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Special thanks to the French Government-Eiffel Fellowship and the Centre National pour la Recherche Scientifique et Technique (CNRST)-Maroc for their financial support. I address my gratitude, thanks, and affection to my family, who have always been by my side since day one. Without their support, nothing would be possible. My work, contributions, and success are dedicated to them. Special thanks to my friends who have always been by my side. According to the situation, geographical location, traditional and historical backgrounds, the form, rules, and style of handwriting change. While the learning process begins with copying forms from the standard "copybook" (see Figure. 1.1), over time, each individual develops his or her own handwriting style as a skill of personal preference in drawing character shapes or combining them. A person will not produce exactly the same writing style twice. It is even impossible or rare for two individuals to have the same writing style. This variation is called interclass variance when it comes to dissimilarities between two texts produced by two individuals. The handwriting was an essential part of communication until the end of the twentieth century. Thus, there is a significant historical stock of handwriting that is the subject of research in many ways. Besides, the mass of handwritten documents continues to grow daily, and more and more industries and services require rapid processing techniques while ensuring the security of these documents. Machines equipped with a handwriting analysis system have been set up to meet the needs of these industries. Handwriting analysis is a challenging research area of pattern recognition that has attracted much attention for psychologists, graphologists, forensic scientists, and historians in recent decades. A system based on handwriting analysis applies the principles of artificial intelligence, more specifically, machine learning or deep learning. The goal is to equip computers to learn to recognize the shape and features of a character, word, or phrase In general, most of the approaches reported for handwriting analysis have focused on converting handwritten texts into uniform representations that are machineunderstandable and easily reproducible. This field has become an important area of research with many scientific/technical locks and application challenges/potentials. The goal is to propose new concepts and reliable solutions for handwriting analysis and develop effective recognition systems that can be applied to different writing styles.

Research in the field of handwriting analysis has many applications in modern life. It covers, in full extension, a wide range of applications. One can cite online/offline verification of handwritten signatures [START_REF] Frias-Martinez | Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition[END_REF]), handwritten musical scores for writer identification [START_REF] Forn És | Writer Identification in Old Handwritten Music Scores[END_REF]), online/offline writer identification (Chahi et al. (2020b); Abdi and Khemakhem (2015); [START_REF] Chahi | Block wise local binary count for off-Line text-independent writer identification[END_REF]), classification of ancient documents (Arabadjis et al. (2013)), and smart meeting rooms for writer identification. It also finds application in the writer's gender, age range, and handedness [START_REF] Liwicki | Writer Identification for Smart Meeting Room Systems[END_REF]), forensic to identify the responsible behind fraudulent/threatening letters, ransom notes, and business agreements (Franke and K öppen (2001)). With the development of information security, handwriting is used as a biometric feature useful as a forensic tool for identity verification, validation, and authentication. It is a practical means of identification and has great significance in authenticating authorship of questionable documents, identifying forgeries, detecting alterations, verifying legal documents and cheques, or analyzing indented writings and historical documents.

From the perspective of graphology, handwriting is used to characterize personality traits to capture a person's attitudes, behaviors, and emotions. Therefore, handwriting is also referred to as brain writing because the manipulation of writing is done by the command of the brain, which is delegated to the nervous system, hand, arm and fingers. Thus, handwriting reflects mood swings and characterizes the writer's state of mind at that moment. Nowadays, there are handwriting tests that distinguish between certain medical disorders. These include shaking palsy, and Parkinson's disease ( Ünl ü et al. (2006)), or hardening of the arteries that supply the brain and those that supply the heart. Handwriting analysis can distinguish between those who suffer from arthritis and those who suffer from hypertension (Amend and Ruiz (2000)).

In summary, we believe that there is a great need for automatic methods to assist handwriting analysts, forensic experts, and scientists in their tasks and research, especially when dealing with large amounts of data. Computational algorithms for handwriting analysis facilitate the search space when comparing and matching questioned handwriting samples and extract useful information from the writing.

1.1.1/ CHALLENGES IN HANDWRITING ANALYSIS

The handwriting analysis is a challenging task because of its high contextual variation with different properties and handwriting form characteristics. "Handwriting is a complex motor skill that combines sensory, neurological, and physiological impulses. Factors such as visual perception and acuity, form comprehension, central nervous system pathways, and the anatomy and physiology of the bones and muscles of the hand and arm interact to produce the desired output." [START_REF] Harrison | Handwriting examination: Meeting the challenges of science and the law[END_REF]). Three factors cause variability in handwriting: biological, cultural, and interior factors.

1.1.1.1/ BIOLOGICAL AND CULTURAL FACTORS

Two fundamental factors contribute to the individuality of writing: genetic (biological or natural) and cultural (memetic). Several genetic factors influence handwriting and contribute to its uniqueness. First and foremost is the biomechanical structure of the hand (Bulacu (2007)): left-or right-handedness [START_REF] Francks | Confirmatory evidence for linkage of relative hand skill to 2p12-q11[END_REF]), the corresponding sizes of the wrist and finger carpal bones, which strongly influence the pencil grip. Also, there are muscle strength, fatigability, peripheral motor dysfunction (Bulacu (2007)), and central nervous system (CNS) characteristics that affect fine motor control and influence handwriting (Van Galen et al. (1993)). Parkinson's disease, for example, impairs fine motor control, resulting in very shaky handwriting movements.

Cultural factors in handwriting biometrics are the culturally mediated influences on writing forms (allographic variation). Handwriting variability within a population is strongly influenced by the writing techniques taught in school and other factors such as geographic location and time, religion, types of schools, and learning the handwriting of others while imitating the writing style of parents (Bulacu (2007)).

The conclusion of whether the genetic factor or the cultural factor is the main factor has been investigated in several studies. [START_REF] Srihari | Development of individuality in children's handwriting[END_REF] showed that children's writing skills increase with continuous learning, time, and practice. They stop copying texts and instead start writing from memory. At this point, children begin to develop their writing style. Besides, the school in which the children learned to write could be identified [START_REF] Srihari | Studies in Individuality: Can Students, Teachers and Schools Be Determined from Children's Handwriting?[END_REF]). Assuming that the genetic factor is the most dominant, the handwriting of the twins cannot be distinguished. Nevertheless, the opposite is true: even in identical twins, it was possible to determine their handwriting [START_REF] Srihari | On the discriminability of the handwriting of twins[END_REF]).

1.1.1.2/ INTERIOR FACTORS

Several conscious and unconscious factors determine the handwriting variability [START_REF] Schomaker | Forensic writer identification: A benchmark data set and a comparison of two systems [internal report for the Netherlands Forensic Institute[END_REF]):

• Affine transforms: Scale, rotation, shear, and translation are transformations controlled consciously by the writer. In particular, slant (shear) is a common parameter determined by the pen grip and the wrist subsystem's orientation relative to the fingers (see Figure 1.2 (a)).

• Neurobio-mechanical variability: Handwriting is too sensitive to high intraclass variability depending on the state of the writer (mood, time, and effort). Figure 1.2 (b) shows different handwritings of the same word produced by the same scribe. This variation is technically known as neuro bio-mechanical variation, which is more related to system state than system identity.

• Sequence variability: As shown in Figure. 1.2 (c), characters can be reproduced with different stroke sequences. This may have implications for handwriting analysis using temporal data. This factor is also dependent on the instantaneous system state during the writing process and is interpreted by the sequencing variability.

• Allographic variation: As shown in Figure 1. 2 (d), allographic variation refers to the inter-class variability between writers, considered as a discriminative information for the writer identification task. However, it causes most of the problems in automatic script recognition. While there are many approaches to Latin handwriting analysis, this is no less the case with specific languages such as Chinese, Arabic, Hindu languages, etc. For example, very few works have dealt with the Arabic language. It has its characteristics and writing features which pose some difficulties to the existing systems. Arabic writing uses threeletter roots, with vowels not always written. This makes the reconstruction of handwritten words a difficult task. Moreover, every Arabic word is accompanied by diacritical marks.
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Therefore, these characters may be automatically removed when using segmentation techniques in the pre-processing phase, affecting the system performance in characterizing the writing variability. Moreover, the same Arabic character may be written in different shapes depending on its position within the word or syllable, and it is visually written obliquely on the line rather than vertically as in most other languages. These various challenges further complicate handwriting analysis, as there are a variety of problems that need to be solved.

1.1.2/ DEFINITIONS

To investigate these challenges and develop a suitable, reliable, yet effective approach based on handwriting analysis, we need to define:

• The type of available data (How is the data collected and acquired ?)

• The writing content (how is the handwritten text present in the database ? Is it always the exact text ?)

• For what task is the eventual handwriting-based system to be used?

Based on these questions, handwriting analysis systems can be categorized into different groups: online or offline data, text-independent vs. text-dependent, as described below.

1.1.2.1/ ON-LINE VS. OFF-LINE DATA

On-line handwriting analysis systems use temporal and spatial characteristics of the writing captured through digitizing acquisition devices at the writing's real-time (e.g., Anoto pen). These characteristics are transmitted to computers for analysis using a particular transducer device, i.e., converting dynamic writing movements (see Figure 1.3) such as strokes, trajectory, height, speed, writing time, and pen pressure, etc., into a sequence of signals processed by computers. Handwriting analysis based on on-line data is expected to perform better than offline data as many significant features of writing are available during data acquisition. However, offline approach-based handwriting analysis remains a challenging and complex research topic. It can be defined as a static process that typically uses digitized handwritten images as input samples (which present allographic and textural variation). Off-line data can be derived relatively well from the image pattern of the writing. Thus, the image of the handwriting contains pattern features that are needed to characterize the handwriting style. To capture these features, various image processing and segmentation methods can be used. Research on handwriting analysis using offline data has focused on the pattern recognition and computer vision community in recent decades. This is mainly due to its practical applications in security verification, behavioral biometrics, forensic document examination, and ancient document analysis.

1.1.2.2/ TEXT-DEPENDENT VS. TEXT-INDEPENDENT METHODS

Depending on how the writing content is present in the database, handwriting analysis systems can be further divided into two main types: text-dependent and text-independent.

Text-dependent methods deal with the textual content of the writing, asking different scribes to produce the same fixed handwritten texts (e.g., signature verification). In general, these methods are not applicable in many practical cases due to their limitation to textual content (e.g., historical document analysis, forensic and identity verification).

In contrast, the text-independent method has no condition or restriction on the textual content, and any text can be analyzed and evaluated. It addresses the variation of the image writing texture with arbitrary texts and different character shapes, making the study of this mode more challenging.

1.1.2.3/ WRITER RECOGNITION

Relevant tasks for handwriting analysis are writer identification, verification, and retrieval.

Writer recognition is the most general term that combines identification, retrieval, and verification. The current thesis does not focus on what is written. Instead, we study the problem of writer recognition, more specifically, writer identification and retrieval using offline data, in a text-independent manner.

For writer identification, the system works on the basic principle of the "one-to-many" search technique within a large handwritten database. It uses multi-class ranking, where the output is a predicted list, sorted by class, of writers whose writing style matches that of the query sample. Identifying a person by their handwriting or signature is a form of behavioral biometric recognition. Thus, handwriting-based writer identification is considered as an important area of research that is valuable as a forensic tool for identity verification, validation, and authentication. For writer retrieval, the system searches and retrieves all document samples produced by a particular writer within an extensive database according to the similarity of handwritings (see Figure 1.4). As shown in Figure 1.5, Writer verification systems only compare and match a query handwriting sample with another sample. It answers whether two query handwriting samples are from the same person or not (e.g. signature verification).

Writer identification, verification, and retrieval rely on pattern recognition and machine learning techniques to characterize the writing variability. Note that in the remainder of this thesis, we follow the published vocabulary of this field and refer to writer identification for both identification and retrieval. This is because writer identification and retrieval can be mapped to the same process by ranking the most similar reference samples to the query one.

1.2/ WRITER IDENTIFICATION: MOTIVATIONS AND OBJECTIVES

A person's writing is often recognizable, like faces or fingerprints. This feature attracts interest and presents a challenge for researchers to explore this area. It is an essential part of forensic document understanding and pattern recognition. This work addresses the problem of text-independent writer identification using handwriting images (off-line data).

The motivation of this work stems from the need to improve behavioral biometric tasks, which have been mainly used for writer identification, to enhance security and forensic applications in today's world. This can be achieved by developing near real-time, effective, and robust systems based on machine learning approaches. Some advantages and reasons sustain the ongoing study of handwriting patterns for writer identification. From the application point of view, one of the main advantages of handwriting-based writer identification is that it minimizes human intervention. Thus, the oldest techniques used by forensic examiners are tedious. With the advent of computerized handwriting analysis systems, writer identification is improved, and the search space for comparing, matching, and identifying the authenticity of unknown documents is reduced. Another important need for writer identification arises from the field of security and biometric verification. This refers to the potential use of handwritten words or small phrases to enhance realworld security applications in mobile and internet-based environments. To investigate Handwriting sample 1

Writer verification system

Handwriting sample 2 the task of writer identification, established benchmarks described in the literature are used to evaluate algorithms for writer identification. These databases contain extensive handwriting data with different scripts and languages.

System decision SAME or DIFFERENT writers

Writer identification is a challenging task that has been considered in several application fields, ranging from preprocessing of handwriting images to biometric measurement and classical handwriting classification methods. The present work contributes to the solution of numerous challenges that arise in these different stages. Writer identification systems face several challenges, mainly due to (i) the diversity of languages used worldwide. Each language has its own character form with different and complex writing styles;

(ii) the variability of writing (cf. Section 1.1.1) and degraded documents with noise background and accidental writing traces; (iii) the collection and reorganization of handwritten databases is a difficult task. The goal is to develop efficient, real-time, robust, and generic approaches to correctly handle the identification task's writing style. Computational algorithms facilitate writer identification by assisting scribe analysts and forensic experts in reducing the search space to compare and match specific handwritten patterns within an extensive reference database.

Addressing these challenging problems raises some important research issues in computer vision: (1) How can we characterize the writing variability using automatic methods?

(2) What kind of feature representations are most appropriate, and how can we combine them? (3) How can we exploit the feature representation of writing to identify its writer? ( 4) What performance and results can be achieved with these algorithms?

Our research aims to develop an effective and state-of-the-art writer identification system by exploiting theoretical and technical advances in image analysis and artificial intelligence. Our contributions concern all the main steps of an automatic system for identifying writers from handwriting:

• Image preprocessing step to reduce noise and unwanted details in scanned handwriting images.

• Segmentation of the preprocessed image into entities (words, characters, connected components, etc.) reduces the complexity of the subsequent processing modules.

• Feature extraction. It consists in defining, from the representation of the image, a synthetic description of the shape to be recognized in a space with multiple dimensions. In this work, texture descriptors and deep learning methods are proposed to characterize the variability of the writing. A dimensionality reduction step would be necessary to reduce the computational cost of the recognition process.

• Writer identification process. The query documents to be identified are automatically compared and matched in a large handwritten database. Our goal is to improve this step by developing new and robust distance-based approaches and appropriate learned models. In the second case, our goal is to design effective methods based on deep learning.

In this context, institutes such as the National Institute of Standards and Technology (NIST) and the International Association of Pattern Recognition (IAPR) offer many pro-
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grams that promote pattern recognition and computer vision research. They regularly hold competitions to award the best performing learning systems. This work proposes to place itself in the middle of these international competitions for writer identification, gaining interest on scientific, social, and economic levels.

1.3/ THESIS OUTLINE

This thesis is structured in six chapters to give the readers a comprehensive presentation of the main contributions and prepare their background for a fluent experience.

Chapter 2 presents a comprehensive literature review of existing works for writer identification, which are compared thoroughly in our performance evaluation in Chapter 5.

Chapter 3 introduces the main stages of our proposed framework for writer identification. Chapter 4 shows that deep learning methods can be used to achieve further improvements in writer identification performance. It includes a comprehensive explanation of two proposed deep CNN models named DeepWINet and WriterINet for writer identification and a CNN framework for image retrieval for historical handwritten fragments (ICFHR2020 competition).

Chapter 5 is devoted to the study of experimental results obtained with our various approaches to writer identification and image retrieval for historical handwritten fragments.

It describes in detail the handwritten databases used with the standard protocol setup to evaluate our proposed approaches, compares and discusses our achieved performance with SOTA systems. This chapter also highlights additional experiments conducted to further investigate the effectiveness and stability of the proposed methods.

Chapter 6 summarizes the research results presented in this thesis and outlines the overall conclusions with future research directions opened by the work reported here.

2

WRITER IDENTIFICATION: LITERATURE REVIEW

2.1/ INTRODUCTION

Writer identification based on handwriting style recognition is considered as one of the most common research areas in pattern recognition and biometrics. It has received a lot of interest and attention in recent decades, as it is a challenging task considering the large within-writer and between-writer style variability. Several reviews [START_REF] Rehman | Writer identification using machine learning approaches: a comprehensive review[END_REF]; [START_REF] Dargan | Writer identification System for Indic and non-Indic scripts: state-of-the-art survey[END_REF]) have extensively addressed writer identification SOTA. The interest is to compare, evaluate and build reliable, near real-time and robust approaches that would provide high identification performance. In this research area, one needs to compute abstract and discriminative writing style features and extract details that reflect personal writing habits. This poses a great challenge due to the high sensitivity of the writing variability. Dealing with such extreme variations greatly improves the identification task and reduces misclassifications. Most existing work generally considers the following pipeline: pre-processing, feature extraction, and classification stages.

In this chapter, we survey well-known writer identification approaches proposed in recent years, as a result of the renewed interest in the scientific community for this research topic.

2.2/ RELATED WORKS

Here we summarize research work on writer identification. These approaches can be categorized into four groups: texture-based, grapheme-based, contour-based, and autolearned methods. 15

2.2.1/ TEXTURE-BASED METHODS

Texture-based methods have been widely used for writer identification. Based on the assumption that handwriting can be considered as a texture image, texture features can be extracted within blocks, regions, fragments, words, lines of text, or the entire image. [START_REF] He | Chinese handwriting-based writer identification by texture analysis[END_REF] overall method achieved good performance on writer identification in three benchmark datasets.

Texture filter-based methods were also studied and evaluated for writer identification.

The work in [START_REF] Said | Personal identification based on handwriting[END_REF]) was the first to introduce a texture filter-based method to study writer identification in a text-independent mode using 1000 test images written by 40 writers. The overall approach normalizes the input handwriting and generates standard blocks according to the following steps: 1) horizontal projection for line detection,

2) standardization of spacing between lines and words, 3) "padding" of the text, and 4) block segmentation. [START_REF] Said | Personal identification based on handwriting[END_REF]).

transform of the Gabor output, and the co-occurrence matrix features. The weighted Euclidean distance (WED) is used to identify unseen writers. [START_REF] Shahabi | Comparison of Gabor-based features for writer identification of Farsi/Arabic handwriting[END_REF] reported that Gabor energy and Fourier transform of Gabor output performed better than other methods. Later, [START_REF] Nejad | A new method for writer identification and verification based on Farsi/Arabic handwritten texts[END_REF] proposed a system for off-line writer identification of Farsi handwriting. A bank of Gabor filters is applied to images of Farsi handwriting to extract texture features, which are fed to weighted Euclidean and Chisquare classifiers to perform writer identification. [START_REF] Nejad | A new method for writer identification and verification based on Farsi/Arabic handwritten texts[END_REF] The oriented Basic Image Feature (oBIF) column is an effective texture-based method that has been used for character recognition [START_REF] Newell | Natural Image Character Recognition Using Oriented Basic Image Features[END_REF]) and texture recognition [START_REF] Timofte | A Training-free Classification Framework for Textures, Writers, and Materials[END_REF]; [START_REF] Newell | Texture-based estimation of physical characteristics of sand grains[END_REF]). It was first adapted for writer identification by [START_REF] Newell | Writer identification using oriented basic image features and the delta encoding[END_REF] and used by the winning team of the ICDAR2017 Historical-Writer identification competition [START_REF] Fiel | Icdar2017 competition on historical document writer identification (historical-wi)[END_REF]Abdeljalil et al. (2018)). [START_REF] Newell | Writer identification using oriented basic image features and the delta encoding[END_REF] showed that the oriented Basic Image Feature could achieve better writer identification performance even when there are no common handwritten characters between training and test data. As shown in Figure 2.8, the oBIFbased system in [START_REF] Newell | Writer identification using oriented basic image features and the delta encoding[END_REF]) encodes the handwriting image into oriented Basic Image Features (oBIFs) at two different scales. The oBIFs column features in the encoded image are computed at each location by combining the oBIF type found at the two scales. Note that there are seven possible symmetry types: slope, dark line, light line, dark rotation, light rotation, saddle-like, and flat. The oBIF column features are then counted across the image to form the final normalized feature histogram. The Nearest Neighbour classifier was used to evaluate the oBIF column method using the IAM database. The classification results demonstrated the ability of the oBIF column scheme in characterizing the writing variability with a writer identification score of 99% (tested on 300 writers). Similarly, Abdeljalil et al. (2018) used different configurations of oBIF columns to extract texture information from handwriting. Feature matching and classification were performed using standard distance metrics, including Euclidean, city block, correlation, cosine, and Spearman. Experiments were performed on 720 different writers from the ICDAR2017 database. The approach provides better SOTA performance for writer identification. [START_REF] Kumar | DCWI: Distribution descriptive curve and Cellular automata based Writer Identification[END_REF] presented a modeling approach based on descriptive distribution curves (DDC-) and cellular automata (CA-). The DDC algorithm uses the pixel distribution of handwritten text images to generate a unique curve as a feature vector fed to a support vector machine (SVM) for writer identification. They also evaluated similarity-Figure 2.8: The various steps in the oBIF column encoding scheme as applied to writer identification. An image is first encoded into oBIFs, with a local symmetry type and orientation assigned to each location in the scale space. The oBIFs at two scales are then stacked to form a pair or column of oBIFs at each position. To remove whitespace, any column feature that contains a flat oBIF at either scale is discarded. The remaining column features are counted to form a histogram, which is normalised by dividing by the total number of non-flat columns. [START_REF] Newell | Writer identification using oriented basic image features and the delta encoding[END_REF]).

based classifiers (SBC) for classification. Both approaches (DDC + SVM and CA + SBC) are combined into one system called DCWI to improve the overall writer identification performance.

2.2.2/ GRAPHEME-BASED METHODS

Grapheme-based methods focus on extracting features within small writing traces called graphemes. A robust segmentation algorithm is needed to crop the handwriting into trace lines, and then the segmented lines are further fragmented into small segments (small strokes of handwriting). Every segment might contain zero, one, or more than one grapheme. Encoding techniques like the bag of words are used to locally encode the writ-ing graphemes over a prototype codebook produced by clustering. Bensefia et al. (2002) first used graphemes for writer identification. They proposed a morphological graphemebased analysis to characterize each pattern's redundancy, known as writer invariants (cf. Figure 2.9). Two experiments were conducted to evaluate the effectiveness of their method. Based on 88 writers, Bensefia et al. (2002) reported a 97.7% hit rate for writer identification using large compressed handwriting samples. In the second experiment, they investigated the effect of the number of graphemes on overall performance. The score of 92.9% in identification rate is reached for 88 writers using only 50 graphemes of each handwriting sample. The same authors further improved the same database results (88 writers) by using graphemes with an information retrieval paradigm to compare each unseen sample to the reference base (Bensefia et al. (2003)). They also evaluated a set of concatenated graphemes (bi-and tri-gramme) as features to improve the task. [START_REF] Bulacu | A comparison of clustering methods for writer identification and verification[END_REF]). [START_REF] Bensefia | Handwritten document analysis for automatic writer recognition[END_REF] used a cursive handwriting segmentation algorithm to extract graphemes as local features for writer identification. PSI (88 writers) and IAM (150 writers) databases were used to evaluate their overall system. The Vector Space Model (VSM) was used as a classifier to compare the feature vectors and then identify the unseen documents. Figure 2.11 illustrates an overview of the proposed system. They successfully recorded a score of 96.41% on the PSI database and 97.33% on the IAM database. [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF] combined several features (directional, grapheme, and run-length probability distribution functions) extracted from handwriting images. Otsu's algorithm was used to binarize the input grayscale images, considering three main representations of the document for feature computation: the binary image, the connected components, and their extracted contours. [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF] have shown that the feature fusion scheme improves writer identification and verification performance. [START_REF] Gaceb | Handwriting similarities as features for the characterization of writer's style invariants and image compression[END_REF] presented an approach to characterizing the writer's style invariants based on Gabor-based directional features and a complete grapheme signature. The method reported good results in writer identification.

Van

In [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF]), original work on writer identification and verification using an effective allographic feature method was presented. They used contour-based joint directional probability distribution functions (PDFs) that highly encode orientation and curvature information to characterize writing style. They also used a stochastic pattern generator of ink-trace fragments or graphemes and computed the probability distribution functions (PDF) of these shapes (in a given handwriting sample) using a typical shape codebook obtained by grapheme clustering. Experimental results showed that combining multiple features (directional, contour-Hinge PDF, grapheme, Autocorrelation, and runlength PDFs) allows high performance in writer identification. Figure 2.11: An overview of the approach proposed in [START_REF] Bensefia | Handwritten document analysis for automatic writer recognition[END_REF]). [START_REF] Pervouchine | Extraction and analysis of forensic document examiner features used for writer identification[END_REF] used microstructural features extracted from characters and graphemes to identify query writers. They used a generic algorithm called wrapper [START_REF]Irrelevant features and the subset selection problem[END_REF]) to search for the optimal features and trained a neural network as a classifier for writer identification. Experiments showed that graphemes are more efficient than micro-features in characterizing writing variability. In [START_REF] Khalifa | Off-line writer identification using an ensemble of grapheme codebook features[END_REF]), an ensemble of multiple codebooks was proposed for writer identification. They used spectral regression with kernel discriminant analysis (SR-KDA) as a dimensionality reduction technique to avoid over-fitting. A Nearest-Neighbor (NN) classifier was used in a leaveone-out strategy to evaluate the performance of writer identification. Figure 2.12 shows the foremost steps used in this approach. Experiments on the IAM (Marti and Bunke Figure 2.12: The main steps of the system proposed in [START_REF] Khalifa | Off-line writer identification using an ensemble of grapheme codebook features[END_REF]). ( 2002)) and ICFHR2012 (Hassaïne and Al Maadeed (2012)) datasets showed that the fusion of multiple codebooks gives better performance in writer identification than a single codebook approach.

Abdi and Khemakhem (2015) generated synthetic codebooks for feature extraction using the beta-elliptic model. Their work reported that they were the first to address the capability of model-based synthetic codebooks in writer identification and verification. Instead of extracting natural graphemes from a training set using segmentation and clustering, their approach synthesizes their own graphemes based on the beta-elliptic model. The grapheme-based approach generates one full and four partial codebooks, which are reduced according to specific criteria using a feature selection procedure. Experiments are performed on the IFN/ENIT database [START_REF] Pechwitz | IFN/ENIT -database of handwritten Arabic words[END_REF]) with a total of 411 writers using 60 feature vectors extracted by template matching. The results show a good generalization ability of the synthetic codebooks for writer identification. [START_REF] Garz | Simple and fast geometrical descriptors for writer identification[END_REF] proposed a conceptually fast and straightforward approach for writer identification. It captures orientation distributions at multiple scales and geometric relationships between grapheme strokes, junctions, endings, and loops. Experimental results on the IAM database showed the effectiveness of combining these methods, with a result of 86.9% in the top-1 writer identification rate. In [START_REF] Miller | A set of handwriting features for use in automated writer identification[END_REF]), isomorphic graph class and shape are embedded in a generic graph-based system to improve automated handwriting identification. [START_REF] Miller | A set of handwriting features for use in automated writer identification[END_REF] used topological and geometric classification of graphemes with "like-with-like" comparisons of similar features across different writers. [START_REF] Khan | Robust off-line text independent writer identification using bagged discrete cosine transform features[END_REF] used universal codebooks with bagged discrete cosine transformed (BDCT) descriptors to identify writers from handwriting. DCT features are computed from overlapping blocks (graphemes) extracted from the original writing. Dimensionality reduction of the extracted features was performed using Kernel Discriminant Analysis with Spectral Regression (SR -KDA), and classification was performed using the nearestcenter rule. As illustrated in Figure 2.13, multiple SR -KDA predictor models are generated for each writer (codebook) using a training set. The authors used a majority voting strategy to identify unseen documents in the test set, as shown in Figure 2.14. The overall system achieved superior SOTA performance on four different benchmark databases. [START_REF] Pandey | Forensic writer identification with projection profile representation of graphemes[END_REF] proposed a grapheme-based approach to text-independent writer identification. Graphemes are extracted from handwriting and represented as projection profile representations. They performed dictionary learning (codebook) from handwriting samples using k-means clustering. The k-nearest neighbor classifier is used to compare and match feature vectors to identify query writers. [START_REF] Pandey | Forensic writer identification with projection profile representation of graphemes[END_REF] reported better results compared to other grapheme-based methods. [START_REF] Durou | Writer identification approach based on bag of words with OBI features[END_REF] proposed a feature fusion approach combining Oriented Basic Image features (oBIF columns) and grapheme codebooks for writer identification. They used Kernel Principal Component Analysis (kPCA) to reduce the high dimension of the resulting feature vector. The K-Nearest Neighbour, Support Vector Machine (SVM), and Neural Networks are used to classify unseen writers from IAM and ICFHR2012 databases. Their method showed better SOTA performance compared to similar techniques.

