the other hand, in the non-damaging zone Ze, D is constant and the Hooke’s
law (3.1) can be derived as

σ̇ = Esε̇ (3.34)

As far as the nonlocal equation (3.30) is concerned, considering that, on the
onset of damage, the solution is initially homogeneous (ε̄′′ = 0), one has in Zd

˙̄εEt − c2 ˙̄ε′′Es = σ̇ (3.35)



and in Ze

˙̄εEs − c2 ˙̄ε′′Es = σ̇ (3.36)

Focusing on ˙̄εd, one can note that it should be maximum at x = 0 and that,
based on (3.35), one needs to have

c2Es
Et

< 0 (3.37)

to get a harmonic (not exponential) solution in Zd, while the solutions in both
parts of Ze should be decreasing exponential functions. Hence, localization can
only occur when the tangent modulus becomes negative, i.e. during the softening
part and, considering a localization area centered at x = 0, one has x ∈ Zd ⇔
|x| < Ld/2 and x ∈ Ze ⇔ |x| ≥ Ld/2.

Since ˙̄εd needs to be continuous throughout the bar, and especially in x =
±Ld/2 where it is equal to 0, one would get for ˙̄ε

˙̄ε(x) =



σ̇

Es

(
1− exp

(
Ld + 2x

2c

))
, for x < −Ld2

σ̇

Et

(
1− cos(λx)

cos(λLd/2)

)
, for |x| ≤ Ld

2
σ̇

Es

(
1− exp

(
Ld − 2x

2c

))
, for x > Ld

2

(3.38)

and for its gradient

˙̄εd
′(x) =



σ̇

cEs
exp

(
Ld − 2x

2c

)
, for x < −Ld2

λσ̇

Et

sin (λx)
cos

(
λLd

2

) , for |x| ≤ Ld
2

−σ̇
cEs

exp
(
Ld + 2x

2c

)
, for x > Ld

2

(3.39)

where the parameter λ is defined as

λ = 1
c

√
−Et
Es

(3.40)

Finally, taking the continuity of ˙̄ε′ at x = ±Ld/2 into account, one gets

tan(λLd/2) = Et
Es

1
λc

(3.41)

which gives

Ld = 2c
√
−Es
Et

(
n1π − arctan

(√
−Et
Es

))
(3.42)

where n1 is an integer.



Since the distance Ld has to be positive, one needs to have n1 ≥ 1, and since
the more localized solution can be expected to be the more stable one, n1 will thus
be taken equal to 1 giving

Ld = 2c
√
−Es
Et

(
π − arctan

(√
−Et
Es

))
(3.43)

On the onset of damage, one has ε = ε̄ = ε0 and, based on equations (3.32)
and (3.33), the ratio Et/Es writes

Et
Es

= 1− g(ε0)− ε0gκ(ε0)
1− g(ε0) = 1− ε0gκ(ε0) = ε0

(εf − ε0) (3.44)

In the end, using the material parameters detailed in Table 3.1, one gets

Ld = 4c(π − arctan (1/2)) (3.45)
⇒ Ld ≈ 10.71c (3.46)

Damage can then be expected to spread over a zone Zd ≈ [−5.35c; 5.35c], which
will be compared to what can be expected with the damage-plastic model.

Let us now focus on the formulation associated with the general gradient-type
nonlocal treatment. In that case, all equations would remain unchanged except
the gradient one (3.30) which would be generalized to

ε̄− a (b ε̄′)′ = ε̂ (3.47)

where a and b are functions of damage. As an example, in the particular case of
the eikonal-based formulation (3.28), the rate form of equation (3.47) would write

˙̄ε− aDḊ(bε̄′)′ − a
(
bDḊε̄

′ + b ˙̄ε′
)′

= ε̇ (3.48)

where aD and bD stand for the derivatives of functions a and b, defined in equation
(3.29), with respect to damage. On the onset of localization, the nonlocal strain ε̄
is uniform, and its spatial derivative thus vanishes giving

˙̄ε− a
(
b ˙̄ε′
)′

= ε̇ (3.49)

Moreover, if localization is still assumed to occur on the onset of damage, one
also has a = c2 and b = 1, and the rate equation (3.49) is then the same as
the one associated with the classical gradient-type formulation. Therefore, all
the analytical results describing the initial localization obtained with the classical
gradient still hold true for the one obtained with the eikonal-based gradient, even
though its active zone is expected to shrink afterwards.



3.2.2 Gradient damage-plastic model
After studying the initial localization of the gradient damage model, one must

now focus on the damage-plastic one.
To do so, one will again consider a homogeneous material, before studying the

nonlocal equation on the onset of localization. At this point, both plasticity and
damage will localize in a zone Zp of size Lp, and stop growing in the rest of the
bar noted here Ze.

It is worth noting that in the specific case of a bar under tension considered
here, the cumulative plastic strain p is simply equal to the plastic strain εp, and
the gradient equation, used to compute its nonlocal counterpart ε̄p, thus write

ε̄p − c2 ε̄′′p = εp (3.50)

As described in Part 3.1, damage is here driven by a combination of local and
nonlocal plastic strain whose rate gives

κ̇ = m ˙̄εp + (1−m)ε̇p (3.51)

For convenience, the damage evolution law (3.12) will be written in the form

D = g(κ) = 1− σ0

σ0 +Hκ
exp (−γκ) (3.52)

where γ is an additional parameter defined as

γ = 1 +H/E

εf − ε0
(3.53)

which gives for the damage rate

gκ(κ) = σ0

σ0 +Hκ

(
γ + H

σ0 +Hκ

)
exp (−γκ) (3.54)

and for its value on the onset of damage

g0
κ = gκ(0) = γ + H

σ0
(3.55)

The model considered here suggests that plastic yielding and damage growth
will start simultaneously when the elastic limit σ0 is attained.

Stress in the localization area would then be given by

σ = (1− g(κ))(σ0 +Hεp) (3.56)

and its differentiation with respect to time writes

σ̇ = (1− g(κ))Hε̇p − gκ(κ)(σ0 +Hεp)κ̇ (3.57)

On the onset of plasticity, which also corresponds to the onset of damage, one
has κ = εp = 0 and g(κ) = 0, which brings

σ̇ =
(
H − g0

κσ0(1−m)
)
ε̇p −mg0

κσ0 ˙̄εp (3.58)



and, since the rate of the local plastic strain is given by

ε̇p = ˙̄εp − c2 ˙̄ε′′p (3.59)

equation (3.58) becomes(
H − g0

κσ0
)

˙̄εp − c2
(
H − g0

κσ0(1−m)
)

˙̄ε′′p = σ̇ (3.60)

It is worth noting that, due to equilibrium, the stress rate is uniform along the
bar, and (3.60) is thus a second-order differential equation with constant coeffi-
cients and constant right-hand side.

A harmonic (not exponential) solution exists if and only if H − g0
κσ0 and H −

(1−m)g0
κσ0 are of opposite signs. Since m, g0

κ and σ0 are positive, one has

H − g0
κσ0 < H − (1−m)g0

κσ0 (3.61)

and the conditions for the existence of a harmonic solution then writes{
H − g0

κσ0 < 0
H − (1−m)g0

κσ0 > 0
(3.62)

For m ≥ 1 and H > 0 (or m > 1 and H ≥ 0), the second condition is always
satisfied, and the first one gives

g0
κ >

H

σ0
(3.63)

Considering a process zone centered on x = 0, ε̇p should be maximum at this
point and equal to 0 at x = ±Ld/2, which gives

˙̄εp(x) = − σ̇

g0
κσ0 −H

+ A1 cos λx
c

(3.64)

where

λ =

√√√√ g0
κσ0 −H

(m− 1)g0
κσ0 +H

(3.65)

and, using (3.59), one gets the condition

A1(1 + λ2) cos λLp2c = σ̇

g0
κσ0 −H

(3.66)

To get an estimation of the localization length, one now needs to focus on the
unloading zone Ze where the plastic strain rate satisfies the differential equation

˙̄εp(x)− c2 ˙̄ε′′p(x) = 0 (3.67)



which, in order to keep the solution bounded when x tends to ∞, ˙̄εp, gives

˙̄εp(x) = A2 exp(−x/c) (3.68)

for which one has

˙̄εp(x) + c ˙̄ε′p(x) = 0 (3.69)

Imposing this condition at x = Lp/2 using the expression of ˙̄εp in Zp, one gets

− σ̇

g0
κσ0 −H

+ A1 cos λLp2c − A1λ sin λLp2c = 0 (3.70)

which, when coupled with (3.66), gives

tan
(
λLp
2c

)
= −λ (3.71)

In the end, using the parameters detailed in Table 3.2 and setting m = 1 to
use the nonlocal damage driving variable, the size of the initial localization area
writes

Lp = 2c
λ

π − arctan

√√√√ g0

κσ0 −H
(m− 1)g0

κσ0 +H

 (3.72)

⇒ Lp ≈ 1.38c (3.73)

Both damage and plastic strain can then be expected to spread over a zone
Zp ≈ [−1.38c; 1.38c] which, for a given internal length c, is smaller than the one
associated with the pure damage model.

As for the pure damage model, one now needs to focus on the general gradient-
type formulation. All equations would then remain identical, except for the
gradient-one (3.50) which would be generalized to

p̄− a (b p̄′)′ = p (3.74)

where a and b are still functions of damage.
Focusing on the eikonal-based formulation (3.28) associated with the damage

plastic model, one can then follow the same steps as the pure damage model.
Assuming that localization still occurs on the onset of both damage and plasticity,
it can be shown that the rate equation deriving from it will be identical to the one
associated with the classical gradient-type formulation.

As before, the analytical results regarding the initial localization obtained with
the classical gradient and the damage-plastic model still hold true with this for-
mulation, even though the active zone will shrink afterwards.

It has been shown in this part that both the classical and general gradient-type
formulations coupled with damage and damage-plastic models impose the size of
the localization area. This implies that they should address the ill-posedness of
local models with strain softening.



3.3 Localization in a fixed area
After studying the influence of plasticity on both stresses and damage evolu-

tion, and on the localisation induced by the considered gradient-type formulations,
one now needs to focus on its influence in presence of localization. As it is, to
get some insight on whether it could be used to address the excessive brittleness
observed in Chapter 2 with the eikonal-based formulation, one needs to see how
the introduction of plasticity affects the associated response in a one-dimensional
setting.

One way to do so without introducing any bias linked to numerical approx-
imation would be to put aside the gradient-type equation and to compute the
responses obtained by fixing the size of the localization area, along with its pos-
sible evolution. Besides, before moving on to a shrinking localization area that
would represent the eikonal-based formulation, one should focus on the influence
of plasticity when dealing with a fixed localization area like the one imposed by
Peerling’s formulation.

To do so, this part will deal with the case of a homogeneous bar of length L
and section S, made up of a material whose behaviour corresponds either to the
pure damage model or the damage-plastic one, and submitted to tension. In his
fictitious case, localization will be assumed to occur in a fixed area of length l,
which will play the role of Ld or Lp depending on the considered damage model.
One will first compare the results thus obtained with both models when the size
of the associated localization areas are identical, before studying the influence of
variations in plasticity evolution through modifications of the hardening parameter.

3.3.1 Principle
To compute the global response of the bar submitted to tension, even on the

occurrence of snap-back instabilities, it was decided here to use a local strain-based
driving strategy. As it is, to get a loading that would not depend on either the
material model, the set of parameters, or the size of the localization area, the
idea was to impose a homogeneous strain throughout the localization area, with
a linear time evolution. It is worth noting that, here, the size of the localization
area will be considered as a given material parameter that, according to the results
presented in Part 3.2, might depend on the hardening parameter.

Let’s consider a centered localization area, i.e. corresponding to the portion of
the bar between x− = (L− l)/2 and x+ = (L+ l)/2, and let us control the loading
process by prescribing the evolution of the total strain ε in the localization area as

ε = ξ0 t (3.75)

where t stands for the time, and ξ0 is a loading parameter.
Since localization has been shown to occur only after the damage threshold

ε = ε0 is reached, one would have an elastic behaviour throughout all the bar as
long as t ≤ ε0/ξ0. Then, for both damage models, the strain throughout the all



bar would be given by (3.75), and the stress would thus write

σ = Eε = Eξ0 t (3.76)
while the plastic strain and damage will remain equal to 0.

The computation of both the force and displacement at the end of the bar is
then straightforward since U = εL and F = Sσ.

When t reaches ε0/ξ0, the strain will equal the damage threshold and localization
will occur for both damage models. Then, damage and plasticity will keep evolving
in the localization area, while they will remain equal to zero in the rest of the bar.
Let us denote respectively (εd, εdp, σd, Dd) the strain, plastic strain, stress and
damage in the localization area, and (εe, εep, σe, De) those in the rest of the bar.

When dealing with the pure damage model, the strain in the localization area
εd would then be equal to the driving strain defined equation (3.75), and the stress
σd will then be defined as

σd = E(1−Dd)εd (3.77)
where Dd is computed from εd using the damage evolution law (3.4).

Regarding the rest of the bar, the stress σe will be equal to σd due to equilibrium,
and since damage De will remain equal to 0, the strain will be given by

εe = σe

E(1−De) = (1−Dd)εd (3.78)

In the end, the force at the end of the bar will still be defined as F = Sσd, while
the displacement will take into account the contribution of both the localization
and the unloading parts of the bar, writing

U = lεd + (L− l)εe (3.79)

As far as the damage-plastic model is concerned, the total strain in the local-
ization area will still be equal to the driving strain (3.75), and the stress σd will
write

σd = E(1−Dd)
(
εd − εdp

)
(3.80)

where damage Dd in the localization area is computed, using the damage evolution
law (3.12), from the corresponding plastic strain εdp defined as

εdp = E(εd − ε0)
E +H

(3.81)

As for the pure damage model, the stress in the rest of the bar σe will be equal
to σd, and since both εep and De will be equal to 0 , the total strain will write

εe = σe

E(1−De) = (1−Dd)
(
εd − εdp

)
(3.82)

The force at the end of the bar can then be directly computed from σd while the
displacement will have to take into account both the localization and unloading
areas, as described equation (3.79).



The local and global responses associated with the damage and damage-plastic
models with a fixed localization and different sets of parameters will be used in
the next sections to study the influence of both plasticity and hardening.

3.3.2 Influence of plasticity
It has been shown in Part 3.1.2 that, when considering the monotonic tensile

loading of a material point, both the damage and damage-plastic models would
give similar results. It is thus straightforward that, when considering a fixed
localization area, its contribution to the global force-displacement curve will be
identical with both damage models. Moreover, since localization occurs on the
offset of plasticity and damage, the unloading parts will remain elastic throughout
the entire process, the stress level being imposed by the localization parts.

In the end, when considering a bar under tension with a fixed localization area,
one can expect to get identical response curves with both damage models as long
as the localization areas are identical. As in the case of a material point, one can
expect the introduction of plasticity to slow damage evolution in the localization
area in order to keep the dissipated energy constant. Besides, based on (3.79), and
since εe ≤ εd, an increase in the localization length can be expected to induce in
the ductility, since a given force will be associated with a larger displacement.

In order to study the influence of plasticity, this part will use the material param-
eters described in Table 3.3 for both damage models, along with those described
in Table 3.4 which deal with the geometry and localization.

E ν ε0 εf σ0 H
30000 MPa 0.3 1.e− 4 5.e− 4 3 MPa 1000 MPa

Table 3.3: Parameters used for the study with a fixed localization area.

L S l0 c0
1000 mm 100 mm2 250 mm 181 mm

Table 3.4: Geometrical and localization default parameters.

The force-displacement curves thus obtained are plotted in Figure 3.4 for sizes
of the localization area l equal to l0, 2l0 and 3l0, along with the associated damage
profiles. One can thus ensure that, as expected, the size of the localization area l
does control the ductility of the response, and both models always give identical
responses for a given value of l.