The Scale-Invariant Feature Transform (SIFT) descriptor is considered an efficient CHAPTER 2. WRITER IDENTIFICATION: LITERATURE REVIEW grapheme-based feature method for all pattern recognition problems, especially for characterizing salient local structures. In writer identification and verification, the SIFT descriptor has been widely used to capture local structures of writing variability. It can be extracted locally for feature matching, as in [START_REF] Mohammed | Normalised Local Naïve Bayes Nearest-Neighbour Classifier for Offline Writer Identification[END_REF][START_REF] Mohammed | Writer identification for historical manuscripts: Analysis and optimisation of a classifier as an easy-to-use tool for scholars from the humanities[END_REF]), or encoded into a global vector or score, as in [START_REF] Fiel | Writer Identification and Writer Retrieval Using the Fisher Vector on Visual Vocabularies[END_REF]; Christlein et al. (2017a); [START_REF] Khan | Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification Using SIFT and RootSIFT Descriptors[END_REF]). The most recent typical work using this type of feature is the approach presented in [START_REF] Lai | Encoding Pathlet and SIFT Features With Bagged VLAD for Historical Writer Identification[END_REF]). The authors combined two feature methods to capture salient information of local structures of handwriting: they proposed a novel contourbased method called Pathlet feature and used a grapheme-based method known as the unidirectional SIFT feature to describe corners and junctions of handwriting. Also, an encoding method called bagged vector of locally aggregated descriptors (bagged-VLAD) was introduced to encode both Pathlet and SIFT features effectively. The overall system was evaluated on historical benchmark databases for writer identification and achieved excellent SOTA performance. An overview of the overall system is shown in Figure 2.15.

2.2.3/ CONTOUR-BASED METHODS

Contour-based methods have also been studied for writer identification. These methods capture features from handwriting contours rather than image pixels, which are a probability distribution of local attributes, such as angles and ink widths. Text image segmentation techniques are required to enhance the identification performance. The most Figure 2.15: The historical writer identification system proposed in [START_REF] Lai | Encoding Pathlet and SIFT Features With Bagged VLAD for Historical Writer Identification[END_REF]). First, document images are rotation corrected and binarized using deep U-Net model. Second, pathlet features and unidirectional SIFT features are extracted. Third, for each document, the pathlet features and SIFT features are encoded using the proposed bVLAD, followed by dimensionality reduction and l 2 normalization. The resulting feature vectors are then used to identify the unseen document [START_REF] Lai | Encoding Pathlet and SIFT Features With Bagged VLAD for Historical Writer Identification[END_REF]).

well-known work that used this approach is the one presented in [START_REF] Schomaker | Automatic writer identification using connected-component contours and edge-based features of uppercase western script[END_REF]). The authors introduced an important theory-based approach to use connectedcomponent contours (CO3s) and edge-based features for automatic writer identification.

A stochastic pattern generator model is used to characterize a family of connected components of the Western uppercase script. Based on the CO3s training codebook of 100 writers, [START_REF] Schomaker | Automatic writer identification using connected-component contours and edge-based features of uppercase western script[END_REF] calculated the probability density function (PDF) of the CO3s test set of 150 unseen writers. Their experimental results showed a high sensitivity of the CO3-PDF for identifying individual writers based on a single sentence of capital letters. They also combined the CO3-PDF with an independent edge-based orientation and curvature PDF to improve the performance of writer identification. Similarly, [START_REF] Schomaker | Automatic writer identification using connected-component contours and edge-based features of uppercase western script[END_REF] improved the task of writer identification using fragmented connected-component contours (FCO3) in mixed handwritten samples of limited size. In a stochastic model, they generated a family of character fragments called fraglets and determined their probability distribution for an independent test set. Later, [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF] captured the joint probability distribution functions (PDF) of orientations of the two legs of the so-called "contour-hinge." [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF] also used a stochastic pattern generator of ink-trace fragments or graphemes and computed the PDF of these shapes (in a given handwriting sample) using a typical shape codebook obtained by grapheme clustering. The authors experimentally demonstrated that combining multiple features (directional, contour-Hinge PDF, grapheme, and run-length PDFs) leads to high performance in writer identification. In another work presented in [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF]), the same combination of features, i.e., PDFs-based features and graphemes, was used to evaluate writer identification from Arabic handwriting. Figure 2.16 shows an example of extracted direction and run-length PDFs. The overall system achieved an identification rate of 88% on an Arabic database of 350 writers. The results prove the possibility of applying the same approach to other script languages, except that the authors affirmed that Arabic writing presents more difficulty and a real challenge for writer identification systems. Abdi et al. (2009) presented a contour-based system for writer identification from Arabic handwriting. The approach computes the joint probability distribution functions (PDF) of a combination of contour features. As with other writer identification systems that use PDFs, a preprocessing stage is required for the document image. This step, shown in Figure 2.17, consists of normalizing the word image by removing diacritical marks, dilating the image, and extracting word contours. Relevant word contours are approximated and extracted using a minimum perimeter polygon (MPP) algorithm with different pixel grid sizes. Abdi et al. (2009) used six features based on length, direction, angle and curvature measurements extracted from the relevant contours (cf. Figure 2.18).

An interesting work presented by [START_REF] Siddiqi | Text independent writer recognition using redundant writing patterns with contour-based orientation and curvature features[END_REF] proposes a contour-based approach for writer identification. It extracts, as shown in Table 2.1, a set of 14 visual features (orientation and curvature information) from redundant patterns of the writing.

The extracted contour-based features, called chain-code-based probability distribution and polygon (cf. Figure 2.19), provide competitive performance to the Hinge feature proposed in [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF]). The overall system combines codebook and contour features. The identification step in this system is based on the aggregation of the computed chi-square distances (related to extracted features) to identify the query writers. The system performance has been evaluated on different databases. The highest rate of 91% is reached on 650 writers.

Another work presented by [START_REF] Jain | Offline writer identification using k-adjacent segments[END_REF] exploits the K-adjacent segments feature (KAS), which is used to represent the relationship between groups of adjacent (neighboring) edges in an image for object detection [START_REF] Ferrari | Groups of adjacent contour segments for object detection[END_REF]). As the name implies, K-adjacent segments describe any number K of adjacent segments, where two segments are considered adjacent if they share a common endpoint. As explained in [START_REF] Jain | Offline writer identification using k-adjacent segments[END_REF]), the primary line segment is defined as the line whose midpoint is closest to the center of the midpoints of all lines. The remaining lines are ordered by their midpoints from left to right and then from top to bottom. shows an example of KAS feature extraction (3AS with K = 3). Before proceeding with the computation of K-AS features, the approach proposed in [START_REF] Jain | Offline writer identification using k-adjacent segments[END_REF]) extracts contours and edges of the writing, performing the following preprocessing steps: 1) binarization of the document image, 2) extraction of contours capturing the shape and curvature, 3) decomposition of smooth curves into a set of lines using a line fitting algorithm. This process is illustrated in . Then, a feature vector is extracted from the codebook K-AS computed for each writer and compared using Euclidean distance to identify the unknown author of the test document. Classification results are comparable to SOTA systems, with an identification rate of 93% for 350 writers. The Quill feature calculation (contour tracking, angle measurements, and width measurements) is shown in Figure 2.21. In the classification process, the nearest-neighbor rule was used to perform writer identification. The overall system was evaluated on two datasets of medieval handwriting, the Dutch Charter dataset and the diverse English dataset, and on two datasets of contemporary handwriting, the Firemaker and IAM databases. The experimental results confirm the effectiveness of the QuillHinge-based system for identifying writers. [START_REF] Ghiasi | Offline textindependent writer identification using codebook and efficient code extraction methods[END_REF] presented two different codebook-based methods for extracting codes from COnnected-COmponent COntours (CO3), which are a significant improvement over early CO3 [START_REF] Schomaker | Automatic writer identification using connected-component contours and edge-based features of uppercase western script[END_REF]) and FCO3 [START_REF] Schomaker | Automatic writer identification using connected-component contours and edge-based features of uppercase western script[END_REF]). The first method uses the pixel coordinates of contour fragments, while the second is based on a linear piecewise approximation using segment angles and lengths.

Both methods use the frequency histogram of component shapes in a codebook to create a feature vector for each handwriting sample. Evaluations on two English and three Farsi handwriting databases showed promising performance in identifying unseen writers.

The approach presented in (Awaida and Mahmoud ( 2013)) captures gradient and contour chain code features from handwriting samples. Five feature selection methods were used for data reduction. These include principal component analysis (PCA), linear discriminant analysis (LDA), multiple discriminant analysis (MDA), multidimensional scaling ture selection algorithm). [START_REF] Jain | Combining local features for offline writer identification[END_REF] presented a contour-based system to address the writer identification problem, which is an improvement over the early system in [START_REF] Jain | Offline writer identification using k-adjacent segments[END_REF]. In feature extraction, they used the combinations of three different feature methods: K-Adjacent Segments (K-AS), Speeded Up Robust Features (SURF), and Contour-Gradient Descriptors (CGD) (cf. Figure 2.22). A linear combination of the Fisher Vector distances is used (feature pooling), and feature matching is performed using the Gaussian Mixture Model supervector (GMM). This approach provides SOTA performance on three different datasets. The authors pointed out that the combination of local features consistently performs better than single features.

He and Schomaker (2014) proposed a system for writer identification based on the use of the same feature method presented in [START_REF] Bulacu | Textindependent writer identification and verification using textural and allographic features[END_REF]), known as the Hinge feature. They proposed a new variant of the Hinge feature, called Delta-n Hinge, that incorporates the derivative between several writing points along the ink contours to extract rotation-invariant features. The Nearest-Neighbor (NN) classification with a "leave-one-out" strategy was used to perform writer identification. The overall system was evaluated on two different databases, showing promising SOTA performance. evaluate other applications, such as dating historical documents and multi-faceted tasks, including writer identification (He and Schomaker (2017a)). He and Schomaker (2017a) residual network (ResNet) is trained with surrogate classes using patches extracted from each SIFT location (from the same SIFT keypoints). The deep features are extracted from the penultimate CNN activation layer, encoded, and classified using the linear exemplar support vector machines (E-SVM). The approach performed all SOTA methods on the ICDAR17 competition dataset for identifying historical document writers (Historical-WI).

The work presented by [START_REF] Maier | Encoding CNN activations for writer recognition[END_REF] In [START_REF] He | Fragnet: Writer identification using deep fragment networks[END_REF]), a deep CNN model named FragNet is proposed for writer 

2.2.5/ DISCUSSION

Texture features are easy to compute from handwriting without going through a binarization step. However, one of the drawbacks of texture-based methods, when used in conjunction with a classifier, is the higher number of parameters and computations required for image classification. This limitation, i.e., texture features are costly in processing time, is due to the high number of bins of extracted feature vectors. To solve this problem, post-processing methods such as principal component analysis (PCA), linear discriminant analysis (LDA), and generalized discriminant analysis (GDA) are mainly used as tools to reduce the higher dimensional space, whether it is 1D, 2D, or 3D data.

However, these techniques may affect the overall performance in identifying the query authors. Texture-based methods detect redundant writing patterns and achieve correct performance, which can be further improved using robust classifiers.

Grapheme-and contour-based methods mainly rely on binarization and image segmentation techniques to characterize local writing patterns. Therefore, the recognition and identification performance is somewhat limited and dependent on the ability of these techniques to capture local structural information of the writing. Texture, contour, and grapheme approaches depend on features computed by algorithms and basically designed by humans. Currently, these features can be learned automatically using Deep Learning (DL). It provides an easier way to obtain the desired features for the task under consideration. However, deep learning requires large labeled training data to learn how to classify images of a particular application. For writer identification, large handwriting training data is needed to learn and characterize the writing style, which is not always present in some scenarios. In this case, traditional methods perform better or equivalent to deep learning.

2.3/ CONCLUSION

In this chapter, we have presented, in chronological order, a comprehensive literature review of the known approaches that have been proposed for writer identification. We have categorized these approaches into texture-based, grapheme-based, contour-based, and deep learning methods. We have also discussed the challenges, factors, performance, and criticisms of these approaches to better characterize the handwriting style. To improve writer identification, researchers agree that the feature extraction step is one of the most critical modules in a writer identification system. Indeed, using a very powerful classifier cannot compensate for a poorly matched feature representation.

In the following chapters, we discuss and present our proposals to improve state-of-theart performance to better characterize the writing style and accurately classify and identify the authorship of handwritten documents. Note that our proposed approaches in this thesis belong to the texture and deep learning categories. lenging to meet all these criteria in the feature extraction step, especially when dealing with handwritten documents with complex writing styles. At this level, the goal is to accurately identify the writer using useful features extracted from handwriting images in a text-independent manner.

Handwriting can be viewed as a texture image that contains grayscale or binary varia- Transform Patterns (LSTP) method. This feature gives the overall system the ability to extract more relevant information to improve the identification task. The writer classification is performed using the nearest neighbor with a new strategy to compute similarities between the handwritten documents.

This chapter presents in detail the theoretical description of our proposed texture-based systems for text-independent offline writer identification. Note that the experiments and evaluations to validate the effectiveness of these systems are discussed later in Chapter 5.

3.2/ OVERALL PIPELINE

Our proposed system for writer identification based on texture features involves three main steps: 1) image preprocessing and segmentation, 2) feature extraction, and 3) classification process. In our methodology, handwritten documents are considered as texture images, and their respective features are extracted from different regions of interest (i.e., connected component sub-images). The proposed system for writer identification is shown in Figure 3.1. Each of the main steps of the system is described in detail in the following subsections.

3.2.1/ IMAGE PRE-PROCESSING AND SEGMENTATION

To enhance the performance of writer identification, we perform some basic image preprocessing techniques on the handwritten input image to make it suitable for the segmentation phase and reduce the complexity of the subsequent processing modules. First, the handwritten images, which are in RGB format, are converted to grayscale images. Then, except for the IFN/ENIT database, which contains handwritten patterns in binary format (cf. benchmark and experimental setup in Chapter 5), global thresholding is performed on the handwritten grayscale images using Otsu's method described in (Otsu (1979)) to convert them into binary images. For a grayscale image, binarization consists of first 

C i = cropfunction(S b , cord(i)); C i = S b (x min (i) : (x min (i) + width(i)), y min (i) : (y min (i) + height(i))); if size(C i ) >=

3.2.2/ FEATURE EXTRACTION METHODS

Feature extraction is a fundamental step in writer identification, using various techniques to capture local variations in writing style. Extracting such extreme variations increases the quality of the identification task. At this stage of our system, we have a set of related components for each handwritten document. It is still a difficult problem to accurately identify the corresponding writer since only the related components are obtained, and there is no information estimation about their content yet, which is necessary for the identification process. Feature extraction consists of defining a synthetic description of the writing style to be characterized in two-dimensional space from scanned handwritten images. The goal is to extract, characterize and consequently index common features B i ). For each block B i (i = 1, 2 . . . N×N), the appearance frequency of the white pixels, i.e., the ink, is calculated. Finally, each block B i is henceforth characterized by its feature BWLBC(i),

which can be computed as follows:

BWLBC(i) = x p ∈B i δ(1, B i (x p )), i = 1, 2 . . . (N×N) (3.1)
where B i (x p ) is the value of pixel x p in the block B i (i = 1, 2 . . . N×N) and δ being the Kronecker delta function, defined as follows:

δ (x, y) =        1 , i f x = y 0 , i f x y (3.2)
The resulting normalized F BWLBC feature vector is then calculated by the following forms:

F BWLBC = 1 W B (N×N) i=1 BWLBC(i) = 1 W B (N×N) i=1 x p ∈B i δ(1, B i (x p )), i = 1, 2 . . . (N×N) (3.3) 
where is the concatenation operator and W B = W×W N×N is the block size. Note that the normalized F BWLBC (i) represents the histogram bin number i in the final F BWLBC feature vector. The whole procedure shown in Figure 3.5 to compute the BWLBC code can be summarized as follows:

• Step 1: The input handwriting document with the writer label w r is converted to a binary image D w r .

• Step 2: The obtained binarized image D w r is segmented into connected compo- nents (D w r = N wr k=1 C k w r η(C k wr )>ν
) ; where N w r = card(D w r ) is the number of connected components in the document D w r and η(C k w r ) is the number of pixels of the component C k w r and ν is a small threshold (ν << W × W). The connected components with very small proportions of writing pixels, i.e., with area less than ν pixels, such as diacritics and random writing traces, are considered as unwanted details and then discarded. At this stage, each preserved connected component is considered within its bounding box. B k (w r ,i) ).

• Step 5: Each block B k (w r ,i),i=1,...,N×N , is defined by its feature BWLBC (k,w r ) (i) using Eq. 3.1.

• Step 6: For each connected component C k w r , the corresponding normalized feature vector F (k,w r ) BWLBC is calculated using Eq. 3.3.

•

Step 7: The input handwriting document with the writer label w r is henceforth represented by a set of

F BWLBC -histograms {F (k,w r ) BWLBC , k = 1, ..., N w r }.
It is worth noting that when using the BW-LBC descriptor as feature extraction, the system performance strongly depends on the chosen number of blocks (N × N) and the window size (W × W). Indeed, different values of N and W would lead to a different encoding of the BW-LBC binary operator. The experiment to study the effects of these parameters on system performance is discussed later in Chapter 5 (Section 5.3.1.2). where I(x c ) is the central pixel gray-scale value, I(x p ) is the value of its neighbors, P is the number of neighbors and φ(•) is the Heaviside step function (cf. Eq. 3.5).

φ (z) =        1 , i f z ≥ 0 0 , i f z < 0 (3.5)
LBP generates 256 (2 8 ) possible patterns (cf. Table 3.1). In this work, LBP features are computed in a 3×3 square neighborhood, i.e., the LPB radius and the number of neighbor pixels are set to 1 and 8, respectively.

Local ternary patterns (LTP). [START_REF] Tan | Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions[END_REF] where τ is the user-specified threshold and ϑ τ (•) is the Ternary Thresholding function defined as follows: 

ϑ τ (a, b) =              1, if a ≥ b + τ 0, if b -τ ≤ a < b + τ -1, otherwise (3 
F (u, x) = y∈N x f (x -y) e -j2πu T y = W T u f x (3.8)
W u being the basis vector of the 2-D DFT at frequency u, f x is the vector containing all M 2 image samples of the (MxM) neighbourhood (N x ) of x. Local Fourier coefficients are computed at four frequency points

u 1 = [a, 0] T , u 2 = [0, a] T , u 3 = [a, a] T and u 4 = [a, -a] T ;
where a is a small scalar frequency. The resulting vector of each pixel position is given 

F (x) = [F (u 1 , x) , F (u 2 , x) , F (u 3 , x) , F (u 4 , x)]
(3.9)

The phase information in the Fourier coefficients is calculated by using a simple scalar quantization for each component in F(x):

q j =        1 , i f g i ≥ 0 0 , otherwise (3.10)
where g i is the jth component of the vector G(•) (cf. Eq. 3.11):

G (x) = [Re {F (x)} , Im {F (x)}] (3.11)
The quantized coefficients are given as integer values between 0 and 255 using the following binary coding:

b = 7 j=0 q j 2 j (3.12)
Th LPQ method generates 256 (2 8 ) possible patterns (cf. Table 3.1). 

Z i (i = 1, 2 . . . N z ×N z ) in the feature image FC is characterized by a ( D im F ) bins histogram that eliminates the non-discriminatory bins. The feature histogram h i characterizing each zone Z i (i = 1, 2 . . . N z ×N z ) is calculated using Eq. 3.13. h i (λ) = x p ∈Z i δ(λ, Z i (x p ))) (3.13)
where

Z i (x p ) is the value of pixel x p in the zone Z i (i = 1, 2 . . . N z ×N z ), λ ∈ [0, N bins ],
N bins = D im F -1 is the number of bins of the feature histogram h i , D im is the descriptor dimension given in Table 3.1, F is the dimensionality reduction factor, and δ(•) is the Kronecker delta function defined as follows:

δ (x, y) =        1 , i f x = y 0 , i f x y (3.14)
All these regional subhistograms h i,i=1,..,N z ×N z of dimensionality ( D im F ) are concatenated through Eq. 3.15 to form the holistic connected component representation H of dimen- 

sionality D c = ( D im F ) × N z × N z . H = (N z ×N z ) i=1 h i (3.
z × N z zones Z ( j,w m ) i,i=1,..,N z ×N z (C j w m = N z ×N z i=1 Z ( j,w m ) i
).

Resizing into "50×50" pixels

Original component sub-image

Resized component subimage

Resized image subjected to texture operator encoding i,i=1,..,N z ×N z is represented by its feature histogram h ( j,w m ) i using Eq. 3.13.

•

Step 7: Each connected component C j w m is characterized by its concatenated histogram H ( j,w m ) using Eq. 3.15.

• Step 8: Finally, the set of H-histograms {H ( j,w m ) , j = 1, ..., N w m } represents the input handwriting sample of the classifier with the writer label w m .

Note that the performance of the system depends substantially on both the dimensionality reduction factor F and the number of zones N z × N z . Indeed, different values of N z and F would result in a different representation of the LBP, LPQ, and LTP histograms (H). A comprehensive experiment to investigate the system performance as a function of these parameters is addressed in Chapter 5 (Section 5.3.2.1).

In summary, given LBP, LPQ, and LTP texture descriptors, the writing sample S w m (docu-ment or set of word/text line images) with writer label w m is characterized by a set H S wm of feature histograms computed from all connected components extracted from it:

H S wm = {H ( j,w m ) , 1 ≤ j ≤ N w m } (3.16)
where N w m = card(S w m ) is the number of connected components in the sample S w m and H ( j,w m ) is the feature histogram corresponding to the jth component in the writing sample S w m .

3.2.2.3/ CROSS MULTI-SCALE LOCALLY ENCODED GRADIENT PATTERNS DESCRIPTOR

We 

G (x, y; σ) = 1 2πσ 2 exp - x 2 + y 2 2σ 2 (3.17) G θ 1 = cos(θ)G x + sin(θ)G y (3.18) G θ 2 = cos 2 (θ) G xx -sin (2θ) G xy + sin 2 (θ) G yy (3.19)
where σ is the scale or standard deviation. 

I θ 1 = G θ 1 * I = cos (θ) L x + sin(θ)L y = L 2 x + L 2 y sin (θ + φ) (3.20) 
where φ = arctan L x L y and

I θ 2 = G θ 2 * I = cos 2 (θ) L xx -sin(2θ)L xy + sin 2 (θ)L yy = 1 2        L xx + L yy + L xx -L yy 2 + 4L 2 xy cos (2θ -ψ)        (3.21)
where ψ = arctan

2L xy L yy -L xx .
The extremum response values of I θ 1 and I θ 2 over all θ are computed as follows: 2015)), the number of scales N σ is experimentally set to N σ = 3:

I θ 1max = L 2 x + L 2 y (3.22) I θ 2max = 1 2        L xx + L yy + L xx -L yy 2 + 4L 2 xy        (3.23) I θ 2min = 1 2        L xx + L yy - L xx -L yy 2 + 4L 2 xy        (3.
σ 1 = 1, σ 2 = 2,
and σ 3 = 4.

Step 2: Transorm feature construction. Linear and nonlinear operators are applied to the previously obtained extreme value responses I θ 1max , I θ 2max , and I θ 2min to construct a compact, rotation-invariant, yet discriminative set of transformation features, denoted as F = {g, d, s, r} ({g, d} is constructed with linear combinations of the extreme value responses, while {s, r} is constructed with nonlinear ones). The transformation feature g, referred to as the gradient magnitude, is the maximum response of the first directional Gaussian derivative filter, i.e., g

= I θ 1max = L 2 x + L 2 y .
The second transformation feature d, i.e., the extrema difference of the maximum and minimum responses of the second directional Gaussian derivative filter is calculated by:

d = I θ 2max -I θ 2min = L xx -L yy 2 + 4L 2 xy (3.25)
The feature set F includes other quantitative measures of the second-order differential structure defined by the shape index s:

s = 1 2 - 1 π arctan       - I θ 2max + I θ 2min I θ 2max -I θ 2min       = 1 2 - 1 π arctan             -L xx -L yy L xx -L yy 2 + 4L 2 xy             (3.26)
The correlation information of first and second order differential structures is characterized by means of the mixed extremal ratio r, which is defined as follows:

r = 2 π arctan d g = 2 π arctan       I θ 2max -I θ 2min I θ 1max       = 2 π arctan             L xx -L yy 2 + 4L 2 xy L 2 x + L 2 y             (3.27)
Step 3: Quantization and cross-scale joint coding. With the obtained transformation features, the scalar quantization step aims to design a discriminative and computationally efficient quantizer to quantize the feature set F into discrete texture codes. To this end, two types of scalar quantization by simple binary or multilevel thresholding are designed.

For the feature subset {g, d}, we perform a mean-based binary ratio quantizer Q 1 (.): 

y = Q 1 (x) =        0, i f x m x > k 1, otherwise (3 
y = Q 2 (x) =                      0, x ∈ [0, ∆] 1, x ∈ [∆, 2∆] . . . (L x) -1, x ∈ [((L x) -1)∆, 1] (3.29)
where x ∈ {s, r}, L x is the quantization level (L s and L r for the transform features s and r, respectively), and ∆ = 1/L x is the quantization step. In our experiments, we empirically set the parameters related to scalar quantization as k = 2, L s = 3, and L r = 5, as proposed in [START_REF] Song | [END_REF]).

In the next step, the cross-scale joint coding is performed to aggregate the generated discrete pixel-wise codes obtained by scalar quantization into a compact image feature representation. This is performed by jointly encoding the texture codes across all scales, i.e., constructing multiple feature code maps across multiple scales (cf. Figure 3.9). The first feature code map, referred to as Adjacent-Scale Coding (AS C), is obtained by jointly encoding the quantized texture codes of the transform feature subset {g, d, s} across two adjacent scales (e.g., ( σ 1 , σ 2 ) , ( σ 2 , σ 3 ), etc). For the adjacent scale pair ( σ i , σ i+1 ) (i = 1, 2, . . . , N σ -1), the feature code map AS C value of the pixel (x, y) in the connected sub-image I is composed as follows:

c i (x, y) = 2 j=1 (L s) j-1 y s x, y; σ i+ j-1 + (L s) 2          2 j=1 (L d) j-1 y d x, y; σ i+ j-1          + (L s) 2 (L d) 2          2 j=1 (L g) j-1 y g x, y; σ i+ j-1          (3.30)
y s x, y; σ i+ j-1 , y d x, y; σ i+ j-1 , and y g x, y; σ i+ j-1 are the quantized texture codes of the transform features s, d, and g at scale σ i . L s, L d and L g are the quantization levels for features s, d and g, respectively. We empirically set L s = 3 and L d = L g = 2. Based on the AS C encoding, two feature code maps are generated: c 1 (i.e., AS C1) at two adjacent scales ( σ 1 , σ 2 ) = (1, 2), and c 2 (i.e., AS C2) at ( σ 2 , σ 3 ) = (2, 4) (cf. Figure 3.9). Next, we perform another joint scale encoding, referred to as Full-Scale Coding (FS C), where the transform feature subset {r} is jointly encoded over all N σ scales (σ 1 , ..., σ N σ ). The feature code map FS C value of the pixel (x, y) in the connected sub-image I is calculated as follows:

c N σ (x, y) = N σ j=1 (L r) j-1 y r x, y; σ j (3.31)
y r x, y; σ j is the quantized texture codes of the transform features {r} at the scale σ j . L r is the quantization level for the features {r}. The third feature code map c 3 (i.e., FS C) is computed at three adjacent scales (σ 1 , σ 2 , σ 3 ) = (1, 2, 4).

Step 4: Code maps encoding via HOG operator. As shown in Figure 3.9, the proposed technique is to portion each obtained feature code map into small spatial regions (blocks)

and encode each of them via the HOG operator [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]) to generate the corresponding HOG histogram. Concatenating the histograms of all the regions forms the we compute their respective HOG feature histograms using gradient detectors. Formally, each pixel of each block B m t is convolved with the simple convolution kernel defined as follows:

Gr x = B m t (x + 1, y) -B m t (x -1, y) (3.32) Gr y = B m t (x, y + 1) -B m t (x, y -1) (3.33)
Gr x and Gr y are the horizontal and vertical components of the gradients, respectively.

HOG descriptor is computed from the occurrence of oriented gradients, i.e., magnitude and direction, within rectangular non-overlapping cells (R-HOG) of the feature block B m t . The gradient orientation θ and magnitude M are calculated as follows:

M (x, y) = Gr 2 x + Gr 2 y (3.34) θ (x, y) = tan -1 Gr y Gr x (3.35)
Each block B m t,t=1,...,N b in the feature code map c m,m=1,...,N σ contains N cell non-overlapping cells and 9 bin histograms per cell. These histograms are then concatenated to construct a (N cell × 9)-dimensional feature vector V m t,t=1,..,N b , which is then normalized by applying L2 block normalization [START_REF] Lee | Accelerating histograms of oriented gradients descriptor extraction for pedestrian recognition[END_REF]) as follows:

h m t = V m t V m t 2 + ε (3.36)
h m t is the normalized (N cell × 9)-dimensional feature vector and ε is a small value close to zero.

Subsequently, each feature code map c m is henceforth characterized by its concatenated histogram H m using Eq. 3.37: 

H m = N b t=1 h m t (3.
H = [H 1 , H 2 , H 3 ], which is a (N cell × 9 × N b × (N σ = 3))-dimensional image feature descrip- tor.
Note that the performance of the system depends significantly on the number of blocks and cells (N b and N cell , respectively). Indeed, the optimal settings of these parameters for each tested database are determined by extensive experiments discussed in Chapter 5 (cf. Section 5.3.3.2). Step ( 1)

Step ( 2)

Step ( 3)

Step ( 4 are formally defined as follows:

G (x, y; σ) = 1 2πσ 2 exp - x 2 + y 2 2σ 2 (3.38) G θ 1 = cos(θ)G x + sin(θ)G y (3.39) G θ 2 = cos 2 (θ) G xx -sin (2θ) G xy + sin 2 (θ) G yy (3.40) G (x, y; σ) is defined
I θ 1 = G θ 1 * I = cos (θ) L x + sin(θ)L y = L 2 x + L 2 y sin (θ + φ) (3.41)
where φ = arctan L x L y and

I θ 2 = G θ 2 * I = cos 2 (θ) L xx -sin(2θ)L xy + sin 2 (θ)L yy = 1 2        L xx + L yy + L xx -L yy 2 + 4L 2 xy cos (2θ -ψ)        (3.42)
where ψ = arctan 

I θ 1max = L 2 x + L 2 y (3.43) I θ 2max = 1 2        L xx + L yy + L xx -L yy 2 + 4L 2 xy        (3.44) I θ 2min = 1 2        L xx + L yy - L xx -L yy 2 + 4L 2 xy        (3.45)
Following [START_REF] Varma | A statistical approach to material classification using image patch exemplars[END_REF] This step captures the local texture structures of the writing, and computes their correlation in the input component sub-image. The gradient magnitude g is the first transform feature, simply defined by: g

= I θ 1max = L 2 x + L 2 y .
The extrema difference feature d is calculated as:

d = I θ 2max -I θ 2min = L xx -L yy 2 + 4L 2 xy (3.46)
The feature s (the shape index) is given by:

s = 1 2 - 1 π arctan       - I θ 2max + I θ 2min I θ 2max -I θ 2min       = 1 2 - 1 π arctan             -L xx -L yy L xx -L yy 2 + 4L 2 xy             (3.47)
The fourth transform feature r (mixed extrema ratio) is computed as given in Eq 3.48:

r = 2 π arctan d g = 2 π arctan       I θ 2max -I θ 2min I θ 1max       = 2 π arctan             L xx -L yy 2 + 4L 2 xy L 2 x + L 2 y             (3.48)
Full-scale map encoding via HOG operator. This encoding step aims to construct a compact feature map over multiple scales. It performs a quantification of the generated transform features F = {g, d, s, r} into a full-scale code map, i.e., a quantitative feature code map at (σ 1 , σ 2 , σ 3 ) = (1,2,4). As shown in Figure 3.10, each transformation subset, viz.

{g}, {d}, {s} or {r}, comprises three feature sub-images at three scales σ 1 , σ 2 and σ 3 , re- 

spectively: g = g σ 1 , g σ 2 , g σ 3 , d = d σ 1 , d σ 2 , d σ 3 , s = s σ 1 , s σ 2 , s σ 3 ,
G = g σ 1 • g σ 2 • g σ 3 i j = g σ 1 i j • g σ 2 i j • g σ 3 i j (3.49) D = d σ 1 • d σ 2 • d σ 3 i j = d σ 1 i j • d σ 2 i j • d σ 3 i j (3.50) S = s σ 1 • s σ 2 • s σ 3 i j = s σ 1 i j • s σ 2 i j • s σ 3 i j (3.51) R = r σ 1 • r σ 2 • r σ 3 i j = r σ 1 i j • r σ 2 i j • r σ 3 i j (3.52)
Next, the four holistic feature matrices G, D, S and R are concatenated horizontally/vertically to form the full-scale code map FC (cf. Figure 3.10). Then, FC is partitioned into N bk blocks Bk t,t=1,..,N bk (without overlap) encoded via the HOG operator to generate their respective HOG histograms:

Grad x = Bk t (x + 1, y) -Bk t (x -1, y) (3.53) Grad y = Bk t (x, y + 1) -Bk t (x, y -1) (3.54)
Grad x (horizontal) and Grad y (vertical) are the gradients. Oriented gradient occurrences, i.e., magnitude and direction computed within rectangular non-overlapping cells (R-HOG), define the HOG descriptor: 

Mg (x, y) = Grad 2 x + Grad 2 y (3.55) θg (x, y) = tan -1
i , i = 1, 2, • • • , n,
N σ = 3: σ 1 = 1, σ 2 = 2,
G = g σ 1 • g σ 2 • g σ 3 ; D = d σ 1 • d σ 2 • d σ 3 ; S = s σ 1 • s σ 2 • s σ 3 ; R = r σ 1 • r σ 2 • r σ 3 ; //
η C j w x , C k w r f = D im n=1 |H C j wx (n) -H C j w r f (n)| (3.

4.2.1/ IMAGE SEGMENTATION METHOD

Image preprocessing and segmentation is an essential step in improving writer identification performance. As shown in Figure 4.1, each handwritten input sample is segmented: into word images and connected component sub-images. This step is critical because we need to isolate each word from the others and separate the individual connected components in writing. For word segmentation, we employ the same scale-space technique as in [START_REF] Manmatha | Scale space technique for word segmentation in handwritten documents[END_REF]), which is based on the use of blob analysis and Gaussian filters. This segmentation algorithm is fast, easy to implement 1 and, more importantly, ensures that one gets satisfactory segmentation results. As for the second segmentation, different regions of interest are extracted from the segmented word images, called connected components. This process is performed using a labeling function that assigns a small bounding box around each connected component, i.e., determines all connected neighbor pixels that form a connected writing trace. Each truncated connected component is labeled with its specific class (writer). To quantify the writing content within each component, all connected neighbor pixels with non-significant information such as diacritics and random writing traces are removed. To discard these unwanted details, which are either generated during the image segmentation step or filled with the original background, a size-based thresholding procedure is applied to the connected components using a small threshold σ (<< 50 × 50). An example of preprocessing and segmentation Chinese-English sample is shown in Figure 4.2.

4.2.2/ FEATURE LEARNING

Feature extraction in writer identification is considered as an important milestone that allows characterizing the repeated patterns of the writing style. To extract such relevant features, a well-designed and effective feature extraction method is required. If these features are poorly extracted from the writing, the system will not perform correct writer identification even with a good classifier. At this stage, there is a need to extract explicit writing style features and find descriptive details that reflect individual writing habits. This 

Fine-tuning process

Training samples of the tested database illustrates the concept of the proposed system. Each step is described in detail below.

Text word images

Training documents (known writers)

Testing documents (unknown writers)
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Connected component subimages
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Characterize and classify all connected component sub-images of each tested document;
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Step 3/ scenario 2: score averaging componentdecision

Label predictions of the testing samples based on similarity scores of connected components;

Step 3/ scenario 1: Classification using distance metric

Deep testing features Deep training features

DeepWINet is used as a feature learning representation WRITER IDENTIFICATION Figure 4.6: Architecture of the proposed system.

4.3.1/ COMPONENT SEGMENTATION

Each handwritten document is segmented into words and then from word images into connected component sub-images. In this step, we need to separate each word from the others. Therefore, we use blob analysis and Gaussian filters as reported in [START_REF] Manmatha | Scale space technique for word segmentation in handwritten documents[END_REF]) to perform scale-space coding for word segmentation. This technique gives better results which is conceptually simple 2 yet fast in processing time. The segmented words are then fed to a labeling approach to extract different regions of interest called connected components, which are the main input of our DeepWINet CNN network. This labeling algorithm detects all connected neighbor pixels that form a connected writing trace, and then assigns a bounding box to each of them. Each connected component sub-image is labeled to specify its respective writer (class). Non-significant components such as diacritics and accidental writing traces are discarded using a size-based threshold with a small threshold of σ (50×50). An example of component segmentation is shown in Figure 4.7.

4.3.2/ DEEPWINET CNN NETWORK

At this level, the objective is to find and capture descriptive details contained in the segmented components that reflect the writing habits of each writer. For this, we take advan- 

R: DIS M(Q, R) = 1 N Q N Q j=1 min{dist CP j Q , CP 1 R , dist CP j Q , CP 2 R , . . . , dist CP j Q , CP N R R } (4.1)
where 

N Q = card(Q) is
dist CP j Q , CP k R = Dims t=1 (V CP j Q (t) -V CP k R (t)) 2 V CP j Q (t) + V CP k R (t) (4.2)
where Dims is the feature vector dimensionality, V CP j Q is the extracted deep feature vector of the connected component CP j Q , and V CP k R is the deep feature vector of the connected component CP k R . Next, we arrange in a hit-list all dissimilarity measures between the query document Q and all the training ones R n , n = 1, ..., η. η is the total number of training documents. The authenticity of the query document Q is then recognized as the writer of the training document that records the minimum dissimilarity:

WriterID (Q) =argmin{DIS M (Q, R 1 ) , . . . , , . . . ,DIS M Q, R η ) (4.3)
Scenario 2: scores averaging using the proposed DeepWINet (deployed as an endto-end CNN network). In this scenario, the writer identification is performed based on prediction scores of the tested connected components, obtained from DeepWINet CNN model (cf. Figure 4.6). Given a query document, the classification procedure is as follows: (1) the computation of the predicted scores corresponding to the input connected components using DeepWINet. In doing so, we inputted the ith connected component Analyzing historical documents is a difficult task that is usually accomplished by trained humanists. However, there are still challenges in identifying historical writers when documents have particularly complex handwriting styles. The ICFHR2020 competition [START_REF] Seuret | ICFHR 2020 Competition on Image Retrieval for Historical Handwritten Fragments[END_REF]) investigates the performance of large-scale retrieval of historical document fragments based on document identification, i.e., identifying both the page and writer IDs.

To simulate fragments, [START_REF] Seuret | ICFHR 2020 Competition on Image Retrieval for Historical Handwritten Fragments[END_REF] extracted random snippets of text from historical document images called historical fragments. The authors used a semi-automatic technique to generate a large database consisting of more than 120 000 historical fragments written by 9800 writers from about 20 000 document images.

These fragments with random shapes and non-straight edges are generated using a free, open-source fragmentation technique 3 developed by [START_REF] Seuret | ICFHR 2020 Competition on Image Retrieval for Historical Handwritten Fragments[END_REF] based on the use of the diamond-square algorithm originally proposed in [START_REF] Fournier | Computer rendering of stochastic models[END_REF]) and mainly used to create height maps in video games. In this way, they generated two types of fragments: (i) fragments with holes and completely random shapes, with no constraint other than being in one piece. (ii) fragments generated by cutting the historical documents using horizontal and vertical non-linear polygonal chains, resulting in a more rectangular shape, with the constraint that the chains must always move forward along an axis. Figure 4.11 shows some examples of historical fragments used in the competition. The database is publicly available in [START_REF] Seuret | ICFHR 2020 Competition on Image Retrieval for Historical Handwritten Fragments[END_REF]).

The historical documents are collected by many institutions and made available as manuscripts, letters, and charters. Some historical documents are collected from the publicly available Historical-IR19 test set in [START_REF] Christlein | ICDAR 2019 competition on image retrieval for historical handwritten documents[END_REF]). Some other historical samples include a corpus of books written in the European Middle Ages, mainly from the 9th to 15th centuries CE. The letters were provided by the University Library Basel 4 where the IDs of the writers are given in a metadata.

The two main tasks of the ICFHR2020 contest are: (1) finding all similar fragment patches belonging to the same writer ID based on writing style, and ( 2 For training, the Adam optimizer proposed in [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]) is used with a learning rate of 0.0001, 10 epochs, and a mini-batch size of 40. In the CNN architecture, higher-level features are captured by deeper layers. The average pooling layer is activated to extract learned deep features of the test fragment images. More specifically, the activations of the average pooling layer, which consists of a 2048-deep feature vector of each network (Net1 and Net2), are concatenated, resulting in a 4096-global feature representation for each fragment image. Finally, the distance computation is performed using the χ 2 distance metric. Note that we experimentally evaluated several distance metrics, including correlation, Hamming, Manhattan, Chi-Square, Bhattacharyya, cosine, and Euclidean. The correct performance (on the training set) is obtained with the Chi-Square metric, which is considered as an efficient distance in pattern recognition problems.

We have submitted two variants of our approach. The first model (T woPath writer ) is trained with writer labels, and the second one (T woPath page ) is trained with page labels. Both models achieved excellent results, and our T woPath writer won the first place in Task 2 (Image Retrieval) of the ICFHR2020 competition. The experimental results and discussions are reported in Chapter 5 (Section 5.6.2).

4.5/ CONCLUSION

To further improve the task of offline text-independent writer identification, we exploited The DeepWINet model was used as a first scenario to compute CNN activation features from the connected components of the writing. Then, the features are fed into a nearestneighbor classifier using Chi-square similarity as a distance metric to perform writer identification. The second scenario aims to train DeepWINet as an end-to-end CNN network, where the predicted scores are averaged using a new and efficient strategy, the score-averaging component-decision combiner. The next chapter is devoted to validating the effectiveness and superiority of our methods by comparing their performance with the literature.

This chapter also presented our proposal for retrieving historical documents based on writer identification. In this context, a competition was announced at the ICFHR2020 conference to award the best performing learning system in image retrieval for historical handwritten fragments. The goal is to find all similar fragment images belonging to the same writer ID (Task 1) and find all fragment images segmented from the same page ID (Task 2). We contributed with an effective approach based on two CNN networks sharing the same feature learning process, each trained with different fragment patches. The Ch-square distance metric was used to compute the similarities between fragments. The overall approach achieved higher retrieval scores and won first place in Task 2 (Page Retrieval) and second place in Task 1 (Writer Retrieval). These results are discussed in the next chapter.

EXPERIMENTS AND DISCUSSIONS

5.1/ INTRODUCTION

In order to evaluate our proposals in Chapters 3 and 4 and rank them in the literature, this chapter is devoted to the study of experimental results obtained with our different approaches to text-independent offline writer identification. A detailed description of the benchmarks used with the standard protocol setup are provided for the evaluations. To the best of our knowledge, we were one of the first to perform extensive experiments on 10 challenging handwritten databases with different languages (English, Arabic, Dutch, Chinese, French, German, and Greek). For each proposed texture-based system (reported in Chapter 3), a series of experiments are performed to investigate and evaluate the stability of the system performance under different configurations. This includes analyzing the key parameters of each method and studying the system sensitivity as a function of the number of writers and the amount of data for each benchmark studied. For the CNNbased approaches discussed in Chapter 4, we list comprehensive evaluations to validate their effectiveness in better characterizing the writing variability. The implementation details and training options of the CNN models are also presented. In a separate section, we compare and discuss our achieved performance (complete results of our proposals) with the current state-of-the-art. This chapter also presents the evaluation protocol and error metrics used in the ICFH2020 competition for image retrieval for historical handwritten fragments and provides the retrieval results with a performance comparison with the participants' approaches.

5.2/ BENCHMARK AND EXPERIMENTAL SETUP

Availability of datasets is one of the basic requirements for development and evaluation in any research area. For writer identification, there are various handwriting databases reported in the literature with diverse script languages. This section provides a detailed 105 description of well-known benchmarks used to evaluate the performance and effectiveness of our proposed approaches along with the current state-of-the-art. Extensive experiments are conducted on 10 popular publicly handwritten databases: (1) English IAM [START_REF] Marti | The IAM-database: an English sentence database for offline handwriting recognition[END_REF]), ( 2) Arabic IFN/ENIT [START_REF] Pechwitz | IFN/ENIT -database of handwritten Arabic words[END_REF]), ( 3) English ICDAR2013 [START_REF] Louloudis | Icdar 2013 competition on writer identification[END_REF]), ( 4) Dutch Firemaker [START_REF] Schomaker | Forensic writer identification: A benchmark data set and a comparison of two systems [internal report for the Netherlands Forensic Institute[END_REF]), ( 5) English CVL [START_REF] Kleber | CVL-DataBase: An Off-Line Database for Writer Retrieval, Writer Identification and Word Spotting[END_REF]), ( 6) English CERUG-EN (He and Schomaker (2017b)), ( 7 Firemaker. The Firemaker database [START_REF] Schomaker | Forensic writer identification: A benchmark data set and a comparison of two systems [internal report for the Netherlands Forensic Institute[END_REF]) contains Dutch document samples of handwritten text of variable content, scanned at 300 dpi and grayscale, collected from 250 writers, mainly students. Each writer was asked to complete four different A4 pages of handwritten text (cf. example in Figure 5.4). On page 1, five short paragraphs are written in normal handwriting, i.e., lowercase letters with some capital letters at the beginning of sentences and names. Page 2 contains another handwritten text of two paragraphs with only capital letters. On page 3, writers were asked to CERUG. This dataset disposes of Chinese-English documents scanned at 300 dpi, 8 bits/pixel, grayscale, and produced by 105 writers. Each writer is asked to fill four different A4 documents: two pages in Chinese, one page in English, and the fourth page is mixed. The English page is divided into two sub-pages, each containing one paragraph.

According to this arrangement, the English CERUG-EN subset is collected. Similarly, the English-Chinese pages are divided into two subsets to form the CERUG-MIXED dataset.

The third subset is called CERUG-CN and contains only the Chinese pages. A half-half setting is applied to the three subsets, where one sub-page in the testing and the other for training. An example of image samples from the same writer is shown in Figure 5.5.

AHTID/MW. The Arabic Handwritten Text Images Database of Multiple Writers

(AHTID/MW) [START_REF] Mezghani | A Database for Arabic Handwritten Text Image Recognition and Writer Identification[END_REF]) is an open-access database for researchers working on Arabic handwritten text recognition worldwide. It involves 53 individuals from different educational levels and ages with free choice of pen. Each person was asked to write 70 lines of text, collecting a total of 3710 lines of text, where each line contains an average of 6.17 words and each word has 5.53 characters. Then, 22896 word images are collected for all writers. The handwritten words are scanned and saved in PNG format as grayscale images with a resolution of 300 dpi. The database was divided into 4 sets of word images, where 3 sets are used for training and the last set is used for testing.

ICDAR2011. The ICDAR2011 [START_REF] Louloudis | ICDAR 2011 writer identification contest[END_REF]) database contains English, French, Greek, and German handwritten texts written by 26 writers. Two full pages of handwritten text for each language, for a total of 8 pages per writer. We used a subset of the ICDAR2011 database, the so-called CICDAR2011 dataset, where only the first two lines of text are truncated from each handwritten page (cf. vectors computed from all its segmented connected components. In the proposed framework (cf. Chapter 3), the classification process is performed over the Nearest Neighbor -classifier (1-NN), which is applied to the normalized feature vectors using the Hamming distance metric. The system performance is given by % (Writer Identification Rate). For all writers, the performance score is the number of testing samples, which are correctly classified divided by the total number of test samples (unseen documents). Tables 5.2 and 5.3 report the average top-1 identification rates achieved across all splits tested, as well as the rates recorded across each split separately on IFN/ENIT and IAM databases (cf. Table 5.2) and CVL and AHTID/MW (cf. Table 5.3), respectively. From these tables, it is clear that the BW-LBC operator is significantly and consistently the best descriptor in terms of overall writer identification rate on all tested databases compared to the evaluated methods. Moreover, it is easy to see that the BW-LBC operator shows significant performance stability for all subdivisions (in training and test sets) across the four tested datasets, where the identification rates tend to converge to the average accuracy.

As for the optimal parameters of the BW-LBC method, it is noteworthy that they are empirically determined for all tested databases through the extensive experiment reported in Section 5.3.1.2.

The window size W × W of 300 × 300 pixels of the connected components with the number of blocks N × N = 49 enable to achieve the best top-1 average accuracies of 96.47% and 88.99% on the IFN/ENIT and IAM databases, respectively, while the top-1 average of 98.38% is recorded for the CVL database with the window size W × W of 400 × 400 pixels and the number of blocks N × N = 49. For the AHTID/MW database, an identification rate of 99.53% is recorded as the top-1 average accuracy with the number of blocks N × N = 16 and 300 × 300 pixels in the window size. As for the evaluated state-of-the-art descriptors, none of them performs well in the tested datasets. For example, considering the LTP descriptor, which is considered the 2nd best descriptor in the IFN/ENIT database, it achieves an identification rate of 82.33%, which is low compared to the one obtained with BW-LBC descriptor (96.47%). From the results shown in Figures 5.8 and 5.9, it can be seen that the pair of values (300 × 300 pixels, 7 × 7) is more suitable for characterizing the writing style for both the IFN/ENIT and IAM databases, as it allows recording the highest scores of 88.99% and 96.47%, respectively. The window size of 400 × 400 pixels with (N×N=49) and (N×N=64)

prove to be the best configurations in the CVL database, as shown in Figure 5.10 since it gives an identification rate of 98.38%. On the AHTID/MW database, the highest identification rate (99.53%) is obtained with block numbers of 16 and 25, and this is independent of the window size, as shown in Figure 5.11. Moreover, it can be seen from Figure 5.11 that the window size W×W does not affect the identification rate since the BW-LBC descriptor seems to be matched to the word images available in the AHTID/MW database.

The small size of the feature vector leads to a reduced computation time for the classification. Thus, since both the number of blocks (N×N=64) and (N×N=49) performed better in the CVL database, the second value is set, which corresponds to a 49-dimensional feature vector. Similarly, the number of blocks of (N×N=16) is used as the optimal value in experiments for the AHTID/MW database. From the variation of the identification rate as a function of the number of blocks, it can be concluded that the block size should be sufficiently large to contain a significant amount of information about the writing style for better characterization of the writer to ensure acceptable identification performance.

5.3.1.3/ IMPACT OF THE NUMBER OF WRITERS ON THE SYSTEM PERFORMANCE

In this section, our motivation to perform a second set of experiments is to investigate the system performance's stability as a function of the number of writers. The idea is to analyze how the system behaves while varying the number of writers Nb from 10 to the complete set of writers in each database. It is worth noting that the average top-1 identification rate for each value of Nb and each descriptor is recorded over ten random subdivisions for the IAM and IFN-ENIT databases and after 4-fold cross-validation for the CVL and AHTID-MW databases. Figures 5.12,5.13,5.14 and 5.15 illustrate the obtained top-1 writer identification results. On the one hand, it can be observed that the higher the number of writers, the lower the system performance, especially when LBP, LTP, and LPQ are used as feature extraction methods. From the Figures 5.12,5.13,5.14 and 5.15, it can be seen that the performance of writer identification gradually decreases as the number of writers increases, which is quite normal since the classification is done by comparing the dissimilarity measure of each writer with those of a large number of writers (the complexity of identification between writers is gradually increased). The results obtained from these figures are consistent with the expected relative behavior of the proposed BW-LBC operator. It achieves the highest average accuracy on all tested databases and shows the consistent performance when the number of writers exceeds 150 and 200 writers on the IFN/ENIT and IAM databases, respectively. As for the CVL and AHTID/MW databases, the system performance shows significant performance stability for all Nb values over the evaluated LTP, LBP, and LPQ descriptors when using the BW-LBC model.

5.3.1.4/ IMPACT OF THE NUMBER OF HANDWRITING SAMPLES ON THE SYSTEM PER-

FORMANCE

The main reason for performing this evaluation is to further assess the stability of system performance as a function of the amount of handwritten data used in the training and test sets. To this end, we conduct extensive experiments that record the accuracy of writer identification over a varying number of training images. On the IFN/ENIT and IAM databases, the writer identification process starts with at least 30% of the handwritten images available per writer in the training set versus 70% in the evaluation set. We then gradually increase the training set until we reach a percentage of 70%. This setup cannot be applied to the remaining two databases (CVL and AHTID/MW) as they only offer three configuration possibilities. These include 75%/25% (i.e., 75% of handwritten images in the training set versus 25% in the test set) and 25%/75% configurations with average accuracy after 4-fold cross-validation. The final result in the case of the 50%/50% configuration (half-half setup) is recorded after 6-fold cross-validation (i.e., six permutations).

This constraint is directly related to the number of samples used per writer where the AHTID/MW database is provisionally divided into four subsets, while the CVL database (setup-1) contains four documents for each writer. Tables 5.4 and 5.5 report the classification results obtained. It can be easily observed that the identification rates recorded ). The number N z × N z is set for each value of parameter F from 4 to 36 zones and the identification rate is recorded for each setting of (F, N z × N z ). Figures 5.16 and 5.17 show the impact of the feature extraction parameters on the overall system performance for the IFN/ENIT, IAM, CVL, and AHTID/MW databases. For CVL and AHTID/MW databases, the average accuracy after 4-fold cross-validation is plotted for each pair of values (F, N z × N z ) to assess the system performance.

Analyzing the classification rates shown in Figures 5.16 the optimal value of (N z ×N z , F) is the one, that minimizes the dimensionality (D c =(N z ×N z )× ( D im F )) of the feature histogram, as shown in Table 5.6 (the lower the dimensionality D c , the higher the dimensionality reduction factor). For the English IAM database, when LPQ is used as the feature extraction method, the setting (N z × N z =16, F=8) as shown in Figure 5.16 (b) proves to be more suitable for characterizing the writing style as it realizes the higher identification rate of 91.17% with D c = 512. On the Arabic AHTID/MW database, the setting (N z × N z =9, F=8) using the LPQ operator proved to be the best configuration, yielding an average top-1 accuracy of 99.53% with D c = 288. From these results, the variation in identification rate as a function of the number of zones N z × N z suggests that the feature zones of the normalized feature image ( FC F ) should be sufficiently wide to include more discriminative measures in characterizing writer individuality for acceptable identification performance.

5.3.2.2/ CLASSIFICATION RESULTS

Table 5.7 summarizes the average top-1 identification rates of the proposed system over the four tested splits on CVL and AHTID/MW databases, and the top-1, top-3, and top-5 writer identification rates on IFN/ENIT and IAM databases are shown in Table 5.8. As can be seen from these tables, the identification rates recorded by the evaluated texture descriptors are more or less consistent across the four tested databases. Furthermore, as shown in Table 5.7, the evaluated descriptors show significant performance stability across the four splits of the CVL and AHTID/MW databases, with identification rates tending to be close to average accuracy. Comparing the effectiveness of the tested descriptors in characterizing the handwritten images, the LPQ operator consistently emerges as the best descriptor, providing high identification rates in all tested databases. The results presented in Tables 5.7 and 5.8 correspond to the best configurations of N z × N z and F, which can be used to obtain the highest identification rates. The optimal settings of these parameters are given as follows:

• In the CVL database, the best average accuracy (98.62% using the LPQ descriptor) is recorded with the number of zones N z × N z = 16 and the dimensionality reduction factor F = 14, yielding 304 bins of the final LPQ feature histogram (according to

D c =(N z × N z ) × ( D im F )).
• The number of zones N z ×N z = 9 with dimensionality reduction factor F = 8 allows the LPQ descriptor to achieve the highest performance (score of 99.53% with D c = 288) on the AHTID/MW database.

• In the IFN/ENIT database, the best top-1 identification rate of 97.81% is obtained when the LPQ descriptor is used as a feature extraction method with a number of zones of N z × N z = 16 and F = 14 for the dimensionality reduction factor (D c = 304).

• Using the LPQ descriptor, the setting (N z × N z =16, F=8) proved to be the best configuration for characterizing the writing style on the IAM database, achieving the best top-1 identification rate of 91.17% with D c = 512. 5.9, 5.10, 5.11, and 5.12 show the top 1 identification rates along with the processing time for each feature extraction method and under different values of parameter F on a subset of writers (150 writers) from the IAM, IFN/ENIT, and CVL databases, and on 53 writers from AHTID/MW database.

In this experiment, the optimal value of the parameter N z × N z is determined for each feature extraction method and each database. It can be seen that there is a general trend of increasing the identification rate, depending on the descriptor and dimensionality reduction factor F used.

The processing time for the classification of 150 writers from IAM and IFN/ENIT gradually decreases as the dimensionality reduction factor (F) increases, which is natural as it corresponds to the decrease in the final dimensionality of the feature histogram, i.e., high vector dimensionality requires more time to compare the writing samples based on the Hamming distance of their respective feature vectors. The best results (identification rates and processing time) are shown in bold in Tables 5.9,5.10,5.11,and 5.12. From these results, we can deduce that with the factor F (where F > 1), we achieve the same identification rates (on IAM and IFN/ENIT) as without dimensionality reduction (F = 1)

with lower processing time. For example, considering the LPQ operator, which gives top results in the IAM database, the highest score of 95.33 % is recorded for both F = 1 and F = 14, and the computation time is significantly reduced with a rate of 17.41% with F=14.

As shown in Tables 5.11 and 5.12, the best results (identification rates and processing time) in CVL and AHTID/MW databases are obtained with the dimensionality reduction factor F (F > 1). This experiment evaluates the stability of the system performance according to a different number of writers. For this purpose, we studied the system behavior by varying the number of writers N w from 10 to the total amount of writers for each database. Similar to the previous experiments, the full 4-fold cross-validation is used in CVL and AHTID/MW databases, recording the average top-1 identification rate for each descriptor and each value of N w . The top-1 identification accuracy vs. the number of writers N w for the IFN/ENIT, IAM, CVL, and AHTID/MW databases is shown in Figures 5.18,5.19,5.20,and 5.21, respectively. For all tested descriptors, it can be seen that the identification performance gradually decreases as the number of writers grows. For example, considering the IFN/ENIT database, the identification rate starts at 100% for 30 writers and drops to With LPQ, as expected, the overall system achieves the highest identification rates on the complete set of writers over each tested database. Moreover, it shows significant and consistent performance on the AHTID/MW database for all N w values (cf. Figure 5.21).