The evolution of the damage profiles with respect to the total strain were also
plotted in Figures 3.5a and 3.5b respectively for the damage and damage-plastic
models with l = l0. One can thus see that, though the damage profiles end up
identical, the one obtained with the damage-plastic model clearly has a slower
evolution.



(a) On the force-displacement curve. (b) On the damage profile.

Figure 3.4: Influence of plasticity for different sizes of the fixed localization area.

(a) For the pure damage model. (b) For the damage-plastic model.

Figure 3.5: Influence of plasticity on the evolution of the damage profiles with
respect to the total strain.



It is worth noting that, here, one does not compare the responses obtained
with the same internal length c, since it would lead to completely different sizes of
the localization areas, and thus completely different responses.

After studying how the introduction of plasticity affects the global response,
one needs to focus on the influence of the hardening parameter.

3.3.3 Influence of hardening
This part will focus on the influence of hardening, and especially variations of

the hardening parameter, on both the global response and damage evolution.

Hardening-independent localization

Starting with the global response, one can expect that, since it was not affected
by the introduction of plasticity, it should not be affected by variations in the
hardening parameter either. This idea is further confirmed by the fact that, as
was shown in Part 3.1.2, the hardening parameter has no influence on the stress-
strain curve on a single material point, which can be straightforwardly extended to
the case of a bar’s portion submitted to homogeneous tension. It is worth noting
that this only holds true as long as the size of the localization area l is considered
independent from the hardening parameter H, different considerations might arise
when taking into account the dependency of l with respect to H detailed in Part
3.2.2.

However one has seen that, when considering a single material point under ten-
sion, an increase in the hardening parameter would induce a decrease in the plastic
evolution rate, and thus an increase in damage evolution. As for the influence on
the force-displacement curve, this consideration can be directly extended to the
case of a homogeneous bar under continuous tension, and thus to the current case
of a bar with a fixed localization area.

The force displacement curves obtained for different values of the hardening
parameter H were plotted in Figure 3.6 for different sizes of the localization area,
along with the associated damage profiles.

On can thus see that, as expected, the hardening parameter has no influence
on the response curve, while an increase in the size of the localization area still
tends to increase the global ductility of the response.

The evolution of both the plastic strain and damage profiles have also been
plotted respectively in Figures 3.7 and 3.8, which allowed to ensure that the hard-
ening parameter has the expected influence on the evolution of both plasticity and
damage with respect to the total strain.

As pointed out before, the previous consideration do not take into account
the dependence of the localization area with respect to the hardening parameter
which was described in Part 3.2.2. It is quite straightforward that taking this
dependency into account would lead to hardening-dependent damage profiles and
force displacement curves.



(a) On the force-displacement curve. (b) On the damage profile.

Figure 3.6: Influence of hardening on the response curve for different sizes of the
fixed localization area.

(a) Profile for H = E/30. (b) Profile for H = E/5.

Figure 3.7: Influence of hardening on the evolution of the plasticity profiles with a
fixed localization length.

(a) Profile for H = E/30. (b) Profile variation between H = E/5 and
H = E/30.

Figure 3.8: Influence of hardening on the evolution of the damage profiles with a
fixed localization length.



Hardening-dependent localization

In order to properly assess the influence of hardening on both the local and
global responses, one should no longer see l as a fixed parameter, but rather use
the expression given in equation (3.72), especially when computing the total dis-
placement (3.79). The evolution of the localization length associated with the
damage-plastic model with respect to the hardening parameter has been plotted
in Figure 3.9 for c = 181mm, which gives l ≈ 250mm for H = E/30. One can
thus see that an increase in the hardening parameter H would induce an increase
in the localization area l which should induce an increase in the global ductility of
the force-displacement curve.

Figure 3.9: Evolution of the localization length with respect to the hardening
parameter.

The damage profiles and force-displacement curves obtained for different values
of H and using hardening dependent localization are plotted in Figure 3.10, which
allows one to see that hardening does have the expected influence on both the
force-displacement curves and the localization length.

(a) On the force-displacement curve. (b) On the damage profile.

Figure 3.10: Influence of hardening on the response curve for a fixed hardening-
dependent localization.

Moreover, looking at the evolution of the plastic strain profiles plotted in Figure
3.11, one can see that an increase in the hardening parameter also tends to increase



the width of the localization area, and to lower the plasticity evolution rate. The
evolution of the maximum plastic strain plotted in Figure 3.11d helps to confirm
the differences in the plastic strain evolution.

(a) Profile for H = E/5. (b) Profile for H = E/10.

(c) Profile for H = E/30. (d) Evolution of the maximum plastic strain.

Figure 3.11: Influence of hardening on the evolution of the plastic strain profiles
with a fixed hardening-dependent localization.

Finally, the evolution of the damage profiles plotted in Figure 3.12 allows one to
confirm the influence of the hardening parameter on the width of the localization
area, and to check that an increase in its value does tend to increase the damage
evolution rate. As before, the evolution of the maximum damage plotted in Figure
3.12d helps to confirm the differences in damage evolution.

This part has shown that, when considering a bar under tension with a fixed
given localization area, the introduction of plasticity does not affect the global
response but tends to slow damage evolution, and the hardening parameter can
be used to adjust the damage evolution rate but has no influence on the response
curve either.

However, when taking into account its influence on the localization area, one
can see that the hardening parameter does have some influence on the global
response, as well as on plasticity and damage evolution.

Based on the results presented here, one can expect both the introduction of
plasticity and variations of the hardening parameter to have some influence on
the force-displacement curve when considering a shrinking localization area, even



(a) Profile for H = E/5. (b) Profile for H = E/10.

(c) Profile for H = E/30. (d) Evolution of the maximum damage.

Figure 3.12: Influence of hardening on the evolution of the damage profiles with a
fixed hardening-dependent localization.

for a hardening-independent initial localization. This is linked to the fact that,
unlike the case of fixed localization, some of the unloading parts will have non-
zero plastic strain, which will increase the ductility of the response and might
address the brittleness issue observed with eikonal-based formulations.

3.4 Localization in a Shrinking area
The aim of this part is to study how the introduction of plasticity will affect

the response obtained in a one-dimensional setting when considering an isotropic
damage model with a shrinking localization area. This should give some insight on
whether such a modification could be used to address the brittleness issue linked to
the formulation obtained by coupling the eikonal-based gradient-type formulation
with a pure isotropic damage model.

To do so, this part will stick to the case of the homogeneous bar of length
L and section S studied when assessing the properties of the formulation with a
fixed localization. Here one will first compare the results obtained, for both damage
models, when localization occurs in a fixed area to those obtained with a shrinking
one of the same initial size. One will then study the influence of hardening on the
local and global responses, for both hardening independent and dependent initial
localizations.



3.4.1 Principle
As before, the global response was here computed using a local strain-based

loading, imposing a linear time evolution of ε in the localization area (3.75).
It is worth noting that, here, one will consider a shrinking localization area

whose initial size l will be considered as a given parameter that might still depend
on the hardening parameter. The localization will still be assumed to be centered,
corresponding at each time to the portion of the bar located between x− = (L −
leff )/2 and x+ = (L+ leff )/2, where leff denotes the current size of the shrinking
area.

It is worth noting that the main idea here is not to predict the exact response
associated with the eikonal-based formulation, but rather to understand how the
introduction of plasticity affects the response obtained with a shrinking localization
area. As it is, the introduction of permanent strain is expected to reduce the
brittleness induced by the progressive unloading associated with the shrinking
localization area.

Following the work presented in Part 1.6 on the damage-dependence of the
effective distances in a space curved by damage, one will here consider a shrinking
of the localization area similar to the one associated with the eikonal formulation.
Moreover, to get a meaningful comparison with the case of a fixed localization
area, one needs here to ensure that the initial size of the localization area will be
equal to l, and tends to 0 when D gets close to 1. The effective localization length
is thus assumed to have the following fictitious damage-dependence

leff = l
√

1−D (3.83)

which should allow one to get some insight on the influence of plasticity when
using an eikonal-based formulation.

As before, localization only occurs after the damage threshold is reached, which
means that, until t reaches ε0/ξ0, one can still expect a homogeneous elastic re-
sponse identical to the one described in Part 3.3.1. On the onset of localization,
one can expect damage and plasticity to keep growing in the localization area,
while they should stop evolving in the rest of the bar.

The main difference with the approach involving a fixed localization area comes
from the fact that, based on equation (3.83), it is here likely to continuously shrink
once the damage threshold has been reached. This part will now detail how this
can be expected to affect both the local and global responses in the case considered
here, and for both damage models.

Pure damage model

When dealing with the pure damage model, one can expect that, when ε reaches
ε0, both strain and damage will keep evolving in the initial localization area located
between x0

− and x0
+ defined as x0

± = (L± l)/2, while the rest of the bar will remain
elastic. Since the expressions of all the variables at this point are the same as the



ones obtained with the fixed localization, and detailed in Part 3.3.1, one now needs
to study what happens beyond it.

When the total strain grows beyond the damage threshold, the area where
strain and damage will keep growing will continuously shrink, which means that
at each time step a new portion of the bar will start unloading. It is worth noting
that, unlike what happened for the initial localization, damage has a non-zero
value in the new unloading part, which affects its unloading.

Let us here denote respectively (εd,i, εd,ip , σd,i, Dd,i) the strain, plastic strain,
stress and damage in the localization area at a given time ti, and (εe,i, εe,ip , σe,i,
De,i) those in the rest of the bar. Let us also denote lieff the effective length
at this time, defined according to (3.83) as lieff = l

√
1−Dd,i, and (xi−, xi+) the

coordinates delimiting the localization area defined as xi± = (L± lieff )/2.

At a given time tn > 0, the strain εd,n in the new localization area, i.e between
xn− and xn+, will be equal to the driving strain (3.75), and the stress σd,n will write

σd,n = E
(
1−Dd,n

)
εd,n (3.84)

where Dd,n is computed from εd,n using the damage evolution law (3.4).
For any j such that 0 ≤ j < n, the stress σe,n between xj− and xj+1

− , as well as
between xj+1

+ and xj+, will be equal to σd,n, while the damage De,n will be equal
to its maximum value when it was localized between xj− and xj+, i.e. Dd,j. The
strain in this area will then be defined as

εe,n = σd,n

E(1−De,n) =
(

1−Dd,n

1−Dd,j

)
εd,n (3.85)

In the end, the force at the end of the bar will still be computed as F = Sσd,n,
while the displacement will have to take into account every successive localization
area, writing

U = εd,n

lneff +
n−1∑
j=0

(
1−Dd,n

1−Dd,j

)(
ljeff − l

j+1
eff

)
+
(
1−Dd,n

)
(L− l)

 (3.86)

where U is computed by summing the contributions of all the successive localization
areas to that of the rest of the bar who remained elastic.

Damage-plastic model

As far as the damage-plastic model is concerned, one can still expect that, when
ε reaches ε0, damage, plasticity and strain will localize between the points x0

− and
x0

+, and stop evolving in the rest of the bar.
As for the pure damage model, the expressions of all the variables are the same

as the ones described in Part 3.3.1 for the fixed localization. Now, one thus needs
to study what happens when the strain grows beyond the damage threshold, and
the area where damage, plasticity and strain starts shrinking.



As for the pure damage model, for any given time tn > 0 the strain εd,n in the
localization area is equal to the driving strain defined in equation (3.75), and the
stress then writes

σd,n = E
(
1−Dd,n

) (
εd,n − εd,np

)
(3.87)

where εd,np denotes the plastic strain in the localization area at this time defined
as

εp
d,n = E(εd,n − ε0)

E +H
(3.88)

which is used to compute damage Dd,n according to the evolution law (3.12).
Moreover, for any j such that 0 ≤ j < n, the stress σe,n between xj− and xj+1

− ,
as well as between xj+1

+ and xj+, will be equal to σd,n, while the damage De,n and
plastic strain εe,np will be respectively equal to Dd,j and εd,jp . The strain in this
area will then be defined as

εe,n = σd,n

E(1−De,n) + εe,np =
(

1−Dd,n

1−Dd,j

)(
εd,n − εd,np

)
+ εd,jp (3.89)

As before, the force at the end of the bar will be computed as F = Sσd,n, and
the displacement, taking into account every successive localization area, will write

U =lneff εd,n +
n−1∑
j=0

(
ljeff − l

j+1
eff

) [(1−Dd,n

1−Dd,j

)(
εd,n − εd,np

)
+ εd,jp

]

+
(
1−Dd,n

)
(L− l)εd,n

(3.90)

It is worth noting that, here, the strain in the unloading area and the total
displacement are increased by the presence of plasticity which should, as expected,
reduce the brittleness of the global response.

The local and global responses obtained with both damage models and con-
sidering a shrinking localization will be used in the next sections to study the
influence of plasticity, and more specifically hardening.

3.4.2 Influence of plasticity
It has been shown in Chapter 2 that imposing a shrinking localization area,

e.g through an eikonal-based formulation, addresses the issue linked to the ill-
posedness of the problem, and allows one to make a highly damaged zone equivalent
to a crack. However, the use of a pure damage model induces a rather brittle
response with no permanent strain, which makes it ill-suited to properly represent
the behaviour of materials such as concrete.

The previous studies tend to indicate that, though the introduction of plasticity
does not affect the global material response when considering a fixed localization,
it can be expected to increase its ductility when considering a shrinking one. This
part will thus focus on the comparison of the results obtained with the pure damage
and damage-plastic models associated with both fixed and shrinking localizations,
in order to see whether the introduction of plasticity addresses the issues associated
with shrinking localization.



The response curves and damage profiles thus obtained were plotted in Figure
3.13 in order to study how they may be influenced by both plasticity and shrinking
localization. One can thus see in Figure 3.13a that, as expected, the introduction
of plasticity tends to reduce the brittleness of the response obtained with the
shrinking localization, though it remains more brittle than the one obtained with
the fixed localization, which is unaffected by plasticity. It is worth noting that,
with the considered set of parameters, the increase in ductility induced by plasticity
prevents the occurrence of snap-back instabilities with the damage-plastic model,
while they do occur with the pure damage model.

One can also note in Figure 3.13 that, as for the fixed localization, the plasticity
does not seem to affect the damage profile for a shrinking localization, which seems
to have the expected zero width when D gets close to 1.

(a) On the force-displacement curve. (b) On the damage profile.

Figure 3.13: Influence of plasticity with fixed and shrinking localization.

After studying the influence of plasticity and shrinking localization on the final
damage profile, the evolution of the damage profiles with respect to the total
strain were also plotted in Figure 3.14 in order to see how they are affected by the
introduction of plasticity and shrinking localization.

One can thus see that, while the shrinking localization tends to sharpen the
damage profile, the introduction of plasticity tends to slow damage evolution,
which is consistent with what was observed for the fixed localization.

The influence of plasticity on the damage evolution rate can be confirmed in
Figure 3.15a where the evolution of damage with respect to strain has been plotted
for all the considered formulations, which also allows one to see that a shrinking
localization does not affect the evolution of damage with respect to strain.

Moreover, the evolution of the damage active lengths plotted in Figure 3.15b
allows one to check that, while a fixed localization induces a constant active length,
the one obtained with the shrinking localization has the same initial size, but tends
to 0 when D tends to 1. The fact that this property is not affected by plasticity
is consistent with the expression of the effective localization length (3.83), and
confirms that the introduction of plasticity might be a good way to address the
issues associated with shrinking localization while keeping its properties.



(a) Pure damage model and fixed
localization.

(b) Damage-plastic model and fixed
localization.

(c) Pure damage model and shrinking
localization.

(d) Damage-plastic model and shrinking
localization.

Figure 3.14: Influence of hardening on the evolution of the damage profiles with
fixed and shrinking localization. to the total strain.