5.3.2.4/ STABILITY OF THE SYSTEM PERFORMANCE AS A FUNCTION OF THE NUMBER OF HANDWRITING SAMPLES

This experiment evaluates the stability of the system performance on a different number of handwritten samples (used in the training and test sets). In other words, we empirically record the writer identification rate corresponding to different training and test partitions for each tested database. Then, for IFN/ENIT and IAM databases, the classification process is performed using 70% of the handwritten images available per writer in the test set, and the remaining 30% are used as the training set. After that, the number of samples in the training set is progressively increased by 10%, until 70% is reached. As for the CVL and AHTID/MW databases, we cannot use the training/testing partition of (30%/70% up to 70%/30%) because the AHTID/MW database is divided into 4 subsets in advance, while the CVL database (setup-1) contains four documents for each writer. For this reason, we could only apply the following configurations: 1) 75%/25% (i.e., 75% of handwritten images in the training set versus 25% in the test set) and 25%/75% partitions with an average accuracy recorded after 4-fold cross-validation; 2) 50%/50% partition (half-half configuration) using a 6-fold cross-validation setup (i.e., 6 possible permutations). The obtained classification results are summarized in Tables 5.13 and 5.14. As depicted in Table 5.13, the highest identification performance (for all tested feature extraction operators) on the IFN/ENIT and IAM databases is obtained when an appropriate amount of handwritten samples is used in both the test and training sets (partitioning of 60%/40%).

For example, in the case of the LPQ operator, using 60% of the handwritten samples available per writer in the training set, the system achieves a score of 97.81% and 91.17% on the IFN/ENIT and IAM databases, respectively. The same observation can be made in Table 5.14. The partition of (75%/25%) performed better on CVL (best score of 98.62% using LPQ) and AHTID/MW (best score of 99.53% using LPQ) databases for all evaluated feature extraction operators. Gradient Patterns) feature method, its feasibility and effectiveness in characterizing the large variability of handwriting, we compared its performance with the block-wise local binary count (BW-LBC) operator [START_REF] Chahi | Block wise local binary count for off-Line text-independent writer identification[END_REF]), LBP [START_REF] Ojala | Multiresolution grayscale and rotation invariant texture classification with local binary patterns[END_REF]), LTP [START_REF] Tan | Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions[END_REF]), LETRIST [START_REF] Song | [END_REF]), and LPQ [START_REF] Ojansivu | Blur Insensitive Texture Classification Using Local Phase Quantization[END_REF]) feature methods.

Table 5.15 shows the top-1, top-3, and top-5 writer identification rates recorded by the CLGP method along with those from LETRIST, LPQ, LTP, LBP, and BW-LBC on the IFN/ENIT, IAM, Firemaker, and ICDAR2011 databases. Table 5.16 depicts the average top-1 identification rates over the four splits tested on the AHTID/MW and CVL databases.

The CLGP operator performs impressively and systematically best over the evaluated descriptors on all tested databases. Moreover, it can be seen from Table 5.16 that the CLGP operator shows consistent classification performance over all splits on the CVL and AHTID/MW databases as the identification accuracies converge to their average.

As stated in Chapter 3 (cf. Section 3.2.2.3), the CLGP is a

(N cell × 9 × N b × (N σ = 3))-
dimensional image feature descriptor. Indeed, setting the number of blocks N b and the number of cells N cell has an impact on the overall performance of the system. The CLGP classification results reported in Tables 5.15 and 5.16 correspond to the optimal setup of these two parameters (N b and N cell ), which are empirically determined for each tested It can be seen that the recorded processing time increases when evaluating feature methods with high histogram dimensions. This limitation is quite natural since the overall system needs more time to compare and classify the writing samples when their respective Hamming distances are used. In this experiment, the BW-LBC descriptor is the computationally fastest method (IAM: 4.9s, CVL: 7.8s, AHTID/MW: 3.9s, IFN/ENIT: 4.1s, Firemaker: 6.8s, ICDAR2011: 9.4s) thanks to its small histogram size (49 different patterns over all tested databases). From Figure 5.22, the CLGP feature method significantly outperforms all other tested feature methods (in terms of identification accuracy) across all evaluated databases. The CLGP certainly takes more time to classify writers compared to the BW-LBC descriptor. However, the processing time is not necessarily an important performance indicator for offline writer identification since no real-time applications are required (offline mode). Moreover, none of the old and current state-of-the-art systems have specified their total evaluation processing time.

5.3.3.2/ CLGP-KEY PARAMETERS ANALYSIS

This section presents the results of a comprehensive experiment to evaluate the system's overall performance with respect to the number of blocks N b and the number of cells N cell . These two settings are the key user-defined parameters of the CLGP feature method.

The identification accuracy is recorded for each pair of values (N b , N cell ), where the parameter N b is set for each setting of the parameter N cell from 1 to 16 blocks. Figures 5.23,5.24,and 5.25 show the system performance as a function of (N b , N cell ) on the IFN/ENIT, IAM, CVL, Firemaker, ICDAR2011, and AHTID/MW databases, respectively. In order to assess all possible scenarios and evaluate the system stability performance on CVL and AHTID/MW databases, the average accuracy is reported according to the 4-fold cross-validation scheme for each (N b , N cell ) setting.

From the results plotted in turn out to be the best settings on the IAM and Firemaker databases with scores of 94.06% and 97.6%, respectively. Therefore, as with the IFN/ENIT database, the setting

(N b = 2 × 2, N cell = 9
) is set as the optimal value, resulting in a CLGP feature dimension of 972 according to

D im = N cell × 9 × 1 × (N σ = 3). Similarly, (N b = 2 × 2, N cell = 9) and
(N b = 3 × 3, N cell = 9) parameter configurations seem to be empirically the appropriate way to characterize the writing style on the AHTID/MW database, as they allow to achieve the highest average score of 99.53% (cf. Figure 5.24 (d)). Obviously, the first parameter value is chosen to obtain a reduced length of the CLGP feature histogram (972 bins).

In the case of the ICDAR2011 database (cf. allows the highest performance with an average accuracy of 99.51%, as shown in Figure 5.25 (f). The variation in the classification rate is due to the number of blocks and the number of cells. For acceptable performance in writer identification, we use uniform block and cell sizes to capture a considerable amount of writing features, i.e., the window size must be wide enough and appropriate to ensure better characterization of writing style in it.

5.3.3.3/ STABILITY OF THE SYSTEM PERFORMANCE ACCORDING TO THE NUMBER OF

WRITERS

Through this experiment, we evaluate and study the stability of the system performance by varying the number of writers N bw from 10 to the total number of writers. The top-1 identification accuracy for the number of writers N bw on the IAM database (text line setup) is shown in Figure 5.26. For the BW-LBC and CLGP feature methods, it can be seen that a gradual increase in the number of writers leads to a regular and slight decrease in the system performance. However, for LETRIST, LBP, LPQ, and LTP, a sharp decrease in classification performance is observed when the number of writers increases. The two best-performing feature methods are CLGP followed by BW-LBC, all of which provide high classification accuracy starting at 96% for 25 writers and declines to 94.06% and 90.11%

for 657 writers, respectively. Concerning LETRIST, LPQ, LTP, and LBP, a classification accuracy of 90% is recorded using N bw = 10, and thereafter the performance acutely starts to drop to 79.14%, 75.49%, 73.51% and 68.49% respectively for a total of 657 writers. The same system behavior, i.e., performance drop, is observed in the other five 5.15. The proposed CLGP achieves the highest classification rates, making it the best performing method compared to the evaluated feature methods.

5.3.3.4/ STABILITY OF THE SYSTEM PERFORMANCE ACCORDING TO THE NUMBER OF HANDWRITING SAMPLES

This evaluation explores the stability of system performance with respect to the amount of handwritten training data on the IAM (text line setup) and CVL (setup-1) databases.

Different training/testing configurations are examined, and the result of the writer identification is recorded for each configuration. In the IAM database, the writer identification process is first performed with at least 30% of handwritten data per writer for training and 70% for testing. Then, the amount of training data is gradually increased (by 10%) until reaching 70%. With the CVL database, the setup configuration 30%/70% up to 70%/30% cannot be set since four handwritten samples are available per writer. In other words, CVL only allows the specification of three possible partitions, including 75%/25% (i.e., 75% in the training data versus 25% in the test data), 25%/75%, and 50%/50% (half-half partition) at an average rate recorded under a 6-fold cross-validation scheme (4-fold cross-validation in the cases of 75%/25% and 25%/75% partitions). By this, we evaluate and investigate all likely scenarios for performing writer identification. The goal here is to validate the effectiveness and stability of the overall system in characterizing writers under different conditions.

The classification results for IAM and CVL databases are given in Table 5.17 and Figure 5.27, respectively. From the plotted results, it can be seen that the classification results obtained by each feature method increase progressively as the training data grows. The overall system typically requires an acceptable amount of learning data (suitable training/test partition) to train the classifier to identify the writers in question with high precision.

The 60%/40% partition proved to be the convenient IAM database setup, as it allows the highest performance (a result of 94.06%) when using the CLGP feature method (cf. Table 5.17). In the CVL database, the best average accuracy of 99.51% (by CLGP method) is obtained when the database configuration 75%/25% is used. From Table 5.17 and the Figure 5.27, the proposed CLGP method has significant performance stability overall database partitions compared to the evaluated descriptors. 

Training-set (%)/Test-set (%)

Writer identification average accuracy (%) for the tested datasets are shown in Tables 5.18,5.19,and 5.20. From these tables, it can be seen that LSTP is the best performing method. This high performance is due to the flexibility of LSTP and its effectiveness in characterizing local gradient variations of the writing. Moreover, the classification results in Table 5.20 show the ability of LSTP to keep the identification performance constant across all the evaluated splits. This experiment investigates the sensitivity of the system when new writers are added to the evaluations. The number of writers N writers is tuned from 10 to the total number of writers. Figure 5.31 shows the system performance (writer identification rate) as a function of the number of writers N writers in the IAM database. For LBP, LPQ, and LTP descriptors, an expected peak drop in classification rate with gradually increasing N writers is clearly noticed. However, the best performance is achieved by LSTP and BW-LBC with superiority of LSTP. They are least affected when the number of writers increases, i.e., the system's performance slightly decreases over N writers .

As shown in Figure 5.31, the classification rate for LSTP and BW-LBC methods starts at 96% for 25 writers and decreases to 96.80% and 90.11% for 657 writers, respectively.

The next ranked feature methods are LPQ, followed by LTP and LBP, all of which fail in correctly identifying writers, especially after more than 200 writers. At N writer = 10, a classification result of 90% is reported, which gradually drops to 75.49% (LPQ), 73.51%

(LTP), and 68.49% (LBP) for a total of 657 writers. This justifies the difficulty and challenge in carrying out the classification process when comparing the dissimilarity measure of each writer with that of a large number of writers. In other words, the classification pro-

90.11%

75.49% To investigate the performance stability and effectiveness of the proposed WriterINet, we study how the number of neurons of the fully connected layer FC1 of the ANN network affects the overall performance. The number of neurons is set to 512, 1024, 2048, and 4096 as indicated in Table 5.21, and the identification accuracy for each setting is recorded across all benchmarks evaluated. From the results in To investigate the ability of the DeepWINet model in characterizing the writer's style when using scenario 1, we compared its performance, i.e., top-1 and top-5 identification accuracies, with those of traditional hand-crafted descriptors (cf. Tables 5.22 and 5.23).

96.80%

These include BW-LBC [START_REF] Chahi | Block wise local binary count for off-Line text-independent writer identification[END_REF]), LBP [START_REF] Ojala | Multiresolution grayscale and rotation invariant texture classification with local binary patterns[END_REF]), LTP [START_REF] Tan | Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions[END_REF]), CLGP (Chahi et al. (2020a)), and LPQ [START_REF] Ojansivu | Blur Insensitive Texture Classification Using Local Phase Quantization[END_REF])

handcrafted descriptors, which are the best known feature methods for the task of writer identification [START_REF] Chahi | Block wise local binary count for off-Line text-independent writer identification[END_REF]; [START_REF] Hannad | Writer identification using texture descriptors of handwritten fragments[END_REF]; [START_REF] Khan | Offline text independent writer identification using ensemble of multi-scale local ternary pattern histograms[END_REF]; [START_REF] Bertolini | Texture-based descriptors for writer identification and verification[END_REF]; Chahi et al. (2019)). Note that these feature methods are applied using the same classification process as the DeepWINet model.

From the Tables 5.22 and 5.23, it can be seen that the DeepWINet model with its two versions (full and light) far outperforms all the evaluated feature methods. The performance of the hand-crafted descriptors, especially the LBP, LPQ, and LTP methods, is somewhat low as they require a large amount of texture information to perform proper feature representation. However, the features captured by our DeepWINet model are deeply learned in a convolutional pixel-wise mode, which provides much better performance. As the evaluation of scenario 2, the performance of the DeepWINet network (full and light configurations) is compared with VGG-19 [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]),

WorldImgNet [START_REF] He | Fragnet: Writer identification using deep fragment networks[END_REF]), FragNet-64 [START_REF] He | Fragnet: Writer identification using deep fragment networks[END_REF]) and

AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]) CNN networks. The identification results are reported in Tables 5.24 and5 For both scenarios 1 and 2, the full configuration of DeepWINet leads to better performance compared to the light configuration. 

5.5/ PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART

In recent years, significant progress has been made in the field of offline text-independent writer identification. Extensive effort in this area of research has focused primarily on developing new and efficient yet robust frameworks that would produce a higher performance for writer identification. However, most of these researches differ in terms of the database setting tested. Even with a common database, direct one-to-one comparisons with state-of-the-art systems are still not straightforward, mainly related to the following factors: (i) imprecision about which writers are selected for the identification process because the authors used only a subset of the evaluated handwritten database, especially in the case of the IAM and IFN/ENIT databases, and (ii) different numbers of handwritten samples (for training and test sets) per writer is used. In order to provide a fair and meaningful performance comparison of our system with the state-of-the-art systems, we only consider well-known systems evaluated on the entire set of writers for the ten tested databases in our comparative evaluation. They manage to perfectly differentiate all classes with a score of 100%. This high performance confirms the reliability and validity of our CNN-based frameworks for writer identification.

• Results on ICDAR2013. # LSTP-based approach: As shown in Table 5.27, the LSTP-based approach performs better in the ICDAR2013 database with a score of 98.4%. It outperforms all other SOTA systems so far. # WriterINet-based approach:

The framework improves the overall performance with a score of 99% outperforming our previous LSTP-based approach. # DeepWINet-based approach: From Table 5.27, it is clear that the proposed framework with the full and light versions of DeepWINet outperforms all the studied SOTA systems with identification rates of 99.8% (full) and 99.2% (light).

• Results on IAM. # BWLBC-based approach: As shown in Table 5.28, the system records a promising result on the IAM database (text line setup) with an identification rate of 90.11% (split.4 in Table 5.2). Our framework outperforms the hand-crafted system presented in [START_REF] Hannad | Writer identification using texture descriptors of handwritten fragments[END_REF]) but is still competitive to [START_REF] Khalifa | Off-line writer identification using an ensemble of grapheme codebook features[END_REF]). Note that the system in ( Mean average precision (mAP), or sometimes referred to as AP, is a popular metric for evaluating the performance of systems and models for document/information retrieval and object detection tasks [START_REF] Nicolaou | NICOLAOU, Anguelos ; DEY, Sounak[END_REF]). The mAP is used as the key performance metric to rank the winners of the two contest tasks (writer-level & page-level ). It is calculated from the submitted participants' distance matrices given in a CSV file format. The first row and the first column of the CSV file denote the query fragment and the gallery file, where the corresponding cell entries contain the per-patch distances. The average precision (AP) is computed for each query fragment Q. Thus, the precision is calculated over all ranks i of the retrieved list.

AP Q = 1 D R i=1 Pr Q (i) × IF Q (i) (5.1)
The parameter R is the size of the retrieved list, where D is the number of relevant fragments to the query Q. Pr Q (i) is the precision at rank i and IF Q (i) is an indication function that returns 1 if the fragment at rank i is relevant and 0 otherwise. An evaluation platform1 to measure the mAP was provided to participants to perform validation tests (from the training set). Top-1 accuracy is also used as an evaluation metric in the competition. It is defined as the average accuracy at rank 1. In addition, Pr@10 and Pr@100 are provided as error metrics to investigate the participants' methods' performance further. Formally, the Pr@K is calculated as follows:

Pr@K = 1 N N j=1 R j, K min R j, N , K (5.2)
where N is the total number of fragments and R j, n is the number of relevant samples for query fragment j up to rank n. The min(, K) is added to indicate whether a method can achieve higher precision for each fragment.

5.6.2/ EXPERIMENTAL RESULTS

As mentioned earlier, the 20 019 test fragments are classified at two different levels:

(1) writer level (Task 1) and ( 2 The performance is evaluated using the error metrics mAP, top-1 accuracy, Pr@10 and Pr@100. The results of Task 1, i.e., retrieving all similar fragment images matching the same writer ID, are summarized in Table 5.30. From the results of Task 1, it can be seen that the UBFC method achieved the best mAP score of 33.7%, followed by our CNN model T woPath writer with a score of 33.5%. However, the T woPath writer network is the best-performing system with the highest scores on top-1 accuracy, Pr@10 and Pr@100.

The T woPath page network is competitive in terms of accuracy; it is the top 3 best perform-ing system with a score of 61.1%, and the top 4 system in terms of mAP, Pr@10 and Pr@100. As for the results of Task 2 (cf. Table 5.31) (retrieving all similar fragment images corresponding to the same page ID), the highest performance is achieved with our T woPath writer network over all error metrics. The T woPath page network is ranked second best method regarding the top 1 accuracy metric with a score of 27.4% and ranked the top 4 system in terms of the mAP, Pr@10 and Pr@100 metrics. We believe that the drop in performance when using the T woPath page network compared to the other T woPath writer variant is related to the training process. Since validation data was not available during the submission phase, the T woPath page network was over-fitted, which affected the overall performance for fragment retrieval (from the test set). The performance of the RUG method is somewhat low. One possible reason for this could be the complex irregular shapes of the fragments, as the method fails to characterize the different amounts of text within these fragments accurately. [START_REF] Seuret | ICFHR 2020 Competition on Image Retrieval for Historical Handwritten Fragments[END_REF] explained that this method was initially introduced for word images and had some training issues.

In summary, the mean Average Precision (mAP) determines the winner of the two tasks.

Our proposed approach won first place in Task 2 and second place in Task 1. A comprehensive description of the benchmarks used with their standard protocol setup is also given. Extensive experiments are conducted on 10 challenging handwritten databases in different languages, including English, Arabic, Dutch, Chinese, French, German, and Greek. For texture-based systems, we analyzed the key parameters of each feature technique and investigated the sensitivity of system performance as a function of the number of writers and the amount of data for each database tested. All of our proposed feature methods showed a high ability to handle and better characterize the writing variability. Moreover, the BWLBC method proved to be very efficient in computation time due to its small dimension size. Texture-based approaches achieved competitive, or the highest SOTA performance in the benchmarks studied.

CNN-based systems are evaluated under different conditions and configurations. For the WriterINet framework, we analyzed how the number of neurons of the fully connected layer FC1 of the ANN network affects the overall performance through an extensive experiment. The DeepWINet network was evaluated in two scenarios: scenario 1 consists of using DeepWINet as a feature learning representation and the Chi-Square -nearest neighbor rule as a classifier; scenario 2 evaluates DeepWINet as an end-to-end CNN network. Experiments have shown that scenario 1 leads to better performance compared to scenario 2. This is due to the dual comparison mechanism used in scenario 1 to classify deep feature vectors. In fact, the performance is further improved as distance and dissimilarity metrics are jointly used to compare and efficiently match deep features. In summary, our CNN-based systems proved their effectiveness and significantly improved the task of writer identification achieving excellent SOTA results. We also presented the experimental results of our submitted approach in the ICFHR2020 competition. Our approach achieved excellent results compared to the participants' methods.

CONCLUSIONS AND FUTURE WORKS

This chapter summarizes the contributions and research results presented in this thesis along with its main conclusions and recommendations for future research directions.

6.1/ SUMMARY AND CONTRIBUTIONS

Handwriting-based writer identification is based on two fundamental principles. Their clear statements are as follows: (1) no two individuals produce exactly the same writing style twice, and (2) no two individuals have the same writing style. These two natural factors make the writer identification a challenging task, considering the large within-writer and between-writer style variability. The main goal of this work was to automate the process of writer identification using scanned handwritten images (offline mode) to provide a complete computer analysis of the writing variability. Our proposed approaches for writer identification have an impact on forensic science. They enable the "one-to-many" searching in an extensive handwritten database, where the output is a predicted sorted list of writer candidates corresponding to the samples matching the handwriting style of the query sample. In this way, the search space for comparing handwritten samples is reduced, and a hit list is an output that scribe analysts and forensic experts can quickly examine. The present thesis addressed all the main steps of an automatic system for writer identification using handwriting images. Our proposals contributed to the numerous challenges encountered in these steps: (i) image preprocessing and segmentation to discard background noise and extract local regions of interest (words, characters, connected components, etc.) from the handwriting images; We have also addressed he challenges, factors, performance, and criticisms of these approaches to better characterize the handwriting variability. After a careful review of the literature, we concluded that texture-based methods are conceptually simple but sometimes have a higher number of parameters, leading to an increase in processing time when used in conjunction with a classifier. In general, these methods capture recurring writing features and allow correct performance when using an appropriate classifier. For and the component sub-image window size. Therefore, these two parameters were tuned experimentally to find the optimal setting for better writing characterization.

The overall system was evaluated on four challenging handwritten databases, the Arabic IFN/ENIT and AHTID/MW databases, and the English IAM and CVL databases. Unlike other SOTA approaches, where only a partition into training and test sets was used in the IFN/ENIT and IAM databases, the proposed BWLBC-based system was evaluated on ten different subsets randomly generated for each writer. For the CVL and AHTID/MW databases, the four cross-validation setup was used to test all possible subsets. These two protocol strategies were used to evaluate and validate the performance stability of the system thoroughly. Overall, the experimental results reported in Chapter 5 showed that the BWLBC-based approach achieved superior SOTA performance in the IFN/ENIT and AHTID/MW and competitive performance in the CVL and IAM. Moreover, the BW-LBC feature method offers an excellent trade-off between classification accuracy and computational complexity thanks to its smaller feature histogram length. The second approach relies on the hand-crafted LBP, LPQ, and LTP descriptors applied to small regions (zones) of interest in connected components to capture textural features of the writing style. The final feature histogram representing each connected component comprises a set of sub-histograms computed sequentially within each zone. In this approach, we introduced a dimensionality reduction rule to reduce the computational cost of the subsequent classification process. As with the BWLBC method, the optimal settings of the feature extraction step's key parameters were determined through extensive experimentation for each database. From the results in Chapter 5, it can be concluded that the overall system achieved further improvements in writer identification performance over the previous BWLBC-based approach for the same benchmarks investigated. were reported in Chapter 5). For each texture-based approach proposed in Chapter 3, a series of experiments were conducted in Chapter 5 to evaluate and validate the stability of the system performance under different conditions. This includes the analysis of each approach's key parameters and the evaluation of the system sensitivity as a function of the number of writers and the amount of data for each benchmark studied.

In this thesis, we also investigated CNN-based deep learning approaches to improve writer identification (Chapter 4). Our first CNN-based approach, called WriterINet, consists of the following steps: (1) segmenting handwritten samples (documents or lines of text) into word images and related component sub-images. Words were segmented using a scale-space approach based on blob analysis and Gaussian filters. To the best of our knowledge, we were one of the first to perform extensive experiments on ten challenging handwritten databases with different languages (English, Arabic, Dutch, Chinese, French, German, and Greek).

Another major finding of this thesis contributed to the task of historical documents retrieval based on writer identification. At the well-known ICFHR2020 conference, a competition was held to award the best approach to image retrieval of historical handwritten fragments. There were two main tasks: retrieving all similar fragments corresponding to the same writer ID (task 1) and the same page ID (task 2). We proposed an effective CNN-based approach consisting of two CNN streams, both used for deep feature learning, each trained with different fragment patches from the ICFHR2020 training set.

For the retrieval process, the Chi-square similarity measure was used to compute the distances between the fragment images (of the test set) characterized by their learned features (Chapter 4). Four contestant's approaches were submitted by different universities, including University Bourgogne Franche-Comte (UBFC), University of Groningen (RUG), and Tebessa University (ULT). As reported in Chapter 5, the proposed approach achieved excellent results, winning first place in task 2 (page retrieval) and second place in task 1 (writer retrieval).

6.2/ RESEARCH DIRECTIONS

This thesis has proposed several approaches based on texture and deep learning methods for automatic text-independent offline writer identification from handwriting. Although we have tried to explore as many aspects of the pipeline as possible, the scope of the work is a flourishing research topic with much room for further improvement. Here we provide some research suggestions and ideas.

The texture-based approaches presented in this work typically use a pre-processing step to clearly distinguish the writing ink from the background of the image (binarization process) and remove unwanted background noise while preserving the useful maximal information in the scanned image. In some databases like IAM, the original background of the samples is filled with unwanted random traces. During the processing of these samples, some representative writing traces are misclassified as noise and then discarded or lost during the segmentation step to extract related components. This limitation can affect the overall system to correctly identifying writers. To improve this pre-processing step, we plan to evaluate a deep binarization based on CNNs instead of the classical Otsu binarization method (Otsu (1979)), such as the U-Net model, which has been shown to be well suited to deal with the degradation of documents with complex backgrounds [START_REF] Sadekar | HDIB1M-Handwritten Document Image Binarization 1 Million Dataset[END_REF]). This will reduce the complexity of the subsequent segmentation algorithm to extract the connected component sub-images properly.

Recall that after image segmentation (Chapter 3), we resized the connected components to the same fixed window size to uniform the number of regions of interest in those components. The reason for using a fixed window size is to normalize the final dimension of the histogram output for the feature extraction step for all components. The original components (without resizing the window) consist of different characters with various shapes stored in separate bounding boxes. Therefore, after resizing the image, some of the components are either enlarged or compressed, which could affect the feature method to characterize the writing content within these resized components correctly. To solve this problem, we can perform dynamic resizing of the window based on the original pixels, i.e., the process can be performed iteratively depending on the number of writing pixels (the ink) on each component sub-image separately. For example, if one or more words become mostly a single connected component, the algorithm will roughly segment the component into a number of subcomponents based on the fixed threshold representing the writing pixels' distribution and the selected window size. This would unify the regions of interest of the writing without overwriting the original shape of the text content.

To increase the scale complexity of the benchmarks studied in this work, it will be interesting to mix English handwritten databases (IAM + CVL + ICDAR2011) to create a large-scale database with more data and classes (the same suggestion can be made for the other languages). The interest is to investigate further writer identification in a mixed-script environment, which could be very potential and challenging for researchers who want to evaluate their proposals on large-scale benchmarks. Additionally, we plan to evaluate the robustness of our proposals (to be compared with other SOTA methods) by adding noise density (salt and pepper), contrast change, distortion, and blur to the handwritten samples. Moreover, it could be valuable to extend the evaluation of our proposals to other challenging databases such as the QUWI and other datasets of the ICFHR and ICDAR conference series, while proposing to evaluate other types of feature methods with their possible combinations and to develop new and effective algorithms for characterizing writing style.

Methods based on CNN offer an accurate solution for writer identification. However, large handwriting training data is needed to learn how to characterize the individual's handwriting style, which is not always provided in some benchmarks. In this case, we believe that the Generative Adversarial Networks or GANs can be used as a tool for data augmentation by generating slightly modified handwriting samples of the benchmark in question while preserving the writer-related features, i.e., creating synthetic handwriting data from other existing benchmarks with the same script. Specifically, the generator model (in the GAN architecture) will learn how to generate new possible handwriting data relying on the adversarial discriminator feedback, which attempts to discriminate between real images from the training datasets and new images output by the generator model. The augmented data would allow the CNN models to reduce the overfitting of the training process and then improve the identification task.

From the results in Chapter 5, it can be seen that our proposed CLGP-based and LSTPbased approaches require more time to compare the writing samples based on the Hamming distance of their respective feature histograms. This is mainly due to the size dimensionality of the CLGP and LSTP features, although processing time is not necessarily a critical performance indicator for offline writer identification since real-time applications are not required (offline mode). Post-processing methods such as principal component analysis (PCA), linear discriminant analysis (LDA), generalized discriminant analysis (GDA), and auto-encoders can be used to transform the CLGP and LSTP features into a low-dimensional representation space. This helps to reduce the overcount of feature co-occurrences and results in fewer parameters and computations in the classification phase. Moreover, Field-Programmable Gate Array (FPGA) devices can also be used as implementation platforms to speed up the system thanks to their structure capable of exploiting spatial and temporal parallelism.

Writer identification can be applied to historical documents. Automatic algorithms for script identification of historical documents can serve as a valuable means for historians.

Our proposal in the competition on image retrieval of historical handwritten fragments We would also like to explore signature verification, one of the most potential applications of handwriting analysis. It is a challenging task considering the between-genuine signature variability, i.e., the same person can produce quite different signatures. The interest is to evaluate our previous approaches (for writer identification) and develop a new framework to deal with the individual's signature style. A well-defined automated signature verification system can assist human experts in verifying bank checks' authenticity and reducing fraud. Similarly, gender classification based on handwriting will be investigated as another research direction, using new feature methods to capture visual and recurring patterns that distinguish between male and female handwriting.

In the classification step, an additional verification step can be added to improve the identification results. The idea is to develop a verification system based on the handwriting that rechecks whether the probe sample matches the class predicted by the classification module. This may correct the prediction output. Technically, the k-predicted handwriting samples that are most similar to the query are retrieved from the reference database in a hit list. This list will be element-wise examined by the verification system using a binary classification rule. The query is compared to each sample in the list, and this process is repeated k times. Each time, the verification system would answer the question of whether these two handwriting samples (query and another sample from the k-hit list) are Handwriting-based writer identification has experienced a resurgence in recent years and continues to attract a great deal of interest and attention in the field of biometrics and pattern recognition. It is a challenging task considering the large within-writer and between-writer style variability. The automatic offline writer identification systems consider handwriting as scanned image containing certain recurring patterns that need to be analyzed. The motivation for this work stems from the need to improve behavioral biometric tasks that have been mainly used for writer identification to enhance security and forensic applications in today's world. The interest is to develop near real-time, effective, and robust approaches for writer identification by leveraging theoretical and technical advances in image analysis and artificial intelligence. This dissertation contributes to the numerous challenges encountered in all the main steps of an automatic system for offline writer identification, including image pre-processing and segmentation, feature extraction, and classification methods. Our first contribution investigates writer identification based on texture features. We propose four texture-based approaches to improve the task of writer identification: (1) The first approach, namely the Block Wise Local Binary Count (BWLBC)-based system, characterizes the variability of writing style within small blocks by capturing the pixels' distribution corresponding to writing ink in binary components ; (2) In the second approach, the Local Binary Patterns (LBP), Local Ternary Patterns (LTP), and Local Phase Quantization (LPQ) hand-crafted descriptors are applied to small regions of interest in the writing, called zones, to extract related texture features. They are performed in an efficient way using a new learning framework ; (3) The task of writer identification is improved thanks to a well-defined approach based on the Cross multi-scale Locally encoded Gradient Patterns (CLGP) descriptor to better represent salient local writing structures. It extracts transform features from connected components and encodes the obtained texture codes in multiple scales over the Histograms of Oriented Gradients (HOG) ; (4) The fourth approach computes local intensity gradients of the writing within non-overlapping blocks using the Local gradient full-Scale Transform Patterns (LSTP) method. This feature gives the overall system the ability to extract more relevant information to characterize the writing better. Convolutional Neural Networks (CNN) are also investigated to further improve the identification performance. Two computationally efficient and high-quality deep CNN-based approaches named DeepWINet and WriterINet are proposed. Extensive experiments are conducted on ten challenging handwritten benchmarks in different languages (English, Arabic, French, German, Chinese, Dutch, Greek, and hybrid).

All the proposed approaches achieve competitive, or the highest SOTA performance in the benchmarks studied. We also participated in the ICFHR2020 competition to award the best approach for image retrieval for historical handwritten fragments. We proposed an effective deep learning-based approach based on multi-path CNN streams trained with different input data. The overall approach achieved excellent results and won first place in one of two tracks of the contest. L'identification des scripteurs à partir de l' écriture manuscrite constitue un domaine de recherche en pleine expansion. Elle est devenue une th ématique de recherche importante avec de nombreux verrous scientifiques/techniques et challenges/potentiels applicatifs, avec un besoin croissant de d éveloppement de syst èmes biom étriques destin és à de nombreuses applications s écuritaires. Les syst èmes d'identification automatique des scripteurs (hors ligne) reposent sur des informations statiques.

Les repr ésentations num ériques se pr ésentent g én éralement sous la forme d'une image d' écriture manuscrite contenant des motifs r écurrents à analyser et à caract ériser. L'objectif ici est de d évelopper des approches efficaces et robustes pour l'identification des scripteurs en tirant profit des avanc ées th éoriques et techniques de l'analyse d'images et de l'intelligence artificielle.

Cette th èse de doctorat aborde toutes les étapes essentielles d'un processus automatique de l'identification des scripteurs, y compris la phase de pr étraitement, normalisation et segmentation, l'extraction des primitives, et l' étape de classification des scripteurs. Notre premi ère contribution étudie l'identification des scripteurs en fonction des caract éristiques de texture. Nous proposons quatre approches bas ées sur la texture pour am éliorer l'identification des documents de test : (1) le premier syst ème propos é est bas é sur la m éthode Block Wise Local Binary Count (BWLBC). Il s'agit d'un descripteur d'image local pour caract ériser la variabilit é du style d' écriture en petits blocs en capturant la distribution des pixels correspondant à l' écriture dans des composantes connexes binaires ; (2) dans la seconde approche, les descripteurs de texture Local Binary Patterns (LBP), Local Ternary Patterns (LTP), and Local Phase Quantization (LPQ) sont appliqu és sur des petites r égions d'int ér êt de l' écriture appel ées zones, pour extraire les caract éristiques de texture associ ées. Les trois descripteurs sont utilis és efficacement dans un nouveau processus d'identification des scripteurs ; (3) la t âche de la caract érisation de l' écriture est am élior ée par une approche bas ée sur le descripteur Cross multi-scale Locally encoded Gradient Patterns (CLGP). La m éthode CLGP propos ée caract érise les structures locales saillantes des composantes connexes de l' écriture. Elle encode la transformation de texture obtenue à plusieurs échelles en utilisant l'op érateur Histograms of Oriented Gradients (HOG) ; ( 4) la quatri ème approche utilise la m éthode LSTP (Local gradient full-scale Transform Patterns) pour calculer des histogrammes locaux de l'orientation du gradient sur des blocs non superpos és de l' écriture. Cette caract éristique permet d'obtenir de meilleures performances en capturant des informations plus pertinentes sur la variabilit é du style d' écriture. Les r éseaux de neurones convolutifs (CNN) sont également étudi és pour am éliorer l'identification des scripteurs. Deux approches efficaces bas ées sur les CNNs, appel ées DeepWINet et WriterINet, sont propos ées. Des exp ériences approfondies sont men ées sur 10 bases de donn ées manuscrites dans diff érentes langues (Anglais, Arabe, Franc ¸ais, Allemand, Chinois, N éerlandais, Grec et hybride). Toutes les approches propos ées atteignent des performances comp étitives ou sup érieures à celles de la litt érature pour les benchmarks étudi és. Nous avons également particip é au concours ICFHR2020 pour r écompenser la meilleure approche de la r écup ération des fragments manuscrits historiques sur la base de l'identification des scripteurs . Nous avons propos é une approche bas ée sur l'apprentissage profond en utilisant des multi-flux CNN entrain és avec diff érentes donn ées d'entr ée. L'approche globale a obtenu d'excellents r ésultats et a remport é la premi ère place dans l'une des deux cat égories de la comp étition.
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  , I would like to thank everyone who has contributed directly or indirectly to the success of this thesis. THANK YOU! iii CONTENTS INTRODUCTION 1.1/ HANDWRITING ANALYSIS Handwriting is an effective behaviour identifier to portray the uniqueness of an individual. Many factors such as age, schooling, and emotional state can influence handwriting, which is technically called intra-class variance. Handwriting characteristics, i.e., contours, corners, transitions, thickness, etc., serve as discriminative features in biometric identification with the exact representation as in the face, iris, fingerprints, or DNA. Compared to electronic documents, handwriting provides more information about the person who created it.
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 11 Figure 1.1: Sample copybook form. (Amend and Ruiz (2000))

Figure 1 . 2 :

 12 Figure 1.2: Interior factors for handwriting variability (Schomaker (1998)).

Figure 1 . 3 :

 13 Figure 1.3: Example of online vs. offline handwriting word.
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 14 Figure 1.4: Writer identification system. The handwriting samples that are most similar to the query are retrieved from the reference database in a hit list.

Figure 1 . 5 :

 15 Figure 1.5: Writer verification system. It compares two handwriting samples and automatically decides whether or not the same person wrote the input samples.

  It details the different feature extraction methods we propose: Block Wise Local Binary Count (BW-LBC), zones-based handcrafted, Cross Multi-Scale Locally encoded Gradient Patterns (CLGP), and Local gradient full-Scale Transform Patterns (LSTP). This chapter also explains the image preprocessing and segmentation method used and the classification step employed to perform writer identification.

  presented a texture-based approach for Chinese off-line handwriting writer identification. They considered each character as a texture from which each feature vector is computed. The Weighted Euclidean Distance classifier (WED) is used to match and compare the extracted features for writer identification. Local binary pattern (LBP), local ternary pattern (LTP), and local phase quantization (LPQ) have been used in several recent approaches (Bertolini et al. (2013); Nicolaou et al. (2015); Hannad et al. (2016); Singh et al. (2018)) to capture texture features from handwriting and have shown promising results (writer identification performance) on benchmark handwriting databases. Bertolini et al. (2013) proposed a texture-based system for writer identification using LBP and LPQ texture descriptors. These descriptors capture texture information from normalized blocks of writing. The system extracts small blocks and fills up the line while removing unwanted components considered noise. The normalized blocks are constructed from the filled lines as shown in Figure2.1. The SVM classifier was used to identify the authorship of the query documents. This approach has produced remarkable results on a large database of 650 writers.
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 2122 Figure 2.1: Example of text block generation in (Bertolini et al. (2013)). (a) Filling the line. (b) Construction of a normalized texture block.
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 2324 Figure 2.3: Example of input samples with the corresponding texture blocks for (a) IAM (b) KHATT (c) Devnagri databases (Singh et al. (2018)).
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 225 Figure 2.5: Example of handwritten document normalization[START_REF] Said | Personal identification based on handwriting[END_REF]).

  achieved correct performance on Farsi handwriting of 40 writers. He et al. (2010) combined Gabor filter, wavelet decomposition, and fractal dimension to improve the performance of writer identification. They generated multiple Gabor subbands from the handwriting images, which were expanded into data sequences and decomposed into a series of wavelet subpatterns by wavelet transformation. They used normalized Euclidean distance to perform writer identification. Their method outperforms existing Gabor-based methods and reports SOTA results. Helli and Moghaddam (2010) introduced a feature relation graph (FRG) to encode the directions of Gabor and XGabor filters based on some fuzzy variables. The Gabor filter is mainly used to quantify and characterize frequent patterns. It responds to single lines and depends only on the gradient of the line.

Figure 2 .

 2 [START_REF] Chahi | An effective DeepWINet CNN model for off-line text-independent writer identification[END_REF] shows an example of this response. XGabor filter is another variant of the Gabor filter that responds to the writing curves. A 2D convolution operation is used to obtain the response of an XGabor filter to an image. Figure2.7 shows the results of applying a circular and an elliptical XGabor filter to an image. The authors used a graph similarity measure in the classification phase to identify query writers. Experimental results showed better SOTA performance on 100 writers.
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 26 Figure 2.6: (a) A sample image, (b) response of (a) to a Gabor filter with θ = π/4 and (c) response of (a) to a Gabor filter with θ = 3π/4 (Helli and Moghaddam (2010)).

Figure 2 .

 2 Figure 2.7: (a) Example image consists of 9 different elliptic shapes, (b) result of convolving an elliptic XGabor with (a) and (c) result of convolving a circular XGabor with (a) (Helli and Moghaddam (2010)).

  Der Maaten and Postma (2005) compared and tested Kohonen-trained grapheme codebooks with grapheme codebooks constructed by random selection to improve writer identification performance. They selected a random number of graphemes from training to form the feature codebook. The authors showed in experiments that random grapheme codebooks performed better compared to Kohonen-based codebooks. Bulacu and Schomaker (2005) compared and analyzed three different clustering methods for grapheme codebook generation. These include k-means, Kohonen self-organizing map (SOM) 1D and 2D (cf. Figure 2.10). Extensive experiments were conducted on both the Firemaker and ImUnipen datasets to compare the three clustering methods over a wide range of codebook sizes. The results for writer identification are consistent with those reported in their previous work in[START_REF] Schomaker | Automatic writer identification using connected-component contours and edge-based features of uppercase western script[END_REF]).
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 2 Figure2.9: Example of invariant clusters (graphemes) extracted from a handwritten page (graphemes)(Bensefia et al. (2002)).

Figure 2 .

 2 Figure 2.10: Examples of codebooks with 400 graphemes. For K-means (a) and K-SOM 1D (b), the graphemes were arranged 25 in a row, while for K-SOM 2D (c) the original 20x20 SOM organization was retained[START_REF] Bulacu | A comparison of clustering methods for writer identification and verification[END_REF]).

Figure 2 .

 2 Figure 2.13: Training step -SR-KDA predictor model i is generated for codebook i (Khan et al. (2017)).

Figure 2 .

 2 Figure 2.14: Testing step of the system proposed in (Khan et al. (2017)).
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 2 Figure 2.16: Schematic description for the contour-direction PDF feature extraction method. (Bulacu et al. (2007)).

Figure 2 .

 2 Figure 2.17: An example of relevant word contours obtained using the minimum perimeter polygon (MPP) algorithm with different pixel grid sizes. Contour projections disappear as the grid size increases. MPP contour edges that no longer meaningfully represent their respective word outlines are filled with a darker color (Abdi et al. (2009)).

Figure 2 .

 2 Figure 2.18: (a) Edge direction φ relative to the horizontal straight line. (b) Angle θ formed by two adjacent edges. (c) Curvature C (Abdi et al. (2009)).
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 21 Summary of contour features. f 1f 9 are chain code-based features and f 10f 14 are polygon-based features[START_REF] Siddiqi | Text independent writer recognition using redundant writing patterns with contour-based orientation and curvature features[END_REF]).

Figure 2 .

 2 Figure 2.19: (a) Polygonization at different values of T . T is a user-defined parameter that controls the accuracy of the approximation. Larger values of T produce longer segments at the expense of character shape degradation, and vice versa. (b) Curvature (angle) between two connected segments (Siddiqi and Vincent (2010)).

  Brink et al. (2012b) reported an interesting work on writer identification using directional ink trace width measurements. The authors developed efficient pixel contour-based feature methods called Quill and QuillHinge (a variant of Quill). The proposed approach captures the information of probability distribution between ink direction and ink width.

Figure 2 .

 2 Figure 2.20: (a) The segment ordering and recorded features for a 3AS, where the primary segment is numbered 1. θ and L are the orientation and length of a particular segment that makes up the feature KAS. (b) Extraction of contours and edges[START_REF] Jain | Offline writer identification using k-adjacent segments[END_REF]).

(

  MDS), and forward-backward feature selection algorithms. The nearest neighbour (NN) method was used to classify the query writers (from the test set). The authors evaluated different distance metrics and reported that Euclidean distance performed better with a top 1 result of 75.0% for 250 writers (using 54 out of 83 features with the backward fea-

Figure 2 .

 2 Figure 2.21: (a) φ and w are determined at each contour pixel (x, y). φ (trace direction) is measured by averaging the angles with two adjacent contour pixels at distance r. w (trace width) is computed using the so-called Bresenham width: the distance to the first background pixel hit when following a Bresenham path, perpendicular to φ, in the direction (x e , y e ). (b) Contour tracing by tracking crack edge contours, shown as arrows.Foreground pixels are shown as blocks; pixels in the resulting trajectory are shaded dark(Brink et al. (2012b)).

  Christlein et al. (2015a) used contour Zernike moments as local features by decomposing the handwriting image using Zernike polynomials. The extracted Zernike moments are encoded into a global descriptor using the Vectors of Locally Aggregated Descriptors (VLAD) algorithm. The feature vectors are decorrelated using Principal Component Analysis (PCA), and dimensionality reduced to 256 components and finally matched and compared using a cosine distance metric. The system outperforms existing methods in two benchmark databases for writer identification. In[START_REF] He | Junction detection in handwritten documents and its application to writer identification[END_REF]), a generic approach to junction detection for writer identification is proposed. The system performs a junction detection using Junclets to identify query writers. Later, in(He et al. (2016b)), they designed two methods to characterize handwriting style: local contour fragments (kCF) and stroke fragments (kSF) features. These methods were further explored to (a) (b)

Figure 2 .

 2 Figure 2.22: (a) SURF Features extracted from handwriting. (b) : Contour gradients and the resulting feature (Jain and Doermann (2014)).

Fiel

  and Sablatnig (2015) used Convolutional Neural Networks (CNN) to extract learned features from segmented words and text lines. The CNN model named Caffenet was trained on different databases of known writers, and the penultimate fully connected layer was used for feature activation.

Figure 2 .

 2 23 shows the structure of the Caffenet network.The Nearest Neighbor (NN) classifier was performed to compare and match these deep features to identify unseen writers. The overall system obtained SOTA results in the ICDAR2013, ICDAR2011, and CVL databases with 50, 26, and 309 writers, respectively.
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 2 Figure 2.23: Structure of the Caffenet CNN model[START_REF] Fiel | Writer identification and retrieval using a convolutional neural network[END_REF]).
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 2 Figure 2.24: Diagram of the approach proposed in (Christlein et al. (2015b)).
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 2 Figure 2.25: Image patches cropped from the IAM dataset (Xing and Qiao (2016)).

Figure 2 .

 2 Figure 2.26: Pipeline of testing. Stream 1 and stream 2 share the same parameters (Xing and Qiao (2016)).

Figure 2 .

 2 Figure 2.27: Diagram of the approach proposed in (Christlein et al. (2017b)).

Figure 2 .

 2 Figure 2.28: Encoding local descriptors to form a global representation that can be compared (Christlein and Maier (2018)).

Figure 2 .

 2 Figure 2.29: (a) Triplet CNN architecture. (b) Dense block with 5 layers (Keglevic et al. (2018)).

Figure 2 .

 2 Figure 2.30: Sample patches of size 32 × 32 extracted at the SIFT keypoint locations (Keglevic et al. (2018)).

Figure 2 .

 2 Figure 2.31: The pipeline of semi-supervised feature learning, which consists of three parts: preprocessing (green dotted box), semi-supervised learning (blue dotted box) and encoding (purple dotted box) (Chen et al. (2019)).

Figure 2 .

 2 Figure 2.32: The main steps of the approach presented in (Kumar and Sharma (2020)).

Figure 2 .

 2 Figure 2.33: A FragNet network has two paths: feature pyramid (blue color), which accepts the whole word image as input, and fragment path (green color), which accepts the fragment as input. (P) -CBR means the sequence of P: max-pooling, C: convolutional, B: batch normalization and R: ReLU layers. C with the circle is the concatenation operation.×2 means two blocks are stacked together. G i and F i are the ith feature maps in the feature pyramid and fragment path, respectively[START_REF] He | Fragnet: Writer identification using deep fragment networks[END_REF]).
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 2 Figure 2.34: Handwriting Thickness Descriptor (HTD), counts fully black patches with different size (Javidi and Jampour (2020)).

  tions that form specific recurring patterns. Extracting such features defines a synthetic characterization of handwriting in a 2D dimension. A well-designed and defined feature extraction method improves writer identification through appropriate pre-processing and classification methods. To this end, we propose several approaches for writer identification based on texture features. Our contributions address all main steps of an automatic writer identification system, including image pre-processing and segmentation, feature extraction, and classification methods. The following four texture-based systems are proposed to help to solve some challenges encountered in these different steps: (1) Block Wise Local Binary Count (BWLBC)-based system. The BWLBC operator characterizes the variability of writing style by capturing pixels' distribution within small binary 49 blocks; (2) Handcrafted feature-based system. The handcrafted descriptors Local Binary Patterns (LBP), Local Ternary Patterns (LTP), and Local Phase Quantization (LPQ) are applied to small regions (zones) of interest in the writing to extract texture features. We also introduce a dimensionality reduction technique to reduce the computational cost of the subsequent classification process; (3) An effective approach based on the Cross multi-scale Locally encoded Gradient Patterns (CLGP) descriptor to capture texture information of the writing image. It consists of encoding CLGP features using the Histograms of Oriented Gradients (HOG) method; (4) The fourth approach computes local intensity gradients of the writing within non-overlapping blocks using the Local gradient full-Scale
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 313233 Figure 3.1: Flowchart of the proposed writer identification system.
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 34 Figure 3.4: Pre-processing and segmentation of an Arabic word taken from the AHTID/MW (Mezghani et al. (2012)) database.

• Step 3 :

 3 Connected components are resized into the same uniform window size W × W. • Step 4: Each component C k w r is scanned from top to bottom and from left to right and divided into N × N non-overlapping blocks B k (w r ,i),i=1,..,N×N (C k w r = N×N i=1
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 335 Figure 3.5 shows an example of the procedure for computing the BW-LBC code. In this example, starting from the connected component within its bounding box of 187 × 81 pixels, the resized component (300 × 300) is divided into N × N (= 7x7 = 49) blocks of W B (= W×W N×N = 43 × 43) pixels. The number of white pixels then represents each block. The
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 36 Figure 3.6: Example of LBP encoding scheme.

  .7) To simplify the threshold function of the LTP descriptor, Tan and Triggs (2010) introduced a different representation based on the extraction of two binary patterns, splitting the ternary pattern into its positive and negative parts, as shown in Figure 3.7. LTP generates 512 (2 9 ) possible patterns (cf. Table 3.1). Local phase quantization (LPQ). The local phase quantization (LPQ) operator, originally proposed in (Ojansivu and Heikkil ä (2008)), is a texture descriptor based on the blur invariance property of the Fourier phase spectrum. It uses the phase information estimated in local M-by-M neighborhoods at each pixel position x of the image f . The local spectra are computed using a 2-D discrete Fourier transform (DFT) or, more precisely, a short-term Fourier transform (STFT) defined by:

Figure 3

 3 Figure 3.7: Example of LTP encoding scheme.

  process. The feature extraction process applied in the proposed system is shown in Figure 3.8. First, the previously obtained preprocessed component images for both the test and training sets are fitted into the same uniform window of 50 × 50 pixels. Then, each connected component image C is subjected to LBP, LTP, or LPQ descriptor coding to obtain the feature image FC. Since the original component image is in binary format, it can be observed that there are irrelevant features in the feature map FC, which may not be informative and could then be ignored. Therefore, we propose a simple dimensionality reduction technique to reduce the computational cost of the subsequent classification process. It normalizes the obtained feature image FC by a factor F, as shown in the example in Figure 3.8. To incorporate more spatial information in the final descriptor, the obtained normalized code map ( FC F ) is scanned from top to bottom and from left to right and spatially divided into small spatial (N z × N z ), non-overlapping parts, which are called zones Z i,i=1,..,N z ×N z (FC= N z ×N z i=1 Z i ), and a histogram of LBP, LTP or LPQ codes is extracted from each zone. Thus, each zone

  15) Where is the concatenation operator. The histogram sequence concatenation on the normalized feature image ( FC F ) allows a complete generalization of the writing intensity distributions into local regions (zones) that strongly characterize the writing style and discriminate the large variability between handwriting. The computational time of the classification process increases progressively with the number of zones N z × N z , which is quite natural since the classification is performed by comparing the distances between corresponding component histograms. Indeed, the dimensionality D c of the feature histogram H increases with the increase of the number of zones (D c =(N z × N z ) × ( D im F )). However, the dimensionality reduction factor F, introduced to ignore irrelevant features (bins), allows for a reduction in computation time since D c decreases as F increases. The feature extraction process to compute the final feature histogram H can be summarized in the following steps (see Figure 3.8): • Step 1: The input handwriting sample (document or set of word/text line images) with writer label w m is converted to a binary image S w m . • Step 2: The obtained binarized image S w m is segmented into labeled regions (i.e., connected components) (S w m = N w m = card(S w m ) is the number of connected components in the sample S w m and ζ(C j w m ) is the number of writing pixels in the component C j w m and ρ is a small threshold (ρ << 50 × 50). Accidental writing traces and diacritics are considered as noise and then removed (labeled regions with very small proportions of writing pixels, i.e., with a surface less than ρ pixels). The threshold ρ is experimentally set to ρ = 12 × 12 pixels for the IAM database and ρ = 10 × 10 pixels for the IFN/ENIT, CVL and AHTID/MW databases. • Step 3: Component images are resized to the same fixed window size of 50×50 pixels. • Step 4: For each component C j w m , the corresponding feature image FC j w m is computed using the texture descriptor encoding and then normalized by the dimensionality reduction factor F. • Step 5: The normalized feature image (FC j wm F ) is scanned from top to bottom and from left to right and divided into N
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 38 Figure 3.8: The proposed feature extraction process.

Step 1 :

 1 build an effective feature descriptor referred to as Cross multi-scale Locally encoded Gradient Patterns (CLGP). The proposed CLGP feature descriptor captures the texture information of the writing image using transformation feature construction and encodes the obtained texture codes in multiple scales via the Histograms of Oriented Gradients (HOG) operator within non-overlapping blocks. The distribution of local intensity gradients within these non-overlapping blocks forms the final CLGP feature histogram. CLGP is insensitive to noise by using low-order Gaussian derivative filters and a global averaging operator in the scalar quantization step. As shown in Figure 3.9, the feature extraction procedure for computing the final CLGP feature histogram H is outlined in the following steps: Extremum responses computation (spatial filtering). The input connected components (gray-scale sub-images) are first resized to the same uniform window size of 80 × 80 pixels. Note that we use the same segmentation step in Section 3.2.1 with a slight change in the overall algorithm to extract gray-scale connected components. In Algorithm 1 (line 4), we only change the binary sample S b with the original sample S to be segmented into connected component sub-images C i in gray-scale format. Each resized component sub-image is convolved with a family of Gaussian derivative filters (Freeman et al. (1991)) (up to second order) to compute extremum value responses (maximum and minimum) at multiple scales. The main goal of this step is to capture useful information contained in the first and second-order differential structures at a range of scales. Based on the two-dimensional circularly symmetric Gaussian function defined in Eq. 3.17, we compute the first and second Gaussian derivatives at an arbitrary orientation θ, as given in Eqs.3.18 and 3.19. 

  G x and G xx are respectively the scalenormalized first and second derivatives of G along the x-axis, and analogously for G y , G xy and G yy . For each connected sub-image I, the first and second order image derivatives are defined by: L x = G x * I, L y = G y * I,L xx = G xx * I, L xy = G xy * I, L yy = G yy * I, where * is the convolution operator. Formally, the responses of the first and second Gaussian derivative filters at orientation θ (Freeman et al. (1991); Zhang et al. (2013)) are given as follows:

  24) Extreme value responses are computed on N σ scales. As in (Zhang et al. (2013); Song et al. (

  normalized feature vector related to a particular feature code map. After that, we further concatenate all the obtained feature vectors of all feature code maps to obtain the final CLGP (Cross multi-scale Locally encoded Gradient Patterns) histogram-based feature representation. In summary, three feature code maps are obtained, i.e., AS C1, AS C2, and FS C, each of which is scanned from top to bottom and left to right and spatially divided into small uniform N b non-overlapping blocks. The histogram HOG is extracted from each block B t,t=1,...,N b (cf. Figure 3.9). Given a feature code map c m,m=1,...,N σ partitioned into N b blocks,

  37) where is the concatenation operator. The three (N σ = 3) obtained normalized feature vectors H m,m=1,..,(N σ =3) representing the three feature code maps c m,m=1,...,(N σ =3) are further concatenated to obtain the final CLGP histogram-based feature representation

  joint coding of {g,d,s} at 𝝈 𝟏 , 𝝈 𝟐 Cross-scale joint coding of {g,d,s} at 𝝈 𝟐 , 𝝈 𝟑 Cross-scale joint coding of {r} at 𝝈 𝟏 , 𝝈 𝟐 , 𝝈 𝟑 HOG Histogram computation in each block (Sub-histograms 𝒉 𝒕 𝟏 of dimension ( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 )) HOG Histogram computation in each block (Sub-histograms 𝒉 𝒕 𝟐 of dimension( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 )) HOG Histogram computation in each block (Sub-histograms 𝒉 𝒕 𝟑 of dimension( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 )) = 𝟒) Concatenated histogram (𝑯 𝟏 ) of dimension (( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 ) × 𝑵 𝒃 ) Concatenated histogram (𝑯 𝟐 ) of dimension (( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 ) × 𝑵 𝒃 ) Concatenated histogram (𝑯 𝟑 ) of dimension (( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 ) × 𝑵 𝒃 ) Final CLGP histogram-based feature representation 𝐻 = [𝐻1, 𝐻2, 𝐻3] ∏ Concatenated histogram (H) of dimension (( 𝟗 × 𝑵 𝒄𝒆𝒍𝒍 ) × 𝑵 𝒃 × 𝑵 𝝈 )

)Figure 3

 3 Figure 3.9: The pipeline of CLGP feature extraction method.

  and written in Cartesian coordinates x and y. θ is an arbitrary orientation. σ is the standard deviation. In the (x)-axis, G x (first) and G xx (second) are the scale derivatives of G, and G y , G yy and G xy over the (y)-axis. For each connected component sub-image I, the image derivatives are defined by: L x = G x * I, L y = G y * I, L xx = G xx * I, L xy = G xy * I, L yy = G yy * I, where * is the convolution operator. The first and second Gaussian responses at orientation θ (Freeman et al. (1991); Zhang et al. (2013))

  2L xy L yy -L xx . Extremum (maximum and minimum) response values of I θ 1 and I θ2 over all θ are computed at N σ scales (cf.Eqs 3.43, 3.44, and 3.45):

  ; Crosier and Griffin (2010); Zhang et al. (2013); Song et al. (2015)), the number of scales N σ is experimentally set to N σ = 3: σ 1 = 1, σ 2 = 2, and σ 3 = 4. Cross-scale features. I θ 1max , I θ 2max and I θ 2min are convolved with linear and nonlinear operators to construct a discriminative and compact set of transform features F = {g, d, s, r}.

  and r = r σ 1 , r σ 2 , r σ 3 . For each transform feature subset (g, d, s and r), the proposed technique is to jointly merge the three feature sub-images (computed at three different scales) into a holistic discriminative feature sub-image. Formally, using Eqs.3.49, 3.50, 3.51, and 3.52, the Hadamard product is performed for each transformed feature subset, which takes three feature subimages (matrices) of the same dimension and generates a different feature matrix (i.e., a holistic discriminative feature sub-image) where each element is the product of the elements of the original three feature matrices. This increases the ability of the algorithm to accurately characterise the writing content within each related component sub-image.