(a) On damage evolution. (b) On the damage active length.

Figure 3.15: Influence of plasticity with fixed and shrinking localization.



As before, this part compared the responses obtained with the same initial
localization length l, and not the same internal length c which would lead to
completely different sizes of the localization areas, and thus completely different
responses.

After studying how the introduction of plasticity affects both the global and lo-
cal responses obtained with a shrinking localization, especially in comparison with
what can be observed with a fixed localization, one will now study the influence
of the hardening parameter.

3.4.3 Influence of hardening
It has been shown in Part 3.4.2 that the introduction of plasticity with a shrink-

ing localization tends to increase the ductility of the response and to slow damage
evolution, without changing the final damage profile.

This part will now focus on how variations in the hardening parameter, and
thus in hardening, will affect both the local and global responses when considering
a bar under monotonic tension and a shrinking localization.

Hardening-independent localization

First, one will consider the case of a hardening-independent localization in order
to focus on the variations linked to the changes in plastic evolution induced by a
modification of the hardening parameter.

Based on the results obtained in Part 3.3.3 with the fixed localization, one can
expect an increase in the hardening parameter to slow the evolution of plasticity
with respect to strain, while increasing the damage evolution rate.

It has also been shown in Part 3.4.2 that, for a given size of the initial local-
ization, the introduction of plasticity with a shrinking localization would tend to
increase the ductility of the global response. Since an increase in the hardening
parameter has been shown to slow plastic evolution with respect to strain, one can
thus expect it to reduce the ductility of the force-displacement curve.

To assess the relevance of these assumptions, one will thus stick to the study of
the bar under tension studied previously for two values of the hardening parameter,
H = E/30 and H = E/5, and of the localization length, l = l0 and l = 2l0.

The force-displacement curves thus obtained were plotted in Figure 3.16, along
with the associated final damage profiles. One can thus see that, as expected,
variations in the localization length l have an influence on the width of the damage
profile, and thus on the ductility of the global response. It is also possible to check
that, though variations of the hardening parameter do not affect the damage profile,
they do have the expected influence on the force-displacement curve.

As far as the evolution of damage with respect to strain is concerned, Figure
3.17a allows one to ensure that, while it is not affected by the localization length,
the hardening parameter has a positive evolution on its rate. On the other hand,
one can see in Figure 3.17b that the evolution of the damage active length, whose
initial value is imposed by the localization length, is not affected by the hardening
parameter.



(a) Force-displacement curves. (b) Damage profiles.

Figure 3.16: Influence of hardening on the force-displacement curves and damage
profile for different sizes of the initial localization area.

(a) Damage evolution. (b) Damage active length evolution.

Figure 3.17: Influence of hardening on the evolution of damage and damage-active
length for different sizes of the initial localization area.



Regarding the plastic strain evolution, one can see in Figure 3.18b that, as for
damage evolution, it is not affected by the localization length, while the hardening
parameter has a negative influence on its rate. On the other hand, one can note
that both the hardening parameter and the localization length have an influence
on the plasticity active length, defined as the size of the area where plasticity keeps
evolving. While the dependence of the initial value with respect to the localization
length is identical to what was observed for the damage active length, the influence
of the hardening parameter on its evolution rate is due to the fact that, unlike
damage, the evolution of plasticity is hardening-dependent. It is worth noting
that, here, the active length tends to 0 when the plastic strain tends to infinity,
which is consistent with what can be observed in Figure 3.17b, since an infinite
plastic strain would correspond to damage being equal to 1.

(a) Plastic strain evolution. (b) Plasticity active length evolution.

Figure 3.18: Influence of hardening on the evolution of plasticity and plasticity-
active length for different sizes of the initial localization area.

Here one has seen that the hardening parameter and localization length could
be used to control the width of the damage profile, along with the evolution of
both plasticity and damage, which gives indirect control over the ductility of the
global response curve. It is worth noting that the results presented in this part
do not take into account the dependence of the localization area with respect to
hardening, which now needs to be studied.

Hardening-dependent localization

As for the fixed localization, in order to properly take into account the influence
of hardening on both the local and global responses, l should no longer be taken
as fixed, but rather as being dependent on both the hardening parameter H and
the internal length c.

Based on the results presented in Part 3.3.3 for a fixed hardening-dependent
localization, one might expect an increase in the hardening parameter to induce
an increase in the size of the initial localization, thus inducing an increase in the
global ductility. However, based on the results presented in the previous section for
a shrinking hardening-independent localization, one could also expect an increase



in the hardening parameter to reduce the ductility of the response, due to both
the induced decrease in plasticity ad increase in damage.

This part will thus focus on finding out which one of those phenomenon could
be expected to be predominant, and how it will affect the response curve and both
damage and plasticity evolutions.

In an attempt to answer those questions, the damage profiles and displacement
curves obtained for two values of the hardening parameter, H = E/30 and H =
E/10, and of the internal length c = c0 and c = 2c0 were plotted in Figure 3.19.
First, one can ensure here that the internal length has the expected effects, i.e. an
increase in its value induces an increase in the final damage profile, and thus an
increase in the ductility. In a similar fashion, it seems that, for the considered set
of parameters, the widening of the localization area associated with an increase in
the hardening parameter does induce an increase in the global ductility, despite
its supposed effect on damage and plasticity evolution. It is worth noting that,
here, one can get very similar responses with completely different set of parameters,
namely (H = E/10,c = c0) and (H = E/30,c = 2c0).

(a) Force-displacement curves. (b) Damage profiles.

Figure 3.19: Influence of hardening on the force-displacement curves and damage
profile for different sizes of the initial hardening-dependent localization area.

In order to ascertain the influence of hardening throughout the loading, and not
only on the size of the localization, the evolution of the damage profiles obtained
for the four sets of parameters considered here were plotted in Figure 3.20.

One can thus ensure that the damage profile tends to shrink when damage
grows, which is confirmed in Figure 3.21 where one can see that, though the initial
size of the active length is fixed by H and c, it systematically tends to 0 when
D gets close to 1. One can also see that, for a given internal length, a decrease
in the hardening parameter would tend to slow down damage evolution, which is
confirmed in Figure 3.21a where one can also check that the internal length has
no influence on it.

As far as the influence on plasticity is concerned, one can see in Figure 3.22 that
the plastic strain evolution tends to slow when the hardening parameter increases
which, along with the fact that it is not affected by the internal length, can be
checked in Figure 3.23a.

One can also observe in Figure 3.22 that both the hardening parameter and



(a) Profile for H = E/10 and c = c0. (b) Profile for H = E/30 and c = c0.

(c) Profile for H = E/10 and c = 2c0. (d) Profile for H = E/30 and c = 2c0.

Figure 3.20: Influence of hardening on the evolution of the damage profile for
different sizes of the initial hardening-dependent localization area.

(a) Damage evolution. (b) Damage active length evolution.

Figure 3.21: Influence of hardening on the evolution of damage and damage-active
length for different sizes of the hardening-dependent initial localization area.

the internal length have the expected influence on the width of the plastic strain
profile, which tends to shrink when plasticity grows. This can also be checked in
Figure 3.23b where one can easily visualize the initial value of the plasticity active
length for all the considered sets of parameters, along with the fact that it tends
to zero for high values of plastic strain, i.e when damage gets close to 1.



(a) Profile for H = E/10 and c = c0. (b) Profile for H = E/30 and c = c0.

(c) Profile for H = E/10 and c = 2c0. (d) Profile for H = E/30 and c = 2c0.

Figure 3.22: Influence of hardening on the evolution of the plastic strain profile for
different sizes of the initial hardening-dependent localization area.

(a) Plastic strain evolution. (b) Plasticity active length evolution.

Figure 3.23: Influence of hardening on the evolution of plasticity and plasticity-
active length for different sizes of the initial hardening-dependent localization
area.

This part has shown that, when considering a bar under tension with a shrink-
ing localization, the introduction of plasticity tends to increase the ductility of
the global response which, along with the width of the localization area, can be
controlled through the hardening parameter and the internal length.



This result is quite promising since one could thus expect to reduce the excessive
fragility observed when coupling an eikonal-based formulation to a pure damage
model by introducing plasticity, which might also help model materials who exhibit
permanent strain.

3.5 Conclusion of chapter 3
After presenting the new damage-plastic model studied in this chapter, its re-

sponse on a single material point was compared to the one associated with the
pure damage model studied in Chapter 2. One could thus ensure that, though it
is expected to address the excessive brittleness associated with the pure damage
model, the introduction of plasticity does not affect the local material behaviour
under monotonic tension. Moreover, though changing the hardening parameter
influenced the evolution of both damage and plasticity, it did not appear to affect
the global response curve.

The formulations obtained by coupling the damage and damage-plastic mod-
els to Peerlings’ and the eikonal-based gradient-type formulations were then intro-
duced. A localisation analysis was then conducted to ensure that all the considered
formulations imposed the size of the localisation area, thus addressing the issue
linked to the ill-posedness of problems involving local models with strain softening.
It is worth noting that this study focused on the formulations associated with Peer-
lings’ approach since they are identical to the ones based on the eikonal approach
on the onset of localisation. Aside from demonstrating the formulations’ regulari-
sation properties, one can also note that this study confirmed that the localisation
area’s size depends not only on the internal length but also on the damage model
and the associated parameters.

One then studied how the introduction of plasticity and variations in the hard-
ening parameter would affect the local and global responses associated with both
fixed and shrinking localisations. First, one could see that when associated with
a non-shrinking localisation area, the introduction of plasticity does not affect the
global response as long as the initial localisation areas are identical. It was also pos-
sible to demonstrate that using a damage-plastic model associated with a shrinking
localisation increases the ductility of the response, which can be controlled through
both the internal length and the hardening parameter.

Thus, one could expect that, in addition to introducing the permanent strain
required to model concrete, coupling the eikonal-based approach to a damage-
plastic model instead of a pure damage one should help address the brittleness
observed in Chapter 2. One now needs to implement the formulations obtained by
coupling both the pure damage model and the damage-plastic one to the eikonal-
based approach to confirm the insights regarding these formulations.
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It was shown in Chapter 2 that applying an eikonal-based nonlocal treatment
to an isotropic damage model allowed one to get what was described in Part 1.3.3
as a good damage model. As it is, the resulting formulation did not suffer neither
from the drawbacks linked to local damage models with strain softening, nor from
those associated with nonlocal models with fixed lengths.

However, it appears that the shrinking localisation zone associated with the
nonlocal treatment induced an excessive brittleness of the macroscopic response
obtained in a one-dimensional setting. This issue, along with the lack of permanent
strain, was investigated in Chapter 3 where one compared a pure damage model
and a damage-plastic model associated with fixed and shrinking localisations. It
was thus shown that replacing the previous pure damage model with the damage-
plastic model introduced in Chapter 3 should be a good way to address both issues
simultaneously.

Following this, one now needs to implement the nonlocal damage models ob-
tained by coupling both the pure damage model and the damage-plastic one to the
eikonal-based gradient-type formulation in a finite element code. It was decided
here to work with the finite element code OOFEM, developed at the Czech Tech-
nical University, that already includes different damage models and gradient-type
formulations. Thanks to OOFEM being open source and to a stay of six months
in Prague during this thesis, this has allow the author to take advantage of all the
dedicated tools developed for those models, while also being able to create new
ones.

This chapter will thus begin by introducing the nonlocal damage and damage-
plastic models considered here, along with the associated variational formulations
which will be used to handle their implementation. Numerical 2D simulations will
then be conducted to ensure that those damage models exhibit the properties that
could be expected based on the work presented in Chapters 2 and 3.

4.1 Considered damage models and variational
formulations

This part will present the local damage and damage-plastic models considered
here, along with the formulations obtained by coupling them with the general
gradient-type equation (1.29). The associated variational formulations used to
implement them in OOFEM will also be presented thereafter, and the details on
how they were obtained can be found in Appendix C.

4.1.1 Pure isotropic damage model

The first damage model considered here is the generalisation to 3D of the pure
damage model studied in Chapter 3.



Local formulation

As far as the local model is concerned, damage can still be expected to be driven
by Mazars’ equivalent strain. The model then writes

σ = C̃ : ε = (1−D) C : ε (4.1)
ε̂ =

√
〈ε1〉2+ + 〈ε2〉2+ + 〈ε3〉2+ (4.2)

κ(t) = max
τ≤t

ε̂(τ) (4.3)

D = g(κ) =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(4.4)

Nonlocal gradient-type formulation

As before, this formulation keeps both the stress-strain law (4.1) and the damage
evolution law (4.4) of the local damage model. The damage driving variable κ is
still defined as the maximum value over the loading history of the nonlocal strain
ε̄.

Focusing on the general gradient-type equation (1.29), ε̄ should be computed
from Mazars equivalent strain (4.2) as

ε̄− a ∇ · (b ∇ ε̄) = ε̂ (4.5)

where a and b are functions that may depend on state variables, according to the
considered model.

It is worth noting that equation (4.2) can still stand for any gradient-type for-
mulation, provided one chooses a and b accordingly. As before, the eikonal-based
formulation (1.72) can be recovered by setting a = c2(1−D)1/2 and b = (1−D)1/2,
while the classical Peerlings’ one (1.26) can be obtained by setting a = 1 and b = c2.

Associated variational formulation

Moving on to the variational formulation, one would get for the equilibrium
equation ∇ · σ = 0 the classical weak form∫

Ω
∇u∗ : C̃ : ∇u dV =

∫
∂Ω
u∗ · T dS (4.6)

where u∗ stands for a virtual displacement field. It is worth noting that this
remains true as long as one keeps the classical boundary condition σ · n = T on
∂Ω of normal n.

On the other hand, to avoid numerical difficulties when determining the weak
form associated with the general gradient-type equation, one would need to follow
the work of [Saroukhani et al., 2013] and to divide equation (4.5) by a. By doing
so, one would get

ε̄

a
−∇ · (b (∇ ε̄)) = ε̂

a
(4.7)



which, using the homogeneous Neumann boundary condition (∇ ε̄) ·n = 0 on ∂Ω
of normal n, yields∫

Ω

(
ε̄ ε̄∗

a
+ b (∇ ε̄) · (∇ ε̄∗)

)
dV =

∫
Ω

ε̂

a
ε̄∗ dV , ∀ ε̄∗ (4.8)

where ε̄∗ is a virtual nonlocal strain field.
It is worth knowing that this remains true as long as a is not equal to 0 and

that the weak form associated with both classical and eikonal-based gradient-type
formulations can be recovered by choosing a and b accordingly.

4.1.2 Isotropic damage-plastic model
One now needs to focus on the damage-plastic model that will be studied here,

and whose behavior will be compared to the one associated with the pure damage
model. Following the work presented in Chapter 3, it was decided to study the
generalization to 3D of the previous damage-plastic model.

Local formulation

Keeping the idea of a plasticity-driven damage model with a Rankine plasticity
criterion, and noting εp the plastic strain tensor, the stress-strain relation based
on Hooke’s law extended to plasticity and damage writes

σ = C̃ : (ε− εp) = (1−D) C : (ε− εp) (4.9)

Damage evolution is then assumed to be driven by the cumulative plastic strain
p, defined from the plastic strain tensor εp as

ṗ =
√

2
3 ε̇

p : ε̇p (4.10)

which gives back (3.6) in the one-dimensional setting.
As for the one-dimensional formulation, the irreversibility of damage is imposed

through the definition of the damage-driving variable κ, which writes

κ(t) = p(t) =
∫ t

0
ṗ(τ)dτ (4.11)

allowing the taking into account of the plastic history.

Keeping the idea of a criterion f based on the effective stress σ̃ defined in
[Lemaitre and Chaboche, 1985] as

σ̃ = σ

1−D = C : (ε− εp) (4.12)

one would get

f (σ̃, p) = max (σ̃I , σ̃II , σ̃III)− σy(p) (4.13)



f ṗ = 0, f ≤ 0, ṗ ≥ 0 (4.14)

Here, σy still stands for the yield stress that may depend on p in presence of
hardening, while σ̃I , σ̃II and σ̃III denote the effective stress eigenvalues.

Noting σ0 the yield stress of the virgin material, and keeping a linear isotropic
hardening R defined by the hardening modulus H, the yield stress writes

σy(p) = σ0 +R(p) = σ0 +H p (4.15)

It is worth noting that the Rankine criterion (4.13), along with the definition
of the yield stress (4.15), introduces a threshold in the evolution of plasticity. As
a consequence, and as only monotonic loadings are considered, one does not need
to introduce an additional threshold in the damage evolution, which still writes

D = g(κ) = 1− σ0

σ0 +Hκ
exp

(
−(1 +H/E)κ

εf − ε0

)
(4.16)

where εf and ε0 are the material parameters governing damage evolution.

Nonlocal gradient-type formulation

As before, the nonlocal formulation keeps both the stress-strain law (4.9) and
the damage evolution law (4.16), along with the definition of the cumulative plastic
strain (4.10) and equations (4.12) to (4.15) governing the evolution of plasticity.

Besides, following the work done in [Vermeer and Brinkgreve, 1994, Strömberg
and Ristinmaa, 1996] and [Grassl and Jirásek, 2005], it was decided here to consider
an over-nonlocal damage-driving variable κ defined as

κ = m p̄+ (1−m)p (4.17)

Here m is still a numerical parameter, the particular cases m = 1 and m >
1 corresponding respectively to the use of the nonlocal damage-driving variable
and of the so-called over-nonlocal formulations. Besides, the nonlocal cumulative
plastic strain p̄ is defined through the general gradient-type equation

p̄− a ∇ · (b ∇ p̄) = p (4.18)

with p the local variable, and where the functions a and b may still depend on
some state variables.

Again, provided a and b are chosen accordingly, equation (4.2) can stand for
any gradient-type formulation. As an example, setting a = c2(1−D)1/2 and
b = (1−D)1/2 would give the eikonal-based formulation (1.72), while the classical
(Peerlings) one (1.26) could be obtained by setting a = 1 and b = c2.



Associated variational formulation

Similarly to the pure damage model, the weak form associated with the equilib-
rium equation writes here∫

Ω
∇u∗ : C̃ : (∇u− εp) dV =

∫
∂Ω
u∗ · T dS (4.19)

where u∗ still stands for a virtual displacement field and T is still defined through
σ · n = T on ∂Ω of normal n.

As far as the nonlocal equation (4.18) is concerned, one would get, following the
same steps as for the pure damage model and keeping a homogeneous Neumann
boundary condition (∇ p̄) · n = 0 on ∂Ω of normal n,∫

Ω

(
p̄ p̄∗

a
+ b (∇ p̄) · (∇ p̄∗)

)
dV =

∫
Ω

p

a
p̄∗ dV , ∀ p̄∗ (4.20)

where p̄∗ is virtual nonlocal plastic strain field and a still cannot be equal to 0.

4.2 Numerical implementation in OOFEM
This part will first present the general framework used to implement gradient-

type damage models in OOFEM, especially the terms that need to be specified.
It will then focus on the particular cases of the isotropic damage and damage-
plastic models considered here, especially when using the general gradient-type
formulation, which constitutes the main innovative contribution to OOFEM here.
It is worth noting that the discretisation and linearisation of the considered models’
weak forms, used to handle the numerical implementation, are detailed in Appendix
C.

4.2.1 General framework and notations used for the imple-
mentation of gradient-type damage models

This part will present the framework used to implement a gradient-type damage
model in the OOFEM finite element code, along with the notations used to detail
the terms of the linearized formulations used for the implementation.

General notations

This part will present the notations used to introduce the linearized forms of
the equations associated with the considered formulations. The following notations
will be used for the main degrees of freedom, associated with displacement:

• [NU ] will denote the matrix containing the shape functions for u

• [BU ] will denote the matrix containing the derivatives of the shape functions

• {U} will denote the vector containing the solution displacement’s nodal value

and for the degrees of freedom associated with the nonlocal variable:



• [N E ] will denote the matrix containing the shape functions

• [BE ] will denote the matrix containing the derivatives of the shape functions

• {E} will denote the vector containing the solution nonlocal equivalent or
cumulative plastic strain’s nodal values

The terms linked to both the displacement and nonlocal degrees of freedom can
then be expressed from {U}, [NU ] and [BU ] as described in Table 4.1. In a similar
fashion, the expression of the terms linked to the solution nonlocal equivalent strain
and nonlocal cumulative plastic strain can be expressed from [N E ], [BE ] and {E}
as detailed in Table 4.1.

u ∇ · u ε̄ ∇ ε̄ p̄ ∇ p̄

[NU ]{U} [BU ]{U} [N E ]{E} [BE ]{E} [N E ]{E} [BE ]{E}

Table 4.1: Terms linked to the displacement and nonlocal degrees of freedom.

As far as the linearized forms are concerned, the ones associated with the equi-
librium equations of both formulations will be written as∫

Ω
ΦU dV =

∫
∂Ω

[NU ]t · T dS (4.21)

where ΦU and T respectively stand for the associated internal and external forces.
In a similar fashion, the linearized forms associated with the nonlocal equations

of both formulations will be written as∫
Ω

ΦE dV = 0 (4.22)

where ΦE stands for the associated internal forces.

The notations presented in this section will now be used to detail the linearized
forms of the considered formulations, along with their numerical implementation.

General framework

This section will now present the terms that need to be defined to implement
both local and gradient-type material models in the finite element code OOFEM.
It is worth noting that the application to the formulations considered here will be
presented in the next sections.

Let’s first focus on the implementation in the finite element code OOFEM of
a material model where only the equilibrium has to be solved. In this case, one
would only have to specify the internal force ΦU defined in equation (4.21), along
with its derivative ∂ΦU/∂U with respect to the displacement degrees of freedom.



As far as nonlocal gradient-type formulations are concerned, one should still
define the terms associated with the equilibrium, but also those linked to the
nonlocal equation. As it is, one should specify the internal force ΦE defined in
equation (4.22) and, as before, one would also have to define its derivative ∂ΦE/∂E
with respect to the nonlocal degrees of freedom.

Besides, to use the tangent operator and to solve this as a coupled problem,
one would also have to define the cross-derivatives, namely ∂ΦU/∂E and ∂ΦE/∂U .

It is worth noting that, while all those terms are implemented in the file describ-
ing the material’s behaviour, one should still ensure that the necessary components
can still be transmitted from the element level. As it is, since the computation
of every term requires information from the element level (e.g. U , [NU ], [BU ], E ,
[N E ], [BE ]), a material class usually contains each component of each term in a
specific format. To be compatible with such a model, a given element class would
then have to contain the definition of those components, in order to provide the
information needed on the material level.

As a consequence, when implementing a material model, one should ensure that
it is associated with elements that are compatible with the components required
for the computation of the internal forces and their derivatives. While this is
usually straightforward for models which only involve the equilibrium and the
displacement degrees of freedom, special care needs to be taken for more complex
models.

As an example, when considering a nonlocal gradient-type formulation, the use
of the dedicated elements which are designed to take into account the additional
degrees of freedom might not be enough. As it is, while they are compatible with
the models already implemented in OOFEM, special care will have to be taken
when dealing with the general gradient-type formulations which will most likely
involve additional components.

The next sections will present the terms that can be kept for the implementation
of the general gradient-type formulations with both pure damage and damage-
plastic models, and those that will have to be either modified or introduced.

4.2.2 Application to the isotropic damage model
Let’s start with the implementation of the formulations based on the pure

isotropic damage model. It has been shown in Appendix C.3.2 that the internal
force associated with the equilibrium writes for both gradient-type formulations

ΦU = [BU ]t : (1−D)C : ∇u (4.23)

which gives for its derivatives

∂ΦU
∂U

= [BU ]t : (1−D)C : [BU ] (4.24)
∂ΦU
∂E

= [BU ]t (−D′(κ) κ′(ε̄) C : ∇u) [N E ] (4.25)



where D′ and κ′ respectively stand for the derivative of D with respect to κ and
that of κ with respect to ε̄.

Since the formulation associated with the classical gradient-type equation was
already implemented in OOFEM, these terms were already defined on the material
level and compatible with the gradient-type elements.

One now needs to focus on the implementation of the general gradient-type
equation whose linearization is also detailed in Appendix C.3.2. The associated
internal force was thus shown to be equal to

ΦE = [N E ]t
1
a

(ε̄− ε̂) + b [BE ]t∇ε̄ (4.26)

which gives for its derivatives with respect to the displacement degrees of freedom

∂ΦE
∂U

= [N E ]t
(
−1
a

∂ε̂

∂ε

)
[BU ] (4.27)

and to the nonlocal one

∂ΦE
∂E

= [N E ]t
(1
a

+ 1
a2 a

′(D) D′(κ) κ′(ε̄) (ε̂− ε̄)
)

[N E ]

+ [BE ]t b [BE ] + [BE ]t∇ε̄
(
b′(D) D′(κ) κ′(ε̄)

)
[N E ]

(4.28)

It is worth noting that here a′ and b′ respectively stand for the derivatives of a
and b with respect to D.

Moving on to the classical gradient-type formulation, which will be used as a
basis for the implementation of the general one, its terms were shown in Appendix
C.3.2 to be defined as

ΦE = [N E ]t (ε̄− ε̂) + [BE ]t c2 ∇ε̄ (4.29)
∂ΦE
∂U

= [N E ]t
(
−∂ε̂
∂ε

)
[BU ] (4.30)

∂ΦE
∂E

= [N E ]t [N E ] + [BE ]t c2 [BE ] (4.31)

One should now compare the terms presented in equations (4.26) to (4.28) to
those introduced in equations (4.29) to (4.31) in order to see the modifications
required for this implementation.

Starting with the internal force, namely equations (4.26) and (4.29), one will
only have to replace ε̄−ε̂ by (ε̄−ε̂)/a and c2 by b, but no additional term will have to
be introduced. Moving on to its derivative with respect to the displacement degrees
of freedom, one can see that its implementation will not require an additional term
either since −∂ε̂/∂ε will simply have to be replaced by −(1/a)(∂ε̂/∂ε).

On the other hand, as far as the derivative of the internal force with respect
to the nonlocal degrees of freedom is concerned, namely (4.27) and (4.30), one
will still have to modify the existing terms, but a new one will also have to be



introduced. Starting with the first component of ∂ΦE/∂E , one will simply have to
replace 1 by (1/a) + (1/a2) a′(D) D′(κ) κ′(ε̄) (ε̂ − ε̄), and c2 by b for the second
one.

Regarding the third term, namely equations (4.28) and (4.31), its implementa-
tion will require the introduction of a new term, writing [BE ]t f1 [N E ], on both
the material and the element level. The function f1 should then be set equal to
∇ε̄
(
b′(D) D′(κ) κ′(ε̄)

)
for the formulation associated with the general gradient,

while it will be equal to 0 for the preexisting ones since b′ would then be equal to
0

4.2.3 Application to the isotropic damage-plastic model
As for the pure damage model, it has been shown in Appendix C.3.3 that the

internal force associated with the equilibrium writes for both the classical and
general gradient-type formulations coupled with the damage-plastic model

ΦU = [BU ]t : (1−D)C : (ε− εp) (4.32)

Its derivative with respect to the displacement degrees of freedom then writes

∂ΦU
∂U

=[BU ]t (1−D) C [BU ]

− [BU ]t D′(κ) (1−m) p′(ε) C : (ε− εp) [BU ]
(4.33)

where p′ stands for the derivative of the return-mapping algorithm, while the
derivative of ΦU with respect to the nonlocal degrees of freedom writes

∂ΦU
∂E

= [BU ]t (−D′(κ) m C : (ε− εp)) [N E ] (4.34)

Since the formulation associated with the classical gradient-type equation was
already implemented in OOFEM, these terms were already defined on the material
level and compatible with the dedicated elements.

Following the same steps as for the pure damage model, one should compare the
terms associated with the general gradient-type formulation to those associated
with the classical one. Starting with the general gradient-type formulation, the
internal force has been shown in Appendix C.3.3 to be defined as

ΦE = [N E ]t
1
a

(p̄− p) + b [BE ]t ∇p̄ (4.35)

while its derivative with respect to the displacement degrees of freedom writes

∂ΦE
∂U

=[N E ]t
(
−p
′(ε)
a

+ p− p̄
a2 a′(D) D′(κ) (1−m) p′(ε)

)
[BU ]

+ [BE ]t∇p̄
(
b′(D) D′(κ) (1−m)

)
p′
t(ε)[BU ]

(4.36)



and its derivative with respect to the nonlocal degrees of freedom

∂ΦE
∂E

= [N E ]t
(1
a

+ 1
a2 a

′(D) D′(κ) m (p− p̄)
)

[N E ]

+[BE ]t (∇p̄ b′(D) D′(κ) m) [N E ] + b [BE ]t [BE ]
(4.37)

On the other hand, the terms associated with the classical gradient-type for-
mulation write

ΦE = [N E ]t (p̄− p) + [BE ]t c2 ∇p̄ (4.38)
∂ΦE
∂U

= [N E ]t (−p′(ε)) [BU ] (4.39)
∂ΦE
∂E

= [N E ]t [N E ] + [BE ]t c2 [BE ] (4.40)

To determine the modifications required for the implementation of the damage-
plastic formulation, one now needs to compare the terms gathered in equations
(4.35) to (4.37) to those introduced in equations (4.38) to (4.40).

By doing so, one can first see that, as for the pure damage model, the internal
force will not require any additional term, since one will simply have to replace
p̄− p by (p̄− p)/a and c2 by b.

However, since the damage driving variable is here a combination of both the
local and nonlocal cumulative plastic strain, one will here have to introduce a new
component in ∂ΦE/∂U to account for the dependency of b with respect to p. To
do so, one will first have to introduce a term writing [BE ]t f2 [BU ] on both the
material and element levels, where f2 should be set equal to 0 by default. Then, in
addition to replacing −p′(ε) with (−p′(ε)/a)+(p− p̄/a2) a′(D) D′(κ) (1−m) p′(ε),
one should set f2 to ∇p̄

(
b′(D) D′(κ) (1−m)

)
p′t(ε).

As before, the definition of ∂ΦE/∂E will require both the modification of the
existing terms, and the introduction of a new one in the form [BE ]t f1 [N E ]. Pro-
vided such a term has already been implemented in the general gradient material
and element classes, one will no longer have to define it since the current material
will inherit it, along with the other components. In this case, one will simply have

to set f1 to ∇p̄ b′(D) D′(κ) m, while replacing 1 with
1
a

+ 1
a2 a

′(D) D′(κ) m (p− p̄)
and c2 with b.

This part has presented the different steps for the numerical implementation in
the computer code OOFEM of the formulations obtained by coupling the general
gradient-type equation to the considered damage and damage-plastic models.

After properly setting the functions a and b, one should now use these imple-
mentations to run numerical simulations with the eikonal-based nonlocal damage
models in order to study their properties.



4.3 Numerical results and properties of the dam-
age and damage-plastic models

It was decided here, to assess the properties of the considered gradient-type
damage and damage-plastic models in a more complex (standard) setting than the
unidimensional one studied in Chapters 2 and 3, namely a three-point-bending
testing.

After a general presentation of the numerical experiment conducted here, this
part will thus start by studying the mesh sensitivity of the response obtained with
the pure damage model. It will then focus on the influence of the internal length on
both the brittleness of the response curve and the damage profile, before moving
on to the computations with the damage-plastic model.

4.3.1 Numerical testing
The problem studied here is that of a notched beam submitted to a three-point-

bending as described in Figure 4.1. As can be seen in Figure 4.1, the beam here
lies on the extremities of its lower part (L and F ), while the load (red arrow) is
applied on top of it at the center (C), located right above the notch tip (I).