  𝐜𝐨𝐝𝐞 𝐦𝐚𝐩 (𝐅𝐂) « In this exemple, (FC) is devided into 𝑵 𝒃𝒌 = 𝟗 blocks » HOG Histogram computation in each block (sub-histograms 𝑯 𝒕 of dimension 𝑵 𝒄 × 𝟗 ) Final LSTP histogram-based feature representation of dimension (𝑵 𝒄 × 𝟗 × 𝑵 𝒃𝒌 ) 𝐒𝐭𝐞𝐩 𝟏: 𝐄𝐱𝐭𝐫𝐞𝐦𝐮𝐦 𝐫𝐞𝐬𝐩𝐨𝐧𝐬𝐞𝐬 𝐜𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧 𝐒𝐭𝐞𝐩 𝟑: 𝐅𝐮𝐥𝐥 𝐬𝐜𝐚𝐥𝐞 𝐦𝐚𝐩 𝐞𝐧𝐜𝐨𝐝𝐢𝐧𝐠 𝐒𝐭𝐞𝐩 𝟐: 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦 𝐟𝐞𝐚𝐭𝐮𝐫𝐞𝐬 𝐜𝐨𝐦𝐩𝐮𝐭𝐚𝐭𝐢𝐨𝐧
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 3 Figure 3.10: The proposed LSTP feature extraction method.

  and σ 3 = 4. /* Construct cross-scale transform features denoted as F = {g, d, s, r}. */ g = I θ 1max ; d = I θ 2max -I θ 2min ; s; r = 2 π arctan d g ; // Eqs. 3.46, 3.47, and 3.48; compute the gradient magnitude g, extrema difference d, shape index s, and mixed extrema ration r. /* Compute the full-scale tranform features G, D, S , and R. */

, 1 Figure 3 .

 13 Figure 3.11: An overview of the classification process.

  is the feature histogram of the connected component C k w r f , and D im is the feature histogram dimension. All dissimilarities between the unseen sample S w x and all the training ones S w r f , r f = 1, ..., κ are arranged in a hit list (κ is the number of handwritten samples in the training base B r f ).As final classification decision, the writer of the query sample S w x is then identified as the writer of the sample in training set B r f , which reports the minimum dissimilarity:Writer S w x =argmin{DIS S w x , S w 1 , . . . , , . . . ,DIS S w x , S w κ ) w x , [S w r f ] // S w x is the query handwriting sample to be identfied; [S w r f ] list is the training samples, where r f = 1, ..., κ (κ is the number of handwritten samples in the training base B r f). Output: Writer(S w x ) // writerID of the query sample S w x . /* Parameters definition. */ // N w x = card(S w x ) is the number of connected components of S w x ; N w r f = card(S w r f ) is the number of connected components of S w r f ; C i w x is the connected component number i charecterized by its feature histogram H C i wx in the query sample S w x ; C j w r f is the connected component number j charecterized by its feature histogram H C j w r f in the training sample S w r f ; /* Compute the dissimilarity between the query sample S w x and the training sample S w r f . */ for i ← 1 to N w x do for j ← 1 to N w r f do tmpdis(j) = hammingdisfunction() = minfunction(tmpdis); // compute the minimum Hamming distance between C i w x and all [C j w r f ] of the training sample S w r f . end for diss(S w x , S w rf ) = 1 N wx N wx i=1 mindistances(i); // Eq. 3.59; dissimilarity measure between S w x and S w r f . /* Identify the writer of the query sample S w x . */ for r f ← 1 to κ do dissimilarities(rf) = diss(S w x , S w rf ); // compute all dissimilarities between the query sample S w x and all the training ones [S w r f ]. end for Writer(S w x ) = argminfunction(dissimilarities) // Eq. 3.61; return Writer(S w x )3.3/ CONCLUSIONIn this chapter, we presented four texture-based systems for text-independent offline writer identification. The following pipeline was considered for the proposed systems: image preprocessing, feature extraction, and classification. We proposed and used a common step for all four texture-based systems for image preprocessing, namely, removing background noise and diacritics from the writing and segmenting the document image into connected component sub-images. These connected components are the input to the feature extraction step in all the proposed approaches. The first system is based on the BWLBC method. It characterizes the variability of writing style in small binary blocks (of connected components) by computing the distribution of white pixels corresponding to the ink. A second contribution is to use LBP, LTP, LPQ handcrafted descriptors in a new and effective learning framework to capture texture features of small regions (zones) of interest in writing, followed by dimensionality reduction. The feature vector is then a set of sub-histograms computed sequentially within each zone of the connected component. This chapter also introduced two feature extraction methods, namely CLGP and LSTP. The CLGP model computes the distribution of local intensity gradients within small connected regions called cells (in connected components) across multiple feature code maps. The LSTP method is an extended variant of CLGP to extract more relevant texture information using the HOG operator. In the classification step, features are matched and compared using the nearest neighbor with an efficient strategy to identify unseen documents. Deep learning methods are also explored in this thesis. In the next chapter, new and effective techniques based on Convolutional Neural Network (CNN) are presented to improve the writer identification task. DEEP LEARNING FOR WRITER IDENTIFICATION 4.1/ INTRODUCTION In deep learning, Convolutional Neural Network (CNN or ConvNet) is a class of deep neural networks that have recently emerged as a modern tool for large-scale pattern recognition problems and has found wide application in computer vision. With enough training data and good optimization, CNNs can provide an accurate solution for identifying writers from handwriting images. They also provide an easier way to obtain the desired features for characterizing individual writing style information. These features can be automatically learned by CNNs thanks to appropriate deep modeling and learning. To this end, we exploit the power of deep convolutional neural networks (CNNs) to improve the task of offline text-independent writer identification. Our first contribution consists of an effective deep learning-based framework called WriterINet. It includes three main steps: (1) image preprocessing to segment handwritten documents into word and connected component images; (2) deep feature extraction step. Since it is challenging to model the within-writer and between-writers variability, characterizing such features requires a well-designed and effective feature method using suitable classifiers. If these features are inappropriately extracted from the writing, it will affect the system in performing correct identification. Therefore, we introduce a multi-path deep CNN consisting of ResNet50 and DenseNet201 networks. Both models are trained and fine-tuned with different input data, i.e., words and connected components; (3) writer classification process using a conceptually simple and effective artificial neural network (1D-ANN). We define a custom 1D artificial neural network to classify CNN features (1D-ANN is initially used in signal processing for 1D data); To further investigate the performance of writer identification using deep learning, we design an efficient CNN model referred to as DeepWINet. The proposed model is used and evaluated in two different ways. In the first scenario, the CNN activation features of 81 DeepWINet computed from the connected components of the writing are fed to a nearestneighbor classifier for writer identification. In the second scenario, DeepWINet is evaluated as an end-to-end CNN network trained on connected components of the writing.Then, a score-averaging component-decision combiner is performed to average the predicted scores for writer identification.The present work also contributes to the solution of historical document retrieval based on writer identification. We participated in the ICFHR2020 competition on image retrieval for historical handwritten fragments. The competition's goal is to retrieve all similar fragment images that belong to the same writer ID and find all fragment images segmented from the same page ID. Our submitted approach consists of two CNN streams trained and finetuned with different input data (fragment images from the ICFHR2020 training set). The average pooling layer of the two CNN branches is used to extract learned deep features of the test fragment images. As a similarity measure, the distance computation is performed using the Ch-square metric. In this competition, four approaches are presented by participants from different universities, including University Bourgogne Franche-Comte (UBFC), University of Groningen (RUG), and Tebessa University (ULT). Our system won first place in Task 2 (Page Retrieval) and second place in Task 1 (Writer Retrieval).This chapter explains our different CNN-based approaches for writer identification, introduces the ICFHR2020 competition and the tested database and presents our proposed method along with a brief description of the other submitted methods. 4.2/ WRITERINET: A MULTI-PATH DEEP CNN FOR WRITER IDEN-TIFICATION As shown in Figure 4.1, our proposed deep learning-based approach, called WriterINet, consists of three steps. First, the writing documents are fed to the preprocessing and segmentation phase, where each writing sample is decomposed into word images and connected component sub-images. Second, a powerful deep multipath CNN model is built for feature extraction, which consists of ResNet-50 (He et al. (2016a)) and DenseNet-201 (Huang et al. (2017)) models (pre-trained on the training set of IAM database). The model extracts discriminative features of the input word and its related component images. Third, a simple artificial neural network model (ANN) is developed to classify the obtained local features (corresponding to the words and connected components). In this way, for each test document (unseen sample), the trained model predicts all the similarity scores of its local deep feature vectors, based on which the writer identification is performed. Each step is described in detail in the following sections.
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 41 Figure 4.1: Design and structure of the proposed WriterINet approach.
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 42 Figure 4.2: Pre-processing of English-Chinese handwritten document from CERUG-MIXED (He and Schomaker (2017b)) database.
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 4344145 Figure 4.3: Overview of the fine-tuning process.
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 44833 Figure 4.7: Component segmentation of English-Chinese document taken from CERUG-MIXED (He and Schomaker (2017b)) database.
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 49 Figure 4.9: Architecture of DeepWINet CNN Network with two versions (Full and Light).

4. 3 .Scenario 1 :

 31 AN EFFECTIVE DEEPWINET CNN MODEL FOR WRITER IDENTIFICATION 95 4.3.3/ WRITER IDENTIFICATION Writer classification using a distance metric. For reliable feature extraction, we exploit the ability and effectiveness the DeepWINet CNN model as a feature learning representation for writer identification. First, we pre-trained the DeepWINet network with connected components of the training set of the IAM database[START_REF] Marti | The IAM-database: an English sentence database for offline handwriting recognition[END_REF]) to use the model as a starting point for feature learning. Next, DeepWINet is finetuned through transfer learning by replacing the last three layers with new layers adapted to the tested dataset. DeepWINet forms a hierarchical CNN representation where higherlevel features are captured from deeper layers. Therefore, the global average pooling layer is used to extract feature activations related to each sub-image of the input connected components. This procedure performs feature pooling over all spatial locations, resulting in a feature dimension of 6144 (full DeepWINet) and 8192 (light DeepWINet). For each handwriting document, the number of learned feature vectors is equal to the number of extracted sub-images. The learned features are then fed to the nearest neighbor classifier to perform the writer identification. For this, we experimentally tested several distance metrics to explore the system performance. These include Correlation, Hamming, Chi-Square, Bhattacharyya, Cosine, and Euclidean distance metrics. The highest performance is obtained using the Chi-Square metric, which is considered as efficient distance in pattern recognition problems. The identification process used to classify a query document Q is summarized as follows: (1) Chi-Square distances between each connected component CP j Q in the query sample Q and all components CP k (k=1,..,N R ) R in the training sample R are calculated. N R = card(R) is the number of connected component sub-images in the training document R; (2) the training component reporting the smallest Chi-Square distance is considered to be the one that matches the test component CP j Q in the query document Q; and (3) we compute the final dissimilarity metric DIS M(Q, R) between the query document Q (unseen to be identified) and the training document (known)

  the number of connected component sub-images cropped from test document Q, and dist CP j Q , CP k R is the Chi-Square distance between component number j (i.e., CP j Q ) in the query document Q and the component number k (i.e., CP k R ) in the training document R. Chi-Square distance dist(•, •) is defined as follows:

  Figure 4.10: Writer identification using scores averaging.

  ) retrieving all fragment images segmented from the same page ID. As for the compilation of the ICFHR2020 competition database, Seuret et al. (2020) provided 101 706 fragments as the training set collected from 8717 writers from 17 222 historical documents. The test set consists of 20 019 fragments from 1152 writers generated from 2732 historical documents. Note that the IDs of the writers in the training set are different from those in the test set, and there is no overlap between the two sets. Seuret et al. (2020) found that the number of fragments provided is sufficient to train and test deep neural networks for the competition tasks.

  Figure 4.11: Examples of generated historical document fragments. The two examples on the left have rectangular shapes. The two examples on the right have completely random shapes.

4. 4 . 2 /

 42 PARTICIPANTS OF THE ICFHR2020 COMPETITIONFive methods, including our proposed approach (with two variants), from different universities, are evaluated in the ICFHR2020 competition. Since the test set includes 20019 historical fragments, participants are asked to submit a CSV file containing 20019 × 20019 distance matrix. The leave-one-image-out-cross-validation rule is used as the evaluation strategy for participants' results. In other words, each of the 20019 fragment images in the test set is used as a query sample, while the other samples are ranked in a hit list according to their distance similarities (the smaller, the more similar). The metrics are then averaged over all the queries. The error metrics and experimental results are discussed in detail in Chapter 5 (cf. Section 5.6.1). The approaches presented are briefly explained in the following.4.4.2.1/ CONTEST BASELINEThe competition baseline is the system presented in[START_REF] Nicolaou | Sparse radial sampling lbp for writer identification[END_REF]). They used an image descriptor called Sparse Radial Sampling Local Binary Patterns (SRS-LBP), a variant of Local Binary Patterns (LBP) originally proposed for document image analysis. The SRS-LBP operator transforms each image pixel into multiple SRS-LBP codes representing the relationship between the central pixel and its surrounding pixels. This encodes the input image as multiple 8-bit images, with a histogram of SRS-LBP codes computed for each radius (for radii 1 to 12). A global SRS-LBP pooling is performed to form a normalized histogram with 256 bins for each radius, and then all histograms are concatenated into a 3072-dimensional block-normalized descriptor. Using the Principal Component Analysis (PCA) projection, the 3072-dimensional vector is mapped to the first 200 principal components. The Hellinger kernel is applied to the 200-projected vector (representing each historical fragment image), followed by l 2 normalization. Manhattan similarity was used as a metric to calculate the distances. 4.4.2.2/ UNIVERSITY OF GRONINGEN Sheng He and Lambert Schomaker from the University of Groningen used a CNN network called FragNet, which was previously proposed for writer identification in (He and Schomaker (2020)). The FragNet architecture is structured into two streams: a feature pyramid stream used to extract feature maps and a CNN fragment stream (fragments as input) trained to identify the writer based on the predicted scores of fragment images and feature maps (computed from the feature pyramid). Note that only the cross-entropy loss is used for the FragNet model instead of the triplets loss. Horizontal/vertical projections remove some black edges created during historical fragment generation. Since the CNN FragNet model requires input images of size 64 × 128, each fragment is partitioned into non-overlapping blocks of dimension 64 × 128. For each historical fragment, the FragNet features of all extracted blocks are averaged into a 512-dimensional feature vector. The Euclidean metric is used as the distance measure for the competition tasks. 4.4.2.3/ UNIVERSITY OF BOURGOGNE FRANCHE-COMTE Michel Chammas, Abdallah Makhoul, and Jacques Demerjian from the Femto-ST Research Institute at the University of Bourgogne Franche-Comte have proposed a CNNbased approach. The overall system is based on the approach presented in (Christlein et al. (2017b)) with some improvements. First, scale-invariant keypoint descriptors (SIFT) are computed from the fragment images. Principal component analysis (PCA) is used to reduce the dimension of SIFT descriptors from 128 to 32 and then clustered using the K-means algorithm originally proposed in (MacQueen et al. (1967)). A deep residual network (ResNet20) is trained with the cluster IDs (targets) using patches extracted from each SIFT location (from the same SIFT keypoints). The deep features are extracted from the penultimate CNN activation layer, encoded, and normalized to produce a global feature vector. The authors used the multi-VLAD approach (Vector of Locally Aggregated Descriptors) to aggregate all features into a holistic global descriptor. An incremental PCA algorithm (Goel (2019)) with whitening was used to reduce the dimension of the global descriptor. The distance matrix is calculated using the Cosine similarity. 4.4.2.4/ UNIVERSITY OF TEBESSA Abdeljalil Gattal and Chawki Djeddi from the University of Tebessa used the oriented Basic Image Features (oBIFs) column histograms as in their earlier work in (Gattal et al. (2016)) and (Abdeljalil et al. (2018)). Two different configurations of oBIFs, i.e. σ= 2, 4 and σ= 1, 8, are extracted directly from the historical fragments and concatenated into a feature descriptor. The oBIF parameter is set to 0.01, and the Correlation distance is calculated to obtain the results as similarity measures. 4.4.2.5/ PROPOSED DEEP LEARNING-BASED APPROACH For robust and reliable feature extraction, we use deep convolutional neural networks (CNNs) to characterize the writing style of historical handwritten fragments. In our method, the CNN activations of the ResNet-50 model (He et al. (2016a)) are used as deep features. In particular, two ResNet-50 models are trained and fine-tuned with different input data (fragment images of the ICFHR2020 training set). As shown in Figure 4.12, each fragment image is fed into two CNN path-ways: Net1 uses the entire fragment image, while for Net2 the input image is split into four sub-blocks, i.e., a vertical split and a horizontal split. Therefore, Net2 uses a total of about 400 000 training samples.

Figure 4 .

 4 Figure 4.12: Overview of the proposed approach.

  the effectiveness of Convolutional Neural Network as a powerful deep learning tool to characterize writing variability. In this chapter, two different CNN-based approaches, namely WriterINet and DeepWINet are presented. The former approach segments handwritten documents into word and connected component images, from which deep features are computed. To obtain a discriminative feature representation, we proposed a multi-path deep network consisting of two CNN streams trained and fine-tuned with different input data. A conceptually simple and effective artificial neural network (1D-ANN) was designed to classify CNN features for writer identification in the classification phase. The second proposed approach involves a reliable and efficient deep CNN architecture, called DeepWINet, which has 30-weighted layers for the full version and 24-weighted layers for the light version. Compared to the VGG network structure (144 million parameters), our DeepWINet (light version) has lower network complexity with only 22 million parameters.

  ) Chinese CERUG-CN(He and Schomaker (2017b)), (8) Mixed Chinese and English CERUG-MIXED(He and Schomaker (2017b)), (9) Arabic AHTID/ MW[START_REF] Mezghani | A Database for Arabic Handwritten Text Image Recognition and Writer Identification[END_REF]), and (10) hybrid language ICDAR2011[START_REF] Louloudis | ICDAR 2011 writer identification contest[END_REF]). The description and evaluation setup for each tested database are presented in the following:IAM. The IAM database[START_REF] Marti | The IAM-database: an English sentence database for offline handwriting recognition[END_REF]) is one of the most widely used English handwriting databases in the literature for both writer identification/verification and handwriting recognition. It contains 1539 forms with 13353 isolated and labeled handwritten English text lines with variable content. Each form was scanned at 300 dpi and provided as a PNG image with 256 gray levels. An example of handwritten document is given in Figure5.1. In total, 657 writers contributed one to 59 pages of their handwriting.In the experiments, we set the following two default settings: # Document Setup: Two documents are used per writer: 1 document for training and 1 document for testing. For writers who created only one document, the page image is split into two sub-pages. # Text Line Setup: A maximum of 14 text lines are used for each writer. 60% of the data is used for training and the remaining 40% is used for testing. IFN/ENIT. The IFN/ENIT database (Pechwitz et al. (2002)), the most popular Arabic handwriting database, was developed primarily for training and evaluation of Arabic handwriting recognition systems and has been widely used for the problem of writer identification. It contains 2200 forms scanned at a resolution of 300 dpi. The forms (cf. Figure 5.2), which are also in binary image format, include 26000 handwritten Tunisian city/village names written by 411 writers. A maximum of 50-word binary images is used per writer. 60% of the word images are selected for the training set, and 40% are used for testing. ICDAR2013. The ICDAR2013 (Louloudis et al. (2013)) database consists of 1000 Greek and English handwritten document samples collected from 250 scribes (2 documents in English and 2 in Greek per writer ). In the experiments, we use two documents for testing and the others for training. An example of English and Greek handwriting produced by the same writer is shown in Figure 5.3.
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 5153 Figure 5.1: An example of a filled form taken from IAM database
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 54 Figure 5.4: Image samples with the same content written by two different writers from Firemaker database
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 56 . The first five pages are used as the training dataset, and the other three pages are used as the test dataset.Standard protocols used in our experimental study are summarized inTable 5.1. 
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 5556 Figure 5.5: Image samples from the same writer: (a) English sample from CERUG-EN dataset; (b) Chinese sample from CERUG-CN dataset; (c) English-Chinese sample from CERUG-MIXED dataset
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 31 PERFORMANCE OF THE BWLBC-BASED APPROACH 5.3.1.1/ CLASSIFICATION RESULTSThe BWLBC-based approach is evaluated on the IFN/ENIT, IAM (text-line setup), CVL (setup-1), and AHTID/MW databases. Unlike most existing works in the literature (Abdi and Khemakhem (2015);[START_REF] Hannad | Writer identification using texture descriptors of handwritten fragments[END_REF];[START_REF] Khan | Robust off-line text independent writer identification using bagged discrete cosine transform features[END_REF]) where the standard evaluation protocol is used, i.e., only one subdivision into training and testing sets is used, the proposed system is evaluated using 10 different split permutations randomly generated for each writer to assess its performance stability over the IFN/ENIT and IAM databases. Thus, the identification procedure is repeated 10 times, each time with a different split between training and test sets, and the average accuracy is reported as the final result. In the CVL and AHTID/MW databases, a quad validation strategy (cross setting) is specified in the setup of the CVL benchmark. This experimentation strategy thoroughly evaluates the performance of our system. It generates and tests all possible splits since we used one sample in testing and three samples in training. The identification process is iterated four times with different split configurations. The final result is the average rate over the four sets. The performance of BW-LBC (Block Wise Local Binary Count) descriptor is compared with LBP (Local Binary Patterns), LTP (Local Ternary Patterns), and LPQ (Local Phase Quantization) texture descriptors, which are the most commonly used descriptors in writer identification[START_REF] Hannad | Writer identification using texture descriptors of handwritten fragments[END_REF];[START_REF] Khan | Offline text independent writer identification using ensemble of multi-scale local ternary pattern histograms[END_REF];[START_REF] Bertolini | Texture-based descriptors for writer identification and verification[END_REF]).
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 555 Figure 5.7 shows the processing time (in seconds), including the time for feature extraction, distance calculation, and classification process by BW-LBC, LBP, LTP, and LPQ descriptors to identify a class over the four databases tested. It can be seen that the BW-LBC operator is very efficient in terms of feature extraction and classification execution time (CVL: 7.8s, IAM: 4.9s, IFN/ENIT: 4.1s, AHTID/MW: 2.9s), which is faster than the traditional LBP for all the tested databases (about 12 and 5.5 times faster than LBPfor AHTID/MW and CVL databases, respectively). This performance is achieved thanks to the small BWLBC feature size (7x7=49 different patterns for the IFN/ENIT, CVL, and IAM databases and 4x4=16 for the AHTID/MW database). It is also evident from Figure5.7 that the LTP descriptor is the most computationally expensive method compared to the BW-LBC, LBP, and LPQ methods, as it takes105.7, 23.4, 14.8, and 79.15 seconds to identify the writer n • 1 from the CVL, IAM, IFN/ENIT and AHTID/MW databases, respectively. This limitation is mainly due to the dimensionality of the LTP features (512 possible patterns), which requires more time to compare the writing samples based on the Hamming distance of their respective feature histograms.
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 5 Figure 5.10: Performance stability as a function of BW-LBC-parameters on CVL database.

Figure 5 .

 5 Figure 5.11: Performance stability as a function of BW-LBC-parameter on AHTID/MW database.

Figure 5 .Figure 5 .

 55 Figure 5.12: Writer identification rates under different numbers of writers on the IFN/ENIT database.
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 55 Figure 5.14: Writer identification rates under different numbers of writers on the CVL database.

  Figure 5.16: System performance as a function of the number of zones (N z × N z ) and dimensionality reduction factor (F) on IFN/ENIT and IAM databases.
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 5 Figure 5.17: System performance as a function of the number of zones (N z × N z ) and dimensionality reduction factor (F) on CVL and AHTID/MW databases.
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 55 Figure 5.18: Identification rate vs. number of writers ranging from 10 to 411 writers on IFN/ENIT database.
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 55 Figure 5.20: Identification rate vs. number of writers ranging from 10 to 310 writers on CVL database.

1 (Figure 5 .

 15 Figure 5.22: The processing time (in seconds) required by the proposed system to identify writer N • 1 (class N • 1) from IAM, Firemaker, CVL, IFN/ENIT, ICDAR2011, and AHTID/MW databases.
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 5 23 (a), we can clearly see that the highest identification rate in the IFN/ENIT database (score of 98.54%) is achieved with (N b = 1 × 1, N cell = 16) and (N b = 2 × 2, N cell = 16). Since these two parameter settings perform better on the IFN/ENIT database, the first one corresponding to a 432-dimensional CLGP feature histogram is selected, resulting in reduced classification computation time. As shown in Figures 5.23 (b) and 5.24 (c), (N b = 2 × 2, N cell = 9) and (N b = 2 × 2, N cell = 16)

Figure 5 .

 5 Figure 5.23: System performance with respect to the number of blocks N b and number of cells N cell on IFN/ENIT and IAM databases.
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 5 Figure 5.24: System performance with respect to the number of blocks N b and number of cells N cell on Firemaker and AHTID/MW databases.
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 55 Figure 5.25: System performance with respect to the number of blocks N b and number of cells N cell on ICDAR2011 and CVL databases.
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 5 Figure 5.26: System performance with respect to the number of writers ranging from 10 to 657 writers on IAM database.
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 5 Figure 5.27: Classification results on CVL database over different data partitions.

  The LSTP is a (N c × 9 × N bk )-dimensional image feature descriptor. Therefore, tuning the number of blocks N bk and the number of cells N c can have a direct impact on the final results, i.e, writer identification rates. Optimal parameter values of N bk and N c are used to obtain LSTP classification results inTables 5.18, 5.19, and 5.20. These two parameters are set experimentally for all databases tested. The optimal values of N bk and N c are summarized for each handwritten database in the following: (1) IAM & CERUG-

EN.

  The number of blocks N bk = 4 with N c = 16 represents the best way to handle the writing variations in IAM (score of 96.80%) and CERUG-EN (score of 98.09%). This configuration results in 576 bins in the final LSTP feature histogram (according to D im = N c × 9 × N bk ). (2) Firemaker, CERUG-MIXED, IFN/ENIT & CERUG-CN. The best results of 98% (Firemaker), 94.28% (CERUG-MIXED), 98.28% (IFN/ENIT) and 100% (CERUG-CN) are obtained when LSTP is used with the number of blocks N bk = 9 and the number of cells N c = 16 (D im = 1296). (3) ICDAR2013. We experimentally found that the best top-1 identification rate of 98% is achieved with N bk = 16 and N c = 9, resulting in 1296 bins of LSTP feature histogram dimension D im . (4) ICDAR2011 & CVL. The number of blocks N bk = 9 with N c = 9 are set as the optimal settings lead to highest performance with a score of 100% on the ICDAR2011 and CVL databases (D im = 729).
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 55 Figures 5.28, 5.29 and 5.30 illustrate the processing time and identification accuracy recorded by the proposed system when using the feature methods LSTP, BW-LBC, LPQ, LBP, and LTP. The processing time increases when the feature dimension is high. The overall system needs more time to classify the writing samples. This happened when comparing and matching feature histograms of samples using Hamming distance. Our previous BW-LBC descriptor[START_REF] Chahi | Block wise local binary count for off-Line text-independent writer identification[END_REF]) is the computationally fastest method across all databases tested (IAM: 4.9s, IFN/ENIT: 4.1s, ICDAR2011: 6.7s, CVL: 7.8s, Firemaker: 6.8s, ICDAR2013: 12.6s, CERUG-CN: 4.8s, CERUG-EN: 5.19s, CERUG-MIXED: 4.96s). This system behavior is due to its reduced feature histogram size (49 bins). Nevertheless, across all tested databases, the LSTP method outperforms all evaluated feature methods in writer identification accuracy. Since the writer identification task does not require a real-time response (offline mode), the processing time is not always considered as a key performance indicator. Moreover, none of the old and current stateof-the-art systems have recorded the computation time of their frameworks.

Figure 5 .

 5 Figure 5.29: The processing time of the proposed system to identify one writer from CVL, ICDAR2011, and ICDAR2013 databases.
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 5 Figure 5.30: The processing time of the proposed system to identify one writer from CERUG-CN, CERUG-EN, and CERUG-MIXED databases.
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 5 Figure 5.31: Classification performance according to the number of writers in the IAM database.
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 1 .25, which indicate that DeepWINet CNN model provides the best top 1 identification results over all tested databases.For the Firemaker database, the top-1 performance of the DeepWINet model is competitive with that of WorldImgNet and FragNet-64 networks. This high performance demonstrates the effectiveness of the proposed DeepWINet for writer identification based on connected component sub-images. The performance of our system using scenario DeepWINet as deep feature representation; Tables 5.22 and 5.23) is better than using scenario 2 (DeepWINet as an end-to-end CNN network; Tables 5.24 and 5.25), as shown in Table5.26. The classification process in scenario 1 uses a double comparison mechanism to classify the deep feature vectors. Both distance and dissimilarity metrics are jointly used to compare and match the common details contained in the feature vectors in an efficient manner, which further improves the results.

Tables 5 .