It is worth noting that only the displacements along the vertical axis are blocked
on the support points, the horizontal ones being blocked along the line ([IC]) that
links the notch tip and the loading point. The use of such boundary conditions
is expected to prevent the occurrence of rigid body motions and to ensure the
symmetry of the problem.
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Figure 4.1: Three-point-bending test considered here.

As far as the spatial discretisation of the beam is concerned, four areas with
different levels of mesh refinement were considered to have a rather fine mesh near
the notch while limiting the numerical cost. As it is, while the areas constituting
the main part of the beam, delimited by ABKL and DEFG, have a rather coarse



mesh, the element size is smaller in those surrounding the notch, delimited by
BCIJK and CDGHI.

The first mesh considered here, displayed in Figure 4.2, involves a global ele-
ment size of ls = 10 mm far from the notch, i.e. along [AB], [KL], [LA], [DE], [EF ]
and [FG], and a local size of ls = 4 mm close to it, i.e. in the areas surrounding
the notch.

A B D E

FGKL
Figure 4.2: Mesh used for a local element size of 4 mm.

In order to study the mesh sensitivity of the results obtained with the consid-
ered models, it was decided here to keep the global element size and to change
only the local size near the notch, which will here be taken equal to ls = 4 mm,
2 mm and 1 mm. Samples of the meshes thus obtained in around the notch, in the
area of 20 mm × 20 mm delimited by the red line in Figure 4.2, are respectively
displayed in Figures 4.3a, 4.3b and 4.3c.

20 mm

(a) Local size ls = 4 mm.

20 mm

(b) Local size ls = 2 mm.

20 mm

(c) Local size ls = 1 mm.

Figure 4.3: Samples of the mesh around the notch for different local mesh sizes ls.

The setting and meshes presented in this part will now be used to assess the prop-
erties of the formulations studied in this chapter, including the mesh sensitivity of
the results, through displacement-driven computations

4.3.2 Mesh-independence of the pure damage model
First of all, one needs to study the properties of the formulation associated with

the pure damage model when coupled to the eikonal-based approach as described
in section 4.1.1, and especially the mesh independence of the results. To do so,
numerical simulations were conducted using the setting detailed in Figure 4.1 and



the three local element sizes presented in Figure 4.3, along with the material
parameters gathered in Table 4.2.

E ν ε0 εf c
30 000 MPa 0.2 1.e− 4 1.74e− 4 64 mm

Table 4.2: Parameters used for the study with a fixed localisation area.

As for the one-dimensional study conducted in Chapter 2, this part will first
focus on the macroscopic response curves before moving on to the evolution and
localisation of damage. It is worth noting that, due to the more complex setting
considered here, one will not only focus on a single damage profile, but also on the
distribution of both damage D and the damage-driving variable, namely Mazars’
equivalent strain ε̂ throughout the beam.

As one can see in Figure 4.4, the force-displacement curves obtained with the
three levels of spatial discretisation are nearly identical until a certain (post-peak)
point, which tends to indicate that the results are mesh-independent. As it is,
the abrupt end of the curve is due to the occurrence of snap-back instabilities
which cannot be handled with the displacement-based driving strategy used here.
One can thus conclude that, in the absence of snap-back instabilities, the response
curve, and thus the dissipated energy, are mesh-independent until local values of
damage D reach 0.9.

Figure 4.4: Force-displacement curves obtained for the three levels of refinements.

Though studying the macroscopic response curves gives some insight on the
mesh sensitivity of the results, one now needs to focus on what happens at the
structural level.

First, one can note that the final damage distribution throughout the beam,
displayed in Figure 4.5 for the three levels of discretisation, appears to be mesh
independent. Moreover, the area in which damage concentrates seems to shrinks
when damage increases, which is consistent with the expected shrinking localisation
associated with the eikonal-based formulation.



(a) Local size 4 mm.

(b) Local size 2 mm.

(c) Local size 1 mm.

Figure 4.5: Final damage maps obtained with the three levels of refinement.

Similar observations can also be made in Figure 4.6 where the final values of
the local equivalent strain ε̂ have been displayed throughout the beam. As it
is, one can note that the ε̂ maps are nearly identical, with small differences for
the higher values near the center of the localisation area, and that it seems to
concentrate in areas that get smaller for high levels of strain. This confirms the
previous observations regarding both the mesh independence of the results and the
shrinking localisation, the latter being much clearer here since ε̂ tends to infinity
while D is bounded to 1.

To confirm these global observations, this work will now focus on the profiles
of both damage and its driving variable, along with their evolution. It is worth
noting that these profiles will be taken along a horizontal line located just above
the notch tip in order to be in the process zone while avoiding the geometrical
singularity.

Starting with damage, one can see in Figure 4.7a that its final profile is nearly
identical for the three levels of mesh refinement, the main difference coming from
the accuracy of its discretisation. A small variation in the maximum damage can
also be observed, but it tends to disappear when the element size decreases, and
can thus be neglected.

Moreover, as far as the evolution of the damage profile is concerned, one can
see in Figures 4.7b, 4.7c and 4.7d that it does not depend on the element size,
which confirms the mesh independence of the damage distribution.

Its is also worth noting that, unlike the one-dimensional case, one does not get
an initially wide damage profile that shrinks when damage increases. As it is, due
to the different loading conditions, the damage profile is always sharp and its base
expands until its maximum value reaches 1. Despite these differences, one still gets
a sharp damage profile at the end of the process with a very thin highly damaged



(a) Local size 4 mm.

(b) Local size 2 mm.

(c) Local size 1 mm.

Figure 4.6: Final equivalent strain maps obtained with the three levels of refinement.

area, which is consistent with the expected shrinking localisation area.

(a) Final profiles. (b) Local size 4 mm.

(c) Local size 2 mm. (d) Local size 1 mm.

Figure 4.7: Influence of the local mesh size on the evolution of the damage profile,
along a horizontal line for different loading times t.



Moving on to the equivalent strain, one can see in Figure 4.8a that the final
profiles are quite similar, though there are some differences for the high strain levels.
This is consistent with the observations made on the damage profile, especially
since the variation seems to disappear when the element size decreases. It is worth
noting that, due to the damage evolution law, these variations are much more
visible when considering the equivalent strain instead of damage.

One can also note in Figures 4.8b, 4.8c and 4.8d that, apart from the final
values, the evolution of the equivalent strain profile seems to be mainly mesh
independent. Moreover, as expected, the width of the equivalent strain profile
tends to zero when ε̂ increases, which, along with the sharpness of the final profile,
confirms the shrinking of the localisation area.

(a) Final ε̂ profile. (b) Local size 4 mm.

(c) Local size 2 mm. (d) Local size 1 mm.

Figure 4.8: Influence of the local mesh size on the the evolution of the equivalent
strain profile, along a horizontal line for different loading times t.

In the end, one can conclude that the results obtained with this formulation
are mesh independent (at least in the absence of snap-back instabilities), which
confirms the regularisation properties of the eikonal-based formulation. Moreover,
the localisation area has been shown to shrink when damage increases, confirming
the possibility to make a crack equivalent to a highly damaged zone. It is however
worth noting that, due to the chosen displacement-based driving strategy, the
occurrence of snap-back instabilities induced by the brittleness of the response
prevented a study up to D = 1.

However, it must also be noted that, though the global response was rather
brittle, damage was spread over a wide area, of size directly related to the internal



length parameter c.

4.3.3 Influence of the internal length
Now that the regularisation properties of the eikonal-based formulation associ-

ated with the pure damage model have been confirmed, one needs to study the
influence of the internal length on the material behaviour. This was done by con-
ducting numerical simulations with different internal lengths, keeping the three-
point bending setting (Figure 4.1) and the finest mesh (Figure 4.3c) used for the
mesh sensitivity study. Aside from c which was taken equal to 4 mm, 16 mm and
64 mm, it was also decided to keep the material parameters used in the previous
part (Table 4.2).

As for the mesh sensitivity, this part will first deal with the macroscopic re-
sponse curves, before moving on to the damage and equivalent strain distribution,
and then to the evolution of their profiles along a line located above the notch tip.

Starting with the force-displacement curve, one can see in Figure 4.9 that the
internal length has a direct influence on the maximal force, which seems to increase
with it. Besides, one can note that increasing the internal length tends to increase
the dissipated energy and thus the stability of the response. This numerical effect
is consistent with the fact that the internal length supposedly controls the width
of the localisation area where dissipation occurs [Pijaudier-Cabot et al., 2001, Le
Bellégo et al., 2003].

Figure 4.9: Force-displacement curves obtained for the three internal lengths.

Focusing on damage distribution, one can see in Figure 4.10 that the size of the
damaged area is controlled by the internal length and that lowering its value allows
for a more realistic damage spreading in the beam. However, as seen in Figure 4.9,
the use of small internal lengths induces a very brittle behaviour which prevents
stable crack propagation. One can also note that the high damage levels tend to
localize at the centre of the damaged area, which indicates that the localisation
area may still shrink with damage.

This can also be observed in Figure 4.11, where one can see that the high
strain values tend to localize at the centre of the damaged area as well, which is



(a) c = 4 mm.

(b) c = 16 mm.

(c) c = 64 mm.

Figure 4.10: Final damage maps obtained with the three internal lengths.

consistent with a shrinking localisation area. Besides, as expected, the internal
length also controls the equivalent strain distribution, which confirms its influence
on the size of the localisation area.

(a) c = 4 mm.

(b) c = 16 mm.

(c) c = 64 mm.

Figure 4.11: Final equivalent strain maps obtained with the three internal lengths.

To confirm these global observations, one now needs to focus on the evolution
of damage and equivalent strain profiles taken just above the notch tip.



Starting with damage, one can see in Figure 4.12 that, as expected, the width
of its profile is influenced by both the internal length and the current damage level
throughout its evolution. As it is, while the final width of the damage profile is
imposed by the internal length where D is close to 0, it shrinks to a single point
when D gets close to 1.

(a) Final profiles. (b) c = 4 mm.

(c) c = 16 mm. (d) c = 64 mm.

Figure 4.12: Influence of the internal length on the evolution of the damage profile,
along a horizontal line for different loading times t.

As before, this is even more noticeable when considering the evolution of the
equivalent strain profiles displayed in Figure 4.13 since they are even sharper due
to the damage evolution law. Moreover, while these profiles are not bounded, it is
observed that their final width is still controlled by both the internal length and
the current equivalent strain level.

In the end, one can conclude that for the eikonal-based formulation, as expected,
the internal length can be used to control the width of the localisation area and
thus adjust the size of the damage zone. However, reducing the width of the
damaged area to a more realistic value also reduces the dissipated energy and
maximum force, thus increasing the brittleness of the global behaviour. It likewise
tends to reduce the stability of the global response, which again prevented the
study of stable crack propagation.

Despite the brittleness of the responses, the shrinking of the localisation area
has also been shown to be independent from the internal length, confirming the
possibility to make a highly damaged zone equivalent to a crack. To confirm
the properties associated with the eikonal-based approach, one should now try



(a) Final profiles. (b) c = 4 mm.

(c) c = 16 mm. (d) c = 64 mm.

Figure 4.13: Influence of the internal length on the evolution of the equivalent
strain profile, along a horizontal line for different loading times t.

to reduce the brittleness of the material behaviour through the introduction of
plasticity.

As discussed before, a damage-plastic model is expected to be more suited to
model concrete, mainly thanks to the introduction of permanent strain.

4.3.4 Mesh-independence of the damage-plastic model
After studying the properties of the eikonal-based approach associated with the

pure damage model, one needs to move on to its association with the damage-
plastic one presented in section 4.1.2. This part will thus focus on the mesh
sensitivity of the eikonal-based damage-plastic formulation when used to handle
the three-point bending problem described in Figure 4.1. As for the pure damage
model, numerical simulations will thus be conducted using the spatial discretisa-
tions presented in Figure 4.2, and the parameters gathered in Table 4.3. It is
worth noting that the parameters are consistent with those used for the pure dam-
age model, except the hardening H, which is taken equal to 0 (perfect plasticity).

E ν ε0 εf σ0 H c m
30 000 MPa 0.2 1.e− 4 1.74e− 4 3 MPa 0 MPa 64 mm 1.5

Table 4.3: Parameters used with the isotropic damage-plastic model.

To assess the properties of the considered model, this study will first focus on



the response curves before moving on to the damage and cumulative plastic strain
distributions. It will then deal with the damage and cumulative plastic strain
profiles along horizontal and vertical lines above the notch tip.

First, one can see in Figure 4.14 that the macroscopic response curves associated
with the three local element sizes are nearly identical until a point where the com-
putation of two of them stop. The differences around this point and the fact that
two curves end there suggest instability at this loading level, which is consistent
with the fact that only the simulation conducted with the biggest element size
(ls = 4 mm) can go beyond it. This tends to indicate that, as for the pure damage
models, the results obtained with this formulation are mesh-independent at least
up to this point.

Figure 4.14: Force-displacement curves obtained for the three levels of mesh
refinements.

The results mesh-independency can be confirmed by considering the damage
distributions displayed in Figure 4.15 for a displacement level U = 0.3 mm, which
do not appear to depend on the local element size. One can also note that the
elements on the top of the beam (where the load is applied) start to damage, which
could explain the instability observed on the macroscopic response curves. Besides,
as for the pure damage model, one can note that the high levels of damage are
concentrated at the centre of the localisation area, even after a vertical propagation,
which confirms the shrinking of the localisation area.

This shrinking is even more evident when focusing on the distribution of the
cumulative plastic strain displayed in Figure 4.16 since, as for the equivalent strain,
its values tend to infinity while damage cannot exceed 1. One can also note that
the distribution is nearly mesh-independent, the only variations being located at
the notch tip where a strain concentration induces very high levels of plastic strain,
especially for the most refined mesh.

To confirm these global observations, one now needs to focus on the damage and
cumulative plastic strain profiles along vertical and horizontal lines. Starting with
the damage profile along a horizontal line located above the notch tip, one can see
in Figure 4.17a that, for a given loading, it does not depend on the element size. As



(a) Local size 4 mm.

(b) Local size 2 mm.

(c) Local size 1 mm.

Figure 4.15: Maps of damage obtained for the same applied displacement U = 3 mm.

(a) Local size 4 mm.

(b) Local size 2 mm.

(c) Local size 1 mm.

Figure 4.16: Maps of cumulative plastic strain obtained for the same applied
displacement U = 3 mm.

it is, the only differences between the damage profiles come from the accuracy of
the spatial discretisation, which is also true for their evolutions displayed in Figures
4.17b, 4.17c and 4.17d. In addition to being mesh-independent, the damage profiles
also appear to have the expected damage-dependent width, which tends to zero
when damage gets close to 1.

Similar observations can also be made on the cumulative plastic strain profiles
displayed in Figure 4.18, whose width tends to zero for high levels of plasticity,
i.e. damage. One can also note that, for a given loading, the profiles are nearly



(a) Profiles at U = 3 mm. (b) Local size 4 mm.

(c) Local size 2 mm. (d) Local size 1 mm.

Figure 4.17: Influence of the local mesh size on the evolution of the damage profile,
along a horizontal line for different loading times t.

identical, except for the maximum value located at the centre of the localisation
area. It is worth noting that this discrepancy, enhanced by the shape of the damage
evolution law, is most likely linked to a stress concentration after the notch tip
and does not affect the global response.

After ensuring the localisation’s mesh independency through the width of the
damage profile, one should focus on the pseudo-crack propagation. To do so, one
first looks at the damage and cumulative plastic strain profiles along a vertical line
going from the notch tip to the loading point ([IC]).

Starting with the damage profile displayed in Figure 4.19a, one can note that
damage propagation does not depend on the element size, aside from the accuracy
of the discretisation.

Regarding the cumulative plastic strain whose profile is displayed in Figure
4.19b, one can note that the strain concentrations observed at the centre of the
localisation area in Figure 4.18 are still present, though they seem to disappear
away from the notch tip. A second peak can also be observed for the finest mesh
in the area where damage is still nearly equal to 1.

In the end, one can conclude that the results obtained with this nonlocal eikonal-
based formulation are mesh-independent and that the localisation area shrinks
when damage increases, making a highly damaged zone equivalent to a crack. A
strain concentration was also observed at the centre of the equivalent strain profile



(a) Profiles at U = 3 mm. (b) Local size 4 mm.

(c) Local size 2 mm. (d) Local size 1 mm.

Figure 4.18: Influence of the local mesh size on the evolution of the cumulative
plastic strain profile, along a horizontal line for different loading times t.

(a) Influence on D. (b) Influence on p.

Figure 4.19: Influence of the local mesh size on the pseudo-crack propagation.

near the notch tip, but it does not seem to affect the global response.

It is worth noting that the occurrence of macroscopic instabilities prevented
the complete study of crack propagation with the three levels of mesh refinement.
This study should now be conducted with the largest element size, which helps to
stabilise the model’s response.



4.3.5 Handling material failure with the damage-plastic
model

Now that the eikonal-based approach has been shown to produce mesh-independent
results with a shrinking localization area, one needs to see whether it can make a
highly damaged zone equivalent to a crack to model a crack propagation. This part
will thus focus on the results obtained with the coarse mesh beyond the instability
point where the two other responses stopped.

Starting with the damage distribution displayed in Figure 4.20a, one can see
that the pseudo-crack (i.e. highly damaged zone) has propagated until it reached
the loading point at the top of the beam. Moreover, as expected, the width of
the damaged area did not expand after D reached 1, that the pseudo-crack is
thus a two-element band. It is worth noting that the reason why damage does not
localizes in a single element band is that the problem considered here is completely
symmetric with a sharp initial notch whose tip is located between two elements.
There is then no reason for localization to occur on one side of the notch instead
of the other, which entails a two element wide final localization area.

Similar observations can also be made in Figure 4.20b, where the localization
of plasticity in a two-element band is even more evident.

(a) Damage

(b) Cumulative plastic strain

Figure 4.20: Final maps of damage and cumulative plastic strain.

Focusing on the damage profile studied before, one can see in Figure 4.21a
and 4.21b that it no longer evolves after D reaches one and the pseudo-crack
tip moves beyond the considered point. Regarding the cumulative plastic strain
profile displayed in Figure 4.21c and 4.21d, one can see that its width does not
increase either while plasticity keeps increasing in the final localization area, which
is consistent with a crack behaviour.

Moving on to the vertical profiles, taken along [IC] and displayed in Figure
4.22, one can see that D is equal to 1 throughout most of the beam’s height and
that damage has reached the loading point at y = 200 mm. On the other hand,
plasticity reaches its maximum value at the base of the pseudo-crack, i.e. the notch
tip, and decreases toward its tip, which is consistent with a crack opening.



(a) Final damage profile. (b) Damage profile evolution.

(c) Final plasticity profile. (d) Plasticity profile evolution.

Figure 4.21: Evolution of the damage and cumulative plastic strain profile, along a
horizontal line for different loading times t.

(a) D. (b) p.

Figure 4.22: Final damage and cumulative plastic strain profile, along a vertical
line..

In the end, one can conclude that the eikonal-based damage-plastic formulation
does indeed make a crack equivalent to a highly damaged zone and can thus be
used to model complete structural failure with crack propagation.

4.4 Conclusion of chapter 4
This chapter has introduced the weak forms associated with the nonlocal for-

mulations obtained by coupling the damage and damage-plastic models studied in



Chapter 3 to both the classical and general gradients.
These formulations were then implemented in the object-oriented finite ele-

ment solver OOFEM developed at the Czech Technical University’s faculty of civil
engineering, starting from the classical gradient-type damage and damage-plastic
models already implemented. It is worth noting that the general procedure pre-
sented here could be followed to implement any material model in the finite element
code. However, this should not be necessary for another gradient-type formulation
since this implementation is rather versatile.

These implementations were finally used to study the properties of the eikonal-
based approach associated with damage and damage plastic models to handle a
three-point bending problem. Both formulations were shown to produce mesh-
independent results, though the material behaviour associated with the pure dam-
age model was very brittle, even for large localisation areas. It was also shown
that, for both models, the localisation area would shrink to a single point when
damage increases, making a highly damaged zone equivalent to a crack.

Due to the brittleness of the response associated with the pure damage model,
it was not possible to study a pseudo-crack propagation across the beam. However,
it was shown that the response’s brittleness could be controlled by adjusting the
width of the localisation area through the internal length parameter c.

In the end, it was shown that the damage-plastic formulation could be used
to properly model material failure and pseudo-crack propagation by cutting all
interactions across a highly damaged zone and thus preventing its extension.



Conclusion

The general framework commonly used to model material failure was first pre-
sented and used to introduce the two historical ways to handle it, namely the Linear
Elastic Fracture Mechanics and the continuum damage mechanics. Focusing on
the continuous approach, a local isotropic damage model with strain softening
was introduced to model material failure with the associated progressive loss of
stiffness. The flaws inherent to such a model were then pointed out to propose a
definition of what will be called here a "good" damage model.

Following this, the classical ways to improve a local damage model, namely
nonlocal damage, phase-field model and bounded rate damage, were presented,
along with the associated drawbacks. A new eikonal-based nonlocal formulation,
which should address these issues, was then presented along with the equivalent
gradient-type formulation studied throughout this thesis.

The formulation obtained by coupling the local damage model to the gradient-
type eikonal-based approach was introduced to determine whether it has the prop-
erties that can be expected from a good damage model. The formulations obtained
by coupling it to Peerlings’ approach and a Phase-Field-based one were also intro-
duced to compare their properties to those of the eikonal-based formulation in a
one-dimensional setting.

Since this numerical study was conducted with the Abaqus software, it was
decided to implement the considered models in a non-intrusive fashion to take
advantage of its nonlinear solver’s efficiency. This implementation was handled
through a thermo-mechanical analogy, taking advantage of the similarities between
the heat equation and the nonlocal gradient-type ones.

It is worth noting that a dissipation-based strategy had to be introduced in
order to compute the entire response curve when snap-back instabilities occurred.
Though it required a monolithic resolution of the fully coupled nonlinear problem,
this was permitted thanks to the embedded thermo-mechanical solver.

As expected, all formulations addressed the main issue inherent to local damage
models, namely the spurious mesh dependency. However, the classical gradient-
type formulation did not match the expected properties of a "good" damage model
since it did not make a highly damaged zone equivalent to a crack. On the other
hand, both the eikonal-based and phase-field based formulations were shown to
match all the expected properties, including cutting all interactions across a highly
damaged zone to reproduce a crack behaviour.

It thus appeared that both formulations could be used to bridge the gap be-
tween continuum damage and fracture mechanics. However, in addition to the lack
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of permanent strain, the associated response curves were too brittle to reproduce
the behaviour of a material such as concrete.

A damage-plastic model was then introduced to address the brittleness associ-
ated with the pure damage model and introduce the permanent strain required
to accurately model geomaterials such as concrete. The material behaviours asso-
ciated with both damage models were then compared on a single material point,
demonstrating that the introduction of plasticity does not influence the global
response though it does affect damage evolution.

The formulations obtained by coupling both damage models to Peerlings’ and
the eikonal-based approaches were introduced and used in a one-dimensional case
to study the initial localisation associated with their first bifurcation. Their reg-
ularisation properties were hence confirmed, along with the dependence of the
localisation area’s size on both the internal length and the damage evolution law.

Taking those results into account, a theoretical study was conducted to see
how plasticity would affect the brittleness of the responses obtained with both
the classical and eikonal-based gradient-type formulations. It was thus possible
to see that, while introducing plasticity does not influence the brittleness of the
response obtained with a fixed localisation area, it does increase the ductility of
the behaviour associated with a shrinking one.

Following this preliminary study, one had to see whether it could be generalised
to more complex settings, which required additional numerical simulations. Due to
the integrated features dedicated to gradient-type models, it was decided to work
with the finite element code OOFEM developed at the Czech Technical University,
where the author spent six months during the PhD under the supervision of profes-
sor Milan JIRÁSEK. The weak forms associated with the formulations obtained
by coupling the damage and damage-plastic models to a general gradient-type
approach were thus introduced and used for the numerical implementations.

Since the classical gradient-type formulations were already implemented in
OOFEM, and thanks to its object-oriented design, implementing the general ones
only required modifications of the existing material class. It is worth noting that
the implementation of the general gradient is quite versatile since it can stand for
any formulation with either a fixed or an evolving internal length, including the
phase-field based and eikonal-based ones.

The properties of the damage and damage-plastic formulations were then stud-
ied in a three-point bending setting and were shown to produce mesh-independent
results. Moreover, both models were shown to make a highly damaged zone equiv-
alent to a crack, the localisation area shrinking to a single point when damage
increases. However, the behaviour associated with the pure damage model was
very brittle, even for large localisation areas, and the occurrence of snap-back in-
stabilities prevented the study of the highly damaged zone’s propagation. Though
the brittleness of the response was shown to be adjustable through the internal
length parameter c, one would need a more advanced driving strategy to study the
properties of the pure damage formulation. Following what was done in Abaqus



with the dissipation-based driving strategy, one could consider using arc-length
driving, imposing either a global dissipation or the notch opening.

It was finally shown that the eikonal-based gradient-type damage-plastic formu-
lation could handle structural failure, though taking into account crack orientation
would require the introduction of anisotropic damage. Some preliminary work has
been conducted on this subject and can be used as a basis for further study with
a unified anisotropic damage model.
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This appendix gives details regarding the study of damage’s influence on wave
propagation. To do so, working under the WKB approximation, a wave propaga-
tion study will first be conducted in the general case of a linear material, before
moving to the particular case of an isotropic undamaged material. These results
will then be compared to those obtained with isotropic damage to assess its influ-
ence.

A.1 Wave propagation in a linear material
One should first note that he considered material does not have to be homo-

geneous, thus all material parameters depend on the point x at which they are
considered. The wave celerity c0(x) can then be defined at a given point x as

c0(x) = ω

k0(x) (A.1)

where ω is the wave pulsation and k0(x) = ‖k0(x‖ the norm of its wave vector.
For convenience k0(x) and c0(x) will be noted k0 and c0 in the following devel-

opments, though they still implicitly depend on the point x.

The displacement field induced by the wave propagation is here postulated as

u(x, t) = u0(x) exp [i (k0S(x)− ωt)] (A.2)

where x denotes the spatial coordinate, t the time coordinate, u0(x) the position-
dependent wave amplitude, and S(x) the so-called eikonal function that can be
interpreted as a level set function.

Assuming that the virtual displacement field u∗ has the same form as u, and
that only the slow variation term is modified, it can be defined as

u∗(x, t) = u∗0(x) exp [i (k0S(x)− ωt)] (A.3)

From now on, the following variables u(x, t), u∗(x, t), u0(x), u∗0(x) and S(x)
will be respectively noted u, u∗, u0, u∗0 and S in order to use lighter notations.

The stiffness matrix C(x) and the density ρ(x) at point x, will also be noted C
and ρ. The principle of virtual power then writes∫

Ω
ρ u∗ · ü dV =

∫
Ω
∇u : C : ∇u∗ dV , ∀u∗ (A.4)

It is important to keep in mind that,though the space variable x does not ex-
plicitly appear in the equations, every variable and parameter is space-dependent.



The strain energy density can be rewritten as

∇u : C : ∇u∗

=∇
(
u0 e

i(k0S−ωt)
)
C : ∇

(
u∗0 e

i(k0S−ωt)
)

= (∇u0 + ik0 u0 ⊗∇S) ei(k0S−ωt) : C : (∇u∗0 + ik0 u
∗
0 ⊗∇S) ei(k0S−ωt)

giving

∇u : C : ∇u∗

= (∇u0 + ik0 u0 ⊗∇S) : C : (∇u∗0 + ik0 u
∗
0 ⊗∇S) e2i(k0S−ωt)

(A.5)

while the inertial term writes

ρ u∗ · ü

=ρ
(
u∗0 e

i(k0S−ωt)
)
· ∂

2

∂t2

(
u0 e

i(k0S−ωt)
)

=ρ
(
u∗0 e

i(k0S−ωt)
)
·
(
(−ω2) u0 e

i(k0S−ωt)
)

giving

ρ u∗ · u = −ρω2 u0 · u∗0 e2i(k0S−ωt) (A.6)

The principle of virtual power (A.4) then becomes∫
Ω

(∇u0 + ik0 u0 ⊗∇S) : C : (∇u∗0 + ik0 u
∗
0 ⊗∇S) e2i(k0S−ωt) dV

= −
∫

Ω
ρω2 u0 · u∗0 e2i(k0S−ωt) dV , ∀u∗

⇔
∫

Ω
(∇u0 + ik0 u0 ⊗∇S) : C : (∇u∗0 + ik0 u

∗
0 ⊗∇S) dV = −

∫
Ω
ρω2 u0 · u∗0 dV , ∀u∗

giving in the general case

(c0 ∇u0 + iω u0 ⊗∇S) : C : (c0 ∇u∗0 + iω u∗0 ⊗∇S) = −ρc0
2ω2 u0 · u∗0 (A.7)

At high frequencies, i.e. keeping only the terms proportional to ω2, one gets

(u0 ⊗∇S) : C : (u∗0 ⊗∇S) = ρc0
2 u0 · u∗0 (A.8)

and, using Einstein’s notation

u0i ∇Sj C̃ijkl ∇Sk u∗0l = ρc0
2 δil u0i u

∗
0l

In the end, one gets

u0i

(
∇Sj C̃ijkl ∇Sk − ρc0

2 δil
)
u∗0l = 0 (A.9)

which implies that a non trivial solution exists if and only if one has

det
[
∇Sj C̃ijkl ∇Sk − ρc0

2 δil
]

= 0 (A.10)



Since the aim of this part is to see the influence of damage on wave propagation,
one needs to find out how it affects the gradient ∇S of the eikonal function. To
do so, one would need more hypothesis on the material properties in order to
determine the expression of the stiffness matrix C both with and without damage.

A.2 Wave propagation in a linear undamaged
isotropic material

Under the hypothesis of an undamaged isotropic material, the stiffness matrix
C can be defined using Lame coefficient λ and µ as:

C = λ1⊗ 1 + 2µ1⊗1 (A.11)

which, in index notation writes:

Cijkl = λ δijδkl + µ (δikδjl + δilδjk) (A.12)

It is worth noting that, since our material is not homogeneous, the parameters
λ et µ depend on the space coordinate x, and thus so does the stiffness matrix C.

In this case, starting from the existence condition (A.10) and replacing C by its
expression, one gets

det
[
∇Sj (λ δijδkl + µ (δikδjl + δikδjl)) ∇Sk − ρc0

2 δil
]

= 0

⇔ det
[
λ∇Si∇Sl + µ∇Sl∇Si + µ∇Sk∇Sk δil − ρc0

2 δil
]

= 0

⇔ det
[
(λ+ µ) (∇Si∇Sl) −

(
ρc0

2 − µ‖∇S‖2
)
δil
]

= 0

⇔ det
[
(λ+ µ) (∇S ⊗∇S) −

(
ρc0

2 − µ‖∇S‖2
)
I
]

= 0

Since ∇S ⊗ ∇S is generated with one single base vector, it has 0 and ‖∇S‖2

eigenvalues, the first being a double one. Therefore, the previous condition is
satisfied if either (A.13) or (A.14) is satisfied.