 5 27, 5.28 and 5.29 summarize the top-1 classification results obtained by our approaches together with those of the current state-of-the-art systems on IFN/ENIT, CVL, ICDAR2013, IAM, Firemaker, ICDAR2011, AHTID/MW, CERUG-CN, CERUG-EN, and CERUG-MIXED databases.• Results on IFN/ENIT. # BWLBC-based approach: The proposed system allows achieving the highest average accuracy of 96.47% over 10 subdivisions in the IFN/ENIT database, which outperforms the nearest performing system presented in[START_REF] Hannad | Writer identification using texture descriptors of handwritten fragments[END_REF]) by 1.58%, while their result was recorded only over one subdivision in training and testing sets. # Handcrafted-based approach: This approach provides a very accurate and efficient solution for identifying the writers from the Arabic IFN/ENIT database. Using the LPQ descriptor in feature extraction, our

  ) page level (Task 2). The fragment images have the FID=Fragment-ID. The evaluation is based on five methods submitted by different universities. These include the University of Bourgogne Franche-Comte (UBFC), the University of Groningen (RUG), the University of Tebessa (ULT), and the University of Belfort-Montbeliard Technology (UTBM). The description of the approaches including our proposed system (submitted with two variants (T woPath writer ) and (T woPath page )) is provided in Chapter 4 (cf. Section 4.4).

  (ii) feature extraction to capture a synthetic feature representation of the writing style to be recognized in a two-dimensional space. It consequently characterizes and indexes common writing patterns belonging to the same writing style; (iii) classification to compare and match the previously extracted features to identify the authorship of handwritten documents accurately. Chapter 2 of the dissertation presented a comprehensive literature review of recent pub-157 lications in the field of writer identification and provided the necessary context in which to place our research work. We have classified the state-of-the-art, in chronological order, into texture-based, grapheme-based, contour-based, and deep learning-based methods.

  grapheme-and contour-based methods, the recognition and identification performance highly depends on the capability of the image segmentation phase as they are based on extracting features from small parts of the writing like graphemes, strokes, edges, and contours. With the advent of deep learning, the writing variability can be automatically extracted and learned using Convolutional Neural Network (CNN). CNN-based methods provide an accurate solution for the in-depth computation of features representing the individual's handwriting style. However, one of the drawbacks of these methods is the limitation of data size. Large labeled data is required for the training process to learn how to capture the within-writer and between-writer style variability. With less training data, traditional methods can perform better or equivalent to deep learning. Our contributions in Chapter 3 focused on the feature extraction phase, as it is challenging to model the writing style patterns in the image. If the writing features are inappropriately captured from the writing, it will have an unfavorable impact on the classifier used to determine the writer's identity for the documents in question. Indeed, extracting relevant features allows to reduce misclassification and improve the writer identification task. We have proposed four texture-based systems for text-independent offline writer identification. An image preprocessing and segmentation step was commonly used for the four texture-based approaches. It consists of removing background noise and diacritical marks from the writing and segmenting the document image into connected component sub-images. In the feature extraction phase (for all texture-based approaches), these connected components are input to capture the texture information of the writing, which is represented by feature vectors. The classification phase is performed using the Hamming-based nearest neighbor method with a new strategy to compute similarities between handwritten documents. Our first approach is based on the Block Wise Local Binary Count (BWLBC) descriptor. It characterizes individual writing styles in small blocks by capturing the white pixels' distribution corresponding to the ink in binary component sub-images. The encoding of BW-LBC feature vectors depends on the number of blocks

Furthermore, we proposed

  two feature extraction methods, namely Cross multi-scale Locally encoded Gradient Patterns (CLGP) and Local gradient full-Scale Transform Pat-terns (LSTP). The CLGP descriptor computes the distribution of local intensity gradients within small regions, called cells, over multiple feature code maps. These feature code maps were uniformly computed from resized handwritten connected components using a cross-scale joint coding process. The LSTP method is an extended variant of CLGP for capturing relevant gradient representations of the writing patterns using the HOG operator. The gradient information is computed within non-overlapping blocks (of the component sub-image) in a full-scale code map (obtained using transformation features across multiple scale-spaces). The CLGP-based and LSTP-based approaches outperformed or provided competitive performance to SOTA systems on several benchmarks with different scripts, including English, Dutch, Chinese, Arabic, French, Greek, and German (results

  Connected components were collected from the previously segmented words using a label-based bounding box technique to detect connected neighbor pixels, i.e., connected writing traces; (2) finetuning our multi-stream CNN model with different input data for feature learning. The global average pooling layers of the proposed model were activated to extract deep features of the input word and its associated component sub-images; (3) feeding the learned features into a conceptually simple and effective artificial neural network (1D-ANN) to identify the authorship of the query documents. We adapted the 1D-ANN classifier with two fully connected layers FC1 and FC2 to classify the CNN features efficiently. The number of neurons in the FC2 layer is defined as the number of output classes, while the number of neurons in the FC1 layer was experimentally tuned to find the optimal setting for better identification performance. This analysis experiment was provided in Chapter 5. Our second contribution using deep learning proposed a reliable and efficient deep CNN architecture, called DeepWINet: a full network version with 30-weighted layers and 24-weighted layers for the light network version (Chapter 4). Compared to the VGG network structure (144 million parameters), our DeepWINet (light version) has a lower network complexity with only 22 million parameters. The DeepWINet model was implemented and evaluated in two ways. The first scenario aimed to use the DeepWINet model as a feature learning representation to extract deep features from the connected compo-nents of the writing. In the classification phase, the learned features were passed to a nearest-neighbor classifier that used the Chi-square metric as distance similarity to identify the query samples. For the second scenario, the DeepWINet model was trained as an end-to-end CNN network, where the predicted scores are averaged using a new and efficient strategy, namely the score-averaging component-decision combiner. The results reported in Chapter 5 showed that our CNN-based approaches delivered high state-ofthe-art performance and showed significant improvement over our previous texture-based systems for the task of writer identification.

(Chapter 4 )

 4 motivates us to investigate this topic further, which may be a worthwhile future research direction. To this end, we plan to evaluate the fusion of textural features, mainly the oriented Basic Image Feature (oBIF) and CNN-based features (design of a new CNN architecture). Technically, the feature map of oBIF (instead of the original image pixels) is fed into the CNN model to improve the deep feature extraction step. Note that oBIF features have shown their effectiveness for high-level characterization of texture patterns in character recognition (Newell and Griffin (2011)) and texture recognition (Timofte and Van Gool (2012); Newell et al. (2010)). Identifying writers in historical documents would open up some interesting perspectives, such as identifying the printing house in machineprinted documents, automatically dating historical documents, and indexing and retrieving manuscripts based on writing style.
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1: The tested texture descriptors

  .28) where x ∈ {g, d}, m x is the mean value of the transform feature map of x and k is a tuning parameter. The transform feature values of {s, r} are in the range of [0, 1] (cf. Eqs.3.26 and 3.27). Therefore, for the feature subset {s, r}, a simple uniform quantization Q 2 (.) is

	used (cf. Eq. 3.29):

  where each element is an integer.

			// connected
	component sub-image number i.
	Output: H LS T P	// LSTP feature vector histogram of the connected
	component number i.
	I ← C i ;	
	/* Compute extremum (maximum and minimum) response values of I θ 1 and I θ 2
	over all θ at three different scales N σ = 3: σ 1 = 1, σ 2 = 2, and
	σ 3 = 4.		*/
	G(x, y, σ);	// Eq. 3.38; define the 2-D circularly symmetric Gaussian
	function.	
	G θ 1 ; G θ 2 ;	// Eqs. 3.39 and 3.40; compute the first and second Gaussian
	derivatives G θ 1 and G θ 2 at orientation θ.
	I θ 1 = G θ 1 * I; I θ 2 = G θ 2 * I; // Eqs. 3.41 and 3.42; compute the first and second
	Gaussian responses I θ 1 and I θ 2 at orientation θ.
	I θ 1max ; I θ 2max ; I θ 2min ;

// Eqs.

3.43, 3.44, and 3.45

; get the maximum and minimum response values of I θ 1 and I θ 2 over all θ at three different scales

  Bk = getblocksfunction(FC, N bk ); // devide the full-scale code map FC into N bk non-overlapping blocks FC = ∪ N bk t=1 Bk t (Bk t is the block number t).

	3.2.3/ CLASSIFICATION PROCESS
	After extracting feature histograms from all the connected components in the writing, we
	perform the classification process, i.e., identifying the writer using the Nearest Neighbor
	classifier. Keeping the same classification process, we empirically evaluated various dis-
	tance metrics to study the system performance. These include Euclidean, correlation,
	Bhattacharyya, cosine, and Hamming distance metrics. The experiments have shown
	that Hamming distance, which is commonly used and considered as an efficient distance
	in writer identification (Hannad et al. (2016); Schomaker and Bulacu (2004), etc.), per-
	forms better than the other metrics.
	To perform the identification process, we set up a comparison mechanism between hand-
	Eqs.
	3.49, 3.50, 3.51 and 3.52;
	H LSTP = [ ];
	for t ← 1 to N bk do
	H t = HOGfunction(Bk t ); // Eq. 3.57; compute the HOG histogram of the
	block Bk t .
	end for
	return H LS T P

/* Concatenate G, D, S , and R to form the full-scale code map FC. */ c1 = concatenatefunction(G, D, axis = 2); // horizental concatenation of G and D. c2 = concatenatefunction(S, R, axis = 2); // horizental concatenation of S and R. FC = concatenatefunction(c1, c2, axis = 1); // vertical concatenation of c1 and c2.

/* Compute the final LSTP feature histogram. */ H LSTP = concatenatefunction(H LSTP , H t , axis = 2); // Eq. 3.58; output; HOG histograms of all blocks in FC are concatentated to form the feature vector histogram H LS T P . written samples (cf. Figure 3.11). It consists of comparing the Hamming distances of the respective feature histograms of one sample from the test set and the other from the training set: (1) test sample (unseen) to be identified, denoted as S w x , where w x is the label of the unknown writer in the test set; (2) training sample, denoted as S w r f , produced by a known writer labeled by w r f in the reference base B r f . A set of connected sub-images C j ( j=1,.,N wx ) w x is extracted from the test sample S w x characterized by their corresponding feature histograms H S wx = {H

Table 5 .

 5 1: Experimental setup. The use of 2 or 3 documents in testing is more challenging than using 1 document.

	Dataset	Script	Classes (Writers)	Year	Query sample	Total number of query documents
	CERUG-CN	Chinese	105	2017 He and Schomaker (2017b)	1 document	105
	CERUG-EN	English	105	2017 He and Schomaker (2017b)	1 document	105
	CERUG-MIXED	Chinese/English	105	2017 He and Schomaker (2017b)	1 document	105
	CVL (setup-1)	English	310	2013 Kleber et al. (2013)	1 document	310
	CVL (setup-2)	English/German	310	2013 Kleber et al. (2013)	2 documents	620
	IFN/ENIT	Arabic	411	2002 Pechwitz et al. (2002)	20 words at most	411
	IAM (document setup)	English	657	2002 Marti and Bunke (2002)	1 document	657
	IAM (text-line setup)	English	657	2002 Marti and Bunke (2002)	about 6 text lines	657
	Firemaker	Dutch	250	2000 Schomaker and Vuurpijl (2000)	1 document	250
	ICDAR2013	Greek/English	250	2013 Louloudis et al. (2013)	2 documents	500
	ICDAR2011	Hybrid	26	2011 Louloudis et al. (2011)	3 documents	78
	5.3/ EXPERIMENTAL RESULTS: TEXTURE FEATURES-BASED SYS-

TEMS

Our proposed texture-based approaches, explained earlier in Chapter 3, are performed in a text-independent manner, i.e., each writer has completely different handwriting samples in the training and testing sets. Moreover, each handwritten document (or set of words/lines of text) is considered as a scanned image characterized by a set of feature

Table 5 .

 5 2: Identification rates on the IFN/ENIT (411 writers) and IAM (657 writers) databases

	Descriptor Database					Split					Average	Dimension
			Sp.1	Sp.2	Sp.3	Sp.4	Sp.5	Sp.6	Sp.7	Sp.8	Sp.9	Sp.10	accuracy	
	BW-LBC	IFN/ENIT	95.37	96.83	96.59	97.08	97.56	96.35	96.83	96.59	94.89	96.59	96.47%	49
		IAM	90.11	88.58	88.89	90.11	88.89	88.13	88.43	88.74	89.49	88.58	88.99%	
	LPQ	IFN/ENIT	73.24	74.69	73.48	75.42	74.94	73.72	72.75	72.99	74.28	75.18	74.07%	256
		IAM	74.12	72.75	73.66	73.21	73.82	75.49	72.45	72.3	73.51	72.60	73.39%	
	LBP	IFN/ENIT	69.83	70.32	70.07	71.29	71.05	68.86	67.4	67.64	70.07	71.05	69.76%	256
		IAM	68.49	68.19	63.01	63.47	68.04	66.97	66.51	65.45	65.90	63.77	65.98%	
	LTP	IFN/ENIT	82.72	82.97	82.48	83.45	82.97	82.48	80.29	80.53	82.24	83.21	82.33%	512
		IAM	73.06	69.25	70.17	70.01	72.60	72.91	73.51	72.75	70.93	68.49	71.37%	

Table 5 .

 5 3: Identification rates on the CVL (310 writers) and AHTID/MW (53 writers) databases

	Descriptor	Database	Sp.1	Split Sp.2 Sp.3	Sp.4	Average accuracy	Dimension
	BW-LBC	CVL	98.7	99.03 97.41 98.38	98.38%	49
		AHTID/MW	100	100	100	98.11	99.53%	16
	LPQ	CVL	83.82 78.64	69.9	78.32	77.67%	256
		AHTID/MW 69.81 58.49 69.81 73.58	67.92%
	LBP	CVL	75.4	71.2	65.69 72.49	71.19%	256
		AHTID/MW 64.15 50.94 66.04 69.81	62.73%
	LTP	CVL	85.44 79.29 74.11 82.52	80.34%	512
		AHTID/MW 66.04 52.82 67.92 71.70	64.62%

Table 5 .

 5 4: Identification rates (in percentage) on the IFN/ENIT and IAM databases over a variable number of training and test handwritten images.

	Descriptor Database	Train setup (%) /Test setup (%) 30/70 40/60 50/50 60/40 70/30
	BW-LBC	IAM IFN/ENIT	80.67 86.86	85.99 92.94	87.67 96.35	89.49 96.59	89.04 96.11
	LPQ	IAM IFN/ENIT	64.53 64.96	70.01 70.07	71.54 73.96	73.51 75.18	74.43 73.72
	LBP	IAM IFN/ENIT	56.01 57.18	65.29 65.45	64.99 70.08	65.9 71.05	64.84 68.61
	LTP	IAM IFN/ENIT	62.71 70.8	69.86 77.13	70.01 82.24	70.93 83.21	72.3 81.99

Table 5 .

 5 5: Identification rates (in percentage) on the CVL and AHTID/MW databases over a variable number of training and test handwritten images. .3.2/ PERFORMANCE OF THE HANDCRAFTED-BASED APPROACH 5.3.2.1/ INFLUENCE OF THE NUMBER OF ZONES (N z × N z ) AND THE DIMENSIONALITY

	Descriptor	Database	Train setup (%) /Test setup (%) 25/75 50/50 75/25
	BW-LBC	CVL AHTID/MW	93.44 95.75	98.76 100	98.38 99.53
	LPQ	CVL AHTID/MW	63.59 54.24	75.78 70.44	77.67 67.92
	LBP	CVL AHTID/MW	61.41 45.75	70.76 62.89	71.19 62.73
	LTP	CVL AHTID/MW	71.76 49.05	80.2 69.49	80.34 64.62
	for each descriptor decrease as the number of images in training set decreases. Obvi-
	ously, the system needs more learning samples to train the classifier to perform the writer
	identification with high precision. In fact, the best results are obtained when there is an
	acceptable amount of handwritten samples in both training and test sets. On IAM and
	IFN/ENIT databases, the best performance (89.49 % for IAM and 96.59% for IFN/ENIT)
	is obtained when 60% of data available per writer is used in the training set, while the
	(50%/50%) setup allows to record the higher values of 98.76% and 100% for CVL and
	AHTID/MW databases, respectively.			

Note that we assess all possible scenarios in each configuration of CVL and AHTID/MW databases (i.e., the 4-and 6-fold cross-validation) to demonstrate the effectiveness of our system on a variable number of samples. 5

Table 5 . 6

 56 

				(16, 8):[512]
		LPQ	97.81	(16, 11):[384]
	IFN/ENIT	LTP	96.84	(16, 14):[304] (36, 11):[1692] Ï
		LBP	95.13	(9, 8):[512] (9, 11):[216]
		LPQ	91.17	(16, 8):[512]
	IAM	LTP	90.56	(36, 11):[1692] (36, 14):[1332]
		LBP	88.73	(36, 8):[1152]
				(16, 8):[512]
		LPQ	98.62	(16, 11):[384]
	CVL			(16, 14):[304]
		LTP	98.14	(16, 11):[752]
		LBP	98.30	(16, 11):[384]
		LPQ	99.53	(9, 8):[288]
	AHTID/MW	LTP	95.75	(9, 11):[423] (16, 11):[752]
		LBP	95.75	(16, 11):[384] (16, 14):[304]

: Optimal (N z × N z ) and (F) parameter values for the 4 tested databases. Database Feature extraction Identification (N z × N z , F):[D c ] method rate (%)

Table 5 .

 5 7: Writer identification rates of the proposed system on CVL (310 writers) and AHTID/MW (53 writers) databases

	Feature extraction method	Database	Sp.1	Split Sp.2 Sp.3	Sp.4	Average accuracy	Dimension(D c )
	LPQ		CVL	99.03 99.35 97.41 98.70	98.62%	304
		AHTID/MW	100	100	100	98.11	99.53%	288
	LTP		CVL	98.70 99.35 96.11 98.38	98.14%	752
		AHTID/MW 98.11 96.22 98.11 90.56	95.75%	423
	LBP		CVL	98.38 99.35 97.41 98.06	98.30%	384
		AHTID/MW 96.23 96.23 98.11 92.45	95.75%	304
	Table 5.8: Writer identification rates of the proposed system on IFN/ENIT (411 writers)
	and IAM (657 writers) databases			
	Feature extraction method	Database	Identification rate (%) Top-1 Top-3 Top-5	Dimension (D c )
	LPQ		IFN/ENIT	97.81	99.51	100	304
			IAM	91.17	94.21	96.04	512
	LTP		IFN/ENIT	96.84	98.78	99.27	1692
			IAM	90.56	94.21	95.43	1332
	LBP		IFN/ENIT	95.13	98.78	100	216
			IAM	88.73	93.15	93.91	1152
	Tables						

Table 5 .

 5 9: System performance as a function of dimensionality reduction factor (F) on IAM database (150 writers)

	Feature extraction method	Dimensionality reduction factor (F)	Identification rate (%)	Processing time (in seconds)	Number of zones N z × N z	Dimension (D c )
		1	95.33	17293	16	
	LPQ	8 11	94 94	1642.2 1187.4	16 16	512 384
		14	95.33	993.23	16	304
		1	92.66	39803	36	18432
	LTP	8 11	92.66 92.66	3924.2 2378.9	36 36	
		14	92	1725.7	36	
		1	92	15271	36	
	LBP	8 11	92 92	1171.7 695.5599	36 36	864
		14	92	478.1355	36	684

Table 5

 5 

	Feature extraction method	Dimensionality reduction factor (F)	Identification rate (%)	Processing time (in seconds)	Number of zones N z × N z	Dimension (D c )
		1	99.33	9442.8	16	4096
	LPQ	8 11	98.66 99.33	720.32 369.25	16 16	
		14	99.33	180.50	16	
		1	98.66	19983	36	18432
	LTP	8 11	98.66 98	2296.1 1546.2	36 36	2304 1692
		14	98.66	1193.2	36	1332
		1	97.33	5059.7	9	2304
	LBP	8 11	96.66 97.33	165.31 131.71	9 9	
		14	97.33	104.23	9	

.10: System performance as a function of dimensionality reduction factor (F) on IFN/ENIT database (150 writers)

Table 5 .

 5 11: System performance as a function of dimensionality reduction factor (F) on CVL database (150 writers)

	Feature extraction method	Dimensionality reduction factor (F)	Identification rate (%)	Processing time (in seconds)	Number of zones N z × N z	Dimension (D c )
		1	98.66	112820	16	4096
	LPQ	8 11	98.66 97.33	13332 8688.5	16 16	512 384
		14	97.33	6938.7	16	304
		1	96.66	211760	16	8192
	LTP	8 11	97.33 98	25894 19690	16 16	1024 752
		14	98	15397	16	592
		1	98	106600	16	4096
	LBP	8 11	98.66 98	12773 86675	16 16	512 384
		14	98	6323.6	16	304

Table 5 .

 5 12: System performance as a function of dimensionality reduction factor (F) on AHTID/MW database (53 writers)

	Feature extraction method	Dimensionality reduction factor (F)	Identification rate (%)	Processing time (in seconds)	Number of zones N z × N z	Dimension (D c )
		1	92.45	11475	9	2304
	LPQ	8 11	98.11 96.22	1257.7 863.08	9 9	288 216
		14	96.22	629.75	9	171
		1	77.35	23208	9	4608
	LTP	8 11	88.67 90.56	2920.6 2149.8	9 9	576 423
		14	88.67	1693	9	333
		1	81.13	9175	16	4096
	LBP	8 11	86.79 88.67	1027.7 633.08	16 16	512 384
		14	92.45	399.74	16	304
	5.3.2.3/ STABILITY OF THE SYSTEM PERFORMANCE AS A FUNCTION OF THE NUMBER
		OF WRITERS				

Table 5 .

 5 13: Identification rate (in percentage) on the IFN/ENIT and IAM databases over different training /testing partitions.

	Feature extraction Database method	Partition (training (%)/testing (%)) 30/70 40/60 50/50 60/40 70/30
	LPQ	IAM IFN/ENIT	81.43 88.56	87.21 93.67	89.34 97.32	91.17 97.81	89.95 96.59
	LTP	IAM IFN/ENIT	81.28 87.10	86.45 93.43	87.36 95.13	90.56 96.84	89.34 96.10
	LBP	IAM IFN/ENIT	77.47 83.45	82.64 90.51	85.08 94.16	88.43 95.13	86.30 94.65

Table 5 .

 5 14: Identification rate (average in percentage) on CVL and AHTID/MW databases over different training /testing partitions.

	Feature extraction method	Database	Partition (training (%)/testing (%)) 25/75 50/50 75/25
	LPQ	CVL AHTID/MW	92.80 95.28	98.24 99.37	98.62 99.53
	LTP	CVL AHTID/MW	89.4 91.51	97.46 95.59	98.14 95.75
	LBP	CVL AHTID/MW	90.37 82.55	97.78 93.39	98.30 95.75
	5.3.3/ PERFORMANCE OF THE CLGP-BASED APPROACH	
	5.3.3.1/ RESULTS AND ANALYSIS			

Comprehensive experiments are conducted on six handwritten databases to evaluate the performance and effectiveness of the proposed CLGP-based approach. The databases studied are: IFN/ENIT (411 writers/Arabic), AHTID/MW (53 writers/Arabic), CVL (setup-1 with 310 writers/English), IAM (text line setup with 657 writers/English), Firemaker (250 writers/Dutch) and ICDAR2011 (26 writers/hybrid language). On CVL and AHTID/MW databases, a full 4-fold cross-validation is performed, generating four split permutations for each writer. To illustrate the ability of the CLGP (Cross multi-scale Locally encoded

Table 5 .

 5 15: Classification rates on IFN/ENIT (411 writers), IAM (657 writers), Firemaker (250 writers), and ICDAR2011 (26 writers) databases. The highest classification scores are in bold.

	Feature representation method	Database	Classification accuracy (%) Top-1 Top-3 Top-5
			IFN/ENIT	98.54	100	100
	CLGP	IAM Firemaker	94.06 97.60	97.25 98.40	99.23 99.2
			ICDAR2011	100	100	100
			IFN/ENIT	97.56	99.27	100
	BW-LBC	IAM Firemaker	90.11 94.40	93.15 97.60	94.98 98.40
			ICDAR2011	97.43	98.71	100
	LPQ	IFN/ENIT IAM	75.42 75.49	77.12 78.68	78.08 80.66
			Firemaker	37.20	54.40	64
			ICDAR2011	88.46	98.71	98.71
	LTP	IFN/ENIT IAM	83.45 73.51	85.63 76.85	86.59 78.68
			Firemaker	30.4	45.6	54
			ICDAR2011	82.05	96.15	100
	LBP	IFN/ENIT IAM	71.29 68.49	74.43 72.43	76.11 75.01
			Firemaker	33.60	48	55.60
			ICDAR2011	79.48	96.15	98.71
	LETRIST	IFN/ENIT IAM	77.85 79.14	80.29 80.66	81.99 82.19
			Firemaker	35.60	52	60.4
			ICDAR2011	85.89	97.43	98.71
	Table 5.16: Classification rates on CVL (310 writers) and AHTID/MW (53 writers)
	databases. The highest classification scores are in bold		
	Feature representation method	Database	Sp.1	Split Sp.2 Sp.3	Sp.4	Average accuracy
	CLGP	CVL AHTID/MW	99.35 99.67 99.67 99.35 100 100 100 98.11	99.51% 99.53%
	BW-LBC	CVL AHTID/MW	98.7 100	99.03 97.41 98.38 100 100 98.11	98.38% 99.53%
	LPQ	CVL AHTID/MW 69.81 58.49 69.81 73.58 83.82 78.64 69.9 78.32	77.67% 67.92%
	LBP	CVL AHTID/MW 64.15 50.94 66.04 69.81 75.4 71.2 65.69 72.49	71.19% 62.73%
	LTP	CVL AHTID/MW 66.04 52.82 67.92 71.70 85.44 79.29 74.11 82.52	80.34% 64.62%
	LETRIST	CVL AHTID/MW 67.92 54.71 69.81 69.81 85.16 78.70 73.22 81.29	79.59% 65.56 %

database through a comprehensive evaluation described in detail later in this section. The

Table 5 .

 5 17: Classification results on IAM database over different data partitions

	Database setup				Feature methods
	training-set(%)/test-set(%)	CLGP	BW-LBC	LPQ	LTP	LBP	LETRIST
		30/70		91.62	80.67	64.53 62.71 56.01	68.04
		40/60		93.45	85.99	70.01 69.86 65.29	72.75
		50/50		93.75	87.67	73.51 70.01 64.99	74.12
		60/40		94.06	90.11	75.49 73.51 68.49	79.14
		70/30		94.06	89.04	74.43	72.3	64.84	75.49
			96,67%	93,44%	99,43%	98,76%		99,51%	98,38%
			100				
			90				
			80				
			70				
			60				
			50				
			40				
			30				
	Feature methods	20				
	CLGP LPQ	BW-LBC LTP	10				
	LBP	LETRIST	0				
				25/75		50/50		75/25
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	.18: Performance evaluation on ICDAR2013 (250 writers), CERUG-EN (105 writ-
	ers), CERUG-CN (105 writers), and CERUG-MIXED (105 writers) databases.
	Feature extraction model	Database	Classification rate (%) Top-1 Top-3 Top-5
		ICDAR2013	98%	100	100
	LSTP	CERUG-EN CERUG-CN	98.09 100	100 100	100 100
		CERUG-MIXED	94.28	98.09	100
		ICDAR2013	96.80	98.4	99.2
	BW-LBC	CERUG-EN CERUG-CN	91.43 92.38	93.33 94.28	96.19 99.04
		CERUG-MIXED	83.80	85.71	91.42
	LPQ	ICDAR2013 CERUG-EN	82.20 66.66	86.4 71.42	88 79.04
		CERUG-CN	54.28	57.14	64.76
		CERUG-MIXED	59.04	65.71	71.42
	LTP	ICDAR2013 CERUG-EN	72 83.81	79.2 90.41	85.2 96.19
		CERUG-CN	69.52	75.23	81.90
		CERUG-MIXED	64.76	70.47	77.14
	LBP	ICDAR2013 CERUG-EN	70.40 78.09	75.2 84.76	78 92.38
		CERUG-CN	65.71	72.38	78.09
		CERUG-MIXED	61.90	64.76	70.47

Table 5 .

 5 19: Performance evaluation on IFN/ENIT (411 writers), IAM (657 writers), Firemaker (250 writers), and ICDAR2011 (26 writers) databases.

	Feature extraction model	Database	Classification rate (%) Top-1 Top-3 Top-5
		IFN/ENIT	98.28	100	100
	LSTP	IAM Firemaker	96.80 98	98.17 98.80	99.54 99.60
		ICDAR2011	100	100	100
		IFN/ENIT	97.56	99.27	100
	BW-LBC	IAM Firemaker	90.11 94.40	93.15 97.60	94.98 98.40
		ICDAR2011	97.43	98.71	100
	LPQ	IFN/ENIT IAM	75.42 75.49	77.12 78.68	78.08 80.66
		Firemaker	37.20	54.40	64
		ICDAR2011	88.46	98.71	98.71
	LTP	IFN/ENIT IAM	83.45 73.51	85.63 76.85	86.59 78.68
		Firemaker	30.4	45.6	54
		ICDAR2011	82.05	96.15	100
	LBP	IFN/ENIT IAM	71.29 68.49	74.43 72.43	76.11 75.01
		Firemaker	33.60	48	55.60
		ICDAR2011	79.48	96.15	98.71
	Table 5.20: Performance evaluation on CVL (310 writers) database. The highest classifi-
	cation rates are in bold					
	Feature extraction		Split		Average
	model	Sp.1	Sp.2	Sp.3	Sp.4	rate
	LSTP	99.67	100	100	99.67	99.83%
	BW-LBC	98.7	99.03 97.41 98.38	98.38%
	LPQ	83.82 78.64	69.9	78.32	77.67%
	LBP	75.4	71.2	65.69 72.49	71.19%
	LTP	85.44 79.29 74.11 82.52	80.34%

Table 5
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	.21, it can be clearly

Table 5 .