(λ+ µ) ‖∇S‖2 −
(
ρc0

2 − µ‖∇S‖2
)

= 0 (A.13)

ρc0
2 − µ‖∇S‖2 = 0 (A.14)

The first condition (A.13), which corresponds to a pressure wave (∇× u), can
be rewritten as

(λ+ 2µ)‖∇S‖2 = ρc0
2 (A.15)

giving

‖∇S‖ = c0

√
ρ

λ+ 2µ (A.16)



The second condition (A.13), which corresponds to a shear wave (∇ · u), can
be rewritten as

µ‖∇S‖2 = ρc0
2 (A.17)

giving

‖∇S‖ = c0

√
ρ

µ
(A.18)

Considering that the wave speed in the undamaged medium can be defined as
c0 =

√
(λ+ 2µ)/ρ for a pressure wave, and c0 =

√
µ/ρ for a shear wave, both

conditions can be unified through the following eikonal equation

‖∇S(x)‖ = 1 (A.19)

It is worth noting that this is consistent with the absence of damage, and that,
though S and ∇S may still depend on x, this remains true ∀x.

A similar study will now be conducted with a damaged material in order to see
how (A.19) will be affected by the presence of damage.

A.3 Wave propagation in a linear isotropic ma-
terial with isotropic damage

Keeping the previous isotropic material model, this part will take into account
the presence of isotropic damage, modeled here as a scalar field D(x) (noted D)
varying from 0 to 1. To do so, one has to work with the effective stiffness matrix
C which can be defined as

C̃ = λ̃ 1 ⊗ 1 + 2µ̃ 1 ⊗ 1 (A.20)
Cijkl = λ̃ δijδkl + µ (δikδjl + δilδjk) (A.21)

where λ̃ and µ̃ are the effective Lame coefficients defined as

λ̃ = λ (1−D), µ̃ = µ (1−D) (A.22)

which might depend on x, since D, λ and µ do.

In this case, following the same steps as for the undamaged material, the exis-
tence condition (A.10) writes

det
[
∇Sj C̃ijkl ∇Sk − ρc0

2 δil
]

= 0 (A.23)

⇔ det
[(
λ̃+ µ̃

)
(∇S ⊗∇S) −

(
ρc0

2 − µ̃‖∇S‖2
)
I
]

= 0 (A.24)

which gives the following conditions associated to the 2 eigenvalues of ∇S ⊗∇S:(
λ̃+ µ̃

)
‖∇S‖2 −

(
ρc0

2 − µ̃‖∇S‖2
)

= 0 (A.25)

ρc0
2 − µ̃‖∇S‖2 = 0 (A.26)



Keeping the previous definition of the associated wave speeds, and proceeding
as for the undamaged material, the conditions (A.25) and (A.26), corresponding
respectively to a pressure and a shear wave, can be unified through as

‖∇S‖ = 1√
1−D

(A.27)

One can note that this eikonal equation differs from the one associated to the
undamaged material (A.19), which is recovered in the particular case D = 0.

Based on this, one can conclude that the distance seen by a wave propagating
in a damaged material, characterized by S, is scaled by a factor 1/

√
1−D. As a

consequence, propagating across a distance dl in a damaged medium is equivalent
to propagating across dl̃ = dl/

√
1−D in an undamaged one.

This scaling of the effective distances, equivalent to the increase of optical
distance when light moves through different media, can be seen as a space curvature
induced by damage. The effective distance between two points can then be seen as
the shortest path between them in a spaced curve by a damage-dependent metric.

It is worth noting that, in this framework, the space curvature would have the
same properties as damage: it would depend on x while remaining isotropic.



Appendix B

Conditions for the occurrence of
snap-back instabilities
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Let us try to determine the condition for the occurrence of snap-back insta-
bilities when submitting a bar to tensile loading. To do so, one could consider
the case of a homogeneous bar of length L and section S, made of a material
whose behaviour corresponds to the local damage model described in Part 1.3.1
and writes

σ = E ε (B.1)
κ(t) = max

τ≤t
〈ε(τ)〉 (B.2)

D =


0 if κ < ε0

1− ε0

κ
exp

(
− κ− ε0

εf − ε0

)
if κ ≥ ε0

(B.3)

During the first, elastic, part of the tensile loading, one can consider imposing
a homogeneous strain with a linear evolution with respect to time

ε(t) = ξ0 t, ∀t ∈
[
0.; ε0

ξ0

]
(B.4)

where ξ0 is a given loading parameter, giving the homogeneous stress

σ(t) = E ε = E ξ0 t, ∀t ∈
[
0.; ε0

ξ0

]
(B.5)

During all this phase, the force and displacement and the end of the bar thus
write {

F (t) = S σ(t) = E S ξ0 t

U(t) = L ε(t) = L ξ0 t
, ∀t ∈

[
0.; ε0

ξ0

]
(B.6)

giving the time derivatives 
∂U

∂t
= L ξ0 ≥ 0.

∂F

∂t
= E S ξ0 ≥ 0.

(B.7)

which, along with the constant ratio F/U = ES/L, is consistent with a linear
elastic loading.

When t reaches ε0/ξ0, the strain will equal the damage threshold ε0 everywhere
in the bar, and the force at the end of the bar will be at its pic value σ0 = ESε0.
Any increase in the loading will then bring damage and strain localization in a
zone whose length is not fixed by the model.

Considering that, from this point, damage localizes in the part of the bar of
length l located at the middle of the bar, one would thus have

ε̇ ≥ 0., ∀x ∈
[
L− l

2 ; L+ l

2

]

ε̇ ≤ 0., ∀x ∈
[
0.; L− l2

]
∪
[
L+ l

2 ;L
] , ∀t > ε0

ξ0
(B.8)



From this point, a strain-based loading can still be used, giving in the localiza-
tion area

ε(t) = ξ0 t (B.9)
κ(t) = max

τ≤t
〈ε(τ)〉 = ξ0 t ≥ ε0 (B.10)

D(t) = g(κ) = 1− ε0

ξ0 t
exp

(
−ξ0 t− ε0

εf − ε0

)
(B.11)

σ(t) = (1−D)Eε = Eε0 exp
(
ε0 − ξ0 t

εf − ε0

)
(B.12)

and thus, in the rest of the bar which remains elastic

σ(t) = Eε0 exp
(
ε0 − ξ0 t

εf − ε0

)
(B.13)

ε(t) = σ

E
= ε0 exp

(
ε0 − ξ0 t

εf − ε0

)
< ε0 (B.14)

κ(t) = max
τ≤t
〈ε(τ)〉 = ε0 (B.15)

D(t) = 0. (B.16)

The force and displacement at the end of the bar will then be given by
U(t) =

∫ L

0
ε(x, t)dx = l ξ0 t+ (L− l) ε0 exp

(
ε0 − ξ0 t

εf − ε0

)

F (t) = S σ(t) = E S ε0 exp
(
ε0 − ξ0 t

εf − ε0

) , ∀t ≥ ε0

ξ0
(B.17)

giving the time derivatives
∂F

∂t
= −ξ0 E S ε0

εf − ε0
exp

(
ε0 − ξ0 t

εf − ε0

)
≤ 0.

∂U

∂t
= ξ0 l −

ξ0 (L− l) ε0

εf − ε0
exp

(
ε0 − ξ0 t

εf − ε0

) , ∀t ≥ ε0

ξ0
(B.18)

One can note that, while the time derivative of the force is always negative,
which is consistent with strain softening, the sign of the displacement’s time deriva-
tive depends on both time and material parameters.

The stable case of a response curve without snap-back corresponds to a posi-
tive time derivative of displacement, while the occurrence of a snap-back can be
characterized by the existence of a solution t ≥ ε0/ξ0 to the equation

∂U(t)
∂t

< 0. (B.19)

which is equivalent to

ξ0 l −
ξ0 (L− l) ε0

εf − ε0
exp

(
ε0 − ξ0 t

εf − ε0

)
< 0. (B.20)



⇔ l (εf − ε0)
(L− l) ε0

< exp
(
ε0 − ξ0 t

εf − ε0

)
(B.21)

⇔ ln
(
l (εf − ε0)
ε0(L− l)

)
<
ε0 − ξ0 t

εf − ε0
(B.22)

⇔ t <
ε0

ξ0

[
1.− εf − ε0

ε0
ln
(
l (εf − ε0)
ε0(L− l)

)]
(B.23)

For this equation to have a solution t ≥ ε0/ξ0, one needs to have

−εf − ε0

ε0
ln
(
l (εf − ε0)
ε0(L− l)

)
> 0. (B.24)

⇔ ln
(
l (εf − ε0)
ε0(L− l)

)
< 0. (B.25)

⇔ l (εf − ε0)
ε0(L− l) < 1. (B.26)

One can thus conclude that snap-back instabilities will occur if

l

L
<
ε0

εf
(B.27)

and that they are a structure effect linked to both the damage rate and the relative
importance of the localization area.
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Discretization and linearization of
the variational formulations
associated to eikonal-based
gradient-type damage and
damage-plastic models.
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C.1 Variational formulations associated to the
considered nonlocal damage models

In order to implement a given formulation in a finite element code such as
OOFEM, one first needs to derive the weak form associated to it. This part will
thus present the variational formulations associated to the nonlocal isotropic dam-
age and damage-plastic models presented in Part 3.1, using the general gradient-
type formulation (1.29).

While the weak form associated to gradient-type formulations with both fixed
[Peerlings et al., 1996, Peerlings et al., 1998] and evolving [Geers et al., 1998,
Saroukhani et al., 2013] internal lengths are rather classical, the innovative aspect
of this part comes from the use of a function a 6= 1.

C.1.1 Pure isotropic damage model
Starting with the pure isotropic damage model, one will first determine the

classical weak forms associated to the equilibrium, before moving on to the general
gradient-type formulation.

Equilibrium

As pointed out Chapter 1, the equilibrium writes, in the absence of body forces,

∇ · σ = 0 (C.1)

which can be expected to be associated to the classical boundary condition

σ · n = T , in ∂Ω (C.2)

where T is the external forces’ vector, and σ is defined using (4.1) as σ = C̃ : ε.

Considering a virtual displacement field u∗, one gets∫
Ω

(
∇ ·

(
C̃ : ε

))
· u∗ dV = 0 , ∀ u∗ (C.3)

which, after an integration by parts gives∫
∂Ω
u∗ ·

(
C̃ : ε

)
· n dS −

∫
Ω

(∇ · u∗) : C̃ : ε dV = 0 , ∀ u∗ (C.4)

In the end, using both the stress-strain law and boundary condition, this can
be written as a classical weak form

ae(u,u∗) = le(u∗) , ∀ u∗ (C.5)

where ae is a bi-linear and symmetric form defined as

ae : (u,u∗) 7→
∫

Ω
∇ · u∗ : C̃ : ∇ · u dV (C.6)

and le a linear form defined as

le : u∗ 7→
∫
∂Ω
u∗ · T dS (C.7)



General gradient-type formulation

Then, one needs to obtain the weak form associated to the general gradient-type
formulation (4.5) which writes here

ε̄− a ∇ · (b ∇ ε̄) = ε̂ (C.8)

where a and b are given non-negative functions, function ε̂ is here considered as
given, and function ε̄ is the primary unknown. In this case, for lack of a better
option, it can be expected that (C.8) is combined with the homogeneous Neumann
boundary condition:

(∇ ε̄) · n = 0 , in ∂Ω (C.9)

Starting from (C.8), and considering a virtual nonlocal strain field ε̄∗, one gets:∫
Ω
ε̄ ε̄∗ dV −

∫
Ω
a ∇ · (b (∇ ε̄)) ε̄∗ dV =

∫
Ω
ε̂ ε̄∗ dV , ∀ ε̄∗ (C.10)

which, after an integration by parts, gives∫
Ω
ε̄ ε̄∗ dV −

∫
∂Ω
a b ε̄∗ (∇ ε̄) · n dS

+
∫

Ω
(∇ (a ε̄∗)) · (b (∇ ε̄)) dV =

∫
Ω
ε̂ ε̄∗ dV , ∀ ε̄∗

(C.11)

Using the boundary condition (C.9), this can be written as∫
Ω

(ε̄ ε̄∗ + b ε̄∗ (∇ a) · (∇ ε̄) + a b (∇ ε̄) · (∇ ε̄∗)) dV =
∫

Ω
ε̂ ε̄∗ dV , ∀ ε̄∗(C.12)

It is worth noting that the term b ε̄∗ (∇ a) ·(∇ ε̄) in the weak form (C.12) would
induce numerical difficulties linked to the computation of the gradient of a. This
issue, also observed in [Saroukhani et al., 2013], can be addressed by dividing the
gradient equation by the evolving internal length.

Starting again from (C.8) and dividing it by a, one gets:

ε̄

a
−∇ · (b (∇ ε̄)) = ε̂

a
(C.13)

⇔
∫

Ω

ε̄

a
ε̄∗ dV −

∫
Ω
∇ · (b (∇ ε̄)) ε̄∗dV =

∫
Ω

ε̂

a
ε̄∗ dV , ∀ ε̄∗ (C.14)

which, after an integration by parts, gives∫
Ω

ε̄ ε̄∗

a
dV −

∫
∂Ω
b ε̄∗ (∇ ε̄) · n dS

+
∫

Ω
b (∇ ε̄) · (∇ ε̄∗) dV =

∫
Ω

ε̂

a
ε̄∗ dV , ∀ ε̄∗

(C.15)

In the end, using the Neumann boundary condition (C.9), the weak form can
be written as∫

Ω

(
ε̄ ε̄∗

a
+ b (∇ ε̄) · (∇ ε̄∗)

)
dV =

∫
Ω

ε̂

a
ε̄∗ dV , ∀ ε̄∗ (C.16)

which remains true so long as a is not equal to 0.



Besides, as far as the classical gradient-type formulation is concerned, its weak
form can be obtained by setting a = 1 and b = c2, giving∫

Ω

(
ε̄ ε̄∗ + c2 (∇ ε̄) · (∇ ε̄∗)

)
dV =

∫
Ω
ε̂ ε̄∗ dV , ∀ ε̄∗ (C.17)

C.1.2 Isotropic damage-plastic models
As far as the damage-plastic model is concerned, one will, as for the pure damage

model, study the weak forms associated to the equilibrium, before moving on to
the general gradient-type formulation.

Equilibrium

As before, the equilibrium ∇ · σ = 0 can still be expected to be associated
to the classical boundary condition (C.2), σ being now defined using (4.9) as
σ = C̃ : (ε− εp), and the plastic strain tensor εp being considered given here.

Considering a virtual displacement field u∗, one gets∫
Ω

(
∇ ·

[
C̃ : (ε− εp)

])
· u∗ dV =

∫
Ω

0 · u∗ dV , ∀ u∗ (C.18)

which, following the same steps as before, can be written as a weak form

ae(u,u∗) = le(u∗) , ∀ u∗ (C.19)

where ae is a bi-linear and symmetric form defined as

ae : (u,u∗) 7→
∫

Ω
∇ · u∗ : C̃ : ∇ · u dV (C.20)

and le a linear form defined as

le : u∗ 7→
∫

Ω
(∇ · u∗) : C̃ : εp dV +

∫
∂Ω
u∗ · T dS (C.21)

General gradient-type formulation

Then, one needs to obtain the weak form of the general gradient-type formulation
(4.18) which writes here

p̄− a ∇ · (b ∇ p̄) = p (C.22)

where a and b are given non-negative functions, function p is still considered as
given, and function p̄ is still the primary unknown. As for the previous gradient-
type equations, this one can be expected to be combined with the homogeneous
Neumann boundary condition:

(∇ p̄) · n = 0 , in ∂Ω (C.23)



Moreover, as for the pure damage model, one should here start by dividing
the gradient equation by a to avoid numerical difficulties. Starting from equation
(C.22), and considering a virtual nonlocal strain field p̄∗, one would get∫

Ω

p̄

a
p̄∗ dV −

∫
Ω
∇ · (b (∇ p̄)) p̄∗dV =

∫
Ω

p

a
p̄∗ dV , ∀ p̄∗ (C.24)

Following the same steps as for the pure damage model, this weak form can be
written as ∫

Ω

(
p̄ p̄∗

a
+ b (∇ p̄) · (∇ p̄∗)

)
dV =

∫
Ω

p

a
p̄∗ dV , ∀ p̄∗ (C.25)

which is true as long as a is not equal to 0.