 5 21: The impact of the number of neurons of the fully connected FC1 on system performance across all benchmarks tested.

	IFN/ENIT	CVL	ICDAR2013
	Top-		

1 Top-2 Top-1 Top-2 Top-1

  

	(setup-2), Firemaker, ICDAR2013 and CERUG databases.		
							Top-2
	FC1-512	99.75	100	99.67	100	99	99.6
	FC1-1024	99.27	99.75	100	100	99	99.6
	FC1-2048	99.02	99.51	99.03	100	98.6	99
	FC1-4096	98.54	99.27	97.09	97.74	98	98.6
		IAM	Firemaker	ICDAR2011
		Top-1 Top-2 Top-1 Top-2 Top-1	Top-2
	FC1-512	99.39	99.69	98	99.2	100	100
	FC1-1024	99.39	99.69	98.4	99.6	100	100
	FC1-2048	99.54	99.54	98.4	99.6	100	100
	FC1-4096	99.23	99.54	97.6	98.4	100	100
		CERUG-CN	CERUG-EN	CERUG-MIXED
		Top-1 Top-2 Top-1 Top-2 Top-1	Top-2
	FC1-512	95.24	99.04	100	100	100	100
	FC1-1024	93.33	97.14	100	100	99.04	100
	FC1-2048	92.38	94.28	98.09	100	97.14	99.04
	FC1-4096	90.47	92.38	95.24	98.09	96.19	98.09

Table 5 .

 5 22: Writer identification results on IAM (document setup), CVL, Firemaker, and CERUG-EN databases. DeepWINet model is used as CNN deep feature extraction method

	Feature	IAM	CVL	Firemaker	CERUG-EN
	method	Top-1 Top-5	Top-1 Top-5	Top-1 Top-5	Top-1 Top-5
	LBP	66.66	70.01	65.80	70.32	33.60	55.60	78.09	92.38
	LPQ	69.86	72.90	67.74	70.96	37.20	64	66.66	79.04
	LTP	72.29	75.34	69.83	71.61	30.4	54	83.81	96.19
	BW-LBC	90.11	94.9	96.77	98.22	94.40	97.60	91.43	96.19
	CLGP	92.99	96.95	98.38	99.35	97.60	99.2	97.14	100
	DeepWINet (full)	98.32	98.93	100	100	98.4	99.60	100	100
	DeepWINet (light)	98.02	98.78	100	100	97.6	99.2	100	100

Table 5 .

 5 23: Writer identification results on IFN/ENIT, CERUG-CN, CERUG-MIXED, and ICDAR2013 databases. DeepWINet model is used as a CNN deep feature extraction method

	Feature	IFN/ENIT	CERUG-CN	CERUG-MIXED	ICDAR2013
	method	Top-1 Top-5	Top-1 Top-5	Top-1	Top-5	Top-1 Top-5
	LBP	71.29	76.11	65.71	78.09	61.90	70.47	70.40	78
	LPQ	75.42	78.08	54.28	64.76	59.04	71.42	82.20	88
	LTP	30.4	54	69.52	81.90	64.76	77.14	72	85.2
	BW-LBC	97.56	100	92.38	99.04	83.80	91.42	96.80	99.2
	CLGP	98.54	100	90.47	98.09	93.33	100	97	99.6
	DeepWINet (full)	99.27	100	94.28	100	100	100	99.8	100
	DeepWINet (light)	99.02	100	93.33	100	100	100	99.2	100

Table 5 .

 5 24: Writer identification results on CERUG, CVL, and IFN/ENIT databases.

		DeepWINet, VGG-19, and AlexNet are implemented and used as an end-to-end CNN
		networks				
	CNN model	CERUG-CN	CERUG-EN	CERUG-MIXED	CVL	IFN/ENIT

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

  

	VGG-19	88.57	95.24	92.38	96.19	90.47	99.05	96.77	98.38	79.07	81.50
	WordImgNet	-	-		97.1		100		-	-	98.8	99.4	-	-
	FragNet-64	-	-		98.1		100		-	-	99.1	99.4	-	-
	AlexNet	92.38	97.14		98.1		100	97.14	100	98.71	99.03	88.80	96.59
	DeepWINet (full)	94.28	100		100		100		100	100	100	100	98.78	99.75
	DeepWINet (light)	92.38	100		100		100		100	100	100	100	98.78	99.51
	Table 5.25: Writer identification results on IAM (document setup), Firemaker, and IC-
	DAR2013 databases. DeepWINet, VGG-19, and AlexNet are implemented and used as
	an end-to-end CNN networks						
		CNN model		IAM Top-1 Top-5	Firemaker Top-1 Top-5	ICDAR2013 Top-1 Top-5
		VGG-19		94.36	96.65	88	92	96	97.8
		WordImgNet		95.8		98		97.6	98.8	-	-
		FragNet-64		96.3		98		97.6	99.6	-	-
		AlexNet			96.49	97.26	92	95.2	98.6	99
		DeepWINet (full)		97.41	98.93	97.6	99.2	99	100
		DeepWINet (light)	96.95	98.78	97.2	99.2	99	99.8

Table 5 .

 5 26: Writer identification performance. (S1): DeepWINet is used as a CNN deep feature extraction method. (S2): DeepWINet is used as an end-to-end CNN network.

		DeepWINet (Full)		DeepWINet (Light)	
	Database	S1		S2		S1		S2	
		TOP-1 TOP-5	TOP-1 TOP-5	TOP-1 TOP-5	TOP-1 TOP-5
	IAM	98.32	98.93	97.41	98.93	98.02	98.78	96.95	98.78
	IFN/ENIT	99.27	100	98.78	99.75	99.02	100	98.78	99.51
	CVL	100	100	100	100	100	100	100	100
	CERUG-CN	94.28	100	94.28	100	93.33	100	92.38	100
	CERUG-EN	100	100	100	100	100	100	100	100
	CERUG-MIXED	100	100	100	100	100	100	100	100
	ICDAR2013	99.8	100	99	100	99.2	100	99	99.8
	Firemaker	98.4	99.60	97.6	99.2	97.6	99.2	97.2	99.2

Table 5 .

 5 27: Performance comparison on IFN/ENIT, CVL, and ICDAR2013 databases. S1: Scenario 1, DeepWINet is applied as deep CNN feature method; S2: Scenario 2, DeepWINet is used as an end-to-end CNN network;

	Approach	#Year	#Script	Benchmark #Classes #Feature + Classifier	Writer identification
							Top-1 accuracy
	Bulacu et al.	2007	Arabic	IFN/ENIT	350	Contour & Grapheme + Nearest Neighbor	88%
	Abdi and Khemakhem	2015	Arabic	IFN/ENIT	411	Synthetic codebooks + Chi-square	90.02%
	Hannad et al.	2016	Arabic	IFN/ENIT	411	LPQ + Hamming	94.89%
	Khan et al.	2017	Arabic	IFN/ENIT	411	BDCT + Nearest-center	76%
	Proposed BWLBC-based approach (Chahi et al.)	2018	Arabic	IFN/ENIT	411	BWLBC + NN-Hamming	96.47%
	Hadjadji and Chibani	2018	Arabic	IFN/ENIT	411	LPQ, RL, and oBIF + OC-K-Means	97.56%
	Proposed LPQ-based approach (Chahi et al.)	2019	Arabic	IFN/ENIT	411	LPQ + NN-Hamming	97.81%
	Proposed LTP-based approach (Chahi et al.)	2019	Arabic	IFN/ENIT	411	LTP + NN-Hamming	96.84%
	Proposed LBP-based approach (Chahi et al.)	2019	Arabic	IFN/ENIT	411	LBP + NN-Hamming	95.13%
	Khan et al.	2019	Arabic	IFN/ENIT	411	SIFT and RootSIFT with GMM	97.28%
	Kumar and Sharma	2019	Arabic	IFN/ENIT	411	DCWI + SVM and SBC	97.50%
	Proposed LSTP-based approach (Chahi et al.)	2020	Arabic	IFN/ENIT	411	LSTP + NN-Hamming	98.28%
	Proposed CLGP-based approach (Chahi et al.)	2020	Arabic	IFN/ENIT	411	CLGP + NN-Hamming	98.54%
	Kumar and Sharma	2020	Arabic	IFN/ENIT	411	CNN	98.24%
	Proposed WriterINet-based approach		Arabic	IFN/ENIT	411	CNN + ANN	99.75%
	Proposed DeepWINet-based approach (S2)		Arabic	IFN/ENIT	411	DeepWINet (full & light)	98.78%
	Proposed DeepWINet-based approach (S1)		Arabic	IFN/ENIT	411	DeepWINet (full) + NN-Chi-square	99.27%
	Proposed DeepWINet-based approach (S1)		Arabic	IFN/ENIT	411	DeepWINet (light) + NN-Chi-square	99.02%
	Fiel and Sablatnig	2013	English & German	CVL	309	SIFT + Cosine	97.8%
	Fiel and Sablatnig	2015	English & German	CVL	309	CNN + Nearest Neighbor	98.9%
	Kanetkar et al.	2016	English & German	CVL	308	LDP + Chi-square	98.1%
	Khan et al.	2017	English & German	CVL	310	BDCT + Nearest-center	99.6%
	Proposed BWLBC-based approach (Chahi et al.)	2018	English & German	CVL	310	BWLBC + NN-Hamming	99.03%
	Kessentini et al.	2018	English & German	CVL	310	SVM with DST	94.83%
	Proposed handcrafted-based approach (Chahi et al.)	2019	English & German	CVL	310	LBP & LPQ & LTP + NN-Hamming	99.35%
	Khan et al.	2019	English & German	CVL	310	SIFT and RootSIFT with GMM	99.03%
	Chen et al.	2019	English & German	CVL	310	CNN-WLSR	99.2%
	Proposed CLGP-based approach (Chahi et al.)	2020	English & German	CVL	310	CLGP + NN-Hamming	99.51%
	Proposed LSTP-based approach (Chahi et al.)	2020	English & German	CVL	310	LSTP + NN-Hamming	99.83%
	Javidi and Jampour	2020	English & German	CVL	310	CNN + HTD	96.16%
	He and Schomaker	2020	English & German	CVL	310	CNN	99.1%
	Kumar and Sharma	2020	English & German	CVL	310	CNN	99.35%
	Proposed WriterINet-based approach	-	English & German	CVL	310	CNN + ANN	100%
	Proposed DeepWINet-based approach (S2)		English & German	CVL	310	DeepWINet (full & light)	100%
	Proposed DeepWINet-based approach (S1)		English & German	CVL	310	DeepWINet (full & light) + NN-Chi-square	100%
	CVL-IPK method. (Louloudis et al.)	2013	English & Greek	ICDAR2013	250	Fisher Vector + Cosine	90.9%
	TEBESSA-c method. (Louloudis et al.)	2013	English & Greek	ICDAR2013	250	Hinge with Run-length + Manhattan	93.4%
	HIT-ICG method. (Louloudis et al.)	2013	English & Greek	ICDAR2013	250	SIFT + Chi-square	94.8%
	CS-UMD-b method. (Louloudis et al.)	2013	English & Greek	ICDAR2013	250	Contour gradient + K-means	95%
	Christlein et al.	2014	English & Greek	ICDAR2013	250	RootSIFT with GMM	97.1%
	Fiel and Sablatnig	2015	English & Greek	ICDAR2013	250	CNN + Nearest Neighbor	88.5%
	Chen et al.	2019	English & Greek	ICDAR2013	250	CNN-WLSR	97.7%
	Proposed						

LSTP-based approach (Chahi et al.) 2020 English & Greek ICDAR2013 250 LSTP + NN-Hamming 98.4% Proposed WriterINet-based approach English & Greek ICDAR2013 250 CNN + ANN 99% Proposed DeepWINet-based approach (S2) English & Greek ICDAR2013 250 DeepWINet (full & light) 99% Proposed DeepWINet-based approach (S1) English & Greek ICDAR2013 250 DeepWINet (full) + NN-Chi-square 99.8% Proposed DeepWINet-based approach (S1) English & Greek ICDAR2013 250 DeepWINet (light) + NN-Chi-square 99.2%

  DeepWINet with scenarios 2)). Even with the light version of DeepWINet, the overall approach still performs the best in this database.

	system reaches the highest top-1 identification rate of 97.81%, which is an im-
	provement over our previous BWLBC-based approach and the system presented
	in (Hadjadji and Chibani (2018)) by 1.34% and 0.25%, respectively. # (CLGP &
	LSTP)-based approaches: From the Table 5.27, it can be clearly seen that the pro-
	posed system with CLGP and LSTP gives the best performance with top 1 scores
	of 98.28% (LSTP) and 98.54% (CLGP) among all the compared studied systems. #
	(WriterINet & DeepWINet)-based approaches: The WriterINet-and full DeepWINet-
	based approaches outperform all investigated SOTA systems in the top-1 identifi-
	cation accuracy (high scores of 99.75% (WriterINet), 99.27% (full DeepWINet with
	scenarios 1), and 98.78% (full

Table 5 .

 5 28: Performance comparison on IAM, Firemaker, ICDAR2011, and AHTID/MW databases. S1: Scenario 1, DeepWINet is applied as deep CNN feature method; S2: Scenario 2, DeepWINet is used as an end-to-end CNN network;

	Approach	#Year	#Script	#Benchmark	#Classes #Feature + Classifier	Writer identification
							Top-1 accuracy
	Khalifa et al.	2015	English	IAM	650	Multiple codebooks + Nearest Neighbor	92%
	Hannad et al.	2016	English	IAM (text-line setup)	657	LPQ + Hamming	89.54%
	Proposed BWLBC-based approach (Chahi et al.)	2018	English	IAM (text-line setup)	657	BWLBC + NN-Hamming	90.11%
	Hadjadji and Chibani	2018	English	IAM (text-line setup)	657	LPQ, RL, and oBIF + OC-K-Means	94.51%
	Proposed LPQ-based approach (Chahi et al.)	2019	English	IAM (text-line setup)	657	LPQ + NN-Hamming	91.17%
	Kumar and Sharma	2019	English	IAM (text-line setup)	657	DCWI + SVM and SBC	97.80%
	Durou et al.	2019	English	IAM	650	OBI and Grapheme + K-nearest neighbour	92%
	Proposed CLGP-based approach (Chahi et al.)	2020	English	IAM (text-line setup)	657	CLGP + NN-Hamming	94.06%
	Proposed LSTP-based approach (Chahi et al.)	2020	English	IAM (text-line setup)	657	LSTP + NN-Hamming	96.80%
	Bulacu and Schomaker	2007	English	IAM (document setup)	650	Contour & Grapheme + Nearest Neighbor	89%
	Siddiqi and Vincent	2010	English	IAM (document setup)	650	Codebook & Contour + Chi-square	91%
	Kumar et al.	2014	English	IAM (document setup)	650	Fourier & wavelet + Nearest Neighbor	88.43%
	Wu et al.	2014	English	IAM (document setup)	657	SDS + SOH	98.5%
	He et al.	2015	English	IAM (document setup)	650	Junclets	91.10%
	He and Schomaker	2017	English	IAM (document setup)	650	COLD-LBPruns + Nearest Neighbor	89.90%
	Khan et al.	2017	English	IAM (document setup)	650	BDCT + Nearest-center	97.2%
	Nguyen et al.	2019	English	IAM (document setup)	650	CNN	90.12%
	Khan et al.	2019	English	IAM (document setup)	650	SIFT and RootSIFT with GMM	97.85%
	He and Schomaker	2020	English	IAM	657	CNN	96.3%
	Kumar and Sharma	2020	English	IAM (document setup)	657	CNN	97.27%
	Javidi and Jampour	2020	English	IAM	657	CNN + HTD	97.50%
	Proposed WriterINet-based approach		English	IAM (text-line setup)	657	CNN + ANN	99.54%
	Proposed WriterINet-based approach		English IAM (document setup)	657	CNN + ANN	98.17%
	Proposed DeepWINet-based approach (S2)		English	IAM (text-line setup)	657	DeepWINet (full)	98.93%
	Proposed DeepWINet-based approach (S1)		English	IAM (text-line setup)	657	DeepWINet (full) + NN-Chi-square	99.54%
	Proposed DeepWINet-based approach (S1)		English IAM (document setup)	657	DeepWINet (full) + NN-Chi-square	98.32%
	Proposed DeepWINet-based approach (S1)		English IAM (document setup)	657	DeepWINet (light) + NN-Chi-square	98.02%
	Ghiasi and Safabakhsh	2013	Dutch	Firemaker	250	Contour codebook fragments + Nearest Neighbor	91.80%
	Wu et al.	2014	Dutch	Firemaker	250	SDS + SOH	92.40%
	He et al.	2015	Dutch	Firemaker	250	Junclets	89.80%
	He and Schomaker	2017	Dutch	Firemaker	250	COLD-LBPruns + Nearest Neighbor	86.2%
	Nguyen et al.	2019	Dutch	Firemaker	250	CNN	92.38
	Khan et al.	2019	Dutch	Firemaker	250	SIFT and RootSIFT with GMM	97.98%
	Proposed CLGP-based approach (Chahi et al.)	2020	Dutch	Firemaker	250	CLGP + NN-Hamming	97.60%
	Proposed LSTP-based approach (Chahi et al.)	2020	Dutch	Firemaker	250	LSTP + NN-Hamming	98%
	He and Schomaker	2020	Dutch	Firemaker	250	CNN	97.6%
	Javidi and Jampour	2020	Dutch	Firemaker	250	CNN + HTD	99.6%
	Proposed WriterINet-based approach		Dutch	Firemaker	250	CNN + ANN	98.4%
	Proposed DeepWINet-based approach (S1)		Dutch	Firemaker	250	DeepWINet (full)+ NN-Chi-square	98.4%
	TEBESSA method (Louloudis et al.)	2011	Hybrid	ICDAR2011	26	GLRL + Manhattan	87.50%
	TSINGHUA method (Louloudis et al.)	2011	Hybrid	ICDAR2011	26	GMSF + Variance Weighted Chi-square	90.90%
	Wu et al.	2014	Hybrid	ICDAR2011	26	SDS + SOH	95.20%
	Fiel and Sablatnig	2015	Hybrid	ICDAR2011	26	CNN + Nearest Neighbor	94.7%
	Mohammed et al.	2017	Hybrid	ICDAR2011	26	FAST keypoints + Local NBNN	98.6%
	Khan et al.	2019	Hybrid	ICDAR2011	26	SIFT and RootSIFT with GMM	100%
	Proposed						

CLGP-based approach (Chahi et al.) 2020 Hybrid ICDAR2011 26 CLGP + NN-Hamming 100% Proposed LSTP-based approach (Chahi et al.) 2020

  

			Hybrid	ICDAR2011	26	LSTP + NN-Hamming	100%
	Proposed WriterINet-based approach		Hybrid	ICDAR2011	26	CNN + ANN	100%
	Slimane and M ärgner	2014	Arabic	AHTID/MW	53	Gaussian Mixture Model (GMM)	69.48%
	Khan et al.	2016	Arabic	AHTID/MW	53	MSLTPH + majority voting	87.5%
	Khan et al.	2017	Arabic	AHTID/MW	53	BDCT + Nearest-center	71.6%
	Schomaker and Bulacu (implemented in Khan et al.)	2017	Arabic	AHTID/MW	53	Contour features + Nearest Neighbor	66.4%
	Hannad et al (implemented in Khan et al.)	2017	Arabic	AHTID/MW	53	LPQ + Hamming	77.3%
	Proposed BWLBC-based approach (Chahi et al.)	2018	Arabic	AHTID/MW	53	BWLBC + NN-Hamming	99.53%
	Proposed LPQ-based approach (Chahi et al.)	2019	Arabic	AHTID/MW	53	LPQ + NN-Hamming	99.53%
	Khan et al.	2019	Arabic	AHTID/MW	53	SIFT and RootSIFT with GMM	95.60%
	Proposed CLGP-based approach (Chahi et al.)	2020	Arabic	AHTID/MW	53	CLGP + NN-Hamming	99.53%
	• Results on CVL. # BWLBC-based approach: The system reaches a classification	
	rate of 99.03% in split.2 (see Table 5.3), only outperformed by 0.57%, compared	

to the best result obtained in

[START_REF] Khan | Robust off-line text independent writer identification using bagged discrete cosine transform features[END_REF]

) over one split in training and test sets. # Handcrafted-based approach: Comparing the overall performance on the CVL database, the LPQ-based system reaches an average accuracy of 98.62% and a maximum score of 99.35% in split.2 (cf. Table 5.7), which is exceeded by only

Table 5 .

 5 29: Performance comparison on CERUG-CN, CERUG-EN, and CERUG-MIXED databases (105 writers). S1: Scenario 1, DeepWINet is applied as deep CNN feature method; S2: Scenario 2, DeepWINet is used as an end-to-end CNN network;The CLGP-based system reaches the highest average accuracy of 99.51% and a maximum score of 99.67% in split.2 and split.3 (cf. Table5.16) compared to most state-of-the-art systems, including deep learning ones. This performance is com-

	Approach	#Year #Classes CERUG-CN (%) CERUG-EN (%) CERUG-MIXED (%)
	Hinge (Bulacu and Schomaker)	2007	105	90.8	12.3	84.7
	Quill (Brink et al.)	2012	105	82.7	15.8	74.8
	Junclets (He et al.)	2015	105	90.4	87.1	85.7
	COLD + LBPruns (He and Schomaker)	2017	105	93.8	97.1	98.5
	Proposed LSTP-based approach (Chahi et al.)	2020	105	100	98.09	94.28
	FragNet-64 (He and Schomaker)	2020	105	-	100	-
	Proposed WriterINet-based approach		105	95.24	100	100
	Proposed DeepWINet-based approach (full) (S2 & S1)		105	94.28	100	100
	Proposed DeepWINet-based approach (light) (S1)		105	93.33	100	100
	0.25%, compared to the most competitive system in (Khan et al. (2017)), which
	reaches a score of 99.6% over one split. # (CLGP & LSTP)-based approaches:

petitive to the classification score of 99.6% achieved in

[START_REF] Khan | Robust off-line text independent writer identification using bagged discrete cosine transform features[END_REF]

). The LSTP-based system provides a reliable and efficient solution to accurately identify writers with a top-1 score of 99.83%, which outperforms all SOTA systems investigated. # (WriterINet & DeepWINet)-based approaches: Both WriterINet and DeepWINet approaches achieve further improvements over our previous systems.

  The LSTP-based approach is the top 2 system with a classification result of 96.80%, which is outperformed by[START_REF] Kumar | DCWI: Distribution descriptive curve and Cellular automata based Writer Identification[END_REF] with a result of 97.80%. For this database, we believe that the performance drop using our texture-based approaches is due to the bad adaptation of the feature extraction methods with the segmented component sub-images. The original text line images contain unwanted random traces. As a result, some representative writing traces are lost during the image segmentation step. This affects the overall system to perform correct writer identification. # (WriterINet & DeepWINet)based approaches: Our deep learning proposals provide further enhancements to the IAM database with text line and document setups. As shown in Table5.2, the highest identification accuracy of 99.54% is reached on IAM (text line setup) with WriterINet-based and DeepWINet (S1 & full)-based approaches, outperforming all SOTA systems. In the IAM database with document setup, the second-best SOTA system is the DeepWINet-based approach (S1 & full) with a classification result of 98.32%, slightly outperformed by 0.18% versus the system presented in(Wu et al. The test set includes 20 019 fragments from 1152 writers generated from 2732 historical documents.[START_REF] Seuret | ICFHR 2020 Competition on Image Retrieval for Historical Handwritten Fragments[END_REF] report that the test set is class imbalanced. More precisely, the test set consists of four relevant samples per writer, up to 69 fragment samples that need to be identified and retrieved. Note that the IDs of the writers in the training set are different from those in the test set, and that there is no overlap between the two sets. Details of the origin and arrangement of the database can be found in Chapter 4 (cf.

	5.6. RESULTS OF THE ICFHR2020 COMPETITION
	tal results reported in the literature. In the English-Chinese CERUG-MIXED, a
	score of 94.28% is recorded, which still rivals the score of 98.5% obtained by He
	and Schomaker (2017b). # (WriterINet & DeepWINet)-based approaches: In the
	CERUG-CN database, the highest performance (score of 95.24%) is reached with
	our WriterINet-based approach but outperformed by 4.76% over the LSTP-based
	approach. In CERUG-EN and CERUG-MIXED databases, 100% accuracy in writer
	identification is achieved using (WriterINet & DeepWINet)-based approaches.
	5.6/ RESULTS OF THE ICFHR2020 COMPETITION
	5.6.1/ EVALUATION PROTOCOL AND ERROR METRICS
	and Jampour (2020)) is the best performing system with a classification score of
	99.61%. However, (WriterINet & DeepWINet)-based approaches are still compet-
	itive with the best second score of 98.4%. Our approaches outperform the same
	work in (Javidi and Jampour (2020)) on CVL and IAM databases, respectively.
	• Results on ICDAR2011 and AHTID/MW. In the ICDAR2011 database, all our pro-Section 4.4).
	posals (with the system in Khan et al.) report a top 1 writer identification accuracy
	of 100%, outperforming all experimental classification results reported in the liter-
	ature. Our approaches achieve the highest SOTA performance (score of 99.53%)
	on the AHTID/MW database. They show a significant improvement of 3.93% and
	12.03% over the nearest best-performing systems presented in (Khan et al. (2019))
	and (Khan et al. (2016)), respectively.

[START_REF] Khalifa | Off-line writer identification using an ensemble of grapheme codebook features[END_REF]

) used a different IAM setup in its evaluations. # (LPQ & CLGP & LSTP)-based approaches: The proposed approaches improve the performance in the IAM database (text line setup) over the previous BWLBC-based approach. (

2014

)) (score of 98.5%). However, our deep learning-based approaches outperform the same system in

(Wu et al. (2014)

) by 6% and 4.8% on Firemaker and ICDAR2011 databases, respectively ( cf. Table

5

.28).

• Results on Firemaker. # CLGP-based approach: As depicted in Table

5

.28, the top 1 identification accuracy of 97.60% is achieved on the Firemaker database, slightly outperformed by the nearest best system in

[START_REF] Khan | Dissimilarity Gaussian Mixture Models for Efficient Offline Handwritten Text-Independent Identification Using SIFT and RootSIFT Descriptors[END_REF]

) by about 0.38%. # LSTP-based approach: Using the LSTP-based approach, the classification results are improved in this database with a top-1 score of 98%, outperforming the system introduced in (Khan et al. (2019)). # (WriterINet & DeepWINet)-based approaches: The experimental results show that the approach presented in (Javidi • Results on CERUG. # LSTP-based approach: As shown in Table 5.29, top-1 identification rates of 100% and 98.09% are reached in the Chinese CERUG-CN and English CERUG-EN databases, respectively, which exceed all experimen-As indicated in Chapter 4 (cf. Section 4.4), contestants are asked to hand a 20019 × 20019

distance matrix, since the test set consists of 20019 fragment images. The evaluation is performed using a leave-one-image-out cross-validation strategy. This means that each fragment image of the test set is used as a query, for which the other test fragment images are ranked in a hit list according to their distance similarities (the smaller, the more similar). The metrics are then averaged over all unseen images. Participants' methods are assessed in two ways (two main tasks): (i) writer task, i.e., finding all similar fragment images belonging to the same writer ID based on the writing style, and (ii) page task, i.e., finding all fragment images generated from the same page ID.

Table 5 .

 5 30: Experimental results of Task 1 (writer-level).

		#Method + Distance Metric #mAP #Top-1 Accuracy #Pr@10 #Pr@100
	RUG	FragNet + Euclidean	6.4	32.5	16.8	14.5
	ULT	oBIF + Correlation	24.1	55.4	39.2	37.9
	ICFHR2020 Baseline SRS-LBP + Manhattan	33.4	60	46.8	45.9
	UBFC	ResNet20 ssl + Cosine	33.7	68.9	52.5	46.5
	UTBM	T woPath writer + Chi-square T woPath page + Chi-square	33.5 25.2	77.1 61.1	53.1 41.2	50.4 44.1

Table 5 .

 5 31: Experimental results of Task 2 (page-level).

	#

Method + Distance Metric #mAP #Top-1 Accuracy #Pr@10 #Pr@100

  

	RUG	FragNet + Euclidean	4.1	8.4	6.9	16.6
	ULT	oBIF + Correlation	16.1	23	22.4	45.5
	ICFHR2020 Baseline SRS-LBP + Manhattan	18.5	25.7	25.9	53.1
	UBFC	ResNet20 ssl + Cosine	18.4	24.1	26.2	53.2
	UTBM	T woPath writer + Chi-square T woPath page + Chi-square	22.6 17.4	36.4 27.4	31.2 24.6	58.9 52.6
	5.7/ CONCLUSION				

In this chapter, we presented the experimental results obtained with the different methods we proposed, including CNN-based and texture-based writer identification systems.

code: https://github.com/githubharald/WordSegmentation

code: https://github.com/githubharald/WordSegmentation

https://github.com/anguelos/wi19evaluate
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from the same person or not. If the decision matches the class predicted by the classification system, the probe class is validated as the final output of the overall system.

If the two decisions are mismatching, the probe sample is reclassified, ignoring the first predicted class. The mismatching procedure is repeated until reaching the match.