Regarding the weak form associated to the classical formulation, it can be ob-
tained by setting a = 1 and b = c2, giving∫

Ω

(
p̄ p̄∗ + c2 (∇ p̄) · (∇ p̄∗)

)
dV =

∫
Ω
p p̄∗ dV , ∀ p̄∗ (C.26)

C.2 Discretization of the considered formulations
At this point, to handle their numerical implementation, one needs to handle the

spatial discretization of each equation associated to the considered formulations
before linearizing them. This will be done using the notations defined in Part
4.2.1.

C.2.1 Framework and general notations
Following the notations introduced in section 4.2.1, this part will present those

used to handle the spatial discretization of the different equations. The following
notations will be used for the main degree of freedom, associated to displacement:

• [NU ] will denote the matrix containing the shape functions for u

• [BU ] will denote the matrix containing the shape functions’ gradient for u

• {U} will denote the vector containing the solution displacement’s projections

• {U∗} will denote the vector containing the virtual displacement’s projections

and for the degree of freedom associated to the nonlocal variable:

• [N E ] will denote the matrix containing the shape functions

• [BE ] will denote the matrix containing the shape functions’ gradient

• {E} will denote the vector containing the solution nonlocal equivalent or
cumulative plastic strain’s projections

• {E∗} will denote the vector containing the virtual nonlocal equivalent or
cumulative plastic strain’s projections



The terms linked to both the solution and virtual displacement can then be
expressed from {U}, {U∗}, [NU ] and [BU ] as described in Table C.1.

u ∇ · u u∗ ∇ · u∗

[NU ]{U} [BU ]{U} [NU ]{U∗} [BU ]{U∗}

Table C.1: Expression of the terms linked to displacement

In a similar fashion, the expression of the terms linked to both the solution
and virtual nonlocal equivalent strain are detailed in Table C.2, while Table C.3
contains those linked to the solution and virtual nonlocal cumulative plastic strain.

ε̄ ∇ ε̄ ε̄∗ ∇ ε̄∗

[N E ]{E} [BE ]{E} [N E ]{E∗} [BE ]{E∗}

Table C.2: Expression of the terms linked to nonlocal equivalent strain

p̄ ∇ p̄ p̄∗ ∇ p̄∗

[N E ]{E} [BE ]{E} [N E ]{E∗} [BE ]{E∗}

Table C.3: Expression of the terms linked to nonlocal cumulative plastic strain

The expressions detailed in this section will now be used to determine the
discretized expression of the formulations studied in this chapter.

C.2.2 Isotropic damage model
This part will deal with the discretization of the equations associated the nonocal

isotropic damage model, namely the equilibrium and the general gradient-type
equation. As before, the innovative aspect of this work mainly comes from the use
of a state-dependent function b in addition to the evolving internal length a in the
general gradient-type formulation.

Equilibrium

The first equation that needs to be discretized is the equilibrium (C.1). Starting
from its weak form (C.5) one gets∫

Ω
([BU ]{U∗})t : C̃ : ([BU ]{U}) dV =

∫
∂Ω

([NU ]{U∗})t · T dS , ∀ U∗ (C.27)

which can be written under the classical form

KU {U} = {FU} (C.28)

where KU and {FU} are defined as

KU =
∫

Ω
[BU ]t : C̃ : [BU ] dV (C.29)



{FU} =
∫
∂Ω

[NU ]t · [NU ] dS (C.30)

It is worth noting that, in the case of a local formulation, this equation would
be nonlinear since K would depend on D which depends on U . On the other hand,
in the case of a nonlocal formulation, this equation would be linear in terms of U ,
but then KU would depend on {E}, making the set of equations (equilibrium and
nonlocal) nonlinear.

General gradient-type formulation

The next equation that needs to be discretized is the general gradient formula-
tion (C.8). Starting from its weak form (C.16), one can write

∫
Ω

(
([N E ]{E∗})t ([N E ]{E})

a
+ b([BE ]{E∗})t ([BE ]{E})

)
dV

=
∫

Ω

([N E ]{E∗})t ε̂
a

dV , ∀ E∗
(C.31)

which can be written under the classical form

KE {E} = {FE} (C.32)

where KE and {FE} are defined as

KE =
∫

Ω

(
[N E ]t[N E ]

a
+ b[BE ]t[BE ]

)
dV (C.33)

{FE} =
∫

Ω

[N E ]tε̂
a

dV (C.34)

It is worth noting that, since a is a function and not a constant, the problem
might not be linear in terms of E if KE depends on {E}. Either way, the non-
local problem is not linear with respect to U , and the complete set of equation
(equilibrium and nonlocal) is nonlinear in terms of both U and E .

As for the weak form, the discretized form associated to the classical gradient-
type formulation can be obtained by setting a = 1 and b = c2, giving

KE =
∫

Ω

(
[N E ]t[N E ] + c2[BE ]t[BE ]

)
dV (C.35)

{FE} =
∫

Ω
[N E ]tε̂ dV (C.36)

C.2.3 Isotropic damage-plastic models
After dealing with the discretization of the equations associated the nonlocal

isotropic damage model, this part will focus on those associated to the nonlocal
isotropic damage-plastic model. The discretization of both the equilibrium will
first be presented, before moving to the general gradient-type formulation.



Equilibrium

As for the pure damage model, the first equation that needs to be discretized is
the equilibrium (C.1). Starting from its weak form (C.19), one gets∫

Ω
([BU ]{U∗})t : C̃ : ([BU ]{U}) dV

=
∫

Ω
([BU ]{U∗})t : C̃ : εp dV +

∫
∂Ω

([NU ]{U∗})t · T dS , ∀ U∗
(C.37)

which can be written under the classical form

KU {U} = {FU} (C.38)

where KU and {FU} are defined as

KU =
∫

Ω
[BU ]t : C̃ : [BU ] dV (C.39)

{FU} =
∫

Ω
[BU ]t : C̃ : εp dV +

∫
∂Ω

[NU ]t · T dS (C.40)

It is worth noting that, here, one considers εp as given, which means that
plasticity will require an additional iterative resolution. In this case, as for the
pure damage model, this equation would be linear in terms of U in the case of a
nonlocal formulation, and nonlinear in the case of a local one. Moreover, since KU
depends on {E} through damage evolution law, the set of equations (equilibrium
and nonlocal) will still be nonlinear.

General gradient-type formulation

After the equilibrium, one needs to handle the discretization of the general
gradient formulation (C.22) which constitutes the innovative part of this work.
Starting with its weak form (C.25), one can write∫

Ω

(
([N E ]{E∗})t ([N E ]{E})

a
+ b([BE ]{E∗})t ([BE ]{E})

)
dV

=
∫

Ω

([N E ]{E∗})t p
a

dV , ∀ E∗
(C.41)

which can be written as a classical problem:

KE {E} = {FE} (C.42)

where KE and {FE} are defined as

KE =
∫

Ω

(
[N E ]t[N E ]

a
+ b[BE ]t[BE ]

)
dV (C.43)

{FE} =
∫

Ω

[N E ]tp
a

dV (C.44)

As for the nonlocal formulation with fixed internal length, {E} still denote the
cumulative plastic strain p. It is worth noting that the nonlocal equation might



still be nonlinear in terms of E if KE depends on {E} through the function a.
Moreover, as before, the complete set of equation is nonlinear in terms of both U
and E .

As before, the discretized form associated to the classical gradient-type formu-
lation can be obtained by setting a = 1 and b = c2, giving

KE =
∫

Ω

(
[N E ]t[N E ] + c2[BE ]t[BE ]

)
dV (C.45)

{FE} =
(∫

Ω
[N E ]t p dV

)
(C.46)

C.3 Linearization of the considered formulations
Finally, before moving on to the numerical implementation, one needs to lin-

earize the equations associated to the considered formulations in order to imple-
ment them. After defining the associated notations, this part will thus present the
ingredients needed to implement the considered nonlocal formulations in OOFEM,
and to solve the associated coupled nonlinear problems using Newton-like algo-
rithms.

C.3.1 General idea and notations
Now that the discretized forms of both the equilibrium ((C.28), (C.38)) and

gradient-type ((C.32), (C.42)) equation have been determined, one now needs to
handle their linarization. The idea here is to determine the internal forces ΦU and
ΦE , associated respectively to the equilibrium and nonlocal equations, defined as

KU {U} = {FU} ⇔
∫

Ω
ΦU dV =

∫
∂Ω

[NU ]t · T dS (C.47)

KE {E} = {FE} ⇔
∫

Ω
ΦE dV = 0 (C.48)

Their derivatives,
∂ΦU
∂U

,
∂ΦU
∂E

,
∂ΦE
∂U

and
∂ΦE
∂E

, will also be determined here since
they will be needed to compute the tangent operators.

It is worth noting that, since the general gradient-type formulation will mainly
be used to handle the eikonal-based gradient-type formulations, functions a and b
will here be taken as damage-dependent.

C.3.2 Isotropic damage model
This part will present the linearization of the equilibrium and gradient-type equa-

tions associated to he nonlocal isotropic damage model. This will give some insight
on how the equilibrium and the classical gradient are implemented in OOFEM,
which will prepare the implementation of the general gradient.



Equilibrium

First one needs to linearize the equilibrium (C.1). Starting from its discretized
form (C.28), one gets∫

Ω
[BU ]t : C̃ : ∇u dV =

∫
∂Ω

[NU ]t · T dS (C.49)

which is equivalent to the right hand side of (C.47), where ΦU would write

ΦU = [BU ]t : (1−D)C : ∇u (C.50)

The derivative of ΦU with respect to the displacement degree of freedom can
then be defined as

∂ΦU
∂U

= [BU ]t : (1−D)C : [BU ] (C.51)

while its with respect to the nonlocal one is given by
∂ΦU
∂E

= [BU ]t (−D′(κ) κ′(ε̄) C ∇u) [N E ] (C.52)

It is worth noting that these derivatives are only relevant for nonlocal formula-
tions, but they do not depend on the regularization method, so long as the nonlocal
variable is the equivalent strain.

General gradient-type formulation

One then needs to address the linearization of the general gradient-type formu-
lation (C.8). Starting from its discretized form (C.32), one can write∫

Ω

(
[N E ]t ε̄

a
+ [BE ]t b ∇ε̄

)
dV =

∫
Ω

[N E ]t
1
a
ε̂ dV (C.53)

which is equivalent to the right hand side of (C.48), where ΦE would be defined as

ΦE = [N E ]t
1
a

(ε̄− ε̂) + [BE ]t b ∇ε̄ (C.54)

One thus gets for the derivative of ΦE with respect to the displacement degree
of freedom

∂ΦE
∂U

= [N E ]t
(
−1
a

∂ε̂

∂ε

)
[BU ] (C.55)

It is worth noting that, except in the 1D case where

∂ε̂

∂ε
=
〈ε〉+
ε̂

(C.56)

∂ε̂/∂ε should be a row matrix.
In a similar fashion, taking into account the dependence of a and b with respect

to ε̄, one gets for the derivative of ΦE with respect to the nonlocal degree of freedom
∂ΦE
∂E

= [N E ]t
(1
a

+ 1
a2 a

′(D) D′(κ) κ′(ε̄) (ε̂− ε̄)
)

[N E ]

+ [BE ]t b [BE ] + [BE ]t
(
b′(D) D′(κ) κ′(ε̄) ∇ε̄

)
[N E ]

(C.57)



It is worth noting that the terms associated to the classical gradient-type for-
mulation can again be obtained by setting a = 1 and b = c2, giving

ΦE = [N E ]t (ε̄− ε̂) + [BE ]t c2 ∇ε̄ (C.58)
∂ΦE
∂U

= [N E ]t
(
−∂ε̂
∂ε

)
[BU ] (C.59)

∂ΦE
∂E

= [N E ]t [N E ] + [BE ]t c2 [BE ] (C.60)

C.3.3 Isotropic damage-plastic models
Following what was done for the pure damage model, this part will present the

linearization of the equilibrium and gradient-type equations associated to he nonlo-
cal isotropic damage-plastic model. Again, the work done on both the equilibrium
and the nonlocal treatment with fixed internal length will help understand the way
those equations are implemented in OOFEM, which will prepare the implementa-
tion of the general gradient-type equation.

Equilibrium

As for the pure damage model, one needs to begin with the linearization of
the equilibrium equation (C.1). Starting with the discretized form (C.38) one can
write ∫

Ω

(
[BU ]t : C̃ : ∇u− [BU ]t : C̃ : εp

)
dV =

∫
∂Ω

[NU ]t · T dS (C.61)

which is equivalent to the right hand side of (C.47) where ΦU would be defined as

ΦU = [BU ]t : (1−D)C : (ε− εp) (C.62)

As for the pure damage model, the derivative of ΦU with respect to the displace-
ment degree of freedom can be defined as

∂ΦU
∂U

=[BU ]t (1−D) C [BU ]

− [BU ]t D′(κ) (1−m) p′(ε) C : (ε− εp) [BU ]
(C.63)

It is worth noting that, here, p′(ε) stands for the numerical derivative of the return
mapping algorithm, used to handle plastic evolution.

In a similar fashion, the derivative of ΦU with respect to the nonlocal degree
of freedom writes

∂ΦU
∂E

= [BU ]t (−D′(κ) m C : (ε− εp)) [N E ] (C.64)

As before, one can note that these derivatives are only relevant for nonlocal
formulations, and they do not depend on the regularization method so long as the
nonlocal variable is the equivalent strain.



General gradient-type formulation

Finally, one needs to address the linearization of the general gradient formula-
tion (C.22) which constitutes the innovative part of this work. Starting from its
discretized form (C.42), one can write:

∫
Ω

(
[N E ]t p̄

a
+ [BE ]t b ∇p̄

)
dV =

∫
Ω

[N E ]tp
a

dV (C.65)

which is equivalent to the right hand side of (C.48), provided ΦE is defined as

ΦE = [N E ]t
1
a

(p̄− p) + [BE ]t b ∇p̄ (C.66)

Its derivative with respect to the displacement degree of freedom then writes

∂ΦE
∂U

=[N E ]t
(
−p
′(ε)
a

+ p− p̄
a2 a′(D) D′(κ) (1−m) p′(ε)

)
[BU ]

+ [BE ]t
(
b′(D) D′(κ) (1−m) ∇p̄⊗ p′(ε)

)
[BU ]

(C.67)

where p′(ε) still stands for the numerical derivative of the return mapping algo-
rithm.

In a similar fashion, taking into account the dependence of a and b with respect
to p̄, the derivative of ΦE with respect to the nonlocal degree of freedom writes

∂ΦE
∂E

= [N E ]t
(1
a

+ 1
a2 a

′(D) D′(κ) m (p− p̄)
)

[N E ]

+[BE ]t (∇p̄ b′(D) D′(κ) m) [N E ] + [BE ]t (b) [BE ]
(C.68)

As for the pure damage model, the terms associated to the classical gradient-type
formulation can again be obtained by setting a = 1 and b = c2, giving

ΦE = [N E ]t (p̄− p) + [BE ]t c2 ∇p̄ (C.69)
∂ΦE
∂U

= [N E ]t
(
−p′(ε)

)
[BU ] (C.70)

∂ΦE
∂E

= [N E ]t [N E ] + [BE ]t c2 [BE ] (C.71)
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